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Abstract 

A modified computational scheme of the stochastic perturbation 

finite element method (SPFEM) is developed for structures with 

low-level uncertainties. The proposed scheme can provide second-

order estimates of the mean and variance without differentiating 

the system matrices with respect to the random variables. When 

the proposed scheme is used, it involves finite analyses of determi-

nistic systems. In the case of one random variable with a symme-

tric probability density function, the proposed computational 

scheme can even provide a result with fifth-order accuracy. Com-

pared with the traditional computational scheme of SPFEM, the 

proposed scheme is more convenient for numerical implementa-

tion. Four numerical examples demonstrate that the proposed 

scheme can be used in linear or nonlinear structures with correla-

ted or uncorrelated random variables. 

 

Keywords 

Stochastic finite element method, Uncertain structures, Perturba-

tion, Computational scheme. 

 
 

A Modified Computational Scheme for the Stochastic 

Perturbation Finite Element Method 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 INTRODUCTION 

The responses of actual structures depend on many uncertain parameters, such as unpredictable 

external excitations, random material parameters, random geometric properties, etc. Analyses of 

the influences of these uncertain parameters on actual structures have become an important 

topic in the field of computational mechanics and have attracted the attention of many resear-

chers.  

Many methods have currently been developed for analyzing structures with uncertain para-

meters; Stefanou (2009). Falsone and Ferro (2007) developed a method that can provide explicit 

relationships between the system responses and the random variables defining the uncertain 

parameters. Kamiński (2010) proposed a perturbation-based stochastic finite element method 
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using the polynomial response function. Kim and Inoue (2004) suggested a spectral stochastic 

element-free Galerkin method for problems involving the random material property. Li and 

Chen (2004) presented a method based on the generalized probability density evolution. Lin et 

al. (2001) proposed the pseudo-excitation method for the frequency domain analysis of structures 

with random excitations. Deb et al. (2001) developed a variational formulation for the elliptic 

boundary-value problems with stochastic input data. Their method allows numerical treatment 

by the finite element method. Ganapathysubramanian and Zabaras (2007) proposed the sparse 

grid method (SGM) for stochastic problems. Rahman (2008) presented a new polynomial dimen-

sional decomposition method for solving stochastic problems.  

Among the proposed stochastic approaches, the Monte Carlo simulation (MCS) may be the 

most widely used method; Papadrakakis and Kotsopulos (1999), Székely and Schuёller (2001), 

Johnson et al. (2003), Lei and Qiu (2000), Boyaval (2012). MCS is a type of statistical approach 

based on the law of large numbers. It is applicable to any stochastic system. However, this met-

hod is often time-consuming because the errors of the MCS results depend on the size of the 

sample set. The quais-Monte Carlo method(QMC) is based on the discrepancy of point sets and 

is often more efficient than the MCS; Holtz (2011). The spectral stochastic finite element met-

hod (SSFEM) is another type of stochastic method, in which the random field is usually discre-

tized using the Karhunen-Loève expansion and the structure’s nodal displacements are approxi-

mated using a polynomial chaos expansion; Sakata et al. (2011), Xiu and Karniadakis (2002). 

The computational cost of the SSFEM is smaller than that of the MCS. However, the computa-

tional effort increases exponentially with the order and number of uncertain quantities involved, 

which places some practical restrictions on this method. For a system with low-level uncertain-

ties, the stochastic perturbation finite element method (SPFEM) was proposed, which can pro-

vide the second-order estimates of the mean and covariance; Liu et al. (1986), Van den 

Nieuwenhof and Coyette (2003), Kamiński (2013). If the coefficient of variation is too large (e.g., 

larger than 20 percent), the results of the SPFEM are usually unacceptable. To overcome this 

defect, the -thn  order stochastic perturbation technique was developed with the help of a sym-

bolic computer program to extend the applied range of the SPFEM; Kamiński (2007), Kamiński 

(2006). For the case of a large coefficient of variation, a sub-interval perturbation technique was 

proposed; Xia and Yu (2012). In order to further reduce the computational effort of the SPFEM, 

a transformation technique was combined with the SPFEM to analyze the structure with corre-

lated random variables ; Liu et al. (1986).  

Although there are many limits to the SPFEM, it is still widely used for two reasons; 

Kamiński (2010), Kamiński (2013), Kamiński (2011), Wang and Yao (2010), Sakata et al. 

(2011), Kamiński and Szafran (2009), Chang et al. (2008). The first reason is that the SPFEM is 

often more efficient than other stochastic approaches, and the second one is that for a real engi-

neering structure with random material and geometric parameters, the coefficients of variation 

of these random parameters are usually small. However, compared with the MCS, the traditional 

computational scheme of the SPFEM is too complicated because it requires computing the deri-

vatives of the system matrices (e.g., the stiffness and mass matrices) with respect to the random 

variables. Generally, the traditional computational scheme depends on the type of problem that 

one takes into account, and each type of problem has its own computational scheme.  
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In this paper, a unified computational scheme of the SPFEM, which can provide the second-

order estimates of the mean and covariance matrices of the system responses, is developed. In 

the proposed computational scheme, the derivatives of the system matrices with respect to the 

random variables are not required. Compared with the original computational scheme, the modi-

fied scheme is more convenient for complicated problems, and the computational procedures are 

the same for different types of random problems. In the case of one random variable with a 

symmetric probability density function (PDF), the proposed computational scheme can even 

provide the result with fifth-order accuracy.  

In the next section, the basic theory of the SPFEM is outlined. In Section 3, the proposed 

computational scheme of the SPFEM is addressed in detail. In Section 4, four numerical exam-

ples are presented. The numerical results are compared with the results obtained using the MCS 

and the original computational scheme of the SPFEM. 

 
2 THE STOCHASTIC PERTURBATION FINITE ELEMENT METHOD 

In this section, the basic theory of the SPFEM is briefly introduced. More information about the 

SPFEM can be found in works of Liu et al. (1986), Wu and Zhong (2013). Suppose that the 

model of the random static system produced by the finite element method can be written as 
 

 ( ) ( ) =K ε u ε f  (1) 
 

where ( )1 2, , , , ,i qε ε ε ε=ε ⋯ ⋯  is a zero-mean random vector, in which 
i

ε  is the random variable 

and q  is the number of the random variables.
 

( )K ε
 
is the stochastic stiffness matrix, and ( )u ε  

and f  are the displacement and load vectors, respectively.  

Using the SPFEM for Eq. (1) involves inevitably the partial derivations of random quanti-

ties with respect to random variables. For convenience, some notations are introduced first. If 

the random quantity ( )x ε  is function of the zero-mean random vector ε , i.e., ( )E =ε 0 , then 
 

 ( ) ( )
( )

( )

2

0 1, 2,
2

2

,

, ,
1

,
2

i j

i ij

i

i

x
i j

x
x x x x

x
i j

ε ε

ε

ε

=

=
=

=

∂
≠

∂ ∂∂ 
= = = 

∂ ∂
= ∂

ε 0

ε 0

ε 0

ε 0

ε

ε
ε

ε
 (2) 

 

where 
0
x  denotes ( )x ε  evaluated at =ε 0 , 1,ix  denotes the partial derivate of ( )x ε  with respect 

to 
i

ε  evaluated at =ε 0 , and 2,ijx  denotes the mixed partial derivate of ( )x ε  with respect to 
i

ε  

and jε  (in the case of i j≠ ) or half of the second-order partial derivate of ( )x ε  with respect to 

i
ε  (in the case of i j= ) evaluated at =ε 0 .  

