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SUMMARY

Gelfand [1]1' has shown that a real Banach algebra in which for every element
we have ||x?|| = ||x||?, is isomorphic and isometric to the ring of continuous
{functions on some compact Hausdortf space. Since he was concerned with an
abstract Banach algebra, his representation for this space is necessarily quite
complicated; indeed, it is in terms of a space of maximal ideals of the Banach
algebra. One would expect, then, that for a particular Banach algebra a simpler
characterization of this space would be obtained. It is the purpose of this paper
to find such a simpler representation for the collection of Baire functions of
class a, for each a > 1, over a topological space S. These collections satisfy
the conditions of Gelfand’s theorem. Qur representation, which is done in terms
of lattice, instead of ring, operations, will give the space as a Boolean space
associated with a Boolean algebra of subsets of the original space S.

The paper is divided into two parts. In part I, we define the Baire functions
of class @ and obtain some results connecting them and the Boolean algebra.
Part 1T is concerned with the representation theorem, some of its consequences,

and examples to show that the theory is non-vacuous.

1. References to the literature are indicated by numbers in square brackets.



PART I
BAIRE FUNCTIONS

1.1. Baire functions. Lets be a collection of bounded real-valued® functions
on a topological space S. Such a collection is called a complete system [ 2] if

it satisfies the following conditions:

(L.1.1a) Every constant function is in s.

(1.1,1b) Pointwise sup and inf of two functions in s is also in s.

(1.1.1¢) Sums, differences, products, and (bounded) quotients (with non-
vanishing denominators) of two functions in s are again in s.

(L.l.1d) The limit of a uniformly convergent sequence of functions in s

is in s.

Thus, under pointwise operations, every complete system is both a lattice and a
ring. Further, under the usual norm definition | |f|] = sup |f(x)|, a complete
x€

system forms a real Banach algebra in which ||[f?]] =|f]|*. Gelfand’s theorem
then says that a complete system is isomorphic and isometric to the continuous
functions on a compact Hausdorff space; and a fortiori, is lattice and ring
isomorphic to the set of continuous functions on this space.

Now, for any collection of functions s, the Baire functions over s are defined

[ 3] as the smallest family of functions, B (s), such that:

(i), s C B(s); (ii), a limit of functions belonging to B (s) again belongs to

B (s). We shall always suppose that s is a complete system. Then B (s) is arranged

2. Unless otherwise stated, all functions shall henceforth be assumed bounded and

real-valued.
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into classes of functions in the following manner [ 2] .

(1.1.2a) The functions belonging to s are of class zero.

(1,1.2h) Functions of class a + 1 are limits of convergent sequences of
functions of class a.

(L.12 ¢) Ifais alimit ordinal, the functions of class a are those of the

smallest complete system containing all of the functions of class less than a®.

Denoting the functions of class a by B, (s), it is clear from (1.1.2 a) - (1.1.2 ¢)
that Ba(s) & BB (s) for all @, B such that a < B; and that for each a, Ba(s)

is a complete system. Hence B (s) is lattice (ring) isomorphic to the lattice
(ring) of continuous functions on some compact Hausdorff space. In order to
prepare the way for characterizing this space by means of the representation
theorem, the remainder of part I is devoted to expressing some properities of
functions of class a in terms of subsets S, for suitable collections s and

spaces S.

1.2, Borel Classes. Let © be any collection of subsets of a topological

space S. The Borel ring over © is the smallest family of sets, (©), such that

(L2.1a) G C ®()
(1.21b) 4, e02© -— U4 _c0(© (n=1,2...)

(12.1¢) 4, e0©) — ()4, ¢

while the Borel field over © is the smallest family of sets, A(®), satisfying

(Lz2a) 6 C AG)
(1.2.2b) A4 e A(C) —s 4 ¢ A(G)
(122¢) 4,¢A©) — U4 _eA@© (n=1,2, ...)

3. Since the limiting processes are denumerable, the ordinal a of any class is always
less than (), the first ordinal of the third kind (non-denumerable).
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Since the properties (1.2.2b) and (1.2.2 ¢) imply property (1.2.1 c), it is clear that
®(G) ¢ A(G). In fact, if &* is the collection of subsets of S which are comple-
mentary sets to those of &, then A(G) = D(€) x ®(&*), where a set belonging to
®(G) x ® () is either an intersection or union of one from ®(©) and one from
D (G*).
We classify the sets of ®(©), and hence those of A(0), as follows: ¢ (©)

is the sum of a transfinite sequence of (type ) families [ 4]
(1.2.3) 0(C) =0, (6) +D (G) + +++ + P (O) + =+*

where: (1). (1)0(6) =G: (2). the sets of the family CDaKG) are intersections or
unions of denumerable sequences of sets belonging to (1)5 (6) with € < a, according
to whether a is even or odd, limit ordinals being considered even.

We also have the following dual classification: ®(©) is the sum of a trans-

finite sequence of families
(12:4) D) =¥ (6) +¥ (C) + «++ +¥ () + «-*

where: (1), ¥ (6) =6; (2), the sets of the family = (©) are unions or inter-
sections of denumerable sequences of sets belonging to ¥, (6) with £ < a, according
to whether a is even or odd.

We note that if © is a § -ring, the classification (1.2.4) collapses into that of
(1.2.3) ; for in that case, we clearly have ¥, (6) = ¥, (6) =6, and so ¥, (6)

= (I)a (©) . On the other hand, if © is a o-ring, (1.z.4) is the appropriate classifica-

tion.

1.3. We shall henceforth suppose that the collection satisfies the following

properties:

(1.3.1a) S and the null set ¢» are contained in ©.



