Appendix A

EDMS Air Quality Model Output

Table A-1 **EDMS 5.1.4.1 Emissions Inventory Report Emissions Inventory Summary**

Year: 2015

Category	CO2	H2O	со	THC	NMHC	voc	TOG	NOx	SOx	PM-10	PM-2.5	PM Non-Volatile	PM Volatile Sulfates	PM Volatile Organics	Fuel Consumption
Aircraft	1302.6	510.7	183.6	8.2	8.8	8.6	9.0	1.7	0.5	0.5	0.5	0.0	0.0	0.5	412.9
GSE	N/A	N/A	5.7	N/A	0.2	0.2	0.2	0.5	0.0	0.0	0.0	N/A	N/A	N/A	N/A
APUs	N/A	N/A	0.1	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	N/A	N/A	N/A	N/A
Roadways	N/A	N/A	24.9	N/A	1.3	1.4	1.5	1.9	0.0	0.1	0.0	N/A	N/A	N/A	N/A
Grand Total	1302.6	510.7	214.3	8.2	10.3	10.2	10.7	4.1	0.6	0.6	0.6	0.0	0.0	0.5	412.9

Year: 2025

Category	CO2	H2O	со	THC	NMHC	voc	TOG	NOx	SOx	PM-10	PM-2.5	PM Non-Volatile	PM Volatile Sulfates	PM Volatile Organics	Fuel Consumption
Aircraft	3,050.5	1,196.0	387.6	18.8	20.4	20.1	20.9	4.1	1.2	1.2	1.2	0.0	0.1	1.1	966.9
GSE	N/A	N/A	4.7	N/A	0.2	0.2	0.2	0.4	0.0	0.0	0.0	N/A	N/A	N/A	N/A
APUs	N/A	N/A	0.2	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	N/A	N/A	N/A	N/A
Roadways	N/A	N/A	66.3	N/A	2.8	2.9	3.1	3.0	0.1	0.2	0.1	N/A	N/A	N/A	N/A
Grand Total	3,050.5	1,196.0	458.8	18.8	23.4	23.2	24.2	7.6	1.4	1.4	1.3	0.0	0.1	1.1	966.9
NET CHANGE (Tons)	1,747.9	685.3	244.5	10.7	13.1	13.0	13.5	3.5	0.8	0.8	0.7	0.0	0.1	0.6	554.0
				LE	BS. per day		73.8	19.2	4.4	4.4					

Notes:

Units are short tons per year except as noted.

GSE = Ground support unit

APU = Auxiliary power unit (in jet aircraft)

Appendix B
Biological Constraints Analysis

BIOLOGICAL CONSTRAINTS ANALYSIS FOR THE TRUCKEE TAHOE AIRPORT DISTRICT MASTER PLAN UPDATE

PLACER AND NEVADA COUNTIES, CALIFORNIA

February 2015

PREPARED FOR:

Mead and Hunt 133 Aviation Boulevard, Suite 100 Santa Rosa, CA 95403 (707) 526-5010

Contact: David Dietz

PREPARED BY:

Garcia and Associates 435 Lincoln Way Auburn, CA 95603 (530) 823-3151

Contact: Susan Dewar

TABLE OF CONTENTS

Summary1
1.0 Introduction
1.1 Project Overview
1.2 Background and Objectives
1.3 Study Area
2.0 Methods
2.1 Biological Desktop Review
2.2 Field Reconnaissance Surveys
3.0 Results9
3.1 Background Research
3.2 Vegetation Communities and Other Ground Cover
3.2.1 Upland Communities
3.2.2 Wetlands and Water Features
3.3 Special-status Plants
3.4 Special-status Animal Species
3.5 Critical Habitat 22
4.0 Avoidance and Minimization Recommendations
4.1 Wetlands and Other Waters
4.2 Special-status Plants
4.3 Special-status Wildlife
5.0 References Cited
TABLES
Table 3-1. Soil Mapping Units within the Study Area
Table 3-2. Summary of Ground Cover Types within the Study Area
FIGURES
Figure 1-1: Truckee Tahoe Airport Study Area Location Map
Figure 2-1: Truckee Tahoe Airport CNDDB Occurrences within 3 Miles of the Study Area 7
APPENDICES
APPENDIX A: Special-status Species Identified from Background Research
APPENDIX B: Vegetation and Other Ground Cover Maps
APPENDIX C: Representative Photographs

ACRONYMS AND ABBREVIATIONS

°C degrees Celsius

°F degrees Fahrenheit

CDFW California Department of Fish and Wildlife

CESA California Endangered Species Act

CNDDB California Natural Diversity Database

CNPS California Native Plant Society

CRPR California Rare Plant Rank

EPA United States Environmental Protection Agency

ESA Federal Endangered Species Act

FEIS final environmental impact statement

GANDA Garcia and Associates

GPS Global Positioning System

NRCS Natural Resources Conservation Service

NWI National Wetlands Inventory

quad 7.5-minute topographic quadrangle

ROD record of decision

RWQCB Regional Water Quality Control Board SNFPA Sierra Nevada Forest Plan Amendment

TNF Tahoe National Forest

TTAD Truckee Tahoe Airport District

USACE United States Army Corps of Engineers

USFS United States Department of Agriculture Forest Service

USGS United States Geological Survey

USFWS United States Fish and Wildlife Service

WRCC Western Regional Climate Center

WSS Web Soil Survey

Summary

The Truckee Tahoe Airport District (TTAD) proposes to adopt the Airport Master Plan Update for the Truckee Tahoe Airport (Master Plan, TTAD 2014). The purpose of the Master Plan is to create a blueprint for facility and infrastructure planning over the next 10 to 15 years. The Master Plan recommends development plans and policies that best fit the needs of the airport and community, while protecting those living nearby (TTAD 2014). The Master Plan describes all of the physical improvements and property acquisitions planned through 2025. While the Master Plan describes these proposed features, it does not mandate particular construction actions, and serves as a planning tool.

Garcia and Associates (GANDA) biologists conducted background research and field reconnaissance surveys to inform the Master Plan. Habitat-level plant and animal surveys were conducted for state- and federally listed species and other special-status species as designated by the United States Fish and Wildlife Service (USFWS), California Department of Fish and Wildlife (CDFW), California Native Plant Society (CNPS), and United States Department of Agriculture Forest Service (USFS). No protocol-level and/or presence/absence surveys were conducted for plant or wildlife species. Sensitive communities, including wetlands and other waters were identified and generally mapped; a jurisdictional delineation has not been performed.

The Study Area (approximately 339 acres) for the Master Plan is composed predominantly of shrubland and steppe habitats (233.92 acres), with a few inclusions of forests (37.50 acres), grasslands and herblands (39.14 acres), and human-made and managed areas (20.96 acres). A small number of potential wetlands (approximately 6.20 acres) and non-wetland water features (approximately 1.65 acres) also occur within the Study Area. The soils are predominantly coarse sandy loam, sandy loam, or loam.

A total of 66 special-status plant taxa were identified from background research and reviewed for habitat suitability. Of these, nine have moderate or high potential to occur within the Study Area (Appendix A, Table 1): Plumas ivesia (*Ivesia sericoleuca*, California Rare Plant Rank [CRPR] 1B.2 and USFS sensitive), Santa Lucia dwarf rush (*Juncus luciensis*, CRPR 1B.2 and USFS sensitive), Lemmon's milk-vetch (*Astragalus lemmonii*, CRPR 1B.2 and USFS sensitive), Davy's sedge (*Carex davyi*, CRPR 1B.3), Fresno ceanothus (*Ceanothus fresnensis*, CRPR 4.3), Truckee cryptantha (*Cryptantha glomeriflora*, CRPR 4.3), Nevada daisy (*Erigeron eatonii* var. *nevadincola*, CRPR 2B.3), amethyst stickseed (*Hackelia amethystina*, CRPR 4.3), and Sierra starwort (*Pseudostellaria sierrae*, CRPR 4.2).

A total of 32 special-status wildlife species were identified and reviewed for habitat suitability. Eight special-status wildlife species have moderate or high potential to occur within the Study Area (Appendix A, Table 2). These taxa are willow flycatcher (*Empidonax traillii*), northern goshawk (*Accipiter gentilis*), Cooper's hawk (*Accipiter cooperii*), black-backed woodpecker (*Picoides arcticus*), Sierra Nevada snowshoe hare (*Lepus americanus tahoensis*), western white-tailed jackrabbit (*Lepus townsendii townsendii*), Sierra Nevada red fox (*Vulpes vulpes necator*), and silver-haired bat (*Lasionycteris noctivagans*). No federally designated critical habitat occurs in the Study Area or within a distance of 3 miles.

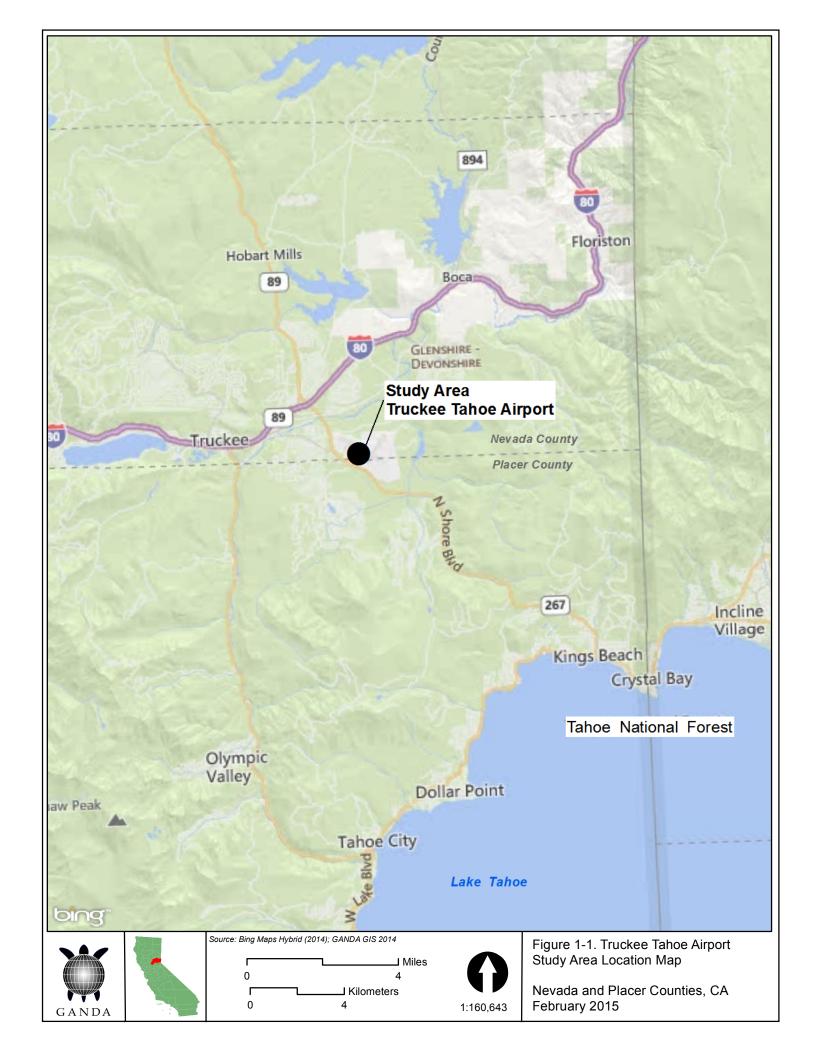
A series of avoidance and implementation of the Masensitive habitats.	d minimization measu aster Plan, in order to	ures are presented the minimize impacts	at can be utilized of to special-status sp	during the pecies and

1.0 Introduction

1.1 Project Overview

The Truckee Tahoe Airport District (TTAD) proposes to adopt the Airport Master Plan Update for the Truckee Tahoe Airport (Master Plan, TTAD 2014). The purpose of the Master Plan is to create a blueprint for facility and infrastructure planning over the next 10 to 15 years. The Master Plan recommends development plans and policies that best fit the needs of the airport and community, while protecting those living nearby (TTAD 2014). The Master Plan describes all of the physical improvements and property acquisitions planned through 2025, including concepts for the following:

- Extension and widening of Runway 2-20 and shifting of the parallel taxiway;
- Construction of additional aircraft storage hangers, and associated taxi lanes and modification of runway exit taxiways. This includes construction of a 12,000- to 14,000-square-foot multi-purpose hangar/building, which will both house aircraft and de-icing facilities, and provide non-profit and community event space; and
- Development of non-aviation uses on a parcel that is not needed for aviation.


While the Master Plan describes these proposed features, it does not mandate particular construction actions, and serves as a planning tool.

1.2 Background and Objectives

Garcia and Associates (GANDA) performed a pre-field desktop review and field reconnaissance surveys in October 2014 for preparation of this report. Habitat-level plant and animal surveys were conducted for state- and federally-listed species and other special-status species as designated by the California Department of Fish and Wildlife (CDFW), California Native Plant Society (CNPS), and United States Department of Agriculture Forest Service (USFS); no protocol-level or presence/absence surveys were conducted. Sensitive communities, including wetlands and other waters were generally identified and mapped; a jurisdictional delineation has not been performed. Details of the habitat assessment and surveys are further described in Section 2.0 Methods, and Section 3.0 Results.

1.3 Study Area

The Truckee Tahoe Airport is located immediately northeast of the Town of Truckee in the northern Sierra Nevada, in Nevada and Placer counties, California. The airport is situated in the relatively flat Martis Valley at approximately 1,800 meters (5,904 feet) above mean sea level, surrounded by peaks that are as high as 2,743 to 3,353 meters (9,000 to 11,000 feet) (TTAD 2014) (Figure 1-1). The annual maximum temperature is 15.0 degrees Celsius (°C) (59.1 degrees Fahrenheit [°F]), with an annual minimum temperature of -2.3 °C (27.8 °F); the highest temperatures occur in July with an average maximum of 27.9 °C (82.3 °F), and the lowest occur in January with an average minimum of -9.7 °C (14.6 °F). The region receives an average of 0.8 meters (30.1 inches) of precipitation per year, with average snowfall of 5.1 meters (201.8 inches); most of the precipitation occurs between December and March (Western Regional Climate Center [WRCC] 2014).

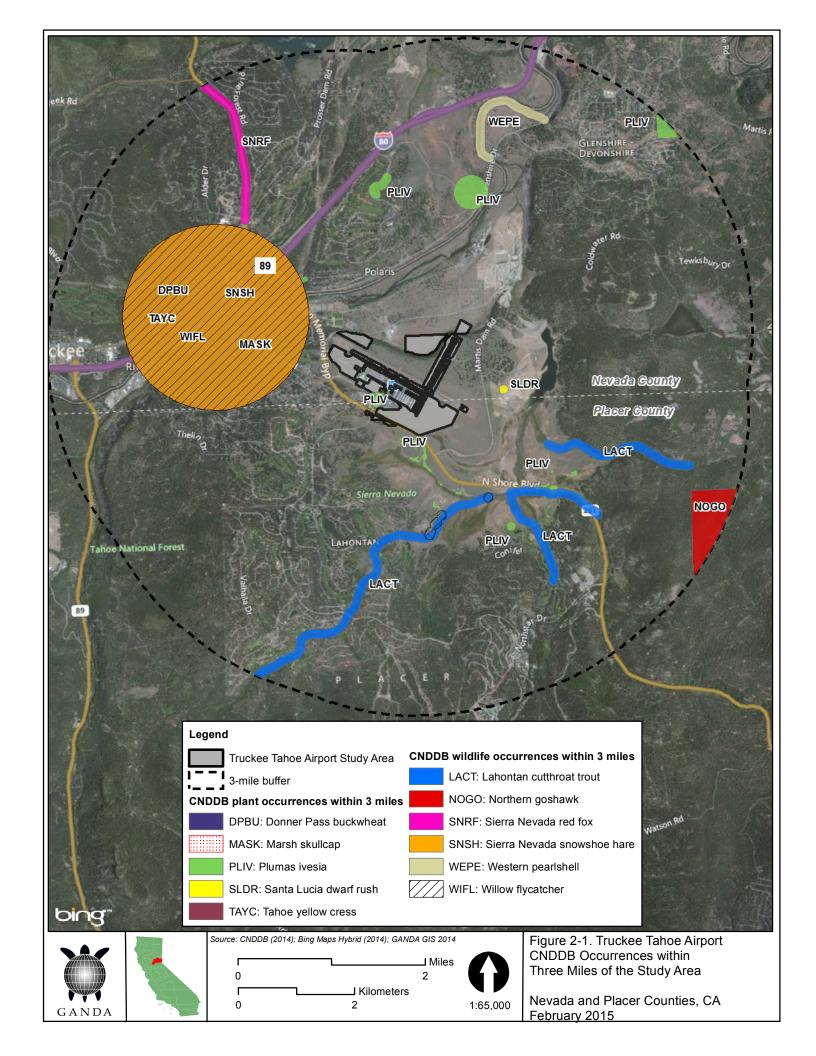
The entire airport property encompasses approximately 948.4 acres. Within this area, approximately 618.7 acres are "unassigned land use," 246.3 acres are runway areas, 13.6 acres are runway protection zones, and 69.8 acres are aviation development (TTAD 2014). The Study Area for this effort includes approximately 339 acres within the airport property, primarily encompassing the "unassigned land use" areas (Figure 1-1).

2.0 Methods

GANDA biologists performed a background desktop review and habitat-level site pedestrian surveys in order to determine potential for presence of special-status species and habitats within the Study Area. Methods for these investigations are described in detail below.

2.1 Biological Desktop Review

Prior to conducting field surveys, lists of special-status plant and animal species with potential to occur in the Study Area were prepared (Appendix A). Sources of background information for this desktop review included the CDFW California Natural Diversity Database (CNDDB) (CDFW 2014), the USFWS website (USFWS 2014a), and the *Online Inventory of Rare and Endangered Vascular Plants of California* (CNPS 2014). Critical habitat maps from the USFWS website were also reviewed (USFWS 2014b). The assessment area for this background research includes the United States Geological Survey (USGS) 7.5-minute topographic quadrangle (quad) that includes the Study Area (*Truckee, California*), and the eight surrounding quads (*Independence Lake, Hobart Mills, Boca, Norden, Martis Peak, Granite Chief, Tahoe City*, and *Kings Beach*).


The National Wetlands Inventory (NWI) (USFWS 2014c) and USGS topographic maps (USGS 1992) were consulted to identify known wetlands and other aquatic habitats in the Study Area. Natural communities tracked by the CNDDB (CDFW 2014) were also examined. Soil information for the Study Area was obtained from the Natural Resources Conservation Service (NRCS) Web Soil Survey (WSS) (NRCS 2014).

Locations of documented resources (special-status species and special natural communities recorded from the CNDDB [CDFW 2014] and wetlands [USFWS 2014c]) within the Study Area and a 3-mile buffer are displayed in Figure 2-1. Species occurrences were also reviewed within the nine-quad search area described above; however, a 3-mile CNDDB buffer was selected for Figure 2-1 to emphasize the resources in close proximity to the Study Area.

2.1.1 Definition of Special-status Plant Species

Potential special-status plant species include taxa that are designated as follows:

- Threatened, endangered, or a candidate for listing by the federal Endangered Species Act (ESA),
- Threatened, endangered, or rare by the California Endangered Species Act (CESA),
- Sensitive by Region 5 of the USFS, and occurring in the nine-quad search area or the Tahoe National Forest (TNF), and/or
- California Rare Plant Rank (CRPR) 1 or 2 (CNPS 2014) (Some CRPR 3 and 4 species with potential to occur were also included. See Appendix A, Table 1 footnotes for definitions of CRPRs).

2.1.2 Definition of Special-status Wildlife Species

Potential special-status wildlife species include taxa that are designated as follows:

- Threatened, endangered, or a candidate for listing by ESA,
- Threatened, endangered, or a candidate for listing by CESA,
- Classified as California species of special concern, fully protected, or watch listed by CDFW.
- Classified as sensitive by Region 5 of the USFS in the Sierra, Tahoe, or Lake Tahoe Basin National Forests, and/or
- Listed on CDFW's "Special Animals" list.

"Special Animals" is a broad classification used to refer to all the animal taxa tracked by the CDFW's CNDDB, regardless of their legal or protection status. CDFW considers the taxa on this list to be those of greatest conservation need (CDFW 2014). These species are listed and reviewed in Appendix A, Table 2.

2.2 Field Reconnaissance Surveys

GANDA botanists Samantha Hillaire and Susan Dewar, and biologist JoAnna Lessard, conducted habitat-level plant and wildlife field reconnaissance surveys of the Study Area on October 7 and 8, 2014. The biologists assessed the Study Area for habitat suitability for special-status species, and presence of wetlands and other special communities. No protocol-level or presence/absence surveys, or jurisdictional (wetland) delineations, were conducted.

Surveys were conducted by inspecting the Study Area for the presence of special-status plants and animals and their suitable habitat. The Study Area was accessed by driving on existing roads and walking throughout the site. Special attention was given to identification of habitat attributes associated with special-status species, such as suitable breeding or nesting habitat, unique soil types, and wetlands. Whenever resources of interest were located, they were mapped with a Trimble Juno Global Positioning System (GPS) unit capable of 1- to 3-meter accuracy. Habitats were mapped with a combination of recording areas with field GPS units and digitizing on recent aerial photographs.

The lists of special-status plant and animal species identified from background research were refined based on the presence of potential habitat identified from the field surveys (Appendix A). Those species with suitable habitat, along with wetlands and special communities that may be affected by adoption of the Master Plan, are further discussed in the Results Section (Section 3.0).

3.0 Results

3.1 Background Research

Research identified three sensitive communities, previously recorded within 3 miles of the Study Area, as follows (CDFW 2014):

- Fen.
- Great Basin Sucker/Dace/Redside Stream with Cutthroat Trout, and
- Great Basin Cutthroat Trout/Paiute Sculpin Stream.

Fens are wetlands that form in mineral-rich water, on pH neutral to alkaline soils; the soils in the Study Area are primarily acidic (Table 3-1), with only a small amount of hydric alkaline soil (Aquolls and Borolls, 0 to 5 percent slopes). Therefore, fens are unlikely to form in the Study Area except in a small area (2.5 percent of Study Area). No fens or streams occur in the Study Area.

Table 3-1. Soil Mapping Units within the Study Area

SOIL MAPPING UNIT ¹	APPROXIMATE PERCENT OF STUDY AREA	CHARACTERISTICS
Martis-Euer variant complex, 2 to 5 percent slopes	79.5	Coarse sandy loam, sandy loam, or loams. Soils formed from glacial outwash or till, and typically with volcanic sources; pH weakly to strongly acidic.
Inville–Martis variant complex, 2 to 5 percent slopes	16.0	Coarse sandy loam, sandy loam, or loams. Soils formed from glacial outwash and till, or mixed alluvium. Can have volcanic, andesite, or granitic sources; pH weakly to strongly acidic.
Kyburz–Trojan complex, 9 to 30 percent slopes	0.2	Gravelly sandy loam, sandy loam, or loam. Soils formed from schist, argillite, or volcanics including breccias and agglomerates; pH slightly to moderately acid.
Euer–Martis variant complex, 2 to 5 percent slopes	1.8	Coarse sandy loam, sandy loam, or loams. Soils formed from glacial outwash or till, and typically with volcanic source; pH weakly to strongly acidic.
Aquolls and Borolls, 0 to 5 percent slopes	2.5	Deep organic matter surface horizons are formed under seasonally or continually wet conditions. At least a portion is wet for 60 of the 90 days following the summer solstice. Soil may be calcareous, pH may be alkaline.

¹ From Web Soil Survey (NRCS 2014)

Desktop review identified 66 special-status plant taxa, which were then evaluated for their potential to occur within the Study Area (Appendix A, Table 1). Of these, nine taxa have moderate or high potential to occur in the Study Area. Of these nine, none are federally or state-

listed; five have CRPRs of 1 or 2, and four have CRPRs of 4. Of the nine, three are rated as sensitive by the USFS/TNF. Special-status plant taxa with moderate or high potential to occur within the Study Area due to known range and habitat requirements are discussed in Section 3.3 below. The remaining reviewed plant taxa are summarized in Appendix A, Table 1.

During background research, 32 special-status wildlife taxa were reviewed for their potential to occur within the Study Area. Seven of these species are federally or state-listed and one is a candidate for both state and federal listing (Appendix A, Table 2). The other 25 species listed in Appendix A, Table 2 are CDFW species of special concern, on the special animals list and/or USFS sensitive species. Among the 32 reviewed special-status species, eight have moderate potential to occur in the Study Area. More detail on these eight species, their known ranges, and habitat requirements are discussed in Section 3.4 below. The remaining reviewed animal taxa with low or no potential to occur are summarized in Appendix A, Table 2 and are not discussed further in this report.

Locations of known occurrences of special-status plant and animal taxa within 3 miles of the Study Area are presented in Figure 2-1 (CDFW 2014). Avoidance and minimization measures are listed in Section 4.0 for those special-status plant and animal species which have potential to occur in or near the Study Area for at least part of the year.

3.2 Vegetation Communities and Other Ground Cover

The Study Area was vegetated predominantly with sagebrush habitats, with inclusions of forests and human-managed areas. A small number of wetlands and drainages also occurred across the site (Appendix B). The soils were predominantly coarse sandy loam, sandy loam, or loam. The following sections describe vegetation communities that were present within the Study Area (see also Appendix B and Table 3-2).

3.2.1 Upland Communities

The upland communities in the Study Area include various types of shrubland and steppe, grassland and herbland, conifer forest, aspen stands, and ruderal vegetation. Man-made and managed areas included construction (active construction at the time of the survey), graded, and paved and graveled areas. These communities and landcover are described below. Select photographs are presented in Appendix C.

California-Vancouverian Montane and Foothill Forest

A small portion of the Study Area was vegetated with conifer forests (approximately 37.37 acres and 11.01 percent; Photo 1 in Appendix B). These forests were typically dominated by medium to tall ponderosa pine (*Pinus ponderosa*) and Jeffrey pine (*Pinus jeffreyi*) trees; sparse white fir (*Abies concolor*) and lodgepole pine (*Pinus contorta* ssp. *murrayana*) were also present in the overstory. The tree density in the forested areas varied greatly. In some areas, dense trees almost completely overshaded understory growth; in other areas, sparse to dense shrubs and herbaceous cover were observed, including big sagebrush (*Artemisia tridentata* var. *vaseyana*), mahala mats (*Ceanothus prostratus*), bitterbrush (*Purshia tridentata*), pink sierra current (*Ribes nevadense*), and woolly mule's ears (*Wyethia mollis*). The conifer forest alliances and stands mapped in the Study Area are as follows (from Sawyer, Keeler-Wolf, and Evens 2009):

- Pinus ponderosa alliance, and
- Pinus jeffreyi alliance.

The conifer forest habitats have potential to support special-status plant and animal species.

Table 3-2. Summary of Ground Cover Types within the Study Area

Chovain Covina	PERCENT OF	A DELA (A CIDEG)
GROUND COVER	STUDY AREA	AREA (ACRES)
Uplands California–Vancouverian Montane and Foothill Forest		
Pinus ponderosa alliance	5.12	17.37
	5.89	20.00
Pinus jeffreyi alliance SUBTOTAL	11.01	37.37
	11.01	31.31
Western North America Cool Temperate Forest	0.04	0.12
Populus tremuloides stands	0.04	0.13
SUBTOTAL Standard Standard	0.04	0.13
Shrubland and Steppe		
Artemisia tridentata ssp. vaseyana–Purshia tridentata /	16.00	54.50
Festuca idahoensis stands	16.08	54.58
Artemisia tridentata alliance	0.13	0.44
Artemisia tridentata–Purshia tridentata stands	48.89	165.91
Purshia tridentata / Eriogonum umbellatum association	3.53	11.97
Artemisia arbuscula / Festuca idahoensis alliance	0.30	1.02
SUBTOTAL	68.93	233.92
Semi-natural Grasslands and Herblands	T	T
Elytrigia intermedia stands	10.15	34.46
Elytrigia intermedia / Artemisia tridentata alliance	0.07	0.25
Elytrigia intermedia–Festuca idahoensis stands	0.36	1.23
Brassica and other mustards semi-natural stands	0.25	0.85
Ruderal / weedy vegetation	0.69	2.35
SUBTOTAL	11.52	39.14
Man-made and Managed Uplands		
Gravel / Rock	0.88	2.97
Graded	1.57	5.32
Spoils	0.28	0.96
Construction areas	0.30	1.03
Mowed areas	2.48	8.43
Pavement	0.67	2.25
SUBTOTAL	6.18	20.96
TOTAL UPLANDS	97.68	331.52
Wetlands		
Eleocharis macrostachya alliance	0.52	1.75
Hordeum brachyantherum herbaceous alliance	0.12	0.40
Hordeum brachyantherum / Festuca idahoensis herbaceous		
Alliance	1.19	4.04
Typha (angustifolia, domingensis, latifolia) alliance	0.01	0.01
TOTAL WETLANDS	1.84	6.20
Non-Wetland Water Features		
Ephemeral channels	0.09	0.31
Dry ditches and engineered drainages	0.39	1.34

TOTAL NON-WETLAND WATER FEATURES	0.48	1.65
TOTAL STUDY AREA	100	339.37

Western North America Cool Temperate Forest

A few quaking aspen (*Populus tremuloides*) stands were mapped in the Study Area (0.13 acre and 0.04 percent). These stands appeared semi-natural (Appendix C, Photo 9); they were located within otherwise managed areas and had either been planted or were natural stands that had been incorporated into the landscaping. Few conifers such as Jeffrey pine were present. These stands are classified as *Populus tremuloides* stands. Because these aspen stands are typically managed as part of landscaping and are located adjacent to active roadways and parking areas, they have low potential to support special-status species.

Shrubland and Steppe

The majority of the vegetation within the Study Area is comprised of various shrubland and steppe types (233.92 acres and 68.58 percent; Appendix C, Photos 2 and 7). While all the shrublands are relatively short statured (under approximately 3 feet tall), some differences are apparent. The majority of the shrubland is comprised of older decadent shrubs that grow close together with little herbaceous cover in between, though some areas contain well-spaced shrubs with a significant herbaceous layer. The well-spaced shrubs are typically present in areas that may receive frequent human disturbance (e.g., periodic mowing or clearing), or areas adjacent to wetland features. The shrubland and steppe habitats have potential to support special-status species.

The dominant species in these shrubland communities are big sagebrush, bitterbrush, sticky-leaf rabbitbrush (*Chrysothamnus viscidiflorus*), sulfur-flower buckwheat (*Eriogonum umbellatum*), and Idaho fescue (*Festuca idahoensis*). Other common species encountered include low sagebrush (*Artemisia arbuscula*), cheatgrass (*Bromus tectorum*), big squirreltail (*Elymus multisetus*), lupines (*Lupinus* species), and California needle grass (*Stipa occidentalis* var. *californica*). The shrubland and steppe alliances and associations mapped in the Study Area are as follows (from Sawyer, Keeler-Wolf, and Evens 2009):

- Artemisia tridentata ssp. vaseyana–Purshia tridentata / Festuca idahoensis stands,
- Artemisia tridentata alliance,
- Artemisia tridentata–Purshia tridentata stands,
- Purshia tridentata / Eriogonum umbellatum association, and
- Artemisia arbuscula / Festuca idahoensis alliance.

Wetland and water features, including vernal marsh, ephemeral channels, and engineered drainages were present within the larger matrix of upland shrubland and steppe vegetation (see Section 3.2.2 Wetlands and Water Features).

Semi-Natural Grasslands and Herblands

Approximately 39.14 acres (11.52 percent; Appendix C, Photo 2) of the Study Area were comprised of semi-natural grasslands and herblands. These vegetation types were common at the edges of landscaping, adjacent and between runways and taxiways, along roads, and in other

places that have occasional human disturbance or periodic vegetation management. Some of the grassland and herbland areas had apparently formed in frequently-disturbed shrublands. Other grassland areas appear to have been deliberately planted after previous human disturbances. These areas likely have low to no potential to support special-status species.

The most common semi-natural grassland type in the Study Area was intermediate wheatgrass (*Elytrigia intermedia*) stands which appeared to have been planted between and around the runways and taxiways. Occasionally, the intermediate wheatgrass was mixed with native species such as Idaho fescue, big squirreltail, Hill lotus (*Acmispon parviflorus*), western burnet (*Poteridium annuum*), or mountain jewelflower (*Streptanthus tortuosus*). However, these habitats also supported a number of weedy species, including cheatgrass, cicer milkvetch (*Astragalus cicer*), mustard (*Brassica* species), Bermuda grass (*Cynodon dactylon*), English peppergrass (*Lepidium campestre*), ox-eye daisy (*Leucanthemum vulgare*), white sweet-clover (*Melilotus albus*), prostrate knotweed (*Polygonum aviculare* ssp. *depressum*), Russian-thistle (*Salsola tragus*), yellow salsify (*Tragopogon dubius*), and woolly mullein (*Verbascum thapsus*). The grassland and herbland stands mapped in the Study Area are as follows (from Sawyer, Keeler-Wolf, and Evens 2009):

- *Elytrigia intermedia* stands,
- Elytrigia intermedia / Artemisia tridentata alliance,
- Elytrigia intermedia–Festuca idahoensis stands,
- Brassica and other mustards semi-natural stands, and
- Various types of ruderal/weedy vegetation.

Wetland and water features, including ephemeral channels, swales, and engineered drainages were present within the larger matrix of upland grassland and herbland vegetation (see Section 3.2.2 Wetlands and Water Features).

Man-made, Landscaped, and Managed Uplands

Approximately 20.96 acres (6.18 percent) of the Study Area were comprised of man-made and managed uplands. These disturbed areas are likely not suitable habitat for any special-status plant or animal species. The following managed and constructed habitats were mapped in the Study Area:

- Gravel / Rock,
- Graded.
- Spoils (Appendix C, Photo 4),
- Active construction areas,
- Mowed areas (Appendix C, Photo 3), and
- Pavement.

Wetland and water features, including ephemeral channels, freshwater marsh, and engineered drainages were present within the larger matrix of human-made, landscaped, and managed uplands (see Section 3.2.2 Wetlands and Water Features).

3.2.2 Wetlands and Water Features

Wetland and water feature types that occurred within the Study Area include various types of swale, engineered drainage, ditch, ephemeral channel, and freshwater and vernal marsh features. While a formal jurisdictional delineation has not been performed, approximately 7.85 acres (2.32 percent) of potential wetlands and water features were mapped within the Study Area. The non-wetland water features are generally seasonal, and embedded within larger occurrences of the upland communities described above. Select photographs are presented in Appendix C.

Wetlands

For the purposes of this report, the definition of "wetlands" is that used by the United States Army Corps of Engineers (USACE) and the United States Environmental Protection Agency (EPA): "areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions" (USACE 1987). Wetland areas are defined by the presence of three factors: hydrophytic vegetation, wetland hydrology, and hydric soils. Approximately 6.20 acres (1.84 percent) of wetlands were mapped within the Study Area. These features may or may not meet the criteria to be waters of the United States with associated USACE jurisdiction. Regardless of USACE jurisdiction, wetlands are typically considered sensitive habitats by the CDFW.

Most of the wetlands within the Study Area appeared to be seasonal amphibious environments that fill from precipitation and local run-off. These seasonal features were dominated by annual and perennial herbs and graminoids (grasses and grass-like plants) adapted to germination and early growth under water or in saturated conditions. Late spring or summer desiccation triggers growth, followed by flowering and fruit set.

Three of the wetland features in the Study Area appeared to maintain standing water and/or saturated soils for the majority of the year. One was a small freshwater marsh vegetated with cattail (*Typha* sp.) and sandbar willow (*Salix exigua*), located in a roadside ditch immediately east of the airport rental car facility (Appendix C, Photo 5). This feature appeared to receive summer irrigation runoff from the adjacent landscaping. Another was a small detention basin, predominantly vegetated with pale spikerush (*Eleocharis macrostachya*) that receives runoff from the airport runways and taxiways (Appendix C, Photo 6). The third is a large natural swale, vegetated with many species including pale spikerush, sedges (multiple *Carex* species), and meadow barley (*Hordeum brachyantherum*), that appears to collect water from local precipitation/runoff and irrigation sources (Appendix C, Photo 7). This swale corresponds to one of the features depicted in the NWI (USFWS 2014c). The following wetland types were mapped in the Study Area:

- Eleocharis macrostachya alliance,
- Hordeum brachyantherum herbaceous alliance,
- Hordeum brachyantherum / Festuca idahoensis herbaceous alliance, and
- Typha (angustifolia, domingensis, latifolia) alliance (cattail marshes).

The wetland features in the Study Area appeared to support a high diversity of native species, and provide potential habitat for some special-status species.

Non-wetland Water Features

Non-wetland water features are those areas that may hold or carry standing or flowing water, but do not have all three wetland indicators (i.e., hydrophytic vegetation, wetland hydrology, and hydric soils). In the Study Area, these were typically natural or man-made channel features that carry water for a short duration. Sources for the water appeared to be precipitation and runoff, snow melt, or irrigation runoff. Approximately 0.32 acre (0.09 percent) of non-wetland water features were mapped in the Study Area. These features may or may not meet the criteria to be waters of the United States with associated USACE jurisdiction.

A few ephemeral channels were present in the Study Area. The ephemeral channel features likely carry water only after storms, but contain occasional low areas that have indications of ponding. The ephemeral channels were typically found on sandy and loamy soils, and provide suitable habitat for some special-status species. The remaining features were man-made native surface ditches, or engineered rock- or concrete-lined drainage channels. These man-made features were generally not suitable habitat for special-status species.

The following non-wetland water feature types were mapped in the Study Area:

- Ephemeral channels, and
- Dry ditches and engineered drainages.

3.3 Special-status Plants

A total of nine special-status plant taxa have moderate or high potential to occur within the Study Area. These taxa are Plumas ivesia (*Ivesia sericoleuca*), Santa Lucia dwarf rush (*Juncus luciensis*), Lemmon's milk-vetch (*Astragalus lemmonii*), Davy's sedge (*Carex davyi*), Fresno ceanothus (*Ceanothus fresnensis*), Truckee cryptantha (*Cryptantha glomeriflora*), Nevada daisy (*Erigeron eatonii* var. *nevadincola*), Amethyst stickseed (*Hackelia amethystina*), and Sierra starwort (*Pseudostellaria sierrae*). These taxa are discussed in detail below. Knowledge of plant species ranges is often incomplete, and special-status species not discussed here may be present if suitable habitat is present.

Plumas Ivesia (*Ivesia sericoleuca*)

Plumas ivesia is a perennial herb that has CRPR 1B.2 and is listed by the USFS as sensitive. This species grows in vernally mesic areas such as meadows, seeps, and vernal pools, in Great Basin scrub and lower montane coniferous forest between elevations of 1,310 to 2,200 meters (4,298 to 7,218 feet). Typical habitats for this species have volcanic soils (CNPS 2014). This California endemic is known from approximately 67 occurrences in Lassen, Nevada, Placer, Plumas, and Sierra counties. Threats to Plumas ivesia include anthropogenic disturbances such as timber harvest, development, grazing, and road construction; human alteration of the hydrological cycle (e.g., altering water tables) has also decreased the habitat value at some known occurrences. The species is also potentially threatened by fire suppression in Great Basin communities (CNPS 2014).

The CNDDB reports one occurrence of Plumas ivesia in the Study Area; seven additional occurrences are known within 3 miles (CDFW 2014). The location of the known occurrence

within the Study Area was visited during the October field survey and no individuals were located. The blooming period for the species is July through October; the survey took place very late in the season to identify this species, and ongoing drought for the past three years may have affected its growth. Suitable habitat for the species was observed in and adjacent to the wetland habitats in the Study Area, particularly one large natural swale (see Appendix B, maps 3 and 4, shown as *Eleocharis macrostachya* alliance, *Hordeum brachyantherum* herbaceous alliance, and *Hordeum brachyantherum/Festuca idahoensis* alliance). Therefore Plumas ivesia may be present in the Study Area.

Santa Lucia Dwarf Rush (Juncus luciensis)

Santa Lucia dwarf rush is an annual herb that has CRPR 1B.2 and is listed by the USFS as sensitive. This species grows in seasonally mesic areas such as meadows, seeps, and vernal pools, in chaparral, Great Basin scrub, and lower montane coniferous forest between elevations of 300 to 2,040 meters (984 to 6,693 feet) (CNPS 2014). This California endemic is known from approximately 26 occurrences which are widely separated from each other in 13 counties: Lassen, Monterey, Modoc, Napa, Nevada, Placer, Plumas, Riverside, Santa Barbara, San Benito, San Diego, Shasta, and San Luis Obispo (CNPS 2014). Human development projects are the main threat to Santa Lucia dwarf rush (CNPS 2014).

The CNDDB reports no occurrences of Santa Lucia dwarf rush in the Study Area, but one occurrence is known within 3 miles in nearby Martis Valley (CDFW 2014). No occurrences were observed during the field visit. The typical blooming time for this species is April to July, and the survey therefore did not take place at a suitable time of year to detect Santa Lucia dwarf rush. Suitable habitat was observed in the wetland habitats in the Study Area, particularly one large natural swale (see Appendix B, maps 3 and 4, shown as *Eleocharis macrostachya* alliance, *Hordeum brachyantherum* herbaceous alliance, and *Hordeum brachyantherum/Festuca idahoensis* alliance). Therefore Santa Lucia dwarf rush may be present in the Study Area.

Lemmon's Milk-vetch (Astragalus lemmonii)

Lemmon's milk-vetch is a perennial herb that has CRPR 1B.2 and is listed by the USFS as sensitive. This species grows in Great Basin scrub habitats, often in mesic areas such as meadows, seeps, and lake shores between elevations of 1,007 to 2,200 meters (3,304 to 7,218 feet) (CNPS 2014). This milk-vetch is known from approximately 13 widely spread occurrences in Inyo, Lassen, Mono, Modoc, Plumas, Shasta, and Sierra counties (CNPS 2014). Threats to Lemmon's milk-vetch include land-use conversion and pipeline construction (CNPS 2014).

The CNDDB does not report Lemmon's milk-vetch from the nine-quad background research area. However, the range for this species extends both north and south of the Study Area.

Suitable blooming period for the species is May to September, and the survey therefore did not take place at a suitable time to identify this species. During field surveys, surveyors observed and mapped one occurrence of an unidentifiable native milk-vetch which had finished flowering and fruiting (see Appendix B, map 4 and Appendix C, Photo 8). Suitable habitat for the species was observed in shrubland and steppe and some wetland habitats in the Study Area, particularly one large natural swale (see Appendix B, maps 3 and 4, shown as *Eleocharis macrostachya* alliance,

Hordeum brachyantherum herbaceous alliance, and Hordeum brachyantherum/Festuca idahoensis alliance). Therefore, Lemmon's milk-vetch may be present in the Study Area.

Davy's Sedge (Carex davyi)

Davy's sedge is a perennial herb with CRPR 1B.3. This species grows in upper montane and subalpine conifer forest between elevations of 1,500 to 2,000 meters (4,921 to 6,562 feet). Unlike many sedge species, suitable habitat for Davy's sedge is not necessarily mesic (CNPS 2014). This California endemic is known from approximately 19 occurrences in Alpine, Calaveras, El Dorado, Nevada, Placer, and Sierra counties. Threats to Davy's sedge include anthropogenic disturbances such as timber harvest and grazing (CNPS 2014).

The CNDDB does not report Davy's sedge within the Study Area or within 3 miles of the Study Area (CDFW 2014), though 12 occurrences are located in Nevada and Placer counties (Calflora 2014). No individuals of Davy's sedge were observed during the survey; however, the blooming period for the species is May through August, and the survey therefore did not take place at a suitable time to detect Davy's sedge. Suitable habitat for the species was observed in conifer forests in the Study Area, and Davy's sedge may be present.

Fresno Ceanothus (Ceanothus fresnensis)

Fresno ceanothus is a perennial evergreen shrub that has CRPR 4.3. This species grows in openings in cismontane woodland and lower coniferous forest between elevations of 900 to 2,103 meters (2,953 to 6,900 feet) (CNPS 2014). This California endemic is known from approximately 83 occurrences in Calaveras, El Dorado, Fresno, Madera, Mariposa, Nevada, Placer, Plumas, Tulare, and Tuolumne counties (Calflora 2014).

The CNDDB does not report Fresno ceanothus within the Study Area or within 3 miles of the Study Area (CDFW 2014), though 10 occurrences are located in Nevada and Placer counties (Calflora 2014). Ceanothus of any kind was not common in the Study Area during the survey, and only small populations of the common species mahala-mats were noted. The blooming period for Fresno ceanothus is May through July, and therefore the survey did not take place at a suitable time to observe flowering. Suitable habitat for the species was observed in and adjacent to conifer forests in the Study Area, and Fresno ceanothus may be present.

Truckee Cryptantha (Cryptantha glomeriflora)

Truckee cryptantha is an annual herb with CRPR 4.3. This species grows in granitic or volcanic sandy soil in openings in Great Basin scrub, meadows, and upper montane and subalpine coniferous forest between elevations of 1,800 and 3,750 meters (5,900 to 12,303 feet) (CNPS 2014). This California endemic is known from approximately 86 occurrences in Alpine, Butte, Fresno, Inyo, Lassen, Mono, Nevada, Sierra, Tulare, and Tuolumne counties (Calflora 2014).

The CNDDB does not report Truckee cryptantha within the Study Area or within 3 miles of the Study Area (CDFW 2014); however, an occurrence is reported from Nevada County, and the species is known from both north and south of the Study Area (Calflora 2014). The blooming time for Truckee cryptantha is June to September, and the survey therefore did not take place at a suitable time to detect the species. Unidentifiable cryptantha plants were commonly observed during the survey; these may be Truckee cryptantha or a common species. Suitable habitat for

the species was observed in openings in scrub and conifer forest habitats in the Study Area and Truckee cryptantha may be present.

Nevada Daisy (Erigeron eatonii var. nevadincola)

Nevada daisy is a perennial herb with CRPR 2B.3. This species grows in rocky areas in many habitats such as Great Basin scrub, lower montane coniferous forest, and pinyon and juniper woodland between elevations of 1,400 to 2,900 meters (4,593 to 9,514 feet) (CNPS 2014). In California, this species is known from approximately 27 occurrences in Lassen, Placer, Plumas, and Sierra counties (CNPS 2014). The species also grows in Nevada.

The CNDDB does not report Nevada daisy within the Study Area or within 3 miles of the Study Area (CDFW 2014); two occurrences are located in Nevada and Placer counties (Calflora 2014). The blooming period for Nevada daisy is May through July, and the survey therefore did not take place at a suitable time to detect it. Suitable habitat for the species was observed in small rocky outcrops located in areas west and north of the airport buildings and runways, and Nevada daisy may be present in the Study Area.

Amethyst Stickseed (*Hackelia amethystina*)

Amethyst stickseed is a perennial herb with CRPR 4.3. This species grows in moderately disturbed areas and other openings, such as meadows, in lower and upper montane coniferous forest between elevations of 1,500 to 2,315 meters (4,921 to 7,595 feet) (CNPS 2014). This California endemic is known from approximately 106 occurrences in Colusa, El Dorado, Glenn, Lake, Lassen, Mendocino, Placer, Plumas, Tehama, Trinity, and Tuolumne counties (Calflora 2014).

The CNDDB does not report amethyst stickseed within the Study Area or within 3 miles of the Study Area (CDFW 2014); one occurrence is located in Placer County (Calflora 2014). However, the range for the species extends both north and south of the Study Area. The blooming period for amethyst stickseed is June through August, and the survey therefore did not take place at a suitable time to detect it. Suitable habitat for the species was observed in forest openings and edges in the Study Area and amethyst stickseed may be present.

Sierra Starwort (*Pseudostellaria sierrae*)

Sierra starwort is a perennial herb with CRPR 4.2. This species grows in chaparral, cismontane woodland, and lower and upper coniferous forest between elevations of 1,225 to 2,194 meters (4,019 to 7,198 feet) (CNPS 2014). This California endemic is known from approximately 43 occurrences in Butte, Mariposa, Nevada, Placer, Plumas, and Tuolumne counties (Calflora 2014).

The CNDDB does not report Sierra starwort within the Study Area or within 3 miles of the Study Area (CDFW 2014); 22 occurrences are located in Nevada and Placer counties (Calflora 2014). The blooming period for Sierra starwort is May through August, and the survey therefore did not take place at a suitable time to detect it. Suitable habitat for the species was observed in forested areas within the Study Area, and Sierra starwort may be present.

3.4 Special-status Animal Species

A review of existing information identified eight special-status wildlife species that have moderate or high potential to occur within the Study Area (Appendix A, Table 2). These taxa are willow flycatcher (*Empidonax traillii*), northern goshawk (*Accipiter gentilis*), Cooper's hawk (*Accipiter cooperii*), black-backed woodpecker (*Picoides arcticus*), Sierra Nevada snowshoe hare (*Lepus americanus tahoensis*), western white-tailed jackrabbit (*Lepus townsendii townsendii*), Sierra Nevada red fox (*Vulpes vulpes necator*), and silver-haired bat (*Lasionycteris noctivagans*). This section provides more detail on the habitat preferences of these species.

Willow Flycatcher (Empidonax traillii)

Willow flycatcher is listed as endangered by the State of California and sensitive by the USFS/TNF. Historically, this species nested in California at elevations between 30 and 2,440 meters (100 to 8,000 feet), wherever willow thickets and other deciduous riparian shrubs were present (Craig and Williams 1998). In recent years the species is common at lower elevations only in the spring and fall, and the few remaining summer breeding populations in California are limited to isolated mountain meadows and other riparian habitats between 600 and 2,440 meters (2,000 to 8,000 feet) in the Cascades and northern Sierra Nevada (Craig and Williams 1998). Both breeding and foraging territories at these elevations typically consist of moist meadows, riparian streams, spring-fed areas, and similar habitats that support broken patches of willows, alders, and cottonwoods. However, the presence of water appears to be less important than the vegetation itself; in some cases dry areas maintaining a suitable type of shrubby vegetation are also used. The smallest viable territory size is about 0.25 hectare (Craig and Williams 1998). The birds typically forage by aerial gleaning or hawking insects. The beginning of the nesting season is variable, and seems dependent on weather and snow-melt; most birds leave the breeding territories by mid-August (Craig and Williams 1998).

Three occurrences of willow flycatcher are documented in the CNDDB within 3 miles of the Study Area (CDFW 2014; Figure 2-1). No suitable willow vegetation is present in the Study Area, but some potential nesting and foraging habitat is present along the margins of forested areas. Given the relatively large level of nearby human activity, however, willow flycatchers are more likely to use the areas for foraging as they are passing through, rather than for nesting.

Northern Goshawk (Accipiter gentilis)

Northern goshawk is designated a species of special concern by CDFW and sensitive by the USFS/TNF. Suitable nesting habitat for northern goshawk consists of mature forested habitats with large trees, dense canopy cover with at least two canopy layers, and abundant snags and downed logs (USFS 2001; USFS 2004). Habitat patches surrounding nest locations are known to range in size from 25 to 250 acres. Northern goshawks appear to be year-round residents in the Sierra Nevada, although limited altitudinal movements by some individuals may occur in winter (USFS 2001). Winter requirements of this species are poorly understood, but the few studies available show goshawk abundance in winter is primarily dependent on food source availability, not habitat preferences (Squires and Reynolds 1997). The northern goshawk breeding period extends from mid-February or early March through late August or early September.

Northern goshawks occur in forested habitats throughout the northern hemisphere (USFS 2001). The USFS estimates that approximately 600 known goshawk territories occur on National Forest

system lands in the Sierra Nevada. Territories appear to be well distributed across the Sierra; however, occupancy of many territories and general population trends are unknown due to a lack of wide-spread demography studies for this species. The CNDDB has one record for this species within 3 miles of the Study Area, which was recorded in 1999 2 miles west of Martis Peak. Suitable foraging and nesting habitat for northern goshawk is present in the Study Area.

Cooper's Hawk (Accipiter cooperii)

The Cooper's hawk is a CDFW watch list species. Cooper's hawk was placed on the watch list because of reduced breeding numbers in recent decades. This species is a breeding resident throughout most of the wooded portion of California and frequently nests in dense stands of live oak, deciduous riparian, second-growth conifer stands, deciduous forests, or other forest habitats near streams or other water sources. Some individuals may remain year-round where they nest, but most individuals vacate the northern half of their range during winter (Polite 1990). Nests are built in deciduous trees in crotches 3–23 meters (10–80 feet) above the ground or in conifers on horizontal branches, in the main crotch, often just below the lowest live limbs. Nesting season occurs February through October.

The Study Area is located within the current range of Cooper's hawk, but no CNDDB occurrences of this species were recorded within 3 miles of the Study Area. Potentially suitable foraging and nesting habitat for the species is present; therefore, this species may be present, or pass through, the Study Area.

