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STRONGLY COMPACT NORMAL OPERATORS
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(Communicated by Marius Junge)

Abstract. An algebra of bounded linear operators on a Hilbert space is said
to be strongly compact if its unit ball is precompact in the strong operator
topology, and a bounded linear operator on a Hilbert space is said to be strongly
compact if the unital algebra generated by the operator is strongly compact.
We show that the position operator on the space of square integrable functions
with respect to a finite measure of compact support is strongly compact if and
only if the restriction of the measure to the boundary of the polynomially
convex hull of its support is purely atomic. This result is applied to construct
a strongly compact operator that generates a weakly closed unital algebra
that fails to be strongly compact. Also, we construct an operator such that
the weakly closed unital algebra generated by the operator is strongly compact
but the bicommutant of the operator fails to be a strongly compact algebra.
Finally, we prove that a strongly compact operator cannot be strictly cyclic.

1. Introduction

Let B(H) denote the algebra of all bounded linear operators on a complex Hilbert
space H. A subalgebra R of B(H) is said to be strongly compact if its unit ball
{R ∈ R : ‖R‖ ≤ 1} is precompact in the strong operator topology. An operator
T ∈ B(H) is said to be strongly compact if the algebra with identity generated by
T is strongly compact.

This notion was introduced by Lomonosov [4] as a technique to produce invariant
subspaces for essentially normal operators on Hilbert spaces. He showed that if T
is an essentially normal operator on a Hilbert space such that both its commutant
{T}′ and the commutant of its adjoint {T ∗}′ fail to be strongly compact algebras,
then T has a non-trivial invariant subspace. Moreover, if both the bicommutant
of the operator {T}′′ and the bicommutant of its adjoint {T ∗}′′ fail to be strongly
compact algebras, then T has a non-trivial hyperinvariant subspace.

Recall that an operator T on a Hilbert space is essentially normal if T ∗T −TT ∗

is compact. Also, recall that the commutant of a set S of operators on a Hilbert
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FQM-627.

c©2009 American Mathematical Society
Reverts to public domain 28 years from publication

2623

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2624 MIGUEL LACRUZ AND LUIS RODRÍGUEZ-PIAZZA

space is the set S ′ of all operators that commute with every element of S. It turns
out that S ′ is a subalgebra of B(H) and it is closed in the weak operator topology.

Marsalli [5] carried out a classification of operator algebras, and he showed that
a weakly closed, self-adjoint algebra of bounded linear operators on a Hilbert space
is strongly compact if and only if it can be decomposed as a direct sum of finite
dimensional, self-adjoint algebras.

Prunaru [6] showed that if T is a pure hyponormal, essentially normal operator
on a Hilbert space, then the commutant of its adjoint {T ∗}′ is strongly compact.

The authors and Lomonosov [3] obtained a characterization for strongly compact
normal operators in terms of their spectral representation. This characterization
is stated below in Theorem 1.1 for the position operator and in Theorem 1.3 for a
normal operator on a separable Hilbert space.

Let µ be a finite measure of compact support defined on the Borel subsets of the
complex plane. The position operator Mz is defined on L2(µ) by (Mzf)(z) = zf(z).
Thus, Mz is a normal operator and its spectrum is the compact set K = supp (µ).
Let π denote the space of polynomials p(z) in one complex variable provided with
the norm ‖p‖K = sup{ |p(z)| : z ∈ K}.
Theorem 1.1. The following conditions are equivalent:

(1) Mz is strongly compact on L2(µ).
(2) The natural embedding J : π ↪→ L2(µ) is compact.
(3) Any bounded sequence in π has a subsequence that converges a.e.

Radjavi and Rosenthal [7] say that a common statement of the spectral theorem
is the assertion that every normal operator can be represented as an integral with
respect to a spectral measure. More precisely,

Theorem 1.2. If T is a normal operator on a Hilbert space, then there exists a
unique spectral measure E such that

T =
∫

λdEλ.

If E is the spectral measure associated with a normal operator T on a separable
Hilbert space, then there exists a probability measure µ defined on the Borel subsets
of C such that E(B) = 0 if and only if µ(B) = 0. Such a probability measure is
called a control measure for the spectral measure.

