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1. Introduction 

Myxozoans are spore-forming parasites of both freshwater and marine fishes (Lom & 
Dyková, 1992, Kent et al., 2001; Feist & Longshaw, 2006). The Myxozoa were previously 
classified as protozoans, although the multicellular state and functional specialization of the 
cells composing spores were considered to exceed protozoan level (Lom & Dyková, 1992). 
Indeed, molecular studies demonstrated that myxozoans are metazoans (Smothers et al., 
1994, Siddal et al., 1995). However, there were two conflicting views concerning the 
phylogenetic origin of myxozoans; the Bilateria (Smothers et al., 1994, Schlegel et al., 1996, 
Anderson et al., 1998, Okamura et al., 2002) vs. the Cnidaria (Siddal et al., 1995). More 
recently, the Cnidaria-hypothesis has been strongly supported by phylogenetic analyses of 
protein-coding genes of myxozoans (Jimenez-Guri et al., 2007, Holland et al., 2010). The 
phylum Myxozoa, of which more than 2100 species in 58 genera are described to date, is 
divided into two classes, Myxosporea and Malacosporea (Lom & Dyková, 2006). Most of 
myxozoans are not harmful to host fish, however, some species cause diseases in cultured 
and wild fish which are problems for aquaculture and fishery industries worldwide. 
Generally, freshwater myxosporeans appear to be specific at the family or the genus level of 
the host, while some marine myxosporeans have a low host-specificity. Some examples are 
mentioned below. 

For freshwater species, myxozoans infecting salmonids have been relatively well studied. 
For example Myxobolus cerebralis, the causative agent of whirling disease, Tetracapsuloides 

bryosalmonae, the cause of proliferative kidney disease (= PKD), and Ceratomyxa shasta, 
causing ceratomyxosis, have fatal effects on farmed salmonid fish (Table 1). Salmonid 
ceratomyxosis is a local disease which is restricted only to North America (Bartholomew et 
al., 1997), while whirling disease and PKD are widely distributed in the world (Hedrick et 
al., 1993, 1998). M. cerebralis infects cartilage tissue and causes a whirling behaviour (tail-
chasing swimming), a black tail, and skeletal deformities of affected fish. Whirling disease 
was previously known as a hatchery disease, but recently, it has been recognized as one of 
the causes for the decline of natural rainbow trout populations in several western states of 
the USA (Hedrick et al, 1998). Symptoms of PKD in salmonid fish are a swollen kidney (Fig. 
1A) and anemic gills, evoked by chronic inflammation of the kidney interstitium. The 
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Myxozoans Disease names or typical 
signs 

Fish References 

Ceratomyxa shasta Ceratomyxosis Salmonids 
Bartholomew et al. 
(1997) 

Chloromyxum 
truttae 

Hypertrophy of gall bllader Salmonids Lom & Dyková (1992) 

Henneguya ictaluri 
Proliferative gill disease 
(PGD) 

Ictalurus 
punctatus 

Pote et al. (2000) 

Henneguya 
salminicola 

Milky condition Salmonids 
Awakura & Kimura 
(1977) 

Hoferellus carassii 
Kidney enlargement disease 
(KED) 

Carassisus 
auratus 

Yokoyama et al. (1990) 

Myxidium giardi Systemic infection Anguilla spp. 
Ventura & Paperna 
(1984) 

Myxobolus artus Muscular myxobolosis Cyprinus carpio Yokoyama et al. (1996) 

Myxobolus cerebralis Whirling disease Salmonids Hedrick et al. (1998) 

Myxobolus cyprini Malignant anemia Cyprinus carpio 
Molnár & Kovács-
Gayer (1985) 

Myxobolus koi Gill myxobolosis Cyprinus carpio Yokoyama et al. (1997a) 

Myxobolus 
murakamii 

Myxosporean sleeping 
disease 

Oncorhynchus 
masou 

Urawa et al. (2009) 

Myxobolus wulii 
Cysts in gill or 
hepatopancreas 

Carassius auratus Zhang et al. (2010b) 

Parvicapsula 
pseudobranchicola 

Inflammation and necrosis 
of filaments 

Salmo salar Karlsbakk et al. (2002) 

Sphaerospora 
dykovae 

Swimbladder inflammation 
(SBI) 

Cyprinids Dyková & Lom (1988) 

Tetracapsuloides 
bryosalmonae 

Proliferative kidney disease 
(PKD) 

Salmonids Hedrick et al. (1993) 

Thelohanellus 
hovorkai 

Hemorrhagic thelohanellosis Cyprinus carpio Yokoyama et al. (1998) 

Table 1. Economically important freshwater myxosporeans. 

causative agent of PKD has not been identified for a long time, and thus the organism was 
previously called PKX (Hedrick et al., 1993). It was assigned to the Myxozoa in 1999 and 
initially called Tetracapsula bryosalmonae (Canning et al., 1999). Canning et al. (2000) erected 
the new class Malacosporea in the Myxozoa, and later, in the course of nomenclature 
changes by Canning et al. (2002) Tetracapsula bryosalmonae was renamed to Tetracapsuloides 
bryosalmonae (Fig. 1B). Salmonids suffering from ceratomyxosis show abdominal distension 
and exophthamia, possibly caused by osmotic imbalance due to C. shasta infection in the 
internal organs (Bartholomew et al., 1997). Henneguya salminicola produces cysts in the 
musculature of anadromous salmonid fish (Fig. 1C, D). This parasite does not cause a health 
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A & B: Proliferative kidney disease of rainbow trout (Oncorhynchus mykiss). Note the swollen kidney 
(arrow). Malacospore of Tetracapsuloides bryosalmonae from bryozoans host (B). C & D: Milky condition 
of pink salmon (Oncorhynchus gorbuscha). White exudate (arrow) filled with spores of Henneguya 
salminicola (D). Photos of courtesy by Dr. T. Awakura. E & F: Hemorrhagic thelohanellosis of common 
carp (Cyprinus carpio). Note extensive haemorrhages in mouth and abdomen caused by Thelohanellus 
hovorkai (F) in the subcutaneous tissue. G & H: Creamy appearance of enlarged hepatopancreas of 
goldfish (Carassius auratus) infected with Myxobolus wulii (H). Scale bars for B, D, F and H are 10μm. 

Fig. 1. Myxozoan diseases of freshwater fish and the causative myxozoan parasites.  
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problem of the host, but renders the infected fish unmarketable due to the milky condition 
of the flesh (Awakura & Kimura, 1977). Myxosporean sleeping disease is caused by 
Myxobolus murakamii infecting the peripheral nerve of masu salmon (Oncorhynchus masou). 
This disease has been known only in Hiroshima Prefecture, in south-western Japan, 
although M. murakamii occurs also in Hokkaido, the northernmost area of Japan. It remains 
to be clarified why the sleeping disease does not occur in Hokkaido (Urawa et al., 2009). 
Chloromyxum truttae infects the gallbladder of brood stock of rainbow trout (Oncorhynchus 

mykiss), while it infects the yearlings of Atlantic salmon (Salmo salar). Affected fish showed 
loss of appetite, yellow colouration of body, and hypertrophic gall bladder (Lom & Dyková, 
1992). Pseudobranch infection with Parvicapsula pseudobranchicola has been reported in 
Atlantic salmon in Norway, showing lethargy, disorganized swimming, exophthalmia and 
low-grade to significant mortalities (Karlsbakk et al., 2002). Affected fish exhibited eye 
bleeding and cataracts, possibly due to obstruction of the blood supply to the choroid bodies 
of the eyes. 