The Taylor series expansion of the stochastic stiffness matrix ( )K ε  can be expressed as  
 

 ( ) ( )30 1, 2,

1 1

q q q

i i ij i j i

i i j i

Oε ε ε ε
= = =

= + + +∑ ∑∑K ε K K K  (3) 



F. Wu et al. / A Modified Computational Scheme for The Stochastic Perturbation Finite Element Method     2483 

Latin American Journal of Solids and Structures 12 (2015) 2480-2505 

 

where 
0
K , 1,iK  and 2,ijK  are defined by Eq. (2), and

 
( )niO ε  represents the truncated remainder 

which satisfies the following condition: 
 

 
( )
10

lim 0
i

n

i

n

i

O

ε

ε

ε −→
= . (4) 

 

The displacement vector u  can also be expressed as 
 

 ( ) ( )30 1, 2,

1 1

q q q

i i ij i j i

i i j i

Oε ε ε ε
= = =

= + + +∑ ∑∑u ε u u u  (5) 

 

where 
0
u , 1,iu  and 2,iju  are defined by Eq. (2). Substituting Eqs. (3)-(5) into Eq. (1) and equa-

ting equal terms gives 
 

 
0 0

=K u f , (6) 

 

 0 1, 1, 0i i= −K u K u , (7) 

and 
 

 
( )0 2, 2, 0 1, 1, 1, 1,

0 2, 1, 1, 2, 0

,ij ij j i i j

ii i i ii

j i= − − − <

= − −

K u K u K u K u

K u K u K u
. (8) 

 

In terms of Eq. (5), we have 
 

 

( ) ( )

( )

T T T T

0 0 0 1, 1, 0

1 1

T T T 3

0 2, 2, 0 1, 1,

1 1 1 1

q q

i i i i

i i

q q q q q q

ij i j ij i j i j i j i

i j i i j i i j

O

ε ε

ε ε ε ε εε ε

= =

= = = = = =

= + +

+ + + +

∑ ∑

∑∑ ∑∑ ∑∑

u ε u ε u u u u u u

u u u u u u

. (9) 

 

Using Eqs. (5) and (9), the mean vector and covariance matrices of the displacement vector can 

then be written as:  
 

 

( )( ) ( )

( )

0 2,

1

3

0 2,

1

cov ,
q q

ij i j

i j i

q q

ij i j ij

i j i

E

O

ε ε

σ σ ρ

= =

∞
= =

= + +

= + +

∑∑

∑∑

u ε u u

u u σ

⋯

 (10) 

and 

 

( ) ( )( ) ( )

( )

T

1, 1,

1 1

3T

1, 1,

1 1

cov , cov ,
q q

i j i j

i j

q q

i j i j ij

i j

O

ε ε

σ σ ρ

= =

∞
= =

= +

= +

∑∑

∑∑

u ε u ε u u

u u σ

⋯

 (11) 

where 

 ( ) ( )1 2cov , , , , , , ,i j i j ij i qε ε σ σ ρ σ σ σ σ= =σ ⋯ ⋯ . 
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i
σ  is the standard deviation of 

i
ε , and σ  is a vector consisting of 

i
σ . 

∞
σ  is the infinite norm 

of the vector σ . ijρ  is the correlation coefficient of the random variables 
i

ε  and jε . Eq. (11) is 

the appropriate truncation of ( ) ( )( )cov ,u ε u ε  in the sense of second-order accuracy and has 

been introduced in many reports; Stefanou (2009), Liu et al. (1986), Falsone and Impollonia 

(2002). If the random variables are uncorrelated, i.e., ( ) 0i jE ε ε = , Eq. (10) and Eq. (11) can be 

simplified as 
 

 ( )( ) ( )32

0 2,

1

q

ii i

i

E Oσ
∞

=

= + +∑u ε u u σ  (12) 

and 
 

 ( ) ( )( ) ( )3T 2

1, 1,

1

cov ,
q

i i i

i

Oσ
∞

=

= +∑u ε u ε u u σ , (13) 

 

respectively. Equations (6)-(8) show that when the random variables are correlated, the compu-

tations of the 
0
u , 1,iu  and 2,iju  vectors involve 

2 3
1

2 2

q q
+ +  deterministic equations. However, Eqs. 

(12) and (13) show that when the random variables are uncorrelated, only 
0
u , 1,iu and 2,iiu  are 

needed. Therefore, only 2 1q +  deterministic equations need to be computed in this case. For the 

case of correlated random variables, Liu et al. (1986) proposed a technique that can transform 

correlated random variables into uncorrelated random variables. 

Although the SPFEM is widely applied to systems with low-level uncertainties, the compu-

tational scheme of this method is too complex because it requires the derivatives of the system 

matrices with respect to random variables, e.g., 1,iK  and 2,ijK , which may be difficult to obtain 

for some complex systems.  

 

3 THE MODIFIED COMPUTATIONAL SCHEME OF THE SPFEM 

In the original computational scheme of the SPFEM, which involves computing the derivate 

matrices (i.e., 1,iK  and 2,ijK ) of the system matrix ( )K ε  with respect to the random vector ε  

evaluated at ( )E ε , Eqs. (5)-(7) are used to compute the 
0
u , 1,iu  

and 2,iju  vectors. However, the 

derivate matrices are difficult to compute in some cases. To avoid differentiating the system 

matrices, a modified computational scheme is developed in this section. The modified scheme 

uses another technique, which is based on the second-order estimations of the mean and cova-

riance matrices derived from the SPFEM (i.e., Eqs. (10)-(11)), rather than Eqs. (6)-(8), to calcu-

late the 1,i iσu  and 2,ij i jσ σu
 
vectors directly. The proposed computational scheme is developed 

with the help of the static FEM model, but it can be extended to other problems without any 

difficulty. 

Because the case of uncorrelated random variables is often encountered, it is discussed first 

in Subsection 3.1. The special case in which the random variables are uncorrelated and have a 

symmetric joint PDF is addressed in Subsection 3.2. The case of correlated random variables is 
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addressed in Subsection 3.3. The computational scheme presented in the previous three subsec-

tions is developed in terms of the static FEM model and extended to other problems in Subsec-

tion 3.4.  

 

3.1. The case of Uncorrelated Random Variables 

When the SPFEM is used, the random variables 
i

ε  are treated naturally as small quantities (i.e., 

1iε ≪ ), and the displacement vector is expressed as a Taylor series, i.e., Eq. (5), which contains 

the terms
 1,i iεu  and 2,ij i jε εu . However, it is worth noting in terms of Eqs. (10)-(13) that 1,i iσu  

and 2,ij i jσ σu  are needed rather than 1,i iεu  and 2,ij i jε εu , and iε  is an uncertain variable. Hence, 

we can focus our attention on computing 1,i iσu  and 2,ij i jσ σu . 

