
Preprint of the paper submitted to the International Conference on Robotics and Biomimetics, December 17-20, 2006, Kunming, China,
page 613-618

Modular software architecture for teams of cooperating,
heterogeneous robots

Martin Friedmann, Jutta Kiener, Sebastian Petters, Dirk Thomas, Oskar von Stryk
Department of Computer Science
Technische Universität Darmstadt

Darmstadt, Germany
{friedmann, kiener, petters, dthomas, stryk}@sim.tu-darmstadt.de

Abstract— For teams of cooperating autonomous lightweight
robots with challenging dynamical locomotion properties a plat-
form independent modular software architecture and platform
independent modules for sensor data processing, planning and
motion control have been developed. The software architecture
allows high level communication between modules on different
abstraction levels of the control architecture within one robot
system as well as communication between different and het-
erogeneous robots and computers using wireless network. Very
different behavior control paradigms may be realized on the
basis of the developed architecture. The application to teams of
cooperating small and medium size humanoid robots is inves-
tigated in this paper. Scenarios for inter robot communication
and cooperative task accomplishment are described.

Index Terms— cooperative multi-robot systems, mobile
robotics, humanoid robots, robot control software

I. INTRODUCTION

Cooperating systems of multiple autonomous robots are
currently investigated in several scenarios, e.g. cooperative
transport of a load by flying or driving robots, cooperative
monitoring and surveillance in disaster areas or in the highly
dynamic environment of autonomous legged robot soccer
teams. To allow effective, flexible and robust development
of heterogeneous robot teams the software must meet the
requirements of modularity to integrate different platforms
and competing modules for sensor processing, localization,
motion control, and behavior control as well as flexibility
to adopt to changing hardware like processors, cameras or
locomotion system. For cooperative scenarios the exchange
of sensor data, world model information and behavior deci-
sions is imperative for an effective robot team performance.
Currently, even communication between heterogeneous robots
of different manufacturers or developers is a problem not
even mentioning cooperative task achievement. Additionally,
autonomous lightweight systems with challenging dynamical
locomotion properties like small or medium size humanoid
robots or unmanned aerial vehicles must meet strong re-
strictions on the available CPU power when compared with
standard PCs. This must be incorporated in the low- and high-
level software design.

One challenge in the development of mobile autonomous
robots reacting to fast changing environments is the execution
of rapid, goal oriented and situation aware motions consider-
ing motion stability and real time constraints. For the solution
of the herein presented tasks wheeled and humanoid robots

are investigated. A special scenario for humanoid robots in
such an environment is given in robot soccer in the RoboCup
[2], an annually held world wide competition for different
robot types. To meet these challenges a suitable software
architecture is required.

Frameworks and architectures for mobile wheeled cooper-
ative robot systems are developed since the last 20 years [3].
Among them, Miro [17] is based on CORBA and optimized
for high efficient multi processor systems. In difference to
these systems legged robots suffer from a low additional pay-
load restricting power supply and therefore onboard compu-
tation capabilities. Thus most humanoid robots are equipped
with energy saving and therefore less powerful single or multi
processor systems. On these systems the use of CORBA leads
to a loss of efficiency as most of the advantages of this
middleware cannot be used.

Saphira [9], [14], the software architecture on the com-
monly used wheeled Pioneer robots, allows the direct devel-
opment of high level applications. However, as Saphira is not
transparent and not available in source code, integration of
further sensor or actuator hardware, which is not supported by
the manufacturer, is complicated. Additionally, an important
feature for sensor data processing, the generation of times-
tamps for sensor data, is not possible to add.

The architecture ALLIANCE [15] is tailored for wheeled
and six legged robot systems. It focuses on fault tolerant co-
operation and multi robot learning and uses a fully distributed
control architecture.

CLARAty [12] is a framework for generic and reusable
robot components, which can be adapted to different plat-
forms, but there is no direct support for cooperating multiple
robot systems.

Furthermore, all of these architectures aim towards wheeled
platforms and do not consider the special demands of
lightweight four and two legged robots with potential in-
stabilities in locomotion and their requirements in software
architecture.

