
Facultat d'Informàtica de Barcelona (FIB)
Barcelona School of Informatics

Universitat Politècnica de Catalunya (UPC)
BarcelonaTech

GL-Get: A dependency manager
for software projects

Jordi Vilalta Prat

September 2016

Director: Lluís Solano Albajes
Department of Computer science (CS)

Informatics Engineering (2003)

2

Thanks
This is the end of a very important phase for me,

and it wouldn’t have been possible for me to reach it
without the help of many great people.

Erica and litle Aina, who help me wake up every day.
My parents for their unconditional support.

My coworkers in general, for making me want to go to work everyday…
even when you ask me “How’s GL-Get going? Already finished?”
The GL-Get team: Albert, Jeremy and Alex (just pish to master!)

And the rest of the company: you rock!

3

https://adsoftheworld.com/media/print/rashers_pish

4

Table of contents
 Table of figures..8
 Table of tables..9
 Part 1. Introduction..11

1. Preamble..13
1.1. Context...13
1.2. Motivation..14
1.3. Objectives...15
1.4. Document structure..15

2. Beginnings...17
2.1. Initial status..17
2.2. Team...17
2.3. Programming languages...17

 Part 2. Development..19
3. Specification..21

3.1. Problem..21
3.1.1. Sharing code...21
3.1.2. Versioning...22
3.1.3. Project file creation..23
3.1.4. Continuous integration...25

3.2. Analysis of the existing tools...25
3.2.1. System package managers..26
3.2.2. Language package managers..27
3.2.3. Project dependency managers..28
3.2.4. Project file creators...28
3.2.5. Build tools..28
3.2.6. Continuous integration tools..28

3.3. Requirements analysis..29
3.3.1. Functional requirements...29
3.3.2. Non-functional requirements..32

3.4. Used tools...34
3.5. Use cases..35

3.5.1. Actors..35
3.5.2. Use case diagram..35
3.5.3. Use case description...37

4. Design..43
4.1. Concepts...43
4.2. System architecture..44
4.3. Application architecture...46

4.3.1. Actions and command line options..46
4.3.2. Configuration..47
4.3.3. Logging..48
4.3.4. Platform specification...49
4.3.5. VCS abstraction..52
4.3.6. Embedded Premake integration..54
4.3.7. Embedded scripts...54
4.3.8. Source extractor..55
4.3.9. Build system...55

5

4.3.10. Remote build system..56
4.3.11. Package definition..57
4.3.12. Manifest..58
4.3.13. Package cache...60
4.3.14. Premake extension and translation tree..62
4.3.15. Package resolution..63
4.3.16. Package checkout...64
4.3.17. Workspace..67

5. Implementation..69
5.1. Lua code...69

5.1.1. Arguments checking...69
5.1.2. Modules..69
5.1.3. Classes..71
5.1.4. Error handling...73

5.2. C/C++ code..75
5.3. Standalone executable..76

5.3.1. Embedded scripts...76
5.3.2. Dependencies..77
5.3.3. Main application...78

5.4. Bootstrapping...79
5.5. External libraries..80
5.6. Tests..81

6. Planning and costs...83
6.1. Planning...83
6.2. Costs...87

6.2.1. Human resources..87
6.2.2. Other costs..87
6.2.3. Total cost computation...88

7. Conclusions..89
7.1. Achieved goals...89
7.2. Problems found..89

7.2.1. Lack of design..89
7.2.2. Lua..90

7.3. Future work..91
7.3.1. Web service..91
7.3.2. Add static typing...91
7.3.3. Add version compatibility checks..93
7.3.4. Testing framework..94
7.3.5. Modularization...94
7.3.6. Use a single programming language..95
7.3.7. Improve extensibility..95

7.4. Personal conclusions..96
8. Bibliography..97

 Part 3. Annexes..101
9. Annex I: User manual..103

9.1. Install..103
9.1.1. Download...103
9.1.2. Install..103
9.1.3. Basic configuration...103

9.2. Configuration...104

6

9.3. VCS configuration...107
9.3.1. VCS types...107
9.3.2. Tips & tricks...108

9.4. Actions..111
9.4.1. Creating a package..111
9.4.2. Checking out...111
9.4.3. Updating...112
9.4.4. Generating the project files..112
9.4.5. Building the projects...112
9.4.6. Running the tests..112
9.4.7. Adding a project...113
9.4.8. Adding a dependency...113
9.4.9. Validating the package..113

10. Annex II: Command line options reference...115
10.1. Global options..115
10.2. add-dependency action...116
10.3. add-project action...116
10.4. build action...117
10.5. checkout action...117
10.6. create action..118
10.7. generate action..118
10.8. glget action...118

10.8.1. release action..118
10.9. info action...119
10.10. show-config action...119
10.11. show-dependencies action..119
10.12. show-version action..119
10.13. test action..119
10.14. update action..120
10.15. validate action..120

7

Table of figures
Figure 1: Some of the videogames developed in Gameloft Barcelona: Asphalt 8, Despicable Me:
Minion Rush, The Adventures of Tintin and Six Guns..13
Figure 2: Logical library hierarchy...21
Figure 3: Physical checkout hierarchy...21
Figure 4: Shared libraries folder...22
Figure 5: In lineal development, each project has to keep its own local patches...............................22
Figure 6: In branched development, the library owner can release hotfixes of previous releases.....22
Figure 7: Regenerating the project files for all the targets is as easy as running a batch file.............24
Figure 8: Basic use cases..36
Figure 9: Structure management use cases...36
Figure 10: Release management use cases...36
Figure 11: Use case flowchart..37
Figure 12: System architecture and components interaction..45
Figure 13: Options classes..46
Figure 14: Valid toolsets definition..51
Figure 15: VCS abstraction..53
Figure 16: Build system abstraction...55
Figure 17: Manifest data structure..59
Figure 18: Package cache...61
Figure 19: Package resolution tree...63
Figure 20: Checkout location...65
Figure 21: Project group selection..66
Figure 22: Checkout strategy..66
Figure 23: Package checkout..66
Figure 24: Fallback values using metatables..71
Figure 25: GL-Get’s Premake files...79
Figure 26: The GL-Get bootstrap process..80
Figure 27: Gantt chart...85

8

Table of tables
Table 1: Comparison of system package managers..26
Table 2: Available language package managers...27
Table 3: Common C++ build tools...28
Table 4: Example of valid combinations of platforms, architectures, compilers, etc.........................50
Table 5: Summary of the Gantt chart (hours spent on tasks per developer).......................................84
Table 6: Hourly wages per role...87
Table 7: Human resource costs...87
Table 8: Other costs..88
Table 9: Computation of the total development cost..88

9

10

 PART 1. INTRODUCTION

11

12

1. Preamble

1. Preamble

1.1. Context
The videogames industry has been one of the fastest growing for the last years, geting really
close in revenue to other entertainment industries like cinema. But competitivity is also
increasing, forcing companies to find new areas to expand, and ways to reduce costs.

Gamelof [1] is one of the leader companies worldwide in the mobile videogames industry. Since
it was founded in 2000, it has expanded to having more than 5000 developers in more than 20
studios. It started by developing games for feature phones, but quickly jumped to the
smartphones and tablets boat. It has created very successful franchises like Asphalt, Modern
Combat, Order and Chaos or N.O.V.A., but it has also created games based on existing licenses,
like Ice Age, Spiderman, Prince of Persia, Assassin’s Creed, CSI, etc.

The Barcelona studio of Gamelof has been alive for more than 10 years and it has released
several big quality titles: Asphalt 8, Despicable Me: Minion Rush, The Adventures of Tintin and
Six Guns, to name a few. It’s also been a pioneer on the so-called «freemium» model, by releasing
the former 2 titles as free-to-play with in-app purchases for extra goods, making them the most
successful games of the company to date.

Figure 1: Some of the videogames developed in Gameloft Barcelona: Asphalt 8, Despicable Me:
Minion Rush, The Adventures of Tintin and Six Guns

In order to continue being competitive, the Barcelona studio is working on redefining processes
and creating new tools to improve the development work-flow, while having an eye on future
projects. The mid-long term goal is to reduce costs while improving the quality and
maintainability of the developed games.

13

1.2. Motivation

1.2. Motivation
The development process for triple-A videogames, even for the mobile ones, is very long and
complex, and it involves lots of diferent areas: artists, programmers, game designers, producers,
etc. Working on a videogame usually involves handling big amounts of data (tens of code libraries
and hundreds of gigabytes of assets).

Videogames usually do intensive usage of the device’s resources, so they’re developed using
native code (mainly C++) in order to take profit of each CPU cycle. In addition, there’s currently
many diferent platforms for mobile devices (iOS [2], Android [3], Windows Phone, Tizen [4], ...),
so the code has to be multi-platform. Managing this kind of projects is an important task, and
unfortunately the available tools nowadays aren’t very complete or they’re for a very specific
environment.

A task as simple as keeping the project files up to date and in a compilable status becomes
tedious when the multi-platform factor comes in: some platforms require the usage of specific
tools, and even full IDEs in order to generate its binaries. To name a few examples, in order to
build for iOS you must use Xcode on OS X, in order to build for Windows Phone you must use
Microsof Visual Studio on Windows, etc. In order to solve this issue there are some tools that can
generate the project files required for each platform by taking a file that contains a project
description. CMake [5], qmake [6] and Premake [7] are some of the most known tools for this
job. In the case of Gamelof Barcelona, Premake is used for this job.

Unfortunately this is just a small example of the dificulties found when having to manage big
sofware projects. Everything gets much more complex when sharing code among several
projects, and even more if it happens across several studios, like in the case of Gamelof.

Building code libraries is a very nice way to reuse code, but having the code of the library
separated from the user code means that when there’s a change in the library, all the projects
using it have to update. If there’s no kind of version locking, the code will simply break and stop
building. Managing a small number of dependencies could be done by hand, but it’s a chore and
it quickly becomes a source for human errors. For that we need a dependency manager tool,
which can make this process as simple as possible.

During the last few years some projects have emerged aiming at creating a C++ dependency
manager: conan [8], biicode [9], CPM [10], Pacm [11], CVM [12], and probably some more.
Unfortunately, many of these were just experiments or have been abandoned at the time of
writing. In addition none of these targeted Premake as its project generation system, so it would
make it harder to reuse the customization work already done at Gamelof. For these reasons it
was decided to create a new custom tool tailored at the company’s specific needs.

14

1.3. Objectives

1.3. Objectives
The project objective is the development of a multi-platform command line tool that helps in the
development of sofware applications. Its main task will be the management of sofware
dependencies, but at the same time it will ofer several complementary features that will help in
the videogames and libraries developers’ work-flow.

Some of these extra features could be build automation, unit test execution, version management,
partial library downloads (sources or binaries for a given platform, depending on whether we
want to work on a library or just use it as a dependency), management of shared folders where
packages used in several projects can be stored, etc.

This new tool should also integrate well with the current work environment and tools used at the
company, so the costs of adoption can be reduced to a minimum.

As a consequence, the usage of this tool should help the company achieving some objectives:

• Ease the creation, usage and management of sofware libraries

• Improve and optimize the development work-flow

• Process automation and human error reduction

In addition, some of the objectives for the tool were not defined at the moment of starting the
project, so part of the job is working closely with the rest of the team (the people considered to
be the clients of this project) to identify the rest of requirements or improvement points during
the development process.

1.4. Document structure
This document is split in 3 main parts: Introduction, Development and Annexes.

The Introduction describes the context of the project, what are the motivations for it and the
objectives. It also contains a brief history on the project’s origins and the team working on it, and
an explanation on a few of its implementation decisions.

The Development is the main part of this document. It covers the processes of specifications
gathering and analysis, design, and the implementation details. At the end there’s also the
planning and cost analysis and the conclusions.

The annexes contain big pieces of text that are part of the work or need to be referenced from
other parts of this document, but that would break the flow of the document if inlined. A few
examples are the user manual for the final application and the reference of the command line
options for the application.

15

16

2. Beginnings

2. Beginnings
This project is developed inside the Gamelof [1] company, where the author was already
working. This section describes the starting point for this project.

2.1. Initial status
The application development had already been started but it was in a proof of concept stage and
it was being developed on the spare time of a few co-workers.

That initial stage was developed as a Premake [7] extension. Premake is the project file
generation tool used in Gamelof Barcelona. It has a small core writen in C, but it’s designed to
be extensible using the Lua [13] programming language, and most of its functionality is writen
as Lua modules. Given the big amount of in-house Premake experience, its easy extensibility and
the quick development cycle thanks to most of its functionality being interpreted and not having
to recompile to test, it seemed like the best option for quickly prototyping the desired
functionality.

2.2. Team
The people who had been working on the proof of concept couldn’t continue developing it
because they had to focus on other projects, so short before the beginning of this project, a small
team was created to formalize the development: one of the people who worked on the proof of
concept was chosen as the project lead, and two more co-workers plus the author joined the
team as full time developers.

Having a team of 4 people (actually 3 full time developers) working on the same project would
push the development of the tool, but we would also have to coordinate what parts would
everyone work on. At the beginning we just had a few small tasks, so we used a small online tool
for task management and tracking called Asana [14] to get organized. We started each picking
the next task to work on from the backlog of pending tasks. Later on we started each focusing on
diferent parts of the development.

2.3. Programming languages
Since the proof of concept was already implemented in Lua as a Premake extension, we took that
as a base for our work and continued implementing most of the functionality in Lua. All of us
came from the C/C++ world and we didn’t have much experience with Lua, so at the beginning
we had to learn it and the first tasks served as a learning exercise.

At some points, where we tried to push the limits of Lua, we had to jump back to C or C++ in
order to plug native functionality to the Lua VM.

17

2.3. Programming languages

18

 PART 2. DEVELOPMENT

19

20

3. Specification

3. Specification
While the high level requirements were known beforehand, many details weren’t specified until
we faced new doubts in the course of the implementation. The requirements detailed here are a
compilation afer having run the project for some time.

3.1. Problem

3.1.1. Sharing code

Before starting this project, the whole development in the company relied on Subversion [15]
(SVN). Both source code and data was stored in a centralized Subversion repository in a fairly
monolithic way. There was an atempt to modularize projects: code was being split into libraries,
which were located in separate folders of the same repository. Thanks to Subversion’s externals
[16] method, one could build a single working copy that included checkouts of other repositories
in sub-folders of the main checkout. This allowed each library to specify their own dependencies
and have local references to them (Figure 2). In practice, it would lead to a lot of duplicated
checkouts when several libraries shared the same dependencies (Figure 3).

Library 1

Library 2 Library 3

Library 4

Figure 2: Logical library hierarchy

Library 1

Library 2 Library 3

Library 4 Library 4

Figure 3: Physical checkout hierarchy

It ended up wasting lots of hard drive space and network bandwidth, especially considering that
one of the lowest level and most shared libraries was Boost [17], which used around 3Gb for each
checkout. In addition, when working on several libraries at the same time, changes wouldn’t be
synchronized between checkouts of the same library, leading to confusing compilation errors.

