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Abstract: Fungal plant pathogens cause huge losses in agricultural production by decreasing crop
yield and quality. To reduce crop loss from fungal damage, various synthetic fungicides are applied
indiscriminately in agricultural practice. The majority of synthetic fungicides are non-biodegradable,
and several critical human health risks are associated with them. Green synthesis nanotechnology
offers an effectual, cost-effective, ecofriendly, and innocuous method for the synthesis of green
nanofungicides, an excellent replacement for synthetic chemical fungicides. Origanum majorana
is an aromatic herb with immense pharmacological and medicinal properties. In this context, the
present study used the leaves of O. majorana to synthesize silver nanoparticles. The biosynthesized
particles showed an absorption peak at 441 nm with ultraviolet-visible spectrophotometry (UV-Vis).
The spectra obtained from Fourier transform infrared spectroscopy (FT-IR) of O. majorana extract and
AgNPs showed a myriad of functional groups corresponding to vital biomolecules that act as capping
and reducing agents. The synthesized silver nanoparticles were spheroidal, and their size measured
between 8 nm and 42 nm, as depicted by transmission electron microscopy (TEM). The energy-dispersive
X-ray spectrum (EDX) showed a silver peak at 3 keV. The phytofabricated silver NPs demonstrated
robust inhibitory activity on the mycelial growth of A. alternata f sp. lycopersici (87%), followed by
Pestalotiopsis mangiferae (85%), Macrophomina phaseolina (78%), and Colletotrichum musae (75%). The
minimum inhibitory concentration value for A. alternata. f sp. lycopersici and Pestalotiopsis mangiferae was
2 µg/mL, while the minimum fungicidal concentrations were 4 and 8 µg/mL, respectively. Additionally,
the fabricated AgNPs induced severe damaging and destructive effects to the morphology of hyphae
and conidia, as witnessed by scanning electron microscopy studies.

Keywords: green synthesis; silver nanoparticles; phytopathogenic fungi; antifungal activity; nanofungicide

1. Introduction

Fungal plant pathogens are largely responsible for huge crop losses (70–80%) in the
agricultural industry [1,2]. Plants and their produce are highly vulnerable to fungal attack
during growth and the postharvest period [3]. Recent upsurges in fungicide-resistant
strains of phytopathogenic fungi with a wide host range have further worsened the crisis
of plant disease management. Fungal pathogens not only decrease the crop yield but
drastically abate its quality [4]. Worldwide chemical fungicide application is an intensively
practiced plant disease management strategy. Although chemical fungicides are highly
effective, their eco-toxicological and environmental effects cannot be ignored [5]. Hence,
the greatest challenge for agro scientists is to develop an alternative eco-friendly disease
management strategy to control fungal diseases, boost crop yield, and thus benefit the
world economy [6].

Agricultural biotechnology and nanotechnology have emerged as promising tools to
indemnify the damages caused to crops by agricultural pests and diseases. Nanotechnology

Processes 2022, 10, 2558. https://doi.org/10.3390/pr10122558 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr10122558
https://doi.org/10.3390/pr10122558
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-4584-996X
https://orcid.org/0000-0002-3420-1164
https://orcid.org/0000-0001-5337-5381
https://orcid.org/0000-0002-6524-9347
https://doi.org/10.3390/pr10122558
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr10122558?type=check_update&version=1


Processes 2022, 10, 2558 2 of 22

has gained colossal acceptance through its innovative technology in various fields such as
medical sciences, agriculture, pharmaceuticals, and genetics, notably for diagnostic and
therapeutic purposes. Modern agricultural practices include revolutionary technological
applications and approaches that do not have any hostile effects on living organisms and the
surrounding environment, ensuring a safe food supply. Nanoparticles (NPs), nanovectors,
nanodevices, and nanoformulations are eventually being employed in agricultural practices
to diagnose plant diseases, nutritional deficiencies, plant hormone delivery, the slow and
targeted release of agrochemicals, gene transfer, nanobarcoding, nanosized fungicides,
pesticides, and fertilizers [7,8].

Recently, inorganic NPs such as iron, silver, carbon, copper, silica, ZnO, and MgO
have been successfully used to formulate nanofungicides and nanoemulsions. All the
formulated nanohybrids have demonstrated potent inhibitory activity against pathogenic
microorganisms [9]. The distinctive properties of NPs, such as their size (1–100 nm), shape,
large surface area, and optical and physiochemical properties assist in the formulation of
novel fungicides with increased efficacy in controlling fungal plant pathogens [10,11]. In
a study, carbon nanomaterial effectively controlled the growth of two phytopathogens,
Fusarium poae and F. graminearum [12].

