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Abstract

In karst rocky desertification areas, bryophytes coexist with algae, bacteria, and fungi on exposed calcareous rocks to form a
bryophyte crust, which plays an irreplaceable role in the restoration of karst degraded ecosystems. We investigated the biodi-
versity of crust bryophytes in karst rocky desertification areas from Guizhou Province, China. A total of 145 species in 22
families and 56 genera were identified. According to frequency and coverage, seven candidate dominant mosses were screened
out, and five drought-resistant indexes of them were measured. Hypnum leptothallum, Racopilum cuspidigerum, and Hyophila

involuta have high drought adaptability. We explored the interactions between two dominant mosses (H. leptothallum,
H. involuta) and the structure of microbial communities in three karst rocky desertification types. Microbial diversity and
function analysis showed that bothmoss species and karst rocky desertification types affect microbial communities.Moss species
much more strongly affected the diversity and changed the community composition of these microbial groups. Bacteria were
more sensitive in the microbiome as their communities changed strongly between mosses and drought resistance factors.
Moreover, several species of fungi and bacteria could be significantly associated with three drought-resistant indexes: Pro (free
proline content), SOD (superoxide dismutase activity), and POD (peroxidase activity), which were closely related to the drought
adaptability of mosses. Our results enforced the potential role of moss-associated microbes that are important components
involved in the related biological processes when bryophytes adapted to arid habitats, or as one kind of promoters in the
distribution pattern of early mosses succession in karst rocky desertification areas.
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Introduction

Karst rocky desertification is a process of land degradation
involving serious soil erosion, extensive exposure of base-
ment rocks, a drastic decrease in soil productivity, and the
appearance of a desert-like landscape (Wang et al. 2004a).
As a result of intensive land use, this kind of rocky landscape
is caused by degrading the fragile subtropical karst environ-
ment (Wang et al. 2004b). According to the karst rock expo-
sure rate and vegetation coverage, rocky desertification is di-
vided into five types of desertification: potential, slightly,
moderately, severely, and very severely (Xiong et al. 2002).
The karst rocky desertification has tremendously affected hy-
drologic, soil, and ecologic conditions at various scales and
consequently causes various geologic hazards, such as
droughts, floods, landslides, and land subsidence. In addition,
profoundly, the carbon balance and regional climate condi-
tions affected by the expansion of karst rocky desertification
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threaten the living conditions of people in the area (Jiang et al.
2014). In Southwest China, Guizhou Province is a central area
to various provinces, including Yunnan, Guangdong,
Chongqing, Hunan, Hubei, and Sichuan, and the Guangxi
Zhuang autonomous region, and is the largest ecologically
fragile karst region in the world (Yuan 2014; Jiang et al.
2014; Xiong and Chi 2015; Fang and Li 2017; Chen et al.
2019). Karst rocky desertification seriously hinders the sus-
tainable development of local economy, society, and ecology.

Promoting ecological restoration and helping farmers out
of poverty in Karst rocky desertification areas are important
goals that local governments have been striving to achieve
over the past decade in China (Zhang et al. 2015a, b).
Currently, in Southwest China, the ways to control karst rocky
desertification mainly include (1) returning farmland to forests
and grasslands, (2) intensive management and development of
ecological agriculture and animal husbandry, (3) integrated
developmental model of agriculture and forestry, (4) planting
economic trees, and (5) ecological migration and so on (Xiao
et al. 2014; Fang and Li 2017; Cheng et al. 2019). With con-
tinuous resources and financial support from the central and
local governments in China as well as the practices of some
control and restore measures, the overall karst rocky desertifi-
cation area in Southwest China has been reduced by 7.4%
from 2005 to 2011 (0.12 million km2) (Jiang et al. 2014;
Fang and Li 2017). Even so, by the end of 2016, the area of
karst rocky desertification in China’s karst areas was ca. 0.10
million km2 (http://www.mnr.gov.cn/dt/ywbb/201812/
t20181217_2379630.html); thus, challenges obviously
remain in combating karst rocky desertification (Zhang et al.
2016). Therefore, it is very urgent to seek more sustainable
measures to control karst rocky desertification and restore the
ecological environment.

Bryophytes, the most primitive higher plants and the pio-
neer taxa in the positive succession of natural ecosystems, are
one of only a few desiccation-tolerant plants that thrive on
calcareous rocks and can grow on karst rocky desertification
areas (Wu 1998; Yuan 2008). Most of them are poikilohydric
plants, and one of the most remarkable features of bryophytes
is their ability to survive in dry environments (Kallio and
Karenlampi 1975; Proctor et al. 2007). Some desiccation-
tolerant taxa have unique physical structures and strong adap-
tive mechanisms, which make them capable of growing in
extremely harsh environments (e.g., high temperature, season-
al drought, and calcium-rich) (Chen 1963; Giordano et al.
1993; Hamerlynck et al. 2000; Oliver et al. 2000; Gao et al.
2018). In karst rocky desertification areas, bryophytes usually
coexist with algae, bacteria, fungi, and rhizosphere fine parti-
cles on exposed rocks (with high temperatures, seasonal
droughts, and are rich in calcium) to form bryophyte crust.
Bryophyte crusts not only have unique ecological functions
but also have high biomass and obvious ecological effects,
which play an irreplaceable role in the restoration and

reconstruction of degraded ecosystems (Belnap and Lange
2013; Pointing 2016; Cheng et al. 2019). In karst rocky de-
sertification areas, their ecological functions include (1) accel-
erating the disintegration of broken rocks; (2) increasing water
retention and fertility of rock surfaces by absorbing water, dust
particles, and nutrients from the atmosphere; (3) promoting
mineral decomposition and soil formation by releasing CO2,
organic acid, and carbonic anhydrase; (4) balancing subsoil
acidity and alkalinity and improving its physical and chemical
properties, subsequently creating conditions for invasion and
settlement of other species; and (5) affecting the composition
of microbial communities and their growth and reproduction
(Cao and Yuan 1999; Guo and Cao 2001; Li et al. 2005; Maik
2005; Li et al. 2007; Zheng et al. 2009; Xiao et al. 2014).
However, in the karst rocky desertification areas of
Southwest China, the biodiversity survey of bryophytes with-
in a larger scale is very limited. There are several studies on
the community of bryophytes in single areas (such as
Goujiang karst bauxite and Huajiang karst plateau in
Guizhou Province, Guogai, in the mountain area of Yunnan
Province), and the connection between somemoss species and
water retention, erosion resistance, soil enzyme activity, and
soil formation has been preliminarily studied (Huang and Xie
2003; Li and Zhang 2009; Liu et al. 2009; Chen and Zhang
2010; Wang et al. 2011; Li et al. 2013, 2015; Zhang et al.
2013, 2014; Zhang et al. 2015a, b, 2016; Yin et al. 2016;
Cong et al. 2017; Liu et al. 2018). However, the selection of
optimal species, symbiosis between bryophytes and microor-
ganisms, artificial culture techniques, etc. have not attracted
enough attention. Studies focusing on a single rocky deserti-
fication type or sampling point cannot capture bryophyte fluc-
tuations that profoundly change bryophyte species composi-
tion throughout an area. Therefore, the survey of bryophyte
diversity in different rocky desertification regions is a neces-
sary prerequisite for the further application of dominant bryo-
phyte species.

