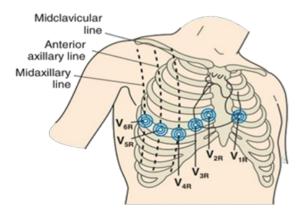


Department of Anesthesia Techniques

ECG IV

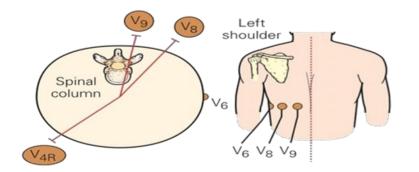

Dr. Mohammed Sami Mohammed.sami.hasan@uomus.edu.iq

The Right-Sided 12-Lead ECG

The limb leads are placed as usual but the chest leads are a mirror image of the standard 12-lead chest placement.
 The ECG machine cannot recognize that the leads have been reversed. It will still print "V₁–V₆" next to the tracing. Be sure to cross this out, and write the new lead positions on the ECG paper.

Chest Leads	Position	
V _{1R}	4th Intercostal space to left of sternum	
V _{2R}	4th Intercostal space to right of sternum	
V _{3R}	Directly between V _{2R} and V _{4R}	
V _{4R}	5th Intercostal space at right midclavicular lin	
V _{5R}	Level with V4R at right anterior axillary line	
V _{6R}	Level with V _{5R} at right midaxillary line	

Clinical Tip: Patients with an acute inferior MI should have right-sided ECGs to assess for possible right ventricular inferction



The 15-Lead ECG

Areas of the heart that are not well visualized by the six chest leads include the wall of the right ventricle and the posterior wall of the left ventricle. A 15-lead ECG, which includes the standard 12 leads plus leads V_{4R}, V₈, and V₉, increases the chance of detecting an MI in these areas.

Chest Leads	Electrode Placement	View of Heart
V_{4R}	5th Intercostal space in right anterior midclavicular line	Right ventricle
Va	Posterior 5th intercostal space in left midscapular line	Posterior wall of left ventricle
V9	Directly between V ₈ and spinal column at posterior 5th intercostal space	Posterior wall of left ventricle

Clinical Tip: Use a 15-lead ECG when the 12-lead is normal but the history is still suggestive of an acute infarction.

Components of an ECG

Electrical Components		
Deflection	Description	
P Wave	First wave seen Small rounded, upright (positive) wave indicating atrial depolarization (and contraction)	
PR Interval	Distance between beginning of P wave and beginning of QRS complex Measures time during which a depolariza- tion wave travels from the atria to the ventricles	
QRS Interval	 Three deflections following P wave Indicates ventricular depolarization (and contraction) Q Wave: First negative deflection R Wave: First positive deflection S Wave: First negative deflection after R wave 	
ST Segment	Distance between S wave and beginning of T wave Measures time between ventricular depolarization and beginning of repolarization	
T Wave	Rounded upright (positive) wave following QRS Represents ventricular repolarization	
QT Interval	Measured from beginning of QRS to end of T wave. Represents total ventricular activity.	
U Wave	Small rounded, upright wave following T wave Most easily seen with a slow HR. Represents repolarization of Purkinje fibers.	

Reporting an ECG recording

The reporting of an ECG recording is best done in a methodical

manner to ensure that the report

is comprehensive and doesn't overlook any potentially important details

Patient Data

Begin by checking key information on the ECG and/or request

form relating to the patient:

- Patient name
- Date of birth
- Identification number (e.g. hospital number)
- Reason for the request
- Relevant past medical history
- Relevant medication

Technical Data

- Date and time of recording
- Paper speed and calibration
- Technical quality
- Any atypical settings
- Additional leads (e.g. posterior leads, right-sided chest leads)
- Physiological manoeuvres (e.g., ECG recorded during deep inspiration)
- Diagnostic or therapeutic manoeuvres (e.g. ECG recorded during carotid sinus massage)