Myxobolus koi, Thelohanellus hovorkai, and Sphaerospora dykovae (= S. renicola) are well-known 
pathogens in cultured common carp (Cyprinus carpio) in Europe and Asia (Dyková & Lom, 
1988, Yokoyama et al., 1997a, 1998). M. koi infects the gills and causes a respiratory 
disfunction of carp juveniles. Yokoyama et al. (1997a) reported that there are two types of M. 

koi infections; the one forms large-type (pathogenic) cysts in the gill filaments, while the 
other forms small-type (non-pathogenic) cysts in the gill lamellae. T. hovorkai infecting the 
connective tissue is the causative agent of the hemorrhagic thelohanellosis of common carp 
(Yokoyama et al., 1998). Spore dispersion of T. hovorkai in subcutaneous connective tissue 
causes extensive hemorrhages and edema, finally resulting in death of affected fish (Fig. 1E, 
F). S. dykovae, the cause of swimbladder inflammation (SBI) was previously known as S. 

renicola, but has recently been renamed as S. dykovae in association with revised taxonomy of 
the genus Leptotheca (Gunter & Adlard, 2010). The target organ (spore forming site) for S. 

dykovae is the kidney, but the extrasporogonic stage of S. dykovae proliferates in the 
swimmbladder, which causes SBI of carp (Dyková & Lom, 1988). Myxobolus artus produced 
rice bean-like cysts in the musculature of common carp. Adult carp (over 1-year old) do not 
die of the disease but lose their commercial value. In contrast, juvenile carp (0-year old) 
heavily infected with M. artus exhibit hemorrhagic anemia and increased mortality rate. 
After degeneration of M. artus cysts in the musculature, spores engulfed by macrophages 
are transferred into gills, where numerous spores accumulate and pack within the lamellae. 
As a result, the gill epithelia are exfoliated, causing the hemorrhagic anemia (Yokoyama et 
al., 1996). Myxobolus cyprini infecting the skeletal muscle of common carp was also reported 
to cause the malignant anemia (Molnár & Kovács-Gayer, 1985), but it is unknown whether 
the disease mechanisms are the same as M. artus. Thelohanellus kitauei forms large cysts in the 
intestinal mucosa of common carp so that the intestine was occluded to emaciate the 
infected fish.  

Hoferellus carassii infecting the kidney of goldfish (Carassius auratus) is the causative agent of 
kidney enlargement disease (KED). This parasite does not cause a high mortality of affected 
fish, but a low marketability as an ornamental fish (Yokoyama et al., 1990). Myxobolus wulii 
forms numerous cysts in the gills of goldfish in some cases, whereas large cysts are formed 
in the hepatopancreas in other cases (Fig. 1G, H). In both cases, infection of fish results in high 
mortality (Zhang et al., 2010b). Gill infections with Henneguya ictaluri and H. exilis are typical 
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myxosporean diseases in catfish culture. H. ictaluri causes proliferative gill disease of catfish 
(Ictalurus punctatus) (Pote et al. 2000). Myxidium giardi infects multiple organs including gills 
and kidney of several eel species, Anguilla anguilla, A. rostorata, and A. japonica. Infected elvers 
exhibit dropsy, ascites, and swollen kidney (Ventura & Paperna, 1984). 

Compared to freshwater myxosporeans, many marine species have a broad host range,  
such as Kudoa thyrsites, K. yasunagai and Enteromyxum leei (Table 2). K. thyrsites lowers the  
 

Myxozoans Disease names or typical 
signs 

Fish References 

Enteromyxum leei Enteromyxosis or 
myxosporean emaciation 
disease 

Diplodus puntazzo,
Sparus aurata, 
Paralichthys olivaceus, 
Pagrus major, 
Takifugu rubripes  

Diamant (1997) 
Yasuda et al. (2002) 

Enteromyxum scophthalmi Enteromyxosis Palenzuela et al. (2002) 

Henneguya lateolabracis Cardiac henneguyosis Lateolabrax sp. Yokoyama et al. (2003) 

Henneguya pagri Cardiac henneguyosis Pagrus major Yokoyama et al. (2005a) 

Kudoa amamiensis Kudoosis amami Seriola quinqueradiata Yokoyama et al. (2000) 

Kudoa iwatai Cysts in multiple organs Dicentrarchus labrax, 
Lateolabrax japonicus, 
Mugil cephalus, 
Sparus aurata,  
Pagrus major,  
Oplegnatus punctatus 

Diamant et al. (2005) 

Kudoa lateolabracis Post-mortem 
myoliquefaction 

Lateolabrax sp.,  
Paralichthys olivaceus 

Yokoyama et al. (2004) 

Kudoa lutjanus Systemic infection Lutjanus erythropterus Wang et al. (2005) 

Kudoa neurophila Meningoencephalomyelitis Latris lineata Grossel et al. (2003) 

Kudoa shiomitsui Cysts in the heart Takifugu rubripes, 
Thunnus orientalis 

Zhang et al. (2010) 

Kudoa thyrsites Post-mortem 
myoliquefaction 

Salmo salar, 
Paralichtys olivaceus, 
Coryphaena hyppurus 

Moran et al. (1999a) 

Kudoa yasunagai Abnormal swimming Lateolabrax japonicus, 
Oplegnathus fasciatus, 
Seriola quinqueradiata, 
Takifugu rubripes,  
Thunnus orientalis,  
Plotosus lineatus 

Zhang et al. (2010a) 

Myxobolus acanthogobii Myxosporean scoliosis or 
skeletal deformity 

Seriola quinqueradiata, 
Scomber japonicus 

Yokoyama et al. (2005b) 

Sphaerospora epinepheli Disorientation, hemorrhage Epinephelus 
malabaricus 

Supamattaya et al. (1991) 

Sphaerospora fugu 
 (= Leptotheca fugu) 

Myxosporean emaciation 
disease 

Takifugu rubripes Tin Tun et al. (2000) 

Table 2. Economically important marine myxosporeans (see also Fig. 2). 
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A & B: Skeletal deformity (A) of Japanese mackerel (Scomber japonicus) infected with Myxobolus 
acanthogobii (B) in the brain. C & D: Enlarged bulbus arteriosus (C) of Chinease seabass (Lateolabrax sp.) 
infected with Henneguya lateolabracis (D) in the heart. E & F: Myxosporean emaciation disease (E) of tiger 
puffer (Takifugu rubripes) infected with developmental stages (arrows) of Enteromyxum leei (F) in the 
intestine. Diff-Quik stain (F). G & H: Cysts (arrows) in the skeletal muscle (G) of red sea bream (Pagrus 
major). Cysts are packed with spores of Kudoa iwatai (H). Scale bars for B, D, F and H are 10 μm. 

Fig. 2. Myxosporean diseases of marine fish and the causative myxozoan parasites.  
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commercial value of various cultured marine fish species, particularly Atlantic salmon 
(Salmo salar) in North America, by causing post-mortem myoliquefaction (Moran et al., 
1999a). K. yasunagai forms numerous cysts in the brain, probably causing disorder of 
swimming performance of many fish species (Zhang et al., 2010a). Recently, enteromyxosis 
or myxosporean emaciation disease, caused by E. leei, has emerged as a new threat in 
various cultured marine fish, e.g. gilthead sea bream (Sparus aurata) in Mediterranean 
countries and tiger puffer (Takifugu rubripes) in Japan (Diamant, 1997, Yasuda et al., 2002). In 
contrast, Enteromyxum scophthalmi and Sphaerospora fugu (= Leptotheca fugu) have been found 
only in the intestine of turbot (Psetta maxima) and tiger puffer (Takifugu rubripes), 
respectively, although the signs of the disease appear to be similar to E. leei infection (Tin 
Tun et al., 2000, Palenzuela et al., 2002). Heart infections have been documented such as 
Henneguya lateolabracis, H. pagri, and Kudoa shiomitsui. The former two species are highly 
pathogenic to Chinese sea bass (Lateolabrax sp.) and red sea bream (Pagrus major), 
respectively (Yokoyama et al., 2003, 2005a), whereas the pathogenic effects of K. shiomitsui 
are not clear (Zhang et al., 2010a). Many Kudoa infections in skeletal muscle may render the 
infected fish unmarketable by producing cysts (e.g., K. amamiensis and K. iwatai) or causing 
myoliquefaction (e.g., K. lateolabracis and K. neothunni). K. neurophila has become an 
impediment to the juvenile production of striped trumpeter (Latris lineata) in Tasmania, due 
to meningoencephalomyelitis of hatched larvae (Grossel et al., 2003). Myxobolus acanthogobii 
infects the brain and causes the myxosporean scoliosis in yellowtail (Seriola quinqueradiata), 
while infected Japanese mackerel (Scomber japonicus) exhibits the lordosis (dorso-ventral 
deformity) and infected goby (Acanthogobius flavimanus) is subclinical (Yokoyama et al., 
2005b). Sphaerospora epinepheli infects the kidney of Epinephelus malabaricus, which shows 
disorientation of the body and hemorrhages (Supamattaya et al., 1991). 

