7 BUILDING A COMPARATIVE STARCH REFERENCE COLLECTION FOR INDONESIA AND ITS APPLICATION TO PALAEOENVIRONMENTAL AND ARCHAEOLOGICAL RESEARCH

Carol J. Lentfer

School of Social Science University of Queensland St. Lucia, QLD 4072 Australia Email: c.lentfer@uq.edu.au

ABSTRACT

Indonesia has a very long record of hominin occupation involving at least three human species. It also has a rich diversity of plants and a suite of economically important starch-rich staples that include taro (*Colocasia esculenta*), yams (*Dioscorea* spp.), bananas (*Musa* spp.) and sago palms. However very little is known about the prehistory of plant exploitation in the island archipelago. Key archaeological issues that are often discussed and debated, but remain poorly understood, include human adaptations and economic strategies used in different and changing environments, how local economies contributed to the development of plant management systems within the southeast Asian/Pacific regions, and how they might have been influenced by plant management systems initiated and developed elsewhere. Crucial to a burgeoning focus on archaeobotany in island Southeast Asia is the establishment of comparative modern reference collections for the flora of the region. This paper discusses the 'Indonesian archaeology and the methods and procedures used in its development. The collection is broad-based and focuses on economically and ecologically importat plant groups. To date 121 families and 451 genera are represented in the collection.

KEYWORDS

starch granules, Indonesia, southeast Asia, comparative reference collection

INTRODUCTION

Tom Loy's first forays into starch research began in the early 1980s when he and Richard Fullagar observed starch granules on stone, shell and glass artefacts recovered from a variety of archaeological contexts in North America and Oceania (Fullagar 2006). Tom continued his pioneering starch research into the 1990s. His discovery and identification of Araceae starch granules and raphides on stone tools from the Solomon Islands (Loy *et al.* 1992) was most influential, being the first strong evidence that people were using stone tools to process starchy foods in the Pacific region as long as 28,000 years ago. Since that time, it has been recognised that starch granules can be well-preserved in a variety of archaeological contexts, for example in

terra australis 30

residues on stone tools, pottery, other artefacts and ecofacts (Torrence and Barton 2006), within dental calculus and coprolites (Englyst *et al.* 1992; Juan-Tresserras 1998), in cereal seeds and other preserved foodstuffs (Samuel 1994; Ugent *et al.* 1987), and in sediments (Haslam 2004; Lentfer *et al.* 2002; Therin *et al.* 1999). Consequently there has been a burgeoning interest in starch research in archaeology with significant outcomes for understanding the prehistory of plant exploitation and manipulation in many regions of the world (e.g. Barton and Paz 2007; Crowther 2005; Fullagar *et al.* 2006; Helena *et al.* 2007; Horrocks *et al.* 2004; Parr and Carter 2003; Piperno *et al.* 2004; Zarillo *et al.* 2008).

The application of starch research to Indonesian archaeology has huge potential for resolving many key archaeobotanical issues in the region. The Indonesian archipelago has a very long record of human occupation extending well beyond a million years and involving three distinct human species (Brown et al. 2004; Hutterer 1985; Morwood et al. 2004; O'Sullivan et al. 2001; Sémah et al. 2003). It also has a rich diversity of plants and a suite of economically important species including a range of cereal grasses, fruit and nut bearing trees, and plants with edible roots, tubers, corms and rhizomes. From the beginnings of human colonisation of the archipelago, plant exploitation would most probably have been extensive and complex, specifically adapted to different environments and availability of naturally occurring resources. The nature of plant exploitation, diet and plant food processing would have been influenced through time by climatic and environmental change, as well as by the introduction of new technologies, people, cultures and changing economies. The archipelago lies between the southeast Asian mainland and New Guinea, two well-known centres for independent origins of early agriculture (Bellwood 1997; Denham et al. 2003, 2004; Harris 1996; Jiang 1995) and spans the Wallace line, a well-established boundary between the southeast Asian and Australasian biogeographic regions. As indicated by current distributions and phylogenetic relationships of taros, yams, Musa section bananas and Metroxylon and Caryota sago palms (Bellwood 1997; De Langhe and De Maret 1999; Denham et al. 2004; Fullagar et al. 2006; Lebot 1999; Lentfer and Green 2004; Simmonds 1962; Spriggs 1996; Yen 1990), the archipelago has been influenced from both directions across the Wallace Line. Undoubtedly, plant manipulation in the Indonesian archipelago itself would have contributed significantly to domestication, and similar to adjacent regions, played a substantial role in the development of early agriculture.

Four issues to be addressed by archaeobtanical research include the following:

- the question of plant exploitation and foraging strategies of *Homo erectus*, *H. floresiensis* and early *H. sapiens* what are the similarities and differences between species and changes through time?;
- the nature of plant exploitation and food processing strategies adopted by humans living in tropical rainforests, sometimes referred to as 'green deserts' (Bailey *et al.* 1991, Dentan 1991);
- the origins and spread of vegeculture and arboriculture; and
- the timing and dispersal of various plant cultivars, particularly how the introduction and dispersal of starch-rich root and tuber crops, sago palms, bananas, sugar cane, breadfruit, certain nut trees and cereal crops, might have been influenced by Austronesian expansion in the region.

There has been a keen interest in these issues for several decades spurred on by certain key publications such as Sauer (1953) and Harris (1996). However, systematic and focused archaeobotanical investigation has not been prioritised in mainstream archaeological research, due partly to a perceived notion that plant remains are poorly preserved in the tropics, especially wet environments. Consequently, there is a dearth of information about the prehistory of plant exploitation, particularly for Indonesia. Direct archaeobotanical information is rare, confined mostly to evidence for cereal cropping in the archipelago during the mid-to-late Holocene (e.g.

Glover and Higham 1996). Besides this, much of our current understanding relies on speculation and inference primarily based on the presence of artefacts with inferred plant related function or association (Glover 1986) and/or plant phylogeny, phytogeography and linguistics used for determining plant origins and patterns of plant dispersal (Bellwood 1996; Matthews and Naing 2005; Spriggs 1996).

Recently, following the proven value of starch and phytolith analyses in wet tropical regions, there has been escalating interest in incorporating systematic archaeobotanical investigation in island southeast Asian archaeology. The Niah cave project, Sarawak, the Liang Bua Project in Flores, Indonesia, and various East Timor archaeological projects are key examples where starch and phytolith analyses are being used routinely for palaeoenvironmental reconstruction and residue analyses. Fundamental to this research is a sound knowledge of the range and variation of the various microfossils in plants that occur in the region. There are two major comparative modern phytolith reference collections relevant to the region, however starch reference material is limited. This paper discusses the 'Indonesian Starch Project' and outlines the methods and procedures being used to establish the first major comparative modern starch reference collection and database for the flora of Indonesia.

COMPARATIVE STARCH REFERENCE COLLECTIONS

The establishment of comparative modern starch reference material is of paramount importance to starch research and has been integral to studies seeking to determine taxonomic diagnostics and to identify starch granule provenance. Most collections have been focused on food crops and plant resources relevant to industries, individual studies and regions. For the majority of studies starch storage organs (i.e. tubers, corms, rhizomes, roots, fruits and seeds) have been targeted (e.g. Reichert 1913). Other plant parts with less economic importance and/or assumed to have mainly transitory starch, which occurs in the chloroplasts of plant tissue and is thought to be non-diagnostic (Gott *et al.* 2006), have not been thoroughly examined. Given the general lack of readily accessible, broad-scale collections, therefore, it is often the case that the establishment of new or additional comparative reference collections tailored to suit particular research questions is a mandatory component of research design (Dickau *et al.* 2007; Field and Gott 2006; Loy *et al.* 1992; Perry 2004).

A few collections have been established for the tropical southeast Asian/Pacific region, including those created by Loy, Barton, Therin, Crowther, Fullagar and Horrocks for their various research projects. However, all of these collections, with the exception of Therin's from West New Britain, Papua New Guinea (see Lentfer and Therin 2006) have primarily targeted food plants aroid corms (Araceae) and yam tubers (Dioscoreaceae) in particular. Given that Therin's collection is limited, consisting of a few hundred samples only, comparative modern reference material available for the determination of the range of starch granule variation within and between plant parts for any particular species, and within and between plant species is in short supply. With the possible exception of well-studied and targeted species or parts of particular species, therefore, accurate taxonomic identification is problematic unless starch granules are embedded in identifiable tissue or associated with other diagnostic plant residues. Furthermore, without a sound knowledge of starch production, range of morphologies and variation in any particular ecological setting, definitive taxonomic identification of what are considered to be well-analysed species should be treated with caution until there is more comparative information. Until this time, the approach taken by Paz (2001) and Barton and Paz (2007) should be adopted whereby levels of confidence are recorded according to how closely the archaeological material matches available comparative reference material.

