Relation Algebras and CSPs

Simon Knäuer
Joint work with Manuel Bodirsky
Institut für Algebra,
TU Dresden

25. Jahrestagung der Fachgruppe "Logik in der Informatik" 2019, Jena

QuantLA
DFG Research Training Group 1763

What you can expect

- Relation Algebras

What you can expect

- Relation Algebras
- Intensively studied algebraic object (Tarski, Hodkinson, Maddux, ...).

What you can expect

- Relation Algebras
- Intensively studied algebraic object (Tarski, Hodkinson, Maddux, ...).
- Tool to model temporal and spatial reasoning problems in AI.

What you can expect

- Relation Algebras
- Intensively studied algebraic object (Tarski, Hodkinson, Maddux, ...).
- Tool to model temporal and spatial reasoning problems in AI.
- The Really Big Complexity Problem (RBCP)

What you can expect

- Relation Algebras
- Intensively studied algebraic object (Tarski, Hodkinson, Maddux, ...).
- Tool to model temporal and spatial reasoning problems in AI.
- The Really Big Complexity Problem (RBCP)
- Classification problem for relation algebras.

What you can expect

- Relation Algebras
- Intensively studied algebraic object (Tarski, Hodkinson, Maddux, ...).
- Tool to model temporal and spatial reasoning problems in AI.
- The Really Big Complexity Problem (RBCP)
- Classification problem for relation algebras.
- Introduced by Robin Hirsch in 1996.

What you can expect

- Relation Algebras
- Intensively studied algebraic object (Tarski, Hodkinson, Maddux, ...).
- Tool to model temporal and spatial reasoning problems in AI.
- The Really Big Complexity Problem (RBCP)
- Classification problem for relation algebras.
- Introduced by Robin Hirsch in 1996.
- Result: Partial Solution of RBCP.

What you can expect

- Relation Algebras
- Intensively studied algebraic object (Tarski, Hodkinson, Maddux, ...).
- Tool to model temporal and spatial reasoning problems in AI.
- The Really Big Complexity Problem (RBCP)
- Classification problem for relation algebras.
- Introduced by Robin Hirsch in 1996.
- Result: Partial Solution of RBCP.
- A model theory perspective on relation algebras.

What you can expect

- Relation Algebras
- Intensively studied algebraic object (Tarski, Hodkinson, Maddux, ...).
- Tool to model temporal and spatial reasoning problems in AI.
- The Really Big Complexity Problem (RBCP)
- Classification problem for relation algebras.
- Introduced by Robin Hirsch in 1996.
- Result: Partial Solution of RBCP.
- A model theory perspective on relation algebras.
- Labeled homogeneous graphs (Cherlin).

What you can expect

- Relation Algebras
- Intensively studied algebraic object (Tarski, Hodkinson, Maddux, ...).
- Tool to model temporal and spatial reasoning problems in AI.
- The Really Big Complexity Problem (RBCP)
- Classification problem for relation algebras.
- Introduced by Robin Hirsch in 1996.
- Result: Partial Solution of RBCP.
- A model theory perspective on relation algebras.
- Labeled homogeneous graphs (Cherlin).
- Translation of RBCP into a classification question about CSPs.

Proper Relation Algebras

Definition

Let D be a set and $E \subseteq D^{2}$ an equivalence relation. Then ($\left.\mathcal{P}(E) ; \cup,-0,1,1^{\prime},{ }^{-}, \circ\right)$ is a relation algebra for the following interpretation of function symbols:
(1) $A \cup B:=A \cup B$,
(2) $\bar{A}:=E \backslash A$,
(3) $0:=\varnothing$,
(1) $1:=E$,
(1) $1^{\prime}:=\{(x, x) \mid x \in D\}$,
(-) $A^{\sim}:=\{(x, y) \mid(y, x) \in A\}$,
(1) $A \circ B:=\{(x, z) \mid \exists y \in D:(x, y) \in A$ and $(y, z) \in B\}$.

