

This is the accepted version of this article. Published as:

Frost, Ray L. and Keeffe, Eloise C. and Cejka, Jiri and Sejkora, Jiri (2009) *Raman spectroscopic study of the uranyl mineral metauranospinite* Ca[(UO2)(AsO4)]2.8H2O. Journal of Raman Spectroscopy, 40(12). pp. 1786-1790.

© Copyright 2009 John Wiley & Sons, Ltd.

The definitive version is available at www3.interscience.wiley.com

1	Raman spectroscopic study of the uranyl mineral metauranospinite
2	Ca[(UO ₂)(AsO ₄)] ₂ [·] 8H ₂ O
3	
4	Jiří Čejka, ^{1,2} Jiří Sejkora, ¹ Ray L. Frost, ² • Eloise C. Keeffe ²
5	
6	¹ National Museum, Václavské náměstí 68, CZ-115 79 Praha 1, Czech Republic.
7	
8	² Inorganic Materials Research Program, School of Physical and Chemical Sciences,
9	Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001,
10	Australia.
11	
12	Abstract
13	
14	Raman spectra of metauranospinite Ca[(UO ₂)(AsO ₄)] ₂ [·] 8H ₂ O complemented with
15	infrared spectra were studied. Observed bands were assigned to the stretching and bending
16	vibrations of $(UO_2)^{2+}$ and $(AsO_4)^{3-}$ units and of water molecules. U-O bond lengths in uranyl
17	and O-HO hydrogen bond lengths were calculated from the Raman and infrared spectra.
18	
19	Keywords: metauranospinite, mineral, uranyl, arsenate, molecular water, Raman, infrared,
20	spectroscopy
21	
22	Introduction
23	
24	According to Finch and Murakami ¹ , uranyl phosphates and uranyl arsenates
25	constitute by far the most structurally diverse group of uranyl minerals. Uranyl arsenates
26	precipitate where dissolved $(AsO_4)^{3-}$ ions are available, which is most commonly where
27	arsenide minerals and As-bearing sulfide minerals are being oxidized. This is, why uranyl
28	arsenates commonly occur in the same localities as uranyl sulfates ¹ .
29	
30	Orthoarsenates of hexavalent uranium may be divided into three general classes based
31	on the polymerization of polyhedra of higher bond-valence: chain, sheet, and framework
32	structure ^{2,3} . The layered structures of the uranyl orthophosphates and orthoarsenates are

[•] Author to whom correspondence should be addressed (r.frost@qut.edu.au)

- 33 dominated by the autunite-type sheet with general stoichiometry $M^{n+}[(UO_2)(XO_2)]_n mH_2O_1$
- 34 where M = monovalent, divalent or trivalent cations, and X = P or As. The corrugated
- 35 autunite-type sheet consists of uranyl square dipyramids that share their equatorial vertices
- 36 with phosphate or arsenate tetrahedra to form a checkerboard-like pattern. The interlayer
- 37 contains water molecules and either monovalent-, divalent-, or trivalent cations. The sheets
- 38 are linked by hydrogen bonds, and to a lesser extent also through bonds from the interlayer
- 39 cations to oxygens of the sheet 3 . Locock [3] assumes that uranospinite is isostructural with
- 40 autunite, $Ca[(UO_2)(PO_4)]_2$ 11H₂O, synthetic $Sr[(UO_2)(PO_4)]_2$ 11H₂O and
- 41 $Sr[(UO_2)(AsO_4)]_2$ 11H₂O, and has therefore the formula $Ca[(UO_2)(AsO_4)]_2$ 11H₂O.
- 42 According to Anthony et al. ⁴ and Mandarino and Back ⁵, uranospinite may contain $10 \text{ H}_2\text{O}$
- 43 pfu. However, these authors do not give any chemical analysis of metauranospinite. On 44 studying synthetic phases in the system $Ca[(UO_2)(AsO_4)]_2 - H_2O$, Mrose ⁶ described an
- 44 studying synthetic phases in the system $Ca[(UO_2)(AsO_4)]_2 H_2O$, Mrose ⁶ described an 45 octahydrate, Leonova ⁷ dodeca-, deca-, octa- and hexahydrates. Walenta ⁸⁻¹⁰ assumes that
- 46 natural and synthetic uranospinite and metauranospinite contain 10 and 6 water molecules
- 47 pfu, respectively. Hoffmann and Weigel $^{11-13}$ studied dehydration of synthetic uranospinite
- 48 under constant water partial pressure and observed hydrates with 10, 8, 6, 3-4 H₂O pfu and
- 49 the anhydrous compound, however, water content determinations suggested also hydrates
- 50 with 8, 9 and 12 H₂O. Ambartsumyan ¹⁴ studied thermal decomposition of a minerals phase
- 51 indicated as uranospinite containing 8 H₂O pfu. Chernorukov et al. ¹⁵ presented synthesis, X-
- 52 ray powder patterns, thermal analysis and infrared spectra of $Ca[(UO_2)(AsO_4)]_2 xH_2O$, where
- 53 x = 12, 6, 3. Mandarino and Back⁵ assume that metauranospinite contains 8 H₂O pfu. Similar
- 54 data are given by Anthony et al. 4^{4} . Locock $2,3^{2}$ writes in both review papers that
- 55 metauranospinite may contain $6.5 H_2O$, however, this is not given with any certainty.
- 56 Uranospinite easily dehydrates to metauranospinite and metauranospinite may rehydrate to57 uranospinite.
- 58

