# ROSE BREEDING TEXAS A&M UNIVERSITY

http://www.facebook.com/tamuroses

# **Two Creative Rose Breeders**





Robert Basye 2000 Ralph Moore 2009

# Late 1930s

Robert Basye TAMU mathematician Rose breeding as hobby Brazos Valley in Texas Emphasis on disease resistance







# Carefree Roses

"Develop the bush on which to hang those wonderful flowers"

**Established Basye Endowed Chair in Rose Genetics in 1991** 

## **Created Amphidiploids**



#### Sterile diploid hybrid



# **Doubled the Chromosome Number**







Basye's Purple Belinda's Dream Basye's Blueberry Basye's Legacy Basye's Myrrh Scented







## Late 1930s

Ralph Moore Sequoia Nursery, 1937 Breeder and nurseryman San Joaquin Valley in California Unique plant and flowering traits



Sequoia Nursery Met in 1991







October

2007 Donation

Education Research Sustainability

# Roses by Ralph Moore Father of the Miniature Rose



## **Miniature Roses**



Joycie Rennie Little Buckaroo Ring of Fire Rise N Shine

















Stars N Stripes Earthquake Charlie Brown Love and Peace Twister Striped Rugosa



# Halo Roses





Halo Sunrise Halo Fire Halo Star



# **Hulthemia Hybrids**



Persian Flame Persian Light Persian Peach Persian Sunset Persian Yellow





# Moss Roses



Fairy Moss Goldmoss Kara Dresden Doll





# **Crested Roses**





Crested Jewell Crested Sweetheart Queencrest Robin Red Crest

# Bracteata Hybrids



Rugosa Hybrids



Linda Campbell Topaz Jewell Moore's Striped Rugosa

# **Species Used**

Moore **Hulthemia** persica Rosa wichurana **Rosa bracteata** Rosa soulieana Rosa rugosa Rosa nutkana **Rosa chinensis European species** 

Basye Rosa wichurana Rosa bracteata Rosa roxburghii Rosa rugosa Rosa moschata **Rosa chinensis** Rosa carolina Rosa virginiana **European species** 

# **Overall Goal**

# Well Adapted Landscape Roses Disease Resistant Heat Tolerant **High Number of Flowers Horticultural Traits**

## **Importance of Rose Traits**

5= most important, 4= very important, 3= important, 2= not very important, 1= not important at all



Rose Hybridizer Association and Texas A&M University online survey. 1,439 responses. October 15 - December 12, 2012.

# **Rose Diseases**

(Photos courtesy of Mark Windham and David Byrne)













# **Rose Diseases**

(Photos courtesy of Mark Windham and David Byrne)









Healthy Compact Floriferous No Prickles











# Black spot

# Disease resistance Black spot resistance Race specific Partial resistance





### Partial Resistance to Black Spot Resistance Genes Limit Growth of Fungus

Acervuli



#### Lesion Length

# Field Evaluation of Rose Seedlings







# **Rose Variety Evaluation**

















# Greenhouse Evaluation Culturing the fungus



# **Rose Rosette Disease**





Viral disease Mite transmitted Epidemic in midwest to eastern USA Little is known about management or resistance (Photos courtesy of Mark Windham)

# **Three Players in Disease Development**

#### Pathogen: Virus

#### Vector: Mite



Rose Rosette Virus



Phyllocoptes fructiphilus

Reservoir: Wild rose



Rosa multiflora

## Rose Rosette Research Plots Three year trials



#### Tennessee Mark Windham

#### Delaware Tom Evans

#### Also field trials in Oklahoma with Jen Olson Texas with Kevin Ong and Maddi Shires

Photos courtesy of Mark Windham, University of Tennessee and Tom Evans, University of Delaware

# **RRD** Augmentation





Photos courtesy of Mark Windham, University of Tennessee and Tom Evans, University of Delaware

## **RRD** Augmentation



RRD symptoms after 3 months on very susceptible rose





# Can take 2 years for symptoms to appear

Photos courtesy of Tom Evans, University of Delaware
#### **Trial Data** Augmented and Natural Infection

| Rose<br>accessions | Susceptible   | No- Mild<br>symptoms<br>Virus | No symptoms<br>No virus |
|--------------------|---------------|-------------------------------|-------------------------|
| 1207               | 1,168         | 22                            | 17                      |
|                    | <b>96.7</b> % | 1.8%                          | 1.4%                    |

