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RIASSUNTO 

 

In questo elaborato di tesi viene presentata l’analisi biostratigrafica, biocronologica 

e paleoambientale di una successione miocenica-pliocenica recuperata al Site 

U1506, perforato nel corso della spedizione IODP 371 (Mar di Tasman, Pacifico 

sud-occidentale). La successione studiata va da una profondità di 233.50 a 81.75 m 

CSF-A (Core depth below Sea Floor-A). 

Nell’intervallo dal Miocene superiore al Pliocene un aumento nelle mass 

accumulation rates (MARs) delle componenti biogeniche, importanti cambiamenti 

nelle associazioni planctoniche e bentoniche, e una diminuzione marcata delle 

condizioni redox nei sedimenti sono stati documentati al di sotto delle zone di 

upwelling sia nell’Oceano Pacifico e nell’Oceano Indiano. Queste particolari 

condizioni sono conosciute con il nome di “biogenic bloom”. Lavori precedenti 

hanno suggerito che questo evento paleoceanografico è caratterizzato da un 

aumento della produttività primaria tra 9.0 e 3.5 Ma. 

Un primo risultato di questa tesi è la classificazione biostratigrafica della 

successione basata sulla biostratigrafia a nannofossili calcarei. A questo scopo, 

sono state utilizzate le biozonature standard di Martini (1971) e di Okada and Bukry 

(1980). Inoltre, per migliorare la risoluzione biostratigrafica, è stata utilizzata la 

recente biozonatura di Backman et al. (2012). Secondo le biozonature disponibili, 

la sezione si estende dalla Zona NN10 fino alla Zona NN13 (Martini,1971), dalla 

Subzona CN8b alla Subzona CN10c (Okada and Bukry, 1980) e, infine, dalla Zona 

CNM15 alla Zona CNPL2 (Backman et al., 2012). Dal punto di vista 

cronostratigrafico la successione si estende dal Tortoniano (Miocene superiore) allo 

Zancleano (Pliocene inferiore). Sulla base della biocronologia a nannofossili 

calcarei è stato sviluppato un modello che ha permesso di stimare l’intervallo di 

tempo coperto dalla base della sezione (8.45 Ma) al top della stessa (4.53 Ma) come 

pure le velocità di sedimentazione lungo la successione. Inoltre, il frame 

cronologico disponibile per il Site U1506 ha fornito una stima precisa del timing e 

della durata del biogenic bloom, che inizia a 7.28 e si conclude a 6.50 Ma (0.78 

Myr). Questo nuovo dato riduce in maniera significativa le prime stime della durata 

di questo evento (5.5 Myr). 
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I foraminiferi bentonici sono stati utilizzati per ricostruire le condizioni 

paleoambientali sul fondale in termini di disponibilità di nutrienti, condizioni 

trofiche e concentrazione di ossigeno lungo la successione sulla base delle differenti 

affinità ecologiche dei taxa presenti nelle associazioni. La successione studiata è 

stata divisa in tre intervalli in base alle associazioni di foraminiferi e alla detrended 

correspondence analysis (DCA). L’Intervallo 1 è caratterizzato dalla presenza di 

taxa tipici di ambienti ad alta produttività, caratterizzati da alto apporto di nutrienti 

e bassi livelli di ossigeno, che sono stati interpretati come la documentazione del 

biogenic bloom (tra 192.91 e 168.00 m CSF-A). Invece gli intervalli 2 e 3 

suggeriscono condizioni più oligotrofiche e caratterizzate da più alti livelli di 

ossigeno al fondo. 

Il prossimo passo per meglio comprendere questo evento sarà quello di integrare i 

dati paleontologici con quelli geochimici (δ13C) così da correlare i cambiamenti 

paleontologici con quelli del ciclo del carbonio. 
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ABSTRACT 

 

This Master thesis is a biostratigraphic, biochronologic and paleoenvironmental 

study of a Miocene-Pliocene section retrieved at Site U1506, drilled during IODP 

Exp. 371 (Tasman Sea, southwest Pacific). The studied succession spans from 

233.50 to 81.75 m CSF-A (Core depth below Sea Floor-A). 

During the latest Miocene-early Pliocene, increases in the mass accumulation rate 

(MAR) of biogenic components, major changes in planktic and benthic fauna 

assemblages, and marked decreases in sedimentary redox conditions have been 

documented both in the Indian and Pacific Ocean beneath upwelling zones. These 

conditions are referred to as the “biogenic bloom”. Previous works have suggested 

that this paleoceanographic event is characterized by a prominent increase in 

primary productivity between ca. 9.0 and 3.5 Ma. 

A first result of this thesis is the biostratigraphic classification of the study 

succession based on calcareous nannofossil biostratigraphy using appearance and 

disappearance biohorizons of a number of taxa proposed in standard (Martini, 1971; 

Okada and Bukry, 1980) and alternative biozonations (Backman et al., 2012). 

According to the biostratigraphic zonation available, the study section extends from 

Zone NN10 to Zone NN13 (Martini, 1971), from Subzone CN8b to Subzone CN10c 

(Okada and Bukry, 1980) and from Zone CNM15 to Zone CNPL2 (Backman et al., 

2012). From the chronostratigraphic point of view, the analysed section thus spans 

from the Tortonian (late Miocene) to the Zanclean (early Pliocene). Based on 

calcareous nannofossil biochronology an integrated age model has been constructed 

which allows to estimate the time interval spanned from the Base of the section 

(8.45 Ma) to the Top of the section (4.53 Ma) as well as the sedimentation rates 

along the section. Moreover, the chronological framework available for Site U1506 

also permits to evaluate the precise timing and duration of the biogenic bloom that 

is from 7.28 to 6.50 Ma (0.78 Myr). This datum consistently shortens the previous 

estimates for the duration of the event (5.5 Myr). 

Benthic foraminifera have been used to reconstruct the paleoenvironmental 

conditions at the sea floor in terms of nutrient availability, trophic conditions and 

oxygen concentrations along the study section, based on the different 

paleoecological affinity of the taxa present in the assemblages. 
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The succession has been divided into three intervals based on changes observed in 

the foraminiferal assemblages and detrended correspondence analysis (DCA). Taxa 

typical of high nutrient influx and low oxygen conditions, indicative of high 

productivity environmental conditions, were observed in Interval 1 and are 

interpreted to document the biogenic bloom between 192.91 and 168.00 m CSF-A. 

Instead, Interval 2 and 3 are suggestive of more oligotrophic environmental 

conditions likely characterized by a higher oxygen availability. 

The next step in order to better understand this event will be to integrate 

paleontological and geochemical (δ13C) data in order to correlate paleontological 

changes with modifications in the carbon cycle. 
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INTRODUCTION 

 

Carbon is a vital element on Earth and is essential for the chemical processes that 

support life. The carbon cycle is a biogeochemical cycle by which carbon is 

exchanged between four different reservoirs: the atmosphere, the biosphere, the 

hydrosphere and the lithosphere. Carbon is constantly cycling by means of CO2 

fluxes and is stored in the different reservoirs as inorganic or organic C. It is 

important to study and understand the carbon cycles since if its balance is not 

maintained, it can cause dramatic effects (Ruddiman, 2007). One of the most 

important C reservoir on our planet is the deep ocean, where ca. 38.000 Gt of C is 

stored. This definitely has a higher capacity with respect to both atmosphere (600 

Gt of C) and the upper ocean (1000 Gt of C) (Ruddiman, 2007). The fluxes of 

carbon among reservoirs always occur through CO2 exchanges and when the carbon 

enters in the ocean it is usually found as dissolved inorganic carbon (HCO3
-, CO2 

and HCO3
2-), carbonates and organic matter. If the CO2 concentration in the ocean 

waters increases, this causes an enrichment in H+ concentration, which means a 

decrease in ocean pH, that eventually lead possible dissolution of deep-water 

carbonates, in other words to the so-called acidification. There are several proxies 

that can be used to get information about the carbon cycle and the 

paleoceanographic conditions in the oceans. For instance, deep-sea benthic 

foraminiferal assemblages and bulk δ13C carbonate could help in reconstructing 

variations in paleo-marine productivity and export production (Coxall and Pearson, 

2007). 

In this thesis we investigate a particular long-lived event occurred between ca. 9 

and 3.5 Ma, the so-called biogenic bloom (Dickens and Owen, 1999). This event is 

interpreted as an increase in primary paleo-productivity that is associated with a 

change in the marine carbon cycle, possibly related to variations in deep water 

circulation, carbon supply to the ocean, or both (Grant and Dickens, 2002). 

Understanding these types of events can actually help to understand the dynamics 

of modern oceans, in particular the biogenic bloom is interesting to study because 

is relatively recent and paleoceanographic data for this time interval are well 

constrained allowing for a detail description of the successive steps of event 

(timing) as well as the processes involved. 
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Since the oceanography/paleoceanography is relatively well known for more recent 

intervals (Neogene), it becomes easier to understand the causes, the mechanisms 

and effects of the variations recorded in the geological record. This is of particular 

importance because the geological record represents the only opportunity we have 

to test processes that lasted millions of years that may have happened in the past 

and, more interestingly, can reoccur in the future. 

Another important bonus in studying the biogenic bloom is that, though it is a 

relatively recent event (with thus a strong chronological frame and straightforward 

paleoceanographic contest), we still know very little about how and why it 

happened and which processes are involved. 
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1. THE PALEOCLIMATIC CONTEXT 

 

1.1. Paleoclimatic evolution during the Neogene 

The Neogene is a geological period that spans from 23.03 Ma (Oligocene-Miocene 

boundary) to 2.58 Ma (Pliocene-Pleistocene boundary), it includes the Miocene and 

Pliocene epochs and witnessed several major paleoclimatological changes. This 

period went from a warm climatic optimum in the late early Miocene through rapid 

cooling during the middle Miocene, to the onset of Northern Hemisphere Glaciation 

(NHG) in the Pliocene (Gornitz, 2008). 

A dataset of oxygen isotopes (δ18O) (Zachos et al., 2001; Zachos et al., 2008), based 

on data obtained from more than 40 DSDP (Deep Sea Drilling Project) and ODP 

(Ocean Drilling Program) Sites, has made possible to carefully observe the trend of 

temperatures and ice caps variations in the last 65 million years. Of equal importance 

is the δ13C data, available for the same time window, which documents the evolution 

of the carbon cycle throughout the Cenozoic (Fig. 1.1). 

 

A brief rationale of stable isotopes theory and, in particular, on δ18O is necessary in 

order to explicit their importance and their present role in reconstructing 

paleotemperatures values. δ18O notation is the proxy used, under certain 

circumstances, to evaluate paleotemperatures and is calculated as specified in the 

following equation. δ18O is equal to 18O/16O measured in the sample divided by 

18O/16O of a standard, minus 1 and finally per mill. 

 

𝛿18𝑂 = (
(

𝑂 
18

𝑂 
16 )

𝑠𝑎𝑚𝑝𝑙𝑒

(
𝑂 

18

𝑂 
16 )

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

− 1) ∗ 1000 ‰ 

 

These values are used in the paleotemperature of Epstein et al. (1951) to determine 

the temperature at which the carbonate precipitated. 

 

T= 16.5 – 4.3 (δ18Osample - δ
18Osea water) + 0.14 (δ18Osample - δ

18Osea water)
 2  

 



6 
 

T = temperature, δ18Osample = isotopic value measured in the sample (benthic or 

planktonic foraminifera, bulk,…) and δ18Osea water = value of water isotope 

composition. If the temperature is the only factor controlling the isotope 

composition, the decrease of 1 ‰ in δ18O values accounts for an increase of ca. 

4.2°C in temperature. 

 

It is important to note that variations in δ18O values are controlled not only by 

changes in the ocean water temperature but also, and even more importantly, by the 

changes in ice sheet volume. This is because the waxing and waning of ice sheets 

allows for larger or smaller amount of water to be stored at poles. During a glacial 

time, the isotopic fractionation due to the latitudinal effect results in a progressive 

lighting of the isotopic snow composition that is eventually stored in the ice cap, 

conversely during an interglacial phase the isotopic fractionation takes place anyway 

but the amount of 16O stored in the ice sheet is smaller and this results in relatively 

lighter δ18O sea water values, if compared with glacial phases. 

During the last 65 million years, the Earth’s climate system has passed, from warm 

periods with ice-free poles (greenhouse), to cooler periods with polar ice caps and 

massive continental ice-sheets (icehouse). During ice-free phases, δ18O values are 

exclusively controlled by temperature changes while when at least one ice sheet is 

present the main factor that influenced δ18O values is by far the so-called glacial 

effect. This implies that δ18O values can be used as paleothermometer only during 

greenhouse phases, instead, in intervals with documented presence of polar caps the 

value of δ18O is used to analyse the evolution of the ice sheets. 

 

Miocene and Pliocene lie in an icehouse phase (Fig. 1.1), with presence of a polar 

cap in Antarctica, and therefore measured δ18O values can not be used to analyse 

temperature changes over time (Ruddiman, 2007). During the Miocene, the Earth 

went through several major climatic and tectonic changes. The climatic changes 

included a gradual cooling, started about 15 Ma, and the establishment of major ice 

sheet on Antarctica around 10 Ma (Zachos et al., 2001), as well as significant 

changes in global carbon cycling and deep ocean circulation. The Miocene is 

characterized by several glaciation intervals based on analysis on microfossil stable 

oxygen isotope composition (Miller et al., 1991).  
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However, after a major glacial episode at the Oligocene/Miocene boundary, average 

surface water and deep-water temperatures trended slightly higher (Zachos et al., 

1997; Zachos et al., 2001). This warm phase peaked in the late middle Miocene 

climatic optimum (17 to 15 Ma), at this time deep-water and high-latitude surface 

water temperature were up to 6°C warmer than present-day (Shackleton and Kennet, 

1975; Savin et al., 1975). Around 15 Ma ago, temperature started to cool down, 

proxies show a rapid deep-water cooling and an expansion of the east Antarctic ice-

sheet. The presence of ice-rafted debris from late Miocene indicate the start of the 

glaciation in the Nordic seas and Arctic regions. The early Pliocene instead is 

characterized by a slight warming trend until ca. 3.2 Ma, when δ18O increased again 

reflecting the onset of Northern Hemisphere Glaciation (NHG). 

 

Fig. 1.1 Global deep-sea oxygen and carbon isotope records based on data compiled from 

more than 40 DSDP and ODP sites. Most of the data are derived from analyses of two 

common and long-lived benthic taxa, Cibicidoides and Nuttallides. The absolute ages are 

relative to the GPTS (Berggren et al., 1995). The δ18O temperature scale, on the right axis, 

was computed on the assumption of an ice-free ocean; it therefore applies only to the time 

preceding the onset of large-scale glaciation on Antarctica (about 34 million years ago). 

From the early Oligocene to present, much of the variability (ca. 70 %) in the δ18O record 

reflects changes in Antarctica and Northern Hemisphere ice volume (Zachos et al., 2001). 

The blue band marks the Neogene.  



8 
 

1.2. The latest Miocene–early Pliocene biogenic bloom 

The interval comprised between the late Miocene and the early Pliocene is a period 

of important paleoclimatic and paleoceanographic changes such as the expansion 

of ice caps at both poles, the gradual uplifting of the Isthmus of Panama (Farrell et 

al., 1995), the evolution and domination of the global deep circulation by the North 

Atlantic deep water (NADW), and the “Messinian salinity crisis” caused by the 

isolation of the Mediterranean from the Atlantic Ocean (Hodell et al., 1994; 

Krijgsman et al., 1999). 

