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ANALYTIC FUNCTIONS WITH UNIVALENT DERIVATIVES 
AND ENTIRE FUNCTIONS OF EXPONENTIAL TYPE 

BY S. M. SHAH 

ABSTRACT. Functions/, analytic and univalent in the unit disc, and such that all successive 
derivatives ƒ(k) are univalent in this disc, are necessarily transcendental entire functions of 
exponential type. These functions, and functions ƒ having an infinite number of derivatives 
ƒ(»*) univalent in the unit disc, are discussed. Entire functions of bounded index are of 
exponential type and their properties are also discussed. 

1. Introduction. Let f(z) be analytic in the unit disc D:\z\ < 1. We say 
that ƒ is univalent in D if for each pair of distinct points zi9 z2 in D, 
f(zi) 7e f(z2)- In §§1-4 we give a brief survey of functions analytic and1 

univalent in D. Functions ƒ such that ƒ (z) and each successive derivative 
f(k\z) are univalent in D are considered next in §5. Such functions ƒ must 
be transcendental entire functions of exponential type. Related problems 
of functions ƒ such that ƒ (z) and a sequence of derivatives ƒ (Mk)(z) are 
univalent or of functions ƒ such that ƒ (z) is entire and/(k)(z) is univalent in 
\z\ < pk (pk > 0) are considered in §§6-10. This is followed by a section 
(§11) on multivalent functions and three sections (§§12-14) on functions 
of bounded index. An entire function ƒ (z) is said to be of bounded index 
if there exists an integer AT, independent of z, such that 

1 ƒ (s)(*)l 1 ^ I/°V)I 

for j = 1,2,... and for all z. The smallest such integer N is called the 
index of/ An entire function ƒ of bounded index N is of exponential type 
not exceeding (N + 1). Finally we mention some unsolved problems. 

2. Conditions for the univalence of ƒ Let 
CO 

(2.1) f(z) = ^anz", | z | < l . 
0 
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(1.1) max 
0<s<N 

154 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ANALYTIC FUNCTIONS AND ENTIRE FUNCTIONS 155 

If ax # 0 and 

00 

(2-2) Znkl^lflil, 
2 

then ƒ is analytic and univalent in D and continuous on the closure of D. 
To prove this, let zl9 z2 e D, maxi = 12|zf| = r < 1, z1 # z2. Then 

00 I 

«i + Z ^ r 1 + zr^i + ••• + zr1) 
2 I 
oo 

2 

This implies that ƒ is univalent in D. Further, for every N ^ 1, 

Ik i^ i«oi + iaii + Ê—£i*oi + ^ ' 
0 2

 n
 * 

and continuity off follows. 
If the radius of convergence of the series in (2.1) defining ƒ is R, then ƒ is 

univalent in \z\ < p ^ R, if ax #= 0 and 

(2.3) t n\an\p
n-"^\a,\. 

n = 2 

Let ƒ be analytic in D. Iff is univalent in D then ƒ \z) # 0 in D [32, 
p. 23]. If 

(2.4) Re(a/\z)) > 0, zeD, 

for some complex number a, \a\ = 1, then ƒ is univalent in D. This follows 
immediately from the following integral expression 

Rfa/(z2)- /(*i)) | = r1
 Re{a/,((1 _ w)Zi + W22)}dw> 

( Z2~ Z\ J Jo 
Another criterion for univalence of ƒ ([62] ; see also [29]) is as follows. Let 

be the Schwarzian derivative of w = f{z) with respect to z. In order that 
w = ƒ (z) be univalent in D it is necessary that 

| (w,z) |^6/( l - |z | 2) 2 

and sufficient that 

| (w,z) |^2/(l- |z |2)2 . 

z2 - Zl 
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Becker [2] has recently proved that ƒ is univalent in D if 

ƒ"(*)! 