Theorem 1.3. Let T be a normal operator on a separable Hilbert space H, let µ
be a control measure for the spectral measure associated with T , and let Mz denote
the position operator on L2(µ). The following conditions are equivalent:

(1) T is strongly compact on H.
(2) Mz is strongly compact on L2(µ).

This paper deals with an intrinsic characterization for the strong compactness of
the position operator. The characterization, unlike Theorem 1.1 above, is expressed
in terms of the measure and not in terms of anything external. This result allows
us to construct a strongly compact normal operator that generates a weakly closed
unital subalgebra that fails to be strongly compact. Also, we construct an operator
such that the weakly closed unital algebra generated by the operator is strongly
compact but the bicommutant of the operator fails to be a strongly compact algebra.
Finally, we prove that a strongly compact algebra cannot be strictly cyclic and that
a strongly compact operator cannot be strictly cyclic.
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2. The main result

Let us start with some definitions before we state the main result. Let K ⊆ C
be a compact set and let G denote the unbounded connected component of C\K.
The polynomially convex hull of K is the compact set K̂ = C\G. It is plain that
K ⊆ K̂ and that C\K̂ is connected. If T is a bounded linear operator on a Hilbert
space and K is the spectrum of T , then K̂ is called the full spectrum of T .

Now the ground is prepared to state our intrinsic characterization for the strong
compactness of the position operator on L2(µ).

Theorem 2.1. The following conditions are equivalent:
(1) The position operator is strongly compact on L2(µ).
(2) The restriction of µ to the boundary of the polynomially convex hull of its

support is a purely atomic measure.

A previous result on Dirichlet algebras is needed for the proof of Theorem 2.1.
Let K ⊆ C be a compact set and let C(K) denote the algebra of all complex
continuous functions f on K provided with the norm ‖f‖K = sup{|f(z)| : z ∈ K}.
The algebra P (K) is the closure in C(K) of the algebra of all complex polynomials.
It turns out that P (∂K̂) is a Dirichlet algebra; that is, for every continuous real
function f on ∂K̂ and for every ε > 0 there is a complex polynomial p(z) such that

|f(z) −� p(z)| < ε, for all z ∈ ∂K̂.

This is a consequence of the Walsh-Lebesgue Theorem. We refer the reader to the
book of Gamelin [1] for the proof of it (cf. Corollary 3.4, p. 37).

Lemma 2.2. If F1, F2 are two disjoint compact subsets of ∂K̂, then there is a
complex polynomial p(z) such that

(1) |p(z)| ≤ 1, for all z ∈ K,
(2) |p(z)| ≥ 3/4, for all z ∈ F1,
(3) |p(z)| ≤ 1/4, for all z ∈ F2.

Proof of Lemma 2.2. Let ε > 0 to be chosen later on, and let r be a continuous
real function on ∂K̂ with the property that

(1) r(z) ≤ −ε, for all z ∈ ∂K̂,
(2) r(z) = −ε, for all z ∈ F1,
(3) r(z) = log(1/8), for all z ∈ F2.

Since P (∂K̂) is a Dirichlet algebra, there is a complex polynomial q(z) such that

|r(z) −� q(z)| < ε, for all z ∈ ∂K̂.

Therefore, the following inequalities are satisfied:
(1) � q(z) < 0, for all z ∈ ∂K̂,
(2) � q(z) ≥ −2ε, for all z ∈ F1,
(3) � q(z) ≤ log(1/8) + ε, for all z ∈ F2.

Now consider the entire function f(z) = exp q(z) and notice that |f(z)| = exp� q(z).
Thus, the above inequalities are equivalent to

(1) |f(z)| < 1, for all z ∈ ∂K̂,
(2) |f(z)| ≥ exp(−2ε), for all z ∈ F1,
(3) |f(z)| ≤ exp(ε)/8, for all z ∈ F2.
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Since f is an entire function, thanks to the maximum modulus principle, the set
∂K̂ can be replaced by the set K in the first inequality. Now choose ε > 0 so small
that exp(2ε) < 4/3. Thus, the former inequalities lead to

(1) |f(z)| < 1, for all z ∈ K,
(2) |f(z)| > 3/4, for all z ∈ F1,
(3) |f(z)| < 1/4, for all z ∈ F2.

