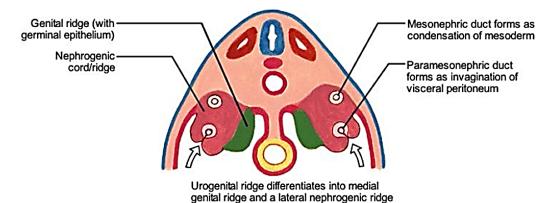
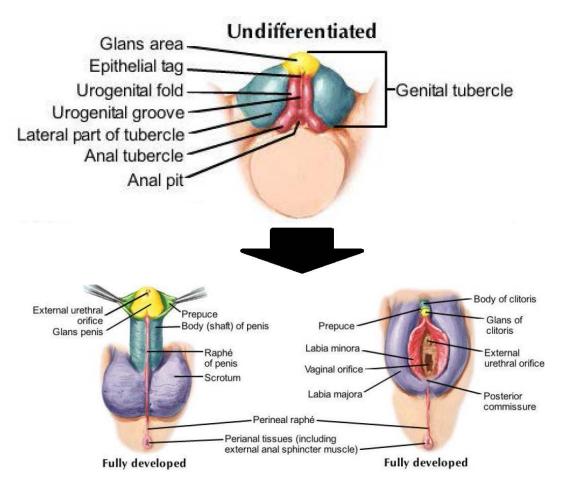

L2 Development of the

Reproductive System

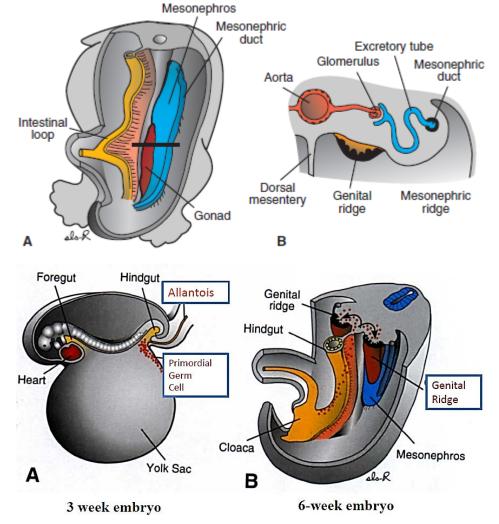
A. Sexual Differentiation



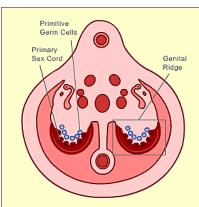
- Sex: biological sexual identity
- Gender: social sexual identity
- Sex of a person can be defined on various levels
- Various disorders in the course of development may lead to inconsistency in these types of sex
- Genetic sex: sex as determined by genes
 - □ Established at fertilization
 - Depends on whether an X-bearing or a Y-bearing sperm fertilizes the X-bearing oocyte
 - □ Generally dependent on presence of sex-determining region on short arm of Y chromosome (SRY)
 - Number of X chromosomes in abnormal sex chromosome complexes (eg. XXX, XXY) appeared to be unimportant in sex determination


- Gonadal sex: type of gonads that is developed
 - $\hfill\square$ Determined by sex chromosome complex of embryo
 - Ovaries (female) and testes (male) developed from indifferent gonads (before 7th week)
- Phenotypical sex: sex shown by differentiation of internal and external genitalia
 - Hormonal disorders during development may lead to changes in phenotypical sex
- **Brain sex**: sex shown by differentiation of the brain and hypothalamus

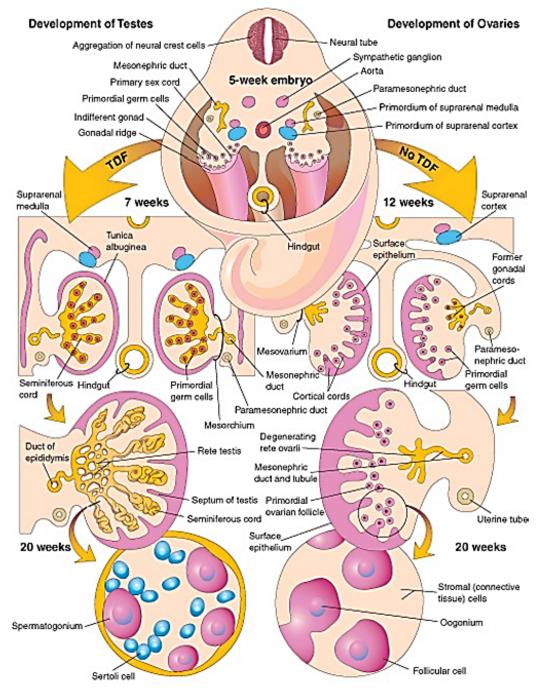
B. Overview on Development of Reproductive