Approaches for functional architectures of autonomous
humanoid robots were only recently presented, but they
do not meet the needs required by the complex task of
team cooperation or efficient portability to a wide range of
hardware (sensors, actuators, onboard computers).

One example is the Japanese HRP2 humanoid robot system
software [13]. This monolithic software does not support the

exchange of single modules, porting to other platforms and
cooperation of several robots.

A modular, distributed control architecture for a humanoid
torso mounted on wheels used in a human robot cooperation
is described in [11], without mentioning the special aspects
concerning goal oriented multi robot cooperation and bipedal
locomotion.

In recent years significant improvements in mobile robotics
with humanoid robots were achieved in different projects for
cooperative work with humans and humanoid control [19].
The success of the cooperation for complex task achievement
is mainly based on the human part. The robot is primarily used
as a teleoperated tool, but not as a stand-alone autonomous
system.

The software architecture [16] developed by the
GermanTeam (HU Berlin, U Bremen, TU Darmstadt,
U Dortmund) in the Four Legged Robot League of the
RoboCup meets the demands of cooperative legged robot
teams.Despite its modularity this architecture lacks the ability
of flexibly changing modules as the modules’ interfaces are
fixed. This inhibits changing the application’s structure, e. g.
for testing or exchanging new modules with modified input
and output. Furthermore the graphical user interface (GUI)
for debugging the application is highly dependent on MS
Windows specific graphics libraries and thus only usable on
this system.

To enable heterogeneous autonomous robot cooperation in
addition to suitable hardware the underlying software must
meet the described requirements for mobile robot systems
combined with the special needs for lightweight robots. In this
paper, the newly developed platform independent framework
RoboFrame is presented. Together with the corresponding
modules for sensor processing it provides efficient mecha-
nisms for data exchange on single or multi processor systems
used on wheeled and humanoid robots, an easily usable
interface for the exchange of high level software modules
typically occurring in an autonomous robot architecture and
a flexible and easy adaptable hardware and operation system
abstraction layer. Due to its modular design the adaption to
different sensors and actuators is simplified and accomplished
in short time. Debugging, testing and data validation is
supported by an extendable and platform independent GUI.

II. SUPPORTED ROBOT PLATFORMS

The software architecture has so far been successfully
installed on several heterogeneous real and simulated robot
systems, both legged and wheeled.

A. Humanoid Robots
The investigated prototypes of humanoid robots are based

on a similar kinematic design with six non redundant degrees
of freedom (DOF) in each leg, three or four DOF in each
arm, two DOF in the neck and a slightly different number of
DOF in the waist (0, 1, or 2). The robots are equipped with
servo motors with different holding torque (20 - 37 kg-cm).
Two of the supported humanoid robots are described in more
detail: Mr. DD and Bruno (Fig. 1 and Table I).

All robots have been equipped with monocular (Bruno) or
stereo camera systems (Mr. DD) built from inexpensive off-
the-shelf camera systems mounted on the 2 DOF robot neck.

z

y

Fig. 1. Two of the supported humanoid robot systems: Mr. DD (left), Bruno
(middle) and kinematic structure of Bruno (right).

TABLE I
TECHNICAL DATA OF THE SELECTED HUMANOID ROBOTS.

Model Mass Height DOF onboard PC Processor
Mr. DD 4.8 kg 65 cm 24 embedded System 133 MHz
Bruno 3.5 kg 55 cm 21 PPC Acer n50 523 MHz

In addition to the articulated narrow angle lens camera
for higher resolution vision, Bruno is equipped with a 100
degree wide angle lens camera in the chest for peripheral but
still directed view. This combination provides the robot with
a binocular, variable resolution view of its environment. It
may be seen as an embodiment of the inner, focused and the
outer, peripheral vision of the human eye using two different
cameras. They are connected to the controller board via USB.