A subalgebra of $\left(\mathcal{P}(E) ; \cup,-0,1,1^{\prime}, \check{\sim}, \circ\right)$ is called proper relation algebra.

Proper Relation Algebras

Definition

Let D be a set and $E \subseteq D^{2}$ an equivalence relation. Then ($\left.\mathcal{P}(E) ; \cup,-0,1,1^{\prime},{ }^{-}, \circ\right)$ is a relation algebra for the following interpretation of function symbols:
(1) $A \cup B:=A \cup B$,
(2) $\bar{A}:=E \backslash A$,
(3) $0:=\varnothing$,
(1) $1:=E$,
(1) $1^{\prime}:=\{(x, x) \mid x \in D\}$,
(-) $A^{\wedge}:=\{(x, y) \mid(y, x) \in A\}$,
(1) $A \circ B:=\{(x, z) \mid \exists y \in D:(x, y) \in A$ and $(y, z) \in B\}$.

A subalgebra of $\left(\mathcal{P}(E) ; \cup,-, 0,1,1^{\prime}, \check{\sim}, \circ\right)$ is called proper relation algebra.
For model theorists:
For a proper relation algebra \mathcal{R} we view $\mathbb{R}=(D ; \mathcal{R})$ as a relational structure.

Relation Algebras

Definition

A relation algebra \mathcal{A} is an algebra ($A ; \cup,,^{\prime}, 0,1,1^{\prime}, \sim, \circ$) of type ($2,1,0,0,0,1,2$) satisfying the following laws:
(3) $(A ; \cup,, 0,1)$ is a boolean algebra,
(2) $(x \circ y) \circ z=x \circ(y \circ z)$,
(3) $(x \cup y) \circ z=x \circ z \cup y \circ z$,
(1) $x \circ 1^{\prime}=x$,
(0) $\left(x^{\smile}\right)^{乞}=x$,

- $(x \cup y)^{\llcorner }=x^{\wedge} \cup y^{\wedge}$,
(1) $(x \circ y)^{-}=y^{-} \circ x^{-}$
(($\left(x^{-} \circ \overline{(x \circ y)}\right) \cup \bar{y}=\bar{y}$.

Examples

Definition
The minimal non-trivial relations with respect to inclusion are called atoms.

Examples

Definition

The minimal non-trivial relations with respect to inclusion are called atoms.

Point Algebra:
The set $\left\{=,<,>, \leq, \geq, \varnothing, \neq \mathbb{Q}^{2}\right\}$ together with the "natural" relation algebra operations and the table.

\circ	$=$	$<$	$>$
$=$	$=$	$<$	$>$
$<$	$<$	$<$	\mathbb{Q}^{2}
$>$	$>$	\mathbb{Q}^{2}	$>$

Examples

Definition
The minimal non-trivial relations with respect to inclusion are called atoms.

Point Algebra:
The set $\left\{=,<,>, \leq, \geq, \varnothing, \neq \mathbb{Q}^{2}\right\}$ together with the "natural" relation algebra operations and the table.

Forbidden Triangle:

Examples

Definition

The minimal non-trivial relations with respect to inclusion are called atoms.

Point Algebra:
The set $\left\{=,<,>, \leq, \geq, \varnothing, \neq \mathbb{Q}^{2}\right\}$ together with the "natural" relation algebra operations and the table.

Forbidden Triangle:

Henson Algebra:
The set $\left\{=, E, N, E \cup=, E \cup N, N \cup=, \varnothing, V^{2}\right\}$ together with the "natural" relation algebra operations and the table.

\circ	$=$	E	N
$=$	$=$	E	N
E	E	$N \cup=$	$E \cup N$
N	N	$E \cup N$	V^{2}

Examples

Definition

The minimal non-trivial relations with respect to inclusion are called atoms.