For the case of uncorrelated random variables, the third-order estimates of the mean and 

covariance matrices of the displacement vector can be written as  

 

 

( )( ) ( )

( ) ( )( )

( )

42

0 2, 3,

1 1

T 2

1, 1,

1

4T T

1, 2, 2, 1,

1 1 1 1

cov ,

q q q q

ii i ijk i j k ijk

i i j i k j

q

i i i

i

q q q q q q

k k ij i j ijk ij i j k k ijk

k i j i i j i k

E O

O

σ σ σ σ ρ

σ

σ σ σ ρ σ σ σ ρ

∞
= = = =

=

∞
= = = = = =

= + + +

=

+ + +

∑ ∑∑∑

∑

∑∑∑ ∑∑∑

u ε u u u σ

u ε u ε u u

u u u u σ

 (14) 

 

where  

 
( )i j k

ijk

i j k

E ε ε ε
ρ

σ σ σ
= . (15) 

 

If we replace the random vector ε  in Eq. (5) with a deterministic vector sa  which is defined as 
 

 
1

0,  ,  0 ,  ,  0,  ,  0s s

s

σ
−

 
=   
 

a ⋯ ⋯
�����

, (16) 

 

then we have  
 

 ( ) ( )42 3

0 1, 2, 3,s s s ss s sss s Oσ σ σ
∞

= + + + +u a u u u u σ . (17) 

 

Replacing the random vector ε  in Eq. (5) with s−a  yields 
 

 ( ) ( )42 3

0 1, 2, 3,s s s ss s sss s Oσ σ σ
∞

− = − + − +u a u u u u σ . (18) 

 

Using Eqs. (17) and (18), it is easy to obtain the following two equations: 
 

 ( )42

2,
2

s
ss s

Oσ
∞

= +
z

u σ  (19) 

and 
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 ( )31,
2

s
s s

Oσ
∞

= +
w

u σ  (20) 

where 

 
( ) ( )
( ) ( )

02s s s

s s s

= + − −

= − −

z u a u a u

w u a u a
. (21) 

Note that  

 ( ) ( )1 2
,s sO O

∞ ∞
= =w σ z σ . (22) 

 

The combination of Eqs. (19), (20) and (22) yields 
 

 ( )4T 2 T

1, 1,

1

4
s s s s s

Oσ
∞

= +u u w w σ  (23) 

 

and 

 ( )5T 3 T

1, 2,

1

4
s ss s s s

Oσ
∞

= +u u w z σ . (24) 

 

Substituting Eqs. (19), (20), (23) and (24) into Eq. (14), the mean and covariance matrices of 

the displacement vector can be written as 
 

 ( )( ) ( )30

1

1

2

q

s

s

E O
∞

=

= + +∑u ε u z σ  (25) 

and 
 

 

( ) ( )( )

( )

T T T

1 1 1

4T T

1, 2, 2, 1,

1 1 1 1

1 1 1
cov ,

4 4 4

q q q

s s s s sss s s sss

s s k

q q q q q q

k k ij i j ijk ij i j k k ijk

k i j i i j i k
k i k i

O

ρ ρ

σ σ σ ρ σ σ σ ρ

= = =

∞
= = = = = =
≠ ≠

= + +

+ + +

∑ ∑ ∑

∑∑∑ ∑∑∑

u ε u ε w w w z z w

u u u u σ

. (26) 

 

Noting that ( )4T

s s O
∞

=z z σ , Eq. (26) can be rewritten as  

 

 ( ) ( )( ) ( ) ( ) ( )T 3

1

1
cov ,

4

q

s sss s s sss s

s

Oρ ρ
∞

=

= + + +∑u ε u ε w z w z σ . (27) 

 

Equations (25) and (27) show that the proposed estimates of the mean and covariance matrices 

of the displacement vector need only the vectors 
0
u , 

s
w  and 

s
z , in which 

0
u  can be obtained 

using Eq. (6), and in terms of Eq. (21), the computations of the vectors 
s
w  and 

s
z  involve only 

the displacement vectors ( )su a  and ( )s−u a . According to the form of 
s
a , i.e., Eq. (16), ( )su a  

and ( )s−u a
 
can be computed by the following equation: 

 

 ( ) ( )0, ,0, ,0, ,0 , 1,2, ,s s s qσ± ± = =K u a f⋯ ⋯ ⋯ . (28) 
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The computations of the vectors 
0
u , ( )su a  and ( )s−u a  require solving 2 1q +  deterministic 

equations. The derivative matrices of the system matrix ( )K ε
 
with respect to the random vec-

tor ε , which are difficult to compute in some problems, do not need to be computed in the pro-

posed method. Therefore, compared with the original scheme of SPFEM, the proposed scheme is 

more convenient and the computational efforts are the same. 

It is worth noting that the proposed estimate of the covariance matrix given by Eq. (27) 

contains the third-order terms T 3

1, 2,s ss s sssσ ρu u  and T 3

2, 1,ss s s sssσ ρu u . These third-order terms are not 

contained in the estimate given by the original computational scheme, i.e., Eq. (13). Hence, the 

proposed estimate is more accurate than the original one. 

Moreover, if the random variables are not only uncorrelated but also independent, i.e., 

0ijkρ ≠  holds if and only if i j k= = . In this case, Eq. (26) can be rewritten as 
 

 ( ) ( )( ) ( ) ( ) ( )T 4

1

1
cov ,

4

q

s sss s s sss s

s

Oρ ρ
∞

=

= + + +∑u ε u ε w z w z σ . (29) 

 

Therefore, if the random variables are not only uncorrelated but also independent, Eq. (29) gives 

a third-order estimate of the covariance matrix that is more accurate than the estimate given by 

the original computational scheme of the SPFEM.  

When the mean and covariance matrices of the random variables are the only known infor-

mation, the terms multiplied by 
sss

ρ  in Eq. (27) can be omitted, and the covariance matrix of 

the displacement vector can be written as 
 

 ( ) ( )( ) ( )3T

1

1
cov ,

4

q

s s

s

O
∞

=

= +∑u ε u ε w w σ . (30) 

 

It can be shown that all second-order terms are retained in Eq. (30), so the accuracy of Eq. (30) 

is the same as that of the estimate given by the original computational scheme of Eq. (13).  

Sometimes, it is necessary to evaluate the statistical moments of some other response vec-

tors, e.g., the stress or strain vector, which can be obtained by using the same approach propo-

sed for the displacement vector. Generally, the other response vector is a function of the displa-

cement u  and can be denoted by 

 ( ) ( )( )=F ε g u ε . (31) 

 

Therefore, F  is also a function of ε  and can be expanded via the Taylor series as 
 

 ( ) ( )30 1, 2,

1 1

q q q

i i ij i j i

i i j i

Oε ε ε ε
= = =

= + + +∑ ∑∑F ε F F F  (32) 

 

where 
0
F , 1,iF  and 2,ijF  are defined by Eq. (2). 

The mean and covariance matrices of ( )F ε  can then be written as 
 

 ( )( ) ( )0 2,

1

cov ,
q q

ij i j

i j i

E ε ε
= =

= + +∑∑F ε F F ⋯  (33) 



2488    F. Wu et al. / A Modified Computational Scheme for The Stochastic Perturbation Finite Element Method  

Latin American Journal of Solids and Structures 12 (2015) 2480-2505 

 

and 

 ( ) ( )( ) ( )T

1, 1,

1 1

cov , cov ,
q q

i j i j

i j

ε ε
= =

= +∑∑F ε F ε F F ⋯ . (34) 

 

Using the same procedure for the estimate of the displacement given in this subsection, we have 
 

 

( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

3

0

1

T 3

1

1

2

1
cov ,

4

q

s

s

q

s s sss s s sss

s

E O

Oρ ρ

∞
=

∞
=

= + +

= + + +

∑

∑

F ε g u d σ

F ε F ε b d b d σ

 (35) 

where 

 
( )( ) ( )( ) ( )
( )( ) ( )( )

02s s s

s s s

= + − −

= − −

d g u a g u a g u

b g u a g u a
. (36) 

 
3.2. The Case that the Random Variables are Uncorrelated and Have a Symmetric Joint PDF 

When the random variables are uncorrelated and have a symmetric joint PDF, more higher-

order information can be retained in the estimates of the mean and covariance matrices. Using 

the properties of the symmetric joint PDF, we have 
 

 

( )

( ) ( )2 2

0

,

0, other

i j k

i k

i j k l

E

E i j k l
E

ε ε ε

ε ε
ε ε ε ε

=

 = =
= 



 (37) 

and 

 