Finally, the Taylor series of f converges to f uniformly on compact sets, so that we
can take the desired polynomial p(z) to be a partial sum of a suitable degree. �

Proof of Theorem 2.1. Consider the position operator Mz defined on L2(µ) by the
expression (Mzf)(z) = zf(z). We mentioned earlier that Mz is a normal operator
whose spectrum is the compact set K = supp (µ).

Assume that the restriction of µ to ∂K̂ is not a purely atomic measure, so that
there is an ε > 0 and there are two sequences (Fn

1 ), (Fn
2 ) of compact subsets of ∂K̂

such that Fn
1 ∩ Fn

2 = ∅, for all n, and µ(Fn
1 ∩ Fm

2 ) ≥ ε, for all n 	= m. We must
show that Mz fails to be a strongly compact operator. Apply Lemma 2.2 to get a
sequence of complex polynomials (pn) with the following properties:

(1) |pn(z)| ≤ 1, for all z ∈ K,
(2) |pn(z)| ≥ 3/4, for all z ∈ Fn

1 ,
(3) |pn(z)| ≤ 1/4, for all z ∈ Fn

2 .
We have ‖pn‖K ≤ 1 for every n. Put Fnm = (Fn

1 ∩ Fm
2 ) ∪ (Fm

1 ∩ Fn
2 ) for n 	= m,

and notice that µ(Fnm) ≥ 2ε and |pn(z) − pm(z)| ≥ 1/2 for all z ∈ Fnm. Hence,

‖pn − pm‖2
L2(µ) ≥

∫
Fnm

|pn(z) − pm(z)|2dµ(z) ≥ ε

2
,

so that the sequence (pn) is not relatively compact in L2(µ) and it follows from
Theorem 1.1 that Mz fails to be a strongly compact operator.

Now, assume that the restriction of µ to ∂K̂ is a purely atomic measure, so that
there is a countable set C ⊆ ∂K̂ such that µ(∂K̂\C) = 0. Consider a sequence
(pn) of polynomials with ‖pn‖K ≤ 1 for all n. The maximum modulus principle
gives ‖pn‖K̂

≤ 1 for all n. Notice that there is a decomposition K̂ = int(K̂)∪ ∂K̂.
Apply Montel’s Theorem to obtain a subsequence (pnj

) that converges uniformly
on the compact subsets of the interior of K̂. Finally, ‖pnj

‖C ≤ 1 for all j, and since
C is a countable set, a diagonal procedure allows us to extract from (pnj

) another
subsequence (pnjk

) that converges pointwise on C. It is clear that (pnjk
) converges

almost everywhere on K with respect to µ. Now it follows from Theorem 1.1 that
Mz is a strongly compact operator. �

As an application of Theorem 2.1 we provide an example of a strongly compact
operator that generates a weakly closed algebra that fails to be strongly compact.

Example 2.3. Let (zk) be a sequence of complex numbers dense in the unit circle,
let δzk

denote the Dirac measure at zk, and let λ be the normalized Lebesgue
measure on the unit interval. Consider the measure µ defined on the Borel subsets
of the complex plane by the expression

µ(B) = λ(B ∩ [0, 1]) +
∞∑

k=1

1
2k

δzk
(B).
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It is clear that the support of µ is the compact set K = [0, 1]∪T. Hence, K̂ = D, so
that ∂K̂ = T. Since the restriction of µ to T is a purely atomic measure, it follows
from Theorem 1.1 that the position operator Mz is strongly compact on L2(µ).

We now consider the weakly closed unital algebra Rσ generated by Mz; that is,
Rσ is the closure in the weak operator topology of R = {p(Mz) : p is a polynomial}.
We identify every function ϕ ∈ L∞(µ) with the operator Mϕ of multiplication by
ϕ defined on L2(µ) by the expression (Mϕf)(z) = ϕ(z)f(z). It is a well-known fact
that L∞(µ) is a maximal abelian subalgebra of B(L2(µ)) and therefore it is closed
in the weak operator topology. See the book of Radjavi and Rosenthal [7] for the
proof of this result (cf. Corollary 1.21, p. 21).

