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ABSTRACT

Flash floods, a subset of floods, are a particularly damaging natural hazard worldwide because of their

multidisciplinary nature, difficulty in forecasting, and fast onset that limits emergency responses. In this

study, a new variable called ‘‘flashiness’’ is introduced as a measure of flood severity. This work utilizes a

representative and long archive of flooding events spanning 78 years to map flash flood severity, as quantified

by the flashiness variable. Flood severity is thenmodeled as a function of a large number of geomorphological

and climatological variables, which is then used to extend and regionalize the flashiness variable from gauged

basins to a high-resolution grid covering the conterminous United States. Six flash flood ‘‘hotspots’’ are

identified and additional analysis is presented on the seasonality of flash flooding. The findings from this study

are then compared to other related datasets in the United States, including National Weather Service storm

reports and a historical flood fatalities database.

1. Introduction

Flash floods are swift flood responses to intense rainfall

or release of water over a small area. Inundation over dry

land occurs within minutes to a few hours of the rainfall

event, potentially causing devastating impact on lives and

infrastructure (Hong et al. 2012). For the water year 2014

(from 1October 2013 to 30 September 2014) alone, direct

flood damages totaled $2.86 billion in the United States,

according to the Flood Loss Report compiled by the

NationalWeather Service (NWS; NWS 2014). Pielke and

Downton (2000) found that flood damage costs for the

United States have steadily increased throughout the

twentieth century. Ashley and Ashley (2008) compiled a

nationwide database of flood fatalities across the contig-

uous United States from 1959 to 2005 with detailed event

and demographic information. They found that the ma-

jority of the fatalities were caused by flash floods. In 2014,

55 flood-related fatalities were recorded, where 29 were

attributed to vehicle-related accidents and 39 were at-

tributed to flash flood events (NWS 2014). An increasing

trend of heavy precipitation at both continental

(Groisman et al. 2004) and global scale (Groisman et al.

2005), combined with rapid urbanization, is expected to

increase the frequency and impact of flash floods.

But despite their disruptions to societies and econo-

mies, flash floods have not received the systematic and

comprehensive study commensurate with their impacts.

To understand how flood severity varies spatially, tem-

porally, and geographically, we must first have a cen-

tralized database that collates quantitative information

regarding floods. Such databases are not easily available,

as the historical records are generally distributed across

disparate sources and reports. Despite this limitation,

flood characterization studies performed based on case

studies and limited databases have provided important

insights into spatial and temporal flood dynamics. Costa

(1987a) investigated the hydraulic factors behind 12 of

the largest floods of small basins ever measured by the

U.S. Geological Survey (USGS) in the conterminous

United States (CONUS) and related them to basin

morphometry of the channels. He found that the peak

discharges were controlled by an optimum combination

of high rainfall rates and basin physiographic and mor-

phological characteristics, such as elevation ratio,
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drainage ratio, basin magnitude, basin slope, ruggedness

number, etc. Bhaskar et al. (2000) devised a flash flood

index in order to distinguish between floods and flash

floods. The index was based on the characteristics de-

scribing the shape of the flood hydrograph, such as the

rising curve gradient, the flood magnitude ratio, and the

flash flood response time. Merz and Blöschl (2003)

identified the causative mechanisms of floods using

11 518 maximum annual flood peaks in 490 Austrian

catchments. They used a number of indicators such as

timing of the floods, storm duration, rainfall depths,

snowmelt, catchment state, runoff response dynamics,

and spatial coherence to stratify flood peaks into flood

process types. Gaume et al. (2009) reported the compi-

lation of an inventory containing 550 previously

undocumented flash flood events in seven hydrometeo-

rological regimes in Europe. In one of the most com-

prehensive studies over Europe, Marchi et al. (2010)

defined flash floods as those with an average time to

peak of 6 h for catchments less than 100km2 in size. They

identified causative processes behind 25 selected ex-

treme flash floods in Europe and related them to climate

and basin morphology. They characterized these events

in terms of basin morphology, flood-generating rainfall,

peak discharges, runoff coefficient, and response time to

improve flash flood risk management. Perucca and

Angilieri (2011) approximated the basin behavior in

response to rainstorms by evaluating the flash flood

hazard of del Molle basin in Argentina. The study re-

ported the probability of a serious flash flood hazard in

the basin by analyzing different morphometric proper-

ties and suggested various mitigation measures.

Such studies have provided important insights into un-

derstanding floods in ungauged locations. Castellarin

(2007) found that the reliability of probabilistic regional

envelope curve (PREC) flood quantiles for ungauged sites

is comparable with the reliability of regional estimates

produced by the application of the index flood approach.

Gaume et al. (2010) reduced the uncertainties in esti-

mating regional flood quantiles by employing a Bayesian

method on flash flood events occurring in ungauged

catchments. Ruiz-Villanueva et al. (2013) characterized

41 flash flood events in small mountain basins of central

Spain and analyzed their frequency, severity, seasonality,

and synoptic meteorological causes, as well as the human

impacts in terms of damage and fatalities. These methods

can be used to reconstruct floods in ungauged basins.