ECG Fundamentals :

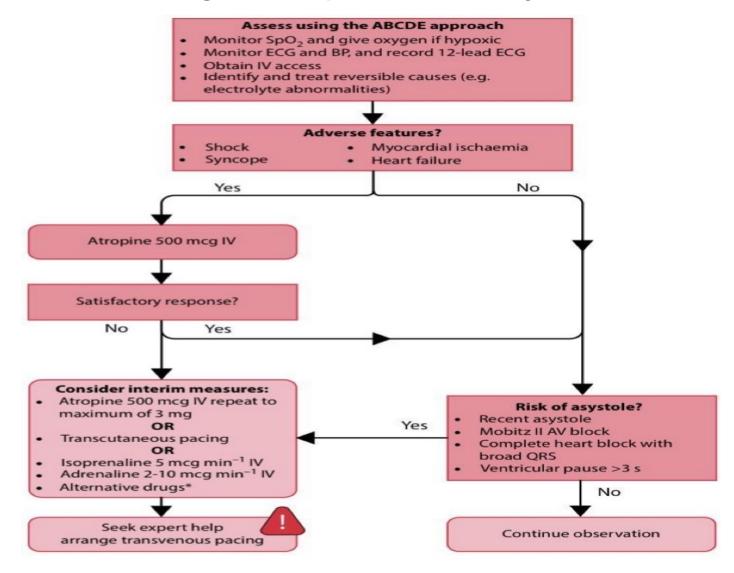
1- Rate

- 2- Rhythm
- Supraventricular
- Ventricular
- Conduction problems
- 3- Axis

ECG Details

Next, review the individual features of the ECG using a step-by-step approach. Describe:

- P wave
- PR interval
- Q wave
- QRS complex
- ST segment
- T wave
- QT interval
- U wave


Heart Rate

- * Once you have measured the heart rate, you need to decide whether it is normal or abnormal.
- * As a general rule, a heart rate between 60 and 100/min is normal.
- * If the rate is below 60/min, the patient is said to be bradycardic. With a heart rate above 100/min, the patient is tachycardic.
- * Therefore, the two questions you need to ask about heart rate are:
- 1. Is the heart rate below 60/min?
- 2. Is the heart rate above 100/min?

Is The Heart Rate Below 60/Min?

- * Bradycardia is defined as a heart rate below 60/min. Identification of the cardiac rhythm and any conduction disturbances is essential
- * Problems to consider in the bradycardic patient are:
- 1. Sinus bradycardia
- 2. Sick sinus syndrome

Management of patient with bradycardia

* Alternatives include:

- Aminophylline
- Dopamine
- Glucagon (if bradycardia is caused by beta-blocker or calcium channel blocker)
- Glycopyrrolate (may be used instead of atropine)

Is The Heart Rate Above 100/Min?

- * Tachycardia is defined as a heart rate above 100/m
- * When Begin the process of identification by checking whether the QRS complexes are :
 - 1. Narrow (<3 small squares)
 - 2. Broad (>3 small squares)

Narrow-complex tachycardias

always arise from above the ventricles – that is, they are supraventricular in origin.

- The possibilities are:
- Sinus tachycardia
- Atrial tachycardia
- Atrial flutter
- Atrial fibrillation
- AV re-entry tachycardia (AVRT)
- AV nodal re-entry tachycardia (AVNRT)

Broad-complex tachycardia:

- Ventricular tachycardia
- Accelerated idioventricular rhythm
- Torsade's de pointes

Broad-complex tachycardia should also make you think of ventricular arrhythmias.

