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( 1] Accurate stratigraphic ages are crucial to understanding the deformation history of the 
Tibetan Plateau prior to and during the Indo-Asian collision. Efforts to quantify Mesozoic
Cenozoic ages are hindered by limited fossils and a paucity of volcanic horizons and 
regionally correlative strata. Magnetostratigraphic and biostratigraphic results from the 
Xining-Minhe-Longzhong basin complex and Dangchang basin provide an improved 
chronology ofnonmarine basin development over a large region of the northeastern Tibetan 
Plateau (34-37°N, 101-105°E). Analyses of 171 magnetostratigraphic levels and 24 
palynological assemblages (> 120 species) indicate Late Jurassic-Early Cretaceous 
to mid-Tertiary deposition. Although magnetic polarity zonation is incomplete, independent 
palynological age control partially restricts possible correlations to the Geomagnetic 
Polarity Timescale. The sediment accumulation record, basin provenance, structural 
geology, and published thermochronological data support a history of Jurassic exhumation, 
Late Jurassic-Early Cretaceous fault-related basin initiation, and Cretaceous-Paleogene 
reduced accumulation. These patterns, which are compatible with Late Jurassic-Early 
Cretaceous extension and Cretaceous-Paleogene postrift thermal subsidence, were 
disrupted at about 40-30 Ma, when shortening related to the Indo-Asian collision induced 
localized range uplift, vertical axis rotation, and amplified subsidence. INDEX TERMS: 1520 

Geomagnetism and Paleomagnetism: Magnetostratigraphy; 8102 Tectonophysics: Continental contractional 

orogenic belts; 9320 Information Related to Geographic Region: Asia; 9604 Information Related to Geologic 

Time: Cenozoic; 9609 Information Related to Geologic Time: Mesozoic; KEYWORDS: tectonics, 

magnetostratigraphy, Tibetan Plateau, Cenozoic, Mesozoic, sedimentary basins 

Citation: Horton, B. K., G. Dupont-Nivet, J. Zhou, G. L. Waanders, R. F. Butler, and J. Wang (2004), Mesozoic-Cenozoic evolution 

of the Xining-Minhe and Dangchang basins, northeastern Tibetan Plateau: Magnetostratigraphic and biostratigraphic results, 

J. Geophys. Res., 109, B04402, doi:l0.1029/2003JB002913. 

1. Introduction 

[ 2] Resolving the timing of deformation across the Tibetan 
Plateau is fundamental to addressing models of plateau 
construction. Although many studies highlight the impor
tance of the Indo-Asian collision in driving middle to late 
Cenozoic defonnation [e.g., Molnar and Tapponnier, 1975; 
Dewey et al., 1988; Burchfiel and Royden, 1991; DeCelles et 
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al., 2002], substantial Mesozoic to early Cenozoic deforma
tion may have affected large areas of the Tibetan Plateau 
[Burg and Chen, 1984; Murphy et al., 1997; Yin and 
Harrison, 2000; Horton et al., 2002; Kapp et al., 2003]. 
Long-term stratigraphic chronologies for Mesozoic-Cenozo
ic successions are vital for ascertaining the timing, distribu
tion, and possible northward progression of deformation that 
preceded and accompanied the Indo-Asian collision. 

[ 3] Obstacles to chronological studies in the Tibetan 
Plateau include a shortage of diagnostic fossils, pronounced 
lithostratigraphic similarities (precluding unique regional 
correlations), and limited volcanic horizons in Upper Juras
sic-Tertiary strata [Kidd et al., 1988; Yin et al., 1988]. 
Although marine strata are reported in places [Zhang, 

2000] and important mammal fossils characterize some 
Neogene deposits [Qiu et al., 2001; Wang et al., 2003], 
most mid-Mesozoic through Cenozoic sedimentary rocks 
consist of nonfossiliferous, oxidized red beds of fluviolacus
trine origin. Because of the scarcity of-published age con
straints, several regional studies rely exclusively on age 
interpretations from regional Chinese mapping efforts 
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Figure 1. (a) Regional tectonic map of east Asia. (b) Map of the Tibetan Plateau and adjacent regions 
showing principal active faults, sedimentary basins, and rivers. 

[e.g., Halim et al., 1998; Metivier et al., 1998; Cogne et al., 

1999]. In many cases, however, the rationale behind these 
age interpretations and regional correlations, as well as the 
original sample locations and stratigraphic levels, remain 
unspecified in the available literature. Furthermore, in some 
instances, dating of volcanic horizons reveals discrepancies 
With original map-assigned ages on the order of20-80 Myr 
[e.g., Horton et al., 2002; Kapp et al., 2002]. 
. [4] The purpose of this paper is to develop a chronolog
ical framework on the basis of magnetostratigraphy and 
palynological biostratigraphy to evaluate late Mesozoic to 
mid-Tertiary basin evolution and sediment accumulation 

patterns in the northeastern Tibetan Plateau (Figure 1 ). 
These chronostratigraphic techniques may provide the best 
clues to distinguishing Mesozoic rocks from lithologically 
similar Cenozoic rocks in other parts of the Tibetan 
plateau. In the companion paper, Dupont-Nivet et al. 

[2004] address tectonic rotations revealed by the paleo
magnetic analyses. 

2. Geologic Setting 

[s] The northeastern comer of the Tibetan Plateau con
stitutes the region bounded by the Qinling Shan and 

2 of 15 



B04402 HORTON ET AL.: MESOZOIC-CENOZOIC EVOLUTION OF NE TIBET B04402 

Kunlun fault to the south, Qilian-Nan Shan to the west
northwest, and Haiyuan fault and Liupan Shan to the north 
and east (Figure 2). Narrow, 3000- to 4500-m-high ranges 
produced by Cenozoic shortening and strike-slip deforma
tion separate adjacent basins situated at I 500-3000 m 
[Tapponnier et al., 1990; Zhang et al., 1990, 1991; 
Burchfiel et al., 1991; Gaudemer et al., 1995; Meyer et 

al., 1998; Lasserre et al., 2002]. Rather than an abrupt 
plateau margin, a uniform decrease in elevation from 
southwest to northeast [Clark and Royden, 2000] is 
expressed along the approximate trace of the Yellow River 
(Figure 2a). Average crustal thickness also decreases from 
southwest to northeast, from rv60 km near the Kunlun fault 
to rv40 km near the Hai yuan fault [Calve et al., 2002; 
Zhang et al., 2002]. 

[ 6] Timing of surface uplift in the northern Tibetan 
Plateau remains poorly known. Although many infer Pli
ocene-Quaternary uplift on the basis of a regional con
glomeratic influx since rv4 Ma [e.g., Li, 1995; Li and 

Fang, 1999; Zheng et al., 2000], the distribution and 
apparent synchroneity of this textural variation may be 
more consistent with climate change [Liu et al., 1996; 
Zhang et al., 2001]. A growing body of thermochrono
logical evidence, mainly fission track data, indicate Meso
zoic-early Tertiary cooling episodes in northern Tibet 
[Mock et al., 1999; George et al., 2001; Jolivet et al., 

2001; Sobel et al., 2001 ], consistent with sedimentation 
histories in northern Tibet [Hanson, 1999; Yin et al., 2002] 
and possibly Cretaceous-early Tertiary deformation and 
uplift in the plateau interior [Burg et al., 1983; Burg and 

Chen, I 984; Allegre et al., I 984; England and Searle, 

1986; Pan, 1993; Murphy et al., 1997; Yin and Harrison, 

2000; Horton et al., 2002; Kapp et al., 2003]. Neverthe
less, occurrences of marine strata in northern Tibet and the 
Tarim basin [Bally et al., 1986; Watson et al., 1987; Yin et 

al., 1988; Sobel, 1999; Yin and Harrison, 2000] suggest 
that some areas remained relatively low during Cretaceous
early Tertiary time. 