Stable walking requires a lightweight upper body with little
mass for the onboard PC, batteries and sensors [4], [18]. Due
to the low additional payload for bipedal robots, a major
problem is to design powerful enough onboard computing
components which weigh as less as possible and require
as less additional energy supplies as possible. The selected
onboard PCs for the humanoid robots are an embedded Linux
system and a Pocket PC with Windows CE, because they
offer a computing environment close to a regular PC and
thus are well suited for algorithms in high level languages.
Additionally, the Pocket PC comes with an integrated battery
and a compact full featured computer with display and touch
screen for possible onboard debugging. Bruno is equipped
with an additional 32bit micro controller board with 50 MHz
for servo controle and motion generation.

Further information concerning these robots may be
found in [7] or on the Darmstadt Dribbler’s homepage
www.dribblers.de.

B. Wheeled Robot Systems

The customized wheeled robot Pioneer 2dx (Fig. 2, left) is
equipped with 2 actuated wheels and a gripper for actuation
and sonar, camera, bumper, an 3-axes gyroscope, and a 2-axes
accelerometer for sensing. In difference to the other presented
robot systems, the Pioneer 2dx comes with a high additional
payload of 20 kg, as the system moves on wheels with only
little problems concerning stable locomotion.

The robot’s actuators and sensors are controlled by a micro
controller board with a C166 processor, all higher level
computations are performed by a VSBC-6 mainboard (256
MB RAM) with a AMD K6-3 processor (400 MHz) running
Windows 2000 [1].

Fig. 2. Supported wheeled robot: Pioneer 2dx .

C. Simulation

To enable software-in-the-loop testing of robot-controle
software, a simulation environment has been developed at the
authors’ group. This program is capable of simulating motion
and camera data of biped and wheeled robots. The simulation
may be used transparently with the controle software. The
main advantage of the usage of a simulated robot is the
permanent availability of the device, independent of time,
space and expensive hardware. Especially the performance
of an individual robot’s autonomous behavior as well as team
behavior can be tested extensively before being implemented
to the real robot system to avoid hardware faults caused
by malfunctions in the software but also to validate the
correctness and efficiency of different modules of the software
architecture like vision, perception, localization and behavior.
Fig. 3 shows a picture of the simulation with two humanoid
robots on a RoboCup KidSize soccer field.

Fig. 3. Simulated robot in the RoboCup environment. In the left figure
the simulated robot is approaching the ball, in the right figure the image
generated by the simulated head camera of Bruno is shown.

III. SOFTWARE ARCHITECTURE

The object oriented software is developed in C++ and
consists of the framework RoboFrame [6] and of modules
executed in this framework for different tasks like image pro-
cessing, object detection, localization, motion and behavior
control. For execution of these modules the framework pro-
vides transparent communication mechanisms for interaction
and data exchange between modules running in one thread of
execution, different threads or processes on the same CPU or
even running on different CPUs.

Caused by the short development cycles for new versions
of improved robot hardware components a modular design
and easy exchangeable modules are crucial for rapid software
development and maintenance.

To allow a flexible use of the framework in heterogeneous
teams of legged and wheeled robots much effort has been
spent to develop a hardware and operation system independent
core with an easily adjustable system dependent abstraction
layer handling synchronization, multi-threading and network

access (see Fig. 4). Currently the operating systems Linux
(on standard x86 PC and MIPS architecture), BSD Unix,
Windows 2000, Windows XP and Windows CE are supported.
It was crucial for the framework to have a small memory
footprint to allow the usage on systems equipped with few
memory. Simple applications can be realized with less than
200kb.

Fig. 4. Platform abstraction is based on encapsulation of operating system
calls, thread management and synchronization and network connections. It
enables to provide RoboFrame and applications with specific functionality.

To enable time optimized data exchange two different com-
munication mechanisms are implemented: For use with large
data structures on one machine, a blackboard architecture
using shared memory and mutual exclusion mechanisms is
provided.

For smaller data structures, the preferred way of data
exchange is using a message based system. The messages can
be arbitrary objects, which become serialized, and are trans-
parently transmitted by the framework between the modules.
If the modules exchanging messages reside within the same
thread, the framework allocates the data exchange buffers
in a way which avoids the cost for copying messages thus
improving performance. This mechanism enables to exchange
even very large messages without any overhead, as long as
the modules run in the same thread (see Fig. 5). Messages
and shared-memory data are identified by unique keys and
are timestamped.