(1.3.1b) © is af-ring.
(L3.1¢) 6 ¢C Y, (6%

(1.3.1d) © is closed under finite union.

For want of a better name, a collection of subsets S satisfying (1.3.1a)-(1.3.1 d)
will be called admissible.

Since an admissible collection © is a & -ring, ® (©) is classified according to
(1.2.3), while ®(G*), since G is a y-ring, is classified according to (1.2.4). By
(1.3.1 ¢) it is clear that ®(6) C P (&), Also, ©C W, () if and only if G*C @, (©);
hence ® (&) ¢ ®(G). Thus, we have A(G) = P(6) = P(S). For convenience,
however, we will want to use both classifications (1.2.3) and (1,2.4). Then A (©)
divided into classes of sets with properties as noted below.

P 1.3.1. ' The families ® (©) with even index and ¥  (&*) with odd index are
multiplicative in a denumerable sense; that is, they are closed under denumerable
intersections. Sets belonging to these families are called of class a multiplicative.

P 1.3.2. Dually, the families ® (€) with odd index and ¥ (&) with even index
are closed under denumerable ur;ions. Sets belonging to these families are of
class a additive.

P 1.3.3." A set which is both class a additive and class a multiplicative is
called ambiguous of class a. Since [P, (©)]* =W (&) the ordinary set comple-
ment of a set of class a additive is of class @ multiplicative and vice versa.
Consequently, the complement of a set ambiguous of class a is again ambiguous
of class a. Denote the family of sets ambiguous of class a by 02(0).

P 1.3.4, ' By an elementary transfinite induction on (1,3.1 c) we see that CDa(G)
¥, 4, (€, and since always ®,(©) ¢ D, 4, (), we have @a(@)) co, +(©) nY, iy (6*)
Also, 6C ¥, (6% — G*C @, (6) — Y, (o ,,(©) Y (6) 2 Dut1 (O A Y, 4, ()
since always ¥ (&) C W41 (©). Thus, every set of class a, additive or multipli-

cative, is ambiguous of class a + 1; and, a fortiori, ambiguous of class B for

B> a+1,
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P 1.3.5. Since, by (1.3.1b) and (1.3,1d), © is a distributive lattice under the
usual set operations, so are ®_(©) and ¥, (&) for each a. Also, under set comple-
mentation, fDaa(QJ, s a Boolean algebra for each a. One should note, however,
that ®? (©) can be, and usually is, empty of sets other than S and ¢.

We shall make extensive use of the following separation property, due to

Sierpinski[ 5], [6], expressed in

Lemma 1.3.1s If © is admissible, and if 4, B, are any two sets of class a multi-
plicative, a > 0, such that 4 A B = ¢, then there exists a set //, ambiguous of
class a, such that A C H while B n H =¢.
Proof: We have 4 = n A ,B={[1B,, whered , B, are of classa < a.
n

Clearly, we can assume 4 2 4, ,,, B, 2 B ,,. We define
) H=Ul4, n Bl
We first notice that
(=) H=UIB_ A 4] (B, = 9).

For, letxe /. By (), H°= (Y [4¢ 4 B,) —sx¢ A, A B¢ for everyn. Now
if xe A for every n, then this implies x ¢ B¢ everyn —>x ¢ B every
n—>sxe¢ (0 4) A N B,), a contradiction of the hypothesis 4 N B = ¢.
Hence, there exist numbr;rs n such that x ¢ A, . Letm be the smallest of these
numbers. Ifm=1,x¢ 4, ~sxeB, MmA] . Hm3 L x{Am, whilexed _, .
Taking n =m — 1, we have, since x ¢ A NBE xd Bi_,sorxeB _, . Hence,
xeB,_, n A . Thus, in either case, #° C\J [B,_, A 4% 1. On the other
hand, letze UB,_, n 4:l. IfxeB, A Anf, xedf —sxeAC alln, since
Ay A4, =0 — A7 C AF C++-. But this impliesxe #°= [} [4SUB |,

n

IfxeB _, N Ay forn>1, thenxe B _,, x/An——axeBKgforKgn—land
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xd A, fork > n;hence, x ¢ A N B¢ for all k implies x ¢ #¢. In either case,
U [Bn_1 n 4 ;] C HC and (**) is proved.

n

But now (*) and (**) assert that // is ambiguous of class a. For 4 o B s

being of class a < a are by P 1.3.4 ambigious of class a; thus 4, n B |
is ambiguous of class a and, a fortiori, is of class a additive. Hence, # is of
class a additive. Similarly, (**) shows H ¢ is of class a additive. Thus, # is
ambiguous of class a.

To complete the proof, we observe that if x ¢ 4, then x ¢/ B and so there
exists an integer m such that x /'Bm ; thatis, x4~ B —sxe H. So,
A C H. Finally, if x ¢ B_all n there exists an integer m such that x¢ 4_;

thusxe B__ N A;—~+st°——>B; H¢—B N H=6¢.

l.d. Measurable functions. If © is any admissible collection of subsets
of a topological space S, a real-valued functions f on S is said to be measurable
of class a with respect to G if, given any open set of real numbers, U, {~' (V)
is of Borel class a additive over ©. The collection of measurable functions over
© will be denoted by D (©); the functions of class a by D (©):
Since the reals are separable, every open set is a denumerable union of
intervals. Hence, one can phrase the definition of measurable functions in
any of the following equivalent forms:
D l.4. For every real number A, the spectral sets {x|f(x) <A} and ix|f(x) > A}
are of class a additive over G
D 1.4.2 For every real number A, the spectral sets tx |f(x) < A} and {x |f(x) >\ }
are of class a multiplicative over A.
D 1.4:3 For every real number A, the spectral sets {x |f(x) <A} are of class a
additive over ©, while the spectral sets tx|f(x) < A} are of class a
multiplicative over G,