In the end this approach proved impractical, and it was decided to put all the libraries together
on the same folder, either directly or as externals to their own repositories, so the checkouts
could be shared, as shown in Figure 4. Libraries had references to their dependencies in the upper
directory.

While it worked, it had several drawbacks. One always had to do a full checkout of the libraries
repository, even if just wanting to use a few of them. The versions of the dependent libraries
couldn’t be specified per project, they were determined by the parent folder which contained
them. All the projects contained on the same repository had to share the same versions of their

21

3.1. Problem

dependencies. Its main advantage (removing the dependency management) essentially returned
the monolithic feeling and lack of flexibility.

Figure 4: Shared libraries folder

3.1.2. Versioning

While keeping all projects on the same folder allowed them to be always in a consistent state, it
limited the development to a linear fashion. Subversion itself allowed branch and tag creation,
but the way the repositories were organized made it harder to use.

In the end some projects ended up collecting sets of patches with project-specific functionality,
or with fixes that were pending approval from the library owners. These patches were applied on
the local computer of each developer afer doing the checkout, making it harder to update, and it
was a complete chore to update the patches to newer versions of the original library.
Additionally, if these patches were ever adopted by the library owners, they would only be
released in a new version in the main development line, making it mandatory to update to the
latest release, which would probably break the API compatibility due to the accumulated changes
(Figure 5).

Introducing branches and release tags in the work-flow would allow these patches to be applied
on a branch at any point of the project history and release hotfix releases (Figure 6) that would
keep the API compatibility.

Figure 5: In lineal development, each project has
to keep its own local patches

Figure 6: In branched development, the library
owner can release hotfixes of previous releases

Having a good versioning system would isolate the development line of each library, leting the
authors of each library decide when to introduce breaking changes, keeping the option of coming
back to an earlier release and adding the necessary fixes to support users of those versions. It
would also allow sharing of those fixes among projects instead of being exclusively available to
the owner of the patch.

22

Libraries folder

Library 2 Library 3 Library 4Library 1

1.0.0 1.1.0

+ local patches

2.0.0

Incompatible
version with
the patches

1.1.0 2.0.0

1.1.1

1.0.0

Compatible
version with
the patches

3.1. Problem

3.1.3. Project file creation

Targeting many diferent platforms sometimes enforces using specific toolchains that require
project files made explicitly for them. Doing it manually would be a lot of work and it would be
an error-prone process (it’s easy to miss changes while synchronizing platforms).

Fortunately there are already good tools to handle this problem. Premake [7] is one of them, and
it was already adopted before the start of this project. Premake allows the user to create scripts
(usually called premake5.lua) that describe sofware projects in a platform-independent way. A
typical basic Premake script would look like this:

workspace "HelloWorld"
 configurations { "Debug", "Release" }

project "HelloWorld"
 kind "ConsoleApp"
 language "C"
 targetdir "bin/%{cfg.buildcfg}"

 files { "**.h", "**.c" }

 filter "configurations:Debug"
 defines { "DEBUG" }
 flags { "Symbols" }

 filter "configurations:Release"
 defines { "NDEBUG" }
 optimize "On"

Premake takes an “action” as its first argument. The action is the exporter to be used, typically

the name of the target platform that has to be generated. Premake has built-in support for

Microsof Visual Studio, makefiles, Xcode, MonoDevelop, and a few others. It supports extension

modules that can add, among other things, support for exporters and several are available, like

support for Android and CMake.

Running “premake vs2013” on the folder that contains this script would generate project files for

Visual Studio 2013 (HelloWorld.sln and HelloWorld.vcxproj), that could be opened straight away

and would create a HelloWorld.exe binary on the bin/Debug or bin/Release folder based on the

chosen configuration.

Running “premake gmake” would generate a set of makefiles that would allow building the same

project on Linux, having a lot of platform specific particularities in place, like the binary name, or

compiler flags, while keeping the options specified by the user, like the target folder or the

configuration defines.

23

3.1. Problem

Thanks to that, and combined with a simple batch file that uses Premake for each desired target,

every time the project files or project options are changed, running the batch file makes sure all

the project files are up to date (Figure 7).

Figure 7: Regenerating the project files for all the targets is
as easy as running a batch file.

While this works very well for simple projects with few dependencies, projects with more

dependencies get harder to configure very soon. When a project has to link to a library, the actual

library and the library search path have to be specified:

project "HelloWorld"
 libdirs { "../library1/bin" }
 links { "library1" }

Premake on its own doesn’t know how to extract information from the included projects, so
when a dependency has its own dependencies (transitive dependencies), these have to manually
be added to the Premake script to make the linking work. For instance, if library1 depends on
library2, and library2 depends on library3, the Premake file for the HelloWorld project would look
like this:

project "HelloWorld"
 libdirs { "../library1/bin", "../library2/bin", "../library3/bin" }
 links { "library1", "library2", "library3" }

Changing the required dependencies of library3 would make the library2, library1 and
HelloWorld projects fail to build, having to go one by one fixing the linking options, which aren’t
always trivial if you’re not aware of the latest changes of the transitive dependencies. Having a

24

Premake +
premake5.lua

...

Xcode iOS

gen_prj.bat

Visual Studio

Makefiles

Android

3.1. Problem

dependency manager in place could make it easier by automating the link data injection, deriving
it from the package information.

Other than that, the Premake version used in Gamelof includes many customizations to improve
project portability, to add support for several non-standard platforms and to adapt it to the
company’s needs and conventions. Managing these customizations is ofen done in an ad-hoc
way, which makes it hard to track which is the required version of Premake, and it’s easy to add
compatibility breaks. Having our own branch of Premake would allow us to make our own
releases and control these customizations in an easier way.

3.1.4. Continuous integration

In order to keep track of the sofware quality it’s convenient to use continuous integration. It
consists of a set of processes that execute every time a change is detected in a sofware package.
It usually involves checking out the repository, building the package, building its tests and run
the test suites, checking the results for regressions.

When it’s well configured, it’s a very valuable resource and it can help the developers by running
the tests on platforms they don’t own and notifying them when the status of the sofware
package changes. The main problem with it is that the configuration process is ofen manual and
non-trivial, and it has to be done per package. This leads to some packages being forgoten and
not benefiting of continuous integration.

3.2. Analysis of the existing tools
It’s important to get an idea of the implications of developing a dependency manager. Analyzing
the existing tools will also help understanding the features that the users will expect.

There’s a very insightful article by Sam Boyer called “So you want to write a package manager”
[18] which covers a lot of the areas of package manager implementation. Based on it, package
managers can be categorized in:

a) OS/system package manager (SPM)

b) Language package manager (LPM)

c) Project/application dependency manager (PDM)

The main distinction between them is the main users of the system: SPMs are meant to help
users installing sofware packages, PDMs are aimed to help sofware developers to create new
sofware, and LPMs are ofen a mix of both.

The tool to develop will include some extra features in addition to the package management.
Once the source packages are in place, it will integrate with the other main tools involved in the
process: project file creators and build tools.

The area of build tools is much more open and ofen imposed by each target platform.

25

3.2. Analysis of the existing tools

3.2.1. System package managers

System package managers are in charge of managing the applications and libraries installed in an
operating system for use of its users.

It’s not mandatory for an operating system to have a package manager but it’s a common feature
nowadays and it makes the life of its users much easier, specially when dealing with application
and system updates. It also allows saving disk space, since having a single central package
manager allows libraries to be physically shared between applications. Usually each operating
system has its own package manager, but some are available for several operating systems.

Table 1 ofers a small list of the main available ones. There are many system package managers
with a very wide spectrum of features. Many of them have dependency tracking and some even
allow choosing if we want to build the package from its sources in order to tweak it for the target
machine. At the opposite end, mostly for commercial systems, the package managers don’t track
dependencies and consider each package as an atomic binary unit that can run on its own. In this
case their functionality is almost reduced to a centralized catalog of sofware and update
notification.

Name Operating Systems Source/Binary Manages dependencies

Apt [21] Debian Linux Source+Binary Yes

RPM [20] Red Hat Linux Source+Binary Yes

Pacman [25] Arch Linux Binary Yes

Portage [27] Gentoo Linux Source+Binary Yes

Nix [19] Linux, OS X Source+Binary Yes

Zero install [33] Linux, OS X, Windows Source+Binary Yes

FreeBSD Ports [36] FreeBSD Source+Binary Yes

pkgsrc [24] *BSD, Linux, OS X, Solaris, ... Source+Binary Yes

pkgutil [26] Solaris Binary Yes

Homebrew [29] OS X Source+Binary Yes

Fink [22] OS X Source+Binary Yes

MacPorts [28] OS X Source+Binary Yes

Mac App Store [35] OS X Binary No

Windows Store [34] Windows Binary No

Chocolatey [31] Windows Binary Yes

App Store [30] IOS Binary No

Google Play [32] Android Binary No

PlayStation Store [40] PS3, PS4, PS Vita Binary No

Xbox Games Store [39] Xbox 360, Xbox One, Windows Binary No

Nintendo eShop [37][38] Wii U, 3DS Binary No

Steam [23] Windows, OS X, Linux Binary No

Table 1: Comparison of system package managers

26

3.2. Analysis of the existing tools

3.2.2. Language package managers

Language package managers are in charge of retrieving, building and installing packages of a
concrete programming language in a way that can be shared among all other installed sofware
in the machine. The advantages of being specific to a given language are that it can take
advantage of the language specifics, and it can provide higher integration levels for the packages
than a generic package manager. They’re usually tied to the install directory of the language
toolchain.

Usually each programming language provides its own package manager and a repository of
sofware ready to be used. Table 2 ofers an overview of some of the available LPMs.

Language Repositories Tools

C / C++ [68] Many conan [8], biicode [9], CPM [10], Pacm [11],
CVM [12], Bazel [89], CoApp [90]

C# [42] NuGet [62]

Common Lisp [80] Qicklisp [76]

Go [41] Go packages [79]

go tool [67]

godep [61]

Glide [60]

Haskell [66] Hackage [65] cabal [59]

Java [55] Maven central [83] Maven [58], Ivy [81], Gradle [87]

JavaScript [77] npm [47] for Node.js [84]

Lua [13]
LuaRocks [72]

LuaDist [64]

Objective-C [78] CocoaPods [75]

Swif [57] Swif Package Manager [85]

Perl [54]
CPAN [53] cpan [52], cpanm [82], cpanp [86], local::lib [88]

PAR [46]
PPM Index [74] ppm [45]

PHP [44]

PEAR [51]
pear

PECL [50]

Packagist [73] Composer [71]

Python [63]
PyPI [49]

pip [43]

Buildout [70]

Conda [56]

Ruby [48] RubyGems [69]

Table 2: Available language package managers

27

3.2. Analysis of the existing tools

3.2.3. Project dependency managers

While LPMs could be enough for some use cases, most of them just ofer a common pool of
packages and miss some features required by developers or for managing complex projects.

As an example, some LPMs just allow installing a single version of a given package, which limits
some features, like having installed or be developing several packages that need diferent versions
of the same dependency.

PDMs concentrate on a single project and usually install the dependencies in a location isolated
from any other projects.

3.2.4. Project file creators

As noted previously, the decision for the project file creator was already taken in advance:
Premake is already used in the company and it covers most of the required features, and the
users are already familiar with it.

In addition it’s very extensible, so it will make it easy to integrate with the new tool.

3.2.5. Build tools

There’s a lot of build tools available. Some platforms have a customized build tool and are very
restrictive on the platform they can be run, but others can be used for several target platforms
depending on the compiler it’s configured to use, so the final usage will widely depend on the
concrete use cases.

Table 3 shows some of the common build tools used at Gamelof to build games and tools using
C++ code natively.

Build tool Host platform Target platform

MSBuild [93] Windows Windows, Windows Phone
(in VS2015 also Android and iOS)

Xcode [92] OS X OS X, iOS, tvOS

Gradle / Ant [94] Windows, Linux, OS X Android

Make [91] Windows, Linux, OS X Windows, Linux, OS X

Table 3: Common C++ build tools

There are also lots of other build tools targeting other programming languages, but these are out
of the scope of this project. Maven is a good example of a tool that integrates both dependency
management and building for applications writen using the Java programming language.

3.2.6. Continuous integration tools

There’s also a wide variety of tools for continuous integration. The one being used at Gamelof
Barcelona is Jenkins [95], which in addition to being free and open source, is very widely spread
and has lots of extension plug-ins available. It’s easy to find plug-ins that add very interesting
features to it: version control systems, compilers, test result analytics, build statistics, or even
release deployments.

28

3.3. Requirements analysis

3.3. Requirements analysis
Based on the analysis of the previous sections and conversations with the project owners, we’ve
extracted a list of requirements, both functional and non-functional, that the system must fulfill.

3.3.1. Functional requirements

1. The system must be able to know all the information it needs from a project by
reading a single file.

Each project should be accompanied by a file (we’ll call it manifest) that contains all the
information that the system may need to know about it.

2. The system must know which versions of a project are compatible.

Given the references to two diferent versions of the same package, the system must be
able to know if these are compatible. This basically means that if a project was developed
using one version of a dependency, it should work just fine by replacing the dependency
with the compatible version.

3. The system must be able to resolve the list of dependencies of a project.

Taking the project information as a base, it should be able to get the information of the
dependent projects (both direct and transitive), and it should build a list of all its
dependencies and which version of each should be used.

4. The system must manage a folder where the shared projects will be located.

Projects that can be shared as dependencies of several other projects at once should be
downloaded on a common folder. The system should be able to manage the available
projects.

5. The system must be able to decide where each of the dependencies should be
located on the disk.

Based on the projects information and the relationship between them, the system must
be able to determine where each project should be located on the disk. For instance, some
of the projects should be located in a shared folder, so other projects can use them.

6. The system must be able to download a sofware project and its dependencies.

Running a single action, the system should be able to download the specified project and
all of its required dependencies from the VCS so the user can start working on it right
away.

7. The system must support diferent types of VCSs.

Sofware projects are hosted using Version Control Systems. While Gamelof is using
majorly Subversion, there are plans to start using Git for some new projects, so sooner or
later the system should support at least these two.

29

3.3. Requirements analysis

8. The system must be able to download packages from arbitrary locations.

The origins of the sofware projects should be open to arbitrary values given by the users,
who may need to get projects from locations unknown at the time of the system creation.
The system has to support several project repositories and even upstream projects which
aren’t aware of the system and its conventions. The available repositories must be
configurable.

9. The system must know how to download a project given a VCS location or a
project description.

The user should be able to specify arbitrary dependencies by using the concrete VCS
location. To simplify the most common cases, there should be some default repositories
configured where the projects can be looked for, by just knowing their name.

10. The system must manage VCS credentials.

When working with projects having dependencies coming from diferent repositories it
may become annoying to do a simple update, since other systems could ask for many
passwords to the user. Since the system should also be able to list the contents of remote
repositories in order to know the available projects or their versions in advance, it would
easily become unusable if it had to request a password to the user for every action. The
system must have a way to specify these credentials in a simple way so it doesn’t bother
the user.