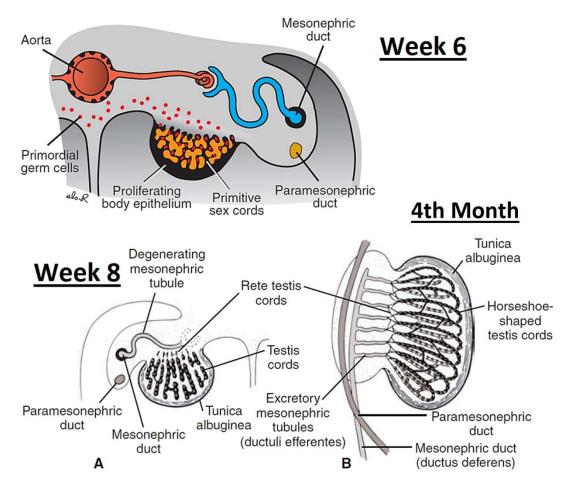

System

- Genital system arises from medial part of urogenital ridge called genital ridge
- Gonads developed from:
 - $\Box \quad \text{Primordial germ cells (PGC)} \rightarrow \text{ oocytes or sperms}$
 - $\Box \quad \text{Genital ridge: mesenchyme} \rightarrow \text{gonadal somatic cells (Sertoli cells for males)}$
 - → Sertoli cells: a kind of sustentacular cell in seminiferous tubules that aids in spermatogenesis
- Genital ducts from two sets of ducts at indifferent stage:
 - **Mesonephric (Wolffian) ducts:**
 - → Male: differentiate into ducti efferentus, epididymis, vas deferens and seminal vesicles
 - \rightarrow Female: regresses
 - D Paramesonephric (Müllerian) ducts:
 - \rightarrow Male: regresses
 - → Female: differentiate into uterus (caudal) and oviducts (cranial)



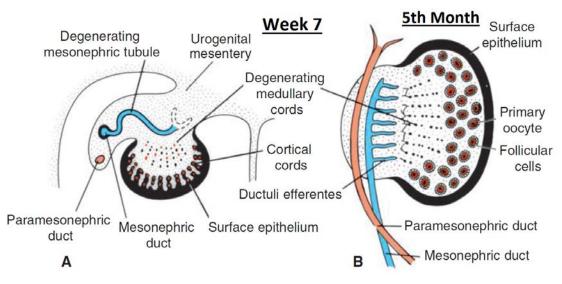
- External genitalia formed from three structures near cloacal opening:
 - $\Box \quad \text{Genital tubercle} \rightarrow \text{penis (male) or clitoris (female)}$
 - $\Box \quad Cloacal (urogenital, urethral, genital) folds \rightarrow penile urethra (male) or labia minora (female)$
 - \Box Genital swelling \rightarrow scrotum (male) or labia majora (female)