59 Metauranospinite, $Ca[(UO_2)(AsO_4)]_2 \ ^8H_2O$, is probably tetragonal, with unit cell 60 parameters a = 7.14, c = 17.00, Z=2, space group is not known [4]. However, because of 61 some discrepancies in optical properties in the autunite-metautunite mineral group – none of 62 the fully hydrated minerals have tetragonal symmetry, although pseudosymmetry is common 63 ³, metauranospinite is biaxial negative, its symmetry may be therefore lower and only 64 pseudotetragonal. No X-ray single crystal structure data for metauranospinite are as yet 65 available. Neither uranospinite nor metauranospinite have been therefore included in the

66	structural hierarchy of crystal structures of uranyl compounds and minerals established by
67	Burns ¹⁶
68	
69	Some information concerning the infrared spectrum of metauranospinite may be
70	inferred from the paper by Chernorukov et al. ¹⁵ , who published several synthetic phases in
71	the system $Ca[(UO_2)(AsO_4)]_2 - H_2O$, however, without any detailed interpretation of their
72	infrared spectra.
73	
74	This paper is a part of the series of the vibrational spectroscopy studies of secondary
75	minerals formed in the oxidation zone and related compounds inclusive uranyl minerals.
76	
77	Experimental
78	
79	Mineral
80	
81	
82	The studied sample of the mineral metauranospinite was found at the mine dump 16
83	(Příbram - Háje), the Příbram uranium-polymetallic ore district, central Bohemia, Czech
84	Republic ¹⁷ , and is deposited in the mineralogical collections of the National Museum Prague.
85	The sample was analyzed for phase purity by X-ray powder diffraction. No minor significant
86	impurities were found. Its refined tetragonal unit-cell parameters, a 7.161(3), c 17.15(2) Å, V
87	880(1) $Å^3$, are comparable with the data published for this mineral phase ⁴ . The mineral was
88	analysed by electron microprobe (Cameca SX100, WD mode) for chemical composition. The
89	results (mean of 7 point analyses) are Na ₂ O 0.03, CaO 4.45, FeO 0.15 MgO 0.78, As ₂ O ₅
90	23.82, P_2O_5 0.02, UO_3 59.00, H_2O 14.80 wt. %, sum 103.04 wt. %. The water content was
91	inferred from the thermal analysis of metauranospinite sample. The resulting empirical
92	formula on the basis of $(As+Si+P+V) = 2$ apfu is
93	$(Ca_{0.76}Mg_{0.19}Fe_{0.02}Na_{0.01})_{\Sigma 0.98}(UO_2)_{1.99}(AsO_4)_{2.00}.7.92H_2O.$
94	
95	
96	
97	
98	Raman spectroscopy