We claim that Rσ = L∞(µ). Notice that the weak operator topology agrees on
L∞(µ) with the weak* topology. Also, the algebra π of all complex polynomials is
identified with the algebra R. Thus, we need to show that π is a dense subspace
of L∞(µ) in the weak* topology. The Hahn-Banach Theorem comes to our rescue.
Take any function f ∈ L1(µ) with the property that∫

K

fp dµ = 0 for all p ∈ π.

We have to prove that f = 0 almost everywhere with respect to µ. Fix 1 ≤ k < ∞
and let us show that f(zk) = 0. Define a sequence of polynomials (pn) by

pn(z) =
(

z + zk

2

)n

and notice that the following properties are satisfied:

(1) |pn(z)| ≤ 1 for all z ∈ D,
(2) lim pn(z) = 0 for all z ∈ D\{zk},
(3) pn(zk) = 1 for all n ≥ 1.

Apply the bounded convergence theorem to arrive at the conclusion that

µ({zk})f(zk) = lim
n→∞

∫
K

fpn dµ = 0,

so that f(zk) = 0, as we wanted. Hence, f = 0 almost everywhere on T, and we get

∫ 1

0

fp dλ =
∫

K

fp dµ = 0 for all p ∈ π.

Now the Weierstrass approximation theorem leads to

∫ 1

0

fg dλ = 0 for all g ∈ C[0, 1],

so that f = 0 almost everywhere on [0, 1]. Therefore, f = 0 almost everywhere
with respect to µ, and the proof of our claim that Rσ = L∞(µ) is over.

We finally show that Rσ fails to be a strongly compact algebra. Define a sequence
of functions (ϕn) in L∞(µ) by the expression ϕn(z) = exp(2πinz), if z ∈ [0, 1], and
ϕn(z) = 0, otherwise. Notice that ‖Mϕn

‖ = ‖ϕn‖∞ = 1, so that the sequence of
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operators (Mϕn
) lies inside the unit ball of Rσ. Moreover, if n 	= m, then

‖Mϕn
1 − Mϕm

1‖2
2 =

∫
K

|ϕn − ϕm|2 dµ

≥
∫ 1

0

|e2πint − e2πimt|2 dλ(t) = 2,

so that (Mϕn
1) is not relatively compact in L2(µ), and we conclude that (Mϕn

) is
not relatively compact in the strong operator topology.

Now we construct an example of an operator such that the weakly closed algebra
generated by the operator is strongly compact but the bicommutant of the operator
fails to be a strongly compact algebra.

Example 2.4. Consider the normalized Lebesgue area measure on the unit disc
and consider the position operator Mz on the space L2(D). Also, let Rσ denote the
weakly closed algebra generated by Mz, that is, the closure in the weak operator
topology of the algebra R = {p(Mz) : p is a polynomial}.

We identify every function ϕ in L∞(D) or in H∞(D) with the multiplication
operator Mϕ defined on L2(D) by the expression (Mϕf)(z) = ϕ(z)f(z), and under
this identification, we regard L∞(D) and H∞(D) as two subalgebras of B(L2(D)).
Notice that the weak* topology agrees on L∞(D) with the weak operator topology.

Montel’s Theorem gives us that the unit ball of H∞(D) is a compact subset of
L∞(D) in the weak* topology. A consequence of the Banach-Dieudonné Theorem
is the fact that a subspace of a dual Banach space is closed in the weak* topology
if and only if its unit ball is compact in the weak* topology. We refer to the book
of Horváth [2] for the proof of this fact. Therefore, H∞(D) is a closed subspace of
L∞(D) in the weak* topology. Hence, H∞(D) is a weakly closed algebra.