11. The system must be able to work on a project that wasn’t downloaded.

Sometimes the users may want to create a project by hand or create a new one by copy-
pasting the contents of another one. In these cases, the project folder isn’t associated to a
VCS. The system should be able to work with these situations and manage its
dependencies anyway.

12. The system must handle projects that have companion or helper projects very
closely related to them.

Most sofware projects aren’t developed completely alone. Most of them are accompanied
by test projects, or in some cases by tools, samples or even internal libraries. These
complex projects should be handled as a whole, allowing the user to easily work on all of
these at once.

13. The system must allow the user to easily work on several related projects at once.

When working on library projects, developers ofen want to try how the changes afect
other projects that use them. In some cases this could even be a set of related libraries
that have to be developed together, but they’re not close enough to be considered part of
a whole. In these cases the system should allow the user to work on these projects
together.

30

3.3. Requirements analysis

14. The system must be able to use projects which aren’t aware of it.

The user may need to use an upstream dependency, which comes directly from its author
outside the company, and it may not have the expected structure or the information files.
The system should allow the user to provide the required information for these projects in
a way that they can be integrated as normal dependencies.

15. The system must give reproducible and consistent results.

The projects developed using the system will be commited to a VCS and will be used by a
build machine and also by diferent developers in a diferent computers. Running the
same commands on the same project version should give the exact same results on
diferent configurations unless explicitly requested by the user. That includes the
computation of the resolved dependencies, the contents of the generated project files, and
the targets generated by compiling the projects, among others.

16. The system must be able to create project files for multiple platforms.

The developers use at least Microsof Visual Studio and Apple’s Xcode as IDEs for
development, and the company builds sofware for Microsof Windows, the UWP
(Universal Windows Platform for Windows 10 and up), Windows Phone, Linux, Mac OS X,
iOS, watchOS, tvOS and Android, so at least these platforms must be supported.

17. The system must simplify the task of specifying libraries to link.

When generating the project files, the system should automatically derive the information
of the libraries to link from the resolved dependencies. That way, the user only should
worry about specifying the first level dependencies, and the system should take care of
providing the rest so the build succeeds.

18. The system must be able to build a project and its dependencies.

It should provide an easy way to build a project and everything it needs, that is
dependencies, internal helper tools, test applications, etc. For it, it will need integration
with some build tools.

19. The system must be able to run the unit tests of a given project.

Unit tests are usually simple applications that don’t need user interaction and return a
single value that indicates if the tests passed or failed. Following these simple
conventions, the system should be able to run test applications and verify the status of
the project based on it.

20. The system must download just the required parts of the projects.

Projects may be grouped with several secondary parts (tests, tools, compiled binaries, etc),
and in some situations not all of these are needed. When it’s not necessary and if the user
doesn’t force it, the system should try to use the minimal amount of bandwidth and disk
space required for the project to be functional.

31

3.3. Requirements analysis

21. The system must provide commands to modify the project information.

Adding or removing dependencies, changing the project structure, and other tasks may be
a bit complex if the user has to manually modify the files that contain the project
information. The system should provide some commands that guide the user in this
process.

22. The system must help the users make their projects adhere to some conventions.

The project folder hierarchy or the target binaries file-name mangling are some of the
things that should follow some common conventions. When everyone uses the same
conventions, it’s much easier to know what everything means when starting to work on
someone else’s project.

23. The system must help the user work using branches.

Working with VCS branches can be a bit of a chore, specially when using Subversion. The
system should do its best not to make the situation worse, and try to improve it as much
as possible. If some common tasks for branch creation or merging can be automated, it
should do it.

24. The system must make it easy to create project releases.

The current team isn’t used to work with releases. Since we want to introduce them in the
way people work, the system must make it easy. It should for example contain a
command to release a version, which makes several checks and commits the binaries for
others to use.

25. The system must help the user manage diferent project configurations.

In some cases configurations difer just by an optimization flag or a define, but in some
other cases, configurations may add breaking changes to the ABI. In those cases, the
system should take care of using the matching configurations of the dependencies and
take all the needed actions when preparing the project files.

3.3.2. Non-functional requirements

1. The system shall be easy to use, specially to people used to work with Premake.

Since the system is aimed at users who already know Premake, making it follow the same
conventions or using the same terminology should help them start using and feel more
familiar with it. Anyway the user interface should be as easy to use as possible for
anyone.

2. The system shall be self-documented.

Once the user knows the basics, he should be able to learn how to use new features by
just using it, without having to read any external documentation.

32

3.3. Requirements analysis

3. The system shall be easy to install.

If the system has any dependencies, these must be embedded or installed together. Ideally
it should be distributed as a standalone binary with no external dependencies and no
need to install it, being able to run it directly from the directory it was downloaded.

4. The system shall be configurable.

The user must be able to change system setings using simple configuration files.

5. The system shall log its actions to disk.

In addition to showing some progress information to the user, the system should log its
actions to disk in order to help debugging.

6. The system shall be portable.

The users that will be using the tool are using several of the major desktop operating
systems (Windows, Linux and Mac OS X), so it should run at least on these.

7. The system shall be eficient enough to manage projects with tenths of
dependencies within reasonable time.

The projects that should be managed by the system may end up having around a hundred
of dependencies, so the system should be able to manage them with relative eficiency.
Some of the tasks that are done with less frequency may take more time, but tasks that
could be performed several times per day by the developers should be quite eficient.

8. The system shall try to reduce the used network bandwidth and disk space.

When working on several projects, a user may have several copies of the same
dependencies on its hard drive, in addition to downloading updates more than once. The
system should do its best in order to reduce the usage of these resources. For instance, the
system should be able to run most of its tasks without network access once the projects
the user wants to work on have been downloaded.

9. The system shall be extensible.

It should allow the users to write their own custom commands by reusing the APIs of the
internal modules, and it should be easy to add new functionality.

10. The system shall be protected against malicious code hosted remotely.

The nature of the system lets it download files hosted in remote machines which may not
be under control of the user. A malicious user might configure a package in a way that
made the system crash. The system should be protected against this.

11. The system shall be testable.

In order to make sure no regressions are introduced during the development, the system
should be developed together with a test suite that checks its behavior.

33

3.4. Used tools

3.4. Used tools
The following is a non-exhaustive list of the tools used during the development of this project:

• Operating systems

Most of the development was done in Microsof Windows (versions 7 and 10), but Linux
and Mac OS X were also used for testing. Mobile operating systems like iOS and Android
were used just for testing the resulting binaries.

• Programming languages

Some parts of the application were done using C++ [68], but the largest part was
implemented in Lua [13].

• Version control systems

The code of the project was hosted using Git [96], but Subversion was also used for some
of the dependencies. At a later stage GitLab [97] was added for Git repository browsing
and management of branch merge requests.

• Integrated development environments

The main IDE used during the development was Microsof Visual Studio 2013 [98], with
the addition of the babelua extension [99], which added Lua support to it. At some points
Vim [100] and Notepad++ [101] were also used for code editing.

• Build tools

Each platform required using specific build tools for it:

◦ On Windows I used the compiler integrated in Visual Studio [98].

◦ For Linux testing, the standard toolchain was used (GCC [102], make [91], …)

◦ Testing on Mac OS X required the usage of Xcode [92].

• Debugging

To debug C++ code, the Visual Studio integrated debugger was used. Decoda [103] was
used for Lua debugging (when it worked).

• Project file generation

Premake [7] was used to generate the project files for multiple platforms.

• Interpreters

Lua for Windows [104] was the chosen Lua distribution to run Lua scripts directly on
Windows. In order to build the project, the standard Lua VM [13] was embedded.

34

3.4. Used tools

• Virtual machines

To support running tests that required access to remote machines or machine isolation in
the test suite, we used Vagrant [105], with VirtualBox [106] as the back-end.

• Continuous integration

Jenkins [95] was the chosen continuous integration tool, and it was installed using Docker
[107].

• Work tracking and documentation

During the development of the project Asana [14] was used for task management (though
it was later changed to Jira [108]), and Confluence [109] was used to write
documentation.

• For writing this document

The main tool used for it was LibreOfice [110], with the addition of the yEd Graph Editor
[111] to draw the diagrams, and Microsof Project [112] for the Gant diagram.

3.5. Use cases
Use cases help to understand the ways the users can interact with the system. The following
sections do this analysis.

3.5.1. Actors

The application is unaware of the existence of diferent user roles. We could specify diferent
actors, like a library developer, an application developer, a code reviewer, or even the build
machine as diferent actors, but the system behaves exactly the same for all of them, and most of
them may want to run the same use cases, so there’s no diference in practice. For this, I will
unify them all into a single actor, called generically “User”.

3.5.2. Use case diagram

The use case diagram shows what are the available use cases and who triggers them. Since
several use cases are reused internally by the application, drawing all of the use cases on a single
diagram resulted in a crowded diagram with many crossing arrows, making it hard to
understand. For this reason several smaller diagrams are presented (Figures 8, 9 and 10),
grouping related use cases. Some use cases may appear on more than one diagram.

Additionally, Figure 11 is provided to help understand how the use cases fit in the common
workflow. It shows a flowchart relating the most common use cases and how they transition
between states. The most common states during work are marked.

35

3.5. Use cases

User

Update

Generate

Build

Test

Create

Checkout

Figure 8: Basic use cases

User

Remove dependency

Add dependency

Add project

Remove project

Update

Figure 9: Structure management use cases

User Generate

Build

Test

Validate

Create branch

Merge branch

Publish version Checkout

Update

Figure 10: Release management use cases

36

3.5. Use cases

The user modifies
the source files

Checkout

Update

Create

Generate

Workspace
with consistent

project files

The user adds or
removes source files

Workspace with updated
dependencies but possibly

inconsistent project files

The user modifies
the manifest file

Workspace
with possibly outdated

dependenciess

Workspace
with built binaries

Build

Test

Add dependency,
Remove dependency,

Remove project

Add project

Figure 11: Use case flowchart

3.5.3. Use case description

This section details the system use cases together with some of their working conditions and
their main steps.

Name Create

Description The user wants to create a new project to start working with it.

Trigger The user.

Precondition None.

Flow 1. The user can give the system the known project atributes via command line.
2. The system requests the missing information to the user.
3. The system creates the new empty project workspace, with the required folders

and files to help the user start writing code.
4. If the user requested it, the system will upload the project to the VCS and will

keep it as a working copy, ready to do commits and updates in the future.

Exceptions • In case the data given by the user to the system is inconsistent, the system won’t
create the workspace.

37

3.5. Use cases

Name Checkout

Description The user wants to download a project already existing in a remote VCS and start working
with it.

Trigger The user.
The validate use case.

Precondition None.

Flow 1. The user specifies the information required to get the project. It could be the
package name and its version in case it resides in a known repository, or the full
URL in case it’s in an arbitrary repository.

2. The system gets the manifest of the project from the VCS.
3. The system builds the basic workspace structure from the main package

manifest.
4. The system jumps to the update use case to get the project contents and its

dependencies.

Exceptions • If the system can’t access the specified project, it will exit without creating the
workspace.

• If the manifest of the specified project contains errors, the process will stop.
• Further exceptions can raise during the execution of the update use case.

Name Update

Description The workspace and its dependencies must be updated to match what’s specified in the
manifest.

Trigger The user.
The checkout, remove project, add dependency, remove dependency or merge branch use
cases.

Precondition A workspace must exist.

Flow 1. The system reads the manifest of the main project of the workspace.
2. The system resolves the dependencies by downloading the manifests of the

dependencies specified in the manifest and deducing what’s the version that
should be used.

3. The system will make sure each of the dependencies is downloaded to the path
where it should be, and it will also update the ones that were already
downloaded.

4. If there are issues checking out or updating any of the dependencies, these will
be shown together at the end to let the user know the status.

Exceptions • If the system can’t access some of the specified dependencies, it will show an
error to the user and it will stop the process.

• If there’s a conflict during the dependency resolution, an error will be shown to
the user, telling it to resolve the conflict manually by updating the required
dependencies versions, and the process will stop.

38

3.5. Use cases

Name Generate

Description The user wants to generate the project files for the package in the workspace so it’s ready
to build or to open with an IDE.

Trigger The user.
The validate use case.

Precondition A workspace must exist.

Flow 1. The user specifies a target toolset to generate.
2. The system builds the information that Premake needs about the projects and its

dependencies for each package solution.
3. The system runs Premake on each of the solutions of the package, generating the

project files for the requested toolset.
4. Optionally, the system does the same for all the dependencies, allowing the user

to work on all of the dependencies with a single command.

Exceptions • If the Premake scripts for a given project aren’t configured properly or its
information doesn’t correspond to what’s specified on the manifest, the
generation will throw an error and the process will stop.

Name Build

Description The user wants to build the projects of the package in the workspace and get binaries
ready to use on a given platform.

Trigger The user.
The validate use case.

Precondition A workspace must exist and it should have its project files generated.

Flow 1. The user specifies a target toolset, platform and one or more architectures and
configurations.

2. The system runs the required toolset to build the binaries for the package
buildable projects.

Exceptions • If the system fails to build any of the binaries, it will show an error and stop the
process.

Name Test

Description The user wants to run the test applications to verify the status of the project.

Trigger The user.
The validate use case.

Precondition A workspace must exist and its test projects must be built previously.

Flow 1. The user specifies a target toolset, platform and one or more architectures and
configurations.

2. The system will try to run the test applications of the workspace package
sequentially.

3. The system expects each application to return 0 on success and a diferent value
to indicate a test failure.

Exceptions • If some of the test binaries to run doesn’t exist, the system will show an error and
stop the process.

• If some of the test binaries run returns a failure code, the system will show an
error and stop the process.

39

3.5. Use cases

Name Add project

Description The user wants to create a new empty project in the workspace package.

Trigger The user.

Precondition A workspace must exist.

Flow 1. The user specifies a project name, location and other required atributes for the
new project to create.

2. The system will add it to the manifest.
3. The system will create the required files and folders to make the package

structure match the new manifest contents.

Exceptions • If a project with the same name already exists on the package, nothing will be
modified.

Name Remove project

Description The user wants to remove an existing project from the workspace package.

Trigger The user.

Precondition A workspace must exist.

Flow 1. The user specifies a project from the workspace package.
2. The system removes any references to it from the manifest.
3. The system runs the update use case to make sure the workspace stays in a

consistent status afer possibly having removed some dependencies.

Exceptions • If the specified project doesn’t exist on the workspace package, the system will
show an error and the process will stop, leaving the manifest and the workspace
as they were before.

• Further exceptions can raise during the execution of the update use case.

Name Add dependency

Description The user wants to add a new dependency to a project from the workspace package.

Trigger The user.

Precondition A workspace must exist.

Flow 1. The user specifies which project in the workspace manifest to add the
dependency to, and which dependency to add (name, version, where to find it…)

2. The system adds the dependency to the manifest as specified by the user.
3. The system runs the update use case, in order to check the dependency tree can

be resolved and to download the new dependencies.

Exceptions • If the specified parent project or the dependency don’t can’t be found, the system
will show an error and the process will stop.

