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SUMMARY 

Gelfand [ 11 ~ has shown that a real Banach algebra in which for every element 

we have llx2 I\ = llxl\ 2
, is isomorphic and isometric to the ring of continuous 

functions on some compact Hausdorff space. Since he was concerned with an 

abstract B anach algebra, his repres entation for this space is necessarily quite 

complicated; indeed, it is in terms of a space of maximal ideals of the Banach 

algebra. One woul d expect, then, tha t for a particular B anach a lgebra a simpler 

characterization of thi s space would be obtained. It is the purpose of this paper 

to find such a ~impler representation for the collection of Daire functions of 

class a, for each a ~ 1, over a topological space S. These collections satisfy 

the conditions of Gelfand' s theorem. Our representation, which is done in terms 

of lattice, instead of ring, operations, will give the space as a B oolean space 

associated with a Boolean a lgebra of subsets of the original space S. 

T he paper is divided into two parts. In part I, we define the B aire functions 

of class a and obtain some results connecting them and the B oolean algebra. 

Part II is concerned with the representation theorem, some of its consequences, 

and examples to show that the theory is non-vacuous. 

lo Heferences to the literature are indicated by numbers in square brac kets. 
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PART I 

BAIRE FUNCTIONS 

1.1. B aire functions . Lets be a collection of bounded real-valued2 functions 

on a topological space S. Such a collection is called a complete sys tern [ 2] if 

it satisfies the following conditions: 

( 1.1.1 a) Every constant function is in s. 

(1.1.1 b) Pointwise sup and inf of two functions ins is also ins. 

(1, 1.1 c) Sums, differences, products, and (bounded) quotients (with non-

vanishing denominators) of two functions in s are again in s. 

(1.~.1 d) The limit of a uniformly convergent sequence of functions ins 

is in s. 

Thus, under pointwise operations, every complete system is both a lattice and a 

ring . Further, under the usual norm definition I Jf J J = sup Jf(x) J, a complete 
xf s 

system forms a real Banach algebra in which J If 2 J J = J Jf 112 • Gelfand' s theorem 

then says that a complete system is isomorphic and isometric to the continuous 

functions on a compact Hausdorff space; and a fortiori, is lattice and ring 

isomorphic to the set of continuous functions on this space. 

Now, for any collection of functions s, the Baire functions overs are defined 

[ 3] .as the smallest family of functions, B (s), such that: 

(i), s;: B (s); (ii), a limit of functions belonging to B (s) again belongs to 

B (s). We shall always suppose thats is a complete system. Then B (s) is arranged 

2 . Unless otherwise stated, all functions shall henceforth be assumed bounded and 

real-valued. 
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into classes of functions in the following manner [ 2] , 

( 1.1.2 a) The functions belonging to s are of class zero. 

(1,1.2 b) Functions of class a+ 1 are limits of convergent sequences of 

functions of class a. 

(1.1.2 c) If a is a limit ordinal, the functions of class a are those of the 

smallest complete system containing all of the functions of class less than a 3
• 

Denoting the functions of class a by Ba(s ), it is clear from (1.1.2 a) - (1.1.2 c) 

thatBa(s);;;: BB(s) foralla, .B suchthata.:;;;B; andthatforeacha, Ba (s) 

is a complete system. Hence Ba (s) is l attice (ring) isomorphic to the lattice 

(ring) of continuous functions on some compact Hausdorff space. In order to 

prepare the way for characterizing this space by means of the representation 

theorem, the remainder of part I is devoted to expressing some properities of 

functions of c lass a in terms of subsets S, for suitable collections s and 

spaces S. 

1.2. Borel Classes. Le t 6 be any collection of subsets of a topological 

space S. The Borel ring over 6 is the smallest fam il y of sets, 1> ( 6), such that 

(1.2.la) 6£;; ct> (5 ) 

(1.2.1 L) Anfel>(G)--> U Anfcp(G) (n = 1, 2, , •• ) 
n 

(1.2.1 c) Anfcp(E))___, n An£cI>(G) 
n 

while the Borel field over 6 is the smallest family of sets, A ( 6), satisfying 

(1.:.:::.2 a) 6 £;; A (6) 

(1.2.2 b) A f A(G)--. Ac r A (6 ) 

(l.2.2c) AnfA(6)--. U AnfA(G) 
n 

(n = 1, 2, , , , ) 

3. Since the limiting processes are denumerable, the ordinal a of any class is always 
less than 0, the first ordinal of the third kind (non-denumerable). 
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Since the properties (1.2.2 b) and ( 1.2.2 c) imply property ( 1. ') .1 c), it is clear that 

Cl> (6) ~ A (6 ). In fact, if GI' . is the collection of subsets of S which are comple

mentary sets to those of6, then A(6) = 1> (6 ) x ·<P(G!'), where a set belonging to 

<P (6 ) x cl>(&) is either an intersection or union of one from <P(6) and one from 

<I> (6*) . 

We classify the sets of<I>( 6 ), and hence those of A(6 ), as follows: cI> (Ei) 

is the sum of a transfinite sequence of (type n) families [ 4] 

(1.2.8) <l> (6 ) = <I> (6) +ct> (6 ) + .. · +<I> (6) + .. · o 1 a 

where: (LL cI>
0 

(6 ) = 6: (2L th e sets of th e famil v <Da~6) are intersections or 

unions of denumerable sequences of sets belonging to <I> ( (6 ) with f < a, according 

to whether a is even or odd, limit ordinals being considered even. 

We also have the following dual classification: cI> ( 6 ) is the s um of a trans-

finite sequence of families 

where: (1), '¥ 
0 

(6 ) = 6; (2), the sets of the family'¥ a (6 ) are unions or inter

sections of denumerable sequences of sets belonging to \jl( (6) with f <a, according 

to whether a is even or odd. 

We note that if 6 is a o -ring, the classification (1.2.4) collapses into that of 

(1.2.3); for in that case, we clearly have 'P 1 (6 ) = \[!0 (6) = 6, and so 'Pa+l (6) 

= cI>a (6). On the other hand, if(;'.) j,, a 7 ·-ring , (1.:::.4) is the appropriate classifica-

tion. 

1.3. We shall henceforth suppose that the collection satisfies the following 

properties : 

(1.3.1 a) S and the null set¢ are contained in 6. 
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(1.3.1 b) 6 is a o -ring. 

