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Abstract: Carya cathayensis, an important economic nut tree, is narrowly endemic to eastern China
in the wild. The complete cp genome of C. cathayensis was sequenced with NGS using an Illumina
HiSeq2500, analyzed, and compared to its closely related species. The cp genome is 160,825 bp in
length with an overall GC content of 36.13%, presenting a quadripartite structure comprising a large
single copy (LSC; 90,115 bp), a small single copy (SSC; 18,760 bp), and a pair of inverted repeats (IRs;
25,975 bp). The genome contains 129 genes, including 84 protein-coding genes, 37 tRNA genes, and
8 rRNA genes. A total of 252 simple sequence repeats (SSRs) and 55 long repeats were identified. Gene
selective pressure analysis showed that seven genes (rps15, rpoA, rpoB, petD, ccsA, atpI, and ycf1-2)
were possibly under positive selection compared with the other Juglandaceae species. Phylogenetic
relationships of 46 species inferred that Juglandaceae is monophyletic, and that C. cathayensis is sister
to Carya kweichowensis and Carya illinoinensis. The genome comparison revealed that there is a wide
variability of the junction sites, and there is higher divergence in the noncoding regions than in coding
regions. These results suggest a great potential in phylogenetic research. The newly characterized
cp genome of C. cathayensis provides valuable information for further studies of this economically
important species.
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1. Introduction

The genus Carya, belonging to the family Juglandaceae, comprises ~18 species and
4 varieties, which are distributed in the temperate and tropical regions of East Asia and
eastern North America [1,2]. Carya species from East Asia and eastern North America are
phylogenetically separated [2], while the relationships among some taxa within the genus
have not been resolved yet.

Nuclear and plastid DNAs are the basics for phylogenetic reconstruction; the single-
or low-copy nuclear genes are most suitable for systematic analyses [3]. Until now, several
plastid (matK, rbcL-atpB, rpoC1, rps16, trnH-psbA, and trnL-F) and nuclear (ITS and phyA)
DNA markers have been used for the phylogenetic study of the genus Carya. These nuclear
genes were identified by ortholog screening, cloning, and sequencing; however, these
methods can be costly and time-consuming. Compared with the nuclear genome, the
chloroplast (cp) genome is an excellent alternative owing to its small size (75–250 Kb) [4],
easily obtainable sequences by the low-cost next-generation sequencing (NGS) technique,
and less interference from homologous regions. Besides the genic regions, the noncoding
regions of cp genomes can also be harnessed for phylogenetic analysis due to a relatively
high level of genetic variation resulting from the low selective pressure [5]. In addition,
structural rearrangements, such as the loss of introns, genes, or even inverted repeats,
extensively occur in the plastid genomes of many flowering plants [6–11]. Recently, the
cp genomes of C kweichowensis [12], C. cathayensis [13], and C. illinoinensis (NBCI accession
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number: NC_041449.1) have been published, and the publication of more cp genomes of
Carya species will facilitate the identification of genetic variations via sequence comparison,
providing new insights into the evolutionary history and interspecific relationships among
Carya species.

C. cathayensis (Chinese hickory) is naturally distributed in moist valleys at altitudes
of 500–1200 m in Zhejiang, Jiangxi, and Anhui Provinces, China. Because of its high
nutritional and economic values, C. cathayensis has been widely cultivated in Zhejiang
Province, China [14]. C. cathayensis is an important economic nut tree and is vulnerable
to abiotic factors [15,16], suggesting that suitable habitat is essential for its survival in the
wild. In recent years, with the changes in climate and over-exploitation, the conservation
of wild C. cathayensis populations has become an urgent task. The nuclear genome and
cp genome of C. cathayensis have been released [13,17], although the cp genome has not
been reported in detail. The cp genome of C. cathayensis is essential for the development of
conservation and breeding strategies.

In this study, we present the whole plastome sequence of C. cathayensis and explore the
utility of this new genomic resource and relationship with that of other Carya species. These
results will lay the foundation for future phylogenetic and structural diversity studies
of Carya.

2. Materials and Methods
2.1. DNA Extraction, Sequencing, and cp Genome Assembly

The young green leaves of C. cathayensis were collected from the nursery of Zhejiang
A&F University (stored in the Institute of Botany, Chinese Academy of Sciences Mem, and
the specimen accession number is PE00820836) and stored immediately at −80 °C. Total
genomic DNA was isolated from the leaves using a modified CTAB method [18]. After
ensuring the quality of DNA, shotgun libraries (250 bp) were constructed in accordance
with the standard protocol suggested by the manufacturer’s instructions (Illumina Inc.,
San Diego, CA, USA). Sequencing was performed with an Illumina Hiseq 2500 platform
(Genepioneer Biotechnologies Co., Ltd.; Nanjing, China) with the PE150 strategy.