Point Algebra:
The set $\left\{=,<,>, \leq, \geq, \varnothing, \neq \mathbb{Q}^{2}\right\}$ together with the "natural" relation algebra operations and the table.

Henson Algebra:
The set $\left\{=, E, N, E \cup=, E \cup N, N \cup=, \varnothing, V^{2}\right\}$ together with the "natural" relation algebra operations and the table.

Forbidden Triangle:

Examples II

Metric spaces:
Let $\{=, 1,2,3,4\}$ be binary predicates associated with integer distances.

Examples II

Metric spaces:

Let $\{=, 1,2,3,4\}$ be binary predicates associated with integer distances. Consider the set of forbidden triangle inequalities.

Examples II

Metric spaces:
Let $\{=, 1,2,3,4\}$ be binary predicates associated with integer distances. Consider the set of forbidden triangle inequalities.

Define a relation algebra on $\mathcal{P}(\{=, 1,2,3,4\})$ with the following multiplication table.

Examples II

Metric spaces:
Let $\{=, 1,2,3,4\}$ be binary predicates associated with integer distances.
Consider the set of forbidden triangle inequalities.

Define a relation algebra on $\mathcal{P}(\{=, 1,2,3,4\})$ with the following multiplication table.

\circ	$=$	1	2	3	4
$=$	$=$	1	2	3	4
1	1	$1 \cup 2 \cup=$	$1 \cup 2 \cup 3$	$3 \cup 4$	$3 \cup 4$
2	2	$1 \cup 2 \cup 3$	$1 \cup 2 \cup 3 \cup 4 \cup=$	$1 \cup 2 \cup 3 \cup 4$	$2 \cup 3 \cup 4$
3	3	$2 \cup 3 \cup 4$	$1 \cup 2 \cup 3 \cup 4$	$1 \cup 2 \cup 3 \cup 4 \cup=$	$1 \cup 2 \cup 3 \cup 4$
4	4	$3 \cup 4$	$2 \cup 3 \cup 4$	$1 \cup 2 \cup 3 \cup 4$	$1 \cup 2 \cup 3 \cup 4 \cup=$

Representations

Definition

Let \mathcal{A} be a relation algebra. A relational structure \mathbb{B} is called a representation of \mathcal{A} if

- \mathbb{B} is an A-structure,
- the induced proper relation algebra on a subset of $\mathcal{P}\left(B^{2}\right)$ is isomorphic to \mathcal{A}.

Representations

Definition

Let \mathcal{A} be a relation algebra. A relational structure \mathbb{B} is called a representation of \mathcal{A} if

- \mathbb{B} is an A-structure,
- the induced proper relation algebra on a subset of $\mathcal{P}\left(B^{2}\right)$ is isomorphic to \mathcal{A}.

Examples

- $\left(\mathbb{Q} ;=,<,>, \leq, \geq, \varnothing, \neq, \mathbb{Q}^{2}\right)$ is a representation of the Point Algebra.

Representations

Definition

Let \mathcal{A} be a relation algebra. A relational structure \mathbb{B} is called a representation of \mathcal{A} if

- \mathbb{B} is an A-structure,
- the induced proper relation algebra on a subset of $\mathcal{P}\left(B^{2}\right)$ is isomorphic to \mathcal{A}.

Examples

- $\left(\mathbb{Q} ;=,<,>, \leq, \geq, \varnothing, \neq, \mathbb{Q}^{2}\right)$ is a representation of the Point Algebra.
- The countable, universal, homogeneous, triangle-free graph

$$
\mathbb{H}=\left(V ;=, E, N, E \cup=, E \cup N, N \cup=, \varnothing, V^{2}\right)
$$

is a representation of the Henson Algebra.

Networks

Definitions

Let \mathcal{A} be a relation algebra. An \mathcal{A}-network $(V ; f)$ is a finite set of nodes V together with a function $f: V \times V \rightarrow A$.