Flash floods are generally related to localized, short,

high-intensity rainfalls over basins with response times

from minutes to a few hours. The nature of flash flood

response is dictated by a complex interaction of various

runoff-generating processes and conveyance of water

out of the basin. An analysis of causative factors such as

geology, topography, pedology, and climatology is vital

for revealing important aspects of the hydrological be-

havior. European studies have found that space and

time scales of the most intense flash floods are smaller

near the Mediterranean and decrease in intensity as one

moves inland (Gaume et al. 2009). Furthermore, they

find that the seasonality of the inland, continental flash

floods tends to be in the warm season months, while

those closer to the Mediterranean Sea typically occur in

autumn months. Until recently, the lack of a compre-

hensive database that catalogs information related to

flash flood timing, location, and severity such as the

causative rainfall and basin geomorphology have hin-

dered broad characterization studies. Some of the ex-

isting flooding databases include the International Flood

Network (IFNET), which publishes a flood event data-

base based on voluntary submission of events that

caused 50 or more casualties between 2005 and 2007

(http://www.internationalfloodnetwork.org/). A global

archive of large flood events (http://www.dartmouth.

edu/;floods/) maintained by the Dartmouth Flood

Observatory (DFO) curates one of the most compre-

hensive flood databases from a variety of sources such as

remote sensing images and government reports.Adigitized

global flood inventory (1998–2008) with georeferenced

events was also reported by Adhikari et al. (2010).

Building a comprehensive flash flood database is

challenging because of the lack of availability of obser-

vations, and some studies have proposed alternative ways

to describe floods. Marchi et al. (2009) indirectly re-

constructed flood discharges in western Slovenia using

postevent geomorphological surveys and interviews of

eyewitnesses. Wisser et al. (2010) used the effects of hu-

man activities, irrigation, and reservoir operations in a

flexible modeling framework to reconstruct twentieth-

century global hydrography. Smith et al. (2014) employed

the ‘‘structure from motion’’ technique to reconstruct

flash flood magnitude using standard digital photographs

and ground control points. Casteller et al. (2015) used

dendrogeomorphic methods to reconstruct mean re-

currence intervals of 21 flash flood events covering the

period 1890–2009 along theLosCipreses torrent (Neuquén,
Argentina). To engage the public as citizen scientists

and crowdsource data collection on natural hazards,

theMeteorological Phenomena Identification Near the

Ground (mPING) project released smartphone appli-

cations in which users can submit flooding reports based

on different levels of severity (Elmore et al. 2014). The

Severe Hazards Analysis and Verification Experiment

(SHAVE), as described inGourley et al. (2013), collected

flooding and damage reports using public survey re-

sponses to a questionnaire with detailed impact classifi-

cations provided by Calianno et al. (2013).
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Recently, Gourley et al. (2013) reported the building

and online availability of the Unified Flash Flood Da-

tabase that has been used in this study. The database

sources flood events from USGS streamflow measure-

ments, storm reports collected by the NWS, and public

survey responses to a questionnaire developed for

SHAVE. The data have been post processed extensively

to harmonize data formats across the different sources.

The long period of record and availability of flooding

attributes such as flooding rise time, peak discharge, etc.

makes it a suitable database for performing a spatially

and temporally comprehensive flash flood character-

ization over the CONUS. Using a similar dataset, Smith

and Smith (2015) identified the flashiest watersheds in

the CONUS based on the frequency of discharge peaks

exceeding 1m3 s21 km22. Frequent flash flooding was

observed in urban areas in the south-central United

States (i.e., Tulsa, Oklahoma, and St. Louis, Missouri)

up through the mid-Atlantic (i.e., Baltimore, Maryland)

as well as the Pacific Northwest.

The purposes of this study are to 1) propose a new

variable to describe the severity of flash flooding across

theUnited States; 2) identify hotspots and evaluate their

seasonal behavior; 3) extend the flashiness analysis be-

yond gauged basins to a continuous grid over theCONUS

based on spatially distributed variables describing basin

topography, hydroclimatology, underlying geology, and

geomorphology; and 4) identify flash flood–prone areas

that are not highlighted in the observation database. It is

suggested that this analysis can be used for regional and

community planning and mitigation purposes. The paper

is organized as follows. Section 2 describes the study re-

gion and datasets. Section 3 proposes the flashiness var-

iable, which is then evaluated spatially and seasonally in

section 4. The relationships of variables that describe

flashiness are explored in section 5. Section 6 then re-

gionalizes the flashiness variables to all grid points in the

United States, permitting an analysis of the potential for

severe flash flooding in ungauged basins. This section

evaluates the flashiness maps through comparisons to

related databases. The summary and conclusions are

provided in section 7.

2. Study area and data used

The Unified Flash Flood Database released by the

Hydrometeorology and Remote Sensing (HyDROS)

group at the University of Oklahoma is a curated data-

base of flooding information from a variety of sources

such as gauge measurements of streamflow by USGS,

flash flooding reports in the NWS Storm Events Data-

base, and public survey responses on flash flood impacts

collected during the Severe Hazards Analysis and

Verification Experiment (Ortega et al. 2009; Gourley

et al. 2010). The high-resolution information provided by

SHAVE, spatial coverage of NWS reports, and auto-

mated data collection mechanism of USGS streamflow

records makes it one of the most representative flash

flood databases in the United States. It is publicly avail-

able for free (https://blog.nssl.noaa.gov/flash/database/).

This study used automated streamflow measurements

from the USGS. USGS collects instantaneous stream-

flow data at intervals ranging from 5 to 60min for 10 106

gauges in the database. The NWS coordinates with local

stakeholders and the USGS to define stages corre-

sponding to action stage and minor, moderate, andmajor

flooding for 3490 stream gauge locations. This subset of

gauges from the USGS network has defined flooding

thresholds, which is useful information for many appli-

cations including modeling. Action stage is defined as the

stage at which NWS forecasters take ‘‘mitigation action

for possible significant hydrologic activity,’’ and it often

corresponds to bankfull conditions (Hydrologic Services

Program 2012, p. 2). In fact, 41% of USGS stations have

identical action stage and bankfull stages, differing on

average by 1.3%.