We will need the following properties of the measurable functions.
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Lemma 1.4 Ifa> 0, f is a measurable function of class a over © if and only
if given any two real numbers A, , A, such that A, > A, , there exists an ambiguous
set of class a, Af(h, s A,), such that ix |f(x) < A, t C Af()\, sA,) C x| f(a) <Ayl

Proof: LetfeD,(6). Since A, > A, , we have tx[f(x) < Miatx|f() 2 A =9
and both sets are of class a multiplicative. By lemma 1.3,1 there exists
Af(AI ; )\2) € @g(@) such that {x |f(x) <A, b Af(h‘1 ; A,) while b |f(2) > A‘,} N A.f(h‘, iA,) = .
Thus, Af()\1 ; A,) is the required set. Conversely, suppose the property is satisfied.

Now if A is any real number, then {x |f(x) <A} = \<J>\ {x|f(x) < r} wherer is a

rational number. Since {x|f(x) < r}g Af(r; A) C tx|f(x) <A, we have {x|f(x) <A}

= \<J>\ Af(r; A). But Af(r; A), being ambiguous of class a is automatically
r

additive of class a; and so {x|f(x) <A} is of class a additive, since the rationals

are denumerable. Similarly, {x|f(x) < A} being equal to OK Af()\,‘ r) is class a

multiplicative. Hence, by D 1.4.3 fe Da(@ and the lemma is proved.

Lemma 1.4.2. 1fa>0, and fe D, (G), then |f| and f -t for any real number g,
are also contained in D , (©).

Proof: LetA; >A,, then A +u>A, +p. Also, we have tx|f(x) —p < A, }
={x|f(x) <A, +pdy dx|f(x) —p <A} =tx[f(x) <A, +pu}. Hence, the set
Af(,\1 +u; A, +p) has the required properties for Af_u(k1 ;A,). By lemma L.4.1
then, f —u ¢ D, (©).

Now we note that taff| 2 4} = bxlf2 A} u 1 f< = A, } while x| < A, }

=tx[f< A o dxlf > w8y b Since Ay >,y =A, <=A,. Hence,
wlfs=M0b € A0 5-00),  dalfz =a0a 40,50, =9

Now, let B =Af()\1 3 A, N [Af(— A,;=A)¢ ThenB ¢ ®*(C) and
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el If 208 A B=lxlf 203 a 40 50,) A [0 ;=)0 v
[l <=2 b A A0 50,) a U =r s =A) =g v g =9
While,
ixilfls»z}g2xlfs>x2¥.c_A,(>x,;A2)
ixl!flsx\zigixlfmzig[Af(—xz;w\,)v

So, {xl Iflgadc Aj(}\l i) [Af(-—)\z ; =A)1¢ =B. Hence, B will serve
as 4 |f|(2‘1 ;A,); and so by lemma 1.4.1, [f| ¢ Da(G).
Lemma 143, Ifa>0, and fe D, (6), then f is the limit of a uniformly convergent

sequence of functions f € D, (), such that f, is of the form f (x) = ¥ Aol F ),

r=1
where A, is a real number, and @(x; F)) is the characteristic function of the
ambiguous set of class a, Fr.4
Proof: Let|f| <M. Givene >0, there exists a finite number of points
A

A, «os s A such that if u is contained in the closed interval <— ¥, ¥ >,
1 2 m

then |u =\ | <¢ for some A . We can, for instance, find A, , A

s eve s by
taking open intervals of length ¢ about each rational in <— M, #¥>. Since the

closed interval is compact, a finite number of these open sets cover <— M, ¥ >,

and so the rationals at the center of these subintervals will serve. Now, let
A =tllf@ -2l b B =tx|lf® -2 ]2 2]

Since fe D, (6), lemma 1.4.2 shows that |[f ~ X | ¢ D,(©), and hence by lemma
1.3.1, for eachr =1, 2, ..., m, there exists a set Gre @Z(@) such that

4,86, B .nG =¢. NowifxeS, flx) e <=M, M>—|f(x) =\ | <e for

4. Lemma 1.4.3 will be found, in a slightly different form, on page 186 of Reference

[4- |. Kuratowski’s elegant proof is followed almost exactly here.
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‘some)\r-——ﬂxe/ir for some 7. Hence,S=A1 vid,vu uAm;and thus

SéG.‘u G,v G . Wenow define the sets F'_ by

F,=G,, F =6G.n GinGin o nNGT_,

Then I ¢ @g(@"); and note that if 7 £ s, then FnF_=¢.

For, if (say) r <s, r +« =s, then

F AF =G AGEN " nG, AG N NCEN - aGE = ¢

Mlso, F.= Y ¢ nGen conce, = (UG a (NG,ucH=5ns-=s.

Further, ¥ A B_CG n B _=¢. Now, let
ACERIEWICIN

where ¢ (x; Fr) is the characteristic function of ¥ e Then the above remarks
show that f (x) = A if and only if x ¢ F_. Thus f;‘ () =F_e dHE). Since
the values of the function fe are a finite set, this implies fe-‘ (any set) ¢ fbg(@).
Hence, f, is certainly contained in D, (©). Further, if x ¢ S, then x ¢ F/_ some

r—f(x) =A,. Also, F A B =¢ impliesx¢ B — [f(x) = A | = [f(x) — f (x)] < 2¢.

Since the bound 2¢ is independent of x, we see that f(x) = lim f () and that

the approach to the limit is uniform, where we have taken ¢ = 1/2n and have
renamed fe(x) to be fn(x).