Point Algebra Network:

Henson Algebra Network:

Networks

Definitions

Let \mathcal{A} be a relation algebra. An \mathcal{A}-network $(V ; f)$ is a finite set of nodes V together with a function $f: V \times V \rightarrow A$.
Let \mathbb{B} be a representation of \mathcal{A}. An \mathcal{A}-network $(V ; f)$ is satisfiable in \mathbb{B} if there exists an assignment $s: V \rightarrow B$ such that for all $x, y \in V$:

$$
(s(x), s(y)) \in f(x, y)^{\mathbb{B}}
$$

Point Algebra Network:

Henson Algebra Network:

Networks

Definitions

Let \mathcal{A} be a relation algebra. An \mathcal{A}-network $(V ; f)$ is a finite set of nodes V together with a function $f: V \times V \rightarrow A$.
Let \mathbb{B} be a representation of \mathcal{A}. An \mathcal{A}-network $(V ; f)$ is satisfiable in \mathbb{B} if there exists an assignment $s: V \rightarrow B$ such that for all $x, y \in V$:

$$
(s(x), s(y)) \in f(x, y)^{\mathbb{B}}
$$

Point Algebra Network:

Henson Algebra Network:

Networks

Definitions

Let \mathcal{A} be a relation algebra. An \mathcal{A}-network $(V ; f)$ is a finite set of nodes V together with a function $f: V \times V \rightarrow A$.
Let \mathbb{B} be a representation of \mathcal{A}. An \mathcal{A}-network $(V ; f)$ is satisfiable in \mathbb{B} if there exists an assignment $s: V \rightarrow B$ such that for all $x, y \in V$:

$$
(s(x), s(y)) \in f(x, y)^{\mathbb{B}}
$$

Point Algebra Network:

Henson Algebra Network:

Networks

Definitions

Let \mathcal{A} be a relation algebra. An \mathcal{A}-network $(V ; f)$ is a finite set of nodes V together with a function $f: V \times V \rightarrow A$.
Let \mathbb{B} be a representation of \mathcal{A}. An \mathcal{A}-network $(V ; f)$ is satisfiable in \mathbb{B} if there exists an assignment $s: V \rightarrow B$ such that for all $x, y \in V$:

$$
(s(x), s(y)) \in f(x, y)^{\mathbb{B}}
$$

An \mathcal{A}-network $(V ; f)$ is satisfiable if there exists some representation \mathbb{C} of \mathcal{A} such that $(V ; f)$ is satisfiable in \mathbb{C}.

Point Algebra Network:

Henson Algebra Network:

Result: A Complexity Classification

Definition

The Network Satisfaction Problem for a finite relation algebra \mathcal{A} is the problem to decide whether a given \mathcal{A}-network is satisfiable. We denote this with $\operatorname{NSP}(\mathcal{A})$.

Result: A Complexity Classification

Definition

The Network Satisfaction Problem for a finite relation algebra \mathcal{A} is the problem to decide whether a given \mathcal{A}-network is satisfiable. We denote this with $\operatorname{NSP}(\mathcal{A})$.

- Research Goal: Classifying those NSPs which are polynomial-time tractable.

Result: A Complexity Classification

Definition

The Network Satisfaction Problem for a finite relation algebra \mathcal{A} is the problem to decide whether a given \mathcal{A}-network is satisfiable. We denote this with $\operatorname{NSP}(\mathcal{A})$.

- Research Goal: Classifying those NSPs which are polynomial-time tractable.
- Robin Hirsch 1996: Really Big Complexity Problem (RBCP).

Result: A Complexity Classification

Definition

The Network Satisfaction Problem for a finite relation algebra \mathcal{A} is the problem to decide whether a given \mathcal{A}-network is satisfiable. We denote this with $\operatorname{NSP}(\mathcal{A})$.

- Research Goal: Classifying those NSPs which are polynomial-time tractable.
- Robin Hirsch 1996: Really Big Complexity Problem (RBCP).