Black-backed Woodpecker (Picoides arcticus)

In California, black-backed woodpecker is species of special concern (CDFW 2014). It was also considered for listing under CESA in 2013 (CDFW 2013); however, this species was not listed as threatened or endangered at that time. The black-backed woodpecker breeds from central Alaska and northern Canada, to montane areas of California and New England. This species is dependent on fire disturbance for feeding and is confined mostly to areas of burned-over coniferous forest sites. Black-backed woodpeckers forage opportunistically on outbreaks of wood-boring beetles in recently burned habitats (Dixon and Saab 2000). This restricted diet renders the species vulnerable to local and regional extinction as fire-suppression programs and post-fire salvage logging increase. Black-backed woodpeckers nest in cavities of both live and dead trees from April to June. Population studies of this species are difficult due to the ephemeral nature of their preferred habitat.

The Study Area is located within the current range of black-backed woodpecker; however, no CNDDB occurrences were recorded within 3 miles of the Study Area. Three occurrences have been reported within the wider nine-quad CNDDB search area. Although no recently burned areas are present within the vicinity of the Study Area, some potentially suitable foraging and nesting habitat is present. Therefore, this species may be present in low densities or pass through the Study Area.

Sierra Nevada Snowshoe Hare (Lepus americanus tahoensis)

The Sierra Nevada snowshoe hare is designated a species of special concern by CDFW. In California they inhabit the mid-elevations of the northern and central Sierra Nevada from approximately Mount Lassen to Yosemite National Park (north to south) and to Mono and

Mariposa counties. They have also been recorded from Nevada in the general vicinity of Lake Tahoe (Collins 1998). They are known from elevations of approximately 1,460 to 2,440 meters (4,800 to 8,000 feet).

The Sierra Nevada snowshoe hare occurs in riparian communities characterized by thickets of deciduous trees and shrubs such as willows and alders (Collins 1998). In the vicinity of Lake Tahoe, it has been reported in dense deciduous streamside vegetation; forest undergrowth; dense thickets of young conifers, especially firs where the branches droop to the ground; and patches of chaparral composed of *Ceanothus* and manzanita (*Arctostaphylos* spp.). During the summer, snowshoe hares in the Lake Tahoe area are associated with brush situated close to meadows or deciduous riparian vegetation, rather than on ridgetops or brush-covered upper slopes. Snowshoe hares typically spend the day hiding from predators under vegetation, logs, or jumbled piles of fallen trees or shrubs (Collins 1998). They do not frequent open spaces or mature closed canopy conifer forests. They are active year-round, mostly at night and early morning. In the summer, snowshoe hares feed on various green succulent plants, grasses, sedges, ferns, and forbs (Collins 1998). In the winter, their diet changes to bark and twigs of conifers, evergreen shrubs, and deciduous trees. Breeding occurs from early spring to late summer.

The Study Area is located within the current range of Sierra Nevada snowshoe hare. One CNDDB occurrence is known within 3 miles of the Study Area, but it was from 1915. Potentially suitable habitat for the species is present, therefore, this species may be present, or pass through, the Study Area.

Western White-tailed Jackrabbit (Lepus townsendii townsendii)

The western white-tailed jackrabbit is designated a species of special concern by CDFW. This species is a year-round resident of the crest and upper eastern slope of the Sierra Nevada, primarily from the Oregon border south to Tulare and Inyo counties. The western white-tailed jackrabbit was formerly widespread throughout its range, but it is now uncommon to rare with a fragmented and small population (Hoefler 1990). This species' preferred habitats are sagebrush, subalpine conifer, juniper, alpine dwarf-shrub, and perennial grassland. It also inhabits low sagebrush, wet meadow, and early successional stages of conifer habitats. Western white-tailed jackrabbits move seasonally from higher to lower elevations in winter (Hoefler 1990). They primarily feed in open meadows on grasses and herbaceous plants during the growing season. In winter they feed on buds, bark, and twigs of shrubs, particularly sagebrush, creambush (Holodiscus discolor), and small trees (Hoefler 1990). Like other hares, western white-tailed jackrabbits use shrubby underbrush and dense thickets of young conifers or low branches for cover. Breeding occurs from February to July.

The Study Area is located within the current range of western white-tailed jackrabbit; however, no CNDDB records are reported within 3 miles of the Study Area (CDFW 2014). In the wider nine-quad CNDDB search, one record for this species was documented near Tahoe City from 1920. Suitable habitat for foraging and breeding is present, including open meadows dominated by sagebrush, therefore, this species may be present, or pass through, the Study Area.

Sierra Nevada Red Fox (Vulpes vulpes necator)

The Sierra Nevada red fox is listed as threatened by the state, and sensitive by the USFS. These foxes utilize many habitats in the high Sierra, including barrens, conifer forests, shrublands, meadows, and subalpine woodlands (Perrine et al. 2010). They are known from elevations of

1,200 to 3,600 meters (3,937 to 11,811 feet). In the summer, they tend to live at very high elevation habitats with little cover. In the winter, they move downslope into more forested areas; their habitat is positively associated with large trees (greater than 60 centimeters diameter at breast height) and greater than 40 percent canopy closure (Perrine et al. 2010). Typically these foxes create dens in natural cavities, such as talus slopes, rock slides, or boulder piles. However, they have been known to occasionally utilize human structures for dens or create earthen dens (Perrine et al. 2010).

The Study Area is located within the current range of Sierra Nevada red fox. One CNDDB occurrence is known within 3 miles of the Study Area, and potentially suitable forested habitat for the species is present. Therefore, Sierra Nevada red fox may be present, or pass through, the Study Area.

Silver-haired Bat (Lasionycteris noctivagans)

Silver-haired bat is designated a species of special concern by CDFW. This species is common and widespread in California, and during spring and fall migrations can be found anywhere in the state (Harris 1990). Summer habitats include coastal and montane coniferous forests, valley foothill woodlands, pinyon-juniper woodlands, and valley foothill and montane riparian habitats. Summer range is generally below 2,750 meters (9,000 feet) (Harris 1990). These bats create roosts in hollow trees, snags, buildings, rock crevices, caves, and under bark. Open habitats are used for foraging. Individuals will often forage over water or open areas using echolocation to locate prey, typically less than 6 meters (20 feet) off the ground. Mating occurs in autumn, but females store sperm internally over winter with young being born in the spring from May through July. Silver-haired bats migrate in the winter to hibernation sites further south, likely into Mexico (Harris 1990).

The Study Area is located within the current range of silver-haired bat; however, no CNDDB records are known within 3 miles of the Study Area (CDFW 2014). One CNDDB record for this species has been recorded in the wider nine-quad research area, in the Sagehen Creek Basin from 1955. The Study Area contains conifer forests and buildings where roosts may be established. Open areas are available for foraging, although open water is not present. Therefore, silver-haired bat may be present in the Study Area. However, the Study Area has a moderate level of human disturbance and is surrounded by roadways and runway traffic, which may discourage use by this and other species of bat.

3.5 Critical Habitat

The ESA of 1973 requires the federal government to designate critical habitat for any species it lists under the ESA. Critical habitat is designated to describe areas that are both essential to the management of the species, and may require special management considerations.

No federally-designated critical habitat for any species occurs within the Study Area or within 3 miles of the Study Area.

4.0 Avoidance and Minimization Recommendations

Recommendations for additional surveys and minimization and avoidance of impacts are discussed below. The Study Area has the potential to support special-status plant and animal species; special habitats, namely wetlands, are also present. Because the project may fall under the jurisdiction of, and will likely be subject to review by both state and federal agencies, it is recommended that further biological studies be performed to a level that will best inform the permitting and review processes. These studies are discussed below.

4.1 Wetlands and Other Waters

No current information specifically detailing TTAD's plans for development of the Study Area are available. Depending on the configuration of any new development, natural habitats within the Study Area, including wetland and other water features, may or may not be impacted. At least portions of the project will likely undergo review by federal and state agencies that regulate various types of wetlands and non-wetland waters. These agencies include USACE, CDFW, USFS, and/or the Regional Water Quality Control Board (RWQCB). Information regarding the presence, type, and location and size of any wetland or water features will be needed in order to adequately address the reviews required by these agencies.

Therefore, we recommend that a jurisdictional delineation meeting the requirements of USACE be conducted in portions of the Study Area that may experience project-related disturbance, particularly if habitat mapping in the subject area has identified wetlands or other water features (Appendix B). Additional agency jurisdictions should also be addressed and mapped (CDFW, RWQCB). This delineation and other associated mapping can then be used to address specific impacts to wetlands or waters from any planned project disturbance.

4.2 Special-status Plants

No current information specifically detailing TTAD's plans for development of the Study Area are available. Depending on the configuration of any new development, natural habitats within the Study Area may or may not be impacted. These natural habitats are suitable habitat for special-status plant species. Portions of the Study Area will likely undergo review by federal and state agencies, including USFWS (federally listed species), CDFW (state-listed species, and those with CRPR status), and USFS (those with sensitive status). Information regarding the presence of special-status species, including plants, will be needed in order to adequately address the reviews required by these agencies.

Therefore, we recommend that surveys meeting the protocol requirements of CDFW (CDFG 2009) be performed in naturally vegetated portions of the Study Area that may experience project-related disturbance. This protocol includes vegetation mapping using the current version of *A Manual of California Vegetation*, *Second Edition* (Sawyer, Keeler-Wolf and Evens 2009), a floristic plant list, multiple visits to sites based on suitable plant bloom times, and submission of any special-status plant finds into the CNDDB.

If special-status plants are found during protocol-level surveys within areas proposed for disturbance, a rare plant mitigation plan should be developed with agency consultation.

4.3 Special-status Wildlife

No current information specifically detailing TTAD's plans for development of the Study Area are available. Depending on the configuration of any new development, most potential habitat for special-status wildlife can likely be avoided (trees, snag habitat, and wetlands). General survey or avoidance measures are presented below; however, once details of planned development activities are known, more specific and targeted surveys for special-status animal species may be necessary.

Protection Measures for Nesting Birds. To avoid or minimize potential impacts to nesting birds (including special-status species), we recommend that all project construction activities such as site grubbing, excavation, grading, and the operation of heavy equipment occur between September 1 and January 31, outside of the nesting season, to the extent feasible. If project construction activities must occur during the period from February 1 to August 31, we recommend that a qualified wildlife biologist conduct pre-construction surveys for nesting birds. During the surveys, the qualified biologist shall carefully search for active nests/burrows within the work zone and a surrounding buffer zone. If an active nest is found, the bird species shall be identified and the approximate distance from the closest work site to the nest shall be estimated. Appropriate buffer distances shall be established by a qualified biologist. If active nests are closer than the appropriate buffer distance to the nearest work site, then the active nest(s) shall be monitored for signs of disturbance. Coordination with USFWS and CDFW shall occur as necessary. Disturbance of active nests should be avoided, to the extent possible, until it is determined that nesting is complete and the young have fledged.

Protection Measures for Bats. Potential bat roosting sites occur within the Study Area. In addition to impacts to special-status bats, the project has the potential to affect native wildlife nursery sites if trees, snags, or other structures on the site support a maternity colony of any species of bat. The loss of a large colony of any native bat species (e.g., silver-haired bat, long-legged myotis [*Myotis volans*]) would be a significant impact under CEQA. All potential impacts to bats will be avoided if the project does not disturb trees or any existing buildings in the Study Area. If impacts to any medium or larger trees (greater than 30.5 centimeter [12-inch] diameter) that may harbor roosting bats cannot be avoided, we recommend that the measures described below be implemented.

1. Any medium or larger (greater than 30.5 centimeter [12-inch] diameter) tree or snag that is selected for removal would be inspected by a qualified wildlife biologist for the presence of foliage-roosting bats and potential dens (e.g., cavities, entrance holes). Cavities suitable as special-status bat roosts would be examined for roosting bats using a portable camera probe or similar technology. Buildings or other structures with potential for supporting special-status bats would be inspected by a qualified biologist for evidence of roosting colonies. If present, roosts of special-status or other bats (including day and night roosts, hibernacula, and maternity colonies) would be flagged and construction activities would be avoided within a minimum of 91.5 meters (300 feet) surrounding each occupied roost.

- 2. If a portion of the Study Area is being used as a winter roost, project activity would not take place during the period of hibernation (November 1 to March 1). If a portion of the Study Area is being used as a maternity colony, project activity would not occur during the maternity roost season (March 1 to July 31). If a non-maternity bat roost is found within the Study Area, the roosting bats would be safely evicted under the direction of a qualified biologist (as determined by a Memorandum of Understanding with CDFW). The qualified biologist would facilitate the removal of roosting bats using the following methods:
 - a. Opening the roosting area to allow airflow through the cavity or building (air flow disturbance).
 - b. Waiting a minimum of one night for roosting bats to respond to air flow disturbance, thereby allowing bats to leave during nighttime hours when predation risk is relatively low and chances of finding a new roost is greater than in the daytime.
 - c. Disturbing roosts at dusk just prior to roost removal the same evening to allow bats to escape during nighttime hours.

5.0 References Cited

- Calflora: Information on California plants for education, research, and conservation, with data contributed by public and private institutions and individuals, including the Consortium of California Herbaria. 2014. The Calflora Database, accessed online at http://www.calflora.org on December 17, 2014. Berkeley, California.
- California Department of Fish and Game (CDFG). 2009. Protocols for Surveying and Evaluating Impacts to Special-status Native Plant Populations and Natural Communities. California Natural Resources Agency. November 24, 2009.
- California Department of Fish and Wildlife (CDFW). 2013. A Status Review of the Blackbacked Woodpecker (*Picoides arcticus*) in California. March 13, 2013.
- California Department of Fish and Wildlife (CDFW). 2014. Rare Find: California Department of Fish and Wildlife Natural Diversity Database (CNDDB) (version 3.1.1). Dated September 1, 2014.
- California Department of Fish and Wildlife (CDFW). 2015. California Department of Fish and Wildlife Natural Diversity Database (CNDDB), Special Animals List. January 2015.
- California Native Plant Society (CNPS). 2014. Inventory of Rare and Endangered Vascular Plants of California (online edition, v8-01a). California Native Plant Society. Sacramento. Accessed on October 2 and 3, 2014.
- Collins, P. W. 1998. Sierra Nevada snowshoe hare, *Lepus americanus tahoensis* in Bolster, B. C. Ed. 1998. Terrestrial Mammal Species of Special Concern in California.
- Craig, D. and P.L. Williams. 1998. Willow flycatcher (*Empidonax traillii*) In: California Partners in Flight Riparian Bird Conservation Plan. Accessed online December 18, 2014 at http://www.prbo.org/calpif/htmldocs/species/riparian/willow_flycatcher.htm.
- Dixon, R.D. and V.A. 2000. Black-backed woodpecker (*Picoides arcticus*). In The Birds of North America (A. Poole and F. Gill, eds.), no. 509. Birds N. Am., Philadelphia.
- Harris, J. 1990. Life history account for Silver-haired Bat (*Lasionycteris noctivagans*). Originally published in Zeiner, D.C., W.F. Laudenslayer, Jr., K.E. Mauer, and M. White, editors. California's Wildlife, Volumes I-III. California Department of Fish and Game, Sacramento.
- Hoefler, R.D. 1990. Life history account for White-tailed jackrabbit (*Lepus townsendii*). Originally published in Zeiner, D.C., W.F. Laudenslayer, Jr., K.E. Mauer, and M. White, editors. California's Wildlife, Volumes I-III. California Department of Fish and Game, Sacramento.

- Mykoweb. 2014a. Entry for *Boletus pulcherrimus*, accessed online at http://www.mykoweb.com/CAF/species/Boletus_pulcherrimus.html on December 12, 2014.
- Mykoweb. 2014b. Entry for *Dendrocollybia racemosa*, accessed online at http://www.mykoweb.com/CAF/species/Dendocollybia_racemosa.html on December 12, 2014.
- Natural Resources Conservation Service (NRCS). 2014. Web Soil Survey (WSS) application. Accessed online at http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx on December 12, 2014.
- Perrine, John, D., Lori A. Campbell, and Gregory A. Green. 2010. Sierra Nevada Red Fox (*Vulpes vulpes necator*): A Conservation Assessment. Dated August 2010.
- Polite, C. 1990. Life history account for Cooper's Hawk (*Accipiter cooperii*). Originally published in Zeiner, D.C., W.F. Laudenslayer, Jr., K.E. Mauer, and M. White, editors. California's Wildlife, Volumes I-III. California Department of Fish and Game, Sacramento.
- Sawyer, J.O., T. Keeler-Wolf and J. Evens. 2009. *A Manual of California Vegetation, second edition*. California Native Plant Society. Sacramento.
- Squires, J. R., and R. T. Reynolds. 1997. Northern Goshawk (*Accipiter gentilis*), In The Birds of North America (A. Poole and F. Gill, eds.), no. 298. Birds N. Am., Philadelphia.
- Truckee Tahoe Airport District (TTAD). 2014. Truckee Tahoe Airport District Master Plan website, accessed online from http://www.ttadmasterplan.org/ on December 11, 2014.
- United States Army Corps of Engineers (USACE). 1987. Corps of Engineers Wetlands Delineation Manual. Waterways Experimental Station Technical Report Y-87-1.
- United States Department of Agriculture, Forest Service (USFS). 2001. Sierra Nevada Forest Plan Amendment (SNFPA) Final Environmental Impact Statement (FEIS) and Record of Decision (ROD). USFS, Pacific Southwest Region. Vallejo, California. January 2001.
- United States Department of Agriculture, Forest Service (USFS). 2004. Sierra Nevada Forest Plan Amendment, Final Supplement Environmental Impact Statement and Record of Decision. Vallejo, California: Pacific Southwest Region, USFS.
- United States Fish and Wildlife Service (USFWS). 2014a. Endangered Species Program Database search. Accessed October 3, 2014. Available online at http://www.fws.gov/endangered/species/.

- United States Fish and Wildlife Service (USFWS). 2014b. Critical Habitat Mapper. Accessed October 3, 2014. Available online at http://ecos.fws.gov/crithab/.
- United States Fish and Wildlife Service (USFWS). 2014c. National Wetlands Inventory Wetlands Mapper. Available online at http://www.fws.gov/wetlands/Data/Mapper.html. Accessed October 3, 2014.
- United States Geologic Survey (USGS). 1992. Truckee, California 7.5-minute topographic quadrangle.
- Western Regional Climate Center (WRCC). 2014. Online period record of climate summary from September 1, 1904 and October 23, 2012. Accessed online at http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?ca9043 on December 12, 2014.

Appendi	x A, Table 1. Spe	cial-status Plant Species Identified from	Background Research						
Scientific Name Common Name (Blooming Period)	Status ¹ Federal/State/ CRPR/USFS	Suitable Habitat (Known Elevation Range)	Potential to Occur in Study Area ²						
Plants within a 3-mile Buffer									
Eriogonum umbellatum var. torreyanum Donner Pass buckwheat (July–September)	None / None / 1B.2 / FSS	Habitat for species is volcanic, rocky areas, and mesic areas such as meadows and seeps in upper montane coniferous forest (1,855 to 2,620 meters)	Known occurrence within 3 miles (CDFW 2014), but no suitable rocky habitat in Study Area. Not expected.						
Ivesia sericoleuca Plumas ivesia (May–October)	None / None / 1B.2 / FSS	Species is found in vernally mesic areas, such as meadows, seeps, and vernal pools, usually with volcanic soils. Also found in seasonally mesic areas in Great Basin scrub and lower montane forest communities (1,310 to 2,200 meters).	Known occurrence within and/or adjacent to Study Area (CDFW 2014) and several occurrences within 3 miles. Suitable habitat present. High potential to occur in grassland and wetland areas.						
Juncus luciensis Santa Lucia dwarf rush (April–July)	None / None / 1B.2 / FSS	Species is found in seasonally mesic areas such as meadows, seeps, and vernal pools, in chaparral, Great Basin scrub, and lower montane coniferous forest (300 to 2,040 meters).	Known occurrence within a mile of Study Area, in a mesic area in sagebrush scrubland (CDFW 2014). Suitable habitat present. High potential to occur in wetlands.						
Rorippa subumbellata Tahoe yellow cress (May–September)	Candidate / Endangered / 1B.1 / Federal Endangered	Species has a very narrow range near Lake Tahoe, and specific habitat of lake margins with decomposed granitic beaches. Historically known from riparian areas on this same soil type (1,895 to 1,900 meters).	Historical occurrence from late 1800's within 3 miles of Study Area; the exact location of this occurrence is unknown and thought to be extirpated (CDFW 2014). No suitable lake margin or beach habitat present. Not expected.						
Scutellaria galericulata Marsh skullcap (June–September)	None / None / 2B.2 / None	Suitable habitat is long-term mesic areas such as meadows, seeps, marshes, and swamps in montane coniferous forest (0 to 2,100 meters).	Historical occurrence from late 1800's within 3 miles of Study Area; the exact occurrence location is unknown (CDFW 2014). No suitable marsh habitat present. Not expected.						
Plants with Forest Servi	ice Sensitive Statu	s or within Nine-quad Search (greater	than 3 miles from Study Area)						
Arabis rigidissima var. demota Galena Creek rockcress (August)	None / None / 1B.2 / FSS	Species is known from rocky areas in broad-leaved upland forest and upper montane coniferous forest (2,255 to 2,560 meters).	Study Area lower than known distribution of the species (CNPS 2014). Only small areas of rocky habitat present. Not expected.						
Artemisia tripartita ssp. tripartita Threetip sagebrush (August)	None / None / 2B.3 / None	Species is found in rocky, volcanic openings in upper montane coniferous forest (2,200 to 2,600 meters).	Suitable open areas present but taxon is not known nearby (CDFW 2014), and Study Area elevation is somewhat lower than known distribution of the species (CNPS 2014). Low potential to occur.						
Astragalus austiniae Austin's milk-vetch (July–September)	None / None / 1B.3 / None	Species is found in high elevation rocky areas, such as alpine boulder and rock fields, or rocky areas in subalpine coniferous forest (2,440 to 2,965 meters).	Study Area much lower than known elevation range of the species (CNPS 2014), and no suitable rock or boulder fields present. Not expected.						

Append	Appendix A, Table 1. Special-status Plant Species Identified from Background Research			
Scientific Name Common Name (Blooming Period)	Status ¹ Federal/State/ CRPR/USFS	Suitable Habitat (Known Elevation Range)	Potential to Occur in Study Area ²	
Astragalus lemmonii Lemmon's milk-vetch (May–September)	None / None / 1B.2 / FSS	Species is found in Great Basin scrub, meadows, and lake shores (1,007 to 2,200 meters).	Study Area has suitable habitat for the species (CNPS 2014). Species is not known from nine-quad search area, but known from both north and south of the Study Area. Moderate potential to occur.	
Astragalus pulsiferae var. coronensis Modoc plateau milk- vetch (May–July)	None / None / 4.2 / FSS	Species is found in sandy, gravelly, or volcanic substrates in Great Basin scrub, lower montane coniferous forest, and pinyon and juniper woodland (1,345 to 1,890 meters).	Study Area has generally suitable habitat for the species, but species only known from Lassen, Modoc, and Plumas counties. Low potential to occur.	
Astragalus webberi Webber's milk-vetch (May-July)	None / None / 1B.2 / FSS	Species is known from various habitats including broad-leaved upland forest, lower montane coniferous forest, meadows, and seeps (731 to 1,250 meters).	Study Area is well above the known elevation range of this species, and species only known from a small range in Plumas County (CNPS 2014). Not expected .	
Astragalus whitneyi var. lenophyllus Woolly-leaved milk- vetch (July-August)	None / None / 4.3 / None	Species is found in high elevation rocky areas, such as alpine boulder and rock fields, or rocky areas in subalpine coniferous forest (2,135 to 3,050 meters).	Study Area somewhat lower than known elevation range of the species (CNPS 2014), and no suitable subalpine rock or boulder fields present. Not expected.	
Boletus pulcherrimus Red-pored bolete (Late fall–mid-winter)	None / None / None / FSS	Mixed conifer/hardwood woods (Mykoweb 2014a).	No suitable mixed conifer/ hardwood forest present. Not expected.	
Botrychium ascendens Upswept moonwort (July–August)	None / None / 2B.3 / FSS	Species is found in mesic areas such as meadows and seeps in lower montane coniferous forest (1,500 to 2,595 meters).	Limited areas of minimally suitable meadow habitat present. Low potential to occur.	
Botrychium crenulatum Scalloped moonwort (June–September)	None / None / 2B.2 / FSS	Species is found in mesic areas such as bogs, fens, meadows, seeps, marshes, and swamps in lower and upper montane coniferous forest (1,268 to 3,280 meters).	Limited areas of minimally suitable meadow habitat present. Low potential to occur.	
Botrychium lunaria Common moonwort (August)	None / None / 2B.3 / None	Species is found in mesic areas such as meadows or seeps in lower and upper montane coniferous forest (1,980 to 3,400 meters).	Limited areas of minimally suitable meadow habitat present. Low potential to occur.	
Botrychium minganense Mingan moonwort (July–September)	None / None / 2B.2 / FSS	Species is found in areas such as bogs and fens in lower and upper montane coniferous forest (1,455 to 2,180 meters).	Limited areas of minimally suitable meadow habitat present. Low potential to occur.	
Botrychium montanum Western goblin (July–September)	None / None / 2B.1 / FSS	Species is found in mesic areas such as meadows and seeps, in lower and upper montane coniferous forest (1,465 to 2,180 meters).	Limited areas of minimally suitable meadow habitat present. Low potential to occur.	

Append	Appendix A, Table 1. Special-status Plant Species Identified from Background Research			
Scientific Name Common Name (Blooming Period)	Status ¹ Federal/State/ CRPR/USFS	Suitable Habitat (Known Elevation Range)	Potential to Occur in Study Area ²	
Bruchia bolanderi Boldander's bruchia (Moss)	None / None / 2B.2 / FSS	Suitable habitat is areas with damp soil, such as meadows or seeps, in lower or upper montane coniferous forest (1,700 to 2,800 meters).	Limited areas of minimally suitable meadow habitat present. Low potential to occur.	
Carex davyi Davy's sedge (May–August)	None / None / 1B.3 / None	Suitable habitat is upper to subalpine montane coniferous forest (1,500 to 3,200 meters).	Moderately suitable habitat present at forested areas. Moderate potential to occur in forested areas.	
Carex lasiocarpa Woolly-fruited sedge (June–July)	None / None / 2B.3 / None	Species is found in very mesic areas such as freshwater lake margins, or wet bogs and fens (1,700 to 2,100 meters).	No suitable lakeshore or marsh habitat present. Not expected.	
Carex limosa Mud sedge (June–August)	None / None / 2B.2 / None	Suitable habitat is mesic areas such as bogs, fens, meadows, seeps, marshes, and swamps, in lower or upper montane coniferous forest (1,200 to 2,700 meters).	Limited amounts of minimally suitable mesic habitat present. Low potential to occur in wetlands.	
Ceanothus fresnensis Fresno ceanothus (May–July)	None / None / 4.3 / None	Species is found in openings in cismontane woodland and lower montane coniferous forest (900 to 2,103 meters).	Not known from Truckee quad (CDFW 2014, CNPS 2014), but suitable habitat generally present. Moderate potential to occur.	
Claytonia megarhiza Fell-fields claytonia (July–September)	None / None / 2B.3 / None	Species is found in crevices between rocks in alpine boulder and rock fields, and rocky or gravelly areas in subalpine coniferous forest (2,600 to 3,532 meters).	Study Area much lower than known elevation range of the species (CNPS 2014), and no suitable rock or boulder fields present. Not expected.	
Cryptantha glomeriflora Truckee cryptantha (June–September)	None / None / 4.3 / None	Species is found in granitic, volcanic, and sandy areas in Great Basin scrub, meadows, and upper montane and subalpine coniferous forest (1,800 to 3,750 meters).	Not many occurrences are known in Nevada and Placer counties, but suitable open Great Basin scrub and forest habitats are present. Moderate potential to occur.	
Cypripedium fasciculatum Clustered lady's-slipper (March–August)	None / None / 4.2 / FSS	Species is found in lower and upper lower montane coniferous forest. It can be associated with serpentinite, but not consistently. Often on shaded slopes, associated with hazelnut and dogwood (100 to 2,435 meters).	Small areas of minimally suitable forest habitat present. Low potential to occur.	
Cypripedium montanum Mountain lady's- slipper (March–August)	None / None / 4.2 / FSS	Species is found in broad-leaved upland forest, cismontane woodland, lower montane coniferous forest, and North Coast coniferous forest. Sometimes but not always associated with a mesic area such as a seep (185 to 2,225 meters).	Forests in Study Area are not mesic. Species not known from nine-quad search area. Not expected.	
Dendrocollybia racemosa Branched collybia (Late fall–mid-winter)	None / None / None / FSS	Species grows on decayed fungus or mushrooms, or in mixed conifer/hardwood forest duff (Mykoweb 2014b).	Suitable mixed conifer/ hardwood forest not present. Not expected	

Append	Appendix A, Table 1. Special-status Plant Species Identified from Background Research			
Scientific Name Common Name (Blooming Period)	Status ¹ Federal/State/ CRPR/USFS	Suitable Habitat (Known Elevation Range)	Potential to Occur in Study Area ²	
Drosera anglica English sundew (June–September)	None / None / 2B.3 / None	Suitable habitat for this species is mesic areas such as bogs, fens, meadows, and seeps (1,300 to 2,255 meters).	Not known from near the Study Area (CDFW 2014), but limited areas of minimally suitable meadow habitat present in the Study Area. Low potential to occur in wetlands.	
Epilobium howellii Subalpine fireweed (July–August)	None / None / 4.3 / None	Suitable habitat for this species consists of mesic areas such as meadows and seeps, in subalpine coniferous forest (2,000 to 3,120 meters).	Not known from near the Study Area (CDFW 2014) and Study Area below known elevation range. No subalpine coniferous forest habitat present. Not expected.	
Epilobium oreganum Oregon fireweed (June–September)	None / None / 1B.2 / FSS (but not known from TNF)	Suitable habitat for this species is mesic areas such as bogs and fens in lower and upper montane coniferous forest (500 to 2,240 meters).	Not known from the Truckee quad (CDFW 2014, CNPS 2014), but minimally suitable wet meadow habitat present in the Study Area. Low potential to occur.	
Erigeron eatonii var. nevadincola Nevada daisy (May–July)	None / None / 2B.3 / None	Species is found in rocky areas in Great Basin scrub, lower montane coniferous forest, and pinyon and juniper woodland (1,400 to 2,900 meters).	While not recorded from the Truckee quad (CDFW 2014, CNPS 2014), the known range for the taxon is both slightly north and south of the Study Area (CNPS 2014). Suitable habitat is generally present. Moderate potential to occur.	
Erigeron miser Starved daisy (June–October)	None / None / 1B.3 / FSS	Species is found in very rocky areas in upper montane coniferous forest (1,840 to 2,620 meters).	Not recorded from the Truckee quad (CDFW 2014, CNPS 2014), and no rocky areas in upper montane coniferous forest present. Not expected.	
Eriophorum gracile Slender cotton-grass (May–September)	None / None / 4.3 / None	Suitable habitat is mesic areas with acidic soil, such as bogs, meadows, and seeps, and similar areas in upper montane coniferous forest (1,280 to 2,900 meters).	Not recorded from the Truckee quad, but known range extends both north and south of the Study Area (CDFW 2014, CNPS 2014). Limited areas of minimally suitable meadow habitat present. Low potential to occur.	
Fritillaria eastwoodiae Butte County fritillary (March–June)	None / None / 3.2 / FSS	Found in openings in chaparral, cismontane woodland, and lower montane coniferous forest. Sometimes associated with serpentinite substrates (50 to 1,500 meters).	No suitable serpentine substrate present. Known range is in foothills well west of the Study Area. Not expected.	
Glyceria grandis American manna grass (June–August)	None / None / 2B.3 / None	Suitable habitat for this species is very wet areas such as marshes, swamps, streambanks, and lake margins (15 to 1,980 meters).	Limited area of minimally suitable wetland habitat present. Low potential in wetlands.	
Hackelia amethystina Amethyst stickseed (June–August)	None / None / 4.3 / None	Suitable habitat is openings and disturbed areas in meadows, and lower and upper montane coniferous forest. (1,500 to 2,315 meters).	Not recorded from the Truckee quad, but known range extends both north and south of the Study Area (CDFW 2014, CNPS 2014). Generally suitable open habitat present. Moderate potential to occur.	

Append	Appendix A, Table 1. Special-status Plant Species Identified from Background Research			
Scientific Name Common Name (Blooming Period)	Status ¹ Federal/State/ CRPR/USFS	Suitable Habitat (Known Elevation Range)	Potential to Occur in Study Area ²	
Helodium blandowii Blandow's bog moss (moss)	None / None / 2B.3 / FSS	Suitable habitat for this species is damp soil in meadows, seeps, and subalpine coniferous forest (1,862 to 2,700 meters).	Not known from near the Study Area (CDFW 2014), but no meadows in subalpine coniferous forest present. Not expected.	
Ivesia aperta var. aperta Sierra Valley ivesia (June–September)	None / None / 1B.2 / FSS	Suitable habitat for this species is vernally mesic areas (such as vernal pools) in Great Basin scrub, lower montane coniferous forest, meadows, and pinyon and juniper woodland. Usually found on volcanic substrate (1,480 to 2,300 meters).	Suitable habitat present, but not known from near the Study Area; only known from Plumas, Sierra, and Lassen counties. Low potential to occur.	
Ivesia aperta var. canina Dog Valley ivesia (June–August)	None / None / 1B.1 / FSS	Suitable habitat for this species is volcanic rocky substrate and xeric areas in meadows and openings in lower montane coniferous forest (1,600 to 2,000 meters).	Generally suitable habitat present, but taxon is known only from Dog Valley in Sierra County. Likely out of range and not expected.	
Ivesia webberi Webber's ivesia (May–July)	Candidate / None / 1B.1 / FSS	Suitable habitat for this species is sandy or gravelly areas (with volcanic ash substrate) in Great Basin scrub, lower montane coniferous forest, and pinyon and juniper woodland (1,000 to 2,075 meters).	Generally suitable habitat present, but known only from Lassen, Plumas, and Sierra counties. Likely out of range and not expected.	
Lewisia cantelovii Cantelow's lewisia (May–October)	None / None / 1B.2 / FSS	Suitable habitat is granitic or serpentinite rock; often mesic but can be dry. Found in broad-leaved upland forest, chaparral, cismontane woodland, or lower montane coniferous forest (330 to 1,370 meters)	Study Area well above the known elevation range of this species (CNPS 2014) and substrate not suitable. Not expected.	
Lewisia kelloggii ssp. hutchinsonii Hutchinson's lewisia (May-August)	None / None / 3.2 / FSS	Suitable habitat is openings and ridgetops in upper montane coniferous forest, with slate or rhyolite tuff substrates (765 to 2,365 meters).	Taxon not known from surrounding nine-quad search area and suitable substrate not present in the Study Area. Not expected.	
Lewisia kelloggii ssp. kelloggii Kellogg's lewisia (May–August)	None / None / 3.2 / FSS	Suitable habitat is openings and ridgetops in upper montane coniferous forest, with slate or rhyolite tuff substrates (1,465 to 2,365 meters).	Taxon not known from surrounding nine-quad search area and suitable substrate not present in the Study Area. Not expected.	
Lewisia longipetala Long-petaled lewisia (July–September)	None / None / 1B.3 / FSS	Suitable habitat is granitic rocky (often mesic) substrates in high elevation areas. Suitable habitats include alpine boulder and rock field, and similar rocky areas in subalpine coniferous forest (2,500 to 2,925 meters).	Study Area much lower than known elevation range of the species (CNPS 2014), and no suitable rock or boulder fields present. Not expected.	

Append	Appendix A, Table 1. Special-status Plant Species Identified from Background Research			
Scientific Name Common Name (Blooming Period)	Status ¹ Federal/State/ CRPR/USFS	Suitable Habitat (Known Elevation Range)	Potential to Occur in Study Area ²	
Lewisia serrata Saw-toothed lewisia (May–June)	None / None / 1B.1 / FSS	Suitable habitat is mesic, rocky slopes in broad-leaved upland forest, lower montane coniferous forest, and riparian forest (900 to 1,435 meters).	Study Area somewhat higher than known elevation range of species (CNPS 2014), forests onsite not suitable, and known from a restricted range in seven quads well west of the Study Area. Not expected.	
Meesia triquetra Three-ranked hump moss (most often found in July)	None / None / 4.2 / None	Species is found growing on damp soil in mesic areas such as bogs, fens, meadows, and seeps in upper montane and subalpine coniferous forest (1,300 to 2,953 meters).	Minimally suitable mesic meadow habitat present. Low potential to occur.	
Meesia uliginosa Broad-nerved hump moss (most often found in October)	None / None / 2B.2 / FSS	Suitable habitat is damp soil in mesic areas such as bogs, fens, meadows, and seeps in upper montane and subalpine coniferous forest (1,210 to 2,804 meters).	Minimally suitable mesic meadow habitat present. Low potential to occur.	
Mielichhoferia elongata Elongate copper moss (moss)	None / None / 2B.2 / FSS	Suitable habitat is metamorphic rock (usually mesic) in cismontane woodland (500 to 1,300 meters).	Study Area has higher elevation than that known for the species, and suitable habitat otherwise not present. Not expected.	
Monardella follettii Follett's monardella (June–September)	None / None / 1B.2 / FSS	Suitable habitat is rocky serpentine in lower montane coniferous forest (600 to 2,000 meters).	Known range well west of Study Area, and suitable substrate not present. Not expected.	
Nardia hiroshii Hiroshi's flapwort (Liverwort)	None / None / 2B.3 / None	Suitable habitat is damp soil with granitic bedrock (2,195 meters).	Single occurrence found in the Norden quad in 2012 (CNPS 2014). Suitable granite habitat not present in Study Area. Not expected.	
Peltigera gowardii Veined water lichen (Summer)	None / None / 4.2 / FSS	Suitable habitat is on rocks in clear perennial creeks with little sediment or disturbance (1,065 to 2,375 meters).	No suitable creek habitat in Study Area. Not expected.	
Penstemon personatus Closed-throated beardtongue (June–October)	None / None / 1B.2 / FSS	Suitable habitat is metavolcanic soils in chaparral, and lower or upper montane coniferous forest (1,065 to 2,120 meters).	Small areas of minimally suitable habitat present, but known range is well northwest of the Study Area. Not expected.	
Phacelia stebbinsii Stebbins' phacelia (May–July)	None / None / 1B.2 / FSS	Suitable habitat is meadows and seeps in cismontane woodland and lower montane coniferous forest (610 to 2,010 meters).	Minimally suitable habitat present in openings in forested areas, but known range west of Study Area. Low potential to occur.	
Phaeocollybia olivacea Olive phaeocollybia (autumn)	None / None / None / FSS	Suitable habitat is mixed pine and oak woodlands. Typically found in coastal lowlands, but a few populations are known from Sierra Nevada foothills.	Suitable mixed oak/pine forests not present in Study Area. Study Area likely too high in elevation for this species. Not expected.	
Pinus albicaulis Whitebark pine (all year)	Candidate / None / None / FSS	Suitable habitat is very high elevations in the mountains near timberline, on rock or talus slopes.	Suitable high elevation habitats not present in Study Area. Not expected.	

Appendi	Appendix A, Table 1. Special-status Plant Species Identified from Background Research			
Scientific Name Common Name (Blooming Period)	Status ¹ Federal/State/ CRPR/USFS	Suitable Habitat (Known Elevation Range)	Potential to Occur in Study Area ²	
Poa sierrae Sierra blue grass (April–June)	None / None / 1B.3 / FSS	Suitable habitat is openings in lower montane coniferous forest (365 to 1,500 meters)	Study Area is somewhat higher than the known elevation for the species, and well east of known distribution. Not expected.	
Potamogeton epihydrus Nuttall's ribbon-leaved pondweed (June–September)	None / None / 2B.2 / None	Suitable habitat is various shallow freshwater habitats (368 to 2,172 meters).	No suitable lake or other inundated habitat present. Not expected.	
Potamogeton robbinsii Robbins' pondweed (July–August)	None / None / 2B.3 / None	Suitable habitat is lakes and similar inundated deep water areas (1,530 to 3,300 meters).	No suitable lake or other inundated habitat present. Not expected.	
Pseudostellaria sierrae Sierra starwort (May–August)	None / None / 4.2 / None	Many habitats are suitable including chaparral, cismontane woodland, and lower and upper montane coniferous forest (1,225 to 2,194 meters).	Suitable habitat is present in the Study Area, particularly in forested areas. Known from Truckee quad. High potential to occur.	
Pyrrocoma lucida Sticky pyrrocoma (July–October)	None / None / 1B.2 / FSS	Suitable habitat is alkaline clay substrate in meadows and seeps in lower montane coniferous forest or Great Basin scrub (700 to 1,950 meters).	Known range is somewhat northwest of Study Area, and no alkaline clay substrate apparent. Not expected.	
Rhamnus alnifolia alder buckthorn (May–July)	None / None / 2B.2 / None	Species is known from mesic areas like meadows, seeps, and riparian areas, in lower or upper montane coniferous forest (1,370 to 2,130 meters).	No riparian areas or suitable mesic coniferous forest. Not expected.	
Sphaeralcea munroana Munro's desert mallow (May–June)	None / None / 2B.2 / None	Suitable habitat is Great Basin scrub (2,000 meters).	Not known from Truckee quad. In California, only known from Squaw Creek (CNPS 2014). Generally suitable habitat present. Low potential to occur.	
Stuckenia filiformis ssp. alpina Slender-leaved pondweed (May–July)	None / None / 2B.2 / None	Suitable habitat is shallow freshwater, such as streams, lake margins, marshes, or swamps (300 to 2,150 meters).	No suitable lake or other inundated habitat present. Not expected.	
Subularia aquatica ssp. americana Water awlwort (July–September)	None / None / 4.3 / None	Suitable habitat is lake margins (or similar mesic areas) in upper montane coniferous forest (1,900 to 3,100 meters).	No suitable lake or other inundated habitat present. Not expected.	
Tauschia howellii Howell's tauschia (June–August)	None / None / 1B.3 / FSS	Suitable habitat is granitic or gravelly openings in subalpine or upper montane coniferous forest (1,705 to 2,500 meters).	Somewhat suitable gravelly openings present in Study Area, but known range of the species is well northwest of the Study Area. Low potential to occur.	

Appendix A, Table 1. Special-status Plant Species Identified from Background Research			
Scientific Name Common Name (Blooming Period)	Status ¹ Federal/State/ CRPR/USFS	Suitable Habitat (Known Elevation Range)	Potential to Occur in Study Area ²

Sources: CNPS 2014; CNDDB (CDFW 2014); USFWS 2014a; USFS 2013

U.S. Fish and Wildlife Service designations:

Endangered: Any species in danger of extinction throughout all or a significant portion of its range.

Threatened: Any species likely to become endangered within the foreseeable future.

Candidate: Any species that is a candidate for listing.

California Department of Fish and Wildlife designations:

Endangered: Any species in danger of extinction throughout all or a significant portion of its range.

Threatened: Any species likely to become endangered within the foreseeable future.

California Rare Plant Rank designations (CNPS 2014):

- 1R Plants rare, threatened or endangered in California and elsewhere.
- Plants rare, threatened or endangered in California, but more common elsewhere. 2
- 3 Plants about which more information is needed (review list)
- Limited distribution (watch list).

California Rare Plant Rank threat categories:

- Seriously endangered in California.
- Fairly endangered in California. .2
- Not very endangered in California.

FSS = Included on the Region 5 USFS Sensitive Plants List (plant taxa that are not "Forest Service Sensitive" may still be included on unpublished Special Interest or Watch Lists for individual forests or districts

Not Expected: Habitat within the Study Area and/or project vicinity satisfies some of the species' requirements but the vicinity of the Study Area or the Study Area itself is outside the known or expected range of the species. The species' presence within the Study Area is very unlikely.

Low: Habitat within the Study Area and/or project vicinity satisfies very few of the species' requirements and/or the range of the species overlaps with the vicinity of the Study Area, but not with the Study Area itself. The species' presence within the Study Area is unlikely.

Moderate: Habitat within the Study Area and/or Study Area vicinity meets some of the species' requirements, and known locations for the species are found in the vicinity of the Study Area. Presence of the species within the Study Area is moderately likely.

High: Habitat within the Study Area and/or Study Area vicinity meets most or all of the species' requirements, and known locations for the species are found within 3 miles of the Study Area. Presence of the species within the Study Area is highly likely.

GANDA

Conservation status:

²The potential of occurrence (low, moderate, high) is based on habitat requirements (such as substrate, hydrology, vegetation type, and disturbance factors) and known spatial and elevation range, applied by using the following general guidelines:

Appendix A, Table 2. Special-Status Wildlife Species Identified from Background Research			
Scientific Name Common Name	Status¹ Federal/State/ CDFW/USFS	Suitable Habitat	Potential to Occur in Study Area ²
Special-Status Wildl	life Species within a 3-n	nile Buffer of Study Area	
Molluscs			
Margaritifera falcata Western pearlshell	None / None/ SA / None	Species inhabits cold creeks and rivers with clean water and searun salmon or native trout. Broadly distributed in western North America.	No suitable stream habitat is present within the Study Area. No potential to occur.
Birds			
Empidonax traillii Willow flycatcher	None / Endangered / SA / FSS	Suitable habitat includes montane riparian thickets; most frequent in willow thickets near ponds, meadows, etc. Breeding habitat often occurs within and adjacent to forested habitats.	The last record within 3 miles of the Study Area was in 2008 (near Martis Creek). Some potential nesting habitat occurs within forest habitats in Study Area. Foraging may occur along seasonally wet drainage ditches, swales and meadows. Marginal foraging and nesting habitat present. Low to Moderate potential to occur.
Accipiter gentilis Northern goshawk	None / None / SSC / FSS	Occurs throughout coniferous forests in the Southern Cascades and Sierra Nevada of California. Breed in most forested plant communities available throughout their range, including coniferous, deciduous, and mixed forest types. They may also use shrublands and open areas while foraging, migrating, or overwintering. Breeding period is from March to late August or early September.	Last recorded within 3 miles of Study Area in 1999. Coniferous and deciduous forest present in the Study Area. Foraging and nesting habitat present. Moderate to high potential to occur.
Mammals		,	
Lepus americanus tahoensis Sierra Nevada snowshoe hare	None / None / SSC / None	Inhabits mid-elevations of the northern and central Sierra Nevada from approximately Mount Lassen south through Yosemite National Park to Mono and Mariposa counties. Prefers thickets of riparian vegetation or dense small conifer trees, typically at edges of meadows.	Meadow and scrub habitat occur within the Study Area, but bordered mostly by sagebrush or tall, thin stands of trees. Record in CNDDB is from 1915 within 3 miles of Study Area. Moderate potential to occur.
Vulpes vulpes necator Sierra Nevada red fox	None / Threatened / SA / FSS	Uses high elevation conifer forests for cover/breeding, and meadows or alpine fell-fields for hunting. Prefers a mix of these habitats.	Recorded crossing SR 89 in 1994, last record within 3 miles of Study Area. Some suitable habitat within the Study Area. Moderate potential to occur.

Appendix A, Table 2. Special-Status Wildlife Species Identified from Background Research			
Scientific Name Common Name	Status¹ Federal/State/ CDFW/USFS	Suitable Habitat	Potential to Occur in Study Area ²
Fish			
Oncorhynchus clarkii henshawi Lahontan cutthroat trout	Threatened / None / SA / None	Occurs in a wide variety of coldwater habitats and small headwater tributary streams. Prefers cool flowing water with available cover of well-vegetated and stable stream banks, where stream velocity breaks, and silt free, rocky rifflerun areas are present. Spawns in streams between February and July, depending on stream flow, elevation, and water temperature.	CNDDB indicates habitat within 3 miles of the Study Area, but no suitable lake or stream habitat is present within the Study Area. No potential to occur.
Special-Status Wildli	fe Species within 9-qu	ad Search Area (greater than 3 mil	es from Study Area)
Crustaceans			
Stygobromus lacicolus Lake Tahoe amphipod	None / None/ SA / None	Endemic to the benthos of Lake Tahoe; occurs sympatrically with <i>S. tahoensis</i> .	No suitable habitat is present within the Study Area. No potential to occur .
Stygobromus tahoensis Lake Tahoe stygobromid	None / None/ SA / None	Endemic to the benthos of Lake Tahoe; occurs sympatrically with <i>S. lacicolus</i> .	No suitable habitat is present within the Study Area. No potential to occur .
Molluscs			
Helisoma newberryi Great Basin rams- horn	None / None / SA / FSS	Found in larger lakes and slow rivers, including larger spring sources and spring-fed creeks. Requires well-oxygenated but soft substrate and clear, very cold, slow flowing water.	No suitable habitat is present within the Study Area. No potential to occur.
Insects			
Lepidostoma ermanae Cold Spring caddisfly	None / None / SA / None	Larvae occur in cold spring (3–4° C) habitats that are permanently shaded at elevations greater than 1,830 meters.	No suitable spring habitat is present within the Study Area. No potential to occur.
Goeracea oregona Sagehen Creek goeracean caddisfly	None / None / SA / None	Larvae occur in relatively warm (9–11° C) spring sources.	No suitable spring habitat is present within the Study Area. No potential to occur.
Ecclisomyia bilera Kings Creek ecclysomyian caddisfly	None / None / SA / None	Larvae live in small, cold spring sources, and are often found among rocks and gravel. Adults emerge May to August.	No suitable spring habitat is present within the Study Area. No potential to occur.

Appendix A	Appendix A, Table 2. Special-Status Wildlife Species Identified from Background Research			
Scientific Name Common Name	Status¹ Federal/State/ CDFW/USFS	Suitable Habitat	Potential to Occur in Study Area ²	
Desmona bethula amphibious caddisfly	None / None / SA / None	Larvae live in small spring streams with slow currents and in wet meadows. A population was found in a beaver pond in Sagehen Creek. Eggs and first and second instar larvae are typically found beginning in January, though early instar larvae can be encountered as late as April.	The seasonally wet meadows and wetlands within the Study Area are unlikely to have flowing water. However in wet years, these wetlands may provide marginally suitable habitat. Very low potential to occur.	
Cryptochia excella Kings Canyon cryptochian caddisfly	None / None / SA / None	Restricted to cold spring streams and their sources. Adults emerge in June and July.	No suitable spring habitat is present within the Study Area. No potential to occur.	
Capnia lacustra Lake Tahoe benthic stonefly	None / None / SA / None	Endemic to Lake Tahoe. This species is associated with deepwater plant beds and is most abundant at depths from 60 to 110 meters (200 to 360 feet) although it has been found as deep as 274 meters (899 feet) in McKinney Bay.	No suitable habitat is present within the Study Area. No potential to occur.	
Reptiles and Amphib	ians			
Rana sierra Sierra Nevada yellow-legged frog	Endangered / Threatened / SSC / FSS	Found in lakes, ponds, tarns, and perennial streams above 1,524 meters elevation.	No suitable habitat is present within the Study Area. During wet years the wetlands and meadows may be marginally suitable, but given their distance from suitable perennial habitat may have low potential to occur.	
Lithobates pipiens Northern leopard frog	None / None / SSC / None	Perennial streams and ponds.	No suitable habitat is present within the Study Area. During wet years the wetlands and meadows may be marginally suitable, but given their distance from suitable perennial habitat there is low potential to occur.	
Birds				
Accipiter cooperii Cooper's Hawk	None / None / WL / None	Most frequently uses dense stands of live oak, riparian, deciduous or other forest habitats near water. Nesting season is February through October.	Coniferous and deciduous forest present in the Study Area. Some suitable foraging and nesting habitat is present. Moderate potential to occur.	