Management of tachycardia depends on the underlying rhythm

1. The first step is to assess the urgency of the situation – in the peri-arrest situation, use the ABCDE approach and assess the patient for adverse features


- 2. Clues to the nature of the arrhythmia may be found in the **patient's history**
- 3. Ask the patient about:
- **onset** palpitations start and stop (sudden or gradual)
- Whether there are any <u>situations in which they are more likely to happen (e.g. during exercise</u>, lying quietly in bed)
- How long they last <u>(duration)</u>
- Whether there are any **associated symptoms** (dizziness, syncope, falls, fatigue, breathlessness and chest pain)
- ask the patient to 'tap out' **how the palpitations feel** this will give you clues about the rate or slow) and rhythm (regular or irregular).

4. Also enquire about symptoms of related disorders (e.g. hyperthyroidism) and obtain a list of current medications .

5. Check for any drugs (e.g., salbutamol) that can increase the heart rate (positively chronotropic)

6. Do not forget to ask about caffeine intake (e.g., coffee, tea and energy drinks)

7. examination looking for evidence of hemodynamic disturbance (hypotension, cardiac failure and poor peripheral perfusion) and coexistent disorders (e.g., thyroid goiter)

An Approach to Heart Rhythms

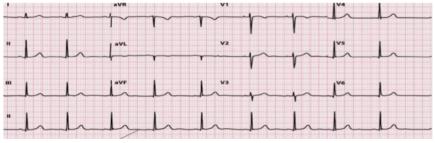
rhythm strip - a prolonged recording of the ECG from just one lead. Most ECG machines automatically

include a rhythm strip at the bottom of a 12-lead ECG

The rhythm strip :

The standard lead used for the rhythm strip is lead II, but alternative leads can be selected if it helps to clarify the cardiac rhythm

Identifying The Cardiac Rhythm


When you analyze the cardiac rhythm, always keep in mind the two primary questions that you are trying to answer:

Where does the impulse arise from?

- Sinoatrial (SA) node
- Atria
- Atrioventricular (AV) junction
- Ventricles

How is the impulse conducted?

- Normal conduction
- Impaired conduction
- Accelerated conduction (e.g. Wolff-Parkinson-White [WPW] syndrome)

The following seven questions will help you to narrow down the possible diagnoses:

- 1. How is the patient?
- 2. Is ventricular activity present?
- 3. What is the ventricular rate?
- 4. Is the ventricular rhythm regular or irregular?
- 5. Is the QRS complex width normal or broad?
- 6. Is atrial activity present?
- 7. How are atrial activity and ventricular activity related?

1- How is the patient ?

The clinical context will also help you decide how urgently to deal with an arrhythmia. When assessing a 'sick' patient, use the ABCDE approach:

- Airway: Check for any evidence of airway obstruction
- **Breathing**: Assess the patient's breathing, paying attention to respiratory rate, chest percussion and auscultation, and oxygenation
- **Circulation**: Assess the patient's circulation, including pulse rate, blood pressure and capillary refill time
- **Disability**: Assess level of consciousness and neurological status
- Exposure: Ensure adequate exposure to permit a full examination

As you assess a patient with an arrhythmia, be alert for 'adverse features' which indicate **hemodynamic instability:**

- **Shock**: hypotension (systolic blood pressure <90 mmHg), clamminess, sweating, pallor, confusion or reduced conscious level
- Syncope: As a consequence of cerebral hypoperfusion
- Myocardial ischemia: Indicated by ischemic chest pain and/or ischemic ECG changes
- Heart failure: Pulmonary oedema, elevated jugular venous pressure, peripheral/sacral oedema

2- Is Ventricular Activity Present ?

Look at the ECG as a whole for the presence of electrical activity. If there is none, Assess:

- The patient (do they have a pulse?)
- The electrodes (has something become disconnected?)
- The gain setting (is the gain setting on the monitor too low?)

If QRS complexes are present, move on to the next question.

3- What Is the Ventricular Rate?

Ventricular activity is represented on the ECG by QRS complexes. Once you have calculated the

ventricular rate, you will be able to classify the rhythm as:

• Bradycardia (<60 beats/min)

- Normal (60-100 beats/min)
- Tachycardia (>100 beats/min)

4- Is The Ventricular Rhythm Regular or Irregular ?

assess regularity. Look at the spacing between QRS complexes - is it the same throughout the rhythm strip?