-

Lemma L4, 1f6 10 any admissible collection of subsets of S, then D, () is a
complete system.

Proof: (l.1.1a) follows immediately from (1.3.1a). For (1.1.1b), we observe
thatix|(f, v f,) () <M =lx|f, (2) <A A x|f, (0) <A, and {x|f, v [, > A3
=tx|f, > AU xlf, > A} Dually for f, A f, . Hence, (L1.1b) follows from

(L3.1b) and (1.3.1 d). Now, let f = lim fns where f e D (©) and the convergence
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is uniform. Then, there exists an increasing sequence of integers m such that
If (%) — - +K(x)l < 1/n for all x and k > 0. Hence, for any real number A, we
n
have

) txlf@ < at= O Y alfy, o @ <A+ 1nd

n K

(0 Axlf@zai= N AV ixf, @ 2A-1/n)

n K

We prove only (*), since (¥*) follows from a dual argument. Let

xelx|f(x) <A Then, since |f(x) =,

Ltk (x)] < 1/n alln, «, we have

fm dixe (x) <X +1/n and hence x ¢ {x]fm i (%) <A+ 1/n} for all n, <l
Conversely, if we subpose the latter to be true, f,, +K(x) <A+ 1/n for
all n, k. If f(x) > \ there exists an n such that f(x) > A + 1/n, which,

since f = lim f , implies that for some «, f,, (x) >\ + 1/n, a contra-

n+K
diction. So, f(x) < A. Thus (*¥) and (**) are established. But then
(1.1,1 d) follows at once from (*), (**), (1.3,1b) and D 1.4.2.

Finally, to prove (1.1.1 ¢) we proceed as follows, (i), for sums, note that

f; +f, <A is the same as f, > X —f,, and hence there is a rational r such

that f, >red—f,5 o f, 38 f, >h~n Henes

talfy + 1, > 2k = U Talf, > ntelf, >4 =ril.

ix

fo +f, <= Ulislf, <rintalf, <a-ri)

Thus, D, (©) is closed under sums by D 1.4.1, and the fact that G* is closed
ur_lder finite intersection and denumerable union. (ii), for differences, we
observe that {x] = fS A} =1x|f2 = X} and so the negative of a function in
D, (©) is again in D (8). (ii) then follows from (i). (iii), that D (©) is

closed under products follows at once from (i) and (ii), since
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fo £, =%, +1)% =(f, =f,)%].

if we can show f? ¢ D (C). But this is easy, for x|f2 <A} is b ordx|f> A}
A tx|f> -2}, according to whether A <0 or X > 05 while {x|f* > X} is S or
tx|f > VA U x|f <= A3, according to whether A <0 or A > 0. (iii) is thus

established. (iv), for quotients, if f, g ¢ D (©) and g never vanishes we have

lx|f/g <A} =[lx| g >0} A tx|f-Ag <O}l v [ix|g <0} N ix]f - Ag> O}l

talf/g > M =[xlg> 08 n tx|f=rg> 0}l v [ix|g <0} A tx|f-Ag <Ol

By (i), (iii), and D 1.4.1, all of these sets are in G*. Hence, (iv) is established,

and the proof of the lemma is complete.

Corollary: 1f G is admissible, then for each a, D, (©) is a complete system.
Proof: Let M, (©), for the moment be the collection of sets which are of

class a multiplicative over ©. Then P 1.3.1 and P 1.3.5 imply that ¥, is an

admissible collection. Also, it is clear from D 1.4.2 that D (6) =D (U ).

Hence, the corollary follows at once from lemma 1.4.4.

We also obtain a converse of lemma 1,444, If s is any collection of functions on
S let € be the collection of ‘closed’ spectral sets of s. That is, 4 ¢ € means
that there exists a real number A and a function f in s such that 4 = {x|f< A}

Then we have

Lemma 1,4.5. Ifs is a complete system, then € is an admissible collection of
subsets S.
Proof: Since s is a complete system, (f ~A) v 0 is in s whenever f is. Hence

we can say that € consists of all sets 4 such that 4 = {x|f = 0}, where f is



-12-
non-negative and f¢ s. Thus, &* is the collection of all sets B such that B =1ix|f > 04,
for some non-negative f in s.

Now, we observe that

x| f=0}= Q x|(r=fH)v 0>01% (r rational)
0

r

Iffes, then(r—f)v Oes. Hence, & satisfies property (L.3.1 ¢). That it satisfies
(1.3.1 a) follows at once from (1.1.1a). (L.3.1d) follows from the fact that, for

non-negative f, g

{x] f(x) =0} W txg(x) =0} =ix|fA g=0}

and (1.1.1b). It only remains to prove that & satisfies (1.3.1b).

Accordingly, let 4 = N4 .» whered =ix|f =0}, andf es. Lete,

be a sequence of positive numbers such that X ¢ converges. Define

f=5 (a0

r=1

Then A ={%|f=01}. For, ifx ¢ A, then x ¢ A, alln and so fn(x) =0 all n;
whence, f(x) =0. On the other hand, if x ¢ 4, then x ¢ 4 _for some n implies
(%) > 0; whence, f(x) > e (f,(xA 1)>0. Now, to complete the proof, we

need only show that fe s. But, observe that, given any e > 0,

10 = 2 e A D) 12 r@anis £ e <o

for sufficiently large N, since Z ¢ _is convergent. This bound is independent
of x, and hence [ is the uniform limit of the functions h, = i en(fr AL,
r=1

Clearly, each 4 is in s and so by (1.1.1d), f is contained in s. The proof of

the lemma is thus complete.
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1.5. + Connection between Baire and measurable functions.
Let © be any admissible collection of subsets of a topological space S, and
denote by s the collection of functions D _(©). The lemma 1.4.4 implies that s
is a complete system. It makes sense, then to talk about the Baire functions

of class a overs, B, (s). In fact, we can say at once

Lemma 15,1, For eacha, B, (s) C D, (6).