There is another event occurred in the latest Miocene-early Pliocene that has been 

documented over the last 40 years in a series of investigations in the Pacific Ocean. 

Sediments deposited beneath upwelling zones during this interval of time show 

pronounced anomalies, in particular there are significant increases in the mass 

accumulation rate (MAR) of the biogenic components, major changes in planktic 

and benthic fauna assemblages, and marked decreases in sedimentary redox 

conditions. (e.g. Van Andel et al., 1975; Leinen, 1979; Theyer et al., 1985; 

Woodruff, 1985; Kennett and Von der Borch, 1986; Berger et al., 1993; Delaney 

and Filippelli, 1994; Farrell et al.,. 1995a; Rea et al., 1995; Dickens and Owen, 

1996). These conditions have been recognized in a number of different successions 

located in different areas, as for instance: the ODP Leg 115 in the equatorial Indian 

Ocean (Peterson and Backman, 1990), the ODP Site 756 from the southern 

Ninetyeast Ridge (Indian Ocean; Brumer and Van Eijden, 1992), the ODP Sites 

752, 754, and 757 on Broken and Ninetyeast ridges, central Indian Ocean (Dickens 

and Owen, 1994). Many authors (Peterson et al., 1992; Berger et al., 1993; Delaney 

and Filippelli, 1994; Dickens and Owen, 1994, 1996; Farrell et al., 1995; Rea et al., 

1995) have tried to explain these anomalies as the result of an increased productivity 

in the Indo-Pacific divergence zones.  

These particular conditions are referred to as “biogenic bloom” hypothesis (Farrell 

et al., 1995; Dickens and Owen, 1999). 
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The Indian Ocean area 

In the modern oceans, biogenic blooms are episodes of unusual high biological 

productivity that typically occur beneath divergence and upwelling zones. These 

events are characterized by: 

- increased accumulation rates of biogenic components to the seafloor 

associated with enhanced supply of organic carbon; 

- major changes in the benthic and planktic fauna assemblages; 

- pronounced decrease in sedimentary redox conditions and low dissolved O2 

content in intermediate waters, which result in a more expanded oxygen 

minimum zone (OMZ) (Dickens and Owen, 1999). 

High rates of surface productivity in the Indo-Pacific divergence zone produce a 

significant organic carbon flux to the seafloor. The organic matter usually sinks and 

is decomposed along the water column. This process consumes oxygen and, if 

enhanced, causes an expansion of the OMZ at intermediate water depths beneath 

the present-day Indo-Pacific divergence zone (Reid, 1965; Wyrtki, 1971).  

The OMZ in the modern Indian Ocean has a wedge-shape form and extends ca. 

5000 km in a southeast direction (Fig. 1.3a). If compared with the late Miocene-

early Pliocene conditions recorded during the biogenic bloom (between 9.0 and 3.5 

Ma), modern oceans are characterized by significantly lower productivity than 

those observed in the past oceans, and the oxygen minimum zone (OMZ) appears 

less expanded (Olson et al., 1993; Dickens and Owen, 1994) (Fig. 1.3).  

Based on oceanographic models, an increase in surface productivity during the 

latest Miocene-early Pliocene should have produced an intensification of the 

underlying intermediate water OMZs (Olson et al., 1993). According to these 

models (Dickens and Owen, 1994), the increase in primary productivity associated 

to the biogenic bloom hypothesis in the Indian Ocean has produced an intensified 

OMZ that expanded further than 5000 km in a southeast direction (Fig. 1.3b) 

(Dickens and Owen, 1999). The intensification of these paleoceanographic 

conditions between 6.0 and 5.0 Ma in the Pacific Ocean suggests that the biogenic 

bloom was time-coincident in the Indian and Pacific Oceans. The biogenic bloom, 

therefore, implies an important change in global nutrient cycling occurred during 

the latest Miocene-earliest Pliocene, although a satisfactory explanation for this 

change remains elusive (Dickens and Owen, 1999). 
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Fig. 1.3 (a) Bathymetric profile of the present-day Indian Ocean. The present locations of 

ODP sites 721, 722, 728, 731, 752, 754, and 757 are shown on this profile as well as the 

present dimensions of the Indian Ocean OMZ. (b) Model of the Indian Ocean during the 

latest Miocene-early Pliocene, productivity in the north and west Indian Ocean was 

significantly elevated, and the underlying OMZ was greatly expanded. Note that the OMZ 

dimensions in the lower figure are highly schematic (Dickens and Owen, 1999). 

 

Evidence of the biogenic bloom in the Indian Ocean 

The biogenic bloom hypothesis in the Indian Ocean is mainly supported by the mass 

accumulation rates (MARs) calculated on Neogene carbonate sequences at 

relatively shallow (< 3000 m) depths and seat under areas of high productivity 

(Peterson and Backman, 1990; Peterson et al., 1992; Farrell and Janecek, 1991; 

Brummer and Van Eijden, 1992; Seisser, 1995). In the latest Miocene-early 

Pliocene, bulk carbonate MARs were 150 to 250 % higher than those of present-

day at ODP sites 707, 709, 710 on the Mascarene Plateau (Fig. 1.4), at ODP Sites 

721, 722 and 728 in the western Arabian Sea, and at Site 758 on the northern end 

of Ninety-east Ridge. Since the carbonate in these locations is composed mostly by 

calcareous nannofossil and planktic foraminifera, the increase in bulk carbonate 

MARs points to increased supply or decreased removal of biogenic carbonate 

(Dickens and Owen, 1999). 
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At Sites 707, 709, 710, the high abundance of diatom, which are indicative of high 

productivity conditions (Fig. 1.4) (Mikkelsen, 1990; Nigrini, 1991), and low 

magnetic susceptibility, suggestive of Fe reduction likely related to an increase in 

organic carbon supply (Backman et al., 1988; Robinson, 1990), are the main 

evidences that observed elevated MARs reflect enhanced organic supply due to 

increased paleoproductivity rather than diminished dissolution (Peterson and 

Backman, 1990, Peterson et al., 1992). 

In additions to MARs values, another evidence to support this view is represented 

by the increase in carbonate dissolution at deep to intermediate water depths (Farrel 

and Janecek, 1991; Peterson et al., 1992), which testifies the shoaling of the 

lysocline as a consequence of the elevated paleoproductivity (e.g., Broecker and 

Peng, 1982). 

 

Fig. 1.4 Calculated carbonate MARs, sedimentary redox conditions, and diatom presence 

at ODP sites 707, 709, 710, and 711 on the Mascarene Plateau. Carbonate percentages, 

DBD, and LSRs for carbonate MARs are from Backman et al. (1988) and Peterson, 

Backman (1990) and Dickens and Owen (1999). Intervals of reduced facies are from 

Backman et al. (1988) and Robinson (1990). Intervals with diatoms are from Mikkelsen 

(1990). Depths of all parameters have been converted to the SHCK time scale (Cande and 

Kent, 1995; Shackleton et al., 1995) (Dickens and Owen, 1999). 
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The biogenic bloom in the Pacific Ocean 

The main evidence for the recording of the biogenic bloom in the Pacific Ocean is 

the same observed in the Indian Ocean, in particular: high MARs of biogenic 

components (CaCO3, SiO2), which lead to an increase in the amount of sediment 

deposited during the latest Miocene-early Pliocene beneath the divergence zone 

(e.g., Van Andel et al., 1975; Leinen, 1979; Theyer et al., 1985; Berger et al., 1993; 

Delaney and Filippelli, 1994; Farrell et al., 1995). 

At Sites 849 and 885/886 (Pacific Ocean ODP) there are also other lines of evidence 

such as: the inferred high surface productivity based on high abundance of biogenic 

calcite (Berger et al., 1993; Farrell et al., 1995); the Fe mobilization likely produced 

by higher organic carbon fluxes (Tarduno, 1994; Arnold et al., 1995; Dickens and 

Owen, 1996); and the foraminiferal assemblages typical of low dissolved O2 

conditions (Woodruff and Douglas, 1981; Woodruff, 1985; Resig, 1993). 

Dickens and Owen (2002) also reported the occurrence of the biogenic bloom in 

New Zealand, beneath the Tasman Front, and at DSDP Site 590 in the Tasman Sea 

on the eastern flank of the Lord Howe Rise, close to IODP Site U1506, the site 

studied in this thesis. At Site 590, sediments deposited between ca. 9 and 3.8 Ma 

shows clear evidences for elevated primary productivity, such as increased 

carbonate MARs, increase in bulk sediment Ca/Ti, Ba/Ti, and Al/Ti ratios, and a 

significant increase in the δ13C gradient through the water column (Grant and 

Dickens, 2002). However, the record of the biogenic bloom at this location is 

unusual because the different productivity proxies available as well as the δ13C 

records show important time offsets (Grant and Dickens, 2002). 

 

1.3. The significance of the biogenic bloom 

This event, if global, represents an intriguing mystery in the geological record 

because the conditions observed during the biogenic bloom need to hypothesize a 

different system or, at least, a radical change in global nutrient cycling of the oceans 

in the late Miocene-early Pliocene. The primary productivity in the oceans is limited 

by the availability of nutrients and, their residence time is usually short (< 105 years, 

Delaney and Filippelli, 1994; Treguer et al., 1995) so that in the oceans high 

productivity conditions can not be maintained for long periods, however, the 

biogenic bloom lasted for ca. 5.5 Ma (Dickens and Owen, 1999). 
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Possible explanations to these persisting and anomalously high productivity 

conditions are (1) the increase in gross productivity related to an enhanced supply 

of nutrient to the ocean (Filippelli, 1997; Hermovian and Owen, 2001), or (2) a 

major redistribution of nutrient within the oceans, or (3) both. 

In any case, the biogenic bloom is related to an increase in nutrient delivery to, at 

least part, of the ocean. 

To sustain the first hypothesis, the so-called “increase in nutrients supply theory”, 

several authors (Berger et al., 1993; Berger and Stax, 1994; Delaney and Filippelli, 

1994; Farrell et al., 1995) have proposed that the biogenic bloom was caused by an 

increased delivery of nutrients through rivers, as a result of intensified continental 

weathering. This would suggest an increase in net supply of nutrients and sediment 

burial in the oceans between 9.0 and 3.5 Ma. 

Another evidence supporting this theory is the increase in seawater 87Sr/86Sr that 

may indicate elevated riverine fluxes to the oceans (Farrell et al., 1995), and a 

general increase in terrigenous deposition associated with increased riverine outflow 

(Rea, 1992; Dobson et al., 1997). An additional datum to take into account is the 

difference in benthic foraminifera δ13C between the Atlantic and Pacific Oceans that 

could suggest higher mean nutrient levels in the Pacific Ocean (Wright and Miller, 

1996).  

It should be noted that a problem emerges while correlating the increase in seawater 

87Sr/86Sr and the increase in terrigenous content to the biogenic bloom because these 

two proxies reached their maximum 3.5 Ma after termination of the biogenic bloom 

(Rea, 1992; Farrell et al., 1995b; Dobson et al., 1997). 

To sustain the second hypothesis, the so-called “redistribution of nutrient theory” it 

is necessary to hypothesize some prominent changes in the oceanic global 

circulation. Between 9.0 and 3.5 Ma, the formation of deep waters intensified 

(Wright and Miller, 1996) and high-latitude warming (Hays and Opdyke, 1967; 

Koizumi, 1986) could have accelerated the deep-water conveyor belt (Rind and 

Chandler, 1991). Simple box models have demonstrated that enhanced deep-water 

flow can lead to increased productivity at divergence zones (Lyle and Pisias, 1990). 

Hence, Dickens and Owen (1996) have proposed that the biogenic bloom was 

related to the transport of nutrients from other regions (e.g. the Atlantic Ocean, 

continental margins, and central gyres) thanks to accelerated deep-water flows.  
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A comprehensive explanation of the processes involved in this event still remains 

mostly unclear, however, all the authors agree on the fact that the main driving 

mechanism must have worked at global scale (Peterson et al., 1992; Berger and Stax, 

1994; Berger et al., 1993; Delaney and Filippelli, 1994; Dickens and Owen, 1994, 

1996; Farrell et al., 1995; Rea et al., 1995). 

In this context, the aims of this thesis therefore are to: 

- construct a firm framework for IODP Site U1506 based on calcareous 

nannofossil biostratigraphy through semi-quantitative estimation of selected 

taxa to chronologically frame the study section; 

- implement the age model proposed by Sutherland et al., (2019) thus allowing to 

put the benthic foraminiferal assemblage data into a more reliable chronological 

framework; 

- shed light on the paleoenvironmental conditions at the sea floor especially in 

terms of nutrient availability, trophic conditions and oxygen concentrations, 

through quantitative studies on benthic foraminiferal assemblages and statistical 

analysis; 

- recognise the presence of the biogenic bloom through the interpretation of the 

benthic foraminiferal data in terms of paleoecological and paleoenvironmental 

changes, and derive the precise timing and duration of this event by using the 

integrated age model.  
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2. THE OCEAN DRILLING PROJECT AND 

EXPEDITION IODP 371 

 

2.1. Brief history of the ocean drilling project 

The first oceanographic cruise was organised by the English Royal Society between 

1872 and 1876 when the H.S.M. Challenger carried out the first systematic recovery 

of sediments from the ocean bottom. After more than a century, in 1964 several 

American research institutes formed the JOIDES consortium (Joint Oceanographic 

Institution of Deep Earth Sampling) that in 1968 was transformed in the DSPD 

(Deep Sea Drilling Project), a project coordinated by an American research agency 

that used the Glomar Challenger as a scientific vessel. In 1975, this consortium 

finally allowed the entry of other national states, leading to the IPOD (International 

Phase of Ocean Drilling), which lasted until 1983. From 1985, the project was 

renamed ODP (Ocean Drilling Program) and started to use a new drilling vessel, 

the JOIDES Resolution (Fig. 2.1). In 2003, the IODP (International Ocean Drilling 

Program) project began with the introduction of new and more efficient techniques 

that allowed obtaining data with better quality. Lastly in 2013 a new ten-year phase 

of the program called IODP (International Ocean Drilling Program) started. 

 

 

Fig. 2.1 The research vessel JOIDES Resolution at the start of expedition 371 in 

Townsville, Australia, on 27 July 2017 (Credit: Tim Fulton, IODP JRSO). 

 



16 
 

2.2. The JOIDES Resolution and the technologies used 

The JOIDES Resolution (Fig. 2.1) has been used for 35 years as the main vessel of 

the ODP/IODP projects though other vessels (e.g. Chikyū) have also served the 

project in the most recent times. The JR has a total length of 144 m and is 21 m 

wide, this vessel is equipped with a derrick, the drilling tower, which has a height 

of 64 m; it also has a battery of rods (pipe drill) that could reach a total length of 

9144 m. The routine drilling operations are described in the following: 

Once the drilling site is reached, an acoustic transponder is lowered on the ocean 

floor and, the vessel uses a computer-controlled, acoustic dynamic positioning 

system to maintain location over the drilling site. During normal operations, the 

crew lowers the assembled drill pipe from the drill floor through the moonpool, a 

ca. 7 m opening that extends through the bottom of the ship. The process of 

lowering the drill string takes ca. 12 hours in 5,500 m of water. After the crew 

lowers the drill string to the seafloor, coring operations begin. The drill crew lowers 

core barrels through the drill pipe. To core through the seafloor, the entire drill 

string is rotated. The core barrels retrieve and store the core material cut by the drill 

bit. After the drilling is deemed complete and the drilling equipment is taken out 

from the hole, the work at the site is not over. Next, comes the logging, which is the 

part of the operation where instrumentation is lowered to measure a number of 

characteristics surrounding the newly drilled hole. The drilling method is chosen 

according to the objectives and lithology of the seabed to be studied. 

