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Kurzfassung
Diese Arbeit stellt ein elektromechanisch gekoppeltes Modell für die Simulation des elektrischen

Stromflusses in Zinkoxidvaristoren vor. Das Modell basiert auf einer Ersatzschaltbildrepräsen-

tation der Varistormikrostruktur, in welcher die Korngrenzen als nichtlineare Widerstände

modelliert werden. Diese Vorgehensweise baut auf existierenden Schaltkreismodellen auf und

erweitert sie durch die Berücksichtigung des Einflusses der mechanischen Spannungen auf die

elektrische Leitfähigkeit der Korngrenzen. Die dreidimensionale mechanische Spannungsverteil-

ung im Material wird mit der Finite-Elemente-Methode (FEM) berechnet. Anhand dieser

Verteilung wird der elektrische Widerstand jeder Korngrenze bestimmt. Dies erfordert ein

selbstkonsistentes Modell für die Grenzflächenladung, die durch piezoelektrische Polarisation

induziert wird. Zum Schluss werden die Verteilung des elektrischen Stroms und Leitfähigkeit

des gesamten Varistors mittels des nichtlinearen Schaltkreismodells berechnet.

Die simulierten Stromspannungscharakteristiken zeigen deutlich, dass die elektrische

Leitfähigkeit von ZnO Varistoren stark von der angewandten mechanischen Spannung abhängig

ist. Die Simulationen stellen außerdem den Effekt der Stromkonzentration entlang dünner

hochleitfähiger Pfade dar. Dieser Effekt hängt von den mikrostrukturellen Eigenschaften sowie

vom mechanischen Spannungszustand des Materials ab. Zusätzlich wird der Effekt residualer

thermomechanischer Spannungen in polykristallinen Mikrostrukturen berücksichtigt und der

Einfluss solcher Spannungen auf die Leitfähigkeit wird charakterisiert. Weiterhin werden der

inverse piezoelektrische Effekt auf Korngrenzen und seine Auswirkung auf die makroskopische

elektrische Charakteristik in der Arbeit untersucht.
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Abstract
An electromechanically-coupled model for the simulation of electric current flow in zinc oxide

varistors is presented. The model is based on an equivalent circuit representation of the varistor

microstructure, where the grain boundaries are modelled as non-linear resistors in the circuit.

This approach extends previous circuit models by including the effect of mechanical stress

on grain boundary conductivity. The three-dimensional mechanical stress distribution in the

material is calculated by the finite element method (FEM). Using this distribution, the electrical

resistance of each grain boundary is determined by applying a self-consistent model for the

trapped interface charge induced by piezoelectric polarisation. Finally, the electric current flow

patterns and the bulk conductivity of the material are computed using a non-linear circuit model.

The simulated IV-characteristics reveal a significant sensitivity of electrical conductivity to

applied stress. For 2D and 3D ZnO varistor models, the simulations demonstrate the effect

of current concentration along thin conducting paths, depending on microstructural properties

and on the mechanical stress condition of the material. The effect of residual thermal stress in

polycrystalline structures on the electrical conductivity is also considered. Just as in the case

of applied stress, the electrical conductivity is highly sensitive to the accumulation of thermal

stress within the material. Furthermore, the effect of the inverse piezoelectric effect is examined

and accounted for in the computation of the macroscopic varistor characteristics.
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1 Introduction
Zinc oxide (ZnO) is a piezoelectric semiconducting ceramic, which has been used for decades

as a functional material in a broad variety of engineering fields. Just a few examples of these

are low-wavelength light-emitting diodes [1], solar-blind photodetectors [2] and transparent

thin-film transistors [3]. One area of application that is of interest to this thesis is ZnO’s role

as a varistor, such as those used as components in voltage surge protectors for low-voltage

electronic circuits [4] and power transmission lines [5]. The term varistor is a portmanteau of

‘variable resistor’, referring to the material’s ability to change its resistance depending on the

applied voltage. These components are connected in parallel to an external circuit so that, if a

voltage surge occurs, the current will be redirected through the resistor as its total resistance

falls below that of the vulnerable circuit. ZnO is the material of choice for varistor applications,

and this is a consequence of its ability to rapidly absorb large amounts of electrical energy. This

property is rooted in the material’s diode-like current-voltage (IV) characteristic curve, which

occurs due to the double Schottky barriers that form along the boundaries between individual

ZnO grains within a polycrystal. These boundaries exhibit an electrical response equivalent to

that of a back-to-back pair of Zener diodes [6] and are highly non-linear, displaying resistance

jumps of several orders of magnitude that take place over a comparatively narrow voltage range.

For surge protection applications, this non-linearity is ZnO’s greatest strength. The ability to

almost instantaneously decrease resistance is, of course, invaluable when dealing with a sudden

voltage surge. However, this effect leads to a strong current concentration effect in certain

regions of the material [7]. Such inhomogeneous current distribution results in reduced energy

absorption capacity, and, potentially, material failure if the component is operated in this voltage

range for too long [8]. Market pressure to keep costs low and new technological challenges,

such as ultra-high voltage networks, push these surge protection systems to their limits with

ever increasing regularity. As such, a detailed understanding of their inner workings and failure

mechanisms is vital.

Contemporary research into ZnO frequently concerns itself with the electromechanical

tunability of the material. The ability to utilise applied mechanical stress to modulate ZnO’s

electrical conductivity arises from the piezotronic effect [9,10] and results from a stress-induced

piezoelectric charge that modifies the height of potential barriers in semiconductor devices

[11]. This occurs when the distribution of trapped interface charges at the grain boundaries
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is modified by the strain-induced piezoelectric polarisation. As a result, the effective grain

boundary potential barriers are changed, leading to a modification of the IV-characteristics

of the material. Studies in recent times have investigated the workings of this effect in the

context of photonic strain mapping [12], strain-gated transistors [13] and novel nanowire

strain sensors [14]. In particular, Baraki, Rödel et al. studied the stress sensitivity of electrical

conductivity in ZnO varistor ceramics in [15, 16]. Here, gauge factors extending into the high

hundreds were found. Such values identify ZnO as appropriate for use in macroscopic pressure

sensors. The samples investigated were of conventionally manufactured ZnO varistor material

subjected to uniaxial compressive stresses of the order of 100 MPa. To the author’s knowledge,

so far no pressure sensing devices based on the piezotronic effect in ZnO varistors have been

manufactured. However, the large gauge factors observed experimentally clearly qualify the

material for such applications [16]. A simple scheme for a pressure sensor based on a varistor

structure with a properly tailored combination of grain orientations was recently proposed by

Zhou at al. [17].

Verghese et al. [18] originally proposed the mechanism behind the mechanical modification

of ZnO grain boundary potential barriers in their study of the effect of internal stress on the

electrical conductivity of ZnO varistors. This remains the most current model to this day

[19]. However, the piezoelectric contribution to grain boundary conductivity could not be

experimentally verified until very recently. Raidl et al. [20] were able to demonstrate that the

mechanical modulation of electrical conductivity for ZnO bicrystals depends on the reciprocal

grain polarity, as previously postulated in Verghese’s paper. In the interest of maximising stress

sensitivity, efforts have also been made by Keil, Rödel et al. [21] to manufacture a single

bicrystalline interface of optimal relative orientation.

The basic mechanism of the piezotronic effect for a single grain boundary is reasonably well

understood. However, the electromechanical characterisation of bulk ceramic material remains

a challenge to this day. In varistor samples of macroscopic size large numbers of grains of

many different sizes, shapes and crystallographic orientations are present. As a result of

this, each grain boundary within such a sample experiences a different mechanical stress.

Subsequently, the conductivity of some grain boundaries rises and that of others falls, depending

on the mechanical stress field within the material and the distribution of crystallographic

orientations. In addition to this, the intrinsic properties of individual grain boundaries, such

as dopant concentration and the presence of native defects, are generally different. Thus, the

electrical conductivity of each boundary is different. Even for an ideal system containing only

electrically identical grain boundaries, each would operate at a different working point along the

IV-characteristic and thus manifest a different conductivity. All of these factors cause the electric
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current distribution in the material to be highly inhomogeneous. Particularly in the breakdown

varistor regime, the electrical current flowing through such materials is concentrated along a

few highly conductive pathways with extremely high current density [22]. Thus, the effective

electrical conductivity of the bulk varistor is determined by a complicated interplay between

single boundary effects and the macroscopic properties of the polycrystalline structure.

This thesis introduces a modelling approach for the electromechanical characterisation of ZnO

varistors on the mesoscopic scale. The model begins by expanding upon the work of Bavelis et

al. [23], which is itself an improvement upon the model of Vojta et al. [24]. In this model,

the varistor microstructure is represented by a large, non-linear electrical network. By solving a

global set of circuit equations, this approach makes the computation of the current flow patterns

in the material possible. Furthermore, the piezotronic effect is accounted for via computation of

the mechanical stress field throughout the material for varying applied stresses. This is achieved

using the finite element method. Using a self-consistent grain boundary model to describe the

mechanical modulation of potential barriers due to piezoelectric polarisation, the influence of

the local stress state at each individual grain boundary can then be accounted for.
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2 Zinc Oxide Varistors and Applications

2.1 Overview

Varistor ceramics first came into use early in the 1930s, when they were developed as a

replacement for selenium rectifiers. These first materials were composed of sintered blocks

of compressed SiC powder, and it was not until 1969 that improvements in ceramic processing

techniques led to the creation of the first ZnO varistors in Japan. These varistors were produced

using many of the same processes that are considered vital to this day, including the addition of

substitutional ions to enable the ZnO to act as a semiconductor, the densification of the ceramic

powder by liquid-phase sintering with a Bi2O3-rich liquid phase, and the segregation of large

ions to the grain boundaries [25]. The varistor material was further doped with cobalt and

manganese to increase the non-linearity of its IV-characteristic curve. As research continued,

aluminium was also found to be beneficial in this respect. These developments established ZnO

as clearly superior to the older SiC varistors, which were gradually made obsolete and replaced

for most applications worldwide.

Since that time, techniques for the production of high performance varistor ceramics

have been steadily refined. Modern components feature greater resistance to degradation,

improved microstructural uniformity, and increased reliability. This has been, in part, made

possible by a finer level of control over the manufacturing process. Furthermore, increased

understanding of the reactions between the various ingredients has allowed for chemical

approaches to powder homogenisation and computational methods for the calculation of

superior ceramic compositions [26]. Today, ZnO varistors are capable of protecting a broad

variety of systems, ranging from low voltage semiconductor circuits, for which an ‘over-voltage’

is of the order of volts, to high voltage electrical power distribution networks, which must

withstand over-voltages of the order of tens of kilovolts.

The primary function of a varistor is to curb transient voltage surges. For many technological

applications, this process must be non-destructive and repeatable. Varistors are used across

broad ranges of both current (µA to kA) and voltage (V to kV), and in both AC and DC

applications. Furthermore, a critical feature of an industrial varistor is its capability to rapidly

absorb large quantities of energy, up into the kilojoule range. These properties have led to

widespread adoption of ZnO varistors as surge arresters in the power transmission industry.
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A surge arrester compensates for over-voltages that occur during power surges by absorbing

electrical energy, directing it to earth and converting it into heat. These surges commonly

occur due to switching errors or lightning strikes, and using surge arresters to limit damage to

the power network can significantly reduce maintenance costs. Mains-born transient surges

can also occur in industrial equipment, as well as domestic lighting and appliances. In

such applications, varistors are commonly connected directly across mains supplies, or across

semiconductor switches for the protection of transistors, MOSFETs and thyristor bridges.

Large scale surge arresters in power stations are typically composed of a column of

cylindrical varistor blocks in series, which are protected by an external housing composed of

plastic-coated porcelain. This housing is designed to shield the ceramic varistor components

from environmental influences such as humidity and other contaminants. A gap is maintained

between the varistor column and the housing, inside of which a hermetically sealed atmosphere

is maintained as additional isolation. This atmosphere is usually composed of nitrogen, although

sulphur hexafluoride or even solid isolators also sometimes see use. If the surge arrester

is overloaded, this atmosphere can become highly pressurised and safety measures must be

implemented to allow the gas to be released so that the arrester housing does not burst.

Figure 2.1.1.: Schematic of a four-segment station-class surge arrester with porcelain housing

(reproduced from [27] with permission).
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ZnO’s semiconducting and piezoelectric properties also make it suited for applications in

microelectronics. One example of this is strain-gated transistors, which can be produced using

ZnO nanowires [13]. These are made possible by the piezotronic effect, which enables the

Schottky contact with the nanowire to be manipulated using an applied force. This mechanical

force is the transistor’s gate signal, and is applied to one end of the metal-nanowire-metal

structure. Aligned arrays of such nanowires can be manufactured such that each nanowire

has its own gate voltage, and thus function as a transistor array.

In order to understand the electrical behaviour of varistors, some fundamentals must first

be considered. In Figure 2.1.2, the DC IV-characteristic of a ZnO varistor is shown. The

distinguishing feature of this characteristic is the sharp transition from the insulating to

the conducting state at the breakdown voltage Vc. The switching effect observed here is

mainly reversible and the transition occurs extremely rapidly (typically of the order of pico-

to nano-seconds). In practice, this means that, immediately upon the applied voltage V

dropping beneath Vc, current flow through the resistor is drastically reduced. The value of

Vc can be engineered to take a specific value by manipulating parameters such as the varistor

dimensions and geometry. The range of possible values is very broad. Typical values for Vc for

a single grain boundary range from approximately 3.2 V to 3.4 V [25]. In a macroscopic scale

varistor, large numbers of grain boundaries combine in series and in parallel to give the electrical

characteristics of the varistor as a whole. The magnitude of Vc scales based on this configuration,

and values of up to >104 V are possible. This allows for surge protection applications ranging

from electronic circuits all the way to ultra high voltage systems.
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Figure 2.1.2.: Example IV-characteristic curve of a ZnO varistor, illustrating the leakage (a),

breakdown (b) and upturn (c) regions.
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Three distinct regions of the characteristic curve shown in Figure 2.1.2 can be discerned:

leakage (a), breakdown (b) and upturn (c). Varistors for surge arrester applications typically

operate under applied voltages that fall within the upper end of the leakage region, which is

characterised by a very large Ohmic resistance. This resistance is determined almost entirely by

the resistance of the grain boundaries within the material. The breakdown region is the region

in which the highly non-linear behaviour of the varistor appears. Above Vc, the resistance of

the varistors rapidly falls by several orders of magnitude. This occurs across a relatively small

voltage range and results in a typical increase in the current density through the material of six

or seven decades.

This non-linearity can be quantified using the non-linearity coefficient α. Assuming an

exponential law for the varistor current in the breakdown region,

I ∼ Vα, (2.1.1)

the non-linearity coefficient is given by,

α=
dlog10(I)
dlog10(V )

. (2.1.2)

The greater the value of α, the stronger the increase in current vs. voltage becomes. Thus,

a varistor with high non-linearity coefficient can switch more quickly between the leakage

(insulating) and upturn (conducting) regions. Usually, α has maximum values of the order of

30-80 [25]. In rare cases, values of 100 or higher have also been achieved. At the extreme ends

of the curve, in the upturn region, the varistor displays Ohmic behaviour and α is close to one.

However, the breakdown region can separate the two Ohmic regions by as many as 12 current

decades [28, 29]. When a surge does occur, this can be considered as a transient over-voltage

that triggers the varistor effect when it pushes the applied voltage across the breakdown and

into the upturn region. Here, the resistance is determined almost entirely by the bulk material

and the varistor once more displays Ohmic behaviour.

These different regions of the IV-curve are all capitalised upon in practical applications. The

operating point under the application of a steady external voltage is determined by the power

loss in the low-current leakage region. The clamping or critical voltage, at which the resistance

grows rapidly, is determined by the location of the non-linear breakdown region. Finally, high

current surges, such as those that occur when lightning strikes a power station, require a high

capability for energy absorption. This is achieved by connecting varistors in parallel with the

system they are designed to protect. Under normal operating conditions, the varistor’s resistance

is high, and almost all of the current flows through the protected device. However, when an

over-voltage occurs, the varistor’s resistance falls rapidly and the additional current is directed

through the varistor and away from the sensitive circuits of the protected device.
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2.2 Material Structure of Zinc Oxide Varistors

ZnO occurs in wurtzite, sphalerite and face-centered cubic crystals. However, under standard

conditions for temperature and pressure, wurtzite is the thermodynamically stable phase.

Crystallographically, this point group is known as P63mc No. 186, and the associated

coordination number for both zinc and oxygen atoms in this form is 4. The lattice constants

of the wurtzite unit cell for ZnO are a = 0.3249 nm and c = 0.5207 nm, with a proportionality

factor of 1.602, slightly lower than that of a perfect hexagonal close packed structure (1.633).

In the crystal’s c-direction, this results in a unit cell consisting of four alternating layers of zinc

and oxygen. The crystal is zinc terminated in the (0001) direction and oxygen terminated in the

(0001) direction.