THE INDONESIAN STARCH PROJECT

The aims of the 'Indonesian Starch Project', initiated in 2002 as a collaborative project between Indonesian and Australian researchers, are to facilitate the development of ancient starch analysis in the Indonesian region by systematic and comprehensive sampling of Indonesian flora and to establish a database that allows for more effective application of starch analysis to archaeological, palaeoenvironmental and palaeoethnobotanical studies. Economically important starch-rich plants, other useful plants and a wide variety of other flora in the region are included to enable systematic investigation of starch presence in plants, evaluation of the diagnostic properties of starch granules, and the identification of plants and plant parts with diagnostic starch.

Plant collection, identification and storage

Where possible all parts of plants including leaves, flowers, fruits, seeds, stems, wood, roots, corms, tubers, rhizomes are sampled. Not all plant parts are included in herbarium collections. Hence, although it can be very useful and expedient to sample from established herbarium collections, it is often necessary to obtain supplementary material from living plants. Furthermore, starch gelatinises at temperatures above 50° Celsius, causing it to swell, break and lose its birefringence properties. Therefore, heated starch is often not useful for diagnostic analysis and collection from herbariums where plant specimens have been heat-treated at temperatures above 50° Celsius for long-term safe storage can be problematic.

Currently, there are over 800 plant accessions in the collection. One hundred and twenty one families and 451 genera are represented (see summary list of families and species in Table 1). Field sampling during the initial stages of this project was undertaken in Flores, West Timor, Java and Bali giving priority to known useful plants and important ecological indicators (Figures 1 to 4). Subsequently, these collections have been expanded by sampling in the Bogor Botanic Gardens in west Java where the focus was on obtaining accessions of useful and non-useful species from plant families with economically important members and medicinal plants. Other accessions presently held in the reference collection include wild and domesticated bananas collected in Papua New Guinea and Flores, aroid and yam samples from the Philippines and Sarawak, and additionally, a range of useful comparative plant species from Fiji.

Table 1. List of plant families and genera included in the comparative starch reference
collection. (P/I: pending identification; *Diploid and polyploid cultivars are included in
Musa)

Family	Genus	No.	Anacardiaceae	P/I	1
Family	Genus	Species	Annonaceae	Annona	1
Acanthaceae	Acanthus	1	Annonaceae	Cananga	1
Acanthaceae	Andrographis	1	Annonaceae	Polyalthia	1
Acanthaceae	Asystasia	1	Annonaceae	Saccopetalum	1
Acanthaceae	Barleria	1	Anthericaceae	Chlorophytum	1
Acanthaceae	Clinacanthus	1	Apiaceae	Centella	1
Acanthaceae	Gendarussa	1	Apocynaceae	Alstonia	1
Acanthaceae	Graptophyllum	1	Apocynaceae	Cerbera	1
Acanthaceae	Pseuderanthemum	1	Apocynaceae	Pagiantha	1
Actinidiaceae	Saurauia	3	Apocynaceae	Plumeria	1
Agavaceae	Pleomele	3	Apocynaceae	Thevetia	1
Aizoaceae	Sesuvium	1	Aquifoliaceae	llex	2
Amaranthaceae	Deeringia	1	Araceae	Homalomena	1
Amaryllidaceae	Crinum	1	Araceae	Acorus	1
Amaryllidaceae	Curculigo	3	Araceae	Aglaonema	5
Amaryllidaceae	Eucharis	1	Araceae	Alocasia	6
Anacardiaceae	Anacardium	1	Araceae	Amorphophallus	3
Anacardiaceae	Lannea	1	Araceae	Anadendrum	2
Anacardiaceae	Mangifera	2	Araceae	Anchormanes	1
Anacardiaceae	Pentaspadon	1	Araceae	Anthurium	4

Araceae	Colocasia	3	Compositae	Eupatorium	1
Araceae	Culcasia	1	Compositae	Galinsoga	1
Araceae	Cyrtosperma	2	Compositae	Pterocaulon	1
Araceae	Dieffenbachia	8	Compositae	Sida	1
Araceae	Dracontium	1	Compositae	Sonchus	1
Araceae	Homalomena	3	Compositae	Synedrella	1
Araceae	Monstera	1	Compositae	Vernonia	3
			-		
Araceae	Philodendron	2	Compositae	Wedelia	1
Araceae	Raphidaphora	1	Compositae	P/I	-
Araceae	Rhodospathia	1	Compositae	P/I	-
Araceae	Schismatoglottis	4	Compositae	P/I	-
Araceae	Scindapsus	1	Compositae	P/I	-
Araceae	Spathiphyllum	2	Convallariaceae	Ophigon	2
Araceae	Xanthosoma	3	Convallariaceae	Tupistra	1
Araliaceae	Arthrophyllum	1	Convolvulaceae	Ipomoea	6
Araceae	P/I	-	Convolvulaceae	P/I	-
Araceae	P/I	-	Convolvulaceae	P/I	-
Araliaceae	Harmsiopanax	1	Crassulaceae	Kalanchoe	1
Araliaceae	Macropanax	1	Cucurbitaceae	Benincasa	1
Araliaceae	Trevesia	1	Cucurbitaceae	Coccinia	1
Asclepiadaceae	Asclepias	1	Cucurbitaceae	Cucurbita	1
Asclepiadaceae	Calatropis	1	Cucurbitaceae	Lagenaria	1
Asclepiadaceae	Dischidia	1	Cucurbitaceae	P/I	-
Asclepiadaceae	Finlaysonia	1	Cunioniceae	P/I	-
Aspidiaceae	Dryopteris	1	Cunioniceae	P/I	-
Aspidiaceae	Stenosemia	1	Cyclanthaceae	Carludovica	1
Aspleniaceae	Asplenium	1	Cyclanthaceae	Cyathea	1
Asteliaceae	Cordyline	1	Cyperaceae	Carex	1
Athyroiodeae	Athyrium	1	Cyperaceae	Cyperus	2
		2			
Averrhoaceae	Averrhoa		Cyperaceae	Lipocarpha	1
Begoniaceae	Begonia	1	Cyperaceae	Mapania	1
Bignoniaceae	Crescentia	1	Cyperaceae	Rhynchospora	1
Bignoniaceae	Kigelia	1	Cyperaceae	Scirpus	1
Bignoniaceae	Stereospermum	1	Davaliaceae	Nephrolepis	1
Bignoniaceae	Tabebula	1	Dilleniaceae	Dillenia	2
Blechnaceae	Blechnum	1	Dioscoreaceae	Dioscorea	10
Bombacaceae	Bombax	1	Dracaenaceae	Sanservieria	5
Bombacaceae	Durion	1	Ebenaceae	Diospyros	1
Boraginaceae	Cordia	2	Equisetaceae	Equisetum	1
Bromeliaceae	Ananas	1	Euphorbiaceae	Acalypha	1
Burseraceae	Canarium	3	Euphorbiaceae	Aleurites	1
Butomaceae	Limnocharis	1	Euphorbiaceae	Antidesma	1
Cactaceae	Opuntia	1	Euphorbiaceae	Bischofia	1
Cannaceae	Canna	2	Euphorbiaceae	Codiaeum	1
Capparaceae	Capparis	3	Euphorbiaceae	Euphorbia	3
Caryophylaceae	Drymaria	1	Euphorbiaceae	Excoecaria	1
Celastraceae	Elaeodendron	1	Euphorbiaceae	Glochidion	1
Chloranthaceae	Sarcandra	1	Euphorbiaceae	Jatropha	3
Combretaceae	Lumnitzera	1	Euphorbiaceae	Macaranga	1
Combretaceae	Quisqualis	1	Euphorbiaceae	Mallotus	1
Combretaceae	Terminalia	2	Euphorbiaceae	Manihot	1
			-		
Commelinaceae	Aneilema	1	Euphorbiaceae	Melanolepis	1
Commelinaceae	Commelina	1	Euphorbiaceae	Omalanthus	2
Commelinaceae	Murdannia	1	Euphorbiaceae	Ricinis	1
Commelinaceae	Palisota	1	Euphorbiaceae	Sauropus	1
Compositae	Ageratum?	1	Euphorbiaceae	P/I	1
Compositae	Bidens	2	Euphorbiaceae	P/I	-
Compositae	Blumea	2	Flacourtiaceae	Scolopia	1
Compositae	Emilia	1	Flagellariaceae	Flagellaria	1
Compositae	Erechtites	2	Gesneriaceae	Cyrtandra	1