[ 7] Sedimentation north of the Kunlun fault involved 
large Cenozoic basins such as the Qaidam, Tarim, Junggar, 
and Turpan basins (Figure 1 ), and their Mesozoic precursors 
[Bally et al., 1986; Hendrix et al., 1992; Graham et al., 

1993; Metivier et al., 1998; Sobel, 1999; Ritts and Bijji, 

2000]. Cenozoic accumulation recorded the flexural re
sponse to shortening-induced crustal thickening [Bally et 
al., 1986; Meyer et al., 1998; Yin et al., 2002] and/or 
topographic isolation through closure of drainage outlets 
[Metivier et al., 1998; Tapponnier et al., 2001]. Similar 
mechanisms may apply to smaller Cenozoic basins in 
central and northern Tibet [e.g., Leeder et al., I 988; Liu et 
al., 2001; Horton et al., 2002; Pares et al., 2003]. In 
contrast, regional Mesozoic sedimentation in northern Tibet, 
north China, and Mongolia (Figure la) is variably attributed 
to ( 1) shortening and strike-slip deformation due to colli
sions along the Kunlun and Bangong-Nujiang sutures in 
central Tibet, (2) extension and strike-slip deformation 
linked to retreating subduction zones to the north and east 
(Mongol-Okhotsk and Pacific margins, respectively), and 
(3) extensional collapse of east trending mountain belts in 
north China and Mongolia [Hsu, 1989; Xu et al., 1989; 
Hendrix et al., 1992, 1996; Graham et al., 1993, 2001; 
Sobel, 1999; Vincent and Allen, 1999; Davis et al., 200 I, 

2002; Ritts et al., 2001; Darby and Ritts, 2002; Meng et al., 

2003; Robinson et al., 2003]. 

3. Stratigraphic Synthesis 

3.1. Regional Overview 

[ s] A complex stratigraphic nomenclature characterizes 
Mesozoic-Cenozoic basins in the vicinity of Xining and 
Lanzhou, two cities near the Qinghai-Gansu provincial 
border (Figure 2). Most successions contain predominantly 
Cretaceous red elastic strata that persist laterally throughout 
the region and originally covered >30,000 km

2
. An Upper 

Jurassic section concordantly underlies these rocks in places. 
The Jurassic-Cretaceous package is referred to as the Xining
Minhe basin or Minhe basin. The approximate outcrop 
extent (Figure 2) suggests an original southern basin margin 
south of the Laji Shan, eastern basin margin near the 
Maxian Shan (near Lanzhou), northern basin margin near 
the Qilian Shan (Dahan Shan, locally), and western basin 
margin near the Qinghai Nan Shan. Lower Tertiary rocks 
that concordantly overlie Cretaceous strata in most of the 
Xining-Minhe basin have been traditionally considered part 
of a younger broader basin, the Longzhong basin [Zhai 

and Cai, I 984]. Nomenclature is further complicated by 
the delineation of four Cenozoic subbasins (the Xining, 
Lanzhou, Linxia and Longxi-Jingning subbasins) within the 
composite Longzhong basin (Figure 2b). For consistency 
with previous studies, the original names are retained here 
and the term Xining-Minhe-Longzhong basin complex is 
introduced to refer jointly to the Mesozoic Xining-Minhe 
basin and Cenozoic Longzhong basin. The Longzhong 
basin covered >I 00,000 km2 between the Qinling Shan 
and Haiyuan fault during Cenozoic sedimentation (Figure 2). 
Paleogene strata are best preserved in the Xining subbasin 
and along the northern flank of the Qinling Shan. During 
Oligocene-Miocene time, deposition persisted in these areas 
and initiated in the Linxia and Lanzhou subbasins and a 
series of basins southwest of the Laji Shan: the Gonghe, 
Guide, and Xunhua basins (Figure 2b) [ Zhai and Cai, I 984; 
Li, 1995; Li et al., 1997a, 1997b; Flynn et al., 1999; Qiu et 

al., 200 I ; Yue et al., 2001; Pares et al., 2003; Song et al., 

2003]. Variability in basin nomenclature may reflect sys
tematic partitioning of the original Mesozoic Xining-Minhe 
basin by Cenozoic uplift of narrow ranges. 

3.2. Xining-Minhe-Longzhong Basin Complex 

and Dangchang Basin 

[9] A synthesis of Jurassic-Miocene stratigraphy (Figures 3 
and 4) based on this study and previous studies [Qinghai 

Bureau of Geology and Mineral Resources (QBGMR), J 985; 
Zhai and Cai, 1984; Hao, 1988; Yu et al., 2001] lists the 
formations, lithologies, and age control from pollen, char
ophyte (algae), vertebrate (principally mammal), ostracod, 
conchostracan, bivalve, and gastropod fossils. Diagnostic 
fossils and age relationships are as follows. 

[10] (1) Middle Jurassic Yaojie and Xiantang formations 
contain ostracod Darwinula and palynomorphs Cyathidites, 

Deltoidospora, Classopollis, and Osmundacidites [QBGMR, 
1985; Pang and Whatley, 1990]. (2) Upper Jurassic Datonghe 
Formation contains ostracods Damonella, Djungarica, and 
Minheella, and charophytes Aclistochara and Latochara, 

similar to Late Jurassic assemblages of China, Mongolia, 
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Figure 3. Generalized stratigraphic column listing forma
tio_n names, lithologies, and thicknesses for the Xining
Mmhe and Dangchang basins. See Figures 4 and 5 for 
detailed information. 

and western United States [Su et al., 1983; Hao, 1988; Li, 
1988; Pang and Whatley, 1990]. (3) Lower Cretaceous Hekou 
Group contains ostracods Cypridea, Lycopterocypris, and 
Ziziphocypris, conchostracans Eosestheria and Yanjiestheria, 
charophytes Aclistochara and Mesochara, and palyno
morphs Cicatricosisporites, Schizaeoisporites, Classopollis, 
Piceaepollenites, Deltoidospora, and Cedripites. The ostra
cods, charophytes, and conchostracans are common to 
abundant in Lower Cretaceous rocks of Eurasia and western 
United States [Su et al., 1983; Hao, 1988; Li, 1988; Pang 

and Whatley, 1990; QBGMR, 1991; Tang et al., 2001]. 
(4) Upper Cretaceous Minhe Group contains ostracods 
Cristocypridea, Talicypridea, Cypridea, and Candona, char
ophyte Latochara, and palynomorphs Schizaeoisporites, 

Classopollis, Ephedripites, and Tricolporopollenites. All 
are typical of Upper Cretaceous strata in China and Mon
golia [Su et al., 1983; Zhai and Cai, 1984; Hao, 1988; 
QBGMR, 1991]. (5) Paleocene to possibly lower Eocene 
Qijiachuan Formation contains large quantities of ostracods 
Cypris and Limnocythere, charophytes Stephanochara, 

