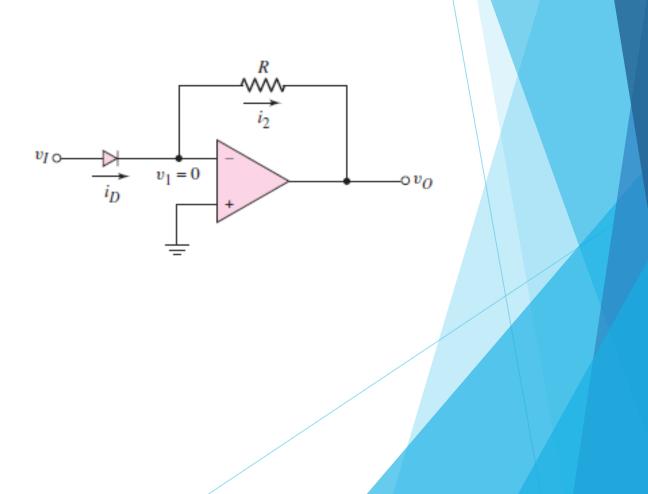
Antilog Amplifiers

Integrated Circuits (EC-503) B. Tech. (Electronics and Communication Engineering) 3rd Year/ 5th Semester

> Dr. M. K. Jain Electronics and Communication Engineering Department Faculty of Engineering and Technology University of Lucknow.

Disclaimer: The e-content is exclusively meant for academic purposes and for enhancing teaching and learning. Any other use for economic/commercial purpose is strictly prohibited. The users of the content shall not distribute, disseminate or share it with anyone else and its use is restricted to advancement of individual knowledge. The information provided in this e-content is developed from authentic references, to the best of my knowledge.

Antilog or Exponential Amplifier


- Antilog amplifiers are the examples of non-linear application of op-amp.
- Applications
 - Mathematical operations (i.e. log(x), ln(x) and sinh(x) calculation.
 - Direct dB display on digital instruments
 - Multiplication, division, square root calculation etc.
 - Analog computers

Basic Antilog Amplifier

The complement, or inverse function, of the log amplifier is the antilog, or exponential, amplifier. Since v₁ is at virtual ground.

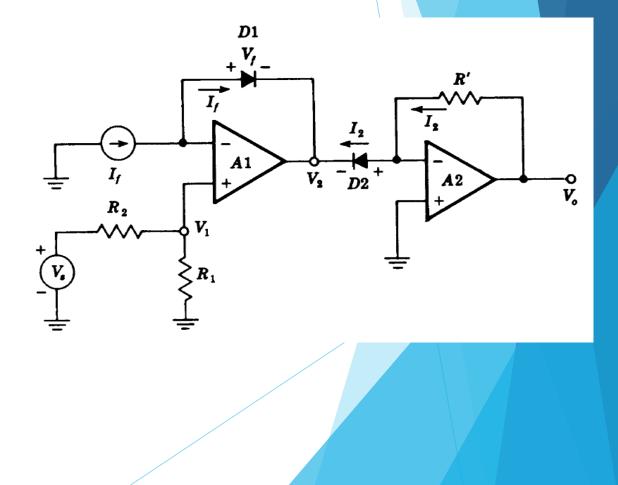
If $v_I > 0$ than $i_D \cong I_S e^{\frac{v_I}{V_T}}$ Thus $v_0 = -i_2 R = -i_D R$ $v_0 = -I_S e^{\frac{v_I}{V_T}} R$

The output voltage is an exponential function of the input voltage.

Antilog Amplifier with Temperature Compensation

If Op-Amp A_1 and A_2 are ideal.

$$V_{2} = -V_{f} + V_{1}$$
$$= -\eta V_{T} \left(lnI_{f} - lnI_{0} \right) + \frac{R_{1}}{R_{1} + R_{2}} V_{s}$$

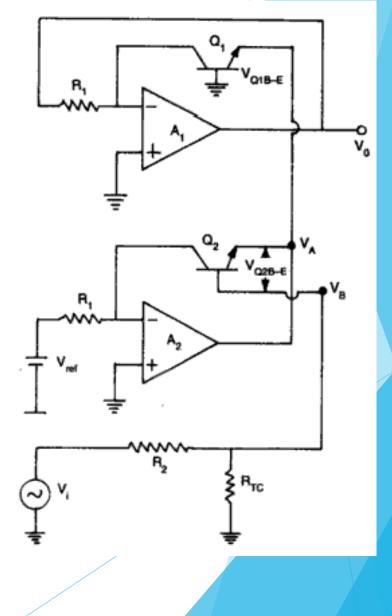

Since V_2 is -ve of the voltage across D_2

$$V_2 = -\eta V_T (lnI_2 - lnI_0)$$
$$\frac{R_1}{R_1 + R_2} V_S = \eta V_T ln \frac{I_f}{I_2} = \eta V_T ln \frac{I_f R'}{V_0}$$

Because $V_2 = I_2 R'$

$$V_{0} = R' I_{f} ln^{-1} \left[-V_{s} \left(\frac{R_{1}}{R_{1} + R_{2}} \frac{1}{\eta V_{T}} \right) \right]$$

 R_2 is made temperature sensitive using thermistor. Thus the effect of change in $V_{\rm T}$ due to the temperature can be eliminated.



Transistor based Temperature Compensated Antilog Amplifier

 Q_1 and Q_2 are matched transistors and $V_{\rm ref}$ is the external voltage.

$$V_{BE1} = V_T ln \left(\frac{I_{C1}}{I_S}\right) \text{ and } V_{BE2} = V_T ln \left(\frac{I_{C2}}{I_S}\right)$$
$$I_{C1} = \frac{V_O}{R_1} \text{ and } I_{C2} = \frac{V_{ref}}{R_1}$$
$$V_A = -V_{BE1} \text{ and } V_A = V_{E2}$$
$$V_{B2} = \frac{R_{TC}}{R_2 + R_{TC}} V_i$$
$$V_{BE2} = V_{B2} - V_{E2}$$

Substituting the values of VB_{E2}, V_{B2} and V_{E2}. $V_O = V_{ref} ln^{-1} \left(\frac{-V_i R_{TC}}{V_T (R_2 + R_{TC})} \right)$

References:

- Jacob Millman, Christos Halkias and Chetan D Parikh, "Millman's Integrated Electronics - Analog and Digital Circuits and systems", McGraw Hill.
- > Allen Mottershead, "Electronics Devices and Circuits: An Introduction", PHI.
- A. S. Sedra and K. C. Smith, "Microelectronic Circuits: Theory and Applications", Oxford Press.
- M. H. Rashid, "Microelectronics Circuits Analysis and Design" Cengage Learning
- Paul R. Gray, Paul J. Hurt, Stephen H. Lewis and Robert G. Meyer, "Analysis and Design of Analog Integrated Circuits", Wiley.
- Behzad Razavi, "Fundamental of Microelectronics", Wileey.