Figure 2.2.1.: Crystal structure of ZnO (wurtzite) with coordination polyhedra. The c-axis runs

top to bottom and describes the ’height’ of the unit cell. The a-axis consists of one

side of the hexagonal base. [30]

In its pure form, ZnO contains intrinsic and extrinsic defects that make it an n-type

semiconductor. These naturally occurring defects are typically point defects such as oxygen

vacancies, zinc interstitials, or the substitution of an oxygen atom for zinc. Furthermore,

impurities arising from hydrogen interstitials and zinc-nitrogen complexes have also been shown

to result in an overall increased conductivity in ZnO [31,32]. The band gap of ZnO lies between

3.1 and 3.3 eV [33].

It is this crystalline structure and the ionic nature of the ZnO bonds that results in the

directional polarity across the crystal. Within the bulk, the opposing charges are evenly
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distributed, resulting in overall neutrality. However, both the zinc and oxygen terminated

ends of the crystal carry a polarisation charge. Theoretically, the maximum polarisation at

such a surface is −0.057 C/m−2, with a charge carrier density of 3.6× 1013 cm−2.

The piezoelectric effect in ZnO is possible, because of the lack of inversion symmetry

in the above structure (with exception of the point group (432)). In crystallography,

thirty-two unique crystallographic point groups exist, forming the complete set of possible

crystallographic unit cells. Of these, twenty are know to exhibit piezoelectricity, all of which

are non-centrosymmetric. This can be observed in the electromechanical behaviour of thin films

and heterostructures composed of non-centrosymmetric semiconductors, which are susceptible

to the piezoelectric effect [34–36]. However, the piezoelectric modification of charge transport

in polycrystalline semiconductors has not been studied extensively.

In order to produce the non-linear IV-behaviour necessary for a varistor, ceramic resistors

composed of a mixture of metal-oxides are manufactured. These ceramics use ZnO as a base

for the bulk of the material, specifically, 90% of the material’s total mass. ZnO is chosen as the

primary material in this context due to its wide band-gap and semiconducting behaviour. A few

percent of selected elements, such as Bi, Sb, Co, and Mn, are typically added as dopants and

combined by way of an appropriate sintering process in order to engineer the desired varistor

characteristics. These elements make up the remaining 10% of the varistor, by mass. A list of

common additives and their effects is shown in Table 2.2.1.

Table 2.2.1.: Common Dopants and their Uses [37–42]

Dopant Effect

Al2O3 Increased non-linearity of the IV-characteristics.

Ag, B2O3 and Ni Increased stability.

BeO and TiO2 Increased grain growth.

Bi2O3
Lines grain boundaries. Significantly increased potential barrier.

Increased grain growth. Homogeneous dopant distribution.

CoO and MnO Greatly increased non-linearity of the IV-characteristics.

Cr2O3 Increased non-linearity and stability. Limited grain growth.

Ga Increased non-linearity by donation of charge carriers.

Nb2O5 Increased non-linearity and electrical energy absorption.

Pr6O11, SrO and U3O8 Marginally increased potential barrier at the grain boundary.

Sb2O5 and SiO2 Limited grain growth. Increased microstructural homogeneity.
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At the triple points, at which the adjacent grain edges make contact, the majority of the

admixed Bi2O3 collects as a separate phase. A spinel phase of very fine, regular, octahedral

grains is also found at these triple points. Nevertheless, the grain boundaries also contain trace

quantities of Bi in a monolayer lining the interface, and this is essential for the electrical function

of a varistor [25,38,43–50].

When Bi2O3 melts to form a liquid phase during sintering, it dissolves a part of the other

dopants and distributes them uniformly across the interface. Furthermore, this liquid phase

promotes dense sintering and grain growth. This effect is counteracted by the spinel precipitates,

which themselves inhibit grain growth. It is the balancing nature of these effects that helps to

achieve a uniform distribution of ZnO grain sizes in the polycrystal. Another crucial factor

for the grain growth mechanism are inversion or twin grain boundaries, as described by

Bernik et al. [51].

Atomic defects that form at the grain boundaries are incorporated into the ceramic. The grain

boundary states are dominated by acceptor defects and the depletion layer is dominated by

donors. A defect model that accounts for the role of oxygen in the development of non-linear

behaviour in ZnO was developed by Selim et al. [52]. In this model, V′Zn, V′′Zn, V•O, V••O,

Zn•i, Zn••i, D•Zn and D′i are the relevant defect species as described using the Kröger-Vink

notation. Here, D•Zn and D′i are terms respectively covering all externally incorporated donor

and acceptor atoms.

According to Matsuoka [53], a physically separate intergranular layer is not necessary to

account for the potential barrier. In fact, it is the unequal migration of defects towards the grain

boundary that results in a defect-induced potential barrier. During cooling from high fabrication

temperatures, the concentrations of zinc vacancies and oxygen vacancies at the grain boundary

grow and fall, respectively. This charge separation can only occur in the presence of a substantial

donor doping, which, quantitatively, necessitates a deep donor concentration of approximately

1018 cm−3. The resulting excess and deficit of zinc and oxygen vacancies, respectively, produces

the potential barrier, thus removing the need for a separate interface layer at the grain boundary.

There is also a notable depletion of mobile electrons near the grain boundary in comparison to

the grain bulk. This is the source of ZnO’s high electrical resistance at low applied voltages.

The basic steps of the manufacturing process for metal-oxide resistors are [28,29,54]:

• The production of a homogeneous slurry by the wet-mixing of oxide powders.

• The drying and granulation of the slurry in a spray-drier.

• The compacting of the granulate to form resistor blocks.

• The sintering of the resistor blocks to obtain dense ceramic bodies.

Before sintering, the organic additives mentioned above must be pyrolised. This step requires

a continuous flow of fresh air, along with varying heat treatments. The sintering process is
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performed at a temperature between 1400 K and 1600 K, and densifies the compacted powder

into a solid ceramic body. This occurs by diffusion, as the microscopic powder particles merge

and grow into larger single crystals or grains. This leads to the formation of grain boundaries

between the single crystals, along which the dopants crystallise into lattices. Almost no porosity

remains in the fully sintered ceramic body.

2.2.1 Grain Boundaries

ZnO’s special electrical properties occur due to its microstructure. The microstructure is a

configuration of densely-packed, microscopic ZnO crystals or ‘grains’ that resemble irregular

polyhedrons, each of the order of 10 µm in size. The bulk material of each individual grain

is a good electrical conductor with a conductivity of the order of 1 Scm−1. However, it is the

common interfaces, or grain boundaries, between these grains that are the electrically active

part of the material.

Current Path

Monoatomic Layer
of O and Bi Atoms

Highly Doped
ZnO Crystal

Triple Point Phase Bi2O3

Electrically Active
Grain Boundaries

Figure 2.2.2.: Schematic view of the ‘electrical’ microstructure of a ZnO-varistor. Redrawn

according to [8].

Highly insulating electrostatic potential barriers are present at the grain boundaries. These

electrostatically repulsive barriers extend less than 100 nm from the interface, which is

approximately 1 nm thick itself. Given the relatively high conductivity of the bulk material,

current flow through a polycrystal at low voltages is limited by the high resistance of the

grain boundaries, and must seek the path of least resistance. In the breakdown region, the

conductivity of the individual grain boundaries rises enormously, until, in the upturn region,

current flow is limited by the resistance of the grain bulk material.
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In principle, the grain boundaries and the grain bulk are composed of the same

semiconducting ceramic material. However, the grain boundaries are rich in defects and

dopant species. These defects can be dangling bonds at the interface, or other interface

defects that occur between neighbouring grains as a result of the mismatch in the crystal

lattice. Furthermore, the various doping species gather near the grain boundary and contribute

electrical donor and acceptor states. This results in additional interfacial electrical states within

the band gap at the grain boundaries. Extra electrons are trapped at the grain boundaries

in these defect states, resulting in electrostatic potential barriers. The macroscopic switching

effect observed in ZnO varistors occurs due to these interfacial states at the individual grain

boundaries. It is important to note that until the upturn region, when the bulk conductivity of

the ZnO grains (≈ 0.1− 1 Ωm) [54, 55] begins to contribute, the voltage drop only takes place

on the positively biased side of the interface.

Nanoscale intergranular films of an amorphous Bi2O3-ZnO solid solution are consistently

observed along all microstructural interfaces in ZnO [25, 38, 43–50]. This is considered to

be a feature of the thermodynamic equilibrium. Based on the concentration of Bi present,

these films must be approximately one atomic layer in thickness. The electrical activity of these

interfaces is the result of an additional monolayer of excess oxygen atoms [38, 47]. This leads

to a build-up of negative charge trapped at the grain boundaries. In order to maintain charge

neutrality, positive, ionised donors in the depletion region must compensate for this charge, thus

forming an electrostatic potential barrier, φB, at the grain boundary. The total width of these

barriers is around 200 nm, two orders of magnitude less than the typical grain size of 10-20 µm.

The fact that non-linear varistor behaviour in ZnO is a grain boundary phenomenon has

led to the development of a variety of models [25, 54, 56, 57]. As atomic level understanding

of the nature of grain boundaries and their influence on the microstructure as a whole has

improved, these models have been refined to better reflect the physics of grain boundaries

[38,43–50,54,57].

The hole-induced breakdown model was first proposed by Pike, Greuter and Blatter [57–62]

and provides a semi-quantitative explanation for the unusual breakdown phenomena in ZnO

varistors. It is in fact possible to directly observe the band-band recombination described by

the model, due to the fraction of the holes that recombine with electrons in the conduction

band. This process emits a measurable quantity of ultraviolet light, thereby providing direct

evidence for the validity of the model [63–65]. The breakdown region can also be observed in

the visibile spectrum due to defect levels in the band gap, which are ionised by the hot electrons.

Cobalt is the dopant primarily responsible for this effect [63–68]. These emissions are, in fact,

strong enough to be observed under an optical microscrope and function almost exactly like
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miniature light-emitting diodes. As a result of this, it is possible to observe the filamentary

nature of current flow through a varistor using electroluminescence and high speed infrared

imaging techniques [57,66,69,70].

One major motivation behind the development and refinement of such models is to minimise

power loss due to the leakage current depicted in Figure 2.1.2. Leakage occurs due to thermally

activated conduction electrons that jump across the potential barrier φB, and can be prevented

by ensuring the barrier remains high with increasing voltage V . In order to achieve this, the

interface states, Ni(E), must have a suitable energy distribution and a high density across the

band gap. If all interface states ever become filled, then the total interface charge, Q i, becomes

constant and φB decays, resulting in a poor varistor.

This effect can be avoided by ensuring the presence of both filled and unfilled interface states.

This technique is known as ‘pinning’ the potential barrier and works by trapping additional

electrons in the unfilled states. This contributes to the growth of Q i, and counteracts the decay

of the potential barrier, thus reducing the leakage current. Pinning techniques are widespread

in semiconductor science and pinning states are commonly comprised of characteristic defect

levels for the given material [57]. This is true of the ZnO crystal lattice and intergranular

films, in which these defect levels can always be found at the same energies in the ZnO band

gap [57,71,72]. ZnO is a prime material for such purposes, since its chemical make-up is never

entirely stochiometric. At equilibrium, this generally means an excess of Zn atoms. However,

the concentration of these pinning states can be adjusted by engineering a specific defect

equilibrium, by choosing the correct dopants and via heat treatment during manufacturing.

Such adjustments naturally also come with differences in the potential barrier, and thus the

IV-characteristics of the varistor materials. A true quantification of the defect equilibrium in ZnO,

and how it changes with the addition of the dopants that lead to varistor behaviour, remains

a challenge to this day [73–77]. However, in a qualitative sense, this model does explain why

certain dopant ‘recipes’ produce usable varistors, and why their properties vary even with small

changes to this complex chemical makeup [43,44,57,71].

Strong pinning results in the build up of high electric fields on the positively biased side of

the grain boundary. For industrially doped varistors, these fields are of the order of 1 MVcm−1,

which is sufficient to generate hot electrons with a high charge carrier mobility comparable to

other high performance semiconductors, such as GaAs. Once the energy of the electrons near

the edge of the space charge region is above that of the ZnO’s band gap, holes are created in the

valence band due to impact ionisation. This results in a compensation of the negative interface

charge Q i, as the positively charged holes diffuse back into the grain boundary. This entire

process takes less than a nanosecond and results in a reduction in the potential barrier, thus
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increasing the conductivity of the grain boundary and in turn promoting the generation of even

more hot electrons. This feedback effect leads to a rapid decay of the potential barrier and is

directly responsible for the high levels of non-linearity seen in ZnO varistors. In order to achieve

such a pronounced varistor effect, not only is strong pinning of the potential barrier necessary,

but the barrier must also suddenly decay upon reaching the critical voltage, as described above.

2.3 Electrical, Thermal and Mechanical Phenomena in Varistors

When a varistor is pushed into the breakdown region by an over-voltage, current-flow through

the component is increased by several orders of magnitude. A significant proportion of this

electrical energy is absorbed by the material and converted into thermal energy. Surge arrester

columns of the kind introduced in section 2.1 have been developed explicitly for such purposes.

However, this heating can also result in irreversible changes to the structure and thus the

electrical properties of the varistor, which are detrimental to its function. Repeated power

surges can cause a varistor to be so heavily damaged that its capability to absorb electrical

energy falls so low that it can no longer fulfil its purpose and the component must be replaced.

This is an expensive prospect, which can mean replacing the entire varistor column.

An extreme example of this kind of destructive mechanism is known as ‘thermal runaway’ [8].

In such a scenario, the increased temperature from the electrical energy absorbed during a

power surge results in an increased leakage current through the varistor at its normal operating

voltage. This is because the electrical conductivity of ZnO increases with temperature. If this

increased leakage current generates more thermal energy in the varistor than the component

can dissipate in a given time-frame, then the varistor temperature, and thus the current flow, will

continually grow until the ceramic burns through. Furthermore, in practice, power surges are

generally very short and intense, resulting in a sudden increase of temperature in the varistor

along an isolated current-flow path. This occurs as a result of inhomogeneity in the ceramic’s

microstructure, and results in levels of thermomechanical stress that can lead to fracture.

Especially high temperatures resulting from protracted, high-intensity surges can even result

in the melting of the material along the current-flow path, resulting in an electrical ‘puncture’

effect. As a result of this, it is vital that surge arresters be designed to optimise the rate of heat

dissipation from the individual varistor blocks. Examples of how to achieve this include the use

of varistor blocks of sufficiently large dimensions that the thermal energy can be well distributed,

and also the addition of heat sinks, such as metal spacers, between varistor components.

Figure 2.3.1 (left) illustrates an example of failure inside a varistor component as a result

of thermal runaway [78]. Figure 2.3.1 (right) shows an example of the kind of damage that

can occur when the temperature along the current-flow path grows so high that melting occurs
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Figure 2.3.1.: Examples of damage found in ZnO varistors following thermomechanical failure.

Left: ZnO varistor after catastrophic electrothermal runaway [78]. Right: Scanning

electron micrograph of a ZnO varistor sample failed in puncture mode [7].

along it (puncture) [7]. If such a path makes contact with the outer edge of the varistor block, it

can result in a surface fracture due to the build-up of pressure inside the ceramic. If the electric

field is high enough, flashover may occur across such a region, or at the surface [8].

If the varistor block is perfectly homogeneous, then it can only fail if the mechanical stresses

induced by the high current exceed the fracture strength of the material, or by thermal runaway.

However, in practice, inhomogeneity is impossible to eliminate entirely. Whether they are

present macroscopically, or on a microstructural level, such inhomogeneities inevitably lead

to local hot spots within the material, which result in either fracturing due to mechanical

stress concentration, puncturing, or melting. Such inhomogeneities commonly take the form of

cavities within the microstructure or a broad distribution of grain sizes. Chemical inhomogeneity

can also affect the electrical properties of individual grain boundaries, leading to further current

concentration [8].
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3 Grain Boundary Theory

3.1 Grain Boundary Potential

The grain boundary potential in ZnO varistors arises from the combination of the energy band

structures of the two grains and the dopant species that sit along the interface between them.

At room temperature, wurtzite ZnO exhibits the following energy band structure [79],

• The lowest valence band energy level is composed of the O 2s orbital.

• The higher valence band energy levels are a blend of the O 2p, Zn 4s and Zn 4p orbitals.

• The lowest conduction band energy level is composed of Zn 4s orbital.

• The highest conduction band energy level is composed of the Zn 4p orbital.

Furthermore, additional energy levels are introduced into the forbidden band by local defects

and the aforementioned dopant species [11].