Quality control for the raw sequencing data was carried out using the package FastQC
(version 0.11.8. Available online: http://www.bioinformatics.babraham.ac.uk/proje-cts/
fastqc/, accessed on 8 September 2021). High-quality clean reads were obtained by remov-
ing the adapters and low-quality reads from the raw data using Trimmomatic (version
0.35) [19]. The C. cathayensis cp genome was assembled using the SPAdes pipeline [20] with
the Cyclocarya paliurus cp genome as the reference (NCBI accession number: NC_034315).

2.2. Annotation of the C. cathayensis cp Genome

C. cathayensis cp genome annotation was performed via the CpGAVAS pipeline [21].
The annotated C. cathayensis genome was deposited to GenBank under accession number
MN892516. The circular gene map was visualized in OGDRAWv1.2. Available online: http:
//ogdraw.mpimp-golm.mpg.de/, accessed on 12 September 2021). Relative synonymous
codon usage (RSCU) was determined by CodonW version 1.4.4. Available online: http:
//codonw.sourceforge.net/, accessed on 15 September 2021).

2.3. Identification of Repeats

REPuter [22,23] was used to identify the repeat sequences [24,25] using the parameters
reported by [7]. Then, the online microsatellite identification tool (MISA. Available online:
https://webblast.ipk-gatersleben.de/misa/, accessed on 21 September 2021) [26] was
applied to predict cpSSRs with default parameters.

2.4. Phylogenetic Analysis

To determine the phylogenetic relationships among Juglandaceae species, a Bayesian
inference (BI) tree was inferred using protocols suggested by [27]. An alignment of 46 cp
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genomic sequences (See in ‘Data Availability Statement’ part) was created using the MAFFT
online version [28,29] with default parameters.

2.5. Genomic Comparison with Related Species

The online tool Irscope [30] was employed to draw the genetic architecture of the
IR/SSC and IR/LSC junctions. mVISTA [31] was used to compare the complete C. cathayen-
sis cp genome to that of five related species including C. kweichowensis, C. illioninensis,
C. paliurus, Juglans cathayensis, and Platycarya strobilacea. The shuffle-LAGAN mode was
used in mVISTA [31], with the annotation of Quercus variabilis as the reference. The se-
quences were initially aligned using the MAFFT online version [28,29], the pi value of each
gene was calculated through alignment of each gene CDS sequence of different species
using vcftools, and the ratios of nonsynonymous (Ka) to synonymous (Ks) substitutions
(Ka/Ks) in protein-coding genes were determined by KaKs_Calculator.

3. Results
3.1. Genome Features of C. cathayensis

Filtering of the raw sequencing data yielded a total of 12,470,465 clean paired-end
reads. There were 3.7 G bases, of which 89.47% of bases had a quality score higher than
Q30. The whole cp genome of C. cathayensis is 160,825 bp in length, with a GC content of
36.13%. The genome assembly had an average read coverage of higher than 700×. The
synteny was identified by comparing the C. cathayensis cp genome to the reference (Table
S1), which showed that most of the sequences of the genomes were conserved.

The genome of C. cathayensis displays a typical quadripartite structure, containing
one large single copy (LSC; 90,115 bp) region, one small single copy (SSC; 18,760 bp)
region, and two inverted repeat regions (IRs; 25,975 bp each) (Figure 1). The overall GC
content is 36.13%. The IR regions have a relatively higher GC content compared with other
regions (Figure 2). A total of 129 genes were identified, including 84 protein-coding genes,
37 transfer RNA (tRNA) genes, and 8 ribosomal RNA (rRNA) genes (Table 1). Seventeen
genes are duplicated in IRs, including six protein-coding genes (rps7, rps12, rpl2, rpl23,
ndhB, ycf2) (Table 1). In total, 18 intron-containing genes (12 protein-coding and 6 tRNA
genes) were annotated (Table 2), among which there are only 3 protein-coding genes (rps12,
ycf3, and clpP) with 2 introns and the others with 1 intron. Gene rps12 of C. cathayensis
has its 5′-end exon situated in the LSC region and its 3′-end exons located in the IR region
(Figure 1, Table 2).