Silver NPs (AgNPs) stabilized by PVP (polyvinylpyrrolidone) exhibited strong an-
tifungal effects on the growth of Candida krusei, C. albicans, C. glabrata, C. tropicalis, and
Aspergillus niger [13]. In another study, many metal oxide NPs, such as CuO NPs, Fe2O3
NPs, TiO2 NPs, and carbon nanomaterials, were tested against Botrytis cinerea both in vitro
and in vivo. CuO NPs and carbon nanomaterials suppressed the mycelial growth and
B. cinerea infection in a significant manner [14]. Similarly, silver NPs inhibited the colony
growth of Magnaporthe grisea and Bipolaris sorokiniana [15]. However, some researches
have unveiled the possible negative effects of chemically synthesized nanoparticles, for
instance the use of toxic chemicals, generation of waste, and negative impact on the en-
vironment [16,17]. Therefore, there is a need to develop NPs which are biocompatible,
sustainable, and harmless to the non-target organisms.

Nanoparticles synthesized using plants and microorganisms are considered as safe
nanofactories to manage plant diseases as they are ecofriendly and cost-effective [18,19].
Green synthesis of NPs using plants has several advantages over other methods of syn-
thesis, as they are easier and quicker to synthesize, and the synthesized NPs are stable
and free of noxious materials [20]. Green nanosynthesis is an innocuous and reproducible
scientific approach as the vast array of phytochemicals in plants function as reducers, stabi-
lizers, redox mediators, and capping agents [21]. Previous studies have demonstrated the
antifungal activity of AgNPs synthesized from the fruit peel extracts of pomegranate and
orange [22], leaf extracts of Scoparia dulcis, Pouzolzia zeylanica, and Phyllanthus urinaria [23],
and flower extracts of Bauhinia tomentosa [24]. Silver nanoparticles (AgNPs) have received
the most attention among all metal nanoparticles due to their low cost and antimicrobial
properties [25]. Hence, in this study, a facile green synthesis of silver nanoparticles was
carried out using aqueous leaf extract of Origanum majorana in the presence of sunlight.

Origanum majorana L. is a perennial aromatic herb and member of the Lamiaceae family.
It is native to the Mediterranean region, especially Algeria, Egypt, and Morocco, and is
commonly called “sweet marjoram” [26]. In the Kingdom of Saudi Arabia, the herb is locally
referred to as doosh, bardaqoosh, or wezzab [27]. The decoction of leaves is used to protect
hormone levels in women [28]. O. majorana leaves, flowers, and stems are known for their
medicinal value, pharmacological effects, and as a seasoning ingredient [29]. In addition,
the leaves and flowers are used in folk medicine to treat stomach aches, nervous disorders,
congestion, asthma, cough, and indigestion [30–32]. The plant contains polyphenols,
phenolic glycosides, proteins, amino acids, vitamin C, triterpenoids, and tannins [29,33,34].
Previous studies have demonstrated potent anticancer, anti-inflammatory, nephrotoxicity
protective, antipyretic, and analgesic effects of O. majorana [35,36]. O. majorana leaves were
chosen for this study because of their medicinal and pharmacological properties.
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2. Materials and Methods
2.1. Instruments, Chemical and Culture Media

An ultraviolet-visible spectrophotometer (Shimadzu, Kyoto, Japan; model No. 1800)
was used to capture SPR peaks of nanoparticles. A transmission electron microscope
(TEM-JEOL JEM-Plus-1400, Tokyo, Japan) was used to measure the size and shape of syn-
thesized nanoparticles. A Fourier transform infrared spectroscope (FTIR-Thermo Scientific,
Waltham, MA, USA, Model-Nicolet-6700) was used to identify the functional groups of
the synthesized AgNPs and extract. A scanning electron microscope (SEM; JEOL-Model
JSM-6060LV, Japan) was used to examine fungal isolates treated with AgNPs. The chem-
icals (silver nitrate-AgNO3, ethanol, and fungicide) and fungal culture media (potato
dextrose agar-PDA) were bought from Sigma-Aldrich (Saint Louis, MI, USA). For various
experiments, ultra-pure water and distilled water were used.

2.2. Aqueous Leaf Extract Preparation

Fresh O. majorana was purchased from a local market in Medina Al Munawarah, Saudi
Arabia. The leaves were carefully detached from the stem and washed thoroughly. To
100 mL of distilled water, roughly chopped O. majorana leaves were added, and the mixture
boiled for about 20 min. After the mixture cooled, it was filtered using Whatman’s filter
paper, No. 1, and the filtrate was centrifuged at 5000× g rpm. The filtered aqueous extract
was used for the experimental work conducted in the present study.

