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Species composition and diversity 
of ground bryophytes across a 
forest edge-to-interior gradient
Tiantian Jiang, Xuecheng Yang, Yonglin Zhong, Qiming Tang, Ying Liu & Zhiyao Su

Understanding diversity patterns and community structure of bryophytes will help integrate nature 

conservation at multiple biotic-group levels. We conducted a survey of ground bryophytes in a 

subtropical forest along an edge-to-interior gradient in South China. We recorded 11 liverwort species 
from 10 genera of seven families, and 26 moss species from 23 genera of 16 families in three transects. 
A two-way cluster analysis detected the environmental gradient between the forest edge and forest 

interior for bryophytes with habitat specificity. Functional diversity of bryophytes differed significantly 
across an edge-to-interior gradient. The range and median in both structural and functional diversity 

decreased remarkably from the forest edge to the interior. Multi-response permutation procedures 

showed significant differences in species composition between the forest-edge and forest-interior, and 
between the intermediate and forest-interior transects. Seven species were detected with a significant 
indicator value for indicating environmental conditions in the forest edge, while only one such species 

was found indicative of the intermediate transect. Our results demonstrate that remarkable edge 

effects exist for species composition and functional diversity patterns, and the forest edge is a marginal 
habitat with high biotic heterogeneity. Furthermore, functional diversity metrics are more sensitive to 
the edge effect than species diversity.

Bryophytes, known as liverworts, mosses, and hornworts, are the earliest land plants in the phylogenetic system-
atics of the plant kingdom1. �ey occur widely in the global terrestrial ecosystem, o�en as dominants in the �oor 
layer of the moist tropical and subtropical broadleaved forest biomes2–4. However, bryophytes appear to have been 
neglected in many ecological studies, where only vascular plants or even woody plants were investigated such as 
in the emerging �elds of community ecology to explore the role of ecological processes and biotic diversity in 
maintaining ecosystem function5,6. Until now, little has been known about the diversity patterns of bryophytes, 
their spatial heterogeneity, their role in forest community assembly, and their biotic and abiotic interactions to 
maintain the ecosystem function as a whole. �e knowledge gap surrounding bryophyte community function 
is even greater for tropical and subtropical forest ecosystems, thus hampering our steps towards a better under-
standing of the ecosystem functions as a whole.

Botanists have argued that as the earliest land plants, bryophytes re�ect the dispersal history of plants of var-
ious evolutionary stages in the terrestrial ecosystem1,7, and their physiological adaptation, community structure, 
and the ecological functions in response to environmental change are much more complicated than previously 
imagined8. Disseminated by spores, bryophytes have an outstanding capability for dispersal and will respond sen-
sitively to environmental change. Previous studies have demonstrated that bryophytes are good bio-indicators for 
environmental pollution due to the special leaf architecture of the plant organism9–12. However, to gain a whole 
picture of the bryophytes’ distribution, diversity patterns, community structure, and their response to ecological 
factors along environmental gradients, extensive studies in the community ecology of bryophytes should be car-
ried out in natural ecosystems, especially in the forest ecosystem.

As an essential property of the forest ecosystem, species diversity and the functional diversity of a commu-
nity re�ect the biotic response to habitat heterogeneity and are the result of biotic and abiotic interaction13,14. A 
comprehensive knowledge of the diversity and its spatial patterns at various levels of biological groups is cru-
cial for both regional and local biodiversity conservation planning, and will provide insights into further explo-
ration of the relationships between organisms and their environments. Currently, many bryophyte studies are 
focused on the botanical and �oristic aspects, particularly for the compilation of �oristic inventory and plant 
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checklists15,16. A few studies have revealed the e�ect of various disturbance regimes on bryophyte diversity11,17; 
other investigations have analyzed the response of bryophytes to precipitation, acid deposition, and topographic 
factors9,18,19. In the vast areas of China, the limited research reports on bryophytes have concentrated on the 
Changbai Mountain Range20, Qilian Mountain Range12, and regions such as the Yunnan-Guizhou Plateau19. Very 
rarely have studies reported on the ecology of bryophytes distributed in South China, especially in the subtropical 
area of Guangdong province18.