Once you have assessed the regularity, you will be able to classify the ventricular rhythm as:

- Regular (equal spacing between QRS complexes)
- Irregular (variable spacing between QRS complexes)

Table 6.2 Regular and irregular cardiac rhythms

- Regular rhythms
 - Sinus rhythm
 - Sinus bradycardia
 - Sinus tachycardia
 - Atrial flutter (if constant AV block, e.g. 2:1)
 - Atrial tachycardia
 - AV re-entry tachycardia (AVRT)
 - AV nodal re-entry tachycardia (AVNRT)
 - Accelerated idioventricular rhythm
 - Monomorphic ventricular tachycardia (VT)
 - Polymorphic ventricular tachycardia (torsades de pointes)
 - Third-degree AV block (if regular escape rhythm)
- Irregular rhythms
 - Sinus arrhythmia (rate varies with respiration)
 - Ectopic beats (atrial, junctional, ventricular)
 - Atrial fibrillation
 - Atrial flutter (if variable AV block)
 - Sinus arrest and SA block
 - Mobitz type I second-degree AV block
 - Mobitz type II second-degree AV block

5- Is The QRS Complex Width Normal or Broad ?

By answering this question, you will have narrowed down the origin of the impulse to one half of the heart.

This allows us to use the width of the QRS complex to try to determine how the ventricles were depolarized.

If the QRS complex is narrow (<3 small squares), the ventricles must have been rapidly

depolarized by an impulse that came through the AV node - the only way into the HisPurkinje

system. The patient is then said to have a supraventricular rhythm (arising from above the

ventricles).

If the QRS complex is broad (>3 small squares), there are two possible explanations.

1. The impulse may have arisen from within the ventricles and thus been unable to travel via the HisPurkinje system (ventricular rhythm).

2. The impulse may have arisen from above the ventricles but not been able to use all the His- Purkinje system because of a conduction problem (supraventricular rhythm with aberrant

conduction).

6- Is Atrial Activity Present?

presence of P waves indicates atrial depolarization.

However, it does not mean that the depolarization necessarily started at the SA node. P waves will appear during atrial depolarization regardless of where it originated

7- How Are Atrial Activity and Ventricular Activity Related ?

- If every QRS complex is associated with a P wave, this indicates that the atria and ventricles are being activated by a common source. This is usually, but not necessarily, the SA node (e.g. AV junctional rhythms will also depolarize both atria and ventricles).
 - If there are more P waves than QRS complexes, conduction between atria and ventricles is being either partly blocked (with only some impulses getting through) or completely blocked (with the ventricles having developed their own escape rhythm).

Rhythm origin	Rhythm conduction	QRS complex
Supraventricular	Normal	Narrow
Supraventricular	Aberrant (e.g. bundle branch block)	Broad
Ventricular	Myocyte to myocyte	Broad

 Table 6.3
 Broad-complex versus narrow-complex rhythms

Note: Only supraventricular rhythms with normal conduction can gain access to the His–Purkinje system to rapidly depolarize the ventricles.

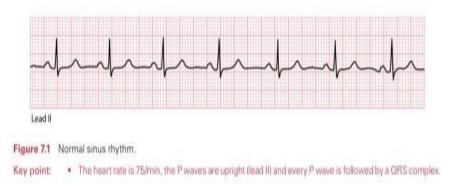
Supraventricular rhythms

Supraventricular rhythms are those which arise above the level of the ventricles

The supraventricular rhythms we will consider are:

- 1. Sinus rhythm
- 2. Sinus arrhythmia
- 3. Sinus bradycardia
- 4. Sinus tachycardia
- 5. Sick sinus syndrome
- 6. Atrial ectopic beats
- 7. Atrial fibrillation
- 8. Atrial flutter
- 9. Atrial tachycardia
- 10. Focal atrial tachycardia
- 11. Multifocal atrial tachycardia
- 12. Atrioventricular re-entry tachycardia (AVRT)
- 13. Atrioventricular nodal re-entry tachycardia (AVNRT)