2. Myxosporeans 

The class Myxosporea is comprised of the two orders, Bivalvulida and Multivalvulida. 
Bivalvulids include 52 genera with more than 2100 species described from freshwater and 
marine fishes, while multivalvulids contain 5 genera with more than 60 species 
predominantly from marine fish (Lom & Dyková, 2006). Morphology, life cycle, phylogeny, 
and biology of myxosporeans are summarized below. 

2.1 Morphology of myxosporean 

Myxosporean spores are composed of shell valves, sporoplasms, and polar capsules 
containing coiled polar filaments (Fig. 3). Number of valves and polar capsules, 
arrangement of the polar capsules, and ornamentation of spores allow the genus-level 
diagnosis of myxosporeans. Identification at the species-level is based on spore dimensions. 
Species description of myxospores should follow the guidelines of Lom & Arthur (1989). For 
bivalvulids, spore length and spore width in frontal view, spore thickness in side view, 
length and width of polar capsules are measured (Fig. 3). If ornamentations such as the 
caudal appendages for Henneguya are present, the length is also measured. For 
multivalvulids, spore length (including the apical projections, if present) in side view, spore 
width and spore thickness in top view, length and width of polar capsules are determined. 
Care must be taken to avoid confusion of thickness and width of spores, because 
multivalvulids are radially symmetrical.  
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PC: polar capsule, SP: sporoplasm, SV: shell valve, SL: sutural line, L: spore length, W: spore width, T: 
spore thickness, PCL: polar capsule length, PCW: polar capsule width. 

Fig. 3. Diagrams of bivalvulid (A: frontal view, B: side view) and multivalvulid (C & E, top 
view, D: side view) myxosporean spores.  

2.2 Life cycle of myxosporeans 

The first myxozoan life cycle was discovered for M. cerebralis by Wolf & Markiw in 1984 and 
was later confirmed by many other researchers, who reported similar life cycles for more than 
30 myxosporean species. These life cycles involve an annelid invertebrate (mainly oligochaetes 
for freshwater species and polychaetes for marine species) and a vertebrate host which is 
typically a fish (Fig. 4). In the latter, myxosporean spore stages (= myxospores) develop. 
Myxospores are ingested by annelids, in which the polar filaments extrude to anchor the spore 
to the gut epithelium. Opening of the shell valves allows the sporoplasms to penetrate into the 
epithelium. Subsequently, the parasite undergoes reproduction and development in the gut 
tissue, and finally produces usually eight actinosporean spore stages (= actinospores) within a 
pansporocyst. After mature actinospores are released from their hosts they float in the water 
column (El-Matbouli & Hoffmann, 1998). Upon contact with skin or gills of fish, sporoplasms 
penetrate through the epithelium, followed by development of the myxosporean stage. 
Myxosporean trophozoites are characterized by cell-in-cell state, where the daughter 
(secondary) cells develop in the mother (primary) cells. The presporogonic stages multiply, 
migrate via nervous or circulatory systems, and develop into sporogonic stages. At the final 
site of infection, they produce mature spores within mono- or disporic pseudoplasmodia, or 
polysporic plasmodia (El-Matobouli & Hoffmann, 1995). 
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A: The polar filaments are extruded to anchor the spore to the gut epithelium, followed by opening of 
shell valves of myxospore. B: Gametogony. C: Sporogony of actinosporean phase. D: Mature 
actinospore stages develop in a pansporocyst, and actinospores are released into the water. E: Upon 
contact of actinospores with the skin or gills of the fish host, polar filaments extrude to anchor the spore 
to the skin or gills, facilitating invasion of the sporoplasms into the fish. F: Presporogonic multiplication 
in a cell-in-cell state. G: Sporogony of myxosporean phase. 

Fig. 4. Diagram of the life cycle of myxosporean alternating fish and annelid hosts.  

2.3 Morphology of actinospores 

Actinospores that are formed in the invertebrate hosts have a triradiate form with 
exclusively 3 polar capsules and mostly 3 caudal processes (Figs. 5 & 6). To characterize 
actinosporean stages, researchers should follow the guidelines of Lom et al. (1997); shape of 
the caudal processes (straight, curved or branched), presence of the style (small stalk below 
the spore body) and formation of spore nets (pattern of connection between several spores), 
number of daughter cells in the spore body, and measurements of the spore body, style, 
polar capsules and processes (Fig. 6).  

www.intechopen.com



 
Health and Environment in Aquaculture 

 

12

 
A: Raabeia-type actinospores of Myxobolus cultus from oligochaete Branchiura sowerbyi, B: 
Neoactinomyxum-type actinospore from B. sowerbyi. C: Triactinomyxon-type actinospore of M. arcticus 
from oligochaete Lumbriculus variegatus, D: Echinactinomyxon-type actinospore from B. sowerbyi, E: 
Aurantiactinomyxon-type actinospore of Thelohanellus hovorkai from B. sowerbyi, F: Sphaeractinomyxon-
type actinospores from unidentified marine oligochaete, which was collected in May 1990, on the coast 
of Mie Prefecture, the middle part of Japan. Arrow shows an actinospore released from a pansporocyst 
which develops 8 actinospores. Scale bars for A, C and D are 100 μm, and those for B, E and F are 50 
μm. 

Fig. 5. Several morphotypes of actinosporean spores.  
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A: Triactinomyxon, B & C: Aurantiactinomyxon, D & E: Neoactinomyxum, F & G: Tetractinomyxon.B, 
D & F: top views , C, E & G: side view. SB: spore body, LSB: length of spore body; WSB: width of spore 
body; S: style; LS: length of style; WS: width of style; CP: caudal process; LCP: length of caudal process 
(regardless of curvature). LSCP: largest span of between the tips of the caudal processes; PC: polar 
capsule; DSB: diameter of spherical spore body 

Fig. 6. Diagram of actinosporean spores.  

There have been 18 collective groups described thus far (Lom & Dyková, 2006, Rangel et al., 
2011). Based on the total length of spore (or interconnected spore mass), they are distinctly 
divided into two morphotypes; the small-type ranges from 15 to 40 μm, e.g., Endocapsa, 
Sphaeractinomyxon, Tetraspora, Tetractinomyxon, Aurantiactinomyxon, Neoactinomyxum 
and Guyenotia, while the large-type ranges from approximately 100 to 400 μm, e.g., 
Echinactinomyxon, Raabeia, Triactinomyxon, Pseudotriactinomyxon, Hexactinomyxon, 
Ormieractinomyxon, Siedleckiella, Synactinomyxon, Antoactinomyxon, Hungactinomyxon 
and Unicapsulactinomyxon. From the practical point of view, the large-type actinospores 
are more likely to be removed by filtration systems than the small-type actinospores. Thus it 
is important to determine the type of the corresponding actinospore, not only for 
parasitology, but also for disease management in aquaculture. 

Practical key for determination of actinospore-types: 

1. a. Processes are absent..........................................................................................................2 
b. Processes are present.........................................................................................................4 
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2. a. Spores are tetrahedral with a single binucleate sporoplasm ..................................... 
............................................................................................................................Tetractinomyxon 
b. Spores are subspherical with polar capsules embedded beneath the spore 
surface.........................................................................................................................................3 

3. a. Eight spores, rounded in side view, are developed within a pansporocyst…………..  
.......................................................................................................................Sphaeractinomyxon 
b. Four spores, flattened in side view, are developed within a pansporocyst...............  
.......................................................................................................................................Tetraspora 

4. a. Spores do not connect each other......................................................................................5 
b. Spores connect each other at the end of the processes, forming a net structure........7 

5. a. Processes are reduced to bulge-like swellings.................................................................6 
b. Spores with curved leaf-like processes resemble an orange with partly opened peel  
.....................................................................................................................Aurantiactinomyxon 

c. Spores have a subspherical spore body with 3 finger-like processes..........Guyenotia 
d. Spores have an ovoid spore body with 3 straight spine-like processes.......................  
.........................................................................................................................Echinactinomyxon 
e. Spores have an elipsoidal spore body with 3 curved, and sharp-tipped processes...  
............................................................................................................................................Raabeia 

f. Spores have an elongated spore body with a style and 3 anchor-like processes.........  
..............................................................................................................................Triactinomyxon 
g. Spores are similar to triactinomyxon, but the processes have longitudinal sutures, 
which remain fused over all their length..........................................Pseudotriactinomyxon 
h. Spores have an elongated spore body with a style and 3 diverged (in total 6) 
processes.....................................................................................................Hexactinomyxon 
i. Spores have a single and large polar capsule in an elliptical spore body..................  
.................................................................................................................Unicapsulactinomyxon 

