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Abstract 
Jellyfish populations in the Irish Sea have been increasing. This has caused a variety 

of economic problems, such as the destruction of aquaculture installations, and new 

opportunities, such as the establishment of a jellyfish fishery. However, interactions 
between jellyfish and other biota in the ecosystem is poorly characterised and 

ecological consequences of an increasing jellyfish population remains unknown. 

Molecular gut content analysis methodologies were developed to address this data 
gap. Cnidarian specific primers were developed and showed using more than 2500 

stomachs that, during February and March, moon and mauve-stinger jellyfish were 

consumed by common fish species including herring, whiting, and lesser-spotted 

dogfish. Revisiting the ecosystem in October with 375 additional samples, the primers 
indicated jellyfish predation varied temporally: small jellyfish were still targeted by 

mackerel, however moon jellyfish adults were not preyed upon. To understand the 

context in which jellyfish consumption occurred a high throughput sequencing (HTS) 
approach using two universal primers was developed. A meta-analysis of HTS studies 

suggested results contained a quantitative signal, and the methodology could be used 

to move beyond a presence/absence approach. Using 188 samples from nine fish 
species, it was shown that jellyfish were consumed as part of a generalised diet during 

summer months. Finally, the approaches used to model jellyfish in the ecosystem 

model Ecopath with Ecosim (EwE) were reviewed. Jellyfish were included more 
frequently over time, however approaches remained relatively crude in the absence of 

high quality data in many ecosystems. Together, these approaches have gone some 

way towards addressing the data gap: jellyfish interactions with other biota have been 
recorded, and new approaches for studying these interactions have been developed. 

This has established a baseline for novel research opportunities such as mechanistic 

modelling of jellyfish, exploration of quantitative HTS approaches, and the generation 
of dietary time-series data to be conducted.  
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Chapter 1: General introduction 
 

1.1 Our embattled seas 
 

A legacy of anthropogenic activities has profoundly altered marine environments[1]. 

Marine ecosystems are now experiencing adverse effects from climate change[2], 

ocean acidification[3], eutrophication[4], marine litter (including microplastics) [5], 
dredging, offshore construction, and waste disposal[6]. Alarmingly, these pressures 

appear to be adversely affecting marine ecosystems synergistically[4]. Multi-

disciplinary research, and holistic policy solutions are urgently required to tackle these 
issues. However, of all these issues affecting the marine environment unsustainable 

fishing practices remains the most damaging[7].  

 
Fisheries are an important global food source: 15.7% of animal protein comes from 

fisheries, and at least 3 billion people depend on fisheries for at least 1/6th of animal 

protein[8]. Historically, the impact of fishing was thought to be negligible. In 1883 
Huxley, denouncing contemporaries concerned about the state of fisheries and 

proclaimed “I believe then, that the cod fishery, the herring fishery, the pilchard fishery, 

the mackerel fishery, and probably all the great sea fisheries, are inexhaustible, that is 
to say nothing we do seriously affects the number of fish. And any attempt to regulate 

these fisheries seems consequently, from the nature of the case, to be useless”. With 

time, this viewpoint fell out of favour: in 1914 Hjort, when studying fish populations in 
the Norwegian Sea, stated “scientists interested in the subject have become more and 

more inclined to the opinion that the hauls made by the fishermen really represent a 

very considerable portion of the actual stock of the sea”[9]. Hjort’s assertion proved to 
be correct: paleoecological, archaeological, and historical records suggest long before 

Huxley’s address, many marine species were in a state of decline[10]. Overfishing 

continued unabated, and in many cases accelerated, over the 20th century resulting in 
precipitous declines[11], and crashes[12], for many exploited species.  

 

Globally the trend of over exploitation continues: the UN’s Food and Agriculture 
Organisation conservatively lists 32% of marine fish stocks as currently being 
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overexploited[8]. However, the problem of overexploitation may be far more serious: 

Worm et al.[13] described 63% of global fish stocks as requiring rebuilding, Cullis-

Suzuki and Pauly[14] in a separate analysis estimated 66% of stocks on the high seas 
were either overexploited or depleted. Briefly putting aside the serious food security 

implications, biologically speaking this is not just a simple case of ‘less fish in the sea’: 

selective removal of the most commercially attractive species, usually predators, 
collapses the structure and complexity of marine ecosystems; this leaves a much 

simplified, often fundamentally different, ecosystem remaining[15]. Under the strong 

selective pressure of fisheries, many exploited species are undergoing evolutionary 
changes such as maturation at small size, more rapid development, and reduced 

annual growth[16]; further modifying the relationships within, and consequently the 

overall functioning, of the ecosystem. Fisheries sometimes switch to exploit smaller, 
less commercially attractive, fish that are able to survive in the altered ecosystem in a 

process known as ‘fishing down the foodweb’[17]. However, it should be noted that 

targeted species do not always change: economic incentives can cause the removal 
of predatory species to increase[18]. Furthermore, ‘ratchet-like’ processes such as the 

investment in fisheries equipment can lead to an acceleration of fishing down the 

foodwebs, as overexploitation of remaining stocks becomes a necessity to generate 
economic profit[19].  

 

Even though it is doubtful if we will ever understand how most marine environments 
looked and behaved before human intervention, there exists a real issue in getting 

stakeholders to accept the relative productivity of the marine ecosystem just a 

generation or two ago. People normalise the current state of the marine ecosystem, 
and are ignorant of the fact that species assemblages used to be richer and individuals 

within a species often larger. These ‘shifting baselines’ contribute to a lack of political 

will and a continuation of decline[20].   
 

1.2 Ecosystem approach to fisheries management  
 
Some of the declines in fisheries may be attributable to the focus of fisheries’ managers 

on maximising economic revenue from individual species: although such decisions 

may make short-term economic sense, it may be to the detriment of the other species 



 13 

in the ecosystem. Consequently, calls for an ecosystem approach to fisheries 

management (EAFM), also called Ecosystem based management, are widespread in 

both academic publications[20–24] and policy documents. It is also a central 
requirement of both the EU’s marine strategy framework directive and Common 

Fisheries Policy[25]. Although many definitions for EAFM exist, they all broadly 

encompass four key ideas: the linkages between biota are fundamental to the health 
and functioning of the ecosystem and must be maintained; for effective ecosystem 

management there is need to act at multiple spatial and temporal scales; no 

ecosystem exists in isolation, so the effects of management on other ecosystems must 
be considered; and stakeholder engagement is vital in creating management goals[26]. 

By shifting the focus away from the commercial management of individual species to 

the ecosystem it should be possible to stabilise, or maybe increase, the populations 
of exploited fish species. For effective EAFM to take place there needs to be both a 

thorough understanding of the biology of major taxa of the ecosystem, and an 

understanding of their relationship with other species. While good progress is being 
made in implementing EAFM[22], certain taxa, such as jellyfish have not been the focus 

of research efforts and still require further invesitagion before we can be confident of 

their interactions with other organisms, and the functional role they are playing in the 
ecosystem.  

 

1.3 Jellyfish 
 

1.3.1 Taxonomy & basic biology 

Jellyfish are an polyphyletic assemblage of organisms[27] and there remain many 

unknowns, even in the most basic areas of their ecology[28]. The definition of jellyfish 

itself is somewhat loose: high water content (95% or higher) and a planktonic 
lifestyle[29] are the main criteria for being classed as a jellyfish, or gelatinous 

zooplankton. As such, jellyfish species are found within three phyla: Cnidaria, 

Ctenophora, and Chordata.  
 

Pelagic tunicates, sometimes referred to as salps or doliolids, are herbivorous 

chordates that feed on phytoplankton[30]. Despite sharing a gelatinous body plan, 
they are distantly related to other jellyfish, and lack many of the population dynamics 
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or life history characteristics of other jellyfish[31]. For this reason, they are often not 

included in jellyfish studies as they occupy a different ecological role.   

 
Ctenophores, otherwise known as comb jellies, are the second group of organisms to 

be considered jellyfish. Although, deep-history phylogenies are notoriously difficult to 

construct, there is compelling evidence to suggest Ctenophores are the earliest of all 
animal lineages: it is thought that their, admittedly somewhat limited, neural systems 

evolved independently to other animals[32]. Comb jellyfish are hermaphrodites, 

releasing male and female gametes into the water. Upon fertilisation, they begin life in 
the plankton, maturing directly into adults while feeding on zooplankton (and in some 

instances other jellyfish)[33]. Unlike Cnidarians, Ctenophores lack the ability to 

sting[34]. Instead they capture prey through the presence of a sticky layer, secreted 
from specialised cells known as colloblasts[35]. Despite the lack of noxious effects, 

Ctenophores can still impact human industry and ecosystems: owing to their ability to 

survive in a hypoxic conditions[36], and the ability to rapidly reproduce to create 
blooms they can overwhelm ecosystems. Taking advantage of eutrophic conditions, 

the invasive Ctenophore sea walnut (Mnemiopsis leidyi) overran the Black Sea during 

the 1980s[37] before cooler temperatures[15], and the invasion of the predatory 
jellyfishes Beroe sp.[38] returned populations to more manageable levels.  

 

Cnidarian jellyfish, are another ancient lineage and have existed since the 
Cambrian[39]. Composed of classes Cubozoa, Hydrozoa, and Scyphozoa these 

organisms share stinging structures known as cnidae[35], which are used for hunting 

or grazing on a range of zooplankton including copepods, amphipods, cladocerans, 
icthyoplankton, and the larval stages of many invertebrates [35,40–43]. Some 

cnidarian jellyfish, such as the Atlantic sea nettle (Chrysaora quinquecirrha), also feed 

upon jellyfish[44]. Populations of jellyfish and zooplankton are tightly coupled[45], and 
large aggregations of jellyfish, known as blooms, can deplete local zooplankton 

populations[46].Cnidarian jellyfish have a worldwide distribution with some species, 

such as the cosmopolitan moon jellyfish (Aurelia aurita), displaying a remarkable ability 

to thrive in a range of environments including a range of different temperature[47], 
dissolved oxygen content[48], and salinity[49] regimes. This ability to survive in heavily 

modified ecosystems, coupled with a unique life-history (detailed below), has facilitated 
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jellyfish to prosper in some ecosystems that are no longer able to support large fish 

populations[50].   

 
1.3.2 Cnidarian jellyfish life history 

Although variability exists within jellyfish life cycles[51,52], (hydrozoans’ life cycle is 

dominated by the polyp stage, in contrast to cubozoans and scyphozoans, in which 
the medusae stage is most important), a generalised life cycle shown in figure 1.1.  

 
Figure 1.1. Generalised life history of cnidarian jellyfish.  
 
In the northern hemisphere medusae reproduce sexually in the summer and autumn 

and the fertilised zygotes develop into planulae[53]. These free-swimming planulae are 

released, and spend some time in the water column (approximately 2 days for moon 

jellyfish[53]) before settling on hard-substrata to form sessile polyps. It is worth noting 
that some species, notably mauve-stinger jellyfish (Pelagia noctiluca) and 

Stephanoscyphiostoma do not form polyps, instead developing directly into 

ephyrae[40,52]. The number of planulae produced from a single jellyfish can be vast: 
Aurelia aurita typically produce approximately 58,000 planulae per female; some 

females have been documented with as many as 414,000 planulae[53]. Scyphozoan 

polyps form colonies on hard substrata, reproducing asexually before the production 



 16 

of ephyrae (pre-medusa jellyfish), is stimulated by the onset of winter temperatures[47]. 

Many different processes for strobilation exist[54], producing one (monodisk) or many 

(polydisk) ephyrae[55]. Cubozoan polyps do not reproduce asexually, and always 
undergo monodisk strobilation[35]. Some Scyphozoan species, such as Atolla 

vanhoeffeni, have been documented producing as many as 4000 ephyrae from a 

single strobilation event[56]. The conspicuous UK species moon jellyfish, lion’s mane 
jellyfish (Cyanea capillata), and blue jellyfish (Cyanea lamarckii) typically produce 

between 5 and 10 ephyrae during strobilation[57]. Polydisk strobilation, in combination 

with the high fecundity of medusae, is thought to be one of the life history 
characteristics responsible for the rapid development of blooms[55]. Ephyrae typically 

appear in late winter or early spring (February-April)[58]. They continue to grow in size, 

and develop their characteristic tentacles, becoming medusae in around 4 weeks[59]. 
Mortality often occurs in the same year (September is typical for moon jellyfish aurita 

and Cyanea spp. in the North Sea)[58], although multi-year individuals have been 

observed in other regions[51].  
 

1.3.3 Blooms & Jellyfish Population Increases  

A notable feature of jellyfish populations is their ability to form localised, super dense, 
aggregations known as ‘blooms’. Much like the actual definition for what constitutes a 

jellyfish, no official definition exists. Broadly blooms are broken down into ‘true’ blooms, 

from an increase in the number of jellyfish in the ecosystem, and apparent blooms 
where jellyfish aggregate due to factors such ocean currents or other chemical cues 

but no net increase in jellyfish numbers across the entire ecosystem is seen[60].  

Although most cnidarian and ctenophore species are known to bloom, some species 
have a greater propensity than others. Scyphozoans bloom more than cubozoans or 

hydrozoans, pelagic species bloom more than deep-sea varieties, and smaller jellyfish 

bloom more frequently than large species[61]. 
 

Blooms are undoubtedly a natural part of jellyfish ecology[29], however there is fierce 

debate about whether or not the frequency of blooms is increasing. There is a a lot of 
evidence[43,62,63] suggesting that jellyfish prevalence and blooms have increased 

due to the development of artificial marine structures[64], eutrophication[48], 

overfishing[65], and climate change[66]. However, in many systems there is a lack of 
long-term data-sets on jellyfish abundance [67] so evidence for global increases is 
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somewhat lacking[68]. Sanz-Martin et al.[69] conducted a network analysis of 159 

papers that had cited papers detailing jellyfish increases. However, 48.9% of the 

publications had not drawn the correct conclusions from cited literature, consequently 
the idea that jellyfish are increasing has permeated through the literature to a greater 

degree than would be supported by the original studies. At the time of writing, two 

manuscripts have addressed the topic of global increases of jellyfish. Condon et al.[70] 
performed a meta-analysis using 37 primary data sets and found no evidence of a 

protracted increase, but did find an increasing trend from 1970. Due to the high 

variability of jellyfish populations, it was suggested this may be due to population 
oscillations present throughout the dataset. Brotz et al.[62] used ‘fuzzy logic’ (a system 

that allows information from multiple sources to be analysed by combining confidence 

scores and trend data) to analyse jellyfish trends using a wide range of sources. They 
found evidence of increasing jellyfish abundances in 62% of large marine ecosystems 

analysed. However, both studies carry caveats: the data sets used by Condon et al. 

were not designed to monitor jellyfish, and although this error should be systematic, 
sampling bias may be distorting the overall findings. For example, the Continuous 

Plankton Recorder was used to gather data for the north-Atlantic. However, the 

sampling aperture on this device is only 1.6 cm2[71], while it has sampled fragments 
of jellyfish larger than the aperture such as Pelagia noctiluca, Chrysaora hysoscella, 

Cyanea capillata, and Aurelia aurita[72], it seems plausible it large jellyfish species, such 

as Rhizostoma octopus (which can be found in massive numbers in shallow waters[73]) 
go undetected and it’s appropriateness for addressing jellyfish abundance trends is 

questionable. Brotz et al. have used a fundamentally different approach relying on a 

combination of scientific and anecdotal evidence in a ‘fuzzy logic’ system: however, 
this may have incorporated prevalent errors discovered in the literature by Sanz-Martin 

et al.[69]. Like many global studies, the paucity of data-sets in Africa, Asia, and South 

America is likely to have introduced geographic biases into both publications. As such, 
the global picture remains somewhat unclear: only with standardised jellyfish surveys 

can be we begin to build a more accurate picture. When considering blooms and 

increasing jellyfish populations, the best practice at present is to use local data: 

extrapolations to other systems, when data gaps are present, should be made 
cautiously, with particular attention paid to the processes and pressures affecting that 

ecosystem. 
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1.3.4 Impacts of jellyfish 

Regardless of the cause of perceived jellyfish increases, blooms can have serious 

ecological and economic effects. Human enterprise can be adversely affected: jellyfish 
sting, and in some instances have caused fatalities[74]. Preventative measures such 

as beach closures, can negatively affect tourism revenues: following the death of two 

bathers in Australia, cancelled bookings amounted to USD $65 million in lost 
revenues[75]. Blooms also can block cooling pipes for power stations[76], or other 

industry. This can lead to power outages[34] and substantial remediation costs[77]. 

The fishing industry is also, unsurprisingly, affected by blooms. Jellyfish can overwhelm 
and burst nets. Additionally, since jellyfish compete with forage fish for the same prey 

items, they are thought to cap the fish population when zooplankton are limited[43]. In 

South Korea, jellyfish blooms have been linked with a 6.8-25.3% decrease in total 
landings valued at USD $68-204.6 million annually[78].  Aquaculture fares little better; 

blooms have eradicated entire fish stocks occasions in the Irish and United Kingdom 

waters[40].  
 

Although mainly known for noxious effects, it should be noted that jellyfish are thought 

to provide positive outcomes too. Green fluorescent protein, a common bio-medical 
marker, was synthesised from jellyfish[79]. Jellyfish also provide cultural services: 

aquaria displaying jellyfish, and in some locations, recreational scuba diving can 

generate tourism revenues[80,81]. Jellyfish also have certain benefits for fisheries: 
juvenile fish have been observed sheltering among jellyfish for protection from larger 

predators[82], furthermore they are a food source for a variety of fish, bird, and reptile 

species[67,83] (see below for more detail). Jellies also have a direct use value: 
commercial fisheries now harvest jellyfish for medical collagen[84], and as a delicacy 

in Eastern Asian Markets[85].  

 
1.3.5 Jellyfish as trophic dead-ends 

Understanding the role jellyfish play in the ecosystem is an important first step towards 

predicting, and managing, blooms and their harmful effects and also providing 
important baseline information for an EAFM. Knowing who eats whom is one of the 

most basic building blocks of network ecology. Regrettably, this is another area for 

which we are currently data deficient. Historically, aside from leatherback turtles[86] 
(Dermochelys coriacea) and sunfish[87] (Mola mola), few predators of jellyfish were 
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documented. As such, they have been considered trophic dead ends[28,63]: i.e once 

nutrients enters jellyfish it is no-longer usable by predators occupying higher positions 

in the food web. This viewpoint may have originated from methodological limitations: 
viewing feeding events in the marine environment remains very challenging. Food webs 

have been reconstructed by morphological gut contents analysis, where stomachs 

were dissected out of a species of interest and hard parts such as bones and scales 
were used to identify predation. Although this technique has successfully identified 

jellyfish predation[88,89], it is likely underestimating the true extent of predation since 

the technique frequently fails to detect rapidly digesting, soft bodied organisms[90]. 
 

Recently, jellyfish predation has been identified using new techniques such as stable 

isotope analysis[83,91], static video loggers[92,93], animal-borne video loggers[94–
96], acoustic sampling[97], and high throughput sequencing[98–100]. These studies 

have empirically demonstrated that jellyfish are not trophic dead ends and provided 

valuable methodologies to investigate diet. However, these feeding relationships have 
typically focussed on just one or two predators, and are scattered across many 

ecosystems. As such, many attempts to model and quantify the role jellyfish occupy 

in food webs still treat them like trophic dead-ends[101,102] and the true role jellyfish 
play in food webs remains poorly understood. There remains a need to systematically 

analyse predatory species for jellyfish consumption before a meaningful attempt to 

quantify their role in the food web can be quantified in any given ecosystem.    
 

1.4 Common dietary analysis methodologies  
 

1.4.1 Direct observation  

Direct observation of feeding has been the mainstay for uncovering the diets of large 
terrestrial organisms such as birds[103] and mammals. It is conceptually simple and 

requires limited equipment. Additionally, it is non-invasive so is particularly well suited 

for endangered species. However, a number of caveats exist: the taxonomic resolution 
is dependent on the expertise of the observer, quantification of dietary items is nearly 

impossible, and the act of observation can change some species’ natural feeding 

behaviour[90]. Furthermore, in-situ observation has been very difficult in some 



 20 

environments, such as marine ecosystems[104]. As such, a range of other techniques 

have been employed to address these shortcomings.  

 
Recently, direct observation has re-emerged as the miniaturisation and digitisation of 

cameras has enabled the study of previously inaccessible systems. For example: 

static[93,105] and animal-borne cameras[94–96] have enabled the study of jellyfish 
predation using direct observation. While some specialised equipment is now required, 

the need for expertise in the field is reduced as it is possible for a trained taxonomist 

to identify species from the obtained footage away from the field. Additionally, animal-
borne cameras allow feeding behaviour to be detected that would be missed by other 

dietary elucidation techniques. For example, Sutton et al.[96] found Adélie penguins 

only feed on jellyfish if a hunt for more energy-rich food sources has failed. 
 

 

1.4.2 Morphological gut content analysis  

First used by Forbes in 1883[106] in his study on coleopteran predators, morphological 

gut contents analysis (GCA) continues to be used over 130 years later[89]. It has been 

employed where direct observation is very difficult and has been invaluable in 
understanding invertebrate and marine food webs. Relatively little specialist equipment 

is required: namely a dissecting kit and, in some instances, a microscope. An 

organism’s gut contents are removed and prey are identified visually to the lowest 
possible taxonomic level using hard parts such as bones, otoliths and scales. 

Quantification of the diet can occur through the mass or relative abundance of 

removed prey items, alternatively a point system can be used (e.g. 0 for empty 
stomach, 1 for 0-25% full, 2 for 25-50% full etc.)[107].  

 

There are a number of limitations to using morphological GCA. Firstly, a high-degree 
of taxonomic expertise is required[108]; the technique systematically underestimates 

soft-bodied organisms or life stages due to rapid digestion times and a lack of unique 

morphological characteristics[109]; secondly, the process is time intensive; 
furthermore the identification of prey species is impossible in species that liquid feed, 

such as spiders, or heavily macerate their prey such as many crustaceans[90]. Finally, 

lethal sampling is required for morphological GCA, although similar results can 
sometimes be obtained from morphological faecal analysis[110]. Other non-lethal 
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techniques, compatible with morphological GCA, have been investigated: stomach 

rinsing, otherwise known as gastric lavage, has now been used to source material for 

a number of species. Effectiveness seems to vary species to species: Barnett et 
al.[111] used gastric-lavage to conduct a dietary assessment on broadnose sevengill 

sharks (Notorynchus cepedianus). A subset of sampled sharks were acoustically 

tagged and monitored for survival; 100% of these sharks were alive after 18 months 
indicating high survivorship. Conversely, Hartleb and Moring[112] experienced 60% 

mortality in golden shiners (Notemigonus crysoleucas) following stomach rinsing. This 

may be due to the small size of the fish, and the difficulty of inserting rinsing apparatus 
into the stomach. This suggests the unique physiology of the study species should be 

considered before non-lethal techniques are used. 

 
1.4.3 Fatty Acid analysis  

The move away from visual approaches began with the use of fatty acid trophic 

markers which were first suggested for dietary use in 1935 by Lovern[113]. However, 
it was nearly 30 years before fatty acid analysis was used in a marine diet context[114]. 

By removing the need to identify hard parts, soft bodied organisms were detectable 

by dietary studies. Furthermore, taxonomic expertise is not required once the initial 
quantitation of fatty acids takes place. Unique fatty acid compositions are present in 

primary producers, when consumed these markers are transferred to the feeding 

organism[115]. Although modification of fatty acids takes place during assimilation into 
the consumer it is possible to gain “calibration coefficients” through laboratory 

trials[116] and use these to get a rough quantitative breakdown of diet. 

 
The benefits acquired from moving away from visual approaches come with some 

limitations. Fatty acid analysis necessitates lethal sampling and specialist facilities are 

required for the extract of lipids, and their analysis using gas chromatography[117]. 
The quantification of diet is entirely dependent on a calibration co-efficient, which may 

not exist for species of interest. Bayesian statistical approaches trained using a library 

of monoculture diets fed to a model organism offer an in-development work 
around[118]. However, these libraries are very limited at present[107]. Additionally, if 

fatty acid profiles are similar between prey items it is difficult to differentiate and some 

species will be missed from the analysis[119]: this may be fine if only a basic 
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understanding of the food web is required, but makes the technique unsuitable for 

work requiring finer taxonomic resolution.  

 
1.4.4 Stable Isotope Analysis 

Stable isotope analysis for food web reconstruction (SIA) first appeared in the late 

1970s[120]. Stable isotopes, elements with nucleuses enriched with additional 
neutrons (referred to as ‘heavy’ isotopes due to the increased atomic mass) , occur 

naturally throughout the environment. Organisms preferentially retain molecules 

containing ‘heavier’ stable isotopes from the environment and diet, so the ratio of 
heavy isotopes to normal elements can be used to track a number of ecological 

metrics. Using a mass-spectrometer and elemental analyser, it is possible to calculate 

heavy to light isotopic ratios in tissue samples from an organism, as well as potential 
food items, to discern information about the food web[119]. 15N accumulates at 

approximately 3.4‰ per trophic level[119] in a process known as trophic 

enrichment[107]. Although a number of other environmental factors are known to 
influence this process[120], diet is a sufficiently strong driver in the accumulation of 

heavy isotopes that it can be used to deduce trophic level: higher incidence of heavy 

nitrogen isotopes indicates a higher tropic level. 13C:12C values vary spatially, but do 
not undergo significant enrichment, as such it is possible to look at isotopic carbon 

values in an organism and discern the location of the primary producer underpinning 

that particular food chain[121]. Functional roles, and inter-specific feeding relationships 
can be discerned by using isotopic nitrogen and carbon values in tandem[83]. A numer 

of studies have also used Sulphur and oxygen isotopes: 34S can be used to determine 

the location in the water column a marine organism resides in (benthic or pelagic)[107] 
. Isotopic hydrogen (2H) can be used in a similar manner to differentiate between the 

input of freshwater or marine resources to an organism’s diet[107], although the 

environment and the diet both influence this isotope strongly and accurate measures 
can become difficult to derive[122].  Stable isotope analysis has a number of unique 

advantages among the non-visually based techniques: because isotopic values are 

based on assimilated food items, it provides a longer term temporal view of diet and 
is good at determining which food items are actually important for the physiological 

maintenance and growth of an organism[107]. Furthermore, compound-specific SIA 

which looks at the isotopic values across multiple compounds (amino acids and fatty 
acids) within one sample has become more common[107]. The added compounds 
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offer a bigger range of isotopic values, and can be used to glean finer details on diet 

and spatial movements of an individual. Additionally, the factors that can affect isotopic 

values of a single compound are often more precisely quantified, granted higher 
confidence in the reconstructed food webs[120].  

 

Limitations with SIA include the need for lethal sampling (or at the very least invasively 
obtaining a tissue sample from the organism), drivers other than diet affecting isotopic 

signatures[120], low taxonomic resolution due to overlapping isotopic values[123], and 

a heavy reliance on relatively few studies for fractionation correction values[120]. As 
such, while SIA certainly has some unique selling points: namely the ability to quantify 

biomass assimilated into an organism, the lack of precision can limit its utility if used in 

isolation.   
 

 

1.4.5 Antibody based approaches  

Antisera based approaches were an early molecular approach used to study predation 

without the need for visual identification of hard parts[124]. In its simplest approach, 

proteins from potential prey species are injected into a mammal (usually a rabbit), after 
some time the antibodies for the injected proteins are extracted. These are then 

introduced to gut contents either passively, or in an electrical field (to speed up the 

assay), the presence of the prey of interest is inferred from the production of white 
precipitate[90]. Like other non visual-based approaches, it is able at identify heavily 

macerated, or semi-digested prey items[125]. However, due to protein similarities 

between prey false positives have been known to occur[126]. Additionally, the 
approach is expensive and has poor reproducibility due to the idiosyncratic nature in 

which antibodies are produced: even using the same mammal to produce antibodies 

can yield different results[90].  
 

With time improvements to address early limitations were made: the introduction of 

enzyme-linked immunosorbent assays[127], which uses an enzyme to facilitate the 
connection of the antibody and protein to greatly increase the sensitivity of the 

approach. Additionally, in-vitro monoclonal antibodies were developed which 

facilitated the detection of taxa-specific, or even life stage specific, protein 
sequences[128]. While these improvements made the approach excellent at detection 
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of specific prey the approach remained expensive and poorly suited to studying 

generalist predators[90]. It also faced ethical objections, because of the need to 

maintain populations of laboratory mammals. 
 

1.4.6 DNA based approaches  

An alternative molecular GCA approach was to use DNA to identify predation events. 
Predation is identified by matching fragments of DNA found in the stomach of a 

predator against a taxonomically-verified reference library. Genes from mitochondrial 

DNA (e.g. COI[129], 16s[130], 12s[131]), or chloroplast DNA (trnL[132]) are often used 
since multiple copies of these organelles exists within each cell, increasing the 

probability of successful detection.  

 
The first published research exploring the viability of using mtDNA molecular GCA was 

conducted by Asahida et al.[133]. In summary, after feeding flounder to shrimp in 

laboratory conditions, shrimp were sacrificed and stomachs were removed. DNA was 
extracted using a TNES-urea buffer. Then, a polymerase chain reaction (PCR) using 

flounder-specific primers was conducted to amplify flounder DNA. Flounder predation 

was ascertained by the presence of an amplicon visualised using gel electrophoresis. 
This process using taxon-specific primers and electrophoresis to confirm predation is 

known as diagnostic PCR. It has been the mainstay of the field and has been used in 

variety of studies[134], it also has provided the base from which other molecular 
techniques were built on.  

 

Real time PCR (rtPCR) assays are built on the same fundamental approach, but rely 
on a real a time PCR system and molecular probes. Molecular probes can amplify 

smaller quantities of DNA [135], and have greater taxonomic-specificity than standard 

PCR primers. In addition, while diagnostic PCR produces qualitative (detected / not 
detected) results, rtPCR quantifies the amount of DNA present in a sample. The 

development of multiplex rtPCR facilitated multiple fluorescently labelled (e.g TaqMan) 

primers for different taxonomic groups to be detected simultaneously in a PCR run 
[136,137]. Principally this reduces the time and cost of analysis, but also allows the 

presence of PCR inhibition and false-negative results to be evaluated[138]. Some 

studies have used the method to obtain relative abundance of food items in diet[135]. 
However, experiments formally testing this relationship suggest the technique should 
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not be used this way: Deagle and Tollit[130] formally tested if quantification was 

possible by feeding pinnipeds fixed quantities of fish, then using a rtPCR assay on 

faeces to see if the relative proportions obtained matched the diet. Although there was 
some evidence to suggest the amount of DNA quantified was not totally random, the 

output was significantly different from the dietary input. This could be a result of 

digestion biases, or different performance of primer sets. However, despite these 
limitations, rtPCR still remains the gold standard for investigating the predation of 

particular species due to its relative low-cost, sensitivity, taxon-specificity, and rapid 

production of results[109]. 
 

A modification of diagnostic PCR is introducing a sequencing step. Instead of solely 

relying on taxon-specific primers and gel electrophoresis to identify predation, 
sequencing of amplicons is used to match the amplicon against an online database 

such as BOLD[139] or Genbank[140], or a custom database. Taxon-specific primers 

are no longer required since the nucleotide sequences are used to identify a species, 
not the presence or absence of an amplicon during electrophoresis. Consequently, 

‘universal’ primers covering a broad range of species are often employed to capture 

taxonomically diverse diets[131,141,142]. Early studies used vector cloning of PCR 
product to separate and reproduce different amplicons, prior to sanger sequencing, 

and identification with a sequence database[143,144]. While this approach allows 

generalist diets to be studied more easily, vector cloning and sanger sequencing is 
relatively slow and expensive.  

  

First used for dietary purposes by Deagle et al.[145], high throughput sequencing 
(HTS) revolutionised this approach. HTS refers to a range of sequencing platforms that 

rely on sequencing many amplicons simultaneously, negating the need for vector 

cloning after an initial PCR. Vast quantities of data are produced facilitating the 
detection of rare trophic interactions[146]. An initial obstacle to overcome was predator 

DNA dominating the produced reads, thus reducing the ability to detect rare prey 

items. However, blocking primers have largely overcome this limitation. In a study 

carried out by Shehzad et al.[147] when blocking primers were not utilised 91.6 % of 
sequences obtained were that of the predator. Including blocking primers allowed the 

detection of seven addition prey species, a 63% increase compared to the original 

PCR run. In studies working with highly conserved genes, where the possibility of 
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blocking prey species’ DNA existed, peptide nucleic acid clamps have been used to 

achieve similar results [100].  

 
The ability of HTS to produce quantitative results (the reads produced corresponds to 

the initial biomass of different species in the sample) is a source of fierce academic 

debate. Initially it was hoped the number of sequences from a given taxa would be 
proportional to biomass consumed[148]: results have certainly been interpreted in this 

way by a variety of studies[149]. However, experimental evidence for this kind of usage 

is mixed. Initial results suggested there was no significant relationship between 
biomass and number of sequences produced[150,151]. However, recent studies 

suggest this may not be the case, and statistically significant relationships have been 

detected[152,153]. At present, there is no clear indication if particular organisms, 
genes, or sequencing platform are better or worse for producing quantitative results. 

Primer choice is very important as primers are known to preferentially bind to certain 

sequences over others, if a universal primer does this for one taxa over another, the 
sequencing results will reflect primer binding affinity rather than biomass[154]: Piñol et 

al.[155] in a mock-community experiment found the number of mismatches between 

a primer and template DNA explained 73% of the variation in sequence reads. As such, 
it seems possible phylogenetically similar taxa may have similar primer bias and be 

better suited for quantitative HTS studies than mixtures of more distantly related 

organisms, although this hypothesis has yet to be experimentally examined. Some 
improvement has already occurred: Thomas et al.[156] have used correction factors 

derived from laboratory trials to improve accuracy of quantifications, although it should 

be noted these correction factors were rather small. Recent opinion is that sequences 
from a HTS run probably contain some sort of quantitative signature[151]. Deagle et 

al. demonstrated, through the use of computer simulation, treating reads in a 

quantitative manner is often more accurate than detected/not-detected 
approaches[157]. While so many uncertainties remain, HTS is not ready for quantitative 

dietary studies en masse. However, sequences produced often loosely correspond 

with starting biomass, and with further research an accurate quantitative approach 

may soon be feasible.  
 

