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@ Relation Algebras

o Intensively studied algebraic object (Tarski, Hodkinson, Maddux, ...).
e Tool to model temporal and spatial reasoning problems in Al.

@ The Really Big Complexity Problem (RBCP)

o Classification problem for relation algebras.
o Introduced by Robin Hirsch in 1996.

@ Result: Partial Solution of RBCP.

@ A model theory perspective on relation algebras.

o Labeled homogeneous graphs (Cherlin).
e Translation of RBCP into a classification question about CSPs.
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Proper Relation Algebras

Definition
Let D be a set and E ¢ D? an equivalence relation. Then (P(E);u,;0,1,1’,",0)

is a relation algebra for the following interpretation of function symbols:

Q@ AuB:=AuB,

Q A=E~A
Q 0:=0,
Q 1:=E,

Q 1:={(x,x) | xe D},
Q A :={(x,y) [ (y,x) € A},
@ AoB:={(x,z)|yeD:(x,y) €A and (y,z)e B}.
A subalgebra of (P(E);u,;0,1,1',7 ,0) is called proper relation algebra.
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Let D be a set and E ¢ D? an equivalence relation. Then (P(E);u,;0,1,1’,",0)

is a relation algebra for the following interpretation of function symbols:

Q@ AuB:=AuB,

Q A=E~A
Q 0:=0,
Q 1:=E,

Q 1:={(x,x) | xe D},
Q A":={(xy) [ (y;x) € A},
@ AoB:={(x,z)|yeD:(x,y) €A and (y,z)e B}.
A subalgebra of (P(E);u,;0,1,1',7 ,0) is called proper relation algebra.

For model theorists:
For a proper relation algebra R we view R = (D;R) as a relational structure.
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|
Relation Algebras

Definition
A relation algebra A is an algebra (A;u,50,1,1',7 o) of type (2,1,0,0,0,1,2)
satisfying the following laws:
Q (A;u0,1) is a boolean algebra,
Q (xoy)oz=xo(yo2z),
@ (xuy)oz=xo0zuUyoz,
Q xol =x,
Q (x7) =x,
Q (xuy) =x"uy",
Q (xoy) =y ox"
0 (x o (x0y))uy=7.
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Let {=,1,2,3,4} be binary predicates associated with integer distances.
Consider the set of forbidden triangle inequalities.

LN H N LN
[ ] 1 L] [ ] 1 L] [ ] 2 [ ]
Define a relation algebra on P({=,1,2,3,4}) with the following multiplication
table.
’ o H:\ 1 2 3 4
= | = 1 2 3 4
1(1]1u2u= lu2u3 3u4d 3u4
22| 1u2u3 | 1u2u3udu= lu2u3u4 2u3u4d
313|2u3u4 lu2u3u4 lu2u3udu= lu2u3u4
4 | 4 3u4 2u3u4 lu2u3u4 lu2u3udu=
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Representations

Definition

Let A be a relation algebra. A relational structure B is called a representation of
A if
@ B is an A-structure,

o the induced proper relation algebra on a subset of (B?) is isomorphic to A.
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Representations

Definition
Let A be a relation algebra. A relational structure B is called a representation of
A if

@ B is an A-structure,

o the induced proper relation algebra on a subset of (B?) is isomorphic to A.

v

Examples
o (Q;=,<,> <, 2 @,#,Q?) is a representation of the Point Algebra.
@ The countable, universal, homogeneous, triangle-free graph
H=(V;=E N Eu=EuN,Nu=g,V?)

is a representation of the Henson Algebra.
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Networks

Definitions

Let A be a relation algebra. An A-network (V;f) is a finite set of nodes V
together with a function f:V x V - A.

Point Algebra Network: Henson Algebra Network:
L]
A \4 E U N E U=
e— e ¢ — 0
< Eu=
Relation Algebras and CSPs

Jena 2019 8/16




Networks

Definitions

Let A be a relation algebra. An A-network (V;f) is a finite set of nodes V
together with a function f:V x V - A.

Let B be a representation of A. An A-network (V/; f) is satisfiable in B if there
exists an assignment s: V' — B such that for all x,y € V:

(s(x),s(y)) € F(x,)"

Point Algebra Network: Henson Algebra Network:
L]
A \4 E U N E U=
e— e ¢ — 0
< Eu=
Relation Algebras and CSPs

Jena 2019 8/16



Networks

Definitions

Let A be a relation algebra. An A-network (V;f) is a finite set of nodes V
together with a function f:V x V - A.

Let B be a representation of A. An A-network (V/; f) is satisfiable in B if there
exists an assignment s: V' — B such that for all x,y € V:

(s(x),s(y)) € F(x,)"

Point Algebra Network: Henson Algebra Network:

EuN Eu=

Simon Kn&uer (TU Dresden) Relation Algebras and CSPs

Jena 2019 8/16



Networks

Definitions

Let A be a relation algebra. An A-network (V;f) is a finite set of nodes V
together with a function f:V x V - A.