Data from Oklahoma (Jen Olson), Tennessee (Mark Windham, Alan Windham), Texas (Kevin Ong, Maddi Shires) Delaware (Tom Evans)

#### **Heat Tolerance**

#### Heat affects

- Plant growth
- Flower production/abortion/
- Flower size and color
- Petal size and number













### Summer Flowering of Roses





Flower intensity: 0 = no flowers, 3 = 30% plant covered with flowers, 6 = 60% plant covered with flowers, 9 = 90% covered with flowers

## Flower Intensity



3-4





## **Plant Architecture**









### **Breeding of Garden Roses**

- \* Diploid breeding program
  - **\*** Species introgression
  - \* Rosa wichuraiana resistance to black spot and heat tolerant
  - \* Rosa palustris and setigera resistance to RRD
- \* Tetraploid breeding program
- Combine Basye/TAMU, Moore germplasm, other roses
- Major emphasis on genetics and marker assisted breeding



## BETTER PHENOTYPING TOOLS

Fieldbook App Digital Image Analysis

# Same variety cycles differentlyMayJuneJuly













## Weekly Pictures

#### April





















### May

#### June

#### July





#### Data Analysis Workflow - Yeyin Shi

Green – Red Channel

**Otsu's Segmentation** 



Flower segmentation not based on color

Hue and Value Channels Otsu's Segmentation

## Correlation between Flower Coverage as estimated by digital imagery and flower intensity ratings



## Correlation between % Green Leaves as estimated by digital imagery and Defoliation ratings



#### Next step..drones?





- Time: 15 minutes
- Expense
  - Drone with camera
  - Inexpensive, \$2-5K
- Challenges
  - Analysis
  - Regulations
    - License to fly
    - Permission to fly
    - Ground rig may be easier

### April 6<sup>th</sup> to June 8<sup>th</sup> 2017





## MOLECULAR MARKERS IN ROS BREEDING AND GENETICS





#### Breeding of Commercial Roses First Generation

Breeding Cycle Commercial Trial

> Multiple Sites

#### Breeding with Species First Generation

Conversion from Once Blooming to Everblooming

Breeding Cycle Commercial Trial

> Multiple Sites

### Time Needed Commercial Trial Endpoint

| Generation | Cultivated | Generation          | Resistant<br>species |
|------------|------------|---------------------|----------------------|
| First      | 7          | Conversion<br>First | 11                   |
| Second     | 11         | Second              | 15                   |
| Third      | 15         | Third               | 19                   |
| Fourth     | 19         | Fourth              | 23                   |

Two year greenhouse phase: produce, germinate, select seedlings Two year seedling adaptation evaluation in field Three year multiple site commercial evaluation

#### How Do We Make it Quicker?

**DNA informed breeding** Marker assisted breeding

### Accelerate Breeding Progress MAB (Marker Assisted Breeding)

- Reduce breeding cycle time by 50%
  Eliminate field screening
  All initial RRD resistance screening done in
  - greenhouse
- Reduce seedlings that need to go to field
- Improve parental selection
  Knowledge of resistance genes

#### Seedlings : 15 year program

|            | Traditional | MAB    |      |
|------------|-------------|--------|------|
| Greenhouse | 21,000      | 31,000 | 148% |
| Field      | 11,105      | 1,561  | 14%  |

#### If same field work – could screen 220,000 seedlings

#### DNA-informed breeding What do we need?

Plentiful molecular markers
 Consensus map with these markers

#### Genotyping by Sequencing SNP markers



2. Digest DNA with RE

Methylation sensitive REs (Fsel, NgoMIV and Nhel) cut gene rich region and filter out repetitive genomic fraction

3. Ligate barcoded adapters



| LGs         | Marker<br>statistics | J14-3<br>x LC | J14-3<br>x VS | OB x<br>RF | ICD  |
|-------------|----------------------|---------------|---------------|------------|------|
| LG1         | Total                | 189           | 161           | 103        | 348  |
|             | Bin no.              | 38            | 39            | 48         | 93   |
| LG2         | Total                | 271           | 297           | 369        | 753  |
|             | Bin r no.            | 60            | 81            | 76         | 161  |
| LG3         | Total                | 196           | 123           | 84         | 340  |
|             | Bin no.              | 49            | 43            | 31         | 91   |
| LG4         | Total                | 199           | 224           | 221        | 520  |
|             | Bin no.              | 40            | 49            | 61         | 120  |
| LG5         | Total                | 275           | 226           | 303        | 564  |
|             | Bin no.              | 50            | 56            | 64         | 121  |
| LG6         | Total                | 220           | 140           | 225        | 472  |
|             | Bin no.              | 45            | 39            | 61         | 109  |
| LG7         | Total                | 231           | 263           | 246        | 530  |
|             | Bin no.              | 54            | 62            | 45         | 125  |
| Overal<br>l | Total                | 1581          | 1434          | 1551       | 3527 |
|             | Bin no.              | 336           | 369           | 386        | 820  |