Appendix	Appendix A, Table 2. Special-Status Wildlife Species Identified from Background Research			
Scientific Name Common Name	Status¹ Federal/State/ CDFW/USFS	Suitable Habitat	Potential to Occur in Study Area ²	
Haliaeetus leucocephalus Bald eagle	Delisted / Endangered / FP / FSS	Forages in habitats near rivers, lakes, and other large bodies of open water with an abundance of fish. Nests in large trees near foraging habitat in areas that experience little or no disturbances from human activities. Nests usually near permanent water source. Breeding season March 1 through August 31.	Neither nesting nor foraging habitats occur within the Study Area, which is frequently disturbed by vehicle and air plane traffic. No records occur within a 3-mile radius. Low potential to occur.	
Cypseloides niger Black swift	None / None / SSC / FSBCC	Occurs in California as a summer resident and migrant from mid-April to mid-October. Breeding is restricted to areas behind or beside permanent or semi-permanent waterfalls, on perpendicular cliffs near water (above Sierran rivers or on the sea coast), and in sea caves. Foraging habitat is poorly known, but anecdotally relies on winged insect swarms.	No nesting habitat occurs within the study area and no records occur within a 3-mile radius. Low potential to occur.	
Grus canadensis tabida Greater sandhill crane	None / Threatened / FP / FSS	Found primarily in open freshwater wetlands, including shallow marshes and wet meadows. Nests in moist areas at the margins of extensive wet meadows and marshes.	The seasonally wet swales and wetlands within the Study Area that may provide foraging habitat during wet periods. No extensive wetlands suitable for nesting occur within the Study Area. Low potential to occur.	
Pandion haliaetus Osprey	None / None / WL / None	Associated strictly with large, fish-bearing waters, primarily in ponderosa pine through mixed conifer habitats. Nesting season March 1 through August 15.	No suitable foraging habitat is present within the Study Area. During wet years the wetlands and meadows may be marginally suitable, but given their distance from suitable fish habit, species has low potential to occur.	
Picoides arcticus Black-backed woodpecker	None / None / SA* / None	Occurs within the range of coniferous forests across northern North America. Prefers recently burned coniferous forest areas.	Coniferous and deciduous forest present in the Study Area. Some snag habitat is present. Potential foraging and nesting habitat is present. Moderate potential to occur.	

Appendix A	Appendix A, Table 2. Special-Status Wildlife Species Identified from Background Research			
Scientific Name Common Name	Status¹ Federal/State/ CDFW/USFS	Suitable Habitat	Potential to Occur in Study Area ²	
Setophaga petechia Yellow warbler	None / None / SA / FSBCC	Generally occupies riparian vegetation in close proximity to water along streams and wet meadows. Occurs in California principally as a migrant and summer resident from late March through early October; breeds from April to late July.	Seasonal wetlands present within the Study Area have no riparian vegetation preferred by this species, and these areas are unlikely to be wet throughout the summer. Low potential to occur.	
Mammals				
Ochotona princeps schisticeps gray-headed pika	None / None / SA / None	Inhabits talus fields fringed by suitable vegetation on rocky slopes of alpine areas throughout western North America. Restricted to cool, moist microhabitats on higher peaks or along watercourses.	No suitable habitat within the Study Area. Low potential to occur.	
Pekania pennanti West Coast DPS Pacific fisher	Proposed Threatened / Candidate Threatened / SSC / FSS	Inhabits successional coniferous and mixed coniferous-deciduous forest with a high percentage of canopy cover. Large diameter trees, large snags, tree cavities, logs are most often used for den and rest sites, and are an important component of suitable habitat. Breeding season occurs March 1 through June 30.	Coniferous and deciduous forest present in the Study Area. However, tree diameters are not large and snag habitat is not abundant. Low potential to occur.	
Lepus townsendii townsendii Western white-tailed jackrabbit	None / None / SSC / None	Prefers open grasslands but thrive in pastures and fields. This species can also be found in forested areas up to high alpine tundra, from 40 to 4,300 meters elevation.	Meadow and scrub habitat occur within the Study Area as well a mixed forest. Moderate potential to occur.	
Martes caurina sierrae Sierra marten	None / None / SA / FSS	Occurs in forested habitats throughout boreal North America, reaching its southernmost extent in the Sierra Nevada of California. Inhabits mature, dense conifer forests or mixed coniferhardwood forests with a high percentage canopy cover and large amounts of coarse woody debris on the forest floor.	Coniferous and deciduous forest is present in the Study Area. These forests are not dense, and the forest floor was fairly clean of wood debris. Low potential to occur.	

Appendix A, Table 2. Special-Status Wildlife Species Identified from Background Research				
Scientific Name Common Name	Status¹ Federal/State/ CDFW/USFS	Suitable Habitat	Potential to Occur in Study Area ²	
Gulo gulo California wolverine	None / Threatened / FP / FSS	Occurs within a wide variety of habitats, primarily boreal forests, tundra, and western mountains. In northern California habitat includes Douglas-fir/tanoak forest.	Coniferous (ponderosa and Jeffrey pine) and deciduous forest is present in the Study Area. However, the Study Area is fairly disturbed and surrounded by roadways with moderate traffic and airport runways. Low potential to occur.	
Aplodontia rufa californica Sierra Nevada mountain beaver	None / None / SSC / None	Typical habitat in the Sierra Nevada is montane riparian areas with frequent open and intermediate-canopy coverage with a dense understory near water. Deep, friable soils are required for burrowing, along with a cool, moist microclimate.	No suitable habitat within the Study Area. No potential to occur.	
Myotis volans Long-legged myotis	None / None/ SA / None	Primarily found in montane forests. Can occur from sea level up to 3,200 meters, but is usually found from 2,000-3,000 meters. They establish roosts in trees, rock crevices, fissures in stream banks, and buildings.	The Study Area (at 1,800 meters) is outside the typical distribution for this species. Coniferous and deciduous forest is present in the Study Area. Low potential to occur.	
Lasionycteris noctivagans Silver-haired bat	None / None / SA / None	Primarily a forest dweller, feeding over streams, ponds, and open brushy areas. During spring and fall migrations they may be found anywhere in California. Roosts in hollow trees, snags, buildings, rock crevices, caves, and under bark.	Coniferous and deciduous forest habitats are present in the Study Area as well as open meadows and brushy habitats. Potential roosting habitat includes trees, snags and buildings associated with the airport. Moderate potential to occur.	

Sources: California Department of Fish and Game California Natural Diversity Database 2013; U.S. Fish and Wildlife Service 2013a.

 $Endangered\ Species\ Act\ (ESA)\ designations\ regulated\ by\ U.S.\ Fish\ and\ Wildlife\ Service\ designations\ (USFWS):$

Endangered: Any species in danger of extinction throughout all or a significant portion of its range.

Threatened: Any species likely to become endangered within the foreseeable future.

Candidate: Species whose status is in review for listing

Proposed for delisting

California Endangered Species Act (CESA) designations regulated by California Department of Fish and Wildlife (CDFW):

Endangered: Any species in danger of extinction throughout all or a significant portion of its range.

Threatened: Any species likely to become endangered within the foreseeable future

Candidate: Species whose status is in review for listing

California Department of Fish and Wildlife (CDFW) non-listed designations:

SSC Special Concern: Species that are at risk

FP Fully Protected: may not be taken or possessed at any time and/or no issuance of permits for "take"

WL Watch List: Taxa to watch SA Special Animals List

None (no potential): Habitat within the Study Area and/or project vicinity does not satisfy the species' requirements. The species' natural

¹ Conservation status abbreviations:

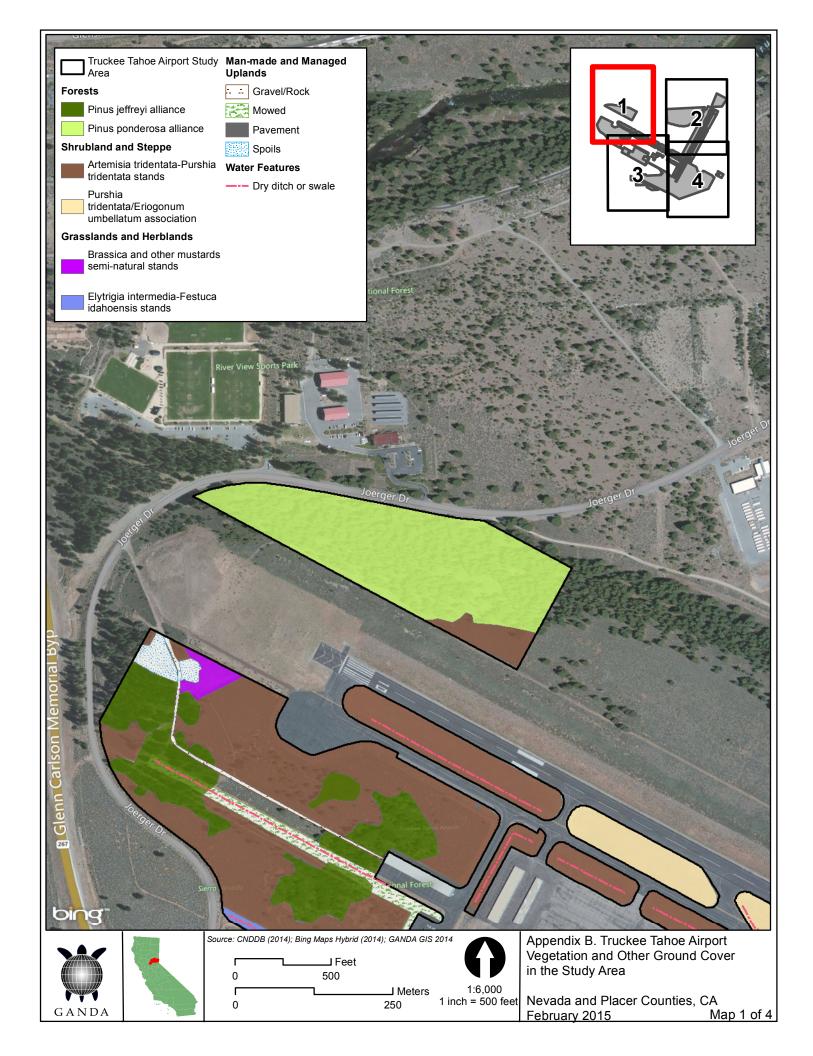
²The likelihood of occurrence (low, moderate, high) is based on habitat requirements (such as, substrate, hydrology, vegetation type, and disturbance factors) and known spatial and elevation range, applied by using the following general guidelines:

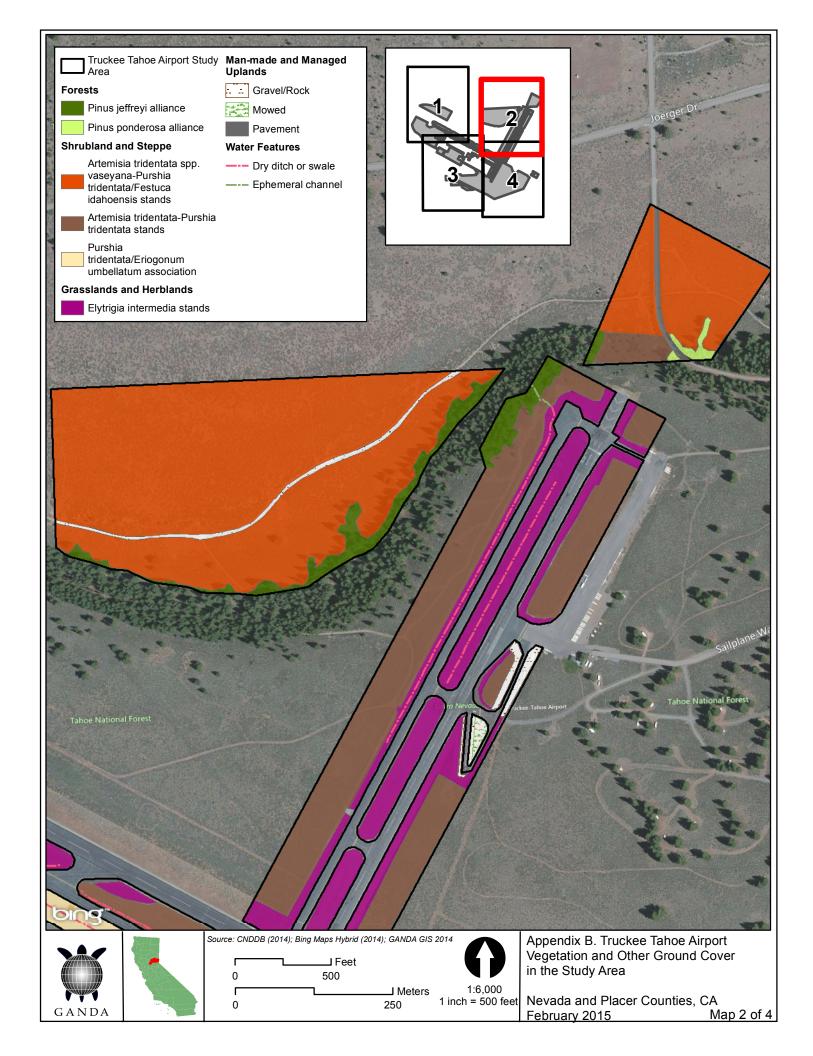
Appendix A, Table 2. Special-Status Wildlife Species Identified from Background Research			
Scientific Name Common Name	Status¹ Federal/State/ CDFW/USFS	Suitable Habitat	Potential to Occur in Study Area ²

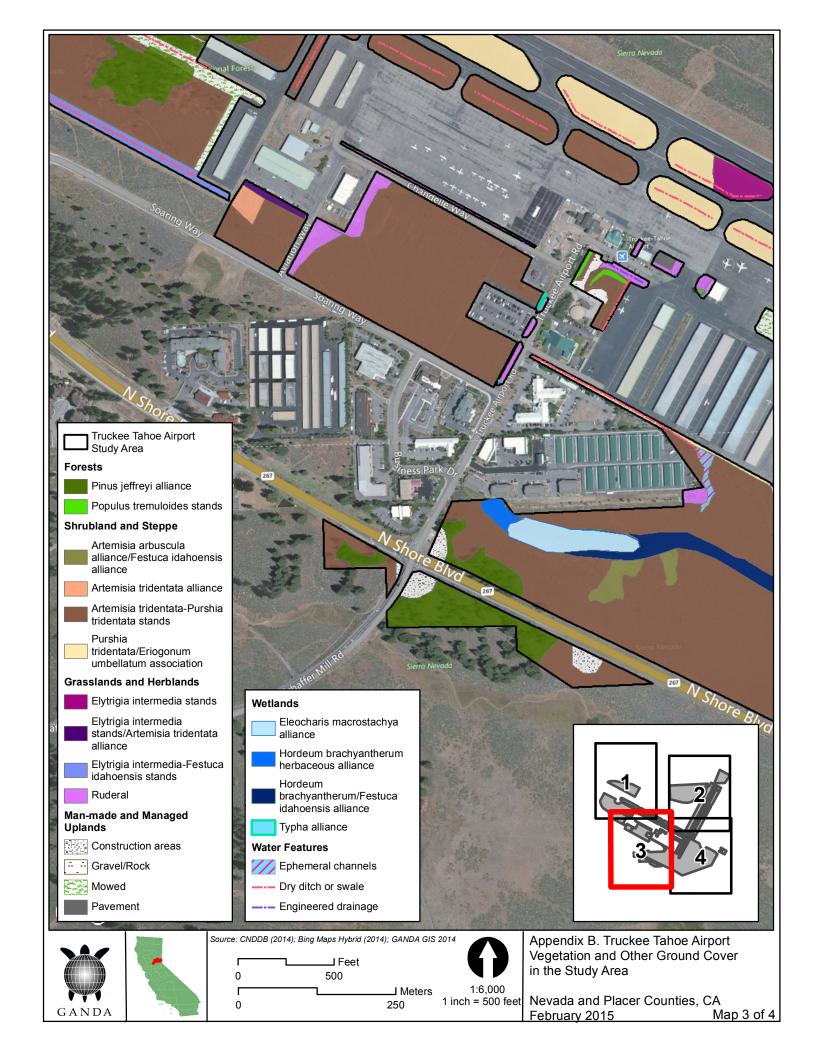
presence within the Study Area is not probable.

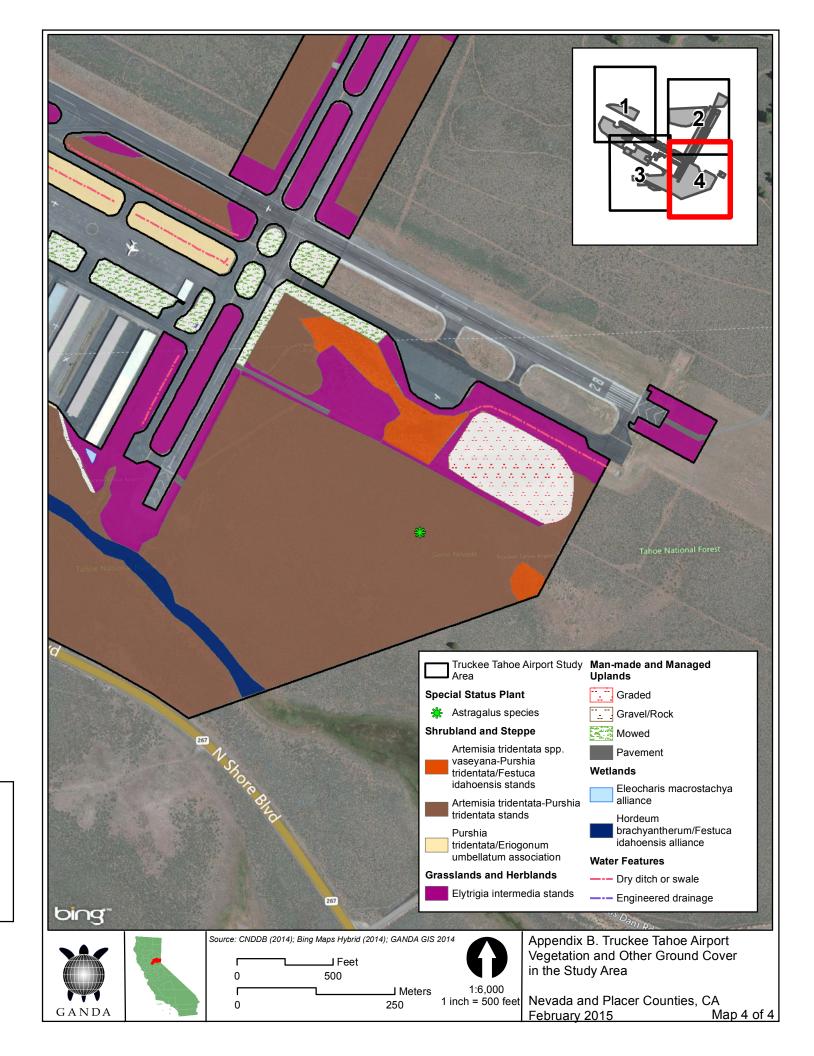
Low: Habitat within the Study Area and/or project vicinity satisfies very few of the species' requirements and/or the range of the species overlaps with the vicinity of the Study Area, but not with the Study Area itself. The species' presence within the Study Area is unlikely.

Moderate: Habitat within the Study Area and/or project vicinity meets some of the species' requirements, and known locations for the species are found in the vicinity of the Study Area. Presence of the species within the Study Area is moderately likely.


High: Habitat within the Study Area and/or project vicinity meets most or all of the species' requirements, and known locations for the species are found within 5 miles of the Study Area. Presence of the species within the Study Area is highly likely.


Present: Individuals or their sign observed in the Study Area.


USDA Forest Service, Pacific Southwest Region (Region 5) Sensitive Animals List for Sierra, Tahoe or Lake Tahoe Basin Forest Areas: FSS (Forest Service Sensitive), FSBCC (Forest Service Birds of Conservation Concern)


*The black-backed woodpecker was listed on the 2014 Special Animals List (CDFW 2014), but was omitted from the 2015 list (CDFW 2015). This taxon is retained in this report as our professional judgment indicates that this species should be retained for evaluation of potential project impacts.

Appendix B Vegetation and Other Ground Cover Maps

Appendix C Representative Photographs

Photo 1. Conifer forest with little understory, facing approximately northwest. October 7, 2014.

Photo 2. Decadent sagebrush scrub (left), adjacent a semi-natural stand of intermediate wheatgrass (right). Facing approximately north. October 7, 2014.

GANDA

February 2015

Photo 3. Mowed and mulched area within a runway island. Facing approximately north. October 7, 2014.

Photo 4. Disturbed area with spoil piles. Facing approximately north. October 7, 2014.

Photo 5. Freshwater marsh and willow scrub in an engineered ditch. Facing approximately south. October 8, 2014.

Photo 6. Detention basin with standing water. Facing approximately west. October 7, 2014.

Photo 7. Overview of wetland surrounded by sagebrush scrub. Facing approximately east. October 8, 2014.

Photo 8. Unknown milk-vetch (*Astragalus* species), possibly special-status species. Past flowering and fruiting stage. October 7, 2014.

Photo 9. Semi-landscaped aspen stand around man-made/engineered drainage feature. Facing approximately north. October 7, 2014.

Appendix C

Cultural Resources Survey

Note: All of the pages that provide site specific data on cultural finds have been removed to preserve confidentially as required by California statutes.

Report on a Cultural Resources Survey of the Proposed Truckee-Tahoe Airport Master Plan Update Project, Nevada and Placer Counties, California

*By:*Sharon A. Waechter
Allen McCabe

April 2015 FINAL

Prepared for: Mead & Hunt, Inc.

Mead & Hunt, Inc. 133 Aviation Blvd., Ste. 100 Santa Rosa, CA 95403

Report on a Cultural Resources Survey of the Proposed Truckee-Tahoe Airport Master Plan Update Project, Nevada and Placer Counties, California

*By:*Sharon A. Waechter
Allen McCabe

April 2015 FINAL

Prepared for: Mead & Hunt, Inc. 133 Aviation Blvd., Ste. 100 Santa Rosa, CA 95403

TABLE OF CONTENTS

INTRODUCT	TION	1
Project Desc	cription (provided by Mead & Hunt, Inc.)	1
STUDY MET	HODS AND RESULTS	4
Prefield Res	search	4
Native Ame	erican Outreach	7
Field Survey	y	7
Site Descr	riptions	7
SUMMARY A	AND RECOMMENDATIONS	15
REFERENCES	S	16
	APPENDICES	
Appendix A.	Records Search Results (Confidential).	
Appendix B.	Native American Outreach.	
Appendix C.	Site Records (Confidential).	
	LIST OF FIGURES	
Figure 1. Proje	ect Vicinity	2
Figure 2. Proje	ect Location	3
Figure 3. Surv	rey Results	9
	LIST OF TABLES	
Table 1. Recor	ds Search Results – Studies.	4
Table 2. Recor	ds Search Results – Resources.	6
Table 3. Surve	ey Results	8
Table 4. Isolate	e Table for Truckee-Tahoe Airport Survey	8
Table 5. Recon	nmendations	15

INTRODUCTION

At the request of Mr. David Dietz of Mead & Hunt, Inc., Far Western Anthropological Research Group, Inc., (Far Western) conducted a cultural resources study for the proposed Truckee-Tahoe Airport (Airport) Master Plan Update project, in compliance with the California Environmental Quality Act (CEQA). This study has included archival research, Native American outreach, field inventory, site recordation, and the preparation of this report. All methods and results of the study are included here. It should be noted that the confidential appendices are to be used only as necessary for project planning, and are not to be made available for public review.

PROJECT DESCRIPTION (PROVIDED BY MEAD & HUNT, INC.)

The proposed project would be located at the Truckee-Tahoe Airport in Martis Valley, immediately northeast of State Route (SR) 267 (Figures 1 and 2). The airport is operated by the Truckee-Tahoe Airport District (District), which has prepared a Master Plan to guide development of the airport for the next 20 years. The District's Board of Directors intends to adopt this plan following completion of appropriate environmental review. This review will satisfy the requirements of CEQA.

The Master Plan is a comprehensive document that includes planned modifications and additions to the airfield, terminal area, and the instrument approach procedures. It will also require additional property acquisition. The principal proposed change to the airfield will be the extension and widening of Runway 2-20. This modification will be supported by a realignment and extension of the parallel taxiway that serves Runway 2-20. Additionally, the mid-field taxiways serving Runway 11-29 and the main aircraft parking apron will be modified to meet current Federal Aviation Administration design standards. This will involve eliminating angled taxiways and increasing the size of fillets at intersections. The depth of two holding aprons serving Runway 11-29 will be reduced to meet current standards.

A variety of facilities are included in the Master Plan to address aircraft parking and storage needs. A multi-use hangar is proposed that would provide both short-term storage of aircraft (particularly in the winter) and a venue for public events. Small box hangars (60 to 65 feet on each side) are planned in the western quadrant of the airport. The main aircraft parking apron will also be expanded on its northwestern edge. The Master Plan also includes several minor elements: relocation of the aircraft wash rack, relocation of the Experimental Aircraft Association hangar, and seasonal use of an air traffic control tower in the southern quadrant.

There are also several project elements related to surface transportation. A loop road would be created in front of the terminal building, and a transit hub would be created along Airport Road that would include expanded long-term parking, a rental car facility, and a transit hub providing access to transit buses. The terminal area also contains one parcel designated for non-aviation uses. This area would be used by compatible commercial and industrial uses.

Acquisition of two parcels of land is proposed. One property is in the approach to Runway 20. It would be acquired to ensure that inappropriate development did not occur in this sensitive area. The other parcel lies abeam the threshold for Runway 11. This parcel likely will be impacted by aircraft noise.

The Airport currently has one instrument approach procedure for Runway 20 and a circle-to-land procedure available to all runway ends. The Airport is intending to seek development of a non-precision approach to Runway 11.

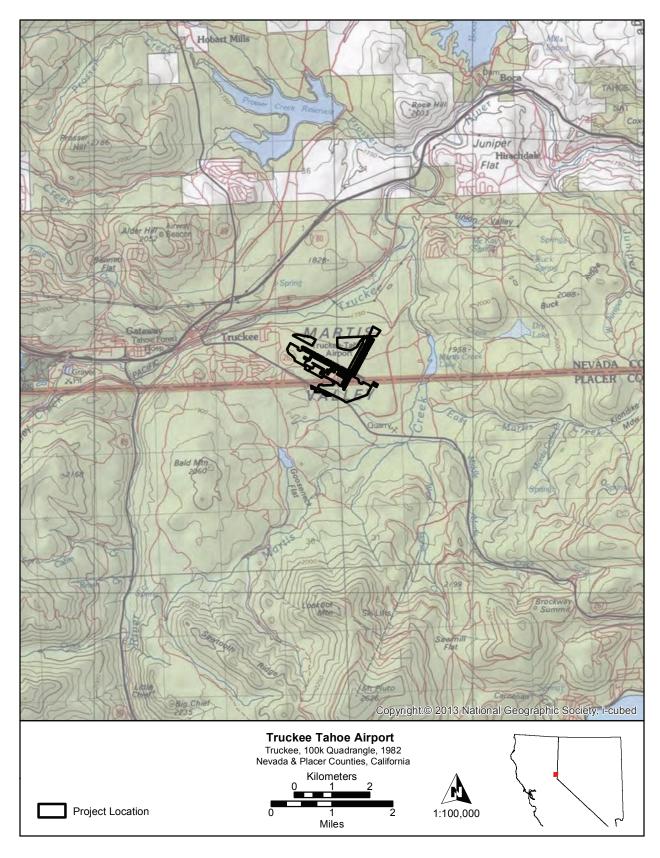


Figure 1. Project Vicinity.

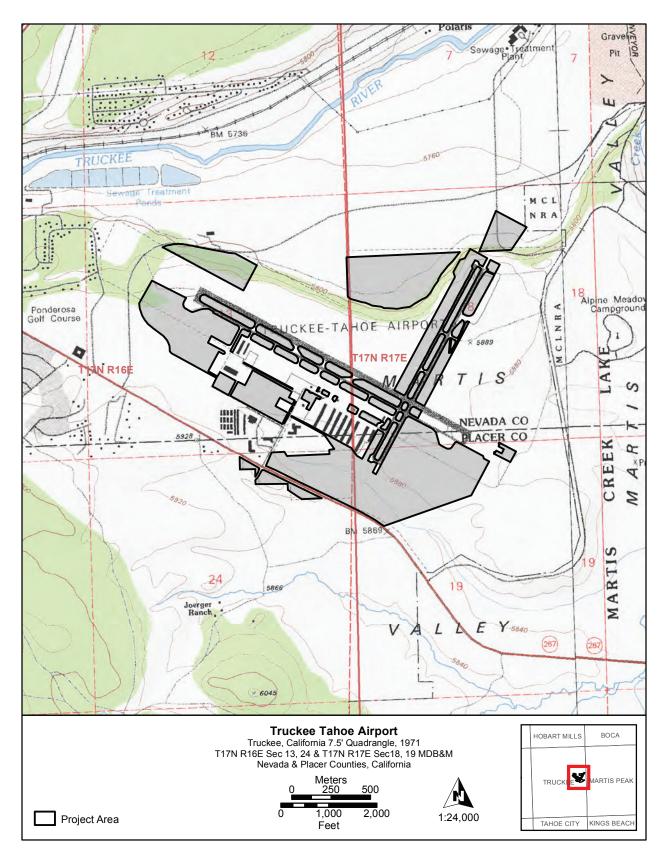


Figure 2. Project Location.

STUDY METHODS AND RESULTS

The cultural study documented here included prefield archival research, Native American outreach, and field survey. The work was carried out by Far Western's Great Basin office in Carson City, Nevada, with input from Dr. Susan Lindström and the senior author. Senior Far Western archaeologist Allen McCabe served as field director for the survey work.

PREFIELD RESEARCH

Far Western requested a records search at the North Central Information Center (NCIC) of the Historical Resources Information System, housed at California State University, Sacramento. This included a review of Information Center base maps, reports, site records, historic maps, published literature, and State Office of Historic Preservation (SHPO) data files. The records search identified 31 previous studies and 27 known resources within the records search boundary (Tables 1 and 2). Of these, 10 of the studies overlap partially with the current Area of Potential Effects (APE), and seven of the resources were reported to be in the APE (Appendix A). In most cases, however, the previously surveyed areas within the APE are negligible in size, and/or the studies are quite old. With the exception of 22 acres surveyed by Kautz and Jerrems (2002), all of the current APE required a complete, updated survey.

Table 1. Records Search Results - Studies.

NCIC No.	AUTHOR(S)	YEAR	TITLE	RESOURCES
Previo	us Studies Overlappin	G APE		
145	Lindström, Susan G.	2001	Martis Valley Well No. 1 Pump Station and Easement Project	P-29-1166
			,	P-29-1167
				P-29-1168
2438	Hutchins, James	2000	A Cultural Resources Inventory Survey for a Proposed Sports Complex, Truckee Donner Recreation and Park District, Nevada County, California	P-29-733
3415	Banka, William J.	2001	Confidential Archaeological Addendum for Timber Operations on Non-Federal Lands in California Community Sports Park THP	P-29-1109
3416	Bass, Henry O.	1989	Positive Archaeological Survey Report for the Proposed Truckee Bypass Project Nevada	P-29-589
	, ,		County, California	P-29-590
3474	Johnson, Gary	son, Gary 1980 Archaeological Reconnaissance Report # 05-17-121 Land Exchange #2	Archaeological Reconnaissance Report # 05-17-121 Land Exchange #2	P-29-1186,
	•			P-31-1394
				P-31-1395,
				P-31-1396
				P-31-1397
1222	Ferrier, Doublas C.	2002	Archaeological Addendum to the Hopkins Ranch Timber Harvest Plan	P-31-1394
				P-31-1397
				P-31-1874
238	Offerman, Janis	1993	Report on an Archaeological Survey Across Martis Valley along State Route 267 in	P-31-131,
			Placer County, California	P-31-132
				P-31-1895,
				P-31-1896
				P-31-1898,
				P-31-1899
1239	Toland, Tanis J.	2002	Cultural Resources Survey for a Proposed Telephone and Power Replacement Project	None

¹ All site locations are confidential and are provided for planning purposes only; they are not to be made available for public review.

Table 1. Records Search Results – Studies continued.

NCIC No.	AUTHOR(S)	YEAR	TITLE	RESOURCE
PREVIO	US STUDIES OVERLAPPING	GAPEC	CONTINUED	
3906	Kautz, Robert, and William Jerrems	2002	Cultural Resource Survey of the Joerger Project; KEC Project 305	P-29-3000 P-29-3001
10086	Andolina, D., S. Waechter, and S. Lindström	2009	Cultural Resources Inventory for the Proposed 625/650 Line Upgrade Project	34 sites in Placer County
REVIO	us Studies in Records S	Search	Area but Outside APE	
12	Lindström, Susan G.	1984	A Cultural Resource Reconnaissance of the Martis Valley Mini-Storage project, Gallagher Developments, LTD, Nevada County, CA	P-29-44 P-29-45
394	Wiant, Wayne	1984	Negative Archeological Survey Report for Proposed Widening and Addition of a Left- turn Lane to Route 267 at Truckee Airport, East of Truckee, Placer County (03-PLA-267 PM 0.3)	None
630	Derr, Eleanor H.	1981	An Archaeological Survey for the Martis Valley Meadows, Placer and Nevada Counties, California	None
1944	Jensen, Peter	1999	Archaeological Survey, Zerweck Module Home/Subdivision Project, c. 30 acres, Nevada and Placer Counties, California	None
2655	Offerman, Janis	1999	Second Supplemental Historic Property Survey Report and Finding of Effect for the Proposed Truckee Bypass Project, Nevada County, California	None
2656	Offerman, Janis	1999	Second Addendum Archaeological Survey Report for the Proposed Truckee Bypass Project in Eastern Nevada County, California	P-29-823 P-29-857 P-29-858
2657	Clement, Dorene	1997	Historic Resource Evaluation and Finding of Effect for the State Route 267 Truckee Bypass, Truckee , Nevada County 03-NEV-267, P.M. 0.0./R2.8 03226-291001	None
2658	Clement, Dorene, and Jill Hupp	1999	Supplemental Resource Evaluation Report and Finding of Effect for the State Route 267 Truckee Bypass, Truckee, Nevada County	P-29-857
3384	Christensen, Teri H., and Robert R. Kautz	2001	Ponderosa Village, Town of Truckee, CA (survey)	None
3426	Smith, Douglas	1992	Confidential Archeological and Historical Resources Survey and Impact Assessment: A Supplemental Report for the Timberland Conversion Timber Harvest Plan	None
3483	Jensen, Sean	2000	Archaeological Survey, Percin Development Project, c. 5-acres, Nevada and Placer Counties, California	None
3484	Jensen, Peter	1999	Archaeological Inventory Survey Tahoe-Truckee Sanitation District Expansion Project, c. 500 acres near Truckee Airport, Nevada County, California	None
3640	Lindström, Susan G.	1999	Brockway Well Project	P-29-1189
5189	Lindström, Susan G.	1999	Martis Valley Mini Storage Project, Heritage Resource Inventory	P-31-2587 P-31-2588
3907	Kimball, M., D. Simons, and R. Kautz	2003	A Cultural Resources Inventory Survey of the Western Portion of the Proposed Truckee Pedestrian Trail; KEC Project 303	P-29-3016 P-29-3019 P-29-3017
8961	Perry, Richard	2007	Archaeology Survey of 35 Acres at Martis Creek Dam and Spillway for the Proposed	P-29-3018 None
9321	Caltrans	2008	Geotechnical Boring Program Archaeological Survey Report for the United States Route 50, Interstate 80, and State Route 89 and 267	None
9326	Leach-Palm, Laura	2008	Cultural Resources Inventory of Caltrans District 3 Rural Conventional Highways in Butte, Colusa, El Dorado, Glenn, Nevada, Placer, Sacramento, Sierra, Sutter, Yolo, and Yuba Counties	50 sites in Nevada County, 52 sites in Placer
9665	Gerike, C., S. Stewart, and B. F. Terhorst	1994	Southwest Gas Expansion Project	County None

Table 1. Records Search Results – Studies continued.

NCIC No.	AUTHOR(S)	YEAR	TITLE	RESOURCES
PREVIO	us Studies in Records	SEARCH	AREA BUT OUTSIDE APE CONTINUED	
10294	Waechter, Sharon A.	2009	Historic Property Survey Report for the Truckee River Legacy Trail Phase 3A, Nevada County, California	None
10711	Haney, Jeff	2011	(A) - Historic Property Survey Report 03-PLA-267 K.P. 1.30-1.95/P.M. 0.81-1.22 EA 03-0F0100; (B) - Archaeological Survey Report for a Proposed Left Turn Lane along State Route 267 Placer County, California	None

Notes: APE – Area of Potential Effects; NCIC – North Central Information Center.

Table 2. Records Search Results – Resources.

Primary No. (P-)	Trinomial (CA-)	DESCRIPTION
Previously Red	CORDED RESOURCES IN Al	PE
29-1166	-	Remains of nineteenth-century charcoal kiln
29-1167	-	Remains of nineteenth-century charcoal kiln
29-1168	-	Segments of pre-1932 road
31-2587	PLA-1845H	Segment of Donner & Tahoe Railroad (ca. 1893-1901)
31-5504	-	Abandoned irrigation ditch, age undetermined
31-5505	-	Abandoned fenceline, age undetermined
Previously Red	CORDED RESOURCES IN RE	ECORDS SEARCH AREA BUT OUTSIDE APE
29-44	-	Isolated basalt projectile point
29-45	-	Segment of narrow-gauge railroad
29-87	-	Prehistoric "camp site"
29-733	-	Ca. 1900 refuse scatter
29-1109	-	Isolated basalt projectile point
29-1110	-	Isolated basalt biface
29-1186 ^a	-	Historic-era refuse scatter, structural remains
29-3000	-	Refuse scatter, early/mid-twentieth century
29-3001	-	Mid-twentieth-century can scatter
29-4416	NEV-2182H	Remains of nineteenth-century charcoal kiln
29-4421	-	Hand-sawn, high-cut stumps
31-2588	-	Two chert flakes
31-3358	-	Small, sparse lithic scatter
31-3693	PLA-2332	Small concentration of flaked stone tools and debitage
31-5502	PLA-2443	Small basalt lithic scatter
31-5503	-	Early twentieth-century dirt road and debris scatter b
31-5506	-	Early/mid-twentieth-century road and debris scatter ^b
31-5507	-	Abandoned fenceline, age undetermined ^b
31-5520	-	Three widely scattered historic-era artifacts
31-5521	-	Seven widely scattered prehistoric artifacts
31-5620	PLA-2504H	Segment of Donner & Tahoe Railroad (ca. 1893-1901) ^c

Notes: ^aReported in records search as inside APE but found during survey to be outside. ^b Site evaluated as part of the Martis Valley Trail project and recommended ineligible (Waechter and Lindström 2014); recommendation recently accepted by the California SHPO. ^c Note that a separate segment has been recorded under different numbers (P-31-2587/PLA-1845H). APE – Area of Potential Effects.

NATIVE AMERICAN OUTREACH

On October 8, 2014, Far Western contacted the California Native American Heritage Commission, requesting a check of their sacred land files and a list of groups and individuals with traditional ties to the project vicinity. The Commission responded on October 15, 2014, that the Sacred Land File did not identify any known Native American cultural resources in the project area, but cautioned that a negative file search did not preclude the possibility that such resources are present. They also provided a list of several groups and individuals (which, surprisingly, did not include the Washoe Tribe of Nevada and California, whose traditional territory includes the Truckee area) who might have knowledge of or interest in the area. Far Western then sent letters to the groups and individuals identified by the Commission, and to the Washoe Tribe. To date, there have been two responses: the Shingle Springs Rancheria and the Washoe Tribe have asked that consultation continue through the course of the project, and that any information obtained during the cultural study be shared with the tribes. Outreach efforts are documented in Appendix B.

FIELD SURVEY

Before fieldwork began, the Far Western field crew completed a safety program administered by Truckee-Tahoe Airport personnel. At the end of the orientation, Far Western was issued a radio to carry during the survey, so the crew could be alerted to incoming and outgoing air traffic.

The cultural survey took place over the week of November 24, 2014. Crew included Far Western senior archaeologists Allen McCabe and Steven Neidig and archaeologist Susan McCabe. The surveyors walked the entire project APE (except the 22 acres that had already been surveyed to current standards) in 15- to 30-meter transects, for a total of 323 acres. In addition to the radio, the crew carried field maps, camera, and a handheld Trimble GeoXT GPS unit containing project parcel background files and locations of the seven previously recorded archaeological resources identified during the records search. Over the course of the survey they revisited those seven resources, determining that one (P-31-1186) actually lay outside the project APE.² The crew also identified 15 additional resources: five sites and nine isolated finds (Table 3). Sites and isolates were differentiated on the basis of density: isolates were defined as fewer than three artifacts within a 20-meter-diameter area. Isolates identified in the project APE are listed in Table 4; these were mapped and described but not formally recorded.

The archaeologists recorded all sites on standard DPR 523 site forms. Site recordation included notes on features, artifacts, and the local environment; overview and artifact/feature photographs; and GPS mapping. Site boundaries were defined on the basis of surface indicators (e.g., artifact distributions) and topography. The surveyors recorded all cultural remains in the APE and (for linear features) for a maximum of 100 meters beyond the APE. Site datum/reference points were plotted near the center of each site (or on either end of a linear feature); no physical datum was placed on any site. Mapping included site datum/reference points, boundaries, numbered artifacts, point and linear features, and isolates; collected data were based on the Universal Transverse Mercator coordinate system, Zone 10 North, referenced to the 1983 North American Datum (NAD 83). Raw GPS data collected for site points, lines, and polygons, as well as isolate point locations, were subsequently processed by GIS specialist Melissa Murphy at the Far Western Great Basin Office. Site records are included in Appendix C.

Site Descriptions

Site locations for all sites (previously recorded and newly identified) in the APE are shown on Figure 3. Again, these are not to be made available except as necessary for project planning.

² Far Western collected new GPS data for this site and will supply it to the NCIC.

SUMMARY AND RECOMMENDATIONS

Prefield research, Native American outreach, and field inventory of 345 acres (including 22 acres previously surveyed) at the Truckee-Tahoe Airport in Nevada and Placer Counties has identified 11 archaeological sites and nine isolated artifacts within the boundaries of the proposed Airport Master Plan Update project. For the isolated finds, recordation has exhausted their data potential, and no additional study is recommended. However, the archaeological sites will need to be considered further.

Under CEQA, state and local public agencies must identify the environmental impacts of proposed discretionary activities or projects, determine if the impacts will be significant, and identify alternatives and mitigation measures that will substantially reduce or eliminate significant impacts to the environment. A "substantial adverse change" to an important or unique cultural resource—defined as "demolition, destruction, relocation, or alteration such that the significance of an historical resource would be impaired" (PRC Section 5020.1(q)) is considered a significant environmental impact. CEQA defines an important or unique cultural resource as one that meets the criteria for listing on the California Register of Historical Resources (California Register). Those criteria can be found on the California SHPO web site (http://ohp.parks.ca.gov/?page_id=21238).

The standard recommendations for treatment of potentially significant resources involve either (1) avoidance of impacts or (2) evaluation of site significance. Avoidance is possible where project designs can be modified to leave the resources undisturbed. Where avoidance is not feasible, any resources within the project APE will need to be evaluated for their eligibility to the California Register. Resources that are evaluated and determined ineligible require no further consideration; those that are determined eligible will require mitigation of impacts through data recovery, archival research, public interpretation, and/or other means.

Table 5 provides a preliminary assessment of significance for the 11 sites in the project APE. This assessment is *not intended as formal evaluation*, however, but only as guidance to assist the project proponents in their decision-making process. Any evaluations should be carried out by a qualified archaeologist; work at prehistoric sites should be done in consultation with the Native American community.

Table 5. Recommendations.

Primary No. (P-)	Trinomial No. (CA-)	TEMPORARY No.	DESCRIPTION	PRELIMINARY ASSESSMENT
NEWLY IDEN	ITIFIED SITES			
29-4470	NEV-2193	A-01 – 7149	Road segment, ca. 1865-1960s	Not likely to be eligible
29-4471	NEV-2194	A-02 - 7159	Remains of charcoal kiln, ca. 1870-1880s	Potentially eligible
29-4472	NEV-2195	A-03 - 7160	Remains of charcoal kiln complex, ca. 1870-1880s	Potentially eligible
29-447	NEV-2196	A-04 – 7161	Chinese colliers' work camp, ca. 1870-1880s	Potentially eligible
29-4474	NEV-2197	A-05 – 7162	Domestic dump, early/mid-twentieth century	Not likely to be eligible
PREVIOUSLY	DOCUMENTED SIT	TES		
29-1166	-	MW1	Remains of charcoal kiln, ca. 1870-1880s	Potentially eligible
29-1167	-	MW2	Remains of charcoal kiln, ca. 1870-1880s	Potentially eligible
29-1168	-	MW-LF1	Road segment, 1930s to present	Not likely to be eligible
31-2587	PLA-1845H	MM-LF1	Segments of Donner & Tahoe Railroad, ca. 1893-1901	Potentially eligible
31-5504	-	MVT-1-LF2	Abandoned irrigation ditch	Ineligible (Waechter and Lindström 2014)
31-5505	-	MVT-1-LF3	Abandoned fence line	Ineligible (Waechter and Lindström 2014)

REFERENCES

Griffin, S. Joe

2014 Martis Creek Lake and Dam Cultural Resources Survey. US Army, Corps of Engineers, Sacramento, California.

Kautz, Robert, and William Jerrems

2002 Cultural Resource Survey of the Joerger Project. . Info Center Report 8906. Manuscript on file with the North Central Information Center, California State University, Sacramento, California.

Lindström, Susan G.

- 1999 Martis Valley Mini Storage Project, Heritage Resource Inventory. Info Center Report 6189.
 Manuscript on file with the North Central Information Center, California State University, Sacramento, California.
- 2001 Martis Valley Well No. 1 Pump Station and Easement Project. On file with the North Central Information Center, California State University, Sacramento, California (Report No. 145).
- 2012 Martis Valley Trail (MVT) Heritage Resource Inventory Segment 1 (Private Land) and Two-Acre Trailhead Parking (Addendum). Prepared for North Fork Associates, Auburn, California, on behalf of the Northstar Community Services District, Truckee, California.

Lindström, Susan G., and Sharon A. Waechter

2007 Archaeological Investigations at Alder Hill for the Gray's Crossing Development, Nevada County, California. Volume II, Historic Era sites, Part A, Report. Susan G. Lindström, Consulting Archaeologist, Truckee, California and Far Western Anthropological Research Group, Inc., Davis, California. Prepared for East West Partners, Truckee, California. On file at North Central Information Center, California State University, Sacramento

Martells, Jack

1976 The Beer Can Collector's Bible. Ballantine Books, New York.

Reno, Ron

2010 *Milk Can Field Dating Guide*. Manuscript on file at Far Western Anthropological Research Group, Inc., Great Basin Branch, Carson City, Nevada.

Simonis, D.

1997 Simonis Can Guide. Bureau of Land Management, Kingman Field Office, Kingman, Arizona.

Toulouse, J. H.

1971 Bottle Makers and their Marks. Thomas Nelson, Inc., New York.

Waechter, Sharon A.

2013 Archaeological Test Excavations at Historic-era Site FS 05-17-57-784 in Martis Valley, California Truckee Ranger District, Tahoe National Forest Report Number R2012-05-17-00073

Waechter, Sharon A., and Susan G. Lindström

2014 Archaeological Investigations for the Proposed Martis Valley Trail – Segments 1 and 3A, Placer County, California. Far Western Anthropological Research Group, Inc., Davis, California. Prepared for Northstar Community Services District, Truckee, California. Submitted to US Army Corps of Engineers, Sacramento, California.

Whitten, David

2014 Glass Bottle Marks: Glass Manufactures' Marks. http://www.glassbottlemarks.com/bottlemarks, accessed January 2014.

Appendix D

Traffic Impact Analysis

Truckee Tahoe Airport Master Plan Traffic Impact Analysis

Prepared for

Mead & Hunt, Inc.

Prepared by

LSC Transportation Consultants, Inc.

TRUCKEE TAHOE AIRPORT AIRPORT MASTER PLAN MND TRAFFIC ANALYSIS

Prepared for

Mead & Hunt, Inc. 133 Aviation Boulevard, Suite 100 Santa Rosa, CA 95403 707 • 284-8687

Prepared by

LSC Transportation Consultants, Inc. 2690 Lake Forest Road, Suite C P.O. Box 5875 Tahoe City, California 96145 530 • 583-4053

September 18, 2015

LSC #157350

SECTION PAGE

Executive Summary

1	INTRODUCTIONScope of Study	
2	EXISTING CONDITIONS	:
_	Existing Roadways	
	Existing Traffic Volumes	
	Existing Transit Service	
	Existing Trail and Bikeway System	
	Existing Driver Sight Distance	
	Historical Crash Data	
3	PROPOSED CONDITIONS	9
	Project Description	9
	Access	13
	Trip Generation	13
	Trip Distribution and Assignment	17
4	NEAR-TERM CONDITIONS	
	Existing Conditions with Approved Development Projects	21
5	FUTURE CUMULATIVE CONDITIONS	
	Future Cumulative Traffic Conditions	25
6	LEVEL OF SERVICE ANALYSIS (LOS)	
	Level of Service Standards	
	Methodology	30
	Intersection LOS Analysis	
	Intersection Traffic Queuing Analysis	33
7	TRANSPORTATION IMPACTS AND MITIGATION	
	Intersection Level of Service	
	Intersection Traffic Queuing	
	Analysis of the Need for New Turn Lanes	
	Impact on Vehicle Miles Traveled (VMT)	
	Multi-Modal Impacts	
	Driver Sight Distance and Roadway Design Hazards	
	Construction Traffic Impacts	
	Traffic Impact Fees	44

Appendix A - LOS Descriptions

Appendix B - Intersection LOS Output

Appendix C – LOS calculations with intersection mitigation measures

Appendix D - Turn Lane Warrant Charts

Appendix E – Truckee TIF Table

LIST OF TABLES

TABLE		PAGE
ES-1	Truckee Master Plan Project – Mitigation Measure Summary	ES-4
1	Truckee Airport Multi-Use Hanger – Potential Schedule of Events	11
2	Truckee Airport Master Plan Trip Generation	14
3	Truckee Airport Master Plan – Trip Distribution	
4	Approved Development Projects	
5	Truckee Airport Master Plan – Existing Year Intersection LOS Summary	31
6	Truckee Airport Master Plan – Future Cumulative Intersection LOS Summary	
7	Truckee Airport Master Plan – Unmitigated Intersection Queue Lengths	34
8	Truckee Airport Master Plan – Intersection LOS Mitigation Summary	37
9	Truckee Airport Master Plan – Mitigated Intersection Queue Length	40
10	Truckee Airport Master Plan – Vehicle Miles Traveled (VMT)	42
11	Truckee Airport Master Plan – Construction Trip Generation	44
	LIST	OF FIGURE
1	2014 Summer PM Peak Hour Intersection Traffic Volumes Without Project	
2	Truckee Airport Conceptual Site Plan	10
3	Truckee Airport Master Plan Project Net Impact on PM Peak Hour Traffic Volumes	19
4	2015 PM Peak Hour Traffic Volumes With Truckee Airport Master Plan	20
5	2015 PM Peak Hour Traffic Volumes With Approved Projects With	
	Truckee Airport Master Plan	23
6	Future PM Peak Hour Traffic Volumes (Without Truckee Airport Master Plan)	26
7	Future PM Peak Hour Traffic Volumes (With Truckee Airport Master Plan)	27

PURPOSE

This report presents the transportation impacts associated with the development of the Truckee Airport Master Plan project to be located at the Truckee Tahoe Airport in Nevada County, California. The project proposes to construct a single-story office building in the southwest corner of the Airport Road/Chandelle Way intersection, a multi-use hangar located southeast of the existing main terminal, and expansion of the aviation activities at the airport. Analysis is conducted for existing, existing with approved (but not yet built) projects, and future cumulative conditions.

FINDINGS

The findings of the Traffic Impact Analysis are as follows:

- 1. The project is expected to generate up to 133 one-way vehicle-trips (34 inbound and 99 outbound) at the site access points during the summer PM peak hour, and approximately 767 one-way trips over the course of a **summer** weekday.
- 2. The project is expected to generate up to 178 one-way vehicle-trips (25 inbound and 153 outbound) at the site access points during the winter PM peak hour, and approximately 930 one-way trips over the course of a **winter** weekday.
- 3. All of the study intersections operate at an acceptable Level of Service (LOS) during the PM peak hours in 2015, without or with the proposed Truckee Airport Master Plan project. With the addition of the approved projects (including the PC-3 Joerger Ranch Specific Plan Project) and the proposed project, all study intersections would operate at an acceptable LOS except the SR 267/Brockway Road/Soaring Way intersection. This intersection would operate at an unacceptable LOS F.
- 4. Under future cumulative conditions, the SR 267/Brockway Road/Soaring Way intersection is expected to continue to exceed the LOS thresholds during the PM peak hour, without or with the Truckee Airport Master Plan project. The SR 267/Airport Road/Schaffer Mill Road intersection is also expected to exceed the LOS thresholds during the PM peak hours without or with the proposed project. The remaining study intersections would operate at an acceptable LOS under all future cumulative scenarios.
- 5. Without intersection capacity improvements, traffic queues associated with the SR 267/Brockway Road/Soaring Way intersection are expected to interfere with adjacent roadways and driveways under the 'existing plus approved projects plus proposed project' and all future cumulative scenarios. In addition, the southbound left-turn queue on the SR 267/Airport Road/Schaffer Mill Road intersection is expected to exceed the available storage length under future cumulative summer conditions, with or without the proposed project. No additional traffic queuing concerns are identified.
- 6. No new turn lanes are warranted by the peak-hour traffic volumes at the stop-controlled study intersections or at the project access points.

