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CHAPTER ONE 

 

Ineleganolide and Related Natural Products 

 

1.1  Background and Introduction 

1.1.1  Isolation and Biological Activity 

In 1999, Duh and co-workers isolated a norditerpene1 from the soft coral 

Sinularia2 inelegans and termed it ineleganolide (1, Figure 1.1.1).3a  The molecule (1) 

was subsequently identified by Sheu and co-workers in a variety of coral species, namely 

S. scabra, S. leptoclados, S. parva, and S. lochmodes.3b–d  The rigid structure of 

ineleganolide was elucidated by single crystal X-ray analysis,3a revealing the relative 

configuration of nine stereocenters, six of which lined a central cycloheptanone core. 

Figure 1.1.1 The structure of ineleganolide 
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The absolute stereochemistry of ineleganolide has not been proven.  We propose 

that ineleganolide has an R configuration at C(1) because this is the absolute 

configuration of sinuleptolide (9, vida infra), a postulated biosynthetic precursor to 

ineleganolide.  This proposal is in keeping with common lore about cembranoid 

stereochemistry.  In 1978, Tursch and co-workers surveyed the absolute stereochemistry 

of cembranoids derived from alcyonacean corals, such as Sinularia,2b and found this 
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small sample of cembranoids to have an R configuration at C(1).4  Since then, the 

absolute configuration of sinuleptolide (9, vida infra) has been unambiguously assigned 

through a modified Mosher ester analysis as 1R.5  

In addition to structural complexity, ineleganolide boasts biological activity: it 

demonstrates in vitro cytotoxicity against murine lymphocytic leukemia P388 cell lines 

(ED50 = 3.82 µg/mL).3a  Ineleganolide has also been tested for activity against human oral 

epidermoid (KB) and liver (Hepa59T/VGH) carcinoma cells, without demonstrating 

effect (ED50 > 20 µg/mL).3b–c  

1.2  Biosynthesis of Ineleganolide 

1.2.1  Proposed Biosynthesis of Ineleganolide 

 Biosynthetically, ineleganolide, and other diterpenes are derivatives of 

geranylgeranyl diphosphate (GGPP, 2),6 an indirect product of glucose metabolism to 

isopentyl diphosphate (IPP) and dimethyl allyl diphosphate (DMAPP, Scheme 1.2.1).  

GGPP arises through sequential enzyme-catalyzed condensations of IPP (3 equiv) and 

DMAPP (1 equiv).  Initially, IPP and DMAPP combine to generate geranyl diphosphate 

(GPP) in a reaction catalyzed by geranyl diphosphate synthase.  With farnesyl 

diphosphate synthase as a catalyst, this chain is elongated through addition of IPP to 

furnish farnesyl diphosphate (FPP).  A final IPP is appended to form GGPP, as catalyzed 

by geranylgeranyl diphosphate synthase.  
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Scheme 1.2.1 Biosynthesis of geranylgeranyl diphosphate 
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The cembrane skeleton arises through cyclization of GGPP (2)6 to generate a 

fourteen-member ring with an external isopropenyl cation (Scheme 1.2.2).  En route to 

casbene (3), this cation is quenched through cyclopropane formation catalyzed by 

casbene synthase.7  By analogy, en route to ineleganolide, this cation would be quenched 

through deprotonation to form hypothetical cembranoid 4. 

Scheme 1.2.2 Initial steps in the proposed biosynthesis of ineleganolide 
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Based on analogous proposals by Anjaneyulu, we expect that a series of 

oxidations transform simple cembrane skeleton 4 to hypothetical diketone 5.  The C(5) 

alcohol in carboxylic acid 5 is poised for conjugate addition to the C(6)–C(8) enone to 

form proposed furanyl ether 6.8  Subsequent decarboxylation would generate 

norcembranoid 8, which Anjaneyulu has isolated from Sinularia granosa.8  Anjaneyulu’s 

proposals for the biosyntheses of the mandapamates (18–20) and havellocate (25) diverge 

from the methyl ester analogue of carboxylic acid 6 (e.g., 7, vida infra, Scheme 1.2.6). 
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Scheme 1.2.3  The proposed biosynthesis of sinuleptolide en route to ineleganolide 
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By extension, we propose norcembranoid 8 as a precursor to ineleganolide via a 

sequence of reductive condensation, and conjugate additions (Scheme 1.2.4).  

Lactonization may furnish sinuleptolide (9).5  It is also conceivable that lactonization 

occurs prior to conjugate addition.  The intermediate on this pathway would be the 

hydroxy analogue (11) of 7E-leptocladolide A (10), an antihepatic agent that has been 

isolated from S. parva.3c  

Scheme 1.2.4  The proposed biosynthesis of sinuleptolide en route to ineleganolide 
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The final bonds in ineleganolide are expected to form through a double Michael 

addition sequence (Scheme 1.2.5).  Michael addition of a C(4) enolate into the Δ12,13-

unsaturated lactone would form the C(4)–C(13) bond, generating a hypothetical 
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carbocycle (12) on elimination of the C(11) hydroxyl.  Finally, Michael addition of a 

C(7) enolate to the butenolide system would generate ineleganolide (1).  An analogous 

pathway would furnish sinulochmodin C (14)5 if the first of these Michael additions had 

instead involved a C(5) enolate.  