Harrisisichara, Peckichara, and Rhabdochara, and palyno
morphs Ephedripites, Proteacidites, Scabiosapollenites, and 
Normapollis, similar to upper Paleoc~ne and possibly lower 
Eocene strata in China [Zhai and Cai, 1984; Guan, 1988; 
Huo, 1988; QBG_MR, 1991]. (6) The Eocene Honggou 
Format10n contams ostracods Limnocythere, Ilyocypris, 

and Cyprin_otus, charophyte Gyrogona (the main compo
nent of middle to upper Eocene strata in China), and 
palynomorphs Quercoidites, Ce/tis, Ulmipollenites, and 
lodes [ Zhai and Cai, 1984; I!ao, 1988; He et al., 1988; 
QBGMR, 1991; Liu and Yang, 1999]. (7) Oligocene Maha
lagou Formation contains a large appearance of ostracod 
Ilyocypris, additional ostracods Cyprinotus and Eucypris, 

charophytes Maedlersphaera and Sphaerochara, and paly
nomorphs Meliaceoidites, Piceapollenites, Ephedripites 

and Chenopodipollis, common in Oligocene strata of 
Eurasia [Zhai and Cai, 1984; Hao, 1988; QBGMR, 1991· 
Y~ et a~., 2001]. (8) Miocene Xiejia, Chetougou, and 
X1anshmhe formations are characterized by the appearance 
of a tremendous range of vertebrate fossils [Zhai and Cai 
1984] and the presence of ostracods Eucypris and Jlyocypris' 

charophytes Charites, and palynomorphs Potamogeton' 

Quercoidites, and Gramineae [Zhai and Cai, 1984; Hao: 

1988; QBGMR, 1991; Yu et al., 2001]. 
[ 11] In addition to fossil assemblages, Eocene-Oligocene 

marker horizons (gypsum beds in the Hongguo and Maha
lagou formations) facilitate regional stratigraphic correla
tions. For example, a 5- to 30-m-thick gypsum in the upper 
H?ngguo Formation can be traced >50 km, from local salt 
mu_ies n?rthwest of Xining to south of Pingan (Figure 2) . 
This umt (E2h3

) and similar units visible on aerial photo
graph and satellite imagery are located and described in 
previous maps and reports [Zhai and Cai, 1984; QBGMR 
1985]. ' 

3.3. Additional Palynological Age Control 

[ 12] We present > 120 palynological species identified in 
24 samples from Jurassic-Tertiary strata (Tables A 1 and 
A~ 1 

), adding to the rv80 previously reported species 
(Figure 4). For each sample, 5-10 grams of siltstone was 
dissol~ed in ~Cl and HF acids. Resistant pollen grains 
were sieved with I 0 µm mesh, floated in a solution of Zn8r2 

(specific gravity of 2.0), mounted on standard slides, and 
examined using a binocular microscope. An additional 
17 samples were barren of palynomorphs. Jurassic-Creta
ceous palynological assemblages are dominated by gymno
sperms and pteridophytes (fems), with small proportions of 
angiosperms in Upper Cretaceous strata. Tertiary assemb
lages are dominated by angiosperms with small but regular 
occurrences of gymnosperm and pteridophytic flora. Zhai 

and Cai [ 1984] noted similar distributions in the Xining
Minhe basin. 

3.4. Depositional Environments 

[ 13] Jurassic-Tertiary strata are composed of lithofacies 
associations attributable to deposition in lacustrine and 
distal fluvial environments with subordinate proximal flu
vial and alluvial fan environments. Comprehensive descrip
tions and interpretations, based on measured sections 
(Figure 5), are presented in Table A3. 

[ 14] Lacustrine deposits, the volumetrically dominant fa

cies, consist of thick intervals (100-1000 m) of thin-bedded, 
moderately well sorted, red, yellow, and variegated mud
stone, sandstone, and minor evaporite. Deposition is attrib
uted to suspension fallout and turbidity currents. with 
gypsum precipitation occurring during evaporative playa 
lake conditions, most notably during Eocene-Oligocene time. 

[ 1 s] Overbank flu vial deposits are widespread, consisting 
of moderately thick intervals (20-200 m) of thin- to 
medium-bedded tan and red sandstone and interbcdded 
mudstone. Clastic deposition is interpreted to be the 
result of crevasse splays and suspension fallout in an over-

'Auxiliary material is available at ftp://ftp.agu.org/apend/jb/ 

2003JB0029 l 3. 
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C ~ Yellow calcareous mudstone 

~ ~ with marl, sandstone, and 

1: EucypnS subovata, E. belfa, E. magmfeca, E. aff. rischtanica Schn., Hemicyprinotus regulan"s, Cyclocypris xiningens1S, C. umbellata, JlyocypnS sub/eVJS. 3: Maedlerisphaera chinensis. 4: Gomphotherium connexus, G. wimani, 

P/atybelodon grangeri, Plesiodipus /eei, Oioceros noverca, A/Joptox chinghaiensis, Bunolistriodon minheensis, Listriodon gigas, Stephanocemas chingaiensis, Elasmofherini, Micromeryxsp. 
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~ I ~ with gypsiferous sandstone, dushanensis, Umnocythere face ta. 3: Charitescf. chaidamuensis (S. Wang), Ch. parvn/a, Sphaerocharacf. granu/ffera (Heer), Maedlerisphaera chinensis, Hamichara kasakstanica. 4: Megacricetodon sinensis, M. cf. sinensis, Eumyarion 
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~ mudstone interbedded with (? cf. Eumyarion sp. ), Sino/agomyssp., S. pachygnathus, S. cf. pachygnathus, Leporidae indet, Sciurus sp., Otoceros sp., Eucricetodon youngi, Plesiosminthus xiningensis, P. huangshuiensis, P. /ajeensis, Tataromys sp., cf. Tataromyssp., 

:~ gypsiferous mudstone and Tataromys sum, Tachyoryctoides kokonorensis, Cricetodon sp., Mustelidae indet, Brachypotherium sp., Oioceros xiejiaensis, Camivora indet., Ctenopharyngodon sp., Ctenodyctyfidae indet., Aflantoxerus, Diacerarherium sp., 

X pebble-sandstone Sinopa/aeoceros xiejiaensis. 5: Piceapoflenites, U/mioollenites, Quercoidites, Chenopodipoflis, Labitricolpites, Meliaceoidites, Potamogeton, Sparganiaceaepo/lenites. 
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Red calcareous silty 1: Cyprinotus sp., C. xiningens1S, C. icrobus, C. dongyaomiaoenSJS, C. jucundus, C. greganils, C. non"ni, C. subtnBngulus, C. ensilada, C. arasens1S, C. aff. q1ilx1Bnens1S Lee, EucypnS sp., E. catemosa, E ml1agouenSJ"s, E. kokta/ensis, E. cf 

mudstone, gray gypsiferous E concinnaSchn., Cypridopsis d. renffonnis, Cypris trigono, llyocyprissp., I. errabundis, /. suberrabundis, I. bradyi, /. sublevis, I. e/lipsoidea, I. costata, I. manasensis confrogosa, Umnocythere linguida, Umnocytherecf. emarciara, 

mudstone Umnocythere faceta, L. subhubeiensis, Candonasp., C. imparilis, Moenocypris sp., Potamocypris reticulata. 3: Homicharatomata, H. kasakstanica, Charites minutissina, Nemegtichara brevicyfindrica, Sphaerochara minheens5, S. 