( ) ( )
( ) ( )

( )
( ) ( ) ( )
( )

2 2 2 2

2 2

cov , =cov , 0

cov ,

,

cov , , ,

0, other

i j k i j k

i j k l i j k l

i k i k

i j k l i j

E

E E E i j k l

E i k j l i j

ε ε ε ε ε ε

ε ε ε ε ε ε ε ε

ε ε ε ε

ε ε ε ε ε ε

=

=

 − = =


= = = ≠



. (38) 

The fourth-order Taylor series expansion of the displacement vector can be written as 

 

 

( )

( )

0 1, 2,

1 1

5

3, 4,

1 1

q q q

i i ij i j

i i j i

q q q q q q q

ijk i j k ijkl i j k l

i j i k j i j i k j l k

O

ε ε ε

ε ε ε ε ε ε ε

= = =

∞
= = = = = = =

= + +

+ + +

∑ ∑∑

∑∑∑ ∑∑∑∑

u ε u u u

u u ε

. (39) 

 

Combing Eqs. (37) and (38) with Eq. (39), the fourth-order estimates of the mean and covarian-

ce matrices of the displacement vector can be written as 
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( )( ) ( )

( ) ( )( ) ( )

( )

52 4 2 2

0 2, 4, 4,

1 1 1 1

T 2 T 4 4 T

1, 1, 3, 1, 1, 3,

1

T 2 2 T 2

2, 2, 1, 3,

1 1

cov ,

1

q q q q

ii i iiii i iiii iijj i j iijj

i i i j i

q

i i i iii i iiii i i i iii iiii

i

q q

ii jj i j iijj iijj i ijj i j

i j

E Oσ σ ρ σ σ ρ

σ ρ σ σ ρ

σ σ ρ ρ σ σ

∞
= = = = +

=

= =

= + + + +

= + +

+ − +

∑ ∑ ∑ ∑

∑

∑∑

u ε u u u u σ

u ε u ε u u u u u u

u u u u( )

( ) ( )

2 T 2 2

3, 1,

1 1

5T 2 2 T 2 2 T 2 2

1, 3, 3, 1, 2, 2,

1 1

q q

ijj i i j

i j i

q q

iijj j iij i j iij j i j ij ij i j

i j i

O

σ σ

ρ σ σ σ σ σ σ

= = +

∞
= = +

+

+ + + +

∑ ∑

∑ ∑

u u

u u u u u u σ

 (40) 

 

where 

 
( )i j k l

ijkl

i j k l

E ε ε ε ε
ρ

σ σ σ σ
= . (41) 

 

If we replace the random vector ε  in Eq. (39) with a deterministic vector 
s
b , which is defined as 

 
1

0,  ,  0 ,  ,  0,  ,  0s ssss s

s

ρ σ
−

 
=   

 
b ⋯ ⋯

�����
 (42) 

we have  

 ( ) ( )
1 3

52 3 2 42 2
0 1, 2, 3, 4,s s ssss s ss ssss s sss ssss s ssss ssss s

Oρ σ ρ σ ρ σ ρ σ
∞

= + + + + +u b u u u u u σ . (43) 

 

Replacing ε  in Eq. (39) with a deterministic vector 
s

−b  gives 
 

 ( ) ( )
1 3

52 3 2 42 2
0 1, 2, 3, 4,s s ssss s ss ssss s sss ssss s ssss ssss s

Oρ σ ρ σ ρ σ ρ σ
∞

− = − + − + +u b u u u u u σ . (44) 

 

Adding Eq. (43) and Eq. (44) and subtracting Eq. (44) from Eq. (43), respectively, will yield the 

following equations 
 

 ( )6 2 4

2, 4,
2

s
ss s ssss ssss s

ssss

O σ ρ σ
ρ ∞

+ = +
z

σ u u  (45) 

and 
 

 ( )5 3

1, 3,
2

s
s s sss ssss s

ssss

O σ ρ σ
ρ ∞

+ = +
w

σ u u  (46) 

where 

 

 
( ) ( )
( ) ( )

02s s s

s s s

= + − −

= − −

z u b u b u

w u b u b
. (47) 

 

The following equations are then obtained in terms of Eqs. (45), (21) and (46) 
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( )

( )

T

6T 4

2, 2,

T

6T 2 T 4 T 4

1, 1, 1, 3, 3, 1,

2 2

2 2

s s
ss ss s

ssss ssss

s s
s s s s sss ssss s sss s ssss s

ssss ssss

O

O

σ
ρ ρ

σ ρ σ ρ σ
ρ ρ

∞

∞

   
= +   

   

   
= + + +      

   

z z
u u σ

w w
u u u u u u σ

.   (48) 

 

Substituting Eqs. (45), (46) and (48) into Eq. (40), the mean and covariance matrices can be 

written as 

 ( )( ) ( )40

1

1

2

q

s

s ssss

E O
ρ ∞

=

= + +∑
z

u ε u σ  (49) 

 

and 

 

 ( ) ( )( ) [ ] ( )
T T

4

2
1

1
cov , 1

4

q

s s s s
ssss

s ssss ssss

Oρ
ρ ρ ∞

=

 
= + − + 

 
∑

w w z z
u ε u ε σ . (50) 

 

Equations (49) and (50) show that the proposed estimates of the mean and covariance matrices 

of the displacement vector need only the vectors 
0
u , 

s
w  and 

s
z , in which 

0
u  can be obtained by 

solving Eq. (6). In terms of Eq.(47), the computations of the vectors 
s
w  and 

s
z  involve only the 

displacement vectors ( )s±u b  which can be computed by the following equation 

 

 ( ) ( )0, ,0, ,0, ., 0 , 1
ssss s s

s qρ σ± ± = ≤ ≤K u b f⋯ ⋯  (51) 

 

The computations of the vectors 
0
u , ( )su b  and ( )s−u b  require solving 2 1q +  deterministic 

equations. Hence, the computational effort of the proposed computational scheme is the same as 

that of the original scheme.  

Equation (40) shows that the fourth-order estimates of the mean and covariance matrices of 

the displacement vector include the coupling terms 2 2

4,iijj i j iijjσ σ ρu  and the uncoupling terms 
4

4,ssss ssss sρ σu , T 4

2, 2,ss ss sσu u , T 4

1, 3,s sss ssss sρ σu u  and T 4

3, 1,sss s ssss sρ σu u . Comparing Eqs. (45)-(48) with Eqs. 

(49) and (50) shows that the estimates of the mean and covariance matrices of the displacement 

vector include all the fourth-order uncoupling terms. However, these terms are not included in 

the estimates given by the original computational scheme of the SPFEM. Hence, the modified 

computational scheme is more accurate than the original one. 

As shown above, for the case of multi random variables, Eqs. (49) and (50) give third-order 

estimates of the mean and covariance matrices. However, if there is only one random variable, 

Eqs. (49) and (50) can provide more accurate estimates of the mean and covariance matrices. In 

this case, we have 

 

 ( ) ( )4 2 3
cov , cov , 0ε ε ε ε= = . (52) 
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Thus, Eq. (40) can be rewritten as 

 

 

( )( ) ( )
( ) ( )( )

[ ] ( )

2 4 6

0 2,11 1 4,1111 1 1111 1

T 2 T 4

1,1 1,1 1 3,111 1,1 1111 1

4 T T 4 6

1 1,1 3,111 1111 2,11 2,11 1 1111 1

cov ,

1

E O

O

σ σ ρ σ

σ ρ σ

σ ρ σ ρ σ

= + + +

= +

+ + − +

u ε u u u

u ε u ε u u u u

u u u u

. (53) 

 

Substituting Eqs. (45), (46) and (48) into Eq. (53) yields 

 

 

( )( ) ( )

( ) ( )( ) [ ] ( )

61
0

1111

T T
61 1 1 1

11112

1111 1111

1

2

1
cov , 1

4 4

E O

O

ρ

ρ
ρ ρ

∞

∞

= + +

= + − +

z
u ε u σ

w w z z
u ε u ε σ

. (54) 

 

Equation (54) shows that if there is only one random variable, the fifth-order accuracy scheme 

can be given for the estimates of the mean and covariance matrices.  