Gleicheniaceae	Gleichenia	1	Leguminosae	Archidendron	1
Gramineae	Andropogon	1	Leguminosae	Bauhinia	1
Gramineae	Bambusa	3	Leguminosae	Caesalpinia	1
Gramineae	Bambusa	2	Leguminosae	Cajanus	1
Gramineae	Bothriochloa	1	Leguminosae	Calliandra	1
Gramineae	Centotheca	1	Leguminosae	Canavalia	1
Gramineae	Chloris	1	Leguminosae	Cassia	2
Gramineae	Coix	1	Leguminosae	Centrosema	1
Gramineae	Cymbopogon	1	Leguminosae	Crotalaria	2
Gramineae	Dendrocalamus	1	Leguminosae	Cynometra	1
Gramineae	Echinochloa	1	Leguminosae	Derris	2
Gramineae	Eleusine	1	Leguminosae	Desmodium	1
Gramineae	Eragrostis	1	Leguminosae	Erythrina	1
Gramineae	Erianthus	1			1
			Leguminosae	Glyricidia	
Gramineae	Heteropogon	1	Leguminosae	Indigofera	1
Gramineae	Imperata	1	Leguminosae	Leucaena	1
Gramineae	Neololeba	1	Leguminosae	Mimosa	1
Gramineae	Oplismenus	1	Leguminosae	Moghania	2
Gramineae	Oryza	1	Leguminosae	Mucuna	1
Gramineae	Panicum	2	Leguminosae	Parkia	1
Gramineae	Paspalum	3	Leguminosae	Peltophorum	1
Gramineae	Pennisetum	1	Leguminosae	Phaseolus	2
Gramineae	Saccharum	2	Leguminosae	Pithecellobium	1
Gramineae	Setaria	1	Leguminosae	Pometia	1
Gramineae	Shizostachyum	1	Leguminosae	Pongamia	1
Gramineae	Sorghum	3	Leguminosae	Pongamia	1
Gramineae	Spinifex	1	Leguminosae	Pterocarpus	1
Gramineae	Sporobolus	1	Leguminosae	Sesbania	1
Gramineae	Themeda	3	Leguminosae	Tamarindus	1
Gramineae	Thuarea	1	Leguminosae	Tetrapleura	1
Gramineae	Thysanolaena	2	Leguminosae	Vigna	1
Gramineae	Tribulus	1	Leguminosae	P/I	
Gramineae	Urochloa	1	Leguminosae	P/I	_
Gramineae	Zea	1	Leguminosae	P/I	_
Guttiferae	Garcinia	3	Liliaceae	Asparagus	1
Gramineae	P/I	-	Liliaceae	Aspidistra	2
Gramineae	P/I	-		Cordyline	1
	P/I	-	Liliaceae	,	1
Gramineae		-		Herreria	
Heliconiaceae	Heliconia	5	Liliaceae	Pleomele	1
Hypericaceae	Hypricum	1	Lomariopsidaceae	Teratophyllum	1
Icacinaceae	Gonocaryum	1	Lythraceae	Lagerstroemia	1
Icacinaceae	Platea	1	Lythraceae	Pemphis	1
Iridaceae	Neomarica	3	Magnoliaceae	Manglietia	1
Labiatae	Coleus	1	Magnoliaceae	Michelia	1
Labiatae	Hyptis	3	Malvaceae	Abutilon	1
Labiatae	Ocimum	1	Malvaceae	Gossypium	2
Labiatae	Orthosiphon	1	Malvaceae	Hibiscus	3
Labiatae	P/I	-	Malvaceae	Sida	1
Labiatae	P/I	-	Malvaceae	Thespesia	1
Labiatae?	P/I	-	Malvaceae	Urena	1
Lauraceae	Cinnamomum	1	Marantaceae	Calathea	4
Lauraceae	Cryptocarya	1	Marantaceae	Maranta	1
Lauraceae	Litsea	3	Marantaceae	Monotagma	1
Lauraceae	Persea	1	Marantaceae	Phrynium	1
Lecythidaceae	Barringtonia	3	Marattiaceae	Angiopteris	1
Leeaceae	Leea	1	Melastomataceae	Medinilla	1
Leguminosae	Abrus	1	Melastomataceae	Melastoma	2
Leguminosae	Acacia	2	Melastomataceae	Osbeckia	1
Leguminosae	Adenanthera	1	Meliaceae	Dysoxylum	1
Legunnosae	Auenantinela		II INCIIACEAE	Dysoxylull	

Menispermaceae	Arcangelisis	1
Menispermaceae	Tinospora	1
Menispermaceae	P/I	-
Moraceae	Artocarpus	2
Moraceae	Ficus	16
Moringaceae	Moringa	1
Musaceae	Ensete	1
Musaceae	Musa	24*
Musaceae	Strelitzia	1
Myristicaceae	Myristica	2
Myrsinaceae	Aegiceras	1
Myrtaceae	Eucalyptus	1
Myrtaceae	Eugenia	1
Myrtaceae	Psidium	1
Myrtaceae	Syzygium	4
Nephrolepidaceae	Nephrolepis	1
Orchidaceae	Calanthe	1
Orchidaceae	Eria	2
Orchidaceae		1
Orchidaceae	Goodyera	1
	Malaxis	-
Orchidaceae	Vanilla	1
Orchidaceae	P/I	-
Oxalidaceae	Oxalis	1
Palmae	Areca	2
Palmae	Arenga	6
Palmae	Borassus	1
Palmae	Calamus	2
Palmae	Caryota	3
Palmae	Cocos	1
Palmae	Corypha	1
Palmae	Cyrtostachys	2
Palmae	Elaeis	1
Palmae	Eugeissona	1
Palmae	Licuala	4
Palmae	Livistonia	1
Palmae	Metroxylon	1
Palmae	Nypa	1
Palmae	Oncosperma	2
Palmae	Phoenix	1
Palmae	Pinanga	1
Palmae	Ptychosperma	2
Palmae	Salacca	2
Palmae	Verschaffeltia	1
Pandanaceae	Freycinetia	3
Pandanaceae	Pandanus	10
		2
Phormiaceae	Dianella Bipor	
Piperaceae	Piper	6
Plantaginaceae	Plantago	1
Podocarpaceae	Podocarpus	1
Polygalaceae	Polygala	1
Polygonaceae	Polygonum	2
Polypodaceae	Diplazium	1
Polypodaceae	Drypoteris	1
Polypodiaceae	P/I	-
Rhamnaceae	Ziziphus	1
Rhizophoraceae	Bruguiera	1
Rhizophoraceae	Ceriops	1
Rhizophoraceae	Rhizophora	1
Rosaceae	Prunus .	2
Rosaceae	Rubus	3

Rubiaceae	Borreria	1
Rubiaceae	Lepisanthes	1
Rubiaceae	Morinda	2
Rubiaceae	Mycetia	1
Rubiaceae	Ophiorrhiza	1
Rubiaceae	P/I	-
Rubiaceae	P/I	_
Rubiaceae	P/I	
Rutaceae	Acronychia	1
Rutaceae	Citrus	1
Rutaceae	Clausena	1
Rutaceae	Eudoia	2
Rutaceae	Feroniella	1
Rutaceae	Glycosimis	1
Rutaceae	Pleiospermum	1
Rutaceae	Swinglea	1
Rutaceae	P/I	-
Rutaceae ?	P/I	-
Sabiaceae	Meliosma	- 1
		1
Salicaceae	Salix	1
Salvadoraceae	Azima	-
Santalaceae	Santalum	1
Sapindaceae	Blighia	1
Sapindaceae	Cardiospermum	1
Sapindaceae	Nephelium	1
Sapindaceae	Schleichera	1
Sapotaceae	Chrysophyllum	1
Sapotaceae	Planchonella	1
Saxifragaceae	Itea	1
Saxifragaceae	Polyosma	2
Selaginellaceae	Selaginella	1
Solanaceae	Brugmansia	1
Solanaceae	Datura	1
Solanaceae	Solanum	2
Sonneratiaceae	Sonneratia	1
Sterculiaceae	Heritiera	1
Sterculiaceae	Melochia	1
Sterculiaceae	Pterospermum	1
Sterculiaceae	Theobroma	1
Theaceae	Adinandra	1
Thelypteridaceae	Sphaerostephanos	1
Thymelaeaceae	Phaleria	1
Tiliaceae	Grewia	1
Tiliaceae	Microcos	2
Tiliaceae	Schoutenia	1
Tiliaceae	P/I	-
Ulmaceae	Celtis	1
Urticaceae	Cypholopus	1
Urticaceae	Debregeasia	1
Urticaceae	Dendrocnide	1
Urticaceae	Leucosyke	1
Urticaceae	P/I	- ·
Urticaceae	Pipturus	1
Urticaceae	Villebrunea	1
Verbenaceae	Avicennia	1
Verbenaceae	Clerodendron	3
Verbenaceae	Lantana	1
Verbenaceae	Premna	1
Verbenaceae		-
veruenaceae	Stachutarnhata	2
Verbenaceae	Stachytarpheta Tectona	2