Microbial fungi and bacteria are ubiquitous, occurring in
highly enriched concentrations in bryophytes, and investiga-
tion of bacterial communities has attracted global attention in
recent years (Garcia-Pichel et al. 2001; Yeager et al. 2004;
Abed et al. 2010; Steven et al. 2014; Blay et al. 2017; Maier
et al. 2018). Nevertheless, exploration of the diversity and
community of non-lichenized fungi with bryophytes is still
quite limited (Bates et al. 2012; Zhang et al. 2016; Liu et al.
2017). Most of these studies focused on the diversity of moss-
related bacterial communities in deserts, forests, grasslands,
and alpine regions, while the structure and function of
bryophyte-symbiotic microbial communities in karst rocky
desertification habitats have not been reported (Opelt et al.
2007; Tang et al. 2016; Ma et al. 2017). Studies have shown
that Proteobacteria and Actinobacteria were the two most
abundant phyla associated with mosses under different habi-
tats, and large amounts of unclassified bacteria could interact
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with the moss. In addition, the structure and function of the
symbiotic fungal community with bryophytes are often
neglected. We suspect that the abundant moss-associated mi-
crobes might also be important components involved in relat-
ed biological processes, such as adaptation to aquatic, anaer-
obic, and even extreme drought environments. To better un-
derstand the entire microbiome responses to different classes
of karst rocky desertification and to disentangle the role of key
microbial taxa in microbiome communities of dominant spe-
cies of bryophytes, an integrative study of all microbial groups
is needed.

Guizhou Province is the central area of the largest ecolog-
ically fragile karst region in the world. Here, we investigated
the biodiversity of crust bryophytes in different karst rocky
desertification regions in Guizhou Province, where a total of
1620 species of taxa have been recorded (Xiong 2014a, b;
Xiong and Cao 2018). Then the drought adaptation mecha-
nism of 7 candidate dominant bryophytes was explored.
Finally, we performed a holistic analysis of 2 moss
microbiome members including bacteria and fungi using
group-specific high-throughput sequencing approaches on
samples obtained from three major representative karst rocky
desertification classes. The results of this study not only en-
hanced our understanding of the interactions between mosses
and their symbiotic microorganisms and the factors that influ-
ence microbial communities in mosses but also will be helpful
for better use and development of the dominant moss-
bryophytic crust technique in environmental restoration for
karst rocky desertification.

Materials and methods

Field quadrat setup and samplings

According to aerial photos, satellite photo observation, and
ground investigation in different periods, the field quadrats
were located across a latitudinal gradient in Guizhou
Province, China, from southwest to northeast. The sites were
chosen to represent the three main classes of karst rocky de-
sertification areas in Guizhou Province and consisted of 14
sample sites, including very severely areas (Ve, such as
Xingyi and Anshun City), severely areas (Se, such as
Panzhou City and Yanhe County), and slightly areas (Sl, such
as Guiyang City and Bijie City). The main classes of karst
rocky desertification areas in Guizhou Province and the geo-
graphic location of all sample quadrats are shown in
Supplemental Table S1 and Supplemental Fig. S1.

The sample quadrat, which was dependent on the actual
situation, was randomly set, and each quadrat was 1 m × 1
m (for the stone face that was not square, the square projection
of the spatial horizontal plane was taken as the sampling

range) and all kinds of moss samples were collected in sterile
centrifuge tubes for further processing.

To evaluate the composition of moss-associated bacterial
and fungal communities, two dominant mosses, Hypnum
leptothallum (Müll. Hal.) Paris (Supplemental Fig. S2) and
Hyophila involuta (Hook.) A. Jaeger (Supplemental Fig. S3)
(denoted as Hyp and Hyo, respectively), including plants of
them and underlying rhizosphere fine particles were collected
from three different sites in Guihzou Province, China (Ve-
Zerong Village, Xingyi City; Se-Zhongjie Village, Yanhe
County; Sl-Qiaotao Village, Guiyang City; shown in
Supplemental Fig. S1, Supplemental Table S1 and S2), on
Oct. 25–27, 2018. Approximately 10 g of each species was
sampled. Three samples of the same species were collected
from each sample quadrat and mixed into one composite sam-
ple. Three composite samples of each species were collected
from each site. In total, 18 composite samples were collected
and immediately carried back to the laboratory and stored at 4
°C until further processing.

Survey of dominant bryophytes

To investigate the biodiversity of bryophytes in karst rocky
desertification areas in Guizhou Province, field specimens
were collected for species identification and statistical analy-
sis. The statistical indicators of the dominant species included
(1) the species frequency, that is, the number of quadrats of a
species existence in/the total quadrats × 100; (2) the ratio of
SN/S, where SN indicated the number of quadrats with the
species N collected in this survey and S was denoted as the
total number of samples; S in this study was 675; (3) the ratio
of SN/Na, which was used as the sub-standard, where Na was
denoted as the number of sample sites that the species N was
collected from; and (4) Na/Ta, which is the assessment index,
where Ta was denoted as the total number of sample sites; Ta
was 14 in this study. The above 4 indexes were used to analyze
the dominant species by statistics, and finally, the dominant
species of natural distribution in karst rocky desertification
areas of Guizhou Province were screened out. All collected
specimens were kept in the natural museum herbarium of
Guizhou University (GACP).

Physiological properties of dominant bryophytes

To investigate the correlation between the physiological prop-
erties and ecological adaptation ability of the bryophyte dom-
inant species in karst rocky desertification areas, we selected 7
mosses with high frequency and coverage in all field quadrats
to measure the drought resistance index, includingMeteorium

polytrichum Dozy & Molk., H. involuta (Hook.) A. Jaeger,
Thuidium kanedae Sakurai, Racopilum cuspidigerum

(Schwägr.) Ångström, Anomodon viticulosus (Hedw.) Hook.
& Taylor, H. leptothallum (Müll. Hal.) Paris, Plagiomnium
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cuspidatum (Hedw.) T. J. Kop. All tested mosses were placed
in clean Petri dishes and cultured in an incubator at a temper-
ature of 20 ± 2 °C and a natural light cycle. After 35 days, they
were harvested for the determination of physiological indica-
tors of drought resistance.

Membrane permeability measurement The determination
method was based on Shi et al. (2006) and slightly improved.
Briefly, since the leaves of moss are very small, the volume
scale method was used to ensure that the volume of the sam-
pled leaves was consistent. Moss leaves with a volume equiv-
alent of 0.5 mL were placed in a 50-mL glass beaker, rinsed
with distilled water 3 times. Then, the beakers were filled with
30 mL of distilled water and allowed to stand in the dark for
24 h at room temperature. The electrical conductivity (EC1) of
the bathing solution was determined at the end of the incuba-
tion period. After that, the beakers were heated in a water bath
at 95 °C for 20 min and then cooled to room temperature, and
the electrical conductivity (EC2) was measured. Electrolyte
leakage was calculated as the percentage of EC1/EC2.