chuankouensis, S. parvula, Pseudolatochara globula, P. pinnacle, P. aechma, P. rhombica var. minheensis, Nemegtichara var. minheensis, Gyrogona qianjiangica, Grovesichara minheensis, Qinghaicharasp., Maedlerisphaere chinensis, M. 

paraovat, Raskyaechara sp., R. subcylindrica, Grambastichara tomata 5: Chenopodipol/is, Piceapollenites, Ulmipol/enites, Quercoidites, Ephedripites (D, E), Labitricolpites, Betu/aepolfenites, Me/iaceoidffes, Pinaceae, Tricolporopolfenites, 

Cedripites, Abietineaepol/enites, Pinuspollenites, Rhoipites, Celtispollenites, Scabiosapollenites, Tricolpopo/lenites, Tsugaepo/Jenites, Ginkgo, Cycas, Rosaceae, Euphobiaceae,Magnolia, Retitricolpites, Polypodiacea. 
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X with interbedded calcareous 3: Stephanochara breviova/is, S. cf. kiangsuensis, Neochara squalida, Peckichara seria/is, Rhabdochara kisgyonensis, Sphaerochara parvula, Harrisichara minoriquadsrata, H. yunlongensis. 5: Polypodiaceoisporites, P. undulatus, P. 
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_J sandstone U. !ricostams, Momipites coryloides, Beaupreaidites, Nevesisporites, Do/ypodiaceoisporites, Schizaeoisporites, Phylbcladidites pa/eocenicus, Cranwellia, Proteacidites, P. echinatus, Normapollis, Retitrico/pites, Pinaceae, Symplocosporites, 

Triprozectus, Rhorpites, Rutaceaepo/fenites, Sapindaceidites, Phylochadus, Cedripites, Araiucarucariacites, Polypodiaceoidites, Volubilis, Acrostichiam, Woodsia, Hymenophyllumsporites. 
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Red siltstone with interbedded 

gypsum and mirabilite. Basal 

sandy conglomerate. 

Red sandstone with 

mterbedded siltstone and 

thin-bedded gypsum. Mogou 

and Chela Fms: red 

conglomerate, sandstone, and 

siltstone. 

Red and yellow siltstone and 

sandstone with interbedded 

gray shale. Basal pebbly 

sandstone and conglomerate. 

Red sandstone and brown 

siltstone. Basal conglomerate. 

Red and gray mudstone and 

sandstone 

Variegated gray.green 

mudstone with thin beds of 

black coal 

1: Cn'stocyprldeasp., C. latiovata, C. megalab1Bta, C. didymolabiata, C. amoena, C. pninistina, EucypnSsp., E. debi/01des, E. minheens1S, E. qinghaiensis, Cypndea (Cypndea) cavemosa, C. (Pseudocypnd1"na) Jonga, C. (P.) gigantea, C. 

(Morinina) xindianensis, C. (Sebastianites) tumida, Candona hupehensis, T alicypridea reticu/ata, T. amoena, T. /aliovata. 3: Grambastichara tenuis, G. communis, Latochara yuananensis, L. curtula, Pseudolatochara jianghanensis,P. 

rhombica, Obtusochara tenuiconica, Sphaerochara par.ru/a, Gyrogona hubeiensis, Charites guanpingensi. 5: Gfeicheniidites, Osmundacidites, Schizaeoisporites, C/assopollis, Ephedrfpites (D), Tricolporopollenites. 

Shanyang Formation: 1; Cypridea (Cypridea) sanmachiensis, C. (C.) def/ecta, Cypridea (Bisulcocypridea) skeeteri, Cypridea (Ulwellia) chuankouensis, Rhinocypris sp., R. ventriconcava, R. jurassica jurassica, Ziziphocypris costata, 

Candonie/la candida, Djungarica ventrimarcida, Paracyprinotusspp., Darwinulasp. 5: Piceaepo/Jenites, Cedrlpites, C/assopollis, Ginkgo, Monosulcites, Deltoidospora, Densoisporites, Verrucosisporites, lnaperturopo/Jenites. 

Mogou and Chela Formations (Dangchang basin)ct: 5: Cyathidites sp., C. minor coup, Toroisporitessp., T riporo/etessp., T. reticulosus, Lygodiumsporites sp., L. japaniciforme, L. microadriensis, Leptolepiditessp., Reticulitriletes sp., 

Neoraistrickla sp., Verrucosisporitessp., Apiculatisporitessp., Contignispori tes multimuratus, Cicatricosisporites sp., Schizaeoisporites certus, lnaperturopo/lenitessp., Psophosphaera sp., Callia/asporitessp., C. trilobatus, C. 

monoa/asporites, Quadraeculina ane/Jaeformis Maljavkina, Q. limbata Maljavkina, Podocarpidites spp., P scaber, Caytonipollenites spp., Pristinuspollenites bibu/bus Bolkhovitina, Parvlsaccitessp., Jiaohepollis annulatus, Cedripites 

minutulus krutzsch, Classopollis spp, Aequitrlraditessp., Piceaepollenites sp. 6: Sphaerium d. Shantungensis Grabau, S. cf. retigeo/osum Gu et Yu. 7: Viripart.1s cf. yumenensis Guo. 

1 : Cypridea sp., C. curtarostrata, C. cf. tnBngula Liu, C. (Cypridea) tnicostata, C. (C.) v1timensls, C. (Ulwe/118) koskulensis, C. (U.) meneveens1S, C. (U.) chuankouensis, C. (U.) prolix a, C. (U.) prostata, Shouchangens1S, Ziziphocypris sp., 

Damonel/ajlandeensis, Umnocyprideasp., Lycopterocypris infantilis, L. flaccida, Rhinocypris ferox, R. jurassica jurassica. 2: Yanjiestheriaspp., Eosestheria qingtanensis, E. xiningensis. 3: Mesochara stipitata, M. xuanziensis, 

Flabel/ocharajurongica, F.cf.jurongica Z. Wang et Zhang, Aclistocharastipitata, A. /aiae, A. huangshuiensis. 5: Deltoidospora, Schizaeoisporites, Piceaepollenites, Classopol/is, lnaperturopo/Jenites, Ginkgoretecfina, Cycadopites, 

Cicatricosisporites, Monosulcites, Eucommidites, Toroisporis, Cyathidites Minor, Psophospnaera, Plicatella. 

1: Damone/la huangshuiens1S, D. ovata, Jingguel/a hutouyaiens1S. J. ovata, Prel1innocythere p1"ngua, Djungarica oval1's, Darwinu/a oblonga, OusocypnSarea, Minheel/a minheens1's, M. /lgulata, M. plicata, M. sunla, Lycopterocypris eggen·. 

3: Minhechara columelaris, Multispirochara subovalis, Mesochara paragranulifera, M. ammoena, Nodosoclavatorqinghalenensis, Forochara maed/eri, Aclistochara datongheensis, A. bransoni, A. xiangtangensis, A platyg/obata, A. obovata, 

A. yunnanensis. 5: Densoisporites, C/assopo/lis, Cal/ia/asporites, Piceaepo//enites, Cedripites, Aracucariacites, Perinopollenites, /schyosporites, Lygodiumsporites, Concavissimisporites, Cicatricosisporites, Schizaeoisporites. 