Proof: Fora =0 this follows at once from the definition of s. In fact, we
note that s =D _(©) and (always) s =B (s) imply the stronger relation B (s)
=D, (©).

Suppose, now that the theorem is true for all £ <a. If a has a predecessor,
then, fe B, (s) means that f = nlimw f, where f e B, _ (s). LetA be any real

number. Then

(*)  ix|f(x) < AY = N U ] f oy (®) <A+ 1/nd
n K

%) txlf@ 2 al= N U txlf,,, &) >x -1/}
n K

We prove only (¥), since the other follows from a dual argument: If f(x) < A,

all the points f, (x) with index sufficiently large satisfy the inequality

|f(x) = f, (®)] < 1/n, and hence f (%) <A + 1/n; thus, for all n there exists

a k suchthatf . (x) <A+1/n, which proves (*) one way. Conversely, if

f(x) > A, there exists an N such that f(x) >A + 1/N. Then f=lim f implies

that for some n >N all the points f () are such that fas @ >A+YN>A+ 1/n;
thus, the supposition that for all n there exists a « such that f , (x) <A +1/n
implies that f(x) <'A. Whence, (*) — and similarly (**) — is establisled. But

(%) >\ = 1/n}

are of class a — 1 additive. Hence, (*) and (¥*) show that x|f(x) < A} and

now by the induction hypothesis, tx|f , (x) <\ +1/a} and ! f o i

tx[f(x) > A1 are of class @ multiplicative. Thus, by D 1.4.2, fe D (©).
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To complete the proof, we observe that if a is a limit ordinal, then the induction
hypothesis implies that every Baire function of class less than a is contained in
D,(6). But, by the corollary to lemma 1,44, D, (©) is a complete sys\tem; it
must therefore contain as a subset the smallest complete system containing
every function of Baire class less than a. But by the definition (1.1.2 ¢), this

smallest system is just B (s). Hence, B (s) C D, (©), and the lemma follows.

In proving lemma 1.5.1, we note that B _(s) =D (). If we seek a condition

for this to be true in general, we are led to adopt the following definition.

D 1.5.1. ' S is called G-normal, if whenever 4, B ¢ © are such that 4 A B =,
there exists a function f in s such that 0 < f< 1, and f(x) =0 if x ¢ A, while

f(x) =1 if x € B.

Lemma 1,5:2, Ifa>0, S is G-normal, and 4 ¢ ®7%(©), then the characteristic
function of A, ¢(x; 4), is contained in Ba(s).
Proof: Fora =1, we have 4 = UBn, where B¢ © andA":UCn, C,eG

Clearly, we can assume B C B,41»C,CC 4o Now,ANA4A°=¢p — UB,,I\C,,, =c¢h

— B NnC_=¢ alln, m. By G-normality there exist functions f, € s suchthat
0<f <1, whilef (x) =1ifxeB ,andf (x) =0ifxe C .. Then, if x ¢S, either
x€A orxe A, but not both, If x ¢ 4, then x ¢ BN . for some N and all x, whence

T g (x) =1allk. Ifxe A, then x ¢ Cy +x for some M and all k, whence by +K(x) =0
all k. Thus, for any x, we have |¢(x; 4) —-fN e (%)] =0 <¢ for some N and all

k. Hence, ¢(x; 4) = lim f (%), and the lemma is established for a = 1.

We assume that now the lemma holds for all € < a. Ifq has a predecessor, then

A= kn} B, A°= kn) C,where B , C_are of class a — 1 multiplicative. A gain,

An A°=¢ —B n C,=¢. By lemma 1.3.1, there exist sets F'_, ambiguous
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of class @ ~ 1, such that B C F , whileC N F =¢. By the induction
hypothesis, the characteristic function of F , ©(x; £)), is of Baire class a — 1;
and by arguments similar to those above, it is clear that @(x; 4) = lim @(x; Fn).

n-» oo

Hence by (1.1.2b), 0(x; 4) € Ba(s).

Finally, if ¢ is a limit ordinal, we proceed as follows. We first construct a
function A, of Baire class a, which vanishes on 4 and which is positive on 4 ©.
To do this, we observe that 4 ¢ = U B, where the B , are of class a, <a.
Since @ is a limit ordinal, @+ 1 <a; hence the B are ambiguous of class less
than a. By the induction hypothesis, the characteristic functions ¢(x; B o) of
the B , are contained in Ba 4ot (s) C Ba(s). Now, let € be a sequence of

n

positive numbers such that X ¢ converges, and consider the function

>~
]
1t i48

€,0(x; B ) = lim k,

1 n-> oo

-

Note first that, if €>0. |h(x) ~hy ()] =| S € 0@ B)| < S e <eifN
N

=18

is sufficiently large, since % ¢ converges. The bound being independent of

%, the convergence is uniform, and hence 4 belongs to B, (s) since it is a
complete systéfn. Further, if x ¢ 4, then x ¢ B , for all n implies o (x; B n) =0
for all n, and hence that A(x) =0. While if x ¢ 4, then x ¢ B , for some n,
implies that 9(x; B ) =1, and so h(x) > €,> 0. Thus % is the required function.