Table 1. Annotated genes in the C. cathayensis cp genome.

Category Group of Genes Name of Gene

Self-replication

Ribosomal RNA rrn4.5 3, rrn5 3, rrn16 3, rrn23 3

Transfer RNA

trnY-GUA, trnW-CCA, trnV-UAC 1, trnV-GAC 3, trnT-UGU, trnT-GGU, trnS-UGA, trnS-GGA,
trnS-GCU, trnR-UCU, trnR-ACG 3, trnQ-UUG, trnP-UGG, trnN-GUU 3, trnM-CAU, trnL-UAG,

trnL-UAA 1, trnL-CAA 3, trnK-UUU 1, trnI-GAU 1,3, trnI-CAU 3, trnH-GUG, trnG-UCC, trnG-GCC 1,
trnfM-CAU 4, trnF-GAA, trnE-UUC, trnD-GUC, trnC-GCA, RNA-UGC 1,3

Small subunit of ribosome rps2, rps3, rps4, rps7 3, rps8, rps11, rps12 2,3, rps14, rps15, rps16 1, rps18, rps19
Large subunit of ribosome rpl2 1,3, rpl14, rpl16 1, rpl20, rpl22, rpl23 3, rpl32, rpl33, rpl36
RNA polymerase subunits rpoA, rpoB, rpoC1 1, rpoC2
Subunits of photosystem I psaA, psaB, psaC, psaI, psaJ
Subunits of photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT

Photosynthesis

Subunits of cytochrome petA, petB 1, petD 1, petG, petL, petN
Subunits of ATP synthase atpA, atpB, atpE, atpF 1, atpH, atpI
Large subunit of RuBisCO rbcL

Subunits of NADH ndhA 1, ndhB 1,3, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK

Other gene

Maturase matK
Envelope membrane protein cemA

Subunit of acetyl-CoA accD
C-type cytochrome synthesis gene ccsA

Protease clpP 2

Unknown function Conserved open reading frames ycf1, ycf2 3, ycf3 2, ycf4, ihbA

1 Gene containing a single intron; 2 gene containing two introns; 3 two gene copies in the IRs; 4 duplicated gene in
the LSC region.
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Figure 1. The complete C. cathayensis chloroplast (cp) genome. Genes shown outside the outer circle
are transcribed clockwise, whereas those shown inside are transcribed counterclockwise. The gray
plots in the inner circle represent GC contents. The circular gene map was drawn using OGDRAWv1.2.
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Table 2. Genes with introns in the C. cathayensis cp genome.

Gene Region (bp) Exon I (bp) Intron I (bp) Exon II (bp) Intron II (bp) Exon III (bp)

atpF LSC 144 — 762 411 —

clpP LSC 71 — 847 292 — 617 227 —

ndhA SSC 552 — 1211 540 —

ndhB IRB 777 — 686 762 —

ndhB IRA 775 + 686 760 +

petB LSC 4 + 822 640 +

petD LSC 6 + 615 485 +

rpl16 LSC 9 — 919 399 —

rpl2 IRB 390 — 663 435 —

rpl2 IRA 388 + 663 433 +

rpoC1 LSC 430 — 843 1619 —

rps12 IRB 114 — - 229 + 537 29 +

rps12 IRA 114 — - 231 — 537 29 —

rps16 LSC 40 — 894 230 —

trnA-UGC IRB 36 + 801 40 +

trnA-UGC IRA 38 — 801 42 —

trnG-GCC LSC 22 + 715 45 +

trnI-GAU IRB 40 + 950 33 +

trnI-GAU IRA 42 — 950 35 —

trnK-UUU LSC 37 — 2557 35 —

trnL-UAA LSC 35 + 524 48 +

trnV-UAC LSC 38 — 615 37 —

ycf3 LSC 126 — 720 229 — 793 151 —

+ Exon is transcribed counterclockwise in Figure 1; — exon is transcribed clockwise in Figure 1; - spliceosomal intron.

