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What you can expect

Relation Algebras

Intensively studied algebraic object (Tarski, Hodkinson, Maddux, . . . ).
Tool to model temporal and spatial reasoning problems in AI.

The Really Big Complexity Problem (RBCP)

Classification problem for relation algebras.
Introduced by Robin Hirsch in 1996.

Result: Partial Solution of RBCP.

A model theory perspective on relation algebras.

Labeled homogeneous graphs (Cherlin).
Translation of RBCP into a classification question about CSPs.
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Proper Relation Algebras

Definition

Let D be a set and E ⊆ D2 an equivalence relation. Then (P(E);∪,̄ ,0,1,1′,⌣ , ○)
is a relation algebra for the following interpretation of function symbols:

1 A ∪B ∶= A ∪B ,
2 Ā ∶= E ∖A,
3 0 ∶= ∅,
4 1 ∶= E ,
5 1′ ∶= {(x , x) ∣ x ∈ D},
6 A⌣ ∶= {(x , y) ∣ (y , x) ∈ A},
7 A ○B ∶= {(x , z) ∣ ∃y ∈ D ∶ (x , y) ∈ A and (y , z) ∈ B}.

A subalgebra of (P(E);∪,̄ ,0,1,1′,⌣ , ○) is called proper relation algebra.

For model theorists:
For a proper relation algebra R we view R = (D;R) as a relational structure.
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Relation Algebras

Definition

A relation algebra A is an algebra (A;∪,̄ ,0,1,1′,⌣ , ○) of type (2,1,0,0,0,1,2)
satisfying the following laws:

1 (A;∪,̄ ,0,1) is a boolean algebra,
2 (x ○ y) ○ z = x ○ (y ○ z),
3 (x ∪ y) ○ z = x ○ z ∪ y ○ z ,
4 x ○ 1′ = x ,
5 (x⌣)⌣ = x ,
6 (x ∪ y)⌣ = x⌣ ∪ y⌣,
7 (x ○ y)⌣ = y⌣ ○ x⌣

8 (x⌣ ○ (x ○ y)) ∪ ȳ = ȳ .
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Examples

Definition
The minimal non-trivial relations with respect to inclusion are called atoms.

Point Algebra:
The set {=,<,>,≤,≥,∅, /=,Q2} together
with the “natural” relation algebra
operations and the table.

Henson Algebra:
The set {=,E ,N,E∪ =,E ∪N,N ∪=,∅,V 2}

together with the “natural” relation algebra
operations and the table.
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Examples II

Metric spaces:
Let {=,1,2,3,4} be binary predicates associated with integer distances.

Consider the set of forbidden triangle inequalities.

1

1

3 1

1

4 1

2

4

Define a relation algebra on P({=,1,2,3,4}) with the following multiplication
table.

○ = 1 2 3 4
= = 1 2 3 4
1 1 1 ∪ 2 ∪ = 1 ∪ 2 ∪ 3 3 ∪ 4 3 ∪ 4
2 2 1 ∪ 2 ∪ 3 1 ∪ 2 ∪ 3 ∪ 4 ∪ = 1 ∪ 2 ∪ 3 ∪ 4 2 ∪ 3 ∪ 4
3 3 2 ∪ 3 ∪ 4 1 ∪ 2 ∪ 3 ∪ 4 1 ∪ 2 ∪ 3 ∪ 4 ∪ = 1 ∪ 2 ∪ 3 ∪ 4
4 4 3 ∪ 4 2 ∪ 3 ∪ 4 1 ∪ 2 ∪ 3 ∪ 4 1 ∪ 2 ∪ 3 ∪ 4 ∪ =
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Representations

Definition
Let A be a relation algebra. A relational structure B is called a representation of
A if

B is an A-structure,
the induced proper relation algebra on a subset of P(B2) is isomorphic to A.

Examples

(Q;=,<,>,≤,≥,∅, /=,Q2) is a representation of the Point Algebra.
The countable, universal, homogeneous, triangle-free graph

H = (V ;=,E ,N,E∪ =,E ∪N,N∪ =,∅,V 2)

is a representation of the Henson Algebra.
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Networks

Definitions

Let A be a relation algebra. An A-network (V ; f ) is a finite set of nodes V
together with a function f ∶V ×V → A.