In a similar way, we construct a function g ¢ B, (s) which vanishes 4 ¢ and is

positive on A. Then it is clear that

h(x)

(* P ) [P
) 9(x; 4) e

But A M A°=¢ implies that & + g never vanishes. Thus (*) shows that

¢(x; A) € B, (s), since B, (s) is a complete system. The lemma is thus established
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We are finally able to prove the main result of Part I, namely:

Theorem 15,1, If© is admissible, s = Da(g), and S is G-normal, then for each
a, B, (s) =D, (©).

Proof: We have already noted that the theorem is true for a =0. Fora >0,
in view of lemma 1.5.1, it only remains to prove Da(@ C Ba(s). Accordingly,
we note that if f ¢ D, (©) then by lemma 1.4.3 we have f as the uniform limit

mn
of functions f_of the form = X 0(x; F)) where F is ambiguous of class
) r=1

a over ©. But by lemma 1.5.2, 0(x; F) ¢ B (s). Since B (s) is a complete

system this implies f ¢ B, (s). Hence, the theorem is established.

1.6. In order to get a clearer idea of the meaning of the condition of G-normalit y,
suppose that © is admissible, s =D _(6), and €, as in lemma 1.4.5, is the
collection of ‘closed’ spectral sets of s. Then, by that lenma & is also admissible.

Hence, we can talk about Da (€). But even more, S is € -normal. For if

A, B ¢ €, then

A =1ix|f(x) =0} B =ix|g(x) =0}
where f, g are in s and non-negative. Then, if 4 A B =, the function

0=
f+sg

is in s, since s is a complete system and 4 A B = ¢ implies that f + ¢
never vanishes. But clearly ¢(x) =0 if x ¢ 4 while ©(x) =1 if x ¢ B and

0< o < 1. This shows that S is € -normal. Hence, by theorem 1.5.1,

we have B (s) =D (€). If now, S is also G-normal, then B,(s) =D, (6).
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Hence, in this case D, (6) =D (€). Thus, the condition of G-normality assures
us that the spectral sets, &, are ‘dense’ in G, in the sense that the measurable
functions over them fill out the possible measurable functions over G. For
the Baire functions, ©-normality enables us to work with the given admissible

set, instead of the (possibly) harder to characterize collection of spectral sets.
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PART II
THE REPRESENTATION THECREM
2.1. Let G be an admissible collection of subsets of the topological space
S, and let s denote D (©). IfS is Ge-normal, then the main result of the paper

can be stated as

Theorem 2.1.1 (The Representation Theorem). 1f a >0, then the Baire functions
of class a over s are isomorphic, as a lattice (ring), to the continuous functions
on the Boolean space associated with the Boolean algebra ®X(©) of the

ambiguous sets of class a over ©.

2.2, Before proceeding to the proof of the representation theorem, we shall
need some preliminary results. In what follows we shall denote the Boolean
space associated with % by X+ We shall suppose a arbitrary, but fixed, and
greater than zero. Also, to avoid confusion, lattice operations will always be
indicated by the pointed symbols V , A , and <; while set operations will
be indicated by rounded symbols © , N , énd Cs

First, of all, we recall [7] that any distributive lattice L has a topological
space { associated with it which is always compact, and, at least ¥, . Ths
points of L are minimal dual ideals of the lattice L, and the closure operation
in £ is defined by A =1 bl <MY, where U is a set of points of {. (small german
letters will always denote minimal dual lattice ideals). If L is a Boolean algebra,
then [ is a totally-disconnected, compact, Hausdorff space; that is, a Boolean
space [8].

The following theorem, which will be useful in extending the representation

theorem, should serve to illustrate the ideas and methods involved in going

from L to L.
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Theorem 2.2.1, Let L be a sublattice (with zero z) of the distributive lattice ¥
(with the same zero z), the elements of which separate those of ¥ in the following
sense: if m, n ¢ M are such that m A n = z, then there exists an element h¢ L,
such that m < h, while n A b =z. Then the space L is homeomorphic to the

space .
Proof: If be £, we define

(i) B =tmeM| mAk# z forall ke p}

(1). § is a minimal dual ideal of M. For, first of all, ¥ is not void, since,
L being a sublattice of M, every member of pis contained in it. Secondly, if
m, ne %, thenm A n#z Forif m A n=z, then by the separation hypothesis,
there exists ¢ L such thatm < A, n A & =2 But then he D, since for any
ke, hak>mAk#zandp is minimal in L. Hence, n A h =2z contradicts
the fact that n ¢ . Thirdly, if m, n ¢ $, then m A ne $*. For if not, there
exists ake Psuchthatmana k=z. So,mA (nAk) =z. ButnAkep*
sincenAkA k" SnAk". # zforeveryk' ¢ p. Hence,mA (nn k) =z implies
m ¢ p* by what has just been proved; this contradiction shows that maA ne p*,
Fourthly, if me¢ * andn > m, thenn A k> mA & # z for all ke pand sone P,
Thus, p* is a proper dual ideal of ¥. It is obviously minimal, since ma n # z
all ne P* impliesm A k #z all k¢ P, and so m e p*.

@), B #P, — pf A5, For by # by, implies there exists k, ¢ P, k,¢ b,

such that k. A %, = z. Hence, b, f P,* and so 1 £ 1 . Now, if qe M, we define
(i) g =theL|heql.