(1.3.1 c) 6 ~ 1P 
1 

(6*) 

(1.3.1 d) 6 is closed under finite union. 

For want of a better name, a collection of subsets S satisfying (1,3.1 a)-(1.3.1 d) 

will be called admissible. 

Since an admissible collection 6 is a o -ring, cI> (6) is classified according to 

(1.2.3), while cD(6*), since 6* is a 7·-ring, is classified according to (1.2.4). By 

(1.3.lc) itisclearthatcl>(Ei)~ cl>(6*). Also,6~ 11' 1 (6*) ifandonlyif6*\:_cl>1 (6); 

hence cl>(Ei") ~ cD(Ei). Thus, we have A(Ei) = cD(Ei) = ¢ (6*). For convenience, 

however, we will want to use both classifications (1.2.3) and (1.2.4). Then A(Ei) 

divided into classes of sets with properties as noted below. 

P 1.3.1. · The families Cfi a ( 6) with even index and '11 a ( 6*) with odd index are 

multiplicative in a denumerable sense; that is, they are closed under denumerable 

intersections. Sets belonging to these families are ca lled of class a multiplicative. 

P 1.3.2. Dually, the families cl>a(Ei) with odd index and ll1a(6*) with even in dex 

are closed under denumerable unions. Sets belonging to these families are of 

class a additive. 

P 1.3.3. · A set which is both class a additive and class a multiplicative is 

called ambiguous of class a. Since [!Pa(Ei)]'f= ll1a(6*) the ordinary set comple

ment of a set of class a additive is of class a multiplicative and vice versa. 

Consequently, the complement of a set ambiguous of class a is again ambiguous 

of class a. Denote the family of sets ambiguous of class a by ©~(6). 

P 1.3.4. · By an elementary transfinite induction on ( 1.3.1 c) we see that <Pa (6) 

;;:_ 'I'a +l (6*), and since always <Pa(Ei) ~ cl>a +l (b), we have cI>a(Ei) k cl>a +
1
(6) f'\ 'Pa +r (&') 

Also, Eis '¥ 1 (6") ~ 6* k Cfi 1 (6) - 'l'a (6") k <Pa+l (6) -> 1¥a (6'i} ;;: <Pa+l (6) fl W a +1(&) 

since always ll1a(8' k 'I'a+l (6 ). Thus, every set of class a, additive or multipli

cative, is ambiguous of class a + l; and, a fortiori, ambiguous of class B for 

B;::: a+ 1. 
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P 1.3.5. Since, by (1.3.1 b) and (1.3.r d), 6 is a distributive lattice under the 

usual set operations, so are c'P a ( 6) and lfla (8' ) for each a. Also, under set comple

mentation, cpa(G, .s a Boolean a lgebra for each a. One should note, however, a 

that <I>~ (6 ) can be, and usually is, empty of sets other than S and ¢. 

We shall make extensive use of the following separation property, due to 

Sierpinski [ $],. [ 6] ~ expressed in 

Lemma 1.3.1. If 6 is admissible, and if A, B, are any two sets of class a multi-

plicative, a> 0, such that A n B =¢,then there exists a set H, ambiguous of 

class a, such that A ;:.;; H while B n H = ¢. 

Proof." We have A = n A , B = n B , where A , B are of class a < a. n n n n n 
n n 

Clearly, we can assume An 2 An+ T , Bn 2 Bn+T. We define 

(*) H = U [An n B~ ]. 
n 

We first notice that 

(**) f1C = U[Bn-1"' A~ l ' (8
0 

= S). 
n 

For, let x <He. By{*), He= ('\ [A~ v Bn] ~ x I An (\ B ~ for every n. Now 

if x f An for every n, then this implies x I B ~ every n - x f B n every 

n----> x f ((\An) I'\ ((\ B), a contradiction of the hypothesis A ("\ B = ¢. 
n n 

Hence, there exist numbers n such that x I A . Let m be the smallest of these 
n 

numbers. If m = 1, x I A 1 ----> x f B rt Ac. If m > 1, x I A , whi le x f A • 
0 1 m m -1 

Taking n = m - 1, we have, since x I A "' B c, x I Be , or x f B • Hence 
n n m-1 m-1 ' 

x f B m-l ri A~ . Thus, in e ither case, W ~ V [B n-l r. A ~ J • On the other 
n 

hand, let x f U [B 1 I'\ A cl .. If x < B " Ac, x f A c ----> x f Ac all n since n n- n 0 1 1 n • 

A 1 2 A 2 .. • ---->A~ ~ A 2c s · · · . B ut this implies x < H c = n [Ac u B ] , 
• n n n 

If x f B _1 r. Ac for n > 1, then x < B , x I A ---. x f B I for K < n - 1 and n n n-t n ~ , -



-6 -

x . (' AK for K ?. n; hence, x I AK f\ B: for all K implies x € li c. In e ither case, 

U [Bn-t fl A~];;; li c and(**) is proved . 
n 

But now( *) and(**) assert that H is ambiguous of class a. For An' B n' 

being of class an< a are by P 1.3.4 ambigious of class a; thus An f\ B ~ 

is ambiguous of class a and, a fortiori, is of class a additive. Hence, H is of 

class a additive. Similarly,(**) shows li c is of class a additive. Thus, H is 

ambiguous of class a. 

To complete the proof, we observe that if x € A, then x I B and so there 

exists an integer m such that x {B ; that is, X€ A " B c ---> x f fl . So, m m m 

A ;;; H. Finally, if x f B n all n there exists an integer m such that x I Am; 

th US X f B m _ 1 ("\ A ~ ---> Xf H c ---> B ;;; fl c ---> B n H = ¢ . 

1.4. Meas urable functions. If 6 is any admissible collection of subsets 

of a topological spaces, a real-valued functions f on s is said to be measurable 

of class a with respect to 6 if, given any open set of real numbers, U, / 1 (U) 

is of Borel class a additive over 6 . The collection of measurable functions over 

6 will be denoted by D ( 6); the functions of class a by D a ( 6): 

Since the reals are separable, every open set is a denumerable union of 

intervals. Hence, one can phrase the definition of measurable functions in 

any of the following equivalent forms: 

D 1.4.l For every real number A., the spectral sets lx lf(x) < A.! and lx \f(x) > .\ ! 

are of class a additive over 6 . 