 
3.3. The Case of Ccorrelated Random Variables 

In Subsections 3.1 and 3.2, the case of uncorrelated random variables is addressed in detail. 

When the components in the random vector ε  are correlated, the covariance matrix ( )cov ,ε ε  is 

usually a symmetric positive definite matrix rather than a diagonal matrix. Liu et al. (1986) 

once proposed a transformation technique to simplify the computational scheme of the SPFEM. 

By using the transformation technique, the correlated variables can be transformed into a set of 

uncorrelated variables. This transformation technique can also be combined with the methods 

proposed in the previous two subsections to address the problems involving correlated random 

variables.  

The transformation technique involves the eigenvalues of ( )cov ,ε ε , defined by the follo-

wing equations 

 

 ( ) Tcov , ,= =ε ε Φ ΦΛ Φ Φ I  (55) 
 

where Φ  is the eigenvector matrix of ( )cov ,ε ε , Λ  is a diagonal matrix whose diagonal elements 

are the eigenvalues of ( )cov ,ε ε , and I  is a unit matrix. Let 

 

 T=b Φ ε , (56) 
 

substituting Eq. (56) into Eq. (55) gives 

 

 ( ) ( ) ( )T, , cov , cov ,E= = = =ε Φb b 0 b b Φ ε ε Φ Λ . (57) 
 

Equation (57) shows that the covariance matrix of b  is diagonal, which implies that the random 

vector b  can be viewed as an uncorrelated random vector. 

Once the random vector b  is obtained, the computational schemes presented in the pre-

vious two subsections can be applied. Generally, the computational scheme developed in Subsec-
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tion 3.1 could be used in the case of random variables with a symmetric or asymmetric joint 

PDF. Let the joint PDF of ε  and b  be defined by ( )p ε  and ( )g b , respectively. If the joint 

PDF ( )p ε  is symmetric, the joint PDF ( ) ( )T
g p=b Φ b

 
of the random vector b  satisfies 

( ) ( )g g= −b b . Therefore, the joint PDF of the random vector b  is symmetric, and the compu-

tational scheme addressed in Subsection 3.2 can be used.  

The expressions of 
sss

ρ  and 
ssss

ρ  for the random vector b  can be written as 

 

 
( )

( )

3

32
1

2 4

1

d d

d d

sss s s q

ssss s s q

b g b b

b g b b

ρ

ρ

+∞ +∞−

−∞ −∞

+∞ +∞−

−∞ −∞

= Λ

= Λ

∫ ∫

∫ ∫

b

b

⋯ ⋯

⋯ ⋯

 (58) 

 

where 
s

Λ  is the -ths  eigenvalue of the ( )cov ,ε ε
 
matrix. One can use numerical integration ap-

proaches to calculate Eq. (58), e.g., the MCS. However, if the joint PDF of ε  is a Gaussian 

function, 3
ssss

ρ = ; if the joint PDF of ε  is a uniform PDF, 9 5
ssss

ρ = . By transforming the ran-

dom vector ε  into b , only 2 1q +  deterministic equations need to be solved. Furthermore, the 

variables in the vector b  have small variance values can be omitted to further reduce the com-

putational effort. 

 
3.4. Analyses of Other Problems 

In Subsection 3.1, the static linear system was discussed. However, the computational scheme 

presented there can be applied to other problems, such as the nonlinear problem, the eigenvalue 

problem, and so on. Suppose that the problem can be expressed as 
 

 ( )( ), =L u ε ε 0  (59) 
 

where the operator L  depends on the problem considered. For example, for the statics linear 

system discussed in Subsection 3.1, L  is given by 

 

 ( )( ) ( ) ( ), = −L u ε ε K ε u ε f . (60) 
 

It is worth noting that the proposed computational schemes, i.e., Eqs. (25) and (27) or Eqs. (49) 

and (50), are developed based on Eqs. (10)-(13), which are the mean and covariance matrices of 

the displacement vector obtained using the SPFEM, rather than the FEM model (i.e., Eq. (1)) 

of a random static system. In other words, Eqs. (25) and (27) or Eqs. (49) and (50) are indepen-

dent of the problem. If the method proposed in this paper is employed to solve Eq. (59), the 

solution can be expanded as 

 

 ( ) ( )30 1, 2,

1 1

.
q q q

i i ij i j i

i i j i

Oε ε ε ε
= = =

= + + +∑ ∑∑u ε u u u  (61) 

 

This expansion is the same as Eq. (5), and the mean and covariance are also the same as Eqs. 

(12) and (13). Hence, the computational schemes presented in subsections 3.1 and 3.2 can also 

be used for the problem governed by Eq. (59). If the random variables are uncorrelated, Eqs. (25) 
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and (27) can be used to compute the mean and covariance matrices of the u  vector; if the unco-

rrelated random variables have a symmetric joint PDF, Eqs. (49) and (50) can be employed. In 

the former case, the term ( ) ( )0, , , ,0s sσ± = ±u a u ⋯ ⋯  can be obtained by solving the follow equa-

tion 

 

 ( )( ),0, , , ,0s sσ± ± =L u a 0⋯ ⋯ . (62) 

 

In the latter case, the term ( ) ( )0, , ,0
s ssss s

ρ σ± = ±u b u ⋯ ⋯
 
is obtained by solving the follow 

equation 

 

 ( )( ),0, , , ,0
s ssss s

ρ σ± ± =L u b 0⋯ ⋯ . (63) 

 

In summary, the modified computational scheme of SPFEM proposed in Section 3 can be ap-

plied to the problems that can be solved using the original scheme, whereas the modified scheme 

does not require the derivatives of the system matrices with respect to the random variables. In 

the original scheme of the SPFEM, the expressions of the mean and covariance matrices include 

the terms of
 1,iu  and 2,iju , which can be obtained using the perturbation technique. For a sto-

chastic problem, the original computational scheme of the SPFEM depends on the form of the 

perturbation solution of the problem considered. It is well known that using the perturbation 

technique for different types of problems, the forms (i.e., the terms of 1,iu  and 2,iju ) of the solu-

tions are always different. Hence, for the original scheme of the SPFEM, each type of problem 

has its own computational scheme that depends on the problem which one takes into account. 

For example, Eqs. (6)-(8) can be used for static problems, but they cannot be used to other pro-

blems, such as the eigenvalue problem. However, the proposed computational scheme does not 

require computing the terms of 1,iu  and 2,iju , which means that an unified computational proce-

dure is developed for random systems. 

 
4  NUMERICAL EXAMPLES 

4.1 The One-dimensional Elastic Bar 

Consider the simple structural mechanics problem which has been discussed by Kleiber and Hien 

(1992). Fig. 1 shows a cantilever bar of length l , cross-sectional area A  and Young’s modulus 

E  subjected to axial load Q .  