To overcome primer biases the use of PCR-less shotgun sequencing is being explored 

in dietary studies[158,159]. Paula et al.[160] first used this approach to look at aphid 
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predation by harlequin ladybirds. Sample collection and DNA extraction is the same 

as other DNA-based techniques, however the extracted DNA is loaded directly into a 

high throughput sequencer. The deep sequencing depth enables the detection of 
fragmented mitochondrial and nuclear DNA. As primer biases are not present, 

quantification is possible. Furthermore, because the detection of prey is not dependant 

on the survival of a particular genetic marker (any DNA will do) greater sensitivity can 
be achieved. However, relatively few samples can be processed due to the deep 

sequencing depth required (most reads come from the predator and must be 

discarded) making this approach very expensive per sample. Furthermore, well 
annotated genomes are required in databases for reads to be identified. At present, 

databases have sparse genome availability so custom database construction is an, 

expensive, prerequisite step before this kind of study can take place.   
 

Despite the fine taxonomic resolution achievable and lack of taxonomic expertise 

required, molecular GCA for dietary studies is far from a panacea: there are a host of 
issues worthy of consideration. Sequence databases are one source of uncertainty: 

although species coverage is constantly increasing as more sequences are submitted, 

large data gaps still exist[161]. This is particularly problematic in areas where it is 
difficult to obtain samples for sequencing, such as the deep sea[162]. Phylogenetic 

methods, (e.g. Bayesian-based[163] or Lowest common ancestor[98]), can be used 

to infer what an unidentifiable species is likely to be. In addition to database gaps, how 
representative of a species any given sequence is remains questionable: often only 

one sequence per species is available in a database. Whether this individual’s 

sequence is typical of the species is unknown. This could be remedied by using a 
consensus sequence constructed out of many individuals [164]. Most concerningly, 

errors in sequence reads or taxonomic misidentifications are known to exist in 

sequence databases[108], removing these erroneous records is an important step 
towards increasing the reliability of molecular dietary studies. 

 

Other issues are related to PCR and sequencing steps. The formation of chimeric 

sequences can lead to overestimates of dietary breath. Chimeras form when 
incomplete extension of a molecule occurs during PCR and the sequence binds onto 

a different DNA strand: creating a hybrid molecule. This can occur frequently in HTS 

studies with a PCR step: in extreme cases 70% of reads can be chimeric[165]. A suite 
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of programs exists for detecting such sequences[166], however in poorly sequenced 

taxa these programs may be of limited utility, and chimeric sequences have been 

identified on sequence databases.  
 

Secondary predation is a very contentious issue: secondary predation occurs when 

the prey of a consumed item is erroneously attributed to the organism being 
studied[167]. This is particularly problematic for approaches using rtPCR or HTS due 

to the high sensitivity of the techniques[168]. Potential secondary predation can be 

identified by looking at the co-occurrence of prey items: if one apparent prey item is 
never present without another it is likely to be secondary predation[98]. Independently 

carrying out dietary studies of these prey items can further aid identification. eDNA 

(trace DNA found in the environment[169]) can also lead to false positives. Moving 
forward, as the relationship between number of sequence reads and biomass 

becomes better established it may be possible to identify certain reads as a product 

of background ‘DNA’ noise, until then using molecular GCA in tandem with one of the 
other approaches highlighted here can increase certainty in the results as eDNA 

contamination is less likely to be an issue with less sensitive techniques like SIA or fatty 

acid analysis.  
 

Finally, attention must be paid to the technical aspects of the study’s design. HTS is a 

very sensitive technique, prone to stochasticity in the results; creating robust 
repeatable methodologies is therefore difficult. Differences in primer choice, how 

technical replicates of the PCR are handled, sequencing depth, and OTU clustering 

(similar sequences grouped prior to taxonomic identification) can all affect the final 
outcomes of a dietary study. To highlight how much these choices can affect results 

Alberdi et al.[158] conducted a study using standardised source material, but different 

bioinformatic approaches: in the final results reconstructed dietary richness varied 
between 11 and 560 species. Variability from methodological choices is hardly limited 

to molecular GCA, nor does it ‘invalidate’ any given set of results, however it is worth 

being cognisant of these factors, and to design experiments and interpret results 

regarding this.  
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1.5 Modelling approaches to fisheries management  
 
An EAFM requires combining disparate sources of data into an integrated, holistic 

approach. To this end, models are a widely-used approach, and have been 

instrumental in formally quantifying our knowledge of fisheries. Models have a number 
of uses including quantitative predictions, identification of knowledge gaps, ‘gaming’ 

to explore viable alternative ecosystem states (i.e ‘what if’ scenarios”) and better 

understanding the network interactions underpinning food webs[170]. [170]. However, 
every model is a characterisation of the real world situation, so model choice must be 

carefully considered in tandem with data sources before any of the aforementioned 

uses can be implemented.  
 

1.5.1 Single species models  

Single species models for fisheries management were first implemented in the 
1950s[171] and are still used in contemporary fisheries management[20,172]. Their 

wide use is facilitated by the relative ease of construction and statistical robustness 

compared to multi-species approaches[173]. Additionally, they offer superior short-
term quantitative predictions than multi-species models[172,174]: in certain 

circumstances their use can still be advocated. It not a case of multi-species models 

being ‘better’ than single-species models; rather, it is choosing a model that matches 
needs and data availability.  

 

However, ecosystems are complex and managing species individually is both 
conceptually flawed and, in practice, impossible. Since the models are trained on 

landings data rather than the physiological requirements of marine organisms, the 

models lack biological realism such as fully capturing the mechanisms behind the 
changes in recruitment (the number of juveniles entering the population) when 

populations are reduced[20]. Furthermore, theoretical studies have demonstrated that 

the actual harvestable yield of an ecosystem is less than the sum of its individual 
species’ harvestable yields as predicted by models[175]. In practice, single species 

models have systematically underestimated declines in fisheries[20] and are 

sometimes listed as a contributing factor driving the collapse of many fisheries[176].  
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1.5.2 Extended Single Species Models & Minimum Realistic Models 

Extended single species models possess much of the same statistical robustness, and 

conceptual simplicity as true-single species models, however a small step towards 
biological realism is taken by including important interspecific interactions for the 

species being modelled[177]. This reduces the chances of ecological surprises, for 

example: including predators in an extended species model of Alaska walleye pollock 
(Gadus chalcogrammus) enabled a more accurate representation of the inherent 

uncertainty in the fishery to be achieved compared to a traditional single species 

model[178]. However this approach still only models a small subset of the ecosystem 
and is a far cry from a true ecosystem approach to fisheries management.  

 

Minimum realistic models, such as GADGET[179], act as a conceptual bridge between 
extended single species models and whole-ecosystem models. Rather than 

attempting to model all interactions within an ecosystem they focus on a small subset 

of important interactions within the ecosystem[174]. The most commonly used form 
of minimum realistic model is multi-species virtual population analysis and its 

derivatives. This approach explicitly models predation events between species in the 

model, as well as ‘other predation’ events. It benefits from a large user base, and has 
had many of its underlying assumptions well tested[177]. A ‘forward mode’ allows 

simulations to run through time[180]. However, the approach suffers from lacking an 

ability to estimate uncertainty in input variables, being very data intensive[177], treating 
predator growth and feeding rates as constant (which is biologically unrealistic)[180] 

and also ignoring portions of the ecosystem outside its partition. This last point can 

become particularly problematic in ecosystems experiencing significant bottom-up 
control as this possibility is totally unrepresented in a multi-species virtual population 

analysis approach[172]. 

 
1.5.3 Whole ecosystem models  

Whole ecosystem models, such as Ecopath with ecosim (EwE)doy[181] and 

ATLANTIS[182], carry the most ecological realism: allowing species at all trophic levels, 
and the interactions between them, to be represented. As such, these models are well 

suited for use in EAFM. Many examples exist where whole ecosystem models have 

unveiled unlikely, multi-trophic, consequences within a perturbed ecosystem[180]. For 
example Bogstad et al. using MULTISPEC[183]  were able to demonstrate increased 
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Minke whale (Balaenoptera acutorostrata) population sizes would lead to an increase 

in capelin (Mallotus villosus) population sizes despite being a predator of capelin. This 

was due to the interaction term of a third species: herring (Clupea harengus). It may 
be tempting to think of multi-species models as a panacea, especially when multi-

species models seem to replicate the results generated by well-established single 

species models[174]. However, this increased biological realism comes at the cost of 
a lack of statistical robustness and greater uncertainty in the model outputs[177]. This 

is not through any fault in the models per se, but rather as a result of the complexity 

of the models: with more input variables, and interactions, within a model the likelihood 
of poor data entering the model, or abstract mathematical equations doing something 

biologically inappropriate increases. The likelihood of over-parameterising the model 

through the use of confounded variables increases for the same reason[184], although 
statistically testing data for co-variance before incorporation should decrease the 

likelihood of this occurring. It may not always be advisable to use multi-species models 

in place of single species models for generating specific quantitative predictions about 
a species. However, they are excellent for complimentary analysis and generating a 

holistic viewpoint.  

 

1.6 Ecopath with Ecosim 
 
1.6.1 An introduction to Ecopath with Ecosim 

As the most commonly used whole-ecosystem model[185], the applications of 

Ecopath with Ecosim (EwE) vary greatly. EwE has been used to model a variety of 
freshwater, marine, and even terrestrial ecosystems[186]. The spatial scale of these 

models varies considerably: early models focussed on small spatial scales such as 

lakes and rivers due to the easily defined ecosystem boundaries. However, 
EcoOcean[187], a recent EwE modelling effort by Christensen et al. models the entirety 

of the world’s marine ecosystems. The complexity of EwE models also shows great 

variation. EwE can, in its simplest form, can be used as a minimum realistic 
models[188]. However, most published EwE models adopt a true ecosystem 

approach incorporating taxa from a range of trophic levels. This range of previous 

applications and diversity of existing models showcases the flexibility of EwE, however 
this can make it bewildering to choose which particular EwE approach to use. 
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EcoBase, a database of published EwE models, has been created as a reference tool 

to facilitate easy access to pre-existing models, and help with the creation of new 

models using existing approaches[186]. 
 

Despite the great variety of EwE models, they are all based on a conceptually simple 

framework that can be broken into three main components. Ecopath, a static model 
developed by Polovina[189] to describe the interspecific interactions in a coral reef 

ecosystem, lies at the core of the approach. Ecosim, developed by Walters et al.[190] 

is a dynamic extension of Ecopath: the linear equations of Ecopath are replaced by 
differential equations to enable the model to simulate changes over time[23]. 

Ecospace, is the spatial extension: EwE is run in a grid system to allow simulation of 

an ecosystem both temporally and spatially[191].  
 

1.6.2 A model description of Ecopath 

Ecopath is parameterised under the assumption of mass balance over a specified 
period[23]. The model is constrained using two key equations: production and 

consumption. Production can be expressed as: 

 
Production = catch + predation + biomass accumulation + net migration + other 

mortality  

 
Or  

 

Pi = Yi + (Bi)(M2i) + Ei +BAi + (Pi )(1-EEi) 
 

Where Pi is the total production of species (i), Yi is total fishery catch rate of species (i), 

M2i is the predation rate on species (i), Ei is the emigration rate of species (i), BAi is the 
biomass accumulation of species, and (Pi )(1-EEi) represents all other mortality[192].   

 

Three of the following four variables must be entered, (All four can be entered if data 
are available): 

 

• Ecotrophic Efficiency (EE) 

• Consumption / biomass ratio (Q/B) 
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• Production / biomass ratio (P/B) 

• Biomass (B) 

 
The following parameters must then be entered for each group (unless all four data 

parameters have been entered): 

 

• Catch rate 

• Net migration rate 

• Biomass accumulation rate 

• Assimilation rate 

• Diet Composition 
 

Relationships between different groups are then established, assuming energy balance 
as constrained by the consumption equation (see below). If mass balance is not 

achieved and incompatible values are found, input variables can be altered either 

manually or using an automated balancing procedure, taking into account user-
defined uncertainty regarding input parameters.   

 

Consumption = Production + respiration + unassimilated food  

 
1.6.3 Analysis tools in EwE 

EwE’s core analysis tools can be broken down into sensitivity analysis tools and tools 

for the analysis of ecosystem indices.  

 
Sensitivity analysis is of paramount importance in any model. This makes it possible to 

elucidate how dependent the model outputs are on the initial parameters. EwE offers 

a variety of sensitivity analysis tools. The simplest sensitivity analysis routine varies the 
input variables in steps of 10% to +50 % and -50% to test the effect of input variables 

on the calculated ‘missing’ variables’ generated by the model[192]. Ecoranger offers 

a more sophisticated approach, and uses a Bayesian resampling routine to allow the 
probability distributions for each of the basic inputs, in addition to catch rate and diet 

compositions[193], to be calculated. A Monte-Carlo approach is then utilised to vary 

the input parameters within user-defined uncertainty estimates. This allows the 
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probability of any given input variables and transformed parameters occurring within 

the EwE model to be calculated. Mixed trophic impact (MTI) quantifies the change in 

biomass of one modelled group on all other groups within the modelled 
ecosystem[194]. As such it can be used to assess the ‘keystone-ness’ of a modelled 

group. It can also be used a sensitivity analysis tool: if a modelled group makes no 

quantitative difference on any of the other modelled groups it is not functionally 
important, and may warrant removal, or merging with another group during model 

simplification[195].  

 
A number of specialist modules have been developed within EwE. The move to 

Microsoft’s .net framework has improved the ease with which EwE can communicate 

with other programs and modules can be developed[185]. The most frequently used 
modules are Ecotracer and Ecotroph. Ecotracer is used to track the bioaccumulation 

and flow of contaminants, such as heavy metals and persistent organic pollutants, 

through the functional groups of an ecosystem[196]. Ecotroph uses biomass, and 
kinetics statistics, to calculate the impact of fishing on an entire ecosystem[197]. The 

network analyses plug-in adds to EwE’s built in ecosystem indices, and allows the 

utilisation of concepts central to information theory such as ascendancy, flow from 
detritus, primary production required, trophic level decomposition, and 

keystoneness[186,198].  

 
1.6.4 EwE Weaknesses 

Issues that exist with EwE can be broken into two categories: issues inherent with the 

model, and common user errors. Weaknesses inherent with the model are the ‘steady 
state’ assumptions when using the Ecosim module, inadequate handling of 

uncertainty, uncertain biological underpinnings of the foraging theory, no account for 

energetic differences in prey, poor scaling from the microscale to the macroscale, and 
some mathematical inconsistencies[188]. While some degree of user error occurs with 

any modelling approach, the particular ease of model construction in EwE, due in part 

to its user-friendly interface, makes poor-quality models a particular issue. This is 
usually facilitated by uncritical use of default settings in EwE and poor data quality 

being used in model parameterisation[193]. When interpreting a model, a reader 

should be very wary of user error. Christensen and Walters[193] provide an excellent 
overview of common pitfalls and strategies to avoid them. Additionally, the inclusion of 
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the pedigree index, which describes data quality and origin, should serve to help 

identify weak models attributable to user error[198].  

 
That ecosystems are assumed to be in a ‘steady state’ (no major fluxes in biomass 

occur in the period Ecopath is modelling) can present some serious problems. Ecosim 

and Ecospace, work by using a static Ecopath model and projecting the model 
stepwise through time and space respectively. For some ecosystems, like coral reefs, 

a long average may be appropriate (although recent coral bleaching events highlight 

the dynamic nature of even apparently ‘stable systems’[199]). For other more dynamic 
systems, a much shorter time scale will be better suited[188]. To its credit, EwE 

features some ability to handle inherent variability: a seasonal forcing function can be 

applied to account for intra-annual variability[193]. Furthermore, if the system is known 
to be flux for the time period in which the Ecopath model was created, the change in 

biomass can be entered into the model[193]. However, catastrophic shifts in 

ecosystems are known to occur in marine ecosystems[200], and even with mediating 
functions applied, the inherent dependence on the static nature of the Ecopath model 

will make EwE ill-suited for highly dynamic ecosystems. Consequently, the use of EwE 

to make predictions about the ecosystem when conditions are no longer analogous to 
the time the Ecopath base model was created, or is actively in flux, is not 

advocated[190,193]. Should a highly variable ecosystem need to be modelled – 

constructing multiple Ecopath models, over different time periods, has been 
advocated as an appropriate approach[186,201] .  

 

EwE’s handling of uncertainty in both the input parameters, and the model itself, has 
been widely criticised[177,180,188]. A lot of effort has been directing into correcting 

these shortfalls: EwE now features a true Monte-Carlo approach that can be 

conducted on EcoSim runs to help interpret model output[198]. In addition, the 
inclusion of data pedigree and a Bayesian approach, Ecoranger, for incorporating 

parameter uncertainty into the model are both major additions.  

 

EwE’s approximation of predation using a ‘foraging arena’ is another source of 
criticism. The foraging arena theory states that predators must spend time foraging, 

and competing, for prey groups defined as being vulnerable to them. Conceptually, 

this has some appeal: predators are rarely found with full stomachs suggesting the 
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foraging theory has some degree of biological realism[202]. However the biological 

underpinnings of this are very “controversial and uncertain”[177]. A plethora of 

evidence exists, suggesting that many species do not behave in this manner[188]. 
Furthermore, predators do not act in isolation: if one predatory species decreases, 

prey populations rarely explode as other species apply compensatory predation. The 

foraging arena does not include these compensatory mechanisms, and therefore can 
systematically underestimate predation[172]. Moreover, it is based on a micro-scale 

with interactions being simulated on the individual scale[202], how these processes 

scale to ecosystem, the scale which the model operates, has not been properly 
elucidated[188]. In addition to questionable biological grounding, the mathematics 

implemented suggest it is not modelling the foraging arena mechanisms well: Plaganyi 

and Butterworth[188] fully describe the mathematical assumption in the appendix and 
conclude that de facto “about half the prey population numbers Ni are vulnerable to 

predator j, effectively irrespective of the value of vij (vulnerability).” 

 
The handling of energetics is another shortcoming of the EwE approach. The master 

equations in Ecopath deal solely with biomass: the energetic content of modelled 

groups is assumed to be the same[188]. This is a gross oversimplification, the 
energetic content of species varies largely and predators alter feeding behaviours 

accordingly. For illustration, gelatinous zooplankton contain less than 8-27% caloric 

value of fish per unit of biomass (depending on this fish and jellyfish species)[203]. In 
its current form, EwE would grossly overestimate the energetic potential of gelatinous 

zooplankton, and could conceivably make erroneous assertions about gelatinous 

zooplanktons’ role in the ecosystem. It is conceivable that using relative biomass flows 
as an analogue for energy flows (i.e, however extreme caution must be applied as 

outputs would be easy to misinterpret). 

 
Another shortcoming is the functional response curves embedded in the model were 

developed to simulate fish species. The scope of EwE has expanded significantly since 

this initial development, but the response curves remain the same. Consequently, EwE 

still handles population dynamics of certain organisms, such as birds and mammals, 
particularly poorly[172]. 
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The final criticism levied at EwE is its handling of life history 

characteristics[172,177,188]. Different life stages were not incorporated into the 

original version of the model: some marine organisms can grow 1,000 fold during their 
life, so treating them identically was clearly less than ideal. However, EwE now allows 

organisms to be broken into multiple stanzas to allow different ontogenetic stages to 

be modelled in a biologically realistic manner[198].  
 

1.6.5 EwE strengths  

Despite some limitations, there are reasons to be positive about EwE’s use. Many 
limitations apply to any whole ecosystem model: more complex models inherently have 

more parameters, and more opportunities to introduce errors. EwE strikes an excellent 

balance between biological realism and complexity, and the addition of a user interface 
makes creating and using models very accessible[188,198]. As a true ecosystem 

model it is allows the investigation of topics not possible using MSVPA or single 

species models such as network function, ecosystem health, trophic cascades and 
ecosystem wide impacts of fishing[188] . EwE is also particularly good at comparing 

ecosystems. Comparison requires that the same analytical framework has been used: 

EwE’s low data requirements, good documentation, database of published 
models[186], and conceptual simplicity facilitate this[204]. EwE currently dominates 

ecosystem-modelling approaches, and has a large and active scientific community: as 

of October 2008 there were 5,649 registered users and over 300 publications featuring 
EwE (ecopath.org). It is also constantly being improved and updated, many of the 

criticisms expressed in the early literature have now been addressed: EwE now 

features predator satiation and prey switching, in addition to making material steps to 
quantify uncertainty in the model[198]. The incorporation of Microsoft’s .net platform 

had increased the modularity of the model – and now allows users to readily develop 

their own modules. For example Steenbeek et al.[185] used the .net framework to 
incorporate true GIS capability into the EwE framework – allowing environmental 

forcing on the ecosystem to be explicitly captured. 
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1.7 Aims of this thesis 
 
Implementing an EAFM requires a working knowledge of the major components of the 

ecosystem, and the interspecific interactions between them. Our knowledge of jellyfish 

trophic ecology, when compared to other marine taxa of comparable biomass, in 
ecosystems around the UK and Ireland is limited. This is concerning as jellyfish 

populations in the Irish Sea have been increasing[66], and elsewhere in the region 

adverse effects, such as the loss of fish stock in aquaculture installations has 
occurred[40]. In order to start to fill these data gaps the following aims are investigated 

in this thesis: 

 
1. What is the trophic ecology of jellyfish? Traditional morphological gut contents 

analysis can systematically underestimate jellyfish predation, so diagnostic 

screening was used to screen 50 taxa taken from multiple years of sampling for 
jellyfish predation. The results are presented in chapter two. 

2. Does predation mortality vary across jellyfishes’ life cycle? Jellyfish undergo a 

dramatic transformation over the course of their life cycle. Time is spent as a 
sessile polyp, a planktonic juvenile, before developing into adult medusa. 

Predation during different life stages has important consequences for jellyfish 

populations, as well as the nutrients derived for predators. Jellyfish predation is 
investigated at different times of year, using the diagnostic PCR developed in 

chapter two, and is presented in chapter three. 

3. To what extent can HTS be used to quantify trophic interactions? Having 
established jellyfish predation in different locales, and in different time of years 

there is a need to gain more context. HTS can provide complete diets, however 

it is unclear if the reads generated correspond to the amount of biomass 

consumed. In chapter four we conduct a meta-analysis on HTS studies to 
ascertain how the results of a HTS should be interpreted.    

4. What is the context of jellyfish predation? Are predators preferentially selecting 

jellyfish as a prey, or are they only utilised when other prey are unavailable? 
What is the relative consumption of jellyfish: are they rarely ingested or 

important pathway for energy in the food webs. These questions are 
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investigated using HTS and universal primers, the results are presented in 

chapter five. 

5. How are jellyfish handled in whole ecosystem models? Is there any evidence of 
particular studies influencing the entire field? In chapter six, existing EwE 

models are examined, drawing upon both literature and the findings of this 

thesis. Recommendations are made on best-practice for including jellyfish in 
whole ecosystem models.    
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Chapter 2: Jellyfish on the menu: 

mtDNA assay reveals scyphozoan 

predation in the Irish Sea 
 

2.1 Abstract  
 
Localised outbreaks of jellyfish, known as blooms, cause a variety of adverse 

ecological and economic effects. However, fundamental aspects of their ecology 

remain unknown. Notably, there is scant information on the role jellyfish occupy in food 
webs: in many ecosystems few or no predators are known. To identify jellyfish 

consumers in the Irish Sea, we conducted a molecular gut content assessment of 50 

potential predators using cnidarian-specific mtDNA primers and sequencing. We show 
that jellyfish predation may be more common than previously acknowledged: 

uncovering many previously unknown jellyfish predators. A substantial proportion of 

Herring and Whiting were found to have consumed jellyfish. Rare ingestion was also 

detected in a variety of other species. Given the phenology of jellyfish in the region, we 
suggest that the predation was likely targeting juvenile stages of the jellyfish lifecycle.   

 

2.2 Introduction  
 

Cnidarian jellyfish (hereafter referred to as “jellyfish”) are a common feature of many 
marine ecosystems. Localised outbreaks, known as blooms, can cause negative 

economic and ecological effects such as fish death, interference with marine 

infrastructure, and tourism losses [1]. Understanding the ecology of jellyfish is essential 
if the blooms are to be predicted and adverse effects avoided. 

 

One area of jellyfish ecology that is poorly characterised is their role in food webs. 
Jellyfish have historically been viewed as trophic dead-ends, i.e. once nutrients enter 

jellyfish they are lost to organisms occupying higher trophic levels [2,3]. This viewpoint 

may originate from difficulties observing marine interactions in situ and the inability of 
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morphological gut contents analysis (GCA) to identify rapidly digested, soft bodied 

organisms such as jellyfish [4]. New analytical techniques have revealed that some 

animals do feed on jellyfish [5–8]. However, many of these jellyfish predators are scarce 
and not thought to play a significant role in controlling jellyfish populations [9]. 

Furthermore, most of these studies have focused on single species and therefore, the 

extent of jellyfish predation in food webs remains unknown.  
 

The Irish Sea makes for an excellent case study: it has experienced adverse effects 

from an increasing jellyfish population [10] yet aside from small populations of 
leatherback turtles and sunfish [11] no predators are known. Systematically identifying 

predators of jellyfish is a prerequisite step before the broader role jellyfish play in 

ecosystems can begin to be adequately addressed. As such, the aim of this study was 
to identify Irish Sea jellyfish predators, using a newly developed cnidarian specific 

polymerase chain reaction (PCR) assay. This approach identifies gut contents by 

matching amplified DNA fragments against a DNA database, circumventing issues 
associated with morphological GCA. Therefore, even highly digested jellyfish can still 

be detected.  

 

2.3 Methods 
 
2.3.1 Sample collection & Extraction of DNA 

Sample collection, processing, and molecular work is detailed in full in [12]. In 

summary: gut samples were collected aboard the RV Cefas Endeavour in the eastern 
Irish Sea between 25/02/08 - 02/03/08, and 19/02/09 - 28/02/09. Trawling gears 

were deployed to capture predators from throughout the water column to maximise 

active predator-prey interactions. For each haul, vinyl gloves were sealed, then inserted 
inside an additional vinyl glove which itself was then sealed. The innermost gloves were 

processed as stomachs, with the outer gloves simulating a fish during dissection: this 

negative control was used to detect any potential contamination introduced during 
initial processing. Seven hundred and fifty-one and 1762 samples were collected in 

2008 and 2009 respectively. The length of each sampled organism was recorded 

before the removal of the stomach on-board. Gloves were changed between the 
dissection of different species, and instruments were decontaminated between hauls 
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with Microsol detergent to minimise the possibility of contamination. Removed 

stomachs were stored at -20°C.  

 
DNA was extracted from the stomach contents in a molecular laboratory. Whole sprat 

(Sprattus sprattus) and shrimp (Crangon sp.) stomachs had DNA extracted and 

purified using a salt protocol, since their stomachs were small enough to avoid issues 
with PCR-inhibitory substances. Samples were homogenised in 300 µl of extraction 

buffer (30 mM Tris-HCL pH 8.0, 10mM EDTA pH 8.0, 1% SDS), before 5 µl Proteinase 

K (Qiagen) was added. The samples were then incubated at 55°C overnight. 
Purification of DNA took place using a salting out protocol [13]. 

 

All other species’ stomachs had DNA extracted using a CTAB 
(hexadecyltrimethylammonium bromide) method [12]. Contents were scraped out of 

the dissected stomachs and homogenised in autoclaved 1.5 ml Eppendorf tubes with 

350 µl of 2% CTAB buffer (100 mM Tris-HCl pH 8.0, 1.4 M NaCl, 20mM EDTA pH 8.0, 
2% CTAB, 0.2% 2-mercaptoethanol), then mixed with 5 µl Proteinase K (Qiagen) and 

incubated at 55°C overnight for the sample to digest. DNA purification was performed 

using two choloroform-isoamyl washes followed by a sodium acetate precipitation 
(3M, pH 4.8). Both CTAB and salt extracted samples were dissolved in 100 µl water 

and stored at -20°C.  

 
2.3.2 Jellyfish group-specific primer design 

Available 16S sequences of jellyfish present in UK coastal waters (Supplementary table 
2.1) were obtained from GenBank [14] (Supplementary table 2.2) and aligned using 

MUSCLE [15] with default settings. Positions in the 16s alignment where nucleotides 

were conserved among jellyfish, but different in non-gelatinous species 

(Supplementary table 2.3) were identified. Jellyfish specific primers: SCY_16S_F4 
(TTAAATGGCCGCGGTAACT) and SCY_16S_R4 (GCTCAATAGGGTCTTTTCGTCT) 

were designed using Primer3 [16] to amplify a 135 bp fragment that included the 

unique jellyfish sequences. The primers were tested in-silico, on non-gelatinous 
species (Supplementary table 2. 3), using Amplify4 [17] prior to PCR validation across 

a panel of jellyfish and non-gelatinous marine species (Supplementary table 2.4) to 

ensure specificity to jellyfish.  
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2.3.3 PCR amplification and sequencing 

PCRs were conducted in 10 µl reactions containing 1 µl DNA, 1 µl 10x ReddyMix PCR 

Buffer IV (ABgene), 1 µl dNTPs (2 mM), 0.05 µL Thermoprime plus Taq DNA 
polymerase (5 U µl-1) (Thermo Scientific), 1 µl of Scy_16s_F1 & Scy_162_F2 (10 µM), 

1.2 µl BSA (20 mg ml-1) (New England Biolabs), 0.6 µl MgCl2 (25 mM) (Thermo 

Scientific), and 3.15 µl H2O. Cycling conditions were: 95°C for 4 minutes, followed by 
35 cycles of 95°C for 0:30s, 65°C for 0:30s, 72°C for 0:30s, with a 10 minute 

incubation at 72°C. Negative and positive controls were included on each plate. The 

presence of jellyfish DNA was determined based on the presence of a band at 177 bp 
on 1.5% ethidium-bromide stained agarose gels.  

 

A subsample of positive amplifications were purified with Exo1 (Thermo Scientific) and 
FastAP (Thermo Scientific) prior to Sanger sequencing (Eurofins UK). Sequences were 

trimmed of primers and low read-quality bases, and chromatograms visually inspected 

for quality. Sequences were identified using nucleotide megablast [18] against the 
GenBank nucleotide database, and reported as % BLAST identity values. 

 

2.4 Results  
 

2.4.1 2008 Survey  

Jellyfish mtDNA was detected in 18 out of 751 samples from 9 of the 34 surveyed taxa 

(Table 1). All positive samples were identified as moon jellyfish (Aurelia aurita) 

(supplementary table 2.5). Five sequences from dab (Limanda limanda), whiting 
(Merlangius merlangus), herring (Clupea harengus), and squid (Loligo sp.) had a 100% 

identity match with moon jellyfish across the 135bp amplicon. The remaining 

sequences also matched with Moon jellyfish, but with BLAST identity values varying 
from 85% - 96%. 

 

2.4.2 2009 Survey 

Cnidarian mtDNA was detected in 141 samples out of 1762 samples from 7 of the 38 

surveyed taxa (Table 1). Predation was much more frequent in herring and whiting than 

in 2008: Jellyfish were detected in 27.6% and 11.6% of herring and whiting stomachs 
respectively, compared to just 1.4% and 2.6% observed in stomachs from 2008. 
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Samples from dover sole (Solea solea), sprat, and a subsample of herring (n=15) and 

whiting (n=21) were successfully sequenced. A sequence could not be obtained from 

the flounder (Platichthys flesus) amplicon, consequently flounder was not included in 
further analysis. Twelve sequences from herring stomach samples were identified as 

moon jellyfish with 3 unidentified sequences. Whiting had mainly consumed mauve-

stinger jellyfish (Pelagia noctiluca) (n=16), although 3 mtDNA sequences derived from 
whiting stomachs were identified as oaten-pipe hydroids (Tubularia indivisa) (100% 

match), one sample as soft coral (Alcyonium sp.) (99% match), and one unidentified 

sequence. In contrast to 2008, most samples had 98%+ identity match 
(supplementary table 2.5).  

 
Table 2.1. Taxa tested for jellyfish feeding events. 