When two grains meet, these energy bands come into contact, forming the band structure of

the individual grain boundary. In order to achieve thermodynamic equilibrium, electrons flow

across the interface until the Fermi level is the same on both sides. Since the Fermi level of

the grains is higher than that of the grain boundary material, electrons flow from the grains

to the grain boundary. Here, they are trapped by dopant species and crystallographic defects,

thus increasing the Fermi level until is even across the interface. This results in a negative sheet

charge of trapped electrons at the grain boundary and leaves a layer of positively charged donor

sites on each side of the boundary. This is known as the depletion layer. These positive charges

cause an upward bending of the energy bands close to the grain boundary, which presents as an

electrostatic field with a barrier at the grain boundary known as a ‘double Schottky barrier’ [80].

This is illustrated in Figure 3.1.1.

Since the interfacial region is typically approximately 1 nm wide, for modelling purposes,

it is justified to idealise the interface as infinitely thin. Furthermore, the plane interface

is translationally invariant, which makes it possible to reduce the problem to 1D [58]. The

following model for the charge carrier transport in varistor grain boundaries has been proposed

by Blatter et al. [57,58]. In this model, the band bending profile at the boundary, induced by an

applied potential, is calculated in the Schottky approximation. Blatter begins by calculating the
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Figure 3.1.1.: Band diagram of a single grain boundary, showing the double Schottky Barriers

formed by charge trapping in interface states. Redrawn according to [8].

geometry of the energy bands around a plane charged interface. In order to do this, the Poisson

equation

d2φ(x)
d x2

=
ρ(x)
ε0εr

, (3.1.1)

for the potential, φ(x), must be solved for the charge distribution

ρ(x) = q
n
∑

ν=0

Nν[Θ(x + x lν)−Θ(x − x rν)]−Q iδ(x) , (3.1.2)

where ε0 is the permittivity of vacuum, εr is the relative permittivity of the material, q is the

positive unit charge, Nν is the density of the deep trap states,Θ(x) is the Heaviside step function,

x lν and x rν are the widths of the left and right depletion layers, respectively, Q i is the net

interface charge and δ(x) is the Dirac delta function [58]. Note that in (3.1.1), the convention

q = |q| is adopted, such that the potential energy of an electron is qφ(x).
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When the boundary conditions

φ(−∞) = φ(−x l0) = 0 , (3.1.3)

and

φ(∞) = φ(x r0) = −V , (3.1.4)

are imposed on the Poisson equation, where V is the voltage applied across the grain boundary,

then the following double Schottky barrier configuration is obtained

φ(x) =







∑µ

ν=0
γν
2 (x + x lν)2, −x l,µ ≤ x ≤ −x l,µ+1

∑µ

ν=0
γν
2 (x + x rν)2 − V, x r,µ+1 ≤ x ≤ x r,µ

, (3.1.5)

where γν =
qNν
ε0εr

and, for µ= ν, the following is defined,

x l,n+1 = x r,n+1 = 0 . (3.1.6)

The Blatter-Greuter model [58] determines the widths x lν and x rν from (3.1.5) using the

following conditions

φ(0−) = φ(0+) = φB , (3.1.7)

φ′(0−)−φ′(0+) =
Q i

ε0εr
, (3.1.8)

where φB is the barrier height. This is shown in the derivation given in the appendix of [58]

and results in

x l0 =
Q i

2γνε0εr

�

1−
V
Vc

�

, (3.1.9)

x r0 =
Q i

2γνε0εr

�

1+
V
Vc

�

, (3.1.10)

as given explicitly in [11]. Thus, the general expression for φB can be derived (see the appendix

of [58]) as

φB(V ) =
1
4

Vc

�

1−
V
Vc

�2

+
1
qγ

n
∑

ν=1

γν(εν − εξ) , V ≤ Vc , (3.1.11)

where q is the positive unit charge, V is the applied voltage, Vc is a switching voltage and εν and

εξ are, respectively, the deep trap energies and the bulk Fermi level relative to the conduction

band. γ is the total charge in the deep trap states, defined as γ=
∑n
ν=0 γν.
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3.2 Electrical Conductivity of Grain Boundaries

The self-consistent solution of the electrostatic problem and carrier density across the boundary

yields a potential barrier with height given in (3.1.11). Furthermore, the switching voltage, Vc,

is related to the interface charge trapped in the interface states at the grain boundary, Q i, by

Vc =
1

2γ

�

Q i

εrε0

�2

. (3.2.1)

Q i is voltage-dependent, and so, when a voltage is applied, the barrier height is lowered

accordingly, until, at Vc, it vanishes completely.

The interface charge in (3.2.1) is determined by the density of interfacial states, Ni(E),

assuming that the electron traps are filled up to the Fermi level, ξn
i , of the neutral interface,

Q i = q

∫ ∞

ξn
i

Ni(E) fi(E)dE , (3.2.2)

where fi(E) is the Fermi-Dirac function,

fi(E) =
1

1+ e(E−ξi)/kB T
, (3.2.3)

ξi is the quasi Fermi level of the interface, kB is the Boltzmann constant and T is the

temperature. When no voltage is applied, the Fermi level is constant throughout the grain

boundary and ξ= ξi. However, when V > 0, the quasi-Fermi level is shifted relative to the bulk

Fermi level, as depicted in Figure 3.1.1. This shift takes the form

∆ξ= ξ− ξi = kB T ln

�

2

1+ e
−qV
kB T

�

, (3.2.4)

and is determined by the interface’s charge balance condition. That is, the number of electrons

trapped and emitted by the interface must be equal [58].

In order to determine the interface charge (3.2.2), the modification of the interface density of

states, Ni(E), due to the presence of a grain boundary potential, φB, must be taken into account.

In other words, Q i and φB are mutually dependent. When a bias voltage V is applied to the

junction, the interface states are shifted according to Ni(E) = Ni0(E − φB(V )), where Ni0(E)

is the density of interface states in the absence of a grain boundary potential. Thus, in order

to determine Q i and φB, a self-consistent solution of the coupled equations (3.1.11)-(3.2.2)
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is required. Generally, such a solution can only be obtained numerically, as described later in

Section 4.1 and given in Appendix A.1.

Finally, given a solution for φB(V ), the total current across the boundary is [58]

I = aBA∗T 2 exp

�

−qφB + εξ
kB T

�

�

1− exp
�−qV

kB T

��

, (3.2.5)

where A∗ is the Richardson constant and aB is the grain boundary area. This expression defines

the non-linear electrical characteristic of the grain boundary.

3.3 The Piezotronic Effect

The piezotronic effect describes the principle of using a mechanically induced potential in a

piezoelectric material as a gate voltage in order to tune and/or control the material’s charge

carrier transport properties. This mechanism takes advantage of the piezoelectric effect, which

occurs in two forms.

When a mechanical stress, σσσ jk, on a material results in the accumulation of electric charge,

and thus a polarisation, PPP i, within the material, this is direct piezoelectricity. This effect is

described by

PPP i = ddd i jk ·σσσ jk , (3.3.1)

where ddd i jk is the tensor of piezoelectric stress constants for the material. In Voigt notation, ddd

for ZnO is given by [81]

ddd =







0 0 0 0 −11.34 0

0 0 0 −11.34 0 0

−5.43 −5.43 11.67 0 0 0






pC/N . (3.3.2)

This relationship can also be expressed in terms of the deformation, SSS jk, that the material

experiences, as

PPP i = eeei jk ·SSS jk , (3.3.3)

where eeei jk is the tensor of piezoelectric strain constants for the material. In Voigt notation, eee for

ZnO is given by [81]

eee =







0 0 0 0 −0.48 0

0 0 0 −0.48 0 0

−0.573 −0.573 1.32 0 0 0






C/m2 . (3.3.4)
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This effect occurs in materials in which a distortion of the crystal structure by an external

force can lead to the creation of dipole charges, due to the charge distribution within said

crystal structure. This results in a measurable electrical potential across the crystal.

When an electric field, EEE i, is applied across a material, resulting in a stress or deformation, this

is known as the inverse piezoelectric effect, and is described byσσσ jk = d ′d ′d ′i jk ·EEE i, or SSS jk = e′e′e′i jk ·EEE i,

where d ′d ′d ′i jk and e′e′e′i jk are the inverse piezoelectric tensors for stress and strain, respectively. In

general, we have

DDDi = ddd i jk ·σσσ jk + εεε
σ
i j · EEE j , (3.3.5)

SSS i j = CCC E
i jkl ·σσσkl + e′e′e′ki j · EEEk , (3.3.6)

where DDDi is the electric flux density, εεεσi j is the permittivity of ZnO in a zero, or constant, stress

field, and CCC E
i jkl is the stiffness tensor in a zero, or constant, electric field. In the following, we

will first neglect the inverse piezoelectric effect, and consider it later in Chapter 8.

3.3.1 The Piezotronic Effect in Grain Boundaries

Since ZnO is not only piezoelectric, but also an n-type semiconductor, it is possible for the

stress induced polarisation charges to affect the double Schottky barrier that occurs at the grain

boundary. This occurs due to polarisation charges generated at the grain boundary, which form

a charge sheet that alters the profile of the potential barrier at the grain boundary by modifying

the total interface charge, Q i. This can result in either an increase, or a decrease in the current

flow through the grain boundary.

The piezotronic effect, originally suggested in [18], is based on the piezoelectric polarisation

charge induced at the grain boundary when a mechanical stress is applied. This charge will add

to (or subtract from) the interface charge, Q i, thus resulting in an increase (or decrease) of the

barrier height. This effect can be expressed by a modification of the switching voltage as

Vc =
1

2γ

�

Q i +QP

εrε0

�2

, (3.3.7)

where

QP = nnng b · (PPP l − PPP r) , (3.3.8)

nnng b is the grain boundary normal and PPP l and PPP r are polarisation vectors defined in the two

grains on the left and on the right hand side of the boundary, respectively. Furthermore,

the polarisation vectors are obtained from the stress field, σσσ, and the piezoelectric tensor, ddd,
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in the respective grain as in Equation 3.3.2. The effect thus depends on the reciprocal

crystallographic orientations of the two grains sharing the boundary, as well as on the

strength and orientation of the stress field. The scripts used to calculate this are given in

Appendices A.2 and A.3. Note, furthermore, that not just the barrier height, but also the

interface charge is affected by the presence of mechanical stress at the boundary. This is because

of the implicit relationship between the two, which is now given by the self-consistent solution

of (3.1.11), (3.2.2) and (3.3.7).

The simplest case featuring the piezotronic effect is that of a uniform uniaxial stress applied

to a bicrystal with co-aligned grain orientations. The three possible bicrystal configurations

corresponding to head-to-head, tail-to-tail and head-to-tail grain orientations, respectively, are

depicted in Figure 3.3.1.

d1 d1 d1

d2 d2 d2

a) b) c)

Figure 3.3.1.: Schematic representation of a bicrystal under uniaxial stress with head-to-head (a),

tail-to-tail (b) and head-to-tail (c) reciprocal grain orientations, respectively.

According to the above coupling mechanism, when a compressive stress is applied, the grain

boundary conductivity will increase in the head-to-head configuration and will decrease in the

tail-to-tail configuration. In the head-to-tail case, the piezoelectric charges induced on both

sides of the boundary cancel, such that the total polarisation charge (3.3.8) is zero. Thus,

no piezoelectric coupling occurs. This behaviour was recently confirmed experimentally by

Raidl et al. [20], who performed uniaxial compressive tests on low-voltage varistors made of

only few (<1000) grains. Raidl’s experiment was designed such that, considering the grain size

and electrode spacing, only 2-3 grains were included between the electrodes. Thus, assuming

that the electric current flows through a single grain boundary only, the single grain boundary
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characteristics could be measured. The measurement data revealed the presence of three grain

boundary types and their corresponding mechanical sensitivities.

3.3.2 The Macroscopic Influence of the Piezotronic Effect

When mechanical stress is applied to a polycrystal, both an increase in the leakage current

and a decrease in the coefficient of non-linearity can be observed. This occurs as a result of

the distribution of barrier heights introduced to the polycrystal by piezoelectric modification.

Another consequence of this effect is the degradation of the switching effect observed in the

non-linear region of the polycrystal’s IV-characteristic, when compared to that of the polycrystal

when no external stress is applied. These same effects can occur as a result of residual thermal

stresses remaining within the crystal after manufacturing.

Stress-induced shifts in the IV-behaviour of ZnO varistors have been measured experimentally

using uniaxial or compressive stresses [82–84]. For both cases, the degree of non-linearity

and the switching voltage can be seen to fall with increasing compressive stress. Furthermore,

microstructural inhomogeneities such as non-uniform grain sizes or non-equiaxed grains

can result in local stress concentrations within samples subjected to external stress, which

exacerbate the effects described above.

In the case of polycrystalline varistor structures, the effect of piezoelectric coupling becomes

substantially more complicated as it now depends on the stress distribution within the material

as well as on the distribution of individual grain orientations. The overall stress sensitivity of

such materials can be quantified by means of the effective gauge factor:

GF =
1
S

R0(V )− R(V )
R0(V )

, (3.3.9)

where R(V ) and R0(V ) are the effective electrical resistances of the material with and without

applied stresses, respectively, and S is the strain.
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4 Equivalent Network Model

4.1 Equivalent Circuit Representation of the Grain Boundary

In the equivalent network model, the electrical response of a single grain boundary is

represented by the electrical circuit shown in Figure 4.1.1.
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V2

V1
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Figure 4.1.1.: Lumped electrical model using an equivalent electrical circuit to represent current

flow at a grain boundary.

This approach is similar to the one used by Vojta et al. [24] and Bavelis et al [23]. It

incorporates the non-linear grain boundary resistance, Rb, defined by (3.2.5), a large Ohmic

resistance, Rl , accounting for leakage currents across the boundary, as well as the contribution

of the grain bulk resistivity to the total current, represented by the lumped resistance Rg . Each

of the grain centres is associated with a voltage node, whereas the grain boundary is represented

by a current branch of the circuit. Given an electrical conductivity, λg , for the bulk ZnO, the

ballast resistances, Rg , are estimated as Rg =
dg

aBλg
, where dg is the grain size and aB the grain

boundary area. Similarly, the leakage resistance is assumed to be Rl =
1

aBλl
, where λl is the

specific leakage conductivity of the boundary, as shown in Table 4.1.1.

For any given voltage, V , the non-linear grain boundary resistance, Rb(V ), is determined

by (3.2.5). In order to compute the potential barrier, the coupled equations (3.1.11), (3.2.2)
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and (3.3.7) are solved using a symbolic computation package [102] (see Appendix A.1). The

parameters used in the calculation are displayed in Table 4.1.1, and are, essentially, the same

as those used in [71]. Nevertheless, note that the model is independent of the choice of these

parameters. For a given grain boundary composition, these parameters can also be obtained

from first principle calculations of the electronic structure, such as those previously reported by

Sato et al. [46].

Table 4.1.1.: Grain boundary parameters used in the model. λl and λg denote the specific

leakage conductivity of the grain boundary surface and the bulk conductivity of

the grain ZnO, respectively.

εξ(eV ) ξn
i (eV ) Nν(cm−3) Ni0(cm−2) Ei(eV ) ∆Ei(eV )

3.133 0.0 9× 1017 9× 1012 2.2 0.15

εν(eV ) aB(µm2) εr λl(S/m2) λg(S/m)

3.18 100 8.81 10−3 2

Hereby, we assume a single dominant bulk state, εν, and a Gaussian distribution of the

interface states as Ni0(E) ∼ exp[(E − Ei)2/∆E2
i ]. Otherwise, the grain boundary parameters

are similar to those in [23, 58]. All energies are given relative to the valence band edge. The

resulting solutions for the grain boundary potential and the interface charge density vs. voltage

are depicted in Figure 4.1.2.
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Figure 4.1.2.: Interface charge (left) and potential barrier (right) solutions for a single grain

boundary.
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In the stress-free case, these results are identical to those reported in [58]. As indicated

in [58], the potential barrier is initially pinned at a nearly constant value at lower voltages and

it decays rapidly above a certain threshold of the applied voltage.

Based on the geometry of the polycrystal, the equivalent electrical network is constructed

(see Figure 4.2.1 (left)). Each grain volume is associated with a voltage node of the network,

and the individual grain boundaries are associated with the elementary networks depicted

in Figure 4.1.1. The grain boundary resistances are obtained by performing a self-consistent

solution of the model equations (3.1.11), (3.2.2) and (3.3.7), and incorporated into a SPICE

network model (see Appendices A.4 and A.5). The solution of the non-linear network equations

that provide the total current through each grain boundary for an applied external voltage is

realised by means of the software package LTSpice [103]. The current flowing through each

grain can then be represented by dividing the sum of all ’positive’ currents flowing into a grain

by the total current flowing through the polycrystal, thus giving the current passing through

each grain as a proportion of the whole.

4.2 Mesoscopic Network Model

For more complicated varistor structures, the equivalent electrical network is based on a Voronoi

tessellation representing the polycrystalline microstructure of the varistor sample as suggested

in [22]. Many open questions about these microstructural effects, such as fluctuations in

the barrier height, local variation in the switching voltage and the influence of grain size

distribution, are difficult to investigate experimentally. Simulation techniques have proven

invaluable in this area and past research has had great success using microstructures generated

from Voronoi tessellations to investigate 2D random networks [7,22,24,69,70,85–100].