Edge e�ect is one of the generally-recognized mechanisms driving plant diversity in forest ecosystems21–23 and 
has signi�cant implications for forest management and habitat conservation. �e e�ect arising from a forest edge 
represents the interaction of biotic and abiotic factors rather than a single site factor24,25. Although edge e�ect 
is a widespread ecological phenomenon and has been explored for vascular plant diversity26,27, few studies have 
investigated this for bryophytes28–35. In this study, we conducted a survey of the understory ground bryophytes 
using a quadrat sampling method in a subtropical broadleaved forest along an edge-to-interior gradient, followed 
by multivariate statistical analysis of the �eld data. We aimed to address the following questions: (1) Do bryophyte 
assemblages show signi�cant species-speci�c associations across an edge-to-interior gradient? (2) How are bryo-
phyte species composition, community structure, and diversity related to the edge-to-interior gradient? and (3) Are 
there species with high habitat speci�city that can act as bio-indicators for signi�cant species-habitat association?

Results
Species Composition and Community Structure. A total of 37 ground bryophyte species from 33 
genera of 23 families were recorded from the forest understory within the 2-ha plot. Out of the total number, 
11 species from 10 genera of 7 families were liverworts, while 26 species from 23 genera of 16 families were 
mosses (Table 1). No hornworts were found. High ecological dominance existed in the bryophyte community. 
�e moss species Pseudotaxiphyllum pohliaecarpum was the most dominant species, with an importance value 
(IV) = 25.99, relative frequency (RF) = 15.93, and relative cover (RC) = 10.06. Six other bryophyte species with 
an IV ≥ 10 found to be dominant were as follows: Kurzia gonyotricha, Bazzania tridens, Chiloscyphus latifolius, 
Leucobryum juniperoideum, Fissidens laxus, Haplocladium microphyllum. In contrast, eight bryophyte spe-
cies, with an IV < 1, were found to have occurred in only one sample unit. �e lowest IV (0.35) belonged to 
Pallavicinia lyellii, and seven other such bryophyte species were as follows: Chiloscyphus profundus, Campylopus 
atroviren, Homaliodendron �abellatum, Macromitrium schmidii var. macroperichaetialium, Pogonatum in�exum, 
Fauriella tenuis, Neckeropsis calcicola (Table 1).

Bryophyte Distribution and Interspecific Association. The distribution of bryophyte species in 
response to the edge-to-interior gradient is visualized by a two-way cluster dendrogram (Fig. 1). �e cluster-
ing of sample units clearly separated the forest-edge transect from the forest-interior transect. Sample units in 
the intermediate transect were not distributed in one cluster, instead they were dispersed in either the edge or 
interior transects, indicating their intermediate nature in habitat conditions as the transition between the forest 
edge and interior transects. With regard to species groupings, contrasting distribution patterns were found in 
both common species with coincidence in a number of sample units, representing high interspeci�c association, 
and in the rare species unique to only one or two sample units. For example, Pseudotaxiphyllum pohliaecarpum 
and Chiloscyphus latifolius occurred in almost all the sample units, illustrating their adaptability to heterogene-
ous habitats, while Fissidens laxus, Kurzia gonyotricha, and Bazzania tridens only dominated the intermediate 
and the forest-interior transects, indicating that the forest-edge habitat might act as an ecological �lter for their 
distribution. Nine bryophyte species were detected as rare species with single occurrence in the sample units: 
Campylopus atrovirens, Chiloscyphus profundus, Fauriella tenuis, Homaliodendron �abellatum, Macromitrium 
schmidii var. macroperichaetialium, Neckeropsis calcicola, Pallavicinia lyellii, Plagiomnium rhynchophorum, and 
Pogonatum in�exum. Some of these species occurred with coincidence in the same sample unit (Fig. 1), showing 
high interspeci�c association.

Species Diversity and Functional Diversity. Changes in both species diversity and functional diver-
sity showed a decreasing trend across an edge-to-interior gradient (Fig. 2). However, no signi�cant di�erence 
in species richness (Fig. 2A, p = 0.599) and Shannon-Wiener diversity index (Fig. 2B, p = 0.0875) were found 
across the forest-edge, intermediate, and forest-interior transects, whereas signi�cant edge e�ects on func-
tional diversity were exhibited in the two functional diversity metrics, FDis (Fig. 2C, p = 0.0114) and Rao’s Q 
(Fig. 2D, p = 0.0116). �ese gradients were re�ected in the median and the min-max range di�erences of the 
structural and functional diversity metrics between the forest-interior and the intermediate transects, or between 
the forest-interior and the forest-edge transects. �e range in both species richness and Shannon-Wiener diver-
sity index remarkably decreased from the forest-edge to the forest-interior transects, with the lowest range and 
median found in the forest-interior (Fig. 2A,B), while for functional diversity, high ranges were found in the 
forest-edge as well as the intermediate transects (Fig. 3C,D).