Determination of free proline content Free proline (Pro) was
extractedwith sulfosalicylic acid from 1 g of freshmoss leaf, and
the proline concentrationwas colorimetrically quantified accord-
ing to the ninhydrin colorimetric method (Bates et al. 1973).

Determination of malondialdehyde content The thiobarbitu-
ric acid (TBA) colorimetric method was used to determine the
malondialdehyde (MDA) of moss. Refer to Zhang and Fan
(2007) for the detailed experimental methods.

Superoxide dismutase activity and peroxidase activity test

The superoxide dismutase (SOD) activity of moss was deter-
mined by the nitroblue tetrazolium (NBT) photochemical re-
duction method, and the guaiacol method was used to deter-
mine the peroxidase (POD) activity. The protocol used was in
reference to Chen and Zhang (2016).

Comprehensive evaluation method of drought resistance in-

dex The subordinate function value method was used to eval-
uate the drought resistance of different mosses (Li et al. 2006).
The average value of the above drought resistance member-
ship function of all the indexes of each moss was calculated.
The larger the mean value of the membership function, the
stronger the drought resistance was. In addition, Data
Processing System software (DPS, v15.10) (http://www.
dpsw.cn/index.html) was used to directly calculate the
correlation order of each index.

Microbial diversity analysis

Sample collection In this study, 18 samples ofH. leptothallum
and H. involuta (denoted as Hyp and Hyo, respectively)

(including the plants and the rhizosphere fine particles of
them) were obtained through field sampling and stored at 4
°C. Then, these samples (mixed with plants and rhizosphere
fine particles) were used for the subsequent analysis.

DNA extraction, PCR assays, and high-throughput sequencing

Microbial DNA was extracted from the two moss samples
using the E.Z.N.A.® Soil DNA Kit (Omega Bio-Tek,
Norcross, GA, USA) according to the manufacturer’s proto-
cols. The final DNA concentration and purification were de-
termined by a NanoDrop 2000 UV-vis spectrophotometer
(Thermo Scientific, Wilmington, USA), and DNA quality
was checked by 1% agarose gel electrophoresis. The V3-V4
hypervariable regions of bacteria 16S rRNA and the internal
transcribed spacer (ITS) regions were amplified with primers
338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-
GGACTACHVGGGTWTCTAAT-3′), ITS1F (CTTGGTCA
TTTAGAGGAAGTAA) and ITS2R (GCTGCGTTCTTCAT
CGATGC), respectively, by a thermocycler PCR system
(GeneAmp 9700, Carlsbad, ABI, USA). The PCRs were con-
ducted using the following program: 3 min of denaturation at
95 °C, 27 cycles of 30 s at 95 °C, 30 s for annealing at 55 °C,
and 45 s for elongation at 72 °C, and a final extension at 72 °C
for 10 min. PCR reactions were performed in triplicate in 20
μL mixtures containing 4 μL of 5 × FastPfu Buffer, 2 μL of
2.5 mM dNTPs, 0.8 μL of each primer (5 μM), 0.4 μL of
FastPfu Polymerase, and 10 ng of template DNA. The
resulting PCR products were extracted from a 2% agarose
gel, further purified using the AxyPrep DNA Gel Extraction
Kit (Axygen Biosciences, Union City, CA, USA) and quanti-
fied using QuantiFluor™-ST (Promega, Madison, USA) ac-
cording to the manufacturer’s protocol. Purified amplicons
were pooled in equimolar amounts and paired-end sequenced
(2 × 300) on an Illumina MiSeq platform (Illumina, San
Diego, USA) according to the standard protocols by
Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai,
China). The raw reads were deposited into the NCBI
Sequence Read Archive (SRA) database (SRA accession:
PRJNA557311; the accession link: https://www.ncbi.nlm.
nih.gov/sra/PRJNA557311).

Processing of sequencing data Raw fastq files were quality-
filtered by Trimmomatic (Aachen, Germany) and merged by
FLASH (San Francisco, USA) with the following criteria: (i)
The reads were truncated at any site receiving an average
quality score < 20 over a 50-bp sliding window. (ii)
Sequences whose overlap was longer than 10 bp were merged
according to their overlap with mismatch no more than 2 bp.
(iii) Sequences of each sample were separated according to
barcodes (exactly matching) and primers (allowing 2 nucleo-
tide mismatching), and reads containing ambiguous bases
were removed. Operational taxonomic units (OTUs) were
clustered with a 97% similarity cut-off using UPARSE
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(version 7.1 http://drive5.com/uparse/) with a novel “greedy”
algorithm that performed chimera filtering and OTU
clustering simultaneously. The taxonomy of each 16S rRNA
and ITS gene sequence was analyzed by the RDP Classifier
algorithm (http://rdp.cme.msu.edu/) against Silva (SSU123)
16S rRNA and Unite (Release 7.0 http://unite.ut.ee/index.
php), respectively, using a confidence threshold of 70%.

Bioinformatics analysis

The alpha diversity of bacterial and fungal communities was
calculated based on Faith’s phylogenetic metric at the OTU
level. Nonmetric multidimensional scaling (NMDS) was used
to visualize the dissimilarity of beta diversity based on the
unweighted Unifrac distance across different moss species
on three rocky desertification types (Quast et al. 2013).
Microbial ecological functions were analyzed using the
FAPROTAX (ht tp : / /www. louca lab .com/a rch ive /
FAPROTAX/lib/php/index.php?section=Home) database,
which annotated bacterial functions, and the FUNGuild
(http://www.funguild.org/) database was used to predict the
ecological function of fungal communities (the confidence
levels were probable and highly probable, respectively)
(Louca et al. 2016; Nguyen et al. 2016). Shared and unique
OTUs among two moss species at three rocky desertification
types were used to generate a Venn diagram. Bray-Curtis dis-
similarity values were calculated to reveal the relationships
among all samples based on the bacterial and fungal commu-
nities (Xue et al. 2017). Redundancy analysis (RDA) or ca-
nonical correspondence analysis (CCA) were performed with
vegan in R to determine which environmental variables best
explained the taxon distribution across communities (Zhao
et al. 2016). The co-occurrence of genera in microbial com-
munities across two moss species was analyzed using
NetworkX in the Python package of the R platform (3.5.1)
(https://pypi.org/project/networkx/). To reduce network
complexity and facilitate the identification of the core moss
community, we selected the top 50 bacterial and fungal genera
of two moss species from all karst rocky desertification types
for further analysis. To explore the pairwise associations,
correlation scores (Spearman correlation) were calculated,
and only significant correlations (P < 0.05) were retained for
the downstream procedure (Faust and Raes 2012). The topol-
ogy property parameters of the network, the degree, between-
ness centrality, and closeness centrality of each node in the
network were calculated by the plug-in Network Analyzer in
Cytoscape (Assenov et al. 2007).

Statistics analysis

Statistical analyses were performed in Origin Pro 8.0
(OriginLab, Northampton, MA, USA). One-way ANOVA
was used to analyze differences in physiological and

biochemical properties of seven mosses and alpha diversity
among two mosses species and karst rocky desertification
types. Statistical differences were considered significant at P
< 0.05. Permutation multivariate analysis of variance
(PERMANOVA) was employed to assess the significance of
the influential factors that differentiated the moss drought re-
sistance indexes and microbiomes (packages: vegan, adonis
function) (Zhao et al. 2019). Linear discriminant analysis ef-
fect size (LEfSe) was performed to investigate potential bio-
markers (across five taxonomic levels, from phylum to genus
for bacterial and fungal communities) within microbiomes
specifically enriched in one of the moss species and rocky
desertification type based on P < 0.05 and an LDA score >
2.0 (Segata et al. 2011).