D 1.4.2 For every real number A., the spectral sets lx lf(x) ~A.! and lx lf(x) ?_A.! 

are of class a multiplicative over A.. 

D 1.4;3 For every real number A., the spectral sets Ix lf(x) < A.! are of class a 

additive over 6, while the spectral sets lx lf(x) ,::; .\ ! are of class a 

multiplicative over 6. 

We will need the following properties of the measurable functions. 
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Lemma 1.4.1 If a> 0, f is a measurable function of class a over G if and only 

if given any two real numbers A 
1 

, A
2 

such that A 
1 

> ,\ 2 , there exists an ambiguous 

set of class a, A/A
1

; ,\
2 

), such that lx lf(x)::; A2 l ~ A/A 1 ; A2 ) ~ lxif(x) < A1 l. 

Proof: Let ff Da(G). Since 1\ > A
2

, we have lxif(x):::; A2 l (') lx if(x)?. A1 l = ¢ 

and both sets are of class a multiplicative. By lemma 1.3.1 there exists 

A />..1 ; A
2

) f rD:(G) such that lx if(x):::; A2 l ~A/A\ ; A2 ) while lx if(x);:: A1 l f"I A/A1 ; A2 ) = ¢. 

Thus, A/,\
1 

; A
2

) is the required set. Conversely, suppose the property is satisfied. 

Now if A· is any real number, then lx \f(x) < A l = r YA_ lx \ f(x) ::; r l where r is a 

rational number. Since lx if(x) :::; r l;: Air; A);: Ix if(x) <Al, we have lxlf(x) <Al 

= }i A_ A Jr; A). Dut A/r; A), being ambiguous of class a is automatically 

additive of class a; and so lx if(x) <Al is of class a additive, since the rationals 

are denumerable. Similarl"y, lx if(x):::; Al being equal to f)A_ A/A; r) is class a 

multiplicative. Hence, by D 1.4.3 ff Da(G) and the lemma is proved. 

Lemma 1.4.2. If a> 0, and ff D a (G), then If I and f - µ for any real numberµ, 

are also contained in D a (5), 

Proof- Let A1 > A2 , then A1 + µ > A
2 

+ µ. Also, we have lx if(x) - µ::; A
2 

l 

= lx if(x)::; A2 + µ l, lx if(x) - µ < A1 l = lx if(x) < A
1 

+ µ !. Hence, the set 

AjA1 + µ; A2 + 11) has the required properties for Af-µ, (A
1 

; A
2
). By lemma 1.4.1 

then, f - µ f Da (G). 

Now we note that lxlifl :'.: ' A\ l = lxlf;:: A1 l u lxl f::; - A\ } while lx lifl ::; A
2 

l 

= lx If:::; A2 l (') lxl f 2': - A2 !. Since A
1 

> Ap - A
1 

< - A
2

• Hence, 

lxlf> -Al n A (-A ·-A)= " .... 
- 2 f 2' 2 't' 
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lx j lfl ?'. >-1 I /'"\ B == Ux If 2 A\ l (\ A/>.., ; .\ 2 ) (\ [A/-.\2; -.\ 1 )] ~] 'U 

While, 

So, lx I lfl ::;.>..
2
! s Af>..,; .\

2
) f\ [Aj-.\ 2 ; -.\ 1 )] ~ == B. Hence, B will serve 

as A 
111

(.\ 1 ; .\ 2 ); and so by lemma 1.4.1, \fl f Da (6). 

Lemma 1.4.3. If a> 0, and ff Da(6), then f is the limit of a uniformly convergent 
n 

sequence of functions f f Da(6), such that f is of the form f (x) == Y-, .\ cp(x; F ), 
n n n r=l r r 

where .\ ' is a real number, and cp(x; F ) is the characteristic function of the r r 

ambiguous set of class a, Fr. 4 

Proof.· Let If\ ::::_ M. Given f > 0, there exists a finite number of points 

A, , .\
2

, ••• , .\ m such that ifµ is contained in the closed interval<- M, M >, 

then Iµ - .\ rl < f for some .\ r' We can, for instance, find .\ 1 , .\ 2 , •• • , .\ m by 

taking open intervals of length f .about each rational in<- M, M>. Since the 

closed interval is compact, a finite number of these open sets cover <- M, M >, 

and so the rationals at the center of these subintervals will serve. Now, let 

Since ff Da(fS), lemma 1.4.2 shows that \f-.\rl E Da(6), and hence by lemma 

1.3.1, for each r == 1, 2, ... , m, there exists a set G f qia(6) such that 
r a 

4 . Lemma 1.4 .. 3 will be found, in a slight ly different form, on page 186 of Heference 

[ 4 ] • Kuratowski' s elegant proof is followed almost exactly here. 
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some,\ r----> x €Ar for some r. Hence, S =A 1 V A 2 U • • • VA m ; and thus 

S =&
1 

v G
2 

v • •• U Gm. We now define the sets F, by 

F, = G1 , 

ThenF f cpa (Gi' ); andnotethatifrfs, thenF f'\ F
8
=¢ . 

r a r 

For, if (say) r < s, r + K = s, then 

Also, Fr = l) Gr n G ~" • • ·" G ~- 1 = ( U G,) " ( () G, v G ~) = S f\ S = S. 
r 

Further, F I\ B C G I\ B = ¢. Now, let r r - r r 

where qi(x; F) is the characteristic function of F • Then the ahove remarks 
r r 

show that~ (x) = ,\ r if and only if x € Fr. Thus f€_, (A. ·,) = F ,€ Cl>~ 6 ). Since 

the values of the function ff are a finite set, this implies ff_, (any set) f '1>~6). 

Hence, ff is certainly contained in Da (6 ). Further, _if x € S, then x f F, some 

Since the bound 2f is independent of x, we see that f(x) = lim 
n-> oo 

f n (x) and that 

the approach to the limit is uniform, where we have taken€ = l/2n and have 

Lemma 1.4.4. If 6 Io any admissible collection of subsets of S, then D 
0 

(6) is a 

complete system. 