  2008 2009 

Taxa Stomachs 
screened  

Stomachs with 
jellyfish 
consumption 
detected 

Frequency of 
Occurrence 
(%) 

Stomachs 
screened  

Stomachs with 
jellyfish 
consumption 
detected 

Frequency of 
Occurrence 
(%) 

Agonus 
cataphractus 1 0 0 13 0 0 

Ammodytes 
marinus 0 0 0 4 0 0 
 
Arnoglossus sp. 0 0 NA 28 0 0 

Aspitrigla 
cuculus 4 0 0 9 0 0 

Blennius 
ocellaris 0 0 NA 4 0 0 

Buglossidium 
luteum 0 0 NA 14 0 0 

Callionymidae 
sp. 12 4 33.3 30 0 0 

Cancer pagurus 0 0 NA 3 0 0 

Ciliata mustela 2 0 NA 0 0 0 

Clupea 
harengus 143 2 1.4 369 102 27.6 

Corystes 
cassivelaunus 0 0 NA 21 0 0 

Crangon 
crangon 9 0 0 60 0 0 

Cyclopterus 
lumpus 0 0 NA 1 0 0 

Echiichthys 
vipera 13 0 0 22 0 0 

Engraulis 
encrasicolus 3 0 0 0 0 NA 

Eutrigla 
gurnardus 31 1 3.2 31 0 0 

Gadus morhua 3 0 0 2 0 0 

Hippoglossoides 
platessoides 2 0 0 0 0 NA 

Limanda 
limanda 70 1 1.4 171 1 0.6 

Liocarcinus 
depurator 0 0 NA 25 0 0 
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Liparis liparis 0 0 NA 2 0 0 

Loligo sp. 36 1 2.8 1 0 0 

Majidae sp. 0 0 NA 20 0 0 

Melanogrammus 
aeglefinus 13 0 0 0 0 NA 

Merlangius 
merlangus 76 2 2.6 294 34 11.6 

  
0 0 NA 18 0 0 Microchirus 

variegatus 

Microstomus kitt 0 0 NA 7 0 0 

Necora puber 1 0 0 0 0 NA 

Nephrops 
norvegicus 12 0 0 0 0 NA 

Octopodidae sp. 0 0 NA 1 0 0 

Pagurus 
cuanensis 0 0 NA 45 0 0 

Palaemon 
serratus 0 0 NA 2 0 0 

Pandalus sp. 1 0 0 0 0 0 

Platichthys 
flesus 22 0 0 39 1 2.6 

Pleuronectes 
platessa 8 0 0 0 0 NA 

Polybius 
holsatus 15 0 0 0 0 NA 

Pomatoschistus 
sp. 1 0 0 10 0 0 

Raja clavata 7 0 0 0 0 NA 

Raja montagui 0 0 NA 12 0 0 

Scomber 
scombrus 2 0 0 17 0 0 

Scyliorhinus 
canicula 16 2 12.5 11 0 0 

Sepia officinalis 3 0 0 0 0 NA 

Sepiola atlantica 1 0 0 21 0 0 

Solea solea 0 0 0 25 1 4 

Sprattus 
sprattus 192 4 2.1 412 1 0.2 

Trachurus 
trachurus 4 0 0 0 0 NA 

Trigla lucerna 7 0 0 8 0 0 

Trisopterus 
esmarkii 10 0 0 0 0 NA 

Trisopterus 
luscus 1 0 0 0 0 NA 

Trisopterus 
minutus 30 1 3.3 10 0 0 
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2.5 Discussion 
 

2.5.1 Jellyfish consumption amongst common species  

Dragonet (Callionymidae sp.), grey gurnard (Eutrigla gurnardus), poor cod (Trisopterus 
minutus), lesser-spotted dogfish (Scyliorhinus canicula), squid, herring, whiting, dover 

sole, and sprat were identified as taxa that consume jellyfish (Figure 2.1). High year-

to-year variability was seen, particularly for whiting and herring. It is unclear what drove 
this variation, particularly without data for jellyfish abundance or alternative food 

sources for the species. However, this does highlight the importance of repeated 

sampling: had we formed our data from a single year some predation events would 
have been missed, while other estimates would have been more inaccurate.  

 

Jellyfish predation in the Irish Sea is not novel: sunfish and leatherback turtles are 
known predators [11]. However, the relative biomass of these species is tiny relative 

to the taxa described here (supplementary table 2.6). The discovery that common 

species prey on jellyfish is unexpected since jellyfish predators were thought to be 
scarce [9]. This could be important since even apparently low levels of jellyfish 

consumption amongst common species could potentially exert comparable, or 

greater, levels of influence on jellyfish populations than rare predators.  
 

2.5.2 Which species and life stages are being targeted?  

Moon and mauve-stinger jellyfish were both found to be consumed in this study. Non-
exact matches (85 - 96% Blast identity) could be a result of intraspecific variation, un-

sequenced cryptic species, or other jellyfish absent from GenBank. The amplification 

of oaten-pipes hydroid and soft coral demonstrates that the primers also amplify non-
scyphozoan cnidarians (some of which are jellyfish [19]), highlighting the importance of 

a post-PCR sequencing step to identify and remove any false positives. 

 
Moon jellyfish possess a meta-genetic life cycle, characterised by functionally different 

life stages [20]. In the autumn, adult jellyfish (medusae) reproduce sexually: fertilised 

planktonic planulae are released, and spend several days in the water column [21] 
before settling on hard substrata to form sessile polyps. Medusae then begin to die 
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off, while polyps overwinter [20]. Polyps are sessile until strobilation (the asexual 

production of free-swimming ephyrae) is stimulated by the onset of cooler 

temperatures [22] in February, March, and April [23]. Ephyrae continue to develop in 
size, becoming medusae in around 4 weeks [24]. Mauve-stinger jellyfish have a similar 

life history, although notably lack a polyp life-stage [25]. Predation on different life 

stages could have varying effects on jellyfish populations, and the nutrients available 
to predators. At the time of sample collection (February and March) the majority of 

moon and mauve-stinger jellyfish would not have yet matured into medusae [20]: it 

therefore seems probable the detected predation was on juvenile ephyrae or perhaps 
moon jellyfish polyps. 

 
Figure 2.1. Species that feed on jellyfish in the Irish Sea validated using sequencing. Thickness of arrow 
is representative of the percentage of stomachs jellyfish were detected in (also displayed as a 
percentage) across the years 2008–2009. Reported sample sizes (n) refer to the number of stomachs 
sampled from each species. Species that jellyfish were not detected in are detailed in Table 2.1 
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2.5.3 A molecular approach: advantages and limitations 

A variety of approaches have been used to detect jellyfish predation. Multiple studies 

have identified jellyfish predation using morphological GCA approaches [5]. 

Shortcomings of this technique, such as systematically underestimating soft-bodied 
prey and taxonomic uncertainty, are well documented [4]. Recently, video loggers 

recorded benthic scavenging of jellyfish carcasses [26]. However, the static nature of 

video cameras means capturing mid-water interactions, where jellyfish spend most of 
their life cycle, is logistically extremely challenging. Stable isotope analysis (SIA) [6] is 

free of the limitations of both morphological GCA and visual observation, and also has 

the advantage that it provides an estimate of biomass consumed. However, SIA 
cannot elucidate interspecific relationships to a fine taxonomic resolution due to 

overlap in isotopic values between different species [27], nor is it effective at detecting 

rare prey species in the diet.  
 

Molecular GCA also overcomes the limitations of morphological GCA and 

observational approaches, and has been used with high throughput sequencing (HTS) 
to identify jellyfish predation in herring in coastal waters of New Brunswick [8]. 

Additionally, unlike SIA, it inexpensively provides species-specific identifications. 

Consequently, large sample sizes can be investigated which, in this instance, proved 
essential to detect jellyfish consumption.  

 

Molecular GCA does have limitations: unlike SIA, molecular GCA cannot provide 
biomass consumption estimates. In addition, although not widely discussed, the 

possibility of contamination from eDNA (trace DNA found in the environment [28]) could 

exist, though it is typically found at very low concentrations. In this instance, it is 
extremely unlikely to be problematic: in an eDNA study of Japanese Sea nettle jellyfish 

(Chrysaora pacifica) the highest concentration of eDNA, detected on the sea floor, had 

a concentration of 2.49 x10-10 ng µl-1 [29]. The primers used here detected moon 
jellyfish DNA diluted to a concentration of 0.03 ng µl-1, but no further. A related issue 

using molecular approaches is that secondary predation (when a consumed prey 

species has consumed jellyfish) cannot be distinguished from direct consumption of 
jellyfish. This is particularly problematic if using HTS: the high sensitivity makes the 
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probability of detecting small amounts of DNA from secondary predation more likely 

than using the gel-imaging approach used here [30]. Secondary predation can be 

diagnosed by identifying predatory species in the gut alongside the jellyfish, then 
independently testing those species for jellyfish predation. However, by using 

cnidarian-specific primers, the co-occurrence of other non-cnidarian species in the 

guts cannot be examined; so the possibility of secondary predation should not be 
disregarded. Balancing the requirements of precision, cost, and time needs to be 

carefully considered when choosing between dietary assessment methodologies: the 

technique employed here is fast, easy to conduct, and inexpensive, but lacks the 
precision and sensitivity of HTS, or biomass estimates of SIA. Therefore, it is best used 

as a low-cost diagnostic tool for initial screening of samples to aid in the design of HTS 

studies, or as a complementary analysis to provide finer taxonomic resolution to SIA. 
 

2.6 Conclusion 
The evidence presented here refutes the notion that jellyfish predation is rare: 

sequencing suggests that Herring and Whiting frequently feed on jellyfish. Dragonet, 

sprat, dover sole, dab, squid, lesser-spotted dogfish, and poor cod were also seen to 
infrequently ingest jellyfish. When considering phenology of jellyfish in this region [20], 

it seems probable this predation is targeting juvenile jellyfish, although ingestion of 

Moon jellyfish polyps also remains a possibility. Quantifying such feeding relationships, 
and testing for adult jellyfish predation later in the year are therefore important future 

foci towards understanding the trophic role jellyfish play in ecosystems and predicting 

jellyfish blooms. 
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2.8 Supplementary information  
Supplementary Table 2.1. Jellyfish species present in the British Isles[1–5]. 

Genus Species 
Aegina citrea 
Aeginura grimaldii 
Aequorea forskalea 
Aequorea vitrina 
Aequorea pensilis 
Aglantha digitale  
Amphinema dinema 
Amphinema rugosum 
Annatiara affinis 
Atolla wyvillei 
Atolla vanhoeffeni 
Atolla parva 
Aurelia  aurita 

Botrynema brucei 
Bougainvillia britannica 
Bougainvillia macloviana 
Bougainvillia principis 
Bougainvillia ramosa 
Bougainvillia pyramidata 
Bougainvillia superciliaris 
Bythotiara murrayi 
Chromatonema rebrum 
Chrysaora  hysocella 
Cladonema radiatum 
Clytia hemisphaerica 
Clytia islandica 
Codonium proliferum 
Colobonema sericeum 
Corymorpha nutans 
Coryne eximia 
Cosmetira pilosella 
Craspedacusta sowerbii 
Crossota rufobrunnea 
Cyanea capillata 
Cyanea lamarckii 
Dipleurosoma typicum 
Ectopleura dumortierii 
Eirene viridula 
Eleutheria dichotoma 
Eucheilota maculata 
Eucodonium  brownei 
Euphysa aurata 
Eutima gegenbauri 
Eutima gracilis 
Eutonina indicans 
Gonionemus vertens 
Halicreas minimum 
Haliscera bigelowi 
Halopsis ocellata 
Helgicirrha schulzei 
Hybocodon prolifer 
Laodicea undulata 
Leuckartiara nobilis 
Leuckartiara  octona 
Liriope tetraphylla 
Lizzia  blondina 
Lovenella clausa 
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Margelopsis  haeckelii 
Melicertum octocostatum 
Mitrocomella brownei 
Mitrocomella   polydiademata 
Modeeria rotunda 
Muggiaea atlantica 
Nanomia cara 
Nausithoe atlantica 
Nausithoe globifera 
Neoturris breviconis 
Neoturris pileata 
Obelia geniculata 
Obelia dichotoma 
Obelia longissima 
Obelia lucifera 
Obelia nigra 
Octophialucium funerarium 
Orthropyxis integra 
Pandea conica 
Pandea rubra 
Pantachogon haeckeli 
Paraphyllina ransoni 
Pelagia noctiluca 
Periphylla periphylla 
Phialella quadrata 
Phialopsis diegensis 
Physalia physalis 
Podocoryna  borealis 
Podocoryna carnea 
Podocoryna areolata 
Podocoryna minima 
Proboscidactyla stellata 
Rathkea octopunctata 
Rhizostoma pulmo 
Rhopalonema velatum 
Rhopalonema funerarium 
Sarsia tubulosa 
Slabberia halterata 
Solmaris corona 
Solmissus incisa 
Stauridiosarsia gemmifera 
Stauridiosarsia producta 
Stauridiosarsia ophiogaster 
Staurostoma mertensii 
Tetraplatia volitans 
Thamnostominae sp. 
Tiaropsis multicirrata 
Tima bairdii 
Trichydra pudica 
Turritopsis nutricula 
Velella velella 
Zanclea costata 
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Supplementary Table 2.2. Jellyfish 16S sequences, from GenBank, used for designing group-specific 
jellyfish primers 
Species Accession Number 
Aurelia aurita U19373.1 
Atolla vanhoeffeni JX393250.1 
Atolla wyvillei JX393251.1 
Cyanea capillata KM114287.1 
Pelagia noctiluca JX393260.1 

  
Supplementary Table 2.3. Non-gelatinous species 16S sequences, from GenBank, used for 
designing group-specific jellyfish primers 
Species Accession Number 
Actinia equina KP090930.1 
Aequipecten opercularis AJ245397.1 
Alcyonium digitatum AF530482.1 
Antedon bifida KC626604.1 
Bispira porifera HM800968.1 
Buccinum pemphigus FJ875946.1 
Buglossidium luteum KJ128718.1 
Crangon crangon EU868649.1 
Inachus dorsettensis KC866331.1 
Labrus bergylta KJ128797.1 
Limanda limanda AY368897.1 
Liocarcinus holsatus GQ268540.1 
Lophius piscatorius KJ128815.1 
Luidia sarsi AY652495.1 
Microchirus variegatus FN688074.1 
Mullus surmuletus KJ128836.1 
Munida sp. AY351197.1 
Nemertesia antennina FJ550458.1 
Ophiura ophiura AY652508.1 
Pandalus montagui EU868698.1 
Pasiphaea telacantha KP725635.1 

Processa guyanae EU868708.1 
Psammechinus miliaris AY652516.1 
Trisopterus minutus KJ128939.1 
Trisopterus luscus KJ128937.1 
Tritonia plebeia AJ223393.1 
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Supplementary Table 2.4. Jellyfish and non-gelatinous species used to test and optimise group-
specific primers on  

Taxa Grouping 
Aequorea sp. Jellyfish 
Aurelia aurita Jellyfish 
Chrysaora hysoscella Jellyfish 
Cyanea lamarckii Jellyfish  
Pelagia noctiluca Jellyfish 
Rhizostoma pulmo Jellyfish  
Actiniaria sp. Non-gelatinous  
Aequipecten opercularis Non-gelatinous 
Alcyonium digitatum Non-gelatinous 
Antedon bifida Non-gelatinous 
Arnoglossus laterna Non-gelatinous 
Ascidiella scabra Non-gelatinous 
Buccinum sp. Non-gelatinous 
Buglossidium luteum Non-gelatinous 
Cellaria sp. Non-gelatinous 
Cirolana sp. Non-gelatinous 
Crangon allmani Non-gelatinous 
Hyalonema sp. Non-gelatinous 
Hyperoplus immaculatus Non-gelatinous 
Inachus dorsettensis Non-gelatinous 
Labrus bergylta Non-gelatinous 
Limanda limanda Non-gelatinous 
Liocarcinus holsatus Non-gelatinous 
Loligo forbesii Non-gelatinous 
Lophius piscatorius Non-gelatinous 
Luidia sarsii Non-gelatinous 
Microchirus variegatus Non-gelatinous 
Mullus surmuletus Non-gelatinous 
Munida rugosa Non-gelatinous 
Nemertesia sp. Non-gelatinous 
Ophiura ophiura Non-gelatinous 
Pagurus prideaux Non-gelatinous 
Pandalus sp. Non-gelatinous 
Pasiphaea sp. Non-gelatinous 
Porifera sp. Non-gelatinous 
Processa sp. Non-gelatinous 
Psammechinus miliaris Non-gelatinous 
Pycnogonum sp. Non-gelatinous 
Scalpellum sp. Non-gelatinous 
Symphodus melops Non-gelatinous 
Thyone sp. Non-gelatinous 
Trisopterus luscus Non-gelatinous 
Trisopterus minutus Non-gelatinous 
Tritonia hombergii Non-gelatinous 
Zeugopterus regius Non-gelatinous 
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Supplementary Table 2.5. Sequencing a subsample of positive results identifies, via a megablast 
query on GenBank, which gelatinous species was present in the samples.     

Species Jellyfish identity Blast Identity (%) Year 
Callionymidae sp.   Aurelia aurita 90 2008 
Callionymidae sp.  Aurelia aurita 92 2008 
Callionymidae sp.  Aurelia aurita 93 2008 
Callionymidae sp. Aurelia aurita 85 2008 
Clupea harengus  Aurelia aurita 87 2008 
Clupea harengus  Aurelia aurita 100 2008 
Eutrigla gurnardus Aurelia aurita 88 2008 
Limanda limanda  Aurelia aurita 100 2008 
Limanda limanda  Aurelia aurita 85 2008 
Limanda limanda  Aurelia aurita 89 2008 
Loligo sp. Aurelia aurita 100 2008 
Merlangius merlangus Aurelia aurita 87 2008 
Merlangius merlangus Aurelia aurita 96 2008 
Merlangius merlangus Aurelia aurita 100 2008 
Scyliorhinus canicula  Aurelia aurita 92 2008 
Scyliorhinus canicula  NA NA 2008 
Sprattus sprattus  Aurelia aurita 89 2008 
Sprattus sprattus  NA NA 2008 
Sprattus sprattus  Aurelia aurita 94 2008 
Trisopterus minutus Aurelia aurita 100 2008 
Clupea harengus  NA NA 2009 
Clupea harengus Aurelia aurita 95 2009 
Clupea harengus NA NA 2009 
Clupea harengus Aurelia aurita 100 2009 
Clupea harengus NA NA 2009 
Clupea harengus Aurelia aurita 100 2009 
Clupea harengus Aurelia aurita 100 2009 
Clupea harengus Aurelia aurita 95 2009 
Clupea harengus Aurelia aurita 98 2009 
Clupea harengus Aurelia aurita 100 2009 
Clupea harengus Aurelia aurita 99 2009 
Clupea harengus Aurelia aurita 100 2009 
Clupea harengus Aurelia aurita 100 2009 
Clupea harengus Aurelia aurita 100 2009 
Clupea harengus Aurelia aurita 100 2009 
Clupea harengus Aurelia aurita 100 2009 
Merlangius merlangus Alcyonium sp. 99 2009 
Merlangius merlangus Pelagia noctiluca 100 2009 
Merlangius merlangus Pelagia noctiluca 100 2009 
Merlangius merlangus Pelagia noctiluca 92 2009 
Merlangius merlangus Pelagia noctiluca 100 2009 
Merlangius merlangus Pelagia noctiluca 100 2009 
Merlangius merlangus Pelagia noctiluca 100 2009 
Merlangius merlangus Pelagia noctiluca 100 2009 
Merlangius merlangus Pelagia noctiluca 100 2009 
Merlangius merlangus Pelagia noctiluca 99 2009 
Merlangius merlangus Pelagia noctiluca 97 2009 
Merlangius merlangus Pelagia noctiluca 100 2009 
Merlangius merlangus Pelagia noctiluca 100 2009 
Merlangius merlangus Pelagia noctiluca 100 2009 
Merlangius merlangus Pelagia noctiluca 100 2009 
Merlangius merlangus Pelagia noctiluca 94 2009 
Merlangius merlangus Pelagia noctiluca 100 2009 
Merlangius merlangus Tubularia indivisa 100 2009 
Merlangius merlangus Tubularia indivisa 100 2009 
Merlangius merlangus NA NA 2009 
Merlangius merlangus Tubularia indivisa 100 2009 
Solea solea Pelagia noctiluca 100 2009 
Sprattus sprattus  Pelagia noctiluca 100 2009 
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Supplementary Table 2.6. Biomass of jellyfish predators in the Irish Sea. This assumes the Irish Sea 

area is 58000 km2. Sources for the data used in these calculations are referenced in the relevant data 

cell.     

 
 M. mola D. coriacea C. 

harengus 

Callionymidae 

sp 

 

M. 

merlangus 

Eutrigla 

sp. 

S. 

canicula 

Trisopterus 

sp. 

S. 

sprattus 

 

S. solea 

Density 

(individuals 

km-2) 

0.043  

[6] 

0.000775862 

*[7] 

 

 

        

Body mass 

(kg) 

55 

**[8] 

455  

[9] 

        

Predator 

biomass 

(tonnes km-

2) 

0.0024 

 

0.0004 

 

4.0415 

[10] 

 

0.1710  

[11] 

 

0.5070  

[11] 

 

0.4440 

[11] 

 

0.2880 

[11] 

 

0.9740  

[11] 

 

0.7378 

[10] 

 

0.1100 

[11] 

Total 

Biomass 

(tonnes) 

137.17 

 

20.4750 

 

234409.8 

 

 

9918.0 

 

29406.0 

 

25752.0 

 

16704.0 

 

56492.0 

 

42790.5 

 

6380 

*Based on 45 Leatherback sightings, in the Irish sea in 2012 

**Body mass is based on mean values obtained from Figure 3A  
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Chapter 3:  Cryptic diets of forage fish: 

jellyfish consumption observed in the 

Celtic Sea and Western English 

Channel 
 

3.1 Abstract 
 
Multiple, independent, sources of evidence suggest jellyfish are not trophic dead-ends, 

but instead play a role in supporting fish stocks. However, dietary data have been 

frequently collected in an ad hoc manner and whether fishes’ feeding relationships with 
jellyfish vary with time, if at all, is unknown. To establish if fishes’ consumption of jellyfish 

changes through the year, we conducted a molecular gut content assessment on 

opportunistically sampled species from the Celtic Sea in October and compared these 
to samples previously collected in February and March from the Irish Sea. Mackerel 

were found to feed on hydrozoan jellyfish relatively frequently in autumn, with rare 

consumption also detected in sardine and sprat. This is in contrast to sampling in 
February and March where moon jellyfish ephyrae were heavily predated. By October, 

moon jellyfish appeared to have escaped predation, potentially through somatic 

growth and the development of stinging tentacles. No significant change in predation 
rate was observed in sprat. However, jellyfish predation by mackerel feeding in autumn 

was significantly higher than that seen during winter: this increase in consumption 

appears to be driven by the consumption of different, smaller jellyfish species than 
were targeted during the winter.  
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3.2 Introduction 
 
Fisheries in the Irish Sea are important for the regional economy: in 2016 the UK-based 

fleet landed 36, 600 tonnes worth £57.8 million[1], while the Irish fleet caught a further 

11, 253 tonnes[2]. However, Irish Sea fisheries are facing challenges from an 
increasing scyphomedusae jellyfish (hereafter referred to as ‘jellyfish’, unless stated 

otherewise) population[3]. Jellyfish blooms (instances when jellyfish become super 

abundant in a localised area) in other regions have caused economic losses to fisheries 
by bursting fishing nets, contaminating catches, reducing the abundance of fish by 

competing for the same resources, and killing fish[4]. Recently, an aquaculture 

installation in the region experienced total loss of stock when overrun by a jellyfish 
bloom[5]. Preventing jellyfish blooms from affecting human enterprise has been 

difficult, and many direct interventions have been ineffective[4].  

 
Until recently, it was thought that predators of jellyfish were rare or non-existent in 

many ecosystems. However, this view is no longer widely-held: using new techniques 

such as stable isotope analysis[6], stationary underwater cameras[7], remote operated 
vehicles[8], and acoustic surveys[9] a variety of taxa are now known to feed upon 

jellyfish. Previously, using molecular gut content analysis it was shown commercially-

important fish species such as Herring (Clupea harengus), Whiting (Merlangius 
merlangus), and Dragonet (Callionymidae sp.) consumed jellyfish[10]. This suggests, 

that jellyfish populations may offer benefits to fisheries by supporting fish stocks. 

However, the observed scyphomedusae consumption occurred when jellyfish in the 
Irish Sea were juvenile and lacked the size or defensive structures to deter predation; 

It remains unknown if they are consumed throughout the year or used as a seasonal 

resource.  

 
Complex and dynamic interspecific relationships are common in marine ecosystems: 

assuming unchanging predation through the year is likely to drastically mischaracterise 

a species’ trophic role. For example, herring and sprat (Sprattus sprattus) are known 
to limit cod recruitment by feeding on ichtyoplankton stages of cod (Gadus 

morhua)[11]. However, upon maturation, cod feed on small herring[12], reversing the 

interspecific relationship. A dynamic relationship like this may be present in jellyfish as 
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they have a complex life cycle featuring multiple, functionally different life stages[13]. 

During a previous investigation, jellyfish early in the year (February and March) were 

producing mobile juvenile ephyrae from their sessile life stage in a process known as 
strobilation. Upon strobilation, ephyrae are just a few millimetres in diameter[14] and 

typically lack defence mechanisms: the first moon jellyfish (Aurelia aurita) ephyrae retain 

the tentacles from the polyp, however all subsequent ephyrae take several weeks to 
develop these stinging structures[14]. The observed predation of this vulnerable state 

is therefore unsurprising.  

 
Although all Irish and Celtic Sea jellyfish ephyrae measure a few millimetres in diameter, 

there is considerable variation in size and stinging ability by maturation[14]. Mauve 

stinger jellyfish (Pelagia noctiluca) remain small, with a mean size of 4.5 (±1.2) cm in 
diameter, although large individuals can reach 12 cm[15]. Other common species are 

known to grow larger: moon jellyfish diameters can reach 25 cm[16], while Barrel 

jellyfish bells (Rhizostoma pulmo) are known to approach 1 m in diameter[17]. While 
large predators like turtles are known to feed on whole medusae[18,19], it remains to 

be seen if the pelagic fish species identified as jellyfish consumers in the Irish Sea 

previously maintain this trophic relationship throughout the year. It is plausible that 
large size of jellyfish relative to the predatory fish and the development of stinging 

tentacles may limit predation, however other predatory fish species have been 

observed biting, and consuming, parts of jellyfish despite these structures[20] so 
jellyfish may yet be viable prey.  

 

Here, drawing on samples collected from the Celtic Sea in October, adult jellyfish 
predation is characterised with the aim of testing whether jellyfish support predatory 

fish populations through the year, or if predation is reduced or stopped altogether as 

jellyfish develop defensive structures and grow. 
 

3.3 Methods 
 
3.3.1 Sampling 

Samples were collected aboard the RV Cefas Endeavour as part of the PELTIC 15 
research survey. Collection permits were not required, with all samples being caught 
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and processed following the guidelines detailed in ‘Animals in scientific studies at 

Cefas’ [21]. Full details on the PELTIC 15 survey can be found in Appendix 5 of ICES 

WGIPS report[22]. In summary: between 05/10/2015 and the 20/10/2015 acoustic 
data acquisition and plankton sampling were undertaken along transects as shown in 

figure 3.1. A 20 x 40 m v d K Herring Trawl using KT nets was deployed 

opportunistically at 18 locations when fish schools were observed in the echograms 
(shown in figure 3.1). Upon retrieval of fish, they were identified to species level (shown 

in table 3.1), measured, weighed, and had their stomachs removed and frozen on-

board. Scalpels and gloves were changed, and cutting boards cleaned using fresh 
water between species dissection. If jellyfish were found in the haul, they were 

identified to species level and a small sample of bell tissue was preserved in 100% 

ethanol.  

 
Figure 3.1. Map of survey area in the Western Channel and Celtic Sea. Lines denote location of acoustic 
transects. Yellow circles show sampling locations, numbers denote to sampling station ID. Diagram 
adapted with permission from ICES (2016).  
 

Additional jellyfish samples were obtained from plankton sampling. Plankton sampling 
occurred at night when the ship was stationary at designated sampling points (shown 

in [22]) . Ring-nets, equipped with a General Oceanics mechanical flowmeter (model 

2030RC, which includes a mechanism to prevent the rotor from turning backwards) 
with either an 80 µm or 270 µm mesh were used, and took a vertical sample of the 

entire water column (more details in [23]). Caught jellyfish, had bell tissue preserved in 
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100% ethanol. Note this sampling was not jellyfish population sampling, rather a 

method for identifying jellyfish species present in water during the survey. 

 
Table 3.1. Species collected from PELTIC 2015 cruise.  
Common name Binomial nomenclature Sample size  

European Anchovy Engraulis encrasicolus  20 

Horse Mackerel Trachurus trachurus  77 
John Dory Zeus faber  5 

Lesser Spotted Dogfish Scyliorhinus canicula  1 

Mackerel Scomber scombrus  95 
Sardine Sardina pilchardus  70 

Red Gurnard Chelidonichthys cuculus  5 

Saury Pike Scomberesox saurus 5 
Sea Bass  Dicentrarchus labrax  4 

Sprat Sprattus sprattus  90 

Whiting Merlangius merlangus  3 

 
3.3.2 DNA extraction  

Stomachs were thawed and contents dissected on a separate disposable paper towel 
and using flamed scissors, scalpel and forceps to prevent contamination. DNA was 

extracted using a salt extraction technique[24]: Stomach contents were macerated 

and a small volume (approximately 1-8 mm3) was placed into 300 µl digestion buffer 
(30 mM Tris-HCl ph 8.0, 10 mM EDTA, 1% SDS, with 10 µl Proteinase-K (Qiagen)) in 

a 1.5 ml Eppendorf tube, incubated overnight at 55°C. One hundred µl of 5 M NaCl 

was added to each sample and centrifuged for 5 minutes at 13,000 rpm. 250 µl 
supernatant was transferred to a new Eppendorf tube, taking care to avoid the 

precipitate. 500 µl ice-cold 100% ethanol was added, before being cooled at -20°C 

overnight. The Eppendorfs were centrifuged at 13,000 rpm for 30 minutes, and the 
ethanol was tipped off. The DNA pellet was washed once with 1 ml 70% ethanol, 

before an additional 5 minutes in the centrifuge at 13,000 rpm. The DNA pellet was 

then dried at 50°C (approximately 20 minutes), 200 µl molecular grade water added 

and the samples incubated at 37°C for 30 minutes. In addition to the stomach 

samples, negative controls, where nothing was dissected, but the tweezers were 
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dipped in the digestion buffer at the beginning of the process, were included as 

contamination controls.  

 
3.3.3 PCR & Sequencing  

The protocol developed previously by Lamb et al.[10] was used here. In brief, the 

cnidarian-specific 16s mtDNA primers SCY_16S_F4 and SCY_16S_R4 were used to 
amplify a 135 bp amplicon in a PCR. The presence of a band at 177 bp on an ethidium-

bromide stained 1.5% agarose gel indicated cnidarians had been eaten. Positive PCR 

product was cleaned, using Exo1(Thermo Scientific) and FastAP (Thermo Scientific), 
then sanger-sequenced (Eurofins UK). Identification of the consumed cnidarians based 

on BLAST identity was performed using the nucleotide megablast algorithm[25] on the 

GenBank nucleotide database[26].   
 

3.3.4 Statistical analysis  

All statistical analyses were performed using R[27]. Samples from a previous study in 
February and March from the Irish Sea were also included[10]. For species that were 

detected eating cnidarians, where sample size permitted (for both early- and late-

season sample collection), a Fisher’s exact test was performed to determine if 
differences in predation could be observed between seasons. Since multiple 

hypotheses (different species) were tested, a one-stage false detection rate 

correction[28] was applied (reported a q-values) to avoid the chance of a type-2 error.  
 

3.4 Results  
3.4.1 Jellyfish predation 

Cnidarian DNA was detected in three species: sardine, mackerel, and sprat. Predation 

was rare in sardines, and sprat with only 3.3% and 1.4% samples containing jellyfish 
DNA in their stomachs respectively. Predation was common in mackerel, with 23.2% 

stomachs containing jellyfish DNA.  The consumed cnidarians were identified as the 

scyphozoan mauve-stinger jellyfish, as well as the hydrozoans Geryonia proboscidalis, 
Scolionema suvaense, and Liriope tetraphylla (no common names). Six mackerel 

samples and one sprat sample could not be sequenced, these samples were excluded 

from the positive sample list. The successfully sequenced samples had Blast identity 
values between 86% and 100%. Results are shown in table 3.2. 
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Table 3.2. Species of jellyfish predators, the sampling station (as denoted in figure 3.1), and the jellyfish 
preyed upon that were detected using a 16s mtDNA assay. The blast ID, which shows the percentage 
of shared nucleotides with the sequence in the database, and the length of the sequence used to identify 
the species are also shown. 

Species Sampling 
station Blast ID Identity % 

Pilchard 95 Pelagia noctiluca 100 

Mackerel 59 Liriope tetraphylla 94 

Mackerel 59 Pelagia noctiluca 100 

Mackerel 59 Geryonia proboscidalis 86 

Mackerel 59 Liriope tetraphylla 99 

Mackerel 180 Liriope tetraphylla 97 

Mackerel 180 Liriope tetraphylla 97 

Mackerel 180 Liriope tetraphylla 97 

Mackerel 180 Liriope tetraphylla 93 

Mackerel 180 Liriope tetraphylla 95 

Mackerel 180 Liriope tetraphylla 100 

Mackerel 180 Liriope tetraphylla 100 

Mackerel 180 Liriope tetraphylla 96 

Mackerel 180 Liriope tetraphylla 99 

Mackerel 180 Liriope tetraphylla 100 

Mackerel 180 Liriope tetraphylla 99 

Mackerel 180 Liriope tetraphylla 100 

Mackerel 180 Liriope tetraphylla 100 

Mackerel 196 Liriope tetraphylla 90 

Mackerel 196 Scolionema suvaense 95 

Mackerel 196 Liriope tetraphylla 93 

Mackerel 196 Liriope tetraphylla 100 

Mackerel 196 Liriope tetraphylla 99 

Sprat 118 Pelagia noctiluca 91 

Sprat 118 Liriope tetraphylla 92 

Sprat 118 Liriope tetraphylla 95 
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3.4.2 Seasonal variation 

Figure 3.2 demonstrates that predation of jellyfish by mackerel was common in 

October (n=22, 23.2% stomachs contained cnidarian DNA) (late season), but was not 
detected in February or March (aggregation of 2008 and 2009 data); a Fisher’s exact 

test suggested this was a significant difference (q=0.02, p=0.01). Jellyfish appeared to 

be a rare prey item in both seasons (2015 data: n=3, 1.4% stomachs contained jellyfish 
DNA; 2008/2009 data: n=5, 0.8% stomachs contained jellyfish DNA )  for sprat and 

no significant difference was detected (q=0.07, p=0.07).  