1- Sinus Rhythm

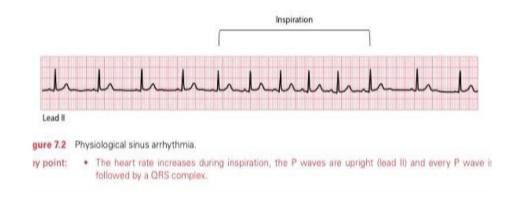

Sinus rhythm is the normal cardiac rhythm, in which the SA node acts as the natural pacemaker,

discharging at a rate of 60-100/min

The characteristic features of sinus rhythm are:

- Heart rate is 60-100/min
- P wave morphology is normal (e.g. upright in lead II and inverted in lead aVR)
- Every P wave is followed by a QRS complex

Normal SINUS RHYTHM

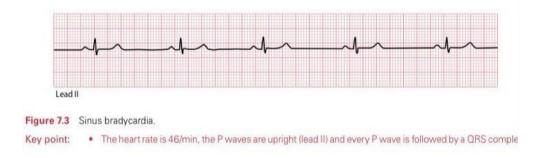


2- Sinus Arrhythmia

• Sinus arrhythmia is the variation in heart rate that is seen during inspiration and expiration The characteristic features of sinus arrhythmia are:

• The heart rate varies with respiration, with the difference between the longest and shortest P-P intervals being >0.12 s (3 small squares)

- During inspiration, the heart rate increases as a reflex response to the increased volume of blood returning to the heart (which triggers baroreceptors that inhibit vagal tone)
- During expiration, the heart rate decreases as a reflex response to the decreased volume of blood returning to the heart (vagal tone is no longer inhibited)



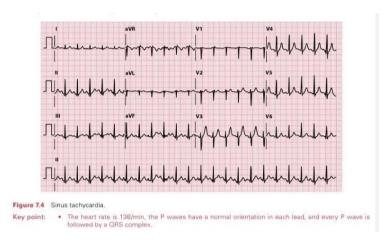
- P wave morphology is normal (e.g. upright in lead II and inverted in lead aVR)
- Every P wave is followed by a QRS complex

3- Sinus Bradycardia

Sinus bradycardia is sinus rhythm with a heart rate of less than 60/min **The characteristic features of sinus bradycardia are:**

- The heart rate is less than 60/min
- P wave morphology is normal (e.g. upright in lead II and inverted in lead aVR)
- Every P wave is followed by a QRS complex

always consider the following possible causes:


- 1- Drugs (e.g. digoxin, beta blockers including beta blocker eye drops)
- 2- Ischemic heart disease and myocardial infarction
- 3- Hypothyroidism
- 4- Hypothermia
- 5- Electrolyte abnormalities
- 6- Obstructive jaundice
- 7- Uremia
- 8- Raised intracranial pressure
- 9- Sick sinus syndrome

4- Sinus Tachycardia

Sinus tachycardia is sinus rhythm with a heart rate of greater than 100/min

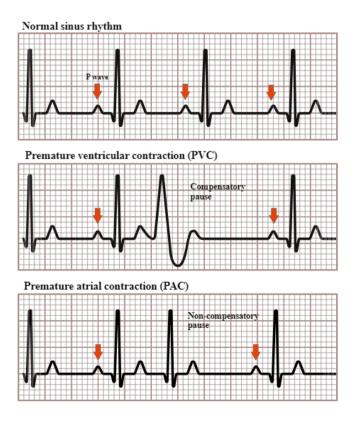
The characteristic features of sinus tachycardia are:

- The heart rate is greater than 100/min
- P wave morphology is normal (e.g. upright in lead II and inverted in lead aVR)
- Every P wave is followed by a QRS complex