 0

 2

 4

 6

 8

 10

 0 64 128 192 256

La
te

nc
y

[m
s]

Size [kB]

modules in same thread
modules in different threads

Fig. 5. Latency between sending and receiving a message from one module
to another measured on a PocketPC with Intel XScale CPU at 400 MHz.
If both sender and receiver reside in the same thread, the buffer allocated
by the framework is shared resulting in no delay by copying the message.
Otherwise the latency increases with the size of the message.

For communication between different machines the net-
work protocols TCP for reliable, connection oriented and
UDP for unreliable, connectionless, datagram oriented com-
munications can be used. For reasons of performance in most
application UDP is used to reduce the latency if reliability is
not a primary concern.

To create a concrete application within the framework,
the required modules are added to threads provided by the
framework. The threads can be configured to be executed at
a given frequency and / or if they receive new input data for
further processing.

Further on the framework provides tools for the rapid
development of GUIs. A GUI can be connected to multiple
applications build with the framework using a reliable TCP
connection. It controls the application and provides a wide
range of debugging, monitoring and testing tools.

Any message sent within the application can be requested
by the GUI for further investigation. Using the framework
dialogs can be developed which display messages in their
respective context depending on the module sending the mes-
sage. Modules also can generate special debugging messages,
which will only be sent to the GUI, or receive GUI generated
messages.

The GUI also features a special message recording tool
to write any selection of messages emitted by a running
application to a log file. The log files can be investigated
offline for debugging or be replayed to the application.
This feature allows an easy comparison of different modules
accomplishing the same task by providing them with the same
input data and comparing their respective output data.

To ensure the functionality and correctness of RoboFrame,
a set of test cases has been implemented. This has been done
using the common tool for regression tests CppUnit. For each
of the main components, multiple tests provide a nearly full
coverage. It is planned to execute the tests after each change
in the revision control system to find problems at an early
stage. Additionally, the tests can easily be extended to test
the modules which normally reside outside the framework.

IV. IMPLEMENTATION FOR APPLICATION SCENARIOS

Due to the flexibility of the data exchange provided by the
framework, the control architecture is not limited to a reactive
or a hierarchical-deliberative paradigm. Arbitrary structures
can be realized, depending on the individual connections
between interchangeable modules for sensor data acquisition,
image processing, behavior and motion generation.

A. RoboCup scenario

For use in the RoboCup scenario the application layout
shown in Fig. 6 has been developed. Single modules may
be replaced within the existing application without affecting
other modules, as long as the key and type of their message
queues are not changed. Different algorithms accomplishing
the same task can be compared easily by implementing
them as modules emitting and receiving the same messages
and testing them in the same application. Additionally, the
recombination of individual modules to new applications is
possible.

Fig. 6. Overview of modules (rectangles) and exchanged messages (ellipses)
of a control architecture for the application robot soccer. White blocks are
sensors or actuators, gray blocks are modules executed on the Pocket PC.
Modules within the same dashed gray box are running within the same thread.

Overview of modules. The ImageProvider is a hardware
dependent module providing image data of the camera in
use. Based on the images, the ImageProcessing module
detects objects of interest (in the current scenario e.g. ball,
goals, beacons, . . .). Information on any of the objects found
is provided in robot centric coordinates to the following mod-
ules. To perform the coordinate transformation, the current
joint values are used to gather information about the camera’s
current position and orientation.
SelfLocalization estimates the robot’s current posi-

tion based on objects detected by the camera and information
on the motion currently performed by the robot. Currently
Markov localization with particle filtering [5] is used for this
task. BallModeling tracks the position of the ball using a
Kalman filter. The WorldModeling module fuses any data
generated by the previous modules as well as information
generated by the robot’s team mates to estimate the current
state of the game.