 
Figure 3.2. Proportion of stomachs that jellyfish were detected in for mackerel, and sprat. Red indicates 
no cnidarians were detected, while blue shows consumption of cnidarians had occurred.  
 

3.5 Discussion 
3.5.1 Observed predation  

Three fish species: sprat, mackerel, and pilchard were observed eating jellyfish. A 

single instance of mauve stinger jellyfish consumption was observed in all 3 species. 
The ingestion of G. proboscidalis and S. suvaense was observed only once in 

mackerel, although it should be noted the low BLAST ID (86% and 95% respectively) 

suggests a high degree of uncertainty in the taxonomic assignment at the species or 
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genus level: particularly as these species are not associated with the region. L. 

tetraphylla accounted for all remaining predation in mackerel and sprat. 

 
3.5.2 The pelagic food-web  

The largest consumer of jellyfish in the early season (February & March) was 

herring[10], however despite being a pelagic fish, none were captured in this study and 
we were unable to draw comparison between early and late season. The absence of 

Herring in the autumn may be linked to their migratory behaviour[29] or relatively low 

population size in the area surveyed[30]. Seasonal comparisons in the other detected 
predators also presented challenges: in the early season a large sample size and a 

variety of trawling techniques were employed to capture both benthic and pelagic 

communities of fish[31], facilitating the detection of rare predation. The late-season 
samples were collected opportunistically through mid-water trawling. As a 

consequence, we were unable to capture the late-season benthic component of the 

food web. Furthermore, unlike the late-season survey, the early-season survey was 
devoted to surveying an entire predator community, and single-individual processing 

of opportunistic samples further limited sample sizes.  

 
Although these factors limit our ability to assess temporal variation for most species, 

these data still refine our understanding of jellyfish predation in the food-web. Figure 

3.2 shows that small jellyfish were a food source for mackerel. Jellyfish predation by 
S. scombrus has been observed previously: mackerel switched from filter feeding to a 

biting feeding behaviour to consume the small hydrozoan Aglantha digitale[32] (10-40 

mm bell height). However, in contrast to the widespread predation by fish during 
February and March[10] very little predation on jellyfish was observed across the 

pelagic community during October. A possible explanation of diet shifts may be related 

to the relative abundance of other prey items. For example, sprat switch to preying on 
fish eggs in the winter when zooplankton levels are depressed[33]. It is possible that 

widespread predation of scyphomeduase jellyfish ephyrae in the February and March 

is in response to poor availability of other zooplankton; greater zooplankton availability 
in October may result in a switch away from jellyfish and result in the observed 

predation rates.  
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3.5.3 Escaping predation? 

Although no difference in seasonal predation was detected in sprat, statistical analysis 

demonstrated mackerel fed on jellyfish more frequently in the samples collected in 
October than those in February and March. This was unexpected, as we anticipated 

the consumption of larger jellyfish to be more difficult and that rates of predation would 

therefore decline later in the year. Upon closer inspection however, the results do not 
contradict this hypothesis: L. tetraphylla has a bell diameter of 1- 3 cm[34]: 69 times 

smaller in area than a large moon jellyfish (bell diameter of 25 cm[16]). Larger jellyfish 

species such as mauve-stinger, moon, barrel, compass (Chrysaora hysoscella), and 
blue jellyfish (Cyanea lamarckii) were caught incidentally during the research cruise but 

were not detected with the dietary assay. While quantified population estimates are 

not available, this suggests that the complete absence of prey is unlikely to be 
responsible for jellyfishes’ absence in the dietary data. Prey switching could occur due 

to decreased medusae populations which typically decrease, and experience 

mortality, later in the year[13] (although overwintering populations have been recently 
been recorded in other ecosystems[35,36]).  Another explanation is that larger species 

of jellyfish, particularly moon jellyfish, which were frequently predated upon early in the 

season, may have escaped predation through somatic growth, leaving only small 
species like L. tetraphylla vulnerable to predation (see figure 3.3).  Finally, it possible 

that an unknown sea-specific phenomena may be driving the observed differences.  
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Figure 3.3. Jellyfish predation as a function of size. Bar graphs are overlaid, not stacked: the top of the
graph details the size of the medusae. Detection of predation (red) and non-detection (blue) are shown
for medusae (light blue and red) and ephyrae (dark blue and red). Mean Lirope tetrayphylla size and
moon jellyfish were taken from literature: [34] and [15] respectively. Mauve-stinger jellyfish ephyrae size
is taken from [37]. All other mean medusae, and ephyrae, bell areas are reported in [14]. The mouth
gape of mackerel was calculated using mean mackerel size in this study and a mackerel-specific
allometric scaling function[38].

3.6 Conclusion
The data presented here show that, in contrast to early-season sampling, late-season
predation is limited: mackerel were the only species to frequently feed on jellyfish,
although rare predation was also detected in sardine and sprat. The type of jellyfish
consumed also changed: the small hydrozoan species L. tetraphylla was the preferred
prey item in October, accounting for 80.7% predation across all species. The shift from
widespread predation of juvenile jellyfish to rare predation of adults suggests energy
flows from jellyfish to fish stocks are dynamic throughout the year. Although jellyfish
are not an energy-rich food item when compared to other components of the
plankton[39], the high abundance in which they can occur suggests they could play a
role in supporting a range of forage-fish populations during the winter. In late-season
sampling, consumption of jellyfish is less frequently seen. Possible explanations for this
shift are changes in jellyfish availability, escape of predation through somatic growth,
or sea-specific phenomena. Collecting data on jellyfish populations throughout the
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year in one location, in tandem with diet-sampling could elucidate which of these 

hypotheses, if any, are responsible for the observed predation patterns.    

 
The jellyfish-specific assay used here reveals the presence of a trophic link, but is not 

well suited to quantifying energy flows. Consequently, it is difficult to say exactly how 

important jellyfish are in the diet mackerel. Techniques such as stable isotope 
analysis[6] could be used to quantify the energy flows between jellyfish and fish stocks. 

Additionally, high throughput sequencing with universal primers could reveal the 

broader context of diet: are jellyfish the only consumed prey or are they part of a 
generalist diet? Future research could use combination of both techniques to quantify 

jellyfish–fish trophic links.  
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Chapter 4: How quantitative is 

metabarcoding: a meta-analytical 

approach. 
 

4.1 Abstract 
 
Metabarcoding has been used in a range of ecological applications such as taxonomic 

assignment, dietary analysis, and the analysis of environmental DNA. However, after a 

decade of use in these applications there is little consensus on the extent to which 
proportions of reads generated corresponds to the original proportions of species in a 

community. To quantify our current understanding we conducted a structured review 

and meta-analysis. The analysis suggests that a weak quantitative relationship may 
exist between the biomass and sequences produced (slope = 0.52 ±0.34, p<0.01), 

albeit with a large degree of uncertainty. None of the tested moderators: sequencing 

platform type, the number of species used in a trial, or the source of DNA were able 

to explain the variance. Our current understanding of the factors affecting the 
quantitative performance of metabarcoding is still limited: additional research is 

required before metabarcoding can be confidently utilised for quantitative applications. 

Until then, we advocate the inclusion of mock communities when metabarcoding as 
this facilitates direct assessment of the quantitative ability of any given study. 

 

4.2 Introduction 
 

Metabarcoding, the use of a polymerase chain reaction (PCR) and high throughput 
sequencing (HTS) to characterise organisms present in a sample, has been used to 

address an array of ecological questions [1] (PCR-free sequencing is an emerging 

technology [2,3] but is not the focus of this analysis). For example, metabarcoding has 

allowed the taxonomic identification of many specimens simultaneously using a 
standardised DNA region [4] without the need for on-the-ground taxonomic expertise. 
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Similarly, environmental DNA (eDNA) studies, which sequence DNA in soil and water 

[5] without first isolating any organisms, facilitate rapid biodiversity monitoring with only 

small sediment or water samples. Metabarcoding has also played an important role in 
uncovering diets and resolving food webs [6], as well as reconstructing community 

dynamics temporally using ancient DNA preserved in sedimentary layers [7].  

 
Early adopters of metabarcoding were hopeful that outputs would be quantitative, i.e 

that reads obtained from a sequencing run would correlate with biomass in the original 

sample [8] in a similar manner to other applications such as RNA sequence analysis 
[9] and the characterisation of microbial communities (where it is referred to as meta-

genomics). However, several factors, detailed in figure 4.1, can introduce bias into the 

results and yield inaccurate biomass estimates. Yet, despite these factors being well 
documented, after more than a decade of use there is no clear consensus as to what 

extent metabarcoding is quantitative. Many studies report their findings in a 

quantitative manner where the relative read abundance (RRA) [10] is interpreted as the 
relative abundance of biomass[11–14]. Others use a frequency of occurrence (FOO) 

approach, also referred to as weighted occurrence [10], where the proportion of 

samples in which a given sequence was detected is used to infer a different sort of 
quantitative measure[15,16]. It is also common to incorporate a qualitative approach 

(detected / not detected), sometimes simply referred to as occurrence [10] or a 

‘species list’, alongside these quantitative approaches [17].  
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Figure 4.1) Overview of HTS procedure, and factors that can influence the quantitative output[6,18–
23]. 
 
Empirically determining the extent to which metabarcoding is quantitative should be 

relatively simple: take a mixture of organisms with known biomass, PCR and 

sequence, then compare the results of the HTS run to the original biomass of each 
community member. Indeed, many studies have used this approach [24,25]. However, 

often only one primer set is used and the output may be a result of primer bias (the 

differential amplification of target DNA due to different numbers of nucleotide 
mismatches between the primer and target DNA between samples) rather than a 

reflection of the ability of metabarcoding techniques. Even if multiple primers are used, 



 89 

they are normally used on the same sequencing run, in which case results cannot be 

considered independent. An experiment featuring enough sequencing runs to gather 

sufficient statistical power to disentangle the various factors that may affect 
quantitative performance would be prohibitively expensive for most research groups. 

Consequently, there is an ad hoc collection of methodologies that provide different 

levels of quantitative performance, but little certainty as to whether the variance is due 
to unique parameters in the experimental set up or a result of more general drivers. 

 

In this study, we aim to address this knowledge gap. A structured review was 
conducted to collate our knowledge about the extent to which metabarcoding for 

taxonomic assignment is quantitative. Subsequently a meta-analysis was conducted 

to investigate the degree to which metabarcoding is quantitative across multiple 
independent studies. Factors affecting the quantitative performance such as platform 

choice, the experimental set up (does using biomass, individuals, or DNA as the input 

unit affect quantitative estimates?) and the number of species incorporated in a study 
were also investigated. Factors that could not be addressed are also discussed to 

direct future research.   
 

4.3 Methods 
 

4.3.1 Search strategy 

Articles that used quantified multi-species assemblages, PCR, and HTS platforms for 
taxonomic assignment with metabarcoding were targeted using specific search terms. 

Identifying optimised search terms was important since metabarcoding is now widely 

used across evolutionary, ecological, and medical research. After assessing a variety 
of search terms an appropriate combination was finalised: the Web of Science was 

searched on 31/10/2017 for English language articles for all available years using the 

following search terms: ((quant* OR diet OR biomass) AND (barcod* OR 
metabarcod*)). In total, 1262 articles were retrieved.  

 

4.3.2 Article screening 

Initial filtering of the articles was based on their titles: any articles that obviously had no 

relevance to quantification of biomass using metabarcoding were discarded. After 
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initial filtering 262 articles remained. These articles were manually inspected and any 

that included a quantified community of biomass, individuals, or DNA as starting 

material and reported the proportion of reads obtained from a HTS platform were used 

for data extraction. Since the slope of a fitted linear model was to be used as an effect-

size (see below), variation in the amount of input material was also required (equal 

amount of starting biomass could not be used). In total, 22 articles (table 4/1) were 

used in the meta-analysis. 

 

Table 4.1. Articles that were included in the meta-analysis.  

 

Author Species per
trial

Sequencer Starting
material

Organisms Marker

Albaina, Aguirre, Abad, Santos,
& Estonba (2016)

6 454 Biomass Marine invertebrates
(Crustaceans, Annelids)

18s

Blanckenhorn, Rohner,
Bernasconi, Haugstetter, &
Buser (2016)

4 to 9 Illumina Biomass Macroinvertebrates (Coleoptera,
Diptera, Hymenoptera)

COI

(Bokulich & Mills, 2013) 12 Illumina DNA/RNA Yeast ITS
(Deagle, Chiaradia, McInnes, &
Jarman, 2010)

3 454 Biomass &
Faecal

Fish 16s

(Diaz-Real, Serrano, Piriz, &
Jovani, 2015)

3 454 Individuals Feather mites COI

(Egge et al., 2013) 11 454 DNA/RNA Haptophytes 18s
(Elbrecht & Leese, 2015) 52 Illumina Biomass Macroinvertebrates (freshwater) COI

(Elbrecht et al., 2016) 52 Illumina Individuals Macroinvertebrates (freshwater) COI

(Elbrecht et al., 2017) 52 Illumina Biomass Macroinvertebrates (freshwater) 16s

(Geisen, Laros, Vizcaíno,
Bonkowski, & De Groot, 2015)

8 454 Individuals Protist culture 18s

(Hatzenbuhler, Kelly, Martinson,
Okum, & Pilgrim, 2017)

5 454 Biomass Fish COI

(Hirai et al., 2015) 33 454 Biomass Copepods LSU

(Iwanowicz et al., 2016) 12 Illumina DNA/RNA Plants ITS
(Klymus, Marshall, & Stepien,
2017)

11 Illumina DNA/RNA Bivalves, Gastropods 16s

(Kraaijeveld et al., 2015) 6 to 11 Ion Torrent Individuals Plants (pollen) TrnL
(Pochon, Bott, Smith, & Wood,
2013)

9 454 DNA/RNA Marine invertebrates
(Echinoderms, crustacenas,
ascidians , molluscs, annelids)

18s

(Porazinska et al., 2010) 38 454 Individuals Nematodes 18s

(Rocchi, Valot, Reboux, &
Millon, 2017)

9 Illumina DNA/RNA Fungus ITS2

(Saitoh et al., 2016) 9 454 Biomass Macroinvertebrates (springtails) 16s, COI

(Smith, Kohli, Murray, &
Rhodes, 2017)

10 Illumina Individuals Dinoflagellates Cyt b,
LSU, 18s

(Thielecke et al., 2017) 5 Illumina DNA/RNA Plasmid contructs n/a
(Thomas, Deagle, Eveson,
Harsch, & Trites, 2016)

3 Illumina Biomass Fish 16s
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4.3.3 Data extraction 

The composition of the community assessed (either biomass, number of individuals, 

or concentration of DNA) and the proportions of reads corresponding to the relevant 

species in the test community obtained from the sequencing platform were recorded 
for each trial within an experiment. The sequencing platform, number of species used, 

and the source of input material for each trial within any given study was recorded. 

The main manuscript and supplementary information were inspected: if possible data 
were taken from a table, if tables were unavailable the data were manually extracted 

from figures using Web Plot Digitizer [26]. If data were not presented in the main article, 

the corresponding author was emailed to obtain the data.  

 
The composition of the mock community, and corresponding sequence data were 

converted in percentage values (see figure 4.2 (a)). For the Elbrecht et al. (2017) study 

using individuals of varying sizes [27], the composition of individuals in the mock 
community, and the output of reads, was presented grouped by size (large, medium, 

and small individuals) and unsorted. In this instance, we calculated input and output 

percentages by the sorted size groupings as this was most similar to the approaches 
used in other included studies.  

 

Slope is a commonly used effect size when the relationship between two continuous 
variables is being investigated [28]. In this instance, it was chosen as it is easy to 

interpret and meets the statistical assumptions of the meta-analysis model without 

transformation (in this instance because slopes did not approach vertical asymptotes 
and little skewness was present in the data).  

  

4.3.4 Meta-analysis model fitting 

Slope (the effect size) was calculated by fitting a linear model for each trial detected in 

the review using R [29], such that the proportion of reads produced from the 

sequencing run would be a function of the proportion of starting material in the 
experiment. The variance of the slope was calculated in R, and used as the sampling 

variance as described by Rosenberg, Rothstein, & Gurevitch (2013). Figure 4.2 

illustrates how the results of a mock community experiment are incorporated into this 
analysis.  
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Figure 4.2. A schematic illustrating how data are utilised in the meta-analysis. (a) The mock community 
with quantified biomass. (b) three hypothetical outcomes of the metabarcoding step: (i) a perfect 
quantitative relationship between biomass and sequencing yield i.e.  a 1% increase in biomass yields a 
1% increase in reads, generating a slope = 1 (ii) a quantitative signal in which rank abundance is same 
in the mock community, but with over-representation of common sequences and under-representation 
of rare sequences resulting in a slope greater than 1. A slope of between 0 and 1 would be produced 
when common sequences are under-represented and rare sequences over-represented (not shown). 
(iii) no quantitative information, with a slope close to 0. Negative slopes would also be indicative of non-
quantitative signals. (c) shows how (i),(ii), and (iii) would be visualised in a forest plot with corresponding 
variance of slope denoted by error bars.            
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All meta-analysis was conducted in the customisable, open-source, meta-analysis 

package ‘metafor’ [30] in R. Many studies used multiple trials within a single study, 

however, these trials cannot be treated as statistically independent from one another. 
To account for this non-independence, a cross-study slope-estimate was determined 

using a two-level nested random effects model using a restricted likelihood function. 

Trials within an experiment were nested at the study level. The influence of sequencing 
platform, and DNA source material, were tested by including them as moderating 

factors in the model. Terms were iteratively omitted from the model, and AIC was used 

to select the final model.  
 

Weighting of each study in the meta-analysis model was determined solely by the 

number of sequencing runs used in each study (e.g. 1 for 1 run, 2 for 2 runs etc). 
However, when multiple trials were conducted within a single study, the weight of each 

trial was calculated by dividing the number of reads produced for the trial by the total 

number of sequences produced by the sequencing run within the study. This allows 
different sequencing depths within a single study to be accounted for (using a nested 

model) whilst maintaining sequencing runs as independent data points. For example 

in Saitoh et al. (2016) a single sequencing run was used and a meta-analysis model 
study weight of one was assigned. Within this study, there were two trials: the 16s trial 

produced 45% of the reads, therefore it accounted for 45% of model weight within the 

nested model (at the study level).  
 

4.3.5 Sensitivity testing 

Assessing publication biases (the increased probability of positive results being 
accepted for publication) in meta-analytical models is challenging for nested-models: 

Funnel plots are difficult to interpret: studies cluster together due to statistical 

dependencies rather than genuine biases [31]. Egger’s regression test [32], another 
commonly used metric, is not supported for nested-models in the current version of 

metafor. Consequently, it was not possible to assess if publication bias may be present 

in the data set. However, influential trials in the meta-analysis were visually identified 
using hat values, which show the importance of any given trial in relation to the model 

as a whole [33], plotted against the standardised residuals of the meta-analysis model.  
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4.4  Results 
 
Across all studies a significant (p<0.01) relationship existed between the proportion of 

input material for each species present and the proportions of sequences obtained 

from metabarcoding. A large amount of observed variation was due to actual 
differences in the inter-study slope estimate (I2 = 88.5%). Across all studies, an effect 

size estimate (slope) of 0.52 (±0.34 variance of slope) was identified.  

 
Figure 4.3. Forest plot showing the slope estimate for all trials in the meta-analysis (± 95 % confidence 
intervals). Trials are clustered at the paper level denoted by the grey and white shading.  
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None of the tested moderators: type of sequencer, number of species used in a trial, 

or type of starting material had a significant effect (p>0.05 in all instances) on the 

estimate provided by the meta-analysis model. Figure 4.4 illustrates the lack of 
difference in quantitative ability (a) between the materials used for meta-barcoding, (b) 

among the sequencers, and (c) the number of species used in a trial.  

 
Figure 4.4. The quantitative ability of metabarcoding using (a) various starting materials, (b) different 
sequencing platforms, and (c) different number of species within in a trial. Note that each point 
represents a trial, which may not be fully independent from one another. However, this non-
independence is accounted for in the meta-analysis model. 
 
Sensitivity testing, using hat values and residuals (figure 4.5) appear to show a single 

trial [34] was having a large influence on the final output of the model. However three 

sequencing runs were used for a single trial in this study, and as such it has a relatively 
greater weight in the meta-analysis compared to most other trials that only used a 

single sequencing run.  
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Figure 4.5. Hat values of trials included within the meta-analysis (a measure of influence on the meta-
analysis model plotted against standardised residuals. Outlying trials are labelled. Note the points 
correspond to trial-level influence, not study level influence. 
 

4.5 Discussion 
 

4.5.1 How quantitative is DNA metabarcoding? 

Across all studies, a slope estimate of 0.52 was identified as the relationship between 
biomass and sequence read number. This shows that the RRA produced from a 

metabarcoding loosely corresponds to the relative occurrence of species in the starting 

material. If no data about composition of a sampled community exists, metabarcoding 
data interpreted quantitatively could therefore be more informative than treating it in a 

strictly detected / not-detected manner even if the accuracy is low. This supports 

evidence from simulations presented in Deagle et al. (2018), which suggest that a more 
accurate interpretation of communities can be achieved by treating metabarcoding 

data quantitatively rather than relying solely on qualitative measures. However, this 

estimate has a large degree of uncertainty: ±0.34 variance of slope suggests that in 
real world applications metabarcoding can be either somewhat quantitative, or 
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produce a very weak signal. This uncertainty is reflected within some of the 

experiments themselves: figure 4.3 shows that while many of the included trials 

appeared to produce quantitative results, their variance of slopes were sufficiently 
large, overlapping with 0, that a non-trivial probability exists that non-quantitative data 

will be produced on any given sequencing run. Furthermore, there are several trials 

included in this meta-analysis in which metabarcoding produced extremely poor 
quantitative performance. With such variation between studies, and no easy way to 

diagnose whether any given metabarcoding study has produced quantitative results, 

it is easy to see how different opinions on the quantitative ability of metabarcoding has 
arisen. Focusing on the factors influencing the quantitative performance is essential to 

further clarify this situation.  

 
The influence of sequencing technology, and initial experimental design were included 

as moderating factors in the initial model. The sequencing platforms did not 

significantly differ in quantitative ability. This was unexpected, as the different platforms 
have different technical approaches towards sequencing [35], and different levels of 

bias were expected. Additionally, Illumina platforms produce many more reads than 

other platforms, so a greater level of precision might have been expected. This is not 
to say platform choice is not important when undertaking a metabarcoding study: read 

length, sequencing accuracy, and cost will all play a role in determining the best choice 

for a given study. However, these results suggest that in terms of attaining quantitative 
data, any difference between sequencing technologies is too subtle to be detected in 

this meta-analysis, and the factors driving quantitative performance perhaps lie 

elsewhere in the experimental set up.  
 

It has been hypothesised that including a higher number of species in a metabarcoding 

study will improve the quantitative performance as different amplification efficiencies 
will have diminishing effects on the overall quantitative performance as the number of 

species used increases [10,36]. However, this relationship was not detected here. This 

may be due to most of the included studies using relatively few species: only three 

studies had more than 30 species. Thus, the lack of relationship may be driven by lack 
of variation in the data. Additionally, it is expected that different primer sets, or other 

factors tested here, would explain much of the variation. Our ability to detect subtle 

trends in a noisy dataset is limited with relatively few studies. This relationship could 
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be better characterised with  empirical studies, or if the amount of data available for 

meta-analysis were to increase substantially.  

  
Different input materials had no explanatory ability in the final model: sequences were 

able to replicate the original biomass, quantity of DNA, or individuals in a study equally 

well. We believe this may be because counts of individuals were frequently used for 
species of similar size: if there is little variation in size of individuals between different 

species, count data can be regarded as a proxy for biomass. A notable exception, in 

using counts of individuals from species of similar sizes was the Elbrecht et al. 2017 
study: here species were sorted by size prior to sequencing. The authors 

demonstrated that sorting individuals by size affected the quantitative ability of 

metabarcoding by comparing a mock community sorted by size, and a mock 
community where individual size was not considered. We used the sorted data 

treatment as this was most similar to other studies in the meta-analysis. However, 

given that counts of individuals and biomass were proxies in many studies, and 
empirical evidence suggests that the RRA does not correspond with the number of 

individuals if significant size differences are present [27] we would advocate caution 

when inferring count data from metabarcoding data without a priori knowledge of 
minimal size variation between individuals.  

 

No difference in quantitative performance existed between studies using quantified 
DNA as a starting material, and those that used biomass. Given DNA extraction is the 

only step (figure 4.1) separating these points in the protocol, this suggests it is not a 

source of significant bias in the studies included in the meta-analysis.  However, it must 
be noted that this is not always the case: Pornon et al. (2016) reported a 300-fold 

difference in DNA concentrations after extraction. It is possible that structural 

differences in the exine (the tough protective coating of pollen) may have driven the 
variable DNA yield. Although not a significant factor in this study, best practice would 

dictate that quantifying the relationship between biomass and DNA yield in the target 

organisms is advised prior to metabarcoding.  

 
4.5.2 Future directions  

This analysis has shed light onto some, but not all, of the factors that influence the 
quantitative performance of metabarcoding. Although not considered here, primer bias 
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is likely a large source of variation in the quantitative performance of metabarcoding 

studies: Piñol et al. (2015) empirically tested the relationship between primer mismatch 

and amplification efficiency and found mismatches accounted for 75% of variation. We 
had hoped to explore the effect of primer bias on the quantitative performance of 

metabarcoding by using the nucleotide pairwise diversity at the primer binding site of 

the mock community as a moderating factor in the final model. Unfortunately, this was 
not possible: the sequence in the target DNA at the primer site could not be inferred 

from the studies included in this meta-analysis as, at most, only the primer sequence 

can be obtained. For a number of studies, sequences covering the primer binding-
region were not present in DNA databases. Additionally, even for those species which 

had relevant sequences, inter-individual variation was a concern: amplification-

efficiency is very sensitive to both the type of nucleotide mismatch between the target 
DNA and the primer, and the location of the mismatches in the primer sequence [38]. 

Without knowing the actual sequence present in the individuals used in the studies, 

we opted to omit primer site mismatches from this analysis. However, the effect of 
nucleotide mismatches in primer sequences on quantitative performance of 

metabarcoding is explored in detail through the use of simulations in this issue [36]. 

This topic will be an ongoing research area, and until we accurately determine the 
quantitative performance of any given primer set we would advocate reporting all in-

silico testing to assess the quantitative ability of primers, and the inclusion of a mock 

community control on each sequencing run to gauge how accurately RRA 
corresponds with the starting material.   

 

4.5.3 Reflection on meta-analysis 

It is important to remember what is entailed in a meta-analysis: a consensus of studies 

included in the analysis, weighted by sample size. Studies were included based on 

their detection in a structured review; although this presents a transparent, repeatable, 
way of including literature, our approach may have missed some relevant studies. 

Indeed, not all of the high-quality literature detected in the structured review was 

included [24,25], due to their experimental-design being incompatible with our 
analytical framework, rather than any shortcomings of the work or relevance to 

contribute further understanding on the topic.  
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 It should be noted, that incorporating results into meta-analysis necessitates some 

loss of nuance in the results. Most notably, in this study, we used the slope derived 

from a linear model as an effect size to facilitate synthesis. However, the quantitative 
nature of the relationships reported in this analysis may well be more complex than 

reported by a linear model. As such, we would encourage readers to use this 

manuscript only as reference material, and assess the cited literature themselves, as 
a perfect distillation of included literature is inherently not possible.   

 

Furthermore, publication bias remains an unknown factor. Using a nested-model to 
account for non-independence makes using most common tests for publication bias 

problematic as they detect the structure implemented in the model, not genuine 

publication bias. Not accounting for the non-independence of trials run on the same 
sequencing run was, we felt, a more immediate flaw than accounting for publication 

bias. That unfortunately leaves us in a position where the extent of any publication bias 

is unknown, and we are unable to say how important, or trivial, the issue may be: as 
such we reiterate that any synthesis drawn from this model may have been influenced 

by the omission of unpublished data, as much as the studies included. 

 
Another issue worth considering is the relative weighting given to each study. Meta-

analyses differ from a simple vote-count by assigning increased weighting to studies 

with a larger sample size. Here, weighting was assigned based on the number of 
sequencing runs used in a study. We feel this weighting is more appropriate than a 

simple vote count but it is worth highlighting the results presented here are influenced 

more heavily by some studies than others, e.g. Porazinska et al. (2010) had the 
greatest influence on the model (21.7%) due to the study’s use of seven sequencing 

runs. 

 
Finally, it should be noted this analysis quantifies the understanding of the field at a 

point in time rather than attempting to be a final point of authority. As highlighted 

above, much more research is still to be done in this area, and we hope the 

shortcomings and gaps highlighted will be filled as exciting new research reveals a 
more mechanistic understanding of this topic 
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4.6 Conclusion 
Our meta-analysis suggests that metabarcoding possesses some quantitative ability: 
a cross-study slope-estimate of 0.52 was found, suggesting a weak quantitative signal 

is present, albeit with a large degree of uncertainty (±0.34 variance of slope). 

Quantitative ability did not appear to differ among sequencing platforms, the amount 
of species included in a trial, or with different starting materials: biomass, individuals, 

or DNA. We remain sceptical that individual count data can be reliably inferred from 

metabarcoding if there are large size differences between the individuals being 
assessed and would advise against count-based inferences without a priori knowledge 

of the community being assessed. All presented results have probably been influenced 

by the relatively small sample sizes: additional research is warranted to reveal the 
mechanistic factors driving quantitative performance. While metabarcoding may 

eventually become a quantitative tool, many uncertainties remain.  Moving forward, we 

suggest explicitly testing the relationship between read abundance and input biomass 
using mock communities included as quantitative controls during metabarcoding. Not 

only will this allow researchers to assess their own study, but it will also assist future 

meta-analyses. We also recommend presenting all trials and simulations used in primer 
selection to make the rationale behind primer choice transparent. Finally, we would 

encourage additional empirical research into the mechanistic factors behind primer 

bias in metabarcoding since this is difficult to study using meta-analytical techniques, 
yet potentially holds the key to truly quantitative metabarcoding.  
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Chapter 5: Putting jellyfish predation 

in perspective: pelagic fish diets 

revealed by DNA metabarcoding 
 

5.1 Abstract 
Consumption of hydrozoan and scyphozoan jellyfish, in different seasons, has been 

detected using molecular techniques in the Irish and Celtic Seas. However, very little 
context for this predation exists: it is unclear if fish are actively targeting jellyfish, or if 

they are part of their broader diet. To establish the role jellyfish play in the diet of fish 

we tested nine fish species opportunistically sampled from around the British Isles from 
August to September using two sets of universal primers and high throughput 

sequencing. Cnidarian, ctenophore, and chordate-jellyfish were detected in the 

stomach contents of fish. Hydrozoans appeared to be a frequently consumed jellyfish. 
Mackerel appeared to be the most frequent jellyfish predator, with approximately 40% 

of individuals possessing jellyfish-DNA in their stomachs.  However, all tested species 

had jellyfish detected as part of a broad diet with no clear evidence of specialisation. 
By contrast with samples collected during winter, active scyphozoan predation by 

fishes during summer was rare, suggesting that as scyphozoans grow and mature, 

they play an increasingly minor role in fish diets.  

 

5.2 Introduction  
 

Jellyfish (defined here as cnidarians, ctenophores, and pelagic tunicates), are 

understudied relative to other marine ecosystems, yet are responsible for a variety of 

both positive[1] and negative effects [2] on human enterprise in marine ecosystems. 
Historically, few predators of jellyfish were known, and jellyfish were thought to divert 

nutrient flows away from the rest of the food web. However, recent evidence suggests 

that not only are they an integral part of marine food webs[3–5], but they may also act 
as a bridge between marine and terrestrial ecosystems[6,7]. In the Irish Sea, the study 
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conducted in chapter two established that predation was not limited to leatherback 

turtles (Dermochelys coriacea)[8] and sunfish (Mola mola)[4], but was a feature of many 

commercially-exploited species. A follow-up study in the Celtic Sea (chapter three) 
established that predation occurs throughout the year. However, the pattern of 

predation appeared dynamic: consumption was no longer widespread among 

predators but was concentrated in mackerel (Scomber scombrus), and was directed 
toward smaller jellyfish species.  

 

These recent findings suggest that, far from being purely a nuisance species, jellyfish 
may play some role in supporting Irish Sea fisheries. However, at present, only the 

relative frequency of jellyfish consumption per species is known. The quantity 

consumed, or the context in which jellyfish are consumed (generalist feeding or actively 
predated) remains unknown. Gaining insight in these areas is key step towards further 

understanding the trophic ecology of jellyfish and the functional role they play within 

the marine ecosystems.  
 

Metabarcoding, the use of universal primers in a polymerase chain reaction (PCR) 

followed by high throughput sequencing (HTS), is an approach technology well-suited 
for in-depth dietary studies. Like all molecular-based dietary assays, this approach 

removes the need for visual identification of prey, and is therefore suited to working 

with soft-bodied, rapidly digested organisms such as jellyfish[9]. Additionally, online 
sequence databases such as GenBank[10] and BOLD[11] facilitate the study of a 

system without a priori knowledge of the diet[12]. However, unlike other techniques, 

HTS offers the ability to amplify, sequence, and identify many species in parallel[13], 
enabling the study of the whole diet of organism. Furthermore, HTS offers much 

greater sensitivity than Sanger sequencing-based approaches and is therefore better 

suited to detect rare feeding events. Jellyfish predation has been successfully studied 
using HTS before: Bowser et al. detected moon jellyfish predation by herring (Clupea 

harengus)[14], while McInnes et al. (2017) detected jellyfish in the diets of albatrosses.  