1 Darwinula remua, D. paracontracta, D. aff. agitabi/isJiang, Lycopterocypris sp. 3: Ac/istochara minina, A. nuguishanensis, A. brevis, A platyglobata, Latochara xiaoxiaensis, L. huang zhongensis. 

1 Darwinula sarytinnenensis, D. xiaoxiaensis, D. discripta, D. comasa sp., Metaeypris catenularia, M. maekerrowi. 2: Euestheria cf. ziliujingensis Chen. 3: Aclistochara nuguishanensis, A. brevis, A. xiaoxiaensis, A. xiningensis, A minima, 

A. cf. jonesi Deck, A. spharica. 4: Cryptodira indet. 5: Deltoidospora, Cyathidites, Lycopodiacidites, Osmundacidites, Obtusisporis, Quadraeculina, Piceaepo/Jenites, Protopinus, Probconiferus, Psophosphaera, Classopollis, 

Calliafasporites, Cerebropollenites, Kraeuselisporites, Concavissim1sporites, Pinuspol/enites, Cycadooites. 

Figure 4. Detailed stratigraphic synthesis, lithologic description, and fossil data for the Xining-Minhe and Dangchang 
basins, compiled from QBGMR [ 1985 ], Zhai and Cai [ 1984 ], Hao [ 1988], and Yu et al. [2001 ]. All stratigraphic 
designations from QBGMR [1985], except footnote a, Zhai and Cai [1984]; footnote b, Hao [1988]; footnote c, QBGMR 

[1991]; and footnoted, GBGMR [1988]. 
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Figure 5. Magnetic polarity stratigraphy and measured sections for the Xining-Minhe and Dangchang 
basins. Correlations to the geomagnetic polarity timescale (GPTS) utilize age data from 24 palynological 
assemblages. VGP, virtual geomagnetic pole. Average sediment accumulation rates (undecompacted) are 
shown for each correlation. Section locations are shown in Figure 2. 

bank fluvial setting, with minor overprinting by pedogenic 
processes. 

[16) Proximal fluvial deposits, most common in the 
southern and eastern portion of the Xining-Minhe basin, 
compose stratigraphic intervals 10-200 m thick containing 
medium- to thick-bedded, moderate to poorly sorted, red 
and tan sandstone and sandy conglomerate. These deposits 
represent sedimentation by bars and dunes within erosive 
fluvial channels. 

[ 17] Alluvial fan deposits, best developed in the Dang
chang basin and southeastern Xining-Minhe basin, define 
stratigraphic intervals 20-400 m thick consisting of 
medium- to thick-bedded, poorly sorted, clast-supported 

red conglomerate and interbedded sandstone. These strata 
recorded gravel and sand deposition by fluid flood flows, 
hyperconcentrated flows, and rare debris flows. 

4. Magnetostratigraphy 

4.1. Paleomagnetic Sampling and Analysis 

[ 18] Sampling for magnetic polarity stratigraphy was 
carried out in the central Xining-Minhe basin (east Xining 
section: 36°35'N, 101°54'E) and Dangchang basin (north 
Dangchang section: 34°05'N, J04?28'E) (Figure 2). Region
ally, these localities afford the most continuous exposure of 
suitable fine-grained Iithologies, greatest palynological age 
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Figure 5. (continued) 

control, and greatest structural integrity. Sampling was 
performed in situ using a portable, gasoline-powered drill. 
Two to four samples were collected per magnetostratigraphic 
level (each level representing a horizon <1.0 m thick) at an 
average stratigraphic spacing of '""10 m. Red mudstone and 
sandstone were sampled preferentially where possible. A 
total of 171 magnetostratigraphic levels were collected: 
93 Dangchang levels and 78 Xining levels. Magnetostrati
graphic sampling was complemented by the regional paleo
magnetic study of Dupont-Nivet et al. [2004], wherein data 
tables and complete descriptions of paleomagnetic analyses 
and thermal demagnetization techniques are provided. 

[19] At Dangchang, 85 magnetostratigraphic levels (Fig
ure 5) were collected within a continuous, ,..., 1100-m-thick, 
southwest dipping homoclinal succession. To perform a fold 
test, 8 additional paleomagnetic sites (8 samples per site) 
were collected within strata that are gently folded on a 
Wavelength of several hundred meters and display shallow 
to moderate ( 15-34 °) westward and northward dips. Upon 
stepwise thermal demagnetization ('"" 20 temperature steps) 
of one pilot sample per collected level, 80 of 85 levels 
Yielded interpretable characteristic remanent magnetization 
(ChRM) directions. Samples from the other five levels, and 
two additional levels exhibiting aberrant ChRM directions, 
Were discarded from further analysis. Demagnetization 

behavior is consistent with magnetizations carried by a 
combination of magnetite and hematite [Dupont-Nivet et 

al., 2004]. Because normal polarities were obtained from all 
analyzed levels, no further demagnetization experiments 
were performed. Therefore each of the calculated virtual 
geomagnetic pole (VGP) latitudes for the Dangchang sec
tion (Figure 5) represents the ChRM direction of a single 
sample. Positive VGP latitudes were calculated for all 
levels: the majority are in the 40-80° range, but two (775 
and 1025 m levels) exhibit anomalously low values (<25°). 
The results from these two levels, although suggestive of 
aberrant readings or local complexities, do not change 
the interpretation of a single normal polarity zone for the 
Dangchang section. From the 8 paleomagnetic sites collected 
to perform the fold test, 8 samples per site were thermally 
demagnetized and ChRM directions were defined. Site-mean 
directions cluster after structural correction, indicating pas
sage of the fold test [McFadden, 1990] and a prefolding 
origin for the ChRM [Dupont-Nivet et al., 2004]. A lack of 
reverse polarities throughout the section precludes applica
tion of the reversals test. 

[20] The Xining data set (Figure 5) was collected from a 
continuous, rv800-m-thick, north dipping homoclinal suc
cession that exhibits sufficient variations in bedding attitude 
suitable for a fold test. Sampling was divided into lower, 
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intermediate, and upper stratigraphic levels. For the lower 
section (12-356 m), 55 magnetostratigraphic levels were 
collected at an average stratigraphic interval of rv6 m. 
Within intermediate stratigraphic levels (356-553 m), very 
poorly indurated mudstone and interbedded gypsum pre
vented sampling. For the upper section (553-801 m), 
23 magnetostratigraphic levels were collected at an average 
stratigraphic interval of "'11 m. For the lower part of 
the Xining section, 49 of 55 levels yielded interpretable 
ChRM directions carried mainly by hematite. Three aber
rant ChRM directions were discarded. For the remaining 
46 levels, ChRM directions pass both the reversals test and 
the fold test [McFadden, 1990; McFadden and McElhinny, 

1990], consistent with acquisition of the ChRM during or 
shortly after deposition. For the upper part of the Xining 
section, 22 of 23 levels yielded ChRM directions carried 
mainly by magnetite. Although variations in bedding atti
tudes are insufficient to allow a determinate fold test, the 
ChRM directions pass the reversals test [McFadden and 

McElhinny, 1990], suggestive of a primary origin for the 
magnetization. 