Indicator Species. Multi-response permutation procedures (MRPP) showed an extremely signi�cant di�er-
ence in species composition across an edge-to-interior gradient in an overall comparison (Table 2, P < 10−6). �e 
MRPP pairwise comparison detected extremely signi�cant di�erences between the forest-edge and forest-interior 
transects (Table 2, P < 10−6), and between the intermediate and forest-interior transects (Table 2, P < 10−4). �e 
results from MRPP indicated that both the forest-edge and forest-interior transects had high habitat speci�city 
for the bryophyte species composition and distribution.

Seventeen species had an indicator value >10 for indicating a particular transect habitat, but only eight indi-
cator species were detected to have a signi�cant indicator value (Table 3). Seven such species with a signi�-
cant indicator value were found con�ned to the forest edge. �ese were Haplocladium microphyllum, Fissidens 
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oblongifolius, Homalia trichomanoides var. japonica, Entodon schleicheri, Taxiphyllum taxirameum, Homalia 
trichomanoides, and Radula obscura. Only one species, Leucobryum juniperoideum, was signi�cantly indicative to 
the intermediate transect with the maximum indicator value.

Discussion
Bryophyte diversity patterns and community structure changed in response to environmental gradients. 
Except for the intermediate transect, high habitat speci�city for the bryophyte species was found in both the 
forest-edge and forest-interior transects. High interspeci�c association existed in both common species that had 
co-occurrence in a number of sample units, and rare species which were found in only one or two sample units. 
Two bryophyte species, Pseudotaxiphyllum pohliaecarpus, and Chiloscyphus latifolius, occurred in almost all sam-
ple units, re�ecting their robust adaptability to heterogeneous habitats. Although three common species, Fissidens 
laxus, Kurzia gonyotricha, and Bazzania tridens, were restricted to the intermediate and the forest-interior tran-
sects, they occurred in most sample units of the two transects, indicating that the forest-edge habitat might act 
as an environmental �lter for their distribution. �e nine bryophyte species detected as rare species with unique 
occurrence in the sample units demonstrated high habitat speci�city, and a very high species association was 
exhibited in these species with coincidence in the same sample unit.