2.3. Plant Pathogenic Fungi

The fungal phytopathogens, Colletotrichum musae, Alternaria alternata, Macrophomina
phaseolina, Pestalotiopsis mangiferae, Fusarium oxysporum, and Botrytis cinerea, were provided
by the Department of Plant Protection, College of Food and Agricultural Sciences, King
Saud University, Riyadh, Saudi Arabia.

2.4. Nanosynthesis from Leaves of O. majorana

A 1 mM aqueous silver nitrate solution (AgNO3) was prepared by adding a fixed
amount of silver nitrate powder to 100 mL of distilled water. To 45 mL of aqueous silver
nitrate solution (AgNO3), 5 mL of aqueous O. majorana leaf extract was added, and this
mixture was exposed to direct sunlight. The time required to change its original color was
monitored and recorded.

2.5. Characterization of the Synthesized AgNPs by UV-Vis, TEM, EDX and DLS

Upon exposure to direct sunlight, the mixture of silver nitrate (AgNO3) and O. majo-
rana extract changed its original color to brown, signaling the formation of ORM-AgNPs.
A Uv-Vis spectroscopic analysis was conducted to authenticate the nanosynthesis, and
the absorption peak was obtained on an ultraviolet-visible spectrophotometer (Shimadzu,
Japan—model No. 1800). The characterization of O. majorana-AgNPs included determining
the size and shape of biosynthesized silver NPs using a transmission electron microscope
(TEM-JEOL JEM-Plus-1400, Tokyo, Japan). Particle size distribution was obtained by mea-
suring 200 particles using image version 1.8.0, and a histogram was plotted with origenPro
2023. The dynamic light scattering analyzer (DLS) measured the size distribution in suspen-
sion and the polydispersity index (PDI on a Zeta sizer (ZS), model-Nano Series-ZEN-3600,
Malvern, UK). The field emission scanning electron microscope coupled with an energy
dispersive X-ray detector (FESEM-EDAX-JSM-7610F-Japan) captured the elemental com-
position of the biosynthesized AgNPs at 30 kV. An infrared (IR) spectrum of O. majorana
extract and biosynthesized silver NPs was obtained with a Fourier transform infrared spec-
troscope (FTIR-Thermo Scientific, USA, Model-Nicolet-6700). The samples were scanned in
the range of 4000–400 cm−1 with a KBr pellet.
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2.6. Effect of Biosythesized AgNPs on the Colony Growth of Phytopathogenic Fungi

Pure fungal cultures of Colletotrichum musae, Alternaria alternata, Macrophomina phase-
olina, Pestalotiopsis mangiferae, Fusarium oxysporum, and Botrytis cinerea were sub-cultured
on potato dextrose agar (PDA) for 7 days prior to the antifungal assay. The inhibitory effect
(in vitro) of synthesized AgNPs on the growth of different fungal isolates was assessed with
the method of Kim et al., 2012 [37]. Precisely, 500 µL of synthesized AgNps, was added to
molten PDA agar in separate test tubes and mixed well. The amended PDA media was
transferred to sterile Petri dishes and left at 25 ◦C to solidify. A 6 mm disc was removed
from the periphery of each sub-cultured fungal colony and placed (upside down) in the
center of the amended PDA plate. Positive and negative controls were PDA amended with
the fungicide carbendazim (1%) and plates containing only the PDA media and fungal
mycelial disc. All the treated PDA plates, including the control plates, were incubated
(28 ◦C for 7 days). The treatments were run in triplicate, and all the fungal test isolates
were tested following the aforesaid method. On the seventh day, the growth of the colony
was observed for all the treatments and compared with the control. The colony diameter of
treated fungal isolates and control (not treated) was measured (mm), and the percent (%)
growth inhibition of each isolate was assessed.

2.7. Minimum Inhibitory Concentration (MFC) and Minimum Fungicidal Concentration (MFC)

The minimum inhibitory concentration (MIC) of the synthesized O. majorana-AgNPs
against fungal test isolates was determined by the broth dilution method with slight
modifications [38]. A series of two-fold serial dilutions of the synthesized AgNPs and
fungicide were made separately, and the concentrations ranged from 0.5 to 128 µg/mL. For
the MIC assay, potato dextrose broth was used. Equal volumes of broth, spore suspension
of test fungal isolates (2 × 106 CFU/mL), and AgNPs were mixed well and placed in
an incubator at 28 ◦C for 72 h. All the concentrations were tested in triplicate. Spore
suspension and PDA broth without AgNPs served as negative controls, while broth, spore
suspension of test fungal isolates (2 × 106 CFU/mL), and the fungicide were regarded
as positive controls. The treated suspensions were placed in an incubator at 28 ◦C for
7 days and observed every 24 h until 72 h, after which the readings were recorded. The
lowest concentration that did not show any visible growth in the tubes was regarded as the
MIC. The MFC was determined by removing 100 µL of the mixture from tubes exhibiting
the MIC concentration and transferring it to potato dextrose agar plates. The plates were
incubated for 72 h at 28 ◦C. The concentrations that did not grow on PDA agar medium
were designated as their MFC [39].