 

In this study, two universal primers and HTS are used to investigate the context of 
adult jellyfish predation across nine common fish species with the aim of identifying 

which jellyfish are being consumed, and at what rates. Are jellyfish actively targeted, or 

are they part of a generalist diet? Obtaining these data is a vital step towards 
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understanding how jellyfish fit into the marine food web, supporting the ecosystem 

approach to fisheries management.  
 

5.3 Methods  
 

5.3.1 Field methods 

 

Samples from 9 species were collated from four cruises (see table 5.1 and figure 5.1). 

The North Sea International Beam Trawl Survey (IBTS) (8 August – 6th September 

2016), Eastern channel beam trawl (17th– 30th July 2016), and the Poseidon (3rd -21st 

October 2015) research cruises were collected aboard the RV Cefas Endeavour. 

Samples from the Celtic sea herring acoustic survey (CSHAS) (7th-27th October 2016) 

were collected aboard the RV Celtic explorer. Full details of biological sampling are 

detailed in the cited cruise reports. In brief, the Poseidon cruise[15] and CSHAS[16] 

used pelagic trawls to obtain fish for sampling, while a 4 m beam trawl and hybrid GOV 

trawl were used for the Eastern Channel[17] and North Sea IBTS[18] research cruises 

respectively.  On the Poseidon cruise stomachs from samples were removed on 

board, and frozen at -20°C. Gloves and scalpels were changed between species, and 

cutting boards cleaned using fresh water between species to limit contamination. On 

the other cruises, samples were frozen whole at -20°C and had DNA extracted at a 

later date in the molecular labs based at the University of East Anglia. 
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Table 5.1. Species, sample size, and cruises samples from which samples were collected.  
Species Sample size Cruise 

Grey gurnard 15 Eastern Channel Beam Trawl, North Sea IBTS 
Haddock 15 North Sea IBTS 

Herring  36 CSHAS, North Sea IBTS 
Horse mackerel 15 Eastern Channel Beam Trawl, North Sea IBTS 

Lemon sole 16 Eastern Channel Beam Trawl 
Mackerel 38 Poseidon 

Plaice 15 Eastern Channel Beam Trawl 
Saithe 10 North Sea IBTS 

Whiting 28 Eastern Channel Beam Trawl, North Sea IBTS 

 

 
Figure 5.1. Location of surveys from which samples were obtained.  

North Sea
IBTS

Poseidon Survey

CSHAS

Eastern Channel
Beam Trawl
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5.3.2 Salt  DNA extraction  

Samples from the Poseidon research cruise had DNA extracted using a salting-out 

technique[19]. Stomachs were thawed, and contents removed. Each stomach was 

processed on a separate paper towel that was discarded after dissection. Dissection 
tools were sterilised between samples by heating them by brief immersion in 70% 

ethanol and then flaming in a Bunsen burner. Stomach contents were macerated and 

a small quantity (1- 8 mm3) added to 300 µl digestion buffer (30 mM Tris-HCl ph 8.0, 
10mM EDTA, 1% SDS, with 10 µl Proteinase-K (Qiagen)) in a 1.5 ml Eppendorf tube 

then incubated overnight at 55°C. One hundred µl of   NaCl was pipetted into each 

sample, before being centrifuged for 5 minutes at 13000 rpm. Two hundred and fifty 
µl supernatant was transferred to a separate Eppendorf tube. Five hundred µl ice-cold 

100% ethanol was added to the supernatant, before being placed in a -20°C freezer 

overnight. The samples were spun at 13000 rpm for 30 minutes in a centrifuge and 
ethanol was discarded. The DNA pellet was cleaned with 1 ml 70% ethanol, prior to 

centrifugation at 13000 rpm for 5 minutes. The pellet was then dried for 20 minutes in 

an incubator set at 50°C, before resuspension in 200 µl molecular grade water added 

and incubated at 37°C for an additional 30 minutes to facilitate DNA entering solution.  

 

5.3.3 CTAB DNA extraction  

Samples from the North Sea IBTS survey, Eastern Beam trawl survey, and CSHAS 

had DNA extracted using a CTAB methodology[20]. CTAB was preferred to salt 
extraction, as it is better able to extract DNA from stomachs with PCR inhibitory 

substances. Samples were partially-thawed such that the sample could be dissected, 

but the stomach content was still frozen: minimising DNA degradation time. The 
cutting boards the samples were dissected on were disinfected with 0.5% Sodium 

hypochlorite and thoroughly cleaned with running distilled water between samples. 

Dissection tools were sterilised by flaming with 70% ethanol.  Stomach contents were 
extracted, macerated, and a small amount (1-8 mm3) placed into 1.5 ml Eppendorf 

tubes containing 400 µl 2X CTAB buffer (100 mM Tris-HCl (pH 8.0); 1.4 M NaCl; 20 

mM EDTA; 2% CTAB; 2% PVP-40; 0.2% mercaptoethanol) and 20 µl Proteinase-K 
(Qiagen). Negative controls were generated by dipping the dissection equipment in the 

CTAB buffer prior to DNA extraction to identify any lab contamination. The eppendorfs 

were inverted for 1 minute in a tube rotator, prior to incubation at 59°C overnight.  
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Samples were cooled outside the incubator for 20 minutes. In a fume hood, 400 µl 

Phenol : Chloroform : Isoamyl alcohol (24:24:1) was pipetted into each Eppendorf, 
followed by 4 minutes of inversion in a tube rotator. 300 µl of supernatant was 

transferred to a new Eppendorf, along with 300 µl of Phenol : Chloroform : Isoamyl 

alcohol (24:24:1) before being inverted for a further 4 minutes in a tube rotator. The 
Chloroform: supernatant boundary was visually inspected for proteins (a layer of white 

viscous liquid). If no white liquid was observed the supernatant was transferred to a 

new tube, if proteins were still visible an additional cleaning step took place: 250 µl of 
supernatant was again transferred to a new Eppendorf, along with 250 µl of Phenol : 

Chloroform : Isoamyl alcohol (24:24:1) before another 4 minutes inversion. 200 µl of 

supernatant was transferred to a fresh Eppendorf tube.  
 

2x volume of ice-cold 100% Ethanol (stored at -20°C) was added to the supernatant, 

and inverted in a tube rotator for 3 minutes. The mixture was then cooled at -20°C 

overnight. The eppendorfs were centrifuged for 30 minutes at 13,000rpm before the 

ethanol was discarded. The remaining DNA was cleaned with 1 ml 70% ethanol, prior 

to 5 minutes in a desktop centrifuge for 5 minutes. The pellet was then dried for 20 
minutes in an incubator set at 50°C, then 200 µl molecular grade water was added 

and the sample incubated at 37°C for an additional 30 minutes.  

 

5.3.4 1st Round PCR  

PCR was performed in two separate batches for both an 18s and COI set of universal 
primers (table 5.2) that had been adapted to work with metabarcoding indexes 

developed by Bista et al[21]. 
 
Table 5.2. First round 18s and COI primers, including metabarcoding sequences 
Primer	 Sequence  Reference 
ILF_ProSSU3'F_1	

(18s	forward)	

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNCACCGCCCGTCGCWMCTACCG 

 
[22] 

ILR_SSU3'R		

(18s	reverse)	

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGTTCACCTACGGAAACCTTGTTACG 

 
 

Uni-MinibarF1	

(COI	forward)	

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNTCCACTAATCACAARGATATTGGTAC 

 
[23] 

Uni-MinibarR1	

(COI	reverse)	

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGAAAATCATAATGAAGGCATGAGC 
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PCRs were conducted in 20 µl reactions containing 10 µl 2x Q5 Hot Start High-Fidelity 

Master Mix (New England Biolabs), 0.4 µl forward primer (10 µM ; IDT Ultramer DNA 

Oligos), 0.4 µl reverse primer (IDT Ultramer DNA oligos), 7.4 µl molecular grade water, 
1 µl BSA (20  mg  ml−1; New England Biolabs), and 1 µl DNA.  

 

Cycling conditions for the 18s primers were as follows: 98°C for 5 minutes, followed 

by 20 cycles of 98°C for 5 seconds, 67°C for 20 seconds, 72°C for 20 seconds, 

finishing with 1 minute incubation at 72°C. Cycling conditions for COI primers were as 

follows: 95°C for 2 minutes, followed by 5 cycles of 95°C for 1 minute, 46°C for 1 

minute, 72°C for 30 seconds, then a further 20 cycles of 95°C for 1 minute, 53°C for 

1 minute, 72°C for 30 seconds, with a final incubation of 72°C for 5 minutes.  

 

Cleaning took place by mixing 20 µl of Agencourt AMPure XP cleaning beads 

(Beckman Coulter) with 20 µl PCR product and pipette mixing 20 times. The mixture 
was incubated at room temperature for 5 minutes to maximise DNA yield. The mixture 

was then spun down in a plate centrifuge, and placed on a magnet plate for 5 minutes 

to separate the cleaning beads from solution. Approximately 32 µl solution was 
aspirated and discarded. The remaining beads had 3 rounds of ethanol washing: 200 

µl of 80% ethanol added, incubated at room temperature for 30 seconds, then 

aspirated and discarded. The beads were incubated at room temperature until ethanol 
evaporated, then 25 µl molecular grade water added. The solution was then incubated 

at 37°C for 30 minutes for the DNA to enter solution. Finally, the plate was placed on 

a magnet plate, and 15 µl of solution from each sample was transferred to a new plate.  
 

5.3.5 2nd Round PCR & Sequencing   

Final library prep and sequencing took place at Sheffield diagnostic genetics service. 

A 2nd PCR was performed to attach a unique nucleotide index (table 5.3) for each 

sample.  

Table 5.3. Second round primers used to attach a unique nucleotide sequence (index) onto each 
samples sequences 
Primer	 Sequence  Reference 
Round	 2	

forward	primer	

AATGATACGGCGACCACCGAGATCTACAC - i5 Index - ACACTCTTTCCCTACACGACGCTC 

 
[21] 

Round	2	reverse	

primer	

CAAGCAGAAGACGGCATACGAGAT - i7 Index – GTGACTGGAGTTCAGACGTGTGCTC 
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PCRs were conducted in 25 µl reactions containing 12.5 µl 2x Q5 Hot Start High-
Fidelity Master Mix (New England Biolabs), 0.5 µl forward primer (10 µM ; IDT Ultramer 

DNA Oligos), 0.5 µl reverse primer (IDT Ultramer DNA oligos), 6.4 µl molecular grade 

water, and 1 µl cleaned round 1 PCR product. Cycling conditions were as follows: 
98°C for 3 minutes, followed by 15 cycles of 98°C for 30 seconds, 55°C for 30 

seconds, 72°C for 30 seconds, finishing with a 5 minute incubation at 72°C. The 

duplicate PCR products were pooled and cleaned with Agencourt AMPure XP cleaning 
beads (Beckman Coulter) as described in PCR round 1. Using a Qubit dsDNA BR 

assay kit, the amplicon library was diluted to 3 ng µl-1 using molecular grade water as 

needed. If samples had undetectable quantities of DNA, they were pooled with the 
library. The amplicon library was then sequenced using an Illumina MiSeq (2x 150bp). 
 

5.3.6 Bioinformatics 

Sequences were automatically demultiplexed using MiSeq Reporter software (v2.5.1). 

The COI and 18s amplicons were then split into separate files using a custom UNIX 
script by identifying the round one primers. Although the COI and 18s amplicons used 

the same pipeline, from this point forward they were processed independently. Round 

one primers were trimmed using Cutadapt (v1.15)[24], and imported into DADA2 [25]. 
Sequences were processed to keep Q-scores above 35: 18s sequences were 

truncated at 121 bp and 76 bp, COI sequences were truncated at 117 bp and 78 bp, 

on the forward and reverse sequences respectively. The DADA2 parametric error 
model was trained on trimmed data before reads were dereplicated into unique 

sequences, paired reads merged, operational taxonomic units (OTUs) clustered, and 

chimera detection and removal performed. An OTU table was constructed to import 
the data into the QIIME2[26,27]. 

 

Separate 18s and COI databases for taxonomic assignment of OTUs were 
constructed. COI sequences were downloaded from BOLD[11] with PrimerMiner[28]. 

Taxonomy files were downloaded directly from BOLD. Eukaryotic 18s sequences, and 

associated taxonomic information excluding environmental samples, were 
downloaded from GenBank[10]. The downloaded sequences were dereplicated using 

the ObiUniq feature in Obitools (v1.01)[29] leaving only unique sequences in the 

dataset. Sequences were cross referenced against the taxonomy files using a custom 
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python script, and only those with taxonomic information retained. The taxonomy files 

were then trimmed using another custom python script to only contain information on 

the sequences remaining in the associated fasta files. The sequence and taxonomy 
files were combined into a QIIME2 database artefact inside the QIIME2 environment.  

 

Taxonomy was assigned inside the QIIME2 environment using consensus-blast[30] 
and the local databases, retaining only matches with over 90% match identity. 

Rarefaction curves and a result table, with sequences reported to taxonomic order 

were also generated in QIIME2. Predator sequences, those not belonging to marine 
organisms (Supplementary table 5.1), those belonging to Siluriformes (as these are 

used as a model species in the same lab as where DNA extraction took place), and 

rare sequences (less than 10 sequences) were removed. Sequences which occurred 
in negative controls were removed from predatory species’ sequences to minimise the 

chances of type II errors. To normalise sampling effort between individuals (individuals 

with high sequencing depth have a greater chance of a richer reported diversity), 
taxonomic groups that constituted less than 1% of an individual’s total reads were 

removed[31]. This normalisation between samples also prevents the over-

representation of very rare sequences, and sequences present due to secondary 
predation, in the final dataset. Data were transformed from number of sequences to 

detected / not detected. 

 

5.3.7 Statistics 

All statistics were carried out in R (v 3.5.0)[32]. Diet, as described by both 18s and COI 

amplicons, was plotted using metacodeR[33] to show the relative frequency of prey 
items, and visualise  the overall taxonomic diversity of the predator’s diet . Non-metric 

multidimensional scaling (NDMS) was carried out in vegan[34]. A Morisita-Horn 

index[35] was used to analyse diet similarity treating each predatory species as a group 
using count data (sum of detected / non-detected sequences).  
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5.4 Results  
 

5.4.1 PCR and sequencing success  

The 18s amplicon sequencing was largely successful: 187 samples, and 3 negative 
controls produced 5,398,140 reads. Despite the primers being optimised for 

invertebrate amplification, vertebrate species also amplified: predator sequences 

ranged from 47.5% (±5.7% SE) of total reads in whiting, to 80% (±8.4% SE) in horse 
mackerel (figure 5.2). By contrast the COI amplicons yielded 1,329,123 reads from 

111 samples and 1 negative control. The number of predator reads in the COI dataset 

was much more variable, although this must be interpreted considering the smaller 
sample sizes achieved with COI sequencing: a low of 23.0% (±12.1% SE) was seen 

in haddock, while 93.6% (± 3.6 % SE) stomach DNA belonged to the host in herring 

(figure 5.2).  

 
Figure 5.2. Amount of predator DNA detected (%) in stomach samples using COI and 18s amplicons. 
 

Rarefaction plots (figure 5.3) for both amplicons show that sequencing depth was 
adequate to capture the diet of assessed species. 
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Figure 5.3. Rarefaction curves showing detection of OTUs as a function of sequencing depth in  COI 
and 18s amplicons. 
 

5.4.2 Diet 

In all surveyed species 18s amplicons revealed a much wider variety of consumed 

species than the COI. Across all samples, 18s revealed 76 prey items while COI 
identified 16 in total. Seven prey items were identified only by COI, while 67 prey items 

were found uniquely using the 18s assay.  

 
Figures 5.4-5.12 show the frequency that prey sequences were detected within the 

predators, a grey node indicates that predation was detected in few individuals, while 

a red node shows that predation was more common. The figures also show the 
taxonomic relatedness of prey items, and the overall richness of the predator diet.  
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Jellyfish sequences, belonging to cnidarians and ctenophores were detected using the 

18s amplicon in the stomachs of haddock, herring, lemon sole, mackerel, plaice, and 

whiting using the 18s amplicon. Cnidarian predation was detected in mackerel, and 
chordate-jellyfish (salpida) detected in saithe, using the COI marker. No jellyfish 

predation was detected in either haddock or horse mackerel with either dietary assay. 

Figures 5.34-5.12 show that predation on any given jellyfish order by predators was 
relatively rare. The diet of surveyed species was rich, suggesting that none of these 

species are obligate jellyfish feeders and instead occupy a role in a more general diet. 

Predation at higher taxonomic levels appeared uncommon, with the notable exception 
of mackerel which frequently consumed hydrozoans. Scyphozoan DNA (‘true-jellyfish’) 

was rare or absent in all species except mackerel and haddock (mackerel DNA 

extracted in chapter 3 was utilised here, so mackerel data presented here should not 
be interpreted as an independent piece of evidence). 

 
 
Figure 5.4. Taxa detected in grey gurnard stomachs using 18s metabarcoding. The frequency of taxa 
occurrence is denoted by the colour: rarely consumed taxa are shown in grey, more frequently 
consumed taxa are shown in red.   
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Figure 5.5. Taxa detected in haddock stomachs using 18s and COI metabarcoding. The frequency of 
taxa occurrence is denoted by the colour: rarely consumed taxa are shown in grey, more frequently 
consumed taxa are shown in red.   
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Figure 5.6. Taxa detected in herring stomachs using 18s and COI metabarcoding. The frequency of 
taxa occurrence is denoted by the colour: rarely consumed taxa are shown in grey, more frequently 
consumed taxa are shown in red.   
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Figure 5.7. Taxa detected in horse mackerel stomachs using 18s and COI metabarcoding. The 
frequency of taxa occurrence is denoted by the colour: rarely consumed taxa are shown in grey, more 
frequently consumed taxa are shown in red.   
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Figure 5.8. Taxa detected in lemon sole stomachs using 18s and COI metabarcoding. The frequency 
of taxa occurrence is denoted by the colour: rarely consumed taxa are shown in grey, more frequently 
consumed taxa are shown in red.   
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Figure 5.9. Taxa detected in mackerel stomachs using 18s and COI metabarcoding. The frequency of 
taxa occurrence is denoted by the colour: rarely consumed taxa are shown in grey, more frequently 
consumed taxa are shown in red.   
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Figure 5.10. Taxa detected in plaice stomachs using 18s and COI metabarcoding. The frequency of 
taxa occurrence is denoted by the colour: rarely consumed taxa are shown in grey, more frequently 
consumed taxa are shown in red.   
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Figure 5.11. Taxa detected in Saithe stomachs using 18s and COI metabarcoding. The frequency of 
taxa occurrence is denoted by the colour: rarely consumed taxa are shown in grey, more frequently 
consumed taxa are shown in red. 
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Figure 5.12. Taxa detected in whiting stomachs using 18s and COI metabarcoding. The frequency of 
taxa occurrence is denoted by the colour: rarely consumed taxa are shown in grey, more frequently 
consumed taxa are shown in red.   
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5.4.3 Diet partitioning  

COI data did not provide an adequate sample size to be able conduct an non-metric 

multidimensional scaling (NMDS): stress values were less than 0.001 (indicative that 

sample size is too small), and no convergence could be achieved.  
 

An NDMS on the 18s dataset using Mourisita-Horn distances (data aggregated into 

count distances), was conducted. Figure 5.13 highlights dietary differences between 
the predatory species: demersal species such as plaice, haddock, lemon sole, and to 

a lesser extent, whiting appear to consume similar species.  Other predators had less 

dietary clustering.   

 
 

Figure 5.13. An NMDS using Morisita-Horn distances (aggregated count data) on 18s dietary data. 
Consumed species are shown by numbers, and are detailed in table 5.4: proximity to a predator 
indicates frequent predation. Clusters of consumed species, as indicated by arrows, occupy identical 
dietary space and may indicate secondary predation.   
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Table 5.4. Taxonomy and ID used to denote dietary position in figure 5.12.   

 

 

5.5 Discussion 
 
One hundred and eighty eight stomach samples collected from nine fish species were 

assessed for jellyfish predation using a dual amplicon HTS approach. The 18s assay 

yielded rich diet data for all tested species. By contrast, the COI assay detected many 
fewer prey items. Jellyfish consumption was detected in mackerel, lemon sole, herring, 

whiting, haddock, saithe, and plaice. Predation was not detected in grey gurnard or 

horse mackerel. In all instances of consumption, jellyfish appeared to have been fed 
upon as part of a diverse diet rather than specialised feeding.  
 

5.5.1 Jellyfish predation 

ID Phylum Class Order ID Phylum Class Order
1 Annelida Clitellata Branchiobdellida 39 Cnidaria Hydrozoa Narcomedusae
2 Annelida Clitellata Haplotaxida 40 Cnidaria Scyphozoa Semaeostomeae
3 Annelida Polychaeta 41 Ctenophora Nuda Beroida
4 Annelida Polychaeta Capitellida 42 Echinodermata Echinoidea Clypeasteroida
5 Annelida Polychaeta Echiuroinea 43 Echinodermata Echinoidea Echinoida
6 Annelida Polychaeta Eunicida 44 Echinodermata Echinoidea Spatangoida
7 Annelida Polychaeta Flabelligerida 45 Echinodermata Holothuroidea Apodida
8 Annelida Polychaeta Phyllodocida 46 Echinodermata Holothuroidea Dendrochiro�da
9 Annelida Polychaeta Sabellida 47 Echinodermata Holothuroidea Elasipodida
10 Annelida Polychaeta Terebellida 48 Echinodermata Ophiuroidea Ophiurida
11 Arthropoda Branchiopoda Diplostraca 49 Gastrotricha Chaetono�da
12 Arthropoda Malacostraca Amphipoda 50 Hemichordata Enteropneusta
13 Arthropoda Malacostraca Euphausiacea 51 Mollusca Bivalvia Pec�noida
14 Arthropoda Malacostraca Leptostraca 52 Mollusca Bivalvia Veneroida
15 Arthropoda Malacostraca Mysida 53 Mollusca Cephalopoda Teuthida
16 Arthropoda Maxillopoda Cyclopoida 54 Mollusca Polyplacophora Neoloricata
17 Arthropoda Ostracoda Myodocopida 55 Nematoda Chromadorea Chromadorida
18 Arthropoda Ostracoda Podocopida 56 Nematoda Chromadorea Rhabdi�da
19 Arthropoda Pycnogonida Pantopoda 57 Nemertea Anopla Heteronemertea
20 Bryozoa Gymnolaemata Cheilostoma�da 58 Nemertea Palaeonemertea
21 Bryozoa Gymnolaemata Ctenostoma�da 59 Platyhelminthes Polycladida
22 Bryozoa Stenolaemata Cyclostoma�da 60 Platyhelminthes Prolecithophora
23 Chordata Ac�nopteri 61 Platyhelminthes Rhabdocoela
24 Chordata Ac�nopteri Chaetodon�formes 62 Platyhelminthes Tricladida
25 Chordata Ac�nopteri Gadiformes 63 Platyhelminthes Cestoda Phyllobothriidea
26 Chordata Ac�nopteri Gobiiformes 64 Platyhelminthes Monogenea
27 Chordata Ac�nopteri Perciformes 65 Platyhelminthes Trematoda Azygiida
28 Chordata Ac�nopteri Pleuronec�formes 66 Platyhelminthes Trematoda Plagiorchiida
29 Chordata Ac�nopteri Scombriformes 67 Platyhelminthes Turbellaria
30 Chordata Ac�nopteri Spariformes 68 Porifera Calcarea Clathrinida
31 Chordata Ac�nopteri Syngnathiformes 69 Porifera Calcarea Leucosolenida
32 Chordata Appendicularia 70 Porifera Demospongiae Poecilosclerida
33 Chordata Ascidiacea Enterogona 71 Porifera Demospongiae Spongillida
34 Cnidaria Bivalvulida 72 Porifera Demospongiae Tethyida
35 Cnidaria Anthozoa Ac�niaria 73 Porifera Hexac�nellida Amphidiscosida
36 Cnidaria Anthozoa Alcyonacea 74 Porifera Hexac�nellida Hexac�nosida
37 Cnidaria Anthozoa Zoantharia 75 Porifera Hexac�nellida Lyssacinosida
38 Cnidaria Hydrozoa Anthoathecata 76 Priapulida Priapulimorpha Priapulimorphida
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A variety of jellyfish species were detected in stomachs including cnidarians, 

ctenophores, and pelagic tunicates. Multiple species fed upon hydrozoan jellyfish and 

ctenophores. Consumption of scyphozoan jellyfish was limited to haddock and 
mackerel and was rare within those species. Mackerel have been reported predating 

jellyfish before[36], however this is a novel prey item for haddock. Generally these data 

corroborate the findings in chapter 3 that large scyphozoan species are not targeted: 
either because they have defensive stinging structures, or they are relatively poor 

source of nutrition[37] and may be acting as energy reservoirs in the ecosystem, re-

routing energy pathways away from many, if not all, commercially important fish 
species during the time of sampling[38,39].  Alternatively, prey availability may be 

driving this apparent lack of consumption. However, given the majority of these 

samples (with the exception of herring and mackerel samples) were taken during the 
summer, when jellyfish biomass is normally at an annual high[40] this seems less 

probable.  

 
When looking at figures 5.4 to 5.12, consumption of any given jellyfish order appears 

rare: most jellyfish nodes are grey. However, many organisms have evolved with a 

gelatinous body plan and looking at them in isolation in this manner may understate 
their role: figure 5.14 suggests that when treated as a single functional group a different 

pattern emerges and predation is relatively common. 



 128 

 
Figure 5.14. Jellyfish consumption detected using the HTS 18s assay. Thickness of arrow is 

proportional to the percentage of stomachs that jellyfish DNA was detected in stomachs fish (also 

shown as a percentage). Reported sample sizes refer to number of individuals which any DNA was 

detected in.  

 

Of course, treating any broad-taxonomic group of organisms detected in these data 

would suggest that consumption is relatively common. Furthermore, these data are 
only being used to infer frequency of predation, so it is not possible to quantify the 

absolute importance of these trophic interactions.  However, this does not detract from 

the fact that jellyfish play a role in these ecosystems throughout the year. Moving 

forward, it is worthwhile being explicit if scyphozoan, hydrozoan, ctenophores, or 
pelagic tunicates are being discussed. Our results suggest that mature scyphozoans 
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are not heavily targeted and it is easy to envisage how the perception of ‘trophic dead 

end’ arose, however other types of jellyfish are certainly involved in fish diets even late 

in the year. Treating this range of organisms as a single functional group is not 
grounded in the ecology jellyfish, and may be obscuring the different ecological roles 

they play.   

  
5.5.2 A dual amplicon approach  

The two genetic markers (18s and COI) here yielded very different data. We expected 
that the 18s primer set would uncover the invertebrate component of diet, while the 

COI would reveal the vertebrates component. However, the 18s assay outperformed 

the COI in every regard: sequences were obtained from a greater number of samples, 

achieved greater sequencing depth, and uncovered greater dietary diversity than the 
COI amplicon. 

 

 Amplicon length can affect the number of sequences produced: longer sequences 
are inherently more likely to be sheared during DNA degrading processes so shorter 

amplicons can yield higher DNA estimates[20]. However, it is unlikely the difference in 

performance is due to length alone as the 18s amplicons targeted a 100 bp region 
while the COI targeted a 130 bp region. The genetic variability of the marker is another 

possible driver in performance difference: COI is known for being hypervariable[41] 

which makes it a good candidate for assigning taxonomy, but simultaneously makes 
it difficult to amplify a broad array of taxa due to a high number of mismatches between 

target DNA and a primer set[42]. The 18s genetic region is, by contrast, very well 

conserved among taxa, which makes it relatively easy to amplify a broad range of 
organisms at the expense of taxonomic discrimination[43,44]. This wider amplification 

potential, coupled with the innately higher diversity of invertebrates in marine 

environments surrounding the British Isles may go some way towards explaining the 
difference. However, the dramatically lower dietary diversities in our study compared 

to others using the same COI primers[14] and the inability of the primer to amplify host 

DNA from some samples (predator DNA often overwhelms DNA recovered from 
stomachs[45]) from certain samples also suggest that the PCR protocol likely needs 

further adjustments before being used in a similar studies.  
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A more positive interpretation of the difference between markers highlights a hidden 

benefit of dual amplicon approach - redundancy. HTS studies are expensive, and the 

behaviour of primers in competitive PCR environments with degraded DNA is often 
different from single species DNA extracted from un-degraded tissue. A dual amplicon 

approach reduces the chances that unexpectedly poor primer performance will impact 

a study. Some additional costs are incurred as a result of additional PCR and cleaning 
in duplicate, although it should be noted that a multiplex PCR (multiple sets of primers 

are used simultaneously[46]) could be designed so the only extra expense would be 

the primers. We believe a multi-locus approach (two or more primer sets targeting 
different sections of DNA) should be implemented in situations where no a priori 

information on species make-up and where primer choice may be challenging. In these 

situations,  the use of different amplicons not only increases the range of taxa that can 
be detected, but also improves the probability of a study yielding biologically relevant 

results.  
 

5.5.3 Limitations 

Although HTS studies are incredibly versatile and have opened new horizons in 
ecology they are not without caveats. A limitation pertinent to this study is the ability of 

the 18s primers to infer the vertebrate component of diet. Although vertebrates have 

been identified, the primers have relatively poor taxonomic discrimination abilities and 
were not intended to be used in this regard[22]. The taxonomic assignment of 

vertebrates in dietary samples should therefore be treated with a some scepticism as 

it possible the wrong taxonomy may have been assigned.  
 

Another issue, discussed at length in chapter 4, but worth reiterating, is the quantitative 

nature of high throughput sequencing: does the number of reads obtained correspond 

to biomass of prey? Based on the high uncertainty uncovered in chapter 4, and the 
conclusions of a Deagle et al. that a presence / absence approach will yield less 

accurate data than quantitative or semi-quantitative approaches[31], a frequency of 

occurrence approach has been used. While a conservative approach, this does make 
it difficult to say how important any of the observed trophic interactions are. Using an 

approach like stable isotope analysis, which identifies the assimilation of isotopes into 

the flesh of a predator can help identify which of the observed trophic interactions are 
ecologically relevant[47].   
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Perhaps the largest unknown is the issue of secondary predation, where a consumed 

species’ diet is erroneously assigned to the surveyed predator. A similar, but less 
discussed issue is the potential for eDNA to contaminate a sample[9]. Other sources 

of contamination, such as ingestion of species while in the net could also lead to false 

dietary inferences[22]. Identifying potential secondary predation could potentially be 
investigated using co-occurrence statistics. If consumed species never occur 

independently of one another this suggests that secondary predation may be 

present[48]. Figure 5.13 shows the dietary space consumed species occupy. Species 
occupying the same NDMS space co-occur frequently in stomachs, and it is possible 

that these cases be represent secondary predation. Focusing on gelatinous species 

the scyphozoan order Semaeostomeae shares dietary space with Scombriformes 
(mackerels and tuna-like fish). Jellyfish predation has been detected in mackerel here, 

and elsewhere in the literature[36] so secondary predation could have occurred.  

 
Identifying potential secondary predation is relatively easy, verifying its presence is 

rather more difficult. It is possible to imagine a Pearson’s correlation matrix, or binary 

equivalent (if data is treated in a non-quantitative manner), as a statistical test to 
establish secondary predation: If species A is never detected outside the presence of 

species B that may be suspicious. However, marine habitats are heterogeneous 

landscapes, with communities adapted to certain niches. One would expect that many 
species would co-occur in stomachs of predators simply because they belong to the 

same biological community. Of course, it is possible to assess the natural co-

occurrence of organisms in the environment and then look for statistically significant 
differences between observed co-occurrence in the environment and stomach. Even 

ignoring other important factors, like temporal variation in species assemblages or the 

statistical headache of multiple-hypothesis testing, this level of ecological information 
doesn’t exist in the ecosystems surveyed, or indeed, most ecosystems. Secondary 

predation, or other dietary contamination, is unlikely to be detected from a HTS study 

alone. Fortunately, other complimentary dietary assessment methodologies exist. 

Again, combining HTS with another technique, like stable isotope analysis, allows 
ecologists to identify the most important inter-specific interactions[47] assuming time 

and funding constraints allow two analytical techniques to be employed.   
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5.6 Conclusion 
 

This study is the first to explicitly study jellyfish (cnidarian, ctenophore, or doliolid) 
predation using a HTS approach. Mackerel fed frequently on jellyfish and consumed 

the largest variety of species. Jellyfish consumption was detected in 7 of the 9 

assessed species. This suggests that jellyfish remain a component of fish diet 
throughout the year, although the richness of other species in observed diets hints that 

obligate jellyfish feeders are probably rare and it remains unclear the extent to which 

jellyfish are predated. With the exception of mackerel, scyphozoan predation was rare: 

suggesting scyphozoan medusae may escape the predation seen during juveniles 
stages and may divert energy away from fish component of the ecosystem later in life 

as suggested by earlier models. Alternatively, prey availability may also contribute to 

the (lack of) observed predation. However, without data on the relative abundance of 
jellyfish at the time of sampling: disentangling these two hypotheses is challenging.  