- 7. The project is estimated to generate approximately 185 new Vehicle Miles Traveled (VMT) in the Truckee region during the summer PM peak hour.
- 8. Additional public transit service would not be required as a result of the proposed project. As a bus stop is provided on the site, the existing transit facilities are considered to be adequate.
- 9. The proposed bicycle and pedestrian facilities are considered to be adequate, so long as any roundabouts or signalized intersection improvements are designed to safely accommodate bicycle and pedestrian crossings. Furthermore, the proposed bicycle and pedestrian plans are consistent with the Truckee Trails and Bikeways Master Plan, current plans for the Legacy Trail and Truckee-Northstar trail connections, as well as related goals and policies in the Circulation Element of the Truckee General Plan.
- 10. Of the total crashes reported within the study area over the last 10 years, there were no fatalities and no crashes reported involving either bicyclists or pedestrians. No existing safety deficiencies are identified along Soaring Way. There were no reported crashes along Airport Road within the immediate vicinity of the project site (north of Soaring Way). No driver sight distance deficiencies or potential roadway design hazards are identified with implementation of the proposed project, so long as the final landscaping plans provide adequate corner sight distance.
- 11. A total of approximately 112 daily one-way vehicle trips would result over the course of a peak day during project construction-related activity, with 6 inbound and 21 outbound trips occurring during the PM peak hour. Adding this traffic to the existing summer PM peak-hour traffic is not expected to cause any study intersections to exceed the applicable LOS thresholds.

RECOMMENDATIONS

The following mitigation measures are recommended to address transportation impacts with the proposed project, and are summarized in Table ES-1:

1. No intersection LOS improvements are needed at the 267/Brockway Road/Soaring Way intersection in 2015 with the proposed project. Removal of the existing traffic signal at this intersection and construction of a dual-lane roundabout would improve the LOS to an acceptable level in 2015 with the approved development projects (including PC-3). However, a dual-lane roundabout would not achieve LOS standards under future cumulative conditions. A roundabout at this intersection is included in the Town of Truckee's traffic impact fee program.

While provision of capacity-enhancing improvements to the existing signalized intersection would improve the LOS to an acceptable level, this may not be consistent with Town policy (Truckee General Plan Policy P7.1), which strives to replace existing traffic signals with roundabouts, including traffic signals on State Highways. General Plan Policy P7.2 states, "Install roundabouts instead of new traffic signals or capacity-enhancing improvements to existing signalized intersections, when roundabouts will achieve the same or better Level of Service as a traffic signal, where it is physically feasible to do so, and when installation of the roundabout will not be substantially costlier than a signal." Note that either a roundabout or traffic signal improvements would require that SR 267 be widened to four lanes in the future. The improvements to this intersection are shown to be needed, regardless of whether the proposed Truckee Airport Master Plan project is implemented.

- 2. No intersection LOS improvements are needed at the SR 267/Airport Road/Schaffer Mill Road intersection in 2015 with the proposed project and/or the approved development projects. Provision of two through lanes on the SR 267 approaches, as well as a reconfiguration to a separate left-turn and shared through/right-turn lanes on the minor approaches would improve the LOS to an acceptable level under the future cumulative scenarios. The Placer County traffic impact fee program includes improvement projects that are considered to address the LOS deficiencies at this intersection. According to the Placer/Truckee Regional Traffic Impact Fee Agreement, payment of appropriate fees under the Truckee impact fee program is considered to mitigate impacts on roadway improvements included in the improvements list for Placer County's Tahoe Resorts Benefit District impact fee program.
- 3. No traffic queuing concerns are identified under existing conditions with the proposed project. With implementation of the recommended intersection LOS mitigation measures, the following additional improvements would be needed to mitigate intersection queuing concerns at the 267/Brockway Road/Soaring Way intersection:
 - a) With improvements to the existing signalized intersection, the northbound left-turn lane would need to be extended by about 180 feet in 2015 with approved projects with proposed project, and by about 475 feet under future cumulative with project conditions.
 - b) Under the 'existing plus approved projects with proposed project' scenario, the southbound left-turn lane would need to be extended by approximately 25 feet.
 - c) Similarly, the eastbound right-turn lane would need to be extended by about 145 feet in 2015 with approved projects with proposed project, but by only about 55 feet under future cumulative with project conditions. (The queue length is shorter under future cumulative conditions because of differing traffic patterns based on the Town of Truckee TransCAD model.)
 - d) As the recommended eastbound left-turn lane would need to be designed to extend beyond the location of the intersection with Hope Court to the west under the 'existing plus approved projects with proposed project' and the future scenarios, it is recommend that "KEEP CLEAR" pavement marking be provided within the Brockway Road/Hope Court intersection in order to prevent westbound left-turns from blocking westbound through traffic on Brockway Road.
- 4. The final landscaping plans should provide at least 275 feet of corner sight distance.
- 5. As part of the mitigation of this development, the applicant shall pay the amounts determined to be appropriate to the traffic impact fee programs of the various jurisdictions. Additionally, under existing year conditions with the proposed project, although no intersection LOS or traffic queuing improvements are needed, the project may be conditioned by Nevada County to complete project-specific improvements adjacent to the project property (such as pedestrian-related improvements). Finally, additional traffic management may be required during large hangar events (considered special events).

			20	2015 Traffic Conditions			Future (Future Cumulative Year Conditions	r Conditions	
Intersection	octo Station	Without	With Truckee Airport Master Plan Project	With Approved Projects, With Truckee Airport Master Plan	When is Impact	Implementation Method	Without Project	With Clear Capital Project	When is Impact	Implementation Method
SR 267/Brockway Road/Soaning Way	1	Improvement Not Needed		Improvement Not Needed Replace Existing Signal With Dual-Lane Roundabout; OR Provide Capacity-Enhancing Improvements to Existing Signal	Summer	Included in Truckee TIF Program.	Replace Existing Signal With Dual-Lane Roundabout (Does not meet Town LOS standards); OR Provide Capacity-Enhancing Improvements to Existing Signal. AND Widen SR 267 to	Same as Without Project Condition	Summer PM	Summer PM Included in Truckee TIF Program.
SR 267/Airport Road/Schaffer Mill Road	Placer County/ Caltrans	Improvement Not Needed	Improvement Not Needed	Improvement Not Needed Improvement Not Needed	n/a	n/a	Widen SR 267 to 4 Lanes and Reconfigure Minor Approaches to Provide a Left- Turn Lane and Shared Through/Right-Turn Lane	Same as Without Project Condition	Summer PM and Winter PM	Included in Placer County TIF/CIP. (Payment of Truckee TIF would mitigate this impact.)
Site Access Intersections on Airport Road and Chandelle Way	Nevada County/ Town of Truckee	Improvement Not Needed	Ensure Final Landscaping Plans Provide at Least 275 Feet of Comer Sight Distance	Same as With Project	All Hours	Project Applicant	Improvement Not Needed	Sal	Same as 2015 Conditions	nditions
Source: LSC Transp	Source: LSC Transportation Consultants, Inc.	ic.							Truckee Airp	Truckee Airport MasterPlan TIA.xIsx

The purpose of this report is to present the draft traffic impact analysis for the proposed Truckee Airport Master Plan Project to be located at the Truckee Tahoe Airport in Nevada County, California. Specifically, the project components that are expected to generate traffic are as follows:

- A new single-story office building (totaling approximately 12,840 square feet) in the area of the
 existing car rental facility in the southwest corner of the Airport Road/Chandelle Way
 intersection;
- A potential multi-use hangar facility southeast of the existing airport terminal; and
- An increase in aviation activity.

As the project site is near the Town of Truckee, three of the study intersections are located within the Town Limits. In addition, one study intersection is located in Placer County.

Scope of Study

Based upon input received from Nevada County staff and Town of Truckee staff, this study includes the following study scenarios:

- 1. Existing 2015 Without Project
- 2. Existing 2015 With Airport Master Plan Project (Full Buildout)
- 3. Existing 2015 With Approved Development Projects With Proposed Project
- 4. Future Cumulative Conditions Without Project
- 5. Future Cumulative Conditions With Airport Master Plan Project

The following four study intersections are included:

- 1. State Route (SR) 267/Brockway Road/Soaring Way
- 2. Joerger Drive/Soaring Way
- 3. Airport Road/Soaring Way
- 4. SR 267/Airport Road/Schaffer Mill Road

While the project is located in Nevada County, many of the project impacts and concerns are located in the Town of Truckee and Placer County. It is also highly unlikely that the project would result in additional significant impacts to Nevada County roads. As a result, Nevada County has approved utilizing Truckee and Placer County traffic analysis criteria for the purpose of this study. Consistent with the standard of practice in the area regarding similar traffic studies, traffic analysis is limited to PM peakhour periods only.

First, existing traffic volumes are estimated. Next, the project's trip generation, distribution, and traffic assignment through the study intersections is analyzed. Level of Service (LOS) is evaluated at all of the study intersections. In addition, intersection traffic queues are reviewed, the need for new or expanded turn lanes is assessed, Vehicle Miles Traveled (VMT) impacts are estimated, multi-modal impacts are addressed, intersection and corridor safety is evaluated, and construction traffic impacts are analyzed. Finally, potential mitigation measures are identified and assessed, and traffic impact fees are discussed.

This page left intentionally blank.

The existing infrastructure and operational traffic conditions in the vicinity of the site are documented. The purpose of this section is to provide a foundation for comparison to 'with project' conditions. Roadway conditions are studied to assess the current configuration and operating conditions of the study area roadways. Existing peak-hour traffic volumes are determined.

Existing Roadways

State Route 267

State Route (SR) 267 is a two-lane highway running in a general northwest-southeast alignment between the Interstate-80/SR 89 North/SR 267 interchange in Truckee and SR 28 in Kings Beach. SR 267 is of local and regional significance, providing access to residential, industrial, commercial and recreational land uses. It serves as the major route between the I-80 corridor in the Town of Truckee and the North Lake Tahoe communities of Kings Beach and Incline Village, Nevada. It also serves as the sole existing access to the Northstar California Resort and adjacent residential neighborhoods. The posted speed limit along SR 267 within the study area is 55 miles per hour.

Brockway Road

Brockway Road is a 1.5 mile long roadway, which runs in a generally east-west orientation between SR 267 and South River Street in Downtown Truckee. On its west end Brockway Road turns into Bridge Street which continues through Downtown Truckee. It provides access to many residential, commercial, and recreational land uses. Throughout its length, Brockway Road is a 2-lane roadway with left-turn lanes at major intersections and driveways. Within the study area, the posted speed limit is 45 miles per hour.

Soaring Way

Soaring Way is an arterial roadway that provides access to the project site. Soaring Way runs approximately two-thirds mile between SR 267 on the west and Airport Road on the east. The posted speed limit along Soaring Way is 40 miles per hour. The eastern end of Soaring way provides access to commercial land uses and the existing Truckee Tahoe Airport.

Joerger Drive

Joerger Drive is a two-lane roadway providing access from Soaring Way to the Riverview Sports Park, the Truckee Sanitation District, the Truckee Tahoe Unified School District Transportation Center, and a quarry. Joerger Drive has a posted speed limit of 40 miles per hour.

Truckee-Tahoe Airport Road

Truckee-Tahoe Airport Road provides access from SR 267 northeast to the Truckee Tahoe Airport. The roadway begins with a 3-lane cross section at its intersection with SR 267 in Placer County. Truckee Tahoe Airport Road crosses into Nevada County and the Town of Truckee at a point approximately 700

feet northeast of SR 267, and provides access to the Town government offices. The roadway transitions to a local two-lane roadway to the northeast of its intersection with Soaring Way.

Chandelle Way

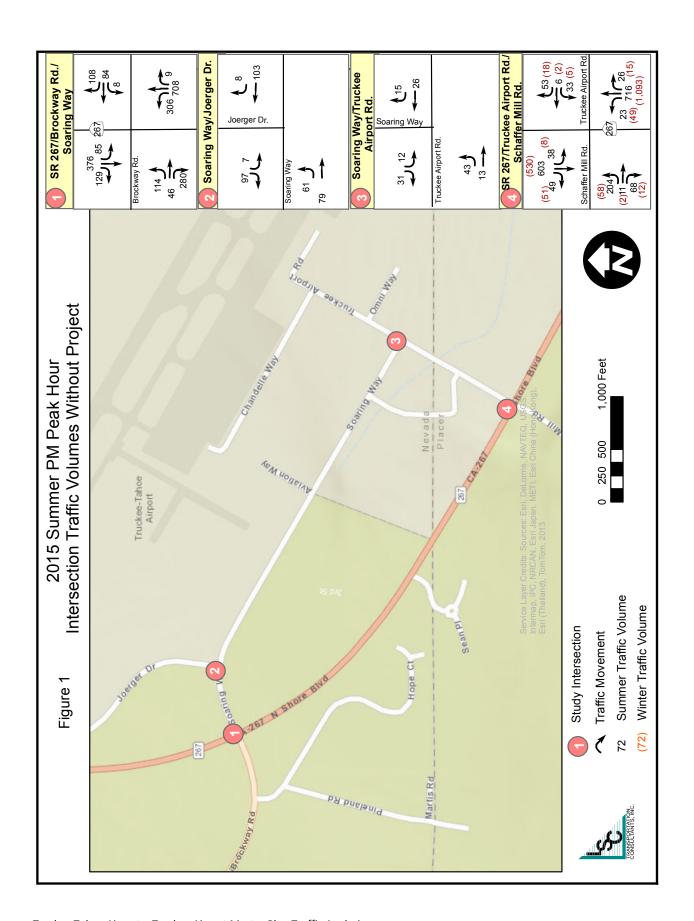
Chandelle Way is local two-lane roadway located along the southwest side of the Truckee-Tahoe Airport. The roadway runs between Truckee-Tahoe Airport Road and Bus Park Drive. This roadway provides access to the project site.

Existing Traffic Volumes

Existing summer traffic volumes are estimated for all of the study intersections, consistent with Town of Truckee, Nevada County, and Placer County requirements. In addition, winter 30th-highest PM peakhour volumes are developed for the one intersection in Placer County, consistent with Placer County's traffic study requirements.

Existing Summer Traffic Volumes

Year 2015 summer peak-hour intersection turning-movement volumes are estimated at the study intersections as described below. Summer PM peak-hour traffic counts were conducted by LSC at the study intersections as a part of the Truckee 2009 & 2014 Traffic Count Programs, as follows:


- SR 267/Brockway Road/Soaring Way (2014)
- Joerger Drive/Soaring Way (2009)
- Airport Road/Soaring Way (2014)
- SR 267/Airport Road/Schaffer Mill Road (2009)

All counts were adjusted to reflect 10th-highest summer weekday PM peak hour conditions (consistent with Town policy), based upon hourly directional traffic volumes collected along Donner Pass Road for the entire summers of 2009 and 2014. Next, it is necessary to adjust the traffic volumes to reflect Year 2015 conditions. Truckee traffic annual growth rates were estimated by comparing the 2014 intersection counts to the 2009 counts. Historical Caltrans data were also reviewed to determine the rate of traffic growth on SR 267. The resulting annual growth rate for Truckee intersections near and along the SR 267 corridor is estimated to be 2.7 percent, and the annual growth rate for SR 267 through Martis Valley was estimated to be 2.2 percent.

Traffic volumes at the two intersections counted in 2009 were adjusted to 2012 levels as part of the <u>PC-3 Joerger Ranch Specific Plan TIA</u> (LSC, 2014). Three additional years of growth was applied to these intersection volumes to estimate 2015 conditions. The intersection volumes were finally adjusted so that entering and exiting traffic balances between adjacent intersections. The resulting existing 2015 summer intersection turning-movement volumes are displayed in Figure 1.

Existing Winter Traffic Volumes

Year 2015 winter peak-hour turning-movement volumes without the project are estimated for the SR 267/Airport Road/Schaffer Mill Road intersection in Placer County. Traffic counts were conducted at this intersection during March of 2010 as a part of the PC-3 Joerger Ranch Specific Plan Project. In addition, a more recent count was conducted at the SR 267/Northstar Drive intersection during the busy Martin

Luther King Jr. holiday weekend in January of 2011. It is necessary to adjust the counts to reflect 30th-highest winter PM peak-hour conditions. The winter peak hour is technically defined as the 30th-highest hour of travel demand during the ski season (Placer County, 2003). The 30th-highest winter PM peak hour generally corresponds to a busy (but not the busiest) weekend day during the ski season during the hour that ski areas are closing and skiers departing ski areas mix with local and inter-regional traffic. The counts were adjusted to represent the 30th-highest hour of traffic during the winter, based on Caltrans hourly traffic counts at a point on SR 267 between Brockway Road and Airport Road (the only location on SR 267 for which hourly count data is available). The intersection volumes were adjusted to Year 2012 levels as part of the PC-3 TIA. Similar to the summer volumes, the annual growth rate of 2.2 percent was applied for three years in order to estimate 2015 winter traffic volumes. The resulting 2015 existing winter peak-hour intersection turning movements are presented in Figure 1.

Existing Transit Service

Both the Town of Truckee and Tahoe Area Regional Transit (TART) transit services operate within the vicinity of the project site.

Truckee Transit

The Town of Truckee offers both fixed route and Dial-A-Ride service in the Truckee area. The fixed route service varies by season. During the winter season (mid-December through the end of March) a free fixed route/ski shuttle service is offered 7 days per week throughout Truckee and the Donner Summit area from approximately 6:00 AM to Noon and 2:45 PM to 6:15 PM. This shuttle passes Soaring Way as it travels south over the SR 267 Bypass and west on Brockway Road. The closest stop to the project site is at the intersection of Brockway Road and Martis Valley Road. The shuttle passes this stop 4 times eastbound each day.

During the non-winter season (April through mid-December) buses serve the Truckee and Donner Lake areas on a fixed hourly schedule from 9:00 AM to 1:10 PM and from 2:10 PM to 5:00 PM, every day except Sunday. The westbound bus travels south over the SR 267 Bypass, east on Soaring Way to the airport, then north on SR 267 and west on Brockway Road. There is an existing stop at the airport. The shuttle passes this stop 7 times each day.

The Truckee Dial-A-Ride service is offered year-round to the general public with priority service for seniors and persons with disabilities. This paratransit service is available for trips within the Town limits, over the same hours and days as the fixed route service. Reservations must be made at least 24 hours in advance to schedule a Dial-A-Ride trip.

TART

Placer County's Tahoe Area Regional Transit (TART) fixed route buses serve the north and west shores of Lake Tahoe and the Truckee area. This service also varies by season. During the winter season (mid-December through mid-April), the SR 267 route between Truckee and Crystal Bay operates 7 days a week from 7:00 AM to 6:00 PM. This bus passes through the project area as it travels along SR 267 and Brockway Road, with stops at the airport, the Hampton Inn on SR 267, and at the intersection of Brockway Road/Martis Valley Road. The bus passes these stops 11 times each day in each direction.

During the non-winter months (mid-April through mid-December), no service has historically been provided along SR 267, although service is provided between Tahoe City and Truckee (with a connection provided at the Truckee Depot where passengers can transfer to the Town of Truckee Bus serving the SR 267 Bypass and Brockway Road. Starting in summer 2015, however, full service will be provided along SR 267 between North Stateline and Truckee on an hourly basis. After a break in service in the fall of 2015, full year-round service will be provided, for at least the next three years.

Existing Trail and Bikeway System

Truckee's existing trail and bikeway system includes recreational trails/Class I (separated) bike paths that are in place through the Truckee River Regional Park between Brockway Road and SR 267, east of SR 267 all the way to Glenshire, and in short sections north of the Pioneer Commerce Center, Gray's Crossing and Old Greenwood developments, along Brockway Road, and along Deerfield Drive. Class II bike lanes are also provided along Donner Pass Road through the Gateway area. A Class I bike path is provided adjacent to The Rock retail center along the north side of Brockway Road, and additional trails/Class I bike paths will be built in conjunction with smaller development projects in the Brockway Road area.

Several other facilities are proposed in the Truckee Trails and Bikeways Master Plan, which describes a comprehensive system of bikeways located along Truckee's existing and future roadways, as well as a dedicated network of trails and pathways for use by pedestrians, equestrians, cyclists and cross-country skiers. The facilities proposed in the Trails and Bikeways Master Plan include a major East-West Recreational Trail, Multi-User Recreational Trails, Class I Bike Paths, Class II Bike Lanes, and Class III Bike Routes.

Existing Driver Sight Distance

There are two types of driver sight distance criteria to consider in the study area: stopping sight distance and corner sight distance. Stopping sight distance is the minimum distance required by the driver of a vehicle to bring his vehicle to a stop after an object on the road becomes visible. This is the minimum distance needed for a driver on the main roadway approaching an intersection or driveway to see an object in their travel path (such as a vehicle exiting the project site) and safely come to a stop. The Caltrans Highway Design Manual specifies minimum stopping sight distance requirements as a function of roadway design speed.

Corner sight distance is the minimum distance that a driver waiting at a cross street should be able to see in either direction along the main roadway in order to accurately identify an acceptable gap in through traffic. A clear line of sight should be maintained between the driver pulling out of the minor street and any approaching vehicle on the major street. The Caltrans Highway Design Manual specifies corner sight distance values as a function of roadway design speed. In addition, "desired" and "minimum" corner sight distance requirements as a function of major road speed are provided in the Nevada County Road Standards.

Driver sight distance was reviewed at the study intersections and existing site driveways, and no existing deficiencies are identified.

Historical Crash Data

Crash data for the study area was obtained from the Statewide Integrated Traffic Records System (SWITRS) for the most recent ten-year period available (September 2004 through August 2014). Over the ten-year period, there were a total of 57 crashes reported within the study area. Of these, there were no fatalities. There were also no crashes reported involving either bicyclists or pedestrians. Of the total 57 crashes, most (49) were related to or occurred within the vicinity of the intersection of SR 267/Brockway Road/Soaring Way. Three crashes were related to or occurred within the vicinity of the intersection of SR 267/Airport Road/Schaffer Mill Road. One crash occurred on SR 267 between the intersections of Brockway Road and Airport Road. A relatively low number of crashes (four crashes) occurred along Soaring Way, as follows:

- Two occurred at or near the Soaring Way/Joerger Drive intersection
- One occurred on Soaring Way between Joerger Drive and Airport Road
- One occurred at the Soaring Way/Airport Road intersection

Three of these four crashes were injury crashes. All three injury crashes occurred under dry road conditions, and none of them involved drivers under the influence of alcohol. The crashes along Soaring Way do not exceed the statewide average crash rate for similar roadways. Furthermore, there are no existing driver sight distance deficiencies or roadway design features that would result in undue safety concerns. Therefore, no existing safety deficiencies are identified along Soaring Way. Finally, there were no reported crashes along Airport Road within the immediate vicinity of the project site (north of Soaring Way).

The proposed development will add traffic to the roadway system. The project location, the size of the project, and the planned date of completion are all important elements that need to be considered to determine the impacts of this development on roadway safety and capacity. It is also important to estimate how much new traffic will be generated, predict where traffic generated by the site will be distributed, and examine how the project traffic will operate within the existing transportation system. All of the above elements are important in assessing the traffic impacts of this project.

Project Description

The Truckee Airport Master Plan consists of the following three traffic-generating components:

- The new Clear Capital Office Building and car rental offices
- A potential multi-use hangar
- An increase in aviation activity at the airport

These components are described in detail below. In addition, the Master Plan includes a conceptual future transit-hub facility. However, any increase in traffic associated with this conceptual facility is expected to be offset by a reduction in private vehicle trips. As such, the traffic impacts of the conceptual transit facility would be minimal.

Clear Capital Building

The project proposes to construct a single-story office building (totaling approximately 12,840 square feet) in the area of the existing car rental facility. The conceptual site plan is shown in Figure 2. The proposed Clear Capital offices have a floor area of approximately 10,840 square feet, with a total of approximately 130 employees. The Clear Capital employees are expected to work in approximately four 9-hour shifts, with all shifts overlapping (all employees on-site) from about 8 AM to 2 PM. The remaining 2,000 square feet would contain two car rental offices (the existing car rental office plus one additional car rental office).

Potential Multi-Use Hangar

A potential multi-use hangar is proposed on the airport property, southeast of the existing terminal. The hangar would be used as the venue for various events. A potential schedule of events in the hangar is shown in Table 1, including the number of attendees expected at each event. This information was analyzed in order to determine the "design day" assumptions for this study. The right-hand columns show the chain of logic used in determining the design day events. The Town's traffic study standards are based on summer weekday conditions. In the Tahoe area of Placer County, summer traffic impacts are typically evaluated based on a Friday in August, which is assumed to reflect peak summer conditions. As shown, not all of the events scheduled in the hangar would generate traffic during the Town of Truckee or Placer County standard analysis periods.

TABLE 1: Truckee Airport Multi-Use Hangar - Potential Schedule of Events	gar - Potent	ial Schedule of Even	ts								
			Schedule	ule		Peri	ods of Potent	Periods of Potential Traffic Impacts	acts		
									PMPeak	Potential to Impact Town of Truckee Analysis	Approved for Design
Event	Attendees	Date	DAY	Time	Season	Summer?	Winter?	Weekday?	Hour?	Period?	Day?
BIG BROTHER BIG SISTERS	02	5/22/2014	THUR.	4:30 pm -7:30 pm	Spring/Fall	No	No	Yes	Yes	o N	No
CIVILIAN SPECIALIST TRAINING	70	1/22/2014 - 1/24/2014	WED FRI.	9:00 am - 4:30 pm	WINTER	No	Yes	Yes	Yes	No	Winter
BIG BROTHERS BIG SISTERS PILOT BENEFIT	35	5/30/2014	THUR.	5:30 pm - 9:30 pm	Spring/Fall	٥N	No	Yes	Yes	No	No
MISSION TO MARS	24	6/24/2014 - 6/28/2014	TUE FRI.	9:00 am - 4:30 pm	SUMMER	Yes	No	Yes	Yes	Yes	Summer
BOYS AND GIRLS CLUB OF NORTH LAKE TAHOE	250	5/10/2014	SAT.	9:00 am -12:00 pm	Spring/Fall	N 0	N _O	N 0	N _O	No	No
ALDER CREEK MIDDLE SCHOOL GRADUATION	220	6/13/2013	THUR.	7:00 pm -10:00 pm	Spring/Fall	٥N	No	Yes	No	No	No
SOROPTISHOP	200	11/12/2013	THUR.	3:00 pm - 9:00 pm	Spring/Fall	No	No	Yes	Yes	N _O	No
WIZARDS LAB SCIENCE FAIR	200	3/8/2014 - 3/9/2014	THUR FRI.	10:00 am - 2:00 pm	WINTER	N O	Yes	Yes	N _o	No	N _O
APPETIZER FOR THE ARTS	300	5/9/2014	FRI.	6:00pm - 10:30 pm	Spring/Fall	٥N	No	Yes	Yes	No	No
SANTA FLY - IN	009	12/13/2014	SAT.	9:00 am - 12:00 pm	WINTER	No	Yes	No	No	N _O	No
POTENTIAL FUTURE EVENTS ESTIMATES											
TRUCKEE CHILI COOK - OFF	009	6/22/2014	SAT.	12:00 pm - 6:00 pm	SUMMER	Yes	N	No	Yes	No	No
TRUCKEE CRAB FEED	009	3/23/2014	SAT.	5:00 pm - 9:00 pm	WINTER	o _N	Yes	No	Yes	No	No
BINGO NIGHT /SPAGHETTI DINNER	200	1/30/2014	SAT.	5:00 pm - 9:00 pm	WINTER	No	Yes	No	Yes	N _O	N _o

Summer Design Day Event

As shown in the table, only two events are described to occur during the summer season, as follows:

- Mission to Mars (4-day event with approximately 24 attendees)
- Potential Future Chili Cook-Off (on a Saturday with about 600 attendees)

The Chili Cook-Off is considered to be a special event. Traffic impacts of special events occurring once a year are not typically evaluated, although traffic management during the busy periods of event-related traffic activity could be a concern. In this case, as the event goes from noon to 6 PM, the attendee arrival and departure activity would be spread throughout the 6-hour period (rather than concentrated within a particular hour), and would therefore not be expected to generate traffic operational concerns. Therefore, the other summer event, Mission to Mars, is assumed to occur on the summer design day. It is also the only event with a potential impact during the Town of Truckee's standard analysis period (summer weekday PM peak hour).

Winter Design Day Event

There are five potential events during the winter season, as follows:

- Civilian Specialist Training (70 attendees and 4 large support vehicles)
- Wizards Lab Science Fair (500 attendees, with most arriving in 40 buses)
- Santa Fly-In (600 attendees, with some arriving in 4 buses)
- Potential Future Crab Feed (600 attendees)
- Potential Future Bingo/Spaghetti Dinner (400-500 attendees)

The potential future Crab Feed and Bingo/Spaghetti events would each occur on a Saturday night from about 5 PM to 9 PM. Although these events start during the PM peak hour, they are considered to be special events, and not reflective of typical busy conditions at the hangar facility. The Science Fair occurs for two weekdays from 10 AM – 2 PM. For projects within Placer County, the peak periods of skier-related traffic typically occur on weekends. As the Science Fair does not occur on the weekend, and it ends well before the PM peak hour of winter traffic activity, it is not considered a candidate for the winter design day. The Santa Fly-In occurs on a Saturday morning in mid-December from 9 AM – noon, which does not coincide with the winter PM peak hour. Additionally, winter traffic volumes in early to mid-December (before Christmas week) are generally lower than during the peak winter season. As such, this event is not analyzed.

The remaining event, Civilian Specialist Training, occurs for 3 weekdays in late January, and it potentially generates traffic during the winter PM peak hour. This event is assumed to be representative of typical busy traffic associated with the hangar.

Increase in Aviation Activity

The proposed Airport Master Plan is expected to generate an increase of approximately 18 flights over the course of a busy day.

Access

Properly located access points are essential to allow for the safe and orderly movement of traffic into and out of a site. Access to the new Clear Capital building would be provided via two driveways, one on Airport Road and one on Chandelle Way. An additional single-lane driveway would be provided on Chandelle Way to serve the rental car facility. With the project, two existing driveways along Airport Road would be eliminated, and the total number of driveways on Chandelle Way would increase by two. The proposed driveway locations for the Clear Capital building are illustrated in Figure 2. Access to the potential multi-use hangar would be provided via Truckee Tahoe Airport Road.

Trip Generation

"Trip generation analysis" is the process by which transportation analysts identify the number of vehicle-trips that a specific proposed land use plan would add to local roadways. First, the trip generation of the three project components is estimated. Next, the "project net impact" on total trip generation through the study area is determined. The trip generation analysis is summarized in Table 2.

Trip Generation of Proposed Clear Capital Office Building

The daily and peak-hour trip generation of the proposed Clear Capital offices is estimated based on standard trip generation rates provided in the Institute of Transportation Engineers (ITE) <u>Trip Generation</u>, <u>9th Edition manual (ITE, 2012)</u> for the 'Single-Tenant Office Building' land use type. Note that this land use type has a relatively high rate compared with other types of office, such as 'General Office Building' and 'Corporate Headquarters Building'. In order to analyze the most conservative (highest) trip generation scenario, the PM peak-hour trip generation calculations assume the total 130 employees.

In accordance with the "Process for Selecting Average Rate or Equation" (<u>Trip Generation Handbook, 3rd Edition</u>, ITE, 2014), the equations are applied to the proposed use (rather than average trip rates). The employee-based equations are applied in this analysis, as they yield higher (more conservative) trip generation results than the floor area-based equations.

Some trips made to/from the Clear Capital offices are expected to be made via non-auto modes (transit, pedestrian, bicycle). The standard ITE trip rates are derived from development sites with little or no public transit service and little or no convenient pedestrian access. A 5-percent reduction is applied to the Clear Capital trips to reflect non-auto travel, considering the following:

During the non-winter season (April through mid-December), Truckee buses serve the Truckee and Donner Lake areas on a fixed hourly schedule from 9:00 AM to 1:10 PM and from 2:10 PM to 5:00 PM. The westbound bus travels south over the SR 267 Bypass, east on Soaring Way to the airport, then north on SR 267 and west on Brockway Road. There is an existing stop at the main airport building (roughly 230 feet from the office building site). The shuttle passes this stop 7 times each day.

TABLE 2: Truckee Airport Master Plan	ort Mas	2	Trip Generation	tion									
	Ш				ľ	Trip Generation Rates	ion Rates		Non-Auto	One-Way	/ Vehicle T	One-Way Vehicle Trips at Site Driveway	Driveway
	Land-Use			ı		Ы	PM Peak Hour	ır	Trips	Daily	4	PM Peak Hour	'n
Description	Code	ITE Land Use Type	Quantity	Unit	Daily	띡	Out	Total	Reduction	(DVTE)	u	Out	Total
Clear Capital Building		Single Tenant Office											
Clear Capital Offices	715	Building ²	130	Employee	5.05	0.10	09.0	0.70	2%	624	13	74	87
Additional Car Rental Office													
Additional Employees	n/a	n/a	7	Employee	4.00	0.00	0.50	0.50	%0	ω .	0	_	- :
Additional Customers	n/a	n/a	15	Customers	3.00	0.38	0.38	0.75	%0	42	9	9	12
Subtotal Rental Car Office										53	9	7	13
Subtotal Clear Capital Building										229	19	81	100
		General Aviation											
Increase in Aviation	022	Airport	8	Flights	1.97	0.17	0.14	0:30	%0	35	က	2	2
Multi-Use Hangar Event													
- Summer - "Mission to Mars"	n/a	n/a	24	Attendees	2.00	0.50	0.50	1.00	%0	48	12	12	24
- Staff	n/a	n/a	4	Staff	1.82	0.05	98.0	0.91	%0	7	0	4	4
- Winter - "Civilian Specialist Training	g n/a	n/a	20	Attendees	2.73	0.05	98.0	0.91	%0	191	က	61	64
- Staff	n/a	n/a	10	Staff	2.73	0.05	0.86	0.91	%0	27	0	6	6
Multi-Use Hangar Subtotal - SUMMER	0.4									55	12	16	28
Multi-Use Hangar Subtotal - WINTER										218	೮	20	23
PROJECT NET IMPACT ON TRIP GENERATION - SUMMER	ENERA TION	I - SUMMER								292	34	66	133
PROJECT NET IMPACT ON TRIP GENERATION - WINTER	ENERA TION	I - WINTER								930	25	153	178
Note 1: Trip generation rates are based either on the Institute of Transportation Engineers (ITE) Trip Generation, 9th Edition (2012) manual, or a person-trip analysis	r on the Institu	te of Transportation Engine	ers (ITE) Trip	Generation, 9t	h Edition (20	12) manual, or	a person-trip	analysis.					
Note 2: Daily and peak roul trip rates for this kind use are based on the regression equations.	and use are	Jased OII II ⊑ regressiori oq	uations.										

Source: LSC Transportation Consultants, Inc.

Truckee Airport MasterPlan TIA.xIsx

- Placer County's TART fixed route buses serve the north and west shores of Lake Tahoe and the
 Truckee area. During the winter season (mid-December through mid-April), the SR 267 route
 between Truckee and Crystal Bay operates 7 days a week from 7:00 AM to 6:00 PM. This bus passes
 near the project area as it travels along SR 267 and Brockway Road, with a stop at the airport. The
 bus passes this stop 11 times each day in each direction.
- Truckee's existing trail and bikeway system includes recreational trails/Class I bike paths that are in place through the Truckee River Regional Park between Brockway Road and SR 267, east of SR 267 all the way to Glenshire, and along most of Brockway Road.

Car Rental Facility

The trip generation of the existing car rental facility is reflected in the existing traffic volumes. However, it is necessary to estimate the trip generation of the proposed additional (second) car rental facility, in order to estimate the net increase in trip generation. As standard trip generation rates are not available for car rental offices, it is necessary to perform a 'person-trip analysis' in order to accurately estimate the total number of daily and PM peak-hour trips generated by this use. The person-trip analysis for the proposed car rental office is based on the following information and assumptions:

- Approximately 2 employees are assumed to report to the additional car rental office over the course
 of a busy day.
- Each employee is assumed to make 4 daily one-way vehicle trips to/from the site (2 one-way trips commuting to/from work, plus 1 round-trip off-site during the day for lunch, fueling rental cars, etc.).
- One employee is assumed to depart the site during the PM peak hour.
- The additional car rental office is estimated to serve approximately 15 customers per day. Note that
 the additional car rental office is not expected to see as many rentals as the existing car rental office
 (which sees about 20 to 30 rentals on a busy day).
- About one-quarter of the car rental customers are expected either walk to/from the airport or travel
 to/from the site via transit. About half of the car rental customers are assumed to get dropped-off
 or picked-up at the site. Note that those customers would generate 3 one-way vehicle trips per day
 (as the vehicle dropping-off or picking-up generates 1 inbound and 1 outbound trip, and the
 customer would make another 1-way trip arriving or departing in the rental car). The remaining onequarter of the customers are assumed to make 1 inbound and 1 outbound vehicle trip at the site.
- No additional reduction is applied for non-auto travel, as the non-auto trips are reflected in the customer trip generation rates.

As shown in the far right columns of the table, the proposed Clear Capital building would generate approximately 677 daily one-way vehicle trips, with 100 (19 inbound and 81 outbound) occurring during the PM peak hour.

Trip Generation of Proposed Increase in Aviation Activities

The daily and peak-hour trip generation of the proposed increase in aviation activities at the Truckee-Tahoe Airport is estimated based on standard trip generation rates provided in the ITE <u>Trip Generation</u> manual for the 'General Aviation Airport' land use type.

The Truckee-Tahoe Airport Master Plan proposes to increase aviation activity by approximately 18 flights per day. This increase in aviation activity would generate approximately 35 daily one-way vehicle trips with 5 (3 inbound and 2 outbound) trips occurring during the PM peak hour.

Trip Generation of Proposed Multi-Use Hangar Site

The ITE *Trip Generation* Manual does not contain trip rates for an event center, or for the events proposed for the potential multi-use hangar. Therefore, trip generation for the hangar is based on a person-trip analysis. The person trip analysis is based on the following assumptions:

- It is assumed that all of the attendees to "Mission to Mars" are not old enough to drive and are therefore dropped-off and picked-up from the event. A vehicle-occupancy of two event attendees per vehicle is assumed, consistent with assumptions for similar projects in the Town of Truckee. Each "pick-up" generates two vehicle trips at the site (one inbound and one outbound) and each "drop-off" generates two vehicle trips at the site. Dividing by the vehicle occupancy yields a daily trip rate of 2.0 vehicle trips per event attendee.
- It is assumed that all event attendees will be picked-up during the PM peak-hour period. Dividing by the vehicle occupancy yields a peak-hour trip rate of 1.0 vehicle trip per event attendee, with half of the trips entering the site and half exiting the site.
- It is assumed that there will be four staff associated with "Mission to Mars."
- Staff persons are assumed to generate two vehicle trips at the site per day (one entering and exiting). An average vehicle occupancy rate of 1.1 is assumed for staff trips (consistent with vehicle occupancy data from Town of Truckee), resulting in a daily trip rate for staff of 1.82.
- It is assumed that half of the daily staff trips will occur during the PM peak hour, with five percent entering the site and ninety-five percent exiting the site.
- The daily trip rate for the "Civilian Specialist Training" is based on inbound and one outbound trip per person per day. This rate is divided by the average vehicle occupancy for staff or employees in the Town of Truckee of 1.1 persons per vehicle. Half of the event attendees are assumed to make one additional trip off-site per day (for lunch, errands, etc.). This results in a daily trip rate of 2.73 vehicle trips per event attendee.
- It is assumed that each event attendee will generate one person-trip during the PM peak hour. Dividing by the vehicle-occupancy of 1.1 yields a peak-hour vehicle trip rate of 0.91 vehicle trips per event attendee, with 5 percent of trips entering the site and 95 percent of trips departing the site.

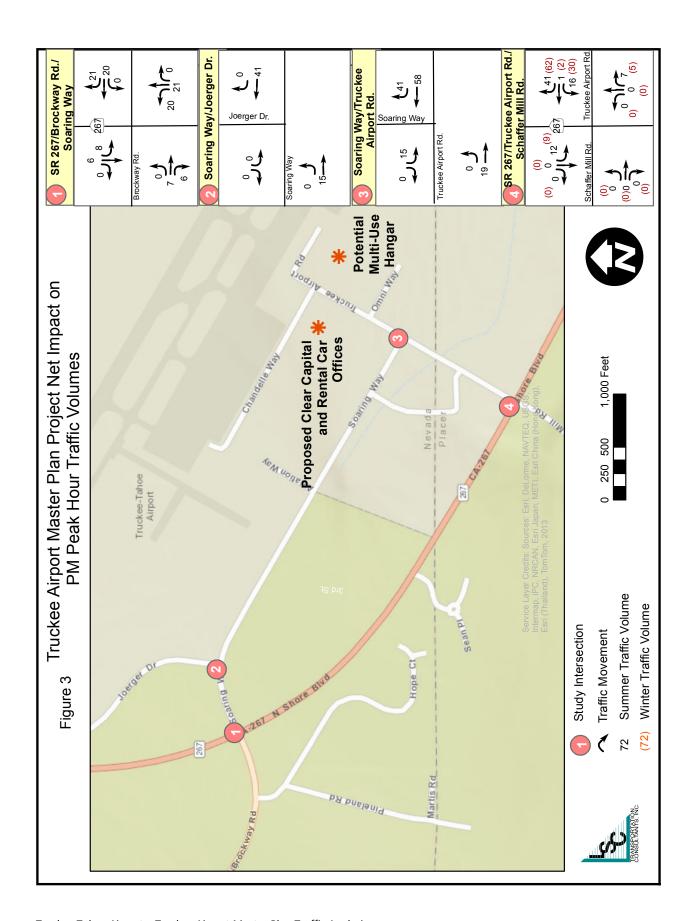
 Ten staff are assumed to attend the Civilian Specialist Training event in addition to the 70 event attendees. Vehicle-occupancy trip rates for staff are assumed to be the same as for the event attendees.

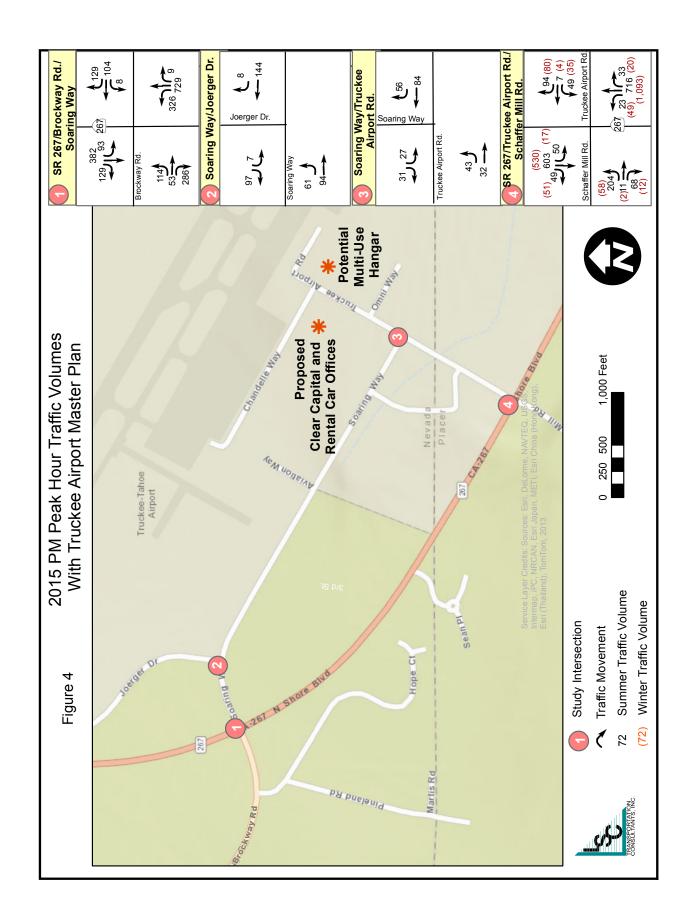
It is estimated by these assumptions that the multi-use hangar would generate 55 daily and 28 (12 entering, 16 exiting) PM peak hour vehicle trips during the summer, and 218 daily and 73 (3 entering and 70 exiting) PM peak hour vehicle trips during the winter.

<u>Total Trip Generation for Truckee Airport Master Plan</u>

As shown in the lower portion of Table 2, during the summer design period, the proposed project is estimated to result in a net increase of approximately 767 daily one-way trips, with 133 trips (34 inbound and 99 outbound) occurring during the PM peak hour. During the winter design period, the proposed project is estimated to result in a net increase of approximately 930 daily one-way trips, with 178 trips (25 inbound and 153 outbound) occurring during the PM peak hour.

Trip Distribution and Assignment


The distribution of traffic arriving and departing the project site is estimated based on existing traffic patterns, the location of the site relative to residential and commercial uses in the region, and regional access patterns. Separate and specific trip distributions are assumed for the Clear Capital Office Building, the increase in aviation activities, and the potential multi-use hangar.


The trip distribution for Clear Capital is based on the criteria listed above, as well as employee residence locations. Based on a review of the employee residence zip codes, approximately 83 percent reside in Truckee. About 12 percent reside in the Tahoe Basin, with the remaining 5 percent residing outside the Truckee-Tahoe areas. Trip distribution for the increase in aviation activities is based on the locations of existing residential areas, as well as previous records regarding aircraft owners' and employees' residence locations. Most of the aviation-related trips are expected to be made to/from points accessed via the SR 267 to the north (35 percent) or south (35 percent).

Trip distribution for the multi-use hangar is based on the locations of local residential areas and regional access patterns. About 40 percent of hangar event trips are assumed to be made to/from the north on SR 267. The estimated trip distribution pattern for trips made to/from the project site for each project component is presented in Table 3.

TABLE 3: Truckee Airport Master	Plan - Trip l	Distribution	
		Proposed Use	
Origin / Destination	Clear Capital	Multi-Use Hangar	Aviation
SR 267 Bypass	45%	40%	35%
SR 267 South of Airport Road / Schaffer Mill Road	14%	25%	35%
Brockway Road West	40%	34%	25%
Schaffer Mill Road	1%	1%	5%
Total	100%	100%	100%
Source: LSC Transportation Consultants, Inc.		Truckee Airport	MasterPlan TIA.xlsx

The project-net-impact trips are assigned through the study intersections by applying the trip distribution pattern to the project-net-impact trips from Table 2. The resulting project net impact on PM peak-hour intersection volumes is shown in Figure 3. Adding these traffic volumes to the existing volumes yields the 'existing with project' volumes illustrated in Figure 4.

The purpose of this section is to estimate how much new traffic will be generated through the study area by approved (but not yet built) development projects in the near term, and to examine traffic volumes with the existing transportation system and the approved development projects, as well as with the proposed project traffic.

Existing Conditions With Approved Development Projects

Consistent with the Nevada County Traffic Impact Study Guidelines, approved (but not yet built) development projects which contribute 25 or more peak-hour trips are included in the "existing with approved projects" scenario. Table 4 presents the list of approved development projects within Nevada County, the Town of Truckee, and Martis Valley that are included in this study. The peak-hour traffic volumes generated by the approved developments through the study area were estimated, based upon available traffic studies, and considering the type and location of each development.

The sources for the trip generation of each project are indicated in the far right column of the table. Note that the Railyard Phase 1 uses that were approved as a part of the 2008 Railyard Master Plan EIR, as well as the approved PC-1 Coldstream Specific Plan Project uses, were considered in this analysis. However, as each of these projects is estimated to generate less than 25 peak-hour trips through the study area, they are not included in this study. Also note that the trip generation analysis for the PC-3 Joerger Ranch Specific Plan was completely revised to include the most recent proposed land uses as part of the Brockway Road Corridor Study (LSC Transportation Consultants, Inc., August 2015).

Adding the traffic volumes generated by the approved developments to the 'existing with project' volumes shown in Figure 4 yields the 'existing with approved projects with proposed project' volumes shown in Figure 5. Note that a single-lane roundabout is assumed to be installed at the Soaring Way/Joerger Drive intersection as a part of the approved PC-3 Project.

TABLE 4: Approved Development Projects	evelopment	Projects				
Projects Contributing 25 or More Peak-Hour Trips Through the Study Area.	eak-Hour Trips Th	rough the Study	Area.			
					Approved Land Uses	Uses
		Single-Family Dwelling Units	Multi-Family Dwelling Units	Commercial Floor Area	Manufacturing/ Industrial Floor	Other Land Uses
Development	Jurisdiction	(DO)	(DO)	(KSF)	Area (KSF)	Involved
Truckee						
PC-3 Joerger Ranch Specific Plan	Town of Truckee	0	80	214	213	12-space trailhead parking lot
Hilltop Master Plan/Pollard Station	Town of Truckee	45	311	52.3	0	
Modio V						
Mains Valley						
Lahontan II	Placer County	Total Project incli	Placer County Total Project includes 73 Single Family DU's and Golf Course	ily DU's and Golf	Course	
Schaffer Mill (formerly Timilick, Eaglewood)	Placer County	Total Project incli	Total Project includes 462 Single Family DU's and Golf Course	nily DU's and Go	lf Course	
Martis Camp (formerly Siller Ranch)	Placer County	Total Project incli	Placer County Total Project includes 653 Single Family DU's and Golf Course	mily DU's and Go	lf Course	

Analysis (LSC, August 2015) Hilltop/Pollard/Reynolds TIA, Scenario #6 (LSC, July 2013)

Truckee TransCAD Traffic Model (Town and LSC, 2015)

Total Project includes 1,450 Multi-Family DU's, 12 KSF of Commercial, Hotel & Amenities, &

Employee Housing

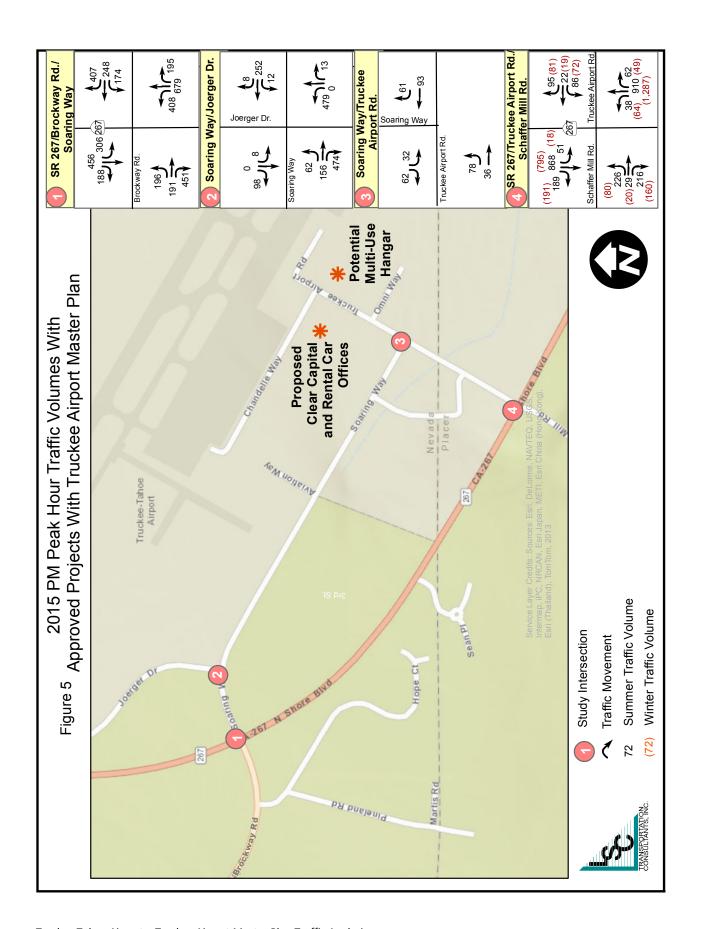
Placer County

Total Project includes 350 Multi-Family DU's and 106 KSF of Commercial

Placer County

PC-3 Brockway Road Corridor Traffic

Source

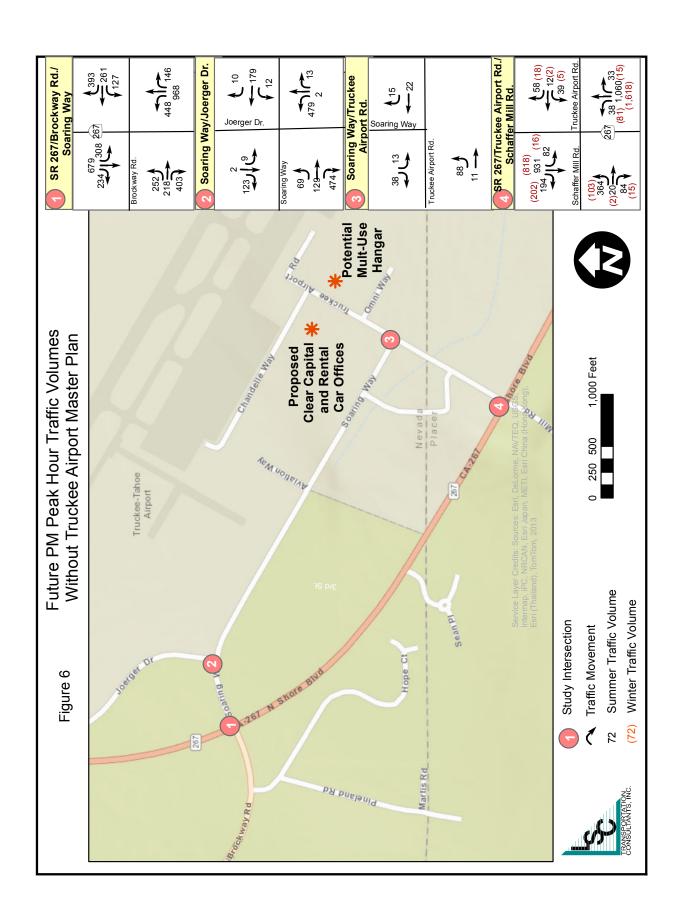

Truckee Airport MasterPlan TIA.xIsx Note: KSF = 1,000 Square Feet.