(). G« is a minimal dual ideal of L, and ( & )* = q. For first, of all, qx
is non-empty, since if A ¢ L is not contained in q4 there exists m e q such that
h A m = z. But then, by the separation property, there exists k¢ L such that

h A k=zwhilek> m. Then, k> m implies ke qand so ke g . Secondly,



-920 -

h, ke gy if and only if &, k¢ q. Whence, qx is clearly a proper dual ideal of
L. Thirdly, it is minimal. For, let ¢ L be such that kA k#z all ke g. If
k¢ gy, then as in the proof that g« is non-empty, the separation property yields
a k' e gy suchthath A k' =z. This is a contradiction, and so establishes
the minimality of g« . Finally, it is clear that (q4)* < ¢, and since both ideals
are minimal in ¥, this implies (qx) *= a.
But now the statements (1), (2), and (3) show that the mapping p— H* is a
1 -1 mapping of £ onto M. To complete the proof of the theorem, we need only
show that the topologies are preserved under this mapping. Accordingly, let
p< V n andsuppose me Y Bk Tim ¢ %, then by (i) there exists k¢ P
such that m A &k = z, By the separation property, there exists h ¢ L such that
h>m whileha k=2 Buth> mimplieshe ¥ p¥, implies b ¢ ¥, and so
he . Then h A k =z is a contradiction of the fact that both A and /% are in d.
Hence, m ¢ ¥, and so p*< ¥ b %,
Finally, if < ¥ 4, leth e V(4)s. ThenheV o, andsohc gvhich

implies & ¢ gy . Hence, g4 < V (qo,)* , and the theorem is established.
v

2.3, We now focus our attention on % _ . Ifxe S, let
a

P =14 c®2G)| xedl.

Then b, e X, . For } is clearly a proper dual ideal of ® %, It is also minimal,
forletPn A4 pallde b, and suppose P ¢ b . Thenx¢ P —> x¢ P°©
—P%edh —Pn P° ;‘g[) a contradiction. So, {_is a minimal dual ideal of

®Z. LetB denote the totality of R,

Lemma 2,3,1. B is dense in 2
Proof: B =19% < V B}. Now, if B VB, then B ¢ b, all x ¢ S implies x ¢ B
allxe S~ B =5. So, VB =(S). Since every dual ideal of ®% contains S,



-21-

we have B = 2, , which proves the lemma.

Lemma 2,3.2. LetX be any T', -space, and let ¥ be dense in X. Then, if
f(x), g(x) are continuous real-valued functions on X such that f(y) = g(y)
for all y ¢ ¥, then f(x) = g(x) for all x ¢ X.

Proof: Suppose there exists a point x, where f(x ) # g(x,), say
flx,) > glxy). LetN =tix|f(x) > g(x)}. Then, since f~ g is a continuous
function, N is an open set containing x,. But since Y is dense in X, there exists
a point y ¢ Y which is contained in V, a contradiction of the definition of V.
Thus, f(x,) # g(x,). Similarly, g(x,) ? f(x,). Hence f(x,) = g(x,), which

contradiction establishes the lemma.
Corollary: A continuous function on Ea is determined by its values at B.

2.4. Denote by K(R, X), the set of all (bounded real-valued) functions on
the topological space X ; and by C (R, X) the set of continuous (bounded
real-valued) functions on X.

We now define a pair of correspondence between K (R, §) and K(R, = ).

The correspondence 5-is a mapping of K(R, S) into K(R, %) defined by

(24.1) Iffe K(R,S), then (of) (1) = inf  sup f(x)
Aed xe 4

While r maps K (R, Ea) into K(R, S) as follows:

(24.2) IHF e K(R, Ea) then (7F) (x) =F(bx).

Lemma 24,1, If fe Ba(s), then o-f ¢ C (R, Za)'
Proof: Let Uy =1p|(af) (p) <A}, Then, if pe Ay, inf s

A€P zc 4

f(x) <A,

[=1
=
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So there exists 4 ¢ P such that sup f(x) <A. Now if 4 ¢ ¢, then (of) (g)
2€A

= inf sup f(x) < sup f(x) <A implies qe Ay . Thus, 1q[4 ¢ g} is an
0¢q =z€Q 2€ A

open (and closed) set containing P and contained in %A . Since P was arbitrary,
every point of &y is surrounded by an open set contained in 2y . Whence, 2y

is open. Now, let

Uk =1p|(af) (D) > 2}

To complete the proof of the lemma, we need to show that U* is open. Let

Pe SZI)’{‘, then (of) () > A. Choose A, , A, such that (zf) (P) > A, > A, > A,
Define

Vo=1x[f(2) > A}

W= 1xlf(x) < A, |

Since f ¢ B, (s), and so f ¢ Dé(@), V and W are of class a multiplicative.
Clearly, V. ~ W =¢. By lemma 1.3.1, there exists a set B ¢ ®(6) such that

WC B, VAB=¢. Since (of) () >A,, gnf¥3 sup f(x) > A, — sup f(x) > A,
€ ®E ZE P

allP e h—s PNV £¢ forall P e b.
Suppose, now, that for all P € {, there exists a ¢< (P ) such that (of) (q) < A.

Then (of) () <A, — énfb supQ f(x) <A, implies there exists a ) ¢ q such that
eP xe

supo f(x) <X, ; and hence that Q C W C B, which implies B ¢ .q. Also,
x€

G< (P) =P e q So,PN B #¢, for otherwise ¢would not be a proper dual ideal
of ®%. Now, our supposition was that for every P ¢ p a ¢ existed such that

(#f) (9) < A. Since B is a fixed set independent of P, this implies BN P # ¢

all? ¢ p— B € D, since pis minimal. Thus B AV =¢ contradicts the fact that
PAV £¢ for all P e p. Hence, for some P ¢ ., (of) (q) >\ for all qeiqlg< @)}

Thus pis contained in an open set contained in U% . Since p was arbitrary, this implies
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% is open and the lemma is proved.