2.8. Morphology of Treated and Untreated Fungal Isolates as Observed under a Scanning Electron
Microscope (SEM)

The morphological alterations in the treated fungi at their MIC concentrations were
microphotographed with a scanning electron microscope. For comparative purposes,
negative control samples were also subjected to SEM. A fixed amount of fungal suspensions
at their MIC concentrations was centrifuged at 8000 rpm for 5 min, then transferred into
a sterile tube containing glutaraldehyde (2.5%). Further, after 2 days, this suspension
was centrifuged, rinsed three times with tris-acetate buffer (0.1 mol/L, pH 7.2), and then
subjected to dehydration with ethanol in a series of concentrations (60–100%). After
dehydration, the samples were freeze-dried (critical point dryer) and then mounted on
stubs coated with gold. Finally, microphotographs were captured on an SEM model
(JSM-6060LV-JEOL) from Japan Ltd.

2.9. Statistical Analysis

The data presented in tables and figures in this study represented values from experi-
ments run in triplicate (±SD). Graph Pad Prism (8.4.3.686), along with XLSTAT (2020), was
used to evaluate the significant differences (p ≤ 0.05), and Tukey’s HSD tests and analysis
of variance ANOVA (p ≤ 0.05) were performed.
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3. Results and Discussion
3.1. Characterization of Synthesized of ORM-AgNPs

Synthesis of nanoparticles under direct sunlight is a quick, facile, and efficient method
of nanosynthesis. In this study, sunlight-irradiated green synthesis was successfully
achieved using aqueous leaf extracts of Origanum majorana. Leaf extract of O. majorana
was added to aqueous silver nitrate, and the glass beaker containing the concoction was
exposed to direct sunlight to initiate the process of nanosynthesis. Within a few seconds of
exposure to direct sunlight, the concoction slowly changed color. After 5 min, the original
color (dark buff) of the concoction changed to a deep brown (Figure 1). The color change
signified the completion of the nucleation and subsequent reduction (silver ions to silver
NPs). The formation of O. majorana-AgNPs was inferred by the brown color of the reaction
mixture. The UV-Vis spectroscopic analysis of the brown reaction mixture displayed a
distinctive peak at 441 nm on the absorption spectrum. This peak corroborates the presence
of AgNPs and is related to surface plasmon resonance (Figure 2). Comparable to the
findings of this study, another study on O. majorana-AgNps demonstrated an absorption
peak at 440 nm [40]. The excitation of electrons resulting from plasmon resonance with
characteristic optoelectronic properties, particularly in metal Nps, results in UV-Vis absorp-
tion peaks in the range between 410–550 nm [41–43]. Previous reports have also shown
rapid synthesis of AgNPs under direct sunlight from extracts of Citrus limon and Andrach-
nea chordifolia [44,45]. The phytochemicals present in the O. majorana extract could have
assisted in the reduction of Ag+ to Ag0. Light-induced reduction has gained popularity in
nanosynthesis as the reduction of metal ions can be carried out in a controlled manner with
small amounts of reducing agents; it does not require any special light-absorbing agents;
and the photo-induced methods are cost effective, eco-friendly, and competitive [46]. Most
importantly, the process is very rapid compared to dark conditions [45]. Most importantly,
the process is very rapid compared to the dark conditions [45]. The sunlight acts like a
catalyst and induces the process of kinetic reaction of silver salts with the functional groups
of secondary metabolites present in plant extract, enabling nanosynthesis in a few minutes
in comparison to dark conditions, which take a longer duration [47,48]. The formation of
AgNPs within 5 min in the current study amply demonstrated that the sunlight acted as
a photocatalyst during the reduction processes; therefore, the green silver nanosynthesis
facilitated by sunlight is a sustainable, quick, non-hazardous, and economical process.
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3.2. Fourier Transform Infrared Spectroscopy (FTIR) Analysis of Aqueous Extract of O. majorana
and Synthesized AgNPs