Proof: (l,l,l a) follows immediately from (1.3.1 a). For (1.1.1 b), we observe 

that lx I (f1 V f 2 ) (x) <Al= Ix If, (x) < ,\ l I'\ Ix lf
2 

(x) < ,\ l, and lxlf
1 

\I f
2 

>Al 

=Ix If, > ,\ l U lxlf2 > ,\ l. Dually for f1 /\ f
2 

• Hence, (1.1. lb) follows from 

(l ,3. 1 b) and (1.3.1 d). Now, let f = lim fn, where f n € 0
0 

(6 ) and the convergence 
n-> oo 
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is uniform. Then, there exists an increasing sequence of integers m n such that 

\f(x) - f m +K (x)\ < l/n for all x and K?:: 0. Hence, for any real number ii., we 
n 

have 

(*) Ix \f(x) ~ ii. l = n (\ ·Ix\[ m +K (x) ~ii.+ l/n ! 
n K n 

(**) Ix I f(x) ?:'.Al = n (\ Ix\ f m +K (x) ?. A - l/n l 
n K n 

We prove only(*) , since(**) follows from a dual argument. Let 

xdx\f(x) ~Al. Then, since \f(x) - fm +K (x)\ < l/n all n, K; we have 
n 

f + (x) <A+ l/n and hence x f Ix\( + ~x) <A+ l/n l for all n, d m K m K -
n n 

Converse ly , if we suppose the latter to be true, f m +K (x) ~A+ l/n for 
n 

all n, K. If f (x) >A there exists an n such that f(x) >A + l/n, which, 

since f = lim f n, implies that for some K, f m +K (x) >A+ l/n , a contra-
n 

diction. So, f(x) ~ A. Thus (*) and(**) are established. B ut then 

(1.1.1 d) follows at once from(*),(**), (1.3.1 b) and D 1.4.2. 

Finally, to prove (1.1.1 c) we proceed as follows ~ (i), for sums, note that 

( 1 + (
2 

< A is the same as [
1 

> A - (
2 

, and hence there is a rational r such 

that (
1 

> r > A - f 
2

; or {
1 

> r, (
2 

> A - r. Hence 

Ix\(,+ (2 >11.l = U [Ix\(,> rl nlx\(2 >A -rlJ . 
r 

lx\ / 1 + ( 2 <Al= U [lx\(1 <rl1' lx\(2 <A -r l] 
r ~ 

Thus, D 0 (6) is closed under sums by D 1.4.1, and the fact that 6* is closed 

under finite intersection and denumerable union. (ii), for differences, we 

observe that lx\ - f S Al = Ix\[< - A! and so the negative of a function in 

D 
0 

( 6 ) is again in D 
0 

(5). (ii) then follows from ( i). (iii), that D 
0 

(6) is 

closed under products follows at once from (i) and (ii), since 
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f, f2=~[(f, +f2) 2 -(f, -f2) 2l · 

if we can show [2 £ D 
0 
~6). But this is easy, for lxlf 2 <A! is¢ or lxlf >,/A! 

("\ lxlf > - J>.. !, according to whether A::;_ 0 or A> 0; while lxlf 2 >A! is S or 

lxlf > J>.. l V lxlf < - J>.. !, according to whether A< 0 or A 2 O. (iii) is thus 

established. (iv), for quotients, if f, g f D 
0 

(6) and g never vanishes we have 

lxlflg<Al=Uxlg>Oln lxlf~Ag<O!J .v Uxlg<Olnlxlf-Ag>O!J .. 

l xjf /g >Al= Uxlg > 0 ! /'\ lxlf-Ag > 0 lJ V Uxlg < 0 ! /'\ lxlf -Ag< 0 lJ .. 

By (i), (iii), and D 1.4.1, all of these sets are in 8". Hence, (iv) is established, 

and the proof of the lemma is complete. 

Corollary: If 6 is admissible, then for each a, Da (6 ) is a complete system. 

Proof: Let Ma( 6 ), for the moment be the collection of sets which are of 

class a multiplicative over 6. Th.en P 1.3.1 and P 1.3-.5 imply that Ma is an 

admissible collection. Also, it is clear from D 1.4.2 that Da(6 ) = 0
0 

(Ma). 

Hence, the corollary follows at once from lemma 1.4.4. 

We also obtain a converse of lemma l,q,,4; Ifs is any collection of functions on 

S let~ be the collection of' closed' spectral sets of s. That is, A f ~ means 

that there exists a real number A and a function fins such that A = lxlf ::::_A!. 

Then we have 

Lemma 1.4.5. Ifs is a complete system, then ~ is an admissible collection of 

subsets S. 

Proof' Since s is a complete system, (f - A) V 0 is ins whenever f is. Hence 

we can say that ~ consists of all sets A such that A = lxlf = 0 l, where f is 
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non-negative and ff s. Thus, ~* is the collection of all sets B such that B ==Ix\[ > 0 l, 

for some non-negative f in s. 

Now, we observe that 

Ix\ f == o l == n Ix\ (r ~ f) v o > o l 
r> o 

( r rational) 

If ff s, then (r - f) V 0 f s. He nee, (i!° satisfies property ( 1.3. l c). That it satisfies 

(1.3.1 a) follows at once from (1.1.1 a). (1.3.l d) follows from the fact that, for 

non-negative{, g 

Ix\ f(x) == 0 ! V Ix\ g(x) == 0 l ==Ix\ f I\ g == 0 ! 

and (l.l.l b). It only remains to prove that (i!° satisfies (l,3.1 b). 

Accordingly, let A == n An' where An== Ix\ f n == 0 !, and f n € s. Let€ n 

be a sequence of positive numbers such that~€ n converges. Define 

f == ~ € ({ /\ 1) 
r==1 r r 

Then A== Ix\ f == 0 !. For, if x €A, then x €An all n and so f n(x) == 0 all n; 

whence, f(x) == O. On the other hand, if x I A, then x I An for some n implies 

f n (x) > O; whence, f(x).?: € n ({ n (x) I\ 1) > O. Now, to complete the proof, we 

need only show that f € s. But, observe that, given any€ > 0, 

N oo oo 

\f(x) - L € /f /x) I\ 1) \ == \ L € ({ (x) I\ 1)\ :::; ~ € < € 
r==I N r r N r 

for sufficiently large N, since 2. € r is convergent. This bound is independent 

of x, and hence f is the uniform limit of the functions h n == f € n ({ r f\ 1). 
r ==I 

Clearly, each hn is ins and so by (1.1.1 d), f is contained ins. The proof of 

the lemma is thus complete. 
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1.5. · Connection between B aire and measurable functions. 