The relative frequency of synonymous codons of the C. cathayensis cp coding sequence
was estimated. The results show that all genes are encoded by 26,476 codons, and the
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4 most frequently used codons were AUU (isoleucine), AAA (lysine), GAA (glutamic acid),
and AAU (asparagine), pertaining to 1145 (4.32%), 1066 (4.03%), 1040 (3.93%), and 1004
(3.79%) codons, respectively (Table S2 and Figure 3). The two most frequently used amino
acids were leucine (2780) and isoleucine (2350); cysteine was the least abundant, with only
308 hits. A- and U-ending codons accounted for 70.62% among all codons.
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3.2. Analysis of Long Repeats and Simple Sequence Repeats (SSRs)

We identified 24 forward, 9 reverse, 3 complement, and 13 palindrome repeats in the
cp genome of C. cathayensis (Table S3). Most repeats ranged from 20 to 62 bp in length. The
longest forward repeat with 62 bp resided in the LSC region. A total of 46, 5, and 4 long
repeats were found in the LSC, SSC, and IR regions, respectively. Three forward repeats
were found in the two IRs, including one repeat associated with the rpl14 and tRNA-UGC
genes, one with the IGS genes, and one with the tRNA-CCA and tRNA-GUU genes.

A total of 252 SSRs were identified in the C. cathayensis cp genome (Table S4), among
which 199, 12, 64, 2, and 1 were mono-, di-, tri-, tetra-, and pentanucleotide repeats, respec-
tively. Mononucleotide SSRs were the richest (occupied 78.97%), and the mononucleotide
A+T repeat units occupied the highest portion (75.00%).

3.3. Phylogenetic Analysis

Phylogenetic analysis was carried out based on an alignment of the concatenated
nucleotide sequences of all 46 angiosperm cp genomes (Figure 4). MAFFT was employed
for multiple sequence alignment. The phylogenetic relationship was reconstructed using the
GTR-γ model by RAxML, and Malus prunifolia, Ulmus gaussenii, and Dalbergia hainanensis
were used as outgroups. Almost all relationships inferred from the cp genome data based
on the maximum likelihood (ML) tree received strong support, with the support values
ranging from 47 to 100. In addition, genera Betula, Corylus, and Ostrya were found to be
sister to Juglans, whereas Platycarya and Cyclocarya were more closely related to Juglans
(Figure 4). The well-supported phylogenetic tree (Figure 4) indicates that the genus Carya
is monophyletic and is most closely related to the cluster formed by another genus of
Juglandaceae. C. cathayensis is sister to C. kweichowensis, and they are sister to C. illinoinensis
successively, with high support scores (bootstrap = 100; Figure 4).
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Figure 4. ML phylogenetic tree of 46 complete cp genomes resolved by Raxml. Bootstrap values are
shown near each node.



Genes 2022, 13, 369 8 of 15

3.4. Comparative Analysis of Genome Structure

To further resolve the structural evolutionary history of the cp genomes of the genus
Carya, we compared the IR/SSC and IR/LSC junctions across six selected Juglandaceae
species, including C. cathayensis, C. illinoinensis, C. kweichowensis, Platycarya strobilacea,
Cyclocarya paliurus, and Juglans cathayensis. The results of the IRscope analysis are presented
in Figure 5. We observed a wide variability of the junction sites in these cp genomes. For
example, in the genus Carya, C. cathayensis exhibited similar JLB, JSB, and JSA junction
sites compared with its elder sister species C. illinoinensis (Figures 4 and 5). All species
used in this study had an IRa/b region of ~25,900 bp and an SSC region of ~18,700 bp. By
contrast, C. kweichowensis, which is most closely related to C. cathayensis and C. illioninensis,
displayed an extremely large IRa/b region of 40,943 bp. In addition, the C. kweichowensis
cp genome showed some striking structural differences compared to its sister species. For
example, the rps19 gene was shifted by 285 bp from the LSC to IRb at the LSC/IRb border,
trnL was located in the IRa/b regions instead of the SSC region, and ycf1 was absent from
the JSA site. Moreover, we observed variations in the IR/SSC and IR/LSC junction sites
across other genera in the family Juglandaceae (Figure 5).
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proportional to the distances in bps.