Always consider the following causes as well:

- **1-** Drugs, e.g. adrenaline, atropine, salbutamol (do not forget inhalers and nebulizers), caffeine and alcohol
- 2- Ischemic heart disease and acute myocardial infarction
- 3- Heart failure
- 4- Pulmonary embolism
- 5- Fluid loss
- 6- Anemia
- 7- Hyperthyroidism

5- Atrial Ectopic Beats

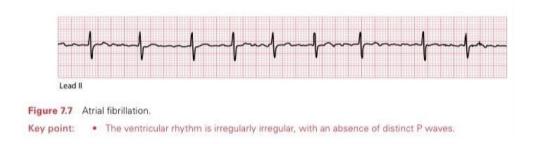

Atrial ectopic beats are also called atrial extrasystoles, atrial premature complexes (APCs), atrial

premature beats (APBS) or premature atrial contractions (PACs).

Atrial ectopic beats are identified by a P wave that appears earlier than expected and has a

different shape to the normal P waves. Although atrial ectopic beats will usually be conducted to

the ventricles and give rise to a QRS complex,


6- Atrial Fibrillation

• The basis of AF is rapid

- No P waves are seen
- ECG baseline consists of low-amplitude oscillations (fibrillation or f waves).
- Although 400-600 impulses reach the AV node every minute, only some will be transmitted to the ventricles.
- The ventricular rate is typically fast (100-180/min), although the rate can be normal or even slow. Transmission of the atrial impulses through the AV note is erratic, making the ventricular (QRS complex) rhythm 'irregularly irregular'.

Five categories of AF are recognized:

- 1. First-diagnosed AF: Namely, patients presenting in AF for the first time
- 2. Paroxysmal AF: Self-terminating episodes of AF, typically lasting <48 hours although they can last up to 7 days
- 3. Persistent AF: An episode of continuous AF lasting >7 days or requiring cardioversion
- 4. Long-standing persistent AF: Where AF has been present for at least one year, but there is still an aim to restore sinus rhythm
- 5. Permanent AF: Continuous AF where the arrhythmia is 'accepted' and there is no plan to restore sinus rhythm

Key issues to consider in managing patients with AF are :

- Reducing stroke risk
- Ventricular rate control
- Rhythm control

Reducing stroke risk

- The presence of AF increases a patient's stroke risk fivefold and one in five strokes occurs as a result of
- Strokes that occur in AF are more likely to be disabling or fatal.
- Reducing stroke risk in AF is therefore important, and the approach can be summarized as follows:

✓ For patients with valvular AF (including rheumatic valve disease and prosthetic valves), anticoagulation is recommended for all, unless there are contraindications ✓ For those with non-valvular AF, anticoagulation is recommended for all, except in those patients who are at low risk (aged <65 years and lone AF), or with contraindications

Ventricular rate control

• Commonly used drugs for ventricular rate control include beta blockers and nondihydropyridine calcium channel blockers (verapamil or diltiazem).

- Digoxin is good for rate control at rest but is poor at rate control during exercise.
- Although amiodarone is effective for rate control,
- Amiodarone also carries the risk of chemical cardioversion to sinus rhythm, which could lead to thromboembolism unless the patient has been anticoagulated, where appropriate.
- Rate control is the preferred strategy (instead of rhythm control) in elderly patients and those with minimal symptoms
- aiming for a resting ventricular rate <110/min. If patients remain symptomatic, a stricter rate control strategy can be used, aiming for a resting heart rate <80/min (with a heart rate <110/min during moderate exercise).
- If drug therapy cannot attain satisfactory rate control in AF, and restoration of sinus rhythm