ƒ'(*) 

l 
(1 - I*!2) 

3. Class S. Let S denote the collection of functions ƒ analytic and 
univalent in D and normalized by the conditions /(O) = 0, /'(O) = 1. 
Thus/e S can be written as 

00 

(3.1) /(z) = z + £a„z", |z|< 1. 
2 

Bieberbach [6] proved in 1916 that, for ƒ e S, 

(3.2) \a2\ S 2 

with equality if and only if 

(3.3) f(z) = Ka(z) = z/(l - ze-)2 (a real). 

This function Ka (Koebe function) maps D on the whole plane slit radially 
from w = — \e~iCL to infinity. It is extremal not only for a2 but also for a 
number of other problems. Since \an\ = n, n = 2,3, . . . for this function 
Ka, it was conjectured that, for/e 5, 

(3.4) \an\ g w, n = 2 ,3 , . . . , 

with equality only for the Koebe function. This conjecture, called the 
Bieberbach conjecture, was proved for n = 3 by Loewner [58] in 1923, for 
n = 4 by Charzynski and Schiffer ([18]; see also [30]) in 1960, and for 
n = 6 by Pederson [66] in 1968 and Ozawa [64] in 1969 independently 
of each other. Garabedian and Schiffer [31] proved that (3.4) holds for a 
function ƒ G S which is "close enough" to the Koebe function and Aharonov 
has shown (3.4) to hold if \a2\ < 0.867 ([1]; see also [9]). 

For each fixed ƒ e 5, Hayman (see [38, pp. 112-113]) has shown that 
M = n (n > no(f)Y F° r aU n ^ 2, Littlewood proved in 1925 (see [38, 
p. 10]) that \an\ < en. This estimate has recently been improved to 
K| < 1.08In (n ̂  2) by Carl H. Fitzgerald (see also [32, p. 612]). 

4. Subclasses of S. A function ƒ G S is said to be starlike univalent in Z>, 
or briefly starlike in D iff(D) is starlike with respect to the origin w = 0. 
A necessary and sufficient condition for feS to be starlike in D is that 
[63, pp. 220-222], [38, pp. 14-16], 

(4.1) Re(z/'(z)//(z)) > 0, \z\ < 1. 

We shall denote this subclass of functions by S*. From (4.1) it is easy to 
obtain, for ƒ G 5*, the following integral representation formula 
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(4.2) 
f'(z) 

m 
1 f 2n\ + ze~u _T//. 

In Jo 1 - ze lf 

where V(£) is an increasing function of t, V(t) — t has period 2% and 
(l/27r)Jo7C dF(t) = 1. A second subclass of 5 is the class of convex univalent 
functions. We say that feS is convex univalent in D iîf(D) is a convex 
set. We denote this subclass of S by K. A necessary and sufficient condi-
tion for ƒ e S to be in X is that [38, pp. 140-141], [32, p. 166], 

(4.3) Re(l + zf''(z)/f'(z)) > 0, |z|< 1. 

IffeK then |a„| g 1. If /eS* then |aM| ^ n. 
A third subclass of functions is the class of close-to-convex functions 

introduced by Kaplan [46]. A function ƒ e S is close-to-convex if and only if 

(4.4) Re(f'(zW(z)) > 0, \z\ < 1, 

where c/>(z)/(/>'(0) e K. (Iff is analytic in D and satisfies the close-to-convex 
condition (4.4) then it is univalent.) For this class (3.4) also holds. If ƒ is 
defined by (2.1) and satisfies (2.2) and if/(0) = 0,/'(0) # 0, then/ is starlike 
in D [33]. From this we can conclude that if [33] 

00 

(4.5) X fc2W S Kl 
k = 2 

then ƒ is convex in D. 
For more information on various problems of univalent function theory 

we refer the reader to five excellent survey articles by Bernardi [3], Hayman 
[39], Goluzin [32, pp. 577-628], Goodman [35] and Robertson [73]. We 
list some recent papers in the bibliography at the end and refer to an 
exhaustive bibliography by Bernardi [4], for books and periodical litera-
ture up to 1965. 