• Further exceptions can raise during the execution of the update use case.

40

3.5. Use cases

Name Remove dependency

Description The user wants to remove an existing dependency from a project of the workspace
package.

Trigger The user.

Precondition A workspace must exist.

Flow 1. The user specifies which dependency from which project of the workspace
manifest to remove.

2. The system removes the dependency from the manifest as specified by the user.
3. The system runs the update use case, in order to possibly resolve updated

versions of the existing dependencies.

Exceptions • If the specified project didn’t contain the specified dependency, the system will
show an error and the process will stop.

• Further exceptions can raise during the execution of the update use case.

Name Create branch

Description The user wants to start a new branch of development, starting from the status of the
workspace package.

Trigger The user.

Precondition A workspace must exist and its package must have VCS information.

Flow 1. The user specifies the name of the new branch to be created.
2. The system creates the new branch on the VCS starting from the current commit

on the workspace package.
3. The system adjusts the package manifest to reflect the new location of the

package.

Exceptions None.

Name Merge branch

Description The user wants to merge the changes of a development branch into another one, of the
workspace package.

Trigger The user.

Precondition A workspace must exist and its package must have VCS information.

Flow 1. The user specifies the name of the source branch.
2. The system will try to merge the changes from that branch into the current one.
3. The system adjusts the package manifest to make sure it’s still in a consistent

status.
4. The system runs the update use case to make sure it gets up to date with the

possible changed dependencies in the source branch.

Exceptions • If there are VCS conflicts when running the VCS merge, the system will show an
error message and the process will stop.

• Further exceptions can raise during the execution of the update use case.

41

3.5. Use cases

Name Publish version

Description The user wants to release a new stable version of the workspace package.

Trigger The user.

Precondition A workspace must exist and its package must have VCS information.

Flow 1. The user specifies the desired version number to release from the current status
of the current branch.

2. The system runs the validate use case on the workspace package to make sure
the current status of the branch is ready to be published.

3. The system modifies the workspace package manifest to reflect the changes
needed for the release, like the version number, or any changes needed to lock
the versions of the dependencies.

4. The system commits the available binaries, to make them available to the clients.
5. The system creates a VCS tag for the version.

Exceptions • Further exceptions can raise during the execution of the validate use case if the
package doesn’t match some of the quality checks.

• An error could happen if the system doesn’t have write access to the VCS.

Name Validate

Description The user wants to check the status of a package.

Trigger The user.
The publish version use case.

Precondition None.

Flow 1. If the user specifies a remote package information, the system will run the
checkout use case with it.
a. Alternatively, the system expects to find an existing workspace.

2. The system regenerates the workspace package project files by running the
generate use case.

3. The system builds the workspace package binaries by running the build use case.
4. The system runs the workspace package test applications by running the test use

case.
5. The system may run additional quality checks to validate that the package is

ready to have a stable version released.

Exceptions • The additional quality checks by the validate use case may show some errors and
stop the process.

• The execution of the checkout, generate, build and test use cases can raise their
own errors.

42

4. Design

4. Design
Afer the specifications analysis we’re in a good position to start designing the system. The
following sections will show the details and justifications of the design and the architecture.

4.1. Concepts
During the specification phase many new concepts appeared, and some of them need
formalization. We need to define a common terminology to be used for internal reference but also
when talking to the user. Here’s a list of the most common related terminology.

• Project: It’s a folder that contains a set of files that can be used together to achieve a
goal. It may need other projects (dependencies) in order to work.

◦ Some projects can be built, like applications or sofware libraries. In that case the
project folder contains the source files.

◦ Other types of projects can’t be built, like header-only libraries or non-sofware
projects, like data folders.

• Project group: It’s a group of projects that are very closely related and that the
developer will probably be working on at the same time, and the solution files will be
created at this level. Examples of this could be a group of test projects or sample projects.
This will be the smaller granularity that the system will be able to checkout separately,
since the project files will require the whole project group to be available.

• Package: It’s the main entity that the system can manage and it combines several related
projects together. The objective of it is to ofer a single public project that can be
referenced as a dependency from the outside, and optionally a set of project groups used
as support during the development or building of the main project. These support project
groups are usually tests and samples, but there could also be tools or even libraries. The
main criteria for moving a project to its own package is whether it’s just being used for
the development of this package or it could eventually be used directly from the outside.

• Dependency: It’s a relationship between two projects where one needs the other to
work. The typical meaning is that one project uses features of the other one, so both have
to be linked together. Other than this, dependencies can also be used to specify that one
project has to be built before the other one, specially in case of applications, where these
helper applications can be used to generate code or pre-process some source files, for
example.

• Manifest: It’s a file included in a specific location of the package that contains the
definition of the package contents and its relationships. It contains all the information
that the system must know about the package:

43

4.1. Concepts

◦ Package basic information like the name, version, branch, …

◦ Project groups it contains, and which projects are inside of each.

◦ Build information like the supported platforms and architectures, and the build
configurations. Premake file overrides can also be specified.

◦ The dependencies, both internal and external, between projects.

◦ The physical structure of the package, like which folders exist, and where the
dependencies should be downloaded.

• Workspace: It’s a folder in the user’s hard drive that contains a main package, and it’s
where most of the actions of the system will get applied. It’s considered by the system as
the root of the user’s work, and so it contains a special folder used by the system to
identifying the workspace and to keep some temporary working files. The workspace can
be a full checkout of the package, which will contain all of the project groups from the
manifest, or a sparse one, which will only contain some of the project groups.

• Shared folder: It’s a folder in the user’s hard drive that’s configured to contain the
package checkouts that are shared among workspaces. It can be configured via an
environment variable so each user can decide where it’s best for him to store the shared
packages.

• Sibling workspaces: These are workspaces which reside in the same parent folder as the
main workspace. This represents a group of packages that the user wants to work on at
the same time. It’s common for simultaneous development of interacting packages. It can
also be used to override the resolved version of a package with the version that the user
has checked out on the parent folder. The dependency resolver first looks at the sibling
workspaces for the requested packages before trying to resolve the specified version.

4.2. System architecture
In order to ease the distribution and installation of the tool, we decided to build a single
standalone executable that would contain everything it needed to work. Since the application is
writen in large part using Lua, the Lua scripts would have to be embedded into the binary. In
addition we also decided to distribute a version of Premake within the binary, so the tool was
ready to be used without external dependencies.

The following is a descriptive list of the system components, as shown on Figure 12:

• GL-Get, our tool, consists of several components:

◦ It’s mainly developed using Lua, so the largest part of the system will be GL-Get’s Lua
scripts.

◦ Where we needed some functionality that can’t be implemented with Lua alone, we
write C/C++ modules.

44

4.2. System architecture

◦ One of these modules is the scripts loader, which enables the Lua VM to load scripts
embedded on the binary. The Lua VM itself knows how to load scripts from the file-
system, but in this special case we had to build a bridge to give it access to the scripts
that are only accessible from C code.

◦ The last component is a Premake module that enhances Premake itself to make it
aware of GL-Get and adapt it to our needs. This is only used when running Premake,
during the generate command.

• Premake has a very similar structure (which we took as the inspiration for GL-Get): It’s
mainly developed using Lua, with some modules implemented using C/C++. It also has its
own embedded script loader.

• The main application code is implemented using Lua, so we need a Lua virtual machine.
Since Premake already provides a Lua VM of the most common version (5.1) we decided to
reuse that one to run the main code, so that component is shared.

PremakeGL-Get

Lua

C/C++

Premake Lua scripts

Premake Lua VM

Premake C/C++ codeGL-Get C/C++ code

Premake scripts loaderGL-Get scripts loader

GL-Get Lua scripts GL-Get Premake extension

Figure 12: System architecture and components interaction

The system’s entry point will be on the C/C++ code, which will instantiate and configure the Lua
VM. The configuration part consists mainly on seting up the scripts loader so it knows how to
load the embedded scripts, and also plug some custom C/C++ extensions so they’re accessible
from the Lua code (like, for example, to be able to call Premake from GL-Get’s Lua scripts).

When the VM is configured, the C/C++ code loads and runs the main GL-Get script on the Lua
VM and it takes control of the application. From that moment on, it can use the previously
configured scripts loader to load additional Lua code. It has the ability to extract the GL-Get
Premake extension code to the file-system, to make it available to Premake, and it also has the
ability to call the embedded Premake. The rest of the application is implemented in the Lua code
as will be detailed later on.

45

4.3. Application architecture

4.3. Application architecture
The whole system is designed to have a set of core modules, which will contain the common
functionality, and a set of actions. The main application will take care of loading the
configuration, seting up the environment, parsing the command line options, and it will delegate
the execution to the requested action.

The following is a breakdown of the main parts of the system, going from lower level (general
utility modules) to higher level (more specific to the application).

4.3.1. Actions and command line options

The application will be structured around actions, which run a given process. The main actions
can be mapped almost directly to the use cases, but others can be added easily to automate
processes making use of the core modules.

In order to automate and ease the process of specifying the command line options, we’ll build a
hierarchical structure (Figure 13) that organizes the description of the available options in
contexts, so only the relevant options are shown and accepted:

• An option represents a single command line option that can be accepted. Each option can
be configured with a short and a long names, a user visible description, an argument type,
and optionally it can have a default value, it can accept multiple values and it can be
made mandatory.

• An options group is a set of options with a title.

• An options context has a help message, a set of options groups and a set of sub-actions.

• An action has a name, a description, an associated runner function, and an options
context.

OptionsContext OptionAction OptionsGroup

* 1

0..1 1 1 * 1 *

Figure 13: Options classes

Once the in-memory structure is filled, we can use it in many ways, like showing automated self-
documenting help messages for the user (which will be available using the --help option on any
context), or parsing the actual command line arguments (its main purpose).

The main idea is that in a context, all the options of any of its option groups are valid in any
order (the groups are just used to help the user understand the available options). The options of
the context will be parsed until a sub-action is found, at which point a new context will be
opened, and its options will be parsed independently. At the end, each executed action (or sub-
action) will be given the set of its own arguments and the sub-action’s (if any).

46

4.3. Application architecture

For instance, the result of parsing the following command line:

app_name --option1 arg1 -o arg2 action1 --option3 arg3 action2

would result in these contexts:

• The first context would contain "--option1=arg1", "-o=arg2" and "sub-action=action1"

• The second context would just contain "--option3=arg3" and "sub-action=action2"

• The third context would be empty.

4.3.2. Configuration

Many aspects of the application will be configurable, and we need a fairly flexible configuration
system that allows the user to setup some global options and to allow overrides by using several
configuration files. A simple example of something that everyone will have to configure is the
VCS credentials.

Lua is ofen used as a configuration language too, which fits perfectly since we’re already using it
as the main programming language. The idea is that each configuration file will be a Lua script
that returns a table that defines the desired options. Each configuration option will have a name
(a string which will be used to access it) and an associated value. The value can be another table
following the same ideas as the main one, allowing it to have a tree structure.

We want to allow the user to use several configuration files in order to progressively override the
options specified in the most general configuration files. The configuration loader will run the
configuration script, it will get the resulting table, and for each option of the override table it will
try to merge it into the existing configuration:

• If the existing table doesn’t contain that option, it will be set to the value from the
override configuration (add a new option).

• If both tables contain that option:

◦ If the values aren’t tables, the old one will simply be replaced with the override one
(replace an old value).

◦ If the values are tables, the options from the override sub-table will be used to
override the values from the existing sub-table, using the algorithm recursively.

◦ As a special case, if both tables contain array elements, the elements from the
override table will be added to the array of existing elements (concatenation of
arrays).

In order to ease the initial configuration, we’ll provide an embedded configuration file with
sensible defaults. This initial configuration table will be the one used to merge the options of the
more specific configuration files. From more general to more specific, the system will try to locate
configuration files in the following locations:

47

4.3. Application architecture

• In the application’s embedded scripts (it will provide the defaults).

• In the home folder of the user (it should contain user’s global overrides, like VCS
credentials).

• In the folder of the binary (it could contain version specific overrides, in case more than
one version is installed).

• In the Workspace's temporary directory (it should contain just workspace specific
options).

• In the current working directory (it should contain just local / temporary options).

Some classes can wrap particular configuration trees in order to add common query functions to
them. For instance, the root of the configuration tree will be wrapped in a class that will provide,
among others, a function that will return the path of the manifest file based on the manifest
configuration. Other sub-trees that will be wrapped in a class are the VCS setings, which can be
used to directly instantiate VCS connections or match location paterns. We’ll make use of this to
allow the user to specify credentials for repositories that match a location patern.

4.3.3. Logging

The logging facility allows the application to register the interesting events, which may be helpful
for the user to understand what went wrong, and to help the developers to debug unexpected
behaviors.

The current application doesn’t have very complex needs for logging, so we’ll go for a simple
design:

• We define several log levels, which will represent diferent severity for each message. Each
level can also have a color associated, which will be used when a message of that level is
shown to the user. It will help the user identify the important messages (for instance,
error messages will be shown in red). Here’s the list of available levels, sorted from more
to less severe:

◦ FATAL: An internal application error.

◦ ERROR: Something went wrong, can’t proceed.

◦ WARNING: Something may be wrong and should be fixed or needs the user’s
atention, but we can proceed, keep an eye open.

◦ INFO: General user information.

◦ DEBUG: Extra information useful when debugging the application.

◦ TRACE: Indication of an internal step which may be helpful to understand how an
algorithm runs.

48

4.3. Application architecture

• The logger can be configured with:

◦ A filename, where all of the messages from all the logging levels will be writen.

◦ The minimal log level that will be shown on the standard output. By default, the
logger will show all messages of the INFO level or above (INFO, WARNING, ERROR
and FATAL), which is most useful for the common user. In case the user, or a
developer, wants to get more insight on why the application is behaving as it is, he can
lower the logger level to DEBUG or even TRACE, which would show all of the
messages.

• The logger will be a singleton with several methods, one for each log level, which will take
care of processing the given message. When processing a message:

◦ It’s writen to the log file.

◦ If the current message’s level is above or equal to the minimal configured one, it will
be colored with that level’s color, and it will be shown on screen.

4.3.4. Platform specification

In many situations, in the system, we’ll need to specify a platform, an architecture, and other
related elements. For instance, the generate, build, test and validate actions receive options that
specify which toolset has to be used or which platform are we targeting. In these actions, each
combination of these results in a “Job”, which can be run independent from the other ones.

The main problem with this is that not all possible combinations are valid or make sense, so we
need a way to select the valid ones. Once we have this information, we could also use it to
deduce some of the parameters based on the specified ones.