A Voronoi tessellation is produced by first generating a set of points in space. These are

commonly referred to as the ’seeds’ of the tessellation. Every seed defines a Voronoi cell, which

is made up of all points in space closer to the cell’s seed than any other. When all points in the

space have been assigned to a Voronoi cell, the space will have been partitioned into as many

separate cells as there are seeds, with each cell boundary being equidistant between the seeds

of the two neighbouring cells.

The Voronoi tessellations used in this work were produced using a free source software

package called Neper [101]. Further to the standard Voronoi tessellation, Neper contains a

regularisation algorithm that removes the large number of small edges and faces commonly

found in a pure Voronoi tessellation. This is achieved without changing the overall grain

morphology, and helps to produce microstructures that are both more realistic and less likely to
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produce computational singularities. Furthermore, the package provides a random realisation

of grain orientations with a uniform distribution within the sample volume.

Such a network consists of a large number of grain boundary sub-circuits where the

IV-characteristic of each grain boundary depends on the local voltage it experiences. An

exemplary equivalent network for a 5-grain varistor structure is shown in Figure 4.2.1 (left). In

Figure 4.2.1 (right), a second example can be seen, showing the resulting Voronoi structure for

a varistor sample of dimensions 200×300 µm2 and an average grain size of 10 µm, containing

a total of 600 grains.

Figure 4.2.1.: Left: 2D varistor microstructure generated by Voronoi tesselation.

Right: Exemplary equivalent network for a 5-grain varistor. The polycrystalline

geometry obtained by Voronoi tessellation is depicted by red lines. To each of the

grains, a principal axis orientation is randomly assigned (green vectors).

The individual grain boundaries are arranged in a disordered network, where the net current

density across the entire polycrystal deviates from that of the local current density at any given

grain boundary.
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5 Mesoscopic Electrical Characteristics of
Zinc Oxide Varistors

5.1 Simulation of Current Flow

The current flow patterns resulting from the solution of the circuit equations for the varistor

sample in Figure 4.2.1 (left) are shown in Figure 5.1.1 for applied voltages of 6 V, 60 V and

150 V. These correspond to effective electric field strengths of 0.02 MV/m, 0.2 MV/m and 0.5

MV/m, respectively. The well-known current concentration effect [85] in the non-linear varistor

regime is clearly observed. This behaviour, which can be observed qualitatively in Figure 5.1.1,

is quantified by Figure 5.1.2, where the IV-characteristic for the 2D varistor structure shown in

Figure 4.2.1 is plotted. It displays all the basic features described in Section 2.1.
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Figure 5.1.1.: Electrical current patterns for the 2D varistor sample shown in Figure 4.2.1. The

current in each grain is given relative to the total current flowing through the

sample, and the electrical contacts are connected to the top and bottom of the

sample.
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Figure 5.1.2.: IV-characteristic for the 2D varistor sample shown in Figure 4.2.1.

The current flow pattern depends on what region of the IV-characteristic the varistor is

operating in. In the leakage and upturn regions, the varistor’s resistance is Ohmic and there

is mostly homogeneous current flow throughout the entire microstructure. In the breakdown

region, the conductivity of some grain boundaries grows more rapidly than that of others due

to their differing interface areas and voltage working points, for a given total applied voltage.

This leads to the development of strong current filaments, such as that seen in Figure 5.1.1.

5.2 Microstructural Inhomogeneities

The presence of microscopic inhomogeneities has been addressed by several authors, pointing

out that many of the grain boundaries may be either Ohmic, possess a poor non-linearity, or even

be insulating [104–106]. In the past [22, 85–87], network simulations with a large proportion

of grain boundaries that are modelled without varistor behaviour have been considered.

These grain boundaries can be entirely insulating, have a linear, Ohmic resistance, or simply

display poor varistor behaviour with a low degree of non-linearity, thus influencing the overall

IV-characteristics. Such effects occur in real microstructures due to the segregation of secondary

phases, such as spinel, pyrochlor, or Bi2O3.

So far, the grain boundary properties have been assumed to be identical for all boundaries in

the model. However, due to the manufacturing process, an inhomogeneous distribution of the

grain boundary properties within the material is expected.

For the investigation of the influence of inhomogeneities on the electrical characteristics, we

adopt the approach used in [22, 23, 25, 85–87], where a fraction of the grain boundaries,
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uniformly distributed within the sample volume, is assumed to be Ohmic. In the following,

we consider the same 2D-varistor sample described in Figure 5.1.1 and introduce a number of

Ohmic boundaries into the model. The specific conductivity of the grain boundary surface

is chosen as λo = 103 S/m2, and is thus much higher than its leakage conductivity (see

Table 4.1.1). Current flow maps within the sample for the two cases, with and without Ohmic

boundaries, are depicted in Figure 5.2.1.
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Figure 5.2.1.: Current flow maps in the presence of Ohmic boundaries. The cases of a

homogeneous (top) and an inhomogeneous material (bottom), containing 10%

Ohmic boundaries, are depicted.

Upon inspection of Figure 5.2.1, it can be seen that, in the case of homogeneous material,

the same current pathways form and intensify with increasing voltage. This is consistent with

the common understanding that these paths correspond to the shortest electrical paths between

the top and bottom electrodes and that the topology of these paths does not depend on the

applied voltage. However, when 10% of the boundaries are Ohmic, a switching effect occurs,

and the paths jump to another location with increasing voltage. At low voltages the current
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flows, preferentially, along routes containing many Ohmic boundaries. However, as the voltage

increases, the conductivity of the varistor boundaries rapidly grows, ultimately, becoming larger

than that of the Ohmic boundaries. The current ‘jumps’ to follow the path of least resistance,

and new current paths emerge at a different location in the material.

This behaviour is reflected in the characteristic curves in Figure 5.2.2, where the

IV-characteristics of the sample for different concentrations of Ohmic boundaries are shown. For

higher concentrations of Ohmic boundaries, the curves feature several oscillations in the active

varistor region. Each of the bumps corresponds to a different pathway topology, characterised

by a different non-linearity coefficient. The comparatively flat regions in the curve correspond

Electric Field (MV/m)

C
ur

re
nt

 D
en

si
ty

 (
A

/
m

2 )

0.0005 0.001 0.005 0.01 0.05 0.1 0.5
1E-18

1E-17

1E-16

1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6
0%
10%

20%
40%

Electric Field (MV/m)

N
on

-l
in

ea
ri

ty
 C

oe
ff

ic
ie

nt

0.0005 0.001 0.005 0.01 0.05 0.1 0.5
0

2

4

6

8

10

12

14

16

18

20

22

24

26
0%
10%

20%
40%

Figure 5.2.2.: IV-characteristic and non-linearity coefficients for the varistor sample in

Figure 4.2.1 (right) for different concentrations of Ohmic boundaries.
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to intermediate states, where two or more current paths are coexisting, before a new dominant

path is settled. The latter manifests as a second breakdown of the varistor current at a higher

voltage in the IV-curve. This effect was previously observed in [21,23,107], where the resulting

characteristics for inhomogeneous materials were referred to as "double-knee" characteristics.

5.3 Influence of 3D Geometry

Numerical simulations for 3D-varistor structures in the absence of mechanical stress have

been previously presented in [23]. Important differences between the effective 2D and 3D

characteristics were observed. This was attributed to the percolative nature of current flow

in the polycrystal. The amount of conductive paths available to electric currents in 3D is

substantially higher than in 2D geometry. Furthermore, the collision probability for these

paths to join into higher-current paths (cf. [62]) is smaller in the 3D case. 3D simulations

are thus necessary for a realistic characterisation of varistor materials.

For the investigation of conductivity in the 3D case, a varistor sample with the same aspect

ratio and average grain size as in the 2D model in Figure 5.1.1 is chosen. This results in a

3D polycrystalline structure consisting of 12000 grains (see Figure 5.3.1). The grain boundary

properties are described by the same parameters given in Table 4.1.1.

Figure 5.3.1 shows a typical current flow map within the sample in the current breakdown

region. Compared to the 2D case (cf. Figure 6.3.2), a larger number of current paths is observed.

The 3D geometry provides more ways for the current to find favourable pathways to the bottom

electrode. Since these paths are connected in parallel, each of them is carrying a smaller portion

of the total current compared to the 2D model.

As shown in Figure 5.3.2, the 3D sample is characterised by a lower switching voltage

compared to the corresponding 2D curves. Contrary to intuition, 3D current paths are

electrically shorter than in 2D, or, equivalently, it is easier for the current to find highly

conducting pathways in 3D than in 2D geometry. As a result, the voltage seen by the single

boundaries is high, thus leading to a lower effective switching voltage.

The non-linearity coefficient of the 3D material is shown in Figure 5.3.2. Due to the reduction

in the switching voltage, the effective non-linearity of the 3D sample is lower compared to the

2D case.

38



21. Oktober 2010  |  TU Darmstadt  |  Fachbereich 18  |  Institut Theorie Elektromagnetischer Felder  | Kyle Taylor  |  ‹Nr.›

Electric Field / (MV/m)

C
ur

re
nt

 D
en

si
ty

 / 
(A

 / 
m

2 )

0.0005 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.3 0.5 0.7 1 2
5E-18

1E-16
1E-15
1E-14
1E-13
1E-12
1E-11
1E-10

1E-9
1E-8
1E-7
1E-6

1500 3D-Grains
0 MPa
100 MPa
150 MPa
200 MPa
250 MPa

Applied Stress / MPa

G
au

ge
 F

ac
to

r

40 60 80 100 120 140 160 180 200 220 240 260
0

200

400

600

800

1000

1200

1400

1600
1500 3D-Grains

5 V
10 V
15 V
20 V
25 V
30 V

I / %
10

7.5

5

2.5

0
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Figure 5.3.2.: IV-characteristics and non-linearity coefficients for the 3D polycrystal shown in

Figure 5.3.1, compared to the 2D-characteristic from Figure 5.1.2.
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6 Modelling of Mechanical Stress
Sensitivity in Varistors

6.1 Single Grain Boundary Model

The piezoelectric influence of mechanical stress on charge transport through ZnO grain

boundaries was introduced in Section 3.3.1. However, until now, this effect has not been

accounted for in equivalent electrical network simulations.

When considering the effect of mechanical stress, we assume that the mechanical stress is

uniformly distributed within a grain volume. For ZnO, this assumption is justified by the

comparatively high stiffness of the crystal [107]. With this simplification, the unique mechanical

condition of a grain boundary is defined solely by the two pairs (σσσ1,ddd1) and (σσσ2,ddd2) of the stress

and piezoelectric tensors, respectively, characterizing the two grains sharing the boundary.
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Figure 6.1.1.: Equivalent circuit representation of the bicrystal from Figure 4.1.1, characterised by

the stress fieldsσ1σ1σ1 andσ2σ2σ2, and the piezoelectric tensors d1d1d1 and d2d2d2, in each of the

two grains.
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The stress-dependent solutions for the grain boundary potential and the interface charge

vs. voltage are depicted in Figure 6.1.2 (cf. Figure 4.1.2). The calculations are performed

exemplarily for the case when the crystallographic orientations of the two neighbouring grains

are normal to the grain boundary and pointing in opposite directions in a head-to-head

configuration (cf. Figure 3.3.1). A uniaxial compressive as well as tensile mechanical stress

field is assumed in the direction normal to the boundary.
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Figure 6.1.2.: Potential barrier (bottom) and interface charge (top) solutions for a single grain

boundary. This is shown for compressive stress (left) and for tensile stress (right).

The curves reveal the strong effect of mechanical stress. As expected, for compressive stresses,

the barrier height decreases with increasing stress, whereas, in the tensile case, the barrier

increases. Nevertheless, this effect is strongly non-linear, as it depends on the voltage applied to

the boundary.

The calculation of each grain boundary resistance for every possible stress condition, grain

orientation and grain boundary voltage is computationally extremely demanding. For numerical

efficiency, the following implementation procedure is adopted. Since the on-the-fly calculation
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of the self-consistent solution to equations (3.1.11), (3.2.2) and (3.3.7) for many values of QP

is a prohibitively complex task, the following fitting function is used to approximate Q i as

Q i(V ) =







a+ be−cV p
, V < VB

a+ be−cV p
B , V ≥ VB

, (6.1.1)

where a, b, c, p and VB are fitting parameters that depend on the polarisation charge, QP , and,

by extension, also depend on the local stress state. Using the known set of parameters for a

given QP , the corresponding Q i can be rapidly obtained. As can been from Figure 6.1.3, the fit

is very close to the direct numerical solution.
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Figure 6.1.3.: Comparison between the exact and parametrised solution for Q i (left) according

to (6.1.1), and the resulting φB (right). The result is shown for a QP of

-0.125 µCcm−2, corresponding to a stress of 100 MPa when applied to a single

grain boundary.

In order to be able to consider general polycrystalline configurations and arbitrary mechanical

stresses, these parameters must be tabulated with respect to QP . First, the solution of the

coupled equations (3.1.11), (3.2.2) and (3.3.7), describing the grain boundary model, is

performed once at the beginning of the simulation for different values of QP in the range of

interest. Based on this result, the parameters defining the approximation in (6.1.1) are fitted

and tabulated in a look-up table for each value of QP . This procedure is carried out using the

script, which can be found in Appendix A.1.

Thus, given an arbitrary grain boundary voltage, grain orientations and the local stress

tensor solutions QP can be computed and Q i can subsequently be determined on-the-fly by

interpolating values from the look-up table. Given Q i, the grain boundary potential, φB, can be

calculated directly. In order to cope with more complicated polycrystalline varistor structures,

composed of larger equivalent circuit models, these tables are incorporated into each individual

grain boundary sub-circuit file, thus resulting in a IV-characteristic for each grain boundary that
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depends on the local mechanical stress distribution. The 3D plot shown in Figure 6.1.4 gives an

overview of how φB is modified by both V and QP .
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Figure 6.1.4.: 3D plot of the φB’s dependency on both V and QP .

6.2 Solution of the Mechanical Problem

The mechanical equilibrium condition in the material reads,

(6.2.1a)−divσσσ = fff m,

(6.2.1b)σi j = Ci jklSkl − βi j(T − T0),

where fff m is the applied force density, CCC is the stiffness tensor, SSS is the strain, βββ is the thermal

expansion tensor and T is the temperature. The stiffness tensor for a hexagonal type ZnO crystal

in the Voigt two-index notation is assumed as [107],

CCC =























210 120 105 0 0 0

120 210 105 0 0 0

105 105 211 0 0 0

0 0 0 43 0 0

0 0 0 0 43 0

0 0 0 0 0 44























GPa . (6.2.2)
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Furthermore, the coefficient of thermal expansion in the Voigt two-index notation for a ZnO

crystal with principal axis pointing in the z-direction is assumed as

βββ =























4.31

4.31

2.49

0

0

0























µK−1 . (6.2.3)

Given a Voronoi tessellation to describe the polycrystal geometry, a FEM mesh is generated

with the open source program Gmsh [108], and the strain-stress equations (6.2.1a) and (6.2.1b)

are solved numerically by FEM, using the software package Elmer [109]. In order to couple the

mechanical model to the electrical model, the piezoelectric modification of the interface charge,

QP (3.3.8), is calculated from the results of the FEM simulation. For this, the polarisation vectors

Pl and Pr of the two grains sharing the boundary are determined from the local stress solution

of the FEM model and the predefined piezoelectric tensors of the two respective grains. The

resulting QP is then used to obtain the potential barrier from tabulated values, as described

above. Finally, given the potential barrier φB(V ), the non-linear and stress-dependent grain

boundary resistance, Rb(V ), can be determined directly from the Richardson-Dushman equation

(3.2.5).

6.3 Mechanical Modulation of IV-Characteristics

6.3.1 Bicrystals

In the following, we consider the effect of applied, compressive uniaxial stress on a cubic

ZnO-bicrystal of size 10×10×20 µm3. Using this structure, a compressive stress in the range

50-200 MPa is externally applied. Three different grain configurations are considered. In

case (a), the two grains are both oriented in the z-direction as in a head-to-head configuration

(cf. Figure 3.3.1a). In case (b), the c-axis of one of the grains is rotated by 90◦. In case (c),

both grains are again oriented in the z-direction, but pointing as in a head-to-tail configuration

(cf. Figure 3.3.1c).

The results for the IV-characteristics are shown in Figure 6.3.1. As expected, in the head-to-tail

case, the IV-curves are not affected by the applied stress (Figure 6.3.1c). The piezoelectric

coupling is completely absent. In the other two cases, a sizeable loss of non-linearity is observed.
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Figure 6.3.1.: IV-plots showing the stress sensitivity of the bicrystal for the following orientations:

(a) head-to-head, (b) grain orientations forming a 90◦ angle and (c) head-to-tail.