Verbenaceae	Teijsmanniodendron	1
Verbenaceae	Vitex	1
Verbenaceae	P/I	-
Zingiberaceae	Alpinia	4
Zingiberaceae	Amomum	5
Zingiberaceae	Catimbium	2
Zingiberaceae	Costus	12
Zingiberaceae	Cucurma	7
Zingiberaceae	Etlingera	2
Zingiberaceae	Globba	1
Zingiberaceae	Hedychium	4
Zingiberaceae	Hornstedtia	1

Zingiberaceae	Kaempferia	1
Zingiberaceae	Languas	1
Zingiberaceae	Tapeinocheilos	2
Zingiberaceae	Zingiber	4
Zingiberaceae	P/I	-
Zingiberaceae	P/I	-
Zingiberaceae	P/I	-
Zygophyllaceae	Tribulus	1
** 27 further accessions	P/I	-

Figure 1. Collecting plants at Liang Bua, Flores Indonesia (photo: C. Lentfer).

Figure 2. Dr Polhaupessy sampling plant products from markets in Kupang, West Timor (photo: C. Lentfer).

Plant specimens, including roots and other starch storage organs, are prepared following conventional herbarium procedures. The specimens are immersed in methylated spirits or ethyl alcohol at 70% dilution to avoid fungal growth during field collection and stored between paper in plant presses. This technique allows specimens to be stored wet for considerable periods in humid tropical conditions. For long-term storage they are slowly dried at temperatures not exceeding 35° Celsius. Taxonomic identification of specimens has been undertaken in the field and/or laboratory and cross-checked against herbarium specimens. Accessions are presently stored at the Bogor Herbarium, Indonesia and the University of Queensland, Australia.

Figure 3. Display of medicinal plant products beside garden house in West Flores (photo: C. Lentfer).

Figure 4. The author identifying plants collected from Rana Mese, West Flores and preparing herbarium specimens (photo: J. Collins).

Preparation of starch for microscopic analysis

Following this, sub-samples of all plant specimens including all parts of plants are stored in vials in 70% ethyl alcohol. Following this sub-samples of plant parts are prepared separately by grinding with a pestle and mortar in distilled water. Ground residue is stored in separate vials in 70% ethyl alcohol. For microscopic analysis 100 µl sub-sample of ground residue is mounted onto microscope slides and dried at temperatures at or below 35° Celsius. Corners of coverslips are secured onto glass slides with nail polish. Prior to analysis dried samples are re-hydrated with distilled water to allow for rotation of granules.

Starch granule analysis

All slide residues are analysed using light microscopy at x400, x600 and x1000 magnification. Qualitative analysis of starch granule assemblages is used initially. Presence or absence of starch is noted for every plant part for each plant specimen. Descriptors for all different types of granules in assemblages are recorded according to abundance, type (i.e. whether compound or simple), size range, and morphological characteristics of granules (see the 12 attributes listed in Table 2). During the initial recording stage attribute descriptions are separated by a slash (e.g. a/s/s/sr/hsph/0/cc/s/t/c/sv/stel). Photographs of all different starch granule morphotypes present in each plant part are taken with microscope dedicated digital cameras using non-polarized and polarized light. Figures 5 to 11 show examples from the collection of starch granules found in significant economic plants (photos by C. Lentfer and A. Crowther). Descriptors are transferred to an electronic database to facilitate searches and comparative analyses. Field collection records, plant uses, the presence or absence

of starch granules in plant parts, and images of starch granules are also stored in an electronic database. The microscope slides and sub-samples in vials are presently stored at the University of Queensland and a sub-set is held at the Geological Research and Development Centre, Bandung, Indonesia.

The second stage of analysis is the determination of the diagnostic value of starch granules for species/plant tissue differentiation. This involves rigorous morphometric analysis of starch granule assemblages using quantitative statistical methods. It will be especially important for plants and tissues with starch granules that are similar and difficult to differentiate.

Table 2. List of attributes used for the description of starch granules	Table 2. List of attribu	tes used for the	description of	starch granules
---	--------------------------	------------------	----------------	-----------------

1. Abundance		2. Туре		3. Size (Max. dim.)		4. 2D shape		5. 3D shape	
absent (0) rare	а	simple	S	< 5 µm	VS	subround	sr	hemispherical	hsph
(<20 granules)	r	compound	с	>5-10 µm	s	round	r	elongate hemisph.	el.hsph
common (>20-50) abundant (>50-	С	semicompound	SC	>10-20 µm	m	ovate	ov	spherical	sph
100)	ab			>20-50 µm	1	sub-ovate	sub.ov	subspherical	subsph
v. abundant (>100)	vab			>50 µm	vl	triangular ovate	tri.ov	ovoid	OV
						rectangular ovate	rect.ov	sub-ovoid	sub.ov
						elongate ovate	el.ov	triangular ovoid	tri.ov
						irregular ovate	irr.ov	rectangular ovoid	rect.ov
						irregular triangular ovate	irr.tri.ov	elongate ovate	el. ov
						elongate irregular ovate	el.irr.ov	irregular ovoid	irr.ov
						polygonal	plygl	irregular triangular ovoid	irr.tri.ov
6. Protrusion		7. Facet		8. Texture		irregular	irr	elongate irregular ovoid	el.irr.ov
present	+	none observed	0	wrinkle	wr	elongate irregular	el.irr	globose	gl
absent	0	flat	fl	smooth	s	crescent	cr	polyhedral	plyhdl
		concave	CC	rough	r	kidney	kid	quadrilateral	qu
		multifaceted flat	mff	ridged	rdg	elongate kidney	el.kid	irregular	irr
		multifaceted concave	mfc			triangular	tri	elongate irregular	el.irr
						square	sq	globose elongate	gl. el
						bell	bell	kidney	kid
						unilobate	unilob	elongate kidney	el. Kid
								cone	cone
								disc	di
								bell	bell
								unilobate	unilob
9. Lamellae		10. Hilum - Position		11. Hilum - Type		12. Hilum - Fissure		Additional notes	
present	+	eccentric	е	large vacuole	lv	none	0		
absent	0	centric	С	small vacuole	SV	stellate	stel		
		highly eccentric	he	crystal	cr	simple	S		
				slot	sl	open slot	OS		
				irregular	irr	open irreg.	oi		
				papilla	рар	tri	tri		
						disc	d		

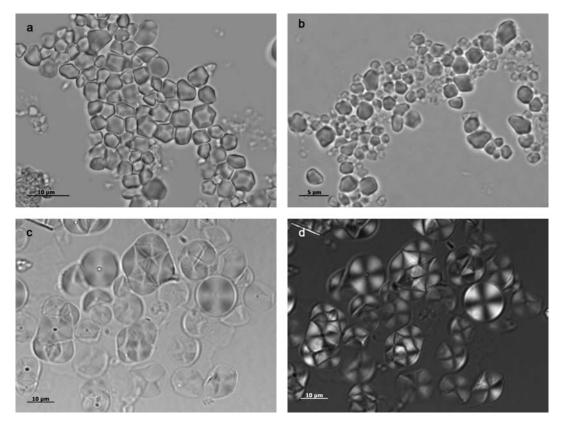


Figure 5. (a) *Alocasia* sp. starch, showing typical multifacetted morphology (CL uncoded, corm). (b) *Colocasia esculenta* starch, showing typical multi-facetted morphology and small granule size (CL uncoded, corm). (c and d) *Cyrtosperma chamissonis* starch, showing simple and compound granule forms (c) and centric extinction cross, visible in cross-polarised light (d) (TL-IV69-4tuber) (scale bars in a, c and $d = 10 \mu m$; $b = 5 \mu m$).

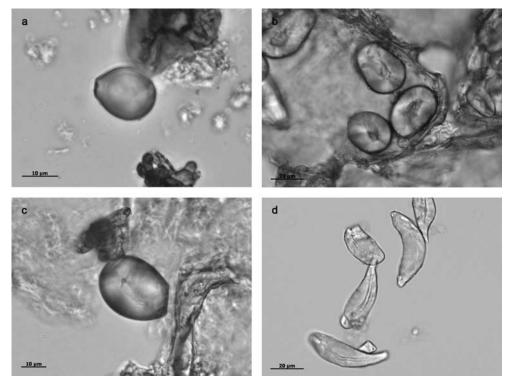


Figure 6. (a) *Caryota rumphiana* (CL05160wood). (b) *Eugeissonia utilis* (CL05150wood). (c) *Metroxylon sagu* (CL05176trunk). (d) *Salacca affinis* (CL05182trunk) (scale bars in a and c = 10 μ m; b and d = 20 μ m).