99	
100	The crystals of metauranospinite were placed and oriented on the stage of an Olympus
101	BHSM microscope, equipped with 10x and 50x objectives and part of a Renishaw 1000
102	Raman microscope system, which also includes a monochromator, a filter system and a
103	Charge Coupled Device (CCD). Further details have been published ¹⁸⁻²⁶ .
104	
105	Raman spectra of metauranospinite are given in Figs. 1-4.
106	
107	
108	
109	IR spectroscopy
- • •	FF
110	Infrared spectra were obtained using a Nicolet Nexus 870 FTIR spectrometer
111	with a smart endurance single bounce diamond ATR cell. Spectra over the 4000–525 cm ⁻¹
112	range were obtained by the co-addition of 64 scans with a resolution of 4 cm ⁻¹ and a mirror
113	velocity of 0.6329 cm/s. Spectra were co-added to improve the signal to noise ratio. These
114	spectra are fundamentally reflectance spectra and are transformed to absorbance type spectra.
115	
116	Spectral manipulation such as baseline adjustment, smoothing and normalisation were
117	performed using the Spectracalc software package GRAMS (Galactic Industries Corporation,
118	NH, USA). Band component analysis was undertaken using the Jandel 'Peakfit' software
119	package which enabled the type of fitting function to be selected and allows specific
120	parameters to be fixed or varied accordingly. Band fitting was done using a Lorentz-Gauss
121	cross-product function with the minimum number of component bands used for the fitting
122	process. The Gauss-Lorentz ratio was maintained at values greater than 0.7 and fitting was
123	undertaken until reproducible results were obtained with squared correlations of r^2 greater
124	than 0.995.
125	Infrared spectra of metauranospinite are provided in the supplementary information Figs. S1
126	- S3.
127	

129 **Results and discussion**

130

131 Raman and infrared spectroscopy

132

A free uranyl, $(UO_2)^{2+}$, point symmetry $D_{\infty h}$, should exhibit three fundamental modes: 133 the Raman active symmetric stretching vibration v_1 (~900-750 cm⁻¹), the infrared active 134 bending vibration v_2 (δ) (~300-200 cm⁻¹), and the infrared active antisymmetric stretching 135 vibration v_3 (~1000-850 cm⁻¹). The bending mode is doubly degenerate since it occurs in two 136 137 mutually perpendicular planes. It can split into its two components when the uranyl ion is placed in an external force field. Thus, the linear uranyl group, point symmetry D_{∞h}, has four 138 normal vibrations, but only three fundamentals. The Raman active $v_1 (UO_2)^{2+}$ appears in the 139 infrared spectrum only in the case of substantial symmetry lowering. A lowering of symmetry 140 $(D_{\infty h} \Rightarrow C_{\infty v}, C_{2v} \text{ or } C_s \text{ causes both the activation of all three fundamentals in the infrared and$ 141 Raman spectra and the activation of their overtones and combination vibrations ²⁷. 142 The doubly degenerate v_2 (δ) (UO₂)²⁺ bending vibration is infrared active, and a decrease of 143 symmetry can cause splitting of this vibration into two infrared and Raman active 144 components. Coincidences between uranyl bending vibrations and U-O_{ligand} vibrations were 145 observed in some uranyl synthetic compounds and minerals²⁷. 146

147

Arsenate ion, $(AsO_4)^{3-}$, is a tetrahedral unit with Td symmetry and exhibit four 148 fundamental vibrations: the symmetric stretching vibration $v_1(A_1)$ (818 cm⁻¹), the doubly 149 degenerate bending vibration v_2 (E) (350 cm⁻¹), the triply degenerate antisymmetric 150 stretching vibration v_3 (F₂) (786 cm⁻¹), and the triply degenerate bending vibration v_4 (F₂) 151 $(398 \text{ cm}^{-1})^{28-32}$. The F₂ modes are Raman and infrared active, whereas A1 and E modes are 152 Raman active only. According to Frost et al. ²⁴, the v_1 (AsO₄)³⁻ vibration may coincide with 153 the $v_3 (AsO_4)^{3-}$ vibration. It should be noted that the wavenumber of the $v_1 (AsO_4)^{3-}$ may be 154 greater than that of the $v_3 (AsO_4)^{3-}$ which is an inversion of the normal behavior shown by 155 most tetrahedral ions, although such an inversion is not unique ^{33,34}. 156

157

158 According to Myneni et al. 31 , the Td symmetry of $(AsO_4)^{3-}$ unit is rarely preserved in

- 159 minerals and synthetic compounds, because of its strong affinity to protonate, hydrate, and
- 160 complex with metal ions. Such chemical interactions reduce $(AsO_4)^{3-}$ tetrahedral symmetry to