Furthermore, the varistor switching voltage is shifted to lower values. This effect is more obvious

in the head-to-head case corresponding to the stronger jump of the polarisation field at the grain

boundary. For an applied stress of 200 MPa, the varistor property is completely lost and the

bicrystal features an essentially linear behaviour, corresponding to the Ohmic conductivity of

the bulk ZnO crystal.

6.3.2 Polycrystals

For the polycrystalline case, we first consider a 2D polycrystal of size 200×300 µm2 with

an average grain size of 10 µm. The computed stress distribution in this sample, for an

applied uniaxial stress of 200 MPa in the vertical direction is depicted in Figure 6.3.2 (left).

Furthermore, the current flow pattern resulting from the numerical solution of the circuit

equations for an applied external voltage of 5 V is shown in Figure 6.3.2 (right). The current

concentration effect, described in Section 5.1, remains. However, the topology and intensity of

the current concentration effect is different.
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Figure 6.3.2.: Mechanical stress distribution and current flow map for the non-linear region of a

2D polycrystal of size 200×300 µm and average grain size of 10 µm when a uniaxial

compressive stress of 200 MPa is applied (left). Current pattern in the sample for

an applied voltage of 5 V. The current in each grain is given relative to the total

current flowing through the sample.

In Figure 6.3.3 (top), additional current flow patterns are shown for different applied voltages

and stresses in order to illustrate the effect of applied stress. The current concentration effect

is observed for all considered cases. However, the switching voltage, for which this effect starts

to become visible, depends on the applied stress. Larger applied stresses result in a reduction

in the switching voltage. Furthermore, the length and position of the dominant current path

are different for different applied stresses. For larger applied stresses, multiple secondary

paths, characterised by a lower current density, appear. In these cases, the current distribution

within the material tends to be more homogeneous, since the conductivity of individual grain

boundaries becomes less non-linear with increasing stress.

A quantitative description of the effect of applied stress is provided by the effective IV-curves

of the sample, shown in Figure 6.3.3 (bottom). The general behaviour of these curves is similar

to that of the head-to-head bicrystalline case (cf. Figure 6.3.1), in that a compressive stress

results in a reduction in the switching voltage exhibited by the polycrystal, as shown by the

progressive shift of the curves to the left along the voltage-axis. However, the stress sensitivity
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Figure 6.3.3.: Top: Current concentration for varying applied electric field strengths and uniaxial

compressive stresses in a 2D polycrystal of size 200×300µm2 and average grain size

of 10 µm. The current in each grain is given relative to the total current flowing

through the sample. Bottom: The corresponding IV-characteristic.
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in the polycrystalline case is lower than in the case of an ideal bicrystal. This is because

there is no perfect head-to-head alignment of the grains in the polycrystal. Furthermore, the

stress sensitivity of the material is only due to those grain pairs with (nearly) head-to-head

orientations. The current carrying paths tend to form along these boundaries. Since the grain

orientations are not perfectly aligned, the varistor property is not completely lost, even for a

large applied stress. This is different to the bicrystalline case with head-to-head orientations,

where a purely Ohmic conductivity is obtained for a large applied stress.

Figure 6.3.4 (left) shows the resulting gauge factor for this particular microstructure. The

gauge factor is maximised when the varistor is operated close to its switching voltage. However,

the switching voltage also depends on the applied stress. Thus, for a small applied stress,

the gauge factor is higher at higher voltages, and vice-versa. For this particular structure, a

maximum gauge factor of about 1800 is obtained for an applied stress of 100 MPa at around

60 V. This figure is more than a factor of two higher than the measured values reported in [16].

This discrepancy arises from the idealised varistor model considered in the simulations, which is

2D and does not account for microstructural inhomogeneities. The stress-induced reduction in

the switching voltage is accompanied by a deterioration in the polycrystal’s non-linearity. This

is demonstrated in Figure 6.3.4 (right), where the non-linearity coefficient α can be clearly seen

to decrease with increasing stress.
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Figure 6.3.4.: Gauge factor (left) and non-linearity coefficients (right) for different applied

voltages for the 2D IV-characteristics shown in Figure 6.3.3.

In Section 5.2, simulation results illustrating the effect of microstructural inhomogeneity

on varistor IV-characteristics were shown. Figure 6.3.5 shows IV-characteristics for the same

structure under the influence of applied stress. Applying mechanical stress to the material does
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not essentially affect the "double-knee" mechanism. As in the case of homogeneous material,

the overall non-linearity of the stressed material is lower, and the switching voltage shifts to

lower values, compared to the unstressed one.
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Figure 6.3.5.: Top: Current flow maps showing jumping pathways due to the presence of Ohmic

boundaries. The homogeneous and inhomogeneous (10% Ohmic boundaries)

cases are considered. Bottom: Influence of applied stress on the IV-characteristic

of varistor samples with different concentrations of Ohmic boundaries.
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6.3.3 Influence of Sample Size

One important consideration is the effect of sample size on the computed effective characteristic.

In order for these characteristics to be macroscopically representative, a sample size greater

than a representative volume element (RVE) must be chosen [110]. The RVE is identified

by comparing simulations of different sample sizes, while keeping the average grain size and

grain boundary properties unchanged. For the 2D polycrystal described in Figure 6.3.2, we

consider three different samples of sizes 100×150 µm2, 200×300 µm2, and 400×600 µm2.

These correspond to totals of 150, 600 and 2400 grains, respectively, with an average grain size

of 10 µm in all three samples. As shown in Figure 6.3.6, the results for the stress-dependent

IV-characteristics converge quickly with increasing sample size. The results for the 600 grain

sample are identical to those of the 2400 grain sample. In particular, the results obtained in

Section 6.3.2 are macroscopically representative, since the larger sample used in the simulations

is well above the RVE limit.
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Figure 6.3.6.: Stress-dependent IV-characteristics for different sizes of the varistor sample. In all

cases, the average grain size is 10 µm.
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6.3.4 3D Varistor Modelling

For the investigation of the stress-dependent conductivity in the 3D case, a 3D varistor sample

of dimensions 100×100×150 µm3, with an average grain size of 10 µm is chosen. The grain

boundary properties remain as defined in Table 4.1.1. The mechanical stress distribution is

obtained by fully 3D FEM simulations for a random realization of the uniform distribution of

grain orientations within the polycrystal. Figure 6.3.7 shows the resulting Von Mises stress

distribution for an applied stress of 200 MPa.
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Figure 6.3.7.: Stress distribution in a 3D polycrystal of size 100×100×150 µm3. with an average

grain size of 10 µm, when a uniaxial compressive stress of 200 MPa is applied.

In Figure 6.3.8 (top), the stress-dependent IV-characteristics of the 3D sample are shown.

Compared to the 2D case, the 3D sample is characterised by a lower Vc for all applied stresses.
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grains carrying 5% or more of the total current are shown.
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The corresponding current flow patterns are shown in Figure 6.3.8 (bottom), where the

electrical contacts are applied to the top and bottom of each sample. At an effective electric

field strength of 0.03 MV/m, the sample without applied stress presents a largely homogenous

distribution of current throughout the polycrystal. There is no significant current concentration,

since the varistor is still operating in the leakage regime. On the other hand, at the same

effective electric field strength of 0.03 MV/m, the sample under an applied uniaxial compressive

strength of 200 MPa has already entered the breakdown regime. This is clear to see from the

concentrated current pathways that have formed within the microstructure.

As the applied voltage grows, the stress-free sample eventually progresses into the breakdown

region, as can be seen from the concentrated pathways in the current flow map shown for

an effective electric field strength of 0.1 MV/m. However, the sample under compression is,

comparatively, closer to the upturn region. This can be seen in the current patterns for effective

electric field of 0.2 MV/m, where the current distribution in the sample under applied stress is

already almost homogenous. However, in the stress-free sample, some current concentration

paths can still be seen.

The stress sensitivity of the 3D material is shown in Figure 6.3.9, depicting the non-linearity

coefficient and gauge factor of the sample. Similarly to Figure 5.3.2, due to the reduction in the

switching voltage, the effective non-linearity of the 3D sample is lower compared to the 2D case.

Furthermore, the loss of non-linearity in 3D geometry leads to a decrease in the effective gauge
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Figure 6.3.9.: Left: Gauge factors vs. applied stress in the 3D case. Right: Non-linearity

coefficients for the 2D (black) and 3D (colour) IV-characteristics shown in

Figure 6.3.8.
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factor. The peak gauge factor obtained for this sample is now around 1300. This figure is much

lower than the 2D result in Figure 6.3.4 and closer to the experimental value reported in [16].

This demonstrates the necessity of 3D simulations for accurate varistor characterisation.

Finally, it should be noted that the IV-curves computed for the 3D varistor sample are in

good qualitative agreement with measurement data (cf. Figure 3 in [19]). A more detailed

comparison between simulation results and measurements, however, remains beyond the

scope of this work. This is primarily due to the lack of detailed knowledge on the grain

boundary properties for the materials used in these experiments, where commercial varistors

of unspecified dopant composition and fabrication procedure were employed.

6.4 Single Crystal-Polycrystal Structures

Keil et al. recently studied the influence of high temperature treatment during epitaxial growth

on the stress sensitivity of doped ZnO-based single crystal-polycrystal-single crystal (SC-PC-SC)

structures [21]. In this section, simulations are performed using SC-PC-SC geometries and the

coupled model described above. These structures were created such that the crystallographic

orientations of the single crystals were aligned head-to-head, as illustrated in Figure 3.3.1. The

geometries considered represent a freshly bonded SC-PC-SC structure, with a smooth interface

and a fine microstructure, and also an SC-PC-SC structure after heat treatment. The latter

microstructure is significantly coarser, with uneven edges where the outer grains have been

absorbed by the single crystal. These microstructures are illustrated in Figures 6.4.1 and 6.4.1,

Before Heat Treatment

1000 µm

After Heat Treatment

300 µ
m

50 µ
m

Figure 6.4.1.: Scanning electron microscope image of an SC-PC-SC interface in cross-section (left)

and the corresponding SC-PC-SC sample based on Voronoi tessellation (right)

before heat treatment. Experimental images provided by Keil, Rödel et al.
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After Heat Treatment

300 µ
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50 µ
m

Figure 6.4.2.: Scanning electron microscope image of an SC-PC-SC interface in cross-section (left)

and the corresponding SC-PC-SC sample based on Voronoi tessellation (right) after

heat treatment. Experimental images provided by Keil, Rödel et al.

alongside experimental images of equivalent structures. In the figures, it can be seen that the

Voronoi tessellation-based samples are geometrically similar to the experimental measurements.

In Figure 6.4.3, IV-characteristics are shown for both structures. For the untreated sample,

the same current concentration effect in the breakdown region as that seen in Figure 6.3.2 is

observed. As the voltage is increased, different paths form depending on where the current

experiences the least resistance. However, the coarser microstructure seen in the heat-treated

sample has larger grains, resulting in a few paths that must cross only one grain boundary. This
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Figure 6.4.3.: IV-characteristics for a SC-PC-SC structure both before (left) and after heat

treatment (right) with an average grain size of 10 µm and 25 µm, respectively.
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results in a greatly enhanced stress sensitivity, as can be seen from the more pronounced shift

in the switching voltage.

The experimental results of Keil et al. also show a strong stress sensitivity after heat treatment

of the sample. Furthermore, in both the experiment and the simulation results a "double-knee"

is observed in the IV-characteristic, signifying a changing coefficient of non-linearity as the path

taken by the current moves with increasing voltage. The non-linearity coefficients corresponding

to Figure 6.4.3 are plotted in Figure 6.4.4.Electric Field (MV/m)
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Figure 6.4.4.: Non-linearity coefficients for a SC-PC-SC structure both before (left) and after heat

treatment (right) with an average grain size of 10 µm and 25 µm, respectively.

The changing paths taken by the current are visualised in Figure 6.4.5, for the two peaks

exhibited by the sample after heat treatment under a uniaxial compressive stress of 200 MPa.

Peak 1 Peak 2

10-410-6 10-5 10-210-3 10-1 100 101 102

I / %

Figure 6.4.5.: Current flow patterns corresponding to the two peaks in the non-linearity

coefficient of the sample after heat treatment, for a compressive stress of 200 MPa.
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This effect occurs because, depending on the orientation of the grains in the polycrystalline

layer and the surface area of their grain boundaries, different pathways become electrically

active at different applied voltages. However, a quantitative comparison between experiment

and simulation is not possible at this time, due to the lack of detailed knowledge on the grain

boundary properties for realistic materials mentioned in Section 6.3.4.

6.5 Thick Film Zinc Oxide

In order to demonstrate the capabilities of the simulation model, we consider a thick film ZnO

varistor configuration. The manufacturing and implementation of such varistors for low-voltage

insulation applications has been discussed, e.g. in [111, 112]. The purpose of the following is

to investigate the influence of bending stress on the electrical varistor characteristic. The model

geometry considered is depicted in Figure 6.5.1 (top). It consists of a polycrystalline strip with

100 µm

200 µm

400 µm

0.028 2.6 5.13.81.40.8 2.0 3.2 4.4

Von Mises Stress / GPa

Figure 6.5.1.: Top: Thick film varistor of dimensions 200×400×100 µm3 and with an average

grain size of ≈10 µm. Bottom: Stress distribution after application of 250 MPa

of shear force to the right end of the film. Shown is the deformation and the

Von Mises stress distribution.
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dimensions given in the figure and with grain boundary properties as in Table 4.1.1. The strip

is fixed at one end and a downward shear force is applied at the other. The resulting stress

distribution is shown in Figure 6.5.1 (bottom).

Figure 6.5.2 (top) illustrates the effect of mechanical stress on the current distribution within

the film varistor. When no force is applied, the current paths are spread more or less evenly

within the sample. However, when bending is applied, the current paths are localized in the

area of highest stress concentration. This results in a current concentration that has a predictable

location, namely, close to the base of the strip. The corresponding stress-dependent electrical

characteristics of the varistor are shown in Figure 6.5.2 (bottom). As expected, the effect of
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Figure 6.5.2.: Top: Cross section of the thick film varistor showing the current localization for an

applied shear stress of 50 MPa and a voltage of 6.5 V. Bottom: The corresponding

IV-characteristic.
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such bending stress is essentially the same as in the uniaxial case. It results in a lower switching

voltage and in a loss of varistor non-linearity with increasing applied stress. This behaviour is

irrespective of the presence of compressive as well as tensile stress within the varistor, since both

of these stress types may enhance grain boundary conductivity, depending on the crystalline

orientation of the individual grains.

6.6 Modelling of 4-Point Measurements

In order to experimentally measure the local electrical properties across a single grain boundary,

a characterisation method capable of establishing electrical contact on the micrometer scale is

necessary. This can be achieved using a microprobe equipped with four contact needles and the

4-point sensing method [113]. This method is designed to prevent contact between the sample

and the electrode from influencing electrical measurements. This works by first applying a

current across two electrodes, and then with a second pair measuring the voltage drop across

the sample (see Figure 6.6.1). The resistance of the voltmeter is very high, and its current can

thus be neglected, resulting in a measurement that is very close to the voltage across the sample

alone.

Rsample

RVRV RIRI

V
IV

A

I0

Figure 6.6.1.: Equivalent circuit diagram for the 4-point sensing method. RI is the resistance

of the contacts attached to the current source, RV is the resistance of contacts

attached to the voltmeter. Rsample is the resistance of the sample, IV is the current

through the voltmeter and I0 is the current from the source. [113]

Since the voltage across a grain boundary in the equivalent network model can be calculated

directly, this is an easy test case to reproduce and can be compared to data from bicrystal

simulations, in order to assess whether the results are truly representative of a single grain

boundary. Furthermore, the resulting current flow visualisations can provide additional insight

into the behaviour of current flow within varistor microstructures.
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Figure 6.6.2 shows the sample geometry used to reproduce the 4-point sensing method. Two

grains near the middle of the top surface of the varistor are chosen as contact points for the

electrodes and assigned orientations that are close to head-to-head, relative to their mutual

grain boundary. A uniaxial compressive stress is then applied to the sample in the x-direction.

100 µm

50 µm

σ

σ

Figure 6.6.2.: 500 grain varistor block of dimensions 100×100×50 µm and with an average grain

size of ≈10 µm. The grain surfaces chosen for contacting the electrodes are

coloured in red and green, and marked with arrows indicating the orientations

of their c-axes.

The resulting current flow patterns are shown in Figure 6.6.3 for cases with and without

an applied stress, and at voltages in the leakage, breakdown and upturn regions. The

corresponding IV-characteristics are plotted in Figure 6.6.4.