The different inter-specific interactions between the different types of jellyfish highlights 

that although they share a similar body plan and some life-history characteristics they 
clearly occupy different trophic roles. Aggregating different types of jellyfish may be 

obscuring elements of their ecology. Although an ad-hoc picture of temporal predation 

patterns now exists, and the context in which they are consumed better understood, 
the actual role they play in ecosystems is still unresolved. Ecosystem models 

incorporating our current understanding would go some way towards addressing the 

trophic role they play. Ideally, a hybrid study incorporating HTS and stable isotope 
analysis could then be used to verify and optimise the model further.  
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5.8 Supplementary Information 
Supplementary Table 5.1. Included (marine) and excluded (terrestrial and Siluriformes) taxa in the HTS 
study 
Taxa Type 
k__Eukaryota.p__Annelida.c__Clitellata.o__Branchiobdellida Marine 
k__Eukaryota.p__Annelida.c__Clitellata.o__Haplotaxida Marine 
k__Eukaryota.p__Annelida.c__Clitellata.o__Rhynchobdellida Marine 
k__Eukaryota.p__Annelida.c__Polychaeta.o__ Marine 
k__Eukaryota.p__Annelida.c__Polychaeta.o__Capitellida Marine 
k__Eukaryota.p__Annelida.c__Polychaeta.o__Echiuroinea Marine 
k__Eukaryota.p__Annelida.c__Polychaeta.o__Eunicida Marine 
k__Eukaryota.p__Annelida.c__Polychaeta.o__Flabelligerida Marine 
k__Eukaryota.p__Annelida.c__Polychaeta.o__Golfingiida Marine 
k__Eukaryota.p__Annelida.c__Polychaeta.o__Phyllodocida Marine 
k__Eukaryota.p__Annelida.c__Polychaeta.o__Sabellida Marine 
k__Eukaryota.p__Annelida.c__Polychaeta.o__Spionida Marine 
k__Eukaryota.p__Annelida.c__Polychaeta.o__Terebellida Marine 
k__Eukaryota.p__Arthropoda.c__Arachnida.o__Araneae Terrestrial 
k__Eukaryota.p__Arthropoda.c__Arachnida.o__Mesostigmata Terrestrial 
k__Eukaryota.p__Arthropoda.c__Arachnida.o__Opiliones Terrestrial 
k__Eukaryota.p__Arthropoda.c__Arachnida.o__Sarcoptiformes Terrestrial 
k__Eukaryota.p__Arthropoda.c__Arachnida.o__Trombidiformes Terrestrial 
k__Eukaryota.p__Arthropoda.c__Branchiopoda.o__Diplostraca Marine 
k__Eukaryota.p__Arthropoda.c__Chilopoda.o__Scolopendromorpha Terrestrial 
k__Eukaryota.p__Arthropoda.c__Collembola.o__Entomobryomorpha Terrestrial 
k__Eukaryota.p__Arthropoda.c__Insecta.o__Coleoptera Terrestrial 
k__Eukaryota.p__Arthropoda.c__Insecta.o__Diptera Terrestrial 
k__Eukaryota.p__Arthropoda.c__Insecta.o__Embioptera Terrestrial 
k__Eukaryota.p__Arthropoda.c__Insecta.o__Ephemeroptera Terrestrial 
k__Eukaryota.p__Arthropoda.c__Insecta.o__Hemiptera Terrestrial 
k__Eukaryota.p__Arthropoda.c__Insecta.o__Orthoptera Terrestrial 
k__Eukaryota.p__Arthropoda.c__Insecta.o__Plecoptera Terrestrial 
k__Eukaryota.p__Arthropoda.c__Insecta.o__Psocoptera Terrestrial 
k__Eukaryota.p__Arthropoda.c__Insecta.o__Thysanoptera Terrestrial 
k__Eukaryota.p__Arthropoda.c__Malacostraca.o__Amphipoda Marine 
k__Eukaryota.p__Arthropoda.c__Malacostraca.o__Decapoda Marine 
k__Eukaryota.p__Arthropoda.c__Malacostraca.o__Euphausiacea Marine 
k__Eukaryota.p__Arthropoda.c__Malacostraca.o__Isopoda Marine 
k__Eukaryota.p__Arthropoda.c__Malacostraca.o__Leptostraca Marine 
k__Eukaryota.p__Arthropoda.c__Malacostraca.o__Mysida Marine 
k__Eukaryota.p__Arthropoda.c__Maxillopoda.o__Calanoida Marine 
k__Eukaryota.p__Arthropoda.c__Maxillopoda.o__Cyclopoida Marine 
k__Eukaryota.p__Arthropoda.c__Maxillopoda.o__Harpacticoida Marine 
k__Eukaryota.p__Arthropoda.c__Maxillopoda.o__Mormonilloida Marine 
k__Eukaryota.p__Arthropoda.c__Maxillopoda.o__Poecilostomatoida Marine 
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k__Eukaryota.p__Arthropoda.c__Maxillopoda.o__Siphonostomatoida Marine 
k__Eukaryota.p__Arthropoda.c__Ostracoda.o__Myodocopida Marine 
k__Eukaryota.p__Arthropoda.c__Ostracoda.o__Podocopida Marine 
k__Eukaryota.p__Arthropoda.c__Pycnogonida.o__Pantopoda Marine 
k__Eukaryota.p__Arthropoda.c__Remipedia.o__Nectiopoda Marine 
k__Eukaryota.p__Brachiopoda.c__.o__ Marine 
k__Eukaryota.p__Bryozoa.c__Gymnolaemata.o__Cheilostomatida Marine 
k__Eukaryota.p__Bryozoa.c__Gymnolaemata.o__Ctenostomatida Marine 
k__Eukaryota.p__Bryozoa.c__Stenolaemata.o__Cyclostomatida Marine 
k__Eukaryota.p__Chaetognatha.c__Sagittoidea.o__Aphragmophora Marine 
k__Eukaryota.p__Chordata.c__Actinopteri.o__ Marine 
k__Eukaryota.p__Chordata.c__Actinopteri.o__Chaetodontiformes Marine 
k__Eukaryota.p__Chordata.c__Actinopteri.o__Clupeiformes Marine 
k__Eukaryota.p__Chordata.c__Actinopteri.o__Gadiformes Marine 
k__Eukaryota.p__Chordata.c__Actinopteri.o__Gobiiformes Marine 
k__Eukaryota.p__Chordata.c__Actinopteri.o__Ophidiiformes Marine 
k__Eukaryota.p__Chordata.c__Actinopteri.o__Perciformes Marine 
k__Eukaryota.p__Chordata.c__Actinopteri.o__Pleuronectiformes Marine 
k__Eukaryota.p__Chordata.c__Actinopteri.o__Scombriformes Marine 
k__Eukaryota.p__Chordata.c__Actinopteri.o__Siluriformes Excluded  
k__Eukaryota.p__Chordata.c__Actinopteri.o__Spariformes Marine 
k__Eukaryota.p__Chordata.c__Actinopteri.o__Syngnathiformes Marine 
k__Eukaryota.p__Chordata.c__Appendicularia.o__ Marine 
k__Eukaryota.p__Chordata.c__Ascidiacea.o__Enterogona Marine 
k__Eukaryota.p__Chordata.c__Ascidiacea.o__Stolidobranchia Marine 
k__Eukaryota.p__Chordata.c__Mammalia.o__Primates Terrestrial 
k__Eukaryota.p__Chordata.c__Thaliacea.o__Doliolida Marine 
k__Eukaryota.p__Cnidaria.c__.o__Bivalvulida Marine 
k__Eukaryota.p__Cnidaria.c__Anthozoa.o__Actiniaria Marine 
k__Eukaryota.p__Cnidaria.c__Anthozoa.o__Alcyonacea Marine 
k__Eukaryota.p__Cnidaria.c__Anthozoa.o__Scleractinia Marine 
k__Eukaryota.p__Cnidaria.c__Anthozoa.o__Zoantharia Marine 
k__Eukaryota.p__Cnidaria.c__Hydrozoa.o__Anthoathecata Marine 
k__Eukaryota.p__Cnidaria.c__Hydrozoa.o__Leptothecata Marine 
k__Eukaryota.p__Cnidaria.c__Hydrozoa.o__Narcomedusae Marine 
k__Eukaryota.p__Cnidaria.c__Hydrozoa.o__Siphonophorae Marine 
k__Eukaryota.p__Cnidaria.c__Hydrozoa.o__Trachymedusae Marine 
k__Eukaryota.p__Cnidaria.c__Scyphozoa.o__Semaeostomeae Marine 
k__Eukaryota.p__Ctenophora.c__Nuda.o__Beroida Marine 
k__Eukaryota.p__Ctenophora.c__Tentaculata.o__Cydippida Marine 
k__Eukaryota.p__Ctenophora.c__Tentaculata.o__Lobata Marine 
k__Eukaryota.p__Echinodermata.c__Asteroidea.o__Forcipulatida Marine 
k__Eukaryota.p__Echinodermata.c__Asteroidea.o__Paxillosida Marine 
k__Eukaryota.p__Echinodermata.c__Echinoidea.o__Clypeasteroida Marine 
k__Eukaryota.p__Echinodermata.c__Echinoidea.o__Echinoida Marine 
k__Eukaryota.p__Echinodermata.c__Echinoidea.o__Spatangoida Marine 
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k__Eukaryota.p__Echinodermata.c__Holothuroidea.o__Apodida Marine 
k__Eukaryota.p__Echinodermata.c__Holothuroidea.o__Dendrochirotida Marine 
k__Eukaryota.p__Echinodermata.c__Holothuroidea.o__Elasipodida Marine 
k__Eukaryota.p__Echinodermata.c__Ophiuroidea.o__Ophiurida Marine 
k__Eukaryota.p__Gastrotricha.c__.o__Chaetonotida Marine 
k__Eukaryota.p__Hemichordata.c__Enteropneusta.o__ Marine 
k__Eukaryota.p__Mollusca.c__Bivalvia.o__Myoida Marine 
k__Eukaryota.p__Mollusca.c__Bivalvia.o__Mytiloida Marine 
k__Eukaryota.p__Mollusca.c__Bivalvia.o__Pectinoida Marine 
k__Eukaryota.p__Mollusca.c__Bivalvia.o__Pterioida Marine 
k__Eukaryota.p__Mollusca.c__Bivalvia.o__Veneroida Marine 
k__Eukaryota.p__Mollusca.c__Cephalopoda.o__Teuthida Marine 
k__Eukaryota.p__Mollusca.c__Gastropoda.o__ Marine 
k__Eukaryota.p__Mollusca.c__Gastropoda.o__Thecosomata Marine 
k__Eukaryota.p__Mollusca.c__Polyplacophora.o__Neoloricata Marine 
k__Eukaryota.p__Nematoda.c__Chromadorea.o__Chromadorida Marine 
k__Eukaryota.p__Nematoda.c__Chromadorea.o__Rhabditida Marine 
k__Eukaryota.p__Nematoda.c__Enoplea.o__Dorylaimida Marine 
k__Eukaryota.p__Nematoda.c__Enoplea.o__Mononchida Terrestrial 
k__Eukaryota.p__Nematoda.c__Enoplea.o__Trichinellida Terrestrial 
k__Eukaryota.p__Nemertea.c__Anopla.o__Heteronemertea Marine 
k__Eukaryota.p__Nemertea.c__Enopla.o__Monostilifera Marine 
k__Eukaryota.p__Nemertea.c__Palaeonemertea.o__ Marine 
k__Eukaryota.p__Platyhelminthes.c__.o__Polycladida Marine 
k__Eukaryota.p__Platyhelminthes.c__.o__Prolecithophora Marine 
k__Eukaryota.p__Platyhelminthes.c__.o__Rhabdocoela Marine 
k__Eukaryota.p__Platyhelminthes.c__.o__Tricladida Marine 
k__Eukaryota.p__Platyhelminthes.c__Cestoda.o__Phyllobothriidea Marine 
k__Eukaryota.p__Platyhelminthes.c__Monogenea.o__ Marine 
k__Eukaryota.p__Platyhelminthes.c__Trematoda.o__Azygiida Marine 
k__Eukaryota.p__Platyhelminthes.c__Trematoda.o__Plagiorchiida Marine 
k__Eukaryota.p__Platyhelminthes.c__Turbellaria.o__ Marine 
k__Eukaryota.p__Porifera.c__Calcarea.o__Clathrinida Marine 
k__Eukaryota.p__Porifera.c__Calcarea.o__Leucosolenida Marine 
k__Eukaryota.p__Porifera.c__Demospongiae.o__Axinellida Marine 
k__Eukaryota.p__Porifera.c__Demospongiae.o__Dendroceratida Marine 
k__Eukaryota.p__Porifera.c__Demospongiae.o__Poecilosclerida Marine 
k__Eukaryota.p__Porifera.c__Demospongiae.o__Spongillida Marine 
k__Eukaryota.p__Porifera.c__Demospongiae.o__Tethyida Marine 
k__Eukaryota.p__Porifera.c__Hexactinellida.o__Amphidiscosida Marine 
k__Eukaryota.p__Porifera.c__Hexactinellida.o__Hexactinosida Marine 
k__Eukaryota.p__Porifera.c__Hexactinellida.o__Lyssacinosida Marine 
k__Eukaryota.p__Priapulida.c__Priapulimorpha.o__Priapulimorphida Marine 
k__Eukaryota.p__Rotifera.c__Monogononta.o__Flosculariacea Marine 
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Chapter 6: Tracking trends in the 

implementation of jellyfish in 30+ years 

of Ecopath with Ecosim models 
 

6.1 Abstract 
 

It has been nearly a decade since Pauly et al. reviewed the role of jellyfish in Ecopath 

with Ecosim models and concluded the manner jellyfish are incorporated was often 
poor. Better integration of jellyfish into fisheries research, with careful consideration of 

their unique biology, was advocated. Since this publication, both the fields of 

ecosystem modelling and jellyfish ecology have made significant progress. Here, we 

revisit the issue of jellyfish in Ecopath with Ecosim models to assess how the 
implementation of jellyfish in models has changed over the past decade and once 

again,highlight future areas for improvement.  All  Ecopath with Ecosim (EwE) models 

on the Ecobase repository were assessed to see how jellyfish were typically 
implemented in models. A greater percentage of models included jellyfish over time, 

however this was usually as a single functional group which may poorly reflect the 

functional diversity present within gelatinous zooplankton. Jellyfish were often highly 
linked to the wider ecosystem, with many predators, and prey, included in models. 

However, although the input parameters production, consumption, and biomass 

displayed a normal distribution across all models, ecotrophic efficiency values varied 
widely from model to model.  Ecotrophic efficiency, a measure of how an organism is 

used by other species in an ecosystem, was frequently at very low values: indicative 

that jellyfish are still sometimes perceived to be under-utilised components of the 
ecosystem. When linkages between jellyfish literature, and EwE models were 

visualised a  loose network structure between models was revealed, suggesting that 

although values were sometimes shared or borrowed, models were usually 
parameterised using independent data. Moving forward greater care should be taken 

to define what types of jellyfish are included in functional groups as ctenophores, 

cnidarians, and chordates play different functional roles. Additionally, early life stages 
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should be incorporated as multi-stanza groups as research becomes available to more 

accurately depict jellyfishes’ role in marine ecosystems.  
 

6.2 Introduction  
Keeping marine ecosystems resilient and healthy is a conservation, economic 

development, and food security goal. The sustainability of fish stocks is not only 

dependant on careful management of catches, but also factors such as the 
preservation of food web linkages that underpin fish stocks and the ecologically-

compatible implementation of other human activities in the marine environment[1]. An 

ecosystem approach to fisheries management (EAFM) incorporates many of these 

considerations, and is considered to be essential for the future health of fish stocks. 
Calls for an EAFM are widespread through academic and policy literature[2–4], and 

EAFM is a statutory requirement under the EU Common Fisheries Policy[5].  

 
Whole-ecosystem models can play an important role towards achieving EAFM by 

providing a framework to quantify interspecific interactions. While they can be used to 

make predictions about biomass, they lack the statistical robustness and predictive 
power of single species models[6] and are best used as a complimentary approach if 

biomass predictions are desired. However, whole ecosystem models are uniquely 

well-suited to explore other facets of the ecosystem functions including modelling the 
uptake and spread of pollutants[7], exploring alternative ecosystem states, 

understanding the network structure of the ecosystem or the indirect consequences 

of exploitation [8]. Additionally, whole ecosystem models can also be used to identify 
knowledge gaps[8]; If a species cannot be well-parameterised in a model, this can be 

indicative of a uncertainty in fundamental aspects of their ecology.  

 
Although a range of marine ecosystem modelling approaches have been developed, 

such as Gadget[9] and Netwrk[10], Ecopath with Ecosim[11] (EwE) remains the most 

pervasive in the literature[12]. Ecopath with Ecosim is a biomass compartment model 
which is comprised of three core elements. Ecopath is a static mass-balance model 

originally developed by Polvina[13]. Ecosim, developed by Walters et al.[14], replaces 

the linear equations in Ecopath with differential equations allowing dynamic temporal 
simulations to take place. Ecospace, the most recent addition, added the ability to run 
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Ecosim simulations in a grid enabling spatial analysis[15]. All EwE models must have a 

balanced Ecopath model as a starting condition and are parameterised by ensuring 

that equilibrium conditions, known as mass balance, are met for each group (species, 
or functional group) in the following equation[16]: 
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Where B is the biomass (t km-2), P/B is annual production to biomass ratio, Q/B is the 

annual consumption ratio, and EE is the ecotrophic efficiency: a parameter that shows 

the proportion of a group that is consumed by other species in the ecosystem. DC, 

diet composition, is the percentage that prey . accounts for in the diet of consumer	0. 
," is an optional parameter showing removal of group . by fisheries. To achieve mass-
balance, at least four parameters out of B, P/B, Q/B, EE and DC must be entered; 
EwE can calculate one unknown model parameter.  

 

Jellyfish (cnidarians, ctenophores, and pelagic tunicates) have a notoriously poorly-
understood trophic ecology[17]. To synthesise the state of the field and illustrate best 

practice for incorporating jellyfish in ecosystem models Pauly et al.[18] reviewed 

predators and prey of jellyfish in the online databases FishBase and SeaLifeBase, and 
also investigated the role of jellyfish in 23 EwE models. Jellyfish biomass was greater 

in disturbed ecosystems, this was thought to happen as overfishing allowed jellyfish 

populations to expand by feeding upon zooplankton which would otherwise be 
consumed by fish. A lot of variation in the parameterisation of jellyfish was present in 

the EwE models: in some models jellyfish were treated as trophic dead-ends, while in 

others they were an integral part of the ecosystem. Equally, in some ecosystems 

(Lancaster Sound and Chesapeake Bay) jellyfish exerted a large influence on other 
biota and appeared to be keystone species, however in many other systems this did 

not appear to be the case. It is now approaching a decade since this review[18] took 

place and our knowledge of jellyfish ecology, the tools available for analysis, and the 
number of published EwE models containing jellyfish have expanded considerably. It 

is worth investigating if the recommendations have been incorporated into common 

practice, and how the state of the field has changed.  
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Ecobase, a database of more than 450 EwE models and meta-data assembled by 

Colléter et al.[19] provides the basis for this study. The aim is to characterise how 

jellyfish are incorporated into EwE models, and the task can be broken down into the 
following objectives: a) quantify the prevalence of jellyfish in models (does the broader 

community think they play a significantly large role in models to warrant inclusion?), b) 

assess the connectedness of jellyfish with the rest of the ecosystem (are jellyfish always 
treated as trophic dead ends? Is this trend changing as more evidence about their role 

in the ecosystem is gathered?), c) determine the influence of key models (have 

parameters been copied between models? Are key publications strongly influencing 
the field and if so, what is the rigour of ‘keystone’ literature?), d) check if estimates of 

key parameters reflect the state of jellyfish ecology, and e) conduct an in-depth 

assessment of the jellyfish group incorporated in the Irish Sea EwE model[20] and offer 
suggestions on how to best-incorporate novel findings into the modelling framework.  
 

6.3 Methods  
 

6.3.1 Data collection 

The primary literature (technical reports, publications, dissertations and theses) and 

EwE models detailed in Ecobase were first examined to ascertain whether the model 
included a jellyfish group. The broadest definition of jellyfish was employed, so any 

model containing pelagic tunicates, ctenophore, cnidarians, or some combination of 

all three was included in the analysis. In some instances, the primary literature could 

not be accessed in which case the model was assessed for jellyfish by accessing the 
Ecobase database using R[21] or downloading and inspecting the model directly in 

EwE.  

 
Models that contained jellyfish explicitly were categorised as a ‘plankton that included 

jellyfish’ for those that contained jellyfish in the model but only as part of a broad 

zooplankton group, or ‘jellyfish groups’ for those that had jellyfish in their own group 
(jellies, gelatinous zooplankton or similar) or if they amounted for more than 75% of a 

zooplankton-subgroup such as carnivorous zooplankton. For all groups the 

geographic location of the model was extracted from Ecobase using R if possible, or 
georeferenced in QGIS 3.2[22] using the map section of ‘Discovery Tools’ on the 
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Ecobase website (http://ecobase.ecopath.org/). For models with explicit ‘jellyfish 

groups’, the Biomass (B); consumption to biomass ratio (Q/B); production to biomass 

ratio (P/B) and ecotrophic efficiency (EE) were extracted. In addition, the input 
parameter that was estimated by EwE via mass-balance, prey items of jellyfish, 

predators of jellyfish, and the literature cited for parameterising the ‘jellyfish group’ were 

recorded for each jellyfish group within a model. In some instances, models had 
multiple jellyfish groups, or the same model was parameterised for different years: in 

these instances, all jellyfish groups and years were recorded.  
 

6.3.2 Data visualisation and statistical analysis  

Comparing EE, P/B, Q/B, and B values for jellyfish between models proved to be 
challenging. As previously mentioned some models contained multiple groups of 

jellyfish or had the model parameterised for different years. Many models with ‘multiple’ 

EwE implementations for different years were created before the advent of Ecosim, 
and were used to conduct crude temporal analysis. To treat these models in a mode 

more analogous with contemporary models (that use a single Ecopath model) we used 

mean values of the input parameters across different time periods to give a single set 
of values for each jellyfish group. For models with multiple jellyfish groups, all jellyfish 

groups were included for analysis.  

 
The possible link between EE and publication date (it was hypothesised that EE would 

increase over time, as jellyfish were considered a more important component of the 

ecosystem) was tested using a linear model. To assess the relative influence of models 
within the literature, EwE models and the corresponding cited literature, were used as 

nodes in a directed model in the R package ‘network’[23]. Groups that jellyfish preyed 

upon, and groups that fed on jellyfish were visualised using ‘metacoder’[24]. Since 

subtly different terminology (e.g. ‘macrozooplankton’ and ‘zooplankton’) was used to 
describe similar taxonomic groups, some functional groups were combined as detailed 

in supplementary table 6.1 and supplementary table 6.2.   
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6.4 Results 
 

In total 329 models were examined, of these 211 contained no jellyfish, 32 included 

jellyfish as part of a zooplankton group, and 86 models included jellyfish explicitly as 

their own separate group(s). The inclusion of jellyfish in Ewe models has increased over 
time and is characterised by three periods: 1984-2000, 2000-2007, and 2007-present 

(Figure 6.1). Early models rarely featured jellyfish, but by the year 2000, six EwE models 

had explicitly featured jellyfish and total models featuring jellyfish in any way only 
accounted for 15.4% of models. From 2000-2007 a rapid increase in the inclusion of 

jellyfish then occurred, however there was an approximate 50:50 split between models 

including jellyfish as part of a zooplankton group and those where jellyfish were 
included as an explicit group. Starting in 2007, including jellyfish in EwE models as 

their own functional group gained traction. During this time only four models included 

jellyfish as part of a wider plankton group, in contrast to 56 models that featured jellyfish 
as their own group. Models that contain jellyfish explicitly now account for 35.8% 

models, of which 72.8% feature them as their own functional group. Jellyfish are 

represented in a wide variety of ecosystem models around the world, although there 
is a concentration of research in North America and Europe, with fewer models seen 

in the other continents (figure 6.2).  

 
The network analysis of citations used to parameterise jellyfish components in the EwE 

models revealed that none of the published models are terribly influential with the most 

influential model only used to parameterise two other models (figure 6.3). Cited 
literature tells a similar story, six manuscripts were used to parameterise more than 

three models. Models for the most part used locally-derived independent sources of 

data.   
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Figure 6.1. The accumulation of EwE models through time. Grey are EwE models with no jellyfish 
functional group included at all. Light red is models with jellyfish as part of a wider zooplankton group. 
Dark red, are those models with jellyfish included as their own group. 
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Figure 6.2. The global distribution of EwE models containing jellyfish. Groups containing jellyfish as part of a broad ‘zooplankton’ group are denoted by purple 

squares. Models containing jellyfish as explicit functional groups are shown with red circles. Models not containing jellyfish are not shown.  
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Figure 6.3. A directed citation network of EwE jellyfish models (gold nodes) and cited literature (grey nodes). The network only contains models with citations to 

other models or literature, models that used no other literature in parameterisation of the jellyfish group are not included. Additionally, only citations within models 

are included, references between literature are absent. The size of the nodes corresponds with the number of direct citations. Influential nodes, with more than 3 

citations are labelled. 
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The B, Q/B, P/B, and EE for models containing jellyfish groups are shown in figure 6.4, 

full details can be found in supplementary table 6.3. Section a. shows estimates of 

biomass used. Most estimates cluster between 0.1 and 10 tonnes km-2 (although note 
the log scale). Two clear outliers can be seen at approximately 300 tonnes km-2: these 

studies[25,26] both model the outbreak of Mnemiopsis leidyi blooms in the Black Sea 

which was responsible for fishery crashes and extirpation of some zooplankton and 
fish species[27] so extreme values are not unexpected. Values listed here are broadly 

consistent with those reported in the Jellyfish Database Initiative[28] (JeDI), although a 

true comparison is difficult as biomass is reported per volume in the database as 
opposed to area metrics used in EwE.  

 

Section b. and c. (of figure 4) show the Q/B and P/B ratio respectively. A unimodal 
distribution of data is present in both measures, although there are outliers in Q/B ratio. 

It is unclear why the Q/B is set so high for the most extreme outlier[29]. The model is 

the Benguela upwelling, a marine ecosystem completely dominated by jellyfish after 
fishery collapse[30].The other outlier Q/B values belong to models of the Gulf of Maine, 

Mid-Atlantic Bight, Southern New England, and Georges Bank. The associated 

technical report[31] for all these models is unavailable so again it is unclear why such 
high values were chosen. P/B values are more tightly clustered, with no obvious 

outliers.  

 
Section d (of figure 4), shows the distribution of EE values. Unlike, B, P/B, and Q/B a 

unimodal distribution is not present, instead EE has a roughly bimodal distribution with 

no obvious consensus and peaks at the 0 bin and just above the 0.75 bin. EE showed 
(figure 6.4) no significant trend through time (p=0.88) (Figure 6.5).  
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Figure 6.4. The a. Biomass, b. Q/B (consumption: biomass) ratio, c. P/B (production: biomass) ratio, 
and d. EE (ecotrophic efficiency) of jellyfish groups included in EwE models. 
 

 
Figure 6.5. The ecotrophic efficiency reported in jellyfish groups over time.  
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Ecotrophic efficiency (EE) was the input parameter most frequently estimated by EwE 

(figure 6.6) through mass-balance. Figure 6.7 shows EE values when it was estimated, 

and when it was one of the input parameters. Since the data are not properly 
independent, nor normally distributed they did not meet the assumptions of a t-test or 

Mann-Whitney. However, it appears that the 0 bin is mainly populated by user-input 

values, while the 0.75 bin is largely comprised of EwE estimated values. 
 

 
Figure 6.6. Estimated parameters in jellyfish groups (n=122). 
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Figure 6.7. Distribution of EE values when a. it is estimated by the EwE software via mass-balance, 

and b. when it is directly input into the model. 

 

The reported diet of jellyfish in models is shown in figure 6.8. Figure 6.9 details 
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Figure 6.8. Reported prey items of jellyfish. Large nodes, and red hues, indicate prey is frequently 
reported in models. Smaller nodes, and tones close to grey, show that prey are infrequently listed in 
models. Note that the hierarchy is split into functional groups, to match the nomenclature found in 
models, rather than taxonomic classifications.  
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Figure 6.9. Predators of jellyfish. Large nodes, and red hues, indicate a predator is frequently reported 
in models. Smaller nodes, and tones close to grey, show that the predators are infrequently listed in 
models. Note that the hierarchy is split into functional groups, to match the nomenclature found in 
models, rather than taxonomic classifications.  
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6.5 Discussion  
 

Three hundred and twenty nine EwE models were surveyed, of these 118 contained 

jellyfish, including 86 where jellyfish were treated as their own functional group. A broad 
geographic distribution of modelled systems was apparent, although biases towards 

North America and Europe where present. Taken together, a loose network structure 

was present, although ‘keystone’ literature, where a single paper or model 
disproportionately influences the state of the field, was not present. Values for P/B, 

Q/B, and B had normal distributions, while EE showed a very noisy bimodal 

distribution. User inputted EE values appeared to be lower than those estimated by 

the EwE software via ‘mass-balance’, although the nature of the data precluded formal 
statistical evaluation. A wide array of prey was indicated, mainly plankton and forage 

fish. Predators of jellyfish were extremely varied, although typically reflected 

interspecific relationships found elsewhere in the literature[32–35].  
 

6.5.1 Prevalence of jellyfish in models 

  

Most models do not include jellyfish (Figure 6.1). It is entirely appropriate that not every 

EwE model contain jellyfish: the vast majority of species are marine, and freshwater 
varieties are rare (although they do exist[37]) so freshwater models are unlikely to 

contain them. Additionally, models are created for many reasons and it is possible that 

jellyfish are relatively unimportant to the processes being explored in the model. 
However, these caveats aside, the importance of jellyfish in ecosystems is still not fully 

appreciated in the modelling community. Fortunately, this situation appears to be most 

prevalent in older models and trends are changing: an increase in the absolute, and 
relative, inclusion of jellyfish in EwE models was identified in figure 6.1. Increased 

representation in models may be influenced by two factors. First, interest and research 

in jellyfish has increased in recent years[38] in part due to the frequency with which 
observed blooms interfere with human enterprise and cause economic losses[39]. 

Second, the Pauly et al. 2009 publication Jellyfish in ecosystems, online databases, 

and ecosystem models[18] may have further accelerated uptake: the paper explicitly 
states that jellyfish are not being incorporated into EwE models, highlights the 

importance of jellyfish, and then summarises parameters used in models, making the 
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inclusion of jellyfish as an explicit group easier. Figure 6.3 supports this idea: as this 

particular review paper is the joint most-influential manuscript in the literature in terms 

of direct citations, however it remains the case that most models incorporating jellyfish 
primarily cite locally-derived literature. 

 

6.5.2 Input parameters 

Most of the parameters used in models, Q/B, P/B, and B, displayed unimodal 

distributions across all studies. However, it is unclear if the central tendency is an 
accurate portrayal of jellyfish biology and ecology. EwE was principally developed with 

the physiology and development of fish functional groups in mind, where energetic 

content of biomass is assumed to be the same across all functional groups[6]. 

However, jellyfish have much lower energy density than is typical for fish[40]. Modellers 
face a decision: should biomass be adjusted to represent relative energy flows or 

remain closer to values seen in the ecosystem? Further complications arise from 

temporal variation of jellyfish biomass, caused in part by jellyfishes’ meta-genetic life 
cycle, where many (but not all) species spend time in the plankton, then in the benthos 

as small, sessile polyps until conditions favour strobilation and production of 

medusae[41]. No model in Ecobase has used a ‘multi-stanza’ approach, where 
different ontogenetic life stages are represented by linked groups within the model 

(such that population growth of adult groups is dependent on the success of juvenile 

life stages)[42], to simulate the functional differences seen during jellyfish development. 
Doing so may allow B, Q/B, and P/B values to be optimised to better reflect jellyfish 

ecology. If data on early life stages is difficult to obtain, it may be best to use a sine 

function in EwE’s forcing mode to oscillate jellyfish populations through the year to 
produce more biologically realistic estimates.  
 

6.5.3 Jellyfish as trophic dead-ends 

Ecotrophic efficiency, the measure of what percentage of a functional group is utilised 

in the ecosystem is a particularly interesting as it is a measure of the trophic 
connectedness of a functional group. We anticipated that EE would reflect the state of 

the literature: older models would feature jellyfish as trophic deadends, while newer 

models would incorporate evidence suggesting jellyfish are more tightly integrated into 
wider food-webs than once thought and therefore generally have higher EE values.  

Unlike the other parameters which clustered around central values Figure 6.4, section 
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d. shows EE covers all possible values, with a rough bi-modal distribution, indicative 

of researchers not really knowing what an appropriate value might look like. To assess 

if this was an artefact of summarising many years of data, or genuine variability within 
the literature EE was plotted against publication year. Figure 6.5 illustrates the lack of 

a significant trend (p=0.88). Figure 6.6 shows which input parameters were estimated 

by EwE mass-balance; it was thought that perhaps user inputted values might better 
reflect current beliefs. However, figure 6.7 suggests this was not the case. Both sets 

of data were bi-modal, and had instances where featured groups originated from the 

same model and therefore did not meet the assumptions required for statistical testing. 
However, user-inputted data features the zero bin as most frequent EE suggesting 

many modellers were treating jellyfish as trophic dead-ends. This in-part reflects the 

EwE guidance for selecting values of EE. EE is very difficult to independently estimate 
and very few estimates exist. Low values are often associated with organisms that 

simply die-off following blooms (less than 0.5)[16]. However, even taking this guidance 

into account the values ascribed to jellyfish seem extreme. EE is very often used by 
researchers constructing an EwE model as a diagnostic index to determine whether a 

model is properly balanced. Most researchers are simply content, during the balancing 

process, if they can get the EEs of all groups to be below 1, without worrying too much 
about whether or not this makes sense physiologically. Therefore it is doubtful whether 

any ecologically useful insights can be inferred from the observed EE values that end 

up being used for jellyfish in many models. 
 

Changing EE to match the current state of jellyfish ecology should be a priority as 

poorly optimised models will give erroneous predictions. It can be exceedingly difficult 
to measure EE in the ‘wild’. Some authors such as Van Rooij et al.[43] have attempted 

this using exhaustive analysis of observational data, but this is not commonplace. 