USGS also supplies regulation codes for these gauges,

which is used to further screen out the gauges that have

some amount of anthropogenic influence from regulation

or diversion. After removing gauges with anthropogenic

influences and no defined action stage, we are finally left

with a data sample of 70596 flooding events from 1649

stations. Flood events are defined when streamflow ex-

ceeds the defined action stage for that gauge. There must

be a 24-h difference between when streamflow drops

below action stage to the next rise for it to be counted as a

separate event. The primary database comes with the

following information for each gauge: the USGS gauge

identifier (ID), latitude (decimal degrees), longitude

(decimal degrees), start time (UTC) at which the flow

first exceeded the action stage threshold, end time (UTC)

when the flow dropped below the threshold, peak flow

magnitude (m3 s21), peak time (UTC) at which peak flow

occurred, and the difference between the time at which

the discharge first exceeded action stage and reached its

maximum value, defined as the flood rise time (h).

This event database was further enhanced with geo-

morphologic and climatological attributes derived for

each basin in this study. A natural flood generally begins

with snowmelt or intense rainfall. The characteristics of

the underlying basin then dictate the speed at which

water is conveyed through the basin and the magnitude

of the maximum discharge. We concentrate on those

floods with faster rise times and higher peak flows

because of their devastating nature and lack of time

to take mitigating actions. We introduce spatially
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distributed parameters to elucidate and quantify how

the underlying, static basin characteristics influence

flood response. Each of the attributes that are included

in this study are provided in Table 1.

Several geomorphological attributes were extracted from

the digital elevation model (DEM) data of the National

Elevation Dataset (NED; http://ned.usgs.gov/) as potential

explanatory variables of flash flood severity. Flow accu-

mulation and flow direction information were extracted by

delineating basins withUSGS stations. The 30-mDEMwas

resampled to a 1-km grid using the National Hydrography

Dataset (NHD; http://nhd.usgs.gov/) to ensure that DEM-

based flow accumulation computations agree with the ac-

tual river network across theCONUS.The geomorphologic

parameters were derived from the grid-based delin-

eated catchments using custom libraries developed using

MATLAB. Soil datasets from the State Soil Geographic

(STATSGO) database (Miller and White 1998) were uti-

lized to derive variables such asmean depth to bedrock and

K factor (erodability). Land-cover and land-use data from

the National Land Cover Dataset (Fry et al. 2011) were

used to estimate the runoff curve number. Last, in addition

to the geomorphological variables presented in Table 1, the

hydroclimatic variables of mean annual precipitation

and temperature were extracted from the 30-yr

datasets (for period 1981–2010) prepared by the

PRISM Climate Group of Oregon State University

(http://www.prism.oregonstate.edu/normals/).

3. Flashiness

Flash floods are naturally occurring events that have

been characterized by the NWS as ‘‘a rapid and extreme

flow of high water into a normally dry area, or a rapid water

level rise in a stream or creek above a predetermined flood

level, beginning within six hours of the causative event (e.g.,

intense rainfall, dam failure, ice jam)’’ (Hydrologic Services

Program 2012, p. 3). Several approaches have been at-

tempted to identify and characterize flash floods, such as

geomorphology based (Costa 1987b; Gaume et al. 2009;

Marchi et al. 2010), frequency based (Reed et al. 2007;Vogel

et al. 2001), and flash flood guidance (Georgakakos 2006),

among others. A new variable called ‘‘flashiness’’ is in-

troduced in this paper as a measure of flood severity. It is

defined as the difference between the peak discharge and

action stage discharge normalized by the flooding rise time

andbasin areaas given inEq. (1) andvisualized inFig. 1. The

flashiness metric gives the rate of rise of the hydrograph

during flooding conditions and thus captures both the mag-

nitude and timing aspects with higher values corresponding

to more severe floods. Let f be the flashiness, S be the

number of gauging stations, andNi be the number of events

for a given gauge i, where i5 1, . . . , S. Thus, the flashiness

for a given event j, where j5 1, . . . ,Ni, at a given location i is

f
ij
5

Q
(p)
ij 2Q

(a)
ij

A
i
T
ij

, (1)

whereQ(p) denotes the peak discharge,Q(a) is the action

stage discharge,A is the basin area, and T is the flooding

rise time. An empirical cumulative distribution function

(ecdf) was then used to scale the values between 0 and 1

[Eq. (2)]. The standardized version of f is

~f
ij
5

1

�
S

i51

N
i

�
S

i51
�
Ni

j51

I
(uij#t)

, (2)

TABLE 1. Geomorphologic parameters included in this study.

Geomorphologic

parameter Details

Basin area Total upstream area that contributes runoff

Shape factor A dimensionless number that is given by drainage area divided by square of the main channel length

(K5drainage area/channel length2)

River length Measured along a line centered from the basin outlet to the intersection of the extended main channel

and the basin boundary

Relief ratio Relief is the difference in elevation between the outlet and the highest point in the basin and relief ratio

is relief divided by the basin length (a measure of the basinwide river slope); the higher the relief

ratio, the higher the runoff and the shorter the flooding rise time

Slope index Slope between two points along the main channel upstream from the mouth of the basin at distances

equal to 10% and 85% of the total main channel length (Costa 1987a)

Slope to outlet Local slope computed at a distance of 1 km over the basin outlet

Basin curve number Soil Conservation Service Curve Number (SCS-CN) is an empirical parameter that characterizes the

runoff properties for a particular soil and ground cover (U.S. Soil Conservation Service 1972)

K factor Relative index of susceptibility of bare, cultivated soil to particle detachment and transport by rainfall

Rock depth Depth to bedrock at the outlet

Soil texture (b parameter) A proxy for soil texture, derived from the STATSGO database (Miller and White 1998)
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where I(E) is the indicator function yielding 1 if the

condition E is true and 0 otherwise. The flashiness in-

formation is available at two levels: event and basin.