First of all we need to define the main concepts:

• Platform: The target operating system, optionally combined with the run-time libraries
(e.g. Windows, MacOS X, Linux, iOS, Android, Windows Phone, …)

• Architecture: The target CPU / hardware instruction set (e.g. ARM, ARM64, MIPS,
PowerPC, X86, X86_64, …)

• Compiler: The toolchain that transforms the source code into binary form, which usually
defines a unique file format that limits which objects can be linked together (e.g. Visual
C++, GCC, Clang, …)

• Build system: The tool that automates the build by using the compiler and linker on the
appropriate files (e.g. gmake, MSBuild, Nmake, Xcode, …)

• Toolset: A combination of the build system and the compiler (e.g. gmakeGCC = gmake +
GCC, gmakeMinGW = gmake + MinGW, Visual Studio 2013 = MSBuild + Visual C++ 120,
Xcode = Xcode + clang, …)

49

4.3. Application architecture

As an example, table 4 shows several possible valid combinations.

Platform Architecture Compiler Build system Toolset

Windows • X86
• X86_64

• VC* • MSBuild • VS*

• NMake • NMakeVC*

• MinGW • gmake • gmakeMinGW

iOS • ARM
• ARM64
• X86 (Simulator)

• GCC • Xcode • XcodeGCC

• Clang • XcodeClang

MacOS X • X86
• X86_86

• GCC
• Clang

• Xcode
• gmake

• XcodeGCC
• XcodeClang
• gmakeGCC
• ...

Linux • X86_64
• ...

• GCC • gmake • gmakeGCC

• Clang • gmakeClang

Windows Phone • ARM • VC* • MSBuild
• NMake

• VS*
• NMakeVC*

Android • ARM
• ARM64
• X86
• MIPS

• GCC • gmake
• Ant
• VS2015
• …

• ...

Table 4: Example of valid combinations of platforms, architectures, compilers, etc.

The diagram in Figure 14 shows the chosen representation for this structure. In summary:

• An architecture is identified by its name.

• A platform is identified by its name.

◦ A platform is available on one or more architectures.

◦ On a given platform, each architecture could have an alias, used by Premake. For
instance, the ARM and ARM64 architectures on iOS have the alias “Universal”, since
it’s how Premake references them.

◦ Optionally we’ll associate a value to the platform to let the system know which
platform is the application actually running on.

◦ Also optionally, a platform can contain a Premake option name and its associated
value, which will be used to specify the platform to Premake.

• A compiler is identified by its name, and it can target several architectures.

◦ When targeting a given platform, a compiler can only target a subset of its
architectures, which will also be a subset of the architectures where the platform is
available.

50

4.3. Application architecture

• A build system is identified by its name and the platform it targets.

◦ A build system can use one or more compilers, which must be available for the
platform the build system targets.

◦ Additionally, the build system can specify if it can work with more than one
architecture at the same time or not. If the build system can’t handle it, the
application will have to create several jobs to handle each of the architectures
independently.

• A toolset is identified by its name and the platform it targets.

◦ A toolset is a unique group of a build system and a compiler.

◦ Optionally, an alias can be assigned, that would be used when talking to Premake (if
it’s diferent than its name).

Platform

Architecture Compiler

Build system

Toolset

CompilerForPlatformPlatformArchitecture

 1..*

available_on

 1..*

1
 1

 1..*

1..* can_target 1..* 1..*

1..*

1..*

1 1

1..* 1..*
 can_use

1..* 1..*

subset

1..* can_target 1..*

subset subset

Figure 14: Valid toolsets definition

At startup, the system will fill the structures with the valid (known) platforms and their related
information. This would finally allow the system to check if the given combination is valid or not.

Having all this information we can build a small deduction system that can give the possible
values for an element given other ones. A few examples:

• From a platform we can access directly the available architectures, compilers, build
systems and toolsets. We can easily extend it to get a list of multiple platforms and return
a union of the elements of all the platforms (e.g. which build systems supported Windows
or Android?)

• When given the name of one of the elements, we can iterate all the platforms to find the
platforms that contain that element: for example, we can get which platforms can be built
using Gmake.

51

4.3. Application architecture

Combining and extending these rules for the other elements, and with simple set intersections
we can really improve the user experience. For instance, when running the application on Linux,
the platform could be detected automatically, the set of available build systems would have a
single element, which would be selected automatically, and the user would only have to specify
the compiler or the toolset, depending on the intended action.

4.3.5. VCS abstraction

The code of the projects is stored in Version Control Systems (VCS), so we need modules to
access them. Currently the vast majority of the company projects are stored in Subversion, but
some of the last new projects have already been hosted using Git. Additionally, it would be very
useful to have a mock back-end based on the file-system which we could use to run the test suite
without depending on an actual VCS server running.

For this we’ll have to create an abstraction to allow the system to work without having to know
the back-end’s details. The design is shown on Figure 15, and is based on the following principles:

• A VCSRepository represents the root of the remote server where the project history is
stored.

◦ It contains the common operations we need from a remote server, which are
implemented in a subclass for each VCS type:

▪ Creating a repository. It will be useful when creating a GL-Get package, but it may
not be supported by all the VCS types.

▪ Checking if the available information represents the root of a repository.

▪ Listing the available branches and tags.

▪ Doing a checkout of a specific branch or tag into a local working copy. This
operation returns a VCSWorkingCopy.

◦ A SvnStructuredRepository is added in order to factor out the similarities between the
SVN and the FS mock repositories, which use a common directory layout to represent
branches and tags. The following apply:

▪ The root of a repository can only contain the trunk, tags and branches sub-
directories. Trunk is the main branch, and the sub-directories of tags and branches
are the names of the respective.

▪ Creating a new repository could mean simply creating a sub-directory in a
location which isn’t a repository root.

• A VCSWorkingCopy represents a local checkout of a VCSRepository.

◦ It has an association to the VCSRepository it was checked out from.

◦ It can be created either by specifying the local path or when checking out from a
VCSRepository.

52

4.3. Application architecture

◦ It contains the common operations needed to manage the working copy, which are
implemented on a subclass for each VCS type:

▪ Checking if the given directory is a checkout of the specified repository.

▪ Updating to the latest commit of the checked out branch.

▪ Commiting the local changes to the repository.

▪ Switching to a diferent branch or tag.

▪ Seting the ignored filename paterns.

▪ Managing sparse checkouts:

• Listing the paths currently added to the sparse checkout.

• Adding or removing directories to the list of repository directories we want on
the working copy.

▪ Managing the externals/sub-modules (linking a sub-directory to a diferent
repository)

SvnRepository

GitRepository

FSRepository

SvnStructuredRepository

GLGetVCS

VCSRepositoryVCSWorkingCopy

SvnWorkingCopy GitWorkingCopyFSWorkingCopy

Figure 15: VCS abstraction

In addition to these general abstractions, we’ll create a GLGetVCS class. It will keep track of a
concrete working copy and a repository and it will contain a set of helper functions tailored for
the application, like geting just the manifest of the package, or synchronizing a package, by
checking the status of the working copy and doing a checkout or an update depending on
whether a checkout was already in place or not.

53

4.3. Application architecture

4.3.6. Embedded Premake integration

One of the requirements of the system is that it should integrate well with Premake. Packages
developed at diferent moments in time may need to use diferent versions, and diferent versions
may be potentially incompatible. In order to ease the integration and deployment of the
application we’ll embed a version of Premake into the application, but at the same time we have
to allow it to run external versions that can be downloaded as package dependencies. For this
we’ll create a very straightforward module which takes care of running the embedded version or
an external one depending on the requested version number.

The application will have a way to query the version number of the embedded Premake. This
could also be used for example to decide whether we have to download a Premake specified as a
dependency or not. If the dependency targets the same version that’s embedded, there’s no need
to download it.

Since Premake is a command line application, it’s designed to parse its own command line
arguments. The whole needed integration may be as easy as a single function that receives:

• The path where the external Premake is expected to be.

• The version of Premake that should be run.

• The command line arguments.

If the given version matches the one of the embedded Premake, that one will be run, with the
given command line arguments. Otherwise, the external one will be executed, locating it on the
specified path, and giving it the same command line arguments.

With this simple algorithm, the application will just “run Premake”, and in the eventual case that
the version matches, we’ll automatically run the internal version (which will be a bit faster and
won’t use extra disk space). The implementation details are explained in section 5.3.2.

4.3.7. Embedded scripts

In order to make the application completely standalone, the Lua scripts (the source of most part
of the application) would have to be embedded into the application:

• On one hand this can be thought as a simple resource container: we need to be able to get
the contents of a file given its name.

• On the other hand we have to let the Lua VM know where to look for the required
modules.

We can solve the first point by simply storing an array with the file names and another array
with the corresponding file contents, both as static data in the executable. Afer a simple search
on the file names array, we can get the file contents indexing the contents array using the same
index.

Leting the Lua VM know about these scripts is a bit trickier, and will require implementing a Lua
loader. This will be explained in detail in the implementation section 5.3.1.

54

4.3. Application architecture

4.3.8. Source extractor

As part of the system development we had to implement a Premake extension, described in
section 4.3.14. Since we specified on section 4.3.6 that we’ll be able to run arbitrary versions of
Premake, we can’t embed this extension with our own Premake, so we have to load it at run-time
from the file-system.

The solution is to embed the Premake extension (which are plain Lua scripts) as part of the
system scripts, but these aren’t used from the main application. We create an extra Lua module
that allows us to dump the files of the Premake extension into an arbitrary path of the file-
system. Afer the scripts are writen to disk, they can be opened by any version of Premake.

This module will contain a single function that receives a target path and will use the same data
from the previous section to write the required files.

4.3.9. Build system

The system will have to use external toolsets mainly in order to run the compilation processes.
Each of the toolsets has its own conventions, so we’ll need a way to abstract these diferences in
order to decouple the system from the possible build systems.

We’ll create a small class hierarchy, as shown on Figure 16, defining the common behaviors on
the base class and leaving the implementation of the diferences to the inherited classes.

Toolset

gmake VisualStudio Xcode4

VS2013 VS2015VS2012

Android

Figure 16: Build system abstraction

• The base class defines:

◦ Methods for the building, cleaning and testing stages.

◦ Additional pre- and post- methods for each of the stages, to be called before and afer
the main method respectively.

◦ A function that will return the path where the project files are expected to reside.

55

4.3. Application architecture

• The implementation of the gmake toolset simply runs the “make” tool on the right folder
and allows running the specified test by running it directly.

• Both the Xcode4 and the VisualStudio classes write build scripts that they later execute, in
order to implement some commands that must be run together (like configuring the build
environment). As an example, the pre_build method is where the script file is writen, in
the build method it’s executed, and in the post_build method, the script is removed.

• In the case of VisualStudio, the pre_build step takes care of additionally creating a
temporary solution file where the environment variables are manually replaced by their
values. This is a known inconsistent behavior of the MSBuild tool, while the same file is
processed correctly by the Visual Studio IDE (known bug at Microsof, resolved as “Won’t
fix” [113]).

• Each of the VS* classes just contains the basic compiler and IDE version information to
initialize the VisualStudio class properly (which are used to access the proper paths and
environment variables).

• The Xcode4 class has some extra testing functionality to diferentiate between MacOSX
projects (which can be run natively on the system) and iOS projects, which need extra
steps to deploy to a connected device and run.

• The Android module, in this special case, derives from VS2013 because at the moment
we’re using NVIDIA’s CodeWorks for Android compiler [114], which acts as a Visual
Studio extension, and so we can reuse most of VisualStudio’s functionality.

The system is completed by a few helper methods that receive the job information (platform,
architectures, configurations, path of the project files) and take care of instantiating the proper
toolset class and executing all of the required processes.

4.3.10. Remote build system

Not all target platforms can be built from every host platform. In order to allow triggering builds
for non-supported platforms, we’ll develop a remote build mechanism. We’ll rely on Jenkins as
the remote build system and we’ll create a simple Jenkins wrapper that allows us running the
most common actions from our application.

This module will use Jenkins’ public API, which uses JSON documents in order to transfer
information. The main operations will be:

• Creating a job: it specifies the source repository and the procedure to run the build and
test.

• Running a job: it will trigger a build.

• Deleting a job.

• Geting a list of a job’s builds.

• Checking the status of a build.

56

4.3. Application architecture

With this we can easily add an option to the required commands to execute the build remotely.

4.3.11. Package definition

In order to identify the packages, we’ll use a common base class that contains some shared
behaviors. This will be useful when building manifests and dependencies, or even user requests
from the command line, for example. First we’ll list the information it will contain:

• The package name.

• The package version. This is optional, since we can’t have it in all cases, like when dealing
with legacy packages.

• The name of the repository where the package should be looked for. This isn’t mandatory,
but it will be necessary in case we’re trying to locate the package and there’s more than
one repository configured in the application.

• The VCS location. This is an optional parameter, most useful when working with legacy
packages.

• The VCS extra information, like the branch, tag, or revision. It’s optional, and in case it
isn’t specified, it will be filled automatically with the available information (the tag
corresponding to the specified version, the latest available version, or the main branch
otherwise).

With all this information, the package definition can do many useful things:

• Tell whether it defines a legacy package or not.

• Check if the specified version and VCS information is valid, if it’s missing information, or
if it contains conflicting information (like in case both version and branch are specified at
the same time).

• Build a descriptive string of the package it represents.

• Build the proper VCS setup to get the package.

• Check if the package exists on the VCS.

• Get the latest available version of the package.

• Build a valid folder name that identifies the package and its version.

All of these will be implemented as functions in the PackageDefinition class.

57

4.3. Application architecture

4.3.12. Manifest

The manifest is the main piece of information around which the whole application moves. Each
package will be accompanied of a metadata file we called the manifest. This file contains both the
package’s own information (name, package version, internal structure, build instructions) and its
dependencies’ (which packages to get, where to get them from, which versions, where to store
them…). This file will be stored in the VCS, so it’s accessible at any moment by the application
when we need to get a package or to resolve its dependencies.

We need a data structure to store the contents of the manifest in memory. The basic structure is
shown on Figure 17 and is as follows:

• The manifest can contain several project groups. There must be at least one, which will be
be the main one.

• Each project group can contain several projects, but they must have at least one. Project
groups that contain a project identified as the main one, are restricted to that single
project. Otherwise, project groups can have many projects. The main project group must
have a single main project. That will be the only project that can be referenced from the
outside.

• Both project groups and projects can contain dependencies, either directly or contained in
folders. External dependencies (referencing another package) have to be specified inside a
folder, just in case we ever need to do a local checkout of them. Internal dependencies,
which are references to the same package, must be specified directly on the container,
without any folder, because the same checkout will be used.

• Dependencies can target projects and project groups. Dependencies add the requirement
that the target must be built before starting with the origin. If both ends are projects, and
the target is a library, in addition the system will try to link that dependency with the
origin project.

◦ External dependencies can just specify the target package (either by repository, name
and version or by URL). Package references resolve to the main project on the main
project group of the target package.

◦ Internal dependencies contain an identifier of the target project group and optionally
the identifier of a project inside it. Internal dependencies can target either a project
group (if only the project group is specified) or a project (if the project identifier is also
specified).

58

4.3. Application architecture

Identifier

ProjectGroupIdentifier ProjectIdentifier

Manifest ProjectGroup Project

FolderContainer

DependencyContainer

Folder

Dependency

InternalDependencyExternalDependency

PackageDefinition

1 1..*

1

1

1 1..*

1

1

1 *

1 *

1 * 1 1

1 0..1

1 *

Figure 17: Manifest data structure

Other than the base structure, each of these classes can contain some extra information:

• The manifest contains the version of the manifest file specification used. Diferent parsers
will be used based on this value.