O. majorana aqueous extract and synthesized AgNPs were studied by Fourier transform
infrared spectrometry. FTIR gives an insight into the different functional groups present in
the extracts and AgNPs. The bioactive functional groups present in plant extracts aid in
capping and bio reduction during green nanosynthesis. Hence, analysis of both the extract
and synthesized nanoparticles helps us understand the role of the functional groups during
nanosynthesis. Figure 3 depicts the FTIR spectra of the extract and biogenic AgNPs. The
FTIR spectrum of the aqueous extract showed peaks at 3752 cm−1 and 3375 cm−1, while
the spectrum of biosynthesized AgNps showed stretching vibrational peaks at 3753 cm−1,
3549 cm−1, 3473 cm−1, and 3416 cm−1. All of the aforementioned peaks arose from O–
H stretches of alcohols and phenols as well as N–H stretches of amines. Several other
peaks that were observed in the FTIR spectrum of O. majorana leaf extract and AgNPs
are as follows: Peaks at 2926 cm−1 and 2369 cm−1 corresponded to C–H symmetric and
asymmetric stretching vibrations of alkanes, and peaks between 1511 cm−1 and 1620 cm−1

corresponded to C=C stretching of -unsaturated ketone and aromatic rings, poly phenol
carbonyl groups (C=O), and N-H bending vibrations of carbonyl amide (I) and N–O
stretching. A medium peak at 1406 cm−1 observed in the IR spectrum of O. majorana leaf
extract denoted the O–H bending of alcohols. The O–H stretching vibrations of alcohols
or phenols were witnessed at 1304 cm−1 in the spectrum of silver NPs. Bands detected at
1262 cm−1, 1217 cm−1, and 1215 cm−1 on both the spectra (aqueous extract and silver NPs)
arose from the vibrations caused by esters (C–O) and amines (C–N) and aromatic amines.
In addition, the peaks at 1072 cm−1, 1074 cm−1, 891 cm−1, and 831 cm−1 corresponded to
the C–O stretching of alcohols and the bending of alkenes (C=C).
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spectra were captured at 4000–400/cm−1 (Thermo Fischer Nicolet Spectrometer). FTIR spectrum
depicts several peaks that correspond to some important functional groups of secondary metabolites
present in the samples (Ex—extract; NP—synthesized AgNPs).

A comparative analysis of the IR spectra of extracts with those of synthesized AgNPs
showed variations in peak positions. The IR spectrum of O. majorana-AgNPs showed some
new peaks at 3754 cm−1, 3473 cm−1, 3416 cm−1, 2369 cm−1, and 1384 cm−1. Furthermore,
the bands of O. majorana extract at 2926 cm−1, 1405 cm−1, and 777 cm−1 were shifted
to 2369 cm−1, 1384 cm−1, and 619 cm−1, respectively, in the spectrum of biosynthesized
AgNPs. The shifts of vibrational bands to lower frequencies in the synthesized silver NPs
spectrum insinuate the role of phenols, flavonoids, carbonyl groups, and amine groups
present in O. majorana extracts in nanosynthesis, i.e., reduction (metal salt to ions) and
in the capping process [40,49–51]. A thin layer observed around the synthesized AgNps
further corroborates the role of biomolecules in stable capping. In accordance with the
present findings, the FTIR spectrum of aqueous leaf extract, biosynthesized AgNPs, cerium
oxide NPs, and zinc oxide NPs showed peaks that corresponded to alcohols, phenols,
flavonoids, amino acids, proteins, carbonyl groups, ketones, and aldehydes [52–54]. The
biomolecules present in plant extracts, such as hydroxyl groups of phenols, carbonyl groups
of proteins, and amines, prevent aggregation and are vital in stabilizing the NPs during the
bio reduction and capping processes [55]. According to the findings of the FTIR spectrum
in this study, hydroxyl groups (OH), carboxyl groups (C-OH), aromatic compounds (C=C),
and amines (N-H) could have contributed to the capping and reduction process.

3.3. Transmission Electron Microscopy and Dynamic Light Scattering Studies

Figure 4 displays the variable dimension of the photosynthesized silver NPs, which
ranged between 2 nm and 42 nm, with an average size of 16.84 nm. The synthesized silver
nanoparticles were roughly spheroidal and quasi spherical. The TEM microphotographs
of biosynthesized AgNPs showed that the NPs were well dispersed. The hydrodynamic
diameter and polydispersity index (PDI) of the NPs were analyzed by the zeta sizer, and
the DLS spectrum is depicted in Figure 5. The Z-average size of the O. majorana-AgNPs
was 74.77 nm, while the PDI was 0.309. The trivial discrepancy in the size of NPs observed
in DLS and TEM points to the fact that DLS measures the NPs in a hydrated state, and the
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measurements are inclusive of the size of biomolecules and the ions adhering to the surface,
creating an adsorbed layer that surrounds AgNPs. Conversely, the TEM measurements are
obtained in a dry state [56,57]. Additionally, the weak dispersion and the agglomeration of
nanoparticles in an aqueous state considerably increase the average size of the particles,
thereby contradicting the measurements of TEM [58]. Validating the present findings,
a recent study reported spherical and small-sized (25–50 nm) AgNPs synthesized from
aqueous extracts of O. majorana [40]. Yet another study showed feather-like O. majorana-
AgNPs, and their size ranged between 40 and 70 nm [59]. The small, polydispersed
nanoparticles reported in this study indicate their potency in inhibiting the growth of fungi.
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Figure 5. The Z-average diameter of the biosynthesized AgNPs and the polydispersity index (PDI)
as depicted in the dynamic light scattering (DLS) spectrum.