This information is used in the Behavior module to
generate a decision on the robot’s next action. Currently the
behavior is modeled discretely by a hierarchical state machine
described in the behavior specification language XABSL [10].
This description is interpreted during runtime to allow quick
exchange and debugging of the behavior. The behavior is
able to communicate with other robots of the same team to
generate coordinated cooperative actions.

Actions requested by the behavior module are executed
by the MotionControl module. This module strongly
depends on the specific (legged) robot’s kinematics, dynamics
and hardware used for locomotion and has to be adopted to
it. The statically stable walking motions are generated in real
time using parameterized curves for foot and hip trajectories
which are transformed into joint angles using inverse kine-

matics. The walking motions have been optimized regarding
to stability and walking speed by varying the controlling
parameters, e.g. step length and pitch angle in the upper body
etc., in a hardware-in-the-loop optimization approach [8].
The resulting forward walking speed of 40cm/s in permanent
operation of Bruno was the fastest of all humanoid robots at
RoboCup 2006. Besides controlling the robot’s motion this
module also provides information on the robot’s current state
of motion (e.g. speed, direction, position of joints).

All modules except the motion generation are executed on
the onboard Pocket PC. The motion generation is performed
on a micro controller board which is able to satisfy the hard
real time constraints.

B. Cooperation and Adaptability

Inter Robot Communication, Dynamic Role and Task
Assignment. Exchange of information within a team of robots
is provided by a communication module, which can send any
data package from one team member to all others by a fast,
but possibly unreliable UDP broadcast. Each communication
partner is configured with an unique identifier to allow a
mapping of an incoming message to a robot. By this means
sensor data information are shared between the robots. This
enables fusion of information gathered by several robots, thus
providing more reliable information on the environment as
well as the possibility to detect failures of single sensors.

Furthermore, the behavior modules communicate their cur-
rent decisions and roles to the other robots of the team and
allow a matching dynamic role assignment of the team mates.
Based on these information the robots may change their roles
dynamically according to the current situation in the scenario.
This permits coordinated actions of the robots.

Tasks are assigned in a team of robots via a task allocation
module by a Contract-Net based method. The tasks can be
executed in a cooperation independently parallel, sequential
or synchronously parallel.

Reusability. For use in different scenarios the existing mod-
ules may be easily reused, rearranged and if needed combined
with new, application specific modules. Hardware dependent
modules for the motion of different wheeled and biped
platforms have been developed and used in several scenarios
described in the results section.

V. RESULTS, SUMMARY AND OUTLOOK

A modular and flexible software framework has been
developed for teams of cooperating, autonomous robots char-
acterized through heterogeneous hardware, lightweight robot
design and possibly challenging dynamical locomotion prop-
erties.

The presented hardware and software was tested success-
fully at several competitions in robot soccer (RoboCup 2005,
2006; GermanOpen 2005). The robots showed penalty kicks,
goalie behavior and cooperative 2 vs. 2 soccer games.

Architecture and portability. The rapid porting of the
software components to other robot platforms has been
demonstrated for several different robot types. Similar con-
structed humanoid robots could be controlled within some
hours, the communication with a four legged robot was

provided within two workdays, and the wheeled robot Pioneer
2dx using a different operating system was integrated at
the time of a few workdays. All these new features where
designed to be enhancements instead of modifications to be
able to use them simultaneously in the same code base.
Team communication between differently driven robot
systems. In early experiments a four legged robot and a
humanoid robot exchange position information of a seen
ball. The ball is visible only for one of the robots, the
other estimates the position based on the communicated ball
messages. If the transmission is successful, the client robot
walks towards the ball resp. executes a predefined motion
related to the position of the ball (see Fig. 7).

Fig. 7. Cooperative ball search: The humanoid robot communicates the seen
ball position to the four legged robot. During communication, the four legged
robots waits in the middle (Images 2, 4), when the ball is communicated,
the four legged robots walks to the communicated position and moves its leg
(Images 1, 3, 5; images numbered from upper left to bottom right).