6. a. Flattened in side view, and polar capsules are embedded below the spore surface  
.......................................................................................................................................Endocapsa 

b. Rounded triangular in top view, and polar capsules protrude at the spore apex.....  
..........................................................................................................................Neoactinomyxum 

7. a. Spore units are echinactinomyxon whose 4 processes of different spores form the 
junction............................................................................................................Antoactinomyxon 
b. Spores units are triactinomyxon whose 3 processes of different spores form the 
junction.....................................................................................................................Siedleckiella 
c. Spore units are echinactinomyxon whose 8 processes have anchor-like hooks at the 
end, adhering together..............................................................................Ormieractinomyxon 
d. Spores have two wing-like and one short, conical process, forming a star-like 
structure.............................................................................................................Synactinomyxon 
e. Four spores form a cube-like net interlaced with another cube made of 4 spores...... 
.........................................................................................................................Hungactinomyxon 

2.4 Phylogeny of myxosporeans and actinospore-types 

As far as we know, the corresponding actinospore stages have been identified for 39 
myxosporean species. Among them, 18S rDNA sequences of 33 species were registered in 
GenBank for either myxospore or actinospore stages, or both (Table 3). Cladistic analysis of 
myxosporean and actinospore-types revealed a lack of taxonomic congruity between the  
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Myxosporean species GenBank No. Actinospore type GenBank No. 

Ceratomyxa shasta AF001579 Tetractinomyxon nr 

Ceratomyxa auerbachi EU616730 Tetractinomyxon EU616733 

Chloromyxum schurovi AJ581917 Neoactinomyxum AJ582007 

Chloromyxum truttae AJ581916 Aurantiactinomyxon AJ582006 

Ellipsomyxa gobii GQ229235 Tetractinomyxon AY505127 

Ellipsomyxa mugilis AF411336 Tetractinomyxon EU867770 

Gadimyxa atlantica EU163416 Tetractinomyxon EU163412 

Henneguya exilis AF021881 Aurantiactinomyxon nr 

Henneguya ictaluri AF195510 Aurantiactinomyxon nr 

Henneguya nuesslini AY669810 Triactinomyxon nr 

Myxidium giardi AJ582213 Aurantiactinomyxon nr 

Myxidium truttae AJ582061 Raabeia AJ5820009 

Myxobilatus gasterostei EU861210 Triactinomyxon EU861209 

Myxobolus arcticus AB353130 Triactinomyxon AB353128 

Myxobolus bramae AF507968 Triactinomyxon nr 

Myxobolus cerebralis EF370478 Triactinomyxon MCU96492 

Myxobolus cultus HQ613409 Raabeia AB121146 

Myxobolus dispar AF507972 Raabeia nr 

Myxobolus hungaricus AF448444 Triactinomyxon nr 

Myxobolus intimus AY325285 Triactinomyxon nr 

Myxobolus lentisuturalis AY278563 Raabeia nr 

Myxobolus macrocapsularis AF507969 Triactinomyxon nr 

Myxobolus parviformis AY836151 Triactinomyxon AY495704 

Myxobolus pavlovskii HM991164 Echinactinomyxon nr 

Myxobolus portucalensis AF085182 Triactinomyxon nr 

Myxobolus pseudodispar AF380144 Triactinomyxon EF466088 

Myxobolus rotundus EU710583 Triactinomyxon FJ851447 

Parvicapsula minibicornis HQ624972 Tetractinomyxon DQ231038 

Sphaerospora dykovae 

(= S. renicola) 
AY735410 Neoactinomyxum nr 

Sphaerospora truttae AJ581915 Echinactinomyxon (?) nr 

Thelohanellus hovorkai DQ231155 Aurantiactinomyxon DQ231155 

Thelohanellus nikolskii DQ231156 Aurantiactinomyxon nr 

Zschokkella nova DQ377690 Siedleckiella nr 

Table 3. List of myxosporean species and the corresponding actinosporean types registered 
in GenBank. nr: not registered. 
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two stages (Xiao & Desser, 2000a). Different phenotypes may be subject to environmental 
factors. Since the first study of molecular relationship between myxosporean and actinospore-
types based on the 18S rDNA by Holzer et al. (2004), some more life cycles of marine 
myxosporeans have been discovered. Thus we update the phylogenetic analysis of species, 
where both life stages are described using the data available in GenBank. It is widely  
accepted that freshwater and marine myxosporeans are separated into two major branches  
(Kent et al., 2001, Fiala, 2006), and the phylogenetic tree in the present study also supports this  
(Fig. 7). Further, the close relationship between the marine clade myxosporeans and the  
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TET: tetractinomyxon, TRI: triactinomyxon, ECH: echinactinomyxon, AUR: aurantiactinomyxon, NEO: 
neoactinomyxum, RAA: raabeia, SIE: siedleckiella. 

Fig. 7. Phylogram of myxosporeans based on 18S rDNA. Bayesian and maximum likelihood 
analyses. Myxosporean species names were followed by GenBank accession numbers in 
parenthesis and the corresponding actinospore-types.  
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tetractinomyxon-type actinospores has been strongly supported, whereas no obvious pattern 
was observed for actinospore morphology for the freshwater clade myxozoans. 

To date, the information on myxozoan life cycles is still limited. Therefore, the species used 
for this phylogenetic analysis only covers a small portion of the wide myxozoan diversity. 
This leads to instability in some parts of the tree. The marine “tetractinomyxon-clade” was 
well defined, only the position of C. auerbachi and the rather aberrant C. shasta was not 
resolved properly. Considering that the hosts for C. shasta are anadromous salmonids and a 
polychaete which is typically marine, C. shasta may be an originally marine parasite, which 
migrated secondarily to the freshwater environment. The inclusion of further Ceratomyxa-
species would probably help to stabilize this placement, but unfortunately C. shasta and C. 
auerbachi are the only species of the genus where both actinospore and myxospore are 
known. The exact positions of M. cerebralis, H. exilis + H. ictaluri, H. nuesslini, M. portucalenis 
and M. cultus + M. lentisuturalis at the base of the “Myxobolus-clade” were not clarified. 
Again, the inclusion of more species might stabilize their branches. The placement of M. 
rotundus with M. parviformis is quite different compared to the analysis of Fiala (2006), but 
the sequence of the actinospore was used in the present study, because it exhibits a higher 
quality at the 3’ end compared to the available myxospore-sequence of this species. 

According to the hypothesis of Fiala & Bartošová (2010), who stated that the common 
ancestor of myxozoans was a freshwater species, the congruence of the marine clade 
actinospore-type (tetractinomyxon) might reflect the divergence of freshwater and marine 
myxozoans. When colonizing polychaetes as hosts, the tetractinomyxon type of spore 
developed or was already present in the freshwater ancestor of marine myxozoans. This 
actinospore-type persisted at least in most myxozoans parasitizing marine polychaetes that 
we know to date. Knowledge of more life cycles of marine myxozoans is necessary to 
provide information on marine actinosporean diversity. At present, there are 13 marine 
actinosporeans for which the myxosporean stage of the life cycle is still unknown (Table 4); 2 
types of endocapsa from oligochaetes, 3 types of sphaeractinomyxon from polychaetes, 4 
tetractinomyxon from polychaetes and sipunculids, 2 tetraspora from oligochaetes, 1 
triactinomyxon from oligochaete, and 1 unicapsulactinomyxon from polychaete. Among 
them, most of the oligochaetes are benthic living in beach sediments whereas most of the 
polychaetes are sedentary tube worms (fan worm) attaching on the rocks or shells in coastal 
areas. The sipunculid (peanut worm) lives in shallow waters, either in burrows or in 
discarded shells. 

2.5 Biology of actinosporeans 

Since the discovery of the life cycle of M. cerebralis by Wolf & Markiw (1984), many scientists 
have focused on biological studies of actinosporeans, such as emergence from annelid hosts, 
waterborne stage, invasion mechanisms, and the portals of entry into fish host. Invasion 
process has been also investigated in relation to the mechanisms in the host specificity of the 
parasites. The current knowledge on the aforementioned points is summarized below. 