5. Functions with univalent derivatives. Let feS and let E denote the 
subclass 

(5.1) E = {ƒ | ƒ G S, fik) is univalent in D for k = 1,2,...}. 

If feE then ƒ must be a transcendental entire function of exponential 
type, that is, 

(5.2) l i m T O p l o 8 M ( r ' / ) T ' < o 0 , 

where as usual M(r,f) = max|z|=r|/(z)|. (Note that functions, for which 
0 rg T* < oo, and in particular functions of order less than one, are all 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



158 S. M. SHAH [March 

functions of exponential type.) More precisely we have [84] 

(5.3) ^ e x p ^ D - l , 

where a = sup{|a2 |;/e£} and 

(5.4) TT/2 ^ a < 1.7208. 

To prove this we note that if/e £ then an+l ^ 0. Define Fn in D by 

r»Kz)-n\an 
nK} (n+l)!a„+ 1 

Then F„eE and we have 

2a|gn+1| 
|fl"+2' * TTT" 

An inductive argument gives \an\ ^ (2a)n"Vw! (n ^ 2). This implies that 
ƒ is entire and satisfies (5.3). Since \a\ — a3| ^ 1 — {M(l)}~2 ([44], [88]), 
we have 

a2 S 3(1 - 4a2/(e2a - l)2). 

This implies the right-hand inequality in (5.4). To complete the proof of 
(5.4) we observe that </>(z) = (exp(rcz) - l)/neE and a2 for this function 
is n/2. 

We note here that the property of uni valence is only one of the properties 
which forces ƒ to be entire. Consider a property (A) which a function 
analytic in D is able to possess. We say that (A) is an admissible property 
provided the following hold: (i) if/ has (A) then /'(O) ± 0. (ii) If/ has (A) 
and if b and c are complex numbers with b ^ 0, then the function 
F(z) = bf(z) + c also has (A). Let T be the family of functions/, analytic 
in A of the form (3.1). Let T(A) be the subclass of T such that if ƒ e T(A) 
then f(n) has property (A) for n = 0,1,2, • • •. Suppose that T(A) is not 
empty and let OLA = sup{|a2| : ƒ e T(A)}. If a^ < oo and ƒ G T(A) then ƒ is a 
transcendental entire function of exponential type not greater than 2aA 

[86]. For instance one can take property (A) to be property (K). We say 
that ƒ has (K) if ƒ is convex univalent in D. Then (K) is an admissible 
property. Further aK = sup{|a2| : ƒ e T(K)} lies between j and 0.6838 [86]. 

6. Not all derivatives univalent. Let ƒ be defined in D by (2.1) and let 
{nk}f be a sequence of strictly increasing positive integers. Suppose that 
each ƒ (w^) is univalent in D. Let R be the radius of convergence of the series 
in (2.1). If the sequence {nk} does not increase very rapidly, we may have 
R > 1. Thus, for instance [86], 
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(6.1) lim infK • • • nk)
llnk g R lim sup 4*"* ^ AR. 

k-+ao k-+ao 

From (6.1) it is easy to show that if nk+ x — nk = o(log k) then R = oo and 
ƒ is entire. If nk+1 — nk = 0(1) then ƒ is of exponential type. 

A more general result of this type is as follows. Let </>(x) and 9(x) be two 
slowly oscillating functions (see [86] and the references given there) and 
let 1 ̂  (j)(k) S nk - nk_ x ^ 0(fc) for k = 2, 3, • • •. If each f{nk) is univalent 
in D and 

hm sup -rrr-.:—=— = a < 1, 
k ^ 0(/c)logfe 

then ƒ is an entire function of order not greater than 1/(1 — a). 
If however the sequence {nk} increases very rapidly, say 

nk+1 ^ nklognfcloglogrcfc, 

then R may not exceed unity. In fact there exists [86] a function ƒ analytic 
in D and an increasing sequence of positive integers {nk}k=1 such that ƒ 
and each ƒ{nk) map D univalently onto convex domains and yet the unit 
circle is the natural boundary of/. 