Family Species F AC RF RC IV

Liverworts

Lepidoziaceae Bazzania tridens 23 28.69 7.80 6.93 14.72

Lophocoleaceae Chiloscyphus latifolius 28 15.62 9.49 3.77 13.26

Lophocoleaceae Chiloscyphus profundus 1 0.10 0.34 0.02 0.36

Lophocoleaceae Heteroscyphus zolliingeri 3 15.30 1.02 3.69 4.71

Lepidoziaceae Kurzia gonyotricha 33 39.98 11.19 9.65 20.84

Lejeuneaceae Lejeunea eifrigii 8 5.94 2.71 1.43 4.15

Metzgeriaceae Metzgeria conjugata 5 5.65 1.69 1.36 3.06

Pallaviciniaceae Pallavicinia lyellii 1 0.05 0.34 0.01 0.35

Plagiochilaceae Plagiochila �exuosa 4 12.30 1.36 2.97 4.33

Radulaceae Radula obscura 3 9.80 1.02 2.37 3.38

Lejeuneaceae Spruceanthus polymorphus 4 3.30 1.36 0.80 2.15

Mosses

Meteoriaceae Aerobryopsis wallichii 5 6.40 1.69 1.54 3.24

Pylaisiadelphaceae Brotherella henonii 10 6.51 3.39 1.57 4.96

Leucobryaceae Campylopus atrovirens 1 0.20 0.34 0.05 0.39

Hypnaceae Ectropothecium dealbatum 6 13.00 2.03 3.14 5.17

Entodontaceae Entodon schleicheri 5 7.78 1.69 1.88 3.57

Heterocladiaceae Fauriella tenuis 1 0.40 0.34 0.10 0.44

Fissidentaceae Fissidens laxus 25 13.72 8.47 3.31 11.79

Fissidentaceae Fissidens nobilis 2 2.53 0.68 0.61 1.29

Fissidentaceae Fissidens oblongifolius 8 17.89 2.71 4.32 7.03

�uidiaceae Haplocladium microphyllum 9 30.15 3.05 7.28 10.33

Anomodontaceae Herpetineuron toccoae 5 23.40 1.69 5.65 7.34

Neckeraceae Homalia trichomanoides 3 0.90 1.02 0.22 1.23

Neckeraceae Homalia trichomanoides var. japonica 8 9.43 2.71 2.28 4.99

Neckeraceae Homaliodendron �abellatum 1 0.20 0.34 0.05 0.39

Hypnaceae Hypnum fauriei 3 8.20 1.02 1.98 3.00

Leucobryaceae Leucobryum juniperoideum 14 32.65 4.75 7.88 12.63

Orthotrichaceae
Macromitrium schmidii var. 
macroperichaetialium

1 0.20 0.34 0.05 0.39

Neckeraceae Neckeropsis calcicola 1 1.80 0.34 0.43 0.77

Mniaceae Plagiomnium rhynchophorum 1 3.60 0.34 0.87 1.21

Polytrichaceae Pogonatum in�exum 1 0.30 0.34 0.07 0.41

Hypnaceae Pseudotaxiphyllum pohliaecarpum 47 41.68 15.93 10.06 25.99

Brachytheciaceae Rhynchostegium pallidifolium 3 10.50 1.02 2.53 3.55

Sematophyllaceae Sematophyllum subpinnatum 2 9.00 0.68 2.17 2.85

Calymperaceae Syrrhopodon prolifer 3 1.90 1.02 0.46 1.48

Hypnaceae Taxiphyllum taxirameum 5 12.90 1.69 3.11 4.81

�uidiaceae �uidium pristocalyx 12 22.30 4.07 5.38 9.45

Table 1. Taxonomic composition of bryophytes and community structural attributes. Abbreviations: 
F = frequency; AC = average cover; RF = relative frequency; RC = relative cover; IV = importance value.
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Biodiversity is regarded as the essential property characteristic of an ecosystem or biotic community36–38. 
In our study, changes of species richness, Shannon-Wiener diversity, and functional diversity showed similar 
decreasing trends from the forest edge to the forest interior, and the functional diversity exhibited a signi�cant 
edge e�ect. �e range in both species richness and Shannon-Wiener diversity index decreased remarkably from 

Figure 1. Two-way cluster dendrogram showing plot groupings, and bryophyte species composition 
and distribution. Each plot is symbol coded for its membership to a particular transect. �e grey scale 
for the Matrix Coding from light to dark corresponds to cover class value in an increasing order. Species 
code: AERWAL = Aerobryopsis wallichii; BAZTRI = Bazzania tridens; BROHEN = Brotherella henonii; 
CAMATR = Campylopus atrovirens; CHILAT = Chiloscyphus latifolius; CHIPRO = Chiloscyphus 
profundus; ECTDEA = Ectropothecium dealbatum; ENTSCH = Entodon chleicheri; FAUTEN = Fauriella 
tenuis; FISLAX = Fissidens laxus; FISNOB = Fissidens nobilis; FISOBL = Fissidens oblongifolius; 
HAPMIC = Haplocladium microphyllum; HERTOC = Herpetineuron toccoae; HETZOL = Heteroscyphus 
zolliingeri; HOMFLA = Homaliodendron �abellatum; HOMTRI = Homalia trichomanoides; 
HOMTRJ = Homalia trichomanoides var. japonica; HYPFAU = Hypnum fauriei; KURGON = Kurzia 
gonyotricha; LEJEIF = Lejeunea eifrigii; LEUJUN = Leucobryum juniperoideum; MACSCH = Macromitrium 
schmidii var. macroperichaetialium; METCON = Metzgeria conjugata; NECCAL = Neckeropsis calcicola; 
PALLYE = Pallavicinia lyellii; PLAFLE = Plagiochila �exuosa; PLARHY = Plagiomnium rhynchophorum; 
POGINF = Pogonatum in�exum; PSEPOH = Pseudotaxiphyllum pohliaecarpum; RADOBS = Radula obscura; 
RHYPAL = Rhynchostegium pallidifolium; SEMSUB = Sematophyllum subpinnatum; SPRPOL = Spruceanthus 
polymorphus; SYRPRO = Syrrhopodon prolifer; TAXTAX = Taxiphyllum taxirameum; THUPRI = �uidium 
pristocalyx.
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the forest-edge to the forest-interior transects, with the lowest range and median found in the forest-interior. 
�ese di�erences were re�ected in the discrepancy between the forest-interior and the intermediate transects, 
or between the forest-interior and the forest-edge transects. Previous studies have demonstrated that changes to 
understory microclimate are responsible for the di�erences in forest interior vs. edge environments29,39–42, but 
in our study, the in�uence by the typhoons occurring in the South China sea from July to November each year 
may be the major cause for the edge-interior gradient43,44. �e highest heterogeneity of the forest-edge transect 
for bryophyte diversity may have arisen from the e�ect of wind from various directions in a year, which serves as 
the major medium for the dispersal and colonization of bryophyte propagules45–47. In the forest-interior transect, 
mitigation of the wind e�ect by the obstruction of tree trunks and crown foliage may have led to the lower varia-
bility in species diversity. Moreover, signi�cant edge e�ect was found for functional diversity, but not for species 
diversity in the forest edge when compared to the forest interior. �is indicated that the functional diversity 
metrics were more sensitive than species diversity metrics in characterizing the forest edge-to-interior gradient.