Let Ei be any admissible collection of subsets of a topological space S, and 

denote bys the collection of functions 0
0 

(G). The lemma 1.4.4 implies thats 

is a complete system. It makes sense, then to talk about the Baire functions 

of class a over s, Ba (s). In fact, we can say at once 

Lemma 1.5.l, For each a, Ba(s);;;. Da(G). 

Proof: For a == 0 this follows at once from the definition of s. In fact, we 

note thats ==0
0

(G) and(always) s ==B
0

(s) imply the stronger rela tion B0 (s) 

Suppose, now that the theorem is true for all ( < a. If a has a predecessor, 

then,ffBa(s)meansthatf== lim fnwherefnfBa_ 1 (s). Let.\beanyreal 
n-> oo 

number. Then 

(*) lx\f(x)::; Al== nu lx\fn+K(x) < ,\ + l/nf 
n K 

(**) lx\f(x)?:_.\l== (\ U lx\fn+K(x)>.\-1/nl 
n K 

We prove only(*), since the other follows from a dual argument: If f(x) ::; A, 

all the points f,. (x) with index sufficiently large satisfy the inequality 

if(x) - f m (x)\ < l/n, and hence f m (x) < ,\ + l/n; thus, for. all n there exists 

a K such that f n+K (x) <A ·+ l /n, which proves(*) one way. Conversely, if 

f(x) >A , there exists an N such that f(x) > ,\ + l/N . Then f == lim f n imp lies 

tha t for some n > N all the points f + (x) are such that f + (x) > ,\ + l /N > ,\ + l/n; 
n K n K 

thus, the supposition that for all n there exists a K such that f n+K (x) < ,\ + l/n 

implies that f(x)::; A. Whence,(*) - and similarly(**) - is established. But 

now by the induction hypothesis lx\f (x) < ,\ + l/n l and lx\f (x) > ,\ - l/n l ' n+K ·n+K 

are of class a - 1 additive. Hence,(*) and(**) show that lx\f(x)::; ,\ l and 

lx\f(x);:;: Al are of class a multiplicative. Thus, by D 1.4.2, ff Da (G). 
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To complete the proof, we observe that if a is a limit ordinal, then the induction 

hypothesis implies that every Baire function of class less than a is contained in 

Oa( 6 ). But, by the corollary to lemma 1. 4 ;4, Oa(6 ) is a complete system; it 

must therefore contain as a subset the smallest complete s ystem containing 

every function of Baire class less than a. But by the definition (l,l,2 c), this 

smallest system is just Ba (s). Hence, Ba (s) ~ D a ( 6 ), and the lemma follows. 

In proving lemma 1.5.1, we note that B 
0 

(s) = D 
0 

(6 ). If we seek a condition 

for this to be true in general, we are led to adopt the following definition. 

D 1.5.l, · S is called 6-normal, if whenever A, B f 6 are such that A n B = ¢ , 

there exists a function fin s such that 0 ::; f::; 1, and f(x) = 0 if x £ A, while 

f(x) = 1 ifx£ B. 

Lemma 1.5,2. If a> 0, S is 6 -normal, and A £ <1>~( 6), then the characteristic 

function of A, cp(x; A), is contained inBa(s). 

Proof.· For a= 1, we have A= U B , where B £ 6 and Ac= Uc 
n n n' C n f 6. 

Clearly,wecanassumeBn~ Bn+T' en~ cn+1 • Now,A/'IAC=¢- UBnnC m = ¢ 
n,m 

--> B n" C 111 = ¢ all n, m. By 6-normality there exist functions f n ( s such that 

0 ::;fn::; 1, while f n(x) = 1 if x £ B n' and f n(x) = 0 if x f C n" Then, if x f S, either 

x f A or x EA c, but not both. If x EA, then x £ B N +K for some N and all 1<, whence 

f N +K (x) = 1 all K. If x EA c, then x £CM +K for some M and all K, whence f u +K(x) = 0 

all I{. Thus, for any x, we have jcp(x; A) - r (x)[ = 0 < ( for some N and all 
N +K 

K. Hence, cp(x; A) = lim r n (x), and the lemma is established for a = 1. 
n-> oo 

We assume that now the lemma holds for all I;< a. If a has a predecessor, then 

A= U B n' Ac= V Cn where B n' C n are of class a - 1 multiplicative. Again, 
n n 

A f\ Ac=¢ --> B n(\ C n = ¢. By lemma 1.3.1, there exist sets F n, ambiguous 
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of class a - 1, such that B C F , while C I) F = ¢. By the induction n - n n n 

hypothesis, the characteristic function of F n' cp(x; F,,), is of Baire class a - l; 

and by arguments similar to those above, it is clear that cp(x; A) = lim cp(x; F). 
n--> oo 

Hence by (1,1.2b), cp(x; A) f Ba(s). 

Finally, if a is a limit ordinal, we proceed as follows. We first construct a 

function h, of Ba ire class a, which vanishes on A and which is positive on Ac. 

To do this, we observe that Ac = U B , where the B are of class a <a. 
n n n 

Since a is a limit ordinal, a + 1 < a; hence the B are ambiguous of class less n n 

than a. By the induction hypothesis, the characteristic functions cp(x; B n) of 

the B n are contained in Ba +l ~s) ~ Ba(s). Now, let En be a sequence of 
n 

positive numbers such that~ f n converges, and consider the function 

00 

h = ~ 
r = 1 

E cp ( x; B ) = lim h 
n n n 

n-> oo 

Note first that, if E > 0 . \h(x) - hN (x)\ =I~ En cp(x; B )Is; ~ 
N N 

E < E if N 
n 

is sufficiently large, since~ f n converges. The bound being independent of 

x, the convergence is uniform, and hence h belongs to Ba (s) since it is a 

complete syst~m. Further, if x f A, then x I B for all n implies m(x· B ) = 0 
n "V ' n 

for all n, and hence that h(x) = 0. While if x f Ac, then x € B for some n 
n ' 

implies that cp(x; B) = 1, and so h(x) ~ En> 0. Thus his the required function. 