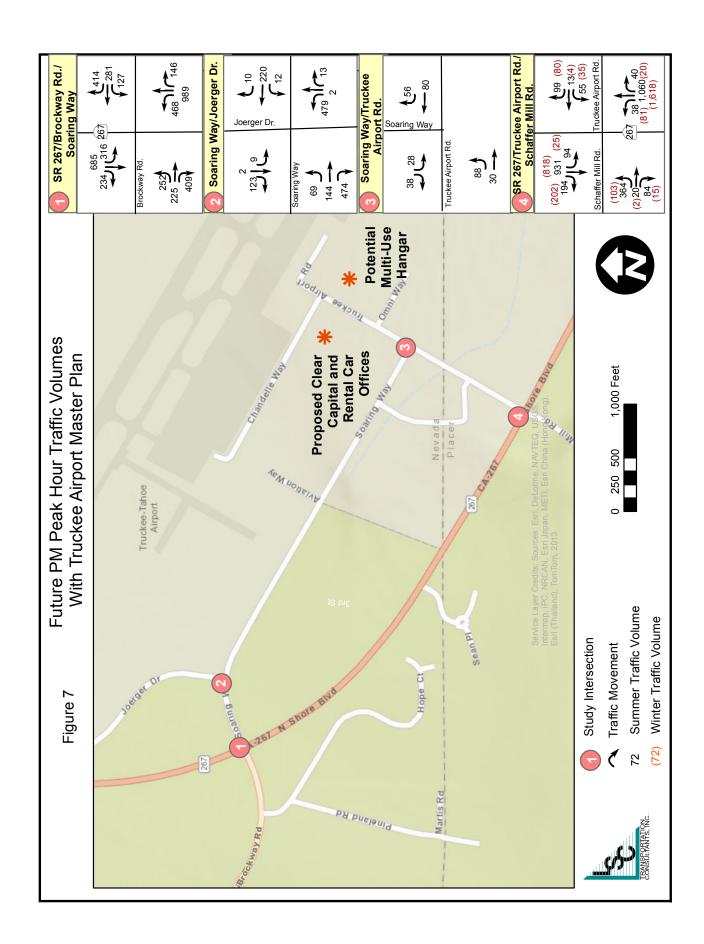
Note: All projects in Martis Valley are partially built. The grow th in traffic was estimated by subtracting the existing traffic from the total buildout traffic.

Source: LSC Transportation Consulants, Inc.

Northstar Village and Northside

The Highlands




The purpose of this section is to examine traffic volumes under future cumulative conditions, and to evaluate the potential traffic impacts of the proposed project under future cumulative conditions. Future cumulative long-term traffic volumes are estimated without the project, and with the project.

Future Cumulative Traffic Conditions

The recently revised (2014) Town of Truckee TransCAD model is used as the basis for developing future cumulative traffic volumes. The model was run to estimate the future volumes at the four study intersections. Next, the existing model volumes were subtracted from the future model volumes to identify the forecast growth in traffic volumes. This growth was then added to the existing traffic volumes (Figure 1) to estimate the future cumulative intersection turning-movement volumes. Growth from the model for the traffic analysis zone containing the airport activities and proposed office building was then subtracted from the total model growth in order to estimate the future cumulative intersection turning-movement volumes without the proposed project.

The resulting future cumulative summer (and winter, where applicable) PM peak-hour turning movements without the Truckee Airport Master Plan are displayed in Figure 6. Adding the 'project net impact' on traffic volumes to the future cumulative without project volumes yields the future cumulative with Truckee Airport Master Plan volumes presented in Figure 7.

This page left intentionally blank.

Level of Service Analysis (LOS)

Traffic operations are assessed in terms of Level of Service (LOS). LOS is a concept that was developed by transportation engineers to quantify the level of operation of intersections and roadways (as presented in the Highway Capacity Manual). Intersection LOS is classified in grades "A" through "F." At unsignalized intersections, LOS "A" reflects full freedom of operation for a driver while LOS "F" represents the worst conditions, where drivers are forced to wait for adequate gaps in conflicting traffic. These grades of LOS are quantified in terms of average delay per vehicle. A detailed description of LOS criteria is provided in Appendix A.

Level of Service Standards

The LOS thresholds applicable to the study area are discussed below.

Town of Truckee

As stated in the Truckee 2025 General Plan, the Town's LOS standards are as follows:

"Policy P2.1 – Establish and maintain a Level of Service D or better on road segments and for total intersection movements in portions of the Town outside of the Downtown Study Area". Establish and maintain a Level of Service E or better on arterial and collector road segments and for total intersection movements within the Downtown Specific Plan Area. Throughout the Town, individual turning movements at unsignalized intersections shall not be allowed to reach LOS F and to exceed a cumulative vehicle delay of four vehicle hours. Both of these conditions shall be met for traffic operations to be considered unacceptable."

Placer County

Placer County defines its LOS standard as "D" for locations within one-half mile of a state highway. According to County policy, the County's LOS standards for the state highway system shall be no worse than those adopted in the Placer County Congestion Management Program (CMP). The LOS standard in the CMP for roadways and signalized intersections located along state highways is LOS E.

Nevada County

Nevada County's LOS standard is that the minimum acceptable level of service for areas identified as *Community Regions* in the General Plan (such as the project area) shall be LOS D, except where the existing LOS is less than D. In those situations, the LOS shall not be allowed to drop below the existing LOS.

Martis Valley Community Plan

The adopted Martis Valley Community Plan (Placer County, 2003) specifies that the County shall develop and manage its roadway system to maintain the following minimum levels of service (LOS):

- LOS "C" on rural roadways, except within one-half mile of state highways where the standard shall be LOS "D."
- LOS "C" on urban/suburban roadways except within one-half mile of state highways where the standards shall be LOS "D."

It also states that the County's LOS standard for SR 267 shall be no worse than LOS "E."

Caltrans

According to the SR 267 Transportation Corridor Concept Report (Caltrans District 3, 2012), the minimum acceptable LOS along the entire length of SR 267 over the next 20 years is "D."

The applicable LOS standards for each study intersection are shown in the middle column of Table 5.

Methodology

Intersection (LOS) is largely evaluated using the methodologies documented in the 2010 Highway Capacity Manual (HCM), as applied in the Synchro 8.0 Software package developed by TrafficWare. The Highway Capacity Software (HCS 2010) is utilized for the SR 267/Airport Road/Schaffer Mill Road intersection, given the presence of the shared left/through lanes. The detailed LOS calculations for all intersections are provided in Appendix B.

Intersection LOS Analysis

LOS analyses were performed at all of the study intersections under existing year and future year scenarios, and the results are presented in Tables 5 and 6, respectively.

LOS Under Existing Conditions

As indicated in Table 5, all study intersections currently operate at a relatively good LOS (LOS B or better). With implementation of the proposed Truckee Airport Master Plan project in 2015, all intersections would continue to operate at an acceptable level (LOS C or better).

LOS Under Existing Conditions With Approved Development Projects

With implementation of the proposed project as well as other approved development projects in 2015, all intersections would operate at an acceptable level (LOS D or better), with the exception of the SR 267/Brockway Road/Soaring Way intersection. This signalized intersection would degrade to an unacceptable LOS F, with an average delay of over 200 seconds per vehicle.

LOS Under Future Cumulative Conditions

LOS under future cumulative conditions, both without and with the proposed project, is presented in Table 6. As shown, the two signalized intersections along SR 267 would degrade to unacceptable Levels of Service in the future, without the proposed Truckee Airport Master Plan project. The SR 267/Brockway Road/Soaring Way intersection is shown to operate at LOS F with an average delay greater than 200 seconds per vehicle. The SR 267/Airport Road/Schaffer Mill Road intersection is shown

Intersection										
Without Airport						Existin	ng Year		Existing Year With Approved Projects	ear Wit
LOS Delay Signal Caltrans/Town of Truckee D 19.9 B Signal Caltrans/Placer D 17.8 B Stop Controlled / Roundabout 3 Town of Truckee (4) 9.6 A Stop Controlled / Stop Controlled Town of Truckee (4) 9.5 A				•	Without . Master	Airport Plan	With Airport Master Plan	ort Master an	_	rt Mast an
Control Type 1.2JurisdictionThreshold (sec/veh)LOSSignalCaltrans/Placer CountyD19.9BStop Controlled / Roundabout 3Town of Truckee(4)9.6AStop Controlled Town of Truckee(4)9.5A				TOS	Delay		Delay		Delay	
Signal Truckee Signal Caltrans/Placer County Stop Controlled / Town of Truckee Stop Controlled / Town of Truckee Stop Controlled Town of Truckee Stop Controlled Town of Truckee (4) 9.6 A Stop Controlled Town of Truckee	Intersection	Control Type 1,2	Jurisdiction		(sec/veh)	ros	(sec/veh)	SOT	(sec/veh)	COS
Signal Caltrans/Town of Truckee Signal Caltrans/Placer Stop Controlled / Town of Truckee Stop Controlled Town of Truckee Stop Controlled Town of Truckee (4) 9.6 A Stop Controlled Town of Truckee	Summer LOS		-							
Signal Caltrans/Placer D 17.8 B Stop Controlled / Roundabout 3 Town of Truckee (4) 9.6 A Stop Controlled Town of Truckee (4) 9.5 A	SR 267 / Brockway Road / Soaring Way	Signal	Caltrans/Town of Truckee	Δ	19.9	В	22.7	O	OVF	ш
Stop Controlled / Town of Truckee (4) 9.6 A Stop Controlled Town of Truckee (4) 9.5 A	SR 267 / Airport Road / Schaffer Mill Road	Signal	Caltrans/Placer County	Ω	17.8	Ф	18.5	Δ	33.3	O
Stop Controlled Town of Truckee (4) 9.5 A	Soaring Way / Joerger Drive	Stop Controlled / Roundabout ³	Town of Truckee	(4)	9.6	∢	6.6	∢	10.9	Δ
	Airport Road / Soaring Way	Stop Controlled	Town of Truckee	(4)	9.5	⋖	10.3	В	11.3	Ω
Winter LOS	Winter LOS									
SR 267 / Airport Road / Schaffer Mill Road Signal Caltrans/Placer D 15.1 B 19.7	SR 267 / Airport Road / Schaffer Mill Road	Signal	Caltrans/Placer County	۵	15.1	Ф	19.7	Δ	54.3	Ω
BOLD text indicates that LOS standard has been exceeded. OVF = Overflow. Overflow indicates a delay greater than 200 seconds per vehicle, w hich cannot be accurately calculated using HCM methodology. NOTE 1: Level of service for signalized intersections is reported for the total intersection.	BOLD text indicates that LOS standard has been OVF = Overflow. Overflow indicates a delay greater the NOTE 1: Level of service for signalized intersections is NOTE.	exceeded. han 200 seconds per v s reported for the total i	ehicle, w hich cannot b	ne accurately c	alculated usir	ng HCM met	thodology.			
NOTE 2: Level of service for disignalized intersections is reported for the worst movement. NOTE 3: A single lane roundabout is assumed at the Soaring Way/Joerger Drive intersection in the 'Approved Projects' scenarios, as a part of the PC-3 Joerger Ranch project. NOTE 4: The Tow n of Truckee LOS standard states that "individual turning movements at unsignalized intersections shall not be allow ed to reach LOS F and to exceed a	NOTE 3: A single lane roundabout is assumed at the Sc NOTE 3: A single lane roundabout is assumed at the Sc NOTE 4: The Tow n of Truckee LOS standard states the	is is reported for the widoaring Way/Joerger Dri at "individual turning m	orst movernent. Ive intersection in the '/ ovements at unsignalize	Approved Proje ed intersection	ects' scenario s shall not be	is, as a pari	t of the PC-3 . reach LOS F	Joerger Ran and to exce	ch project. eed a	
cumulative vehicle delay of four vehicle hours." Source: LSC Transportation Consultants, Inc.	cumulative vehicle delay of four vehicle ho LSC Transportation Consultants, Inc.	=					7	ruckee Airp	Truckee Airport MasterPlan TIA.xIs)	ın TIA.x

TABLE 6: Truckee Airport Maste	Master Plan - Future Cumulative Intersection LOS Summary	Cumulative Int	ersectior	1 20S Si	ummary		
				Futul	re Cumula	Future Cumulative Conditions	Suc
				Without ⁻	Without Truckee	With Truckee	rckee
				Airport Ma	ster Plan	Airport Master Plan Airport Master Plar	ster Plar
			SOT	Delay		Delay	
Intersection	Control Type ^{1,2}	Jurisdiction	Threshold (sec/veh) LOS (sec/veh)	(sec/veh)	LOS	(sec/veh)	TOS
Summer LOS							
SR 267 / Brockway Road / Soaring Way	Signal	Caltrans/Town of Truckee	۵	OVF	ш	OVF	ш
SP 267 / Airort Bood / Schoffer Mill Bood	ادمونی	Caltrans/Placer	٥	0 03	Ш	7	Ц

ster Plan

Ш

66.1

Ш

62.8

 \forall \Box

9.8 11.1

Ø ⊳

9.6 10.1

4 4

Town of Truckee Town of Truckee

Stop Controlled Roundabout 3

County

Signal

SR 267 / Airport Road / Schaffer Mill Road

Soaring Way / Joerger Drive Airport Road / Soaring Way

Winter LOS						
SR 267 / Airport Road / Schaffer Mill Road Signal	Caltrans/Placer County	Q	70.7	ш	73.4	Ш
BOLD text indicates that LOS standard has been exceeded.						
OVF = Overflow. Overflow indicates a delay greater than 200 seconds per vehicle, which cannot be accurately calculated using HCM methodology.	per vehicle, which cannot b	e accurately	calculated usi	ng HCM met	hodology.	

NOTE 1: Level of service for signalized intersections is reported for the total intersection.

NOTE 2: Level of service for unsignalized intersections is reported for the worst movement.

NOTE 3: A single lane roundabout is assumed at the Soaring Way/Joerger Drive intersection in the 'Future Oumulative' scenarios,

as a part of the PC-3 Joerger Ranch project.

The Town of Truckee LOS standard states that "individual turning movements at unsignalized intersections shall not be allowed to reach LOS F and to exceed a cumulative vehicle delay of four vehicle hours." NOTE 4:

LSC Transportation Consultants, Inc. Source:

Truckee Airport MasterPlan TIA.xIsx

to operate at an unacceptable LOS E under both summer and winter traffic volumes. The remaining intersections are expected to operate at good levels (LOS A or LOS B) in the future. Although implementation of the proposed project would result in a slight increase in average vehicular delays, it would not affect the LOS under future cumulative conditions.

Intersection Traffic Queuing Analysis

The potential for intersection traffic queues to interfere with adjacent roadways or intersections was evaluated. Specifically, the existing lane storage lengths and the 95th-percentile traffic queue lengths at the study intersections were reviewed, and the results are shown in Table 7 for scenarios that exceed the LOS standard.

Existing Year Traffic Queuing

No traffic queuing concerns are identified under existing conditions with the proposed Truckee Airport Master Plan project. However, with implementation of the approved projects and the proposed project in 2015, the traffic queues on all approaches on the SR 267/Brockway Road/Soaring Way intersection would exceed the available storage lengths. The northbound queues are calculated to extend near to the signalized SR 267/Airport Road/Schaffer Mill Road intersection to the south. The eastbound traffic queues on Brockway Road are calculated to extend beyond the Brockway Road/Hope Court and Brockway Road/Martis Drive intersections to the west. The westbound traffic queue along Soaring way is calculated to extend beyond its intersection with Airport Road to the east. No queuing concerns are identified at the other study intersections under all Year 2015 scenarios.

Future Cumulative Year Traffic Queuing

Under future cumulative conditions, the traffic queues on the northbound and southbound approaches on the SR 267/Brockway Road/Soaring Way intersection are expected to be longer than described above. The estimated 95th percentile queue lengths are calculated to exceed all turn-lane storage capacities on the northbound and southbound approaches. The eastbound traffic queue along Brockway Road is estimated to extend past Martis Valley Road. Although the westbound queues would exceed the available storage length, they would be slightly shorter than those under the 'existing with approved' scenario. (This can be explained by the fact that some of the future cumulative intersection volumes vary slightly from the 'existing with approved projects' scenario, given that the PC-3 project assumptions in the TransCAD model may contain different assumptions for land use and trip distribution.)

Nevertheless, the westbound queue along Soaring Way would extend beyond its intersection with Airport Road to the east. With implementation of the proposed project in the future, the traffic queue lengths at this intersection would generally increase, although no additional movements would exceed the available storage length.

The traffic queue length on the southbound left-turn movement on the SR 267/Airport Road/Schaffer Mill Road intersection (left turns from SR 267 onto Airport Road) would exceed the available storage length under future cumulative summer conditions only, with or without the proposed Truckee Airport Master Plan project. All other movements at this intersection are expected to be accommodated within the existing storage lengths under all future cumulative scenarios. No queuing concerns are identified at the remaining study intersections under the future cumulative scenarios.

TABLE 7: Truckee Airport Master Plan - Unmitigated Intersection Queue Lengths Queue lengths shown in feet. Assumes 25-foot vehicle length.

٦	Right		1	1	1	;		180	20	20	10	10
Westbound	Thru		1	4,795	4,315	4,555		;	23	73	10	23
5	Left		;	1	1	1		;	1	1	1	1
٥	Right		200	393	358	360		190	80	80	∞	∞
Eastbound	Thru		1	1,068	1,765	1,820		1	515	515	150	150
ш	Left		;	;	1	;		;	;	;	;	1
p	Right		260	260	305	308		150	108	108	09	09
Southbound	Thru		1	693	1,813	1,885		:	843	843	363	365
S	Left		460	1,168	1,203	1,253		150	238	293	25	40
_	Right		;	1	1	1		1	1	1	1	1
Northbound	Thru		;	3,043	4,120	4,290		;	1,430	1,465	2,163	2,255
Ž	Left		380	1,578	1,788	1,903		300	63	63	115	115
	Intersection / Scenario	SR 267 / Brockway Road / Soaring Way ¹	- Existing Storage Length (feet)	- Existing with Approved Projects with Truckee Airport Master Plan	- Future without Truckee Airport Master Plan	- Future with Truckee Airport Master Plan	SR 267 / Airport Road / Schaffer Mill Road	- Existing Storage Length (feet)	- Future Summer Without Truckee Airport Master Plan	- Future Summer With Truckee Airport Master Plan	- Future Winter Without Truckee Airport Master Plan	- Future Winter With Truckee Airport Master Plan

Note 1: Under "overflow" conditions, the traffic queue lengths may not be precisely calculated by the HCM methodology. **Bold** indicates storage length is exceeded. Source: LSC Transportation Consultants, Inc.

Truckee Airport MasterPlan TIA.xIsx

Truckee Tahoe Airport – Truckee Airport Master Plan Traffic Analysis

Transportation Impacts and Mitigation

The following potential areas of transportation impacts are addressed in this chapter:

- Intersection Level of Service
- Intersection Traffic Queuing
- Analysis of the Need for New Turn Lanes
- Impact on Vehicle-Miles Traveled (VMT)
- Multi-Modal Impacts
- Driver Sight Distance and Roadway Design Hazards
- Construction Traffic Impacts
- Traffic Impact Fees

Intersection Level of Service

The following intersections are expected to exceed the LOS thresholds in 2015:

• SR 267/Brockway Road/Soaring Way – 'existing + approved projects' scenario

All other study intersections are calculated to operate within the applicable LOS thresholds under all 2015 scenarios.

The following intersections are expected to exceed the LOS thresholds under future cumulative conditions, with or without the proposed Truckee Airport Master Plan project:

- SR 267/Brockway Road/Soaring Way
- SR 267/Airport Road/Schaffer Mill Road (summer and winter)

All other study intersections are expected to operate within the applicable LOS thresholds under the future cumulative scenarios, with or without the proposed project.

Potential intersection LOS mitigation measures are evaluated for the two study intersections exceeding the LOS thresholds. The LOS calculations with intersection mitigation measures are contained in Appendix C.

SR 267/Brockway Road/Soaring Way Intersection

No intersection LOS improvements are needed under existing conditions with the proposed project. However, potential intersection LOS mitigation measures are considered for the SR 267/Brockway Road/Soaring Way intersection (as it would exceed the LOS thresholds in the 2015 summer PM peak hour with the proposed project and the other approved development projects, and under the future cumulative scenarios).

Table 8 provides the mitigated LOS for the SR 267/Brockway Road/Soaring Way intersection under the existing plus approved projects with Airport Master Plan scenario. Two mitigation scenarios are analyzed: improvements to the current signalized intersection and conversion to a roundabout. As indicated, the intersection could be modified to achieve acceptable LOS under both configurations. The specific improvements required to achieve acceptable LOS as a <u>signalized intersection</u> would include exclusive turn lanes for all intersection movements on all approaches, and new overlap phasing for westbound right-turns. A detailed summary of the specific lane and phasing configuration and resulting LOS on each movement is provided in Appendix C.

Note that while provision of capacity-enhancing improvements to the existing signalized intersection would improve the LOS to an acceptable level, this may not be consistent with Truckee General Plan Policy P7.1, which strives to replace existing traffic signals with roundabouts, including traffic signals on State Highways. General Plan Policy P7.2 states, "Install roundabouts instead of new traffic signals or capacity-enhancing improvements to existing signalized intersections, when roundabouts will achieve the same or better Level of Service as a traffic signal, where it is physically feasible to do so, and when installation of the roundabout will not be substantially costlier than a signal."

The removal of the existing traffic signal and construction of a <u>dual-lane roundabout</u> would also improve the LOS to an acceptable level. A roundabout at this intersection is included in the Town of Truckee's traffic impact fee program. The detailed lane configuration for the roundabout is provided in Appendix C. As shown in Table 8, this roundabout configuration would operate with worst movement (westbound right-turn) LOS E, and with total intersection average delay in the LOS D range, thereby achieving acceptable LOS under Town of Truckee and Caltrans standards. Overall, the roundabout option would provide shorter traffic queues and less delay than the traffic signal option under the existing plus approved projects with Truckee Airport Master Plan scenario. However, the roundabout option would require the widening of SR 267 to two through-traffic lanes north of and south of the intersection.

Future Cumulative Conditions

Table 8 provides the mitigated LOS for each intersection movement on the SR 267/Brockway Road/Soaring Way intersection under future cumulative conditions, both without and with the Airport Master Plan. Two mitigation scenarios are analyzed: improvements to the current signalized intersection and conversion to a roundabout.

As shown, the <u>traffic signal option</u> achieves acceptable LOS both without and with the proposed project. The traffic signal analyzed under this scenario assumes that SR 267 is widened to two through-traffic lane in each direction north of and south of the intersection. Otherwise, this analysis assumes the same turn-lane and phasing conditions as the under the 'existing plus approved projects with Truckee Airport Master Plan' scenario. This configuration would achieve an acceptable intersection LOS D.

Alternatively, a <u>dual-lane roundabout mitigation scenario</u> is analyzed for the SR 267/Brockway Road/Soaring Way intersection. The analysis considers the largest roundabout configuration that is recognized by HCM 2010 methodology, which includes two approach lanes on each approach with an additional right-turn slip or bypass lane added to each approach (three total approach lanes on all legs of the intersection). The results indicate that the movement with the worst LOS – in this case the northbound through-traffic movement – would operate at LOS F with approximately 21.7 and 26.3

TABLE 8: Truckee Airport Mas	Master Plan - Intersection LOS Mitigation Summary	mary		
		Mitigated LOS No Project	Mitigated LOS With Proposed Project ¹	Vith Proposed
Intersection	Mitigation Measure	Delay (sec/veh) LOS ^{2,3}	Delay (sec/ve	LOS ^{2,3}
Existing Year With Approved Projects Mitigation				
SR 267 / Brockway Road / Soaring Way	Improve <u>Traffic Signal</u> Capacity: Provide Exclusive Turn Lanes for All Movements from Brockway Road and Soaring Way. Add NB Right-Turn lane on SR 267. Add right-turn overlap phasing on westbound approach. No additional widening is necessary on SR 267; OR	Scenario not within Scope	46.7	Q
	Construct Dual-Lane Roundabout. ⁴	Scenario not within Scope	27.3	Q
Future Year Mitigation SR 267 / Brockway Road / Soaring Way	Provide Exclusive Turn Lanes for All Movements from Brockway Road and Soaring Way. Add NB Right-Turn lane on SR 267. Add right-turn overlap phasing on westbound approach. Widen SR 267 to 2 thru-traffic lanes in both directions; OR	41.0 D	44.9	Q
	Construct Dual-Lane Roundabout with Right-Turn Bypass Lanes on All Approaches. 5,6	104.1 F	122.4	L
SR 267 / Airport Road / Schaffer Mill Road (Summer)	Widen SR 267 to 2 thru-traffic lanes in both directions. Re-configure EB and WB approaches to left-turn lane, thru/right-turn lane.	25.0 C	28.2	O
WINTER	- SAME -	14.0 B	15.3	В
BOLD text indicates that LOS standard has been exceeded. NOTE 1: Existing plus Project scenario includes approved developments. NOTE 2: Level of service for signalized intersections is reported for the total intersection. NOTE 3: Level of service for roundabouts and other unsignalized intersections is reported for NOTE 4: See Appendix C, Table C1 for details regarding existing year roundabout mitigation. NOTE 5: See Appendix C, Table C2 for details regarding future year roundabout mitigation. NOTE 6: A dual-lane roundabout would not satisfy Tow n of Truckee LOS standards under foores: LSC Transportation Consultants, Inc.	BOLD text indicates that LOS standard has been exceeded. NOTE 1: Existing plus Project scenario includes approved developments. NOTE 2: Level of service for signalized intersections is reported for the total intersection. NOTE 3: Level of service for roundabouts and other unsignalized intersections is reported for the worst movement. NOTE 4: See Appendix C, Table C1 for details regarding existing year roundabout mitigation. NOTE 5: See Appendix C, Table C2 for details regarding future year roundabout mitigation. NOTE 6: A dual-lane roundabout would not satisfy Town of Truckee LOS standards under future cumulative conditions without or with the proposed project. Source: LSC Transportation Consultants, Inc.	roposed project.	Truckee Airport MasterPlan TIA.xIsx	sterPlan TIA.xlsx

vehicle-hours of delay, respectively, without and with the proposed project. The average total intersection delay falls into the LOS E range for both scenarios. As such, a dual-lane roundabout configuration does not achieve acceptable LOS under Town of Truckee or Caltrans LOS criteria.

A three-lane roundabout configuration is not analyzed as a part of this study. Three-lane roundabout analysis procedures are not available using current HCM 2010 methodologies. The implementation of modern three-lane roundabout is rare in the United States. A Federal Highway Administration (FHWA) publication suggests that:

The use of three-lane roundabouts raises the concern that low comprehension and compliance could be a bigger problem than at two-lane roundabouts for the following reasons: (1) the larger radii of three-lane roundabouts enable higher speeds, (2) angles of impact in three-lane roundabout may be more severe when errant vehicles stray across multiple lanes from their assigned lane, and (3) traffic volumes will be higher, and thus, more vehicles will be affected by incidents.¹

Note that either roundabout or traffic signal improvements would require that SR 267 be widened to four lanes in the future. This improvement is shown to be needed, regardless of whether the proposed Truckee Airport Master Plan project is implemented.

SR 267/Airport Road/Schaffer Mill Road Intersection

No intersection LOS improvements are needed at this intersection under existing conditions with the proposed Truckee Airport Master Plan project. However, potential intersection LOS mitigation measures are considered for the SR 267/Airport Road/ Schaffer Mill Road intersection under future cumulative conditions (as it would exceed the LOS thresholds in the future summer and winter PM peak hours, with or without the proposed project), and the results are summarized in Table 8. As shown, widening SR 267 to four lanes and reconfiguring both side-street approaches to provide exclusive left-turn lanes and shared thru/right-turn lanes would improve this intersection's operations to acceptable levels under all scenarios.

The Placer County traffic impact fee program includes the following improvement projects:

- SR 267: County line to Brockway Summit Widen to four lanes/intersections improvements
- SR 267: at Schaffer Mill/Airport Intersection improvements

These improvement projects are considered to address the improvements at the SR 267/Airport Road/Schaffer Mill Road intersection. According to the Placer/Truckee Regional Traffic Impact Fee Agreement, payment of appropriate fees under the Truckee impact fee program is considered to mitigate impacts on roadway improvements included in the improvements list for Placer County's Tahoe Resorts Benefit District impact fee program.

Intersection Traffic Queuing

No traffic queuing concerns are identified under existing conditions with the proposed Truckee Airport Master Plan project. However, with implementation of the approved projects and the proposed project in 2015, the traffic queues on all approaches on the SR 267/Brockway Road/Soaring Way intersection

Truckee Tahoe Airport – Truckee Airport Master Plan Traffic Analysis

¹ FHWA Publication No.: FHWA-HRT-10-030 (Bared, Joe, March 2010)

would exceed the available storage lengths. No queuing concerns are identified at the other study intersections under all Year 2015 scenarios.

Under future cumulative conditions, the traffic queues on all approaches on the SR 267/Brockway Road/Soaring Way intersection are expected to exceed the available storage lengths. Additionally, the traffic queue length on the southbound left-turn movement on the SR 267/Airport Road/Schaffer Mill Road intersection (left turns from SR 267 onto Airport Road) would exceed the available storage length under future cumulative summer conditions only. With implementation of the proposed project in the future, the traffic queue lengths at these intersections would generally increase, although no additional movements would exceed the available storage lengths.

Table 9 summarizes the traffic queue lengths with implementation of the intersection LOS improvements indicated in Table 8. As indicated, most queuing concerns would be reduced or resolved, with the exception of the following concerns at the 267/Brockway Road/Soaring Way intersection:

- With improvements to the existing signalized intersection, the northbound left-turn queue would exceed the available storage length. In order to accommodate the 95th-percentile left-turn queue entirely outside the through lane, the existing left-turn lane would need to be extended by about 180 feet in 2015 with approved projects with proposed project, and by about 475 feet under future cumulative with project conditions.
- Under the existing plus approved project with proposed project scenario, the southbound left-turn
 queue would exceed the available storage length. In order to accommodate the 95th-percentile leftturn queue entirely outside the through lane, the existing left-turn lane would need to be extended
 by approximately 25 feet.
- Similarly, the eastbound right-turn lane would need to be extended by about 145 feet in 2015 with approved projects with proposed project, but by only about 55 feet under future cumulative with project conditions. (The queue length is shorter under future cumulative conditions because of differing traffic patterns based on the Town of Truckee TransCAD model.)
- The recommended eastbound left-turn lane would need to be designed to accommodate the 95th percentile queue length. This distance is estimated to extend beyond the location of the intersection with Hope Court to the west under the existing plus approved projects with proposed project, as well as the future scenarios both without and with the proposed project. It is recommend that "KEEP CLEAR" pavement marking be provided within the Brockway Road/Hope Court intersection in order to prevent westbound left-turns from blocking through traffic on Brockway Road.

Additionally, the 95th percentile queue would potentially exceed the storage lane for the southbound left-turn at the SR 267/Airport Road/Schaffer Mill Road intersection under future conditions with the proposed project during the summer design period, but by only about 10 feet (less than one vehicle).

Analysis of the Need for New Turn Lanes

The need for left- and right-turn lanes along a main roadway is evaluated based on the guidelines specified by National Cooperative Highway Research Program (NCHRP) Report 457 "Evaluating Intersection Improvements: An Engineering Study Guide" (Transportation Research Board, 2001). The turn lane warrant criteria charts are included in Appendix D. The need for new turn lanes is evaluated

Right 25 25 ł ł ł Westbound Thru 53 150 50 100 100 .. 25 40 Ę Right 253 255 25 25 - 1 1 1 Eastbound Thru 50 50 10 10 575 Left 70 ł --75 75 Right 20 50 50 Southbound Thru --TABLE 9: Truckee Airport Master Plan - Mitigated Intersection Queue Lengths Left Right 25 25 Northbound Thru 625 700 ł 475 45 58 60 Left Queue lengths shown in feet. Assumes 25-foot vehicle length. - Existing with Approved Projects with Truckee Airport Master Plan Existing with Approved Projects with Truckee Airport Master Plan Future Summer Without Truckee Airport Master Plan - Future Winter Without Truckee Airport Master Plan · Future Summer With Truckee Airport Master Plan Future Winter With Truckee Airport Master Plan - Future without Truckee Airport Master Plan · Future without Truckee Airport Master Plan SR 267 / Airport Road / Schaffer Mill Road - Future with Truckee Airport Master Plan · Future with Truckee Airport Master Plan SR 267 / Brockway Road / Soaring Way **Bold** indicates storage length is exceeded. Existing Storage Length (feet) - Existing Storage Length (feet) Mitigated w/ Roundabout Intersection / Scenario Mitigated w/Signal

Source: LSC Transportation Consultants, Inc

Truckee Airport MasterPlan TIA.xIsx

only for side-street stop-controlled intersections, as the need for turn lanes at signalized and roundabout-controlled intersections is determined by level of service.

Left-Turn Lane Warrant Analysis

Left-turn lane volume warrants are defined by volume thresholds of opposing traffic versus advancing traffic, as well as the percentage of left-turns on the advancing approach. The warrant chart is attached. The need for a new eastbound left-turn lane along Soaring Way at Joerger Drive was evaluated. The peak-hour traffic volumes along Soaring Way do not meet the left-turn lane warrant criteria under existing conditions, with or without the proposed project. Note that the left-turn lane warrant criteria is not applicable under the scenario with the approved development projects nor the future cumulative scenario, considering that a roundabout is assumed to be installed at the Soaring Way/Joerger Drive intersection as a part of the PC-3 project.

Right-Turn Lane Warrant Analysis

Right-turn lane warrants are based on a graphical curve of right-turning volumes versus total traffic in the travel lane. The warrant chart is attached. The peak-hour traffic volumes do not meet the right-turn lane warrant at any of the unsignalized study intersections under any of the study scenarios.

New turn lanes are not expected to be necessary at any of the site access intersections, considering the relatively low peak-hour traffic volumes under any of the existing or future cumulative project scenarios.

Impact on Vehicle Miles Traveled (VMT)

The PM peak-hour Vehicle Miles of Travel (VMT) generated by the project was estimated based upon the PM peak-hour trip rates and percent new trips provided in Table 7 of the Town of Truckee Traffic Impact Fee (TIF) Program. This table is contained in Appendix E. The VMT analysis is presented in Table 10. As a land use similar to the multi-use hangar is not provided, the VMT for this land use is estimated based on the trip generation rate assumed in this study (Table 2), and the trip length and percent new trips from the "School" land use in the TIF Program Table. The 'school' land use category is chose because it would have the most similar trip characteristics of the proposed summer day-camp.

The Truckee TIF Program also does not contain a land use category for airports. Therefore, the 'industrial' category was chosen to best represent the trip characteristics of the proposed increase in aviation activities. As indicated, the proposed project is estimated to generate a total of approximately 185 new VMT in the region during the summer PM peak hour. For the purposes of this analysis, the "region" is assumed to be the area included in the Town of Truckee TransCAD model. (This region is bound by the I-80/Donner Lake Road interchange on the west, the SR 89/West River Street intersection on the southwest, Brockway Summit on the south, the I-80/Floriston interchange on the east, and the Truckee Town Limits to the north.)

TABLE 10: Truckee Airport Master Plan - Vehicle Miles Traveled (VMT)	Master	Plan - Vehi	cle Mile	s Travel	ed (VMT)				
	=	Land Use TE (Table 7 from TIF			Summer PM Peak Hour	summer PM Average Trip Peak Hour Length (miles) Percent New PM Peak Hour	Percent New	PM Peak Hour	
Proposed Land Use	Code	Program)	Quantity	Units	Trips ¹	2	Trips ²	VMT per Unit 2	VMT ³
Clear Capital Building Clear Capital Offices	715	Office	10.84	KSF	28	3.7	87%	5.44	59
Additional Car Rental Office	n/a	Retail	2.00	KSF	13	3.8	49%	11.32	23
Credit for existing Car Rental Facility	n/a	Retail	-0.50	KSF	ŀ	3.8	49%	11.32	9-
Subtotal Clear Capital Building									76
Increase in Aviation	022	Industrial	18	Flights	2	3.7	%26	1	17
Multi-Use Hangar Event - Summer - "Mission to Mars"	n/a	School	24	Attendees	24	4.	%08	ı	62
- Staff	n/a	Office	4	Staff	4	3.7	81%	!	13
Multi-Use Hangar Subtotal									26
Truckee Airport Master Plan - TOTAL VMT	VMT								185
KSF = 1,000 Square Feet TIF = Traffic Impact Fee									

Truckee Tahoe Airport – Truckee Airport Master Plan Traffic Analysis

Truckee Airport Master Plan TIA.xIsx

Note 1: Reference Trip Generation, Table 2.

Note 2: Source: Town of Truckee Traffic Impact Mitigation Fee Study, Table 7.

Note 3: VMT is estimated using the "PM Peak Hour VMT per Unit" where available, or otherwise by the product of the PM peak hour trips, average trip length, and percent new trips.

Source: LSC Transportation Consultants, Inc.

Multi-Modal Impacts

Multi-modal impacts (such as impacts to transit, pedestrian, and bicycle modes) are evaluated.

Transit Impacts

The impact of the proposed project on transit services and facilities is evaluated. Based upon the increase in employment generated by the proposed project, transit ridership is not expected to increase by more than 2 passenger-trips in the peak hour and 5 passenger-trips over the day. The existing TART transit services between Truckee and Northstar (serving the airport) do not presently have capacity constraints. As such, additional public transit service would not be required. In addition, Placer County plans to expand TART service serving the airport to year-round, starting in Summer 2016. As a bus stop is provided on the site, the existing transit facilities are considered to be adequate.

Project Impact on Trails and Bikeways

The project proposes to provide a paved pedestrian path along the new office building site frontages. No bicycle facilities are proposed along the site access roadways. The proposed bicycle and pedestrian plans were compared against the Truckee Trails and Bikeways Master Plan, current plans for the Legacy Trail and Truckee-Northstar trail connections, as well as related goals and policies in the Circulation Element of the Truckee General Plan. The Truckee Trails and Bikeways Master Plan proposes a Class II bike lane along SR 267 within the Town. The project would not preclude construction of any of the proposed facilities. No inconsistencies were identified. The proposed bicycle and pedestrian facilities are therefore considered to be adequate.

Driver Sight Distance and Roadway Design Hazards

No existing driver sight distance deficiencies are identified at the study intersections and existing site driveways. With implementation of the proposed project, adequate driver sight distance conditions are expected to be provided, so long as the final landscaping plans provide at least 275 feet of corner sight distance (based on Town of Truckee/Caltrans standards at 25 miles per hour). Finally, the project plans were reviewed regarding potential roadway design hazards, and no concerns are identified.

Construction Traffic Impacts

Traffic impacts during the project's construction phase are analyzed. Table 11 lists the personnel and equipment expected to be onsite over the course of a peak construction day, based on information provided by the project proponent. The following assumptions are applied in this analysis:

- Half of the construction employees are assumed to make one round-trip off-site during the day (for lunch, errands, etc.), in addition to commuting to/from work.
- About 70 percent of the employees are assumed to depart the site during the PM peak hour.
- Each inspector or visitor or "Other Crew" is assumed to make one entering trip and one exiting trip over the course of the day. Half of the "Other Crew" are estimated to depart the site during the peak hour.

- The construction employees are estimated to have an average vehicle occupancy rate of approximately 1.2 employees per vehicle, based on data from the *U.S. Census 2005-2009 American Community Survey* for the Truckee area.
- Six material delivery trucks are each assumed to generate four round-trips to/from the project site per day, with one round-trip occurring during the peak hour.
- One fueling truck is estimated to make a one round-trip to/from the project site. This trip is not expected to occur during the peak hour.

			Trip Genera	tion Rates	1	One-Way	Vehicle Tri	ps at Site [Driveways
		8.00 1.00 1.00 2.00			ur		Р	M Peak Ho	our
Quantity	Description	Daily	In	Out	Total	Daily	ln	Out	Total
6	Material Delivery	8.00	1.00	1.00	2.00	48	6	6	12
20	Paving Crew ²	2.50	0.00	0.58	0.58	50	0	12	12
6	Other Crew	2.00	0.00	0.50	0.50	12	0	3	3
1	Fueler	2.00	0.00	0.00	0.00	2	0	0	0

Note 1: Trip generation rates are based on a person-trip analysis.

Note 2: Construction employees are assumed to have an average vehicle occupancy rate of approximately 1.2 persons per vehicle.

Source: LSC Transportation Consultants, Inc.

Truckee Airport MasterPlan TIA.xlsx

Based on these assumptions, it is calculated that a total of about 112 daily one-way vehicle trips would result due to construction-related activity, with 27 trips (6 entering, 21 exiting) occurring during the PM peak hour. Adding this traffic to the existing summer PM peak-hour traffic is not expected to cause any study intersections to exceed the applicable LOS thresholds.

Traffic Impact Fees

As part of the mitigation of this development, the applicant shall pay the amounts determined to be appropriate to the traffic impact fee programs of the various jurisdictions. Additionally, under existing year conditions with the proposed project, although no intersection LOS or traffic queuing improvements are needed, the project may be conditioned by Nevada County to complete project-specific improvements adjacent to the project property (such as pedestrian-related improvements). Finally, additional traffic management may be required during large hangar events (considered special events).

Appendix A LOS Descriptions

DESCRIPTIONS OF LEVELS OF SERVICE

The concept of level of service is defined as a qualitative measure describing operational conditions within a traffic stream, and their perception by motorists and/or passengers. A level of service definition generally describes these conditions in terms of such factors as speed and travel time, freedom to maneuver, traffic interruptions, comfort and convenience, and safety. Six levels of service are defined for each type of facility for which analysis procedures are available. They are given letter designations, from A to F, with level of service A representing the best operating conditions and level of service F the worst.

Level of Service Definitions

In general, the various levels of service are defined as follows for uninterrupted flow facilities:

- Level of service A represents free flow. Individual users are virtually unaffected by the presence of others in the traffic stream. Freedom to select desired speeds and to maneuver within the traffic stream is extremely high. The general level of comfort and convenience provided to the motorist, passenger, or pedestrian is excellent.
- Level of service B is in the range of stable flow, but the presence of other users in the traffic stream begins to be noticeable. Freedom to select desired speeds is relatively unaffected, but there is a slight decline in the freedom to maneuver within the traffic stream from LOS A. The level of comfort and convenience provided is somewhat less than at LOS A, because the presence of others in the traffic stream begins to affect individual behavior.
- Level of service C is in the range of stable flow, but marks the beginning of the range of flow in which the operation of individual users becomes significantly affected by interactions with others in the traffic stream. The selection of speed is now affected by the presence of others, and maneuvering within the traffic stream requires substantial vigilance on the part of the user. The general level of comfort and convenience declines noticeably at this level.
- **Level of Service D** represents high-density, but stable, flow. Speed and freedom to maneuver are severely restricted, and the driver or pedestrian experiences a generally poor level of comfort and convenience. Small increases in traffic flow will generally cause operational problems at this level.
- Level of service E represents operating conditions at or near the capacity level. All speeds are reduced to a low, but relatively uniform value. Freedom to maneuver within the traffic stream is extremely difficult, and it is generally accomplished by forcing a vehicle or pedestrian to "give way" to accommodate such maneuvers. Comfort and convenience levels are extremely poor, and driver or pedestrian frustration is generally high. Operations at this level are usually unstable, because small increases in flow or minor perturbations within the traffic stream will cause breakdowns.
- Level of service F is used to define forced or breakdown flow. This condition exists wherever the amount of traffic approaching a point exceeds the amount which can traverse the point. Queues form behind such locations. Operations within the queue are characterized by stop-and-go waves, and they are extremely unstable. Vehicles may progress at reasonable speeds for several hundred feet or more, then be required to stop in a cyclic fashion. Level of service F is used to describe the operating conditions within the queue, as well as the point of the breakdown. It should be noted, however, that in many cases operating conditions of vehicles or pedestrians discharged from the queue may be quite good. Nevertheless, it is the point at which arrival flow exceeds discharge flow which causes the queue to form, and level of service F is an appropriate designation for such points.

Existing LOS

	*	→	*	1	+	4	1	†	-	1	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	74		43		ሻ	\$		7		7
Volume (veh/h)	114	46	280	8	84	108	306	708	9	85	376	129
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1863	1900	1863	1900	1863	1863	1900	1863	1863	1863
Adj Flow Rate, veh/h	121	49	298	9	89	115	326	753	10	90	400	137
Adj No. of Lanes	0	1	1	0	1	0	1	1	0	1	1	1
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	318	111	703	73	172	209	378	860	11	120	601	511
Arrive On Green	0.23	0.23	0.23	0.23	0.23	0.23	0.21	0.47	0.47	0.07	0.32	0.32
Sat Flow, veh/h	901	483	1583	26	747	908	1774	1834	24	1774	1863	1583
Grp Volume(v), veh/h	170	0	298	213	0	0	326	0	763	90	400	137
Grp Sat Flow(s), veh/h/ln	1384	0	1583	1681	0	0	1774	0	1858	1774	1863	1583
Q Serve(g_s), s	0.0	0.0	7.2	0.0	0.0	0.0	9.9	0.0	20.6	2.8	10.3	3.6
Cycle Q Clear(g_c), s	5.6	0.0	7.2	6.1	0.0	0.0	9.9	0.0	20.6	2.8	10.3	3.6
Prop In Lane	0.71		1.00	0.04		0.54	1.00		0.01	1.00		1.00
Lane Grp Cap(c), veh/h	430	0	703	455	0	0	378	0	871	120	601	511
V/C Ratio(X)	0.40	0.00	0.42	0.47	0.00	0.00	0.86	0.00	0.88	0.75	0.67	0.27
Avail Cap(c_a), veh/h	787	0	1134	904	0	0	430	0	1118	175	853	725
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	18.6	0.0	10.6	18.9	0.0	0.0	21.1	0.0	13.3	25.5	16.3	14.0
Incr Delay (d2), s/veh	0.8	0.0	0.6	0.3	0.0	0.0	13.5	0.0	5.5	4.6	0.5	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	4.3	0.0	5.7	5.2	0.0	0.0	10.3	0.0	17.3	2.7	9.1	2.8
LnGrp Delay(d),s/veh	19.4	0.0	11.2	19.1	0.0	0.0	34.6	0.0	18.9	30.1	16.7	14.1
EnGrp LOS	В		В	В			C		В	C	В	В
Approach Vol, veh/h		468			213			1089			627	
Approach Delay, s/veh		14.2			19.1			23.6			18.1	
Approach LOS		В			В			С			В	
Timer	. 1	2	3	4	5	6	7	8			5769AT	
Assigned Phs	1	2	_	4	5	6		8				
Phs Duration (G+Y+Rc), s	15.4	24.0		16.3	7.3	32.1		16.3				
Change Period (Y+Rc), s	3.5	6.0		3.5	3.5	6.0		3.5				
Max Green Setting (Gmax), s	13.5	25.5	CEL T	28.0	5.5	33.5		28.0			The same	MEAN
Max Q Clear Time (g_c+l1), s	11.9	12.3		8.1	4.8	22.6		9.2				
Green Ext Time (p_c), s	0.1	3.8		3.7	0.0	3.5	608,28	3.7		3 (01)		
Intersection Summary								化产业				939
HCM 2010 Ctrl Delay			19.9			LONG.	HIEIO.					
HCM 2010 LOS			В									

HCS 2010 Signalized Intersection Results Summary BEEE **General Information** Intersection Information LSC 0.25 Agency Duration, h JHB Analyst Analysis Date | Apr 16, 2015 Area Type Other Caltrans/Placer County Jurisdiction Time Period Summer PM PHF 0.92 267/Airport/Shaffer Mill Intersection Analysis Year 2015 Analysis Period 1> 7:00 267 Airport HCS.xus File Name **Project Description** Clear Capital TIA - Existing Without Project **Demand Information** WB NB EB SB Т R Approach Movement L T R L T R L L R 68 53 26 204 11 33 6 23 716 38 603 49 Demand (v), veh/h M Signal Information Cycle, s 70.0 Reference Phase 2 Offset, s Reference Point End Green 0.7 39.7 13.1 0.0 1.5 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 4.0 4.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 1.0 0.0 1.0 1.0 0.0 0.0 **Timer Results EBL EBT WBL** WBT NBL **NBT** SBL SBT **Assigned Phase** 4 8 1 6 5 2 Case Number 7.0 7.0 2.0 4.0 2.0 3.0 Phase Duration, s 18.1 18.1 6.5 44.7 7.2 45.4 Change Period, (Y+Rc), s 5.0 5.0 5.0 5.0 5.0 5.0 Max Allow Headway (MAH), s 4.5 4.5 3.8 0.0 3.8 0.0 Queue Clearance Time (gs), s 12.7 3.7 3.0 3.6 Green Extension Time (g_e) , s 0.4 1.2 0.0 0.0 0.0 0.0 1.00 0.38 0.55 Phase Call Probability 1.00 Max Out Probability 0.06 1.00 1.00 1.00 **Movement Group Results** EB **WB** NB SB Approach Movement L T R Т R L Т R L Т R L 7 4 14 3 8 18 6 16 5 12 **Assigned Movement** 1 2 234 63 47 25 796 41 655 Adjusted Flow Rate (v), veh/h 42 42 Adjusted Saturation Flow Rate (s), veh/h/ln 1468 1579 1724 1579 1774 1855 1774 1863 1579 Queue Service Time (gs), s 9.3 2.4 0.0 1.7 1.0 22.7 1.6 16.1 8.0

10.7

0.19

374

0.624

413

6.8

0.00

2.4

0.19

295

0.214

338

1.6

0.22

1.4

0.19

417

0.102

457

1.0

0.00

1.7

0.19

295

0.158

338

1.2

0.15

1.0

0.02

39

0.641

150

8.0

0.07

22.7

0.57

1053

0.756

1053

12.2

0.00

1.6

0.03

56

0.738

150

1.3

0.21

16.1

0.58

1075

0.610

1075

8.8

0.00

0.8

0.58

911

0.047

911

0.4

0.05

Cycle Queue Clearance Time (gc), s

Back of Queue (Q), veh/ln (95th percentile)

Queue Storage Ratio (RQ) (95th percentile)

Volume-to-Capacity Ratio (X)

Available Capacity (ca), veh/h

Green Ratio (g/C)

Capacity (c), veh/h

Uniform Delay (d1), s/veh		27.3	24.1		23.7	23.8	34.0	11.5		33.6	9.7	6.4
Incremental Delay (d2), s/veh		1.6	0.1		0.0	0.1	6.3	5.1		6.9	2.6	0.1
Initial Queue Delay (d3), s/veh		0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	0.0
Control Delay (d), s/veh		28.9	24.2		23.7	23.9	40.3	16.5		40.5	12.3	6.5
Level of Service (LOS)		С	С		С	С	D	В		D	В	Α
Approach Delay, s/veh / LOS	27.9		С	23.8	3	С	17.3	}	В	13.5		В
Intersection Delay, s/veh / LOS			17	.8						В		
Multimodal Results		EB			WB			NB			SB	
Pedestrian LOS Score / LOS	2.3		В	2.5		В	2.2		В	2.2		В
Bicycle LOS Score / LOS	1.0		Α	0.6	NORTH TOTAL	Α	1.8	16 80	Α	1.7		Α

Copyright © 2015 University of Florida, All Rights Reserved.