B. Development of Indifferent Gonads (3-7w)

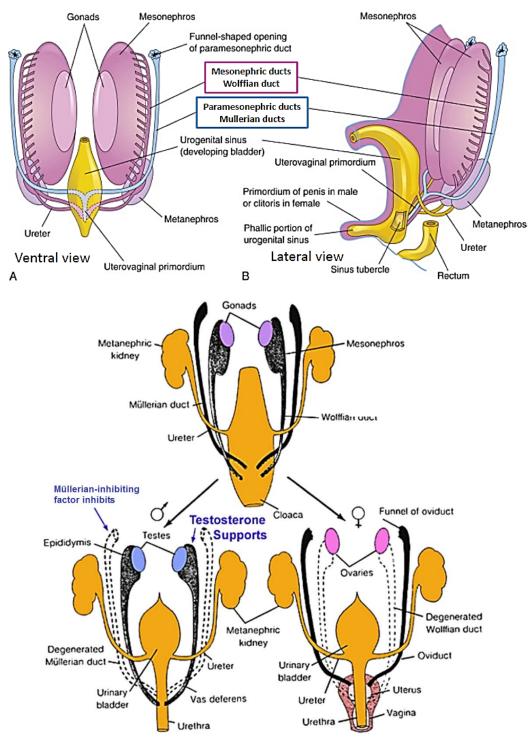

- Primordial germ cells (PGC) originate in wall of yolk sac close to attachment of allantois
- 3-6w: PGCs migrate by amoeboid motion along wall of hindgut and dorsal mesentery into genital ridges
 - Genital ridges: a pair of longitudinal ridges developing from mesenchymal cells on the medial side of caudal part of mesonephros at 5th week
 - D PGCs have <u>inductive influence</u> on gonadal development
 - $\Box \quad \text{Failure of PGC migration} \rightarrow \text{gonads do not develop}$
- ► Shortly before and during PGC arrival, genital ridge epithelium proliferates and penetrates underlying mesenchyme → forms primitive sex (gonadal) cords
- Indifferent gonads: not possible to differentiate between male and female gonads up to 7 weeks of development

C. Gonadal Differentiation (8-12w)

- ► Fetus has bipotential sexual development for first 3 months
- Phenotype determination depends on:
 - □ Presence of sex chromosomes (eg. SRY gene)
 - D Prevailing biochemical environment (eg. Müllerian inhibitory factor)
 - □ Prevailing hormonal environment (eg. androgen)
- Gonadal differentiation largely influenced by SRY gene on Y chromosome
- SRY codes for production of testis-determining factor (TDF)
 - \rightarrow TDF (male) induces **gonadal cords** to condense and extend into medulla



1. Gonadal Differentiation in Male (6-12w)

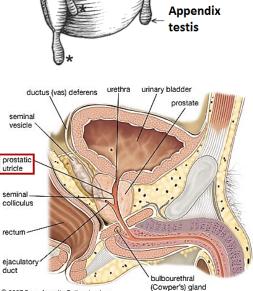

- Male gonad development involves mitosis during 3-8w
- ► 6w: SRY gene stimulates primitive sex cords to continue to proliferate and penetrate into medulla → forms medullary cords
- Near hilum, medullary cords break up and coalesce into a network of tiny cell strands that later gives rise to tubules of retes testis
- Tunica albuginea (a dense layer of fibrous c.t.) develops and separates testis cords from surface epithelium
- 4m: testis cords become horseshoe-shaped with ends connected to rete testis
- Content of testis:
 - \Box Testis cords:
 - \rightarrow **Primitive germ cells** \rightarrow meiosis (in puberty) to give gametes
 - \rightarrow Sertoli cells, from surface epithelium of gonad
 - **Interstitial cells of Leydig**, from original mesenchyme of genital ridge
- ► Testis cords remain solid until canalization in puberty → seminiferous tubules
- Remnant of collecting tubules of mesonephros form ductuli efferentes
 - → connect rete testis to the ductus deferens (derived from mesonephric duct)

2. Gonadal Differentiation in Females (7-12w)

- Ovaries developed via:
 - \Box Mitosis in 3rd 8th week
 - \Box Meiosis in 8th week 4th month
- Without SRY gene, primitive sex cords dissociate into irregular cell clusters (containing PGCs) and later disappear at medulla of gonad
- Degenerated medullary cords replaced by a vascular stroma forming ovarian medulla
- 7w: surface epithelium continues to proliferate \rightarrow cortical cords
 - Different from primitive sex cords which has already disappeared in medulla
- Cortical cords penetrate underlying mesenchyme but remains close to surface
- Sm: cortical cords break up into isolated cell clusters and proliferate to surround each oogonium with a layer of epithelial follicular cells → primordial follicles

D. Development of Genital Ducts1. Indifferent Genital Ducts

- Genital duct derived from mesonephric and paramesonephric ducts
- ► **Mesonephric duct** → male genital tract
- ► **Paramesonephric duct** → female genital tract


Seminal vesicle Outgrowth of mesonephric duct -Utriculus Rete testis prostaticus Epigenital tubules Testis cords 🔍 Ejaculatory duct Appendix Tunica Ductus epididymis albuginea Paragenital deferens Appendix testis tubules Testis cord Efferent Mesonephric Rete testis ducts duct Epididymis aradidymis Paramesonephric tubercle Α В