Rotary Core Barrel (RCB) is used in the case of strongly lithified rocks or ocean 

floor made of igneous rocks. 

For paleoclimatic or paleoceanographic the favourite drilling method is Advanced 

Piston Core (APC), because it allows the recovery of undisturbed and orientated 

cores with both poorly consolidated sediments and consolidated sediments.  

When sediments have intermediate features, the preferred method is Extended 

Core Barrel (XCB). This method allows the recovery of whole cores (9.5 m) of 

slightly, to moderately lithified sediments; it is chosen if sediments are too hard for 

APC or, if are not hard enough to allow the use of RCB. 

Lastly, if the recovery of sediments is not necessary for research purposes, the 

Wash Coring is used, which is characterized by a higher drilling speed. 
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In this case, sediments are not recovered but rather they are pushed into the space 

between the drill pipe and the wall of the well (wall of the hole) by pumping of 

high-pressure water. 

Cores are extracted from the drilling shaft by the core barrel, they usually have an 

average length of 9.5 m and are divided into section of approximately 1.5 m. 

Sections are numbered from the top to the base of the core and put to rest in a 

refrigerator to avoid any shock, after a few hours they can be cut into two halves: a 

working half (w), on which the studies will be done and an archive half (a), which 

is usually preserved. The two halves are stored inside dedicated repositories (i.e., 

Bremen (Germany), Kochi (Japan), College Station (USA)) in order to guarantee 

the best preservation of the material (Fig. 2.2). 

 

 

Fig. 2.2 Graphic representation of the JOIDES Resolution: A. Derrick; B. Drilling string; 

C. Drill bit; D. drill cores studied in laboratory. 

(http://raymond.rodriguez1.free.fr/Textes/1s23.htm) 
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2.3. Expedition IODP 371: the main targets 

The primary target of Expedition IODP 371 was to understand Tonga-Kermadec 

subduction initiation through the recovery of Paleogene sediment records and to 

complement results from Expeditions 350, 351, and 352; the secondary target was 

to understand regional climate and oceanography through intervals of the Cenozoic, 

especially the Eocene (Fig. 2.3). 

During this expedition, six sites were drilled (U1506-U1511) in the Tasman 

Frontier (Tasman Sea, southwest Pacific) (Fig. 2.4), all the sites provided new 

stratigraphic and paleogeographic information that were put into contest through 

regional seismic stratigraphic interpretation. 

 

 

Fig. 2.3 The dashed circles point the location of Izu-Bonin-Mariana and Tonga-Kermadec 

subduction system in western Pacific (Sutherland et al., 2017). 
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Fig. 2.4 Location of Sites U1506-U11 (stars) in the southwest Pacific. Dots = relevant 

DSDP and ODP sites. The expedition departed from Townsville and returned to Hobart.  

Dashed line = approximate location of Zealandia (modified after Mortimer et al., 2017). 

 

In detail, IODP Expedition 371 aimed to address the following questions: 

1. How and why does subduction initiation occur? 

2. Was the Eocene southwest Pacific anomalously warm, and why? 

3. How does post-Eocene oceanography and climate compare with elsewhere 

in the Pacific? 

The Tasman Frontier is an extensive, geologically complex, and underexplored area 

of the ocean between Australia, New Zealand and New Caledonia. It includes 

portion of the Zealandia continent (Mortimer et al., 2017) and it is located on the 

western side of the Tonga-Kermadec Trench system (Fig. 2.3). Understanding how 

subduction initiation occurs is important since subduction systems are the main 

drivers of plate motions, mantle dynamics, and global geochemical cycles; though 

they are important processes, it is still not very clear how a subduction initiation 

works. In the western Pacific, the Eocene subduction was accompanied by tectonic 

changes, these events occurred at a crucial moment for the Cenozoic climate. 
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The long-term global warming though the Paleocene-Eocene transition culminated 

in the Early Eocene Climatic Optimum (EECO; ca. 53-49 Ma), which was followed 

by overall cooling thought the rest of the Cenozoic. An unknown number of 

geologically fleeting events of extreme warmth, biological turnover, and 

geochemical change commonly named “hyperthermals” also characterized the 

Paleocene and Eocene (Zachos et al., 2008; Westerhold et al., 2018). The first 

objective was successfully completed by coring at six sites that were optimally 

located based on local and regional seismic reflection lines and from consideration 

of regional structure and plate motion history (Fig. 2.4) (Sutherland et al., 2019).  

 

The second scientific goal of this expedition was to understand the long-term and 

short-term transitions during the early Paleogene and, if the climate’s shifts between 

greenhouse and icehouse states were somehow related to tectonic change, in 

particular to the widespread initiation of subduction zones in the western Pacific. 

The studied location, the Tasman Frontier, was chosen since global climate models 

are not able to simulate the extreme warmth conditions recorded in the southwest 

Pacific and Southern Ocean (Bijl et al., 2009; Hollis et al., 2009, 2012; Pross et al., 

2012; Douglas et al., 2014). In addition, the EECO and some hyperthermals are 

located throughout several uplifted marine section of New Zealand (Nicolo et al., 

2007; Hollis et al., 2009, 2012; Slotnick et al., 2012).  

During the expedition were also recovered Neogene sediments, which have been 

used in this thesis. 
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3. METHODS AND MATERIALS 

 

3.1. Studied material: IODP Site U1506 

Site IODP U1506 is located at 28.66°S, 161.74°E in the Tasman Sea (South 

Pacific), at a water depth of 1505 m. This site is situated on the northern part of the 

Lord Howe Rise, approximately 290 km south of the Deep Sea Drilling Project 

(DSDP) Sites 208 and 588 (Sutherland et al., 2019) (Fig. 3.1). 

This site, identified using seismic reflection data, was interpreted as a small-

mounded structure with a relief of about 100 m above the regional unconformity 

surface. It has been hypothesized that this structure could have been a coral reef 

(Sutherland et al., 2019). 

The type of drilling chosen was rotary drilling since the seismic data showed that 

the material may have been too hard for advanced piston core (APC) or extended 

core barrel (XCB) systems. 

 

Fig. 3.1 Location of Site U1506 (red star) in the Tasman Frontier (Sutherland et al., 2019). 
  

U1506 
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3.1.1. Lithostratigraphy 

At Site U1506 a total of 306.07 m was retrieved, the material has been divided into 

two different lithostratigraphic units. Lithostratigraphic Unit I was further divided 

into Subunits Ia, Ib and Ic (Table 3T). These lithologic units differ one to each other 

in lithology and sedimentological features that were identified using both 

macroscopic and microscopic description (smear slide, thin section and scanning 

electron microscope [SEM]) of the cores and with the additional aid of carbonate 

content and X-ray diffraction (XRD) analysis (Sutherland et al., 2019).  

All the following results are available at Proceedings of the International Ocean 

Discovery Program Volume 371 (Sutherland et al., 2019), and the measurement 

unit used for the depths is CSF-A (m), Core depth below Sea Floor-A. 

Visual colour determination was performed using Munsell soil colour charts 

(Munsell Color Company, Inc., 1994), the nomenclature consists of two 

components: colour name and the Munsell notation of colour. The Munsell notation 

consists of separate notations for hue, value, and chroma, combined to form the 

colour designation. The symbol for hue is the letter abbreviation of the color of the 

rainbow (i.e. R for red, YR for yellow-red, Y for yellow) and it is preceded by a 

number from 0 to 10, for each letter range, the hue becomes more yellow and less 

red as the number increase. For example, 5YR is in the middle of the yellow-red 

hue, which extends from 10R (zero YR) to 10YR (zero Y). Value is represented by 

a number from 0, absolute black, to 10, absolute white, i.e. a color with 5/ as value, 

is midway between absolute white and absolute black. The notation for chroma 

consists of numbers beginning at 0 for neutral greys, and increasing at equal 

intervals to a maximum of 20, which is never approached in soil. White, black and 

pure grey have zero chroma and no hue so the letter N (neural) takes the place of a 

hue designation. 

 

Lithostratigraphic Unit I 

The lithostratigraphic Unit I is a sequence about 265 m thick of Pleistocene-middle 

Eocene nannofossil ooze and chalk overlie ~40 m of volcanic rocks. It is subdivided 

into three subunits, the Subunit Ib is distinguished from Ia by its pale yellow (2.5Y 

8/2) colour, Ic instead is marked by the presence of glauconite. The boundaries 

between the subunits coincide with stratigraphic hiatuses. 
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Subunit Ia (from 0 to 258.23 m CSF-A) 

The Subunit Ia is a 258 m thick sequence of Pleistocene-middle Miocene white (N 

8.5 and N 9) nannofossil ooze and chalk with foraminifers. The carbonate content 

range between 88 % and 95 %. It is characterized by the presence of pyrite crystals 

throughout all the subunit, identified with XRD and SEM (Fig. 3.2). 

The upper 48 m (Cores 1R through 6R) is variably soupy as a result of drilling 

disturbance, Cores 8R through 26R are variably slightly to moderately biscuited 

and fractured. The ooze-chalk transition happens over Cores 24R (ooze), 25R 

(firmer ooze) and 26R (chalk). Chalk is characterized by structures and textures that 

are better preserved with respect to those present in the nannofossili ooze. 

Bioturbations are generally slightly darker (10YR 8/1), than the surrounding 

material and include Zoophycos, Planolites, Skolithos and Chondrites ichnofacies. 

All these features also occur in ooze but were partially destroyed during the drilling. 

 

Subunit Ib (from 258.23 to 264.29 m CSF-A) 

Subunit Ib is a sequence of about 6 m of pale yellow (2.5Y 8/2) to white (2.5Y 8/1) 

Oligocene nannofossil chalk with foraminifers. The contact with the above Subunit 

Ia is marked by a change in colour, from white grey (GLEY 1 8/N) to pale yellow 

(25Y 8/2) and by a minor increase in magnetic susceptibility. This contact occurs 

across a 2 cm thick interval of sediment disturbed by the drilling process. This 

transition was incompletely recovered (Fig. 3.2) but corresponds to a hiatus 

covering an interval from the late Miocene to the late Oligocene. This subunit is 

characterized by abundant bioturbations, including  Zoophycos and Planolites 

ichnofacies. 

 

Subunit Ic (from 264.29 to 264.63 m CSF-A) 

The subunit Ic is a 34 cm thick sequence of middle Eocene glauconitic nannofossil 

chalk with foraminifers. The contact with overhead Subunit Ib is marked by the 

appearance of glauconite and by a prominent colour change, the sediments become 

light greenish grey (5GY 9/1). The contact between Subunit Ib and Subunit Ic 

corresponds to a hiatus spanning from the late Oligocene to middle Eocene.  
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This subunit is profoundly bioturbated, and chalk from the above Subunit Ib is 

abundantly present in the upper 20 cm of Subunit Ib. 

 

Lithostratigraphic Unit II (from 264.63 to 306.070 m CSF-A) 

The lithostratigraphic Unit II is a sequence about 40 m thick of mafic crystalline 

volcanic rocks, with a wide range of textures and mineralogy, and it includes 

carbonate veins and infills (neptunian dyke) (Fig. 3.2). 

 

Lith. 

Unit 

Depth CSF-

A (m) 

Thickness 

(m) 
Lithology Stage 

Ia 0.00-258.23 258.23 
Nannofossil ooze and chalk with 

varying amounts of foraminifers 

Pleistocene to 

middle Miocene 

Ib 
258.23-

264.29 
6.06 Nannofossil chalk with foraminifers upper Oligocene 

Ic 
264.29-

264.63 
0.34 

Glauconitic nannofossili chalk with 

foraminifers 
middle Eocene 

II 
264.63-

306.07 
41.44 Basalt 

Minimum estimate 

middle Eocene 

 

Table 3T Summary of the lithostratigraphic units at Site U1506. 

 

The samples analysed in this thesis come from Subunit Ia, the analysed interval 

range between 81.75 and 233.50 m CSF-A, for a total of 151.75 m. The material 

come from core 10R to 25R (Fig. 3.3). 
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Fig. 3.2 Lithostratigraphic summary of sediments and volcanic rocks of Site U1506 

(Sutherland et al., 2019). On the right are reported: carbonate content (CaCo3 [%]), 

magnetic susceptibility (IU) and natural gamma radiation (cps = counts per second). 
Magnetic susceptibility is low throughout Unit I thus does not provide any useful 

information for the interval of interest. 
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Fig. 3.3 Pictures of the cores from which comes the studied material. (Online dataset LIMS 

Reports, http://web.iodp.tamu.edu/LORE/). 
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3.2. Micropaleontological analysis 

In this work, I have analysed the paleontological content in terms of small benthic 

foraminifera and calcareous nannofossils. 

 

3.2.1. Benthic foraminifera 

Foraminifera are single-celled organisms (protists), formed within a complex cell 

(Eukaryotes), and composed of genetic material within a cell nucleus. They have 

thread-like extensions of the ectoplasm called granuloreticulose pseudopodia, 

which often includes grains or tiny particles of various materials. They are 

heterotroph organisms, they do not use photosynthesis to produce energy but they 

eat dissolved organic molecules, bacteria, diatoms and other single-celled algae, 

small animals such as copepods. Foraminifera are typical of marine environments 

and can be distinguished into planktic and benthic, the latter is further divided into 

small benthic and large benthic. Foraminifera secrete an organic or shell-like outer 

protective layer, called a test, and they are classified primary on its composition and 

morphology: 

 Organic: protinaceous mucopolysaccharide (tectin), e.g. Allogromia 

laticollaris; 

 Agglutinated: made from small pieces of sediment cemented together, e.g. 

Sigmoilina schlumbergeri; 

 CaCO3: calcit, e.g. Cibicidoides mundulus, or more rarely aragonite, e.g. 

Hoeglundina elegans; 

 Silica: e.g. Silicoloculinina; 

 No test: e.g. Xenophyophores, Arthrodendron. 

 

The benthic foraminifera and their ecology 

The identification and characterization of the biogenic bloom at Site U1506A was 

one of the main goals of this thesis. To this aim, we have investigated the 

foraminiferal assemblages, which are able to provide paleo-ecological proxies that 

can be used to reconstruct the paleoenvironmental condition at the sea floor 

(Ruddiman, 2007). The comparison between recent and fossil benthic foraminiferal 

taxa allows us to derive environmental parameters such as nutrient supply, seawater 

oxygenation and seasonality (e.g. Bernhar, 1986; Jorissen et al., 1995; Fontanier et 
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al., 2002). Though this a routinely used tool it is worth to remind that this approach 

should be used with a critical attitude because the ecology of present-day 

foraminifera is still not fully understood and the morphologic features, used to 

compare fossil and recent foraminifera to infer similar ecological affinities are, at 

least in some cases, are not straightforward (Murray, 2001).  

Ninety-one different species of benthic foraminifera were identified in the 

investigated samples, the most common species (with abundance > 5 % at least in 

one sample) are described in term of both morphological and ecological 

characteristics in the following: 

 

Abditodentrix asketocomptella Patterson 1985 

This species has an elongate rectangular test, flattened sides, truncated margins, 

deep sutures, elliptical aperture with a toothplate and the chambers have a biserial 

arrangement. The wall is calcareous, hyaline, perforated with medium-size pores 

(Patterson, 1985). 

 

Bolivina finlayi Hornibrook 1961 

This species characterized by the crooked, more or less limbate sutures and fine 

longitudinal convergent ribs (Hayward and Buzas, 1979). It is associated with low 

oxygen concentration and high nutrient supply (Gooday, 1994; Mackensen et al., 

1995; Schmiedl et al., 1997; Bernhard and Gupta, 1999). 