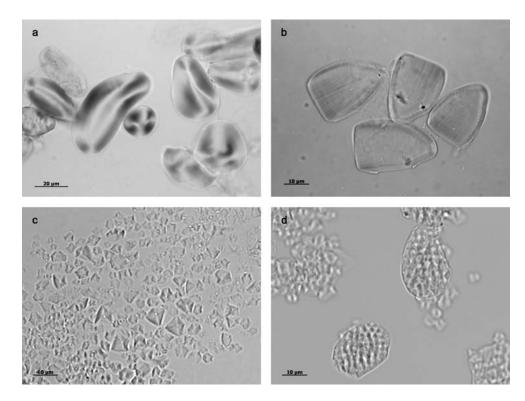


Figure 7. (a) Rounded ovoid to elongate-ovate starch forms in *Dioscorea alata* (TL-IV69-8tuber). (b) Flat-based, rectilinear-triangular starch type produced by *Dioscorea bulbifera* (TL-IV69-14tuber). In addition to lamaellae, these granules have strong longitudinal striae that are very visible at the distal end. (c) Small, angular (multi-facetted) granules from *Dioscorea esculenta* (TL-IV69-7tuber). (d) Ovate-shaped compound grains in *Dioscorea esculenta* (TL-IV69-7tuber) (scale bar in a = 20 μ m; b, c and d = 10 μ m).

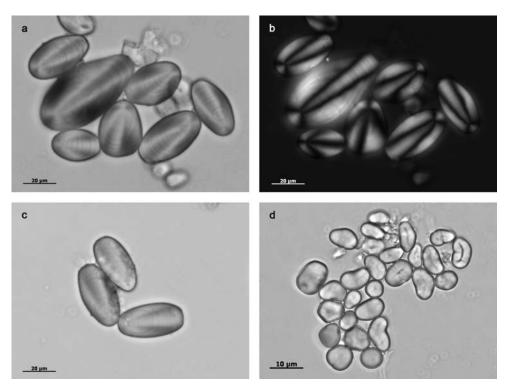


Figure 8. (a and b) Starch from *Heliconia caribea* (CL05197stem), showing typical roundedrectilinear ovate granule form observed in all *Heliconia* sp. examined. (c and d) *Heliconia dasyantha* starch granules, showing the two distinctive starch types that occur within the seed (CL05288seed) (scale bars in a, b and $c = 20 \mu m$; $d = 10 \mu m$).

CURRENT STATUS OF THE REFERENCE COLLECTION

The comparative modern starch reference collection and database supplements other such collections of starch, phytolith, pollen, parenchyma and macrobotanical remains. It has enormous potential to contribute to our scientific knowledge in a wide variety of academic research disciplines including archaeology plant phylogenetic studies, palaeobotany, palynology and studies involving climatic and environmental change in the tropics throughout the Quaternary. Included in the accessions are plant families, genera and species common to tropical regions throughout the world, and as such, the reference collection and database have relevance to Indonesia, the wider Indo/ Pacific region, and tropical regions elsewhere. By incorporating a broad range of economically and ecologically important plants and plant groups hitherto unexamined, and by treating plant parts as separate entities, it provides for rigorous comparative analyses of starch granules, thereby building onto our knowledge about the range and variation of morphologies and their diagnostic value for palaeobotanical analysis. The first stage of analysis involves recording descriptors and images of starch granules. This is nearing completion for a number of economically important plant families including the Araceae, Dioscoreaceae, Heliconiaceae, Musaceae, Zingiberaceae, Palmae and Pandanaceae (see Table 3). Analysis of other plant families is in progress. Following initial qualitative analyses, morphometric analysis using quantitative statistical methods will be undertaken. This will be on an ad hoc basis as the need arises, giving precedence to plant groups relevant to specific research problems.

The comparative modern starch reference collection is a growing archaeobotanical resource and will be expanded as new accessions are obtained. A record of accessions and work in progress is included in unpublished reports presented to the Pacific Biological Foundation (Lentfer 2008). I thank Tom Loy's enterprise, his long-standing and strong interest in ancient starch research and the groundwork he laid for the establishment of the Archaeological Microscopy Laboratory in the School of Social Science at the University of Queensland where the bulk of the analytical work for the 'Indonesian Starch Project' is being undertaken.

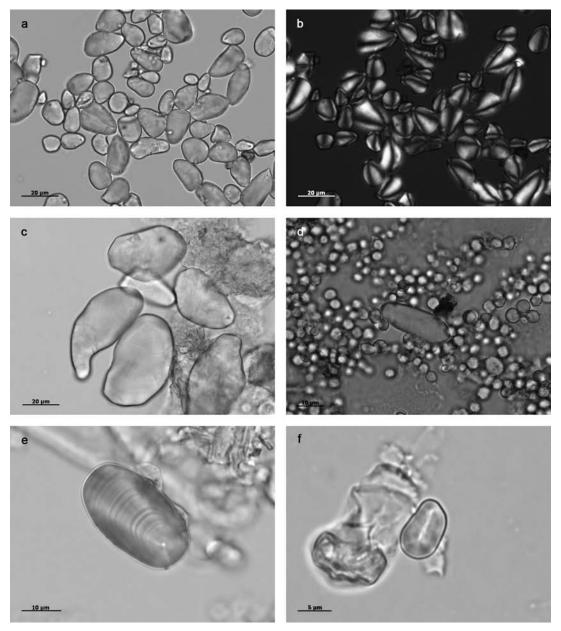


Figure 9. (a and b) *Musa banksii* (WNB10fruit). (c) *Musa acuminata x schizocarpa* (ES10fruit). (d) *Musa acuminata* var. *cerifera* (CL05190fruit) produces two distinctive starch granule forms in the fruit; a larger, ovate to elongate ovate, eccentric type and a comparatively much smaller spherical to sub-spherical, centric type. (e and f) Two starch types present in *Musa acuminata* (CL_F/03/96leaf); cf. *Heliconia dasyantha* seed (Figure 8c-d). (Scale bars in a, b and $c = 20 \mu m$; d and $e = 10 \mu m$; $f = 5 \mu m$).

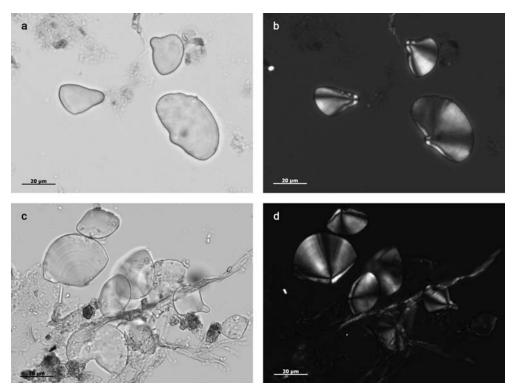


Figure 10. (a and b) *Musa halabanensis* (CL05194corm) and (c and d) *Musa sanguinea* both produce similar types of very distinctive, 'conical-bivalve' granules which may be diagnostic (scale bars = $20 \mu m$).

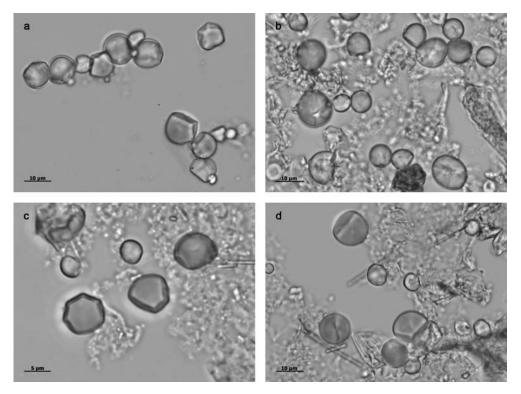


Figure 11. (a) *Pandanus dubius* (CL05341wood). (b) *Pandanus* sp. maluka (CL05140wood). (c and d). *Pandanus furcatus* (CL05131wood) (scale bars in a, b and $d = 10 \mu m$; $c = 5 \mu m$).