HCS 2010™ Streets Version 6.50

Generated: 4/16/2015 4:54:43 PM

ntersection			tions.			Name of				
nt Delay, s/veh	4.1									
	FDI				111000					
Movement	EBL	EBT			WBT	WBR	-	SBL	SBR	
/ol, veh/h	61	79			103	8		7	97	
Conflicting Peds, #/hr	0	0			0	0		0	0	
Sign Control	Free	Free			Free	Free		Stop	Stop	
RT Channelized		None			-	None		•	None	
Storage Length								0		
/eh in Median Storage, #		0			0	-		0	=	
Grade, %		0			0			0		
Peak Hour Factor	90	90			90	90		90	90	
Heavy Vehicles, %	2	2			2	2		2	2	
Nvmt Flow	68	88			114	9		8	108	
Major/Minor	Major1	11-63			Major2		Mir	пог2	95040	
Conflicting Flow All	123	0			HE IT	0		342	119	
Stage 1		-			-	-		119	-	
Stage 2								223		
Critical Hdwy	4.12	-			-	-		6.42	6.22	
Critical Hdwy Stg 1					Weaker	VRT.		5.42		
Critical Hdwy Stg 2		-			_	-		5.42	_	
Follow-up Hdwy	2.218							518	3.318	
Pot Cap-1 Maneuver	1464	-			7=			654	933	
Stage 1	1404	THE P						906		
Stage 2					02			814		
Platoon blocked, %		the care						7		
Mov Cap-1 Maneuver	1464	_				-		622	933	
Mov Cap-2 Maneuver	-							622		
Stage 1					•	•		906		
Stage 2						Jan Su				
Staye Z		-			-	•		774	44 5 E C	
Approach	EB		MUN	NIDE SE	WB	St. March	No service	SB		
HCM Control Delay, s	3.3			ALL DESIGNATION OF	0		The second	9.6	THE PARTY NAMED IN	
HCM LOS	5.5				U					
TOW LOG								Α		
Minor Lane/Major Mymt	EBL	EBT	WBT	WBR SBL	11		XONES O			
Capacity (veh/h)	1464	-	-		03					
HCM Lane V/C Ratio	0.046	-	STORY.	- 0.12						
HCM Control Delay (s)	7.6	0	-		.6					
HCM Lane LOS	A	A			A					
HCM 95th %tile Q(veh)	0.1	-	-		.4					

Intersection		05 (8-14)			-			
Int Delay, s/veh	5				-		-	
					e la m			
Movement	EBL	EBR	N	IBL	NBT	SBT	SBR	
Vol, veh/h	12	31		43	13	26	15	
Conflicting Peds, #/hr	0	0		0	0	0	0	
Sign Control	Stop	Stop	F	ree	Free	Free	Free	
RT Channelized	-	None		-	None	-	None	
Storage Length	0	120		100			-	
Veh in Median Storage, #	0	-		-	0	0	-	
Grade, %	0	-		-	0	0		
Peak Hour Factor	90	90		90	90	90	90	
Heavy Vehicles, %	2	2		2	2	2	2	
Mvmt Flow	13	34		48	14	29	17	
Major/Minor	Minor2		Maj	or1		Major2	55775	
Conflicting Flow All	147	37	ina	46	0	- Williams	0	
Stage 1	37			-	-		-	
Stage 2	110			-			-	
Critical Hdwy	6.42	6.22	Δ	.12	-		_	
Critical Hdwy Stg 1	5.42	0.22		HE				
Critical Hdwy Stg 2	5.42				-			
Follow-up Hdwy	3.518	3.318	2 '	218				
Pot Cap-1 Maneuver	845	1035		562		•	-	
Stage 1	985			-	411			
Stage 2	915	-		-				
Platoon blocked, %	NAME OF THE OWNER OWNER OF THE OWNER OWNE							
Mov Cap-1 Maneuver	819	1035	1!	562			-	
Mov Cap-2 Maneuver	819	1000		-				
Stage 1	985				-			
Stage 2	887						-	
Approach	EB			NB	-	SB		a mem
HCM Control Delay, s	8.9			5.7	ACCUPATION OF	0		
HCM LOS	Α			J.1				
I IOM LOS	^							
Minor Lane/Major Mvmt	NBL	NBT EBLn1	FBI n2	BT	SBR		EXECUTE:	
Capacity (veh/h)	1562		1035	-	- ODIA			-
HCM Lane V/C Ratio	0.031	- 0.016		NE I				
HCM Control Delay (s)	7.4	- 9.5	8.6	- 1	-			
HCM Lane LOS	7.4 A	- 9.5	Α	1029				
HCM 95th %tile Q(veh)	0.1	- 0.1	0.1					
וויסיאו שטנוו ישנוום על(אפוו)	0.1	- UNI	U.II	-	-	7		

HCS 2010 Signalized Intersection Results Summary General Information 2356124 Intersection Information بالمل Agency LSC Duration, h 0.25 Analyst JHB Analysis Date | Apr 16, 2015 Area Type Other Jurisdiction Caltrans/Placer County Time Period Winter PM PHF 0.92 Intersection 267/Airport/Shaffer Mill Analysis Year 2015 1> 7:00 Analysis Period File Name 267 Airport Winter HCS.xus ጎ የ **Project Description** Clear Capital TIA - Existing Without Project **Demand Information** EB WB NB SB Approach Movement L T R L T R L T R L T R Demand (v), veh/h 58 2 12 5 2 18 49 1093 15 8 530 51 Signal Information 1 Cycle, s 70.0 Reference Phase 2 Offset, s 0 Reference Point End Green 0.6 2.1 4.2 48.1 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 4.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 1.0 0.0 1.0 1.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 4 8 1 6 5 2 Case Number 7.0 7.0 2.0 4.0 2.0 3.0 Phase Duration, s 9.2 9.2 7.7 55.2 5.6 53.1 Change Period, (Y+Rc), s 5.0 5.0 5.0 5.0 5.0 5.0 Max Allow Headway (MAH), s 4.4 4.4 3.8 0.0 3.8 0.0 Queue Clearance Time (gs), s 2.4 4.1 5.1 2.3 Green Extension Time (g_{θ}) , s 0.1 0.2 0.1 0.0 0.0 0.0 Phase Call Probability 0.80 0.80 0.64 0.16 Max Out Probability 0.01 0.00 0.00 0.00 **Movement Group Results** EB WB NB SB Approach Movement Τ L R L R L Т R L Т R **Assigned Movement** 4 14 8 18 7 3 1 6 16 5 2 12 Adjusted Flow Rate (v), veh/h 65 2 8 9 53 1193 576 9 45 Adjusted Saturation Flow Rate (s), veh/h/ln 1448 1579 1758 1579 1774 1861 1774 1863 1579 Queue Service Time (qs), s 2.8 0.1 0.0 0.4 2.1 35.4 0.3 9.8 0.6 Cycle Queue Clearance Time (g_c) , s 3.1 0.1 0.3 0.4 2.1 35.4 0.3 9.8 0.6 Green Ratio (g/C) 0.06 0.06 0.06 0.06 0.04 0.72 0.01 0.69 0.69 Capacity (c), veh/h 188 95 194 95 1334 68 16 1280 1085

0.347

407

2.0

0.00

0.023

338

0.1

0.01

0.039

427

0.2

0.00

0.092

338

0.3

0.03

0.786

375

1.7

0.14

0.895

1334

13.4

0.00

0.551

375

0.3

0.05

0.450

1280

3.8

0.00

0.041

1085

0.2

0.03

Volume-to-Capacity Ratio (X)

Available Capacity (ca), veh/h

Back of Queue (Q), veh/In (95th percentile)

Queue Storage Ratio (RQ) (95th percentile)

Uniform Delay (d1), s/veh		32.3	31.0		31.0	31.1	33.4	7.8		34.5	5.0	3.5
Incremental Delay (d2), s/veh		0.4	0.0		0.0	0.2	7.3	9.5		10.7	1.1	0.1
Initial Queue Delay (d3), s/veh		0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	0.0
Control Delay (d), s/veh		32.7	31.0		31.1	31.2	40.7	17.4		45.2	6.1	3.6
Level of Service (LOS)		С	С		С	С	D	В		D	Α	Α
Approach Delay, s/veh / LOS	32.7		С	31.2		С	18.4		В	6.5		Α
Intersection Delay, s/veh / LOS		15.1					В					
Multimodal Results	EB		WB		NB			SB				
Pedestrian LOS Score / LOS	2.3	T	В	2.5		В	2.2		В	2.2		В
Bicycle LOS Score / LOS	0.6		A	0.5		Α	2.5		В	1.5		Α

Copyright © 2015 University of Florida, All Rights Reserved.

HCS 2010™ Streets Version 6.50

Generated: 4/16/2015 2:19:26 PM

	≯	→	7	1	—	*	4	†	-	1	+	4
Mov <u>e</u> ment	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્લ	7		4	****	7	f >		ħ	^	7
Volume (veh/h)	114	53	286	8	104	129	326	729	9	93	382	129
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1863	1900	1863	1900	1863	1863	1900	1863	1863	1863
Adj Flow Rate, veh/h	121	56	304	9	111	137	347	776	10	99	406	137
Adj No. of Lanes	0	1	1	0	1	0	1	1	0	1	1	1
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	283	113	725	68	180	212	395	869	11	126	601	510
Arrive On Green	0.24	0.24	0.24	0.24	0.24	0.24	0.22	0.47	0.47	0.07	0.32	0.32
Sat Flow, veh/h	768	479	1583	22	766	899	1774	1835	24	1774	1863	1583
Grp Volume(v), veh/h	177	0	304	257	0	0	347	0	786	99	406	137
Grp Sat Flow(s), veh/h/ln	1247	0	1583	1686	0	0	1774	0	1859	1774	1863	1583
Q Serve(g_s), s	0.0	0.0	7.6	0.0	0.0	0.0	11.2	0.0	22.8	3.2	11.2	3.8
Cycle Q Clear(g_c), s	7.7	0.0	7.6	8.0	0.0	0.0	11.2	0.0	22.8	3.2	11.2	3.8
Prop In Lane	0.68		1.00	0.04		0.53	1.00	TATE	0.01	1.00		1.00
Lane Grp Cap(c), veh/h	396	0	725	460	0	0	395	0	880	126	601	510
V/C Ratio(X)	0.45	0.00	0.42	0.56	0.00	0.00	0.88	0.00	0.89	0.78	0.68	0.27
Avail Cap(c_a), veh/h	702	0	1101	854	0	0	405	0	1052	165	802	682
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	20.0	0.0	10.8	20.4	0.0	0.0	22.2	0.0	14.2	27.0	17.4	14.9
Incr Delay (d2), s/veh	1.1	0.0	0.6	0.4	0.0	0.0	18.3	0.0	7.9	12.1	0.6	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	4.8	0.0	6.1	6.9	0.0	0.0	12.0	0.0	19.5	3.6	9.8	3.0
LnGrp Delay(d),s/veh	21.1	0.0	11.3	20.8	0.0	0.0	40.6	0.0	22.1	39.2	18.0	15.0
LnGrp LOS	С		В	C			D		C	D	В	В
Approach Vol, veh/h		481			257			1133			642	
Approach Delay, s/veh		14.9			20.8			27.7			20.6	SI VI
Approach LOS		В			С			С			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	16.7	25.1		17.4	7.7	34.0		17.4				
Change Period (Y+Rc), s	3.5	6.0		3.5	3.5	6.0		3.5				
Max Green Setting (Gmax), s	13.5	25.5		28.0	5.5	33.5		28.0				
Max Q Clear Time (g_c+l1), s	13.2	13.2		10.0	5.2	24.8		9.7				
Green Ext Time (p_c), s	0.0	3.8		3.9	0.0	3.2		3.9				
Intersection Summary												
HCM 2010 Ctrl Delay			22.7				Tage 1		1 191			
HCM 2010 LOS			С									

Intersection Inte
Section Sect
fol, veh/h 61 94 144 8 7 97 conflicting Peds, #hr 0 - None - - 0 - - - - - 0 - <td< td=""></td<>
fol, veh/h 61 94 144 8 7 97 conflicting Peds, #hr 0 - None - - 0 - - - - - 0 - <td< td=""></td<>
Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0
Free Free Free Free Free Free Free Stop Stop
None
Storage Length 0 0 0 0 0 0 0 0 0 0 0 0
Veh in Median Storage, # - 0 - 0 - O - O - O - O - O - O - O - O - O - O - O Pot
Brade, % - 0 0 - 0 - 0 - Deak Hour Factor 90
Peak Hour Factor 90
Reavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Major/Minor Major1 Major2 Minor2 Conflicting Flow All 169 0 - 0 404 164 Stage 1 164 - Stage 2 164 - Critical Hdwy 4.12 6.42 6.22 Critical Hdwy Stg 1 5.42 - Critical Hdwy Stg 2 5.42 - Critical Hdwy Stg 2 6.642 6.22 Critical Hdwy Stg 3 6.642 6.22 Critical Hdwy Stg 4 6.642 6.22 Critical Hdwy Stg 5 6.642 6.22 Critical Hdwy Stg 6 - 6.642 6.22 Critical Hdwy Stg 7 6.642 6.22 Critical Hdwy Stg 8 6.642 6.22 Critical Hdwy Stg 9 6.642 6.22 Critical
Major/Minor Major1 Major2 Minor2 Conflicting Flow All 169 0 - 0 404 164 Stage 1 - - - 164 - Stage 2 - - - 240 - Critical Hdwy 4.12 - - 6.42 6.22 Critical Hdwy Stg 1 - - - 5.42 - Critical Hdwy Stg 2 - - - 5.42 - Collow-up Hdwy 2.218 - - 3.518 3.318 Pot Cap-1 Maneuver 1409 - - 603 881 Stage 1 - - 865 - Stage 2 - - 800 - Platoon blocked, % - - - -
Conflicting Flow All 169 0 - 0 404 164 Stage 1 - - - 164 - Stage 2 - - - 240 - Critical Hdwy 4.12 - - 6.42 6.22 Critical Hdwy Stg 1 - - - 5.42 - Critical Hdwy Stg 2 - - - 5.42 - Collow-up Hdwy 2.218 - - 3.518 3.318 Pot Cap-1 Maneuver 1409 - - 603 881 Stage 1 - - 865 - Stage 2 - - 800 - Platoon blocked, % - - - -
Conflicting Flow All 169 0 - 0 404 164 Stage 1 - - - 164 - Stage 2 - - - 240 - Critical Hdwy 4.12 - - 6.42 6.22 Critical Hdwy Stg 1 - - - 5.42 - Critical Hdwy Stg 2 - - - 5.42 - Collow-up Hdwy 2.218 - - 3.518 3.318 Pot Cap-1 Maneuver 1409 - - 603 881 Stage 1 - - 865 - Stage 2 - - 800 - Platoon blocked, % - - - -
Stage 1 - - - 164 - Stage 2 - - - 240 - Critical Hdwy 4.12 - - 6.42 6.22 Critical Hdwy Stg 1 - - - 5.42 - Critical Hdwy Stg 2 - - - 5.42 - Collow-up Hdwy 2.218 - - 3.518 3.318 Pot Cap-1 Maneuver 1409 - - 603 881 Stage 1 - - 865 - Stage 2 - - 800 - Platoon blocked, % - - - -
Stage 2 - - 240 - Critical Hdwy 4.12 - - 6.42 6.22 Critical Hdwy Stg 1 - - 5.42 - Critical Hdwy Stg 2 - - 5.42 - Collow-up Hdwy 2.218 - - 3.518 3.318 Pot Cap-1 Maneuver 1409 - - 603 881 Stage 1 - - 865 - Stage 2 - - 800 - Platoon blocked, % - - - -
Critical Hdwy 4.12 - - 6.42 6.22 Critical Hdwy Stg 1 - - - 5.42 - Critical Hdwy Stg 2 - - - 5.42 - Collow-up Hdwy 2.218 - - 3.518 3.318 Pot Cap-1 Maneuver 1409 - - 603 881 Stage 1 - - - 865 - Stage 2 - - - 800 - Platoon blocked, % - - - -
Critical Hdwy Stg 1 - - 5.42 - Critical Hdwy Stg 2 - - 5.42 - Collow-up Hdwy 2.218 - - 3.518 3.318 Pot Cap-1 Maneuver 1409 - - 603 881 Stage 1 - - - 865 - Stage 2 - - - 800 - Platoon blocked, % - - - -
Critical Hdwy Stg 2 - - - 5.42 - Collow-up Hdwy 2.218 - - 3.518 3.318 Pot Cap-1 Maneuver 1409 - - 603 881 Stage 1 - - - 865 - Stage 2 - - - 800 - Platoon blocked, % - - - -
Follow-up Hdwy 2.218 - - 3.518 3.318 Pot Cap-1 Maneuver 1409 - - 603 881 Stage 1 - - - 865 - Stage 2 - - - 800 - Platoon blocked, % - - -
Pot Cap-1 Maneuver 1409 - - - 603 881 Stage 1 - - - 865 - Stage 2 - - - 800 - Platoon blocked, % - - -
Stage 1 - - - 865 - Stage 2 - - - 800 - Platoon blocked, % - - - -
Stage 2 - - - 800 - Platoon blocked, % - - - -
Platoon blocked, %
Nov Cap-2 Maneuver 572 -
Stage 1 865 -
Stage 2 759 -
pproach EB WB SB
ICM Control Delay, s 3 0 9.9
ICM LOS A
A Committee of the comm
finor Lane/Major Mvmt EBL EBT WBT WBR SBLn1
Capacity (veh/h) 1409 850
ICM Lane V/C Ratio 0.048 0.136
ICM Control Delay (s) 7.7 0 9.9
ICM Lane LOS A A A
ICM 95th %tile Q(veh) 0.2 0.5

Interception						
Intersection	3.2			70.50	Marie Commence	
Int Delay, s/veh	3.Z					
Manager	EDI	EDD	MDI	NIDT	ODT	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Vol, veh/h	27	31	43	32	84	56
Conflicting Peds, #/hr	O Ctom	0	0	0	0	0
Sign Control RT Channelized	Stop	Stop	Free	Free None	Free	Free None
Storage Length	0	None 120	100		-	
Veh in Median Storage, #	0	120	100	0	•	
Grade, %	0		-	0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	30	34	48	36	93	62
WWITH IOW	30	34	40	30		UZ
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	255	124	156	0		0
Stage 1	124	3 4 3	-	~		-
Stage 2	131		The state			
Critical Hdwy	6.42	6.22	4.12	-		-
Critical Hdwy Stg 1	5.42		-			-
Critical Hdwy Stg 2	5.42	-	-	-		-
Follow-up Hdwy	3.518	3.318	2.218	Mine-		-
Pot Cap-1 Maneuver	734	927	1424	-		-
Stage 1	902			-		
Stage 2	895	-	<u> </u>	-	14	-
Platoon blocked, %				-		•
Mov Cap-1 Maneuver	709	927	1424	-	-	
Mov Cap-2 Maneuver	709					
Stage 1	902		-		-	
Stage 2	865					
Approach	EB		NB	07.0	SB	
HCM Control Delay, s	9.6		4.4		0	
HCM LOS	A		.,-			
Minor Lane/Major Mvmt	NBL	NBT EBLn1 E	BLn2 SBT	SBR		
Capacity (veh/h)	1424	- 709	927 -	- 001		-
HCM Lane V/C Ratio	0.034	- 0.042				
HCM Control Delay (s)	7.6	- 10.3	9 -			
HCM Lane LOS	7.0 A	- 10.3	A -			
HCM 95th %tile Q(veh)	0.1	- 0.1	0.1 -	-		
TIGIVI 95111 76116 Q(VEII)	0.1	- 0.1	0.1 -	-		

		HCS 20	010 S	ignali	zed l	nterse	ection	Res	ults S	umm	ary			1911	
								100-100							
General Inforn	nation								Intersec	tion Inf	ormatio	n	2	al de J↓↓	u u
Agency		LSC					upa namun	1	Duration,	h	0.25			5+2	
Analyst		JHB		Analys	sis Date	Apr 16	, 2015	/	Area Typ	е	Other		8		R.,
Jurisdiction		Caltrans/Placer Cou	unty	Time F	Period	Summ	er PM		PHF		0.92				*
Intersection		267/Airport/Shaffer	Mill	Analys	sis Year	2015			Analysis	Period	1> 7:0)0	1		
File Name		267Airport +P.xus												5 1	
Project Descrip	tion	Truckee Airport TIA	- Existi	ng With	Project								7	建筑	N.
Demand Inform	nation			1	EB	and the second	The state of the s	WE		T	NB		-	SB	Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the Own
Approach Move	ement			L	T	I R	L	T	R	L	T	R	L	T	R
Demand (v), ve	_			204	11	68	49	7	94	23	716	33	50	603	49
In a strain of the second	Company Co				1000			SECTION AND ADDRESS OF		1000	1000				direction.
Signal Informa	ation				2	1717	17	2	2						
Cycle, s	70.0	Reference Phase	2		5		1	7 H	6) . "	-	-	+
Offset, s	0	Reference Point	End	Green	1.5	1.2	39.3	13.0	0.0	0.0					K
Uncoordinated	No	Simult. Gap E/W	On	Yellow	-5	0.0	4.0	4.0	0.0	0.0			D		7
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	0.0	1.0	1.0	0.0	0.0		5	0	7	1,
Timer Results				EBI		EBT	WB	L	WBT	NBI		NBT	SBI		SBT
Assigned Phas	е					4			8	1		6	5		2
Case Number						7.0			7.0	2.0		4.0	2.0		3.0
Phase Duration	1. S					18.0			18.0	6.5		44.3	7.7		45.5
Change Period), s				5.0			5.0	5.0	YS HE W	5.0	5.0		5.0
Max Allow Hea						4.5			4.5	3.8		0.0	3.8		0.0
Queue Clearan		The second secon				12.5			5.5	3.0			4.1		
Green Extension		And the second			-	0.5			1.4	0.0	_	0.0	0.0		0.0
Phase Call Pro		(8)				1.00			1.00	0.38	3		0.65	5	
Max Out Proba						1.00			0.16	1.00	-		1.00		
Movement Gro	oup Res	sults			EB	-		WB			NB			SB	-
Approach Move	_			L	T	R	L	T	R	L	T	R	L	T	R
Assigned Move				7	4	14	3	8	18	1	6	16	5	2	12
Adjusted Flow	ADMINISTRATION OF STREET), veh/h	***********	1	234	63	-	61	91	25	803		54	655	42
		ow Rate (s), veh/h/ln			1488	1579	Carrier III	1715	-	1774	1852		1774	1863	157
Queue Service			in-mainte		8.5	2.4		0.0	3.5	1.0	23.5		2.1	16.0	0.
Cycle Queue C					10.5	2.4		2.0	3.5	1.0	23.5		2.1	16.0	0.
Green Ratio (g.	the state of the state of	(3-/1-			0.19	0.19		0.19	-	0.02	0.56		0.04	0.58	0.5
Capacity (c), ve	TO STATE OF THE PARTY OF THE PA				377	293		415	293	39	1040	Thirm	68	1077	91
Volume-to-Cap		atio (X)	-	1	0.621	0.215		0.147	the state of the s	0.641	0.772		0.794	0.609	0.0
Available Capa					417	338		456	338	152	1040		152	1077	91
The state of the s	(00)			-	0.0	4.0		4.5	200	0.0	40.7	-	4.7	0.7	-

6.8

0.00

1.6

0.22

1.5

0.00

2.3

0.30

12.7

0.00

1.7

0.28

8.7

0.00

0.4

0.05

8.0

0.07

Back of Queue (Q), veh/ln (95th percentile)

Uniform Delay (d1), s/veh	2	7.2	24.2		24.0	24.6	34.0	11.9	T	33.4	9.6	6.4
Incremental Delay (d2), s/veh		1.5	0.1		0.1	0.2	6.3	5.6	12	7.5	2.6	0.1
Initial Queue Delay (d3), s/veh		0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	0.0
Control Delay (d), s/veh	2	8.7	24.3		24.1	24.9	40.3	17.5		40.9	12.2	6.5
Level of Service (LOS)		С	С		С	С	D	В		D	В	Α
Approach Delay, s/veh / LOS	27.8		С	24.5	5	С	18.1		В	13.9		В
Intersection Delay, s/veh / LOS			18	.5						В		
Multimodal Results		EB			WB	Seller!		NB			SB	
Pedestrian LOS Score / LOS	2.3		В	2.5		В	2.2		В	2.2		В
Bicycle LOS Score / LOS	1.0		Α	0.7		Α	1.9		Α	1.7	THE BE	Α

HCS 2010™ Streets Version 6.50

Generated: 8/27/2015 11:51:30 AM

		HCS 20	010 S	ignali	zed lı	nterse	ction	Res	ults S	umma	ary				
	PUNE.				10 200		March 1	THE R.	BAR W	Second !		19 200	10000	4.000.1	
General Inforn	nation	I. a.a.							ntersec		-	n	- É	J I I	
Agency		LSC				T			Duration,		0.25		-		
Analyst		JHB				Aug 27	THE RESERVE AND ADDRESS OF THE PARTY OF THE	_	Area Typ	e	Other				K
Jurisdiction		Caltrans/Placer Cou		Time I		Winter	PM		PHF		0.92				•
Intersection		267/Airport/Shaffer		Analys	sis Year	2015		F	Analysis	Period	1> 7:0)0	- 3		
File Name		267Airport Winter +												17	
Project Descrip	tion	Truckee Airport TIA	- Existi	ng With	Project		100000	100000	0.5319	00000			,	41 (1)	
Demand Inform	nation				EB			WB		T	NB			SB	and the latest terminal termin
Approach Move	ement			L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), ve	h/h			58	2	12	35	4	80	49	1093	20	17	530	51
Signal Informa	tion				2000000		ŢŢ		R I						-
Cycle, s	70.0	Reference Phase	2		2		1	3	詞		P	1	1		4
Offset, s	0	Reference Point	End		5							1	2	3	A
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow		1.5	46.8	5.6 4.0	0.0	0.0	-1		4-		→
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	0.0	1.0	1.0	0.0	0.0		5	r		K
T OTOG INIOGO	T III.Gu						Olaway.								
Timer Results				EB		EBT	WB	L	WBT	NBI		NBT	SBI		SBT
Assigned Phas	е					4			8	1		6	5		2
Case Number						7.0			7.0	2.0		4.0	2.0		3.0
Phase Duration	l, S					10.6			10.6	7.7		53.2	6.2		51.8
Change Period	, (Y+Rc)), s				5.0			5.0	5.0		5.0	5.0		5.0
Max Allow Hea	dway (A	<i>//АН</i>), s				4.5	4.5		4.5	5 3.8		0.0			0.0
Queue Clearan	ce Time	e (g₅), s				4.6		5.3		4.1			2.7	2.7	
Green Extension	n Time	(g _e), s				0.5			0.5	0.1		0.0	0.0		0.0
Phase Call Pro	bability					0.97			0.97	0.64	1		0.30)	
Max Out Proba	bility					0.02			0.03	0.00)		0.00)	
Movement Gro	oup Res	sults	15 1		EB			WB			NB			SB	
Approach Move				L	Т	R	L	T	R	L	Т	R	L	Т	R
Assigned Move				7	4	14	3	8	18	1	6	16	5	2	12
Adjusted Flow), veh/h		Î	65	2		42	76	53	1199		18	576	45
	THE RESERVE THE PERSON NAMED IN	ow Rate (s), veh/h/ln			1539	1579	Tell West	1629	1579	1774	1860		1774	1863	1579
Queue Service					1.1	0.1		0.0	3.3	2.1	39.5		0.7	10.4	0.7
Cycle Queue C	THE RESERVE OF THE PERSON NAMED IN				2.6	0.1		1.5	3.3	2.1	39.5		0.7	10.4	0.7
Green Ratio (g.					0.08	0.08		0.08	0.08	0.04	0.69		0.02	0.67	0.67
Capacity (c), ve					224	126		227	126	68	1281		31	1244	1054
Volume-to-Cap		atio (X)			0.292			0.187	-	0.787	0.936		0.604	0.463	0.04
						B0000000000000000000000000000000000000	111111111111111111111111111111111111111						1000		100

415

1.9

0.00

338

0.1

0.01

422

1.2

0.00

338

2.3

0.29

340

1.7

0.14

1281

17.5

0.00

340

0.6

0.10

1244

4.4

0.00

1054

0.2

0.03

Available Capacity (ca), veh/h

Back of Queue (Q), veh/ln (95th percentile)

Uniform Delay (d1), s/veh		30.8	29.7		30.3	31.2	33.4	9.5		34.2	5.6	4.0
Incremental Delay (d2), s/veh		0.3	0.0		0.1	1.7	7.3	13.9	500	6.9	1.2	0.1
Initial Queue Delay (d3), s/veh		0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	0.0
Control Delay (d), s/veh		31.0	29.7		30.5	32.9	40.7	23.4		41.1	6.8	4.0
Level of Service (LOS)		С	С		С	С	D	С		D	Α	Α
Approach Delay, s/veh / LOS	31.0		С	32.0		С	24.1		С	7.6		Α
Intersection Delay, s/veh / LOS			19	.7						В		
Multimodal Results		EB			WB	Water 1		NB			SB	
Pedestrian LOS Score / LOS	2.3	2.3 B		2.5		В	2.2		В	2.2	T	В
Bicycle LOS Score / LOS	0.6		Α	0.7		Α	2.6		В	1.5		Α

HCS 2010™ Streets Version 6.50

Generated: 8/27/2015 11:52:56 AM

	*	→	*	1	4-	*	1	†	<i>*</i>	1	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	71		4		7	7>		ነ	A	7
Volume (veh/h)	196	191	451	174	248	407	408	679	195	306	456	188
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0		0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1863	1900	1863	1900	1863	1863	1900	1863	1863	1863
Adj Flow Rate, veh/h	209	203	480	185	264	433	434	722	207	326	485	200
Adj No. of Lanes	0	1	1	0	1	0	1	1	0	1	1	1
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	197	154	973	31	9	9	234	448	128	184	546	464
Arrive On Green	0.48	0.48	0.48	0.48	0.48	0.48	0.13	0.32	0.32	0.10	0.29	0.29
Sat Flow, veh/h	328	318	1583	0	19	18	1774	1393	399	1774	1863	1583
Grp Volume(v), veh/h	412	0	480	882	0	0	434	0	929	326	485	200
Grp Sat Flow(s), veh/h/ln	646	0	1583	37	0	0	1774	0	1792	1774	1863	1583
Q Serve(g_s), s	0.0	0.0	23.5	0.0	0.0	0.0	18.5	0.0	45.0	14.5	34.9	14.3
Cycle Q Clear(g_c), s	67.5	0.0	23.5	67.5	0.0	0.0	18.5	0.0	45.0	14.5	34.9	14.3
Prop In Lane	0.51		1.00	0.21		0.49	1.00	0.0	0.22	1.00	01.0	1.00
Lane Grp Cap(c), veh/h	350	0	973	49	0	0	234	0	576	184	546	464
V/C Ratio(X)	1.18	0.00	0.49	18.08	0.00	0.00	1.85	0.00	1.61	1.77	0.89	0.43
Avail Cap(c_a), veh/h	350	0	973	49	0	0	234	0	576	184	546	464
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	40.0	0.0	14.9	45.8	0.0	0.0	60.8	0.0	47.5	62.8	47.3	40.1
Incr Delay (d2), s/veh	105.0	0.0	0.6	7723.4	0.0	0.0	399.1	0.0	283.7	369.6	16.0	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/in	42.7	0.0	15.7	191.8	0.0	0.0	63.1	0.0	121.7	46.7	27.7	10.4
LnGrp Delay(d),s/veh	145.0	0.0	15.5	7769.2	0.0	0.0	459.9	0.0	331.2	432.3	63.3	40.3
LnGrp LOS	F		В	F			F		F	F	E	D
Approach Vol, veh/h	3110	892			882			1363	4.5		1011	
Approach Delay, s/veh		75.3			7769.2			372.1			177.7	
Approach LOS		Е			F			F			F	
Timer	1	2	3	4	5	6	7	8			100	E TO
Assigned Phs	11_	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	22.0	47.0		71.0	18.0	51.0		71.0				
Change Period (Y+Rc), s	3.5	6.0		3.5	3.5	6.0		3.5				
Max Green Setting (Gmax), s	18.5	41.0		67.5	14.5	45.0		67.5				100
Max Q Clear Time (g_c+l1), s	20.5	36.9		69.5	16.5	47.0	100	69.5				
Green Ext Time (p_c), s	0.0	2.4		0.0	0.0	0.0		0.0				
Intersection Summary	1634											200
HCM 2010 Ctrl Delay	Heers.		1833.8				Ye -		ALPERT I	WIN BE	WE TE Z	
HCM 2010 LOS			F									

Description Delay, s/veh Delay					
Page 2016 Page	ntersection				0.65584985444.656
Section Sect	Intersection Delay, s/veh	10.2			
Intry Lanes 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Intersection LOS	В			
Conflicting Circle Lanes 1 1 1 1 ddj Approach Flow, veh/h 769 302 559 135 Demand Flow Rate, veh/h 784 308 570 137 Vehicles Circulating, veh/h 39 626 255 842 Vehicles Exiting, veh/h 940 199 568 92 Velollow-Up Headway, s 2.800 2.800 2.800 2.800 Ved Vol Crossing Leg, #/h 0 0 0 0 0 Ved Vol Crossing Leg, #/h 0	Approach	EB	WB	NB	SB
dij Approach Flow, veh/h 769 302 559 135 Demand Flow Rate, veh/h 784 308 570 137 Vehicles Circulating, veh/h 39 626 255 842 Vehicles Exiting, veh/h 940 199 568 92 Voillow-Up Headway, s 2.800 2.800 2.800 2.800 Ved Vol Crossing Leg, #h 0 0 0 0 Ved Cap Adj 1.000 1.000 1.000 1.000 Peroach Delay, s/veh 10.9 9.5 10.2 7.9 Approach LOS B A B A Agency LoS LTR LTR LTR LTR LTR L	Entry Lanes	1		1	1
Demand Flow Rate, veh/h 784 308 570 137 Zehicles Circulating, veh/h 39 626 255 842 Zehicles Exiting, veh/h 940 199 568 92 Zeloulow-Up Headway, s 2.800 2.800 2.800 2.800 Zeloulow-Delay, s/veh 10.90 1.000 1.000 1.000 1.000 All Delay, s/veh 10.9 9.5 10.2 7.8 1.7 Assumed Moves LTR LTR<	Conflicting Circle Lanes	1	1	1	1
Vehicles Circulating, veh/h 39 626 255 842 Vehicles Exiting, veh/h 940 199 568 92 Veloilow-Up Headway, s 2.800 2.800 2.800 2.800 Ved Vol Crossing Leg, #/h 0 0 0 0 0 Ved Cap Adj 1.000 1.000 1.000 1.000 1.000 1.000 Approach Delay, s/veh 10.9 9.5 10.2 7.9 1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000 <	Adj Approach Flow, veh/h	769	302	559	135
Vehicles Exiting, veh/h 940 199 568 92 Vollow-Up Headway, s 2.800 2.800 2.800 2.800 Ved Vol Crossing Leg, #/h 0 0 0 0 Ved Cap Adj 1.000 1.000 1.000 1.000 Approach Delay, s/veh 10.9 9.5 10.2 7.9 Approach LOS B A B A Ame Left Left Left Left Designated Moves LTR LTR LTR LTR Sessumed Moves LTR LTR LTR LTR ATC Channelized ane Util 1.000 1.000 1.000 1.000 Anity Flow, veh/h 784 308 570 137 App Entry Lane, veh/h 1247 790 1054 668 Brity HV Adj Factor 0.980 0.982 0.980 0.983 Alow Entry, veh/h 769 302 559 135 App Entry, veh/h 1223	Demand Flow Rate, veh/h	784	308	570	137
Collow-Up Headway, s 2.800	Vehicles Circulating, veh/h	39	626	255	842
Red Vol Crossing Leg, #/h 0 0 0 0 Red Cap Adj 1.000 1.000 1.000 1.000 Approach Delay, s/veh 10.9 9.5 10.2 7.9 Approach LOS B A B A A B A B A A A B A B A A A B A B A A A B A B A A A B A B A A A B A B A A A B A B A A A B A B A A A B A B A A A B A B A B A A B A B A B A A Cap Entry LEft Left Left Left Left Left L	Vehicles Exiting, veh/h	940	199	568	92
Red Vol Crossing Leg, #/h 0 0 0 0 Red Cap Adj 1.000 1.000 1.000 1.000 Approach Delay, s/veh 10.9 9.5 10.2 7.9 Approach LOS B A B A A me Left Left Left Left Legignated Moves LTR LTR LTR LTR Sesignated Moves LTR LTR LTR LTR ATT Channelized LTR	Follow-Up Headway, s	2.800	2.800	2.800	2.800
Approach Delay, s/veh 10.9 9.5 10.2 7.9 Approach LOS B A B A B A B A A B B A A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B B A A B B B A A B B B A A B B B A B B B A B B B A B B B A B B B B A B	Ped Vol Crossing Leg, #/h	0	0	0	
A B A A	Ped Cap Adj	1.000	1.000	1.000	1.000
Image: Comparison of the	Approach Delay, s/veh	10.9	9.5	10.2	7.9
Designated Moves LTR LTR LTR LTR LTR LTR ASSUMED Moves LTR LTR LTR LTR ASSUMED Moves LTR LTR LTR ASSUMED Moves LTR LTR ASSUMED Moves LTR LTR ASSUMED Moves LTR ASSUMED ASSUMED LTR ASSUMED LTR ASSUMED MOVES LTR ASSUMED LTR A	Approach LOS	В	Α	В	A
ASSUMED MOVES LTR LTR LTR LTR LTR RT Channelized ane Util 1.000 1.000 1.000 1.000 Critical Headway, s 4.200 4.200 4.200 4.200 Entry Flow, veh/h 784 308 570 137 Cap Entry Lane, veh/h 1247 790 1054 668 Entry HV Adj Factor 0.980 0.982 0.980 0.983 Flow Entry, veh/h 769 302 559 135 Cap Entry, veh/h 1223 776 1034 657 Cap Entry, veh/h 1223 776 1034 657 Cap Entry, veh/h 1223 776 1034 657 Cap Entry, veh/h 1223 776 1034 776 Control Delay, s/veh 10.9 9.5 10.2 7.9 OS B A B A	Lane	Left	Left	Left	Left
Tr Channelized ane Util 1.000 1.000 1.000 1.000 1.000 Critical Headway, s 4.200 4.200 4.200 4.200 Entry Flow, veh/h 784 308 570 137 Cap Entry Lane, veh/h 1247 790 1054 668 Entry HV Adj Factor 0.980 0.982 0.980 0.983 Flow Entry, veh/h 769 302 559 135 Cap Entry, veh/h 1223 776 1034 657 Cap Entry, veh/h 1223 776 1034 657 Cap Entry, veh/h 1223 776 1034 657 Corp Control Delay, s/veh 10.9 9.5 10.2 7.9 OS B A B A	Designated Moves	LTR	LTR	LTR	LTR
ane Util 1.000 1.000 1.000 1.000 Critical Headway, s 4.200 4.200 4.200 Cintry Flow, veh/h 784 308 570 137 Cap Entry Lane, veh/h 1247 790 1054 668 Cintry HV Adj Factor 0.980 0.982 0.980 0.983 Clow Entry, veh/h 769 302 559 135 Cap Entry, veh/h 1223 776 1034 657 V/C Ratio 0.629 0.390 0.541 0.205 Control Delay, s/veh 10.9 9.5 10.2 7.9 OS B A B A	Assumed Moves	LTR	LTR	LTR	LTR
Critical Headway, s 4.200 4.200 4.200 4.200 4.200 Entry Flow, veh/h 784 308 570 137 Cap Entry Lane, veh/h 1247 790 1054 668 Entry HV Adj Factor 0.980 0.982 0.980 0.983 Flow Entry, veh/h 769 302 559 135 Cap Entry, veh/h 1223 776 1034 657 F/C Ratio 0.629 0.390 0.541 0.205 Control Delay, s/veh 10.9 9.5 10.2 7.9 OS B A B A	RT Channelized				
Entry Flow, veh/h 784 308 570 137 Cap Entry Lane, veh/h 1247 790 1054 668 Entry HV Adj Factor 0.980 0.982 0.980 0.983 Flow Entry, veh/h 769 302 559 135 Cap Entry, veh/h 1223 776 1034 657 CAP Entry, veh/h 1223 776 1034 657 CAP Entry Control Delay, s/veh 10.9 9.5 10.2 7.9 COS B A B A	Lane Util	1.000	1.000	1.000	1.000
Entry Flow, veh/h 784 308 570 137 Cap Entry Lane, veh/h 1247 790 1054 668 Entry HV Adj Factor 0.980 0.982 0.980 0.983 Flow Entry, veh/h 769 302 559 135 Cap Entry, veh/h 1223 776 1034 657 CAP Entry, veh/h 1223 776 1034 657 CAP Entry CRatio 0.629 0.390 0.541 0.205 Control Delay, s/veh 10.9 9.5 10.2 7.9 COS B A B A	Critical Headway, s	4.200	4.200	4.200	4.200
Cap Entry Lane, veh/h 1247 790 1054 668 Entry HV Adj Factor 0.980 0.982 0.980 0.983 Flow Entry, veh/h 769 302 559 135 Cap Entry, veh/h 1223 776 1034 657 CR Ratio 0.629 0.390 0.541 0.205 Control Delay, s/veh 10.9 9.5 10.2 7.9 OS B A B A	Entry Flow, veh/h	784	308	570	
Entry HV Adj Factor 0.980 0.982 0.980 0.983 Flow Entry, veh/h 769 302 559 135 Cap Entry, veh/h 1223 776 1034 657 I/C Ratio 0.629 0.390 0.541 0.205 Control Delay, s/veh 10.9 9.5 10.2 7.9 OS B A B A	Cap Entry Lane, veh/h	1247	790	1054	
Flow Entry, veh/h 769 302 559 135 Cap Entry, veh/h 1223 776 1034 657 I/C Ratio 0.629 0.390 0.541 0.205 Control Delay, s/veh 10.9 9.5 10.2 7.9 OS B A B A	Entry HV Adj Factor	0.980	0.982		
Cap Entry, veh/h 1223 776 1034 657 I/C Ratio 0.629 0.390 0.541 0.205 Control Delay, s/veh 10.9 9.5 10.2 7.9 OS B A B A	Flow Entry, veh/h	769	302		
Control Delay, s/veh 0.629 0.390 0.541 0.205 OS B A B A	Cap Entry, veh/h	1223	776		
Control Delay, s/veh 10.9 9.5 10.2 7.9 OS B A B A	V/C Ratio	0.629	0.390		
OS B A B A	Control Delay, s/veh	10.9	9.5		
	LOS		A		
500100 T M	95th %tile Queue, veh	5	2	3	1

Intersection			No. of the Land			
	4.3		The state of the s		777	
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Vol, veh/h	32	62	78	36	93	61
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	120	100	-		-
Veh in Median Storage, #	0	-		0	0	_
Grade, %	0	Santiani -		0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	36	69	87	40	103	68
Maria Maria Res					411-11111-1111-1111-1111-1	
Major/Minor	Minor2		Major1	Sellen to	Major2	
Conflicting Flow All	350	137	171	0	iviajui 2	0
Stage 1	137	-	161	-		-
Stage 2	213	HAWKE HEVE				-
Critical Hdwy	6.42	6.22	4.12			
Critical Hdwy Stg 1	5.42	0.22	7.12			
Critical Hdwy Stg 2	5.42			-		2
Follow-up Hdwy	3.518	3.318	2.218			
Pot Cap-1 Maneuver	647	911	1406			-
Stage 1	890		1100			
Stage 2	823					
Platoon blocked, %	711111111111111111111111111111111111111					
Mov Cap-1 Maneuver	607	911	1406			-
Mov Cap-2 Maneuver	607		1400	7.7		
Stage 1	890	-		2		
Stage 2	772	AICCA NO LON				-
-1-5- 2	112					
Approach	EB		NB		SB	
HCM Control Delay, s	10		5.3		0	-
HCM LOS	В		0.0			
Minor Lane/Major Mvmt	NBL	NBT EBLn1 EB	BLn2 SBT	SBR		Salara
Capacity (veh/h)	1406		911 -			
HCM Lane V/C Ratio	0.062	- 0.059 0.				
HCM Control Delay (s)	7.7	- 11.3	9.3 -			
HCM Lane LOS	Α	- B	Α -			
HCM 95th %tile Q(veh)	0.2	- 0.2	0.2 -			

		HCS 20)10 S	ignali	zed Ir	nterse	ction	Res	ults S	umma	ary				
General Inform	nation			3 113		1000			ntersect	ion Info	ormatio	n	1 4	4 - 6 1 1	<u> </u>
Agency		LSC							Duration,		0.25			111	
Analyst		JHB		Analys	is Date	Aug 27	7. 2015		Area Typ		Other		i i		
Jurisdiction		Caltrans/Placer Cou	ıntv	Time F		Summ			PHF		0.92		- 6 -	₩-E	÷
Intersection		267/Airport/Shaffer			is Year	-			Analysis	Period	1> 7:0	00			
File Name		267Airport EAP+P.x		, ,										ካ te	
Project Descrip	tion	Existing With Appro		piects W	ith Proi	ect							- 5		7
			NAME OF				B 18	HE HE	1000					3000	The same
Demand Inform	nation				EB			WB	3		NB	Un P		SB	
Approach Move	ement			L	Т	R	L	T	R	L	Т	R	L	Т	R
Demand (v), ve	h/h		3 60	226	29	216	86	22	95	38	910	62	51	868	189
Signal Informa	ition					1215	IJ		S						
Cycle, s	90.0	Reference Phase	2	1		243		, E	ē"				1		4
Offset, s	0	Reference Point	End	Green		1.0	51.8	19.6	6 0.0	0.0			2	3	Ā
Uncoordinated	No	Simult. Gap E/W	On	Yellow		0.0	4.0	4.0	0.0	0.0			ta		→
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	0.0	1.0	1.0	0.0	0.0		5	0	7	
Timer Results		STATE OF TAXABLE PARTY.		EBI		EBT	WB	L	WBT	NBL		NBT	SBL		SBT
Assigned Phas	е					4			8	1		6	5		2
Case Number						7.0			7.0	2.0		4.0	2.0		3.0
Phase Duration	1, S					24.6			24.6	7.6		56.8	8.6		57.7
Change Period	, (Y+Rc)), s	The same	Ser in		5.0			5.0	5.0		5.0	5.0		5.0
Max Allow Hea						4.6			4.6	3.8	0.0		3.8		0.0
Queue Clearan						18.5	7.2		7.2	4.1			4.8		
Green Extension	n Time	(g _e), s				1.2			2.8	0.0		0.0	0.0		0.0
Phase Call Pro	bability					1.00			1.00	0.64			0.75	5	
Max Out Proba	bility					1.00			0.09	1.00			1.00)	
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move				L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move				7	4	14	3	8	18	1	6	16	5	2	12
Adjusted Flow), veh/h			277	224		117	92	41	1046		55	943	195
		ow Rate (s), veh/h/ln			1454	1579	V	1656		1774	1845		1774	1863	1579
Queue Service					11.3	11.6		0.0	4.4	2.1	50.0		2.8	38.3	5.2
Cycle Queue C					16.5	11.6		5.2	4.4	2.1	50.0		2.8	38.3	5.2
Green Ratio (g				1	0.22	0.22		0.22		0.03	0.58		0.04	0.59	0.59
Capacity (c), ve					393	345	17 10	433	345	52	1061		71	1091	925
Volume-to-Cap		atio (X)		1	0.705	_		0.271		0.795	0.986		0.782	0.865	0.210
		· · · · · · · · · · · · · · · · · · ·			100			1	000	405	4004		405	4004	005

430

10.2

0.00

386

8.1

1.15

471

3.9

0.00

386

3.0

0.38

Available Capacity (ca), veh/h

Back of Queue (Q), veh/ln (95th percentile)

Queue Storage Ratio (RQ) (95th percentile)

1061

31.1

0.00

125

1.8

0.15

125

2.3

0.37

1091

21.2

0.00

925

2.8

Uniform Delay (d1), s/veh		33.8	32.0		29.5	29.2	43.4	18.8		42.8	15.6	8.8
Incremental Delay (d2), s/veh		3.7	2.2	W. Land	0.1	0.2	9.8	24.4	03.0	6.8	9.2	0.5
Initial Queue Delay (d3), s/veh		0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	0.0
Control Delay (d), s/veh		37.5	34.2		29.6	29.4	53.2	43.2		49.6	24.8	9.3
Level of Service (LOS)		D	С		С	С	D	D		D	С	Α
Approach Delay, s/veh / LOS	36.0		D	29.5	5	С	43.5	5	D	23.4		С
Intersection Delay, s/veh / LOS			33	.3						С		
Multimodal Results		EB			WB			NB			SB	
Pedestrian LOS Score / LOS	2.3		В	2.5		В	2.3		В	2.3		В
Bicycle LOS Score / LOS	1.3		Α	0.8		Α	2.3		В	2.5		В

HCS 2010™ Streets Version 6.50

Generated: 8/27/2015 11:56:46 AM

HCS 2010 Signalized Intersection Results Summary General Information Intersection Information JĮĮ, LSC Duration, h 0.25 Agency Other Analyst JHB Analysis Date Aug 27, 2015 Area Type Jurisdiction Caltrans/Placer County Time Period Winter PM PHF 0.92 267/Airport/Shaffer Mill **Analysis Period** 1>7:00 Intersection Analysis Year 2015 267Airport Winter EAP+P.xus File Name **Project Description** Existing With Approved Projects With Project **WB** NB SB **Demand Information** EB R Т T Τ R Τ Approach Movement L R L R L L 20 72 1287 49 18 795 191 Demand (v), veh/h 80 160 19 81 64 Signal Information 丌 Cvcle, s 90.0 Reference Phase Reference Point Offset, s 0 End 12.4 0.0 0.0 Green 1.5 3.0 58.0 Simult. Gap E/W Uncoordinated No On Yellow 4.0 4.0 0.0 0.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S On Red 1.0 0.0 1.0 1.0 0.0 0.0 **NBT** SBL SBT **Timer Results** EBL **EBT** WBL **WBT NBL Assigned Phase** 4 8 1 6 5 2 2.0 Case Number 7.0 7.0 2.0 4.0 3.0 17.4 66.0 6.5 63.0 Phase Duration, s 17.4 9.6 Change Period, (Y+Rc), s 5.0 5.0 5.0 5.0 5.0 5.0 4.6 4.6 3.8 0.0 3.8 0.0 Max Allow Headway (MAH), s 10.9 7.1 5.5 3.0 Queue Clearance Time (gs), s 0.1 0.0 0.0 0.0 Green Extension Time (g_e) , s 1.5 1.7 Phase Call Probability 1.00 1.00 0.82 0.39 0.00 Max Out Probability 0.09 0.02 0.01 SB **Movement Group Results** EB WB NB T R Approach Movement L Т R L R L T R L T 7 2 4 14 3 8 18 1 6 16 5 12 **Assigned Movement** Adjusted Flow Rate (v), veh/h 109 163 99 77 70 1441 20 864 197 1853 1774 1579 1519 1579 1527 1579 1774 1863 Adjusted Saturation Flow Rate (s), veh/h/ln 1.0 27.7 4.6 Queue Service Time (gs), s 0.6 8.9 0.0 4.0 3.5 61.0 61.0 27.7 4.6 Cycle Queue Clearance Time (gc), s 5.7 8.9 5.1 4.0 3.5 1.0

0.14

282

0.386

437

4.0

0.00

Green Ratio (g/C)

Capacity (c), veh/h

Volume-to-Capacity Ratio (X)

Available Capacity (ca), veh/h

Back of Queue (Q), veh/ln (95th percentile)

Queue Storage Ratio (RQ) (95th percentile)