\* In the order of J14-3xLC : J14-3xVS : OBxRF



#### Phenotyping

• Measure the strength of resistance a rose has to the disease organism



#### Genotyping

 Genotyping by sequencing approach to produce thousands of tags of genetics tags/markers on rose chromosomes



#### QTL Analysis

• Phenotype and marker data are combined in a database for identification of quantitative trait loci using Pedimap and FlexQTL software

Markers for disease resistance, plant architecture, heat tolerance etc.

#### Accelerate Breeding Progress

Facilitate selection and parental selection
 Adaptation

- Black spot resistance
- Cercospora resistance
- Rose rosette resistance
- Heat tolerance
- Floral and plant traits
  - Flower type/color
  - Fragrance
  - Flower yield
  - Plant architecture



#### Diploid rose population: inter-related families



#### Black spot resistance QTL analysis: a large-effect on LG3



## Mean values for three probable QTL genotypes at signal peak 41cM among all mapping materials



Probable QTL genotypes at LG3 41cM

## Commercial roses are diploid, triploid and tetraploid

## Diploid 2x = 14









Triploid roses produce 1n, <u>2n</u> and 3n pollen grains

#### **Tools for Polyploid Group** San Diego Botanical Garden January 11-12, 2018



#### Accelerate the breeding of polyploid crops



## Rose Breeding di Texas A&M University

http://www.facebook.com/tamuroses

### HortTREC Research Field

#### Pecan Orchard



#### Pasture

### HT3 and HT4 Diploid population - Breeding blocks

- Star Roses hybrids
  Rosa palustris
  Rosa blanda
  Rosa palustris, Amrine
  Breeding plots elimination
- Peach plots

- HT3 and HT4
  - Diploid population
  - Planted, 2 plots
    - Overton, Tennessee
  - Parents
    - TAMU, M4-4, 7-20, 7-30, J06-14-20-3
    - Srdce Europy, Papa Hemeray
    - Ole x palustris
    - Setigera x Ole

## HT5 Cultivar Evalution Advanced Selections
### HT6 Species Collection Diploid population

Rows 1-4
 Rosa species
 Rootstocks
 Interspecific hybrids

#### ■ A12/D14 population

- Parents
  - □ J06-14-20-3, M4-4
  - Sweet Chariot, Vineyard
     Song, Red Fairy, Little Chief
  - Old Blush
- Current data
  - GBS
  - Traits
    - Black spot, cercospora
    - Architectural traits
    - Flower, size, petal number

### HT7 Breeding Plots Tetraploid population

Breeding plots parents Brite Eyes Above and Beyond Lafter Honey Perfume Stormy Weather

- Tetraploid population
  - Planted
    - College Station, Overton
    - Tennessee
  - Parents
    - Brite Eyes
    - My Girl
    - Stormy Weather
  - Data
    - SNP array
    - Disease, horticultural

#### HT8

### Breeding Plots - Eliminating Diploid Collection Miscellaneous Roses

Breeding Plots
 Hybrids with

 Basye's Purple
 R. palustris EB ARE
 R. palustris OB ARE

- Diploid Collection
  - Planted
    - College Station, Overton
    - Oklahoma
    - Tennessee
  - Data
    - Disease resistance
    - Architectural traits
    - SNP array

# Texas A&M University Rose Breeding and Genetics

David Byrne dbyrne@tanruedu

http://www.facebook.com/amuroses



## Acknowledgments



Teaching • Research • Extension • Service

Agriculture is Life!





#### **Robert E. Basye Endowment in Rose Genetics**



United States Department of Agriculture National Institute of Food and Agriculture





This work was partially funded by the USDA's National Institute of Food and Agriculture (NIFA) Specialty Crop Research Initiative project, "Combating Rose Rosette Disease: Short Term and Long Term Approaches" (2014-51181-22644/SCRI) and "RosBREEDII: Combining disease resistance with horticultural quality in new rosaceous cultivars"