3.4. Elemental Composition of Biosynthesized AgNPs (FESEM-EDX)

The elemental composition of the synthesized AgNps was confirmed with a field emis-
sion scanning electron microscope coupled with an energy dispersive X-ray spectroscope.
The EDX spectrum of O. majorana–NPs is shown in Figure 6. The spectrum clearly portrays
a signal at 3 keV, substantiating the existence of silver, which is attributable to SPR. Several
signals arising from different elements such as iron, chlorine, zinc, potassium, aluminum,
and sodium were also witnessed on the spectrum. All the aforementioned elements except
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silver could be constituents of the leaf extract of Origanum majorana that serve as cap-
ping ligands during the synthesis of nanoparticles. In comparison to this study, previous
studies depicted the presence of K, Cl, and Al in the EDX spectrum of biosynthesized
AgNps [60,61]. Furthermore, elements such as potassium, aluminum, chlorine, and zinc
have been reported in the EDX spectra of plants such as Trigonella foenum-graecum [61] and
Sisymbrium irio [62]. Most importantly, all these elements are considered to be fundamental
capping agents [62,63]. Based on the EDX spectrum, the silver peak and signals from other
elements indicate successful nucleation by biomolecules present in O. majorana.
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3.5. Mycelial Growth Inhibition of Phytopathogenic Fungi

Phytopathogenic fungi cause enormous crop loss due to plant diseases. Figures 7 and 8
illustrates the robust mycelial growth inhibition of phytopathogenic fungal test isolates by
the synthesized silver NPs. (Figure 7A–F). The figure clearly displays that the synthesized
NPs significantly arrested the mycelial growth, and in some cases the inhibitory activity
was equivalent to the antifungal activity of the fungicide (1% carbendazim). However,
O. majorana aqueous extracts and silver nitrate solution did not cause substantial growth
inhibitory activity on all the test isolates. The O. majorana -AgNPs exhibited highest
mycelium growth inhibition of A. alternata. f sp. lycopersici (87%), followed by Pestalotiopsis
mangiferae (85%), Macrophomina phaseolina (78%) and Colletotrichum musae (75%). However,
B. cinerea showed poor inhibition of mycelial growth (8%), while Fusarium oxysporum
did not show inhibitory activity, indicating the ineffectiveness of synthesized AgNPs in
controlling the mycelial growth (Figures 8 and 9). The fungicide (positive control) showed
strong inhibitory activity against all the tested fungal isolates. It was also observed that the
inhibitory effects of the fungicide on P. mangiferae (86%) and A. alternata f sp. lycopersici (85%)
were in close proximity to the inhibition caused by biosynthesized AgNPs. Hence, based
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on the antifungal growth profiles, AgNPs were quite sturdy in controlling and inhibiting
the growth of test fungi. Similar to the present study, purified compounds from leaf
extracts of O. majorana conjugated with gold nanoparticles (AuNps) inhibited Aspergillus
niger (73%) and Candida albicans (65%) more competently than the component alone [64].
Rhizoctonia oryzae-sativae, Aspergillus parasiticus, Altemaria brassicicola, Fusarium solani, A.
niger, Candida albicans, and Rhizopus oryzae showed strong inhibition with methanol extracts
of O. majorana [31]. Previous reports have shown robust antibiofilm and antifungal activity
of essential oils of O. majorana against Candida albicans, C. tropicalis, C. krusei, C. dubliniensis,
Botrytis cinerea, Monilinia fructicola, Penicillium expansum, and species of Aspergillus [29,65,66].
Similarly, AgNPs derived from leaves of other small herbs have demonstrated significant
antifungal activity in prior studies [62,67].
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Figure 7. Effect of the biosynthesized silver nanoparticles on the colony growth of fungal test iso-
lates (A–F). (A) Colletotrichum musae; (B) Pestalotiopsis mangiferae; (C) Alternaria alternata; (D) 
Fusarium oxysporum; (E) Macrophomina phaseolina; (F) Botrytis cinerea. 1—control (not treated); 2—
treated with O.majorana-AgNPs. 
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trate, and carbendazim-1%. The graph shows diameter of fungal colony (mm). The values exhibited 
in the figure are means of three replicates (±SD). 