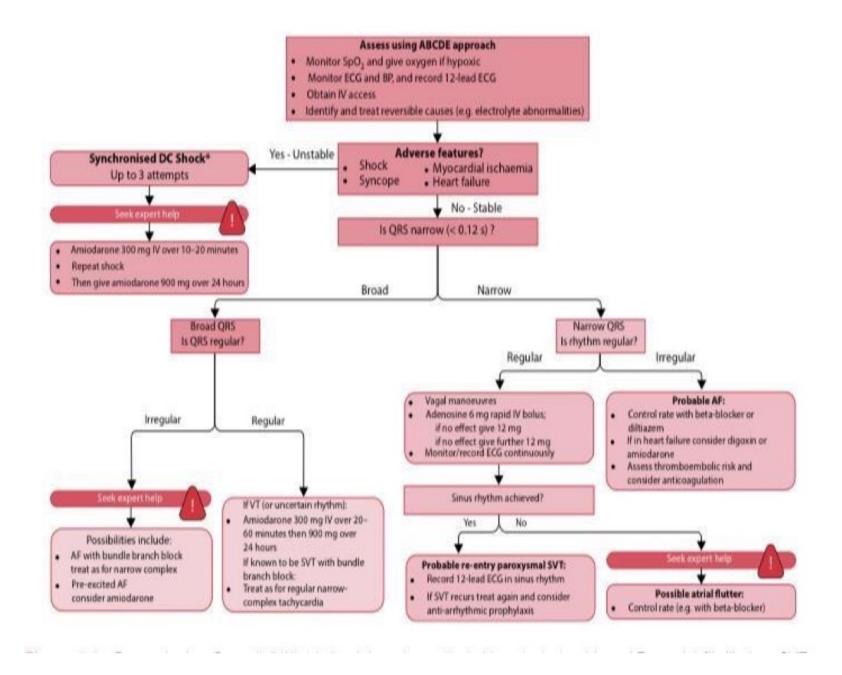
cannot be achieved, an alternative strategy is to undertake ablation of the AV node plus permanent pacing.

Rhythm control

Patients with symptomatic AF despite adequate ventricular rate control should be considered for a

rhythm control strategy, where the aim is to restore and maintain sinus rhythm.

Table 7.1 EHF	RA classification of AF symptoms	
EHRA class	Severity of AF symptoms	
1	Asymptomatic	
11	Mild symptoms (not affecting daily activities)	
111	Severe symptoms (affecting daily activities)	
IV	Disabling symptoms (unable to undertake daily activities)	


Cardioverting to sinus rhythm

- For those with recent onset AF and who are hemodynamically unstable, urgent electrical cardioversion is advised.
- Similarly, patients who e stable and who present within 48 hours of the onset of AF can

have urgent electrical cardioversion

• In both cases, anticoagulant cover using intravenous unfractionated heparin is advised

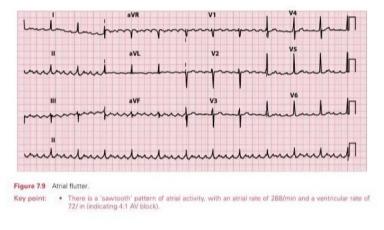
initially, followed by a minimum of 4 weeks' oral anticoagulation (unless the patient is aged <65 years and has had 'lone' AF).

7- Atrial Flutter

- In atrial flutter the atrial rate is usually 250-350/min
- and often almost exactly 300/min.
- The AV node cannot normally keep up with such a high atrial rate and AV block occurs.
- This is most commonly 2:1 block, where only alternate atrial impulses get through the AV

node to initiate a QRS complex, although 3:1, 4:1 or variable degrees of block are also seen.

- Thus, the ventricular rate is less than the atrial rate, and is often 150, 100 or 75/min. You should always suspect atrial flutter with 2:1 block when a patient has a regular tachycardia with a ventricular rate of about 150/min.
- The rapid atrial rate gives a characteristic 'sawtooth' appearance to the baseline of the ECG, made up of flutter or 'F' waves.