7. Derivatives with varying radii of univalence. Let p(f) be the largest 
number with the property that ƒ is analytic and univalent in an open disc 
about the origin of radius p. We shall write p(f(n)) = pn. Suppose now 
that ƒ is defined by ƒ (z) = J]o anztl- Let JR denote the radius of convergence 
of this series. Then we have [85] 

(7.1) liminfnp„ ^ 4R, 
n-+oo 

and 

(7.2) R log 2 ^ lim sup npn. 
n-* oo 

If l^- i /a j is ultimately a nondecreasing sequence, then 

(7.3) R log 2 ^ lim inf npn ^ lim sup npn ^ 4JR. 
n-+oo n->oo 

Thus (a) if/ is a transcendental entire function then lim sup„^00 npn = oo, 
and (b) if limw^00 npn = oo, then/ is a transcendental entire function. (See 
also [85, Theorem 3].) The converse of (a) is false. There exists a function 
ƒ analytic in the unit disc and in no larger disc \z\ < JR, where R > 1, 
such that lim sup npn = oo. The converse of (b) is also false [85]. 

8. Radii of univalence and entire functions. Let ƒ be a transcendental 
entire function of order A and lower order À (see [8, p. 8]). When 0 < A 
< oo, let T = lim sup^^ log M^/r* denote the type and t = 
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lim inf^^ log M ^ / r * denote the lower type. The following theorems are 
due to Boas, Pdlya and Takenaka respectively. 

THEOREM A [7]. Iff(z) is a transcendental entire function and if 

(8.1) r * = l i m s u p ^ ^ < l o g 2 , 

then there is a sequence {np}™=1 such that pn = p(np) ^ 1 for all p. 

Levinson [56] supplied a second proof of this. Boas also pointed out 
that, if T* = 0, then 

(8.2) lim sup pn = oo. 
«-•oo 

THEOREM B [67]. Iff (z) is a transcendental entire function of order A, then 

(8.3) lim inf £ l * < LzA < lim SUp ^ 
„ ^ logn " A ~ „ ^ l o g n 

THEOREM C [92]. If{un}™=o is a sequence of complex numbers of modulus 
not exceeding one and iff(z) is an entire function of exponential type less 
than log 2, then f (z) vanishes identically iff{n)(ocn) = 0, n = 0,1,2, • • •. 

We give improved versions of these theorems. Let us denote by v(r) 
(0 < r < + oo) the central index of the series f(z) = ]T anz

n for \z\ = r. 
Then 

\an\r
nS \av{r)\r

v(r\ n = 0,1 ,2 , . - . . 

Let 

(8.4) 

r v(r) 
lim s u p — = y9 

r-*oo ' 

lim inf ^ = «5. r 

Then we have [85] 

(8.5) l i m i n f l o g m a x ( l , » ^ l 
logn - A 

«-•oo 

(8.6) ! ^ < n i m s u p ^ , 
X „ ^ logn 

(8.7) - ^ lim sup p„ 
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and 

(8.8) l i m i n f n A - V ^ ^ -
« - + 0 0 ' v •* 

Hence if A > 1, liminf,,.^ pn = 0 and if A = 1, then since ô ^ t* 
( = l i m i n g logM(r)/r)^ T*9 

log 2 4 
(8.9) —— S hm sup pn; lim inf pn S ~* • 

1 « - > o o « - + 0 0 •* 

The inequalities (8.5)-(8.6) imply Theorem B and (8.7) implies Theorem 
A. Theorem C follows immediately from (8.7) since p( ƒ(M)) ^ r*+ x where 
rjf denotes the absolute value of the zero z\ of ƒ(fc) which is nearest to the 
origin. (If/(k) has no zero then r% = oo.) 