 

Bulimina elongata d’Orbigny 1846 

The test of this taxon has an elongate shape and is triserial and circular if observed 

in cross-section; the chambers are moderately inflated, increase rapidly in height 

and are separated by distinct sutures. This species presents smooth calcareous wall 

finely perforated. The aperture is loop-shaped on the final chamber and it has a lip 

that merge with an internal toothplate (Hayward amd Buzas, 1979). This species is 

typical of low oxygen, muddy environments and is associated with high influx of 

organic carbon to the seafloor (Verhallen, 1991; Bernhard and Sen Gupta, 1999). 
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Bulimina truncana Gümbel 1868 

This taxon has a globose to ovate test with calcareous, hyaline wall; the coiling is 

triserial, the chambers are pyriform and the sutures are depressed and curved. It 

usually an arcuate aperture in the basal zone of the test (Hayward and Buzas, 1979). 

It is typical of eutrophic and suboxic environments (Hayward et al., 2010). 

 

Cassidulina crassa d’Orbigny 1839 

This species is characterized by a globose to ovate test, biserial coiling and a 

calcareous hyaline walls; it has an aperture in the basal zone, typically a slit 

(Hayward et al., 2014). Abundant from littoral and bathyal muds with peaks 

between 120 and 650 m depth (Parker, 1958; Sgarrella and Moncharmont Zei, 

1993). The increase in abundance of this species may indicate an increase in oxygen 

concentration and/or a decrease in the influx of organic matter to the seafloor, or 

strong bottom currents (Mackensen et al., 1995; Smart, 2008). 

 

Cibicidoides bradyi Trauth 1918 

The test of this taxon is trochospiral, unequally biconvex in cross-section with an 

involute umbilical side and an evolute, more convex spiral side. The chambers are 

inflated and each chamber is separated by sutures, which are radial on the umbilical 

side and curved in the spiral side. The maximum number of chambers is at most 9 

to 10, and their size increases gradually in the last whorl (Holbourn et al., 2013). 

The wall is calcareous, coarsely perforated on the spiral side, smooth on the 

umbilical side. The aperture is located in the spiral side and it is typically a slit 

(Holbourn et al., 2013). C. bradyi is usually found below the upper middle bathyal 

zone in the western Pacific Ocean (Igle and Keller, 1980) but Schnitker (1971) 

reported the presence of this taxon also in the neritic zone. Genus Cibicidoides is 

indicative of oxic conditions (Hermelin, 1989). 

 

Cibicidoides mexicanus Nuttall 1932 

The test of this taxon is trochospiral, and planoconvex in cross-secton, with a 

flattened spiral side and a convex umbilical side. This species has ten chambers that 

are inflated and separated by raised sutures. The wall is calcareous, coarsely 

perforated on both sides. It has an aperture, a narrow slit (Holbourn et al., 2013). 
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Cibicidoides mundulus Brady, Parker and Jones 1888 

This species has a biumbonate trochospiral shape, the general outline is subcircular 

and nearly biconvex in cross-section; the umbilical side is involute and convex, 

instead the spiral side is evolute. The chambers are inflated, separated by sutures. 

The wall is calcareous and perforated, finely on the umbilical side, coarsely on the 

spiral side. The primary aperture is a narrow slit (Holbourn et al., 2013). 

 

Ehrenbergina carinata Eade 1967 

This species has a triangular test, the wall is thin, perforated and hyaline. Typical 

of this species is the well-developed peripheral keel, non-perforated, with large 

spine departing from each chamber. The dorsal side is almost flat, slightly concave, 

while the ventral side has a raised central keel. The aperture is a narrow, elongate 

slit (Eade, 1967). 

 

Epistominella exigua Brady 1884 

The test is convex on both side, the periphery is acute and lobulated; it is composed 

of three convolutions, the outermost has usually five segments. The sutures are 

thickened on the spiral side and slightly depressed on the umbilical side (Brady, 

1884). This species is a deep-water form, and it is considered an “index species” 

for Antarctic Bottom Water (ABW) and lower North Atlantic Deep Water (NADW) 

(Hermelin, 1989). The abundance of this species in benthic assemblage may 

indicate inputs of seasonal phytodetritus and reflect seasonality in 

paleoproductivity. It is a useful indicator of high nutrient supply and high oxygen 

concentration (Thomas et al., 1995; Thomas and Gooday, 1996). 

 

Globocassidulina subglobosa Brady 1881 

The test of G. subglobosa is subglobular in side view, coiled biserial, the peripheral 

margin is rounded and in cross-section is ovate to globular. Chambers are inflated 

and separated by distinct sutures, sometimes slightly depressed. The wall is 

calcareous, hyaline, smooth, and finely perforate. It has a narrow aperture, in a 

depression of the apertural face (Hermelin, 1989).  
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This species is present in the middle bathyal zone as suggested by data reported 

from the Gulf of California (Hermelin, 1989). 

 

Gyroidina orbicularis d’Orbigny in Parker, Jones and Brady 1865 

This species has a trochospiral test, the spiral side is flat and the umbilical side is 

strongly convex; the outline is circular with rounded periphery. The chambers are 

indistinct, all visible on the spiral side. The wall is calcareous, hyaline, smooth and 

finely perforated. It has an interiomarginal slit as aperture (Hermelin, 1989). This 

species shows a strong correlation with low oxygen condition (Hayward et al., 

2014). 

 

Melonis barleeanum Williamson 1858 

The test of M. barleeanum is planispiral, involute, compressed, deeply biumbilicate, 

the periphery is rounded and the chambers are clearly distinct. The wall is 

calcareous, hyaline, smooth and coarsely perforated, except for the apertural face. 

The aperture is an interiomarginal slit (Holbourn et al., 2013).  

This species is typical of bathyal depths, though this species has been found from 

the neritic zone, down to the middle bathyal zone but in the Gulf of Mexico (Pflum 

and Frerichs, 1976). 

 

Oridorsalis umbonatus Reuss 1851 

The test of this species is trochospiral, lenticular, compressed and it is circular in 

side view; it has a keel in the periphery. All the chambers are visible on the spiral 

side, instead on the umbilical side, only those of the last whorl can be seen. The 

sutures are radial, slightly curved on the spiral side and sinusoidal on the umbilical 

side. The wall is calcareous, hyaline, smooth and finely perforated. The aperture is 

an interiomarginal slit (Holbourn et al., 2013). 

This species occurs with relative high abundances (5-20 %) at lower bathyal to 

abyssal depths (1500-4000 m). Assemblages with O. umbonatus/G. subglobosa co-

dominance are indicative of high oxygen environments (Muray, 1988; Mackensen 

et al., 1995; Hayward et al., 2004b). It may indicate low labile carbon flux and oxic 

bottom conditions. 
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Osangularia culter Parker and Jones 1865 

The test of this taxon is trochospiral, unequally biconvex, the umbilical side is more 

convex. The chambers are distinct and the sutures are oblique on the spiral side, 

radial and depressed on the umbilical side. The wall is calcareous, hyaline, smooth 

and finely perforated. The aperture is an interiomarginal slit (Holbourn et al., 2013). 

In the Gulf of Mexico O. culter is present in the upper middle bathyal zone (Pflum 

and Frerichs, 1976), but upper depth limit for this species suggests deeper 

environments > 350-400 m (Hayward et al., 2014).  

 

Planulina wuellestorfi Schwager 1866 

The test of this taxon has plano-convex shape and its periphery shows a distinct 

keel. The sutures are recurved on both sides, limbate on the spiral side. The wall is 

calcareous, coarsely and densely perforated. It has an aperture, a low arch, on the 

final chamber (Holbourn et al., 2013). It is common at bathyal to abyssal depths 

and it typical of oligotrophic conditions and oxic environments (Hayward et al., 

2014).  

 

Spiroplectammina spectabilis (Grzybowski, 1989), emend. Kaminski, 1984 

One of the best-known and widely distributed Paleogene species among deep-water 

agglutinated foraminifera; the test of this species is initially planispiral with 4 to 7 

chambers, then the chamber arrangement changes into biserial with up to 36 

chambers. The biserial part has a rhomboidal shape in cross-section and presents 

nearly parallel sides (Grzybowski, 1989). This species is common in “Flysch-type” 

assemblages, typical of detritic deep-sea environments. In the eastern Atlantic, this 

taxon is absent in oligotrophic sites.  

In general, S. spectabilis is known as a “disaster species” because it appeared above 

the Cretaceous/Paleogene boundary at ODP Site 959 (Kuhnt et al., 1998) and at 

Gubbio, Italy (Kuhnt & Kaminski, 1996). Its presence in deep-sea sites is mostly 

linked to increased sea-floor carbon flux (Kaminski and Gradstein, 2005). 
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Uvigerina occidentalis Cushman 1923 

The test is elongated, slender, and fusiform with a smooth periphery; chambers are 

compact and indistinct in the lower part, slightly inflated in the upper part. The wall 

is calcareous, thin, and with weak, longitudinal costae. It has an aperture relatively 

large, at the end of a short neck (Sen Gupta et al., 2009). 

 

Uvigerina peregrina s.l. Cushman 1923 

This taxon has a triserial and elongated test, the sutures are indistinct and depressed. 

The wall is calcareous, perforated, ornamented by blade-like costae on each 

chamber, this ornamentation does not continue from one chamber to another. The 

aperture is in the last chamber, on a short neck, with a lip (Hermelin, 1989). 

High abundance of this species is usually associated with glacial periods (Schnitker, 

1974; Corliss, 1982) and increase in organic carbon in the sediments (Douglas, 

1981; Miller and Lohmann, 1982). The presence of U. peregrina in benthic 

assemblage can indicate low oxygen content and/or high nutrient supply (Lohmann, 

1978; Streeter and Shackleton, 1979; Schnitker, 1979; Douglas, 1981; Miller and 

Lohmann, 1982). 

 

Uvigerina proboscidea Schwager 1866 

Uvigerina proboscidea has a triserial arrangement in the initial part of the test, that 

becomes biserial in the rest of the test, and it is circular in cross-section. The test is 

characterized by the presence of small spines, tapering toward the apertural neck. 

The aperture is located at the end of a long neck with a distinct collar. The wall is 

calcareous, hyaline, finely perforated (Holbourn et al., 2013). 

Data on this species reported from the Gulf of Mexico indicated a distribution from 

the lower neritic zone to the upper middle bathyal zone (Pflum and Frerichs, 1976). 

Higher percentages of this taxon are related to low oxygen concentrations and/or 

high nutrient supply (Hermelin, 1989). 
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Methods  

Samples were disaggregated in water with diluted sodium hexametaphosphate, 

were washed through a sieve to isolate the fraction larger than 63 µm, and dried in 

an oven at 50°C. For the quantitative studies and the calculation of the species 

richness, approximately 200-300 specimens of benthic foraminifera larger than 63 

µm were selected and mounted on microslides. 

Most of specimens were identified at the specific level; the names of the common 

species with original author are listed in Appendix II - taxonomic list. Data counts 

on benthic foraminifera are included in supplementary material (see attached CD). 

In this study I analysed the > 63 µm fraction because this fraction is more 

appropriate for a detailed analysis of the benthic foraminiferal assemblages. In fact, 

according to Schroeder et al. (1987) the study of larger-size fractions is not 

sufficient to interpret the obtained results in term of environmental changes. Several 

species, particularly those in Arctic waters, produce small adult tests that would be 

lost using larger sieve sizes (125 µm, 150 µm, 250 µm). The 63 µm limit should be 

chosen because it produces larger assemblages, which are likely to provide more 

reliable statistical analyses, and leads to minimal loss of specimens. For example, a 

study on foraminifera collected by DSDP Leg 90 in the Southwest Pacific on 63-

150 µm and > 150 µm fractions has shown that the foraminiferal test smaller than 

150 µm constitute 50-99 % (average 78-89 %) of the benthic assemblage. 

Therefore, studying only the large side fraction would have resulted in a significant 

loss of benthic foraminifera.  

Each taxon has been allocated in different morphogroups following Corliss (1985, 

1991), Jones and Charnock (1985) e Corliss e Chen (1988). Epifaunal foraminifera, 

living near the sediment surface or in its upper few centimetres, are characterized 

by plano-convex, biconvex and rounded trochospiral tests, tubular and coiled 

flattened, and also milioline and palmate tests. Infaunal foraminifera instead usually 

have cylindrical or flattened tapered, spherical, rounded planispiral, flattened ovoid, 

globular unilocular or elongated multilocular tests, and overall live deeper into the 

sediment (4-10 cm depth; deep infaunal in Corliss, 1991). The comparison of fossil 

taxa with recent benthic foraminifera along with the morphotype analysis (e.g. 

Corliss 1985; Corliss and Chen, 1988; Jones and Charnock, 1985), allows to likely 

infer microhabitat preferences and possibly reconstruct paleoenvironmental 
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parameters such as sea-water oxygen content, nutrient supply and seasonality (e.g., 

Bernhar, 1986; Jorissen et al., 1995; Fontanier et al., 2002). Though we now have 

a conspicuous number of studies available, it is always worth to take into account 

that these interpretations could be not always straightforward because the ecology 

of the present-day foraminifera is complicated and still not wholly understood (e.g. 

Murray, 2001). Furthermore, the ecological preference of fossil taxa are only based 

on their morphology, which means that for a number of taxa the expected 

relationship between the morphology of the test and the inferred microhabitat has 

not been directly observed, but rather extrapolated from data based on similar taxa, 

this is particularly the case for extinct taxa. The bathymetric divisions used in this 

thesis are based on those defined in Van Morkhoven et al. (1986) and Berggren and 

Miller (1989), that are: neritic (0-200 m), upper bathyal (200-600 m), middle 

bathyal (600-1000 m), lower bathyal (1000>2000 m). A total number of 55 samples 

were analysed using a binocular stereoscopic microscope (Olympus SZX12) (Fig. 

3.4), counting at least 300 specimens. Ideally, when possible, the specimens were 

identified at the specific level, and then reported in an Excel file (see attached CD). 

Quantitative data are used to calculate the relative abundance of taxa that have been 

plotted using Grapher, and then improved with Adobe Illustrator.  

Multivariate analyses of quantitative data were performed to assess the benthic 

foraminiferal assemblages, using PAST software v. 3.04 (Hammer et al., 2001). 

These techniques allowed identification of the main assemblages and their most 

typical benthic foraminifera. The species diversity has been determined through the 

Fisher-α diversity index plot (Fisher et al., 1943) using the number of species and 

the number of individuals per samples; the Shannon-Weaver heterogeneity index 

H(S) was also determined,  high values of H(S) indicate high heterogeneity and 

high diversity (Murray, 1991). The whole work on benthic foraminifera has been 

carried out at the Universidad de Zaragoza (Spain) under the supervision of 

Professor Laia Alegret, during a period of study abroad subsidised by the Erasmus+ 

traineeship project. Pictures of benthic foraminifera were taken using OLYMPUS 

Stream Image Analysis Software at the Departamento de Ciencias de la Tierra 

(Appendix I, Plate I to IV) (Fig. 3.5), and by SEM (scanning electron microscope, 

Zeiss Merlin) imaging, at the Departamento de Ingeniería - Universidad de 

Zaragoza (Appendix I, Plate V and VI, Credit Lucía Rivero-Cuesta) (Fig. 3.6-3.7). 
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Fig 3.4 Binocular stereoscopic microscope used to analyse the benthic foraminifera 

(University of Zaragoza, image by Maria Elena Gastaldello). 