Table 3. Plants and plant parts that have been examined in the first stage of the analysis

Accession No.	Species	Plant Part
Araceae		¹
7075	Acorus calamus	lf,st,rz,rt
5016	Aglaonema marantaifolia	pet,If,st,rt
5038	Aglaonema novoguineense	pet,If,st,rt
5013	Aglaonema oblanceotam	pet,lf,st,rt
5014	Aglaonema pictum	pet,If,st,rt
5015	Aglaonema simplex	pet,If,st,rt
NC	Aglaonema sp.	lf,cm,rt
5022	Alocasia alba	lf,st,rt
48	Alocasia culcullata	st
18	Alocasia denudata	st,cm
5020	Alocasia gigantea	lf,cm,sd
5021	Alocasia macrorrhizos var. diversifolia	lf
5023	Alocasia macrorrhizos var. diversifolia	pet,st,fl
NC	Alocasia macrorrhizos	lf,st,cm,rt
58	Alocasia princeps	cm
NC	Alocasia sp. 'elephant ear'	st,rt
5019	Amorphophallus blumei	pet,If,st,rt,cm,sd
6915	Amorphophallus campunulatus	cm
5018	Amorphophallus variabilis	lf,st,rt,cm,sd
5027	Anchomanes hookeri	pet,If,cm,rt
NC	Anthurium sp.	lf,st,rt
91	Unknown	cm
5029	Colocasia esculenta	pet,If,cm,rt
PM1	Colocasia esculenta	cm
53	Colocasia esculenta	cm
92	Colocasia esculenta	cm
6990	Colocasia esculenta	cm
NC	Colocasia esculenta	cm
5042	Culcasia escuenta	pet,lf,st,rt
694	Cyrtosperma chamissonis	cm
5089	Cyrtosperma johnstonii	pet,lf,rt,fl
5011	Dieffenbachia amoena	
5012	Dieffenbachia arvida	pet,If,st,rt
NC	Dieffenbachia exotica	pet,lf,st,rt
	Dieffenbachia exolica	lf,st,cm,rt
5010		pet,If,st,rt
5009	Dieffenbachia splendens	pet,If,st,rt
5028	Dracontium gigas	pet,cm,rt
5032	Homalomena cordata	pet,rt
5033	Homalomena cordata	pet,lf,st,rt
NC	Homalomena sp.	lf,st
5037	Homalomona humilis	pet,lf,st,rt,fl
5039	Homalomona pendula	pet,st,rt
NC	Monstera deliciosa	lf,rt
5030	Philodendron gloriosum	pet,If,st,rt
NC	Philodendron selloum	lf,cm,rt
NC	Raphidophora sp.	lf,st,rt
5031	Rhodospathia latifolia	pet,If,st
5034	Schismatoglottis lancifolia	pet,If,st,rt,fr,
5035	Schismatoglottis neoguineensis	pet,st,rt
5036	Schismatoglottis pumila	pet,lf,st,rt
5040 5045	Schismatoglottis rupestrius	pet,lf,st,rt,fl
	Scindapsus pictus	pet,If,st,rt

NC	Spathiphyllum sp.	lf,cm,rt
NC	Spathiphyllum sp.	lf,tb,rt
NC	Syngonium sp.	lf,rt,st
5026	Xanthosoma hastifolium	pet,If,st,cm,rt
5024	Xanthosoma nigrum	st,cm
5025	Xanthosoma sagittifolium	lf,st,pet
692	Xanthosoma sagittifolium	cm
Dioscoreaceae		CIII
	Discourse (14)	
698	Dioscorea alata	tb
5088	Dioscorea alata	lf,st,pet,tb
7062	Dioscorea alata	lf
5086	Dioscorea bulbifera	pet,If,st,blbl,tb,rt
6914	Dioscorea bulbifera	tb
697	Dioscorea esculenta	lf,st,pet,tb
6918	Dioscorea esculenta	tb
696	Dioscorea esculenta	tb
5087	Dioscorea hispida	pet,tb,rt
7060	Dioscorea hispida	pet,tb,sk
6913	Dioscorea nummularia	st
6912	Dioscorea pentaphylla	st
6910	Dioscorea rotundata	st
F/03/22	Dioscorea sp.	lf,st,tb
F/03/17	Dioscorea sp.	lf,st,tb
F/03/04	Dioscorea sp.	lf,tb
NC	Dioscorea sp.?	tb
6911	Dioscorea trifida	st
Heliconiaceae		
5197	Heliconia caribea	lf,psst,rt,fl
5196	Heliconia collinsiana	lf,psst,cm,rt
5288	Heliconia dasyantha	lf,psst,cm,fl,fr,sd
5287	Heliconia indica	lf,cm,rt,fl,fr
Musaceae		
MB1	Ensete glaucum	fr,sd
F/03/13	Musa AAA	psst,cm,rt,fr
F/03/96	Musa acuminata	lf,st
ES6	Musa acuminata ssp. banksii	fr
M7	Musa acuminata ssp. banksii	lf,psst,cm,fl,fr,sk,sd
ES11	Musa acuminata ssp. banksii	lf,psst,cm,fr,sk,sd
M8	Musa acuminata ssp. banksii x schizocarpa	lf,br,fl,fr,sk,sd
5190	Musa acuminata var. cerifera	lf,psst,cm,rt,fl,fr
ES10	Musa acuminata var. schizocarpa	fr,sd
ES10	Musa acuminata x schizocarpa	br,psst,fr,sk,sd
WNB10	Musa banksii	fr,sk,sd
5195	Musa borneensis	lf,psst,cm
NI14	Musa Fe'i	fr,sd
ES5	Musa Fe'i	fr
5194	Musa halabanensis	lf,psst,cm
WH1	Musa ingens	lf,rs,psst,rt,fl,fr
WH2	Musa ingens	psst,fl,fr,sk,sd
WH3	Musa ingens	sd
MB3	Musa maclayi	lf,psst,fr,sd
MB5	Musa maclayi	lf,br,psst,fl,fr,sk
5193	Musa macayi Musa ornata	lf,rt,cm
M5	Musa peekeli	lf,br,psst,sk,sd
M5	Musa peekelii ssp. angustigemma	fr
5192	Musa salaccensis	lf,psst,cm,rt
5192	Musa sanguinea	lf,psst,cm,rt,fl,fr
M4	Musa schizocarpa	lf,psst,fl,sd
1714	IVIUSA SUIIZUUAIDA	11,0551,11,50

MB2	Musa schizocarpa	lf,br,psst,fl,fr,sk
ES3	Musa schizocarpa	fr,sk
ES5	Musa schizocarpa	sd
ES4	Musa schizocarpa	fr,sk,sd
7106	Musa sp.	pet,If,psst,rt
NC	Musa sp. 'halevudi'	lf,psst
5175	Musa sp. naevidi Musa velutina	lf,rt,fr,sk,sd
F/03/90	Musa velutina?	rt,fl,fr
NC	Strelitzia reginae	fr
	Stremzla reginac	11
Palmae		
7010	Areca catechu	fr
5162	Arenga brevipes	lf,wd,rt
5149	Arenga obtusifolia	rs
5156	Arenga pinnata	wd,rt
7013	Arenga pinnata	fr,sd
F/03/24	Arenga pinnata?	wd
5154	Arenga tremula	lf,rs,wd
5155	Arenga undulatifolia	lf,wd,rt
5187	Borassus flabellifer	wd,rt,sd
F/02/38	Calamus javensis	st
5158	Caryota cummungli	rs,wd,ped,fr,rt
5179	Caryota intis	rs,rt,sd
5160	Caryota rumphiana	wd
5177	Cocos nucifera	rs,wd
7097	Corypha utan	wd
5157	Cyrtostachys microcarpa	lf,rs,wd,rt
5184	Cyrtostachys renda	wd
5178	Elaesis guineensis	fr
5150	Eugeissona utilis	lf,rs,wd,rt,fr
5161	Licuala rumphii	rt
5183	Licuala spinosa	rs,wd,rt
5148	Livistonia hasseltii	sd,st
5176	Metroxylon sagu	pet,If,wd,rt
5186	Nypa fruticans	lf,rs,fr
5159	Oncosperma tigillarium	rs,rt
5151	Phoenix sp.	rs,wd
5145	Pinanga coronata	wd,rt,fr
7102	Pinanga coronata	pet,lf,ped,wd,bk
5146	Ptychosperma macarthii	lf,wd,rt,fl
5153	Ptychosperma propinquum	wd
5182	Salacca affinis	lf,rs,wd,rt
5168	Salacca zalacca	sd
5181	Salacca zalacca	rs,wd,fr
5147	Verschaffeltia splendida	wd
Pandanaceae	· ·	
7084	Freycinetia insignis	lf,wd,fr
F/02/54	Freycinetia sp.	lf
	Pandanus affinis	
5136 5341	Pandanus aminis Pandanus dubius	lf,wd,rt lf,wd
5131	Pandanus dubius Pandanus furcatus	
	Pandanus turcatus Pandanus kurzii	lf,pet,wd,rt rt
5143		
5135	Pandanus multifurcatus	pet,If,st,wd
5123	Pandanus nitidus	pet,If,st,rt
5124	Pandanus papilio	pet,lf,st,rt
5142	Pandanus polycephalus	pet,lf,wd,fr,sd
5139	Pandanus pygmaeus	lf,wd,rt
5145	Pandanus sp.	lf,wd,rt,fr,sd
5140	Pandanus sp.	lf,wd,rt