- 161 either C_{3v}/C_3 (corner sharing), C_{2v}/C_2 (edge-sharing, bidentate binuclear), or C_1/C_s (corner 162 sharing, edge-sharing, bidentate binuclear, multidentate]. This symmetry lowering is 163 connected with activation of all vibrations in infrared and Raman spectra and splitting of 164 doubly and triply degenerate vibrations. Nine normal modes may be Raman and infrared 165 active in the case of the lowest C_s symmetry ³⁵.
- 166

167 U-O vibrations in uranyl coordination polyhedra

168

The Raman spectrum of metauranospinite in the 600 to 1200 cm⁻¹ is displayed in 169 Fig.1. In the region 880-950 cm⁻¹ two Raman bands at 907 and 896 cm⁻¹. These bands are 170 attributed to the $v_3 (UO_2)^{2+}$ antisymmetric stretching vibration. Three infrared bands at 951, 171 934 and 888 cm⁻¹ may be also assigned to this vibration (600-1000 cm⁻¹; Fig. 1S). Raman and 172 infrared bands in natrouranospinite attributed to the $v_3 (UO_2)^{2+}$ were observed at 904 and 893 173 cm⁻¹, and 950, 940 and 901 cm⁻¹, respectively. There are two empirical relations by Bartlett 174 and Cooney ³⁶, $R_{U-O} = 91.41\nu_3^{-2/3} + 0.804$ Å and $R_{U-O} = 106.5\nu_1^{-2/3} + 0.565$ Å, which enable to 175 infer U-O bond lengths in uranyl from observed wavenumbers of the v₃ and v₁ $(UO_2)^{2+}$ 176 vibrations, respectively. Calculated U-O bond lengths are (Å/cm⁻¹) 1.780/907, 1.788/896 177 (Raman) and 1.749/951, 1.761/934, 1.793/888 (infrared). These values are close to those for 178 synthetic and natural uranyl compounds possessing the same uranyl anion sheet topology as 179 expected in the crystal structure of metauranospinite ¹⁶. 180 There may be expected some coincidences of the v_3 and $v_1 (UO_2)^{2+}$ stretching vibrations and 181 the v_3 and $v_1 (AsO_4)^{3-}$ stretching vibrations. In infrared spectra of synthetic phases in the 182 system $Ca[(UO_2)(AsO_4)]_{2,x}$ H₂O (x = 12, 6, 3), Chernorukov et al.¹⁵ assigned bands in the 183 region of 900 cm⁻¹ to the stretching vibrations of the uranyl units, while those close to 820 184 and 450 cm⁻¹ to the stretching and bending vibrations of the arsenate units, respectively 185 without any more detailed interpretation. The Raman spectrum of metauranospinite in the 186 100 to 500 region is shown in Fig. 2. A band at 275 cm⁻¹ is connected with the v_2 (δ) (UO₂)²⁺ 187

- 188 bending vibrations. Bands with lower wavenumbers may be related to the lattice vibrations.
- 189 In the region 800 to 850 cm⁻¹, there are observed two Raman bands (815 and 806 cm⁻¹ / a
- 190 shoulder) and one infrared band at 804 cm⁻¹, which may be assigned to the $v_1 (UO_2)^{2+}$
- 191 symmetric stretching vibrations, however, a coincidence with the $v_3 (AsO_4)^{3-}$ antisymmetric
- 192 stretching vibrations and/or the $v_1 (AsO_4)^{3-}$ symmetric stretching vibrations. This may be
- 193 supported by relatively strong intensity of the infrared band at 804 cm⁻¹ in comparison with

the low intensity of infrared bands at 888, 934 and 951 cm⁻¹. Calculated U-O bond lengths in uranyl are (\AA/cm^{-1}) 1.796/815 and 1.806/806 (Raman) and 1.807/804 (infrared). These values

196 are comparable with those calculated with the wavenumbers of the $v_3 (UO_2)^{2+}$ (see above)

197 and inferred U-O bond lengths for synthetic and natural uranyl compounds having the same

198 or similar uranyl anion sheet topology 16 .