A cp genome identity analysis was performed on the six Juglandaceae species described
above, with the C. cathayensis cp genome used as a reference (Figure 6). This analysis
found a relatively higher level of divergence in the noncoding than in the coding regions.
We also identified a considerable number of variations in the noncoding cp sequences,
such as trnC-GCA, trnW-CCA, trnI-CAU, and trnI-UAG, of species in the genus Carya
(Figure 6). Gene nucleotide variability (pi) values of six selected Juglandaceae species
(including C. cathayensis, C. illinoinensis, C. kweichowensis, Platycarya strobilacea, Cyclocarya
paliurus, and Juglans cathayensis) are shown in Figure 7, where the values of LSC.rpl36, IR.
rrn4.5, rrn23, and rrn16 are higher than 1, while the values of other genes are lower than 0.03.
The results show that there is lower nucleotide diversity among the six Juglandaceae species.
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To test whether the remaining cp genes in these six species of Juglandaceae have
undergone selection, the synonymous (Ks) and nonsynonymous (Ka) substitution rates
were calculated (Table S5). The Ka/Ks ratios were then categorized, with Ka/Ks < 1,
Ka/Ks = 1, and Ka/Ks > 1 denoting purifying, neutral, and positive selections, respectively,
in the context of a codon substitution model. The results show that only seven genes of
C. cathayensis, namely, rps15, rpoA, rpoB, petD, ccsA, atpI, and ycf1-2, underwent positive
selection compared with the other Juglandaceae species (Table S4). By contrast, most genes
were shown to have undergone purifying selection, which was evidenced by a Ka/Ks ratio
below 1 and the presence of negatively selected sites within some genes.
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4. Discussion

Plant chloroplast genomes may have 63–209 genes, but most are concentrated be-
tween 110 and 130, with a highly conserved composition and arrangement, including
photosynthetic genes, chloroplast transcriptional expression-related genes, and some other
protein-coding genes [32]. As with other angiosperms, the cp genome of C. cathayensis
displays a typical quadripartite structure [32,33], including a pair of inverted repeats (IRs;
25,975 bp each), separated by a large single copy (LSC; 90,115 bp) and a small single copy
(SSC; 18,760 bp) region (Figure 1). In total, 129 genes, including 84 protein-coding genes,
37 tRNA genes, and 8 rRNA genes, were identified in our study. The overall GC content is
36.13%, which is similar to that observed for other Carya species (35.8–36.3%) [12,13,34]. It
is obvious that the DNA G + C content of the IR region is higher than that of other regions
(LSC, SSC) (Figure 2); this phenomenon is very common in other flowering plants [25,34,35].
GC skewness has been shown to be an indicator of DNA lead chains, lag chains, replication
origin, and replication terminals, which is a very important indicator of species affinity [36].
The rps12 gene of C. cathayensis has its 5′-end exon situated in the LSC region and its 3′-end
exons located in the IR regions (Figure 1); this result is similar to that for the congeneric
species C. sinensis [34]. However, there is a certain difference with previous reports of the
C. cathayensis cp genome, such as the length (160,666 bp), GC contents (36.2%), and anno-
tated genes (86 protein-coding genes, 39 tRNA genes) of the whole cp genome [13]. The
difference may be due to the geographical isolation or evolutionary differences of different
plant populations from An’hui and Zhejiang Provinces, which facilitate the identification of
genetic variations via sequence comparison, providing new insights into the evolutionary
history of C. cathayensis.

The codon usage bias of cp genomes may be a result of selection and mutation [35].
The frequency of codon usage was estimated for the C. cathayensis cp genome in this
study. We found that all genes are encoded by 26,476 codons, and the 4 most frequently
used codons were AUU, AAA, GAA, and AAU; among these codons, A- and U-ending
codons are common (Table S2 and Figure 3). This result is similar to the results reported
in other angiosperms [6,7,24,37], and these features of codon usage preference can help
to better decipher exogenous gene expression and the evolution mechanisms of the cp
genome [24,25,38].
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The cpSSR markers are excellent tools for phylogenetic research due to several char-
acteristics, including non-recombination, haploidy, uniparental inheritance, and the low
substitution rate [39]. They are especially valuable for intraspecific population genetic
variation research [40,41] and interspecific evolutionary and identification studies [42–46].
A previous study reported that 213 SSRs and 44 long repeats were identified in the cp
genome of C. illinoinensis [47], while 252 SSRs and 55 long repeats were identified in our
study. This study found mononucleotide SSRs were the richest (occupied 78.97%), and
the mononucleotide A+T repeat units occupied the highest portion (75.00%); these results
are consistent with a previous study and verify the hypothesis that cpSSRs are generally
composed of short polyadenine (polyA) or polythymine (polyT) repeats and rarely contain
tandem guanine (G) or cytosine (C) repeats [38,48]. The cpSSRs are mainly distributed in
the noncoding regions of the cp genome of C. cathayensis; a similar distribution preference
of cpSSRs has been reported in other plants, such as Olea europaea, Salviamiltiorrhiza, and
Avena sativa [47,49]. Dispersed repeats may facilitate intermolecular recombination and
plastome diversity creation, because the genome regions with increased sequence diversity
could be formed by repeat sequence abundance in prokarya and eukarya [50]. Hence, these
cpSSR markers of C. cathayensis could be used to examine the genetic structure, diversity,
differentiation, and maternity in Carya and provide a new avenue for the development of
species protection and preservation strategies.