2.5.1 Methodology for actinosporean biology 

To obtain materials for research on actinosporeans, it is desirable to maintain the life cycle of 
the model-myxosporean in the laboratory. Released actinospores can be harvested by  
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Actinospore type Invertebrate host Corresponding 
myxosporean 

Endocapsa rosulata (Hallett et al., 
1999) 

Heterodrilus cf. keenani 
(Oligochaeta) 

nd 

Endocapsa stepheni (Hallett et al., 
1999) 

Heterodrilus cf. keenani 
(Oligochaeta) 

nd 

Sphaeractinomyxon stolci (Caullery 
& Mesnil, 1904) 

Clitellio, Peloscolex, Tubifex 
(Oligochaeta) 

nd 

Sphaeractinomyxon ersei (Hallett et 
al., 1998) 

Doliodrilus diverticulatus
(Oligochaeta) 

nd 

Sphaeractinomyxon leptocapsula 
(Hallett et al., 1999) 

Heronidrilus sp. (Oligochaeta) nd 

Tetractinomyxon (Køie et al., 2008) Chone infunduliformis
(Sabellidae: Polychaeta) 

Ceratomyxa auberbachi 

Tetractinomyxon (Køie et al., 2004) Nereis diversicolor and N. 
succinea (Nereididae: 
Polychaeta) 

Ellipsomyxa gobii 

Tetractinomyxon (Køie et al., 2007) Spirorbis sp.(Spirorbidae: 
Polychaeta) 

Gadimyxa atlantica 

Tetractinomyxon (Køie, 2002) Hydroides norvegica (Polychaeta) nd 

Tetractinomyxon (Køie, 2005) Unidentified spionid 
(Polychaeta) 

nd 

Tetractinomyxon intermedium 
(Ikeda, 1912) 

Nephasoma minuta
(Sipunculidae: Sipuncula) 

nd 

Tetractinomyxon irregulare (Ikeda, 
1912) 

Nephasoma minuta
(Sipunculidae: Sipuncula) 

nd 

Tetraspora discoidea(Hallett & 
Lester, 1999) 

Doliodrilus diverticulatus 
(Oligochaeta) 

nd 

Tetraspora rotundum (Hallett & 
Lester, 1999) 

Tibificidae spp. (Oligochaeta) nd 

Triactinomyxon (Roubal et al., 1997) Duridrilus sp. (Oligochaeta) nd 

Unicapsulactinomyxn (Rangel et al., 
2011) 

Diopatra neapolitana
(Polychaeta) 

nd 

Table 4. Marine actinosporeans from annelids or sipunculids. nd: not determined. 

filtering of the aquarium water through mesh screens (El-Matbouli et al., 1995). If a 
laboratory system is not available, study materials are obtained from naturally infected wild 
invertebrate worms. Yokoyama et al. (1991) developed a multi-well plate method to collect 
actinospores of a single myxozoan species. Oligochaetes are placed individually in wells 
filled with dechlorinated tapwater. One of the advantages of this method is that even small-
size actinospores which are hard to trap by filtration can be collected easily from wells. 
However, it may be difficult to apply this method to fragile or large-size worms. Also, if 
actinospores are released after host death, the well plate method will be inapplicable 
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(Rangel et al., 2009). In that case, worms may be crushed on a glass slide with gentle 
pressure. However, Rangel et al. (2011) successfully obtained marine actinosporeans of 
Zschokkela mugilis from the coelomic fluid of the polychaete host with a hypodermic needle 
and syringe. To determine the viability of actinospores, presence or absence of the 
sporoplasms in the spore body has been used as an indicator (Yokoyama et al., 1993, Xiao & 
Desser, 2000b), because aged actinospores spontaneously release sporoplasms so that spores 
become empty. Alternatively, a vital staining technique with fluorescein diacetate (FDA) 
and propidium iodide (PI) can be applied (Markiw, 1992, Yokoyama et al., 1997b, Wagner et 
al., 2003, Kallert et al., 2005). 

2.5.2 Emergence pattern 

Most of freshwater actinosporeans infect the intestinal epithelium of oligochaetes and 
emerge into the environment by defecation (Fig. 8A, B), whereas C. shasta actinosporeans  

 
A: Pansporocysts (arrows) develop in the intestinal epithelium of Branchiura sowerbyi. B: Pansporocyst is 
excreted from B. sowerbyi. As the pansporocyst membrane (arrow) is ruptured, actinospores are 
released. Tip of the caudal process is still folded (arrowhead). C: Free actinospore. Note completely 
unfolded processes. D & E: Chemical response of actinospore to fish mucus. D: Intact spore. E: Empty 
spore releasing sporoplasm (arrowhead) immediately after contact with mucus. Polar filaments (arrow) 
are discharged. Scale bars for A, B and C are 50 μm, and those for D and E are 10 μm. 

Fig. 8. Process of emergence, floating and invasion of Myxobolus cultus actinospores.  
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develop in the epidermis of the polychaete Manayunkia speciosa and actinospores are released 
directly from the epidermis into the water column (Meaders & Hendrickson, 2009). In many 
myxosporean species, actinospores are shed from the annelid hosts between spring and 
summer (Yokoyama et al., 1993, El-Mansy et al., 1998a, b, Özer & Wootten, 2002), which may 
be an adaptation to synchronize with hatching and growing seasons of larval fish. However, 
in some species, actinospores are released throughout the year. Prevalence of infection in the 
invertebrate hosts has been reported to be relatively low, 0.1-4% (Yokoyama et al., 1993, Özer 
& Wootten, 2002), but in some cases, it reached extremely high value of over 90% (El-Mansy 
et al., 1998a). Actinospore release may persist for the natural life-span of oligochaete hosts, at 
least for 2 years in case of Tubifex tubifex infected with M. cerebralis (Gilbert & Granath, 2001). 
Actinospore emergence follows a circadian rhythm with a significant peak in the middle of 
the night or early morning (Yokoyama et al., 1993, Özer & Wootten, 2001). It is unclear if this 
daily pattern in spore release is due to the rhythm of the oligochaete itself or of the 
actinosporean, and the ecological significance of this phenomenon for transmission to the 
next host remains to be investigated. Alteration of the photoperiods affected the release 
pattern of actinospores (Yokoyama et al., 1993), and thus artificial control of lighting 
condition may have some effects on myxosporean transmissions in the field. 

2.5.3 Waterborne stage 

Actinosporeans with long processes are buoyant (Fig. 8C) and can remain suspended in the 
water column for more than 24 hours (Kerans & Zale, 2002). Longevity of actinospores in the 
water ranges from 4 to 25 days, depending on temperature and species (Markiw, 1992, 
Yokoyama et al., 1993, Xiao & Desser, 2000b). Life-span decreases with increasing 
temperature (Yokoyama et al., 1993, Özer & Wootten, 2002). At ambient temperature (20 ºC), 
viability of raabeia actinospores persisted for 10 days, while echinactinomyxon spores 
survived for 21 days (Yokoyama et al., 1993). In contrast, Özer & Wootten (2002) reported 
that raabeia and synactinomyxon spores remain viable only for 2-3 days at 22 ºC. Markiw 
(1992) showed that the infectivity of actinospores of M. cerebralis persisted for 3-4 days at 
12.5 ºC, whereas El-Matbouli et al. (1999a) indicated that M. cerebralis actinospores survived 
and maintained their infectivity for 15 days at 15 ºC. Using morphological characteristics 
and vital staining technique, Kallert & El-Matbouli (2008) showed that actinospores of the 
myxosporean species survive longer at lower temperature (4 °C vs. 12 °C). M. cerebralis 
actinospores were most sensitive and showed a significant decrease of viability already after 
1 d at 12 °C, while M. pseudodispar and Henneguya nuesslini survived longer, even at 12 °C. 
Water flow has been recognized as an environmental factor which have some effects on 
myxsporean infections (Hallett & Bartholomew, 2008, Bjork & Bartholomew, 2009). Higher 
water velocity resulted in lower infection prevalence of C. shasta in polychaete and 
decreased infection severity in fish (Bjork & Bartholomew, 2009). During the planktonic 
phase of actinospores, high flow velocity may cause mechanical damages and dilution 
effects on actinospores. Also, high flow rates may limit the time for actinospores to 
encounter and attach to the fish host (Hallett & Bartholomew, 2008). 