Inter robot message exchange is used to improve failure
safety of the world modeling. Missing data on one system
can be compensated by the corresponding communicated
messages from another robot system. As the messages are
labeled with their respective sender, the receiving modules can
decide, whether the contained information was acquired by
the robot itself or by another system. In case of transmission
failure the modules are designed not to be dependent on the
external messages.

During RoboCup 2005 two humanoid robots took part in
heterogeneous robot soccer as goalie and field player. The task
to dribble a ball into the opposing goal was solved by a robot
based on the world model information. As part of this process
one robot’s information is enhanced by the communicated ball
position of the team mate’s world model. This data exchange
offers a more flexible and robust behavior as more information
are available for data processing.
Cooperative behavior between heterogeneous humanoid
robots.

In a scenario with humanoid robots kicking a ball the
robots exchange data on two different levels: Data generated
by the world modeling module, including the position of the
ball and of team mates, is shared by all robots. By fusing
this data a more reliable and failsafe system is created, as
errors in the perception of one robot may be compensated
by others. Decisions made in the behavior level are based
on this merged world model. For a dynamic role assignment
the roles of the other robots, generated in the behavior level,

are communicated to the team mates and taken into account
by them. This strategy avoids situations, where several robots
approach the ball at the same time. Instead of hampering
each other only the robot closest to the ball approaches it,
while the other robot clears the area. Both communication
patterns were applied successfully during the RoboCup 2006
to achieve an improved world model and to realize a dynamic
role assignment for a striker and supporter behavior, see Fig.
8.

Based on this cooperative behavior the robots won all
games except one and came in third in soccer in a group
of 16 participating teams.

Fig. 8. Cooperative team play in humanoid robot soccer: Both robots detect
the ball (Image 1), the robot closer to the ball approaches, the other robot
is communicated to sidestep (Image 2). When the first robot claims the role
”striker”, the other robot obtains the role ”supporter” and walks in its own
half (Image 3), until the kick is executed (Images 4, 5).

Currently first tests of synchronously executed tasks in a
cooperation of a humanoid robots, equipped with a camera,
and a wheeled robot system are being undertaken. The task
is to kick a ball into a goal after following it for a long
distance. In this scenario only the humanoid robot is able to
kick the ball. As the humanoid robot is slower in locomotion
than the wheeled robot and the wheeled robot has a high
additional payload, the wheeled robot serves as a platform
for transportation for the humanoid robot. The perception task
is executed by the humanoid robot, which communicates the
object position to the wheeled robot. This robot executes the
locomotion task based on the communicated object position.
The cooperation must be done synchronously, otherwise the
wheeled robot will fail in locomotion. The task is imple-
mented with the presented humanoid robot Bruno and the
wheeled robot Pioneer 2dx in simulation, see Fig. V.
Future work. The presented development provides a basis for
more complex scenarios with heterogeneous robot systems.

Fig. 9. Simulated Following Scenario: The humanoid robot is transported
by the wheeled robot (left) and perceives the ball (right).

The cooperative behavior used in the RoboCup can be
enhanced to communicate the prospective kick of the ball
towards team mates so that the other robot can prepare for
receiving the ball.

Currently under investigation is the extension and ap-
plication of the software architecture to outdoor robots as
lightweight marine, off-road ground and aerial vehicles. In
the long run envisioned applications for teams of such het-
erogeneous robots include cooperative monitoring, search and
rescue in a catastrophe.

REFERENCES

[1] Pioneer 2, Mobile Robots, Operational Manual for Pioneer 2dx,
www.mobilerobots.com.

[2] “The RoboCup federation,” www.robocup.org.
[3] R. A. Brooks, “A robust layered control system for a mobile robot,”

IEEE Journal of Robotics and Automation, vol. 2, no. 1, pp. 14 – 23,
March 1986.

[4] M. Buss, M. Hardt, J. Kiener, M. Sobotka, M. Stelzer, O. von Stryk,
and D. Wollherr, “Towards an autonomous, humanoid, and dynamically
walking robot: modeling, optimal trajectory planning, hardware archi-
tecture, and experiments,” in Third IEEE International Conference on
Humanoid Robots, vol. 3, 2002, pp. 2491 – 2496.