The Young’s modulus is selected as the uncertain parameter, which can be defined by 
 

 ( ) ( )1E Eε ε= + . (64) 
 

The problem is to evaluate the first two statistical moments for the displacement 

( )
( )1

Ql
q

E A
ε

ε
=

+
 at the free end of the bar. The mean and variance of the displacement ( )q ε  

obtained using the original stochastic perturbation method have been found in the work of 

Kleiber and Hien (1992) and may be shown as 
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 ( )( ) ( ) ( ) ( )( ) ( )
2 2

spm spm2 4 2

1
1 cov , , cov , cov ,

Ql Q l
E q E E q q E E

EA E E A
ε ε ε = + =  

. (65) 

 

where the subscript denotes the stochastic perturbation method. Assuming that the random 

variable [ ],a aε ∈ −  is a random variable with uniform probability density function, then 

 

 ( ) ( )( )
2

cov ,
3

a
E Eε ε = . (66) 

 

Substituting Eq. (66) into Eq. (65) gives 

 

 ( )( ) ( ) ( )( )
2 2 2 2

spm spm 2 2

3
, cov ,

3 3

Ql a Q l a
E q q q

EA E A
ε ε ε

+
= = . (67) 

 

The exact mean and variance of the displacement ( )q ε  may be written as 

 

 

( )( ) ( )

( ) ( )( )

exact

22 2

exact 2 2 2 2

1 1 1
d ln

2 2 1

1 1 1
cov , ln

1 4 1

a

a

Ql a
E q q

a EA a a

Q l a
q q

E A a a a

ε ε ε

ε ε

−

+ = =  − 

 + = −  − −   

∫
 (68) 

 

where the subscript denotes the exact solutions. Using the proposed method, the mean and va-

riance of the displacement can be written as 

 

 

( )( )

( ) ( )( )
( )

2

mspm 2

2 2 2 4

mspm 22 2 2

1 15 4
d

2 15 9

75 20
cov ,

9 5 3

a

a

Ql a
E q q

a EA a

Q l a a
q q

E A a

ε ε

ε ε

−

−
= =

−
+

=
−

∫
 (69) 

 

where the subscript denotes the modified stochastic perturbation method. 

 

l

EA Q

q

 
Figure 1: Cantilever bar subjected to axial force. 

 

The percentage errors of the results obtained using the original stochastic perturbation method 

and the proposed one are defined by 
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( )( ) ( )( )
( )( )

( )( ) ( )( )
( )( )

( ) ( )( ) ( ) ( )( )
( ) ( )( )

( ) ( )( ) ( ) ( )( )
( ) ( )( )

spm exact

m,spm

exact

mspm exact

m,mspm

exact

spm exact

c,spm

exact

mspm exact

c,mspm

exact

100%

100%

cov , cov ,
100%

cov ,

cov , cov ,
100%

cov ,

E q E q
e

E q

E q E q
e

E q

q q q q
e

q q

q q q q
e

q q

ε ε

ε

ε ε

ε

ε ε ε ε

ε ε

ε ε ε ε

ε ε

−
= ×

−
= ×

−
= ×

−
= ×

. (70) 

 

Figures 2(a) and 2(b) show the percentage errors of the means and variances, respectively. It can 

be shown that compared with the original stochastic perturbation method, the proposed modi-

fied one produces more precise evaluations for both means and variances. While 0.3a > , 

c,spm 10%e > . Hence the variances computed using the original stochastic perturbation method are 

unacceptable in the case of 0.3a > . However the modified stochastic perturbation method per-

forms well even in the case of 0.5a = . 

 

 
 

Figure 2: Percentage errors for means (a) and variance (b) of the displacement. 

 

4.2 The Plane Steel Frame 

The eigenvalue problem of a plane steel frame is taken into account. The plane frame of a 20 

story building is depicted in Fig. 3. All the stories of the building have equal masses, 

168750kgm = . The uncertain story stiffness for each story is considered, which is defined by 

 

 ( )82.72 10 1 N/m, 1,2, , 20i ik iε= × + = ⋯  (71) 
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where 
i

ε  are assumed to be the independent zero-mean random variables with the same trunca-

ted Gaussian distribution functions, defined by 
 

 ( ) [ ]

[ ]

2

2
2

2
2 3

2

3

1 1
, 3 ,3 1

, d2
2

0, 3 ,3

i

i

i
i i

i

e
p c ec

ε
εσ σ
σ

σ

ε σ σ
ε επσ

πσ
ε σ σ

−
−

−


∈ −

= =
 ∉ −

∫ . (72) 

 
 

 
 

Figure 3: Plane frame. 

 

The MCS, the sparse grid method (SGM) and the original and modified computational schemes 

of the SPFEM are employed in this example for 0.1σ = , 0.2 and 0.25 . For convience, the origi-

nal and modified computational schemes of the SPFEM are denoted as OSPFEM and MSPFEM, 

respectively. The solutions obtained using the MCS with 10,000 samples are considered as the 

reference solutions. The percentage errors 
max
e

 
of the frequencies are defined by 

 

 ,MCS

max
1 5

,MCS

max 100%
i i

i
i

y y
e

y≤ ≤

−
= ×  (73) 

 

in which ,MCSiy  is the mean or standard deviation of the thi  frequency computed using the MCS 

and 
i
y  is the mean or standard deviation of the thi  frequency computed using the OSPFEM or 
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MSPFEM. Compared with MCS, the proposed method involves only 41 calculations of determi-

nistic eigenvalue problems. For the SGM, the Gauss-Hermite quadrature formula with two inte-

gration points is used. Hence, the SGM also requires 41 calculations of deterministic eigenvalue 

problems.  

Tables 1 and 2 show the means and standard deviations of the first five frequencies, respec-

tively. The tables show that for the eigenvalue problem considered here, the solutions computed 

using the proposed scheme are in excellent agreement with those of the MCS and that compared 

with the original computational scheme of the SPFEM, the proposed one is more accurate. In 

the case of 0.2σ = , the results of the original scheme are unacceptable. However, the proposed 

scheme still performs well. In the case of 0.2σ = , the means computed using the SGM are quite 

accurate, however the standard deviations are bad. For the SGM, it requires more calculations 

of deterministic eigenvalue problems, which lead the increase of the computational effort. Hence, 

the proposed scheme performs better than the SGM or the original computational scheme of the 

SPFEM, under the condition that the numbers of involved deterministic systems are the same. 

 

 0.1σ =  0.2σ =  

Frequencies MCS OSPFEM MSPFEM SGM MCS OSPFEM MSPFEM SGM 

1 3.061 3.062 3.061 3.062 3.013 3.019 3.012 3.017 

2 9.166 9.167 9.166 9.167 9.018 9.039 9.019 9.033 

3 15.217 15.219 15.217 15.219 14.977 15.006 14.974 14.996 

4 21.179 21.182 21.179 21.181 20.847 20.886 20.844 20.873 

5 27.019 27.020 27.017 27.019 26.596 26.644 26.594 26.628 

max
e  - 0.019% 0.006% 0.015% - 0.231% 0.025% 0.162% 

 

Table 1: The means ( rad s ) of the first five frequencies. 

 

 0.1σ =  0.2σ =  

Frequencies MCS OSPFEM MSPFEM SGM MCS OSPFEM MSPFEM SGM 

1 0.042 0.041 0.042 0.039 0.092 0.082 0.095 0.063 

2 0.125 0.123 0.127 0.117 0.273 0.245 0.284 0.188 

3 0.209 0.204 0.211 0.194 0.456 0.407 0.470 0.313 

4 0.290 0.284 0.293 0.269 0.627 0.567 0.652 0.436 

5 0.367 0.362 0.374 0.344 0.804 0.723 0.828 0.557 

max
e  - 2.280% 1.994% 7.138% - 10.691% 3.889% 31.379% 

 

Table 2: The standard deviations  ( rad s ) of the first five frequencies. 