Figure 7. Effect of the biosynthesized silver nanoparticles on the colony growth of fungal test isolates
(A–F). (A) Colletotrichum musae; (B) Pestalotiopsis mangiferae; (C) Alternaria alternata; (D) Fusarium
oxysporum; (E) Macrophomina phaseolina; (F) Botrytis cinerea. 1—control (not treated); 2—treated with
O. majorana-AgNPs.
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Figure 9. Effect of synthesized silver nanoparticles, extract, silver nitrate, and carbendazim-1% on
the percent growth inhibition of fungal test isolates. The values are means of three experimental
replicates (±SD).

3.6. Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentrations (MFC)

Table 1 shows the minimum inhibitory and minimum fungicidal concentrations of
O. majorana-AgNPs against several isolates fungal plant pathogens. The MIC of the syn-
thesized AgNPs was determined using a broth dilution assay (Clinical and Laboratory
Standards Institute) (CLSI) M38-A2 guidelines [38]. The MIC concentrations for all the test
isolates ranged between 2 and 32 µg/mL. Alternaria alternata and Pestalotiopsis mangiferae
were inhibited at 2 µg/mL. The MIC for B. cinerea was the highest at 32 µg/mL, while
Fusarium oxysporum was not inhibited at the highest concentration of 128 µg/mL. Cor-
respondingly, the MFC for all the fungal isolates ranged from 4 to 64 µg/mL. Similarly,
an MIC in the range of 0.25–32 µg/mL was reported by AgNps synthesized from Cicho-
rium intybus against Trichophyton interdigitale, T. rubrum, and Epidermophyton flocossum [68].
Essential oil of O. majorana inhibited the growth of Stagonosporopsis cucurbitacearum and
A. alternata at 1 mg/mL in a significant manner [69]. The MIC of ethanol leaf extracts of
Prosopis julifora against A. alternata, B. cinerea, F. oxysporum, Aspergillus niger, Colletotrichum
gloeosporioides, Cladosporium cladosporioides, and Geotrichum candidum was recorded between
1–>50 mg/mL. While A. alternaria and B. cinerea showed the lowest MIC of 0.125 and
1 mg/mL, respectively [70]. The strong antifungal activity demonstrated in the present
study authenticates that NPs derived from leaves of O. majorana leaves served as potent
antifungals against a myriad of fungal isolates. The multitude of phytochemicals could
have possibly aided in the synthesis of stable NPs. In accordance with our research, we
presume this to be the first report on the antifungal activity of silver nanoparticles on
phytopathogenic fungi.
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Table 1. The MIC and MFC concentrations (µg/mL) of synthesized silver NPs against fungal test isolates.

Fungal Isolates

Minimum Inhibitory
Concentration

(MIC)

Minimum Fungicidal
Concentration

(MFC)

Minimum Fungicidal
Concentration

O. majorana-AgNPs Fungicide (Carbendazim)

Colletotrichum musae 4 ± 0.00 8 ± 0.00 4 ± 0.00
Pestalotiopsis mangiferae 2 ± 1.15 4 ± 0.00 2 ± 1.15

Alternarai alternata. f sp. lycopersici 2 ± 0.00 8 ± 4.61 8 ± 0.00
Fusarium oxysporum NI NT 16 ± 1.15

Macrophomina phaseolina 16 ± 0.00 32 ± 0.00 8 ± 0.00
Botrytis cinerea 32 ± 0.00 64 ± 0.00 32 ± 0.00

3.7. Scanning Electron Microscopy

The effect of synthesized silver nanoparticles on the morphology of the hyphae and
spores at their MIC concentration (the concentration before the MBC) was examined with a
scanning electron microscope. The microphotographs of control fungal samples (not treated)
showed smooth, tubular, and intact hyphae, and the conidia had regular smooth margins
without any deformation. However, the micrographs of the treated fungal samples showed
that the NPs caused severe damage to the morphology of all the fungal species tested but
at different concentrations. Colletotrichum musae and Pestalotiopsis mangiferae showed heavily
peeled and distorted conidia without any contour, while the hyphae were stout, corrugated,
and had several bulges (Figure 10A,B). Similarly, totally distorted mycelium with blebs and
severe exfoliated conidia with protrusions were seen in the microphotograph of A. alternata
(Figure 10C). Figure 10D clearly shows deformed, broken hyphae of M. phaseolina with very
few underdeveloped conidia. The microphotograph of B. cinerea shows completely disfigured,
leaked, and aggregated conidia and mycelium (Figure 10E).
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Figure 10. Scanning electron microphotographs of different fungal isolates treated with biosynthe-
sized AgNPs. Severe morphological alterations in the structure of mycelium and conidia were wit-
nessed. Images: (A) Colletotrichum musae, (B) Pestalotioposis mangiferae, (C) Alternaria alternata, (D) 
Macrophomina phaseolina, (E) Botrytis cinerea. C—control (not treated), T—treated with O.majorana-
AgNPs. 