For entire functions defined by gap power series, (8.6) and (8.7) give, in 
general, better results than Theorems A-C. Let 

(8.10) ƒ(z) = Y,a„kz"* (a„k # 0, fc = 1,2,...), 

be a transcendental entire function and suppose that 

(8.11) lim inf log wfc/log nk+1 = x < 1. 
k-*oo 

Then X ^ AX [93] and (8.5) and (8.6) give more information than 
Theorem B. If we suppose now that A ^ 1 but AX < 1 then X < 1, b — 0 
and (8.7) implies that lim sup,,.^ pn = oo. Thus Theorems A and C hold 
for every function/, of any finite order A and of the form (8.10) with gaps 
satisfying the condition (8.11) and AX < 1. 

If/(z) = Y^ cinz
n and \ajan+l\ is ultimately a nondecreasing function 

of n, tending to oo, then ƒ is entire and [85] 

(8.12) ^ ^ < l i m i n f p w < l 
y ~ «-oo y 

loe2 4 

(8.13) - f - ^ l i m s u p p , , ^ . 
^ «-»oo 0 

9. Whittaker constant. Consider again Theorem A and let a be the least 
upper bound of all numbers which can replace log 2 in Theorem A. Read 
[71] has shown that a ^ 0.7259. Let W be the least upper bound of 
numbers which can replace log 2 in Theorem C. This number is called the 
Whittaker constant. It is known that (see [71], [11] and the references 
given there) 0.7259 ^ W < 0.7378 but the exact value is unknown. 
Recently Buckholtz [11] has shown that a = W. 

A simple example of a function ƒ of order one such that each of/ ƒ', 
ƒ ",... has a zero in the closed disc \z\ ^ 1 is f(z) = sin(n;z/4) — COS(7ÜZ/4). 
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There exist extremal functions for this problem. In fact Evgrafov (see [11]) 
has shown that there is an entire function ƒ of exponential type W such 
that each of ƒ,ƒ',ƒ",... has a zero in the disc \z\ ^ 1. 

Mention must be made here of a related result due to Erdös and Renyi 
[26]. Let ƒ be entire and denote by x = H(y) the inverse function of 
y = log M(x). Then 

l i m i n f - V < 
Y+oo kri log 2 

10. Functions in E. (i) Consider first a function ƒ defined by the power 
series (2.1) and suppose that an =/= 0, n\(aJan-{)\ ^ log 2 for n = 2, 3, • • •. 
Then ƒ is entire and it can be shown that (f(z) — a0)/a1 e E. 

(ii) We now consider functions with all zeros on a ray. Let Q denote 
the family of transcendental entire functions ƒ of the form 

(10.1) f{z) = ze"ft(l-z/zj 
l 

where 0 ^ N ^ oo (if N = 0, the product disappears) and (a) all zk have 
the same argument, (b) fizx ^ 0 and (c) 1 < |zj ^ \z2\ ̂  • • •. I f / G Q and 
is univalent in D then [87] 

(io.2) \p\ + £ —L_- ̂  i. 
fc = i \zk\ ~ l 

In fact (10.2) holds if and only if/ is starlike in D and all its derivatives are 
close-to-convex there. Further, if {41}}^=o

 a r e the zeros of/', then ƒ and 
all its derivatives are univalent in D and map D onto convex domains if 
and only if [87] 

(10.3) m+îuJ-T^i-
fc=0 \Zk I ~ l 

This result implies that E n Q = S n Q and that ƒ G E n Q if and only 
if (10.2) holds. 

(For the univalence of an entire function of any order see [61].) 
(iii) If all zeros of/ do not lie on a ray then some derivative ƒ ', ƒ ",... 

may have zeros in the unit disc (e.g., ƒ (z) = sm(nz/2)/(n/2)) and then ƒ will 
not belong to E. If however ƒ is of genus zero, and/(0) = 0,f'(0) = 1, and 
the zeros are widely spaced, then ƒ G E. We shall say that a function ƒ has 
"fourly-spaced" zeros if 

(10.4) 1 2 ^ 4 , \zk+1\^4k\zkl k^l. 
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Let 
00 

(io.5) p(z) = n o - z/zà m = ZP(Z). 
i 

Then [78], ƒ G E. It is possible to improve the constant 4. 
11. Multivalent functions. A function ƒ is said to be p-valent in D if it is 

analytic in Z), if the equation 
(11.1) f{z) = w 

has p distinct roots in D for some particular w, and if for each complex w, 
equation (11.1) does not have more than p roots in D. The function ƒ is 
also said to have valence p in D. When p = 1, ƒ is univalent in D. 