 

Table 3 shows the means and standard deviations of the first five frequencies in the case of 

0.25σ = . It can be seen from Table 3 that the means computed by the use of the original sche-
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me, the proposed scheme and the SGM agree well with that computed using the MCS. However, 

the standard deviations computed using these methods are unacceptable, although the proposed 

scheme performs a little better. Hence, for the case of 0.2σ ≥  the higher-order perturbation 

technique is required. However, for the case of low-level uncertainties, the classical SPFEM and 

the proposed scheme can give the acceptable estimates of the means and standard deviations 

with the small computational amount.  

 

 Means Standard deviations 

Frequencies MCS OSPFEM MSPFEM SGM MCS OSPFEM MSPFEM SGM 

1 2.973 2.987 2.969 2.981 0.123 0.102 0.129 0.059 

2 8.900 8.943 8.890 8.927 0.370 0.307 0.386 0.176 

3 14.777 14.847 14.763 14.822 0.614 0.509 0.638 0.294 

4 20.582 20.664 20.555 20.631 0.845 0.709 0.883 0.411 

5 26.261 26.362 26.235 26.323 1.072 0.904 1.117 0.528 

max
e  - 0.483% 0.130% 0.309% - 17.158% 4.737% 52.393% 

 

Table 3: The means ( rad s ) and standard deviations ( rad s ) of the first five frequencies for 0.25σ = . 

 

The CPU times for all methods are compared in Table 4 which shows the computational cost of 

the MSPFEM is almost as much as the OSPFEM or the SGM. Combining Tables 1-3 with Ta-

ble 4 shows that the proposed MSPFEM cost nearly as much CPU time as the OSPFEM to 

produce more accurate evalutations. 

 

σ  MCS OSPFEM MSPFEM SGM 

0.1 3.438 0.075 0.005 0.006 

0.2 2.924 0.079 0.004 0.005 

0.25 3.117 0.958 0.006 0.004 
 

Table 4: CPU times (s) for example 4.2. 

 

Note that for the eigenvalue problem considered in this example, the form of the perturbation 

solution of the eigenvalue is quite complicated. To demonstrate this point, a brief introduction 

about the perturbation estimate of the eigenvalue is given. More information can be found in the 

work of Wu and Zhong (2013). If the eigenproblem considered here is defined by 
 

 ( ) ( ) ( ) ( )k k kλ=K ε x ε ε Mx ε  (74) 

and 

 T 0,
k l

k l= ≠x Mx  (75) 
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in which ε  is the zero-mean random vector, ( )kx ε  and ( )kλ ε  are the thk  eigenvector and ei-

genvalue, respectively. Using the Taylor series expansion for the stochastic stiffness matrix 

( )K ε , the thk  stochastic eigenvector ( )kx ε  and eigenvalue ( )kλ ε  gives 

 ( ) ( )30 1, 2,

1 1

q q q

i i ij i j i

i i j i

Oε ε ε ε
= = =

= + + +∑ ∑∑K ε K K K , (76) 

 

 ( ) ( )3,0 ,1, ,2,

1 1

q q q

k k k i i k ij i j i

i i j i

Oε ε ε ε
= = =

= + + +∑ ∑∑x ε x x x  (77) 

and 

 ( ) ( )3,0 ,1, ,2,

1 1

q q q

k k k i i k ij i j i

i i j i

Oλ λ λ ε λ ε ε ε
= = =

= + + +∑ ∑∑ε  (78) 

 

where 0K , 1,iK , 2,ijK , ,0kx , ,1,k ix , ,2,k ijx , ,0kλ , ,1,k iλ  and ,2,k ijλ  are defined by Eq. (2). Substituting 

Eqs. (76)-(78) into Eq. (74) gives 

 0 ,0 ,0 ,0k k kλ=K x Mx , (79) 
 

 ,1, ,1, ,0 ,1,k k i k i k k iλ= +K x Mx F , (80) 

and 

 ,2, ,2, ,0 ,2,k k ii k ii k k iiλ= +K x Mx F  (81) 

where 

 ,1, 1, ,0k i i k= −F K x , (82) 
 

 ,2, 2, ,0 1, ,1, ,1, ,1,k ii ii k i k i k i k iλ= − − +F K x K x Mx , (83) 

and 

 0 ,0k kλ= −K K M . (84) 
 

In terms of Eqs. (79)-(84), ,0kλ , ,1,k iλ  and ,2,k iiλ  can be computed. Once ,0kλ , ,1,k iλ  and ,2,k iiλ  are 

obtained, the mean and covariance of the eigenvalue can be computed using the following equa-

tion 

 

( ) ( )

( ) ( )

32

,0 ,2,

1

32 2

,1,

1

cov ,

q

k k k ii i

i

q

k k k i i

i

E O

O

λ λ λ σ

λ λ λ σ

∞
=

∞
=

= + +

= +

∑

∑

σ

σ

. (85) 

 

Comparing Eqs. (79)-(84) with Eqs. (6)-(8) can show that the original computational scheme of 

the SPFEM for the stochastic eigenvalue problems is far different from that for the stochastic 

linear static problem. However, it is very convenient to use the proposed scheme for this pro-

blem, i.e., we just need to compute the following deterministic eigenvalue problems:  
 

 0 ,0 ,0 ,0k k kλ=K x Mx  (86) 

and 

 ( ) ( ) ( ) ( ) , 1, 2, ,20s k s k s k s sλ± ± = ± ± =K b x b b Mx b ⋯ , (87) 
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in which 0K  denotes the random stiffness matrix ( )K ε  evaluated at the mean value =ε 0 , and 

( )s±K b  denotes the random stiffness matrix ( )K ε  evaluated at ( )0, , , ,0
ssss s

ρ σ= ±ε ⋯ ⋯ .  

4.3 The Nonlinear Truss Structure 

The nonlinear truss structure represented in Fig. 4 is considered. The involved parameters are 

10mL =  and 1000Nf = , and the sectional area of each bar is 20.04mA = . Figure 5 shows the 

constitutive relationship of each bar, in which ( ) 9 2210 10 N/mE
+ = ×  and 

( ) ( ) ( )=2 1 , 1, ,5iE E iε− + + = ⋯ , is considered to be the random parameter. The random variables 

[ ],i a aε ∈ −  are independent random variables with uniform probability density functions. For 

this example, the constitutive law is composed of two straight lines with different slopes, hence 

we need to judge the stress state of each bar which may be tensed or be compressed. Actually 

the governing equations of the nonlinear truss cannot be solved using directly the Newton-

iterative method. The parametric quadratic programming method is used for the governing 

equations; Zhang et al. (2002).  

For this nonlinear truss, it is difficult for the perturbation technique to develop the compu-

tational scheme of the original SPFEM, but it is convenient to address this problem using the 

proposed scheme. To test the accuracy of the proposed scheme, the MCS with 10,000 samples is 

performed, and these solutions are taken as the reference solutions. Compared with MCS, the 

proposed scheme involves only 11 calculations of deterministic nonlinear equations. The SGM is 

also employed to this problem. The Gauss-Hermite quadrature with two integration points are 

used to the SGM, and hence, the SGM also requires 11 calculations of deterministic nonlinear 

equations.  

 

 
 

Figure 4: The truss. 

 
 

Figure 5: The constitutive relationship. 