- 199
- 200 $(AsO_4)^{3-}$ tetrahedra vibrations
- 201

Raman bands at 907, 896, 815 and 806 cm^{-1} and infrared bands at 888, 804 and 744 202 cm^{-1} are located in the region of the $(AsO_4)^{3-}$ stretching vibrations and some of them may be 203 therefore in fact connected with the $v_1 (AsO_4)^{3-}$ symmetric stretching vibrations and the split 204 triply degenerate $v_3 (AsO_4)^{3-}$ antisymmetric stretching vibrations. However, as mentioned in 205 the preceding paragraph, e.g. the Raman bands at 907 and 896 cm⁻¹ may be assigned to the v_3 206 $(UO_2)^{2+}$ antisymmetric stretching vibrations and the Raman bands at 815 and 806 cm⁻¹ and 207 the infrared band at 804 cm⁻¹ to the $v_1 (UO_2)^{2+}$ symmetric stretching vibrations. The Raman 208 spectrum of metauranospinite in the 600 to 1200 cm⁻¹ region is displayed in Fig. 1, and the 209 infrared spectrum of metauranospinite in the 600 to 1000 cm⁻¹ in Fig.1S. 210

211

212 Because of the coincidence mentioned above, a more detailed tentative assignment makes problems and may be qualified as very speculative. According to Nakamoto³⁷, 213 wavenumbers of fundamental vibrations of the $(AsO_4)^{3-}$ tetrahedra are v₁ 837 cm⁻¹, v₂ 349 214 cm⁻¹, v_3 878 cm⁻¹, v_4 463 cm⁻¹, but it was sometimes observed that the wavenumber of the v_1 215 $(AsO_4)^{3-}$ may be greater that that of the $v_3 (AsO_4)^{3-}$. The T_d symmetry lowering causes that 216 the triply degenerate antisymmetric vibration $v_3 (AsO_4)^{3-}$ and the triply degenerate bending 217 vibration $v_4 (AsO_4)^{3-}$ may split. In such cases the v_1 and $v_3 (AsO_4)^{3-}$ vibrations may coincide. 218 The Raman spectrum of metauranospinite in the 100 to 500 cm⁻¹ region is displayed in Fig. 2. 219 Raman bands at 458 and 397 cm⁻¹ were attributed to the triply degenerate $v_4 (AsO_4)^{3-}$ bending 220 vibrations, and a Raman band at 322 cm⁻¹ to the doubly degenerate $v_2 (AsO_4)^{3-}$ bending 221 vibration. Some coincidence of these bands with libration modes of water molecules and/or v 222 U-O_{ligand} stretching vibrations cannot be excluded. 223

224

225 OH stretching and bending vibrations of water molecules

227	The Raman spectrum of metauranospinite in the 3000 to 3800 cm ⁻¹ region is
228	displayed in Fig. 3. The infrared spectrum of metauranospinite in the 2600 to 3800 cm ⁻¹
229	region is given in Fig. 2S. Raman bands at 3549, 3428 and 3238 cm ⁻¹ and infrared bands at
230	3600, 3414, 3208 and 2926 cm ⁻¹ are assigned to the v OH stretching vibrations of water
231	molecules and are connected to the O-HO hydrogen bonds formed in the crystal structure
232	of metauranospinite (Å/cm ⁻¹) ~3.0/3549, 2.83/3428 and 2.72/3238 (Raman), >3.2/3600,
233	2.81/3414, 2.71/3208 and 2.64/2926 (infrared) [40]. Observed infrared spectrum is
234	comparable with that of natrouranospinite [35, 39].
235	
236	Raman bands (Fig. 4) at 1366, 1518, 1787, 1891 and 2106 cm ⁻¹ and infrared bands
237	(Fig. 3S) at 1080, 1114, 1137, 1168, 1391, 1430, 1471 and 1571 cm ⁻¹ are probably connected
238	with some overtones and combination bands. Neither detectable impurities or practically nor
239	especially isomorphic $P \Leftrightarrow As$ substitutions may be expected in the metauranospinite sample
240	studied.
241	
242	The Raman band at 1617 cm ⁻¹ and the infrared band at 1637 cm ⁻¹ are attributed to the
243	$v_2(\delta)$ H ₂ O bending vibrations.
244	
245	Conclusions
246	
247	(a) Raman and infrared spectrum of metauranospinite from Příbram - Háje, Czech Republic
248	were measured.
249	
250	(b) The spectra of metauranospinite were tentatively interpreted and observed bands were
251	assigned to the stretching and bending vibrations of $(UO_2)^{2+}$ and $(AsO_4)^{3-}$ ions and water
252	molecules.
253	
254	(c) U-O bond lengths in uranyl, $(UO_2)^{2+}$, were calculated from observed wavenumber of the
255	uranyl stretching vibrations with two empirical relations by Bartlett and Cooney ³⁶ and
256	compared with U-O bond lengths of natural and synthetic compounds possessing the same
257	uranyl anion sheet topology ¹⁶ .
258	
259	(d) O-HO hydrogen bonds were calculated with the empirical data by Libowitzky [40].