Goodman [34] considered the sum (ƒ + g)/2 and the product (fg)1/2 

when ƒ and g both belong to S and showed that there exist two pairs of 
functions fl9 gx and/2, g2 each function belonging to S such that the sum 
(f\ + gi)/2 and, the product (/2(z)g2(.z))1/2 = z + • • •, both have valence oo 
inD. 

We now define areally mean p-valent (a.m.p.v.) functions. Let p be a 
positive number and denote by n(w) the number of roots of the equation 
(11.1) in D. Iff is analytic in D and, for every positive JR, 

(11.2) -^ j" j nipe^pdpdtfrSp, 

then ƒ is said to be a.m.p.v. in D. A condition for ƒ to be a.m.p.v. is as 
follows. Let 

oo oo 

(11.3) X \an\ = S< lool, X "Kl2 = A < oo. 
l l 

Then ƒ (z) = £°° anz
n is a.m.p.v. in D for all large p such that ([39], [68]) 

(11.4) \a0\>(A/p)i'2 + S. 

Iff is a.m.p.v. in D and is normalized and p = 1, then |a2| ^ 2 [89]. A 
bound on | ƒ | is given by the following theorem due to Cartwright, Spencer 
and Hayman. 

THEOREM [38, p. 31]. Suppose that f (z) = £ o anz
n is am.p.v. in D. Then 

M{r,f) < A[p)vLj\ - r)-2* (0 < r < 1), 

where jip = max0^v^p \av\ and A(p) ̂  (p + 2)23p-1 exp(p7r2 4- j). 

This upper bound on the constant A(p) is due to Jenkins and Oikawa 
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[45]. In §5(i) we have seen that if/ G S and each/(fe) (k = 1,2,...) is univalent 
in D then ƒ is a transcendental entire function of exponential type. This 
result holds under a less restrictive hypothesis. Suppose ƒ is not a poly-
nomial and each f(k) (k = 0,1,...) is a.m.p.v. in D. Then [81], ƒ is an entire 
function of exponential type not exceeding A(p)e(P + 2)2p(P + 1) where 
P = [p] is integer part of p. If each ƒ (nj\ j = 1,2,..., is a.m.p.v. in D and 

/ j \ 
(11.5) lim(^.+ 1 - rij) = oo, ns = 0 £ lognk , 

•/-*<» U=i / 
then also ƒ must be entire. 

12. Entire functions of bounded index. Let f(z) = X^o^«(z ~ aT be 
an entire function. Since the coefficients tend to zero, there exists a 
smallest integer Na^0 such that \ANa | ^ \An\ for all n. If the integers Na 

are all bounded above then ƒ is said to be of bounded index and the 
smallest integer AT, such that for all numbers a, Na ^ N, is called the index 
of/(cf., [55], [36]). This is equivalent to the definition given in §1. As we 
pointed out a function of bounded index N is of exponential type not 
exceeding N + 1. This result is sharp [76]. Denote the class of all functions 
of bounded index by B. The functions ez, sin z, cos z are all in B. 

The Bessel function Jk(z) of integer order k is of index N such that 
k S N :g 2/c — 1 ([52]; see also [60]). Any entire function ƒ satisfying a 
linear differential equation [77] 

(12.1) P0(z) g + Px(z) ̂  + • •. + Pn(z)f = Q(z), 

where P,- (ƒ = 0 ,1 , . . . , n) and Q are polynomials and deg Pj g deg P0 is 
in class B. 

Functions with zeros of arbitrarily large multiplicity are obviously of 
unbounded index. But there are functions [79] of unbounded index and 
having simple zeros. 