2.5.4 Invasion mechanisms 

Polar filament discharge and sporoplasm release of actinospores are induced by chemical 
responses to fish mucus (Fig. 8D & E), suggesting the role of chemoreception in the host 
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attachment of actinospores (Yokoyama et al., 1993, 1995, Uspenskaya, 1995, McGeorge et al., 
1997, Xiao & Desser, 2000b). However, the percentage of actinospores reacting to the mucus 
varied among fish and parasite species (Yokoyama et al., 1993, Özer & Wootten, 2002). Thus, 
it is not clearly understood whether the chemical stimulation with fish mucus reflects the 
host specificity of myxosporeans. Actinospores of M. cultus reacted not only to the skin 
mucus from natural host but also to the mucus from abnormal host (Yokoyama et al., 1993) 
and even to mucin from bovine submaxillary gland (Yokoyama et al., 1995). Further, 
purification of the reactants from fish mucus by gel filtration and ultrafiltration revealed 
that they were low-molecular-weight (<6000 MW) substances (Yokoyama et al., 1995). 
Yokoyama et al. (2006) indicated that M. arcticus actinospores reacted to the mucus of the 
susceptible host, masu salmon (Oncorhynchus masou) as well as non-susceptible hosts, 
sockeye salmon (O. nerka) and goldfish (Carassius auratus), whereas T. hovorkai actinospores 
reacted only to the susceptible host, common carp (Cyprinus carpio). In contrast, actinospores 
of Myxobolus cerebralis did not react to fish mucus alone (El-Matbouli et al., 1999b) and 
required both mechanical and chemical stimuli (Kallert et al., 2005). Nevertheless, M. 

cerebralis actinospores were unable to specifically detect susceptible fish (salmonids), but 
also penetrated gills of carp at the same rate as gills of trout (Kallert et al., 2009). Further, 
Kallert et al (2007) revealed the process of host invasion of M. cerebralis actinospores in 
detail; immediately after filament discharge of actinospores, contraction of the filaments 
brings the actinospore apex to contact with the host surface. Then, opening of the apical 
valves is followed by penetration of the sporoplasms through the epithelium. The active 
fraction inducing the polar filament discharge of M. cerebralis actinospores was small 
molecular, amphiphilic to slightly hydrophobic organic substances (Kallert et al., 2010). 
More recently, several nucleosides derived from surface mucus of fish, inosine, 2‘-
deoxyinosine and guanosine have been determined by HPLC method as ‘chemical cues’ 
triggering host recognition for M. cerebralis actinospores (Kallert et al., 2011).  

2.5.5 Portals of entry into fish 

Entry of myxozoans into the fish host via the skin, fins and buccal cavity was first 
demonstrated in rainbow trout experimentally exposed to actinospores of Myxobolus cerebralis 
by Markiw (1989). Within 5-10 min of exposure, aggregates of sporoplasms were observed in 
the epithelia of exposed fish (Markiw, 1989, El-Matbouli et al., 1995). Further, El-Matbouli et 
al. (1999b) revealed by scanning electron microscopy that M. cerebralis actinospores penetrate 
into the secretory openings of the mucous cells of the epidermis. Belem & Pote (2001) showed 
by indirect fluorescent antibody test that Henneguya ictaluri has the multiple entry sites; the 
gut mucosa, skin and buccal cavity of the channel catfish (Ictalurus punctatus). Some 
actinospores may be able to enter the fish through different portals of entry. Sphaerospora 
truttae and Ceratomyxa shasta utilize predominantly the gills as entry site (Holzer et al., 2003, 
Bjork & Bartholomew, 2010). Yokoyama & Urawa (1997) suggested that small actinospore 
(aurantiactinomyxon) invade the fish through the gills, whereas large actinospores 
(triactinomyxon and raabeia) penetrate mainly through the fin and skin.  

2.5.6 Other biological characteristics 

Effects of physical and chemical treatments on viability of actinosporeans were investigated, 
although the information is available only for Myxobolus cerebralis and Myxobolus cultus. For 

www.intechopen.com



 
Health and Environment in Aquaculture 

 

22

M. cerebralis, drying at room temperature for 15 min, freezing at -20ºC for 1 hour, 
temperatures above 75 ºC for 5 min and sonication (47 kHz, 130 W) for 10-13 min were 
effective in killing actinospores, but pressure of 6.2 x 107 Pa (9000 psi) was not (Wagner et 
al., 2003). To inactivate actinospores of M. cerebralis chemically, chlorine of 13 ppm for 10 
min, hydrogen peroxide of 10% for 10 min, and povidone-iodine of 50% solution (5000 ppm 
active iodine) for 60 min were effective (Wagner et al., 2003). Electricity with a pulse length 
of 99 μsec at 3 kV induced polar filament discharge of M. cerebralis actinospores, suggesting 
a potential use of direct current as a means of disinfection (Wagner et al., 2002). For M. 
cultus, drying at 5 ºC for 1 day and ultraviolet irradiation at 600 mW s cm-2 were highly 
effective in killing actinospores, whereas sodium chloride of 0.5% had a moderate effect 
(Yokoyama et al., 1997b). However, even high concentrations of malachite green (10 ppm), 
metrophonate (5 ppm) and formalin (1000 ppm) did not affect the treated spores (Yokoyama 
et al., 1997b).  

Actinosporean infections are also influenced by various biological and ecological factors, 
such as host (annelid) susceptibility, water temperature, and sediment type. Susceptibility to 
M. cerebralis varied among different genetic strains of T. tubifex (Beauchamp et al., 2002). 
Development and release of M. cerebralis actinospores from T. tubifex were temperature-
dependent; High temperatures above 20 ºC were lethal for the parasite, whereas low 
temperatures between 5 and 10 ºC delayed development, and moderate temperatures 
between 15 and 20 ºC accelerated development, and increased the number of spores released 
(El-Matbouli et al., 1999a). Blazer et al. (2003) also reported a similar pattern of temperature 
effects on development of M. cerebralis actinospores in T. tubifex. Environmental factors like 
substratum and water quality may influence the actinosporean production. Blazer et al. 
(2003) indicated that the mud substrate produced the highest total number of M. cerebralis 
actinospores in T. tubifex, whereas the leaf litter was the least productive substratum in 
number of actinospores released. Aquatic oligochaetes have habitat preferences which are 
closely associated with some environmental parameters, such as substrate type, texture, 
nutritional potentials, and anaerobic conditions (Koprivnikar et al., 2002, Liyanage et al., 
2003). Actinospore production of M. cerebralis is also affected by environmental pollutants 
(Shirakashi & El-Matbouli, 2010). 

3. Fish-to-fish transmission of marine myxosporeans 

Enteromyxum leei develops within the gut epithelium of marine fish, and the developmental 
stages are excreted to the water (Fig. 9). Released stages are orally ingested by other fish, 
resulting in establishment of horizontal infection (Diamant, 1997, Yasuda et al., 2002, 2005, 
Sitja-Bobadilla et al., 2007). This route of transmission may occur only in intensive culture 
systems, where it facilitates rapid spread of the parasite. Broad host range of E. leei also 
appears to assist the parasite’s dispersion (Diamant et al., 2006). Indeed, an episode of 
enteromyxosis in 25 different fish species in an exhibition aquarium was reported (Padrós et 
al., 2001). E. scophthalmi and E. fugu also transmit from fish to fish directly, but their host 
ranges are narrow. 

3.1 Infective developmental stages of Enteromyxum spp. in water column 

Although actinosporean stages for Enteromyxum spp. have not been discovered, some 
biological characteristics of infective developmental stages have been investigated. Viability  
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A: E. leei develops in the intestine, followed by excretion through the vent. B: Developmental stages are 
horizontally transmitted to other fish by oral ingestion. C: Mature myxospores are released into water 
column. D: Myxospore possibly infects marine annelids. E: Actinospore is possibly released from 
annelids, followed by infection to fish. 