Let B be a representation of A. An A-network (V ; f ) is satisfiable in B if there
exists an assignment s ∶V → B such that for all x , y ∈ V :

(s(x), s(y)) ∈ f (x , y)B

An A-network (V ; f ) is satisfiable if there exists some representation C of A such
that (V ; f ) is satisfiable in C.

Point Algebra Network:

>

≤

≥

No
t s
ati
sfia

ble
in
Q!

Henson Algebra Network:

E ∪N

E ∪ =

E ∪ =

Sa
tis
fia
ble

in
H!
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Result: A Complexity Classification

Definition
The Network Satisfaction Problem for a finite relation algebra A is the problem to
decide whether a given A-network is satisfiable. We denote this with NSP(A).

Research Goal: Classifying those NSPs which are polynomial-time tractable.
Robin Hirsch 1996: Really Big Complexity Problem (RBCP).

Theorem (Partial RBCP)

Let A be a finite relation algebra with a flexible atom.
Then NSP(A) is in P or NP-complete.
Moreover, it is decidable which of the two cases holds.

Definition
Let A be a finite relation algebra. An atom S ∈ A is flexible if for all
B,C ∈ A ∖ {1′} it holds that S ≤ B ○ C .
→ “All triangles that contain a S are allowed.”
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Examples of Flexible Atoms

Henson Algebra:
The Boolean algebra on {=,E ,N,E∪ =,E ∪N,N ∪ =,∅,V 2} with the
multiplication specified by the forbidden triangle:

E

E

E

Ð→ N is a flexible atom!

Metric space +F :
The Boolean algebra on P({=,1,2,3,4,F}) with the multiplication specified by
the forbidden triangles:

1

1

3 1

1

4 1

2

4

Ð→ F is a flexible atom!
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Approach

Hirsch introduced a subclass of finite relation algebras with “nice”
representations:

Finite relation algebras with normal representations.

Hirsch 1994

Homogeneous edge-labeled graphs defined by forbidden triangles.

Cherlin: Classification is open.
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Normal Representations

Definition

Let A be a relation algebra. An A-network (V ; f ) is called atomic if the image of
f only contains atoms and if

f (a, c) ≤ f (a,b) ○ f (b, c)

Definitions
A representation B of a relation algebra A is called

fully universal if every atomic A-network is satisfiable in B;
square if 1B = B2;
homogeneous if every isomorphism of finite substructures of B can be
extended to an automorphism;
normal if it is fully universal, square and homogeneous.
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NSP as CSP

Definition
Let A be a τ -structure. The Constraint Satisfaction Problem of A is to decide for
a given finite τ -structure C whether there exists a homomorphism from C to A.

Proposition

Let A be a finite relation algebra with normal representation A.
Then A is finitely bounded and NSP(A) equals CSP(A) (up to some cosmetic
differences in the formalisation) and is therefore in NP.

Remark: There exists a finite relation algebra with undecidable NSP (Hirsch 1999)!
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Result restated

Theorem
Let A be a finite relation algebra with a flexible atom. Then A has a normal
representation Γ and CSP(Γ) is in P or NP-complete.
Moreover, it is decidable which of the two cases holds.

Comments on the Proof:

Fraisse’s Theorem: Γ exists, because of free amalgamation.

Universal algebra: Study homomorphisms Γn → Γ.

Important result by Hubic̆ka and Nes̆et̆ril: Γ with a generic linear order is a
Ramsey structure.

Use of the Bulatov-Zhuk Dichotomy Theorem for finite-domain CSPs.
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Examples Classified

Henson Algebra:
The Boolean algebra on {=,E ,N,E∪ =,E ∪N,N ∪ =,∅,V 2} with the
multiplication specified by the forbidden triangle:

E

E

E

NSP of the Hensen Algebra is NP-complete!

Metric space +F :
The Boolean algebra on P({=,1,2,3,4,F}) with the multiplication specified by
the forbidden triangles:

1

1

3 1

1

4 1

2

4

NSP of the “Metric+F Algebra” is polynomial-time solvable!
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Thank you for your attention!
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Result

Theorem
Let Γ be a normal representation of a finite integral relation algebra with a flexible
atom. One of the following holds:

1 There exists for every two atoms A and B of the algebra a polymorphism fA,B
of Γ that is canonical and the induced function on {A,B} is of Schaefer-type,
then Γ has a canonical pseudo-Siggers polymorphism. Then CSP(Γ) is in P.

2 CSP(Γ) is NP-complete.
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