�e forest edge-to-interior gradient for bryophyte species composition and diversity patterns were also cor-
roborated by multi-response permutation procedures (MRPP). �e MRPP showed an extremely signi�cant 
di�erence in species composition across an edge-to-interior gradient by overall comparison (P < 10−6), and 
by pairwise comparison between the forest edge vs. forest interior transects and between the forest intermedi-
ate vs. forest interior transects (P < 10−4). �e results from the MRPP indicated that both the forest-edge and 
forest-interior transects had high habitat speci�city for bryophyte species composition and distribution. Further 
evidence for habitat speci�city of the forest-edge transect was provided by indicator species analysis (ISA). Eight 
species (Leucobryum juniperoideum, Haplocladium microphyllum, Fissidens oblongifolius, Homalia trichomanoides 
var. japonica, Entodon schleicheri, Taxiphyllum taxirameum, Homalia trichomanoides, and Radula obscura) were 
detected to have a signi�cant indicator value. Seven such species with a signi�cant indicator value were found 
with a restricted occurrence in the forest edge, while only one species (Leucobryum juniperoideum) was signi�-
cantly indicative of the intermediate transect with the maximum indicator value. �e signi�cant indicator species 
were the representations of both species habitat association and habitat speci�city.

Figure 2. Changes in bryophyte structural and functional diversity across transects. S is the species richness; H′ 
is the Shannon-Wiener diversity index; FD is the functional dispersion; and Rao’s Q is Rao’s quadratic entropy. 
Transect code: 1 = Forest-edge transect; 2 = Intermediate transect; 3 = Forest-interior transect.
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Conclusions
In conclusion, the spatial patterns of bryophyte species diversity and community structure in response to the 
edge-to-interior gradient were determined by habitat characteristics as well as the bryophytes’ biological prop-
erties. Our results demonstrated that the conspicuous diversity patterns, community structure, and interspeci�c 
association in ground bryophytes are related to the edge-to-interior gradient, and the forest edge is a special 
habitat with high biotic heterogeneity. Further studies are required to explore issues such as the drivers of the spa-
tial patterns in bryophyte distribution, the mechanisms for the maintenance of bryophyte diversity, and to what 
extent edge e�ects in�uence bryophyte species diversity and functional diversity patterns under climate change.