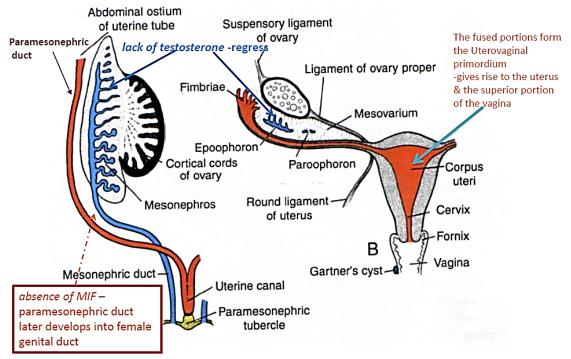
2. Development of Male Genital Ducts

► Fetal testes produce:

- Testosterone (T) (from Leydig cells) to stimulate mesonephric ducts
 - \rightarrow male genital tract
- Müllerian-inhibitory factor (MIF) (from Sertoli cells) to cause paramesonephric ducts to regress
- Mesonephric tubules:
 - □ Cranial-most → appendix epididymis (vestigial)
 - $\Box \quad \text{Cranial} \rightarrow \text{efferent ducts}$
 - $\Box \quad Caudal \rightarrow paradidymis (vestigial)$
- Mesonephric duct:
 - \Box Cranial-most \rightarrow appendix epididymis (vestigial)
 - \Box Cranial \rightarrow epididymis
 - $\Box \quad \text{Middle} \rightarrow \text{ductus deferens} + \text{ejaculatory duct}$
 - $\Box \quad Caudal \rightarrow trigone of bladder$
- ► Outgrowth of mesonephric ducts → seminal vesicles
- Paramesonephric ducts
 - → appendix testis + prostatic utricle (vestigial)

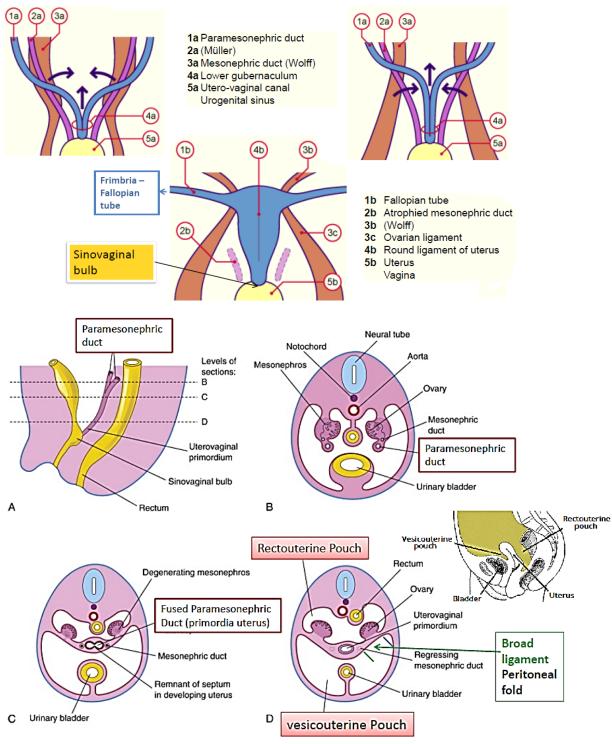
Prostatic utricle*: small indentation in prostatic urethra *Vestigial*: evolutionally retained embryonic remnant with no apparent function

Testis


Vas deferens

Appendix epididymis

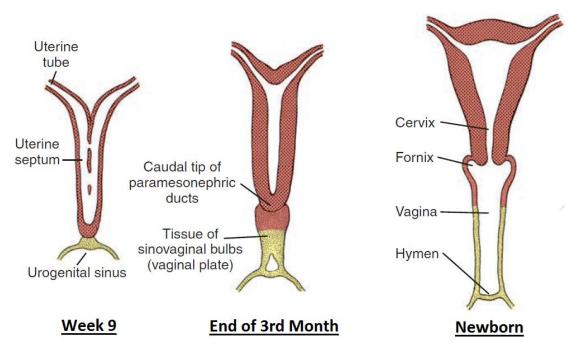
Paradidymis


© 2007 Encyclopædia Britannica, Inc.