Event-level flashiness given in Eq. (2) is computed for all

70 596 flooding events. The characteristic scaled flashi-

ness variable for a given basin i is summarized by the

median value computed from all flooding events Ni

observed at that station

[~f
i
:P(~f

ij
# ~f

i
)]5

1

2
, for j 2 f1, . . . ,N

i
g, (3)

where P represents the probability that the random

variable fij takes on a value less than or equal to fi.

Often, frequency-based approaches such as the dis-

charge peak-over-threshold occurrences in Smith and

Smith (2015) are used to quantify basin response as

being flashy or not. The frequency of peaks-over-

threshold highlights small basins, typically in urban

areas, that are situated in hydroclimatic regimes with

persistent and heavy annual rainfall such as the south-

central United States, mid-Atlantic, and Pacific North-

west. However, this frequency-based definition of

flashiness fails to identify those regions that may not

flood on a frequent basis, but when they do flood, it can

be catastrophic. Some dramatic examples include Big

Thompson Canyon in July 1976 (which killed 145 peo-

ple) and the Great Colorado Flood of September 2013

(Gochis et al. 2015), both of which occurred in locations

situated along the Front Range of the RockyMountains,

and the Arizona–Utah border canyon flash flood that

killed up to 20 people in September 2015. It is postulated

that the paucity of these flash floods are even more dev-

astating than they would be if they were persistent be-

cause the occupants are less prepared and often unaware

of the danger. The flashiness variable used in this study

differs from the frequency-based approaches in that it

identifies those basins that have a high conditional prob-

ability of having a large-magnitude discharge in a short

period of time. Flashiness is conditioned on the occur-

rence of heavy rainfall; thus, it represents the potential

for a flashy response to input rainfall. The scaled flashiness

variable for a given basin is the median value computed

from all flooding events observed at that station.

Figure 2 shows the observed flashiness across the

CONUS. At this point, the true spatial distribution of

flashiness is limited by the density of the USGS stations

with defined flooding thresholds. However, several re-

gions emerge as being prone to flash flooding: 1) theWest

Coast, 2) Arizona, 3) the Front Range, 4) Flash Flood

Alley, 5) the Missouri Valley, and 6) the Appalachians.

High flashiness in the West Coast region is restricted to

the coastal basins and the upslope region of the Sierra

Nevada near Lake Tahoe. Arizona hosts a large number

of flashy basins that range from the low deserts in south-

eastern Arizona all the way up to the Mogollon Rim and

the higher-terrain plateau in the northern part of the state.

Several flashy basins are apparent just to the east of the

Rocky Mountains in the Front Range region. In Texas,

several flashy basins are clustered around San Antonio,

Austin, andWaco along theBalcones Escarpment inwhat

is locally known as Flash Flood Alley (Flood Safety

Education Project 2005). There is a secondary cluster

closer to the Gulf Coast near Houston. Moving farther to

the northeast, flashiness increases and appears to maxi-

mize in the center of Missouri. The Appalachian Moun-

tains in the eastern United States exhibit high values of

flashiness from Georgia all the way to Maine.

Flashiness, a continuous variable, may prove to be useful

in the definition of a flash flood. To date, many definitions

exist and often refer to the stream response to causative

rainfall on the order of a fewminutes to hours, typically less

than six (U.S. Department of Commerce 2016). In the

NWS, the time scale of 6h is used to divide operational

responsibility between local weather forecast offices that

issueflashfloodwarnings and regional river forecast centers

that issue river flood warnings. Definitions also refer to the

basin catchment scale, which is linked to the basin’s re-

sponse time. The European flash flood database described

in Gaume et al. (2009) uses a catchment area threshold of

500km2.Marchi et al. (2010) used the European flash flood

database to examine the characteristics of extreme events.

They refer to a maximum basin scale associated with flash

flooding of 1000km2.A limitation of a basin scale threshold

to defineflash flooding is that the effective basin area can be

quite small for a localized convective storm near the basin

outlet, which can produce a rapid response for a relatively

large catchment.

FIG. 1. Graphical representation of the definition of event-level

flashiness.
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In this study, we apply a subjective 75% quantile

threshold on the flashiness variable (corresponding

nonstandardized flashiness index is 0.0279m23 s22) to

separate basins that have ‘‘flashy’’ and ‘‘nonflashy’’ re-

sponses. This cutoff was later verified using actual storm

data from the NWS. It is interesting to note that there

are no flashy gauged basins (according to our definition)

in the state of Florida or in a contiguous area stretching

from the north central plains westward into the in-

termountain region of the Rockies. Some caution must

be exercised at this point because flashiness can only be

assessed in USGS-gauged basins that have flood stage

definitions. The state ofWyoming, for example, only has

four of these candidates.

4. Monthly variability of flash floods by region

A variety of meteorological processes, such as convec-

tive thunderstorms, tropical cyclones, and orographically

enhanced precipitation in complex terrain, causes pre-

cipitation of varying characteristics and intensity at dif-

ferent times of the year to cause flash flooding (Saharia

et al. 2016, manuscript submitted to J. Hydrol.). A better

understanding of themonthly variation of flash flooding is

necessary for assessing vulnerabilities and developing

flood mitigation strategies. The locations of the regional

hotspots identified using basin-level flashiness as shown in

Fig. 2 can be attributed to specific conditions of topogra-

phy and climate. Figure 3 shows the monthly frequency of

flash floods using our 75th quantile of flashiness definition

for each of the regions.