The rapid atrial rate gives a characteristic 'sawtooth' appearance to the baseline of the ECG, made

up of flutter or 'F' waves.

the characteristic features of atrial flutter are:

- Atrial rate around 300/min
- 'Sawtooth baseline
- AV block (commonly 2:1, but can be 3:1, 4:1 or variable)

Atrial flutter carries a risk of thromboembolism, and patients with atrial flutter are usually assessed for anticoagulant therapy according to the same guidelines as those used in AF (see earlier).

Treatment of Atrial Flutter

Medicines for the treatment of atrial flutter include:

- Medicines to slow down heart rate: Calcium channel blockers and beta-blockers.
- Medicines to stop the abnormal rhythm: Antiarrhythmic drugs.

Procedures:

Procedures to treat atrial flutter include:

- Cardioversion via electrical shock.
- Catheter ablation, a procedure a provider can use to destroy the tissue that's creating abnormal signals.
- Temporary change in pacemaker or implantable cardioverter defibrillator (ICD) setting

Ventricular fibrillation

ECG show irregular waves varying morphology and amplitude

Causes

- √ IHD
- ✓ Antiarrhythmic drugs ✓ Severe hypoxia

Management

• DC shock: immediate non synchronized DC shock at 200 J if ineffective repeated at 200-360 J

- IF DC shock fails start basic and advanced life support
- Drugs
- \checkmark Amiodarone id drug of choice
- \checkmark Others: lidocaine procainamide

MCQ test

- 1- Conduction system structures and its functions (all true except one)
 - a) SA node=pacemaker of the heart
 - b) Internodal pathway=direct impulse between SA and AV node
 - c) AV node=slows impulse
 - d) His bundle=transmits impulses between branches
 - e) Left bundle branch=conduct impulses that lead to right ventricles
- 2- Leads of ECG (all true except one)
 - a) Lead I=view of lateral heart
 - b) Lead II=view of inferior heart
 - c) Lead III=view of posterior of heart
 - d) aVL= view lateral of the heart
 - e) aVF= view inferior of the heart
- 3- the characteristic features of atrial flutter are (all true except one)
 - a) Atrial rate around 300/min
 - b) Sawtooth baseline
 - c) carries a risk of thromboembolism
 - d) treated by Cardioversion via electrical shock.
 - e) No response to calcium channel blockers
- 4- Atrial Fibrillation (all true except one)
 - a) The basis of AF is rapid
 - b) No P waves are seen
 - c) ECG baseline consists of low-amplitude oscillations (fibrillation or f waves).
 - d) The ventricular rate is typically fast (100-180/min)
 - e) No risk for thromboembolic events
- 5- Causes of sinus tachycardia (all true except one)

- a) salbutamol
- b) acute myocardial infarction
- c) Heart failure
- d) Pulmonary embolism
- e) Fluid overload
- 6- Narrow complex tachycardia (all true except one)
 - a) Sinus tachycardia
 - b) Atrial tachycardia
 - c) Atrial flutter
 - d) Atrial fibrillation
 - e) Ventricle tachycardia
- 7- Located at 5th. Intercostal space at left midclavicular line
 - a) V1
 - b) V2
 - c) V4
 - d) V5
 - e) V6
- 8- All the following drugs are used in management of bradycardia except one
 - a) Glycopyrrolate
 - b) Isoprenaline
 - c) Atropine
 - d) Glucagon
 - e) Atenolol
- 9- Ventricular fibrillation (all true except one)
 - a) Irregular waves
 - b) Caused by sever hypotension
 - c) Treated by DC shock

- d) Alternative management is amiodarone
- e) varying morphology and amplitude.
- 10- Rate control drugs (all true except one) a) beta blockers

 - b) verapamil
 - c) diltiazem).
 - atropine d)
 - amiodarone e)
- 11- Dominant pacemaker of the heart is
 - a) AV node
 - b) SA node
 - c) Purkinje fiber
 - d) Bundle of His
 - e) None of the above