The asymptotic properties of log M(r,/) do not help to prove the 
boundedness (or the unboundedness) of the index, except that if T* = oo 
then ƒ G CB (the class of entire functions of unbounded index). In fact if 
F is any transcendental entire function then there are two entire functions 
g e CB [70] and ƒ G CE (the class of entire functions not belonging to E) 
such that 

log M(r, g) - log M(r, F) ~ log M(rJ). 

For/we simply take ƒ (z) = F(z) - F'(0)z2/2!. 
We mentioned in §11 that there exist functions ƒ and g in S such that 

( ƒ + g)/2 is not in S. Pugh [69] showed that the sum of two functions 
each in B, need not be in B. 
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The class B is not closed under differentiation. There exists [80] an 
entire function F in B such that the derivative F' is in CB. If the derivative 
ƒ' is of bounded index Nf>,fis also of bounded index Nf and Â  ^ Nf> + 1 
[80]. 

The functions P and ƒ defined by (10.4) and (10.5) are both in B. (Cf. [70]. 
The constant 5 in [70] has been improved to 4 by Mrs. Amy King in her 
Ph.D dissertation.) In fact, we have, for all z, 

max{|P(z)|, \P'(z)\} ^ |P(w)(z)|, n = 2, 3, • • •. 

Furthermore each Pik\ k = 0,1,2,.. . , is of index 1. 
Consider now functions with real zeros an. Suppose ax > 0, an+l — an 

^ bn(n ^ 1) where the sequence {bn}f is positive and nondecreasing and 
X7 l/nbH < oo. Then [82], 

00 

(12.2) /(:) = « « + ' n ( l - z / 4 
1 

where a and /? are any complex numbers, is in B. If in (12.2) we assume 
that ax > 0, an+ x/an ^ y > 1, then each fik\ k = 0 ,1 , . . . , is in B [54]. 

We can consider entire functions ƒ satisfying conditions similar to (1.1) 
and obtain the conclusion that ƒ must be of exponential type [37], [83]. 

(a) Let p ^ 1 and 

Let c be a positive constant. Suppose that there exists a positive integer N 
(independent of z) such that for k = 0,1,2,... , N, the following inequality 

£ 7(/c+j,r)^ g I(k+j9r) 
j=0 J' j=N+l P' 

holds for all z with \z\ = r sufficiently large. Then ƒ is of exponential type 
and 

T* ^ 1 + 21og(l + 1/c) + log(2iV)!. 

(b) Let c be a positive constant. Suppose that there exist two non-
negative integers k and N (independent of z) such that/satisfies one of the 
following, for all z with |z| sufficiently large : 

N \f(k + j)(z)\ oo \f(k + J)(z)\ 

(i) I ^ - V ^ è c E ii—™, 
j = o 7 ! j= iv+i J i 

(Ü) £ M(r,/<k+;>) ^ c g M(r,/<fc^>) 
j = 0 7'! j=N+l J ' 
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then ƒ is of exponential type and 

f . t(N +j)\(N + 1 ) \^ l(2N + l)!\1/(iV+1)" 
T* ^ max^AT, mm \y- ^ - 'A , P , . m

 } 

\ I ^ N \ (N!)C / \ (iV!)c / 
13. The space of entire functions. Following Iyer [43] we define a metric 

on the space of all entire functions Y. (This space includes all polynomials 
and constant zero.) Let/(z) = Y2 anz" anc* #(z) = Z^ bnz

neT and define 

d(f, g) = sup{|a0 - b0\, \an - bf'n: n = 1, 2,...}. 

Then d is a metric and (T, d) is a complete metric space [43]. Let 

Bn = {ƒ G (T, d)\ ƒ is of index not exceeding rc}. 

We consider B = (j£°=0 #* as a subspace of (T, d). It can be shown that 
[25] Bn is nowhere dense in B and thus B is of the first category. 