• The package contains an identifier, like a version number or a branch or tag names.

• The project contains the project type, a UUID (needed by Premake to generate Visual
Studio project files), an optional public Premake file, a list of configurations, a map of ABI
flags for each configuration and the supported platforms and architectures.

• The dependencies can contain an option on whether they must be shared or not, a
relationship flag that tells the kind of dependency (GL-Get, legacy, or Premake-enabled),
an optional Premake file to set it up, a configuration map (which dependency
configuration should be used for each parent configuration) and some profile and
checkout mode mapping.

In addition to the in-memory representation, the manifests will be files on disk. We’ll need a file
format that we can parse. In order to follow Premake’s conventions, the manifest files will be Lua
scripts that can only call a well-defined set of functions. When called, these functions will take
care of progressively building the in-memory representation of the manifest.

59

4.3. Application architecture

As an example, we show the manifest of GL-Get itself:

manifest_version "0.4.0"
package "GL-Get"
 version "0.0.6-dev"
 project_group {MAIN}
 folder "prj"
 dependency "GL-Get-Premake-utils"
 repo "libs"
 version "0.0.5"
 project {MAIN}
 type "app"
 uuid "C3A10768-5024-4119-BC75-346DF779DF8E"
 premake_file "glget.premake.lua"
 abi { "Debug:ds-er", "Release:os-er" }
 configurations { "Debug", "Release" }
 platforms {
 "Linux:X86_64",
 "MacOSX:X86_64",
 "Windows:X86,X86_64",
 }
 folder {LIBS}
 dependency "Boost"
 relationship "third-party"
 premake_file "Boost.premake.lua"
 vcs "svn"
 url "https://svn02/vc/libs/trunk/Boost"

Even if these don’t look like it, each line represents a function call: when Lua functions take a
single argument which is a string or a table, the parenthesis can be omited. So the first line could
also be read as manifest_version("0.4.0"), and the text indentation on the file is merely
informative, it doesn’t have any efect. When using constants, like MAIN and LIBS we surround
them in brackets to convert it into a table so it can be used directly too. This way it doesn’t
resemble that much a programming language.

Since we have actions that can modify the manifest (like adding and removing dependencies, or
creating projects), we’ll need a manifest writer module. It will be trivial to write such module
because it will just need to traverse the manifest nodes and write the relevant information as
function calls that can later be interpreted by the parser.

4.3.13. Package cache

The package cache is a sub-system that allows storing shared information associated to a given
package definition. Its main objective, which is built-in, is acting as a manifest cache, but other
information can easily be stored.

The need for it is to reuse the already loaded and downloaded manifests: for example, if a
dependency appears in several points during the dependency resolution, we just ask for the

60

4.3. Application architecture

manifest of that dependency to the package cache every time we need it and it will only
download it once. If a manifest was already downloaded on a previous session and we still have a
local copy, it won’t even be downloaded once again.

The cache is structured as shown on Figure 18:

• The PackageCache contains a list of PackageInfo objects, one for each package.

• Each PackageInfo represents a package without a specific version. It contains a list of
PackageVersionInfo, which can be indexed by the package version string.

• A PackageVersionInfo represents a concrete version of a package.

• The PackageVersionCache is the actual object that will contain cached information about
a version of a package.

PackageCache PackageInfo PackageVersionInfo

PackageVersionCache

1 * 1 *

0..1 0..1

0..1 1

Figure 18: Package cache

The final objective is to access the proper PackageVersionCache, which can be located either in a
PackageInfo (if we don’t have any version information) or in a PackageVersionInfo. When a
PackageDefinition is given to the PackageCache, it accesses the corresponding PackageInfo:

• If the PackageDefinition specifies proper version information, the corresponding
PackageVersionInfo is accessed.

• If the PackageDefinition doesn’t specify version information, it will try to download the
manifest from the VCS configuration built by the PackageDefinition.

◦ If that manifest contains version information, that will be used to access that version’s
PackageVersionInfo, and the manifest will be cached. At the same time, the resolved
version will be stored on the PackageInfo so it can be used in case there’s another
request without version information.

◦ If no manifest can be obtained, the PackageInfo object will be used as the final
location.

Once we decide which is the proper parent object for the requested PackageDefinition, we access
the PackageVersionInfo it contains, and create one in case it doesn’t contain any. That’s where
we’ll store all information we know about that specific package version, and we’ll begin by
storing the VCS configuration or the manifest if we have any of them. Otherwise, the
PackageVersionInfo will know how to get them when asked for.

61

4.3. Application architecture

4.3.14. Premake extension and translation tree

Premake creates project files for many platforms, which is a very useful task, but it knows
nothing about package dependencies, version numbers, platforms and so on, so it has to be given
all the information it needs. GL-Get has all of this information, which is extracted from the
packages’ manifests, but we need a way to communicate this information to Premake. In order to
implement this communication, we’ll need two components: a data file where this information is
writen, and a Premake extension that reads it and knows how to handle it.

The data file is called translation_tree.lua for historical reasons, and it will be writen next to each
solution’s premake5.lua file. It contains two main blocks of information:

• Toolset information that can be used to deduce the toolset, compiler, platform and
architecture names from the action and the options passed to Premake. We need all this
in order to build mangled filenames for the target folders and binaries. The information on
this table will be pre-processed, so it’s ready to use with the information available in
Premake, instead of using the complete structure from GL-Get (described on section
4.3.4).

• Solution information, which contains the information needed by Premake, like its name,
the supported platforms and architectures, the configurations, and the list of projects. For
each project we’ll contain many things, like its name, project type, paths, location of the
Premake snippet, the ABIs map, configurations, the supported platforms, and a list of its
dependencies. Each dependency will specify its name, version, project type, relative path,
type of package, and the maps of ABIs and configurations, with the ones corresponding to
each element from the container project.

• Optionally, in case it was included as a project group dependency, it contains the version
of the Premake-utils package, so it can be loaded automatically.

In order to use this information, we’ll write a Premake extension that adds new features to the
existing commands. Its main objectives will be:

• Reading the translation tree file and adding helper functions to easily query information
from it.

• Automatically loading the Premake-utils package in case it was a project group
dependency. It will be located in a sub-folder of the project group, and its folder name will
contain the package version, so we need this information from the translation tree.

• Adding some functions that do some work automatically based on the information from
the translation tree. For example, we’ll have a function that sets the proper target name
and target path for a specific configuration of a project. Another example would be a
function that automatically adds a dependency to a project by just giving it the
dependency name: it would use all the information available about that dependency, and
call the proper Premake functions to set it up.

62

4.3. Application architecture

• Extending Premake’s commands so they do some work automatically. For example, the
solution function would take care of seting up the solution’s architectures and
configurations automatically. The project function will just take a project name and it will
automatically setup everything it knows about it: its path, the configurations, its target
names and the dependencies.

• Modifying some of Premake’s commands so they take into account the package they’re
working on. For instance, when the includedirs function is called with a relative path, it
will be applied to the base path of the active package (like a dependency).

• Writing a file that contains the final filenames and paths afer being processed by
Premake. This step is needed in case the user adds some customization to the solution’s
Premake file, and for some complex targets that may use non-standard paths. This
information is later read back by GL-Get so it knows how to run the tests.

With this we close the Premake interaction both ways, making it fully aware of the packages’
information, and making GL-Get aware of what Premake used to build the project files.

4.3.15. Package resolution

Starting from the main loaded package, we want to know what versions of which packages are
needed in order to make it work. For that we’ll build a resolution tree, as shown on Figure 19. It
can be thought as a structure parallel to the manifest, which contains augmented information
about the concrete instance we’re looking at. The same package (manifest) can be referenced in
diferent points of the tree, but not all instances of the resolution sub-tree may be equal.

Manifest

ProjectGroup

Project

PackageResolution

BasePackageResolution

LegacyPackageResolution

ProjectGroupResolution

ProjectResolution

DependencyContainerResolution

PackageResolutionCache PackageInstance

PackageVersionCache

1

1..*

1

1..*

* 1

subset
1

*

* 1

1

1..*

* 1

*

1 1..* 1 1

1

1

1

Figure 19: Package resolution tree

63

4.3. Application architecture

The PackageResolution keeps track of the set of enabled project groups of that concrete instance,
which can be diferent based on the requested profile or enabled arbitrarily by the request from
the outside.

The interesting part is how the PackageResolution of the dependencies are referenced from the
DependencyContainerResolution:

• We add a PackageResolutionCache to each PackageVersionCache (which was described in
section 4.3.13) that’s used for the dependency resolution. Its objective is to keep track of
all the diferent PackageResolution trees that can be created for the same package
version. With this, when a package appears more than once in the dependency tree, that
specific sub-tree can be reused.

• The DependencyContainerResolution doesn’t keep the references to the dependencies’
PackageResolution, but it uses the PackageVersionCache to retrieve them whenever
they’re needed. With this we automatically can get the latest version resolved for that
scope.

• While creating the PackageResolution, a structure will be created dynamically to
represent the link scopes of the applications, which will be passed to their library
dependency projects. The link scope is where the conflict resolution is done when two
instances of the same package are found:

◦ If both instances reference the same version, everything’s fine and the process
continues.

◦ If both instances reference diferent versions:

▪ If they’re compatible (as defined by Semantic Versioning [115]), the newer version
is chosen, and it will be used for any instance requested inside the link scope.

▪ Otherwise, it’s considered a conflict and the process will throw an error.

The package resolution tree is a central part of the system, and it’s used for many things. The
only algorithm embedded on the structure is the loading itself, but the rest are writen separately.
In this case there’s a single algorithm, which builds the structure described on the next section.
Many other algorithms run from that structure but also access the package resolution tree.

4.3.16. Package checkout

Afer doing the package resolution, it’s convenient to have an easily accessible list of packages
and their associated checkout information (PackageCheckout), which would be irrelevant on the
resolution tree. In some cases, several nodes on the resolution tree may reference the same
package checkout on the hard drive (like in the case of packages that should be checked out to
the shared folder), so this package checkout information is a flatened list that has all these
duplicates merged. This allows to easily know which packages have to be checked out and to
track the status of their synchronization to disk.

64

4.3. Application architecture

First of all we’ll model the checkout location (Figure 20). It has two purposes:

• Giving access to the list of packages that have to be checked out to a specific location. In
the case of the workspace checkout location, it will only contain a single package, but all
other locations can contain more than one.

• Abstracting the concrete path for a given package. For instance, when asking for the
package path to the workspace checkout location, it will return the root of the workspace,
but all container checkout locations will return a sub-directory of them. The directory
naming convention will be diferent for each container:

◦ in the workspace siblings, each package will only have the package name on the
directory name

◦ on the shared folders it will contain the package name and a combination of the VCS
information (package version, branch, revision, etc)

CheckoutLocation

ContainerCheckoutLocationWorkspaceCheckoutLocation

PackageGroupCheckoutLocation WorkspaceSiblingsCheckoutLocation

PackageCheckout
1 *

Figure 20: Checkout location

For each package, we can get requests for either:

• Some of its project groups, and these will be associated to one or more checkout modes.
The checkout modes are “source” and “binary”, which indicates whether the source folder
of the project group will be checked out, or the target one, or both. We’ll create the
ProjectGroupSelection class to model this (Figure 21).

• A profile, which will map to a predefined ProjectGroupSelection. There are several defined
profiles, like full (all project groups with all checkout modes), main (for just the main
project group with a specified checkout mode, the default for the dependencies), and
devel (for the main and the tests project groups, the default for the main workspace
package).

65

4.3. Application architecture

ProjectGroupSelection ProjectGroupItem

CheckoutMode

ProjectGroupIdentifier
1 *

1 *

1 1

Figure 21: Project group selection

Given the algorithm diference when doing a full checkout or a sparse checkout, we’ll draw on
the strategy design patern, and create the checkout strategy (Figure 22). It encapsulates the
algorithm that knows how to checkout or update a package, given its location on the hard drive,
its VCS information, and the list of the requested project groups and their checkout modes (the
ProjectGroupSelection).

CheckoutStrategy

FullCheckoutStrategy SparseCheckoutStrategy

Figure 22: Checkout strategy

Finally, the package checkout (Figure 23) will be the one containing all this information:

• It contains an association to the PackageInstance from the dependency tree that contains
the whole context from the dependency resolution process.

• It has a CheckoutStrategy that tells how this package should be checked out.

• It has a ProjectGroupSelection that tells which project groups should be checked out and
their requested checkout modes.

• It has a CheckoutLocation that helps it compute its target path. In addition, one could
access the PackageCheckout from the CheckoutLocation, which is a good way to trigger
the synchronization process.

PackageCheckoutCheckoutLocation PackageInstance

CheckoutStrategy ProjectGroupSelection

1 * 1 1

1

1

1

1

Figure 23: Package checkout

66

4.3. Application architecture

Similar to the package resolution tree, the algorithms are also separated from the package
checkout information:

• Sync: synchronizes the structure to disk. It navigates the structure by creating the needed
directories and checking out or updating the packages as needed.

• Write translation tree: it writes to disk the translation tree file described in section 4.3.14
for each enabled project group of each described package. For it, it accesses the package
resolution tree, where it can find all the dependencies information.

• Generate: it runs Premake on each enabled project group of each described package.

• Build: it builds the projects of every enabled project group of each described package.

• Test: it runs all the executable tests built from every enabled project group of each
described package.

4.3.17. Workspace

The workspace has two main responsibilities:

• It represents the physical directory where the main package is located and it handles
everything related to its files (managing of its temporary sub-directory, manifest cache,
local configuration, extraction of the Premake extension into the temporary sub-
directory, etc). When loaded properly, it contains a reference to its manifest and it takes
care of triggering the dependency resolution.

• On the other hand, it acts as the system facade with which actions interact most of the
time. It contains the functions that do most of the work for the use cases: update,
generate, build, test, add project, add dependency, etc.

Having this facility, implementing a new action is as easy as handling the command line
arguments, loading the workspace, and delegating the work to the desired workspace functions.

67

68

5. Implementation

5. Implementation
This chapter explains the most relevant implementation details, like the generally used
techniques or libraries. The implementation of the particular modules is ofen straightforward,
given the design from chapter 4, so it won’t be detailed in this chapter.

5.1. Lua code
Lua is a very nonrestrictive language, which allows the developer to implement things in many
diferent ways. For instance, the Lua-users wiki [116] contains lots of pages discussing possible
solutions to many common subjects on Lua, from common solutions to proposals for
standardization or useful tricks. We had to agree on our own conventions, otherwise it would’ve
been hard to make the several modules to integrate correctly.