Theorem (Partial RBCP)

Let \mathcal{A} be a finite relation algebra with a flexible atom.
Then $\operatorname{NSP}(\mathcal{A})$ is in P or NP-complete.
Moreover, it is decidable which of the two cases holds.

Result: A Complexity Classification

Definition

The Network Satisfaction Problem for a finite relation algebra \mathcal{A} is the problem to decide whether a given \mathcal{A}-network is satisfiable. We denote this with $\operatorname{NSP}(\mathcal{A})$.

- Research Goal: Classifying those NSPs which are polynomial-time tractable.
- Robin Hirsch 1996: Really Big Complexity Problem (RBCP).

Theorem (Partial RBCP)

Let \mathcal{A} be a finite relation algebra with a flexible atom.
Then $\operatorname{NSP}(\mathcal{A})$ is in P or NP-complete.
Moreover, it is decidable which of the two cases holds.

Definition

Let \mathcal{A} be a finite relation algebra. An atom $S \in A$ is flexible if for all
$B, C \in A \backslash\left\{1^{\prime}\right\}$ it holds that $S \leq B \circ C$.
\rightarrow "All triangles that contain a S are allowed."

Examples of Flexible Atoms

Henson Algebra:
The Boolean algebra on $\left\{=, E, N, E \cup=, E \cup N, N \cup=, \varnothing, V^{2}\right\}$ with the multiplication specified by the forbidden triangle:

Examples of Flexible Atoms

Henson Algebra:
The Boolean algebra on $\left\{=, E, N, E \cup=, E \cup N, N \cup=, \varnothing, V^{2}\right\}$ with the multiplication specified by the forbidden triangle:

$\longrightarrow N$ is a flexible atom!

Examples of Flexible Atoms

Henson Algebra:
The Boolean algebra on $\left\{=, E, N, E \cup=, E \cup N, N \cup=, \varnothing, V^{2}\right\}$ with the multiplication specified by the forbidden triangle:

$\longrightarrow N$ is a flexible atom!

Metric space $+F$:
The Boolean algebra on $\mathcal{P}(\{=, 1,2,3,4, F\})$ with the multiplication specified by the forbidden triangles:

Examples of Flexible Atoms

Henson Algebra:
The Boolean algebra on $\left\{=, E, N, E \cup=, E \cup N, N \cup=, \varnothing, V^{2}\right\}$ with the multiplication specified by the forbidden triangle:

$\longrightarrow N$ is a flexible atom!

Metric space $+F$:
The Boolean algebra on $\mathcal{P}(\{=, 1,2,3,4, F\})$ with the multiplication specified by the forbidden triangles:

$\longrightarrow F$ is a flexible atom!

Approach

- Hirsch introduced a subclass of finite relation algebras with "nice" representations:

Approach

- Hirsch introduced a subclass of finite relation algebras with "nice" representations:

Approach

- Hirsch introduced a subclass of finite relation algebras with "nice" representations:

Finite relation algebras with normal representations.

Approach

- Hirsch introduced a subclass of finite relation algebras with "nice" representations:

Finite relation algebras with normal representations.
Hirsch 1994

Homogeneous edge-labeled graphs defined by forbidden triangles.

Approach

- Hirsch introduced a subclass of finite relation algebras with "nice" representations:

Finite relation algebras with normal representations.
Hirsch 1994

Homogeneous edge-labeled graphs defined by forbidden triangles.

Cherlin: Classification is open.