 
 

Tables 5~7 show the means and standard deviations of the horizontal displacements at nodes A 

and B computed using the MCS, the proposed approach and the SGM for the case of 0.2a = , 

0.4a = and 0.6a = , respectively. The three tables show that for this nonlinear truss, the results 

of the proposed scheme agree quite well with the reference solutions. Even in the case of 0.6a = , 

the proposed scheme still performs well. It can seen from Tables 5-7 that the means computed 

using the proposed scheme agree well with that computed using the SGM under the condition 

that the numbers of involved deterministic systems for both methods are the same. However, the 
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standard deviations computed using the proposed scheme are better than that computed using 

the SGM in terms of their percentage errors.  

Table 8 shows the CPU times for all methods. Combining Tables 5-7 with Table 8 shows 

that the porposed MSPFEM cost nearly as much CPU time as the SGM to produce more accu-

rate evalutations. 

 

 Means Standard deviations 

 MCS MSPFEM SGM MCS MSPFEM SGM 

Node A 1.7724E-6 1.7714E-6 1.77E-06 7.6078E-8 7.5895E-8 7.44E-08 

Percentage errors - 0.0551% 0.06% - 0.2410% 2.17% 

Node B 1.5385E-6 1.5380E-6 1.54E-06 6.7859E-8 6.7519E-8 6.67E-08 

Percentage errors - 0.0373% 0.06% - 0.5005% 1.76% 
 

Table 5: The means (m) and standard deviations (m) 

of the horizontal displacements at node A and B for 0.2a = . 

 

 Means Standard deviations 

 MCS MSPFEM SGM MCS MSPFEM SGM 

Node A 1.8007E-6 1.7998E-6 1.80E-06 1.6195E-7 1.6038E-7 1.48E-07 

Percentage errors - 0.0514% 0.11% - 0.9705% 8.62% 

Node B 1.5561E-6 1.5557E-6 1.56E-06 1.4364E-7 1.4282E-7 1.36E-07 

Percentage errors - 0.0297% 0.07% - 0.5708% 5.58% 
 

Table 6: The means (m) and standard deviations (m) 

of the horizontal displacements at node A and B for 0.4a = . 

 

 Means Standard deviations 

 MCS MSPFEM SGM MCS MSPFEM SGM 

Node A 1.85E-06 1.85E-06 1.85E-06 2.59E-07 2.65E-07 2.19E-07 

Percentage errors - 0.24% -0.10% - -2.19% 15.55% 

Node B 1.59E-06 1.59E-06 1.59E-06 2.29E-07 2.36E-07 2.10E-07 

Percentage errors - 0.34% 0.13% - -3.35% 8.35% 
 

Table 7: The means (m) and standard deviations (m) 

of the horizontal displacements at node A and B for 0.6a = . 

 

A MCS MSPFEM SGM 

0.2 8.900 0.007 0.008 

0.4 9.009 0.007 0.007 

0.6 8.978 0.006 0.007 
 

Table 8: CPU times (s) for example 4.3. 
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4.4 The Heat Conduction Problem 

Consider the non-dimensional transient heat conduction in a square domain. The governing 

equation is 

 

 ( ) ( ) ( ) ( ) [ ] [ ], , , , , , 1,1 1,1
T T T

c k x y k x y W x y t x y
t x x y y

ρ
 ∂ ∂ ∂ ∂ ∂ = + + ∈ − × −  ∂ ∂ ∂ ∂ ∂   

 (88) 

 

where 1c =  is the heat capacity, 1ρ =  is the mass density, T  is the temperature, ( ),k x y  is the 

thermal conductivity, and ( ), ,W x y t  is the volumetric heat supply. The boundary conditions 

and initial conditions are 

 

 ( ) ( ) ( ) ( )1, , 1, , ,1, , 1, 0T y t T y t T x t T x t− = = = − =  (89) 
 

and 

 ( ), ,0 0T x y = , (90) 
 

respectively. The heat supply is defined by 

 

 ( ), , 30W x y t = . (91) 
 

The thermal conductivity is selected as the uncertain parameter which can be defined by 

 

 ( ) ( ), 1 ,k x y x yε= +  (92) 
 

where ( ),x yε  is a zero-mean homogeneous stochastic filed with a constant standard deviation 

1.5σ = . The correlation function is defined by 

 

 ( ) ( )( ) 1 2 1 2

1 1 2 2, , , 1 1
x x y y

x y x yρ ε ε
λ λ
− −   

= − ⋅ −   
   

 (93) 

 

in which 3Lλ =  is the correlation length. The midpoint method is adopted for the random field, 

and the 40 40×  mesh of four-node linear rectangular elements is used for the space discretization. 

The heat conduction equations are integrated by the Crank-Nicholson method with the time 

step 0.01t∆ = . The integral interval is [ ]0,2t∈ . The number of random variables is 1600. The 

correlated random variables are transformed into a new random vector b  with the diagonal 

covariance matrix, as shown in Eqs. (55)-(57), and assume the random vector b  is uniform ran-

dom vector. Only 50 highest variables are used in computations. The MCS, the OSPFEM and 

the proposed MSPFEM are employed for this problem. The MCS is performed with 10000 sam-

ples. The MCS solutions computed with 10000 samples are seen as the reference solutions to test 

the accuracy of the proposed method.  

The means and standard deviations of the temperatures ( )0,0,T t  at 0.5t = , 1, 1.5  and 2  

computed using the MCS, the OSPFEM and the proposed approach are compared in Table 9. 

The CPU times for all methods are shown in Table 10. Figures 6(a) and 6(b) show the tempera-

ture contours of the means and standard deviations at 2t = , respectively. It can be seen from 

Tables 9 and 10 that the MSPFEM cost almost as much CPU time as the OSPFEM to produce 

more accurate evaluations.  
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  Means    Standard deviations   

t 0.5 1 1.5 2 0.5 1 1.5 2 

MCS 8.076 8.928 9.016 9.026 0.807 1.169 1.231 1.241 

MSPFEM 8.075 8.926 9.013 9.023 0.807 1.165 1.226 1.235 

Percentage errors 0.016% 0.028% 0.034% 0.035% -0.017% 0.298% 0.401% 0.428% 

OSPFEM 8.075 8.923 9.008 9.017 0.799 1.131 1.181 1.187 

Percentage errors 0.017% 0.058% 0.084% 0.093% 0.959% 3.319% 4.255% 4.502% 
 

Table 9: Means and standard deviations of the temperatures ( )0,0,T t  at different times. 

 
MCS MSPFEM OSPFEM 

2877.16 15.29 15.92 
 

Table 10: CPU times (s) for example 4.4. 

 

 
Figure 6: Contours of temperature distribution at 2t = : (a) means and (b) standard deviations. 

 
5 CONCLUSIONS 

In actual engineering, there is a considerable number of structures with low-level uncertainties 

that can be analyzed using the SPFEM in theory. However, the traditional computational sche-

me depends on the type of problem considered. Namely, each type of problem has its own com-

putational scheme, e.g., the computational scheme of the static problems is far different from 

that of the eigenvalue problems. Furthermore, the derivatives of the system matrices with res-

pect to the random variables are often required, and they may be very complicated for some 

problems. In this paper, an unified computational scheme of the SPFEM is developed for linear 

or nonlinear structures with correlated or uncorrelated random variables. The proposed compu-
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tational scheme can provide second-order estimates of the mean and variance without using the 

derivatives of the system matrices; therefore, compared with the traditional computational 

scheme of the SPFEM, the proposed scheme is more convenient to implement for a complex 

stochastic system. In the case of one random variable with a symmetric probability density func-

tion, the proposed computational scheme can even provide a result with fifth-order accuracy. 

When the proposed scheme is used, it involves 2 1q +  ( q  is the number of random variables) 

analyses of deterministic systems. The numerical examples show that the proposed scheme can 

be used for complicated problems and provides very accurate results.  
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