Scheme 1.2.5  Continuation of the proposed biosynthesis of ineleganolide 
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Anjaneyulu has proposed related biosyntheses for the mandapamates (18–20) and 

havellocate (25, Scheme 1.2.6).8  Anjaneyulu anticipates that the mandapamates arise 

from furanyl ether 7 via β-elimination of the C(5) furan linkage to form hypothetical bis-

diene 15.  Hypothetical bis-diene 15 is poised for an inverse-demand Diels-Alder reaction 

and subsequent hemiketalization to generate the mandapamate scaffold.  Anjaneyulu also 

proposes that furanyl ether 7 is the precursor to havellocate. 
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Scheme 1.2.6 Anjaneyulu’s proposed biosyntheses of mandapamates  
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 We postulate that norcembranoid 8 and its predicted furanyl ether progenitor (6) 

are also potential biosynthetic precursors for rameswaralide (26),9 horiolide (27),10 

dissectolide (28),11 scabrolides A (29)5 and B (30),5 and yonarolide (31, Figure 1.2.1).12 
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Figure 1.2.1 Proposed biosynthetic derivatives of furanyl ether  6 
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1.2.2  Related Natural Products 

As a cembranoid, ineleganolide is part of a broad class of structurally related 

natural products.  Cembranoids have been isolated from insects, tobacco, and marine 

invertebrates, such as the soft corals from which ineleganolide has been isolated.  Marine 

invertebrates produce many classes of cembranoids, including cembranes (e.g., 32),13 

2,6-cyclized cembranoids (e.g., 33),14 erythranoids (e.g., 34),15 briarans (e.g., 35),16 

gersolanoids (e.g., 36),17 yonaranes (e.g., 14),5 cladiellins (e.g., 37),18 asbestinins (e.g., 

38),19 sarcodictyins (e.g., 39),20 and other compounds that defy these classifications (e.g., 

40, 41, 42,21 Figure 1.2.2).  Of cembranoids, tobacco produces only cembranes, 

capnosanes and basmanes (e.g., 43).22  Insects provide cembranoids that fit into 

orthogonal skeletal classes,23 as well as cembranes.  
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Figure 1.2.2 Members of each class of cembranoids isolated from marine invertebrates 
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1.2.3  Biogenesis of Norcembranoids 

Corals are simple animals with endo-symbiotic algae (zooxanthellae).  It is 

unclear whether the zooxanthellae or corals are primarily responsible for the wealth of 

cembranoids in these symbiotic organisms.  To address this question, natural products 

have been isolated from separately cultivated zooxanthellae and corals.  

Cembranoids have been isolated from these corals in the absence of 

zooxanthellae, including pseudopterolide (44)24 and isolobophytolide (45),25 from 

Pseudopterogorgia acerosa and Lobophytum compactum, respectively (Figure 1.2.3).  

These studies argue in favor of assembly of these cembranoids by the corals themselves.  



9 

Figure 1.2.3 Cembranoids that form in corals in the absence of zooxanthellae (e.g., 44 

and 45) or in zooxanthellae in the absence of corals (e.g., 46) 
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In analogous experiments, zooxanthellae produce cembranoids.  Kerr cultivated 

Symbiodinium, a type of zooxanthellae, in the absence of host corals.  When Kerr fed 

Symbiodinium 3H-labeled geranylgeranyl diphosphate (GGPP), the metabolic precursor 

to cembranes, the team isolated 3H-labeled kallolide A (46),26 another cembranoid.   

1.2.4  Importance of Cembranoids to Coral Colonies 

 In Sinularia colonies, cembranoids facilitate coral survival and reproduction 

(Figure 1.2.4).2b  Pukalide (47)27 helps to expel an egg from the polyp in Sinularia 

polydactyla.  Sinularolide (48)4, 28 controlls the amount and type of symbiotic algae 

associated with Sinularia flexibilis. Sinularia flexibilis also contains Uchio’s toxin (49),29 

which is toxic to mosquitofish.  Similarly, Sinularia maxima possesses furanyl 50,30 

which deters local fish from eating it.  Finally, cembranoids participate in allelopathy — 

to eliminate competition by other corals.  Sinularia flexibilis contain dihydroflexibilide 

(51)31 and flexibilide (52),31 which kills hard corals over 8 hours at 5–10 ppm. 
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Figure 1.2.4  Cembranoids with documented import to coral survival  
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1.3  Synthetic Approaches to Ineleganolide and Related Natural Products 

1.3.1 Synthetic Approaches to Ineleganolide 

The total synthesis of ineleganolide has not been reported in the literature.  Moller 

and Tang disclosed an approach to the total synthesis of ineleganolide, based upon a key 

intramolecular anodic olefin coupling.32  Aside from our work in this area, one approach 

to ineleganolide has been reported.  Moller proposed that ineleganolide (1) could be 

retrosynthetically simplified to tetracyclic 53, initially disconnecting the cycloheptane 

ring.  This transformation would proceed by an anodic olefin coupling.  The substrate for 

the cyclization would be accessed from [5,5,5]-fused 54, which in turn would be 

available from lactone 55. 
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Scheme 1.3.1 Moller and Tang’s retrosynthetic analysis for ineleganolide 
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Moller modeled anodic couplings with initiating bisoxygenated olefins, and found 

that these reactions proceeded when substrates maintained the polarization necessary to 

form the intermediate radical cation.  For example, enediol 56b provided 38% yield of 

cyclized 57b and an additional 26% yield of cyclized eliminated 58b when the substrate 

incorporated an electronically neutral tert-butoxycarbonyl substituent on the initiating 

olefin.  Cyclization did not proceed with the more donating methoxy substituent, which 

did not maintain bond polarization.  Nor did cyclization occur when the more 

withdrawing triflated substituent was employed, as this substrate incorporated a double 

bond with a much higher oxidation potential in calculations.  

Scheme 1.3.2 Moller modeled the anodic olefin coupling approach to ineleganolide 
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