4.2. Age Correlation 

[ 21] A limited quantity of magnetic polarity zones are 
defined for the Dangchang and Xining sections, precluding 
rigorous correlation of polarity zonation to the geomagnetic 
polarity timescale (GPTS) on the basis of pattern recogni
tion. However, the fossil age data (Figure 4 and Tables Al 
and A2) partially restrict possible correlations. Our rationale 
therefore is to utilize the combination of fossil ages and 
polarity zonation to define a single reasonable correlation 
for each section, rather than to match a series of alternative 
correlations to the GPTS. It must be emphasized that each 
correlation shown in Figure 5 represents only one of several 
possible correlations. 

[22] For the Dangchang basin, exclusively normal polar
ities are observed for all 78 magnetostratigraphic levels 
(350-1437 m level). The uniformity of magnetic polarity, 
large number of analyzed levels, and "'10 m sampling 
interval suggest that it is unlikely that significant zones of 
reversed polarity were missed within the 1087 m sampled 
interval. Age constraints from new palynological assemb
lages (433, 596, 1306, and 1341 m levels) consistently 
indicate an Aptian-Albian (late Early Cretaceous) age 
(Table A2). Therefore the single, 1087-m-thick, normal 
polarity zone is correlated to part of the Cretaceous normal 
polarity superchron (chron 34n). The combination of ex
clusively normal polarities and Aptian-Albian palynoflora 
further restrict deposition to a time interval ranging from 
120 Ma (base of chron 34n) to 99 Ma (end of Albian), based 
on the GPTS of Cande and Kent [ 1992] and Gradstein et al. 

[ 1994]. This 21 Myr window represents the maximum 
duration for deposition; the possibility of deposition over 
a shorter time frame cannot be ruled out. 

[ 23] Sampling of the Xining section was divided into 
lower, intermediate, and upper stratigraphic levels. For 
lower levels (12-356 m), 36 levels yield normal polarity 
ChRM directions and reversed polarities are observed at 
I 0 levels. Two normal and three reverse polarity zones are 
each defined by two or more levels of similar paleomagnetic 
polarity; a third normal polarity zone at the top of the 
sampled interval is inferred on the basis of a single level. 

Eight palynological assemblages (12, 13, 17, 27, 247, 248, 
293, and 351 m levels) indicate a Late Jurassic or Early 
Cretaceous age for the lower Xining section (Table A I). 
There are many possible correlations of the six polarity 
zones to the GPTS. In the correlation presented, the Aptian
Cenomanian (121-93 Ma) palynological assemblage at the 
351 m level is assumed to lie within the Cretaceous normal 
polarity superchron ( chron 34n of Cande and Kent [ 1992] 
and Gradstein et al. [1994]), which spans from early Aptian 
(120 Ma) through Santonian (83 Ma). Therefore the strati
graphically highest normal polarity zone, defined by a 
magnetostratigraphic level at 356 m, is correlated with the 
lowermost part of chron 34n. Further correlations of under
lying polarity zones are as follows: a narrow reversed zone 
(306-330 m) to chron MOr, a thick normal zone (214-
306 m) to chrons Ml-M3n, a reversed zone (178-214 m) 
to chron M3r, a thick normal zone (22-178 m) to chrons 
M5n-Mlln, and the basal reversed zone (12-22 m) to 
chron M 11 r of Gradstein et al. [ 1994]. The correlation 
presented provides a reasonable explanation for the series of 
palynological assemblages from the lower 400 m of the 
Xining section, but alternative correlations are possible. 

[24] Although paleomagnetic data are not available for 
intermediate levels (356-569 m) of the Xining section, new 
palynological assemblages indicate an Aptian-Cenomanian 
(mid-Cretaceous) age at the 351 m level and a Cenomanian
Maastrichtian (Late Cretaceous) age at the 535 m level 
(Table Al). 

[2s] For upper stratigraphic levels (569-801 m) of the 
Xining section, 22 magnetostratigraphic levels (10 normal 
polarity, 12 reverse polarity) can be grouped into six polarity 
zones. Two normal and three reverse polarity zones are each 
defined by two or more levels of similar polarity; a third 
normal polarity zone at the top of the sampled interval is 
inferred on the basis of a single level. However, the wide 
spacing between magnetostratigraphic levels (a result of 
limited suitable lithologies) virtually ensures that the ob
served magnetic polarity zonation will incompletely identify 
reversals of the GPTS. Utilizing gypsum marker units, new 
chronostratigraphic data from Paleocene and Eocene paly
nological assemblages (Table Al) collected nearby at the 
Pingan section are correlated along strike to the Xining 
section at the 553, 559, 566, 582, and 865 m levels 
(Figure 5). A tentative correlation to the GPTS is made 
wherein the lowest magnetostratigraphic level (569 m) is 
considered to be near the Cretaceous-Paleocene boundary, 
based on Late Cretaceous palynoflora at 535 m and Paleo
cene-Eocene palynoflora at 5 53 - 5 82 m. Further correlations 
of overlying polarity zones are as follows: a reverse polarity 
zone (569-604 m) to Paleocene chrons 26r-27r, a normal 
polarity zone (661- 729 m) to early Eocene chrons 2 ln-24n, 
and a reverse polarity zone (729-795 m) to middle Eocene 
reverse chrons 18r-- 20r. Although offering a reasonable 
explanation for palynological assemblages, the magnetic 
polarity correlation presented for the upper Xining section 
is nonunique. These results are attributable to incomplete 
sampling of the numerous polarity chrons that characterize 
the GPTS from Late Cretaceous to Oligocene time. 

4.3. Accumulation Rates 

[ 26] Sediment accumulation rates are calculated on the 
basis of magnetic polarity correlations shown in Figure 5. 
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All rates discussed here are subject to a host of uncertain
ties, including the errors in magnetic correlations (men
tioned previously), errors in the OPTS, resolution of 
palynological assemblages, uncertainties related to unsteady 
deposition and stratigraphic completeness, errors in mea
sured strata! thicknesses, and postdepositional thickness 
changes [May et al., 1985; Badgley et al., 1986; Gallagher, 

1989; McRae, 1990]. One important issue concerns the 
possibility of significant time gaps within the stratigra,phic 
successions. Although angular unconformities are not ob
served, unsteady deposition could result in disconformities 
of several million years duration (e.g., Jurassic section of 
Qaidam basin [Ritts and Biffi, 2000]). For the Xining 
succession, the potential for unconformable time gaps is 
minimized by several factors. First, the upper and lower age 
bounds indicate a 10 7 -108 year duration of potential 
deposition, exceeding the 10° -105 year timescales over 
which accumulation rates are most sensitive to the effects 
of unsteady, discontinuous sedimentation [Sadler, 1981; 
May et al., 1985; Badgley et al., 1986; McRae, 1990]. 
Second, the volumetric dominance and large vertical extent 
of lacustrine facies (Table A3) suggests that (1) erosion of 
previously deposited sediment, a process common in chan
nelized fluvial systems, was of reduced importance, and 
(2) deposition was steadier than in a river-dominated 
system, as demonstrated by Sadler [ 1981]. Third, the 
paucity of frequent or mature paleosols in overbank (non
channelized) fluvial deposits suggests, qualitatively and 
possibly quantitatively [Kraus and Bown, 1993; Retallack, 

1998], that there were not prolonged depositional hiatuses. 
Additional uncertainties to consider include postdepositional 
variations in strata! thickness, particularly the effects 
of compaction. The long-term average rates reported in 
Figure 5 represent compacted stratigraphic thickness per 
elapsed time. To remove the effects of compaction beneath 
younger sedimentary overburdens, a standard backstripping 
analysis [Van Hinte, 1978] was performed assuming rea
sonable porosity values [Sclater and Christie, 1980; Ange

vine et al., 1990], yielding decompacted rates about 10-30% 
higher. Given all the possible sources of error, the reported 
long-term average rates are considered approximations of 
actual accumulation rates. Sifnificant variations in the actual 
rates over time frames < 10 -10 7 years may remain unde
tected by the analysis presented here. 