Results

The dominant species of moss in different karst rocky
desertification habitats

In this study, a total of 185 field quadrats were investigated,
675 samples were collected, and a total of 145 moss species
(including 1 subspecies and 2 varieties) in 22 families and 56
genera were identified. A detailed inventory of all collected
moss specimens was made (Supplemental Table S1 and S3).
A total of 22 families of mosses were identified, including the
dominant families Pottiaceae, Bryaceae, Hypnaceae, and
Brachytheciaceae, which all contain more than 10 species.
There are 11 species of l iverworts in 3 families
(Supplemental Table S3). The proportion analysis shows that
most of the collected moss specimens are mainly distributed in
the temperate zone, with a few tropical distribution species.

In Table 1, the ratio of the top 20 dominant species in the
natural distribution of karst rocky desertification samples was
screened based on the early screening standard, and the fre-
quency was 0.621, indicating that these species are the main
components of the moss groups in karst rocky desertification
land. We have considered firstly the frequency (including SN/
S, SN/Na, and Na/Ta), and 9 species, namely H. leptothallum,
Didymodon fallax, H. involuta, T. kanedae, Hyophila

javanica, Bryum argenteum, Trichostomum crispulum,
Palamocladium euchloron, and Didymodon constrictus var.
constrictus, have been screened out. However, among them,
H. leptothallum, H. involuta, and T. kanedae have greater
coverage. Beyond that, among excluded species,
A. viticulosus, M. polytrichum, P. cuspidatum, and
R. cuspidigerum have also greater coverage. When we think
about determining the dominant species, we should consider
comprehensively the frequency and coverage in natural envi-
ronment. So, we have selected the 7 species as candidate
dominant species to explore the adaptation mechanism of
bryophytes in karst rocky desertification habitats, namely
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M. polytrichum, H. involuta, T. kanedae, R. cuspidigerum,
A. viticulosus, H. leptothallum, and P. cuspidatum.

Moss physiological properties of drought resistance

To explore the adaptation mechanism of bryophytes in karst
rocky desertification habitats, through five drought resistance
index analyses, we found that the drought resistance ability of
7 candidate dominant mosses in karst rocky desertification
habitats had different results when evaluating different indexes
(Supplemental Table S2; Supplemental Fig. S4). This is relat-
ed to the different ways in which different species adapt to the
arid environment (Li et al. 2002). For example, the membrane
permeability and malondialdehyde content mainly reflect the
ability of plants to resist changes in membrane structure. The
enhancement of Pro content, SOD activity, and POD activity
mainly reflects the adaptability of plants to adversity by
inhibiting catabolism (Souza et al. 2016). Therefore, a com-
prehensive analysis of these multiple indicators is needed to
truly reflect the drought resistance of the seven mosses.

Using the fuzzy membership function method, five indexes
that are closely related to drought resistance were selected to
comprehensively evaluate the drought resistance of seven
mosses. From Table 2, the order of drought resistance of the
seven mosses was H. leptothallum > R. cuspidigerum >
H. involuta > A. viticulosus > P. cuspidatum > T. kanedae >
M. polytrichum. This sequence was consistent with the ratio of

the number of samples to the number of plots, which indirectly
reflects the biomass of the natural distribution. In addition,
using DPS software, the gray relation analysis was carried
out with the average membership function value in the com-
prehensive evaluation results as the generating sequence
(Table 3). The results indicated that the five physiological
indicators of resistance selected in this study had the most
important impact on the drought resistance of the seven
mosses adapted to karst rocky desertification habitats. The
free Pro content, POD activity, and SOD activity were the
most important, followed by plasma membrane permeability,
and MDA content had the least impact.

Through the comprehensive analysis, H. leptothallum,
R. cuspidigerum, and H. involuta were classified as high
drought-resistant species, and P. cuspidatum and
M. polytrichum were low drought-resistant species. These re-
sults showed that the 7 mosses could reduce the water to adapt
to drought stress mainly through the accumulation of free
proline increasing the solute concentration inside the cell. At
the same time, by increasing the activity of various antioxidant
enzymes in cells, the destruction of the cell membrane of these
mosses species by reactive oxygen species was eliminated,
which could protect the integrity of the cell membrane struc-
ture against drought stress. These mosses have evolved
drought resistancemechanisms frommorphological and phys-
iological aspects in the long-term adaptation in karst rocky
desertification habitats.

Table 1 Top 20 dominant
bryophytes collected from karst
rocky desertification areas

No. Species Species frequency SN/S SN/Na Na/Ta

1 Hypnum leptothallum 39.5 0.118 6.636 0.786

2 Didymodon fallax 21.6 0.059 3.333 0.857

3 Bryum recurvulum 14.6 0.040 3.222 0.357

4 Hyophila involuta 13.5 0.037 5.400 0.857

5 Thuidium kanedae 13.5 0.037 3.571 0.500

6 Hyophila javanica 12.4 0.034 2.000 0.643

7 Bryum argenteum 11.9 0.033 2.556 0.714

8 Trichostomum crispulum 10.8 0.030 2.200 0.643

9 Palamocladium euchloron 10.8 0.030 2.500 0.571

10 Didymodon constrictus var. constrictus 9.7 0.027 2.143 0.643

11 Barbula unguiculata 8.1 0.022 1.875 0.500

12 Anomodon viticulosus 8.1 0.022 5.000 0.214

13 Ptychomitrium gardneri 8.1 0.022 1.875 0.571

14 Meteorium polytrichum 8.1 0.022 1.857 0.571

15 Plagiomnium cuspidatum 6.5 0.018 3.000 0.286

16 Bryum funkii 5.9 0.016 1.833 0.429

17 Weissia breviseta 5.4 0.015 1.667 0.429

18 Racopilum cuspidigerum 5.4 0.015 2.500 0.286

19 Bryum algovicum 4.3 0.012 1.333 0.429

20 Eurhynchium eustegium 4.3 0.012 2.000 0.286

Total – – 0.621 49.865 10.572
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Moss microbiomes

Bacterial community

To investigate the structure and function of the symbiotic mi-
crobial community, two moss species with better drought re-
sistance in different karst rocky desertification habitats were
analyzed by means of macro genome sequencing. After splic-
ing and filtering the sequencing data, the remaining 1,021,116
sequences were clustered into 2892 bacterial OTUs obtained
from 18 moss samples. Two species exhibited significant (P <
0.01 and P < 0.05) changes in the alpha diversity (Chao index)
of the bacterial community in the Ve and Se areas, respectively
(Fig. 1a). The results of bacterial alpha diversity show that
H. involuta has a higher bacterial diversity than
H. leptothallum. Furthermore, there was no overall difference
(P > 0.05) in the Shannon index of the bacterial community
between Ve and Se, except for the Sl area (P < 0.05) (Fig. 1a).
Unconstrained ordination of the bacterial community matrix
(Bray-Curtis distance-based NMDS) (Fig. 2b) demonstrated
that the samples were divided according to moss species, and
this grouping appeared to be significant according to
PERMANOVA analyses (P = 0.001) (Table 4). Notably,
grouping according to rocky desertification classes was not
significant (P > 0.05).