In a similar way, we construct a function g f Ba (s) which vanishes Ac and is 

positive on A. Then it is clear that 

(*) h(x) 
cp(x; A) = 

h(x) + g(x) 

But A I'\ Ac = ¢ implies that h + g never vanishes. Thus (*) shows that 

cp(x; A) f Ba(s), since Ba(s) is a complete system. The lemma is thus established 



-16 -

We are finally able to prove the main result of Part I, namely: 

Theorem 1.5.1. If 6 is admissible, s = D a (6), and S is 6-normal, then for each 

a, Ba(s) =Da(~). 

Proof: We have already noted that the theorem is true for a= 0. For a> 0, 

in view of lemma 1.5.1, it only remains to prove Da(6) ~ Ba(s). Accordingly, 

we note that if f € D a ( 6) then by lemma 1.4.3 we have f as the uniform limit 
m 

of functions f of the form 2, ,.\ cp(x; F ) where F is ambiguous of class 
n . r= 1 r r r 

a over 6. But by lemma 1.5.2, cp(x; Fr)€ Ba(s). Since Ba(s) is a complete 

system this implies f € Ba (s), Hence, the theorem is established. 

1.6, In order to get a clearer idea of the meaning of the condition of 6-normalit y, 

suppose that 6 is admissible, s = D 
0 

( 6), and ~ , as in lemma 1.4.5, is the 

collection of 'closed' spectral sets of s. Then, by that lemma~ is also admissible. 

Hence, we can talk about Da(~). But even more, Sis t£-normal. For if 

A, B f ~,then 

A = lxl f(x) = 0 I B =lxlg(x) =01 

where f, g are ins and non-negative. Then, if A f\ B = ¢, the function 

f cp -f +g 

is ins, since s is a complete system and A(\ B = ¢ implies that f + g 

never vanishes. But clearly cp(x) = 0 if x f A while cp(x) = 1 if x € B and 

0 .$ cp .$ 1. This shows that S is ~-normal. Hence, by theorem 1.5.1, 

we have Ba(s) = Da(~). If now, S is also 6-normal, then Ba (s) = D a (6). 
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Hence, in this case D a (G) = D a(~ ). Thus, the condition of G-normality a ssures 

us that the spectral sets, ~ , are 'dense' in G, in the sense that the measurable 

functions over them fill out the possible measurable functions over G. For 

the B aire functions, G-normality enables us to work with the given admissible 

set, instead of the (possibly) harder to characterize collection of spectral sets. 
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PART II 

THE REPRESENTATION THEOREM 

2.1. Let 6 be an admissible collection of subsets of the topological space 

S and lets denote D (6). If S is 6~normal, then the main result of the paper 
' 0 

can be stated as 

Theorem 2.1,} (The Representation Theorem). If a> 0, then the Daire functi 'ons 

of class a overs are isomorphic, as a lattice (rinv), to the continuous functions 

on the Boolean space associated with the Boolean algebra <P:( 6) of the 

ambiguous sets of class a over 6. 

2.2, Before proceeding to the proof of the representation theorem, we shall 

need some preliminary results. In what follows we shall denote the Boolean 

space associated with tl>~ by ~a. We shall suppose a arbitrary, but fixed, and 

greater than zero. Also, to avoid confusion, lattice operations will always be 

indicated by the pointed symbols V , /\ , and ::; ; while set operations will 

be indicated by rounded symbols U , f' , and !:: • 

First, of all, we recall [7] .that any distributive lattice L has a topological 

space .C associated with it which is always compact, and, at least T 
1 

• The 

points of .C are minimal dual ideals of the lattice L, and the closure operation 

in .C is defined by U ""I Pl P ::;~ ! , where Zl is a set of points of .C. (small german 

letters will always denote minimal dual lattice ideals). If l is a Boolean algebra, 

then .C is a totally-disconnected, compact, Hausdorff space; that is, a Boolean 

space [SJ. 

The following theorem, which will be useful in extending the representation 

theorem, should serve to illustrate the ideas and methods involved in going 

from L to .C. 
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Theorem 2.2.1. Let L be a sub lattice (with zero z) of the distributive lattice M 

(with the same zero z), the elements of which separate those of M in the following 

sense: if m, n € M are such tha t m I\ n = z, then there exists an element h f L, 

such that m ::;_ h, while n /\ h = z. Then the space .C is homeomorphic to the 

space lh. 

Proof: If pf .C , we define 

( i) \:l* = Im f MI m I\ le I= z for all le f p l 

(1). ):l* is a minimal dual ideal of M. For, first of all, \:l* is not void, since, 

L being a sublattice of M, every member of p is contained in it. Secondly, if 

m, n f .j:l*, then m /\ n I= z. For if m I\ n = z, then by the separation hypothesis, 

there exists h € L such that m ~ h, n I\ h = z. But then h f p, since for any 

k f p, h I\ k?::. m I\ k I= z and p is minimal in L. Hence, n I\ h = z contradicts 

the fact that n € p. Thirdly, if m, n f \:l*, then m I\ n f .p* . For if not, there 

exists a k f p such that m /\ n I\ le = z. So, m I\ (n I\ le) = z. But n /\ le f p * 

since n I\ k I\ k' = nl\k".f= z for every le' f .p . Hence, m I\ (nl\ k) = z implies 

m I p* by what has just been proved ; this contradiction shows that m l\ n f p* . 

Fourthly, if m f .p* and n:?:. m, then n I\ k:?:. m I\ k I= z for all k € pand son€ j:l* . 

Thus, p* is a proper dual ideal of M. It is obviously minimal, since m I\ n I= z 

all n f p* implies m A k I= z all k € \J, and so m € p*. 

(2). P1 f. P2 ->Ff I= P~ • For P1 I= h implies there exists k
1 

€ p
1

, k
2 

f p
2 

such that k 1 I\ k 2 = z. Hence, k
1 

I p
2
* and so f1, f. p~ . Now, if q€ \h, we define 

(ii) 4' = lh f L I h € q l. 