3. Development of Female Genital Ducts

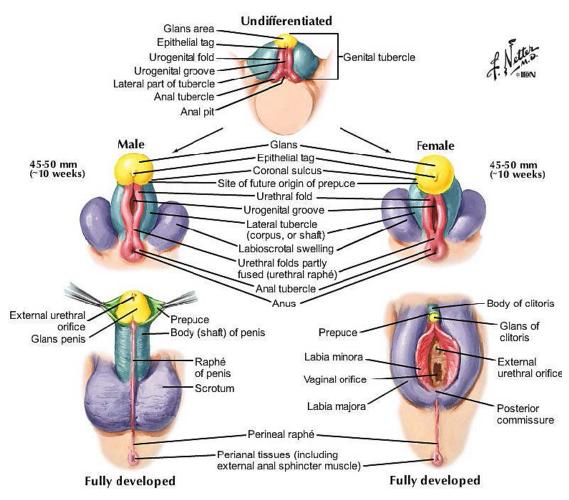
- ► Absence of **testosterone** → regression of **mesonephric ducts**
- ► Absence of MIF → paramesonephric duct develops into female genital tract
- **Paramesonephric duct** develops into:
 - □ Cranial: forms **oviducts**
 - Caudal: bilateral ducts fuse to form **uterovaginal primordium**
- Mesonephric duct and tubules develop into:
 - □ Cranial-most: **epoophoron**
 - □ Cranial: **paroophoron**
 - □ Caudal: Gartner's duct (cyst)

a. Formation of Uterus



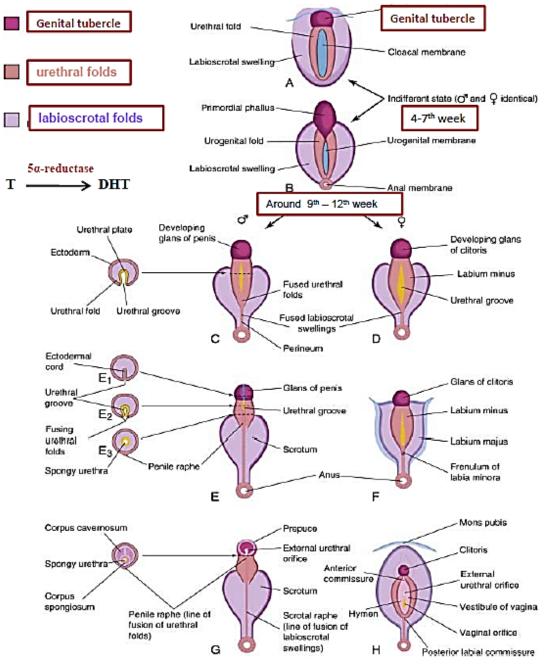
- Peritoneal folds on each side move medially and carry bilateral paramesonephric ducts towards midline
- Caudal part of **paramesonephric ducts** fuse to form **uterovaginal primordium**
- Peritoneal folds on each side form the broad ligament of uterus

*Gubernaculum: undifferentiated mesenchyme attaching to caudal ends of gonads

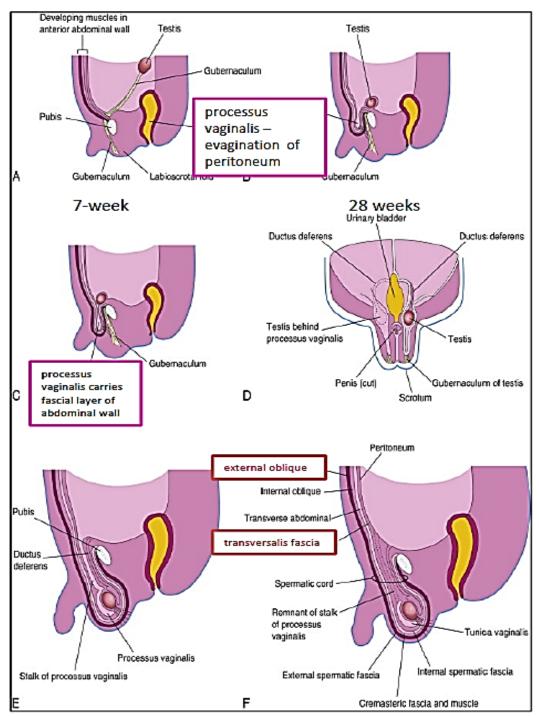

 \rightarrow scrotal ligament (M) and ovarian ligament + round ligament of uterus (F)