Phylogenetic analysis was completed on an alignment of all chloroplast genomes
from 46 angiosperm species. The well-supported phylogenetic tree (Figure 4) indicates
that the genus Carya is monophyletic and is most closely related to the cluster formed
by another genus of Juglandaceae, which is consistent with previous studies [2,12]. The
genus Quercus was polylogenetic in our analysis, resulting from the embedded branches
of the genera Lithocarpus and Castanea; this result is consistent with previous results [6].
Phylogenetic relationships inferred that Juglandaceae is monophyletic, and that C. cathayensis
is sister to C. kweichowensis and C. illinoinensis in our study. Previous studies reported that
C. kweichowensis is one of the representative species of the Asian sect. Sinocarya, while C.
illinoinensis is one of the representative species of the North American sect. Apocarya [47].
The C. cathayensis used in our study is native to China, in Asia. Thus, we speculated that
the above factors led to C. cathayensis and C. kweichowensis falling into one clade, while
C. cathayensis and C. illinoinensis fell into two clades.

The size variation in angiosperm plastid genomes is often accompanied by the expan-
sion and contraction of the IR and SSC boundary regions [51,52]. It is well known that
certain plastome regions show different mutation rates. To further resolve the structural
evolutionary history of the cp genomes of the genus Carya, we compared the IR/SSC and
IR/LSC junctions across six selected Juglandaceae species, including C. cathayensis, C. illi-
noinensis, C. kweichowensis, Platycarya strobilacea, Cyclocarya paliurus, and Juglans cathayensis.
We observed a wide variability of the junction sites. The cp genomes of C. cathayensis
exhibited similar JLB, JSB, and JSA junction sites. We observed variations in the IR/SSC
and IR/LSC junction sites across other genera in the family Juglandaceae: for example, the
rps19 gene was shifted by 285 bp from the LSC to IRb at the LSC/IRb border, trnL was
located in the IRa/b regions instead of the SSC region, and ycf1 was absent from the JSA site
(Figure 5). The LSC/IR and SSC/IR borders are relatively conserved among angiosperm
plastomes, mostly positioned within rps19 or ycf1 [53]. Significant expansions have been
reported in other plants, such as in Pelargonium × hortorum L.H. Bailey [54], Jasminum
nudiflorum Lindl [55], and Avena sativa [49].

This study revealed a relatively higher level of divergence in the noncoding than in
the coding regions, similar to what has been reported for the genus Quercus from the family
Fagaceae [6], which is related to the family Juglandacea. We also identified a considerable
number of variations in the noncoding cp sequences, such as trnC-GCA, trnW-CCA, trnI-
CAU, and trnI-UAG, of species in the genus Carya (Figure 6). Hence, these noncoding sites
may be useful for resolving the suspending phylogenetic relationships of Carya species [2].
Gene nucleotide variability (pi) values of LSC.rpl36, IR. rrn4.5, rrn23, and rrn16 were higher
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than 1, while the values of other genes were lower than 0.03. The results show that there
is lower nucleotide diversity among the six Juglandaceae species. The results can provide
reference for plastome marker selection, which should be carried out based on appropriate
evolutionary rates (pi values) [49]. The plastid genome is typically conserved across most
angiosperms [55]. Our results found that seven genes (rps15, rpoA, rpoB, petD, ccsA, atpI, and
ycf1-2) of C. cathayensis underwent positive selection (Table S4); other genes were shown to
have undergone purifying selection. These results indicate that there is selective pressure
on plastid function, where genes encoding proteins for DNA maintenance underwent
positive selection, and expression may be relaxed [49].

5. Conclusions

The diversification of C. cathayensis plastomes is explained by the presence of highly
diverse genes, LSC intermolecular recombination, and the co-occurrence of tandem repeats.
This study demonstrates that there is a wide variability of the junction sites between the
cp genomes of six Juglandaceae species, and there is higher divergence in the noncoding
regions than in coding regions in the cp genome of C. cathayensis. The genus Quercus was
polylogenetic, resulting from the embedded branches of the genera Lithocarpus and Castanea.
The characterization of the C. catayensis cp genome provides valuable genetic information
for the phylogenetic study and the development of conservation strategies of the genus
Carya.
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