(3). Cfi< is a minimal dual ideal of L, and ( q;, )* = q. For first, of all, q* 

is non-empty, since if h f L is not contained in q* there exists m € q such that 

h /\ m = z. But then, by the ·separation property, there exists k f L such that 

hi\ k = z while k ?::.. m. Then, k:?:. m implies k € q and so k f 4'. Secondly, 
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h, k £ q* if and only if h, k £ q. Whence, q* is clearly a proper dual ideal of 

L. Thirdly, it is minimal. for, let hf L be such that h I\ k f z all k £ q. If 

h I <h, then as in the proof that q* is non-empty, the separation property yields 

a k' £ q* such that h I\ k' = z. Th is is a contradiction, and so establishes 

the minimality of q* . Finally, it is clear that ( q*)* ::::_ q, and since both ideals 

are minimal in M, this implies ( q*) * = q. 

But now the statements (1), (2) , and (3) show that the mapp ing p-> p* is a 

1-1 mapping of .C onto ln. To complete the proof of the theorem, we need only 

show that the topologies are preserved under this mapping. Accordingly, let 

p::;: Y Pu and suppose m f Y )1,~. If m I p*, then by (i) there exists k f p 

such that m I\ k = z. By the separation property, there exists h £ L such that 

h;::: m while h I\ k = z. Buth;::: m implies h c y Pei , implies hf tt , and so 

hf p. Then h /\ k = z is a contradiction of the fact that both h and k are in p. 

Hence, m f p*, and so p* .S Y p
7
*. 

Finally, if q::::_ '{ qo-·• let hf V ( quh • 
u · 

Then hf V qu and so h f q ¥.Lich 
(l • 

implies h £ q* . Hence , q* ::::; V ( qu)* , and the theorem is established. 
u · 

2.3. We now focus our attention on ~a. If x f S, let 

)\ = l A f cl)~ ( G) I x f A !. 

Then Px f 2'.a. For Rx is clearly a proper dual ideal of <I>~. It is also minimal , 

for let Pf\ A f ¢ all A f Rx and suppose P I px . Then x I P -> x f Pc 

-> Pc f Px-> P (\ Pc f ¢ a contradiction. So, Px is a minimal dual ideal of 

ti>~. Let SS denote the totality of p . 
x 

Lemma 2.3.1. SS is dense in La • 

Proof.· ilf = l Pl ):i ::;: V SS !. Now, if B NB , then Bf px all x f S implies x f B 

all x f S -> B = S. So, V SS =(S). Since every dual ideal of<Pa containsS, a . 
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we have SB" = la , which proves the lemma. 

Lemma 2.3.2. Let X be any T 
1 

-space, and let Y be dense in X. Then, if 

f(x), g(x) are continuous real-valued functions on X such that f(y) = g(y) 

for ally€ Y, then f(x) = g(x) for all x € X. 

Proof: Suppose there exists a point x
0 

where f'x
0

) f- g(x0 ), say 

f(x
0

) > g(x
0

). Let N = lxlf(x) > g(x) !. Then , since f - g is a continuous 

function, N is an open set containing x
0

• B ut since Y is dense in X, there exists 

a pointy€ Y which is contained in N, a contradiction of the definition of N. 

contradiction establishes the lemma. 

Corollary: A continuous function on la is determined by its values at 18 . 

2.4. Denote by K (R, X), the set of a ll (bounded real -valued) functions on 

the topological space X; and by C(R, X) the set of continuous (bounded 

real-valued) functions on X. 

We now define a pair of correspondence between K (R , S) and K (R, La). 

The correspondence rT· is a mapping of K (R, S) into K (R , La) defined by 

(2.4.1) If f € K (R, S), then (af) ( p) = inf sup f (x) 
A f p Xf A 

While r maps K (R, La) .into K. (R , S) as follows: 

(2.4.2) If F € K(R, l a) then (rF) (x) =F( p). 

Lemma 2.4.1. If f €Ba (s), then af € C (R, La). 

Proof: Let 2IA =I P l (af) ( p) <AL Then, if p € 2IA, inf sup 
A f p Xf A 

f(x) < \ . 
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So there exists A f p such that sup f(x) < ,\. Now if A E q, then (af) ( q) 
xEA 

= inf sup f(x) ::; sup f(x) < ,\ implies q f ~,\ . Thus, I q[ A f q! is an 
Q ~ tj XE Q Xf A 

open (and closed) set containing p and contained in~,\. Since p was arbitrary, 

every point of~,\ is surrounded by an open set contained in ~,\. Whence, ~,\ 

is open. Now, let 

To complete the proof of the lemma, we need to show that ~* is open. Let 
,\ 

Pf if,\, then (rTf) (}I)> A. Choose ,\
1

, A
2 

such that(';-{) (p) > ,\
1 

> A
2 

> ,\. 

Define 

V = lx\f(x)?:: A1 ! 

W = lx\f(x):::; A
2 

! 

Since ff Ba (s), and so ff D ~ ( 6), V and W are of class a multiplicative. 

Clearly, V f'\ W = ¢. By lemma 1,3,l, there exists a set Bf <1>~(6) such that 

W~ B, V n B = ¢. Since (af) (p) > ,\ 1 , inf sup f(x) > ,\
1 

----> sup f(x) > ,\
1 p E p XE p Xf p 

all P € p --> P " V f- ¢ for all P f p. 

Suppose, now, that for all P € p, there exists a q:::; (P) such that (af) ( q) :::; ,\. 

Then (af) ( q) < A2 ----> inf sup f(x) < ,\
2 

implies there exists a Q E q such that 
Q € P Xf Q 

sup f(x) < ,\ 2 ; and hence that Q ~ W ~ B, which implies B f .q. Also, 
XE Q 

q:::; (f) ----> P E q. So, PA B f- ¢, for otherwise q would not be a proper dual ideal 

of cP~. Now, our supposition was that for every P E p a q existed such that 

(af) ( q):::; ,\. Since B is a fixed set independent of P, this implies BA P (= ¢ 

all P f p---> B € p, since pis minimal. Thus B n V = ¢ contradicts the fact that 

Pr. V ~¢for all P € p. Hence, for some Pf p, (af) (q) >,\for all qf lq[q:::; {[>) L 

Thus Pis contained in an open set contained in~\. Since t> was arbitrary, this implies 
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V:\ is open and the lemma is proved. 

Lemma 2.4~2. · If ff Ba (s), then (,-f) (p) = f(x). 