Flash floods on the West Coast (Fig. 3a) are clearly a

cool season phenomenon that is related to the position

of the jet stream, which directs extratropical cyclones

with moisture from the Pacific Ocean into the moun-

tains. Orographic enhancement by the topography in-

creases precipitation amounts from the storms that can

last several days. These flash flooding events begin to

increase in November, reach their maximum frequency

in December, and are essentially finished for the season

by April. Very few flash floods occur in this region

during the warm season months from May through

August. Despite its geographical proximity to the West

Coast, the frequency of flash floods in Arizona has a

bimodal character (Fig. 3b). There is a reflection of the

same cool season phenomenon experienced on theWest

Coast, but a smaller, secondary peak occurs from July

through September. This region is impacted by the

NorthAmericanmonsoon that transportsmoisture from

the Gulf of California northward into the semiarid and

hot deserts. The monsoon-forced flash floods do not

occur as frequently as the larger-scale storms in the cool

season, but they can be particularly catastrophic with

intense, localized rainfall. As we move farther inland to

the Front Range region, the frequency of flash floods

increases at the beginning of the warm season and peaks

during August (Fig. 3c). These storms are also related to

the larger-scale circulation patterns with the North

American monsoon. They differ from the Arizona

storms in that their moisture fetch tends to be from the

Gulf of Mexico up to the upslope region of the Front

Range. The shift of the flood season from winter to

FIG. 2. Distribution of observed flashiness (0–1) over CONUS. The bounding boxes highlight

known flash flood hotspots: 1) West Coast, 2) Arizona, 3) Front Range, 4) Flash Flood Alley,

5) Missouri Valley, and 6) the Appalachians.
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summer as one moves inland was discussed by Michaud

et al. (2001) and is further confirmed here.

The urban corridor spanning from Dallas to San

Antonio in south-central Texas, also known as Flash

Flood Alley, experiences some of the most dangerous

floods in the country. This is caused by a combination of

climatic and geomorphologic factors. Tropical air from

the Gulf of Mexico, tropical cyclones, extratropical cy-

clones, and orographic uplift over the Balcones Escarp-

ment result in very high precipitation efficiencies in this

area, which produces flash floods (Sharif et al. 2010). This

area shows a unique variation in flash flooding, with

only a single month (August) where the frequencies are

very close to zero (Fig. 3d). The approximate bimodal

distribution of flash flood peaks in spring and autumn can

be attributed to the synoptic-scale patterns that drive the

climatological rainfall peaks in these two seasons. Trop-

ical cyclones also contribute in the latter, autumn peak.

Similar to Flash Flood Alley, the Missouri Valley region

has a strong peak in flash flooding in the late spring months

of May and June (Fig. 3e). This region is also known to

have a secondary rainfall peak in the autumn months like

Flash Flood Alley. However, this secondary rainfall maxi-

mum is not reflected in the monthly frequency of flash

flooding. There are additional factors probably related to the

characteristics of the rainfall (i.e., intensity) that apparently

FIG. 3. Regionwisemonthly frequency of events for floods exceeding 75th quantile flashiness, that is, flash floods, for known

hotspots: (a)WestCoast, (b)Arizona, (c) FrontRange, (d) Flash FloodAlley, (e)MissouriValley, and (f) theAppalachians.
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are not sufficient to cause many flash floods during the au-

tumn months. The frequency of flash flooding in the Ap-

palachians differs from the other regions, with a peak

occurring in early spring (Fig. 3f). Moisture-laden air from

both theGulf ofMexico and theAtlanticOcean is forced up

the slopes of the Appalachian Mountains and causes rapid

formation of runoff. Villarini and Smith (2010) explore the

role of tropical cyclones in controlling the upper tail of flood

distributions in eastern United States. Villarini et al. (2014)

indicated that North Atlantic tropical cyclones are re-

sponsible for large-scale flooding over the eastern United

States from Florida to Vermont and Maine, along with a

secondary swath of enhanced flooding in the central United

States. Tropical cyclones are more common in autumn, and

we see a relative maximum in flash flooding in September.

Sturdevant-Rees et al. (2001) also noted the large concen-

trations of unit peak discharges along the Atlantic seaboard

and southeastern United States. The lack of flash floods in

Florida and the coastal plains of the eastern seaboard states

(see Fig. 2) further highlights the importance of the combi-

nation of moisture-rich air being forced upward by the ter-

rain in causing flash floods. Konrad (2001) found that these

comparatively flat andpermeable areas donotproduce large

unit discharges, despite their proximity to moisture sources

and being subject to frequent hurricanes.

5. Association of flashiness with basin
geomorphology and climatology

Figures 4a–d show the spatial distributions of poten-

tially important geomorphologic and climatological

characteristics that could influence a basin’s response. In

Fig. 4a, we see that there are concentrations of relatively

small gauged catchments near Lake Tahoe on the

California–Nevada border, in some Midwest cities such

as St. Louis and Indianapolis, and along theAppalachians

extending into the more populated regions of the

Northeast. In comparing Fig. 4a to Fig. 2, we see that

many of these basins are deemed as flashy, which is

largely driven by the fact that they are small catchments.

The climatological rainfall seems to influence flashiness

in the Southeast near the Appalachians as well as in the

Pacific Northwest, but there are some notable exceptions

(Fig. 4b). Arizona, for example, hosts a number of flashy

basins, but it is much more arid than other flashy

regions. The slope index is the DEM-derived slope

along the main channel length of a basin and is shown in

Fig. 4c (Costa 1987a). Higher slope indices are associ-

ated with flashy responses in theAppalachians, the Sierra

Nevada of California, and some basins in Arizona.