5137	Pandanus sp.	pet,lf,wd,rz,fr
5120	Pandanus sp.	pet,If,st
5134	Pandanus sp.	pet,If,wd,rt,fr,sd
5121	Pandanus sp.	pet,If,st,rt,rt
5144	Pandanus sp.	pet,If,st,wd
F/03/92	Pandanus sp.	rt
F/03/067	Pandanus sp.	st
5333	Pandanus sp.	pet,If,st,rt,fr,sd
7099	Pandanus sp.	lf,st,wd,rt
5122	Pandanus sp.	pet,If,st,rt
5132	Pandanus sp.	pet,If,wd,rt
5138	Pandanus tectorius	lf,wd,rz,rt
7004	Pandanus tectorius	lf
F/03/02	Pandanus sp.	rt
Zingiberaceae		
	Alpinio koto uno doi	not of ymfy od
5063	Alpinia katsumadai	pet,st,rz,fr,sd
5063	Alpinia katsumadai	lf
5059	Alpinia romburghiana	pet,If,st,rz,rt
5052	Alpinia schumannia	pet,lf,st,rz,fl
5052	Alpinia schumannia	ped
5060	Alpinia speciosa/zerumbet	st,rz
5057	Amomum aculeatum var. sulianum	pet,st,rz,rt,fl
5211	Amomum compactum	st
5066	Amomum compactum	pet,rz,rt
5053	Amomum lappaceum	pet,If,rz
5050	Amomum meglalochellos	pet,lf,st,rz,fl
5065	Amomum truncatum	st,rz
5062	Catimbium malaccensis	st,rz
5064	Catimbium speciosum	lf,st,rz
5075	Costus afer	lf,st,rz,rt
5079	Costus discolor	st,rz
5051	Costus lucanusianus	pet,st,rz,rt,fl
5077	Costus malortianus	pet,lf,st,rz,rt,fl
5080	Costus megalobrachtea	rt
5048	Costus mexicanus	pet
5073	Costus niveus	rz
5073	Costus niveus	pet,st
5074	Costus rumphianus	st,rz
5078	Costus speciosus	rz,rt
5076	Costus spiralis	fl
5079 F/03/96	Costus villosissimus	pet,If,st,rz,rt
	Cucurma sp. Cucurma viridiflora	lf,st,rz,rt
7063		pet,st,rz,rt
7073	Cucurma zedoaria	lf,rz,rt
5055	Curcuma aeroginosa	pet,If,rz,rt
5061	Curcuma longa	pet,sr,rz,rt
5056	Curcuma longa	st,rz,rt
5083	Curcuma roscoeana	lf,st
5205	Curcuma zedoaria	pet,rt
5069	Etlingera elattior	st,rz
7074	Globba marantina	lf,st,rz,rt
5047	Hedychium coronarium var. flavescens	pet,rz,rt
5084	Hedychium elatum	pet,st,rz,fl
581	Hedychium poccineum	If,st
5082	Hedychium poccinium	pet,rz,rt
5046	Hedychium roxburghii	pet,If,st,rz,rt
5046	Hedychium roxburghii	pet,If,st,rz,rt
5067	Hornstedtia minor	pet,If,st,rz,rt
7059	Kaempferia galanga	lf,st,rz

5058	Languas galanga	pet,If,st,rz,rt
7057	Languas galanga	lf,st,rz,rt
5071	Tapeinocheilos ananassae	lf,st,rz,fl,sd
5070	Tapeinocheilos punglus	pt,st,rz
5070	Tapeinocheilos purgus	pet,If,rz,rt
5200	Zingiber aromaticum	pet,If,st,rz,rt
5054	Zingiber gramineum	pet,rz
5054	Zingiber gramineum var. robustum	pet,If,st,rz,rt
7049	Zingiber oderatum	pet,lf
5049	Zingiber odoriferum	pet,If,st,rz,rt
NC	Zingiber officinale	rz
5201	Zingiber ottensi	rz,rt
7077	Zingiber sp.	lf,rz,rt
F/03/32	Unknown	rz
WNB	Unknown	fl,rz

KEY: br (bract), blbl (bulbil), cm (cm), fl (flower, fr (fruit), lf (leaf), ped (peduncle),pet (petiole), psst (pseudostem), rs (rachis), rt (root), rz (rhizome), sd (seed), sk (skin), st (stem), tb (tuber)

ACKNOWLEDGMENTS

This project has been in joint collaboration with Dr Netty Polhaupessy from the Geological Research and Development Centre, Bandung, Indonesia. Funding for the project has been provided by the Pacific Biological Foundation and supplemented with funding from the Australian Research Council. I thank the Geological Research Development Centre for their support, the Bogor Botanic Gardens, and a number of Australian Universities including the Southern Cross University (Lismore, NSW), the University of Queensland (Brisbane, Qld.) and the University of New England (Armidale, NSW). Other Institutions lending support for this project include Arkenas (Jakarta), the Provincial Government of the Eastern Lesser Sunda Islands, the local governments at Ruteng, Labuan Bajo, and Reo, and the Indonesian Conservation Department. I am indebted to all the people who helped us collect plants and who conveyed their knowledge of plants to us for our records. I greatly appreciate the assistance of Dr Netty Polhaupessy, Professor Soejono, Mr. Abraham G., Thomas Sutikna, Rokus Awe Due, Wahyu Saptomo, Jatmiko and Stefanis from Hotel Sindah, Ruteng. I greatly appreciate the assistance provided by Dr Huw Barton, especially pertaining to formulation of the diagnostic attributes for starch granules. I also thank Professor Mike Morwood, Associate Professor Bill Boyd and Jacqui Collins and Robert Neal for their kind assistance. Finally, I thank Alison Crowther, Cassandra Venn, Heath Anderson and Jasmine Murray for all their hard work in the laboratory.

REFERENCES

- Bailey, R. C., M. Jenicke and R. Rechtman 1991. Reply to Colinvaux and Bush. *American Anthropologist* 91:59-82.
- Barton, H. and V. Paz 2007. Subterranean diets in the tropical rainforests of Sarawak, Malaysia. In T. P. Denham, J. Iriarte and L. Vrydaghs (eds) *Rethinking Agriculture: archaeological and ethnoarchaeological perspectives*, p.50-77. New York: Left Coast Press.
- Bellwood P. 1996. The origins and spread of agriculture in the Indo-Pacific region: gradualism and diffusion or revolution and colonisation. In D. R. Harris, (ed.) 1996. *The Origins and spread of Agriculture and Pastoralism in Eurasia*, pp. 465-498. London: UCL Press.
- Bellwood, P. 1997. *Prehistory of the Indo-Malaysian Archipelago*. Honolulu: University of Hawaii Press.