Lemma 242, If fe Ba(s), then (=) (b,) = ().
Proof: We have (of) () = inf sup f(y). ForanyP e , x¢ P implies
¥ Pep, yeP

sup f(y) > f(x) and hence (+f) (Px) > f(x). Suppose (sf) (px) > f(x). Choose
y€ P

A, , A, such that @ (h)>A >0, > f(x). LetV =ty|f(y) <A, 5 W =ly|f(y) 21,8
Since [ ¢ Ba(s) = Da(b), there exists a set 4 ¢ CDZ (6), such thatV 4, Wn 4 =¢

Now,xeVC A—Aep . AlsoACW—> sup fly) < sup, f(y) <A,. Hence,
ye€ A ye W
() (p) = inf sup f(y) < sup f(y) < A, <(5f) (p,). This contradiction
* Peﬁpx ye P yeA

proves the lemma.

Corollary: 1t f,, f, ¢ B,(s), then 7f, =of, —> fi=fs-
Proof: sf, =3f, — (5f) (b)) =of, (1) allx e S. Hence, by lemma 2.4.z2,
fy (%) =f, (x) for all x ¢ S, whencef, =f,.

Lemma 2.4,3. IfF ¢ C(R, Ea), then 7F ¢ Ba(s). Further, -7 F =F.

Proof: LetV, =ix|(rF) (x) <A, Wy =1ix|(rf) (x) > A}, By theorem 1.5.1
we need only show that V) , W) are of class a multiplicative. We shall show this
for Vy , a dual proof holding for Wy . Now, if x e V), F(bx) =(F) (x) <A. Then

F(ipx) <r <M\, for some rational r less than A. Let

Uy =1HF () <A, Ut 4P| () < rh

Since F () is continuous, &y is open and A*  is closed. Also, U* C Uy forr <A. For
each r <\ we construct an open-and-closed set, 2 , such that U* 2 gr; Uy. This
can be done, for instance, as follows: since the open-and-closed sets form a basis

for the open sets in ¥, around each point of 2*_ we can put an open-and-closed set
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contained in ?I?(; since Ea is compact, a finite number of these cover Qf*r ; the
union of this finite number of sets is then our _ﬁr :

Now, the open-and-closed sets of Ea are in 1 -1 correspondence with the
elements of ® *(C©); that, is, there exists a P, ¢ @ such that —?jr =1plpg (PO

Then we have

Forer)\-—»F(ﬁpx) <r<h=—p eUr C 5r——>xePr for some r. Whence,

r<Lj>\Pr 2 V). Butify P, then ‘pyeﬁrg_ ?I}\—-—+F(§3y)</\—>(rF)(y) A-yely.

So, P .C V) allr <A — \<j>\ P_ < V). Hence (*¥) is proved. But the P are of

. S
class a ambiguous and so (*) asserts that Vy is of class a additive. Hence,
rFeD, (6) =B,(s).

Finally, we observe that, by lemma 10, (s 7 /) (}Jx) =(rF) (x), and so by the
definition 2.4.2, we have (57 F) (p, ) =F(p, ). Thus orF =F at all points of
B . Since by lemma 2.4.1 and what has been proved above both functions are

continuous, the corollary to lemma 2.3.2 implies o7 F = F for all points of %, .

25, + Proof of the Representation theorem: By lemma 2,4.1 and the corollary
to lemma 2.4.2, the mapping f — of is a 1-1 mapping of B (s) into C (R, ).
By lemma 2.4.3, every function in C (R, Ea) is the image of some function in

B, (s), so the mapping in 1 -1 onto. It is clearly order preserving. Hence, the

theorem follows.

2.6, Now ®%(6) is a sublattice of the lattice of sets of class a multiplicative.
Hence, by lemma 1.3.} and theorem 2.2.1, we immediately get the following form

of the representation theorem.
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Theorem 2.6,1. If a >0, then the Baire functions of class @ over s are isomorphic,
as a lattice, to the continuous functions on the Wallman space associated with

the distributive lattice of the sets of class @ multiplicative over ©.

Also, in case we start with a complete system s instead of an admissible set
©, or in case the space S is not G-normal, then in view of the remarks of section
1.6 (and in the notation of that section) the representation theorem takes the

following form:

Theorem 2.6,2,* Let s be any complete system of functions on the topological
space S. Then, if a >'0, the Baire functions of class a over s are isomorphic,
as a lattice, to the continuous functions on the Boolean space associated with

the Boolean algebra ® & (&) of sets ambiguous of class a over €.

2.7. Examples. Let Gbe the collection of closed subsets of a topological
space S, which are, at the same time, denumerable intersections of open sets.
It is clear that © is an admissible collection. Then the collection of functions
s=D, (©) is just the set of all continuous functions. The collections Ba (s)
are then the usual Baire functions of class a. The condition of G-normality
is then normality in the ordinary sense. Applied to the functions of class 1,
the representation theorem gives the result that the functions of Baire class 1,
on a normal space S,are isomorphic to the lattice of continuous functions on
the Boolean space associated with the Boolean algebra of subsets of S which
are both denumerable unions of closed sets (in ©) and denumerable intersections
of open sets(in ©). Corresponding results hold for functions of higher classes.

In a metric space, which is always normal, every closed set is an
intersection of open sets. Hence, the remarks above apply, for a metric space,

to the collection © of all closed subsets of S. We also note, that for a metric
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space © = €. For if 4 is any closed set, then

A =lx|p(x, 4) =0}

where p (x, 4) is the continuous function measuring the distance of the point
x from the closed set A. Applying these results to the real line, we conclude

with:

Theorem 2.7,1. Let R be the closed real interval <0, 1>, Then the Baire
functions of class L on R are isomorphic, as a lattice, to the continuous
functions on the Wallman space associated with the subsets of R which are

denumerable intersections of open sets.
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