Taxonomic analysis revealed that Actinobacteria and
Proteobacteria were most abundant across all samples at the
phylum level, with relatively stable proportions of 19.54–
45.83% and 19.21–31.20%, respectively, which are similar
to some previous studies on bryophytes collected from differ-
ent areas (Ma et al. 2017; Tang et al. 2016). Additionally,
Cyanobacteria, Chloroflexi, Acidobacteria, Bacteroidetes,

and Verrucomicrobiawere the dominant phyla from the whole
areas of two moss species according to relative abundance (>
1% was identified as a dominant bacterium) (Supplemental
Fig. S5a and S6a). At the class level, Actinobacteria,
Cyanobacteria, Alphaproteobacteria, and Acidobacteria

dominated (Supplemental Fig. S6b). A total of 534 genera
were obtained at the genus level from the bacterial communi-
ty. The top 50 classified genera and 18 samples were both
hierarchically clustered based on the Bray-Curtis similarity
index (Supplemental Fig. S6c). It can be observed that sam-
ples within the same species were relevant. The cluster anal-
ysis showed that the top 50 genera, such as Pseudonocardia,
Cyanobacteria, Micromonospora, and Sphingomonas, were
the most representative bacterial genera in two moss species.

In addition, a Venn diagram demonstrated that OTUs dif-
fered among the two moss species at different rocky deserti-
fication types (Fig. 2a). The number of site-specific OTUs
ranged from 12 (Hyp-Ve) to 81 (Hyp-Se). In addition, a total
of 1011 OTUs were shared among all samples; these were
defined as the core microorganisms of the bacterial commu-
nity. Hierarchical cluster analysis revealed that the 18 bacterial
community samples clustered into two groups that
corresponded very well to the two moss species (Fig. 2b).
Clustering indicated that the structure of the bacterial commu-
nity was closely related to bryophyte species rather than hab-
itat. Therefore, the results suggest that moss species may be a
major factor in changing microbial community differentiation
in karst rocky desertification ecosystems.

The LEfSe analysis revealed that 54 biomarkers affiliating
with 6 phyla were sensitive to two moss species (P < 0.05,
LDA > 2.0; Fig. 3a; Supplemental Table S4). These bio-
markers accounted for 6.99% of all taxa retrieved. For

Table 2 Resist-drought comprehensive evaluation form of seven mosses

Items Species

H. leptothallum R. cuspidigerum H. involuta A. viticulosus P. cuspidatum T. kanedae M. polytrichum

Z(MP) 0.8346 0.5984 0.3226 0.8035 1.0000 0.5258 0.0000

Z(Pro) 1.0000 0.469 0.0201 0.2791 0.2464 0.8827 0.0000

Z(MDA) 1.0000 0.9877 0.5825 0.9767 0.3315 0.0000 0.2864

Z(SOD) 0.9618 1.0000 0.8835 0.0000 0.2927 0.3726 0.6273

Z(POD) 0.3549 0.5374 1.0000 0.3351 0.1929 0.0109 0.0000

Average Zij 0.8303 0.7185 0.5617 0.4789 0.4127 0.3584 0.1827

Order 1 2 3 4 5 6 7

Table 3 The correlation between
5 resistance indexes Index Free Pro POD activity SOD activity Membrane permeability MAD

Correlation coefficient 0.4951 0.4863 0.4495 0.2523 0.2039

Order 1 2 3 4 5
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instance, two taxa within the class Alphaproteobacteria were
more sensitive to Hyp, while the genus Craurococcus within
this order was significantly enriched in Hyo. Two taxa within
the order Rhizobiales and three genera within the class
Actinobacteria were most susceptible to Hyp species, and
the genus Pseudonocardia and three unclassified genera with-
in the order Kallotenuales were enriched in the Hyo. In addi-
tion, the bacteria (from phylum level to order level) that sen-
sitive to three karst rocky desertification areas (slightly, se-
verely, and very severely) of two moss species were analyzed
(Supplemental Fig. S7). The sensitive biomarkers of bacteria
were significantly different at above two influencing factors.

Fungal community

After splicing and filtering the sequencing data, the remaining
1,179,721 sequences were clustered into 3351 fungal OTUs.
Good’s coverage index of all samples reached over 99.61%,
indicating that the sequencing depth met the requirements of
reflecting all information of moss species. The alpha diversity
of the microbial community inmoss is shown in Supplemental
Table S5. The alpha diversity (Chao and Shannon indexes) of
the two species showed significant (P > 0.05) changes in the
fungal community in the Sl areas (Fig. 1a). Moreover, the beta
diversity of fungal communities was also strongly affected by
the moss species (Fig. 1b).

The fungal community associated with the two moss spe-
cies showed high taxonomic diversity. Altogether, the fungi
were classified into 7 phyla, 27 classes, and 550 genera. At the
phylum level, the dominant phyla were Ascomycota and can-
didate divisions, and the fungi remained unassigned at the
family level in Pleosporales and Capnodiales (Supplemental
Fig. S5b, S8a, and S8b). However, the results showed that the
dominant species were the same in different samples at the
phylum level, but the relative abundance was different.
Interestingly, the entomopathogenic fungi Cordycipitaceae
and Ophiocordycipitaceae also accounted for the total fungal
community abundance.

The Venn diagram demonstrated that OTUs differed
among the two moss species at different rocky desert types
(Fig. 2c). The number of site-specific OTUs ranged from 115
(Hyo-Ve) to 321 (Hyp-Sl). In addition, a total of 245 OTUs
were shared among all samples; these were defined as the core
microorganisms of the fungal community. These OTUs were
composed of a number of fungal groups, including
Ascomycota, Basidiomycota, Chytridiomycota, and
Mucoromycota.

Hierarchical cluster analysis revealed that the 18 fungal
community samples that clustered into two groups
corresponded very well with the two moss species (Fig. 2d).
Clustering indicated that the structure of the fungal communi-
ty was more closely related to bryophyte species rather than
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Fig. 1 Alpha and beta diversity of the moss bacterial and fungal
community. Chao and Shannon indexes were calculated based on
phylogenetic distance at the OTU level and displayed in boxplots. The
difference in alpha diversity among two moss species in different karst
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and the labeled asterisk implies the significant difference (P < 0.05) of
alpha diversity observed in the two species at the same areas. Beta diver-
sity was analyzed by nonmetric multidimensional scaling (NMDS) based
on unweighted UniFrac phylogenetic distance metrics at the OTU level
and displayed in a scatter diagram
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habitat. Therefore, the results suggest that moss species may
be a major factor in changing the differentiation of microbial
communities in karst rocky desertification ecosystems.