 Acknowledgments Acknowledgments This work was financially supported by Ministry of Culture of the Czech Republic (MK00002327201) to Jiří Sejkora. The financial and infra-structure support of the Queensland University of Technology, Inorganic Materials Research Program is gratefull acknowledged. The Australian Research Council (ARC) is thanked for funding the instrumentation. 	260 261	
 263 264 This work was financially supported by Ministry of Culture of the Czech Republic 265 (MK00002327201) to Jiří Sejkora. The financial and infra-structure support of the 266 Queensland University of Technology, Inorganic Materials Research Program is gratefull 267 acknowledged. The Australian Research Council (ARC) is thanked for funding the 268 instrumentation. 269 270 271 	262	Acknowledgments
 This work was financially supported by Ministry of Culture of the Czech Republic (MK00002327201) to Jiří Sejkora. The financial and infra-structure support of the Queensland University of Technology, Inorganic Materials Research Program is gratefull acknowledged. The Australian Research Council (ARC) is thanked for funding the instrumentation. 	263	
 265 (MK00002327201) to Jiří Sejkora. The financial and infra-structure support of the 266 Queensland University of Technology, Inorganic Materials Research Program is gratefull 267 acknowledged. The Australian Research Council (ARC) is thanked for funding the 268 instrumentation. 269 270 271 	264	This work was financially supported by Ministry of Culture of the Czech Republic
 Queensland University of Technology, Inorganic Materials Research Program is gratefull acknowledged. The Australian Research Council (ARC) is thanked for funding the instrumentation. 	265	(MK00002327201) to Jiří Sejkora. The financial and infra-structure support of the
 acknowledged. The Australian Research Council (ARC) is thanked for funding the instrumentation. 269 270 271 	266	Queensland University of Technology, Inorganic Materials Research Program is gratefully
 268 instrumentation. 269 270 271 	267	acknowledged. The Australian Research Council (ARC) is thanked for funding the
269 270 271	268	instrumentation.
270 271	269	
271	270	
	271	

272	Refe	rences
273	1.	Finch RJ, Murakami T Reviews in Mineralogy 1999, 38, 91-179.
274	2.	A.J. Locock, In Structural chemistry of inorganic actinide compounds, (S.V.
275		Krivovichev, P.C. Burns, I.G. Tananaev, Eds.), p. 217-278, Elsevier Amsterdam
276		2007.
277	3.	Locock AJ Proc. Russ. Mineral. Soc. 2007, 136, 115-137.
278	4.	Anthony JW, Bideaux RA, Bladh KW, Nichols MC Handbook of Mineralogy; Vol IV
279		Mineral Data Publishing: Tuscon, Arizona, USA, 2000; Vol. 4.
280	5.	Mandarino JA, Back ME Fleischer's glossary of mineral species The Mineralogical
281		Record Inc.: Tucson, Arizona, 2004.
282	6.	Mrose ME American Mineralogist 1953, 38, 1159-1168.
283	7.	Leonova EN Trudy Instituta geologii rudnykh mestorozhdenii, petrographii,
284		mineralogii i geokhimii AN SSSR (in Russian). 1958, 30, 37-55.
285	8.	Walenta K Jahreshefte des Geologischen. Landesamts Baden-Württemberg 1958, 3,
286		17-51.
287	9.	Walenta K Tschermaks Mineralogische und Petrographische Mitteilungen 1965, 9,
288		252-282.
289	10.	Walenta K Chemie der Erde 1965, 24, 254-278.
290	11.	Hoffmann G, Thesis, Ludwig-Maxmilian University, Munich, 1972.
291	12.	Weigel F, Hoffmann G Journal of the Less-Common Metals 1976, 44, 99-123.
292	13	F. Weigel In Handbook of physics and chemistry of actinides, (A.J. Freeman, C.
293		Keller, Ed.), p. 243-288, Elsevier Amsterdam 1985.
294	14.	Ambartsumyan TL, Basalova GI, Gorzhevskaya SA, Nazarenko NG, R. P.
295		Khodzhaeva Thermal investigations of uranium and uranium-bearing minerals.
296		Gosatomizdat Moscow 1961 (in Russian).
297	15.	Chernorukov NG, Karyakin NV, Suleimanov EV, Belova YS Zhurnal
298		Neorganicheskoy Khimii 1996, 41, 39-42.
299	16.	Burns PC Canadian Mineralogist 2005, 43, 1839-1894.
300	17.	J. Sejkora, J. Cejka, A. Gabasova, J. Jindra, Bulletin mineralogicko-petrologického
301		Odděleni Národního Muzea (Praha) 10 (2002) 273-278 (in Czech).
302		
303	18.	Frost RL, Cejka J, Ayoko G Journal of Raman Spectroscopy 2008, 39, 495-502.
304	19.	Frost RL, Cejka J, Ayoko GA, Dickfos MJ Journal of Raman Spectroscopy 2008, 39,
305		374-379.