Each region of the characteristic shows a distinct current flow pattern. In the leakage region,

current flows primarily through the two contacted grains, but also through neighbouring grains,

with a reduced current concentration the further the grain is from the electrodes. In the

breakdown region, the conductivity of the grain boundary between the two electrodes increases

dramatically and current flows almost exclusively through this boundary. Finally, as the applied

voltage increases past the breakdown and into the upturn region, the local working points

of grain boundaries further from the electrode pair also begin to enter the breakdown region

associated with their individual IV-characteristic. The conductivity of these boundaries increases
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Figure 6.6.3.: Current concentration for varying applied voltages, with and without applied

stress, in the varistor structure shown in Figure 6.6.2. The current in each grain is

given relative to the total current flowing through the sample. Only grains carrying

≥0.1% of the total current are shown.
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Figure 6.6.4.: IV-characteristics for the full varistor structure shown in Figure 6.6.2 and for the

single grain boundary between the pair of highlighted grains.
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and thus the number of current-bearing grains also increases, forming a roughly hemispherical

section of current-bearing grains, which grows as grain boundaries further and further from the

electrode pair enter breakdown.

The effect of applied stress is much the same as that shown in Section 6.3, in that the switching

voltage decreases, as shown in Figure 6.6.4. Naturally, this also impacts the current flow pattern,

as each of the changes described above occurs at a lower applied voltage. For example, the

current concentration seen at 6 V with an applied stress of 250 MPa is reduced compared to that

seen at 6 V with no applied stress, because, at this point, the stressed sample is already beginning

to push into the upturn region of its characteristic and its maximum current concentration occurs

around 5 V.

When current is only allowed to flow through the grain boundary connecting the two grains

with contact to the electrodes, the true IV-characteristic for this grain boundary is obtained. This

is represented by the black IV-characteristic curves in Figure 6.6.4. Comparing this set of results

to the coloured curves, which represent the measurement obtained from a 4-point sensing

experiment, highlights some notable differences. Firstly, since the current in the polycrystalline

case is free to seek more conductive grain boundaries, the current in the leakage and upturn

regions of the curves is higher. Furthermore, due to the more distributed current flow, the impact

of applied stress on the non-linearity of the characteristic is greater in the polycrystalline case,

as can be seen from the softer gradient as the IV-characteristic enters the breakdown region.

Nevertheless, the switching voltage does not significantly change between the two data sets.

These differences between a true single boundary measurement, and a measurement carried

out using the 4-point sensing method, should be taken into consideration when performing

such measurements.
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7 Thermal Stress

7.1 Effect of Residual Thermal Stress

The crystallographic anisotropy in the thermal expansion of ZnO grains commonly results in

internal mechanical stress in ZnO varistors. This build up of residual internal stress arises

between grains when polycrystalline samples are cooled from their fabrication temperature,

thus causing the individual grains to shrink. Just as for an applied stress, this induces a net

electric dipole moment that modifies the Schottky barriers at the grain boundaries, and thus

the IV-characteristic. Due to the piezoelectric nature of ZnO, this stress can have a detrimental

impact on the non-linearity of a varistor.

Verghese et al. were able to measure the residual strain in polycrystalline ZnO samples using

Raman piezospectroscopy [18]. The permissible energies for phonons and electrons in a crystal

lattice can be modified by mechanical strain, which results in a shift in the characteristic

fluorescent spectral peaks of the material or in its Raman scattering. This allows for an

experimental quantification of the mechanical stress state in piezoelectric materials. Based

on these results, Verghese calculated the average residual stress and assumed a Gaussian

distribution of stress throughout the material.

Based on this stress distribution, Verghese created a stochastic model for the barrier height

distribution, based on equations (3.1.11) and (3.3.7), although this earlier model did not

include the self-consistent solution with (3.2.2), as described in Section 4.1. This model

also assumes a Gaussian distribution of barrier heights within the polycrystal, and this was

verified by a Monte Carlo simulation of the barrier height, which showed a good agreement

with the assumed distribution. The resulting effective medium calculations [114] revealed both

a decrease in the non-linearity coefficient and an increase in the leakage current of the sample.

In the following, we present a comparison to the work of Verghese et al. by calculating

the residual thermal stress distribution numerically using FEM. This voids the need for an

assumed stress distribution, and instead allows us to calculate the potential barrier at each

grain boundary directly, using the method described in Section 6.1.
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7.2 The Bicrystalline Case

In the following, we consider the case of the residual stress that arises when cooling a

bicrystal from a stress-free state at 1500 K to 300 K. The boundary conditions are left open to

displacement, and the grain’s c-axes are oriented at 90° to one another, as shown in Figure 7.2.1.
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Figure 7.2.1.: Distribution of residual stress after thermal treatment. Also shown are the c-axis

orientations and the style of FEM mesh used in the calculations.
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Figure 7.2.2.: IV-characteristics and non-linearity coefficient of the bicrystal.
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Figure 7.2.2 depicts the non-linearity coefficients of the bicrystal for the cases with and

without residual stress, respectively. Again, the presence of mechanical stress leads to the loss

of varistor non-linearity and to a shift of the switching voltage to lower values. This effect is

comparable to that of a 90° orientation bicrystal when an external stress is of 100 MPa is applied

(cf. Figure 3.1.1). This is reflected in the jump in stress from one grain to the other, as shown

in Figure 7.2.1. Thus, in this case, the piezoelectric effect is not only due to the different grain

orientations, but also to a jump in the mechanical stress across the boundary of the order of

100 MPa.

7.3 The Polycrystalline Case

In Figure 7.3.1, the computed stress distribution within a varistor sample of dimensions

200×300 µm, and with an average grain size of 10 µm (consisting in a total of 600 grains),

is shown. The material was cooled from 1200 K down to 300 K, while the boundary conditions

of the simulation were left open to displacement. The resulting stress within the polycrystal is

much higher than in the case of the bicrystal, since the internal grains cannot freely contract.

Furthermore, due to the significant anisotropy of both thermal expansion and elastic modulus,

which arises from the shape of the ZnO unit cell, the mechanical stress in each grain is different.
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Figure 7.3.1.: Mechanical stress distribution (σzz) for a 2D polycrystal of size 200×300 µm2 and

average grain size of 10 µm, after cooling from 1500 K to 300 K.

An assessment of the distribution of Von Mises stresses throughout the polycrystal is given

in Figure 7.3.2. As seen in the histogram representation, the resulting mean and standard
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deviation of the Von Mises stress in the individual grains are very similar to those measured by

Verghese et al. using Raman spectroscopy, featuring a distribution peak near 250 MPa [18].
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Figure 7.3.2.: Thermal stress distribution in the polycrystal shown in Figure 7.3.1 after cooling

from 1200 K to 300 K. Mean stress = 258 MPa. Standard deviation = 115 MPa.

The current flow pattern within the sample resulting from the numerical solution of the circuit

equations for an applied external voltage of 15 V is shown in Figure 7.3.3.
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Figure 7.3.3.: Electrical current pattern for the samples shown in Figure 7.3.1 in the sample for

an applied voltage of 15 V (effective electric field strength of 0.05 MV/m). The

current in each grain is given relative to the total current through the sample.
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The current flow patterns resulting from the solution of the circuit equations for the larger

polycrystalline structure introduced in Figure 7.3.1 are shown in Figure 7.3.4. The results are

compared for different applied voltages and for the cases with and without residual thermal

stress. In both cases, the well known current concentration effect in the non-linear varistor

regime [22] is observed. In addition, the simulations show the loss of non-linearity induced

by the presence of residual stress. This is indicated by the more uniform current distribution

consisting of several low density paths in the later case.
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Figure 7.3.4.: Electrical current patterns obtained for the polycrystalline structure considered in

Figure 7.3.1 with and without the effect of thermal stress. The current in each grain

is given relative to the total current flowing through the sample.

A more quantitative analysis of the effect of thermal stress is provided by the effective

IV-curves of the sample as shown in Figure 7.3.5. The behaviour of these curves is similar

to that of the head-to-head bicrystalline case. An increasing residual stress results in a reduction

in the switching voltage and in the decrease of the effective non-linearity coefficient of the

sample. Although grain boundaries with compressive configurations close to tail-to-tail and

tensile configurations close to head-to-head will exist within the polycrystalline sample, almost

no current flows through these low-conductivity boundaries. The current paths concentrate
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along those grain boundaries exhibiting orientations close to head-to-head and tail-to-tail, under

compressive and tensile stress respectively. This is because these grain boundaries experience

an increased electrical conductivity due to the presence of residual thermal stresses. The

mechanical modulation of electrical conductivity in polycrystalline materials is thus determined

by the reciprocal grain orientations within the material that are responsible for the piezoelectric

coupling of grain boundary conductivity.
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Figure 7.3.5.: Electrical characteristics (top) and non-linearity coefficient (bottom) for the 2D

polycrystal shown in Figure 7.3.1.
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Expanding the same system to 3D shows much the same relationship as for an applied stress,

as shown in Figure 7.3.6. The switching voltage falls with increasing stress levels, resulting in

a lower effective non-linearity. This effect is exacerbated in three dimensions, due to the larger

number of possible pathways available for current flow.
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Figure 7.3.6.: Electrical characteristics (top) and non-linearity coefficient (bottom) resulting

from residual thermal stress after cooling from different temperatures for a 3D

polycrystal of size 200×200×300 µm3 and with an average grain size of 10 µm.
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8 The Inverse Piezoelectric Effect

8.1 Modelling the Inverse Piezoelectric Effect

When a voltage is applied to a varistor, the electric field inside the material induces a mechanical

response in the form of a strain via the inverse piezoelectric effect. This, in turn, generates

additional piezoelectric strain charges at the grain boundary, thus modifying the polarisation.

The effect of these additional charges on the IV-characteristic will be examined in this section.

In order to account for the inverse piezoelectric effect, an additional term must be added to

the relationship between stress and strain, as performed by Xu et al. [115]. In one dimension,

this relationship takes the form

σ = CS − eE , (8.1.1)

where σ is the stress, C is the Young’s modulus, S is the strain, e is the piezoelectric strain

constant and E is the electric field. In comparison to the model so far, the term eE is new and

accounts for the strain inducing effect of the electric field. From this, the polarisation,

P = eS = e
�

σ+ eE
C

�

= e
σ

C
+

e2E
C

, (8.1.2)

can be calculated [17]. In the classical model proposed by Verghese [18], only the direct

contribution dσ = e
Cσ is accounted for, while the inverse part e2E

C is neglected. Here, the

electric field dependent term is added to QP (c.f. Equation 3.3.7), resulting in

Q′P =QP +
e2(El − Er)

C
, (8.1.3)

where El and Er are the electric fields from the left and right hand sides of the grain boundary,

respectively. Close to the grain boundary, the electric field is given by [58]

E(x) =

(

qÑν
εrε0

�

x − Q̃i
2qÑν
+ εrε0V

Q̃i

�

−x l ≤ x ≤ 0
qÑν
εrε0

�

x + Q̃i
2qÑν
+ εrε0V

Q̃i

�

0≤ x ≤ x r

, (8.1.4)

where q is the positive unit charge, Ñ is the space charges in the depletion layer, εr is the

relative permittivity of the material, Q̃ i = Q i +Q′P , and the x-axis is perpendicular to the grain
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boundary with its origin at the grain boundary. Furthermore, qÑν = qNν +ρP , where the term

ρP defines an additional space charge in the depletion layer, which has been induced by the

inverse piezoelectric effect.

Since the derivation of (8.1.4) assumes a linear field in the depletion layer, ρp and Ñν are

constant in that region. This means that ∇ · E = qÑν
εrε0

, and so

ρP = −
e2qÑν
Cεrε0

, (8.1.5)

which in combination with qÑν = qNν +ρP produces the relationship

Ñν = (1− f )Nν, f =
e2

εrε0C + e2
, (8.1.6)

where f is a dimensionless factor composed of the piezoelectric strain constant, the dielectric

constant and the Young’s modulus. Thus, the term − f Nν accounts for the space charge arising

from the electric field. Combining (8.1.4) and the following solutions for x l and x r ,

x l = −
Q̃ i

2qÑ0
+
εrε0V

Q̃ i

x r = −
Q̃ i

2qÑ0
−
εrε0V

Q̃ i

. (8.1.7)

gives the electric field at the grain boundary,

El =
qÑν
εrε0

�

−
Q̃ i

2qÑν
+
εrε0V

Q̃ i

�

Er =
qÑν
εrε0

�

Q̃ i

2qÑν
+
εrε0V

Q̃ i

� , (8.1.8)

which is then inserted into (8.1.3). Together with Q̃ i =Q i +Q′P , this results in an expression for

Q̃ i in terms of f ,

Q̃ i = (1− f )(Q i +QP) . (8.1.9)

This reveals the nature of f as a scaling factor that acts upon the total interface charge at the

grain boundary. The stronger the inverse piezeoelectric field, the larger f grows, and the more

the interface charge is reduced. When this effect is included in the expression for the potential

barrier at the grain boundary (3.1.11), it is modified as follows,

φB = −
qNν

2εrε0
(1− f )

�

−
Q i +QP

2qNν
+

εrε0V
(1− f )(Q i +QP)

�2

. (8.1.10)
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When f = 0, this simplifies to the classical equation presented by Verghese [18].

This factor can be accounted for in the variable resistance, Rb, in the lumped conductivity

model for a each grain boundary. For a one-dimensional bicrystal, all components of f are scalar.

Assuming a bicrystal of head-to-head orientation and that, as in the work of Zhou et al. [17],

only the zzz-component of the piezoelectric strain tensor and the zzzz-component of the

Young’s modulus contribute to f , this results in a value of 0.096, which equates to a 9.6%

reduction of the interface charge. The IV-characteristic of such a bicrystal is shown below in

Figure 8.1.1.
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Figure 8.1.1.: IV-characteristics for a 1D head-to-head bicrystal with and without the inverse

piezoelectric effect.

The influence of the reduced interface charge on the one dimensional problem is clear. The

switching voltage and non-linearity both fall noticeably, similarly to the effect of a polarisation

induced by mechanical stress. This is to be expected, as, in the head-to-head case, the

piezoelectric effect also acts to reduce the interface charge and thus the barrier height.

8.2 The Influence of the Inverse Piezoelectric Effect in 3D

Blatter’s model for charge transport across a grain boundary, as described in Sections 3.1 and 3.2,

is a 1D model, and the derivation of the factor f in Section 8.1 is an expansion upon this model.

As shown in (8.1.6), f depends on both C and e, which, in 1D, are scalar values. However,

in 3D, these material properties are described by tensors that change their value depending on

the crystal orientation of each grain. These tensors are given as matrices in Voigt notation in

(3.3.4) and (6.2.2).
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This section aims to use the above model to gain insight into the influence of the inverse

piezoelectric effect in 3D. To that end, the 1D model for charge carrier transport across

grain boundaries, as employed in Chapters 5-7, is retained, with the addition of the inverse

piezoelectric scaling factor, f , as given in (8.1.6) and (8.1.10). In doing so, we assume that, for

the case of charge transport across any one boundary in the electrical network, C and e can be

reduced to a single scalar value that acts along the grain boundary normal, thus allowing for

the calculation of f .

For 3D polycrystalline varistor material, the matrices representing the tensors of C and e

are transformed to match the coordinate system of each individual grain by multiplying them

with the appropriate transformation matrices [116]. For brevity, the transformation matrices

are given in Appendix A.6. The components of the transformed matrix that act along the grain

boundary normal are then extracted, to give a scalar value for f in the direction of the grain

boundary. Thus, all values in (8.1.10) are scalars and the potential barrer can be calculated

including the inverse piezoelectric effect.

In Figure 8.2.1, a head-to-head bicrystal is considered. In 3D, the zxx and zyy components

of the piezoelectric strain tensor also contribute to the value of e in the z-direction, thereby

reducing its final value and resulting in a smaller f . This reveals the relatively minor overall

impact of the inverse piezoelectric effect in 3D simulations - in this case the interface charge is

reduced by only 0.4%.
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Figure 8.2.1.: IV-characteristics for a 3D head-to-head bicrystal of dimensions 10×10×20 µm3,

with and without the inverse piezoelectric effect.
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Figure 8.2.2 shows the result of applying the inverse piezoelectric effect to a polycrystalline

case. The value of f is independent of the applied stress, but specific to the relative orientations

of the grains in the varistor. For the microstructure used here, the average value of f is 0.007,

corresponding to a reduction in interface charge of 0.7%. This is larger than the value obtained

for a 3D bicrystal, due to the variety of orientations between grain pairs that is inherent to the

polycrystalline structure. The Young’s modulus of the ZnO unit cell is maximal in the z-direction

and a lower Young’s modulus leads to a slightly larger value for f . Nevertheless, the difference

is minor and thus the overall value of f remains relatively small.
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Figure 8.2.2.: IV-characteristics for a varistor of dimensions 100×100×150 µm3, with and without

the inverse piezoelectric effect.
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9 Conclusion and Outlook

9.1 Conclusion

A model for calculating the stress-dependent electrical characteristics of ZnO varistors is

developed. The model is based on an equivalent electrical network description of the varistor

microstructure. The piezoelectric effect at the grain boundaries is taken into account by

incorporating a self-consistent solution for the grain boundary potential and the piezoelectrically

induced grain boundary charge. This modelling approach is applied for polycrystalline varistor

structures consisting of a large number of grains with arbitrary crystallographic orientations and

for arbitrary stress distributions, in 2D as well as in 3D geometry.