b. Formation of Vagina

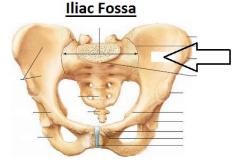
- Solid caudal end of uterovaginal primordium grows downward and reaches urogenital sinus
- ► Shortly afterwards, two sinovaginal bulbs (solid evaginations) grow out of pelvic urogenital sinus → proliferate to form a solid vaginal plate
- Continual proliferation at cranial side of vaginal plate
- ► 5m: canalization of entire vaginal outgrowth
- Dual origin: both paramesonephric duct and sinovaginal bulb contributes to vagina formation
 - □ Upper vagina (including fornices) derived from paramesonephric duct
 - □ Lower vagina derived from urogenital sinus
- Lumen of vagina remains separated from urogenital sinus by hymen (thin tissue plate)
 - □ Consists of epithelial lining of sinus + a thin layer of vaginal cells
 - □ Usually develops a small opening during perinatal life

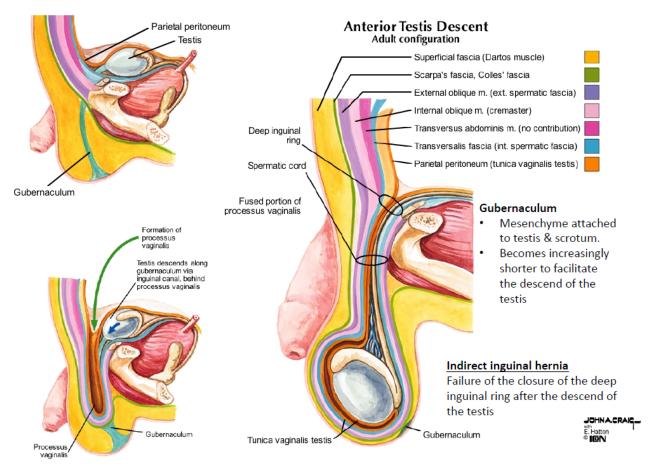

E. Development of External Genitalia

- ► Male genitalia formation induced by **dihydrotestosterone (DHT)**
 - \Box Conversion of testosterone into DHT catalyzed by **5a-reductase**
 - $\Box \quad \text{Lack of } \mathbf{5a\text{-reductase}} \rightarrow \text{phenotypical female}$
- Formed from three structures near cloacal opening:
 - $\Box \quad \textbf{Genital tubercle} \rightarrow \text{penis (male)}$ or clitoris (female)
 - □ Cloacal (urogenital, urethral, genital) folds → penile urethra (male) or labia minora (female)
 - Genital swelling (labioscrotal fold) → scrotum (male) or labia majora (female)

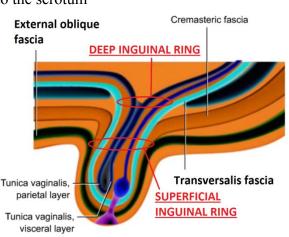

Female	Male
From the Genit	al Tubercle/Phallus
Clitoris: Glans clitoridis Corpora cavernosa clitoridis Bulb of the vestibule	Penis: Glans penis (and navicular fossa) Corpora cavernosum penis Corpus spongiosum penis
From the U	rogenital Folds
Labia minora Perineal raphé Perianal tissue (and external anal sphincter)	Ventral aspect of penis Most of the penile urethra Perineal raphé Perianal tissue (and external sphincter
From the La	bioscrotal Folds
Labia majora	Scrotum
From the Inc	different Gonad
Ovary: follicles from secondary sex cords in cortex	Testis: seminiferous tubules from primary sex cords Rete testis in medulla
Vestigial: rete ovarii in medulla	
From the C	Gubernaculum
Ovarian ligament Round ligament of the uterus	Gubernaculum testis clen

- Page 33 of 370 -

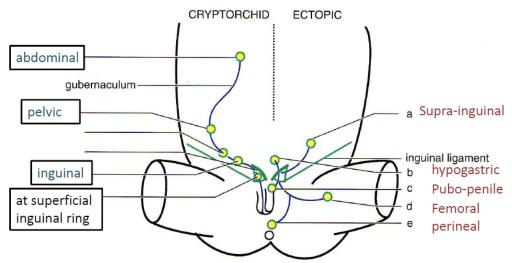



- 1. Development of Female Genitalia
- Phallus becomes clitoris
- Urogenital folds do not fuse and forms labia minora
- Labioscrotal folds fuse only at ends to form labia majora
- 2. Development of Male Genitalia
- Development of scrotum and penis induced by **DHT**:
- 1) **Phallus** elongates to form penis;
- 2) **Elongation** pulls **urethral folds** together \rightarrow fuse and enclose urethra;
- 3) Urethral opening moves progressively towards end of penis;
- 4) Labioscrotal swellings fuse to form scrotum.