306	20.	Frost RL, Cejka J, Dickfos MJ Journal of Raman Spectroscopy 2008, 39, 779-785.
307	21.	Frost RL, Dickfos MJ, Cejka J Journal of Raman Spectroscopy 2008, 39, 582-586.
308	22.	Frost RL, Hales MC, Wain DL Journal of Raman Spectroscopy 2008, 39, 108-114.
309	23.	Frost RL, Keeffe EC Journal of Raman Spectroscopy 2008, in press.
310	24.	Frost RL, Locke A, Martens WN Journal of Raman Spectroscopy 2008, 39, 901-908.
311	25.	Frost RL, Reddy BJ, Dickfos MJ Journal of Raman Spectroscopy 2008, 39, 909-913.
312	26.	Palmer SJ, Frost RL, Ayoko G, Nguyen T Journal of Raman Spectroscopy 2008, 39,
313		395-401.
314	27.	Cejka J Reviews in Mineralogy 1999, 38, 521-622.
315	28.	Frost RL, Cejka J, Weier ML, Martens WN, Ayoko GA Journal of Raman
316		Spectroscopy 2007, 38, 398-409.
317	29.	Frost RL, Weier ML, Ayoko GA, Martens W, Cejka J Mineralogical Magazine 2006,
318		70, 299-307.
319	30.	Frost RL, Carmody O, Erickson KL, Weier ML, Henry DO, Cejka J Journal of
320		Molecular Structure 2004, 733, 203-210.
321	31.	Myneni SCB, Traina SJ, Waychunas GA, Logan TJ Geochim. Cosmochim. Acta
322		1998 , <i>62</i> , 3285-3300.
323	32.	Myneni SCB, Traina SJ, Waychunas GA, Logan TJ Geochim. Cosmochim. Acta
324		1998 , <i>62</i> , 3499-3514
325	33.	Vansant FK, Veken BJVd, Desseyn HO J. Mol. Struct. 1973, 15, 425-437.
326	34.	Busey RH, Keller OL J. Chem. Phys. 1964, 41, 215-225.
327	35.	Ross SD In The infrared spectra of minerals
328		Farmer VC, Ed.; Mineralogical Society: London 1974.
329	36.	Bartlett JR, Cooney RP J. Mol. Struct. 1989, 193, 295-300.
330	37.	K. Nakamoto, Infrared and Raman spectra of inorganic and coordination compounds,
331		Wiley New York 1986.
332		
333		
334		

335	List of Figures
336	
337	Fig. 1 Raman spectrum of metauranospinite in the 600 to 1200 cm ⁻¹ region
338	
339	Fig. 2 Raman spectrum of metauranospinite in the 100 to 500 cm ⁻¹ region
340	
341	Fig. 3 Raman spectrum of metauranospinite in the 3000 to 3800 cm ⁻¹ region
342	
343	Fig. 4 Raman spectrum of metauranospinite in the 1300 to 2300 cm ⁻¹ region
344	
345	Fig 1S Infrared spectrum of metauranospinite in the 600-1000 cm ⁻¹ region
346	
347	Fig. 2S Infrared spectrum of metauranospinite in the 2600-3800 cm ⁻¹ region
348	
349	Fig. 3S Infrared spectrum of metauranospinite in the 1300 to 2300 cm ⁻¹ region
350	
351	
2.5.0	

Figure 1

- 361 Figure

Figure 4