[5] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte Carlo localiza-
tion: Efficient position estimation for mobile robots,” in Proc. of the
Nat. Conf. on Artificial Intelligence, Orlando, USA, 1999, pp. 343–349.

[6] M. Friedmann, J. Kiener, S. Petters, D. Thomas, and O. von Stryk,
“Reusable architecture and tools for teams of lightweight heteroge-
neous robots,” in Proc. 1st IFAC-Symposium on Multivehicle Systems,
Salvador, Brazil, 2 - 3 Oct 2006, p. to appear.

[7] M. Friedmann, J. Kiener, R. Kratz, S. Petters, H. Sakamoto, M. Stelzer,
D. Thomas, and O. von Stryk, “Darmstadt Dribblers & Hajime Team
(KidSize) and Darmstadt Dribblers (TeenSize): Team description
paper,” 2006. [Online]. Available: www.dribblers.de

[8] T. Hemker, H. Sakamoto, M. Stelzer, and O. von Stryk, “Hardware-
in-the-loop optimization of the walking speed of a humanoid robot,”
in CLAWAR: Int. Conf. on Climbing and Walking Robots, Brussels,
Belgium, 12 - 14 Sep 2006, pp. 614 – 623.

[9] K. Konolige, “Saphira robot control architecture,” SRI International,
Tech. Rep., 2002.

[10] M. Lötzsch, M. Risler, and M. Jüngel, “Xabsl - a pragmatic approach to
behavior engineering,” in IEEE International Conference on Intelligent
Robots and Systems (IROS), submitted, 2006.

[11] D. Ly, K. Regenstein, T. Asfour, and R. Dillmann, “A modular and
distributed embedded control architecture for humanoid robots,” in
IEEE International Conference on Intelligent Robots and Systems
(IROS), vol. 3, 2004, pp. 2775 – 2780.

[12] I. Nesnas, A. Wright, M. Bajracharya, R. Simmons, T. Estlin, and W. S.
Kim, “CLARAty: An architecture for reusable robotic software.” in
SPIE Aerosense Conference, Orlando, Florida, April 2003.

[13] K. Okada, T. Ogura, A. Haneda, D. Kousaka, H. Nakai, M. Inaba, and
H. Inoue, “Integrated system software for HRP2 humanoid,” in IEEE
International Conference on Robotics and Automation (ICRA), vol. 4,
New Orleans, LA, USA, 26 Apr - 1 May 2004, pp. 3207 – 3212.

[14] A. Orebäck and H. I. Christensen, “Evaluation of architectures for
mobile robotics.” Autonomous Robots, vol. 14, no. 1, pp. 33–49, 2003.

[15] L. E. Parker, “Alliance: An architecture for fault-tolerant multi-robot
cooperation,” IEEE Transactions on Robotics and Automation, vol. 14,
no. 2, pp. 220–240, 1998.

[16] T. Röfer et al., “German Team RoboCup 2005 - Team Report,” TU
Darmstadt, Uni Bremen, HU Berlin, Uni Dortmund, Tech. Rep., 2005.
[Online]. Available: www.germanteam.org

[17] H. Utz, S. Sablatnög, S. Enderle, and G. K. Kraetzschmar, “Miro –
middleware for mobile robot applications,” IEEE Trans. on Robotics
and Automation, vol. 18, no. 4, pp. 493–497, August 2002.

[18] D. Wollherr, M. Hardt, M. Buss, and O. von Stryk, “Actuator selection
and hardware realization of a small and fast-moving autonomous
humanoid robot,” in IEEE International Conference on Intelligent
Robots and Systems (IROS), vol. 3, 2002, pp. 2491 – 2496.

[19] K. Yokoyama, H. Handa, T. Isozumi, Y. Fukase, K. Kaneko, F. Kane-
hiro, Y. Kawai, F. Tomita, and H. Hirukawa, “Cooperative works by
a human and a humanoid robot.” in IEEE Int. Conf. on Robotics and
Automation (ICRA), vol. 3, 14 - 19 Sep 2003, pp. 2985–2991.