The simulations reveal the strong stress sensitivity of the varistor characteristics and provide

insight into the current flow behaviour within the material, in the presence of mechanical stress.

On the macroscopic scale, the effect of mechanical stress shifts the IV-characteristic to a lower

switching voltage. Furthermore, the effective non-linearity of the material is reduced. These

results, as well as the computed gauge factors for a typical varistor sample, are consistent with

recent experimental findings for industrial ZnO varistors. The investigation of microstructurally

inhomogeneous varistors and the simulation of a bent thick film varistor under shear stress

demonstrate the capability of the model to cope with complicated material configurations. The

model was also applied to demonstrate the differences between measurements made using the

4-point sensing method, and the true IV-characteristic of a single grain boundary. In addition to

this, the model was applied to the case of residual stresses arising within microstructures due to

the thermal expansion anisotropy of the crystal. Polycrystalline structures with different residual

thermal stresses resulting from sintering at different temperatures were analysed. Furthermore,

the model was adapted to account for the inverse piezoelectric effect. It was able to demonstrate

that this effect’s influence on the overall IV-characteristic was vanishingly small in the case of

3D polycrystalline varistor samples.

Overall, this new model offers a qualitative representation of the observed phenomenon and

is highly flexible in terms of the geometries and mechanical stress states to which it can be

applied.
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9.2 Outlook

Future work could make use of, or extend upon, the framework that was established in this

thesis in a number of areas.

A quantitative verification of the model’s capabilities would require values for the parameters

shown in Table 4.1.1 for a specific ZnO varistor composition, and stress-dependent electrical

measurement data using varistor material of the same kind. Such measurements could be

obtained experimentally using off-axis electron holography [117]. Alternatively, the values

could be derived from the density of states, which could be determined numerically, using

density functional theory [46].

An extensive statistical analysis of the effect of the stochastic properties of polycrystalline

microstructures on the IV-characteristics produced by this model would also serve to further

cement its validity. Variations in the geometry of the varistor microstructure, as well as the

distributions of grain sizes, grain orientations, and microstructural inhomogeneities, all play a

role in determining the effective IV-characteristic of the varistor as whole. While an analysis

involving large numbers of simulations for comparable varistor samples goes beyond the scope

of this work, a future investigation using a large dataset would serve well to underline the

model’s utility.

Finally, this model has concerned itself with the electromechanical coupling of mechanical

stress and grain boundary barrier height in ZnO varistors via the piezotronic effect. However,

any current flowing through such a varistor is accompanied by an increase in the temperature of

the material, which in turn has an impact on the conductivity of the varistor. In the breakdown

region, when current concentration occurs, this effect is particularly noticeable, due to the high

current densities that occur locally along the path of current flow. Future work could consider

this effect (perhaps by using a lumped thermal circuit model [118]) and, via back-coupling,

model the effect of thermal runaway, described in Section 2.3.
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A Appendices

A.1 Code for the Self-Consistent Solution of the Potential Barrier

The following script was written in Wolfram Mathematica 11.2. It performs the self-consistent

solution of of the coupled equations (3.1.11)-(3.2.2) and produces the coefficients for the

fitting function shown in (6.1.1), for tabulated values of QP . Note that this script requires

the RootSearch.m package [119].

ClearAll;

Import["C:\\FilePath\\RootSearch.m"]

q0 = 1.60217662*10^-19; (* Elementary Unit Charge / C *)

kT = (1.3806488*10^(-23)*296)/q0; (* k*T at 296 K / eV *)

Ei = 2.2; (* peak of the Gaussian density of states w.r.t. valence band / eV *)

dE = 0.15; (* variance of the Gaussian density of states / eV *)

Ni = 9*10^12; (* density of interface states / 1/cm^2 *)

Ef = 3.2 - 0.067; (* Fermi energy w.r.t. valence band / eV *)

Xn = 0; (* Fermi level of the neutral interface *)

Nd = 9.0*10^17; (* density of deep trap states / 1/cm^3 *)

eps0 = 8.854187817*10^-14; (* permittivity of vacuum / F/cm *)

eps1 = 8.81; (* relative permittivity of the material *)

NdFac = 2*q0*Nd*eps0*eps1;

Qp = -1.25*10^-7; (* piezoelectric polarisation charge at the grain boundary *)

(* Fermi Energy *)

Xi[V_?NumericQ] := Ef - kT*Log[2/(1 + Exp[-V/kT])]

(* Interface Charge *)

Qi[V_?NumericQ, phi_?NumericQ] := Ni q0 NIntegrate[E^(-((x-(Ei+phi))^2/dE^2))/

(Sqrt[ \[Pi]] dE (E^((x-Xi(V))/kT)+1)),{x,Xn,(Ei+phi)+8*dE},MaxRecursion->50,

PrecisionGoal->12]
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(* Potential Barrier *)

Phi[V_?NumericQ, qi_?NumericQ, qp_?NumericQ] := ((qi + qp)^2 - NdFac*V)^2/

(4*NdFac*(qi + qp)^2)

(* Voltage Range to Solve For *)

Vmin = 0.1;

Vmax = 10;

Vdel = 0.1;

Vnum = (Vmax - Vmin)/Vdel + 1;

Vval = Table[V, {V, Vmin, Vmax, Vdel}];

(* Definition of Qi Fitting Function *)

fitQi[x_, a_, b_, c_, d_, f_] := Piecewise[{{a + b Exp[-c x^f], x < d},

{a + b Exp[-c d^f], x >= d}}]

Params[Qp_] := Module[{sol, Psol1, Psol2, Qsol1, Qsol2, VCsol1, VCsol2},

(* Self-Consistent solution for V>0 *)

sol = Table[RootSearch[phi == Phi[V, Qi[V, phi], Qp], {phi, 0, 2}], {V, Vmin,

Vmax, Vdel}];

(* Potential Barrier Solutions *)

Psol1 = Table[sol[[i, 1]][[1, 2]], {i, 1, Vnum}];

Psol2 = Table[sol[[i, 2]][[1, 2]], {i, 1, Vnum}];

(* Interface Charge Solutions *)

Qsol1 = Table[Qi[Vval[[i]], Psol1[[i]]], {i, 1, Vnum}];

Qsol2 = Table[Qi[Vval[[i]], Psol2[[i]]], {i, 1, Vnum}];

(* Breakdown Voltage Solutions *)

VCsol1 = Table[Qsol1[[i]]*Qsol1[[i]]/NdFac, {i, 1, Vnum}];

VCsol2 = Table[Qsol2[[i]]*Qsol2[[i]]/NdFac, {i, 1, Vnum}];
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(* Generation of Qi-Fit *)

FindFit[Table[{Vval[[i]], Qsol1[[i]]}, {i, 1, Vnum}], fitQi[x, a, b, c, d, f],

{a, b, c, d, f}, x, Method -> LevenbergMarquardt, MaxIterations -> 10000]]

(* Qp Range to Tabulate the Qi-Fit For *)

Qpmin = -0.00000015;

Qpmax = 0.00000015;

Qpdel = 0.00000005;

Qpnum = (Qpmax - Qpmin)/Qpdel + 1;

Qpval = Table[Qp, {Qp, Qpmin, Qpmax, Qpdel}];

(* Tabulation of Fitting Parameters *)

aa = {};

bb = {};

cc = {};

dd = {};

ff = {};

For[i = 1, i <= Qpnum, i++,

{

par = Params[Qpval[[i]]];

AppendTo[aa, par[[1]][[2]]];

AppendTo[bb, par[[2]][[2]]];

AppendTo[cc, par[[3]][[2]]];

AppendTo[dd, par[[4]][[2]]];

AppendTo[ff, par[[5]][[2]]]

}

]

(* Parameter Output *)

aa

bb

cc

dd

ee

ff
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A.2 Code for the Calculation of the Polarisation Normal to Each Grain Boundary

The following script was written in Python 2.7. It takes as input the local stress state in each

grain (as output by the Elmer FEM program [109]), the orientation of each grain and the

orientation of each grain boundary normal. It then calculates the piezoelectric polarisation

charge at each grain boundary, for each grain, according to (3.3.1).

import sys, getopt, re, argparse, random, linecache

import numpy as np

from pprint import pprint

from collections import OrderedDict

print "\n#################################"

print "# Polarisation Vector Extractor #"

print "#################################\n"

# The script takes one argument: -b <number of grains>

def main(argv):

inputfile = ’’

outputfile =’’

try:

opts, args = getopt.getopt(argv,"hb:",["bodies="])

except getopt.GetopError:

print ’polarisation.py -b <bodynumber>’

sys.exit(2)

for opt, arg in opts:

if opt == ’-h’:

print ’polarisation.py -b <bodynumber>’

sys.exit()

elif opt in ("-b", "--bodies"):

bodynumber = arg

print ’Number of Bodies:’, bodynumber

if __name__ == "__main__":

main(sys.argv[1:])

output = open(’polarisation.txt’, ’w’)

body = 1
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bodynumber = float(sys.argv[2])

# Loop through the set of files with the local stress for each grain.

while body <= bodynumber:

with open(’body%d.dat’ % body) as f:

for line in f:

numbers_float = map(float, line.split())

stressxx = (0.0001*numbers_float[0])

stressyy = (0.0001*numbers_float[1])

stresszz = (0.0001*numbers_float[2])

stressxy = (0.0001*numbers_float[3])

stressxz = (0.0001*numbers_float[4])

stressyz = (0.0001*numbers_float[5])

StressVector = np.matrix([[stressxx], [stressyy], [stresszz], [stressyz],

[stressxz], [stressxy]])

# Define the piezoelectric stress tensor.

d31 = -5.43*(10**(-12))

d33 = 11.67*(10**-(12))

d15 = -11.34*(10**(-12))

dMatrix = np.matrix([[0, 0, 0, 0, d15, 0], [0, 0, 0, d15, 0, 0], [d31, d31,

d33, 0, 0, 0]])

# Get the grain orientation.

with open(’python_rot.txt’, ’r’) as orientations:

line_orientations = orientations.readlines()

orientations.seek(0)

for line in orientations:

if line == ’%s\n’ % body:

orients_str = line.split()

if int(orients_str[0]) == int(body):

orientation_line = line_orientations.index(’%s\n’ % body)

tensor_line = (orientation_line + 1)

if tensor_line == int(orientation_line + 1):

tensor_entry = linecache.getline(’python_rot.txt’, (tensor_line + 1))

tensor_str = tensor_entry.split()

rxx = float(tensor_str[0])
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rxy = float(tensor_str[1])

rxz = float(tensor_str[2])

tensor_line += 1

if tensor_line == (orientation_line + 2):

tensor_entry = linecache.getline(’python_rot.txt’, (tensor_line + 1))

tensor_str = tensor_entry.split()

ryx = float(tensor_str[0])

ryy = float(tensor_str[1])

ryz = float(tensor_str[2])

tensor_line += 1

if tensor_line == (orientation_line + 3):

tensor_entry = linecache.getline(’python_rot.txt’, (tensor_line + 1))

tensor_str = tensor_entry.split()

rzx = float(tensor_str[0])

rzy = float(tensor_str[1])

rzz = float(tensor_str[2])

RM = np.matrix([[rxx, rxy, rxz], [ryx, ryy, ryz], [rzx, rzy, rzz]])

dR = np.dot(RM,dMatrix)

PVector = np.dot(dR,StressVector)

# Get the grain boundary orientation.

with open(’grains.dat’, ’r’) as grains:

line_number = grains.readlines()

grains.seek(0)

for line in grains:

# Skip empty lines.

if line != "\n":

lines = re.sub(’[:]’,’’, line)

numbers_str = lines.split()

if numbers_str[0] == ’Grain’:

numbers_str[1] = float(numbers_str[1])

# If the grain is correct, get the grain boundary normal.

if numbers_str[1] == body:

number_of_boundaries = float(numbers_str[2])

grain_line = line_number.index(’Grain %s: %s\n’ % (body, numbers_str[2]))

boundary_line = (grain_line + 2)
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# Repeat for all grain boundaries for this grain.

while boundary_line < (grain_line + number_of_boundaries + 1):

boundary = linecache.getline(’grains.dat’, boundary_line)

boundary_cleaned = re.sub(’[:]’,’’, boundary)

boundary_str = boundary_cleaned.split()

normal_x = float(boundary_str[3])

normal_y = float(boundary_str[4])

normal_z = float(boundary_str[5])

NVector = np.matrix([normal_x, normal_y, normal_z])

# Get the polarisation normal to the grain boundary.

Polarisation = np.dot(NVector,PVector)

# Write the grain, grain boundary and polarisation to the output file.

print >>output,"Grain",int(numbers_str[1]),"Boundary",boundary_str[1],

Polarisation

boundary_line += 1

# When the last grain boundary is reached, move to the next grain and repeat.

else:

if boundary_line == (grain_line + number_of_boundaries + 1):

boundary = linecache.getline(’grains.dat’, boundary_line)

boundary_cleaned = re.sub(’[:]’,’’, boundary)

boundary_str = boundary_cleaned.split()

normal_x = float(boundary_str[3])

normal_y = float(boundary_str[4])

normal_z = float(boundary_str[5])

NVector = np.matrix([normal_x, normal_y, normal_z])

Polarisation = np.dot(NVector,PVector)

print >>output,"Grain",int(numbers_str[1]),"Boundary",boundary_str[1],

Polarisation

body += 1

if body <= bodynumber:

with open(’body%d.dat’ % body) as f:

for line in f:

numbers_float = map(float, line.split())

stressxx = (0.0001*numbers_float[0])

stressyy = (0.0001*numbers_float[1])
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stresszz = (0.0001*numbers_float[2])

stressxy = (0.0001*numbers_float[3])

stressxz = (0.0001*numbers_float[4])

stressyz = (0.0001*numbers_float[5])

StressVector = np.matrix([[stressxx], [stressyy], [stresszz],

[stressyz], [stressxz], [stressxy]])

d31 = -5.43*(10**(-12))

d33 = 11.67*(10**-(12))

d15 = -11.34*(10**(-12))

dMatrix = np.matrix([[0, 0, 0, 0, d15, 0], [0, 0, 0, d15, 0, 0],

[d31, d31, d33, 0, 0, 0]])

with open(’python_rot.txt’, ’r’) as orientations:

line_orientations = orientations.readlines()

orientations.seek(0)

for line in orientations:

if line == ’%s\n’ % body:

orients_str = line.split()

if int(orients_str[0]) == int(body):

orientation_line = line_orientations.index(’%s\n’ % body)

tensor_line = (orientation_line + 1)

if tensor_line == int(orientation_line + 1):

tensor_entry = linecache.getline(’python_rot.txt’, (tensor_line

+ 1))

tensor_str = tensor_entry.split()

rxx = float(tensor_str[0])

rxy = float(tensor_str[1])

rxz = float(tensor_str[2])

tensor_line += 1

if tensor_line == (orientation_line + 2):

tensor_entry = linecache.getline(’python_rot.txt’, (tensor_line

+ 1))

tensor_str = tensor_entry.split()

ryx = float(tensor_str[0])

ryy = float(tensor_str[1])

ryz = float(tensor_str[2])
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tensor_line += 1

if tensor_line == (orientation_line + 3):

tensor_entry = linecache.getline(’python_rot.txt’, (tensor_line

+ 1))

tensor_str = tensor_entry.split()

rzx = float(tensor_str[0])

rzy = float(tensor_str[1])

rzz = float(tensor_str[2])

RM = np.matrix([[rxx, rxy, rxz], [ryx, ryy, ryz], [rzx, rzy,

rzz]])

dR = np.dot(RM,dMatrix)

PVector = np.dot(dR,StressVector)

else:

print("Done!")