[21] For the Dangchang basin, a minimum average rate 
of 5.0 cm/kyr or 50 m/Myr (55 m/Myr decompacted) 
during the Early Cretaceous is calculated on the basis of 
upper and lower age bounds. The termination of basin 
development is unknown, but deposition persisted into 
Miocene time in the nearby Nanyang, Niudingshan, and 
Lixian basins of the western Qinling Shan (Figure 2) [Zhai 

and Cai, 1984]. 
[28] For the lower Xining-Minhe basin, an average rate of 

25 m/Myr (31 m/Myr decompacted) during the Early 
Cretaceous is calculated on the basis of six polarity chrons. 
Although intermediate levels of the basin lack paleomag
netic data, underlying and overlying magnetostratigraphic 
constraints define an average rate of 4.1 m/Myr (5.6 m/Myr 
decompacted) during Late Cretaceous-early Paleocene de
position. Paleomagnetic data for the upper Xining-Minhe 
basin incompletely sample polarity chrons of Paleocene
Oligocene strata but the magnetostratigraphic correlation, 

which is partially restricted by palynomorph assemblages, 
yields an average rate of 10 m/Myr (13 m/Myr decom
pacted) for late Paleocene-Eocene time. 

5. Discussion 

[ 29] On the basis of magnetic polarity stratigraphy and 
supporting palynological age data, a plot of age versus 
stratigraphic thickness (Figure 6) reveals a three-stage 
history of Mesozoic to mid-Cenozoic sediment accumula
tion in the Xining-Minhe basin: (1) initial rapid accumula
tion (Early Cretaceous), (2) substantially reduced 
accumulation (Late Cretaceous-Paleocene), and (3) renewed 
rapid accumulation (Paleogene). The Dangchang basin 
recorded a single phase of rapid accumulation (Early 
Cretaceous). Calculation of maximum and minimum 
decompacted thicknesses for the Xining-Minhe basin (based 
on a variable 500- to 1000-m-thick Oligocene-Miocene 
overburden and uniform 200-m-thick Pliocene-Quaternary 
loess) generates an envelope of possible accumulation 
histories (Figure 6). Total subsidence and tectonic subsi
dence histories [e.g., Hendrix et al., 1992; Sobel, 1999; Liu 

et al., 2001; Yin et al., 2002] are not calculated due to a lack 
of independent evidence for surface elevation through time. 
This reasoning follows Metivier et al. [1998] in that 
accumulation need not be attributed to subsidence, particu
larly in topographically closed basins. Stages 1-3 of the 
sediment accumulation history are discussed below. 

5.1. Basin Development: Stages 1 and 2 

[3o] Initial rapid accumulation (Stage 1) followed by 
decreased accumulation (Stage 2) is attributed to fault
controlled subsidence due to extension and subsequent 
postrift thermal subsidence. A variety of simple thermal 
models [McKenzie, 1978; Salveson, 1978] predict an expo
nential decay in subsidence rates for several tens of millions 
of years following a short-lived episode of extension, 
broadly matching the Cretaceous-Paleocene accumulation 
pattern for the Xining-Minhe basin (Figure 6). 

[31] Paleocurrent data, grain-size trends, and potential 
basin margin faults are consistent with initial fault-con
trolled subsidence during Early Cretaceous time. Paleocur
rent measurements (Figure 7) of trough cross strata, 
imbricated clasts, and primary current lineations for the 
Xining-Minhe basin suggest principal sediment sources to 
the south and east, consistent with a general coarsening of 
facies toward the south and east. Two faults displaying 
normal separation have been mapped in this region 
(Figure 7) along the southern and eastern margins of the 
basin: a north dipping fault and west dipping fault, respec
tively [QBGMR, 1985; Gansu Bureau of Geology and 

Mineral Resources (GBGMR), 1988]. These faults may 
form a linked set of faults in a sinistral transtensional 
setting, similar to the hypothesis of Vincent and Allen 

[ 1999] for Jurassic-Cretaceous basin development in the 
Hexi Corridor (Figure 2). Paleocurrents for the Dangchang 
basin (Figure 7) indicate northeast directed transport, con
sistent with a profound decrease in grain size from the 
southwestern limb to northeastern limb of the Dangchang 
syncline (Figure 5). This dispersal pattern is tentatively 
attributed to motion along a zone of mapped structures on 
the southwestern margin of the basin (Figure 7). Further 
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Figure 6. Age versus thickness diagram for stratigraphic sections in the Xining-Minhe basin (open 
circles) and Dangchang basin (solid circles). Shaded envelope represents decompacted accumulation 
curve for Xining-Minhe basin (see text). Stratigraphic thickness is plotted with values increasing 
downward in order to emphasize ( 1) the time-depth history of the basal stratigraphic level relative to the 
basin surface (zero thickness level) and (2) the similarity to an exponentially decaying accumulation 
history (dashed line). 

work is needed to assess the original magnitude and sense 
of slip on this fault system. 

[32] Basin development linked to extensional faulting and 
postrift thermal subsidence can be reconciled with recent 
thermochronological results for the northern Tibetan Plateau 
[George et al., 2001; Jolivet et al., 2001; Sobel et al., 200 I ; 
De/ville et al., 2001; Cowgill et al., 2003]. Although the 
different data sets suggest slightly different time frames, 
they consistently indicate rapid Jurassic cooling (either a 
single cooling episode or series of episodes) and negligible 
cooling to even minor reheating during Cretaceous time. 
Minor reheating [e.g., Jolivet et al., 2001] may be the result 
of burial beneath 1-2 km of Cretaceous synrift and postrift 
strata. 

[ 33] Structural and stratigraphic evidence also exists for 
Late Jurassic-Cretaceous extension and related strike-slip 
deformation in east Asia (Figure 1 ), notably in the Hexi 
Corridor [Xu et al., 1989; Hua and Tan, 1995; Vincent and 

Allen, 1999], along the Altyn Tagh fault [Arnaud et al., 

2003; Chen et al., 2003], on the margins of the Ordos block 
[Ritts et al., 2001], across Mongolia [Traynor and Sladen, 

1995; Johnson et al., 2001; Webb et al., 1999; Graham et 

al., 2001; Howard et al., 2003; Meng et al., 2003], and in 
northern and eastern China [Ratschbacher et al., 2000; 
Davis et al., 2001, 2002; Grimmer et al., 2002; Ren et al., 

2002; Zhang et al., 2003]. However, coeval Jurassic short
e~ing is defined by thrust structures and associated 
deposits in the Yinshan belt [Davis et al., 1998], Ordos 
block [Ritts et al., 2001; Darby and Ritts, 2002], eastern 
Qinling Shan [Mattauer et al., 1985; Meng and Zhang, 

2000; Ratschbacher et al., 2003], and Mongolia [Zorin, 

1999]. The driving mechanisms of coeval, or nearly coeval, 
extension and shortening in neighboring regions, remain 
poorly understood [Davis et al., 2001; Graham et al., 2001]. 