The LEfSe analysis revealed that 40 biomarkers affiliating
with 4 phyla were sensitive to two moss species (P < 0.05,
LDA > 2.0; Fig. 3b; Supplemental Table S6), which
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Fig. 2 The composition similarities and differences of microorganisms in
moss samples at different karst rocky desertification habitats. a, c Venn
diagram of exclusive and shared bacterial and fungal OTUs (at the 3%
evolutionary distance). b, d Hierarchical cluster analysis using pairwise

unweighted UniFrac distances. Hyp1, Hyp2, and Hyp3 are respectively
represented H. leptothallum in severely area, very severely area, and
slightly area; Hyo1, Hyo2, and Hyo3 are respectively represented
H. involuta in severely area, very severely area, and slightly area

Table 4 The effects of drought resistance index, karst rocky desertification type and moss species on the differentiation of bacterial and fungal
communities based on PERMANOVA

SOD Pro POD MP MAD Karst rocky desertification type Moss species Karst rocky desertification
type × moss species

Bacterial community R2 0.164 0.163 0.106 0.097 0.072 0.198 0.263 0.427

P 0.001 0.002 0.02 0.058 0.221 0.006 0.001 0.001

Fungal community R2 0.108 0.109 0.086 0.068 0.085 0.122 0.204 0.314

P 0.017 0.02 0.081 0.287 0.081 0.017 0.004 0.268
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accounted for 4.5% of all taxa retrieved. For Hyp, two taxa
within the classes Pucciniomycetes in Basidiomycota were
more sensitive, while 11 Agaricomycetes within this order
were s igni f ican t ly enr iched in the Hyo spec ies
(Supplemental Fig. S7; Supplemental Table S6). In addition,
the fungi (from phylum level to family level) that sensitive to
three karst rocky desertification areas (slightly, severely, and
very severely) of two moss species were analyzed
(Supplemental Fig. S7).

Microbial ecological function analysis

According to the results of species classification, the function-
al annotation of bacterial communities related to two mosses
was conducted with the FAPROTAX database. Except for the
unidentified groups, 39 functional groups of bacteria were

obtained, and 11 functional groups with relatively high abun-
dance are shown in Fig. 4a. The main functional groups in the
two mosses, including photoautotrophic, chemoheterotrophic,
nitrate reduction, methanotrophic, and human pathogens, and
especially photoautotrophic and chemoheterotrophic groups,
accounted for more than 85% of the total group. The propor-
tion of dominant functional groups of the same moss bacterial
community was not consistent in different karst rocky desert-
ification areas. Similarly, the dominant functional groups of
two different moss bacterial communities in the same karst
rocky desertification area were also different in proportion,
and there was no consistent change trend. Through compara-
tive analysis of the FUNGuild database, except for the non-
identified groups, the fungal communities of two mosses in
different karst rocky desertification areas were divided into 8
ecological functional groups (Fig. 4b). Plant pathogen and
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Fig. 3 LEfSe results revealed bacteria (a, c from phylum level to order
level) and fungi biomarkers (b, d from phylum level to family level) that
were sensitive to Hyp and Hyo in the three karst rocky desertification
areas. There are five circular rings in the cladogram, each circular ring
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respectively. The node on the circular ring represents a taxon affiliating
within the taxonomic level. Taxa that had significantly higher relative
abundance in a certain moss species were color-coded within the clado-
gram according to the Bacterial and fungal Ribosomal Reference (PR2)
taxonomy
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saprotroph (plant saprotroph, dung saprotroph, and undefined
saprotroph) were dominant groups in the two moss species,
accounting for more than 70% of the total fungi. A small
amount of animal pathogens and fungal parasites were ob-
served. In particular, some entomopathogenic fungi related
to Cordyceps were identified, such as Hirsutella and
Ophiocordyceps, which have been reported to be symbiotic
with plants and as a necessary link in the life cycle. In addi-
tion, some endophytes and ectomycorrhizae were identified.

Co-occurrence patterns of bacteria and fungi

In order to understand the correlation between species of
moss-related microorganisms, we have selected the bacterial
and fungal genera in the top 50 of the total horizontal abun-
dance and calculated their Spearman rank correlation coeffi-
cient. Across all 18 samples from three karst rocky desertifi-
cation types, correlation network analysis showed 137 strong
positive correlations and 50 strong negative correlations
among the top 50 dominant bacterial genera (P < 0.01, R >
0.6; Fig. 5a). The average path length of network was 2.248
edges with a diameter of 5 edges. The transitivity was 0.447
and the modularity index (MD) was 0.67, where MD > 0.5
suggests that the network has a modular structure. The co-
occurring taxa mainly distributed in Acidobacteria,
Bac terode tes , Chloro f l ex i , Cyanobac ter ia , and
Proteobacteria phylum. When the distribution of nodes was
modularized, all nodes were classified into twomajor modules
(> 10 nodes). Based on betweenness centrality scores, the top
three genera identified were Solirubrobacter, JG34-KF-361,
and Psychroglaciecola, which indicates the critical roles these
bacteria play as keystone taxa in the co-occurrence network.

The correlation network analysis of fungi showed 119
strong positive correlations and 48 strong negative correla-
tions among the top 50 dominant genera (P < 0.01, R > 0.7;

Fig. 5b). The average path length of network was 2.411 edges
with a diameter of 5 edges. The MD was 0.58, where MD >
0.5 suggests that the network has a modular structure.
However, there were no major modules when the distribution
of nodes was modularized, and the top three genera identified
wereNeofusicoccum,Cladosporium, andMycosphaerella, ac-
cording to the betweenness centrality scores.

The relationship between drought resistance
properties of moss and moss microbial properties

To further characterize the differentiated effects of the karst
rocky desertification type and moss species on the diversity of
moss microbiomes, a permutation multivariate analysis of var-
iance based on PERMANOVA was constructed (Table 4).
Across all indexes, moss species (P = 0.001, R2 = 0.263)
had the highest correlation with their symbiotic bacterial com-
munities, followed by the rocky desertification type (P =
0.006, R2 = 0.198; Table 4). In addition, the drought resistance
indexes SOD (P = 0.001, R2 = 0.164) and Pro (P = 0.002, R2 =
0.163) also had a great influence on the bacterial community.
Hyp showed better drought resistance, with a mean SOD and
Pro value of 292.03 and 1.42, respectively, whereas Hyo had a
mean SOD and Pro value at 229.18 and 1.16, respectively
(Supplemental Table S2). Similar to the bacterial communi-
ties, the fungal communities also exhibited a strong connec-
tion with moss species (P = 0.004, R2 = 0.204) and karst rocky
desertification type (P = 0.017, R2 = 0.122), as well as the
drought resistance indexes SOD (P = 0.017, R2 = 0.108) and
Pro (P = 0.020, R2 = 0.109; Table 4).