- Brown, P., T. Sutikna, M. J. Morwood, R. P. Soejono, Jatmiko, E. Wayhu Saptomo and Rokus Awe Due 2004. A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia. *Nature* 431:1055-1061.
- Crowther, A. 2005. Starch residues on undecorated Lapita pottery from Anir, New Ireland. *Archaeology in Oceania* 41:62-66.
- De Langhe, E. and P. De Maret 1999. The banana: its significance in early agriculture. In C. Gosden and J. Hather (eds.), *The Prehistory of Food. Appetites for Change*, pp. 377-396. London: Routledge.
- Denham, T., S. Haberle and C. Lentfer 2004. New evidence and revised interpretations of early agriculture in Highland New Guinea. *Antiquity* 78 (302):839-857.
- Denham, T., S. G. Haberle, C. Lentfer, R. Fullagar, J. Field, N. Porch, M. Therin, B. Winsborough and J. Golson 2003. Multi-disciplinary evidence for the origins of agriculture from 6950-6440 cal. BP at Kuk Swamp in the Highlands of New Guinea. *Science* 301:189-193.
- Dentan, R. K. 1991. Potential food sources for foragers in Malaysian rainforest: Sago, yams and lots of little things. *Journal of the Royal Institute of Linguistics and Athropology* 147:420-444.
- Dickau, R., A. J. Ranere and R. G. Cooke 2007. Starch grain evidence for the preceramic dispersals of maize and root crops into tropical dry and humid forests of Panama. *Proceedings of the National Academy of Sciences* 104(9):3651-3656.
- Englyst, H. N., S. M. Kingman and J. H. Cummings 1992. Classification and measurement of nutritionally important starch fractions. *European Journal of Clinical Nutrition* 46:S33-S50.
- Field, J. and B. Gott 2006. Compiling a reference collection for studying Pleistocene grinding stones. In R. Torrence and H. Barton (eds) *Ancient Starch Research*, pp. 105-106. Walnut Creek, California: Left Coast Press.
- Fullagar, R. 2006. History of starch research on stone tools. In R. Torrence and , H. Barton (eds) Ancient Starch Research, pp. 181-182. Walnut Creek, California: Left Coast Press.
- Fullagar, R., J. Field, T. Denham and C. Lentfer 2006. Early and mid Holocene processing of taro (*Colocasia esculenta*), yam (*Dioscorea* sp.) and other plants at Kuk Swamp in the Highlands of Papua New Guinea. *Journal of Archaeological Science* 33:595-614.
- Glover, I. 1986. *Archaeology in Eastern Timor, 1966-67*. Terra Australis 11. Canberra: Department of Prehistory, Australian National University.
- Glover, I and C. F. W. Higham 1996. New evidence for early rice cultivation in south, southeast and east Asia. In D. R. Harris (ed.) 1996. *The Origins and spread of Agriculture and Pastoralism in Eurasia*, pp. 412-441 London: UCL Press.
- Gott, B., H. Barton, D. Samuel and R. Torrence 2006. Biology of starch. In R. Torrence and H. Barton (eds), *Ancient Starch Research*, pp. 35-45. Walnut Creek, California: Left Coast Press.
- Harris, D. R. (ed.) 1996. *The Origins and Spread of Agriculture and Pastoralism in Eurasia*. London: UCL Press.
- Haslam, M. 2004. The decomposition of starch grains in soils: implications for archaeological residue analyses. *Journal of Archaeological Science* 31:1715-34.

- Helena, C, C. Boyadjian, S. Eggers and K. Richard 2007. Dental wash a problematic method for extracting microfossils from teeth. Journal of Archaeological *Science* 34(10):1622-1628.
- Horrocks, M., G. Irwin, M. Jones and D. Sutton 2004. Starch grains and xylem cells of sweet potato (Ipomoea batatas) and bracken (Pteridium esculentum) in archaeological deposits from northern New Zealand. *Journal of Archaeological Science* 31:251-258.
- Hutterer, K.L., 1985. The Pleistocene archaeology of Southeast Asia in regional context. In G-J. Bartstra and W.A. Casparie (eds) *Modern Quaternary Research in Southeast Asia: Papers Read at Symposium 1 12th Congress of the Indo-Pacific Prehistory Association Philippines, 26th January-2nd February 1985*, pp. 1-23. Rotterdam: A.A. Balkema,.
- Jiang, Q. 1995. Searching for evidence of early rice agriculture at prehistoric sites in China through phytolith analysis: an example from central China. *Review of Palaeobotany and Palynology* 89:481-485.
- Juan-Tressaras 1998. La cerveza prehistorica: Investigaciones aqueobotanicas y y experimentales. In J.L. Maya, F. Cuesta and J. L. Cachero (eds) *Geno: Un Poblado del Bronce Final en el Bajo Segre (Lleida)*, pp. 239-252. Barcelona: Universitat de Barcelona.
- Lebot, V. 1999. Biomolecular evidence for plant domestication in Sahul. *Genetic Resources and Crop Evolution* 46:619-628.
- Lentfer, C. J. 2008. Building a Starch Reference Collection for Southeast Asia. Unpublished Report, Pacific Biological Foundation, Port Macquarie, N.S.W., Australia.
- Lentfer, C. J. and R. C. Green 2004. Phytolith evidence for the terrestrial plant component at the Lapita Reber-Rakival site on Watom Island, Papua New Guinea. In V. Attenbrow and R. Fullagar (eds) A Pacific Odyssey. Papers in Honour of Jim Specht. Records of the Australian Museum Museum. Supplement pp. 75-88. Sydney: Australian Museum.
- Lentfer, C. J., M. Therin and R. Torrence 2002. Starch grains and environmental reconstruction: A modern test case from West New Britain, Papua New Guinea. *Journal of Archaeological Science* 29:687-698.
- Lentfer C. and M. Therin 2006. Collecting starch in Papua New Guinea. In R. Torrence and H. Barton (eds) *Ancient Starch Research*, pp. 99-101. Walnut Creek, California: Left Coast Press.
- Loy, T. H., M. Spriggs and S. Wickler 1992. Direct evidence for human use of plants 28,000 years ago: starch residues on stone artifacts from the northern Solomon Islands. *Antiquity* 66:898-912.
- Matthews, P. and K. W. Naing. 2005. Notes on the provenance of wildtype taros (Colocasia esculenta) in Myanmar. *Bulletin of National Museum of Ethnology* 29 (4):587-615.
- Morwood, M.J., R. P. Soejono, R. G. Roberts, T. Sutikna, C. S. M. Turney, K. E. Westaway, W. J. Rink, J.- x. Zhao, G. D. van den Bergh, Rokus Awe Due, D. R. Hobbs, M. W. Moore, M. I. Bird & L. K. Fifield, 2004. Archaeology and age of a new hominin from Flores in eastern Indonesia. *Nature* 431:1087-1091.
- O'Sullivan, P.B., M.J. Morwood, D. Hobbs, F. Aziz, Suminto, M. Situmorang, A. Raza and R. Maas, 2001. Archaeological implications of the geology and chronology of the Soa basin, Flores. *Indonesian Geology* 29(7):607–610.
- Parr, J. F. and M. Carter 2003. Phytolith and starch analysis of sediment samples from two archaeological sites on Dauar Island, Torres Strait, Northeastern Australia. *Vegetation History and Archaeobotany* 12:131-141.

- Paz. V. 2001. Archaeobotany and Cultural Transformation: Patterns of early plant utilisation in northern Wallacea. Unpublished PhD thesis. Cambridge: University of Cambridge.
- Perry, l. 2004. Starch analyses reveal the relationship between tool type and function: An example from the Orinoco valley of Venezuela. *Journal of Archaeological Science* 31:1069-1081.
- Piperno, D, R., Weiss, E., Holst, I. and Nadel, D. 2004. Processing of wild cereal grasses in the Upper Palaeolithic revealed by starch grain analysis. *Nature* 430:670-673.
- Reichert, E. T. 1913. *The Differentiation and Specificity of Starches in Relation to Genera, Species, etc.* Washington DC: Carnegie Institution of Washington.
- Samuel, D. 1996. Investigations of Ancient Egyption baking and brewing methods by correlative microscopy. *Science* 273:488-490.
- Sauer, C.O. 1953. *Agricultural Origins and Their Dispersals*. New York: American Geographical Society.
- Sémah, F., A. M. Sémah, and T. Simanjuntak 2003. More than a million years of human occupation in insular Southeast Asia: the early archaeology of eastern and central Java. In J. Mercader (ed.) Under the Canopy: The Archaeology of Tropical Rain Forests, pp. 161-190. New Brunswick: Rutgers University Press.
- Simmonds, N. W. 1962. The Evolution of Bananas. London: Longmans.
- Spriggs, M. 1996. What is Southeast Asian about Lapita? In T. Akazawa and Szathmary (eds) *Prehistoric Mongoloid Dispersals*, pp. 324-348. Oxford: Oxford University Press.
- Torrence, R. and H. Barton (eds) 2006. *Ancient Starch Research*. Walnut Creek, California: Left Coast Press.
- Therin, M., R. Fullagar and R. Torrence 1999. Starch in sediments: a new approach to the study of subsistence and land use in Papua New Guinea. In C. Gosden & J. Hather (eds) *Prehistory* of Food, pp. 438-462. London: Routledge.
- Ugent, D., T. Dillehay, and C. Ramírez 1987. Potato remains from a Late Pleistocene settlement in southcentral Chile. *Economic Botany* 41:17-27.
- Yen, D. E. 1990. Environment, agriculture and colonization of the Pacific. In D. E. Yen and J. M. J. Mummery (eds) *Pacific Production Systems: Approaches to economic prehistory, pp. 258-277. Occasional Papers in Prehistory* 18. Canberra: Department of Prehistory, Research School of Pacific Studies, Australian National University.
- Zarrillo, S., D. M. Pearsall, J. S. Raymond, M. A. Tisdale and D. J. Quon 2008. Directly dated starch residues document early formative maize (Zea mays L.) in tropical Ecuador. *Proceedings of the National Academy of Sciences* 105:5006-5011.