But, again, there are numerous flashy basins that are

relatively flat. Finally, the curve number is an empirical

parameter that characterizes the runoff response to ex-

cess rainfall. It includes many factors such as hydrologic

soil group and land cover in order to approximate in-

filtration, vegetative interception, and soil moisture re-

tention processes on runoff generation. Figure 4d

indicates higher runoff potential and thus some corre-

lation with flashiness in Missouri and Flash Flood Alley.

In reality, the behavior of a basin’s response to rainfall

is a result of a complex interaction between a large

number of geomorphologic and climatological factors.

FIG. 4. Distribution of (a) basin area, (b) mean annual precipitation, (c) slope index, and (d) curve number

over CONUS.
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The influence of each of the factors described above

(i.e., basin area, mean annual precipitation, slope in-

dex, and curve number) on flashiness is further ana-

lyzed using quantile plots in Figs. 5a–d. Information

regarding the variability of the dependency can be

extracted from the quantiles (1st, 10th, 25th, 50th,

75th, 90th, and 99th) of basin flashiness conditioned

on the evaluated variables. The conditional median

provides the first-order information of the de-

pendency, while the interquartile area estimates the

uncertainty in the relationship and the 10th and 90th

quantiles describe the variation of extreme values of

flashiness.

Figure 5a confirms the anticipated result that

flashiness is more common in small catchments. The

basin area associated with a median flashiness value of

0.75 (i.e., our subjective threshold for flash flooding) is

145 km2. Mean annual precipitation is likely to be

correlated to the frequency of flooding. It is noted that

the flashiness variable describes the potential for fast

and extreme runoff generation conditioned on heavy

rainfall. In other words, it is not dependent on the

frequency of flash flooding. Figure 5b shows the

quantiles of flashiness with mean annual precipitation

across the study region of the CONUS. The correla-

tion of flashiness to mean annual precipitation is much

weaker than that with basin area, but there is a slight

increase in flashiness with increasing climatological

rainfall amounts.

Basins with steeper topography generally experience

flashier floods with higher unit peak discharges and

faster concentration times. The relationship between

flashiness and slope index in Fig. 5c shows how flashiness

of a basin increases as slope index increases, that is,

FIG. 5. First through 99th quantiles of flashiness vs (a) basin area, (b) mean annual precipitation, (c) slope index,

and (d) curve number. Dots represent the actual data.

FIG. 6. Scatterplot of predicted vs observed flashiness. Bias is 0.6%

and correlation R 5 0.83.
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basins become steeper. This variable influences flashi-

ness approximately equal to the basin’s catchment area.

These two plots confirm that small catchments in steep

terrain are generally expected to have a flashy response,

according to our definition. Basin curve number is a

widely used empirical parameter in hydrology that is

based on soil and ground cover of an area and is used to

approximate direct runoff from a rainfall event. It has a

range of 30–100, with higher numbers indicating higher

runoff potential. Figure 5d shows how flashiness of a

basin depends on curve number. When grouping all the

basins together in a single plot, there is no apparent trend

in the median flashiness with increasing curve number.

The quantile plots provide valuable information

about the variation of flashiness with individual geo-

morphologic and climatological variables. But in reality,

flood processes are influenced by complex interac-

tions between a large number of variables. Thus, this

technique is extended into a multidimensional approach

where the collective influence of a large number of ex-

planatory variables on basin median flashiness can be

understood. This can be used to not only predict flashi-

ness in ungauged locations, but detect which explana-

tory variables have the greatest impact on floods in any

particular location as well as ascribe a band of un-

certainty to predicted flashiness.

6. Regionalization of flashiness

The dependence between the various explanatory

variables and flashiness is examined using the gener-

alized additive models for location, scale, and shape

(GAMLSS; Rigby and Stasinopoulos 2005) technique.

GAMLSS was proposed as an extension of the classical

generalized additive models (Hastie and Tibshirani

1990), generalized linear models (McCullagh and

Nelder 1989), and generalized additive mixed models

(Fahrmeir and Lang 2001). The underlying assumption

of all such models is that the variable we want to ex-

plain (flashiness, in this case) is a response variable

whose distribution function varies according to the

value assumed by the explanatory variables listed in

Table 1. GAMLSS offers advantages over the previ-

ously mentioned approaches, such as 1) higher flexi-

bility, as the response variable can follow a general

distribution function and is not restricted to follow a

distribution from the exponential family; and 2) it al-

lows for modeling of not only the location parameter

(related to the mean), but also scale and shape pa-

rameters (related to dispersion, skewness, and kurto-

sis). Because of its flexibility, GAMLSS has been used

to model various hydrometeorological variables (e.g.,

Kirstetter et al. 2015).

Two main assumptions are made: 1) the response

variable flashiness is a random variable following a

known parametric distribution with density f conditional

on the parameters m (mu) and s (sigma) and 2) the

observed a (alpha) values are mutually independent

given the parameter vectors m and s. Each distribution

parameter is modeled as a function of the explanatory

variables using monotonic (linear/nonlinear or smooth)

link functions. More details are provided by Rigby and

Stasinopoulos (2001, 2005), Akantziliotou et al. (2002),

and Stasinopoulos and Rigby (2007), particularly on the

model fitting and selection. It involves identifying a

suitable distribution of flashiness, the explanatory vari-

ables, and the link functions. The estimation method is

based on the maximum likelihood principle and the

model selection is carried out by checking the signifi-

cance of the fitting improvement in terms of information

criteria such as the Akaike information criterion (AIC),

the Schwarz Bayesian criterion (SBC), and the gener-

alized AIC (Stasinopoulos and Rigby 2007). Forward,

backward, and stepwise procedures were applied to se-

lect the meaningful explanatory variables, supervised by

diagnostic plots to check the fitting performance, as

discussed in Stasinopoulos and Rigby (2007). The

GAMLSS modeling has been performed using the

gamlss package developed for the R language.