5.1.1. Arguments checking

Since Lua is a dynamically typed language, it would be a good idea to add some kind of checking
to the functions we wrote. For that, we agreed that we would add asserts to check the type of the
arguments at the top of the functions, with all the known restrictions at the time of writing the
code. This is an example:

local function f(arg1, arg2, arg3)
 assert(type(arg1) == "string")
 assert(type(arg2) == "table" or arg2 == nil)
 assert(SomeClass:class_of(arg3))
 -- Do the work...
end

5.1.2. Modules

Lua has a function called require that allows loading other modules. When requiring a Lua
module, the interpreter uses a list of paterns to expand a file name from the module name, and it
tries to open them until an existing one is found. Once a file is found, that module’s code gets
executed, giving complete freedom to the module developer on what he wants to do at that
point.

• Older modules just set global variables that can later be accessed from the caller module
(and any other module), but it results in global namespace pollution, which could lead to
name clashes, which would just result in the last module with the same name overwriting
the previous ones. Also, the module is the one that decides the name under which it
would be visible. Working directly on global variables opens the door to undesired side-
efects. The following snippet shows how a module would be implemented using this
convention:

69

5.1. Lua code

my_module = {}

function my_module.func1(a, b)
 return a + b
end

function global_func(a, b)
 return a – b
end

That module could be used like this:

require "my_module"

local a = my_module.func1(1, 2)
local b = global_func(2, 1)

• The newer convention for module implementation is to define everything in local
variables and ofer the relevant functionality in a table returned at the end of the module
execution. It has the advantage that the global environment isn’t modified by default,
giving the choice to the user. In addition, the module could be used through an alias,
helping avoid name clashes when there’s lots of modules. The following is an example of a
module definition using this convention:

local my_module = {}

function my_module.func1(a, b)
 return a + b
end

return my_module

In order to use that module, the user could use it like this:

local that_module = require "my_module"

local a = that_module.func1(1, 2)

In the end we decided to go for the later, given its advantages on name scoping.

70

5.1. Lua code

5.1.3. Classes

Lua was designed as a procedural language with no representation for classes. Fortunately, its
tables are generic enough to create some basic object orientation:

local obj = {
 value = 1
}

function obj.func(object, arg1)
 return object.value + arg1
end

a = obj.func(obj, 1)

On this simple example we wouldn’t need the object argument, since we’re always working on
the same table, but we keep it to match the following examples. The main problem of this
approach is that both data and functions reside on the same table.

To circumvent this limitation, Lua provides metatables. Each table can have a metatable
associated, which can be used to define some of the table’s behaviors:

local t = {} -- This is a simple table
local mt = {} -- This is another simple table
setmetatable(t, mt) -- Now mt is the metatable of t

The simplest behavior that can be specified is what would happen when a non-existing field of a
table is requested. This can be specified using the metatable’s __index field. If a function is
assigned to that field, it would be called to get the values of non-existing fields of the table.
Alternatively, if a table is set on the __index field, the requested field would be looked for in that
table.

table t

value1 = 1

table mt

__index = fallback

table fallback

value2 = 2

metatable

Figure 24: Fallback values using metatables

The following example shows how this fallback method would work in practice (Figure 24 shows
the relationships between the tables):

71

5.1. Lua code

local t = { value1 = 1 }
print(t.value1) -- This would print "1"
print(t.value2) -- This would print "nil"

local fallback = { value2 = 2 }
local mt = { __index = fallback }
setmetatable(t, mt)

print(t.value1) -- This would print "1"
print(t.value2) -- This would print "2"

With this we could create tables with arbitrary fields (which could contain functions) shared
among several other tables. This is used commonly in Lua to implement prototype-based
programming, a style of object-oriented programming popularized by JavaScript.

In addition, some syntactic sugar was added to help writing object oriented code. The colon
character can be used instead of the dot to represent member methods. When declaring a
function with the colon character, it adds a new implicit parameter called self, which represents
the object where the method is being called, similar to the this pointer in C++. When calling a
table function with the colon character, it implicitly adds the table as the first argument to the
function. Here’s an adaptation of the previous example using a metatable and the colon syntax:

local MyClass = {}
local MyClass_mt = { __index = MyClass }

-- This is equivalent to: function MyClass.func(self, arg1)
function MyClass:func(arg1)
 return self.value + arg1
end

local obj = {
 value = 1
}
setmetatable(obj, MyClass_mt)

-- This is equivalent to: a = obj.func(obj, 1)
local a = obj:func(1)

There are many tricks and conventions through the Lua ecosystem around object orientation,
leading to many diferent implementation details. Since we were used to class-based object
orientation, we decided to use Penlight’s [117] implementation for the class system. That ofers
some extra functionality like inheritance, constructor chaining and derived type checking. The
following is a small example of how it can be used:

72

5.1. Lua code

local class = require "pl.class"

local ParentClass = class() -- Creates a new class
function ParentClass:_init(val) -- Defines the constructor
 self.val = val
end
function ParentClass:add(val) -- Defines a method
 return self.val + val
end

local DerivedClass = class(ParentClass) -- Creates a derived class
function DerivedClass:_init(val)
 self:super(val + 1) -- Calls the parent class’ constructor
end

local obj = DerivedClass(2) -- Creates an instance
local a = obj:add(1) -- Returns 4
assert(DerivedClass:class_of(obj)) -- obj is a DerivedClass
assert(ParentClass:class_of(obj)) -- obj is also a ParentClass

5.1.4. Error handling

There are many conventions in Lua to handle errors:

• The native Lua errors are generated using either the error or assert functions. Run-time
errors, like trying to add “1 + nil” also raise this kind of error. These behave in a similar
way to C++’s throw, finishing the program execution if they’re not captured. The way to
capture these errors is by running the code that throws the error in a protected
environment, by wrapping it in a function called using a protected call (using the pcall
function). In case of an error, pcall returns false plus an error message. Otherwise it
returns true and all the values returned by the called function. Here’s an example of pcall
usage:

-- Original call:
local result = func_with_error(arg1, arg2)

-- Protected call:
local status, result = pcall(func_with_error, arg1, arg2)
if status then
print("OK!")

else
 print("Got an error:", result)
end

The main disadvantage of this method is that the call code is much less readable than the
original, specially when dealing with classes, as it can be seen on the following example:

73

5.1. Lua code

local obj = MyClass()

-- Original call:
local result = obj:func_with_error(arg1, arg2)

-- Protected call:
local status, result = pcall(obj.func_with_error, obj, arg1, arg2)
-- handle the status value...

• Another option is to design the functions that can fail to return numerical error codes.
That’s similar to the way the error code is used on the shell scripts to determine if the
execution of an application finished successfully or not. It’s common to return 0 when
everything went fine and another number in case of failure. An issue with this is that it’s
hard to know the meaning of each value from the outside, and their meaning could easily
change when possible return values are added or removed.

• An option used by several functions in the standard Lua run-time and some external
libraries is to make the return values compatible with the arguments expected by the
assert function: the first argument is interpreted as a boolean, with values of false or nil
meaning that an error should be raised. In case of error, the second argument is used as
the error message. Otherwise, the assert function returns all the arguments passed to it,
acting as a bypass.

The following example shows the implementation of a function following this convention:

local function f(a, b)
 if type(a) == "number" and type(b) == "number" then
 return a + b
 else
 return nil, "Both arguments must be numbers"
 end
end

local a = f(1, 2) -- Unchecked call
local b = assert(f(1, 2)) -- Asserted call

-- Checked call:
local c, err = f(1, 2)
if err then
 print("Got an error:", err)
end

The main advantages of this approach are that it doesn’t complicate the syntax of the
code, the error checking is optional, and it can easily be wrapped in an assert call in case
we want to promote the type of error.

74

5.1. Lua code

While numerical error codes were used initially in the prototype implementation, we decided it
didn’t provide the flexibility and semantics we needed. So in the end we established these rules:

• Error and assert should be used to protect the code. These shouldn’t happen and they
point out bad code usages.

• Functions that could fail (have alternative code flows) depending on external data, like
user input, or file data, should return assert-compatible values. These can easily be raised
to errors wrapping the call with assert() in case it’s needed.

5.2. C/C++ code
Most of the C/C++ code in the project is either very simple or is a direct translation from the
designs on the previous chapter, and its implementation has no special interest. C++ supports all
the features required by the designs above, like classes, so nothing special was required. The most
interesting part may be the creation of native modules for Lua.

Lua is a very simple language which was designed to be easy to embed, so it’s easy to make it
interact with other languages. Its interface is implemented in C, and its main communication
channel is the virtual machine’s stack. The main types of interaction are:

• Pushing or popping values to/from the stack. Arbitrary C/C++ values (even memory
pointers) can be stored on the Lua VM by wrapping them on the userdata structures,
though these appear as an opaque data reference from the Lua language side, so it’s
beter trying to avoid them. These can later be used for anything (function parameters,
storing into a table field, etc).

• Calling a function: one has to push the function and its arguments to the stack, and the
return values will be located at the top of the stack afer returning.

• Creating a C function that can be called directly from Lua: these functions must have this
prototype:

typedef int (*lua_CFunction) (lua_State *L);

The lua_State is the current state of the virtual machine, which can be used to get the
function arguments and to access the rest of the environment. The function must return
the amount of returned values. Inside these functions, the implementation can use C++
code as complex as it wants.

The implementation of a native Lua module using C/C++ usually consists of the following steps:

1. Implementing the desired features using the most convenient language (ofen C++
classes).

2. Writing the C functions that will serve as the interface to the module, which will bridge to
the code writen on the first step.

75

5.2. C/C++ code

3. Registering the interface functions as fields of a table, so all the functions can be accessed
like module.function1, module.function2, etc. There’s some helper functionality for
creating modules by just providing its functions.

The final result from the point of view of the Lua language is a module that behaves like the ones
described on section 5.1.2.

5.3. Standalone executable
As specified in the non-functional requirements, it was expected to distribute the tool as a
standalone binary with its dependencies embedded to simplify its download, installation and
configuration. This section explains how we packaged all the components shown in Figure 12
together, and how they’re coordinated at run-time.

5.3.1. Embedded scripts

To be able to have a single executable that contained the system scripts, we had to embed the
scripts as resources and implement an embedded scripts loader. The Premake extension scripts
are used in a diferent way, but we embed them together with the system scripts to reuse the
same embedding system. The easiest way to embed the scripts as resources was to generate a
.cpp file which contained the scripts as C strings.

We used Premake’s scripts embedder as a base to build our custom one. It’s a simple Lua script
that runs as a Premake action and it takes advantage of some of its features to get lists of files
from a given patern. As a result, it generates a .cpp file with the following structure:

const char* k_builtinScriptsIndex[] = {
 "filename1.lua",
 "filename2.lua",
 ...
};

const char* k_builtinScripts[] = {
 "contents of filename1.lua",
 "contents of filename2.lua",
 ...
};

With this simple structure, the embedded script loader can search the first array for the file
name, to later get the corresponding file contents by indexing the second array with the same
index. The embedded script loader is implemented as a C Lua module, as described in the 5.2
section.

As explained in the reference of the require function [118], a Lua script loader consists of two
main parts, which we implement in C because they both need to access the scripts arrays:

76

5.3. Standalone executable

• A module loader function: this is given the module name and it must actually load the
module into the Lua VM and return its main value. We make use of Lua’s own script
loader functions to load the script from the in-memory array.

• A module searcher function: this is given the module name and it must decide whether it
can load the module or not. In our case, this function simply checks whether the filename
exists in the file names array. If afirmative, the function returns the embedded module
loader function, which can later be used to load the specified module.

The module searcher function has to be injected into the package.loaders array. This array
controls the order in which diferent searchers are tried, so we’ll have to insert our
searcher afer the file-system searcher.

Every time a module is required from Lua, the require function will first use the standard file-
system module searcher, loading a module from an external file if it’s found. Otherwise (what we
expect for most of the time), it will fall back to our new embedded scripts searcher, which will
look for the module name in the embedded scripts file names array. If the module is found, the
embedded module loader function will be used to load it, which will parse the contents of the
embedded file.

With this we implemented a simple override system that allows us to simply drop Lua modules
in the file-system and these will be loaded instead of the embedded ones if their filename
matches. This is very useful during the development process so we don’t need to recompile the
new embedded files every time we want to test a change.

5.3.2. Dependencies

The main system dependency is a Lua virtual machine in order to run its own scripts. Lua is
developed as an embedded library, so it was just a mater of linking the application together with
the Lua library. Other than that, the application requires Subversion and Premake to execute
some of its commands, but these aren’t vital to make it run.

Subversion is already installed in most developers’ machines and it’s properly configured in the
PATH environment variable. In the future we plan to add support for Git, so Subversion could
become non-essential. For these reasons we considered it’s beter not to to embed Subversion.
Moreover, if necessary, the svn executable path can easily be set in GL-Get’s configuration.

Premake is the last big dependency. Initially we relied on an external Premake which the user
had to properly setup on its system. The way we’ve been using Premake in the company, there
has been a copy on a sub-folder of each project, and each project could have a diferent version,
so there wasn’t a global installation or a proper reusable configuration. Since this is considered a
basic tool for our current work-flow, we decided to embed Premake into GL-Get.

Since Premake already includes a Lua VM, we decided to reuse it, as shown in Figure 12. The Lua
VM from Premake contained some small customizations, mainly to plug their own embedded
scripts loader. We had to do a few modifications so it could be used for GL-Get before using the
embedded Premake for the first time.

77

5.3. Standalone executable

Premake isn’t developed as a library that can be embedded in another application, but as a main
application itself. The main trick we had to apply was to rename Premake’s main function so it
didn’t collide with GL-Get’s:

#define main premake_main

namespace premake
{
extern "C"
{
#include "premake/src/host/premake_main.c"
}
}

Besides this, we also had to write a C Lua module (as described in the 5.2 section, following the
design from section 4.3.6) that allowed us to run Premake from Lua. It basically takes all the
function arguments and builds an array from it, which can be given to premake_main like it was
its own command line arguments array.

5.3.3. Main application

The flow of the main application can be simplified as follows:

• A Lua VM is created.

• We do some basic processing of the command line arguments that can’t be done at a later
stage (like trying to get the name and absolute path of the executable), and package all
the arguments into a Lua array so they can later be accessed from the scripts.

• Setup the C Lua modules:

◦ A console module which overrides Lua’s own print function to make it convert the
ANSI terminal color codes into Windows API calls, to make the colored output to work
on Windows.

◦ The command line arguments parsing module, which was described in section 4.3.1.

◦ The embedded script loader, described in sections 4.3.7 and 5.3.1.

◦ The scripts extractor, which is used to dump the Premake extension scripts, described
in section 4.3.8.

◦ The LuaFileSystem [119] module.

◦ The embedded Premake module described in section 4.3.6 and in the previous section.

78

5.3. Standalone executable

• We set the package.path Lua variable, based on the command line arguments, to let it
know where the scripts can be located on the file-system.

• Load the main GL-Get script using the require Lua function. It’s aware of the embedded
script loader, so the main script can already be loaded from the embedded collection.

• Finally, we delegate the rest of the execution to the main function of the main script. The
value returned by the script is returned to the operating system.