0.14

218

0.748

386

6.4

0.90

0.14

283

0.350

438

3.6

0.00

0.14

218

0.354

386

2.8

0.35

0.05

90

0.770

267

2.8

0.24

0.68

1256

1.147

1256

59.4

0.00

0.02

31

0.641

267

0.9

0.14

0.64

1200

0.720

1200

14.1

0.00

0.64

1017

0.193

1017

2.2

Uniform Delay (d₁), s/veh		35.8	37.3		35.6	35.1	42.2	14.5		44.0	10.6	6.5
Incremental Delay (d2), s/veh		0.3	1.9		0.3	0.4	5.1	76.0	De la	8.1	3.7	0.4
Initial Queue Delay (d3), s/veh		0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	0.0
Control Delay (d), s/veh		36.1	39.2		35.9	35.5	47.3	90.5		52.0	14.4	6.9
Level of Service (LOS)		D	D		D	D	D	F		D	В	Α
Approach Delay, s/veh / LOS	38.0		D	35.7		D	88.5		F	13.7		В
Intersection Delay, s/veh / LOS			54	.3						D		
Multimodal Results		EB			WB			NB			SB	
Pedestrian LOS Score / LOS	2.3		В	2.5		В	2.2		В	2.2		В
Bicycle LOS Score / LOS	0.9		A	0.8	100	Α	3.0	1	С	2.3		В

HCS 2010™ Streets Version 6.50

Generated: 8/27/2015 11:58:22 AM

Future LOS

	*	→	*	*	+	*	4	†	1	1	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	alk)	ર્લ	7		4		7	1		7	A	74
Volume (veh/h)	252	225	409	127	281	414	468	989	146	316	685	234
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1863	1900	1863	1900	1863	1863	1900	1863	1863	1863
Adj Flow Rate, veh/h	265	237	431	134	296	436	493	1041	154	333	721	246
Adj No. of Lanes	0	1	1	0	1	0	1	1	0	1	1	1
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	161	109	939	30	22	23	234	555	82	171	585	498
Arrive On Green	0.46	0.46	0.46	0.46	0.46	0.46	0.13	0.35	0.35	0.10	0.31	0.31
Sat Flow, veh/h	265	237	1583	0	49	49	1774	1587	235	1774	1863	1583
Grp Volume(v), veh/h	502	0	431	866	0	0	493	0	1195	333	721	246
Grp Sat Flow(s), veh/h/ln	501	0	1583	98	0	0	1774	0	1821	1774	1863	1583
Q Serve(g_s), s	0.0	0.0	21.3	0.0	0.0	0.0	18.5	0.0	49.0	13.5	44.0	17.7
Cycle Q Clear(g_c), s	64.5	0.0	21.3	64.5	0.0	0.0	18.5	0.0	49.0	13.5	44.0	17.7
Prop In Lane	0.53		1.00	0.15		0.50	1.00		0.13	1.00		1.00
Lane Grp Cap(c), veh/h	270	0	939	75	0	0	234	0	637	171	585	498
V/C Ratio(X)	1.86	0.00	0.46	11.59	0.00	0.00	2.10	0.00	1.87	1.95	1.23	0.49
Avail Cap(c_a), veh/h	270	0	939	75	0	0	234	0	637	171	585	498
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	42.4	0.0	15.9	37.4	0.0	0.0	60.8	0.0	45.5	63.2	48.0	39.0
Incr Delay (d2), s/veh	399.8	0.0	0.5	4792.9	0.0	0.0	510.6	0.0	399.5	446.6	118.6	0.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	72.8	0.0	14.4	182.2	0.0	0.0	76.1	0.0	171.6	50.1	75.4	12.3
LnGrp Delay(d),s/veh	442.3	0.0	16.4	4830.3	0.0	0.0	571.3	0.0	445.0	509.9	166.6	39.3
LnGrp LOS	F		В	F			F		F	F	F	D
Approach Vol, veh/h		933			866			1688			1300	
Approach Delay, s/veh		245.6			4830.3			481.9			230.4	
Approach LOS		F			F			F			F	
Timer	1	2	3	4	5	6	7	8				1128
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	22.0	50.0		68.0	17.0	55.0		68.0				
Change Period (Y+Rc), s	3.5	6.0		3.5	3.5	6.0		3.5				
Max Green Setting (Gmax), s	18.5	44.0		64.5	13.5	49.0		64.5				
Max Q Clear Time (g_c+l1), s	20.5	46.0		66.5	15.5	51.0		66.5				
Green Ext Time (p_c), s	0.0	0.0		0.0	0.0	0.0		0.0				
Intersection Summary		eto),										// T
HCM 2010 Ctrl Delay	mo di	4-4-6	1154.2	Jere		0 1 3.1		NE WI	J-7-7		a contract	
HCM 2010 LOS			F									

Intersection Delay, s/veh S.2 Intersection LOS A Approach EB WB NB NB Entry Lanes 1 1 1 1 1 1 1 1 1	
Approach EB	
Approach EB	
Entry Lanes 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Conflicting Circle Lanes 1 1 1 1 Adj Approach Flow, veh/h 724 256 520 Demand Flow Rate, veh/h 738 261 530 Vehicles Circulating, veh/h 24 590 238 Vehicles Exiting, veh/h 883 178 524 Follow-Up Headway, s 2.800 2.800 2.800 Ped Vol Crossing Leg, #h 0 0 0 Ped Cap Adj 1.000 1.000 1.000 Approach Delay, s/veh 9.8 8.2 9.2 Approach LOS A A A Approach LOS A B 8.2 9.2 Approach LOS A LTR LTR LTR LTR LTR	SB
Adj Approach Flow, veh/h 724 256 520 Demand Flow Rate, veh/h 738 261 530 Vehicles Circulating, veh/h 24 590 238 Vehicles Exiting, veh/h 883 178 524 Follow-Up Headway, s 2.800 2.800 2.800 Ped Vol Crossing Leg, #/h 0 0 0 Ped Cap Adj 1.000 1.000 1.000 Approach Delay, s/veh 9.8 8.2 9.2 Approach LOS A A A Lane Left Left Left Left Designated Moves LTR LTR LTR LTR LTR Assumed Moves LTR LTR LTR LTR LTR LTR RT Channelized Lane Util 1.000 1.000 1.000 1.000 1.000 Critical Headway, s 4.200 4.200 4.200 4.200 4.200 Entry Flow, veh/h 738 261 530 143	1
Demand Flow Rate, veh/h 738 261 530 Vehicles Circulating, veh/h 24 590 238 Vehicles Exiting, veh/h 883 178 524 Follow-Up Headway, s 2.800 2.800 2.800 Ped Vol Crossing Leg, #/h 0 0 0 Ped Cap Adj 1.000 1.000 1.000 Approach Delay, s/veh 9.8 8.2 9.2 Approach LOS A A A Lane Left Left Left Left Designated Moves LTR LTR LTR LTR Assumed Moves LTR LTR LTR LTR Acsumed Moves LTR LTR LTR LTR	1
Vehicles Circulating, veh/h 24 590 238 Vehicles Exiting, veh/h 883 178 524 Follow-Up Headway, s 2.800 2.800 2.800 Ped Vol Crossing Leg, #h 0 0 0 Ped Cap Adj 1.000 1.000 1.000 Approach Delay, s/veh 9.8 8.2 9.2 Approach LOS A A A Lane Left Left Left Designated Moves LTR LTR LTR LTR Assumed Moves LTR LTR LTR LTR LTR RT Channelized Lane Util 1.000 1.000 1.000 1.000 Critical Headway, s 4.200 4.200 4.200 4.200 Entry Flow, veh/h 738 261 530 143 Cap Entry Lane, veh/h 1262 813 1068 710 Entry, veh/h 724 256 520 140 Cap Entry, veh/h 724 <t></t>	140
Vehicles Exiting, veh/h 883 178 524 Follow-Up Headway, s 2.800 2.800 2.800 Ped Vol Crossing Leg, #/h 0 0 0 Ped Cap Adj 1.000 1.000 1.000 Approach Delay, s/veh 9.8 8.2 9.2 Approach LOS A A A Lane Left Left Left Lane Left Left Left Designated Moves LTR LTR LTR Assumed Moves LTR LTR LTR LTR RT Channelized Lane Util 1.000 1.000 1.000 1.000 Critical Headway, s 4.200 4.200 4.200 4.200 Entry Flow, veh/h 738 261 530 143 Cap Entry Lane, veh/h 1262 813 1068 710 Entry, veh/h 724 256 520 140 Cap Entry, veh/h 724 256 520 140 <td>143</td>	143
Follow-Up Headway, s Ped Vol Crossing Leg, #/h Ped Cap Adj 1.000 1.000 1.000 Approach Delay, s/veh Pesignated Moves Arr LTR Assumed Moves Arr LTR Assumed Moves Arr LTR Assumed Moves Arr LTR	764
Ped Vol Crossing Leg, #/h 0 0 0 Ped Cap Adj 1.000 1.000 1.000 Approach Delay, s/veh 9.8 8.2 9.2 Approach LOS A A A Lane Left Left Left Left Designated Moves LTR LTR LTR LTR LTR Assumed Moves LTR	87
Ped Cap Adj 1.000 1.000 1.000 Approach Delay, s/veh 9.8 8.2 9.2 Approach LOS A A A Lane Left Left Left Left Designated Moves LTR LTR LTR LTR LTR Assumed Moves LTR	2.800
Approach Delay, s/veh 9.8 8.2 9.2 Approach LOS A A A Lane Left Left Left Left Designated Moves LTR	0
Approach LOS A A A Lane Left Left Left Left Designated Moves LTR LTR LTR LTR LTR Assumed Moves LTR	1.000
Lane Left Left <th< td=""><td>7.5</td></th<>	7.5
Designated Moves LTR LTR LTR LTR Assumed Moves LTR LTR LTR LTR RT Channelized Lane Util 1.000 1.000 1.000 1.000 Critical Headway, s 4.200 4.200 4.200 4.200 Entry Flow, veh/h 738 261 530 143 Cap Entry Lane, veh/h 1262 813 1068 710 Entry HV Adj Factor 0.981 0.982 0.981 0.979 Flow Entry, veh/h 724 256 520 140 Cap Entry, veh/h 1238 798 1048 695 V/C Ratio 0.585 0.321 0.496 0.201	Α
Assumed Moves LTR LTR LTR LTR LTR LTR RT Channelized Lane Util 1.000 1.000 1.000 1.000 4.200 4.200 Critical Headway, s 4.200 4.200 4.200 1.430 Entry Flow, veh/h 738 261 530 143 Cap Entry Lane, veh/h 1262 813 1068 710 Entry HV Adj Factor 0.981 0.982 0.981 0.979 Flow Entry, veh/h 724 256 520 140 Cap Entry, veh/h 1238 798 1048 695 V/C Ratio 0.585 0.321 0.496 0.201	
RT Channelized Lane Util 1.000 1.000 1.000 1.000 1.000 Critical Headway, s 4.200 4.200 4.200 4.200 Entry Flow, veh/h 738 261 530 143 Cap Entry Lane, veh/h 1262 813 1068 710 Entry HV Adj Factor 0.981 0.982 0.981 0.979 Flow Entry, veh/h 724 256 520 140 Cap Entry, veh/h 1238 798 1048 695 V/C Ratio 0.585 0.321 0.496 0.201	MILLIAN III
Lane Util 1.000 1.000 1.000 1.000 Critical Headway, s 4.200 4.200 4.200 4.200 Entry Flow, veh/h 738 261 530 143 Cap Entry Lane, veh/h 1262 813 1068 710 Entry HV Adj Factor 0.981 0.982 0.981 0.979 Flow Entry, veh/h 724 256 520 140 Cap Entry, veh/h 1238 798 1048 695 V/C Ratio 0.585 0.321 0.496 0.201	
Critical Headway, s 4.200 4.200 4.200 4.200 Entry Flow, veh/h 738 261 530 143 Cap Entry Lane, veh/h 1262 813 1068 710 Entry HV Adj Factor 0.981 0.982 0.981 0.979 Flow Entry, veh/h 724 256 520 140 Cap Entry, veh/h 1238 798 1048 695 V/C Ratio 0.585 0.321 0.496 0.201	
Entry Flow, veh/h 738 261 530 143 Cap Entry Lane, veh/h 1262 813 1068 710 Entry HV Adj Factor 0.981 0.982 0.981 0.979 Flow Entry, veh/h 724 256 520 140 Cap Entry, veh/h 1238 798 1048 695 V/C Ratio 0.585 0.321 0.496 0.201	
Cap Entry Lane, veh/h 1262 813 1068 710 Entry HV Adj Factor 0.981 0.982 0.981 0.979 Flow Entry, veh/h 724 256 520 140 Cap Entry, veh/h 1238 798 1048 695 V/C Ratio 0.585 0.321 0.496 0.201	
Entry HV Adj Factor 0.981 0.982 0.981 0.979 Flow Entry, veh/h 724 256 520 140 Cap Entry, veh/h 1238 798 1048 695 V/C Ratio 0.585 0.321 0.496 0.201	
Flow Entry, veh/h 724 256 520 140 Cap Entry, veh/h 1238 798 1048 695 V/C Ratio 0.585 0.321 0.496 0.201	
Cap Entry, veh/h 1238 798 1048 695 V/C Ratio 0.585 0.321 0.496 0.201	
V/C Ratio 0.585 0.321 0.496 0.201	
Control Delay, s/veh 9.8 8.2 9.2 7.5	
LOS A A A A	
95th %tile Queue, veh 4 1 3 1	

Intersection							
nt Delay, s/veh	4.1						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Vol, veh/h	28	38	88	30	80	56	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None		None	
Storage Length	0	120	100	-		-	
/eh in Median Storage, #	# 0	-		0	0	-	
Grade, %	0		Harrison .	0	0		
Peak Hour Factor	95	95	95	95	95	95	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	29	40	93	32	84	59	
							F1 570
Anine/Miner	Minor2		Maland	San Ta	14-10		
Major/Minor		444	Major1	0	Major2	0	
Conflicting Flow All	331	114	143	0		0	U. N. V.
Stage 1	114				_	-	
Stage 2	217		140	-		-	
Critical Hdwy	6.42	6.22	4.12	-	-	14	
Critical Hdwy Stg 1	5.42		-	E		•	
Critical Hdwy Stg 2	5.42	-	-	-		•	
ollow-up Hdwy	3.518	3.318	2.218	-			
Pot Cap-1 Maneuver	664	939	1440	-		-	
Stage 1	911		•			-	
Stage 2	819	-		-			
Platoon blocked, %				-		-	
Mov Cap-1 Maneuver	621	939	1440	¥		-	
Mov Cap-2 Maneuver	621			-			
Stage 1	911		-			-	
Stage 2	766			-			
Approach	EB		NB		SB		0.0
HCM Control Delay, s	9.9		5.7		0		
HCM LOS	Α		M MAR				
Ainer Lene/Major Mumb	MDI	NIDT EDI n4 FF	DIAG CET	CDD			
Minor Lane/Major Mymt	NBL	NBT EBLn1 EE		SBR			
Capacity (veh/h)	1440	- 621	939 -				
HCM Control Polov (a)	0.064	- 0.047 0		•			
HCM Control Delay (s)	7.7	- 11.1	9 -		and the second second second second		
HCM Lane LOS	A	- B	A -				
HCM 95th %tile Q(veh)	0.2	- 0.1	0.1 -	-			

		HCS 2	010 S	ignali	zed lı	nterse	ction	Res	sults S	umma	ary				
The same of the same	SHER		700			MA P	THE PARTY		5 9 5 5						
General Inform	nation								Intersec	tion Infe	ormatio	n	2	4 2 2 4 4	F IS
Agency		LSC							Duration,	h	0.25			111	.
Analyst		JHB		Analys	is Date	Aug 27	7, 2015		Area Typ	е	Other		20		
Jurisdiction		Caltrans/Placer Co	unty	Time F	Period	Summ	er PM		PHF		0.95		-4	Ξε	7
Intersection		267/Airport/Shaffer	Mill	Analys	is Year	2035			Analysis	Period	1> 7:0	0	1		
File Name		267Airport Future +	P.xus											ጎ P	
Project Descrip	tion	Truckee Airport TIA	- Futur	e With F	roject								7	1 190	HIP.
Demand Inform	nation				EB			WE	3		NB	VEREL		SB	
Approach Move	ement			L	Т	R	L	Т	R	L	T	R	L	T	R
Demand (v), ve				364	20	84	55	13	99	38	1060	40	94	931	194
Signal Informa	tion						Ţ		R						
Cycle, s	120.0	Reference Phase	2	1	6	842	IRA.	_ 2	£				D		A
Offset, s	0	Reference Point	End	1		1							2	3	A
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow		0.0	67.0 4.0	33. 4.0		0.0	R				A
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	0.0	1.0	1.0		0.0) [6	7	K
					THE REAL PROPERTY.			Tille and				1000			
Timer Results				EBI		EBT	WB	L	WBT	NBI		NBT	SBI	. 1	SBT
Assigned Phase	e					4			8	5		2	1		6
Case Number						7.0			7.0	2.0		4.0	2.0		3.0
Phase Duration	i, S					38.0			38.0	8.5		72.0	10.0)	73.5
Change Period	, (Y+Rc), s				5.0			5.0	5.0		5.0	5.0		5.0
Max Allow Head	dway (1	<i>ЛАН</i>), s				4.5			4.5	3.8		0.0	3.8		0.0
Queue Clearan	ce Time	e (gs), s				35.0			7.5	4.7			7.0		
Green Extension	n Time	(<i>g</i> _θ), s				0.0			2.9	0.0		0.0	0.0		0.0
Phase Call Prol	bability					1.00			1.00	0.74	l e		0.96	3	
Max Out Proba	bility					1.00			0.00	1.00)	NAME OF TAXABLE PARTY.	1.00		
Movement Gro	oup Re	sults			EB		British .	WB			NB			SB	
Approach Move				L	Т	R	L	Т	R	L	T	R	L	T	R
Assigned Move	ment			7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow I	Rate (v)), veh/h			404	78		72	94	40	1147		99	980	194
Adjusted Satura	ation Fl	ow Rate (s), veh/h/in	1,8 341		1433	1579	we will be	1785	1579	1774	1854		1774	1863	1579
Queue Service	Time (g	gs), S			29.4	4.5		0.0	5.5	2.7	67.0		5.0	57.1	7.2
Cycle Queue C	learanc	e Time (gc), s			33.0	4.5		3.6	5.5	2.7	67.0		5.0	57.1	7.2
Green Ratio (g/	/C)				0.28	0.28		0.28	0.28	0.03	0.56		0.04	0.57	0.57
Capacity (c), ve	eh/h				453	434		545	434	51	1035		74	1064	902
				11	T			1	1	THE STATE OF THE S	II.		The second	1	1

0.893 0.179

434

3.2

0.45

453

20.6

0.00

0.131

545

2.9

0.00

0.216

434

0.0

0.00

0.783 1.109

1035

58.6

0.00

74

2.5

0.21

1.339

74

11.7

1.85

0.921

1064

33.7

0.00

0.215

902

4.3

0.55

Volume-to-Capacity Ratio (X)

Available Capacity (ca), veh/h

Back of Queue (Q), veh/ln (95th percentile)

Uniform Delay (d1), s/veh		43.7	33.2		32.8	33.5	57.9	26.5		57.5	23.3	12.6
Incremental Delay (d2), s/veh		19.1	0.1		0.0	0.1	16.9	62.7	Lust	219.3	14.1	0.5
Initial Queue Delay (d3), s/veh		0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	0.0
Control Delay (d), s/veh		62.8	33.2		32.9	33.6	74.8	89.2	THE STATE OF	276.8	37.4	13.1
Level of Service (LOS)		Е	С		С	С	Е	F		F	D	В
Approach Delay, s/veh / LOS	58.0		E	33.3	3	С	88.7		F	52.3		D
Intersection Delay, s/veh / LOS			66	.1	S - 12 - 12					E		
Multimodal Results		EB			WB			NB		1	SB	
Pedestrian LOS Score / LOS	2.3		В	2.5		В	2.3		В	2.3		В
Bicycle LOS Score / LOS	1.3		A	0.8		Α	2.4		В	2.6		В

HCS 2010™ Streets Version 6.50

Generated: 9/10/2015 12:04:16 PM

		HCS 2	010 S	ignali	zed lı	nterse	ction	Res	sults S	umma	ary		La Carrier		
General Inforn	nation		- Peni					I	Intersect	tion Infe	ormatio	n	1 2	(4 18 H I I	7 L
Agency		LSC							Duration,	h	0.25			111	
Analyst		JHB		Analys	is Date	Apr 16	, 2015		Area Typ	е	Other		· ·		
Jurisdiction		Caltrans/Placer Cou	unty	Time F	eriod	Winter	РМ	\rightarrow	PHF		0.95		4	v, `€	-
Intersection		267/Airport/Shaffer	Mill	Analys	is Year	2035			Analysis	Period	1> 7:0	00			
File Name		267Airport Winter F	uture +	P.xus										ጎ ቱ	r
Project Descrip	tion	Truckee Airport TIA	- Futur	e With P	roject								7	4 拉田町	4
Demand Inform	mation				EB		1	WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	T	R
Demand (v), ve				103	2	15	35	4	80	81	1618	_	25	818	202
Signal Informa	ation						111		5						
Cycle, s	120.0	Reference Phase	2	1	7		17,1	3	湯 ニ				12		A
Offset, s	0	Reference Point	End		1	<u>S17</u>						1	2	3	Y 4
Uncoordinated	No	Simult. Gap E/W	On	Green		0.1	86.2	11.4		0.0	R				4
Force Mode	Fixed	Simult. Gap N/S	On	Yellow Red	1.0	4.0 1.0	4.0	4.0	0.0	0.0) , "		7	1
T GIGG WIGGE	TIXOU	Cirruit. Cup 14/C	Oll	Ttou				11.0	10.0	10.0			- 1/2 3		1910
Timer Results				EBL		EBT	WB	L	WBT	NBI		NBT	SBL		SBT
Assigned Phas	е					4			8	5		2	1		6
Case Number						7.0			7.0	2.0		4.0	2.0		3.0
Phase Duration	1, S					16.4			16.4	12.4		96.3	7.3	!	91.2
Change Period	, (Y+Rc), s		U.S.		5.0			5.0	5.0		5.0	5.0		5.0
Max Allow Hea	dway (1	<i>//AH</i>), s				4.5			4.5	3.8		0.0	3.8		0.0
Queue Clearan	ice Time	e (gs), s				10.5			7.3	7.7			3.8		
Green Extension	on Time	(<i>g</i> _e), s				0.9			0.9	0.2		0.0	0.0		0.0
Phase Call Pro	bability	The fire and saire.				1.00		-/1/	1.00	0.94			0.58		
Max Out Proba	bility					0.00			0.00	0.00)		0.00		
Movement Gre	oup Re	sults			EB			WB			NB			SB	
Approach Move				L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ement			7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow), veh/h			111	5		41	74	85	1714		26	861	202
		ow Rate (s), veh/h/ln		17 13	1493	1579		1734		1774	1861		1774	1863	1579
Queue Service	and the latest designation of the latest des				6.0	0.4		0.0	5.3	5.7	91.3		1.8	29.1	5.0
Cycle Queue C					8.5	0.4		2.5	5.3	5.7	91.3		1.8	29.1	5.0
Green Ratio (g	/C)				0.09	0.09		0.09	0.09	0.06	0.76		0.02	0.72	0.72
Capacity (c), ve	eh/h				201	150		222	150	109	1415		35	1338	1134
	-	The second secon		0	Contract of the last of the la	-		0	-	The same of the sa	-	Q		-	-

456

6.0

0.00

0.549 0.035

434

0.3

0.04

434

0.1

0.01

0.185 0.491

482

2.1

0.00

393

4.6

0.39

0.779 1.211

1415

90.2

0.00

0.644

1338

14.6

0.00

0.762

393

1.6

0.25

0.178

1134

2.4

0.31

Volume-to-Capacity Ratio (X)

Available Capacity (ca), veh/h

Back of Queue (Q), veh/ln (95th percentile)

Uniform Delay (d1), s/veh		52.8	49.3		50.3	51.5	55.5	14.4		58.6	8.9	5.5
Incremental Delay (d2), s/veh		0.9	0.0	DVE C	0.1	0.9	4.5	101.8		12.0	2.4	0.3
Initial Queue Delay (d3), s/veh		0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	0.0
Control Delay (d), s/veh		53.7	49.3		50.4	52.5	60.0	116.1		70.6	11.2	5.8
Level of Service (LOS)		D	D		D	D	E	F		E	В	Α
Approach Delay, s/veh / LOS	53.5		D	51.7	7	D	113.	5	F	11.7		В
Intersection Delay, s/veh / LOS			73	.4						E		
Multimodal Results		EB			WB			NB			SB	
Pedestrian LOS Score / LOS	2.3		В	2.5		В	2.2		В	2.2		В
Bicycle LOS Score / LOS	0.7		A	0.7		Α	3.5		С	2.3		В

HCS 2010™ Streets Version 6.50

Generated: 9/10/2015 12:06:28 PM

S	۶	→	7	•	+	•	4	1	-	1	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	77		4		Y	1		7	^	77
Volume (veh/h)	252	218	403	127	261	393	448	968	146	308	679	234
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1863	1900	1863	1900	1863	1863	1900	1863	1863	1863
Adj Flow Rate, veh/h	265	229	424	134	275	414	472	1019	154	324	715	246
Adj No. of Lanes	0	1	1	0	1	0	1	1	0	1	1	1
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	165	108	927	30	22	22	234	565	85	171	599	509
Arrive On Green	0.45	0.45	0.45	0.45	0.45	0.45	0.13	0.36	0.36	0.10	0.32	0.32
Sat Flow, veh/h	276	239	1583	0	48	49	1774	1582	239	1774	1863	1583
Grp Volume(v), veh/h	494	0	424	823	0	0	472	0	1173	324	715	246
Grp Sat Flow(s), veh/h/ln	515	0	1583	97	0	0	1774	0	1821	1774	1863	1583
Q Serve(g_s), s	0.0	0.0	21.2	0.0	0.0	0.0	18.5	0.0	50.0	13.5	45.0	17.5
Cycle Q Clear(g_c), s	63.5	0.0	21.2	63.5	0.0	0.0	18.5	0.0	50.0	13.5	45.0	17.5
Prop In Lane	0.54		1.00	0.16		0.50	1.00		0.13	1.00		1.00
Lane Grp Cap(c), veh/h	273	0	927	74	0	0	234	0	650	171	599	509
V/C Ratio(X)	1.81	0.00	0.46	11.15	0.00	0.00	2.01	0.00	1.80	1.89	1.19	0.48
Avail Cap(c_a), veh/h	273	0	927	74	0	0	234	0	650	171	599	509
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	42.8	0.0	16.4	36.5	0.0	0.0	60.8	0.0	45.0	63.2	47.5	38.2
Incr Delay (d2), s/veh	377.8	0.0	0.5	4592.4	0.0	0.0	470.8	0.0	367.9	423.5	103.1	0.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	70.6	0.0	14.3	172.6	0.0	0.0	71.5	0.0	164.8	48.1	72.5	12.2
LnGrp Delay(d),s/veh	420.6	0.0	16.9	4628.9	0.0	0.0	531.6	0.0	412.9	486.7	150.6	38.4
LnGrp LOS	F		В	F			F		F	F	F	D
Approach Vol, veh/h		918			823			1645			1285	
Approach Delay, s/veh		234.2			4628.9			447.0			213.8	12. 17. 1
Approach LOS		F			F			F			F	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8		(I) Table	SECUL	
Phs Duration (G+Y+Rc), s	22.0	51.0		67.0	17.0	56.0		67.0				2000
Change Period (Y+Rc), s	3.5	6.0		3.5	3.5	6.0		3.5				
Max Green Setting (Gmax), s	18.5	45.0	Bergine.	63.5	13.5	50.0		63.5				War and
Max Q Clear Time (g_c+l1), s	20.5	47.0		65.5	15.5	52.0		65.5				
Green Ext Time (p_c), s	0.0	0.0		0.0	0.0	0.0		0.0				
Intersection Summary		<u> </u>	19.00									
HCM 2010 Ctrl Delay			1077.8				No. of the State o		al v dy ii			
HCM 2010 LOS			F									

Intersection Intersection Delay, s/veh 8.9 Intersection LOS A Approach EB WB Entry Lanes 1 1 Conflicting Circle Lanes 1 1 Adj Approach Flow, veh/h 708 212 Demand Flow Rate, veh/h 722 216 Vehicles Circulating, veh/h 24 590	NB SB 1 1 1 1 520 140 530 143 222 719 524 87
Approach EB WB Entry Lanes 1 1 Conflicting Circle Lanes 1 1 Adj Approach Flow, veh/h 708 212 Demand Flow Rate, veh/h 722 216	1 1 1 1 1 520 140 530 143 222 719
Approach EB WB Entry Lanes 1 1 Conflicting Circle Lanes 1 1 Adj Approach Flow, veh/h 708 212 Demand Flow Rate, veh/h 722 216	1 1 1 1 1 520 140 530 143 222 719
Entry Lanes 1 1 Conflicting Circle Lanes 1 1 Adj Approach Flow, veh/h 708 212 Demand Flow Rate, veh/h 722 216	1 1 1 1 1 520 140 530 143 222 719
Conflicting Circle Lanes 1 1 Adj Approach Flow, veh/h 708 212 Demand Flow Rate, veh/h 722 216	1 1 1 520 140 530 143 222 719
Adj Approach Flow, veh/h 708 212 Demand Flow Rate, veh/h 722 216	520 140 530 143 222 719
Demand Flow Rate, veh/h 722 216	530 143 222 719
	222 719
Vehicles Circulating, veh/h 24 590	
	524 87
Vehicles Exiting, veh/h 838 162	
Follow-Up Headway, s 2.800 2.800	2.800 2.800
Ped Vol Crossing Leg, #/h 0 0	0 0
Ped Cap Adj 1.000 1.000	1.000 1.000
Approach Delay, s/veh 9.6 7.5	9.1 7.2
Approach LOS A A	A A
Lane Left Left Left	t Left
Designated Moves LTR LTR LTR	R LTR
Assumed Moves LTR LTR LTR	R LTR
RT Channelized	
Lane Util 1.000 1.000 1.000	1.000
Critical Headway, s 4.200 4.200 4.200	4.200
Entry Flow, veh/h 722 216 530	143
Cap Entry Lane, veh/h 1262 813 1082	735
Entry HV Adj Factor 0.981 0.983 0.981	0.979
Flow Entry, veh/h 708 212 520	140
Cap Entry, veh/h 1238 798 1061	719
V/C Ratio 0.572 0.266 0.490	0.195
Control Delay, s/veh 9.6 7.5 9.1	7.2
LOS A A	A
95th %tile Queue, veh 4 1	3 1

Intersection						200000
Int Delay, s/veh	5.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Vol, veh/h	13	38	88	11	22	15
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None	_			None
Storage Length	0	120	100			18/17/2
Veh in Median Storage, #	0	-	-	0	0	-
Grade, %	0	No Ny avalle at		0	0	
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	14	40	93	12	23	16
Major/Miner	Minor2		Major1	SOF	Major2	1 05 59
Conflicting Flow All	228	31	39	0		0
Stage 1	31	-	39	-		-
Stage 2	197					-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	0.22	4.12			
Critical Hdwy Stg 2	5.42					
Follow-up Hdwy	3.518	3.318	2.218			
Pot Cap-1 Maneuver	760	1043	1571	-		
Stage 1	992	1040	1071			
Stage 2	836	_		-	Salidar Delinition of the second	2
Platoon blocked, %						
Mov Cap-1 Maneuver	715	1043	1571			-
Mov Cap-2 Maneuver	715	1040		1000 m		
Stage 1	992		-	-		
Stage 2	787					
0 -						
Approach	EB		NB		SB	
HCM Control Delay, s	9		6.6		0	E Library or a
HCM LOS	A		0.0		U CONTRACTOR OF THE CONTRACTOR	
HOW EOU	Α					
Minor Lane/Major Mvmt	NBL	NBT EBLn1 I	EBLn2 SBT	SBR		Total Sans
Capacity (veh/h)	1571		1043 -			
HCM Lane V/C Ratio	0.059	- 0.019				
HCM Control Delay (s)	7.4	- 10.1	8.6 -	-		
HCM Lane LOS	7.4 A	- 10.1	A -			
HCM 95th %tile Q(veh)	0.2	- 0.1	0.1 -			
HOW JOHN JOHNE CA(VEII)	0.2	- 0.1	0.1 -	•		

HCS 2010 Signalized Intersection Results Summary Intersection Information **General Information** JJJ. 0.25 Duration, h LSC Agency Other **Analyst** JHB Analysis Date Aug 27, 2015 Area Type PHF 0.95 Caltrans/Placer County Time Period Summer PM Jurisdiction Intersection 267/Airport/Shaffer Mill Analysis Year 2035 **Analysis Period** 1> 7:00 267Airport Future NP.xus File Name Truckee Airport TIA - Future Without Project 5 4 1 位置原因的 **Project Description** WB NB SB EB **Demand Information** L T R L T R L Т R L Т R Approach Movement 39 12 1060 33 82 931 194 Demand (v), veh/h 364 20 84 58 38 Signal Information 瓜 120.0 Reference Phase 2 Cycle, s 0 Reference Point Offset, s End Green 3.5 1.5 67.0 33.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 4.0 4.0 0.0 0.0 Simult. Gap N/S 1.0 1.0 0.0 0.0 Force Mode Fixed On Red 1.0 0.0 **EBL EBT WBL** WBT **NBL NBT** SBL SBT **Timer Results** 5 2 6 4 8 1 Assigned Phase 2.0 4.0 2.0 3.0 7.0 7.0 Case Number 38.0 8.5 72.0 10.0 73.5 Phase Duration, s 38.0 5.0 5.0 5.0 5.0 5.0 5.0 Change Period, (Y+Rc), s Max Allow Headway (MAH), s 4.5 4.5 3.8 0.0 3.8 0.0 7.0 4.7 4.9 Queue Clearance Time (gs), s 35.0 2.7 0.0 0.0 0.0 0.0 0.0 Green Extension Time (g_e) , s 0.74 0.94 1.00 1.00 Phase Call Probability 1.00 0.00 1.00 1.00 Max Out Probability SB **Movement Group Results** EB WB NB L Τ Τ R T R Approach Movement T R L R L L 7 4 14 18 5 2 12 16 **Assigned Movement** 8 404 40 1140 86 980 194 78 54 51 Adjusted Flow Rate (v), veh/h 1774 1856 1774 1863 1579 Adjusted Saturation Flow Rate (s), veh/h/ln 1435 1579 1789 1579 4.5 0.0 2.9 2.7 67.0 5.0 57.1 7.2 Queue Service Time (gs), s 30.3 33.0 4.5 2.7 2.9 2.7 67.0 5.0 57.1 7.2 Cycle Queue Clearance Time (gc), s 0.28 0.28 0.28 0.28 0.03 0.56 0.04 0.57 0.57 Green Ratio (g/C)

453

0.892

453

20.6

0.00

Capacity (c), veh/h

Volume-to-Capacity Ratio (X)

Available Capacity (ca), veh/h

Back of Queue (Q), veh/In (95th percentile)

Queue Storage Ratio (RQ) (95th percentile)

434

0.179

434

3.2

0.45

545

0.099

545

2.1

0.00

434

0.116

434

2.0

0.26

51

0.783

74

2.5

0.21

1036

1.100

1036

57.2

0.00

74

1.168

74

9.5

1.51

1064

0.921

1064

33.7

0.00

902

0.215

902

4.3

Uniform Delay (d1), s/veh		43.7	33.2		32.5	32.6	57.9	26.5		57.5	23.3	12.6	
Incremental Delay (d2), s/veh		18.9	0.1		0.0	0.0	16.9	59.6		157.0	14.1	0.5	
Initial Queue Delay (d3), s/veh		0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	0.0	
Control Delay (d), s/veh		62.6	33.2	The same	32.5	32.6	74.8	86.1	BOR	214.5	37.4	13.1	
Level of Service (LOS)		Е	С		С	С	Е	F		F	D	В	
Approach Delay, s/veh / LOS	57.8		E	32.6 C		С	85.7 F		F	45.8		D	
Intersection Delay, s/veh / LOS			62	.8						E			
Multimodal Results		EB			WB			NB			SB		
Pedestrian LOS Score / LOS	2.3	\top	В	2.5		В	2.3		В	2.3		В	
Bicycle LOS Score / LOS	1.3		Α	0.7	ALTER ART	Α	2.4		В	2.6		В	

HCS 2010™ Streets Version 6.50

Generated: 9/10/2015 12:00:41 PM

		HCS 20	010 S	ignali	zed lı	nterse	ction	Res	sults S	umma	ary					
General Inform	adian		1999		1	15.00	12.0		Intersec	tion Info			7	4 2 5 1 1	i u	
	ation	lsc							Duration		0.25	n		111		
Agency				A = = b +=	:- D-t-	10 40	2045				_					
Analyst		JHB		-		Apr 16 Winter		-	Area Typ PHF	e	Other			w÷€	-	
Jurisdiction		Caltrans/Placer Cou		Time F			PIVI			Daviad	0.95		-			
Intersection		267/Airport/Shaffer		Analys	is year	2035			Analysis	Period	1> 7:0	<i>/</i> U				
File Name		267Airport Winter F			A Dunin	- 4							- 1	<u>ጎ</u> ነ		
Project Descrip	tion	Truckee Airport TIA	- Futur	e Withou	it Proje	ct								AUTO B		
Demand Inform	nation				EB			WE	3		NB			SB		
Approach Move	ement			L	T	R	L	T	R	L	L T R		LT		R	
Demand (v), ve	h/h			103	2	15	5	2	18	81	1618	15	16	818	202	
Signal Informa	tion					-	Ţ		5							
Cycle, s	120.0	Reference Phase	2	1	2)			2				4	D		4	
Offset, s	0	Reference Point	End		5	ST							. 2	3	Y	
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow	-	0.7 4.0	86.2	4.0		0.0	-				4	
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.0	1.0	Name and Address of the Owner, where the Owner, which is the Own	0.0) [6	7	K	
T GIGG IIIGGG	Tixou	Ciliata Cap inc		A STATE OF				N. Salar							100	
Timer Results				EBL		EBT	WB	L	WBT	NBI		NBT	SBL		SBT	
Assigned Phase	е			4		4	8		5			1		6		
Case Number				7.0		7.0			7.0	2.0	4.0		2.0		3.0	
Phase Duration	i, S			16.4		16.4			16.4	12.4	96.9		6.7		91.2	
Change Period	, (Y+Rc), s		5.0				5.0	5.0	5.0		5.0		5.0		
Max Allow Hea	dway (<i>N</i>	<i>MAH</i>), s		4.4				4.4	3.8	0.0		3.8		0.0		
Queue Clearan	ce Time	e (gs), s				11.1			2.6	7.7			3.1		MILWOOD A	
Green Extension	n Time	(<i>g</i> _e), s				0.4			0.5	0.2		0.0	0.0		0.0	
Phase Call Pro	bability		SPRW			0.99			0.99	0.94			0.43	3		
Max Out Proba	bility					0.00			0.00	0.00)		0.00)		
Movement Gro	oup Re	sults			EB			WB			NB		1	SB		
Approach Move				L	T	R	L	T	R	L	Т	R	L	Т	R	
Assigned Movement		7	4	14	3	8	18	5	2	12	1	6	16			
Adjusted Flow Rate (v), veh/h				111	5		7	8	85	1708		17	861	202		
Adjusted Saturation Flow Rate (s), veh/h/ln			17.00	1432	1579		1773	1579	1774	1862		1774	1863	1579		
Queue Service					8.6	0.4		0.0		5.7	91.9		1.1	29.0	5.0	
Cycle Queue C				100	9.1	0.4		0.4		5.7	91.9		1.1	29.0	5.0	
Green Ratio (g					0.09	0.09		0.09		0.06	0.77		0.01	0.72	0.72	
Capacity (c), ve					195	149	101000	219	-	109	1426		25	1339	1134	
					-	-	_	-	-		1	1	The same of the sa	1	-	

0.567

450

6.0

0.00

0.035

434

0.3

0.04

Volume-to-Capacity Ratio (X)

Available Capacity (ca), veh/h

Back of Queue (Q), veh/ln (95th percentile)

Queue Storage Ratio (RQ) (95th percentile)

0.034

492

0.4

0.00

0.056

434

0.4

0.05

0.779

394

4.6

0.39

1.198

1426

86.5

0.00

0.663

394

1.0

0.16

0.643

1339

14.5

0.00

0.178

1134

2.4

Uniform Delay (d₁), s/veh		53.2	49.3		49.4	49.4	55.5	14.0		58.9	8.8	5.4
Incremental Delay (d2), s/veh		1.0	0.0	DVIV.	0.0	0.1	4.5	96.2		10.5	2.4	0.3
Initial Queue Delay (d3), s/veh		0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	0.0
Control Delay (d), s/veh		54.2	49.4		49.4	49.5	60.0	110.2		69.3	11.2	5.8
Level of Service (LOS)		D	D		D	D	Е	F		Е	В	Α
Approach Delay, s/veh / LOS	54.0		D	49.4 D		D	107.8 F		F	11.1 B		В
Intersection Delay, s/veh / LOS			70	.7						E		
Multimodal Results		EB			WB			NB			SB	
Pedestrian LOS Score / LOS	2.3		В	2.5		В	2.2		В	2.2		В
Bicycle LOS Score / LOS	0.7		Α	0.5		Α	3.4		С	2.3		В

HCS 2010™ Streets Version 6.50

Generated: 9/10/2015 11:50:27 AM

LOS calculations with intersection mitigation measures

TABLE C1: Truckee Airport Master Plan - SR 267/Brock	rport Master	Plan - S	R 267/Bro	ckway F	Road/So	aring Way	way Road/Soaring Way - Existing Year Intersection Mitigation	Year Intel	rsectior	n Mitigat	ion		
				Traffic Si	Traffic Signal Option	on				Round	Roundabout Option	on	
		# Lanes/		Avg. Delav		95th Percentile Queue	95th Percentile Queue	# Lanes/	Avg. Delav		Vehicle- Hours of	95th Percentile Queue	95th Percentile Queue
Intersection	Movement	Config	Phasing	(Sec)	ros	(vehicles)	(feet)	Config	(Sec)	ros	Delay	(vehicles)	(feet)
SR 267 / Brockway Road /													
Soaring Way	NBL	_	Prot	68.1	ш	22.3	558	Shared	24.3	ပ	;	7	175
	NBT	_		53.7	Δ	32.7	818	7	29.0	Δ	1	6	
With Approved Projects	NBR	_	Perm	20.7	ပ	7.1	178	Yield	8.2	∢	;	~	25
With Airport Master Plan	SBL	-	Prot	88.0	ш	19.3	483	Shared	25.5	Ω	:	7	175
	SBT	_		36.3	Δ	19.0	475	7	:	!	;	1	1
	SBR	—	Perm	25.7	ပ	7.6	190	Shared	29.1	Ω	;	80	200
	EBL	_	Perm	129.5	Щ	17.8	445	Shared	:	:	1	1	;
	EBT	_		29.4	ပ	8.1	203	_	24.4	ပ	;	9	150
	EBR	_	Overlap	16.3	В	13.8	345	_	29.0	Δ	;	∞	200
	WBL	_	Perm	65.4	ш	10.6	265	_	16.9	ပ	;	2	20
	WBT	_		30.2	ပ	10.2	255	-	20.6	ပ	1	4	100
	WBR	_	Overlap	20.2	ပ	13.7	343	Yield	46.4	ш	;	10	250
	Total												
	Intersection	:		46.7	Ω	1	1	2 Lanes	27.3	Ω	1	!	1
					MEETS T	MEETS TOWN STANDARD	ARD			MEETS	MEETS TOWN STANDARD	NDARD	

Truckee Airport MasterPlan TIA.xlsx

,	itigation
	r Intersection M
;	Vay - Future Yea
	Road/Soaring V
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	R 267/Brockway
	Master Plan - Si
;	ruckee Airport
	E C2:

						6				6			
				Traffic Si	Traffic Signal Option	ou				Round	Roundabout Option	on	
		# Lanes/		Avg. Delay		95th Percentile Queue	95th Percentile Queue	# Lanes/	Avg. Delay		Vehicle- Hours of	95th Percentile Queue	95th Percentile Queue
Intersection	Movement	Config	Phasing	(Sec)	SOT	(vehicles)	(feet)	Config	(Sec)	SOT	Delay	(vehicles)	(feet)
SR 267 / Brockway Road /													
Soaring Way	NBL	_	Prot	88.2	ш	32.0	800	Shared	77.5	ш	14.3	19	475
	NBT	7		34.7	ပ	18.7	468	7	104.1	ш	21.7	25	625
Without Project	NBR	_	Perm	22.2	ပ	5.0	125	Yield	7.5	⋖	;	-	25
	SBL	_	Prot	63.9	ш	15.9	398	Shared	26.9	Ω	;	7	175
	SBT	7		31.7	ပ	13.0	325	2	31.0	Δ	;	6	225
	SBR	_	Perm	28.6	ပ	9.1	228	Yield	12.5	В	;	2	20
	EBL	-	Perm	128.9	Щ	21.2	530	Shared	17.8	ပ	1	က	75
	EBT	-		23.4	ပ	7.8	195	7	14.0	В	1	2	20
	EBR	_	Overlap	11.1	В	10.1	253	Free	0.0	⋖	;	~	25
	WBL	_	Perm	32.3	ပ	5.5	138	Shared	31.2	Δ	;	4	100
	WBT	_		23.8	ပ	9.1	228	7	29.5	Ω	:	4	100
	WBR	_	Overlap	13.7	В	10.7	268	Free	0.0	⋖	:	~	25
	Total												
	Intersection	ŀ		41.0	Δ	ŀ	:	2 Lanes	40.9	ш	;	1	:
					MEETS T	MEETS TOWN STANDARD	ARD			DOES NO	OT MEET TO	DOES NOT MEET TOWN STANDARD	ARD
SR 267 / Brockway Road /													
Soaring Way	NBL	_	Prot	6.97	Щ	34.2	855	Shared	93.6	ш	17.8	22	550
	NBT	7		41.8	Ω	21.5	538	7	122.4	ш	26.3	28	200
With Airport Master Plan	NBR	_	Perm	25.2	ပ	2.7	143	Yield	9.7	⋖	;	~	25
	SBL	-	Prot	75.3	ш	18.2	455	Shared	31.2	Δ	1	ø	200
	SBT	7		42.0	Ω	15.3	383	2	36.8	ш	;	10	250
	SBR	_	Perm	36.0	Ω	10.4	260	Yield	13.4	В	;	2	20
	EBL	_	Perm	139.7	ш	23.0	575	Shared	18.3	ပ	1	က	75
	EBT	_		24.6	ပ	8.5	213	2	14.6	В	1	2	20
	EBR	-	Overlap	10.0	⋖	10.2	255	Free	0.0	⋖	1	-	25
	WBL	_	Perm	34.1	ပ	0.9	150	Shared	36.2	ш	;	4	100
	WBT	-		25.2	ပ	10.4	260	7	34.4	Δ	1	2	125
	WBR Total	-	Overlap	14.4	Ф	11.9	298	Free	0.0	∢	:	_	25
	Intersection	ŀ		44.9	Q	ŀ	;	2 Lanes	48.3	ш	;	ŀ	1
					MEETS T	MEETS TOWN STANDARD	ARD			DOES NO	OT MEET TO	DOES NOT MEET TOWN STANDARD	ARD
											Truc	Truckee Airport MasterPlan TIA.xlsx	terPlan TIA.xlsx

TABLE C3: Truckee Airport Master Plan - SR 267/Airport Road/Schaffer Mill Road - Future Year Intersection Mitigation	rport Master	· Plan - Si	R 267/Air _l	oort Roa	id/Schaf	fer Mill Ro	ad - Future	e Year In	ersectio	n Mitiga	tion		
			Wi	Without Airp	Airport Master Plan	r Plan				With Airport Master Plan	ort Master	Plan	
				Avg.		95th Percentile	95th Percentile			Avg.		95th Percentile	95th Percentile
Intersection	Movement	# Lanes/ Config	Phasing	Delay (Sec)	SOT	Queue (vehicles)	Queue (feet)	# Lanes/ Config	Phasing	Delay (Sec)	SOT	Queue (vehicles)	Queue (feet)
SR 267 / Airport Road /	:			;	ı					!	ı	:	
Schaffer Mill Road		← (Prot	39.5	<u></u> Ο (7.5	38	← (Prot	45.7	<u></u> Ω (6. 5 8. 6	45
Summer Traffic Volumes	- 88 - 88 - 88 - 88 - 88 - 88 - 88 - 88	Shared	Derm	28.8 28.8	ی د	16.9	423 435	Shared	Derm	32.0 31.7	ی د	2 8.8 7	470 485
	SBL	- J	Prot	71.0	ш	t. 6.4	123	7 diag	Prot	82.5) Ц	6.4	160
	SBT	2		18.3	В	12.5	313	2		20.0	മ	13.6	340
	SBR	-	Perm	14.3	В	4.8	120	_	Perm	15.9	В	5.4	135
	EBL	_	Perm	30.1	ပ	12.7	318	_	Perm	36.1	Δ	14.4	360
	EBT	- ;		16.5	മ	2.7	89	- ;		17.5	മ	3.0	75
	EBK	Shared	ı	: }	: 1	I ,	1 }	Shared	1	1 }	: 1	1 .	1 3
	WBL	Ψ-	Perm	18.2	മ	1.0	25	_	Perm	19.7	മ	1.6	40
	WBT	~		16.1	В	1.8	45	-		17.7	Ф	3.2	80
	WBR	Shared		1	;	ŀ	:	Shared		:	:	!	1
	l otal Intersection	١		25.0	Ċ	ŀ	;	ŀ		28.2	c	ı	ŀ
) 	MEETS C	MEETS COUNTY STANDARD	NDARD			MEETS C	OUNTY S	MEETS COUNTY STANDARD	
SR 267 / Airport Road /	į	,			(Ó	i	,			(
Schaffer Mill Road	Jan 1	- (Prot	27.9	י כ	2.3	86	۱ -	ro t	28.4 i o	، د	2.4	09
;	LBN :	. 2	ı	16.4	м і	16.9	423	7	1	17.9	മ	17.9	448
Winter Traffic Volumes	NBR	Shared	Perm	16.2	മ (17.6	440	Shared	Perm	17.8	ഥ (18.5	463 66
	SBL	– (Į Į	30.p	۰ ر	o. o	ر ا ا	- (Į Į	7.67	۰ ر	χ. O	72,
	- GB-	7 7	2	7 0.7	∢ <	ى ق	1/3	ν τ	2	7.7	∢ <	D 0	1/3
	S I	- +	Dorm).' 70.E	((0.0	ر د ه			2.7.0	(C		2 6
	H E		5	20.3) C	. 7	100		5	20.5) C	5:5 5:4	2, 0
	EBR	Shared)) ;	; !	! :	Shared		!) ;	; ;	! :
	WBL	-	Perm	20.5	O	0.1	က	_	Perm	21.2	ပ	6:0	23
	WBT	_		20.3	ပ	0.5	13	_		22.1	ပ	2.1	53
	WBR	Shared		ŀ	;	ŀ	1	Shared		ŀ	;	1	1
	Total			7						7	c		
	Intersection	1		0.41	ם מ	 	: !	ŀ		15.3	ם	1	:
					MEETSC	MEETS COUNTY STANDARD	NDARD			MEETS C	OUNTY S	MEETS COUNTY STANDARD	
											Tru	Truckee Airport MasterPlan TIA.xlsx	terPlan TIA.xlsx
												mb	

Mitigated LOS

-	۶	→	•	1	+	4	1	1	-	1	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7	7	†	7	1	†	77	ř	1	78
Volume (veh/h)	196	191	451	174	248	407	408	679	195	306	456	188
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863
Adj Flow Rate, veh/h	209	203	480	185	264	433	434	722	207	326	485	200
Adj No. of Lanes	1	1	1	1	1	1	1	1	1	1	1	1
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	195	528	853	220	528	742	453	747	635	329	617	524
Arrive On Green	0.28	0.28	0.28	0.28	0.28	0.28	0.26	0.40	0.40	0.19	0,33	0.33
Sat Flow, veh/h	745	1863	1583	755	1863	1583	1774	1863	1583	1774	1863	1583
Grp Volume(v), veh/h	209	203	480	185	264	433	434	722	207	326	485	200
Grp Sat Flow(s),veh/h/ln	745	1863	1583	755	1863	1583	1774	1863	1583	1774	1863	1583
Q Serve(g_s), s	16.5	8.8	20.0	19.5	11.8	20.0	24.1	37.8	9.0	18.3	23.5	9.7
Cycle Q Clear(g_c), s	28.3	8.8	20.0	28.3	11.8	20.0	24.1	37.8	9.0	18.3	23.5	9.7
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	195	528	853	220	528	742	453	747	635	329	617	524
V/C Ratio(X)	1.07	0.38	0.56	0.84	0.50	0.58	0.96	0.97	0.33	0.99	0.79	0.38
Avail Cap(c_a), veh/h	195	528	853	220	528	742	453	750	637	329	619	526
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	44.7	28.8	15.3	42.1	29.9	19.4	36.7	29.2	20.6	40.6	30.2	25.6
Incr Delay (d2), s/veh	84.7	0.7	1.1	23.2	0.3	0.8	31.5	24.5	0.1	47.3	6.1	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/in	17.8	8.1	13.8	10.6	10.2	13.7	22.3	32.7	7.1	19.3	19.0	7.6
LnGrp Delay(d),s/veh	129.5	29.4	16.3	65.4	30.2	20.2	68.1	53.7	20.7	88.0	36.3	25.7
LnGrp LOS	F	С	В	E	С	С	E	D	С	F	D	С
Approach Vol, veh/h		892			882			1363			1011	
Approach Delay, s/veh		45.8			32.7			53.3			50.9	
Approach LOS		D			С			D			D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	29.0	39.1		31.8	22.0	46.1		31.8				
Change Period (Y+Rc), s	3.5	6.0		3.5	3.5	6.0		3.5				
Max Green Setting (Gmax), s	25.5	33.2		28.3	18.5	40.2		28.3				
Max Q Clear Time (g_c+l1), s	26.1	25.5		30.3	20.3	39.8		30.3				
Green Ext Time (p_c), s	0.0	3.3		0.0	0.0	0.2		0.0			, Water	
Intersection Summary		76,745										
HCM 2010 Ctrl Delay			46.7		w posta			one bus	The Town			
HCM 2010 LOS			D									