A number of conditional two-parameter density

functions (lognormal, normal, reverse Gumbel, logistic,

gamma, etc.) were tested to fit the data, and the good-

ness of fit on the dataset was checked with the AIC for

each of the semiparametric density fits as well as by

checking theGaussianity and independence of residuals.

The beta distribution was found to be the most appro-

priate to examine the dependence of flashiness on var-

ious geomorphological variables. The original beta

distribution with beta function B is given by

f (y ja,b)5 1

B(a,b)
ya21(12 y)b21 , (4)

for y 5 (0, 1), a . 0, and b . 0. In the GAMLSS im-

plementation, a5m and b.s. The function above was

used to model the conditional flashiness distributions,

where the location m is linked to the expected flashiness

value, and the scale s is representative of prediction

uncertainty. After selecting the distribution family, the

structure of the model was refined through an iterative

procedure by trying several combinations of explana-

tory variables. The trends for each parameter are fitted

using penalized splines, which are more flexible than

polynomials or fractional polynomials for modeling

complex nonlinear relationships. The geophysical vari-

ables retained after analysis are presented in Table 2
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along with their corresponding statistical significance

values.

Consistency can be observed in the identification of

the most important factors with what the spatial analysis

suggested as discussed in section 5. Drainage area, slope

index, the curve number, and the hydroclimatic vari-

ables of mean annual precipitation and temperature are

highlighted by their significance levels. This can be in-

terpreted as a sign of robustness for the GAMLSS

model. For the purpose of validation, the dataset is

separated into two randomly selected samples, and the

model is trained over a 75% random sample of the ob-

servations while 25% is used for validation. The ex-

pected values yielded by the GAMLSS model are

compared to the observations and exhibit a correlation

of 0.82 (67% of the variance of the data explained) and a

negligible bias (0.4%).A similar result (correlation 0.83)

is obtained with the validation dataset. The GAMLSS

model is then recalibrated using geomorphological and

climatological variables for the entire USGS observa-

tion dataset. Figure 6 shows a scatterplot of predicted

versus observed flashiness. The two populations

exhibit a correlation of 0.83 and bias as small as 0.6%.

The model displays significant skill to predict the flash-

iness values; thus, we have confidence in the results as

they are regionalized to ungauged basins.

The model is used to make predictions of flashiness at

every grid point over the CONUS with a spatial reso-

lution of 1 km. Figure 7a is the expected value of the

predicted flashiness values between 0 and 1, and Fig. 7b

shows the standard deviation of predicted flashiness.

TABLE 2. Statistical significance of explanatory variables in

GAMLSS model. Not retained or not considered variables are

marked with an em dash. Significance is expressed as a p value.

Variable p value

Basin area (km2) ,2.2 3 10216

Shape factor ,2.2 3 10216

River length (km) —

Relief ratio 7.828 3 1026

Slope index ,2.2 3 10216

Slope to outlet 7.473 3 10211

Annual precipitation (mmyr21) 8.785 3 10210

Mean temperature (8C) ,2.2 3 10216

Curve number ,2.2 3 10216

K factor (erodability) —

Depth to rock (cm) 8.796 3 1028

Soil texture (b parameter) 2.487 3 10213

FIG. 7. Distribution of (a) expectation and (b) standard deviation of predicted flashiness values

over CONUS.
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The real value of this approach is the potential to identify

flash flood hotspots in ungauged areas. In the predicted

map, we see that the flashy basins on the West Coast are

confined to the coastal areas and the upslope region of the

inland Sierra Nevada extending northward. Arizona and

the Front Range areas are also better highlighted in the

predicted map. In Arizona, the flash flood–prone basins

are located where there are steep slopes extending from

southeastern Arizona and along the Mogollon Rim that

separate the lower deserts from the higher plateau region

in the northern part of the state. The predicted flashiness

along the Front Range extends southward from north-

central Colorado to southeastern parts of the state and

then continues southward along the front range of the

Rockies in New Mexico. In the observation database,

Flash FloodAlley is largely concentrated in central Texas

hill country and theHouston area. But the predicted map

highlights a band of flood-prone areas all the way from

southwestern Texas toOklahoma,Arkansas, Kansas, and

Missouri. Villarini et al. (2014) also highlighted the same

area on spatial interpolation of maximum and 90th per-

centile of flood ratios associated with tropical cyclones.

The predicted flashiness map highlights a number of re-

gions that were not identified in the observed flashiness

map in Fig. 2. Several localized hotspots are revealed,

such as thewestern slopes of theAppalachians (Tennessee,

Kentucky, and West Virginia) and a contiguous area in

the western Dakotas, eastern Montana, and north-

eastern Wyoming.

We introduce additional maps related to flash flooding

in order to evaluate the predicted flashiness values in

ungauged regions. Ashley andAshley (2008) compiled a

national database of all flood fatalities in the CONUS

between 1959 and 2005 along with their coordinates,

which is shown in Fig. 8. This fatalities map shows good

qualitative agreement with the predicted flashiness map

of Fig. 7a.

The entire West Coast and Sierra Nevada mountain

range has been highlighted in the predicted flashiness

map, but it does not experience as many flood fatalities

as the rest of the country. This may be due to better

infrastructure, lower population densities in mountain

communities, and better community resilience to di-

sasters. The fatalities in the Arizona area are situated

geographically similar to the predicted flashiness map.