Similar to the present study, morphological alternations in hyphae and conidia were 
witnessed in fungal isolates treated with plant extracts and nanoparticles [22,71,72]. Silver 
nanoparticles (AgNPs) prepared using orange and pomegranate showed strong fungi-
cidal effects on Alternaria solani at 100 μg/mL. The treated A. solani showed distorted, plas-
molyzed, collapsed, and dead fungal hyphae [22]. In another study, biogenic silver nano-
particles caused destructive effects on the mycelium and conidia of Aspergillus flavus [73]. 

Figure 10. Scanning electron microphotographs of different fungal isolates treated with biosynthesized
AgNPs. Severe morphological alterations in the structure of mycelium and conidia were witnessed.
Images: (A) Colletotrichum musae, (B) Pestalotioposis mangiferae, (C) Alternaria alternata, (D) Macrophomina
phaseolina, (E) Botrytis cinerea. C—control (not treated), T—treated with O. majorana-AgNPs.

Similar to the present study, morphological alternations in hyphae and conidia were
witnessed in fungal isolates treated with plant extracts and nanoparticles [22,71,72]. Silver
nanoparticles (AgNPs) prepared using orange and pomegranate showed strong fungi-
cidal effects on Alternaria solani at 100 µg/mL. The treated A. solani showed distorted,
plasmolyzed, collapsed, and dead fungal hyphae [22]. In another study, biogenic sil-
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ver nanoparticles caused destructive effects on the mycelium and conidia of Aspergillus
flavus [73]. Copper nanoparticles showed prominent changes in the fungal morphology of
Neofusicoccum sp., Fusarium solani and F. oxysporum, the treated hyphae showed shrunken
hyphae with bulges, cellular leakage, and deformed mycelium and conidia [71]. Previous
studies have also shown degeneration of fungal filaments of A. fumigatus Candidia albicans,
Trichophyton rubrum, and T. mentagrophytes when treated with components of Scutellaria
baicalensis Georgi root [74].

The prominent fungal morphological destruction caused by O. majorana-AgNPs in
the current study could be attributed to the nano size of the synthesized AgNPs and the
adherence property of the silver ions released from AgNPs. Several modes of action have
been proposed to explain the antifungal mechanisms of AgNPs. The stability and osmotic
balance of a fungal cell primarily depend on the cell wall and cell membrane. It was stated
that when the AgNPs come into contact with the fungal cell surface, silver ions are released,
which then connect to cell surfaces through adhesions. These adhesions disturb the cell
wall components, primarily the chitin, resulting in osmotic imbalance and disfigured and
malformed fungal cells [75]. Secondly, the NPs themselves can destroy the cell membrane,
enter the cell, and interact with different cellular components of the cell, including DNA,
RNA, proteins, and lipids, causing cell leakage and death [76,77]. Fusarium graminearum
treated with AgNPs incited the expression of reactive oxygen species generation and azole-
related ATP-binding cassette (ABC) transporters, resulting in compromised development
of cell structures and metabolic pathways [78]. The morphological changes induced in
microorganisms after AgNP interaction are often characterized by plasmolysis (cytoplasm
shrinkage), membrane detachment and cell wall rupture [79]. The efficacy of O. majorana-
AgNPs in targeting the phytopathogenic fungi collectively could be because of their shape,
nanosize, and the phytochemicals present in O. majorana extracts, which served as excellent
coating agents.

4. Conclusions

Nanotechnology innovations have opened the door for the utilization and application
of nanoparticles in the agricultural sector. The development of nanofungicides and their
use in the control of phytopathogenic fungi is a targeted, low-toxicity approach. The robust
antifungal activity displayed by synthesized AgNPs against several plant pathogens in
this study suggests their potential to be developed as nanofungicides to control plant
damage caused by fungi. Furthermore, the process of synthesis was very quick, and the
abundant biomolecules present in O. majorana could have assisted in reducing and capping
during nanosynthesis. Based on the antifungal findings and scanning electron microscopy
studies, synthesized AgNps have the potential to be formulated as safe, cost-effective herbal
nanofungicides against resistant strains of phytopathogenic fungi in the management of
plant diseases. However, more research into their mode of action and safety evaluation is
required in the future.
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