Redundancy analysis and permutation test were used to
determine the relationships among seven biochemical and en-
vironmental factors and bacterial and fungal community struc-
tures. Based on the detrended correspondence analysis (DCA)
with species-sample data (97% similarity of samples from the

Fig. 4 Changes in the ecological functional groups of the bacterial (a)
and fungal (b) communities of two mosses at the OTU level. The two
mosses including H. involuta and H. leptothallum were collected from

very severely areas, severely areas, and slightly areas. In a and b, class
names were color-coded on the right with the respective ecological func-
tion listed above
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OTU), if the size of lengths of the first axis were ≥ 3.5, CCA
analysis is more accurate, and RDA is better than CCA if it is
less than 3.5 (Shankar et al. 2017). From the RDA analysis of

bacterial communities (axis lengths = 2.249), axis 1 explained
26.56% of the variance, and axis 2 explained another 8.67%
(Supplemental Fig. S9a). The major biochemical factors
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driving moss bacterial community composition were POD (P
= 0.001, R2 = 0.239), rain (P = 0.048, R2 = 0.235), Pro (P =
0.038, R2 = 0.157), and SOD (P = 0.012, R2 = 0.126). There
was no significant correlation between other environmental
factors and bacterial community structure (P > 0.05).

As the DCA results were less than 3.5, CCA analysis was
carried out on the fungal community (lengths of gradient =
0.661). From the CCA analysis of the fungal communities
(axis lengths = 2.249), axis 1 explained 11.55% of the vari-
ance, and axis 2 explained another 10.01% (Supplemental Fig.
S9b). The major biochemical factors driving moss fungal
community composition were TEM (P = 0.006, R2 = 0.293),
POD (P = 0.036, R2 = 0.281), sun (P = 0.007, R2 = 0.264),
SOD (P = 0.029, R2 = 0.152), Pro (P = 0.034, R2 = 0.136), and
rain (P = 0.035, R2 = 0.125). Based on the above CCA/RDA
analysis results, it revealed the influence of environmental
factors and drought resistance indicators on the dominant mi-
crobial community, and the four variables POD, rain, Pro, and
SOD have significant correlations with the microbial
community.

Finally, we further assessed the association between the
specific genera in the microbial community and environmen-
tal variables with the Spearman correlation. From a systemic
perspective, the genera with the top 50 abundance were se-
lected for the analysis of both bacterial and fungal communi-
ties. Spearman’s correlation values were calculated for each
genus compartment using the key microbiota that was differ-
entially abundant according to the LEfSe analysis (Fig. 3).
Figure 6 shows that there was a clear clustering on each cor-
relation heatmap for the bacteria and fungi. According to Fig.
6 a, the environmental variables MP, MAD, Pro, SOD, and
POD were clustered into one branch, which was a significant
correlation with clade 1 of the bacterial genus. Among clade 1,
Bradyrhizobium,Mycobacterium,Crossiella,Microvirga, and
Nocardioides had a strong positive association with three
drought resistance indexes: Pro, SOD, and POD, which were
closely related to the drought adaptability of the mosses.
Bradyrhizobium and Microvirga are known to be part of the
rhizobia, which are gram-negative, nitrogen-fixing bacteria
that form nodules on host plants. Rhizobia also have symbi-
otic relationships with legume plants, which cannot live with-
out the essential nitrogen-fixing processes of these bacteria
(Lodwig et al. 2003). The significant correlation between
rhizobia and Pro or SOD indicated that moss-related microor-
ganisms may help bryophyte drought resistance by linking
these drought resistance indicators. MP, another key drought
resistance factor along with moss that was negatively corre-
lated with drought resistance of mosses, has a strong negative
correlation withMycobacterium and two other norank genera
of Acidimicrobiales.

Interestingly, the top 50 genera of fungi were also grouped
into 2 clades, and clade 2 was significantly positively corre-
lated with the drought resistance indexes of Pro, POD, and

SOD (Fig. 6b). However, the negative correlation values of
the three indexes gradually changed to a positive value in
clade 1 (Fig. 6b). Among them, some plant pathogens
(Phoma , Gibberel la , Fusarium , Monographel la ,
Penicillium), endophytes (Stagonosporopsis), and insect path-
ogens (Metarhizium, Cordyceps) were positively correlated
with the main drought resistance indexes. In addition, the
Articulospora genus was significantly positively correlated
with the three climate factors (sun, rain, and elevation) and
negatively correlated with temperature. The results demon-
strated that the system of drought resistance indexes of Pro,
POD, and SOD and the combined microorganisms can be
more helpful for bryophyte adaption to karst rocky
desertification.

Discussion

As a pioneer plant, mosses can grow well in harsh environ-
ments and play an irreplaceable role in soil and water conser-
vation, plant succession, and environmental improvement in
karst rocky desertification areas (Jia et al. 2014; Wang et al.
2015). Mosses are able to secrete an acidic substance that
constantly dissolves the rock surface, along with their own
organic matter that decomposes when the plant dies, creating
a layer of fertile soil on the surface. This layer of soil, com-
bined with the ability of the moss to retain water and soil,
creates conditions for other plants to grow later on (Bates
2000; Glime 2007). In our survey, most of our sampling sites
were stone surfaces without large shrubs or trees around them.
Therefore, compared with other areas with abundant vegeta-
tion in karst topography, the analysis of dominant families and
genera in serious rocky desertification habitat shows that the
bryophytes are mainly temperately distributed species, and
their species richness is relatively low (Wang 2011; Tan
2017; Luo 2017). However, most of these species showed
strong drought resistance. Observation of external morphol-
ogies and determination of physiological indexes of resistance
indicated that these mosses not only morphologically evolved
the structure of adapting to the drought environment and re-
ducing water loss but also physiologically formed many
drought-tolerant mechanisms, improving their drought-
tolerant abilities. These morphologies were observed in the
following ways: (1) leaf morphology, with obvious concave
or concave into a pocket, ovoid leaves, which are conducive to
water storage [e.g., H. leptothallum (Supplemental Fig. S2),
T. crispulum, B. argenteum]; (2) leaf color, the color of plant
body is mostly gray-green, yellow-green, or yellow-brown,
and the top of stems are light green, which could reflect more
light, reduce leaf temperature and water loss; (3) the warty
structure inside the leaf [e.g., H. involuta (Supplemental Fig.
S3), D. fallax, T. crispulum, T. kanedae, D. constrictus var.
constrictus], which helps to reflect sunlight and reduces
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transpiration; and (4) plant height and rhizoid adhesion, for the
erect species, the plant is generally less than 1 cm [e.g.,
H. involuta (Supplemental Fig. S3), H. javanica ,
B. argenteum], and the creeping species has a well-
developed rhizoid [e.g., H. leptothallum (Supplemental Fig.
S2), P. euchloron], allowing them to survive on exposed rock.
In this study, it was found that most bryophytes adapted to
rocky desertification adopted asexual reproduction, which
was consistent with the study of Newton and Mishler
(1994), and they noted that mosses mainly produced vegeta-
tive propagation under adverse conditions. Therefore, ecolog-
ically, the way in which these mosses reproduce asexually
through a large number of gametophyte fragments or gemma
(Supplemental Fig. S3) is a concrete manifestation of their R-
type ecological strategy to compensate for the environmental
impact on the survival of the population with a high reproduc-
tive rate (Li et al. 2008).