Fig. 3.5 Binocular stereoscopic microscope used to take pictures of the benthic 

foraminifera (University of Zaragoza, image by Maria Elena Gastaldello). 
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Fig. 3.6-3.7 SEM (scanning electron microscope, Zeiss Merlin, University of Zaragoza) 

used to take pictures of some specimen of benthic foraminifera (images by Maria Elena 

Gastaldello). 
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3.2.2. Calcareous nannofossils 

Calcareous nannofossils are single-celled eukaryotic algae and they use 

photosynthesis to produce energy (photosynthetic autothrops). These organisms are 

made of soft organic materials generally encased within a hard calcite exoskeleton 

(CaCO3), the coccosphere. The coccosphere consists of miniscule calcite plates that 

form a protective covering around their delicate cell walls, some taxa have organic 

scale covering while some others are completely naked. Calcareous nannoplankton 

are typical of marine environments and they are planktic organisms, they live in the 

photic zone. These organisms are responsible for 40 % of the total carbonate 

production in the modern oceans (Milliman, 1993; Falkowski et al., 2004). 

 

Methods 

The study material was prepared using the “smear slides” standard method (Bown, 

1998). A small amount of the material has been collected from the sample bag and 

placed on a microscope slide, already signed with the sample ID. Successively, a 

drop of distilled water was added to the slide and mixed with a plastic straw. The 

material was then smeared on the slide and bands of different density were obtained. 

After drying the sample on a preheated plate at approximately 100°C for few 

seconds, the slide was sealed with a cover slip with the aid of an optical adhesive 

(Norland). Finally, the slide was exposed to the radiation of an ultraviolet lamp to 

activate the optical glue. (Fig. 3.8). 

The samples are ready to be analysed with an optical polarizing microscope at 1250 

magnifications, Zeiss (Fig. 3.9). The preparation of the slides as well as the 

calcareous nannofossil analyses were performed at Dipartimento di Geoscienze – 

Università di Padova under the supervision of Prof. Claudia Agnini. 

In addition, microphotographies of the most significant taxa were taken using 

DeltaPix digital camera and DeltaPix Insight software, and are provided in order to 

further clarify the taxonomic concepts used here (Appendix I, Plate VII). 

Calcareous nannofossil analyses were performed in order to determine taxa present 

in the fossil assemblages, to this aim samples were observed both at parallel and 

crossed nicols, which has allowed for both a structural and morphological 

investigation. 
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Crossed nicols analysis reveals the optical characterization of different taxa. For 

those taxa that are not extinct at crossed nicols, their extinction figure is a 

fundamental diagnostic character, which allows to determine and distinguish 

different taxa.  

Due to the lack of time, the estimation of relative abundances of the taxa present in 

the assemblage (in %; Pospichal, 1991) has not been carried out. In this study, I 

have performed semi-quantitative estimations of selected taxa, which consist of 

counting the number of specimens belonging to the same taxon present on an area 

of 1 mm2 (Backman & Shackleton, 1983). This method is usually applied for 

biostratigraphic purposes to highlight the presence of marker species that are 

typically rare within the assemblages. 

The biostratigraphic schemes adopted in this thesis are those proposed by Martini 

(1971), Okada and Burky (1980) and Backman et al. (2012). The taxonomic 

concepts used for determining taxa are those of Perch-Nielsen (1985), Farinacci 

(1969-1989) “Catalogue of Calcareous Nannofossils” and online atlas nannotax 

(http://www.mikrotax.org/Nannotax3/index.php?dir=Coccolithophores), unless 

otherwise specified. Data obtained from sample counts were analysed in order to 

biostratigraphically frame the study succession, graphs were developed with the 

Grapher software and elaborated with Adobe Illustrator. 
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Fig. 3.8 Work desk for the preparation of the smear slides (image by Maria Elena 

Gastaldello). 

 

Fig. 3.9 Optical polarizing microscope used to analyse the samples and to take pictures 

through DeltaPix digital camera and DeltaPix Insight software (image by Maria Elena 

Gastaldello). 
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4. CALCAREOUS NANNOFOSSIL 

BIOSTRATIGRAPHY AND BIOCHRONOLOGY 

 

Biostratigraphy is a subdiscipline of stratigraphy that describes all rock bodies 

forming the Earth’s crust and their organization into distinctive units based on their 

fossil content. 

 

4.1. Biozones  

The base unit in biostratigraphy is the biozone, this consists of a package of 

geological strata defined based on its particular fossil content. It can be defined 

based on the range occurrence of a particular taxon or combination of two taxa 

(range zone), assemblage of three or more fossil taxa (assemblage zone), the relative 

stratigraphic distribution of taxa (interval zone), the abundance patterns of taxa 

(abundance zone), and the successive segments of an evolutionary lineage (lineage 

zone), (http://www.stratigraphy.org/index.php/ics-stratigraphicguide). 

Based on the biohorizons used, the same interval could in principle be subdivided 

with different type of zones. According to Agnini et al. (2014), calcareous 

nannofossils biozones are usually defined using different biohorizons thus resulting 

in the following five different type of biozones (Fig. 4.1): Taxon Range Zone 

(TRZ), Concurrent Range Zone (CRZ), Base Zone (BZ), Top Zone (TZ) and Partial 

Range Zone (PRZ) 

 

Fig. 4.1 Scheme of the biozones commonly used for calcareous nannofossils 

biostratigraphic subdivisions (Backman et al., 2012) 
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4.2. Biohorizons  

A biohorizon is a stratigraphic boundary or surface through which there is a 

meaningful change in biostratigraphic characters 

(http://www.stratigraphy.org/index.php/ics-stratigraphicguide).  Biostratigraphic 

events can be controlled by organic (non-repetitive) evolution or by environmental 

(possibly repetitive) evolution. The former type includes evolutionary events of 

speciation and extinction (e.g. First Appearance Datum, Last Appearance Datum, 

Fig. 4.2), while the latter includes events controlled by local factors such as:  

 Events of appearance or disappearance caused by migration or 

environmental exclusion 

 Intervals of abundance or absence 

 Morphological variations 

 Abundance fluctuations  

Biohorizons are usually termed as first occurrence (FO)/last occurrence (LO) or 

lowest occurrence (LO)/highest occurrence (HO) or base (B)/top (T) (Fig. 4.2). 

 

Fig. 4.2 The figure explains first occurrence (FO), last occurrence (LO), first appearance 

datum (FAD) and last appearance datum (LAD) of a species (Saraswati and Srinivasan, 

2016). 
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A reliable biostratigraphic event has to maintain the same temporal spacing 

(spacing) and the same relative position (ranking) between different successions 

and within the same succession, among different authors.  

The features that discriminate whether an event is reliable or not are: 

 Easy recognition of the species that defines the event 

 Taxon abundance  

 Continuous distribution of the taxon 

 The presence of reworking 

 The preservation potential of the taxon 

 Traceability  

 Correlations across or with basins 

The term used to define the appearance and disappearance of a taxon are multiple.  

In literature, First Occurrence (FO) and Last Occurrence (CO) are often used, but 

Lowest Occurrence (LO) and Highest Occurrence (HO) are also commonly found 

(Wade et al., 2011). The problem is that LO may refer both to Last Occurrence or 

to Lowest Occurrence of a taxon (Backman et al., 2012). For this reason, in this 

thesis, I use Base (B) and Top (T) to describe appearance and disappearance of taxa 

in order to avoid any misunderstanding caused by previous acronyms (Backman et 

al., 2012; Agnini et al., 2014). First appearance of calcareous nannofossil taxa are 

initially often followed by low and in many cases sporadic occurrences, prior to 

becoming well-established members of the assemblages. 

Correspondingly, extinctions of taxa are often preceded by low and sporadic 

occurrences prior to their final demise. This is why the first or last continuous and 

relatively common occurrence of a taxon may represent a better biohorizon than the 

absolute first or last occurrence, and is why the concepts Base common (Bc) and 

Top common (Tc) are possibly employed here for biozone boundary definitions 

(Agnini et al., 2014.) Two other terms are adopted by Backman et al. (2012) which 

are: Base absence (Ba) for defining the temporary disappearance of taxon and thus 

the beginning of a paracme interval, and Top absence (Ta) for identifying the re-

entrance of a taxon, which coincides with the end of the paracme interval. 
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In this thesis the position of each biohorizon has been calculated using the midpoint 

method. For example, in the case of the appearance of a taxon (x), the B(x), the 

biohorizon has been placed at the midpoint between the last sample in which the 

taxon is absent and the first sample in which the taxon is present.  

The same has been done for T(x), which has been placed between the last sample 

in which the taxon is still present and the first sample in which the taxon is absent. 

In the following, the list of the biohorizons and biozones used in the biozonation 

adopted in this study are reported (Backman et al., 2012) (Fig. 4.3): 

 

Fig. 4.3 Biohorizons used for definitions of Miocene biozones (modified after Backman 

et al., 2012). The orange band marks the interval investigated in this thesis. 

 

4.3. Miocene through Pleistocene calcareous nannofossil 

biozonations 

The calcareous nannofossili biozonations adopted for the Miocene are those of 

Martini (1971), Okada and Bukry (1980), and the more recent proposed by 

Backman et al. (2012). The first two biostratigraphic schemes are based on the 

pioneering papers of Hay et al. (1967), Bramlette and Wilcoxon (1967), Roth (1970, 

1973), Roth et al. (1971) and Bukry (1973, 1975). For the time interval investigated 

in this thesis, Martini (1971) codifies the biozones using the acronym “NN” 

(Neogene Nannoplankton) followed by a progressive number for each biozone, 

starting from the base.  
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An alternative biozonation was proposed by Bukry (1973), based on the studies he 

carried out in the context of the international Deep Sea Drilling Project (DSDP) 

(Bukry, 1970, 1971, 1973, 1975a), which was eventually republished after minor 

revisions (Okada and Bukry, 1980). 

The coding system of this biostratigraphic scheme uses the acronym “CN” 

(Neogene Coccolith), followed by a progressive number and, if needed a letter (a, 

b or c), to identify the subzones. 

In 2012, Backman et al. (2012) have published a new calcareous nannofossil 

biozonation for Miocene-Pleistocene interval. This recent scheme obviously relies 

on the previous fundamental contributions of Erlend Martini and David Bukry, 

however several of their zonal boundary have proven to be poorly reliable and this 

explains the need for a revised biozonation. (Fig. 4.4) This biozonation is composed 

of 31 biozones that span over 23 million years: 20 for the Miocene, 6 for the 

Pliocene and 5 for the Pleistocene; each biozone is defined by a single biohorizon 

to give stability to the zonal scheme and keep it simple. The biozone code system 

is inspired to Berggren and Pearson (2006) and Wade et al. (2011) biozonation. 

In particular, Backman et al. (2012) introduced a new code system which is formed 

by letter for denoting series (M=Miocene; PL=Pliocene/Pleistocene) followed by a 

progressive number starting at the base of the series. 

The biozonation proposed by Backman et al. (2012) consists of: 

 11 biozones (CNPL1 to CNPL11) covering the Pliocene through 

Pleistocene interval; 

  20 biozones (CNM1 to CNM20) spanning the Miocene. 
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4.4. Calcareous nannofossil biochronology 

Biochronology is the sequencing of geologic events, based on evolution (Berggren 

and Van Couvering, 1974, 1978) and allows us to estimate/calibrate an absolute age 

for the considered biohorizons (Salvador, 1994).  

In this thesis, we adopted the biochronology proposed by Backman et al. (2012), 

based on different methods. For the Miocene through Pleistocene interval, the age 

estimates derive from improved astronomically tuned cyclostratigraphy based on 

the work of Raffi et al. (2006).  

The age of the biohorizons were estimated from correlation to Pleistocene Marine 

Isotope Stages (MIS), using the work of Lisiecki and Raymo (2005). Age estimates 

derived from two types of orbitally-tuned lithologic cyclicities: at ODP Sites 925 

and 926, Shackleton and Crowhurst (1997) used magnetic susceptibility; at ODP 

Leg 138 sites Shackleton et al. (1995) derived the age estimates from gamma ray 

wet-bulk densities, in Backman et al. (2012) the estimates from Shackleton et al. 

(1995) data has been converted to the timescale of Lourens et al. (2004).  

For age estimates derived from the lower Miocene cyclostratigraphies in ODP Hole 

926B and ODP Site 1218, Backman et al. (2012) used orbitally-tuned data produced 

by Pälike et al. (2006, 2007).  In addition to astronomically tuned cyclostratigraphic 

age data, it was also used magnetostratigraphy for a few late Miocene biohorizons 

(Schneider, 1995). The biochronologic data used to construct our age model (Fig. 

4.5) has been calibrated to GTS2012. 

 



49 
 

 

Fig. 4.4 Miocene through Pleistocene biozones and biohorizons of Backman et al., (2012) 

are plotted versus the biozonations of Martini (1971) and Okada and Bukry (1980), and the 

Geomagnetic Polarity Time Scale (GPTS; Lourens et al. 2004) (modified after Backman et 

al., 2012). The orange band marks the interval investigated in this thesis. 

 

 



50 
 

Fig. 4.5 Age estimates of biohorizons. Biohorizons defining biozone boundaries are 

marked in bold. mcd – meters composite depth. Acronyms used for depth and age columns 

are: SC97 – Shackleton and Crowhurst 1997; DAS95 – Schneider 1995; LL04 – Lourens 

et al. 2004; PÄL06 – Pälike et al. 2006; PÄL07 – Pälike et al. 2007. 
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5. RESULTS AND DISCUSSIONS 

 

5.1. Calcareous nannofossil 

General characteristics of calcareous nannofossil assemblages at IODP Site 1506 

Calcareous nannofossil are generally abundant and moderately to moderately well 

preserved throughout the studied succession, however, the Core Catcher samples 

(CC) show a much higher number of specimens than the others likely because they 

were prepared by a different operator.  

Within the assemblage, Reticulofenestra is the most abundant genus (Fig. 5.1) and 

display an increased abundance in the upper part of the section, which is likely 

related to the re-entrance of Reticulofenestra pseudoumbilicus after the Top absence 

(Ta) around 7.09 Ma (Backman et al., 2012). Discoaster and Amaurolithus are also 

present and show scarce to common abundance. Calcidiscus, Ceratolithus, 

Coccolithus and Nickilithus are present, however their abundance is much lower 

than those of the taxa mentioned above. Semiquantitative counts have not been 

performed for Calcidiscus leptoporus and Discoaster bellus for which we only 

provide presence-absence data in all the study samples. 

 

5.1.1. Biohorizons of the standard biozonations 

In the following paragraph, biohorizons used in the standard biozonations (Martini, 

1971; Okada and Bukry, 1980) are described in stratigraphic order and commented. 

Some of these biohorizons are used also in Backman et al. (2012). The age of the 

biohorizons are calibrated to GTS2012. Top and Base samples in which the 

biohorizons were identified and their corresponding depth (CSF-A) are reported in 

Table 5.1 and Fig. 5.1-5.2, from now on we will simply use m for CSF-A depth. 

The ID samples consists of IODP Site, Hole, Core, Top Interval, e.g. U1506A-25R-

6W, 75 cm. Microphotographs of most of the taxa on which the biostratigraphic 

analysis are based, are included on Appendix I, Plate VII. 
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Fig. 5.1 Number of specimens of selected taxa in a specific area (n/mm2). On the left depth 

(CSF-A), Core, Recovery and the images of the study cores. Calcareous nannofossil 

biozonations (Martini, 1971; Okada and Bukry, 1980; Backman et al., 2012) and 

chronostratigraphy are also reported. 