Materials and Methods
Study Area. We conducted a �eld survey to collect bryophyte vegetation data in the Kanghe Provincial 
Nature Reserve (115°04′–115°09′E, 23°44′–23°53′N). �is nature reserve is located in the southeastern part of 
South China’s Guangdong province, approximately 220 km from Guangzhou, the capital city of Guangdong prov-
ince. �e terrain of the nature reserve is hilly and mountainous, with the highest peak at 839.7 m a.s.l. �e area 
has a subtropical monsoon climate, with a mean annual precipitation of 2142 mm, a mean annual temperature 
ranging from 20.3–21.1 °C, and a frost-free period of 345–350 d43,48. From July to November each year, this area 
is regularly a�ected by typhoons, the tropical cyclones occurring in the South China sea43,49. �e soil type is a 

Figure 3. Plot layout for the sampling of understory ground bryophytes and the habitat gradient by transect. 
Transect code: 1 = Forest-edge transect; 2 = Intermediate transect; 3 = Forest-interior transect.

Transects for comparison Variance Skewness T A P

Overall comparison 0.399 −0.946 −8.731 0.090 <10−6

Pairwise comparison

    1 versus 2 −1.813 0.019 0.058

    1 versus 3 −11.799 0.145 <10−6

    2 versus 3 −6.602 0.067 <10−4

Table 2. Multi-response Permutation Procedure (MRPP) for bryophyte species composition among the 
transects. A represents the “e�ect size” of within-group homogeneity as compared to the random expectation; 
T is a statistic describing the separation between the groups; and P is the P-value from the signi�cance test of 
homogeneity. Transect code: 1 = Forest-edge transect; 2 = Intermediate transect; 3 = Forest-interior transect.
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clay loamy latosolic red soil with a thick soil layer. Vegetation in the area is dominated by subtropical evergreen 
broadleaved forests. According to previous studies48,50, the forest canopy is dominated by a number of hardwood 
tree species such as Castanopsis carlesii, Schima superba, Castanopsis fargesii, and Itea chinensis.

Sampling Design and Bryophyte Census. A 2-ha plot was delineated within a relatively homogeneous 
broadleaved forest. �e plot was further divided into a grid system of ��y 20 × 20 m subplots, coded as P01–P50 
using a total station (Nikon DTM 310). �ese subplots were grouped into three transects, i.e., the forest-edge 
transect, the intermediate transect, and the forest-interior transect (Fig. 3), according to their locations relative to 
the forest edge, which is adjacent to an open, non-forested area, with a major forest path passing by. �e average 
elevation of the 2-ha plot is 235 m. Five 2 × 2 m quadrats were laid out at positions along two diagonal lines of 
each 400-m2 subplot, one at the intersecting point (the central location of the subplot), and two at the 1/4 and 3/4 
points of each of the two diagonal lines. For easy and accurate estimation of percent cover, bryophytes in each 
quadrat were censused by four 1-m2 sub-quadrats in an anticlockwise sequence for species identity, percent cover, 
and habitat attributes. Voucher specimens of the bryophytes were collected, tagged, and placed in kra� paper 
envelopes for identi�cation in the laboratory using a microscope. Field sampling was conducted from September 
to October, 2016. Bryophyte systematics and nomenclature followed the Bryophyte Flora of Guangdong51.

Structural and Functional Diversity Indexes. All �eld data were pooled into the subplot level to com-
pute relative frequency, relative cover, and importance value by species, species richness, the Shannon-Wiener 
diversity index, and functional diversity by subplots. We used percent cover data directly to calculate importance 
value, but for the calculation of diversity metrics and the construction of a plot × species dataset for multivariate 
analysis, we �rst transformed percent cover data into cover class and then used the median of the cover class code 
by subplots in the analysis (Supplementary Table S1). Bryophyte plants are tiny and usually grow in short turfs or 
we�s, so it is not easy to estimate species abundance in the �eld by directly counting the number of individuals. 
�erefore, the abundance of bryophyte species is commonly estimated as percent cover or scored as cover class. A 
number of analyses of the plants occurred in the ground layer, and abundance data are represented in the form of 
cover class instead of percent cover52,53. In our study, we employed 7-level cover classes. �e cut-o� points for the 
cover classes were 0, 1%, 5%, 25%, 75%, 95%, and 99%, corresponding to 1–7 cover class codes54.

Species richness was represented by the number of species in a subplot, while the importance value and the 
Shannon-Wiener index were calculated using the following equations54, respectively:

= +IV RF RC (1)

where IV is the importance value; RF is the relative frequency, and RC is the relative cover;

∑′ = −
=

H P Pln
(2)i

s

i i
1

where H′ is the Shannon-Wiener index; s is the number of species; and Pi is the relative abundance of the i-th 
species, represented by relative cover class.