Proof: We have (r;f) ( p ) = inf sup f(y). For any P f Px' x f P implies 
x P€ P x y€P 

sup f(y) ?. f(x) and hence (-;-{) ( P) ?. f(x). Suppose (r;f) ( Px ) > f(x). Choose 
yf p 

A.
1

, A.2 such that (7f) (1:i) > A.1 > A2 >f(x). Let V = lyjf(y):::; A. 2 l, W =ly)f(y) ?./\ 1 l. 

Since f £ Ba(s) = Da(b), there exists a set A£ <P~ (5 ) , such that V ~A, W ()A=¢. 

Now, x £ V ~ A--> A£ p . Also A~ we---> sup f(y):::; sup f(y):::; /\ 1 • Hence, 
x y€ A y€ WC 

(,f) ( p ) = inf sup f(y) ::; sup f(y) ::; /\ 1 < (:r f) ( px ). This contradiction 
x P € p x y€ p y€ A 

proves the lemma. 

Corollary: If [
1 

, [
2 

f Ba (s), then :rf1 = r;f2 ---> [ 1 = [2 • 

Proo{.- :rf
1 

= :rf
2 

--->(:rf
1

) (p) =r;f
2 

(p) allxf S. Hence, by lemma2,4,;c., 

(
1 

(x) = [
2 

(x) for all x f S, whence [
1 

= f 
2

• 

Lemma 2.4.3. If Ff C(R, Z-a), then rF € Ba(s). Further, 7 r F = F. 

Proof: Let VA =lxj(rF) (x) </\l, WI\ =lxj(rf) (x) >A.!. By theorem 1.5.1 

we need only show that V /\, WA are of class a multiplicative. We shall show this 

for VA., a dual proof holding for WI\. Now, if x f VI\, F( p) = (rF) (x) < /\. Then 

F ( p ) < r <A, for some rational r less than A. Let x . . 

U~ =l p jF( p):::; rl. 

Since F ( p) is continuous, UA is open and V'. \ is closed. A lso, V:*, ~ V:/\ for r <A. F or 

each r </\we construct an open-and- closed set,~ r' such that U*,;: V'" ,;:;;_ V:A" This 

can be done, for instance, as follows: since the open-and-closed sets form a basis 

for the open sets in Z-a, around each point of V'.\ we can put an open-and-closed sEt 
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contained in V: ~ ; since ~a is compact, a finite number of these cover V:*r ; the 

union of this finite number of sets is then our Ur. 

Now, the open-and-closed sets of 2-a are in 1-1 correspondence with the 

elements of<l\~· ( 6); that, is, there exists a Pr€ <P~ such that U =! p l P ~ (Pr)l. 
r 

Then we have 

(*) 

For x f V ,\ - --> F ( P) < r < ,\ '--'-4 Px f ~~ ;;; Ur - x f Pr for some r. Whence, 

UP 2 v,. ButifyfP,then p f"U c V:,-Fq~ )<A.-(rF)(y) < ,\ 4y€V,. 
r< A_ r 11, r y r - 11, y 11, 

So, Pr ~ V, all r < ,\ - U P '.::. V, • Hence (*) is proved. B ut the P are of 
A r<tc r- A r 

class a ambiguous and so(*) asserts that V,\ is of cl ass a additive. Hence, 

rF € Da(6) = Ba (s). 

F inally, we observe that, by l emma 10, b-r F ) ( p) = (r F) (x) , and so by the 

definition 2.4.2, we have (Cir F) ( p ) = F ( p ) . T hus 'JT F = F at all points of 
x x 

SB. Since by lemma 2.4.l and what has been proved above both functions are 

continuous, the corollary to lemma 2.3.2 implies CIT F = F for all points of 2-a. 

2.5. · Proof of the Representation theorem: By lemma 2.4.1 and the corollary 

to lemma 2.4.2, the mapping f---> C!f is a 1 - 1 mapping of Ba (s) into C (R , ~a). 

By lemma 2.4.3 , every function in C(a, -Z:a) is the image of some function in 

Ba (s), so the mapping in 1-1 onto. It is clearly order preserving. Hence, the 

theorem follows. 
I 

2.6. Now <I>~ (6) is a sub lattice of the lattice of sets of class a multip licative. 

Hence, by lemma 1.3. l and theorem 2.2.1, we immediately get the following form 

of the representation theorem. 
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Theorem 2.6. l, If a > O, then the Baire functions of class a overs are isomorphic, 

as a lattice, to the continuous functions on the Wallman space associated with 

the distributive lattice of the sets of class a multiplicative over 6 . 

A lso, in case we start with a complete system s instead of an admissible set 

6 , or in case the space S is not 6 -normal, then in view of the remarks of section 

1.6 (and in the notation of that section) the representation theorem takes the 

following form: 

Theorem 2.6.2. · L ets be any complete system of functions on the topological 

space S. Then, if a >O, the Baire functions of class a overs are isomorphic, 

as a lattice, to the continuous functions on the Doolean space associated with 

the Boolean algebra rt>~ ( {£ ) of sets ambiguous of class a over (£ , 

2. 7. Examples . Let 6 be the collection of closed subsets of a topologica l 

space S, which are, at the same time, denumerable intersections of open sets. 

It is clear that 6 is an admissible collection. Then the collection of functions 

s = D
0 

(6 ) is just the set of a ll continuous functions . The collections Ba (s) 

are then the usual Ba ire functions of class a . The condition of 6-normality 

is then normality in the ordinary sense. Applied to the functions of class 1, 

the representation theorem gives the result that the functions of Baire class 1, 

on a normal space S, are isomorphic to the lattice of continuous functions on 

the Boolean space associated with the Boolean algebra of subsets of S which 

are both denumerable unions of closed sets (in 6 ) and denumerable intersections 

of open sets(in 6 ). Corresponding results hold for functions of higher classes. 

In a metric space, which is alw ays normal, every closed set is an 

intersection of open sets. Hence, the remarks above apply, for a metric space, 

to the collection 0 of all closed subsets of S. We a lso note, that for a metric 
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space 6 (£ . For if A is any closed set, then 

A== lxJp(x, A)== 0 l 

where p (x, A) is the continuous function measuring the distance of the point 

x from the closed set A. Applying these results to the real line, we conclude 

with: 

Theorem 2.7.1. Let R be the closed real interval <0 , l>. Then the Baire 

functions of class 1 on R are isomorphic, as a lattice, to the continuous 

functions on the Wallman space associated with the subsets of R which are 

denumerable intersections of open sets. 
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