Intersection						C					
Intersection Delay, s/veh	27.3		The same of the sa								
Intersection LOS	D										
Approach		EB		WB	SAT 1		NB	SUMBER	10000	SB	
Entry Lanes		2		2	NAME OF THE		2			2	
Conflicting Circle Lanes		2		2			2			2	
Adj Approach Flow, veh/h		892		882			1363			1011	
Demand Flow Rate, veh/h		910		900			1390			1032	
Vehicles Circulating, veh/h		1017		1392			753			901	
Vehicles Exiting, veh/h		916		540			1174			949	
Follow-Up Headway, s		2.800		2.800			2.800			2.800	
Ped Vol Crossing Leg, #/h		0		0			0			0	
Ped Cap Adj		1.000		1.000			1.000			1.000	
Approach Delay, s/veh		26.9		32.5			24.0			27.4	
Approach LOS		D		D			C			D	
Lane	Left	Right	Left	Right	Bypass	Left	Right	Bypass	Left	Right	
Designated Moves	LT	R	L	TR	R	LT	TR	R	LT	TR	
Assumed Moves	LT	R	L	TR	R	LT	TR	R	LT	TR	
RT Channelized					Yield			Yield			
Lane Util	0.462	0.538	0.413	0.587		0.470	0.530		0.470	0.530	
Critical Headway, s	4.200	4.000	4.200	4.000		4.200	4.000		4.200	4.000	
Entry Flow, veh/h	420	490	189	269	442	554	625	211	485	547	
Cap Entry Lane, veh/h	583	617	435	470	498	716	746	749	638	671	
Entry HV Adj Factor	0.981	0.980	0.979	0.980	0.980	0.980	0.980	0.980	0.980	0.980	
Flow Entry, veh/h	412	480	185	264	433	543	612	207	475	536	
Cap Entry, veh/h	572	604	426	461	488	702	731	735	625	657	
V/C Ratio	0.720	0.794	0.434	0.572	0.887	0.774	0.837	0.282	0.760	0.816	
Control Delay, s/veh	24.4	29.0	16.9	20.6	46.4	24.3	29.0	8.2	25.5	29.1	
TOTAL PROPERTY AND ADDRESS OF THE PARTY OF T	C	D	C	C	E	С	D	Α	D	D	
LOS	U	-		-							
LOS 95th %tile Queue, veh	6	8	2	4	10	7	9	1	7	8	

	۶	-	7	•	4-	*	1	†	<i>*</i>	>		1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	T	^	77	7	↑	74	Y	44	7	T	^	7
Volume (veh/h)	252	218	403	127	261	393	448	968	146	308	679	234
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863
Adj Flow Rate, veh/h	265	229	424	134	275	414	472	1019	154	324	715	246
Adj No. of Lanes	1	1	1	1	1	1	1	2	1	1	2	1
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	239	608	919	261	608	830	451	1164	521	351	964	431
Arrive On Green	0.33	0.33	0.33	0.33	0.33	0.33	0.25	0.33	0.33	0.20	0.27	0.27
Sat Flow, veh/h	751	1863	1583	776	1863	1583	1774	3539	1583	1774	3539	1583
Grp Volume(v), veh/h	265	229	424	134	275	414	472	1019	154	324	715	246
Grp Sat Flow(s),veh/h/ln	751	1863	1583	776	1863	1583	1774	1770	1583	1774	1770	1583
Q Serve(g_s), s	18.6	8.4	13.6	14.2	10.3	14.9	22.5	24.0	6.4	15.9	16.3	11.8
Cycle Q Clear(g_c), s	28.9	8.4	13.6	22.5	10.3	14.9	22.5	24.0	6.4	15.9	16.3	11.8
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	239	608	919	261	608	830	451	1164	521	351	964	431
V/C Ratio(X)	1.11	0.38	0.46	0.51	0.45	0.50	1.05	0.88	0.30	0.92	0.74	0.57
Avail Cap(c_a), veh/h	239	608	919	261	608	830	451	1223	547	351	1024	458
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	38.1	22.9	10.6	31.5	23.6	13.6	33.0	28.0	22.1	34.9	29.4	27.7
Incr Delay (d2), s/veh	90.7	0.5	0.5	0.7	0.2	0.2	55.1	6.7	0.1	29.0	2.3	0.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	21.2	7.8	10.1	5.5	9.1	10.7	32.0	18.7	5.0	15.9	13.0	9.1
LnGrp Delay(d),s/veh	128.9	23.4	11.1	32.3	23.8	13.7	88.2	34.7	22.2	63.9	31.7	28.6
LnGrp LOS	F	C	В	С	C	В	F	C	C	Е	C	C
Approach Vol, veh/h		918			823			1645			1285	
Approach Delay, s/veh		48.2			20.1			48.9			39.2	
Approach LOS		D			С			D			D	
Timer	1	2	3	4	5	6	7	8				al all all all all all all all all all
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	26.0	30.1		32.4	21.0	35.1		32.4				
Change Period (Y+Rc), s	3.5	6.0		3.5	3.5	6.0		3.5				
Max Green Setting (Gmax), s	22.5	25.6		28.9	17.5	30.6		28.9				
Max Q Clear Time (g_c+I1), s	24.5	18.3		24.5	17.9	26.0		30.9				
Green Ext Time (p_c), s	0.0	4.5		3.1	0.0	3.1		0.0				
Intersection Summary				r Sarry			(0335A)					
HCM 2010 Ctrl Delay			41.0									
HCM 2010 LOS			D									

				March 1
The state of the s				
				L VA
WB		VB	SB	
2		2	2	
2		2	2	
823	16	45	1285	
839	16	77	1310	
1790	8	34	898	
564	8	66	1309	
2.800	2.8	00	2.800	
0		0	0	
1.000	1.0	00	1.000	
15.0	83	3.7	25.9	
C		F	D	
ess Left Right	Bypass Left Rig	tht Bypass	Left Right	Bypass
R LT TR		rr r	LT TR	
R LT TR	R LT	ΓR R	LT TR	R
ree	Free	Yield		Yield
	0.470 0.5	30	0.470 0.530	
0.470 0.530	4.200 4.0	00	4.200 4.000	
0.470 0.530 4.200 4.000		06 157	498 561	
0.470 0.530 4.200 4.000 432 196 221		04 731	639 672	601
0.470 0.530 4.200 4.000 432 196 221 938 320 353	0.980 0.981 0.9		0.980 0.981	0.980
0.470 0.530 4.200 4.000 432 196 221 938 320 353 980 0.980 0.980		90 154	488 551	246
0.470 0.530 4.200 4.000 432 196 221 938 320 353 980 0.980 0.980 424 192 217			627 660	589
0.470 0.530 4.200 4.000 432 196 221 938 320 353 980 0.980 0.980 424 192 217	414 701 7	90 717		0.418
0.470 0.530 4.200 4.000 432 196 221 938 320 353 980 0.980 0.980 424 192 217 900 313 346 223 0.613 0.626	414 701 7 1900 659 6 0.218 1.062 1.1	45 0.215	0.779 0.835	
0.470 0.530 4.200 4.000 432 196 221 938 320 353 980 0.980 0.980 424 192 217 900 313 346	414 701 7 1900 659 6 0.218 1.062 1.1	45 0.215	0.779 0.835 26.9 31.0	12.5
0.470 0.530 4.200 4.000 432 196 221 938 320 353 980 0.980 0.980 424 192 217 900 313 346 223 0.613 0.626	414 701 7 1900 659 6 0.218 1.062 1.1 0.0 77.5 104 A F	45 0.215		В
1	424 192 217 1900 313 346 .223 0.613 0.626	.223 0.613 0.626 0.218 1.062 1.1		0.0 24.2 20.5 0.0 77.5 104.4 7.5 26.0 24.0

	۶	→	7	1	+	*	1	†	1	1	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†	7	7	†	7	7	十 个	74	ħ	^	71
Volume (veh/h)	252	225	409	127	281	414	468	989	146	316	685	234
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863
Adj Flow Rate, veh/h	265	237	431	134	296	436	493	1041	154	333	721	246
Adj No. of Lanes	1	1	1	1	1	1	1	2	1	1	2	1
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	235	648	990	266	648	862	492	1148	513	349	862	386
Arrive On Green	0.35	0.35	0.35	0.35	0.35	0.35	0.28	0.32	0.32	0.20	0.24	0.24
Sat Flow, veh/h	721	1863	1583	766	1863	1583	1774	3539	1583	1774	3539	1583
Grp Volume(v), veh/h	265	237	431	134	296	436	493	1041	154	333	721	246
Grp Sat Flow(s), veh/h/ln	721	1863	1583	766	1863	1583	1774	1770	1583	1774	1770	1583
Q Serve(g_s), s	22.3	9.4	13.9	15.7	12.2	17.2	27.5	27.9	7.2	18.4	19.2	13.8
Cycle Q Clear(g_c), s	34.5	9.4	13.9	25.1	12.2	17.2	27.5	27.9	7.2	18.4	19.2	13.8
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	235	648	990	266	648	862	492	1148	513	349	862	386
V/C Ratio(X)	1.13	0.37	0.44	0.50	0.46	0.51	1.00	0.91	0.30	0.95	0.84	0.64
Avail Cap(c_a), veh/h	235	648	990	266	648	862	492	1178	527	349	892	399
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	41.9	24.2	9.6	33.5	25.1	14.2	35.8	32.1	25.1	39.4	35.6	33.6
Incr Delay (d2), s/veh	97.9	0.5	0.4	0.6	0.2	0.2	41.1	9.8	0.1	36.0	6.4	2.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	23.0	8.5	10.2	6.0	10.4	11.9	34.2	21.5	5.7	18.2	15.3	10.4
LnGrp Delay(d),s/veh	139.7	24.6	10.0	34.1	25.2	14.4	76.9	41.8	25.2	75.3	42.0	36.0
LnGrp LOS	F	С	Α	С	С	В	F	D	С	E	D	D
Approach Vol, veh/h		933			866			1688			1300	
Approach Delay, s/veh		50.6			21.2			50.5			49.4	
Approach LOS		D			С			D			D	
Timer	1_	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	31.0	30.2		38.0	23.0	38.2		38.0				
Change Period (Y+Rc), s	3.5	6.0		3.5	3.5	6.0		3.5				
Max Green Setting (Gmax), s	27.5	25.0		34.5	19.5	33.0		34.5				
Max Q Clear Time (g_c+l1), s	29.5	21.2		27.1	20.4	29.9		36.5				
Green Ext Time (p_c), s	0.0	2.7		5.0	0.0	2.2		0.0				
Intersection Summary						15 5 5						Y 1841
HCM 2010 Ctrl Delay			44.9									
HCM 2010 LOS			D									

												7.00
Intersection				ARIST .						O A S	IO MILE	
Intersection Delay, s/veh	48.3		TV-	200								
Intersection LOS	E						HAMES.					
Approach		EB			WB			NB		1	SB	
Entry Lanes	x finally	2		Plens	2			2			2	
Conflicting Circle Lanes		2			2			2			2	
Adj Approach Flow, veh/h		933			866			1688			1300	
Demand Flow Rate, veh/h		952			884			1722			1326	
Vehicles Circulating, veh/h		1212			1835			852			942	
Vehicles Exiting, veh/h		805			582			872			1332	
Follow-Up Headway, s		2.800			2.800			2.800			2.800	
Ped Vol Crossing Leg, #/h		0			0			0			0	
Ped Cap Adj		1.000			1.000			1.000			1.000	
Approach Delay, s/veh		8.9			17.5			99.7			30.2	
Approach LOS		A			C			F			D	
Lane	Left	Right	Bypass	Left	Right	Bypass	Left	Right	Bypass	Left	Right	Bypass
Designated Moves	Left LT	Right TR	Bypass R	Left LT	Right TR	Bypass R	Left LT	Right TR	Bypass R	Left LT	Right TR	Bypass R
Designated Moves		TR	R	LT	TR	R	LT	TR	R	LT	TR	R
Designated Moves Assumed Moves		TR	R R	LT	TR	R R	LT	TR	R R	LT	TR	R R
Designated Moves Assumed Moves RT Channelized	LT L	TR TR	R R	LT LT	TR TR	R R	LT LT	TR TR	R R	LT LT	TR TR	R R
Designated Moves Assumed Moves RT Channelized Lane Util	LT L 0.527	TR TR 0.473	R R	LT LT 0.469	TR TR 0.531	R R	LT LT 0.470	TR TR 0.530	R R	L.T LT 0.470	TR TR 0.530	R R
Designated Moves Assumed Moves RT Channelized Lane Util Critical Headway, s	LT L 0.527 4.200	TR TR 0.473 4.000	R R Free	LT LT 0.469 4.200	TR TR 0.531 4.000	R R Free	LT LT 0.470 4.200	TR TR 0.530 4.000	R R Yield	L.T LT 0.470 4.200	TR TR 0.530 4.000	R R Yield
Designated Moves Assumed Moves RT Channelized Lane Util Critical Headway, s Entry Flow, veh/h	LT L 0.527 4.200 270	TR TR 0.473 4.000 242	R R Free	LT LT 0.469 4.200 206	TR TR 0.531 4.000 233	R R Free	LT LT 0.470 4.200 736	TR TR 0.530 4.000 829	R R Yield	LT LT 0.470 4.200 505	TR TR 0.530 4.000 570	R R Yield
Designated Moves Assumed Moves RT Channelized Lane Util Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h	0.527 4.200 270 501	TR TR 0.473 4.000 242 536	R R Free 440 1938	LT LT 0.469 4.200 206 309	TR TR 0.531 4.000 233 342	R R Free 445 1938	LT LT 0.470 4.200 736 663	TR TR 0.530 4.000 829 695	R R Yield	LT LT 0.470 4.200 505 618	TR TR 0.530 4.000 570 651	R R Yield 251 575
Designated Moves Assumed Moves RT Channelized Lane Util Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h	0.527 4.200 270 501 0.981	TR TR 0.473 4.000 242 536 0.980	R R Free 440 1938 0.980	LT LT 0.469 4.200 206 309 0.981	TR TR 0.531 4.000 233 342 0.978	R R Free 445 1938 0.980	LT LT 0.470 4.200 736 663 0.980	TR TR 0.530 4.000 829 695 0.981	R R Yield 157 718 0.980	LT LT 0.470 4.200 505 618 0.981	TR TR 0.530 4.000 570 651 0.980	251 575 0.980
Designated Moves Assumed Moves RT Channelized Lane Util Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h	0.527 4.200 270 501 0.981 265	TR TR 0.473 4.000 242 536 0.980 237	R R Free 440 1938 0.980 431	LT LT 0.469 4.200 206 309 0.981 202	TR TR 0.531 4.000 233 342 0.978 228	R R Free 445 1938 0.980 436	LT LT 0.470 4.200 736 663 0.980 721	TR TR 0.530 4.000 829 695 0.981 813	R R Yield 157 718 0.980 154	0.470 4.200 505 618 0.981 495	TR TR 0.530 4.000 570 651 0.980 558	251 575 0.980 246
Designated Moves Assumed Moves RT Channelized Lane Util Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio Control Delay, s/veh	0.527 4.200 270 501 0.981 265 492	TR TR 0.473 4.000 242 536 0.980 237 525	R R Free 440 1938 0.980 431 1900	0.469 4.200 206 309 0.981 202 303	TR TR 0.531 4.000 233 342 0.978 228 334	R R Free 445 1938 0.980 436 1900	LT LT 0.470 4.200 736 663 0.980 721 649	TR TR 0.530 4.000 829 695 0.981 813 682	R R Yield 157 718 0.980 154 704	0.470 4.200 505 618 0.981 495 606	TR TR 0.530 4.000 570 651 0.980 558 638	251 575 0.980 246 564
Designated Moves Assumed Moves RT Channelized Lane Util Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio Control Delay, s/veh LOS	0.527 4.200 270 501 0.981 265 492 0.539 18.3 C	TR TR 0.473 4.000 242 536 0.980 237 525 0.452 14.6 B	R R Free 440 1938 0.980 431 1900 0.227	LT LT 0.469 4.200 206 309 0.981 202 303 0.668	TR TR 0.531 4.000 233 342 0.978 228 334 0.682	R R Free 445 1938 0.980 436 1900 0.229	LT LT 0.470 4.200 736 663 0.980 721 649 1.111	TR TR 0.530 4.000 829 695 0.981 813 682 1.193	R R Yield 157 718 0.980 154 704 0.219	0.470 4.200 505 618 0.981 495 606 0.817	TR TR 0.530 4.000 570 651 0.980 558 638 0.875	251 575 0.980 246 564 0.437
Designated Moves Assumed Moves RT Channelized Lane Util Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio Control Delay, s/veh	0.527 4.200 270 501 0.981 265 492 0.539 18.3	TR TR 0.473 4.000 242 536 0.980 237 525 0.452 14.6	R R Free 440 1938 0.980 431 1900 0.227 0.0	LT LT 0.469 4.200 206 309 0.981 202 303 0.668 36.2	TR TR 0.531 4.000 233 342 0.978 228 334 0.682 34.4	R R Free 445 1938 0.980 436 1900 0.229 0.0	0.470 4.200 736 663 0.980 721 649 1.111 93.6	TR TR 0.530 4.000 829 695 0.981 813 682 1.193 122.4	R R Yield 157 718 0.980 154 704 0.219 7.6	0.470 4.200 505 618 0.981 495 606 0.817 31.2	TR TR 0.530 4.000 570 651 0.980 558 638 0.875 36.8	251 575 0.980 246 564 0.437 13.4

	۶	→	*	1	-	*	1	†	1	1	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	7	P		T.	1>		3	^		ሻ	十 个	7
Volume (veh/h)	364	20	84	39	12	58	38	1060	33	82	931	194
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	(
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1900	1863	1863	1900	1863	1863	1863
Adj Flow Rate, veh/h	383	21	88	41	13	61	40	1116	35	86	980	204
Adj No. of Lanes	1	1	0	1	1	0	1	2	0	1	2	1
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	500	104	436	467	95	444	55	1307	41	103	1417	634
Arrive On Green	0.33	0.33	0.33	0.33	0.33	0.33	0.03	0.37	0.37	0.06	0.40	0.40
Sat Flow, veh/h	1320	314	1316	1279	286	1341	1774	3503	110	1774	3539	1583
Grp Volume(v), veh/h	383	0	109	41	0	74	40	564	587	86	980	204
Grp Sat Flow(s), veh/h/ln	1320	0	1630	1279	0	1626	1774	1770	1843	1774	1770	1583
Q Serve(g_s), s	19.6	0.0	3.3	1.6	0.0	2.2	1.5	20.1	20.1	3.3	15.8	6.1
Cycle Q Clear(g_c), s	21.8	0.0	3.3	4.9	0.0	2.2	1.5	20.1	20.1	3.3	15.8	6.1
Prop In Lane	1.00		0.81	1.00		0.82	1.00		0.06	1.00		1.00
Lane Grp Cap(c), veh/h	500	0	540	467	0	538	55	660	688	103	1417	634
V/C Ratio(X)	0.77	0.00	0.20	0.09	0.00	0.14	0.72	0.85	0.85	0.83	0.69	0.32
Avail Cap(c_a), veh/h	500	0	540	480	0	555	103	697	726	103	1419	635
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	23.7	0.0	16.5	18.2	0.0	16.1	32.9	19.8	19.8	32.0	17.1	14.2
Incr Delay (d2), s/veh	6.4	0.0	0.1	0.0	0.0	0.0	6.6	9.1	8.8	39.1	1.2	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	12.7	0.0	2.7	1.0	0.0	1.8	1.5	16.9	17.4	4.9	12.5	4.8
LnGrp Delay(d),s/veh	30.1	0.0	16.5	18.2	0.0	16.1	39.5	28.8	28.5	71.0	18.3	14.3
LnGrp LOS	C		В	В		В	D	C	C	E	В	В
Approach Vol, veh/h	7,210	492			115			1191			1270	
Approach Delay, s/veh		27.1			16.9			29.1			21.2	
Approach LOS		С			В			С			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	6.1	34.5		28.0	8.0	32.6		28.0				
Change Period (Y+Rc), s	4.0	* 7		* 5.3	4.0	7.0		5.3				
Max Green Setting (Gmax), s	4.0	* 28		* 23	4.0	27.0		22.7				
Max Q Clear Time (g_c+l1), s	3.5	17.8		6.9	5.3	22.1		23.8				
Green Ext Time (p_c), s	0.0	5.9		1.2	0.0	3.5		0.0				
Intersection Summary	Main.								Place			
HCM 2010 Ctrl Delay			25.0									
HCM 2010 LOS			С									

voies

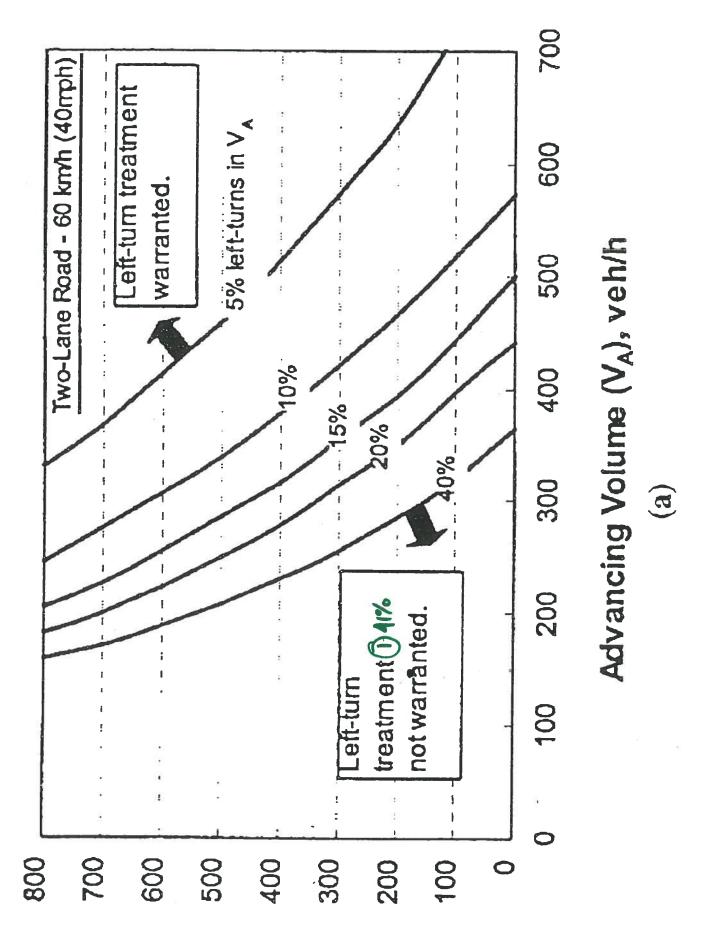
^{*} HCM 2010 computational engine requires equal clearance times for the phases crossing the barrier.

	۶	→	*	1	4 -	*	1	†	<i>*</i>	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	T.	f		4	1 >		7	^		ሻ	个个	7
Volume (veh/h)	364	20	84	55	13	99	38	1060	40	94	931	194
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1900	1863	1863	1900	1863	1863	1863
Adj Flow Rate, veh/h	383	21	88	58	14	104	40	1116	42	99	980	204
Adj No. of Lanes	1	1	0	1	1	0	1	2	0	1	2	1
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	477	111	466	486	68	503	53	1299	49	113	1443	645
Arrive On Green	0.35	0.35	0.35	0.35	0.35	0.35	0.03	0.37	0.37	0.06	0.41	0.41
Sat Flow, veh/h	1269	314	1316	1279	191	1421	1774	3478	131	1774	3539	1583
Grp Volume(v), veh/h	383	0	109	58	0	118	40	568	590	99	980	204
Grp Sat Flow(s), veh/h/ln	1269	0	1630	1279	0	1612	1774	1770	1840	1774	1770	1583
Q Serve(g_s), s	23.6	0.0	3.6	2.6	0.0	4.0	1.8	23.1	23.2	4.3	17.7	6.9
Cycle Q Clear(g_c), s	27.6	0.0	3.6	6.2	0.0	4.0	1.8	23.1	23.2	4.3	17.7	6.9
Prop In Lane	1.00		0.81	1.00		0.88	1.00		0.07	1.00		1.00
Lane Grp Cap(c), veh/h	477	0	578	486	0	571	53	661	687	113	1443	645
V/C Ratio(X)	0.80	0.00	0.19	0.12	0.00	0.21	0.76	0.86	0.86	0.87	0.68	0.32
Avail Cap(c_a), veh/h	477	0	578	497	0	585	91	701	729	113	1471	658
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	27.2	0.0	17.5	19.6	0.0	17.6	37.7	22.6	22.6	36.3	19.0	15.7
Incr Delay (d2), s/veh	8.9	0.0	0.1	0.0	0.0	0.1	8.0	9.4	9.1	46.2	1.0	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	14.4	0.0	3.0	1.6	0.0	3.2	1.8	18.8	19.4	6.4	13.6	5.4
LnGrp Delay(d),s/veh	36.1	0.0	17.5	19.7	0.0	17.7	45.7	32.0	31.7	82.5	20.0	15.9
LnGrp LOS	D	400	В	В	470	В	D	C	С	F	В	В
Approach Vol, veh/h		492			176			1198			1283	
Approach Delay, s/veh		32.0			18.3			32.3			24.1	
Approach LOS		С			В			С			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	6.3	38.9		33.0	9.0	36.2		33.0				
Change Period (Y+Rc), s	4.0	* 7		* 5.3	4.0	7.0		5.3				
Max Green Setting (Gmax), s	4.0	* 33		* 28	5.0	31.0		27.7				
Max Q Clear Time (g_c+I1), s	3.8	19.7		8.2	6.3	25.2		29.6				
Green Ext Time (p_c), s	0.0	7.1		1.6	0.0	4.0		0.0				
Intersection Summary				Alley S				- 17 (1) 192		No.	Shrie	
HCM 2010 Ctrl Delay			28.2									21739
HCM 2010 LOS			С									
Motor	No. of the			4100		THE RESIDENCE	Name of the last					

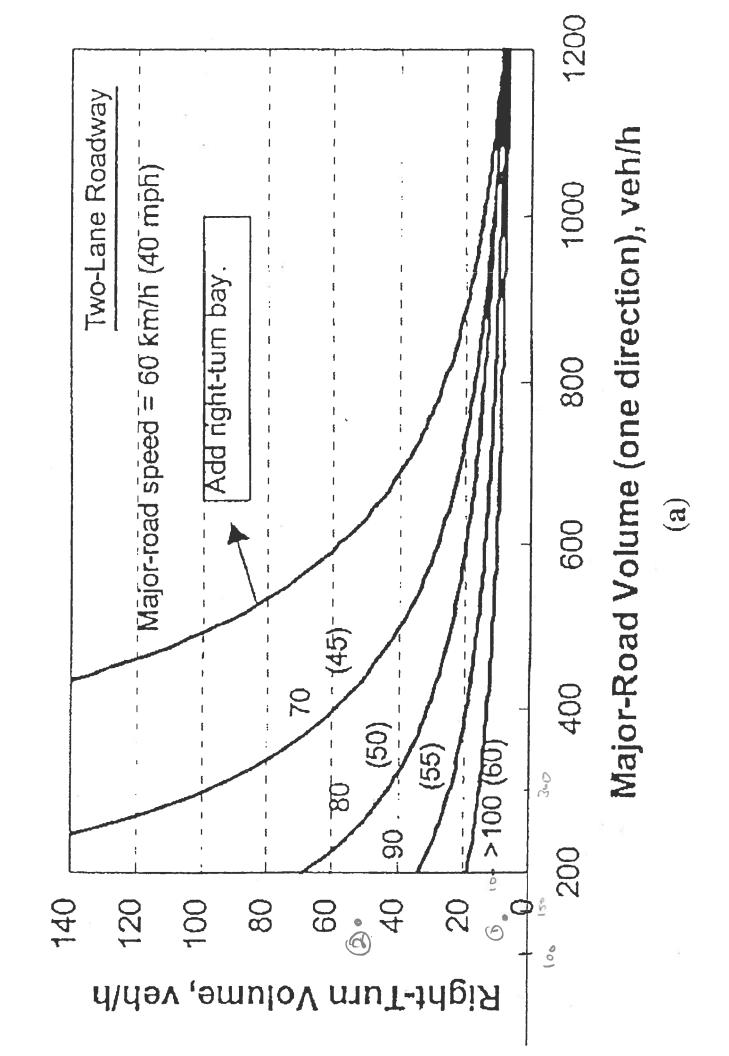
^{*} HCM 2010 computational engine requires equal clearance times for the phases crossing the barrier.

	۶	→	7	•	4	*	1	†	1	1	+	4
Movement	EBL.	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	N.	4		7	1		ሻ	ተ ን		ħ	^	7
Volume (veh/h)	103	2	15	5	2	18	81	1618	15	16	818	202
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1900	1863	1863	1900	1863	1863	1863
Adj Flow Rate, veh/h	108	2	16	5	2	19	85	1703	16	17	861	213
Adj No. of Lanes	1	1	0	1	1	0	1	2	0	1	2	1
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	275	19	152	278	16	154	108	1978	19	30	1793	802
Arrive On Green	0.11	0.11	0.11	0.11	0.11	0.11	0.06	0.55	0.55	0.02	0.51	0.51
Sat Flow, veh/h	1385	179	1431	1389	153	1453	1774	3593	34	1774	3539	1583
Grp Volume(v), veh/h	108	0	18	5	0	21	85	838	881	17	861	213
Grp Sat Flow(s), veh/h/ln	1385	0	1610	1389	0	1606	1774	1770	1857	1774	1770	1583
Q Serve(g_s), s	3.8	0.0	0.5	0.2	0.0	0.6	2.4	20.2	20.3	0.5	7.9	3.8
Cycle Q Clear(g_c), s	4.4	0.0	0.5	0.7	0.0	0.6	2.4	20.2	20.3	0.5	7.9	3.8
Prop In Lane	1.00		0.89	1.00		0.90	1.00		0.02	1.00		1.00
Lane Grp Cap(c), veh/h	275	0	171	278	0	170	108	974	1022	30	1793	802
V/C Ratio(X)	0.39	0.00	0.11	0.02	0.00	0.12	0.79	0.86	0.86	0.57	0.48	0.27
Avail Cap(c_a), veh/h	286	0	184	308	0	206	249	1028	1079	142	1879	841
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	22.2	0.0	20.2	20.5	0.0	20.2	23.1	9.6	9.6	24.4	8.0	7.0
Incr Delay (d2), s/veh	0.3	0.0	0.1	0.0	0.0	0.1	4.8	6.8	6.6	6.2	0.1	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	2.7	0.0	0.4	0.1	0.0	0.5	2.3	16.9	17.6	0.5	6.9	3.0
LnGrp Delay(d),s/veh	22.5	0.0	20.3	20.5	0.0	20.3	27.9	16.4	16.2	30.6	8.1	7.1
LnGrp LOS	С		С	C		С	С	В	В	С	Α	A
Approach Vol, veh/h		126			26			1804			1091	
Approach Delay, s/veh		22.2			20.4			16.8			8.3	Secretary by
Approach LOS		С			С			В			Α	
Timer	1	2	3	4	5	6	7	8		No.		
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	7.0	32.3		10.6	4.8	34.5		10.6				
Change Period (Y+Rc), s	4.0	* 7		* 5.3	4.0	7.0		5.3				
Max Green Setting (Gmax), s	7.0	* 27		* 6.4	4.0	29.0		5.7				
Max Q Clear Time (g_c+l1), s	4.4	9.9		2.7	2.5	22.3		6.4				
Green Ext Time (p_c), s	0.0	10.3		0.1	0.0	5.2		0.0	111			
Intersection Summary			Service .									
HCM 2010 Ctrl Delay			14.0									
HCM 2010 LOS			В									

^{*} HCM 2010 computational engine requires equal clearance times for the phases crossing the barrier.


WINTER

	۶	→	7	1	4	*	4	†	-	1		1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	1		7	7		T	↑ ↑		7	^	7
Volume (veh/h)	103	2	15	35	4	80	81	1618	20	25	818	202
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1900	1863	1863	1900	1863	1863	1863
Adj Flow Rate, veh/h	108	2	16	37	4	84	85	1703	21	26	861	213
Adj No. of Lanes	1	1	0	1	1	0	1	2	0	1	2	1
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	219	20	160	282	8	170	108	1950	24	43	1798	804
Arrive On Green	0.11	0.11	0.11	0.11	0.11	0.11	0.06	0.54	0.54	0.02	0.51	0.51
Sat Flow, veh/h	1304	179	1431	1389	72	1522	1774	3580	44	1774	3539	1583
Grp Volume(v), veh/h	108	0	18	37	0	88	85	841	883	26	861	213
Grp Sat Flow(s), veh/h/ln	1304	0	1610	1389	0	1594	1774	1770	1855	1774	1770	1583
Q Serve(g_s), s	3.1	0.0	0.5	1.3	0.0	2.6	2.4	21.0	21.1	0.7	8.1	3.9
Cycle Q Clear(g_c), s	5.7	0.0	0.5	1.8	0.0	2.6	2.4	21.0	21.1	0.7	8.1	3.9
Prop In Lane	1.00	0	0.89	1.00		0.95	1.00		0.02	1.00		1.00
Lane Grp Cap(c), veh/h	219	0	180	282	0	178	108	964	1010	43	1798	804
V/C Ratio(X)	0.49	0.00	0.10	0.13	0.00	0.49	0.79	0.87	0.87	0.61	0.48	0.26
Avail Cap(c_a), veh/h HCM Platoon Ratio	219	0	180	301	0	200	243	1006	1055	139	1839	823
	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	24.4	0.0	20.3	21.1	0.0	21.3	23.6	10.1	10.1	24.6	8.2	7.1
Incr Delay (d2), s/veh		0.0	0.1	0.1	0.0	0.8	4.8	7.8	7.7	5.0	0.1	0.1
Initial Q Delay(d3),s/veh	0.0 2.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	25.0	0.0	0.4 20.4	0.9	0.0	2.1	2.4	17.9	18.5	0.8	6.9	3.0
LnGrp Delay(d),s/veh LnGrp LOS	25.0 C	0.0	20.4 C	21.2 C	0.0	22.1	28.4	17.9	17.8	29.7	8.2	7.2
	C	400	C	U	405	С	С	В	В	С	A	Α
Approach Polov sheh		126			125	-		1809			1100	
Approach LOS		24.4			21.8			18.3			8.5	
Approach LOS		С			С			В			Α	
Timer	1	2	3	4	5	6	7	8		Towns of the	Sint	100
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	7.1	32.9		11.0	5.2	34.8		11.0				
Change Period (Y+Rc), s	4.0	* 7		* 5.3	4.0	7.0		5.3				
Max Green Setting (Gmax), s	7.0	* 27		* 6.4	4.0	29.0		5.7				
Max Q Clear Time (g_c+I1), s	4.4	10.1		4.6	2.7	23.1		7.7				
Green Ext Time (p_c), s	0.0	10.3		0.1	0.0	4.7		0.0	MAY S		THE REAL PROPERTY.	
ntersection Summary											15 7	
HCM 2010 Ctrl Delay			15.3							37/10		(120) PG
HCM 2010 LOS			В									
Visc 1												


^{*} HCM 2010 computational engine requires equal clearance times for the phases crossing the barrier.

WINTER

Appendix D **Turn Lane Warrant Charts**

Opposing Volume (V_O), νeh/h

Appendix E **Truckee TIF Table**

ATTACHMENT A

TABLE 7: DUE (Dwelling Unit Equivalent) and Fee Calculations

Fee Formula: \$5,169 x DUE per Unit x Units (from Project) = fee

Land Use Category	Unit	ITE Land Use Code	PM Peak Hour Trip Rate Per Unit ³	Trip Length (miles)	% New Trips	VMT per Unit	DUE per Unit
Residential							
Single-family ¹	DU	210	1.01	4.3	100%	4.34	1.00
Multi-family ²	DU	220	0.62	4.3	100%	2.67	0.62
Mobile Home	DU	240	0.59	4.3	100%	2.54	0.59
Retirement	DU	252	0.26	4.3	100%	1.12	0.26
Hotel/Motel	Room	310	0.87	3.4	71%	2.10	0.48
Office	1,000 s.f.	710, 720	1.69	3.7	87%	5.44	1.25
Commercial							
General Retail	1,000 s.f.	Note 4	6.08	3.8	49%	11.32	2.61
Restaurant - Quality or High-Turnover	1,000 s.f.	931, 932	9.21	3.4	38%	11.90	2.74
Fast Food Restaurant / Coffee Shop	1.000 s.f.	933, 934	31.72	2.6	30%	24.74	5.70
Supermarket	1.000 s.f.	850	10.45	2.6	34%	9.24	2.13
Factory Outlet	1.000 s.f.	823	2.29	5.5	72%	9.05	2.09
Convenience Market	1.000 s.f.	851	52.41	2.3	24%	28.93	6.67
Discount Club	1,000 s.f.	861	4.24	3.8	54%	8.70	2.00
Bank	1,000 s.f.	912	45.74	2.4	28%	30.74	7.08
Gas Station	Fueling Position	944	13.86	2.9	14%	5.63	1.30
Day Care	1,000 s.f.	565	13.18	2.0	74%	19.51	4.50
Health Fitness Club	1,000 s.f.	492	4.05	4.6	75%	13.97	3.22
Drinking Place	1,000 s.f.	936	11.34	2.9	57%	18.75	4.32
Industrial			100,000				
Light Industrial	1,000 s.f.	110	0.98	3.7	92%	3.34	0.77
Heavy Industrial	1,000 s.f.	120	0.68	3.7	92%	2.31	0.53
Warehouse	1,000 s.f.	150	0.47	3.7	92%	1.60	0.37
Hospital	1,000 s.f.	610	1.18	3.8	77%	3.45	0.79
Convalescent Home	bed	620	0.22	3.8	74%	0.62	0.14
School	Student	520	0.14	4.1	80%	0.46	0.11

Note 1: A secondary dwelling with a floor area greater than 850 square feet shall be considered a single-family residence for the purpose of this Ordinance. Any single-family residence in excess of three bedrooms will be assessed an additional 0.33 DUE per bedroom in excess of three bedrooms.

Note 2. Multifamily units are any attached units (including duplex). In addition, a secondary dwelling with a floor area of 850 square feet or less shall be considered a multifamily residence for the purpose of this Ordinance.

Note 3: PM peak-hour of adjacent street traffic

Note 4: Trip generation rate based on calibrated Town of Truckee Model

Appendix E

Mitigation Monitoring Plan

Mitigation Monitoring Plan	n for Trucke	e Tahoe Airport Master	r Plan	
Mitigation Measure	Responsibility for Implementation	Method for Compliance	Timing of Compliance	Monitoring Completed
 AIR-1: These mitigation measures are grouped by category as listed in NSAQMD's Guidelines: Mitigations for Use During Design and Construction Phases Alternatives to open burning of vegetative material will be used unless otherwise deemed infeasible by the District. Among suitable alternatives are chipping, mulching, or conversion to biomass fuel. Grid power shall be used (as opposed to diesel generators) for job site power needs where feasible during construction. Temporary traffic control shall be provided during all phases of the construction to improve traffic flow as deemed appropriate by local transportation agencies and/or Caltrans. Construction activities shall be scheduled to direct traffic flow to off-peak hours as much as practicable. Mitigation for Public Transit Streets shall be designed to maximize pedestrian access to transit stops. Mitigation for Traffic Emissions The project shall provide for pedestrian access between bus service and major transportation points within the project, and between separate sections of the project, where feasible. 	TTAD	Inclusion in design plans and construction specifications.	Inclusion prior to issuance of building or grading permit.	
 AIR-2: Dust Control Measures. A Dust Control Plan shall be submitted to NSAQMD for approval prior to any surface disturbance, including clearing of vegetation. Approved dust control measures shall be included in the General Notes and/or the Grading Plan for the project, under a descriptive heading such as "Dust Control." The following conditions constitute an approvable Plan under Rule 226. Conditions should be more stringent for projects near sensitive receptors or for mitigation purposes. 1. The applicant shall be responsible for ensuring that all adequate dust control measures are implemented in a timely manner during all phases of project development and construction. 2. All material excavated, stockpiled, or graded shall be sufficiently watered, treated, or covered to prevent fugitive dust from leaving the property boundaries and causing a public nuisance or a violation of an ambient air standard. Watering should occur at least twice daily, with complete site coverage. 3. All areas with vehicle traffic shall be watered or have dust palliative applied as necessary for regular stabilization of dust emissions. 4. All on-site vehicle traffic shall be limited to a speed of 15 mph on unpaved roads. 5. All land clearing, grading, earth moving, or excavation activities on a 	TTAD	Obtaining letter of approval/permit from NSAQMD.	Obtain prior to issuance of issuance of a building or grading permit.	

	project shall be suspended as necessary to prevent excessive				
6	windblown dust when winds are expected to exceed 20 mph. All inactive portions of the development site shall be covered,				
0.	seeded, or watered until a suitable cover is established.				
	Alternatively, the applicant may apply County-approved non-toxic soil				
	stabilizers (according to manufacturer's specifications) to all inactive				
	construction areas (previously graded areas which remain inactive for				
	96 hours) in accordance with the local grading ordinance.				
7.	All material transported off-site shall be either sufficiently watered or				
	securely covered to prevent public nuisance, and there must be a				
	minimum of six (6) inches of freeboard in the bed of the transport				
	vehicle.				
8.	Paved streets adjacent to the project shall be swept or washed at the				
	end of each day, or more frequently if necessary, to remove				
	excessive or visibly raised accumulations of dirt and/or mud which				
	may have resulted from activities at the project site.				
9.	Prior to final occupancy, the applicant shall re-establish ground cover				
	on the site through seeding and watering in accordance with the local				
	grading ordinance.				
AID	O. Minimina Construction Fundament Idlian In adda to achie				
	4-3: Minimize Construction Equipment Idling. In order to reduce ssions from construction equipment, the Airport shall include the	TTAD	Inclusion in design	Include prior to issuance of	
	by by standard note on the grading and improvement plans:		specifications.	building or grading permit.	
Tone	owing standard note on the grading and improvement plans.				
	"During construction, the contractor shall minimize idling time to a				
	maximum of 5 minutes for all diesel powered equipment. Signs shall				
	be posted in the designated queuing areas of the construction site to				
	remind off-road equipment operators that idling is limited to a				
	maximum of 5 minutes. Idling of construction-related equipment and				
	construction related vehicles is not recommended within 1,000 feet of				
	any sensitive receptor."				
	4: Use Low-VOC Architectural Coatings for the Proposed	TTAD	Inclusion in design	Include prior to issuance of	
	ucture. To ensure that the project will not result in the significant		specifications.	building or grading permit.	
	eration of VOCs, all architectural coating shall utilize low-VOC paint				
	greater than 50g/L VOC). Prior to building permit issuance, the				
	eloper shall submit their list of low-VOC coatings to the NSAQMD for				
	ew and approval. The developer shall then provide written verification n NSAQMD that all architectural coatings meet NSAQMD thresholds to				
	considered "low-VOC. Finally, all building plans shall include a note				
	umenting which low-VOC architectural coatings will be used in				
	struction.				
1		İ		i	

BIO-1: Special-status plant surveys meeting the protocol requirements of CDFW will be performed in naturally vegetated portions of the airport that may experience project-related disturbance. This protocol includes vegetation mapping using the current version of A Manual of California Vegetation, Second Edition (Sawyer, Keeler-Wolf and Evens 2009), a floristic plant list, multiple visits to sites based on suitable plant bloom times, and submission of any special-status plant finds into the CNDDB. If special-status plants are found during protocol-level surveys within areas proposed for disturbance, a rare plant mitigation plan would be developed with agency consultation.	TTAD	Inclusion in CEQA environmental documentation.	Inclusion in CEQA document prior to approval by TTAD
BIO-2: Protection Measure for Birds. To avoid or minimize potential impacts to nesting birds (including special-status species), construction activities such as site grubbing, excavation, grading, and the operation of heavy equipment will occur between September 1 and January 31, outside of the nesting season, to the extent feasible. If project construction activities must occur during the period from February 1 to August 31, a qualified wildlife biologist will conduct pre-construction surveys for nesting birds. During the surveys, the qualified biologist shall carefully search for active nests/burrows within the work zone and a surrounding buffer zone. If an active nest is found, the bird species shall be identified and the approximate distance from the closest work site to the nest shall be estimated. Appropriate buffer distances shall be established by a qualified biologist. If active nests are closer than the appropriate buffer distance to the nearest work site, then the active nest(s) shall be monitored for signs of disturbance. Coordination with USFWS and CDFW shall occur as necessary. Disturbance of active nests should be avoided, to the extent possible, until it is determined that nesting is complete and the young have fledged.	TTAD	Evaluation of potential for construction to occur out of nesting season during preliminary design phase. If construction will occur during nesting season, the preconstruction survey must take place prior to construction. If buffer distances are established, they shall be enforced by construction inspector.	Prior to completion of preliminary design phase. No more than 30 days prior to construction. Daily during construction until nesting is completed.
 BIO-3: Protection Measures for Bats. All potential impacts to bats will be avoided if the project does not disturb trees or any existing buildings in the Study Area. If impacts to any medium or larger trees (greater than 30.5 centimeter [12-inch] diameter) that may harbor roosting bats cannot be avoided, the measures described below will be implemented. 1. Any medium or larger (greater than 30.5 centimeter [12-inch] diameter) tree or snag that is selected for removal would be inspected by a qualified wildlife biologist for the presence of foliage-roosting bats and potential dens (e.g., cavities, entrance holes). Cavities suitable as special-status bat roosts would be examined for roosting bats using a portable camera probe or similar technology. Buildings or other structures with potential for supporting special-status bats would be inspected by a qualified biologist for evidence of roosting colonies. If present, roosts of special-status or other bats (including day and night roosts, hibernacula, and maternity colonies) would be flagged and construction activities would be avoided within a minimum of 91.5 meters (300 feet) surrounding each occupied roost. 2. If a portion of the Study Area is being used as a winter roost, project activity would not take place during the period of hibernation 	TTAD	Evaluation of potential for construction to affect existing trees or buildings during preliminary design phase. If trees or buildings will be affected, they will be inspected during development of CEQA documentation to determine if bats are present. If bats are present, a construction buffer will be established. If a winter roost or maternity colony is found, limitation of construction period. If a non-maternity roost is	Prior to completion of preliminary design phase. Prior to completion of CEQA documentation. Prior to start of construction. Inclusion in construction specifications. Prior to construction that would affect roost.

 (November 1 to March 1). If a portion of the Study Area is being used as a maternity colony, project activity would not occur during the maternity roost season (March 1 to July 31). If a non-maternity bat roost is found within the Study Area, the roosting bats would be safely evicted under the direction of a qualified biologist (as determined by a Memorandum of Understanding with CDFW). The qualified biologist would facilitate the removal of roosting bats using the following methods: a. Opening the roosting area to allow airflow through the cavity or building (air flow disturbance). b. Waiting a minimum of one night for roosting bats to respond to air flow disturbance, thereby allowing bats to leave during nighttime hours when predation risk is relatively low and chances of finding a new roost is greater than in the daytime. c. Disturbing roosts at dusk just prior to roost removal the same evening to allow bats to escape during nighttime hours. 		found, eviction of bats using the protocol described.		
BIO-4: A jurisdictional delineation meeting the requirements of USACE will be conducted in portions of the airport that may experience project-related disturbance, particularly if habitat mapping in the subject area has identified wetlands or other water features. The delineation and other associated mapping can then be used to address specific impacts to wetlands or waters from any planned project disturbance and avoid, minimize, or mitigate for any potential impacts.	TTAD	Inclusion of biological site reconnaissance as part of CEQA documentation for each project in areas identified in Biological Constraints Analysis as potentially having jurisdictional waters of the US. Preparation of a wetland delineation if potential wetlands identified. Obtain verification from the USACE for delineation.		
CUL-1: Affected sites will be evaluated by a qualified archaeologist in consultation with the Native American community to determine eligibility. Truckee Tahoe Airport, in consultation with a qualified archaeologist and the Native American community, will develop a site specific plan to ensure that any eligible sites are protected to the extent practicable. The plan would include elements such as data recovery, archival research, public interpretation, and/or other means.	TTAD	Review Cultural Resources Survey to determine if project might affect known sites. If appropriate, development of site specific plan during preparation of CEQA documentation.	Prior to approval of CEQA document.	
GEO-1: Provide Sediment and Erosion Control Measures during Construction Activities. To minimize soil erosion, best management practices will be utilized during construction. Disturbed areas will be seeded following construction. A Storm Water Pollution Prevention Plan (SWPPP) will be developed and implemented for this project. Construction contractors will adhere to California erosion and sediment control programs as required by the SWPPP and Water Pollution Control Program developed for the project.	TTAD	Inclusion of sediment and erosion control measures in construction plans and specifications. Monitoring by construction inspector to ensure that measures are implemented.	Prior to issuance of a building or grading permit. Daily during construction period.	

 GHG-1: Where feasible, given the type of structure, include the following features in new building construction: The building shall include energy efficient indoor and outdoor lighting and light colored "cool" roofs. Size and orientation of windows & doors shall be designed to take advantage of sun, shade & wind conditions to minimize the requirement on mechanical heating and cooling systems. Site buildings to take advantage of solar orientation. Proper building orientation facilitates the use of natural daylight. Incorporate natural cooling by utilizing shading from tree canopies where feasible. Any combination of natural cooling techniques can be used to reduce overheating, reduce the need for air conditioning and reduce energy. This measure will largely be applicable to nonaviation commercial uses. All windows and doors shall be Energy Star rated. Upgrade insulation to exceed California Title 24 requirements. The applicant shall consider the use of a renewable electricity generation, such as a solar photovoltaic system. Solar systems must be evaluated for compatibility with airport operations using the then current Federal Aviation Administration guidance. 	TTAD	Evaluate potential to include features in structure's design. Include all feasible features in structure design specification.	During preliminary design. Prior to obtaining grading or building permit.	
 GHG-2: Encourage the use of transit services by: 1. Actively pursuing development of a transit hub on Truckee Tahoe Airport Road in conjunction with local transit agencies. 2. Communicate the availability of transit services to Airport users and tenants 	TTAD	Actively work with local transit agencies to develop a transit hub. Implement a strategy to communicate the availability of transit services to Airport users and tenants.	Begin the process within 90 days of approval of the mitigated negative declaration. Begin development of a strategy within 90 days of adoption of the mitigated negative declaration.	
NOI-1: Limit construction work hours on the nonaviation commercial/industrial parcel 7:00 a.m. to 10:00 p.m. Monday through Saturday. Prior to issuance of grading and building permits improvement plans shall reflect the permitted hours of construction.	TTAD	Inclusion of the limitations on working hours in construction specifications.	Prior to issuance of a grading or building permit.	
TRAF-1: When each element of the proposed plan is implemented, the applicant shall pay the amounts determined to be appropriate to the traffic impact fee programs of the various jurisdictions.	TTAD	Payment of traffic impact fees.	Prior to commencement of construction.	
TRAF-2: The final landscaping plans for each element of the project when implemented will provide at least 275 feet of corner sight distance.	TTAD	Inclusion in construction plans and specifications.	Prior to commencement of construction.	
NOTES:				

NSAQMD = Northern Sierra Air Quality Management District
TTAD = Truckee Tahoe Airport District
USACE = United States Army Corps of Engineers