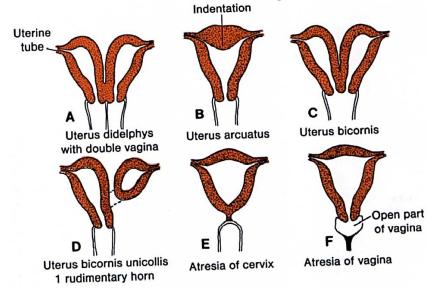
a. Descent of Testis (3-9m)



- ▶ 3-9m: testes descend through the inguinal canal into the scrotum
 - \Box 3m: descent to **iliac fossa**
 - □ 4-7m: **deep inguinal ring**
 - □ 7m: through **inguinal canal**
 - □ 8m: external inguinal ring
 - □ 9m: enter scrotum



- Testicular descent occurs in two distinct and sequential phases:
 - □ **Transabdominal phase**: development and growth of **gubernaculum** pulls testis towards base of abdomen
 - \rightarrow Regulated by insulin-like factor 3 (INSL3)
 - $\Box \quad Inguino-scrotal phase: development of cranial suspensory ligament$ $(cranial portion of gubernaculum) blocked \rightarrow regression of gubernaculum$
 - \rightarrow testis go through inguinal canal into scrotum
 - \rightarrow Regulated by **testosterone**
- **Processus vaginalis**: evagination of peritoneum into the scrotum
 - Descend along with descent of testis
 - □ Carries extensions of layer of abdominal wall → forms walls of inguinal canal,
 spermatic cord and testis
- After descent of testis, abdominal wall closes at deep and superficial inguinal rings to form inguinal canal
 - Deep inguinal ring marked by opening in transversalis fascia
 - Superficial inguinal ring marked by opening in external oblique aponeurosis
 - \Box Failure of closure \rightarrow indirect inguinal hernia



F. Congenital Anomalies of Genital System

- Abnormal number of sex chromosome:
 - □ Eg. **Klinefelter syndrome** (XXY, 47): testicular dysgenesis of semniferous tubules
 - Eg. Turner's syndrome (XO, 45): ovarian dysgenesis
- Phenotypic defects or pseudohermaphroditism:
 - □ **Hermaphroditism**: genetic intersex (due to mosaic etc.)
 - □ **Pseudohermaphroditism**: genotypic sex masked by phenotypic appearance that closely resembles the other sex
 - □ Caused by biochemical lesion
 - \Box Eg. and rogen insensitivity \rightarrow testicular feminization
 - \rightarrow Have normal chromosomes (46, XY)
 - \rightarrow Eg. non-binding of testosterone to androgen receptors
 - → Eg. androgens in peripheral tissue converted by aromatase enzymes to oestrogens
- Developmental arrest in male \rightarrow external genitalia defect
 - Eg. epispadia, hypospadias, micropenis
- Developmental arrest in female
 - □ Eg. failure by oviduct openings to develop
- 1. Cryptorchidism and Ectopic Testicles

- Cryptorchidism: hidden testes
- Both cryptorchidism and ectopic testis can be caused be abnormal descent of testis
- Testis can be found along the original position of gubernaculum or in nearby areas

2. Malformations in Uterus and Vagina

- Uterus didelphys: presence of two uteruses
 - Due to partial failure by paramesonephric ducts to fuse
- ▶ Uterus arcuatus: uterine cavity displays a concave contour towards the fundus
 - Due to incomplete resorption of uterine septum
- Uterus bicornis: separation of uterus into two horns by a septum
 - Due to incomplete resorption of uterine septum
- Uterus bicornis unicollis: separation of one uterine horn from the other
 - Due to complete failure by paramesonephric ducts to fuse
- Atresia of cervix: absence of cervical opening
 - Due to failure of canalization between vaginal lumen and uterus
- Atresia of vagina: absence of vaginal opening
 - Due to failure of complete formation of sinovaginal bulbs
- 3. Congenital Adrenal Hyperplasia

Figure 13–17 External genitalia of a newborn female infant with **congenital adrenal hyperplasia** (CAH). The virilization was caused by excessive androgens produced by the suprarenal glands during the fetal period. Note the enlarged clitoris and fusion of the labia majora to form a scrotum