Model specific EE for jellyfish could be more easily achieved either using quantitative 
diet assessment techniques such as stable isotope analysis[34] or ensuring the quality 

of other input parameters is sufficient to generate a biologically plausible EE.  

 

6.5.4 The trophic ecology of jellyfish 

Many species (or functional groups) included in models were consumed by jellyfish 

(figure 6.8). The reported diet of jellyfish contained few surprises, zooplankton and 
other jellyfish (frequent prey items described in the literature[44–46]) were common 
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prey items in models. Fish, particularly forage fish, were frequently listed as a prey item. 

However, in many instance it was unclear if this corresponded to ichthyoplankton and 

juvenile stages, or fully grown fish. Crabs appear like unlikely prey items: the mechanics 
of how a pelagic soft-bodied predator would eat clawed, hard-bodied, benthic prey 

are difficult to imagine. Three models included crabs as prey: Aydin et al[47], Lee et 

al.[48], and Trites et al.[49]. The cited literature for the Trites et al. model could not be 
accessed (old and out of print books). The Aydin and Lee models contain no 

references for prey items, and both list jellyfish as having very rich diets, 24 and 27 

dietary items respectively, with very low frequency of predation listed. Although only 
the authors could say, these dietary items may have been included to help balance the 

model, rather than reflecting genuine inter-specific link, or it could reflect crab larvae 

that exist as part of the zooplankton. Phytoplankton was an unexpected prey item as 
cnidarian jellyfish and ctenophores are predators and are not normally associated with 

phytoplankton (but see[50]). Phytoplankton is consumed by herbivorous salps and 

tunicates[51,52], however even when only cnidarian jellyfish were included, 
phytoplankton was still observed as a prey item. The inclusion of phytoplankton can 

be attributed to a variety of factors. In one instance[53] it was a result of parameterising 

a model using a value from another model, the model which was cited[54] used a 
reference which could not be accessed. Akoglu[55] et al. cited two references, one 

which contained no reference to phytoplankton and another, a ctenophore paper, 

which was not accessible. Aydin et al.[56] provided no references. It appears 
Mackinson et al.[57] included phytoplankton to achieve Ecopath model balance (i.e. to 

remove excessive predation pressure on other groups and hence reduce their 

estimated EE values). Avoiding the use of broad jellyfish groups has been repeatedly 
advocated[18,58], in part, to avoid situations such as this where questionable 

assumptions about the basic ecology of jellyfish are made. To improve clarity on 

interspecific interactions moving forward, if a broad functional group must be used it 
would be best to carefully define exactly what species are included and which 

references correspond to which input parameters.  

 

A wide variety of species predated jellyfish in models (figure 6.9). Many of the listed 
functional groups have been linked with jellyfish predation elsewhere in the literature 

including fish[34,59,60], sea birds[33,61] and penguins[62,63], turtles[64], other 

jellyfish[46], and benthic invertebrates[65–67]. Interestingly, many groups that jellyfish 
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feed upon, for example forage fish, jellyfish, and zooplankton, are themselves 

predators of jellyfish. This suggests that the ontogenetic dietary reversals, discussed 

in chapter three may be relatively common for jellyfish. However, with no model having 
multi-stanza jellyfish groups it is impossible to say if this is the mechanism responsible.  

 

6.5.5 Citation network  

Citations, used inappropriately, can propagate bias and erroneous findings throughout 

the literature[68]. Previously, Sanz-Martin et al. used network analysis to demonstrate 
that the perception that jellyfish populations were increasing was mainly a result of 

inappropriate citation practices throughout jellyfish literature[69]. Figure 6.3 shows a 

citation network of Ecopath models containing jellyfish groups. A loose network is 

formed, however the references used for parameterising jellyfish groups appear to be 
largely independent from one another. Eight four point seven % of nodes are cited only 

once, 11.3% cited twice. Papers with more than two citations are labelled: four papers 

were cited three times, and only Pauly et al[18] and Malej’s[70] papers were cited four 
times.  

 

The citations for Malej (1989) appear appropriate: the original study focused on Pelagia 
noctiluca in the Adriatic Sea. Barausse et al[53]., Coll et al.[71], and Libralato et al.[72] 

were all modelling the Adriatic Sea so the shared citation is unsurprising. The other 

model by Coll et al.[71] is in the Catalan Sea, but features the same jellyfish as the 
original study. Data from the Pauly et al.[18] manuscript was used to verify that a P/B 

value from a local source was biologically plausible[73], assign diet based on other 

studies[74], assign trophic level[75], and in one instance was used to borrow values 
from a model[71] in the same ecosystem. 

 

Investigating the studies with three citations[76–79] revealed more questionable use of 
published data. Values were often borrowed or derived from very different ecosystems. 

For example a jellyfish group on the Falkland Islands[80] was parameterised with data 

obtained from Hong Kong harbour[78]. Similarly, jellyfish data from Alaska[77] was 
used to parameterise a jellyfish group in the Gulf of Carpentaria, Australia. We did not 

assess how frequently non-local data, or data derived from different species was used 

to parameterise jellyfish in all models. Fortunately, the constructed citation network 
suggests that only a loose network exists so questionable parametrisation of jellyfish 
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does not proliferate throughout the entire field, but instead remains in the original 

model for the most part. However, since direct references of models were used in 

network construction, (citations between references were not included) this may 
underestimate the extent to which knowledge is shared within the network. Due 

diligence to assess the quality of the original source of the data from a model should 

be undertaken, and results interpreted appropriately in-light of the quality and 
relevance of the original data.  
 

6.5.6 Applying recommendations to Irish Sea model 

Building upon data summarised in this chapter, and using data generated for this 

thesis it should be possible in improve the quality of the gelatinous zooplankton group 
in the Irish Sea EwE model[20]. The current biomass estimate of 0.605 tonnes km-2 for 

jellyfish comes from an estimate derived for the English Channel. However, sufficiently 

little bibliographic data is provided that the original document cannot be found. 
Assessment is impossible, and it is unclear the quality of the original biomass estimate 

of the first model. The Q/B estimate is based on values from the British Columbia shelf 

model, although the same reference as the ‘English Channel’ model is given within the 
technical report. Assessing the validity of the estimate is therefore challenging, as the 

Q/B does not match the Q/B associated with other British Columbia EwE 

models[81,82]. The diet composition of jellyfish is assumed to be entirely zooplankton 
and was derived from the aforementioned inaccessible English Channel model . 

Ecotrophic efficiency is set at 0.99, however no justification is given. This value seems 

too high: this value would be more indicative of an organism at the bottom of the food 
web, like phytoplankton. It seems improbable that 99% of the jellyfish biomass will be 

consumed within the ecosystem, especially as when the model was produced very 

few jellyfish predators were known in the system. The production: biomass ratio (P/B) 

was estimated by the model.  
Table 6.1. Suggested input parameters for gelatinous zooplankton in the Irish Sea EwE model 
 Name B Q/B P/B EE 

Current Values Gelatinous zooplankton 0.605 24.99 7.5 0.99 

Suggested values Scyphozoan jellyfish 5.65 24.99 7.5 - 

 

Ideally scyphozoan jellyfish and ctenophores would be separated into different 
functional groups. Cnidarian jellyfish would be split into a multi-stanza group to reflect 
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different life history stages of polyps, ephyrae, and medusae. Parameterising ‘multi-

stanza’ groups requires Von Bertalanffy Growth functions (VGBF) to model the 

transition from one stanza to the next. VGBFs for jellyfish are available[83], however 
data required to better parameterise the other inputs for the functional groups with this 

level of detail are currently unavailable. Using a simplified approach, using currently 

available data, the Irish Sea biomass (Q/B) can be derived: Lynam et al. landed a mean 
value of 555 g of scyphozoan jellyfish per 4,113 m3 of the Irish Sea sampled over 16 

years[84]. Assuming the Irish Sea has a volume of 2,430 km3 [85], this would suggest 

the Irish Sea has 32,899.3 tonnes of jellyfish. Using a surface area of 58,000 km2 [20], 
a biomass of 5.65 tonnes km-2 cnidarian jellyfish can be derived. This suggests the 

biomass estimate for jellyfish in the existing model[20] is a considerable underestimate 

of the real value.  
 

Deriving values for consumption and production requires a knowledge of the jellyfish 

composition in the Irish Sea. In the Lynam et al. study Aurelia aurita was the most-
caught jellyfish in the Irish Sea, accounting for 81.33% catch by weight, 16.66% was 

accounted for by Cyanea spp.[84]. Given, over 80% of jellyfish by weight are estimated 

to be Aurelia aurita, and since we are unaware of easily obtainable Cyanea spp. 
estimates, consumption and production, could be well approximated by a well-

supported Aurelia aurita estimate from another model: Daskalov et al.[86] derived a 

Q/B and P/B of 29.2 and 10.95 respectively using four peer-reviewed Aurelia aurita 
studies. These values were derived for the Black Sea, a considerably warmer sea, so 

higher metabolic rates could be expected. We would expect the Irish Sea values be a 

bit lower. The existing values in the Irish Sea model reflect this, and are a good starting 
place for the group, although deriving new values from fresh data would yield more 

accurate estimates. Ecotrophic efficiency could be estimated by EwE.  

 
Diet studies of jellyfish predators now exist for the Irish Sea[60]: therefore the functional 

groups that correspond to mackerel, herring, whiting, grey gurnard, dover sole, lesser-

spotted dogfish, sprat, dragonet, poor cod, dab, and squid should be updated to 

reflect predator status. The diet of jellyfish seems broadly appropriate, and with no Irish 
Sea study of jellyfish diet, the only suggested amendment would be to include 

ichthyoplankton as these are common prey item of jellyfish[17] and it is difficult to 

envisage why this would not also be the case in the Irish Sea.  
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6.6 Conclusion 
 

A detailed look at jellyfish groups in EwE models reveals a mixed picture. They are 
recognised as an important part of marine ecosystems around the world, and feature 

in a growing array of EwE models. Additionally, analysis suggests that while some 

network structure is present the models are parameterised somewhat independently 

and the spread of blanket values is limited. Yet, contrary to calls in the literature, jellyfish 
are often represented as a single functional group and in some of the examined cases 

the group has been parameterised in a questionable manner. Additionally, in no 

instance were the functionally diverse life stages of cnidarian jellyfish incorporated into 
a model. However, many of these issues can be attributed to lack of available data. 

Entire regions lack any ecosystem models incorporating jellyfish. Ongoing monitoring 

of wild populations of medusae is required to fill in data gaps, and further reduce 
uncertainty. Furthermore, future research is sorely needed to characterise the basic 

ecology and functional role of early jellyfish life stages in the ecosystem.  
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6.8 Supplementary information  
Supplementary table 6.1 Taxonomic groups listed as jellyfish prey in the models (spellings are as they 
appear in models), and the aggregated groups they correspond to in figure 6.8  

Group in model Aggregated group 
zooplankton diet;plankton;zooplankton 
jellyfish diet;plankton;jellyfish 
phytoplankton diet;plankton;phytoplankton 
reef-associated fish diet;fish;reef-fish 
microzooplankton diet;plankton;zooplankton 
mesozooplankton diet;plankton;zooplankton 
pico-nanophytoplankton diet;plankton;phytoplankton 
copepods diet;plankton;zooplankton;copepods 
carnivorous jellyfish diet;plankton;jellyfish;carnivorous jellyfish 
benthic producer diet;benthic producers 
_Chaetognatha diet;invertebrates;worms;arrow worms 
calanoids diet;plankton;zooplankton;copepods 
T.lepturus diet;fish;pelagic fish;forage fish;perciformes 
small copepods diet;plankton;zooplankton;copepods 
Capelin diet;fish;pelagic fish;osmeriformes 
macrozooplankton diet;plankton;zooplankton 
near omni-zooplankton diet;plankton;zooplankton 
large phytoplankton diet;plankton;phytoplankton 
krill diet;plankton;zooplankton;euphausiids;krill 
euphausiids diet;plankton;zooplankton;euphausiids 
micro-zooplankton diet;plankton;zooplankton 
juvenile pollock diet;fish;pelagic fish;gadiformes 
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juvenile butterfish diet;fish;pelagic fish;forage fish;scombriformes 
herbivorous zooplanktons diet;plankton;zooplankton 
zooplankton diet;plankton;zooplankton 
small jellies diet;plankton;jellyfish 
marine zooplankton diet;plankton;zooplankton 
carnivorous zooplankton diet;plankton;zooplankton 
pollock diet;fish;pelagic fish;gadiformes 
bay anchovy diet;fish;pelagic fish;forage fish;clupeiformes 
sharks diet;fish;elasmobranchii;sharks 
detritus diet;detritus 
carnivorous jellies diet;plankton;jellyfish;carnivorous jellyfish 
jacks diet;fish;pelagic fish;forage fish;perciformes 
large zooplankton diet;plankton;zooplankton 
large herbivorous zooplankton diet;plankton;zooplankton 
small herbivorous zooplankton diet;plankton;zooplankton 
gelatinous plankton diet;plankton;jellyfish 
gelatinous zooplankton diet;plankton;jellyfish 
macro-zooplankton diet;plankton;zooplankton 
salps diet;plankton;jellyfish;tunicates 
small zooplankton diet;plankton;zooplankton 
meiobenthos diet;invertebrates;meiobenthos 
ciliates diet;plankton;jellyfish;carnivorous jellyfish 
 littoral forage fish diet;fish;pelagic fish; forage fish 
microphytoplankton diet;plankton;phytoplankton 
detritus diet;detritus 
euphausiid(larvae) diet;plankton;zooplankton;euphaussids 
cyclopoids diet;plankton;zooplankton;copepods 
S.niphonius diet;fish;pelagic fish;forage fish;scombriformes 
other mesozooplankton diet;plankton;zooplankton 
small pelagic fish diet;fish;pelagic fish 
bacteria diet;microbial heterotrophs;bacteria 
omni-zooplankton diet;plankton;zooplankton 
micro and mesozooplankton diet;plankton;zooplankton 
small phytoplankton diet;plankton;phytoplankton 
juvenile herring diet;fish;pelagic fish;forage fish;clupeiformes 
juvenile large pelagic diet;fish;pelagic fish 
carnivorous zooplanktons diet;plankton;zooplankton 
Ichthyoplankton diet;plankton;zooplankton; Ichthyoplankton 
appendicularians diet;plankton;jellyfish;tunicates 
detritivorous polychaeta diet;invertebrates;worms;bristle worms 
estuarine zooplankton diet;plankton;zooplankton 
other zooplankton diet;plankton;zooplankton 
herbivorous zooplankton diet;plankton;zooplankton 
 P.cod diet;fish;pelagic fish;gadiformes 
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decapterus maruadsi diet;fish;pelagic fish;forage fish;perciformes 
shrimps diet;invertebrates;shrimps 
shallow demersals diet;fish;demersal fish 
pacific cod diet;fish;pelagic fish;gadiformes 
micro-zooplankton'cryptophytes diet;plankton;zooplankton 
worms diet;invertebrates;worms 
 ctenophores diet;plankton;jellyfish;carnivorous jellyfish;ctenophores 
small gelatinous zooplankton diet;plankton;jellyfish 
large pelagic fishes diet;fish;pelagic fish 
harpacticoids diet;plankton;zooplankton;copepods 
benthic producers diet;benthic producers 
Stromateoidae diet;fish;pelagic fish;forage fish;scombriformes 
near herbi-zooplankton diet;plankton;zooplankton 
scyphomedusae diet;plankton;jellyfish;carnivorous jellyfish;cnidarians 
scyphomeduase diet;plankton;jellyfish;carnivorous jellyfish;cnidarians 
pelagic detritus diet;detritus 
krill larvae diet;plankton;zooplankton;euphaussids;krill 
squids diet;invertebrates;cephalopods;squids 
juvenile medium pelagic diet;fish;pelagic fish 
microbial heterotrophs diet;microbial heterotrophs 
noctituc diet;plankton;zooplankton 
mollusca diet;invertebrates;molluscs 
marine ichthyoplankton diet;plankton;zooplankton;icthyoplankton 
marine ichthyoplnakon diet;plankton;zooplankton;icthyoplankton 
pelagic microbes diet;microbial heterotrophs 
P.halibut diet;fish;demersal fish;pleuronectiformes 
ctenophores diet;plankton;jellyfish;carnivorous jellyfish;ctenophores 
trichiurus haumela diet;fish;pelagic fish;forage fish;perciformes 
chaetognaths diet;invertebrates;worms;bristle worms 
pacific halbut diet;fish;demersal fish;pleuronectiformes 
small zooplankon diet;plankton;zooplankton 
omniovorus zooplankton diet;plankton;zooplankton 
pleurobachia pileus diet;plankton;jellyfish;carnivorous jellyfish;ctenophores 
 mesozooplankton diet;plankton;zooplankton 
small jellyfish diet;plankton;jellyfish 
small pelagic fishes diet;fish;pelagic fish 
copepodites diet;plankton;zooplankton;copepods 
E.japonicus diet;fish;pelagic fish;forage fish;clupeiformes 
 macrobenthos diet;invertebrates;macrobenthos 
microflora diet;plankton;phytoplankton 
herbi-zooplankton diet;plankton;zooplankton 
chaetognaths diet;invertebrates;worms;bristle worms 
carniv-zoops diet;plankton;zooplankton 
bathylagidae diet;fish;deep sea fish;argentiniformes 
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juvenile small pelagic diet;fish;pelagic fish 
peneida&caridae diet;invertebrates;shrimps 
marine microbial heterotrophs diet;microbial heterotrophs 
Arrowtooth flounder diet;fish;demersal fish;pleuronectiformes 
psenopsis anomala diet;fish;pelagic fish;forage fish;clupeiformes 
greenland turbot diet;fish;demersal fish;pleuronectiformes 
diatoms diet;plankton;phytoplankton 
Sagitta setosa diet;invertebrates;worms;arrow worms 
euphasiid(eggs) diet;plankton;zooplankton;euphaussids 
larvae diet;plankton;zooplankton;icthyoplankton 
large copepods diet;plankton;zooplankton;copepods 
near phytoplankton diet;plankton;phytoplankton 
mesok  
other large zooplankton diet;plankton;zooplankton 
myctophidae diet;fish;deep sea fish;myctophiformes 
juvenile lare reef associated diet;fish;pelagic fish;forage fish 
water column detritus diet;detritus 
other detritus benthos diet;detritus 
estuarine phytoplankton diet;plankton;phytoplankton 
estuarine microbial heterotrophs diet;microbial heterotrophs 
Small flatfish diet;fish;demersal fish;pleuronectiformes 
upeneus bensasi diet;fish;pelagic fish;forage fish;perciformes 
crab larvae diet;invertebrates;crabs 
ice algae diet;plankton;phytoplankton 
cryptophytes diet;plankton;phytoplankton 
fish larvae diet;plankton;zooplankton;icthyoplankton 
fish eggs diet;plankton;zooplankton;icthyoplankton 
offshore phytoplankton diet;plankton;phytoplankton 
capeline capelin 
juvenile medium reef associated diet;fish;pelagic fish;forage fish 
echinodermata diet;invertebrates;echinoderms 
marine water-column detritus diet;detritus 
marine phytoplankton diet;plankton;phytoplankton 
skates diet;fish;elasmobranchii;skates 
other pelagics diet;fish;pelagic fish 
seaweeds diet;plankton;phytoplankton 
flathead sole diet;fish;demersal fish;pleuronectiformes 
other phytoplankton diet;plankton;phytoplankton 
water column detritus diet;detritus 
detritus diet;detritus 
detritus diet;detritus 
mespelagics diet;fish;pelagic fish 
mesopelagics diet;fish;pelagic fish 
sand lance diet;fish;demersal fish;trachiniformes 
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juvenile small reef associated diet;fish;pelagic fish;forage fish 
sculpins diet;fish;pelagic fish;scorpaeniformes 
yellowfin sole diet;fish;demersal fish;pleuronectiformes 
larval juvenile fish diet;plankton;zooplankton;icthyoplankton 
eulachon diet;fish;pelagic fish;osmeriformes 
juvenile large demersal  
detached estuarine macrophytes  
sablefish diet;fish;pelagic fish;scorpaeniformes 
small pelagics-commercial diet;fish;pelagic fish 
small pelagics-other diet;fish;pelagic fish 
small pelagics-squid diet;invertebrates;cephalopods;squids 
small pelagics-anadromous diet;fish;pelagic fish 
small pelagics-commerical diet;fish;pelagic fish 
managed forage diet;fish;pelagic fish; forage fish 
other pelagic smelt diet;fish;pelagic fish 
pelagic gelatinous filter feeder diet;plankton;jellyfish;tunicates 
juvenile small demersal  
juvenile large planktivore diet;fish;pelagic fish; forage fish 
juvenile small planktivore diet;fish;pelagic fish; forage fish 
juvenile anchovy diet;fish;pelagic fish;forage fish;clupeiformes 
juvenile deepwater fish diet;fish;deep sea fish 
juvenile macro algal browsing diet;fish;pelagic fish; forage fish 
juvenile eroding grazers diet;fish;reef-fish 
 juvenile scraping grazers diet;fish;reef-fish 
estuarine sediment detritus diet;detritus 
rockfish diet;fish;reef-fish 
macrouridae diet;fish;pelagic fish;gadiformes 
zoarcidae diet;fish;pelagic fish;forage fish;perciformes 
tanner crab diet;invertebrates;crabs 
snow crab diet;invertebrates;crabs 
king crab diet;invertebrates;crabs 
benthic amphipods diet;plankton;zooplankton;amphipods 
P.herring diet;fish;pelagic fish;forage fish;clupeiformes 
cephplapods diet;invertebrates;cephalopods;squids 
forage fish diet;fish;pelagic fish; forage fish 
alaska placie diet;fish;demersal fish;pleuronectiformes 
saketes diet;fish;elasmobranchii;skates 
macrouridate diet;fish;pelagic fish;gadiformes 
shrimp diet;invertebrates;shrimps 
pacific herring diet;fish;pelagic fish;forage fish;clupeiformes 
cephalpods diet;invertebrates;cephalopod 
Forage fish diet;fish;pelagic fish; forage fish 
norway pout diet;fish;demersal fish;pleuronectiformes 
other gadoids diet;fish;pelagic fish;gadiformes 



 176 

small mobile epifauna diet;invertebrates;worms 
planktonic microflora diet;plankton;phytoplankton 

 
Supplementary table 6.2 Taxonomic groups listed as jellyfish predators in the models (spellings are 
as they appear in models), and the aggregated groups they correspond to in figure 6.9  

Group in model Aggregated group 
macrourids pred;fish;deep sea fish;gadiformes 
snappers pred;fish;pelagic fish;perciformes 
sea birds pred;birds;sea birds 
leatherback turtles pred;reptiles;sea turtles;leatherback turtles 
macro-zooplankton pred;plankton;zooplankton 
jellyfish pred;plankton;jellyfish 
sea nettles pred;plankton;jellyfish;carnivorous jellyfish;cnidarians 
gelatinous zooplankton pred;plankton;jellyfish 
atlantic mackerel pred;fish;pelagic fish;scombriformes 
seabirds pred;birds;sea birds 
horse mackerel pred;fish;pelagic fish;perciformes 
filefish pred;fish;pelagic fish;tetraodontiformes 
predatory gastropods pred;invertebrates;molluscs;gastropods 
small gelatinous zooplankton pred;plankton;jellyfish 
Appendicularians pred;plankton;jellyfish;tunicates 
cyclopoids pred;plankton;zooplankton;copepods;cyclopoids 
sharks pred;fish;elasmobranchii;sharks 
marine mammals pred;marine mammals 
rays and skates pred;fish;elasmobranchii;rays 
other demersal fish pred;fish;demersal fish 
Turtles pred;reptiles;sea turtles 
krill pred;plankton;zooplankton;euphaussids;krill 
large copepods pred;plankton;zooplankton;copepods 
large pelagic pred;fish;pelagic fish 
spiny dogfish pred;fish;elasmobranchii;sharks 
squid pred;invertebrates;cephalopods;squids 
Sandeels pred;fish;pelagic fish;trachiniformes 
gelatinous zooplankton pred;plankton;jellyfish 
scyphomedusa pred;plankton;jellyfish;carnivorous jellyfish;cnidarians 
scyphomedusae pred;plankton;jellyfish;carnivorous jellyfish;cnidarians 
tuna billfishes tuna & billfishes 
norway pout pred;fish;pelagic fish;gadiformes 
pelagic fish pred;fish;pelagic fish 
rorcuals pred;marine mammals;whales;baleen whales 
salmon pred;fish;pelagic fish;salmoniformes 
Benthic infauna pred;invertebrates;benthic infauna 
misc. shallow fish pred;fish;pelagic fish 
scyphozoid jellies pred;plankton;jellyfish;carnivorous jellyfish;cnidarians 
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green turtles pred;reptiles;sea turtles;green turtles 
ilex squid pred;invertebrates;cephalopods;squids 
carnivorous benthos pred;invertebrates;benthic infauna 
Large-mouth sculpin pred;fish;pelagic fish;scorpaeniformes 
large pelagics pred;fish;pelagic fish 
Pitcher2002  
chum pred;fish;pelagic fish;salmoniformes 
Sea turtles pred;reptiles;sea turtles 
misc. pelagics pred;fish;pelagic fish 
leiognathids pred;fish;pelagic fish;perciformes 
shallow sharks pred;fish;elasmobranchii;sharks 
baleen whales pred;marine mammals;whales;baleen whales 
ross seal pred;marine mammals;seals;ross seal 
aurelia aurita pred;plankton;jellyfish;carnivorous jellyfish;cnidarians 
billfish tuna tuns & billfishes 
hake pred;fish;pelagic fish;gadiformes 
common mora pred;fish;pelagic fish;gadiformes 
other tuna pred;fish;pelagic fish;tunas 
dogfish pred;fish;elasmobranchii;sharks 
other gadiformes pred;fish;pelagic fish;gadiformes 
 other small pelagics(fish) pred;fish;pelagic fish 
large jellyfish pred;plankton;jellyfish;carnivorous jellyfish;cnidarians 
chinook pred;fish;pelagic fish;salmoniformes 
small fish pred;fish;pelagic fish 
small mouthed flatfish pred;fish;demersal fish 
marine turtles pred;reptiles;sea turtles 
Copeoda calanoida pred;plankton;zooplankton;copepods;calanoida 
decapterus maruadsi pred;fish;pelagic fish;perciformes 
sharks and rays pred;fish;elasmobranchii;sharks 
elasmobranchs pred;fish;elasmobranchii 
 medium sciaenids pred;fish;pelagic fish 
lgoceplank pred;fish;pelagic fish 
amphipods pred;plankton;zooplankton;amphipods 
cod pred;fish;pelagic fish;gadiformes 
butterfishes pred;fish;pelagic fish;perciformes 
sea turtle pred;reptiles;sea turtles 
sablefish pred;fish;pelagic fish;scorpaeniformes 
demersal fishes pred;fish;demersal fish 
large zooplankton pred;plankton;zooplankton 
demersal sharks pred;fish;elasmobranchii;sharks 
other gadoids(small) pred;fish;pelagic fish;gadiformes 
red snapper pred;fish;pelagic fish;perciformes 
Notothenia rossii rock cod (perciformes) 
atka mackerel pred;fish;pelagic fish;scorpaeniformes 
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other sebastes pred;fish;pelagic fish;scorpaeniformes 
dusky rockfish pred;fish;pelagic fish;scorpaeniformes 
squids pred;invertebrates;cephalopods;squids 
oceanic turtles pred;reptiles;sea turtles 
patagonian squid pred;invertebrates;cephalopods;squids 
reef sharks pred;fish;elasmobranchii;sharks 
ponyfishes,pinkies and trumpters ponyfishes,pinkies and trumpters 
demersal fish pred;fish;demersal fish 
echinodermata pred;invertebrates;echinoderms 
benthic-feeding fish pred;fish;benthic fish 
squids and cuttlefish pred;invertebrates;cephalopods 
small benthopealgic invert feeders pred;invertebrates 
misc demersals pred;fish;demersal fish 
other rays pred;fish;elasmobranchii;rays 
cluepoids pred;fish;pelagic fish;clupeiformes 
small pelagics pred;fish;pelagic fish 
small demersals pred;fish;demersal fish 
coryphanoides L pred;fish;deep sea fish;gadiformes 
basking sharks pred;fish;elasmobranchii;sharks;basking sharks 
crabeater seal pred;marine mammals;seals;crabeater seals 

sperm whales 
pred;marine mammals;whales;toothed whales;sperm 

whales 
oceanic small pelagics pred;fish;pelagic fish 
large sharks pred;fish;elasmobranchii;sharks 
juvenile pollock pred;fish;pelagic fish;gadiformes 
medium mesopelagic fishes pred;fish;pelagic fish 
forage fisih pred;fish;pelagic fish 
smelt pred;fish;pelagic fish;osmeriformes 
other salmon pred;fish;pelagic fish;salmoniformes 
sea stars pred;invertebrates;echinoderms;sea stars 
macrozooplankton pred;plankton;zooplankton 
large croakers pred;fish;pelagic fish;perciformes 
 Copepoda cyclopoida pred;plankton;zooplankton;copepods;cyclopoids 
trichiurus haumela pred;fish;pelagic fish;perciformes 
S. lalandi pred;fish;pelagic fish;perciformes 
pelocejelly/eaters pred 
small pelagics-commercial pred;fish;pelagic fish 
micronekton pred;invertebrates 
pollock pred;fish;pelagic fish;gadiformes 
forage fish pred;fish;pelagic fish 
demersal invertebrate-eaters pred;fish;demersal fish 
salmon fry pred;fish;pelagic fish;salmoniformes 
loggerhead turtle pred;reptiles;sea turtles;loggerhead turtles 
mesopk pred;plankton;zooplankton 
alepocephalids pred;fish;deep sea fish;alepocephaliformes 
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fish larvae pred;fish;pelagic fish 
juv rock pred;fish;pelagic fish;scorpaeniformes 
sharpchin rockfish pred;fish;pelagic fish;scorpaeniformes 
rougheye rockfish pred;fish;pelagic fish;scorpaeniformes 
sabelfish pred;fish;pelagic fish;scorpaeniformes 
sculpins pred;fish;pelagic fish;scorpaeniformes 
adult snappers pred;fish;pelagic fish;perciformes 
codling pred;fish;pelagic fish;gadiformes 
squid and cuttlefishes pred;invertebrates;cephalopods;squids 
octopus pred;invertebrates;cephalopods;octopuses 
piscivorous rays pred;fish;elasmobranchii;rays 
sessile epibethos pred;invertebrates;benthic infauna 
squids and cuttlefishes pred;invertebrates;cephalopods 
carnivorous jellies pred;plankton;jellyfish 
orange roughy pred;fish;pelagic fish;trachichthyiformes 
juvenile haddock pred;fish;pelagic fish;gadiformes 