Normal Representations

Definition

Let \mathcal{A} be a relation algebra. An \mathcal{A}-network $(V ; f)$ is called atomic if the image of f only contains atoms and if

$$
f(a, c) \leq f(a, b) \circ f(b, c)
$$

Normal Representations

Definition

Let \mathcal{A} be a relation algebra. An \mathcal{A}-network $(V ; f)$ is called atomic if the image of f only contains atoms and if

$$
f(a, c) \leq f(a, b) \circ f(b, c)
$$

Definitions

A representation \mathbb{B} of a relation algebra \mathcal{A} is called

- fully universal if every atomic \mathcal{A}-network is satisfiable in \mathbb{B};

Normal Representations

Definition

Let \mathcal{A} be a relation algebra. An \mathcal{A}-network $(V ; f)$ is called atomic if the image of f only contains atoms and if

$$
f(a, c) \leq f(a, b) \circ f(b, c)
$$

Definitions

A representation \mathbb{B} of a relation algebra \mathcal{A} is called

- fully universal if every atomic \mathcal{A}-network is satisfiable in \mathbb{B};
- square if $1^{\mathbb{B}}=B^{2}$;

Normal Representations

Definition

Let \mathcal{A} be a relation algebra. An \mathcal{A}-network $(V ; f)$ is called atomic if the image of f only contains atoms and if

$$
f(a, c) \leq f(a, b) \circ f(b, c)
$$

Definitions

A representation \mathbb{B} of a relation algebra \mathcal{A} is called

- fully universal if every atomic \mathcal{A}-network is satisfiable in \mathbb{B};
- square if $1^{\mathbb{B}}=B^{2}$;
- homogeneous if every isomorphism of finite substructures of \mathbb{B} can be extended to an automorphism;

Normal Representations

Definition

Let \mathcal{A} be a relation algebra. An \mathcal{A}-network $(V ; f)$ is called atomic if the image of f only contains atoms and if

$$
f(a, c) \leq f(a, b) \circ f(b, c)
$$

Definitions

A representation \mathbb{B} of a relation algebra \mathcal{A} is called

- fully universal if every atomic \mathcal{A}-network is satisfiable in \mathbb{B};
- square if $1^{\mathbb{B}}=B^{2}$;
- homogeneous if every isomorphism of finite substructures of \mathbb{B} can be extended to an automorphism;
- normal if it is fully universal, square and homogeneous.

NSP as CSP

Definition

Let \mathbb{A} be a τ-structure. The Constraint Satisfaction Problem of \mathbb{A} is to decide for a given finite τ-structure \mathbb{C} whether there exists a homomorphism from \mathbb{C} to \mathbb{A}.

NSP as CSP

Definition

Let \mathbb{A} be a τ-structure. The Constraint Satisfaction Problem of \mathbb{A} is to decide for a given finite τ-structure \mathbb{C} whether there exists a homomorphism from \mathbb{C} to \mathbb{A}.

Proposition

Let \mathcal{A} be a finite relation algebra with normal representation \mathbb{A}.
Then \mathbb{A} is finitely bounded and $\operatorname{NSP}(\mathcal{A})$ equals $\operatorname{CSP}(\mathbb{A})$ (up to some cosmetic differences in the formalisation) and is therefore in NP.

NSP as CSP

Definition

Let \mathbb{A} be a τ-structure. The Constraint Satisfaction Problem of \mathbb{A} is to decide for a given finite τ-structure \mathbb{C} whether there exists a homomorphism from \mathbb{C} to \mathbb{A}.

Proposition
Let \mathcal{A} be a finite relation algebra with normal representation \mathbb{A}.
Then \mathbb{A} is finitely bounded and $\operatorname{NSP}(\mathcal{A})$ equals $\operatorname{CSP}(\mathbb{A})$ (up to some cosmetic differences in the formalisation) and is therefore in NP.

Remark: There exists a finite relation algebra with undecidable NSP (Hirsch 1999)!

Result restated

Theorem

Let \mathcal{A} be a finite relation algebra with a flexible atom. Then \mathcal{A} has a normal representation Γ and $\operatorname{CSP}(\Gamma)$ is in P or NP-complete. Moreover, it is decidable which of the two cases holds.

Result restated

Theorem

Let \mathcal{A} be a finite relation algebra with a flexible atom. Then \mathcal{A} has a normal representation Γ and $\operatorname{CSP}(\Gamma)$ is in P or NP-complete. Moreover, it is decidable which of the two cases holds.