Fig. 5.2 Number of specimens of selected taxa in a specific area (n/mm2). On the left depth 

(CSF-A), Core, Recovery and the images of the study cores. Calcareous nannofossil 

biozonations (Martini, 1971; Okada and Bukry, 1980; Backman et al., 2012) and 

chronostratigraphy are also reported. 
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Base Discoaster quinqueramus (base Zone NN11) 

The appearance of D. quinqueramus marks the base of Zone NN11 of Martini 

(1971). In this study, this event occurs slightly before the appearance of D. 

berggrenii that marks the base of Zone CN9a (Okada and Bukry, 1980) and CNM16 

(Backman et al., 2012). Site U1506, the base of D. quinqueramus is neat and occurs 

between sample U1506A-25R-6W, 75 cm and sample U1506A-25R-4W, 75 cm at 

231.45 m (± 1.5 m) (Fig. 5.1). The pattern of this taxon is continuous and common 

with abundances fluctuating between 10 and 40 specimens for mm2. The estimated 

age for this biohorizon is 8.11 Ma (Backman et al., 2012). 

 

Base Discoaster berggrenii (base Subzone CN9a and Zone CNM16) 

The appearance of D. berggrenii marks the base of Subzone CNM9a of Okada and 

Bukry (1980) and of Zone CNM16 of Backman et al. (2012). Raffi et al. (1998) 

proposed that both D. quinqueramus and D. berggrenii originated from Discoaster 

bellus, its simple structure evolved toward more ornamented morphotypes such as 

D. berggrenii and D. quinqueramus. The development of this lineage is gradual and 

thus characterized by the presence of intermediate forms, which makes sometime 

difficult to precisely determinate the first appearance of D. berggrenii and the 

degree of synchrony/diachrony of this event in different areas (see discussion in 

Backman and Raffi, 1997 for details). In this study D. berggrenii appears slightly 

after D. quinqueramus between sample U1506A-25R-4W, 75 cm and U1506A-

25R-3W, 75 cm at 229.20 m (± 0.75 m) (Fig. 5.1). Backman et al. (2012) provided 

an age of 8.29 Ma, very similar to that of D. quinqueramus, however the relatively 

low resolution of these datums could, at least partially, account for this discrepancy. 

The abundance of this taxon is rare and ranges between 1 and 6 specimens for mm2. 

 

Base Amaurolithus primus (base Subzone CN9b and Zone CNM17) 

The base of A. primus, which coincides with the base of the genus, marks the base 

of Subzone CN9b of Okada and Bukry (1980) and the base of Zone CNM17 of 

Backman et al. (2012). At Site U1506, this event is positioned between sample 

U1506A-24R-CC, 5 cm and sample IODP-U1506A-24R-6W, 37 cm at 223.10 m 

(± 0.13 m) (Fig. 5.1). The abundance of this taxon is rare to very rare and fluctuates 

between 0 and 6.5 specimens for mm2.  
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Because of the low and sporadic abundance of this taxon, counts were performed 

on 2 mm2 and then normalized to 1 mm2. The age of this biohorizon is 7.42 Ma 

(Backman et al., 2012). 

 

Top Discoaster quinqueramus (base Zone NN12, Subzone CNM10a and Zone 

CNM20) 

The disappearance of D. quinqueramus marks the base of Zone NN11 (Martini, 

1971), Subzone CNM10a (Okada and Bukry, 1980) and Zone CNM20 (Backman 

et al., 2012). At Site U1506, this is clear and neat and occurs between sample 

U1506-14R-5W, 70 cm and U1506-14R-3W, 71 cm at 124.50 m (± 1.5 m) (Fig. 

5.1). The estimated age of this taxon is 5.59 Ma (Backman et al., 2012). 

 

Base Ceratolithus acutus (base Subzone CN10b and Zone CNPL1) 

The appearance of C. acutus marks the base of Subzone CN10b (Okada and Bukry, 

1980) and Zone CNPL1 (Backman et al., 2012). The Miocene–Pliocene boundary 

at 5.333 Ma (GTS2012) falls shortly (ca. 20 ka) after the onset of the base of Zone 

CNPL1 (5.35 Ma). Ceratolithus acutus is characterized by a short stratigraphic 

range, and disappeared in the lowermost Pliocene, at 5.04 Ma (Backman et al., 

2012). During the counts performed in this thesis, no specimens of this taxon were 

encountered, however IODP Exp. 371 shipboard data reported the presence of a 

single specimen in sample U1506A-11R-CC, 5 cm. At Site U1506 the abundance 

pattern of this taxon is thus highly unreliable, however the position of this event 

was tentatively placed at 99.59 m (± 2.79 m) (Fig.5.1). 

 

Top Ceratolithus acutus (base Subzone CN10c and Zone CNPL2) 

The disappearance of C. acutus marks the base of Subzone CN10c of Okada and 

Bukry (1980) and of Zone CNPL2 of Backman et al. (2012). The single specimens 

recognized in the entire succession does not allowed for a precise positioning of 

this taxon. Nevertheless, the depth for this event is 96.40 m (± 0.41 m), which is the 

midpoint between sample U1506A-11R-CC, 5 cm and U1506A-11R-4W, 75 cm 

(Fig.5.1). The age of this taxon recalibrated to GTS2012 is 5.04 Ma (Backman et 

al., 2012). 
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5.1.2. Additional biohorizons 

Recently Backman et al. (2012) revised the Miocene through Pleistocene 

biozonations proposed by Martini (1971), and Okada and Bukry (1980), substituted 

those biohorizons that have proven to be poorly reliable and added some new 

biohorizons to increase the resolution of the previous biozonations. 

In the following, these events are described and commented (Fig. 5.1 and 5.2). 

 

Base absence of Reticulofenestra pseudoumbilicus (Base Zone CNM15) 

The Ba of R. pseudoumbilicus defines the base of Zone CNM15 (Backman et al., 

2012). At Site 1506, the abundance of R. pseudoumbilicus is very low in the basal 

part of the succession up to 186.41 m (± 2.25 m) when this taxon suddenly increases 

in abundance (Fig.5.1). This abundance pattern suggests that the lower part of the 

section belongs to Zone CNM15 because of the simultaneous low abundance 

(paracme interval) of R. pseudoumbilicus and the absence of D. berggrenii. 

 

Top absence of Reticulofenestra pseudoumbilicus 

The Top absence of R. pseudoumbilicus marks the end of the para-acme interval of 

this taxon. This biohorizon is not used by any of the biozonation adopted in this 

thesis but is reported to occur within Zone CNM17 with an estimated age of 7.09 

Ma (Backman et al., 2012). The para-acme interval of R. pseudoumbilicus during 

the Messinian (late Miocene) has been observed in the equatorial Indian Ocean by 

Rio et al. (1990) and in the equatorial Pacific Ocean by Takayama (1993) and Raffi 

and Flores (1995). At Site U1506, R. pseudoumbilicus shows a low abundances in 

the lower part of the studied interval with values on average around 20-30 specimen 

for mm2. The end of the para-acme event is located between sample U1506A-21R-

2W, 75 cm and sample U1506-20R-CC, 5 cm at 186.41 m (± 2.25 m) where the 

abundance of R. pseudoumbilicus starts to increase significantly up to reach values 

around 200-400 specimens for mm2 (Fig. 5.1).  
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Base Nickilithus amplificus (base Zone CNM18)   

The appearance of N. amplificus defines the base of Zone CNM18 (Backman et al., 

2012), this zone corresponds to the middle part of Subzone CN9b of Okada and 

Bukry (1980) and to an interval in the upper part of Zone NN11 of Martini (1971). 

The restricted range of N. amplificus within the upper part of NN11 reported by 

Bergen (1984) is confirmed by Rio et al. (1990), and is proven to be a useful event. 

Raffi et al. (1995) and Backman and Raffi (1997) proved that he first appearance 

of this taxon is a reliable biostratigraphic event in the low-latitude oceanic 

environment and appear to be isochronous among the equatorial Indian, Pacific and 

Atlantic oceans. At Site U1506, this taxon is very rare and only one specimen of  

N. amplificus has been observed throughout the studied section in sample U1506A-

17R-CC, 5 cm. We very tentatively define the base of Zone CNM18 between 

sample U1506A-18R-2W, 75 cm and sample U1506A-17R-CC, 5 cm though the 

scarcity of this taxon suggests that the position of this taxon is more a minimum 

estimate that a real datum (Fig. 5.1). The estimated age of this species is 6.91 Ma 

(Backman et al., 2012). 

 

Top Nickilithus amplificus (base Zone CNM19)  

The disappearance of N. amplificus defines the base of Zone CNM19 of Backman 

et al. (2012). Because of the single specimen of N. amplificus observed at Site 

U1506, the placement of Top of this taxon is highly tentative and is considered a 

minimum estimate for this biohorizon at 154.09 m (± 0.83 m) (Fig. 5.1). The age of 

this bioevent is estimated of 5.94 Ma (Backman et al., 2012). 

 

Base Ceratolithus atlanticus 

The appearance of C. atlanticus does not define the base of any biozone, however 

this species is characterized by a short stratigraphic range spanning the 

Miocene/Pliocene boundary and its appearance has an estimated age of 5.35 Ma 

(Backman et al., 2012). The use of this biohorizon could in principle implement the 

resolution of our age model, nevertheless its scarcity, only one specimens found in 

sample U1506A-12R-CC, 5 cm during counts on board IODP Exp. 371, suggests 

caution in using this datum (Fig. 5.1). 
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5.1.3. Biostratigraphic classification of the study succession at Site U1506 

The studied section spans from the late Miocene to the early Pliocene. 

The simultaneous absence of D. hamatus and of D. quinqueramus at the lower 

portion of the section indicates that the base of the section belongs to Zone NN10, 

while the absence of D. quinqueramus and the absence of C. acutus in the 

uppermost samples indicate that the top of the section lies with Zone NN13 

(Martini, 1971). Therefore, the study section spans Zone NN10 to Zone NN13. The 

simultaneous absence of D. berggrenii and D. neorectus in the basalmost sample 

suggests that this part of the section belongs to Subzone CN8b, whereas the absence 

of C. acutus in the upmost investigated sample indicate Subzone CN10c (Okada 

and Bukry, 1980).  

Finally, based on the absence of R. pseudoumbilicus and D. berggrenii in the first 

investigated sample, the base of the succession lies with Zone CNM15, while the 

absence of C. acutus and the presence of A. primus at the top of the section indicate 

that this portion belongs to Zone CNPL2 (Backman et al., 2012). 

  

 

Table 5.1 Biohorizons used to biostratigraphically classify the studied section. From the 

left to the right are reported: the type of event (T, B, Ta), the species and the biozones they 

define (Martini, 1971; Okada and Bukry, 1980; Backman et al., 2012), the samples and 

their depths and the age associated to each biohorizon (Backman et al., 2012).  
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5.1.4. Age model and sedimentation rates 

The age model for Site U1506 was developed on board IODP Exp. 371 using 

biostratigraphic datums (i.e., calcareous nannofossils and planktic foraminifera) 

and polarity chrons (obtained only between 240 and 270 m) (Table 5.2).  

The magnetostratigraphic signal obtained on board does not provide any useful 

information for the interval of interest so that our age model is based on calcareous 

nannofossili biostratigraphy and biochronology. (Sutherland et al., 2018; 2019). 

Based on the biostratigraphic datums, the entire section recovered at Site U1506 

covers an interval from 1.93 (Pleistocene) to 44.12 Ma (middle Eocene).  

The original age model was implemented with data obtained from this study, each 

bioevent has been placed on the model, based on the age from the literature (x-axis) 

and the stratigraphic position (mid-point in CSF-A) within the studied section (y-

axis). Data obtained from this study (Fig. 5.3, green triangles) do not show any 

significant variation from the age model of Sutherland et al. (2019), with which 

actually fits quite well. The bonus of this new age model is the higher resolution of 

the study section that in fact allows for an implementation of the proposed age 

model at least for the interval of interest (from Core 10 to Core 25).  

The age model provided is constructed based on a number of tie points but below 

and above these constrains the sedimentation rate is assumed to remain constant 

and equal to the sedimentation rate of the last segment of the age model. Based on 

this assumption, we have extrapolated the age for the base, 8.45 Ma (233.50 m), 

and for the top, 4.53 Ma (81.75 m), of the investigated section. The inclinations of 

the curve allowed to calculate the linear sedimentation rates (LSRs) of the different 

segments of the investigated section (Fig. 5.3). The entire section of Site U1506 

shows different LSRs and includes two stratigraphic intervals, the first one spans 

ca. 20 Ma and separates subunit Ib from subunit Ic, and the second one covers ca. 

10 Ma and separates subunit Ia from subunit Ib. In the lower part of subunit Ia, 

between the late Serravallian and early Tortonian LSRs range between ca. 10 and 

20 m/Myr, and they decrease to 5 m/Myr in the late Tortonian (Sutherland et al., 

2019). Between late Tortonian and late Piacenzian, LSRs increase considerably and 

reach values of ca. 40 m/Myr.  
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The section investigated lies in this interval of increased LSRs from the late 

Miocene to the early Pliocene. These increased LSRs are likely related to an 

increase in productivity, which possibly accounts for an enhanced rate in the 

biogenic accumulation that correlated with the biogenic bloom (Dickens and Owen, 

1999). 

 

Table 5.2 Microfossil datums and chrons used to construct Site U1506 age model 

(Sutherland et al., 2018). 
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Fig. 5.3 Age model and sediment accumulation over time at IODP Hole U1506A. On the 

left: core recovery and images of cores. On the bottom: compacted LSR and total mass 

accumulation rate (MAR). Green triangles are new calcareous nannofossil data from this 

study (modified after Sutherland et al., 2018) 
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5.2. Benthic foraminifera  

General characteristics of benthic foraminiferal assemblages at IODP Site 1506 

The results of the benthic foraminiferal counts, showing the percentage of the 91 

identified taxa across the studied interval, are included in supplementary material 

(see attached CD).  

Benthic foraminiferal assemblages are strongly dominated by calcareous taxa (ca. 

85 % through most of the section), and only one sample (U1506A-12R-1, 110-112 

cm, 101.41 m) contains abundant (25 %) agglutinated taxa. Infaunal morphogroups 

clearly dominate over epifaunal ones, and their abundance fluctuates between 65 % 

and 85 %, with only one sample (U1506A-16R-3, 140-142 cm, 142.81 m) 

containing more than 40 % of epifaunal taxa, mainly Osangularia culter, Planulina 

wuellestorfi, Gyroidina spp. and Anomalinoides spp. (Fig. 5.5) The diversity of the 

assemblages (Fisher- α index) ranges between 20 and 33. It reaches the maximum 

values in the lowermost part of the studied interval and it gradually decreases 

upwards, with a positive peak between 105 and 130 m. 

The Shannon-Weaver heterogeneity index H(S) ranges between 2.8 and 3.7. It 

reaches its maximum values in the lower part of the studied interval, at 161.86 and 

184.07 m, and its minimum value it is reached in the upper part, at 95.05 m. 

Multivariate analyses were based on a dataset of species with a relative abundance 

> 5 % in at least one sample. R-mode (species) hierarchical cluster analyses were 

performed to identify groups of species with similar distribution. The unweighted 

pair-group average algorithm (UPGMA) and the Pearson correlation, as similarity 

coefficient, were used.  

Two clusters (A, B) and four subclusters (A1, A2, B1, and B2) of benthic 

foraminifera were identified in the R-mode cluster analysis (Fig 5.4). The relative 

abundance of each subcluster is plotted in Fig. 5.6, and the percentage of all the 

species within each subcluster is represented in Fig. 5.7, 5.8, 5.9a and 5.9b.  
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Fig. 5.4 Subdivision of the taxa into four subcluster based on R-mode cluster analysis. 