Species Transect
Observed 
indicator value

Indicator value from 
randomization

pMean
Standard 
deviation

Leucobryum juniperoideum Intermediate 37 17.4 5.45 0.007

Fissidens laxus Forest-interior 32.9 24.9 5.08 0.078

Haplocladium microphyllum Forest-edge 28.4 13.3 5.1 0.015

Fissidens oblongifolius Forest-edge 25.4 12.9 5.38 0.031

Homalia trichomanoides var. 
japonica

Forest-edge 24.5 12.5 4.98 0.022

Entodon schleicheri Forest-edge 22.7 9.9 4.77 0.036

�uidium pristocalyx Forest-edge 21.8 15.8 5.26 0.129

Taxiphyllum taxirameum Forest-edge 21.3 9.9 4.72 0.042

Homalia trichomanoides Forest-edge 20 7.7 4.27 0.046

Radula obscura Forest-edge 20 7.7 4.24 0.047

Brotherella henonii var. henonii Intermediate 20 14.2 5.12 0.121

Ectropothecium dealbatum Forest-edge 19.9 10.7 4.81 0.063

Plagiochila �exuosa Forest-edge 16.2 8.8 4.27 0.069

Lejeunea eifrigii Forest-edge 13.6 12.7 5.11 0.369

Aerobryopsis wallichii Forest-edge 13 9.7 4.59 0.249

Herpetineuron toccoae Forest-edge 12.6 9.8 4.58 0.273

Metzgeria conjugata Forest-edge 12.3 9.8 4.66 0.284

Table 3. Indicator species of bryophytes with an indicator value >10 across transects.
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We calculated two functional diversity metrics, functional dispersion (FDis) and Rao’s quadratic entropy 
(Rao’s Q) based on bryophyte traits represented by growth forms, range of distribution, and substrate preference.

Functional dispersion, or FDis, is calculated using the following equations55:

FDis a z a/
(3)i

s

i i

i

s

i

1 1

∑ ∑=

= =

where ai is the relative cover of the i-th species; and zi is the weighted distance of the i-th species to the trait value 
centroid.

Rao’s Q is calculated using the following equation56:

Rao sQ d p p
(4)i

s

j i

s

ij i i
1

1

1

∑ ∑′ =

=

−

= +

where pi is the relative cover; s is the number of species; and dij is the di�erence between the i-th and the j-th 
species.

Statistical analysis. We performed two-way cluster analysis on the abundance dataset of bryophyte spe-
cies composition using UPGMA (unweighted pair group method using arithmetic means) with the Bray-Curtis 
distance. �e two-way cluster analysis simultaneously classi�es sample units and gives a graphical representa-
tion to observe the ecological similarities or di�erences of species clusters. Interspeci�c association can easily be 
observed from the resulting dendrogram of two-way cluster analysis54,57. We assessed the di�erences in species 
richness, the Shannon-Wiener index, functional dispersion, and Rao’s quadratic entropy for signi�cance across 
an edge-to-interior gradient using the Kruskal-Wallis test. �e Kruskal-Wallis test is a nonparametric alternative 
to one-way analysis of variance (ANOVA) and is suitable for the analysis of �eld ecological data. To evaluate var-
iations in species composition of bryophytes across the edge-to-interior gradient, we performed multi-response 
permutation procedures (MRPP) on the multivariate dataset of species composition and made pairwise compar-
ison among transects. To assess whether bryophyte species have a speci�c habitat association and to detect an 
indicator value of di�erent species for indicating environmental gradient, we performed indicator species analysis 
(ISA) using Dufrêne and Legendre’s method54,57. ISA calculates an indicator value for each species and provides a 
p-value for each indicator value using permutation.

Two-way cluster analysis, MRPP, ISA, as well as the calculation of community structural attributes and diver-
sity metrics were carried out using PC-ORD 7.0, a so�ware package for multivariate analysis of ecological data 
(MjM So�ware, Gleneden Beach, Oregon, USA), while the Kruskal-Wallis test was performed using the so�ware 
Statistica 8.0 (Statso�, Inc. Tulsa, OK, USA).

Data availability. �e datasets generated during the current study are available from the corresponding 
author on reasonable request.
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