14. Some applications to summability methods. Let ƒ be entire and 
{zf}?i0 a sequence of complex numbers. We define the matrix trans-
formation A(f, zt) = (anfk) by 

oo 

f(z) = Z anAz - znf for n = 0, 1, • • •. 
fc=0 

We now state some recent results of Fricke and Powell. 
I [28]. If feB then A(f9zt) = (a„tk) is not regular for any sequence 

{zi\T=o- (A transformation A = (an>k) is regular if it transforms every 
convergent sequence into a sequence converging to the same limit. See 
[41, p. 43].) 

Define a sequence {a„}o to be entire if f(z) = £ ^ anz
n is an entire 

function. An entire sequence {a„}o is said to be a sequence of bounded 
index if ƒ (z) = £ ^ anz

n e B. We denote by s the set of all entire sequences 
and by M the set of all entire sequences of bounded index. An infinite 
matrix A = (antk) of complex numbers which transforms e into s is said 
to be an s-s method (entire method). 

II [27]. A matrix A = (an>k) is an e-e method if and only if for each integer 
q > 0, there exists an integer p > 0 and a constant M > 0 such that 

\an>k\q
n^Mpk for all n,fc = 0, l,---. 

Let A'{ƒ, zf) = (b„>k) denote the transpose of A(f, zt) = (aw>fc), that is, 

III [28]. If/G B then for any sequence {zj?l0, 4'(/, zt) = (fcM>k) is an s-s 
method if and only if for each integer n > 0 there exist an integer p > 0 
and a constant M > 0 such that 

\fin\zk)\ S PkM for/c = 0, l , . . . . 
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The condition that ƒ e B is essential in III. 
We now define the /-/ method. Let s be the set of all sequences of complex 

numbers. Let 

\x= {xn}?=0e&\Xn\ < oo [ 

A matrix A = (a„fk) that maps / into itself is said to be an /-/ method. 
Knopp and Lorentz [49] proved that a matrix A = (a„ fc) is an /-/ method 
if and only if there exists a constant M > 0 such that 

00 

X \an,k\SM for/c = 0 , l , - - . 
n = 0 

IV [28]. Let ƒ e B and {zf}?i0 be a sequence of complex numbers. If 
either A(f9 zt) = (anyk) or A'(f9 zt) = (bn>k) is an /-/ method then A'(f, zt) is 
an e-e method. 

Finally we give a matrix which transforms $ into 0&. 
Let the Taylor matrix T(Ç) = (anyk) be defined by 

an,k = (%-On+ie-n, i f fc^n , 

= 0, otherwise, 

where ^ is a complex number. 
V [28]. The Taylor matrix T(Ç) = (a„fk) transforms J* into J* for any 

complex number £. 

15. Conjectures and open problems. We now list some problems and 
conjectures connected with two classes E and B. 

CONJECTURE 1. If </> is any transcendental entire function such that 

log M(r,ó) 
hm s u p — — K — ^ - ^ 71, 

r-* oo ^ 

there exists an entire function feE such that log M(r, (j>) ~ log M(r9f) 
(r -> oo). 

CONJECTURE 2. If </> is any entire function of exponential type, there exists 
an entire function ƒ e B such that log M(r, (j>) ~ log M(r,f) (r -» oo). 

For some theorems of this type, but not connected with E or J5, see 
[22], [19], [20]. 

CONJECTURE 3.W= 2/e. 

CONJECTURE 4. If £ * = x l/np = oo and p(f(Hp)) ^ 1 for p = 1,2,..., then 
ƒ is entire. 

In the following problems 1-4, ƒ e £. 
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1. What is the smallest zero that ƒ can have? (Exclude z = 0.) 
2. What is the largest circle center origin covered by ƒ(!>)? 
3. Find bounds on \a\ — a3\. 
4. Find a = sup{|a2| | ƒ e E}. 
5. FindaK = sup{|a2 | | /er(K)}. 
6. Let ƒ be entire and satisfy a differential equation of the form (12.1). 

Assume P7- (ƒ = 0 ,1 , . . . , n) and Q are polynomials and deg P, ^ deg P0. 
Then/is of bounded index. Find an estimate for the index. 
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