According to previous reports (Liu et al. 2014; Opelt and
Berg 2004; Spiess et al. 1986; Tang et al. 2016), there are
many microorganisms inhabited in or attached on the surface

of mosses, which might play an important role in enhancing
the environmental adaptability of their hosts by promoting
their growth or improving their defense ability. Our results
provide some important information on the correlations be-
tween moss species and microbes. Overall, compared with
the rocky desertification habitat, bryophyte species have a
profound impact on the structure of bacterial and fungal com-
munities depending on the clustering and LEfSe results (Figs.
2 and 3). In addition, the composition of bacteria and fungi on
mosses in different classes of rocky desertification areas was
not completely consistent. Actinobacteria, Proteobacteria,
Cyanobacteria,Chloroflexi, and Acidobacteriawere the dom-
inant phyla in all samples. Consistent with other reports, the
members of the phyla Proteobacteria, Actinobacteria, and
Acidobacteria were also detected as the most dominant bac-
teria in many moss hosts, but the proportion of these phyla
were differentially varied across the different hosts (Tang et al.
2016; Koua et al. 2015; Faria et al. 2013). Remarkably, at the
phylum level, a significant proportion of bacteria were
Cyanobacteria, especially the proportion of cyanobacteria in
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the very severely area of Hyp species, which was up to
30.24%. There was a close correlation between moss and
cyanobacteria. Previous studies have shown that
cyanobacteria are considered the main N2-fixing bacteria in
forest and desert mosses, and moss-associated cyanobacteria
are a major source of new N to the boreal forest and arid lands
(Yeager et al. 2004, 2007; Gavazov et al. 2010; Sorensen and
Michelsen 2011; Stewart et al. 2011; Zhang et al. 2011; Lett
and Michelsen 2014). Many studies have reported that the
microbes that coexist with moss contain a variety of N2-fixing
cyanobacteria, including Cratoneuron filicinum, Pylaisiella
polyantha, and Campyliadelphus polygamum (Ma et al.
2017). Our data also showed that two dominant mosses are
colonized by a variety of bacterial groups that may contribute
to N2 fixation, especially heterotrophs and methane-oxidizing
bacteria (methanotrophs) of the class Alphaproteobacteria

(Putkinen et al. 2012; Bragina et al. 2013). Thus, these sym-
biotic microbes may potentially provide organic matter and
oxygen to their hosts via biological nitrogen fixation and
photosynthesis.

Combined analyses of the bacteria and fungi associated
with two mosses from three karst rocky desertification areas
via NMDS patterns, hierarchical clustering tree, and
PERMANOVA (Figs. 1b, 2b, d; Table 4) showed that samples
from the samemoss generally displayedmore similar bacterial
communities, although the microbial community associated
with the moss from Hyp-Se-3 displayed more scattered distri-
bution. Thus, we inferred that the microbial community struc-
ture of moss under a rocky desertification habitat was primar-
ily predictive of the moss species itself. Our results were dif-
ferent from previous studies, which noted that the main factor
affecting the structure of bacterial communities was the sam-
pling site. The possible reason for this result is that the two
dominant mosses have different adaptation mechanisms under
the extreme habitat of rocky desertification.H. leptothallum is
densely creeping and forming large communities with the
largest frequency and coverage; nevertheless, H. involuta is
densely clustering and forming small patches on exposed rock
surfaces, and moreover, there were significant differences in
drought tolerance morphology and drought tolerance indexes
between the above two species. Each moss species represent-
ed a specific environmental niche, and the structural compo-
sition was closely related to microbial community function;
therefore, the niche was considered to be a determining factor
of bacterial community in the mosses to some extent. In karst
habitats, coexisting microorganisms play an important role in
early vegetation succession and late vegetation succession
(Kardol et al. 2007). According to our results, three drought
resistance indexes, Pro content, SOD and POD activity, which
mainly reflect the adaptability of plants to adversity, have a
strong correlation with a variety of functional microbes,
whether bacteria or fungi, such as some rhizobia, photoauto-
trophic bacteria, and endosymbiont fungi. These significant

correlations further suggested that moss-related microbes play
an irreplaceable role in adaptation to the arid environment of
dominated mosses in karst rocky desertification habitats.

The prediction of the ecological function of bacteria and
fungi further confirmed the positive role of the microbial com-
munity in moss environmental adaptation. In the bacterial
community, photoautotrophic and chemoheterotrophic groups
accounted for 85% of the total group, mainly including
Bradyrhizobium , Herbaspir i l lum , Cellulomonas ,
Blastococcus, etc. A high abundance of photoautotrophic
and chemoheterotrophic bacteria could contribute to the ac-
quisition of carbon and nitrogen sources and the degradation
of organic matter for moss hosts. Moreover, a high proportion
of nitrate and nitrite reduction groups were mainly in the ge-
nus level of Steroidobacter,Georgfuchsia, and others, indicat-
ing that bacteria played an important role in increasing avail-
able nitrogen nutrients in moss. It was also noted that two
bacterial genera were found to undergo manganese oxidation,
and they are often used tomonitor air and soil pollution (Wang
et al. 2015). Among fungal communities, the plant pathogen
and saprotroph (plant saprotroph, dung saprotroph, and unde-
fined saprotroph) were the most dominant groups, and some
endophytes and ectomycorrhizae were identified, indicating
that the fungi could obtain nutrition mainly by destroying
dead host cells or damaging host cells in moss and could also
exchange resources with host cells for nutrients through endo-
phytic fungi, which may in turn promote moss growth. A
small amount of animal pathogens and fungal parasites were
observed. In particular, some entomopathogenic fungi related
to Cordyceps have been identified, such as Hirsutella and
Ophiocordyceps, which have been reported to be symbiotic
with plants and a necessary link in the life cycle. Most
Cordyceps species are found in forests, river valleys, and al-
pine regions, which require high air humidity (Qu et al. 2018).
However, Cordyceps species have not been reported in karst
rocky desertification arid regions. Our findings broaden the
understanding of these fungi, which could also exist in arid
environments, coexisting with plants and taking chances to
infect insects.

With excellent drought resistance qualities, mosses have
the potential to be an excellent karst rocky desertification area
restoration material. Our results suggest that H. leptothallum
and H. involuta could be ideal candidates for moss biocrust
cultivation for restoration purposes. With optimization, these
mosses and growth methods are the key step in developing
moss-based biocrust rehabilitation technology.

Taken together, we have comprehensively investigated the
biodiversity of crust bryophytes in karst rocky desertification
areas of Guizhou Province and found that dominant bryo-
phytes exhibit specific drought resistance from morphology
and physiology. In addition, we also showed a close correla-
tion between two dominant moss species and the function,
diversity, and ecological adaption ability of microbes
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associated with three karst rocky desertification areas grown
in Guizhou Province. While the rocky desertification type also
altered the bacterial and fungal community composition and
diversity, the moss species much more strongly affected the
diversity and changed the community composition of these
microbial groups. Several bacterial and fungal taxa were iden-
tified as potential keystone microbiome taxa, which might
control the microbiome in functioning to help bryophytes bet-
ter adapt to the environment and occupy ecological niches.
This finding is of far-reaching importance for understanding
microbiome communities and karst rocky desertification sys-
tem stability. Future subsequent vegetation restoration and
environmental improvement studies in karst rocky desertifica-
tion in general should include moss-related microorganism
community analyses, as otherwise important information on
microbiome structures might be missing. Overall, we propose
that this survey could provide important information on the
better use of mosses as environmental improvers in the future.
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