sperm whale 
pred;marine mammals;whales;toothed whales;sperm 

whales 
gentoo penguins pred;birds;penguins;gentoo penguins 
coastal omnivores pred 
mesopelagic crustaceans pred;invertebrates;arthropods;crustaceans 
large pelagic (fish) pred;fish;pelagic fish 
 transient salmon pred;fish;pelagic fish;salmoniformes 
piscivorous fish pred;fish;pelagic fish 
benthopelagic fish pred;fish;pelagic fish 
 small pelagic (fish) pred;fish;pelagic fish 
eulachon pred;fish;pelagic fish;osmeriformes 
benthic fish pred;fish;benthic fish 
mackerel pred;fish;pelagic fish;clupeiformes 
anchovy pred;fish;pelagic fish;clupeiformes 
small demersal fish pred;fish;demersal fish 
small demersal fish pred;fish;demersal fish 
upeneus bensasi pred;fish;pelagic fish;perciformes 
S. niphonius pred;fish;pelagic fish;scombriformes 
sessile epibenthos pred;invertebrates;benthic infauna 
demersals-benthivores pred;fish;demersal fish 
medium pelagics pred;fish;pelagic fish 
small pelagics-other pred;fish;pelagic fish 
L benth pred;fish;benthic fish 
benthic carnivores pred;fish;benthic fish 
warty oreo pred;fish;demersal fish;zeiformes 
shrimp pred;invertebrates;arthropods;crustaceans;shrimps 
sand demersals pred;fish;demersal fish 
yellowtail pred;fish;pelagic fish;scorpaeniformes 
large demersals pred;fish;demersal fish 
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pacific ocean perch pred;fish;pelagic fish;scorpaeniformes 
shortspine thornyhead adult pred;fish;pelagic fish;scorpaeniformes 
rock cod pred;fish;pelagic fish;gadiformes 
large jellies pred;plankton;jellyfish 
bairds smoothhead na 
chinstrap pengins pred;birds;penguins;chinstrap penguins 
flying birds pred;birds;sea birds 
detritus pred;detritus 
large reef associates (fish) pred;fish;reef fish 
 juvenile fish pred;fish 
medium pelagic fishes pred;fish;pelagic fish 
juvenile salmon pred;fish;pelagic fish;salmoniformes 
mesopelagics pred;fish;pelagic fish 
carnivorous jellyfish pred;plankton;jellyfish 
juvenile pink salmon pred;fish;pelagic fish;salmoniformes 
pomfrets pred;fish;pelagic fish;perciformes 
other pelagics pred;fish;pelagic fish 
Stromateoidae pred;fish;pelagic fish;scombriformes 
demersals-omnivores pred;fish;demersal fish 
small pelagics-squid pred;invertebrates;cephalopods;squids 
skates pred;fish;elasmobranchii;rays 
urchins pred;invertebrates;echinoderms;urchins 
other oreos pred;fish;demersal fish;zeiformes 
small mobile epifauna pred;invertebrates;benthic infauna 
reef demersals pred;fish;reef fish 
black pred;fish;pelagic fish;scorpaeniformes 
electrona antarica pred;fish;deep sea fish;myctophiformes 
arrowthooth flounder pred;fish;demersal fish;pleuronectiformes 
yellowfin sole pred;fish;demersal fish;pleuronectiformes 
adult large sharks pred;fish;elasmobranchii;sharks 
snoek juvenile pred;fish;pelagic fish;scombriformes 
bulls eye black cardinalfish pred;fish;deep sea fish;perciformes 
epifaunal macro-benthos pred;invertebrates;benthic infauna 
 flying birds pred;birds;sea birds 
cephalopods pred;invertebrates;cephalopods 
 medium reef associates (fish) pred;fish;reef fish 
large pelagic fishes pred;fish;pelagic fish 
juvenile rockfish pred;fish;pelagic fish;scorpaeniformes 
demersals-piscivores pred;fish;demersal fish 
macro zoobenthos pred;invertebrates;benthic infauna 
depth demersals pred;fish;demersal fish 
sloperock pred;fish;pelagic fish;scorpaeniformes 
ssthorny pred;fish;pelagic fish;scorpaeniformes 
A.gazella pred;marine mammals;seals;antarctic fur seal 
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flathead sole pred;fish;demersal fish;pleuronectiformes 
manta ray pred;fish;elasmobranchii;rays 
southern blue whiting pred;fish;pelagic fish;gadiformes 
benthic teleosts pred;fish 
infaunal macro-benthos pred;invertebrates;benthic infauna 
other icefish pred;fish;demersal fish;perciformes 
 large planktivore pred;fish;pelagic fish 
juvenile fish pred;fish 
rockfish pred;fish;pelagic fish;scorpaeniformes 
juvenile wild salmon pred;fish;pelagic fish;salmoniformes 
sharks-pelagics pred;fish;elasmobranchii;sharks 
sharks-coastal pred;fish;elasmobranchii;sharks 
redfish pred;fish;deep sea fish;myctophiformes 
transitory squid pred;invertebrates;cephalopods;squids 
zooplankton pred;plankton;zooplankton 
small flat pred;fish;demersal fish;pleuronectiformes 
lsthory pred;fish;pelagic fish;scorpaeniformes 
L. carcinophagus pred;marine mammals;seals;crabeater seals 
northern rockfish pred;fish;pelagic fish;scorpaeniformes 
rock sole pred;fish;demersal fish;pleuronectiformes 
alaska plaice pred;fish;demersal fish;pleuronectiformes 
juvenile medium pelagic pred;fish;pelagic fish 
hoki pred;fish;pelagic fish;gadiformes 
cephalopods pred;invertebrates;cephalopods 
infaunal mesobenthos pred;invertebrates;benthic infauna 
toothfish pred;fish;demersal fish;perciformes 
 small planktivore pred;fish;pelagic fish 
coho pred;fish;pelagic fish;salmoniformes 
wild salmon pred;fish;pelagic fish;salmoniformes 
HMS  
A plaice pred;fish;demersal fish;pleuronectiformes 
coast soft micro carn telo pred;fish 
non-migratory small fish pred;fish;pelagic fish 
shearwater pred;birds;sea birds;shearwaters 
juvthorny pred;fish;pelagic fish;scorpaeniformes 
birds pred;birds 
alaska plaice pred;fish;demersal fish;pleuronectiformes 
arrowtooth flounder pred;fish;demersal fish;pleuronectiformes 
adult small pelagic pred;fish;pelagic fish 
basking shark pred;fish;elasmobranchii;sharks;basking sharks 
gelatinous plankton pred;plankton;jellyfish 
cephlapods pred;invertebrates;cephalopods 
large nototheniidae pred;fish;demersal fish;perciformes 
 deepwater fish pred;fish;deep sea fish 
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juvenile hatchery salmon pred;fish;pelagic fish;salmoniformes 
flounders pred;fish;demersal fish;pleuronectiformes 
coast sm dem reef plk telo pred;fish 
rex pred;fish;demersal fish;pleuronectiformes 
B.acutorostrata pred;marine mammals;whales;baleen whales;minke whale 
misc. deepfish pred;fish;deep sea fish 
trubot pred;fish;demersal fish;pleuronectiformes 
halibut pred;fish;demersal fish;pleuronectiformes 
juvenile small pelagic pred;fish;pelagic fish 
small nototheniidae pred;fish;demersal fish;perciformes 
 hatchery salmon pred;fish;pelagic fish;salmoniformes 
odontocetes pred;marine mammals;whales;toothed whales 
haddock pred;fish;pelagic fish;gadiformes 
coast sch carn pel telo fl pred;fish 
junvenile smallpealgic pred;fish;pelagic fish 
toothed whales, dolphins & 
porpoises pred;marine mammals;whales;toothed whales 
carnivorous zooplankton pred;plankton;zooplankton 
deep demersals large pred;fish;demersal fish 
other pelagic pred;fish;pelagic fish 
oceanic planktivores pred;fish;pelagic fish 
alaska plaice pred;fish;demersal fish;pleuronectiformes 
adult large reef associated pred;fish;reef fish 
 seals and sea lions pred;marine mammals;seals 
shallow demersals pred;fish;demersal fish 
deep demersals small pred;fish;demersal fish 
sm pel plk telo pred;fish 
turbot pred;fish;demersal fish;pleuronectiformes 
juvenile large reef associated pred;fish;reef fish 
deep demersals large pred;fish;demersal fish 
flatfih(benthic) pred;fish;demersal fish;pleuronectiformes 
flatfish(small) pred;fish;demersal fish;pleuronectiformes 
sm pel carn tel fl pred;fish 
 mig mesopelagic pred;fish;pelagic fish 
whitebl skate pred;fish;elasmobranchii;rays 
mud skate pred;fish;elasmobranchii;rays 
alakan skate pred;fish;elasmobranchii;rays 
adult small reef associated pred;fish;reef fish 
juvenile small reef associated pred;fish;reef fish 
adult large planktivore pred;fish;pelagic fish 
juvenile large planktivore pred;fish;pelagic fish 
adult small planktivore pred;fish;pelagic fish 
adult anchovy pred;fish;pelagic fish;clupeiformes 
juvenile anchovy pred;fish;pelagic fish;clupeiformes 
adult deepwater fish pred;fish;deep sea fish 
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 juvenile deepwater fish pred;fish;deep sea fish 
adult scraping grazers pred;fish 
juvenile scraping grazers pred;fish 
jellyfish and hydroids pred;plankton;jellyfish 
deep demerals small pred;fish;demersal fish 
myctophids pred;fish;deep sea fish;myctophiformes 
champsocephalus gunnari pred;fish;demersal fish;perciformes 
pleuragramma antarcticum pred;fish;demersal fish;perciformes 
notothenia gibberifrons pred;fish;demersal fish;perciformes 
cnidaria pred;plankton;jellyfish 
arthropod other pred;invertebrates;arthropods 
worms pred;invertebrates;benthic infauna;worms 
asteroidae pred;invertebrates;echinoderms;sea stars 
pleuragramm antarcticum pred;fish;demersal fish;perciformes 
arhropod crustecea pred;invertebrates;arthropods;crustaceans 
echinoidea pred;invertebrates;echinoderms 
ophiuroidea pred;invertebrates;echinoderms;brittle stars 
spur-dog pred;fish;elasmobranchii;sharks 

 
Supplementary table 6.3 Input parameters of jellyfish functional groups in the models investigated   

First 

Author Year  B P/B Q/B EE 
Estimated 

input  Name of group 

Model 

start 

Year Reference 

Tecchio 2013 0.08 22.00 56.00 0.42 EE gelatinous zooplankton 2009 [87] 

Pitcher 

2007 0.22 10.23 26.46 0.98 EE jellyfish & hydroids 1990 

[88] 2007 0.30 10.23 26.46 0.45 EE jellyfish & hydroids 2005 

Li 2010 12.50 9.60 20.00 na EE jellyfish 2005 [89] 

Griffiths 2010 2.12 32.00 70.00 0.06 EE gelatinous zooplankton 2004 [90] 

Ruzicka 2012 23.30 15.00 60.00 0.06 EE gelatinous zooplankton 2006 [91] 

Tsagarakis 2010 2.48 4.84 12.09 0.09 EE jellyfish & M.leidyi 2003 [74] 

Christensen 2009 

0.58 5.00 20.00 0.00 EE;Q/B sea nettles 1950 

[92] 3.40 8.80 35.20 0.21 EE;Q/B ctenophores 1950 

Watermeyer 2008 

26.07 0.44 1.47 0.50 EE gelatinous zooplankton 1600 

[93] 

20.11 0.44 1.47 0.50 EE gelatinous zooplankton 1900 

28.47 0.44 1.47 0.50 EE gelatinous zooplankton 1967 

245.66 0.44 1.47 0.15 EE gelatinous zooplankton 1990 

5.00 0.58 1.67 0.17 EE gelatinous zooplankton 1900 

5.00 0.58 1.67 0.17 EE gelatinous zooplankton 1600 

5.00 0.58 1.67 0.15 EE gelatinous zooplankton 1960 

Bānaru 2012 0.04 18.00 38.00 0.20 dc gelatinous zooplankton 2000 [94] 

Ruzicka 2007 

3.08 9.00 30.00 0.90 B small jellyfish 2000 

[95] 

0.86 15.00 60.00 0.86 EE large jellyfish 2000 

8.95 9.00 30.00 0.90 B small jellyfish 2000 

3.27 15.00 60.00 0.29 EE large jellyfish 2000 

Ainsworth 2002 3.00 18.00 60.00 0.69 EE carnivorous jellyfish 2000 [81] 
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3.00 18.00 60.00 0.67 EE carnivorous jellyfish 1950 

3.36 18.00 60.00 0.95 EE carnivorous jellyfish 1900 

4.63 18.00 60.00 0.95 EE carnivorous jellyfish 1750 

Arancibia 2008 7.77 0.58 1.42 0.15 B jellies 2000 [96] 

Cheng 2009 0.68 5.00 20.00 0.35 EE jellyfish 2000 [97] 

Harvey 2012 

0.16 2.06 10.30 0.10 B tunicates 2000 

[98] 

6.62 9.00 30.00 0.80 B 

small gelatinous 

zooplankton 2000 

8.26 3.00 11.50 0.50 B jellyfish 2000 

0.18 2.06 10.30 0.08 B tunicates 1981 

8.25 9.00 30.00 0.80 B 

small gelatinous 

zooplankton 1981 

10.41 3.00 11.50 0.80 B jellyfish 1981 

Li 2009 2.15 5.00 25.05 0.95 EE jellyfish 2000 [75] 

Nuttall 2011 

0.81 8.80 35.20 0.90 B ctenophores 1880 

[99] 

0.13 8.80 35.20 0.90 B ctenophores 1930 

0.28 8.80 35.20 0.90 B ctenophores 1980 

0.15 8.80 35.20 0.90 B ctenophores 2000 

Pavés 2008 

0.02 0.30 0.79 0.02 EE ctenophores 1999 

[100] 0.02 0.30 0.73 0.02 EE ctenophores 1999 

Lin 2008 na na na na na na 1999 [101] 

Persad 2009 

1036.00 4.34 14.45 0.49 none lavaceans 1999 

[102] 

20859.0

0 0.10 0.33 0.00 none carnivores 1999 

Duan 2009 

0.77 5.00 25.00 0.25 B jellyfish 1981 

[103] 1.53 5.00 25.00 0.05 EE jellyfish 1998 

Hong 2008 2.25 5.01 25.05 0.34 B large jellyfish 1997 [104] 

Chen 2008 1.12 6.12 25.05 0.14 B jellyfish 1997 [105] 

Duan 2009 1.53 5.01 25.04 0.30 EE jellyfish 1997 [106] 

Tam 2008 

0.02 0.58 2.92 0.95 Q/B gelatinous zooplankton 1995 

[107] 0.00 0.58 2.92 0.95 Q/B gelatinous zooplankton 1997 

Okey 2002 0.27 40.00 80.00 0.93 EE carnivorous jellyfish 1997 [108] 

Dommasne

s 2001 4.00 3.00 10.00 0.34 EE jellyfish 1997 [109] 

Link 2006 

41.09 40.00 143.08 0.90 EE 

gelatinous zooplankton 

(George's Bank) 1996 

[31] 

42.91 35.00 146.00 0.91 EE 

gelatinous zooplankton 

(Gulf of Maine) 1996 

37.72 40.00 146.00 0.90 EE 

gelatinous zooplankton 

(Mid-Atlatntic Bight) 1996 

40.42 40.00 146.00 0.90 EE 

gelatinous zooplankton 

(Southern New 

England) 1996 

Barausse 2009 1.02 14.81 44.44 0.15 EE jellyfish 1996 [53] 

Araújo 2012 

0.52 15.51 62.05 0.21 EE gelatinous zooplankton 1995 

[73] 0.52 15.51 62.05 0.14 EE gelatinous zooplankton 1995 
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0.52 15.51 62.05 0.14 EE gelatinous zooplankton 1995 

Akoglu 2014 

0.03 11.00 29.20 0.00 EE aurelia 1960 

[55] 

0.82 11.00 29.20 0.00 EE mnemopsis 1960 

0.11 11.00 29.20 0.00 EE aurelia 1960 

0.48 11.00 29.20 0.00 EE aurelia 1960 

Okey 2001 0.07 18.25 80.00 0.90 B Jellies 1995 

[110] Okey 2001 0.27 40.00 80.00 0.95 B jellies 1995 

Stanford 2004 

1.10 7.00 23.33 0.38 EE 

Carnivorous 

zooplankton 1995 

[111] 1.10 7.00 23.33 0.68 EE 

Carnivorous 

zooplankton 1973 

Okey 2004 6.39 5.00 29.41 0.01 EE jellies 1994 [112] 

Coll 2006 0.39 28.51 50.48 0.22 EE jellyfish 1994 [71] 

Watson 2013 4.77 9.20 10.00 0.80 B gelatinous zooplankton 1993 [113] 

Pedersen 2008 0.01 6.50 23.50 0.13 EE Scyphomedusae 1993 [114] 

Falk-

Petersen 2004 0.72 6.50 17.33 0.13 EE scyphomedusae 1993 [115] 

Bulman 2002 8.00 6.00 22.00 0.80 none gelatinous zooplankton 1992 [116] 

Mackinson 2008 0.07 2.86 6.35 0.77 EE,Q/B gelatinous zooplankton 1973 [57] 

Fondo 2015 1.08 0.09 0.40 0.70 EE jellyfish 1990 [117] 

Althauser 2003 

0.08 5.00 15.00 na EE gelatinous zooplankton 1990 

[118] 

0.18 5.00 20.00 na EE gelatinous zooplankton 1990 

1.50 2.50 10.00 na EE gelatinous zooplankton 1990 

Díaz-Uribe 2007 2.05 30.70 118.45 0.80 EE gelatinous zooplankton 1990 [119] 

Field 2004 

1.03 3.00 12.00 0.80 none large jellies 1990 

[120] 

1.11 9.00 30.00 0.80 none small jellies 1990 

1.17 3.00 12.00 0.80 EE large jellies 1960 

1.34 9.00 30.00 0.80 EE small jellies 1960 
Cornejo-

Donoso 2008 1.00 3.60 12.00 0.48 EE salps 1990 [121] 

Aydin 2007 

0.11 0.88 3.00 0.61 EE scyphozoid jellies 1990 

[56] 

0.34 0.88 3.00 0.66 EE scyphozoid jellies 1990 

0.11 0.88 3.00 0.48 EE scyphozoid jellies 1990 

3.16 5.48 15.64 0.80 EE gelatinous filter feeders 1990 

0.70 5.48 15.64 0.80 EE gelatinous filter feeders 1990 

0.94 5.48 15.64 0.80 EE gelatinous filter feeders 1990 

Ainsworth 2005 0.22 10.23 26.46 na EE jellyfish and hydroids 1990 [122] 

Cheung 2005 1.85 3.43 13.73 0.95 EE jellyfish 1990 [80] 

Gucu 2002 

1.61 10.00 39.20 na EE gelatinous organisms 1955 

[26] 

214.00 10.00 39.20 na EE gelatinous organisms 1990 

952.00 10.00 39.20 na EE gelatinous organisms 1980 

Okey 2007 

0.10 30.00 80.00 0.50 B large jellies 1990 

[123] 0.18 40.00 80.00 0.50 B small jellies 1990 

Orek 2000 315.00 0.50 2.00 0.00 Q/B jellies 1990 [25] 

Coll 2007 4.00 14.60 50.48 0.17 EE jellyfish 1990 [54] 
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Rocha 2007 

0.25 1.00 3.30 na EE cnidaria 1990 

[124] 0.51 1.00 3.30 na EE cnidaria 1990 

Okey 2006 

0.02 40.00 80.00 0.50 B large jellies 1986 

[125] 0.03 0.03 80.00 0.50 B small jellies 1986 

Whitehouse 2014 0.66 0.88 3.00 0.00 EE jellyfish 1985 [126] 

Mackinson 1996 15.00 3.00 12.00 0.14 EE jellies 1982 [127] 

Aydin 2002 

0.05 0.88 2.00 0.00 EE jellyfish 1980 

[47] 1.40 1.50 3.00 0.02 EE jellyfish 1980 

Vasslides 2017 

5.29 16.20 35.00 0.04 EE ctenophores 1981 

[128] 0.35 13.00 20.00 0.00 EE sea nettles 1981 

Wang 2012 1.07 5.01 25.04 0.74 EE jellyfish 1981 [129] 

Polovina 1996 

8.00 9.00 30.00 0.00 EE 

salps and gelatinous 

herbivore 1980 

[130] 9.10 3.00 10.00 0.02 EE jellies 1980 

Pauly 1996 

6.19 7.00 23.30 0.20 not clear salps 1983 

[82] 5.00 3.00 12.00 0.58 not clear carnivorous jellies 1983 

Díaz-Uribe 2012 0.02 6.80 40.00 0.13 EE jellyfishes 1980 [131] 

Lee 2010 0.05 0.88 2.00 na EE jellyfish 1979 [48] 

Trites 1999 

0.05 0.88 2.00 0.02 EE jellyfish 1980 

[49] 0.05 0.88 2.00 0.02 EE jellyfish 1950 

Nurhakim 2003 0.10 5.01 25.05 0.53 EE jellyfishes 1979 [132] 

Shannon 2003 

4.55 0.58 1.67 0.16 EE gelatinous zooplankton 1990 

[133] 5.00 0.58 1.67 0.15 EE gelatinous zooplankton 1980 

Coll 2013 0.33 13.87 50.48 0.22 EE jellyfish 1978 [134] 

Coll 2009 2.17 14.60 50.48 0.17 EE jellyfish 1975 [135] 

Buchary 1999 0.10 5.01 25.05 0.41 EE jellyfish 1974 [136] 

Heymans 2009 na 2.86 na 0.95 B;Q/B gelatinous plankton 1974 [137] 

Lees 2007 5.44 7.50 25.00 0.99 Q/B gelatinous zooplankton 1973 [20] 

Vibunpant 2003 2.00 5.00 20.00 0.00 EE jellyfish 1973 [138] 

Hoover 2013 na na na na not clear jellies 2013 [139] 

Hoover 2009 

2.50 3.00 12.00 0.21 EE;Q/B salps 1970 

[140] 1.53 0.25 na 1.00 EE cnidaria 1970 

Daskalov 2002 

0.02 10.95 29.20 0.02 EE Pleurobrachia pileus 1960 

[86] 

0.02 20.00 100.00 0.02 EE Pleurobrachia pileus 1960 

0.03 10.95 29.20 0.00 EE Aurelia aurita 1960 

0.03 20.00 100.00 0.00 EE Aurelia aurita 1960 

Chagaris 2002 0.22 20.08 80.00 na EE carnivorous jellyfish 1950 [141] 

Christensen 2015 0.50 10.00 20.00 na EE carnivorous jellyfish 1950 [142] 

Libralato 2010 

na na na na not clear jellyfish NA 

[72] na na na na not clear jellyfish NA 

Heymans 2000 0.60 25.00 225.00 na EE jellyfish NA [29] 
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Chapter 7: General discussion and 

concluding remarks 
 

7.1 Summary 
 

Recent evidence suggests that populations of jellyfish in the Irish Sea have proliferated 

over the past two decades[1] leading to positive effects, such as the establishment of 
a jellyfish fishery[2], and negative effects such fish mortality in aquaculture [3]. However, 

the interactions between jellyfish and other biota in the ecosystem is largely unknown. 

Despite being one of the most well studied populations of gelatinous zooplankton, the 
trophic ecology of jellyfish in the Irish Sea was poorly characterised. In this thesis, 

molecular tools were developed and used in an attempt to address this knowledge 

gap.  
 

In chapter two, we developed a molecular assay targeting the 16s region of the 

mitochondrial genome to facilitate rapid, and inexpensive, screening of marine 
organisms to detect jellyfish predation[4]. We demonstrated the effectiveness of this 

assay by using it in conjunction with DNA extracted from the stomachs of 2513 marine 

organisms to show moon jellyfish and mauve-stinger jellyfish are consumed by a 
variety of species including herring, whiting, grey gurnard, dover sole, lesser-spotted 

dogfish, sprat, dragonet, poor cod, dab, and squid during spring. In chapter three, we 

demonstrated temporal variability in jellyfish predation by documenting consumption 
of mauve stinger, and L. tetraphylla by mackerel, pilchard, and sprat in October. Moon 

jellyfish were not detected at this time, since they were caught alongside the other 

marine organisms during the survey, we considered prey unavailability was unlikely to 
explain the lack of predation. Instead, we hypothesised that they may be escaping 

predation through somatic growth and the development of stinging tentacles.    

 

In Chapter five we wished to explore the trophic ecology of Irish Sea fishes in further 
detail: while the molecular approach developed in Chapter two could be conducted 

rapidly and inexpensively  - only presence-absence data was yielded. To gain deeper 
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understanding, a high throughput sequencing (HTS) approach was adopted in chapter 

5 to capture the broader diet of jellyfish predators. There is ongoing debate on the 

correct way to interpret HTS results: whether to use presence-absence data only, 
semi-quantitative approaches, or a pure quantitative approach[5,6]. To review the 

methods used in published studies that used HTS in diet studies, a structured review 

and meta-analysis was conducted in the fourth chapter. The influence of the number 
of species included, type of sequencer used, and starting material on the quantitative 

ability of HTS was assessed by building a two-level hierarchical meta-analysis model. 

No significant explanatory variables were revealed, although the analysis suggested 
that a quantitative signal was present. Using a semi-quantitative approach is likely to 

yield more accurate results than strict presence / absence.  

 
In chapter five, a dual amplicon (18s and COI) HTS assessment on stomachs of fish 

species collected around the British Isles was conducted. Hydrozoans were the most 

frequently consumed jellyfish and were consumed by mackerel, lemon sole, herring, 
whiting, plaice, haddock and saithe. Haddock and whiting had also preyed upon 

ctenophores, while scyphozoan predation was only observed in mackerel. Again, we 

hypothesised that the rare cnidarian predation was rare due to jellyfish being too large, 
and well defended, to be easily digested by a wide variety of species.  

 

Finally, in chapter six, we examined how the findings of the thesis, and the wider 
literature corresponded with jellyfish groups within published ecosystem models in the 

Ecobase database. Increasing interest in jellyfish is reflected: an increasing proportion 

of EwE models contained jellyfish as their own separate group. Network analysis 
showed a loose structure between the models, suggesting that while values are often 

borrowed between models, the influence of any given model on the state of knowledge 

is somewhat limited. The trophic ecology (both as predators and as prey) of jellyfish 
seemed well represented, and is broadly in line with the literature. However, ecotrophic 

efficiency (a measure of how integrated into the ecosystem a species is) suggested 

that the community is undecided on how important trophic links are: values ranged 

from 0 (completely distinct from the rest of the ecosystem) to 1 (very tightly coupled 
with the rest of the ecosystem). Lastly, we examined an Irish Sea ecosystem model to 

see how the knowledge gained in the thesis, and the literature, could be used. The 

model had been parameterised based on values borrowed from English Channel and 
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British Columbia EwE models. The model was likely underestimating the prevalence of 

jellyfish, based on Irish Sea specific estimates in the literature. However, consumption 

and production were judged to be sound estimates. We are not aware of any 
experimentally derived value for ecotrophic efficiency in jellyfish, however using an 

updated diet composition using predators found in this thesis, EwE can calculate an 

EE. In this manner, all derived values would now be supported by peer-reviewed 
literature.  
 
 

 
 

7.2 Synthesis 
 

Taken together chapters two, three, and five all address the broad question: which 

predatory species eat jellyfish? Prior to this research, many studies had identified 
species that prey upon jellyfish[7–15]. However, this was normally limited to just one 

or two species and the role within any given ecosystem essentially remained unknown. 

All three chapters looked at ecosystem level predation of jellyfish, at a broad taxonomic 
scale not conducted before. However, when considered together more information 

can be gleaned.  

 
The most obvious outcome is the replication of results: both temporally, spatially, and 

with different analytical approaches. The detection of jellyfish consumption from many 

sites around the UK demonstrated that this phenomenon appears to be widespread, 
rather than a sea-specific or time-specific phenomenon. Furthermore, mackerel 

samples from chapter three were resampled in chapter five. In truth, this was done as 

we wanted to look at mackerel diet in depth, and mackerel were not caught in the 
sampling for chapter five. However, by using the same samples, the replicability of 

results can be tested. Pleasingly, both methodologies (diagnostic PCR and HTS) 

detected hydrozoan and scyphozoan jellyfish sequences. As such, the robustness of 
results, appears stronger when the chapters are considered in direct relation to one 

another. Although, ad hoc sampling was conducted across multiple years, some 

evidence about the temporal elements of trophic interactions was revealed. Sampling 
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in February and March revealed, a wide assortment of jellyfish predators, however 

sampling in July, August, September, and October indicated predation was much 

rarer. Throughout the thesis, we hypothesised that somatic growth and the 
development of stinging tentacles led to Moon jellyfish escaping from predation. The 

continued predation of smaller jellyfish adds more weight to this hypothesis. However, 

inter-annual differences may be at play too. To test this hypothesis formally, repeated 
sampling at a site would be required (see future directions).  

 

Chapter four, the meta-analysis of HTS studies, provides context for chapter five, the 
HTS analysis. The meta-analysis, suggests that sequencing platform, starting material, 

and number of samples included does not have a significant effect on the quantitative 

ability of the study. The analysis also suggested that HTS generally has a quantitative 
signature, albeit not a perfect one to one relationship. The findings of chapter five, were 

treated in a semi-quantitative way, as chapter four had suggested using a detected 

versus not detected approach was overly conservative.  
 

Finally, the conclusions of chapter six can be augmented when considering the first 

four data chapters. Although, an EwE model was not constructed for this thesis, the 
findings of the thesis undoubtedly have modelling implications. A quantitative diet 

composition matrix is required for each functional group included in an EwE model. 

Obtaining this data is difficult, particularly for species like jellyfish. 
The meta-analysis suggests that models using HTS data in a quantitative way will likely 

perform better than those using a frequency of occurrence or detected / not detected 

approach. This could be key to improving the parameterisation of species with poorly 
documented trophic ecologies. As such chapter five could be used to create a 

quantified diet composition matrix. Results from chapter two could also be used to 

help parameterise an ephyrae stanza (juvenile jellyfish age group), bringing greater 
biological realism to the EwE model than has hither-to been possible.  

7.3 Reflections and future research directions  
 
Overall, the findings presented here have improved our understanding of the ecology 

of jellyfish in the Irish Sea considerably. Upon starting the thesis, our understanding of 

interactions between jellyfish and other biota, aside from rare predators like sunfish[16] 
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and turtles[17], was very limited. The discovery they play a role in common fish species’ 

diet was therefore unexpected. This initial discovery also received considerable public 

interest – especially in Japan: the publication was tweeted about over one thousand 
times with an Altmetric score of 343, and a blog article I wrote covering the subject 

was reprinted in the Independent, and Scientific American amassing at least 15,000 

reads. In the literature, our results have joined a growing body of evidence from other 
ecosystems demonstrating that jellyfish play an integral part of marine food 

webs[7,9,11,14,15,18]. We identified the shortcomings of EwE models handling of 

jellyfish and demonstrated the applicability a variety of molecular techniques to provide 
further insight into the ecology of these animals.  Here, we discuss how the findings of 

this thesis could be built upon further in future research.  

 

7.3.1 Seasonal fluctuations in the predation of jellyfish  

Chapters two, three, and five taken together show strong evidence that jellyfish 

predation changes with the season, both in terms of the predator species targeting 
jellyfish and the jellyfish species targeted. However, inter-annual and spatial differences 

are entangled in these data. To address this issue, future research could be directed 

towards repeated sampling. Figure 7.1 provides a schematic overview to illustrate the 
key components of this research.  
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Figure 7.1. Proposed study (using made-up data for illustrative purposes) to determine if jellyfish 
predation is a result of specialist diet or general predation. a. Shows the absolute abundance of jellyfish 
b. shows the potential frequency of occurrence in forage fish diet.  
 

Over the course of one year, monthly sampling would take place. Forage fish species 

of interest would be sampled (sample size as large as funding permits, ideally over 50 

per sample), taking morphometric measurements, and extracting DNA from the 
stomachs. At the same time, standardised plankton sampling would take place using 

ring nets (or similar) giving a quantified breakdown of the plankton community using 

morphometric or molecular approaches as appropriate. The diet of the forage fish 
could be ascertained using the HTS protocol described in chapter five. At each site, 

for each month data would exist for the species of jellyfish present, the stage of the life 

cycle and, the relative abundance of jellyfish relative to other zooplankton. Using this 
data, it would be possible to show if changes in predation are linked to the life stage 

of the jellyfish, or the availability of jellyfish. Selectivity indices could be calculated using 

classic approaches[19,20] or novel network-based analyses using the econullnetr R 
package[21]. Morphometric measurements could see if any functional traits of the fish 

such as gape size were influencing the propensity to consume jellyfish.  
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This research could be improved even further, albeit it at greater cost, by incorporating 

other dietary study techniques such as stable isotope analysis (SIA). Combining SIA 
and HTS in a single study has two key benefits: first, the use of independent techniques 

can increase confidence in the results if it is detected in both assays. Second, since 

SIA provides quantitative data at a very poor taxonomic resolution and HTS can 
provide very high taxonomic resolution (if appropriate primers are used), Bayesian 

mixing-models could be used to consider these data sources together and obtain 

high-taxonomic resolution quantitative data[22].  
  

7.3.2 Quantitative performance of HTS 

The meta-analysis in chapter four addressed the question: to what extent is HTS 

quantitative? Ultimately, many of the tested variables: sequencer type, starting 

material, and number of samples in a trial did not yield significant relationships with per 
species sequence abundance. The factor(s) driving quantitative performance appear 

to lie elsewhere in the procedure. We hypothesised that nucleotide diversity of the 

tested community at the primer binding sites may be responsible. Figure 7.2 provides 
a diagrammatic representation of the experiment that could be used to test this. In this 

case the same primers would be used, on communities of four species. In each 

community, the biomass percentage would be 10%, 20%,30%,40%. Each community 
would be replicated, such that every possible combination of biomass composition for 

the species given is tested (24 replicates). Across the mock-communities different 

variations of nucleotide diversity at the primer binding sites would be used. The mock 
communities would be sequenced, and the number of sequences matching the 

original species in the mock communities recorded. For each sample, the original 

biomass (%), the proportion of reads produced (%), and the nucleotide pairwise 

diversity of the mock community at the binding site would be known. Therefore, for 
each mock community the slope between original biomass and proportions of reads 

could be calculated.  

 
Using all data, a GLM could then be fitted to see if the quantitative relationship (slope) 

is a function of the nucleotide pairwise diversity of the sampled mock community. If 

the experiment yields significant results, it should be possible, in actual trials to gain an 
estimate of the quantitative nature of the assay after the experiment has been 
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conducted. In theory, past studies could be analysed in a quantitative manner. If 

funding permits, the findings of the experiment could be assessed by quantifying an 

unknown mock community (e.g. provided by a different lab group, or complied without 
the primary researcher knowing the composition). 
 

 
Figure 7.2. Proposed experiment ((using made-up data for illustrative purposes)) to determine if the 

quantitative performance is a function of the nucleotide diversity at primer binding site. 
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7.3.3 Uncovering the trophic role of jellyfish   

We were motivated to undertake this line of research to try and ascertain what role 

jellyfish play in marine ecosystems around the British Isles. However, the state of the 
field at present is such that much of the PhD was spent answering more basic 

ecological questions. Moving forward, our findings could be incorporated into the EwE 

model described in chapter six to quantify the strength of the discovered interactions, 
and further explore the trophic ecology of jellyfish. Jellyfish could be split into cnidarian, 

ctenophore, and tunicate varieties and the life cycle better represented by a multi-

stanza groups[23]. If the quantitative performance of the HTS work described above 
is successful, it might be possible to obtain the biomass of functional groups existing 

in the environment by means of an eDNA survey, otherwise data from the annual 

fisheries surveys that take place in the Celtic and Irish Sea under the auspices of Cefas 
(England & Wales), AFBI (Northern Ireland) and DARD (Republic of Ireland). Diet 

composition could be estimated through a HTS molecular gut contents analysis of 

functional groups. Q/B, and P/B would be obtained from peer-reviewed literature as 
available. At this point network properties could be explored, MTI could be used to 

quantify the role of jellyfish in the Ecopath model, and the contributions of jellyfish to 

the ecosystem visualised. Ecosim could then be used to ‘game’ such that: jellyfish 
biomass could be increased in line with the climate-jellyfish relationship established by 

Lynam et al.[1] and climate change predictions to see how the ecosystem might 

respond. Would this lead to an increase in jellyfish predators? Or would jellyfish 
outcompete other fish, leading to fish stock collapse and simplification of the system? 

Equally, elements of the ecosystem could be manipulated to see if any impact is made 

on jellyfish. For example, what is the role the predatory species play in controlling 
jellyfish populations.  
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