Fig. 5.5 Plot of the relative abundance of calcareous/agglutinated and infaunal/epifaunal 

taxa and plot of the alpha-Fisher and H(S) indices. Divesity and heterogeneity reach the 

maximum values in the lowermost part of the studied interval. 
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Fig. 5.6 Relative abundance of the four subclusters. 

 

Cluster A includes more species than cluster B, and a similar percentage of infaunal 

and epifaunal species. Cluster B shows less species and is dominated by infaunal 

taxa (Fig. 5.6). 

Subcluster A1 (Fig. 5.7) is dominated by infaunal species, and it contains only one 

epifaunal species, Planulina wuellestorfi. In the lower part, the abundance is 

relatively low, however there is a significant abundance peak in U. peregrina s.l. 

Near the middle of the section (ca. 143 m), there is a peak of P. wuellestorfi that 

coincides with a smaller decline in diversity. A1 is more abundant in the upper most 

part, this is related mostly to an abundance peak of both Cassidulina crassa (ca. 95 

m) and Spiroplectamina spectabilis (ca. 101 m), although these two species reach 

their highest peaks in abundance at different levels. The peak of C. crassa seems to 

coincide with a drop in diversity, instead S. spectabilis peaks slightly earlier. The 

decline in diversity also coincides with a drop in Uvigerina occidentalis and 

Uvigerina peregrina s.l.  
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Subcluster A2 (Fig. 5.8) has the highest number of species and it is dominated by 

epifaunal foraminiferal taxa. Subcluster A2 is most abundant in the middle part, 

mainly related to the increase in Epistominella exigua and Globocassidulina 

subglobosa. The upper part of the studied interval shows a peak in G. subglobosa 

(ca. 105 m), followed by a decrease in abundance that coincides with a drop in 

diversity; in the upper most part (ca. from 95 m), the relative abundance of the 

subcluster increases again, the main contribution coming from Cibicidoides 

mundulus, G. subglobosa and O. culter. 

Subcluster B1 (Fig. 5.9a) is composed of four infaunal taxa, and it is most abundant 

in the lower part of the studied interval, mainly due to the contribution of Bulimina 

elongata, Bulimina truncana and Oridorsalis umbonatus; the relative abundance 

decreases upwards. 

Subcluster B2 (Fig. 5.9b) is represented by two infaunal species and an epifaunal 

one (i.e. Cibicidoides mexicanus). The abundance is relatively low throughout the 

section, and the most common species is Uvigerina proboscidea. 

 

Fig 5.7 Relative abundance of benthic foraminifera of subcluster A1 
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Fig. 5.8 Relative abundance of benthic foraminifera of subcluster A2 

Fig. 5.9 Relative abundance of benthic foraminifera of subcluster B1 (a.) and B2 (b.)  
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5.2.1. Subdivision of the study section  

Taking into account the benthic foraminiferal assemblages composition and 

diversity, and the distribution of the subclusters, three main intervals have been 

differentiated and are here described (Fig. 5.10). 

 

Fig. 5.10 The four subclusters of species subdivided into the three identified intervals.  

 

The lower interval 1 (from 192.91 to 168 m) (Fig. 5.10) is characterized by a high 

abundance of subcluster B1, with a minor contribution from subcluster A2 (Fig. 

5.8-5.9a) 

In this part of the section, there is a high percentage of buliminids (up to 40 %, 

mainly Bulimina truncana, Bulimina elongata and Bolivina finlayi), a minor peak 

in Osangularia culter and moderate abundance of Oridorsalis umbonatus.  

The presence of abundance peaks in buliminids may point to high productivity or 

low oxygenation (Hayward et al., 2010), probably the former since the diversity in 

this part of the section is high and this does not agree with a low oxygenation 

hypothesis. However, abundance peaks in Uvigerina and Ehrenbergina also 

characterize this interval (Fig. 5.7 and 5.9a-5.9b), and these two genera are usually 

associated with lowered oxygen content (Lohmann, 1978; Streeter and Shackleton, 

1979; Schnitker, 1979; Douglas, 1981; Miller and Lohmann, 1982).  



67 
 

The species U. peregrina s.l. is a good proxy for increased productivity and is often 

associated with lowered oxygen content (Lohmann, 1978).  

The presence of quantitative peaks in the relative abundance of both Uvigerina spp. 

and buliminids s.l. (Fig.5.11), inhabitants of present-day OMZs (Nomura, 1991; 

Hermelin, 1992) between 191.00 and 187.40  m, point to the presence of the 

biogenic bloom since an increase in paleo-productivity leads to increased carbonate 

dissolution and expansion of the OMZs (Dickens and Owen, 1994). 

The middle interval 2 (from 168 to 109 m) (Fig. 5.10) is characterized by the 

dominance of subcluster A2 (mainly Globocassidulina subglobosa, with a 

contribution of Epistominella exigua and, in the lower part, a minor contribution of 

Abditodentrix asketocomptella). This interval does not show any uniform trends but 

fluctuations in the relative abundance of several species. The dominance of O. 

umbonatus and G. subglobosa, which are thought to be indicative of high oxygen, 

carbonate corrosive bottom environments (e.g., Murray, 1988; Mackensen et al., 

1995; Hayward et al., 2004b), points to an increase in oxygen concentration. 

One of the largest fluctuations in this interval coincides with a drop in the 

percentage of G. subglobosa, associated with an increase in the relative abundance 

of buliminids s.l. (B. truncana, B. finlayi, U. peregrina s.l., and Uvigerina 

proboscidea) and C. mundulus. There is also a slight drop in diversity that seems to 

coincide with the peak in epifaunal species, however it is not a dramatic drop since 

the heterogeneity does not show significant changes. 

The upper interval 3 (from 109 to 82.01 m) (Fig. 5.10) is dominated by subcluster 

A1, with a minor contribution of subcluster A2. Diversity is high in this interval but 

there is a minor drop in the upper most part (at ca. 95 m) that seems to be associated 

with a peak in abundance of Cassidulina crassa, a species that is reported to thrive 

in areas of sustained carbon flux (Mackensen et al., 1995; Smart, 2008). The drop 

in diversity also coincides with a significant decrease in the relative abundance of 

Uvigerina spp., buliminids s.l. and Spiroplectamina spectabilis. The decrease of 

buliminids and Uvigerina spp. may indicate good oxygenation and low supply of 

labile organic matter to the sea floor (this is characteristic of Bulimina truncana and 

Uvigerina peregrina s.l.; Hayward et al., 2010; Lohmann, 1978; Streeter and 

Shackleton, 1979; Schnitker, 1979; Douglas, 1981; Miller and Lohmann, 1982). 
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In the upper part, there is also a relatively small peak (ca. 25 %) in agglutinated 

foraminifera, mostly related to a peak of Spiroplectamina spectabilis.  

Overall this interval is characterized by increases in taxa associated with increased 

oxygen concentration and decreased influx of organic matter, i.e. C. crassa, O. 

culter, G. subglobosa, P. wuellestorfi, M. pompilioides (Murray, 2009).  

The occurrence of Ehrenbergina glabra only in this interval supports the 

interpretation of increased oxygen concentration (Hayward et al., 2010). 

 

 

Fig. 5.11 Relative abundance of buliminids s.l. and Uvigerina spp., the blue band marks 

the peaks located in Interval 1, which are used to recognize the biogenic bloom. 
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5.2.2. DCA analysis 

As an attempt to identify the environmental variables that may have controlled the 

distribution pattern of benthic foraminifera, a detrended correspondence analysis 

(DCA) in R-mode (species) and in Q-mode (samples) was performed on the same 

dataset (Fig. 5.12 and Fig. 5.13). 

 

Q-mode (samples) 

The DCA analysis in Q-mode (samples) is shows in Fig. 5.12, where sample depths 

in meters CSF-A have been used instead of the samples IDs (i.e. sample U1506A-

10R-1, 100-102 cm corresponds to 82.01 m). Samples are clearly arranged in 

stratigraphic order in the DCA analysis, which supports the definition of the three 

intervals (1, 2 and 3) based on benthic foraminiferal assemblages. Outliers are 

marked in red.  

Interval 1 (168 to 192.91 m) is located at low values along axis 1 and axis 2. This 

interval is characterized by the high relative abundances of taxa typical of high 

nutrient influx and low oxygen conditions, suggesting high productivity conditions. 

Interval 2 (from 168 to 109 m) is located at low values along axis 1 and high values 

along axis 2. This interval is defined by presence of taxa typical of high oxygen and 

low nutrient conditions, and characterizes a low productivity environment. Lastly, 

Interval 3 (from 109 to 82.01 m) is located at high values along axis 1. It is similar 

to the Interval 2 and is characterised by taxa typical of oxic and oligotrophic 

environments.  

Based on this subdivision and on the characteristics of each sample, we suggest that 

axis 2 is mainly controlled by productivity, which is higher at low values and 

progressively decreases at higher values. Interpretation of axis 1 is not 

straightforward though, and further work on geochemical proxies might throw some 

light into its paleoenvironmental interpretation. 

 

R-mode (species) 

The R-mode DCA analysis was made using species with a relative abundance > 5 

% in at least one sample (Fig. 5.13). Species from subclusters B1 and B2, including 

Bulimina elongata, Bolivina finlayi and Ehrenbergina carinata are located at lower 

values along axis 1.  
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These species are typical of eutrophic environments and suggest a high nutrient 

supply to the seafloor. Subcluster A1 dominates at high values along axis 1, with 

species that are common in oligotrophic environments (O. culter, C. crassa and P. 

wuellestorfi). The only exception is S. spectabilis, typical of increased carbon flux, 

but also known as an opportunistic species, e.g. occurring just above the 

Cretaceous/ Paleogene boundary at ODP Site 959 in the equatorial Atlantic (Kuhnt 

et al., 1998) and at Gubbio, Italy (Kuhnt and Kaminski, 1996). Species from 

subclusters B1 and B2 occur at lower values along axis 2 (B. finlayi, B. elongata 

and E. carinata), and are typical of environments with low oxygen concentration. 

Subcluster A2 dominates at high values along axis 2, with species that are related 

to environments with high oxygen concentration (E. exigua and G. subglobosa).  

Axis 1 has been interpreted as controlled by nutrient supply, with eutrophic 

conditions at low values and oligotrophic conditions at high values. Axis 1 is not 

related to oxygen concentration because C. mexicanus, which has big pores and is 

typical of oxic environments, is located at low values among the suboxic-dysoxic 

species. Axis 2 is probably related to changes in bottom-water oxygenation, at high 

values the oxygen concentration is high, and it decreased towards low values along 

axis 2. This interpretation agrees with the one made for the three intervals: Interval 

1 is characterized by species associated with low oxygenation and high carbon 

influx and is dominated by subcluster B1, this is consistent with the interpretation 

since in the R-mode DCA graph this subcluster is placed in the low oxygenation-

high food supply sector. Interval 2 is more difficult to interpret since it shows 

fluctuations, however it seems to be characterized by an increase in oxygen 

concentration and by the dominance of subcluster A2; once again the interpretation 

is consistent because in the DCA, subcluster A2 is found in a sector characterized 

by high oxygenation. Lastly, Interval 3 is defined by high oxygen concentration and 

low nutrient supply. This interpretation fits with the DCA plot, since this interval is 

dominated by subcluster A1, characterized by taxa typical of oxic and oligotrophic 

environments. 
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Fig. 5.12 Q-mode (samples): the graph shows all the analysed samples and their 

subdivision into the three intervals based on statistical analysis. Outliers are marked in red. 
Interval 1 is characterized taxa typical of high nutrient influx and low oxygen conditions, suggesting 

high productivity conditions. Interval 2 and 3 are defined by taxa typical of low productivity 

environment. Based on this we suggest that axis 2 is mainly controlled by productivity 

   

Fig. 5.13 R-mode (species): the graph shows the subdivision of the species into the four 

subclusters based on ecological parameters. Subcluster A1 dominates at high values along 

axis 1, with species that are common in oligotrophic environments; subcluster A2 

dominates at high values along axis 2, with species that are related to environments with 

high oxygen concentration; meanwhile, species from subclusters B1 and B2 occur at 

lower values along axis 2 and are typical of environments with low oxygen concentration. 
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5.2.3. Paleoenvironmental conditions  

As reported in § 5.2.1., the studied succession has been divided into three main 

intervals based on the benthic foraminiferal assemblages composition and statistical 

analysis (Q-mode). The integrated age model has allowed us to put the three 

intervals into a chronological framework: Interval 1 spans from ca. 7.28 to 6.50 Ma, 

Interval 2 from ca. 6.50 to 5.07 Ma, and Interval 3 from ca. 5.07 to 4.61 Ma. 

Interval 1 shows the most interesting and promising features, which fits the 

expected conditions during the biogenic bloom. The paleo-ecological analysis 

points to eutrophic conditions at the seafloor and low oxygen concentration of 

bottom waters, and the Fisher- α index shows that diversity is higher compared to 

the other intervals. All these characteristics are typical of high productivity 

environments and suggest that this interval coincides with the biogenic bloom. This 

interpretation is supported by the DCA analysis, where Interval 1 is dominated by 

subcluster B1, which lies in the low oxygenation-high food supply area (Fig. 5.13). 

Furthermore, high paleo-productivity leads to increased carbonate dissolution and 

expansion of the OMZs (Dickens and Owen, 1994). Between 191.00 and 187.40 m 

peaks in relative abundance of Uvigerina spp. and buliminids has been observed 

and is indicative of low oxygen levels because, these taxa thrive in present-day 

OMZs (Nomura, 1991; Hermelin, 1992) and are thus ancillary evidences for the 

biogenic bloom (Fig. 5.11). 

Based on this interpretation, the biogenic bloom at IODP Site U1506 is located 

between 192.91 and 168.00 m, and spans from ca. 7.28 to 6.50 Ma, a duration that 

is significantly shorter than the one previously suggested in the literature. 

When stable carbon isotope will become available for this succession, a direct 

comparison between benthic foraminiferal data and δ13C will confirm, in case of a 

synchronous timing, or disregard, in case of an offset, this hypothesis. 
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6. CONCLUSIONS 

 

Calcareous nannofossil and benthic foraminiferal assemblages were investigated at 

IODP Site U1506, on one hand, calcareous nannofossil provide a biostratigraphic 

classification of the section as well as an implemented age model. On the other 

hand, benthic foraminiferal data has allowed to reconstruct the paleoenvironmental 

conditions at the sea floor. 

The biostratigraphic analyses frame the succession within the standard 

biozonations, according to which the study section extends from Zone NN10 to 

Zone NN13 (Martini, 1971), and from Subzone CN8b to Subzone CN10c (Okada 

and Bukry, 1980). Based on the additional biozonation of Backman et al. (2012) 

the section comprises an interval between Zone CNM15 to Zone CNPL2. From the 

chronostratigraphic point of view, the analysed section spans from the Tortonian 

(late Miocene) to the Zanclean (early Pliocene).  

The implementation of the age model, originally proposed by Sutherland et al. 

(2018), has allowed to date the base (8.45 Ma) and the top (4.53 Ma) of the section 

as well as to calculate the sedimentation rates along the section, which pointed to 

values up to ca. 40 m/Myr in the investigated section during the biogenic bloom. 

The studied succession has been divided into three main intervals based on benthic 

foraminiferal quantitative data and statistical analyses. Interval 1 has a slightly 

higher diversity if compared with Intervals 2 and 3.  