Comments on the Proof:

- Fraisse's Theorem: Г exists, because of free amalgamation.

Result restated

Theorem

Let \mathcal{A} be a finite relation algebra with a flexible atom. Then \mathcal{A} has a normal representation Γ and $\operatorname{CSP}(\Gamma)$ is in P or NP-complete. Moreover, it is decidable which of the two cases holds.

Comments on the Proof:

- Fraisse's Theorem: Г exists, because of free amalgamation.
- Universal algebra: Study homomorphisms $\Gamma^{n} \rightarrow \Gamma$.

Result restated

Theorem

Let \mathcal{A} be a finite relation algebra with a flexible atom. Then \mathcal{A} has a normal representation Γ and $\operatorname{CSP}(\Gamma)$ is in P or NP-complete. Moreover, it is decidable which of the two cases holds.

Comments on the Proof:

- Fraisse's Theorem: Г exists, because of free amalgamation.
- Universal algebra: Study homomorphisms $\Gamma^{n} \rightarrow \Gamma$.
- Important result by Hubička and Nešetřil: Γ with a generic linear order is a Ramsey structure.

Result restated

Theorem

Let \mathcal{A} be a finite relation algebra with a flexible atom. Then \mathcal{A} has a normal representation Γ and $\operatorname{CSP}(\Gamma)$ is in P or NP-complete. Moreover, it is decidable which of the two cases holds.

Comments on the Proof:

- Fraisse's Theorem: Γ exists, because of free amalgamation.
- Universal algebra: Study homomorphisms $\Gamma^{n} \rightarrow \Gamma$.
- Important result by Hubička and Nešetřil: Γ with a generic linear order is a Ramsey structure.
- Use of the Bulatov-Zhuk Dichotomy Theorem for finite-domain CSPs.

Examples Classified

Henson Algebra:
The Boolean algebra on $\left\{=, E, N, E \cup=, E \cup N, N \cup=, \varnothing, V^{2}\right\}$ with the multiplication specified by the forbidden triangle:

Examples Classified

Henson Algebra:
The Boolean algebra on $\left\{=, E, N, E \cup=, E \cup N, N \cup=, \varnothing, V^{2}\right\}$ with the multiplication specified by the forbidden triangle:

NSP of the Hensen Algebra is NP-complete!

Examples Classified

Henson Algebra:
The Boolean algebra on $\left\{=, E, N, E \cup=, E \cup N, N \cup=, \varnothing, V^{2}\right\}$ with the multiplication specified by the forbidden triangle:

NSP of the Hensen Algebra is NP-complete!

Metric space $+F$:
The Boolean algebra on $\mathcal{P}(\{=, 1,2,3,4, F\})$ with the multiplication specified by the forbidden triangles:

Examples Classified

Henson Algebra:
The Boolean algebra on $\left\{=, E, N, E \cup=, E \cup N, N \cup=, \varnothing, V^{2}\right\}$ with the multiplication specified by the forbidden triangle:

NSP of the Hensen Algebra is NP-complete!

Metric space $+F$:
The Boolean algebra on $\mathcal{P}(\{=, 1,2,3,4, F\})$ with the multiplication specified by the forbidden triangles:

NSP of the "Metric $+F$ Algebra" is polynomial-time solvable!

Thank you for your attention!

Result

Theorem
Let Γ be a normal representation of a finite integral relation algebra with a flexible atom. One of the following holds:
(1) There exists for every two atoms A and B of the algebra a polymorphism $f_{A, B}$ of Γ that is canonical and the induced function on $\{A, B\}$ is of Schaefer-type, then Γ has a canonical pseudo-Siggers polymorphism. Then $\operatorname{CSP}(\Gamma)$ is in P .
(3) $\operatorname{CSP}(\Gamma)$ is NP-complete.