5.2. Basin Development: Stage 3 

[34] Increased early to mid-Cenozoic sediment accumula
tion (Stage 3) is revealed by magnetic polarity stratigraphy 
and palynology for the Xining-Minhe basin, and other 
regional considerations. An initial increase during Paleogene 
time was followed by accumulation of a 500- to 1000-m
thick Oligocene-Miocene succession [QBGMR, 1985; 
GBGMR, 1988]. Although not directly dated, the magnitude 
of Oligocene-Miocene deposition requires a further increase 
in accumulation rates over the Paleogene rates (Figure 6). 
An extensive Pliocene-Quaternary loess constitutes an addi
tional "'200 m of accumulation [Sun and Liu, 2000]. 

[ 35] In the northeastern Tibetan Plateau, Oligocene-Qua
ternary sedimentation persisted in some areas, such as the 
Xining-Minhe basin (or Xining sub basin), and initiated in 
new areas such as the Linxia and Lanzhou subbasins and 
Gonghe, Guide, and Xunhua basins (Figure 2). Numerous 
studies on Miocene and younger successions, including 
extensive loess deposits, have recorded a rich mammal 
biostratigraphic record with well-defined magnetostrati
graphic correlations [Li, 1995; Li et al., 1997a, 1997b; Li 

and Fang, 1999; Flynn et al., 1999; Qiu et al., 2001: Yu 

et al., 2001; Yue et al., 2001; Fang et al., 2003; Pares 

et al., 2003]. Accumulation rates in these successions are 
markedly higher than early to mid-Tertiary rates. On aver
age, reported Miocene rates are about 20-60 m/Myr [Li et 

al., 1997a; F(vnn et al., 1999; Li and Fang, 1999; Yue et al., 
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Figure 7. Paleocurrent data and possible basin margin faults related to Mesozoic deposition in the 

Xining-Minhe and Dangchang basins (black) and Paleogene deposition in the composite Longzhong 
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Xining-Minhe and Dangchang basins. 

2001; Fang et al., 2003] and Pliocene-Quaternary rates are 

rv200 m/Myr [Sun and Liu, 2000; Pares et al., 2003]. 

Conceivable mechanisms driving this stepwise increase in 

Cenozoic accumulation rates include (1) increased fault

induced subsidence related to components of normal slip 

along extensional or strike-slip faults [e.g., Gaudemer et al., 

1995; Hou et al., 2003], (2) thrust-related flexural subsi

dence and generation of accommodation space [e.g., Horton 

et al., 2002; Yin et al., 2002; Fang et al., 2003], and 

(3) closure of drainage basin outlets and forced sediment 

storage [e.g., Metivier et al., 1998; Tapponnier et al., 2001]. 

Most significantly, the initial increase in accumulation rate 

coincides spatially and temporally with the regional tectonic 

(vertical axis) rotation identified by Dupont-Nivet et al. 

[2004]. We suggest that both clockwise rotation and accel

erated sediment accumulation at about 40-30 Ma can be 

attributed to incipient shortening related to the Indo-Asian 
collision. 

[36] Paleocurrent data (Figure 7) are consistent with 

multiple localized sediment source areas during Cenozoic 

time. Paleogene strata from the southern Longzhong basin 

indicate sediment transport from south to north. To the south, 

relatively small basins in the western Qinling Shan (Figure 7) 

contain evidence for both south and north directed transport, 

suggesting diverse local sediment sources. In addition, 
lateral facies changes and local correlations help define the 

initial expression ofranges that partitioned the larger Xining

Minhe basin into smaller entities such as the Xining, 

Lanzhou, Linxia, and Longzhong-Jingning subbasins of 

the Longzhong basin (Figure 2). Specifically, uplift of 

two west-northwest striking ranges can be evaluated: the 
Laji Shan (south of Xining) and the Maxian Shan (south of 

Lanzhou). The Cretaceous Hekou and Minhe groups can be 

confidently correlated across these ranges. In contrast, 

Eocene-Oligocene strata are well developed north of the 

Laji Shan in the Xining subbasin but absent south of the 

range, where deposition commenced during Miocene time 

in the Gonghe, Guide, and Xunhua basins [Pares et al., 

2003]. Similarly, initial expression of the Maxian Shan 

during roughly mid-Tertiary time is evidenced by contrast

ing Oligocene-Miocene lithofacies systems to the north and 

south of this ran§e· Progressive compartmentalization of 
these <30,000 km basins by compressional and transpres

sional range uplift may provide a conceptual analogue for 

Cenozoic partitioning of the > 100,000 km2 basins of the 

Qaidam and Qilian Shan regions [Bally et al., 1986; Meyer 
et al., 1998]. 

[37] Published thermochronological data support this his

tory of localized Tertiary rock uplift. Evidence for Eocene

Miocene cooling is present in piecemeal fashion from the 

western Tarim basin, Altyn Tagh region, and Qilian Shan 

[Sobel and Dumitru, 1997; Mock et al., 1999; George et al., 

2001; Jolivet et al., 2001; Sobel et al., 2001; Cowgill et al., 

2003]. Tertiary cooling ages occur in smaller proportions 

and in more restricted regions than the regionally extensive 
Jurassic cooling ages, consistent with local range uplift 

during Tertiary time. On the basis of the accumulation rates, 

thermochronological data, and possible age of seismically 

imaged growth strata in the Qaidam basin [Bally et al., 

1986], these localized uplifts may have initiated as early as 
rv40 Ma and are reasonably attributed to shortening induced 

by the Indo-Asiari collision. We propose that range uplift in 

Paleogene compressional and transpressional settings gen

erated sufficient topographic loads to generate new flexural 

basins and drive renewed subsidence in preexisting basins, 
although sediment ponding due to closure of drainage 
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outlets may have accentuated this process [Metivier et al., 

1998; Tapponnier et al., 2001]. 

6. Conclusions 

[38] Distinguishing Mesozoic from Cenozoic strata 
remains a fundamental problem in the Tibetan plateau. 
Paleomagnetic studies combined with fossil age control 
help restrict possible stratigraphic ages. New magnetostrati
graphic and palynological biostratigraphic data are reported 
for Upper Jurassic-Lower Cretaceous to mid-Tertiary suc
cessions in the Xining-Minhe and Dangchang basins of the 
northeastern Tibetan plateau. Although complete identifica
tion of magnetic polarity zones is not realized, the magneto
stratigraphic correlations presented are partially restricted 
by palynological age constraints. Accumulation rates vary 
from relatively high values during Early Cretaceous time 
to low values during Late Cretaceous-Paleogene time, 
consistent with regional thermochronological and structural 
evidence for Late Jurassic-Early Cretaceous extension and 
Late Cretaceous-Paleogene postrift thermal subsidence. 
Renewed increases in accumulation rates in the Xining
Minhe basin during early to mid-Tertiary time require 
an additional, younger mechanism of basin subsidence. 
Published thermochronological evidence for exhumation 
of localized ranges and regional paleomagnetic evidence 
for a vertical axis clockwise rotation at 40-30 Ma [Dupont

Nivet et al., 2004] suggest that flexural subsidence related to 
individual range uplifts drove increased early to mid-Ter
tiary accumulation in the northeastern Tibetan Plateau 
during the initial Indo-Asian collision. 
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