Let B be a representation of A. An A-network (V/; f) is satisfiable in B if there
exists an assignment s: V' — B such that for all x,y € V:

(s(x),s(y)) € F(x,)"

Point Algebra Network: Henson Algebra Network:

Simon Kn&uer (TU Dresden) Relation Algebras and CSPs

Jena 2019 8/16



Networks

Definitions

Let A be a relation algebra. An A-network (V;f) is a finite set of nodes V
together with a function f:V x V - A.

Let B be a representation of A. An A-network (V/; f) is satisfiable in B if there
exists an assignment s: V' — B such that for all x,y € V:

(s(x),s(y)) € F(x,)"

An A-network (V/; f) is satisfiable if there exists some representation C of A such
that (V/; f) is satisfiable in C.

v

Point Algebra Network: Henson Algebra Network:
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Result: A Complexity Classification

Definition

The Network Satisfaction Problem for a finite relation algebra A is the problem to
decide whether a given A-network is satisfiable. We denote this with NSP(.A).
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Result: A Complexity Classification

Definition

The Network Satisfaction Problem for a finite relation algebra A is the problem to
decide whether a given A-network is satisfiable. We denote this with NSP(.A).

@ Research Goal: Classifying those NSPs which are polynomial-time tractable.
@ Robin Hirsch 1996: Really Big Complexity Problem (RBCP).

Theorem (Partial RBCP)

Let A be a finite relation algebra with a flexible atom.
Then NSP(A) is in P or NP-complete.
Moreover, it is decidable which of the two cases holds.

Definition

Let A be a finite relation algebra. An atom S € A is flexible if for all
B,CeA~{1'} it holds that S<Bo C.
— “All triangles that contain a S are allowed.”
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Examples of Flexible Atoms

Henson Algebra:

The Boolean algebra on {=,E,N,Eu=EuN,Nu=,@, V?} with the
multiplication specified by the forbidden triangle:

& — N is a flexible atom!

Metric space +F:

The Boolean algebra on P({=,1,2,3,4, F}) with the multiplication specified by
the forbidden triangles:

— F is a flexible atom!
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Approach

@ Hirsch introduced a subclass of finite relation algebras with “nice”
representations:

Finite relation algebras with normal representations.

lHirsch 1994

Homogeneous edge-labeled graphs defined by forbidden triangles.

/

Cherlin: Classification is open.
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Normal Representations

Definition

Let A be a relation algebra. An A-network (V/;f) is called atomic if the image of
f only contains atoms and if

f(a,c) <f(a,b)of(b,c)
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Normal Representations

Definition

Let A be a relation algebra. An A-network (V/;f) is called atomic if the image of
f only contains atoms and if

f(a,c) <f(a,b)of(b,c)

Definitions

A representation B of a relation algebra A is called
o fully universal if every atomic A-network is satisfiable in B;
e square if 1B = B?;

@ homogeneous if every isomorphism of finite substructures of B can be
extended to an automorphism;

@ normal if it is fully universal, square and homogeneous.
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NSP as CSP

Definition

Let A be a 7-structure. The Constraint Satisfaction Problem of A is to decide for
a given finite 7-structure C whether there exists a homomorphism from C to A.
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NSP as CSP

Definition
Let A be a 7-structure. The Constraint Satisfaction Problem of A is to decide for
a given finite 7-structure C whether there exists a homomorphism from C to A.

Proposition

Let A be a finite relation algebra with normal representation A.
Then A is finitely bounded and NSP(.A) equals CSP(A) (up to some cosmetic
differences in the formalisation) and is therefore in NP.

Remark: There exists a finite relation algebra with undecidable NSP (Hirsch 1999)!
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Result restated

Theorem

Let A be a finite relation algebra with a flexible atom. Then A has a normal
representation [ and CSP(TI") is in P or NP-complete.
Moreover, it is decidable which of the two cases holds.
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Result restated

Theorem

Let A be a finite relation algebra with a flexible atom. Then A has a normal
representation [ and CSP(I") is in P or NP-complete.
Moreover, it is decidable which of the two cases holds.

Comments on the Proof:

@ Fraisse's Theorem: I exists, because of free amalgamation.
@ Universal algebra: Study homomorphisms I'" —T.

@ Important result by Hubi¢ka and Neset¥il: [ with a generic linear order is a
Ramsey structure.

@ Use of the Bulatov-Zhuk Dichotomy Theorem for finite-domain CSPs.
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Examples Classified

Henson Algebra:

The Boolean algebra on {=,E,N,Eu=EuN,Nu=,@, V?} with the
multiplication specified by the forbidden triangle:

& NSP of the Hensen Algebra is NP-complete!

Metric space +F:

The Boolean algebra on P({=,1,2,3,4, F}) with the multiplication specified by
the forbidden triangles:

NSP of the “Metric+F Algebra” is polynomial-time solvable!
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Thank you for your attention!

Simon Kn&uer (TU Dresden) Relation Algebras and CSPs Jena 2019 16 /16



Result

Theorem

Let I be a normal representation of a finite integral relation algebra with a flexible
atom. One of the following holds:

© There exists for every two atoms A and B of the algebra a polymorphism f4 g
of I' that is canonical and the induced function on {A, B} is of Schaefer-type,
then I has a canonical pseudo-Siggers polymorphism. Then CSP(I") is in P.

@ CSP(IN) is NP-complete.
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