Now R ⊆ H∞(D), so that Rσ ⊆ H∞(D), and since the space of polynomials is
dense in H∞(D) with respect to the weak* topology, it follows that Rσ = H∞(D).
In order to prove that Rσ is a strongly compact algebra, we need to show that, for
every f ∈ L2(D), the set {ϕf : ϕ ∈ H∞(D), ‖ϕ‖∞ ≤ 1} is precompact in L2(D).
A straightforward application of Montel’s Theorem and the Bounded Convergence
Theorem shows that this set is indeed compact in L2(D).

Let us compute the bicommutant {Mz}′′ of the position operator. First of all,
it is obvious that {Mz}′ ⊇ L∞(D). We claim that in fact {Mz}′ = L∞(D). Take
an operator T ∈ {Mz}′, that is, TMz = MzT . It follows from Fuglede’s Theorem
that TMz̄ = Mz̄T , which implies that TMp(z,z̄) = Mp(z,z̄)T for every polynomial p
in two variables. Apply the Stone-Weierstrass Theorem to see that TMϕ = MϕT

for every ϕ ∈ C(D), and use weak* density to conclude that the same identity
holds for every ϕ ∈ L∞(D). This means that T ∈ L∞(D)′, the commutant of
L∞(D). The algebra L∞(D) is maximal abelian, as mentioned in Example 2.3, so
that L∞(D)′ = L∞(D). Hence, T ∈ L∞(D) and the proof of our claim is complete.
Finally, notice that {Mz}′′ = L∞(D) because, once again, the algebra L∞(D) is
maximal abelian.

The conclusion is that the bicommutant {Mz}′′ of the position operator fails to
be a strongly compact algebra, because the same argument of Example 2.3 with
the functions ϕn(z) = (z/|z|)n shows that the algebra L∞(D) fails to be strongly
compact. This is a particular instance of the more general fact that the natural
embedding L∞(µ) ↪→ L2(µ) is not a compact operator whenever µ is a non-purely
atomic, finite measure.
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3. Strictly cyclic operators

A subalgebra R of B(H) is said to be strictly cyclic if there is a vector x0 ∈ H
such that {Rx0 : R ∈ R} = H. An operator T ∈ B(H) is said to be strictly cyclic
if the weakly closed unital algebra generated by T is strictly cyclic. This notion
has been studied by many authors. We refer to the survey of Allen Shields [8] for
references and background on strictly cyclic operators.

The aim of this section is to show that a strongly compact operator on an infinite
dimensional Hilbert space cannot be strictly cyclic. Let us introduce some notation.
If R is a subalgebra of B(H), then Ru denotes the closure of R in the operator
norm, and Rσ denotes the closure of R in the weak operator topology.

Theorem 3.1. If an algebra R of operators on an infinite dimensional Hilbert
space H is strongly compact, then R is not strictly cyclic.

Proof. First notice that if R is strongly compact, then Ru is also strongly compact.
Given any vector x0 ∈ H, the set {Rx0 : R ∈ Ru, ‖R‖ ≤ 1} is precompact in H,
and since H is infinite dimensional, it has empty interior. It follows that the set
{Rx0 : R ∈ Ru} also has empty interior. Therefore {Rx0 : R ∈ R} � H; that is,
the algebra R fails to be strictly cyclic. �

Theorem 3.2. If T is a strongly compact operator on an infinite dimensional
Hilbert space, then T is not strictly cyclic.

Proof. The assumption is that R = {p(T ) : p is a polynomial} is strongly compact.
In view of Theorem 3.1, it is tempting to claim that Rσ is also strongly compact
and to conclude that Rσ fails to be strictly cyclic. However, this is misleading since
the algebra Rσ may not be strongly compact, just as in Example 2.3.

We proceed by contradiction. We assume that the algebra Rσ is strictly cyclic.
Since Rσ is abelian, it follows from a result of Allen Shields [8] that the strong
operator topology agrees on Rσ with the norm topology. Now, the unit ball of R
is precompact in the strong operator topology, so that it is also precompact in the
norm topology. Hence, dimR < ∞, so that dimRσ < ∞, and since the algebra
Rσ is strictly cyclic, it follows that dim H < ∞, a contradiction. �
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