In addition, paleo-ecological affinity of benthic foraminiferal taxa present in the 

assemblages suggests a high nutrient supply to the seafloor and a relatively low 

oxygen concentration of bottom waters during Interval 1. These features depict a 

high productivity environmental conditions that well fit with the biogenic bloom. 

Moreover, the DCA analysis is coherent with this interpretation since Interval 1 is 

characterized by the dominance of subcluster B1, which is placed in the low 

oxygenation-high food supply area. Furthermore, the abundance peaks in the 

relative abundance of Uvigerina spp. and buliminids, inhabitants of present-day 

OMZs (Nomura, 1991; Hermelin, 1992), between 191.00 and 187.40  m CSF-A, 

support an increase in paleo-productivity leading to increased carbonate dissolution 

and expansion of the OMZs (Dickens and Owen, 1994), which also indicate a 

biogenic bloom phase. 
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In conclusion, our data indicate that the biogenic bloom is recognizable at Site 

U1506 between 192.91 and 168.00 m (7.28 to 6.50 Ma) based on the changes in the 

benthic foraminiferal assemblages. However, to better comprehend this event 

further analyses are required such as additional investigation on benthic 

foraminiferal assemblages below 192.91 m, quantitative study on calcareous 

plankton microfossil, redox analyses, and last but not least, a high resolution oxygen 

and carbon stable isotope study. These would further constrain the position of the 

biogenic bloom and help in better understanding the dynamics and the processes 

involved during the biogenic bloom. 
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APPENDIX I - PLATES 

PLATE I 

 

Plate I. Microphotographies of benthic foraminifera from IODP Site U1506A. Binocular 

stereoscopic microscope. Scale-bar = 100 µm. 

1. Eggerella bradyi, U1506A-19R-3(122-124)-n.44; 2. Gaudryna sp. 1, U1506A-19R-5(22-24)-

N.44  ; 3. Karreriella bradyi, U1506A-17R-2(133-135)-n.47; 4. Martinotiella petrosa, U1506A-

17R-3(138-140)-n.48; 5, 6. Sigmoilina schlumbergeri, U1506A-19R-4(22-24)-n.47; 

7. Siphotextularia flintii, U1506A-19R-4(147-149)-n.47; 8. Siphotextularia foliosa, U1506A-21R-

2(50-52)-n.47; 9. Spiroplectamina spectabilis, U1506A-12R-1(110-112)-n.39;  

10. Textularia lythostrota, U1506A-19R-3(122-124)-n.46; 11. Textularia sp., U1506A-21R-4(140-

142)-n.45. 
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PLATE II 

 

Plate II. Microphotographies of benthic foraminifera from IODP Site U1506A. Binocular 

stereoscopic microscope. Scale-bar = 100 µm.  

1. Abditodentrix asketocomptella, U1506A-18R-1(48-50)-n.24; 2. Allomorphina pacifica, U1506A-

17R-2(133-135)-N.43; 3. Anomalinoides globulosus, U1506A-19R-3(122-124)-n.24; 4. Astacollus, 

U1506A-19R-4(122-124)-n.55; 5. Bolivina finlayi, U1506A-14R-3(130-132)-n.55; 6. Bulimina 

elongata, U1506A-18R-3(50-52)-n.39; 7. Bulimina striata, U1506A-18R-5(116-118)-n.41; 8. 

Cassidulina crassa, U1506A-11R-3(130-132)-n.08; 9. Chilostomella oolina, U1506A-18R-2(51-

53)-n.57; 10. Cibicides lobatulus, U1506A-19R-4(22-24)-n.24; 11, 12. Cibicidoides bradyi, 

U1506A-11R-3(130-132)-n.04; 13, 14. Cibicidoides havanensis, U1506A-20R-3(50-52)-n.14; 15, 

16. Cibicidoides mexicanus, U1506A-13R-3(130-132)-n.13;  17, 18. Cibicidoides mundulus, 

U1506A-17R-3(138-140)-n.02; 19, 20. Cibicidoides robertsonianus, U1506A-21R-2(50-52)-n.05; 

21. Cibicidoides robertsonianus, U1506A-20R-3(50-52)-n.12. 
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PLATE III 

 
Plate III. Microphotographies of benthic foraminifera from IODP Site U1506A. Binocular 

stereoscopic microscope. Scale-bar = 100 µm.  

1. Ehrenbergina carinata, U1506A-19R-4(22-24)-n.54; 2, 3. Ehrenbergina glabra, U1506A-

12R1(110-112)-n.40; 4, 5. Epistominella exigua, U1506A-18R-1(48-50)-n.26; 6. 

Evolvocassidulina, U1506A-17R-1(132-134)-n.52; 7, 8. Francesita advena, U1506A-20R-5(50-

52)-n.56; 10. Globocassidulina subglobosa, U1506A-11R-1(105-107)-n.24; 11, 12. Gyroidina 

orbicularis, U1506A-21R-4(140-142)-n.21; 13, 14. Hanzawaia ammophila, U1506A-18R-3(50-

52)-n.21; 15. Heronallenia unguiculata, U1506A-16R-5(63-65)-n.55; 16. Lagena, U1506A-16R-

4(126-128)-n.62; 17. Laticarinina altocamerata, U1506A-10R-1(100-102)-n.36; 18. Melonis 

barleeanum, U1506A-16R-1(136-138)-n.07; 19. Melonis pompilioides, U1506A-10R-1(100-102)-

n.06. 
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PLATE IV 

Plate IV. Microphotographies of benthic foraminifera from IODP Site U1506A. Binocular 

stereoscopic microscope. Scale-bar = 100 µm.  

1. Nonion, U1506A-11R-1(105-107)-n.36; 2. Nonionella, U1506A-20R-5(50-52)-n.37; 3. 

Nuttalides umbonifera, U1506A-14R-3(130-132)-n.09; 4, 5. Osangularia culter, U1506A-10R-

1(100-102)-n.24; 6. Planulina sp. 1, U1506A-18R-3(125-127)-n.41; 7, 8. Pullenia bulloides, 

U1506A-10R-1(100-102)-n.56; 9. Pullenia quinqueloba, U1506A-13R-1(100-102)-n.30; 10. 

Pyrgo murrhina, U1506A-19R-4(22-24)-n.61; 11. Rectuvigerina multicostata, U1506A-20R-5(50-

52)-n.26; 12. Seabrookia pellucida, U1506A-20R-5(50-52)-n.63; 13. Sphaeroidina bulloides, 

U1506A-16R-4(126-128)-n.03; 14. Stillostomella, U1506A-17R-1(132-134)-n.34; 15. Trifarina 

bradyi, U1506A-13R-1(100-102)-n.44; 16. Uvigerina occidentalis, U1506A-16R-4(126-128)-

n.41; 17. Uvigerina peregrina s.l., U1506A-16R-4(126-128)-n.41; 18. Uvigerina proboscidea, 

U1506A-16R-5(63-65)-n.40.  
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PLATE V 

 

 

Plate V. Scanning electron (SEM) micrographs of selected benthic foraminiferal species from 

IODP Site U1506A sample 21R-1(140-142) (Credit Lucía Rivero-Cuesta). Scale-bar = 100 µm.  

1. Fursenkoina; 2. Bulimina truncana; 3. Bolivina finlayi; 4. Pleurostomella; 5. Gaudryna sp. 1; 6, 

7. Osangularia culter; 8. Uvigerina proboscidea; 9. Uvigerina peregrina s.l.; 10. Rectuvigerina 

semicostata; 11. Melonis barleeanum; 12. Gyroidina soldanii; 13. Globocassidulina subglobosa. 
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PLATE VI 

 
Plate VI. Scanning electron (SEM) micrographs of selected benthic foraminiferal species from 

IODP Site U1506A sample 21R-1(140-142) (Credit Lucía Rivero-Cuesta). Scale-bar = 100 µm.  

1. Pullenia bulloides; 2. Anomalinoides sp.; 3. Sigmoilina schlumbergeri; 4, 6. Ehrenbergina 

carinata; 5. Eggerella bradyi; 7, 8. Oridorsalis umbonatus; 9. Fissurina; 10. Trifarina bradyi; 11. 

Polymorphinid; 12, 13. Planulina wuellestorfi. 
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PLATE VII 

 

Plate 7. Microphotographies of calcareous nannofossils from IODP Site U1506A. Optical 

polarizing microscope (1250 magnifications), parallel and crossed nicols. Scale-bar = 5 µm.  
1.  Amaurolithus primus, U1506A-20R-2W, 74 cm; 2. Amaurolithus primus, U1506A-17R-CC, 05 

cm; 3. Amaurolithus tricorniculatus, U1506A-11R-CC, 05 cm; 4, 5. Calcidiscus macintyrei, 

U1506A-25R-CC, 05 cm; 6, 7. Coccolithus miopelagicus, U1506A-25R-CC, 05 cm; 8, 9. Discoaster 

berggrenii, U1506A-24R-2W, 75 cm; 10. Discoaster pentaradiatus, U1506A-13R-CC, 05 cm; 11. 

Discoaster quinqueramus, U1506A-17R-CC, 05 cm; 12. Nickilithus amplificus, U1506A-17R-CC, 

05 cm; 13. Reticulofenestra pseudoumbilicus, U1506A-17R-CC, 05 cm. 

  



98 
 

APPRENDIX II - TAXONOMIC LIST 

 
Alphabetical list of taxa mentioned in this thesis. 

 

Benthic foraminifera 

 

Eggerella bradyi (Cushman 1911) 

Gaudryina sp. 1  

Gaudryina spp.  

Karreriella bradyi (Cushman 1911) 

Karreriella spp. 

Martinotiella petrosa (Cushman and Bermúdez 1937)  

Martinotiella sp.  

Sigmolina schlumbergeri (Silvestri 1904) 

Siphotextularia flintii (Cushman 1911) 

Siphotextularia foliosa Zheng 1988 

Spiroplectammina spectabilis (Grzybowski 1898) emend. Kaminski, 1984 

Textularia lythostrota (Schwager 1866) 

Textularia spp.  

Vulvulina sp.  

Abditodentrix asketocomptella (Patterson 1985) 

Alabamina spp. 

Allomorphina pacifica Cushman and Todd 1949 

Anomalinoides globulosus (Chapman and Parr 1937) 

Anomalinoides spp. Brotzen 1942 

Astacolus spp.  

Bolivina finlayi Hornibrook 1961 

Bulimina spp.  

Bulimina elongata d’Orbigny 1846 

Bulimina marginata d’Orbigny 1826 

Bulimina striata d’Orbigny 1843 

Bulimina truncana Gümbel 1868 

Chilostomella oolina Schwager 1878 

Cassidulina crassa d’Orbigny 1839 

Cibicides lobatulus (Walker and Jacob 1798) 

Cibicidoides bradyi (Trauth 1918) 

Cibicidoides havanensis (Cushman and Bermúdez 1937) 

Cibicidoides mexicanus (Nuttall 1932) 

Cibicidoides micrus (Bermúdez 1949) 

Cibicidoides mundulus (Brady, Parker and Jones 1888) 

Cibicidoides robertsonianus (Bradyi 1881) 

Cibicidoides spp.  

Ehrenbergina carinata Eade 1967 

Ehrenbergina glabra Heron-Allen and Earland 1922 

Ehrenbergina marwicki Finlay 1939 

Ehrenbergina spp.  

Epistominella exigua (Brady 1884) 

Evolvocassidulina sp.  

Fissurina spp.  
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Francesita advena (Cushman 1922) 

Francuscia extensa (Cushman 1923) 

Fursenkoina sp.  

Globocassidulina subglobosa (Brady 1881) 

Globulina spp.  

Gyroidina orbicularis d’Orbigny in Parker, Jones and Brady 1865 

Gyroidina soldani (d’Orbigny 1826) 

Gyroidina spp.  

Gyroidina sp.1  

Hanzawaia ammophila (Guembel 1868) 

Heronallenia sp.  

Heronallenia unguiculata (Sidebottom 1918) 

Lagena spp.  

Laticarinina altocamerata (Herron-Allen and Earland 1922) 

Laticarinina pauperata (Parker and Jones 1865) 

Lenticulina spp.  

Melonis barleeanum (Williamson 1858) 

Melonis pompolioides (Fichtel and Moll 1798) 

Melonis spp.  

Miliolids 

Nodosariids 

Nonion spp.  

Nonionella spp.  

Nuttallides umbonifera (Cushman 1933) 

Nuttallinella spp.  

Oridorsalis spp.  

Oridorsalis umbonatus (Reuss 1851) 

Osangularia culter (Parker and Jones 1865) 

Osangularia spp.  

Planulina wuellestorfi (Schwager 1866) 

Planulina spp.  

Planulina sp.1  

Planulina sp.2  

Pleurostomella  spp.  

Polymorphinids  

Pullenia bulloides (d’Orbigny 1846) 

Pullenia quinqueloba (Reuss 1851) 

Pullenia sp.  

Pyrgo murrhina (Schwager 1866) 

Rectuvigerina multicostata (Cushman & Jarvis, 1929) 

Seabrookia pellucida Brady 1890 

Sphaeroidina bulloides d’Orbigny in Deshayes 1828 

Stillostomellids 

Trifarina bradyi Cushman 1923 

Uvigerina occidentalis Cushman 1923 

Uvigerina peregrina s.l. Cushman 1923 

Uvigerina proboscidea Schwager 1866 

Uvigerina spp.  

Valvulineria minuta (Schubert 1904) 
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Calcareous nannofossil 

 

Amaurolithus Gartner and Bukry, 1975 

Amaurolithus delicatus Gartner and Bukry, 1975 

Amaurolithus primus (Bukry and Percival, 1971) Gartner and Bukry, 1975 

Amaurolithus tricorniculatus (Gartner, 1967) Gartner and Bukry, 1975 

 

Calcidiscus Kamptner, 1950 

Calcidiscus leptoporus (Murray & Blackman 1898) Loeblich & Tappan, 1978 

Calcidiscus macintyrei (Bukry and Bramlette, 1969) Loeblich and Tappan, 1978 

 

Ceratolithus Kamptner, 1950 

Ceratolithus acutus Gartner & Bukry 1974 

Ceratolithus atlanticus Perch-Nielsen, 1977 

Ceratolithus rugosus Bramlette & Wilcoxon 1967 

 

Coccolithus Schwartz 1894 

Coccolithus miopelagicus Bukry 1971 

 

Discoaster Tan 1927 

Discoaster bergenii Russell and Firth, 1989 

Discoaster berggrenii Bukry, 1971 

Discoaster bellus Bukry and Percival, 1971 

Discoaster pentaradiatus Tan, 1927 

Discoaster quinqueramus Gartner, 1969 

 

Nickilithus 

Nickilithus amplificus (Bukry and Percival, 1971) Raffi, Backman and Rio 1998 

 

Reticulofenestra Hay et al. 1966 

Reticulofenestra pseudoumbilicus (Gartner, 1967) Gartner, 1969 
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SUPPLEMENTARY MATERIAL 

 

The attached CD contains:  

1. An Excel file (Benthic foraminifera counting) with the counts performed on 

benthic foraminifera. The following are the abbreviations referenced in the file: 

 300: counting on 300 specimen of benthic foraminifera; 

 % 300:  counting on 300 specimen of benthic foraminifera converted into 

percentage; 

 H(S): data derived from the counting and used to obtain the Shannon-

Weaver heterogeneity index. 

2. An Excel file (Calcareous nannofossil counting) with the counts performed 

on calcareous nannofossil. The following are the abbreviations referenced in the 

file: 

 mm2: number of specimens belonging to the same taxon present on an 

area of 1 mm2; 

 biohorizons: biohorizons and the biostratigraphic classification  

3. A PDF file (% 300) with the graphs derived from % 300 
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