Fig. 9. Diagram of fish-to-fish transmission and putative life cycle of Enteromyxum leei  

of Enteromyxum spp. stages was determined in vitro by dye-exclusion assays (Redondo et al., 
2003, Yokoyama & Shirakashi, 2007), tetrazolium-based cell-proliferation assay (Redondo et 
al., 2003), and vital staining with fluorescent dyes, Hoechst 33342 and propidium iodide 
(Yokoyama et al., 2009). Longevities of E. leei and E. scophthalmi were estimated to be at most 
1 day in seawater (Redondo et al., 2003, Yokoyama et al., 2009). However, intestinal mucosal 
remnants covering the parasites may protect them from osmotic shock, resulting in retaining 
their viability in seawater (Redondo et al., 2002, Yokoyama et al., 2009). Survivability of 
developmental stages of E. leei decreased significantly in low salinity of less than 8‰ 
(Yokoyama & Shirakashi, 2007). Also, fish size and parasite dose likely affect the success of 
fish-to-fish transmission (Sitja-Bobadilla et al., 2007, Yokoyama & Shirakashi, 2007). 

3.2 Invasion and development of Enteromyxum spp. in fish host 

Following ingestion of the infective stages, the first barrier is the intestinal mucosa of the 
fish. A role of lectin/carbohydrate interaction in the turbot-E. scophtahlmi relationship was 
suggested (Redondo & Alvarez-Pellitero, 2009). Further, attachment and invasion of E. 

scophthalmi to the turbot intestinal epithelium were inhibited by pre-treatments of parasites 
by some lectins, Con A and SBA, suggesting the involvement of N-acetyl-galactosamine and 
galactose residues and also of mannose/glucose residues (Redondo & Alvarez-Pellitero, 
2010). After penetration of the developmental stages into the intestinal epithelium, several 
factors are involved in the progression of the disease (Quiroga et al., 2006). One of the most 
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important factor is water temperature.Yanagida et al. (2006) showed that temperatures 
below 15 ºC suppressed the development of E. leei and onset of the disease, but a 
temperature increase to 20 ºC promoted E. leei development. Similarly, infection with E. 

scophthalmi was established earlier at higher temperature (Redondo et al., 2002). 

4. Malacosporeans 

The class Malacosporea is a recently discovered group, and only three species belonging to 
two genera have been described to date (Canning & Okamura, 2004; Canning et al., 2007). 
All of them are known to be parasites of freshwater bryozoans, but the life cycle is described 
only for T. bryosalmonae. Besides the bryozoan stage, it involves the infection of salmonid 
fish (Saulnier et al., 1999) where the parasite causes the Proliferative Kidney Disease (PKD). 
According to recent findings, species of the second malacosporean genus Buddenbrockia 
might also require a fish host in their life cycles (Grabner & El-Matbouli, 2010a).  

4.1 Morphology of malacosporeans in bryozoan hosts (bryozoa-spores) 

Malacosporean spores developing in the bryozoan host (bryozoa-spores) are small (15 – 20 
µm), approximately spherical without appendices (Fig. 10). They consist of two haploid 
sporoplasms including one secondary sporoplasm cell each, four capsulogenic cells and 
eight valve cells (Canning et al., 2000, McGurk et al., 2005). Only minimal morphological 
differences have been recorded between spores of different malacosporean species. Morris 
et al. (2002) documented ornamented spores with a mean diameter of 19.0 µm in the 
bryozoan Plumatella repens infected with worm-like malacosporean stages. The spores 
observed by McGurk et al. (2006a), also released by a worm-shaped malacosporean in P. 
repens, were spherical and 17.7 µm in diameter. 

 
Fig. 10. Diagram of malacosporeans in bryozoans (bryozoa-spores). 

4.2 Morphology of malacosporean in fish hosts (fishmalacospores) 

To date, fresh and mature fishmalacospores were only described for T. bryosalmonae. They 
are about 12 × 7 μm in size and bear two polar capsules with 4 to 6 turns of their polar 
filament, one sporoplasm and four valve cells (Kent et al., 2000, Hedrick et al., 2004, Morris 
& Adams, 2008). Apparently, only few fishmalacospores are released at a time by T. 
bryosalmonae-infected fish, because only small numbers of spores were found in urine 
samples from infected fish over a prolonged period of time (Hedrick et al., 2004). 
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4.3 Life cycle of malacosporeans 

Life cycles of malacosporeans still remain mysterious, but recent studies have revealed most 
parts of the development and transmission of T. bryosalmonae (Canning et al., 1999, Kent et 
al., 2000, Morris & Adams, 2006a). This parasite develops as sac like stages in the body 
cavity of freshwater bryozoans, followed by release of malacospores to the surrounding 
water. When the spores come in contact to the skin or gills of a fish host (salmonid), the 
sporoplasm penetrates the epithelium and is transported by the blood into the kidney 
interstitium, causing PKD. Sporogony commences after migration to the kidney tubules and 
mature spores are released with the urine to the water, where they are infective for 
bryozoans (Fig. 11). The whole development, beginning with the penetration into the fish, to 
the presence of mature spores in the kidney tubules takes about 9 weeks in brown trout 
(Morris & Adams 2006a). 

 
A: Fishmalacospore infects freshwater bryozoans. B: Presaccular cell aggregates in coelomic cavity of 
bryzoans. C: Early spore sac floating in bryozoan coelomic fluid. It contains stellate and sporogenic cells. D: 
Sporogenic cell becomes enclosed by stellate cells. E: Maturing spore with casulogenic cells, valve cell and 
forming sporoplasms. F: Mature bryozoa-spore infects fish. G: Proliferative stage (cell doublet with 
primary cell and secondary cell inside) in kidney interstitium. These stages are in close contact to host 
phagocytes (not shown). H: Division of cell doublet resulting in 2 cell doublets. I: Engulfment of one cell 
doublet by another resulting in a S-T-doublet (primary cell enclosing one secondary and one secondary 
with tertiary cell). J: S-T-doublet in kidney tubule. Note that contact to the host phagocyte is lost during 
migration through the tubule epithelium. K: Sporogony inside of primary cell (pseudoplasmodium). 

Fig. 11. Diagram of the life cycle of T. bryosalmonae (Malacosporea), alternating between fish 
and bryozoan host.  
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T. bryosalmonae can infect a wide variety of salmonid fish. Most affected are species of the 
genera Salmo and Oncorhynchus, but also Salvelinus species (Hedrick et al., 1993, El-Matbouli 
& Hoffmann, 1994). Severe outbreaks of the disease were also noted in grayling (Thymallus 

thymallus) (Hoffmann & Dangschat, 1981). Northern Pike (Esox lucius) is the only non-
salmonid fish species, in which extrasporogonic stages similar to those of T. bryosalmonae 
were found (Seagrave et al., 1981, Morris et al., 2000a). It was observed that fish become 
resistant against reinfection with T. bryosalmonae after surviving the disease (Ferguson, 1981, 
Foott & Hedrick, 1987). However, in some fish species sporogonic stages seem to persist 
after clinical infection and possibly continue to form spores chronically (Kent et al., 1998, 
Kent et al., 2000). Recently it was shown by transmission experiments conducted with 
European parasite lineages that brown trout (Morris & Adams, 2006a) and brook trout 
(Grabner & El-Matbouli, 2008) can transmit the parasite to bryozoans. In contrast, rainbow 
trout and grayling became infected, but no infection appeared in bryozoans cohabitated 
with these fish. But as mature fishmalacospores were reported from rainbow trout infected 
with T. bryosalmonae in North America, it seems likely that there is a regional difference in 
host specificity (Morris & Adams, 2006a). Additionally, infection experiments have shown 
that common carp (Cyprinus carpio) and minnow (Phoxinus phoxinus) can become infected by 
Buddenbrockia species, but the proof for the completion of the life cycle is still missing 
(Grabner & El-Matbouli, 2010a). Additionally, intra-bryozoan cycles without involvement of 
a fish host might be possible for some malacosporeans (Hill & Okamura 2007).  

4.4 Biology of malacosporeans 

Knowledge on the biology of malacosporeans is still limited. Most information exists for T. 
bryosalmonae, while the understanding of life cycles of other malacosporeans is still in its 
infancy. The information concerning the transmission of malacosporeans will be 
summarized below. 