Fatalities in the Front Range tend to occur farther north

rather than in southeastern Colorado and New Mexico,

as highlighted in the flashiness map. Low population

densities are likely the culprit for the mismatch. Flash

Flood Alley and the populated Northeast are the most

devastating regions in the country in terms of flood fa-

talities. Though our observation database in Fig. 2

identifies a localized region, the fatalities in Flash

Flood Alley are spread over a wider area, as shown in

Fig. 8. The extension of Flash Flood Alley by the pre-

dicted flashiness map up to the north and east correlates

better with the spatial distribution of flood fatalities,

attesting to the predictive power of the model in un-

gauged locations. The Missouri Valley with high flashi-

ness values also experiences large numbers of flood

fatalities. The predicted flashiness map also points to the

flood-prone nature of the entire Appalachians, which is

FIG. 8. Map of flash flood fatalities from 1959 to 2005 (source: Ashley and Ashley 2008).
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observed in the number of casualties in the whole belt. It

must be kept in mind that this is a very indirect way of

validating our model and that flood fatalities are highly

correlated with population density, infrastructure, and

societal vulnerability.

The flashiness predictions are also compared to the

storm database of flooding and flash flooding reports

from 2007 to 2013. This dataset is included in the flash

flood observation database described in Gourley et al.

(2013). NWS forecasters report locations of flooding

impacts using bounding polygons defined by as many as

eight vertices. Currently, there are around 35 000 events

in the database with an ID mentioning whether the

event was a flood or a flash flood according the NWS

definitions. Using GIS software, the mean flashiness in

all such polygons was calculated and beta distributions

were fitted to the populations of flashiness values in the

flood and flash flood categories. Figure 9a gives the fitted

probability distribution functions (PDFs) of mean

flashiness for floods and flash floods according to actual

NWS reports. The PDF shows a clear distinction be-

tween NWS-reported floods and flash floods between

flashiness values of 0.75, which is the value we used

initially to define flash flooding. The empirical and fitted

cumulative distributions are shown in Fig. 9b. A

Kolmogorov–Smirnov test performed on the two dis-

tributions yielded a p value of less than 2.23 10216 and a

D value of 0.22. Here, D is the maximum absolute dif-

ference between the two cumulative distribution func-

tions (CDFs), which is maximum near the mean

flashiness value of 0.75. The p value being small in-

dicates that the distributions are significantly different,

accrediting the usefulness of flashiness to characterize

the flash flood severity.

7. Conclusions

A long flood database spanning 78 years over the

CONUS was used to explore the dependency of flood

severity on geomorphological variables and climatol-

ogy. A new variable called flashiness was introduced in

this paper as a measure of flood severity. Flashiness is

not dependent on the annual likelihood of flash flooding,

but rather gives the potential of a basin to produce a

rapid and significant response to heavy rainfall. Com-

plex relationships between observed flashiness and a

large number of geomorphologic and climatological

variables were modeled using GAMLSS to predict

flashiness at every location. The findings are summa-

rized below:

d The spatial patterns of flood severity correlate well

with regions that have been previously reported. Six

flash flood hotspots were identified across the country:

the West Coast, Arizona, the Front Range, Flash

Flood Alley, the Missouri Valley, and the Appalachian

Mountains.
d A monthly analysis of flash flooding in each of the

hotspots revealed very different behavior in each

region. The West Coast had the maximum frequency

in flash flooding during the cool season while the

interior regions were more commonly impacted dur-

ing the warm season. Bimodal distributions in the

monthly frequency of flash flooding were noted in

both Arizona and in Flash Flood Alley in Texas.

FIG. 9. (a) PDF of fitted beta models and (b) CDF of empirical mean flashiness by NWS categories of floods and

flash floods. The fitted beta distributionmodels for floods (dotted line) and flash floods (dashed lines) are superimposed

in (b).
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d Several variables were used to model flashiness, and

the most influential ones were the basin area and the

basin’s slope index. Small, steep basins had the

flashiest responses.
d The predicted flashiness values were trained on ob-

served values with a correlation of 0.82; the same

correlation was met with stations that were indepen-

dent from the training dataset.
d Additional spatial datasets related to flash flooding

including fatalities and NWS reports showed good

correspondence with the predicted flashiness map.

The flashiness variable was shown to discriminate

between NWS reports of flood and flash floods.
d Though the observation database showed Flash Flood

Alley as being largely concentrated in central Texas hill

country and the Houston area, the model-predicted

flashiness extends this flash flood–prone area from

southwestern Texas through the hill country and con-

tinuing northeastward into adjoining states.
d Localized hotspots were identified within the broad

flash flood–prone areas as well as some of those out-

side of the originally defined regions, including the

western slopes of the Appalachians in Tennessee,

Kentucky, and West Virginia.

This study proposes an overview of how flood severity

varies across the United States using a model that is able

to highlight flash flood–prone areas in ungauged locations.

As an extension of this study, we will combine the existing

variables with event-level precipitation variability indices

for improved modeling of flood severity. This analysis

framework will serve as a baseline for evaluating distrib-

uted hydrologic model simulations such as the Flooded

Locations and Simulated Hydrographs (FLASH) project

(Gourley et al. 2016) under a variety of conditions. Since

the geomorphological and climatological variables in-

cluded in this paper can be computed globally and the

data available over the United States is geographically

diverse, this model can be extended to predict flashiness

globally. The goal is to augment the existing database and

to use sophisticated modeling techniques to improve

predictions in gauged and ungauged locations.
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