A.3 Code for the Calculation of the Polarisation Jump Across Each Grain Boundary

The following script was written in Python 2.7. It takes as input the piezoelectric polarisation

charge at each grain boundary, for each grain, (as output by the script in Appendix A.2) and

produces the jump in polarisation across each grain boundary, according to (3.3.8).

import sys, getopt, re, itertools, csv, pprint, os

import numpy as np

print "\n################################"

print "# Polarisation Jump Calculator #"

print "################################\n"

# The script takes one argument: -b <number of grain boundaries>

def main(argv):

inputfile = ’’

outputfile =’’

try:

opts, args = getopt.getopt(argv,"hb:",["boundaries="])

except getopt.GetopError:

print ’jump.py -b <boundarynumber>’
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sys.exit(2)

for opt, arg in opts:

if opt == ’-h’:

print ’jump.py -b <boundarynumber>’

sys.exit()

elif opt in ("-b", "--boundaries"):

boundarynumber = arg

print ’Number of Boundaries:’, boundarynumber

if __name__ == "__main__":

main(sys.argv[1:])

boundarynumber = float(sys.argv[2])

# Cleans up the output from the polarisation script.

input2 = open(’polarisation2.txt’, ’w’)

with open(’polarisation.txt’) as polarisation:

for line in polarisation:

line_cleaned = re.sub(’[\[\]]’,’’, line)

content = " ".join(line_cleaned.split())

line_split = content.split()

print >>input2,line_split[3],line_split[4]

input2.close()

# Sorts the polarisation values by grain boundary.

input3 = open(’polarisation3.txt’, ’w’)

with open("polarisation2.txt","r") as polarisation2:

data = polarisation2.readlines()

data_sorted = sorted(data, key=lambda l: float(l.split(" ")[0]))

print >>input3,"\n".join(data_sorted)

input3.close()

# Removes gaps from polarisation3.

input4 = open(’polarisation4.txt’, ’w’)

with open(’polarisation3.txt’, ’r’) as polarisation3:

for line in polarisation3:

if not line.isspace():
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input4.write(line)

input4.close()

# Calculates the jump in polarisation across the grain boundary.

output = open(’jumps.txt’, ’w’)

boundary = 1

with open(’polarisation4.txt’, ’r’) as polarisation4:

prevLine = ""

Pprev = ""

prevBoundary = ""

for line in polarisation4:

numbers_str = line.split()

boundaryNow = int(numbers_str[0])

P = float(numbers_str[1])

if boundaryNow == prevBoundary:

jump = P + Pprev

print >>output,boundaryNow,jump

prevLine = line

Pprev = P

prevBoundary = boundaryNow

boundary += 1

else:

prevLine = line

Pprev = P

prevBoundary = boundaryNow

output.close()

print "Done!"

A.4 Code for the Writing of LTspice Sub-Circuit Files for Each Grain Boundary

The following script was written in Python 2.7. It takes as input the jump in polarisation

across each grain boundary (as output by the script in Appendix A.3) and produces an LTspice

sub-circuit file for each grain boundary.

import sys, getopt, re, itertools, csv, pprint, os, math

import numpy as np
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print "\n###############################"

print "# Spice Sub Circuit Generator #"

print "###############################\n"

# The script takes one argument: -b <number of grain boundaries>

def main(argv):

inputfile = ’’

outputfile =’’

try:

opts, args = getopt.getopt(argv,"hb:",["boundaries="])

except getopt.GetopError:

print ’bounds.py -b <boundarynumber>’

sys.exit(2)

for opt, arg in opts:

if opt == ’-h’:

print ’bounds.py -b <boundarynumber>’

sys.exit()

elif opt in ("-b", "--boundaries"):

boundarynumber = arg

print ’Number of Boundaries:’, boundarynumber

if __name__ == "__main__":

main(sys.argv[1:])

boundarynumber = float(sys.argv[2])

line_number = 1

input = open(’jumps.txt’, ’r’)

# Writes one grain boundary sub-circuit file for every line in the input file.

for line in input:

jumps_str = line.split()

jump = jumps_str[0]

polarisation = float(jumps_str[1])

with open(’BOUND%d.lib’ % line_number, ’w’) as BOUND:

print >>BOUND,’.SUBCKT BOUND%(line_number)d 1 2\n.param Rich={30}\n.param

E_f={0.067}\n.param Qp={%(polarisation)s}\n.param N_t={0.9e13}\n.param

N_d={0.9e18}\n.param q={1.6e-19}\n.param epsilon={8.81*8.85e-14}\n.param
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Ndfac={2*epsilon*N_d*q}\n.param T={296}\n.param kB={8.617e-5}\n.param

R_G={1/(2*pow(Area,0.5))}\n.func a(Qp0)=table{Qp0,-2.42e-7,1.54057e-6,-1.88e-7,

1.56889e-6,-1.25e-7,1.63095e-6,-0.63e-7,1.65212e-6,0,1.71531e-6,0.63e-7,

1.76403e-6,1.25e-7,1.82157e-6,1.88e-7,1.86703e-6,2.42e-7,1.91574e-6,2.51e-7,

1.92473e-6,3.13e-7,1.99006e-6,3.76e-7,2.04345e-6,5.01e-7,2.17885e-6}\n.func

b(Qp0)=table{Qp0,-2.42e-7,-4.26063e-7,-1.88e-7,-5.02508e-7,-1.25e-7,

-6.23019e-7,-0.63e-7,-6.99271e-7,0,-8.21114e-7,0.63e-7,-9.27738e-7,1.25e-7,

-1.04277e-6,1.88e-7,-1.14611e-6,2.42e-7,-1.24484e-6,2.51e-7,-1.26219e-6,

3.13e-7,-1.38523e-6,3.76e-7,-1.49666e-6,5.01e-7,-1.74768e-6}\n.func

c(Qp0)=table{Qp0,-2.42e-7,0.534161,-1.88e-7,0.438088,-1.25e-7,0.343845,

-0.63e-7,0.299191,0,0.251506,0.63e-7,0.219898,1.25e-7,0.194121,1.88e-7,

0.175022,2.42e-7,0.160363,2.51e-7,0.158068,3.13e-7,0.143607,3.76e-7,0.132204,

5.01e-7,0.112636}\n.func d(Qp0)=table{Qp0,-2.42e-7,2.43578,-1.88e-7,2.82866,

-1.25e-7,3.29075,-0.63e-7,3.83146,0,4.37507,0.63e-7,4.97234,1.25e-7,5.59233,

1.88e-7,6.26742,2.42e-7,6.86756,2.51e-7,6.96953,3.13e-7,7.68981,3.76e-7,

8.46809,5.01e-7,10.0956}\n.func f(Qp0)=table{Qp0,-2.42e-7,1.1313,-1.88e-7,

1.10012,-1.25e-7,1.04352,-0.63e-7,1.03488,0,0.999042,0.63e-7,0.978774,1.25e-7,

0.957982,1.88e-7,0.944811,2.42e-7,0.931639,2.51e-7,0.929336,3.13e-7,0.913895,

3.76e-7,0.903442,5.01e-7,0.880483}\n.func

Qi(V)=min((a(Qp)+(b(Qp)*exp(-c(Qp)*pow(d(Qp),f(Qp))))),

(a(Qp)+(b(Qp)*exp(-c(Qp)*pow(V,f(Qp))))))\n.func

Phi(V)={pow(pow(Qi(V)+Qp,2)-Ndfac*V,2)/(4*NdFac*pow(Qi(V)+Qp,2))}\n.func

Jdc(V)={Rich*pow(T,2)*exp(-(E_f+Phi(V))/(kB*T))*(1-exp(-V/(kB*T)))}\nR1 1 3

R=R_G/2\nR2 3 4 R=V(3,4)/(Area*10000*Jdc(V(3,4)))\nR3 3 4 R=1000/Area\nR4 4 2

R=R_G/2\n.ENDS’ % {"line_number": line_number, "polarisation": polarisation}

line_number += 1

input.close()

print "Done!"

A.5 LTspice Input

A.5.1 Example Grain Boundary Sub-Circuit

The following is an example of an LTspice sub-circuit (as output by the script in Appendix A.4)

for a grain boundary in this framework.
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.SUBCKT BOUNDX 1 2 *Here, X is the grain boundary number.

.param Rich={30} *Richardson constant

.param E_f={0.067} *Fermi energy

.param Qp={0} *Here, the script inserts the calculated value for Qp.

.param N_t={0.9e13} *Density of interface states

.param N_d={0.9e18} *Density of deep trap states

.param q={1.6e-19} *Elementary unit charge

.param epsilon={8.81*8.85e-14} *Permittivity

.param Ndfac={2*epsilon*N_d*q}

.param T={296} *Temperature

.param kB={8.617e-5} *Boltzmann constant

.param R_G={1/(2*pow(Area,0.5))} *Grain bulk resistance

*Tabulation of Qi parameters for Qp

.func a(Qp0)=table{Qp0,-2.42e-7,1.54057e-6,-1.88e-7,1.56889e-6,-1.25e-7,

1.63095e-6,-0.63e-7,1.65212e-6,0,1.71531e-6,0.63e-7,1.76403e-6,1.25e-7,

1.82157e-6,1.88e-7,1.86703e-6,2.42e-7,1.91574e-6,2.51e-7,1.92473e-6,3.13e-7,

1.99006e-6,3.76e-7,2.04345e-6,5.01e-7,2.17885e-6}

.func b(Qp0)=table{Qp0,-2.42e-7,-4.26063e-7,-1.88e-7,-5.02508e-7,-1.25e-7,

-6.23019e-7,-0.63e-7,-6.99271e-7,0,-8.21114e-7,0.63e-7,-9.27738e-7,1.25e-7,

-1.04277e-6,1.88e-7,-1.14611e-6,2.42e-7,-1.24484e-6,2.51e-7,-1.26219e-6,

3.13e-7,-1.38523e-6,3.76e-7,-1.49666e-6,5.01e-7,-1.74768e-6}

.func c(Qp0)=table{Qp0,-2.42e-7,0.534161,-1.88e-7,0.438088,-1.25e-7,0.343845,

-0.63e-7,0.299191,0,0.251506,0.63e-7,0.219898,1.25e-7,0.194121,1.88e-7,

0.175022,2.42e-7,0.160363,2.51e-7,0.158068,3.13e-7,0.143607,3.76e-7,0.132204,

5.01e-7,0.112636}

.func d(Qp0)=table{Qp0,-2.42e-7,2.43578,-1.88e-7,2.82866,-1.25e-7,3.29075,

-0.63e-7,3.83146,0,4.37507,0.63e-7,4.97234,1.25e-7,5.59233,1.88e-7,6.26742,

2.42e-7,6.86756,2.51e-7,6.96953,3.13e-7,7.68981,3.76e-7,8.46809,5.01e-7,

10.0956}

.func f(Qp0)=table{Qp0,-2.42e-7,1.1313,-1.88e-7,1.10012,-1.25e-7,1.04352,

-0.63e-7,1.03488,0,0.999042,0.63e-7,0.978774,1.25e-7,0.957982,1.88e-7,0.944811,

2.42e-7,0.931639,2.51e-7,0.929336,3.13e-7,0.913895,3.76e-7,0.903442,5.01e-7,

0.880483}

*Solution of Qi

.func Qi(V)=min((a(Qp)+(b(Qp)*exp(-c(Qp)*pow(d(Qp),f(Qp))))),
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(a(Qp)+(b(Qp)*exp(-c(Qp)*pow(V,f(Qp))))))

*Solution of Phi

.func Phi(V)={pow(pow(Qi(V)+Qp,2)-Ndfac*V,2)/(4*NdFac*pow(Qi(V)+Qp,2))}

*Solution of the Richardson-Dushman equation

.func Jdc(V)={Rich*pow(T,2)*exp(-(E_f+Phi(V))/(kB*T))*(1-exp(-V/(kB*T)))}

*Grain Boundary Equivalent Electrical Circuit

R1 1 3 R=R_G/2 *Grain Resistance

R2 3 4 R=V(3,4)/(Area*10000*Jdc(V(3,4))) *Non-Linear Resistance

R3 3 4 R=1000/Area *Leakage Resistance

R4 4 2 R=R_G/2 *Grain Resistance

.ENDS

A.5.2 Netlist Excerpt for the Equivalent Electrical Network of a Varistor

The following is an excerpt from an LTspice netlist for a polycrystalline varistor in this

framework. It requires the set of sub-circuit files produced by the script in Appendix A.4.

Varistor

v1 potential 0 dc 100 *Voltage range to simulate for.

X1 1 164 BOUND1 Area=1.149453408015e-12 *Netlist connections describing the

X2 1 224 BOUND2 Area=1.754505076673e-12 *equivalent electrical network.

X3 1 311 BOUND3 Area=1.436298962316e-11

*.

*. The netlist is very long and is skipped here for brevity.

*.

X1743 563 0 BOUND0 Area=3.826753000000e-12

X1744 potential 565 BOUND0 Area=9.075624000000e-12

X1745 potential 573 BOUND0 Area=8.915800000000e-14

.options plotwinsize=0

.options numdgt=7

.options gmin=1e-60

.options itl1 1000

.options itl2 1000
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.dc dec v1 0.1 100 *This option steps the voltage logarithmically, which allows

for a finer resolution of the IV-curve at low voltages.

*.dc v1 0 100 0.5 *This option steps the voltage linearly, which is necessary

for the tool that produces the current flow maps.

.inc BOUND0.lib *List of sub-circuit files to include.

.inc BOUND1.lib

.inc BOUND2.lib

*.

*. The list of sub-circuits is very long and is skipped here for brevity.

*.

.inc BOUND1743.lib

.inc BOUND1744.lib

.inc BOUND1745.lib

.end

A.5.3 Sub-Circuit for the External Electrical Contacts

The electrical contacts at the top and bottom of the sample are defined by the sub-circuit BOUND0,

which appears below.

.SUBCKT BOUND0 1 2

.param R_G={1/(2*pow(Area,0.5))}

R1 1 2 R=R_G/2 *Grain Resistance

.ENDS

A.5.4 Sub-Circuit for an Ohmic Grain Boundary

The Ohmic grain boundaries described in Section 5.2 are defined by the sub-circuit BOUNDOHMIC,

which appears below.

.SUBCKT BOUNDOHMIC 1 2

.param R_G={1/(2*pow(Area,0.5))}

R1 1 3 R=R_G/2 *Grain Resistance

R2 3 4 R=1/(Area*1000) *Ohmic Resistance

R3 4 2 R=R_G/2 *Grain Resistance

.ENDS
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A.6 Transformation Matrices

The matrix R represents the relationship between two coordinate systems, where RR is obtained

by multiplying the matrices for the three basic rotations around each of the Cartesian coordinate

axes [116]. This appears as follows,

(A.6.1)

RR = Rz(ψ)R y(θ )Rx(φ)

=







cosψ − sinψ 0

sinψ cosψ 0

0 0 1













cosθ 0 − sinθ

0 1 0

sinθ 0 cosθ













1 0 0

0 cosφ − sinφ

0 sinφ cosφ







=







cosψ cosθ cosψ sinθ sinφ − sinψ cosφ cosψ sinθ cosφ + sinψ sinφ

sinψ cosθ sinψ sinθ sinφ + cosψ cosφ sinα sinθ cosφ − cosα sinφ

− sinθ cosθ sinφ cosθ cosφ







=







l1 ml n1

l2 m2 n2

l3 m3 n3






,

where φ is the Euler angle rotating about the x-axis, θ is the Euler angle rotating about the

y-axis, and ψ is the Euler angle rotating about the z-axis.

In order to apply a coordinate transformation to fourth rank tensors, the transformation

matrix, αT , is required [116], where

αT =























l2
1 m2

1 n2
1 2m1n1 2n1l1 2l1m1

l2
2 m2

2 n2
2 2m2n2 2n2l2 2l2m2

l2
3 m2

3 n2
3 2m3n3 2n3l3 2l3m3

l2l3 m2m3 n2n3 m2n3 +m3n2 n2l3 + n3l2 m2l3 +m3l2
l3l1 m3m1 n3n1 m3n1 +m1n3 n3l1 + n1l3 m3l1 +m1l3
l1l2 m1m2 n1n2 m1n2 +m2n1 n1l2 + n2l1 m1l2 +m2l1























. (A.6.2)

When a fourth rank tensor is expressed as a matrix in Voigt notation, it is transformed by

CT = αT Cα−1
T , (A.6.3)

where CT is the transformed matrix, αT is the transformation matrix, C is the matrix to be

transformed and α−1
T is the inverse of the transformation matrix.
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Rl leakage resistance

RR rotation matrix for a given set of Euler angles

RV resistance of the sample in the 4-point sensing method

RV resistance of the contacts attached to the voltmeter in the 4-point sensing method

Rx rotation matrix about the x-axis

R y rotation matrix about the y-axis

Rz rotation matrix about the z-axis

S deformation or strain

T temperature

V voltage

VB Fifth Q i fitting parameter

Vc critical breakdown voltage

x lν width of the left depletion layer

x rν width of the right depletion layer

111



Greek Symbols

α non-linearity coefficient

αT tensor transformation matrix

β coefficient of thermal expansion

γ total charge in the deep trap states

δ Dirac delta function

εν deep trap energies relative to the conduction band

εξ bulk Fermi level relative to the conduction band

ε permittivity

εr relative permittivity of the material

ε0 permittivity of vacuum

θ Euler angle about the y-axis

Θ Heaviside step function

λg electrical conductivity of bulk ZnO

λl specific leakage conductivity of the grain boundary

λo specific conductivity of the Ohmic grain boundary surface

ξi quasi Fermi level of the interface

ξn
i Fermi level of the neutral interface

ρ(x) charge distribution

ρP polarisation space charge density

σ mechanical stress

φ Euler angle about the x-axis

φ(x) potential

φB potential barrier height

ψ Euler angle about the z-axis
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“There is a way out of every box,

a solution to every puzzle;

it’s just a matter of finding it.”

— Captain Jean-Luc Picard
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