4.4.1 Emergence pattern 

Occurrence of PKD is seasonal and occurs from spring till autumn. This can be explained by 
the higher abundance of the bryozoan host in warmer months and therefore higher spore 
load in the water, but also by increase in severity of infection in fish at higher temperatures 
(Foot & Hedrick, 1987, Hedrick et al., 1993). It has to be noted, that in most cases infections 
with T. bryosalmonae become apparent only in trout farms. Mortalities or diseased fish in the 
wild are not found in most cases. Therefore, the dynamics of natural life cycles are difficult 
to investigate (Okamura et al., 2011). 

4.4.2 Waterborne stage 

Malacosporean bryozoa-spores do not possess hard valves for protection against external 
damage. Therefore, they are very short-lived and lose their infectivity after about 24h (de 
Kinkelin et al., 2002). Hedrick et al. (2004) described that fishmalacospores degrade already 
within minutes on a microscope slide. The floating characteristics of malacosporean spores 
are not investigated, but the lack of processes that might prevent sinking down in the water 
column and short life-span suggest that contact to the host must occur soon after release of 
spores. 
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4.4.3 Portals of entry into fish 

The T. bryosalmonae spores released from parasitized Bryozoa most likely enter the fish 
through the gills (Morris et al., 2000b, Holzer et al., 2006, Grabner & El-Matbouli, 2010b) or 
the mucus cells of the skin (Longshaw et al., 2002), while the blood stream was considered to 
be the most probable route to the target organs (Morris et al., 2000b, Holzer et al., 2006). The 
infection seems to be very effective that one single spore is sufficient to infect a fish and to 
cause clinical symptoms of PKD (McGurk et al., 2006b). 

4.4.4 Other biological characteristics 

Transfer of malacosporeans to new habitats can also occur by fragmentation and 
reattachment of bryozoan colonies, which was found to be common for Fredericella 
sultana-colonies (Morris & Adams, 2006b). Another way for propagation of 
malacosporeans without a fish host might be the infection of durable stages (statoblasts) 
of bryozoans (Hill & Okamura, 2007). Water quality, especially increase of organic 
material, seems to influence disease outbreaks, most likely by fostering growth of 
bryozoan colonies and thereby increasing numbers of infective stages in the water (El-
Matbouli & Hoffmann, 2002). 

5. Control strategies of myxozoans 

To date, there are no commercially available chemotherapeutants and vaccines to treat 
myxozoan infections. Thus, the current disease control strategies can only be based on the 
biology of myxozoans. Compared to myxospores, waterborne actinospores are generally 
short-lived and highly susceptible to several treatments. The actinospore stage can be 
considered as ‘weak point’ in the life cycle of myxozoans and should be targeted for the 
control strategy. This paragraph deals with possible control strategies of myxozoan diseases 
with emphasis on prevention of transmission to fish hosts. 

5.1 Eradication of invertebrate hosts 

In case of most myxozoans with indirect life cycle, transmission success largely depends 
on the size of population of invertebrate hosts. The most effective way for prevention of 
myxozoan transmission is to eradicate the invertebrate hosts in the aquaculture 
environment. Habitat manipulation may be an effective means to remove oligochaetes for 
example by dredging mud from the pond bottom or by conversion of earthen ponds to 
concrete raceways. Replacing the muddy substrate with coarse sand reduced the number 
of Branchiura sowerbyi which is the alternate oligochaete host for Thelohanellus hovorkai, 
mitigating the hemorrhagic thelohanellosis of carp (Liyanage et al., 2003). This was 
explained by a delicate body surface of B. sowerbyi was damaged by rugged-edged sand 
particles. Removing the vegetation upstream of the water inlet to a fish farm with PKD 
problems is considered as a possibility for prevention of PKD-outbreaks because it 
reduces habitats for bryozoan and spore load in the water, but this measure is not be 
feasible in most cases (de Kinkelin et al., 2002). Besides the substrate amendment for 
eliminating the habitat of invertebrate hosts, use of a benthos-eating fishes as a biological 
control of oligochaete abundance is worth considering in fish farms (Yokoyama et al., 
2002). 
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5.2 Avoidance of infective period 

If actinospore emergence occurs only in a certain time of the year, rearing fish outside the 
infective period may be useful. To reduce PKD-related losses, it is recommended to delay 
the transfer of young fish to the endemic water until autumn when water temperature is 
decreasing. As bryozoan populations decline under low temperature conditions in autumn, 
the number of T. bryosalmonae spores in the water becomes significantly low at this time. 
Additionally, low water temperature prevents the clinical outbreak of the disease and the 
fish usually become resistant against this pathogen in the subsequent years (Foott & 
Hedrick, 1987). 

5.3 Removal of actinospores 

Sand filtration is highly effective in removing actinospores of M. cerebralis (Arndt & Wagner, 
2003, Nehring et al., 2003). However, it may be applied only for large-type actinospores. The 
sand filtration of water supply was also suggested to prevent enteromyxosis caused by E. 
scophthalmi in turbot farms, though the actinospores of this species have not been 
determined (Quiroga et al., 2006). In contrast, the infective stage of K. thyrsites was not 
removed by filtration of seawater (Moran et al., 1999b). Ozone and ultraviolet treatments of 
water supply are also effective for disinfection of M. cerebralis and C. shasta (Sanders et al., 
1972, Tipping, 1988, Hedrick et al., 2000). Increase of water velocity may dilute the density of 
actinospores and reduce infection severity in culture facilities or rivers where water 
release is managed e.g. by dams (Hallett & Barthomew, 2008, Bjork & Bartholomew, 2009). 
Chemical treatments with toxic compounds may be effective but not be environmentally 
acceptable. Biological filtration of floating actinospores using a planktonic copepod 
(Cyclops spp.) may be practical in fish farms (Rácz et al., 2006). Murakami (1983) reported 
based on his empirical observations that rearing of rainbow trout, which is non-
susceptible to M. murakamii, upstream of the masu salmon farm reduced the myxosporean 
sleeping disease, suggesting that rainbow trout plays a role of biological filter of the 
waterborne infective stage of M. murakamii. This may be explained by the nonspecific 
response of actinospore to fish mucus. The same was shown experimentally for M. 
cerebralis by preincubation of carp with actinospores of the parasite. Thereby, infection rate 
in susceptible rainow trout was reduced significantly (Kallert et al., 2009). 

5.4 Interception of fish-to-fish transmission of Enteromyxum spp. 

Fish-to-fish transmission of Enteromyxum spp. should be considered as an exceptional case. 
Because of their direct life cycle, epidemics of Enteromyxum frequently occurs in closed 
aquaculture systems. Effective control may be achieved with the integrated management 
strategies. The foremost strategy is to prevent infected fish from entering the culture system. 
Early diagnosis using a highly sensitive PCR assay greatly reduces the potential for 
dispersal of E. leei via infected juveniles (Yanagida et al., 2005). Fish farmers should 
minimize their risk of pathogen introduction by cultured fish from uncertified sources. Fish 
cages with different age classes should not be set up in a close proximity, because infection 
rate may increase with fish age, and older fish could spread the pathogen to younger fish. 
Infected fish must be removed as soon as the disease becomes apparent. Fallowing is also 
effective in intercepting the transmission cycle of Enteromyxum spp., if all fish farmers in the 
area cooperate in this practice at the same time. However, wild fish living in the farming 
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area may act as carrier or reservoir of the parasite. In this case, the fallowing practice 
becomes useless, though Enteromyxum infection has never been detected from wild fish so 
far. Increase of water flow possibly lowers the chance of ingestion of infective parasites by 
dilution effect. Evacuation of sea cages to offshore area with faster water flow may reduce 
further transmission of E. leei. In case of land-based culture farms, increasing water 
exchange rates of rearing water would help to flush the waterborne parasite out of fish tank 
(Yokoyama et al., 2009). Development of E. leei is strongly influenced by water temperature. 
Rearing of Malabar grouper (Epinephelus malabaricus) at 30 ºC had both for preventive and 
curative effects on E. leei infection, although a similar treatment was not effective in tiger 
puffer. Hyposalinity treatment below 1/4 seawater (8‰) was effective in killing 
developmental stages of E. leei in in vitro (Yokoyama & Shirakashi, 2007), but in vivo trials 
where tiger puffer were reared in low salinity seawater were unsuccessful for prevention of 
the disease. Further studies are required to clarify these inconsistent results. 
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