5.4. Bootstrapping
One of the trickiest parts of the implementation is creating the first build of GL-Get. GL-Get is
packaged as a GL-Get package itself, so we need GL-Get in order to generate its project files and
to build it. This chicken-or-egg problem is common in complex computer sofware which needs
itself to work, with compilers as a common example, since they’re usually writen using their
target language.

The process used to get an initial working version of the sofware is called bootstrapping. The
bootstrap process is diferent depending on the requirements and the actual implementation of
the system, so we had to implement a bootstrap system for GL-Get.

We used Premake as a reference, which also uses itself to generate its project files. Premake has a
special mode (with extra code to support it) which lets it work without the embedded scripts,
loading them directly from the file-system in a controlled environment. Using that, a basic
Premake version can be built with custom Makefiles, which is later used to generate the complete
project files needed to build the full version.

Since GL-Get needs the Premake sources anyway in order to be built, we decided to rely on
Premake to do the initial build. GL-Get injects a lot of automated functionality into Premake, but
we can’t rely on these features during the bootstrap process. This means we need two diferent
ways to generate the project files: one when using Premake directly (only for bootstrapping), and
another one when being built as a GL-Get package.

To simplify the maintainability we created two diferent Premake files which include a third one
that contains the common code (as shown in Figure 25). Premake (and GL-Get by extension) run
a file called premake5.lua by default, but a custom filename can be specified, so bootstrap.lua is
given to Premake to generate the basic project files.

common.luabootstrap.lua

embed.luapremake5.lua

Figure 25: GL-Get’s Premake files

79

5.4. Bootstrapping

We can use Premake to embed GL-Get’s scripts, so we can avoid implementing a custom mode to
work without the embedded scripts. We made our embedded script packager based on Premake’s
one. The main premake5.lua file directly delegates to embed.lua when running the embed action,
so it can be run directly with Premake without specifying a Premake file.

Afer we generated the embedded scripts and basic project files, we can build an initial version of
GL-Get. Once we have it, we can use it to build GL-Get as a standard package, by running the
update, generate and build GL-Get commands on it.

The full bootstrapping process is depicted in Figure 26.

GL-Get bootstrap

Premake bootstrap

Embed GL-Get scripts
using Premake

Embed Premake scripts
using the basic Premake

Build basic Premake

Generate Premake project files
using the basic Premake

Build final Premake

Bootstrap Premake

Generate GL-Get project files
using Premake

Build basic GL-Get

Update, generate and build
using the basic GL-Get

Figure 26: The GL-Get bootstrap process

5.5. External libraries
In order to help and accelerate the development process, several third party libraries were used:

• Boost [17]: A set of C++ libraries. We just use the program_options library for the
command line options parsing module specified in the 4.3.1 section.

• compat53 [120]: Compatibility module providing Lua-5.3-style APIs for Lua 5.2 and 5.1.

• Penlight [117]: A set of Lua libraries that contain many common code paterns, like a class
system, comprehension lists, file-system operations, printing of tables, string and table
manipulation helpers, and many others.

• LuaFileSystem [119]: File System Library for Lua, used by Penlight. It’s implemented in C
to be able to access operating system’s specific features.

• tableshape [121]: A type checking library that allows checking for the structure of tables.

• typecheck [122]: Gradual type checking for Lua functions.

80

5.5. External libraries

• ansicolors [123]: ANSI terminal color manipulation for Lua.

• Jefrey Friedl’s JSON [124]: Simple JSON Encode/Decode in pure Lua.

5.6. Tests
Using a dynamically typed language it was vital to have a good test suite to make sure no
regressions are introduced. A test suite allows writing automated tests once that can easily be
run at any moment to verify everything’s working as expected.

When writing a new module or a new functionality, we tried to write new tests, both to make
sure it worked as expected, and also to make sure we don’t break it in the future.

When possible (when the expected results were known beforehand and the process of writing the
test didn’t slow the development process too much), we tried to use test driven development
(TDD). TDD is based on the idea that the tests should be writen before the actual code, based on
the function specs, considering the development finished once the tests pass.

For the actual implementation of the test suites we used the Telescope [125] Lua framework.

We implemented two main test suites: a unit tests one and an executable tests one.

• The unit test suite loads Lua modules and directly checks the behavior of individual
modules or functions.

• The executable test suite uses the compiled system and checks its behavior as a black box.
It uses many combinations of command-line arguments to verify proper error messages
are given and the system works as expected when given the proper arguments.

Afer running the test suites, a report is generated. It’s specially useful when run on the
continuous integration system, since it gives a global vision on the evolution of the test results.

81

5.6. Tests

82

6. Planning and costs

6. Planning and costs
An important factor on every development is the economic analysis. Everything has a cost, and
the development of this project should also be valued.

The academic project has a charge of 37,5 credits, with an estimation of 20 hours per credit,
which would give a result of 750 hours.

6.1. Planning
Since the initial requirements were vague and the development environment was unknown for
us, we couldn’t do proper planning beforehand. We faced the project with an iterative approach:
we worked on what was needed at the moment, following the priorities dictated by the project
lead and changing the goals on demand.

In the end, we can only do a retrospective showing how the time was spent. Figure 27 shows a
Gant chart that summarizes the history on the code repository, grouped by developer.

At the beginning of the project, the priorities were mainly filling the holes, adding new features.
Later on, we started sufering the lack of design and we had to do some heavy refactors. On the
last stages, the main priority was to support the first system users, by fixing bugs and
implementing some of their proposed improvements.

From this information I’ve further grouped the tasks and developed the table 5, which breaks
down the Gant chart and easily shows who worked on each of the main tasks done during the
project, and their total time spent on the project.

83

6.1. Planning

Albert Jordi Jeremy Alex Jesús

Features & modules

Standalone executable 48 0 0 24 0

Manifest 56 112 408 0 0

Workspace 0 24 64 0 0

Shared folder 16 0 152 24 0

Options parser 0 6 0 0 0

Embedded scripts 8 80 0 0 0

Script extractor 0 0 0 48 0

Premake integration 8 32 56 144 20

Remote build using Jenkins 0 0 0 32 0

VCS abstraction 0 208 0 64 0

Platform abstraction 0 88 8 0 0

ABI flags 0 32 96 0 0

Dependency tree 0 688 0 16 0

Checkout tree 0 88 0 0 0

Premake extension 0 16 40 88 0

Premake-utils 0 24 0 8 0

Logger 0 8 0 0 0

Target platforms 0 32 40 64 0

General improvements 0 168 0 32 0

Commands / Use cases

Create package command 0 56 0 0 0

Checkout command 16 64 88 0 0

Update command 48 8 0 0 0

Generate command 0 8 64 56 0

Build command 0 8 0 104 0

Test command 0 8 24 40 0

Add-project command 0 0 24 40 0

Add-dependency command 0 8 40 0 0

Remove-dependency command 0 0 8 0 0

Validate command 0 0 8 176 0

Show-dependencies command 0 8 0 0 0

Info command 0 0 0 8 0

Infrastructure & Management

Bootstrapping 0 56 24 0 20

Test suite 16 152 32 32 0

Dependencies management 8 24 0 0 0

Jenkins management 0 88 24 0 0

Release creation 0 104 0 0 0

Linux port 0 0 96 0 24

MacOS X port 0 0 96 0 0

Migration of the existing projects 0 240 0 0 0

Strong typing for Lua 0 312 0 0 0

TOTAL 224 2840 1392 960 64

Table 5: Summary of the Gantt chart (hours spent on tasks per developer)

84

6.1. Planning

85

Figure 27: Gantt chart

6.1. Planning

86

6.2. Costs

6.2. Costs
There are many costs that could be atributed to the development of this project. The most
important cost in this project are the human resources, but there are other derived costs. These
are detailed in the following sections.

6.2.1. Human resources

Every hour spent on the development should be valued as an efort and needs a compensation.
We consider each role to have a diferent wage, as detailed on table 6. These are estimated as the
rough cost for the company.

Role Hourly wage

Project lead 35€

Developer 20€

Table 6: Hourly wages per role

Based on the table above and the hours detailed on the planning section, we can easily compute
the total cost atributable to human resources, as shown on table 7.

Developer Hourly wage Hours Subtotal

Albert 35€ 224h 7840€

Jordi 20€ 2840h 568800€

Jeremy 20€ 1392h 278840€

Alex 20€ 960h 198200€

Jesús 20€ 64h 1280€

Total 1129960€

Table 7: Human resource costs

The total cost of human resources sums 1128960€.

6.2.2. Other costs

Other than the human resources, the development of any sofware project also has other costs
that may not be so evident at first. First, there’s the hardware costs. While no hardware was
bought exclusively for the development of this project, some existing hardware was used. For this
we’ll count the amortization for the duration of the project:

• A standard desktop computer was used, with an estimated price of 1000€. Its estimated
useful lifetime is around 5 years, which gives an amortization cost of 200€ per year.

87

6.2. Costs

The used sofware licenses should also be taken into account, using the same amortization
criteria as for the hardware:

• Microsof Visual Studio Professional 2013 was used. The 2015 version has a price of 646€
on the Microsof Store, so we’ll conclude the price of the previous version was similar.
Since a new version is launched every 2-3 years, we’ll consider its useful lifetime around 3
years, giving a yearly amortization cost of 215€.

The total amortization costs are computed in table 8, based on a yearly amortization cost per
developer of 200€ of hardware and 215€ of sofware. The years spent per developer on the project
are approximations based on the data from the previous section. Afer this we get a total of 610€
of hardware and 655,75€ of sofware costs.

Developer Years Hardware amortization Sofware amortization

Albert 0,2 40€ 43€

Jordi 1,5 300€ 322,5€

Jeremy 0,8 160€ 172€

Alex 0,5 100€ 107,5€

Jesús 0,05 10€ 10,75€

Subtotals 610€ 655,75€

Table 8: Other costs

We could also include other costs, like the Internet access or the power bills, but since these
services are shared among a lot of coworkers on the same ofice, we’ll consider these costs to be
irrelevant compared to the previous ones.

6.2.3. Total cost computation

Adding the costs elaborated on the previous sections we can get the total cost.

Description Subtotal

Human resources 1128960€

Hardware amortization 610€

Sofware licenses 655,75€

Total 1149225,75€

Table 9: Computation of the total development cost

As shown on table 9, the total cost of development of this project has been 1148225,75€.

88

7. Conclusions

7. Conclusions
To conclude the memory of this project, the current chapter gives an overview of the current
status of the project, what went well, what went bad, and how it could be improved in the future.

7.1. Achieved goals
The system is functional, and it has already been in use in production by some developers in the
Barcelona studio for a few months.

There’s around 10 to 15 core libraries already migrated to follow GL-Get’s conventions, and some
of them are actively developed with the help of the tool. This also includes some third party
libraries like OpenSSL, cURL, LZ4, Zlib and RapidJSON, for which we maintain internal copies,
and we also converted them to GL-Get packages. Now we can simply “depend on cURL version
7.49.1”, without having to care about whether we also have to link with OpenSSL or not.

The current implementation covers most situations of most use cases. Some corner cases may not
be covered completely, and in some cases an error could be triggered, but there are workarounds
for most situations. I continue working on the project to polish it and fix the bugs as they arise.

Some use cases, like the “publish”, “branch” or “merge” ones haven’t been implemented yet, but
there’s no impediment to do the process manually (modifying the manifest accordingly to reflect
the new branch or version and doing the relevant VCS action).

7.2. Problems found
During the development of the system, we faced several pitfalls, and some things could have
been done beter, looking in retrospective.

7.2.1. Lack of design

When we started working on the project, we just had the prototype and a few general directions.
The structure of the manifest wasn’t well defined until many months later, when we already had
worked on several features (for example, at the beginning there were no project groups, the
manifest just contained a single project, etc). The design changed ofen during the development,
and it was hard to have a clear idea of the final requirements, which slowed the process.

Iterating on top of a prototype didn’t help either, since its implementation was lacking in many
aspects (it was done as a quick proof of concept). It was based on several preconceived ideas that
may not have made the final system.

While some parts of the original implementation were okay, many others didn’t meet the
standards of the rest of the application, and we had to rewrite several parts of it. On the other
hand, some parts of the original code are still present, because we couldn’t justify the time to
rewrite them.

89

7.2. Problems found

7.2.2. Lua

When we started working on the project, the whole team was fairly new to the Lua language,
and the lack of knowledge on the language caused us some headaches. As an example, we hadn’t
agreed on some things as basic as error handling, which in the Lua ecosystem already have some
conventions.

Lua is a dynamic language and, as such, it has some good features, but it also has its drawbacks.
Being interpreted, was very useful for quick iteration. You could test your changes just afer
saving them, without having to recompile anything. On the other hand, from my point of view,
one of its biggest flaws it the lack of static typing. It’s very easy for the developer to introduce
bugs that could go unnoticed for a long time.

As a simple example, have a look at the following Lua snippet:

function bad()
 return non_existing_table.non_existing_field
end

local MyVar = true
if myvar then
 bad()
end

print("Everything's fine")

Running this code would show “Everything’s fine”.

It is clear to any minimally experienced Lua developer to see that line 2 is incorrect because it
tries to index a non-existing table. But it’s valid code. The issue would only be raised when the
code is executed. And why isn’t it executed if there’s a call to the bad() function? Because Lua
evaluates myvar, which doesn’t exist (it has nothing to do with MyVar), to nil, making the
condition false. It’s a common example of how Lua makes it hard to find errors. It isn’t an error to
misspell a variable name. And it isn’t an error to have erroneous code if it isn’t executed.

The dynamic nature of the language lets it rely on the side efects that could result of running
other modules. So, if before running the previous code snippet we ran a module which set myvar
to true, the code shown before would actually crash with the error “Atempt to index a nil value
(non_existing_field not present in nil)”. If additionally another module sets the global
non_existing_table to an empty table, the code above would now be completely correct.

To summarize, I think the language is too vulnerable to global interactions. While on small scripts
like the previous example it’s very easy to debug, its efects in larger applications, like GL-Get,
easily get in the way. It’s interesting to have access to the features that the dynamic languages
ofer, but having it as the default is too error prone.

I think this can be gradually solved with future work, but the efort isn’t small.

90

7.3. Future work

7.3. Future work
While the application is functional, there are always ways to improve it, either by adding new
features or by improving its internals. The following is a list of a few ideas for future work.

7.3.1. Web service

With the current implementation, we can only do the package resolution in one direction: from a
package to its dependencies. It would be interesting to do the reverse resolution: which packages
depend on this one?

For that we would need a centralized package register (basically a database) which allows us to
keep package versions information together with their dependencies. With that infrastructure in
place, the publishing action would register the new releases to the package register and, for
example, we could trigger automated emails to the owners of packages that depend on it (“Hey,
package X just got a new release. As the maintainer of package Y you may be interested in
updating your dependency”).

It would also be interesting to store compatibility information of particular versions. It would
allow knowing which particular versions of a dependency work well or break the compatibility.
The duty of filling this compatibility database could be given to a build server that would try to
build each packages with all possible version combinations of its dependencies, and send the
result to the server.

7.3.2. Add static typing

As already justified in section 7.2.2, I think the lack of static typing in the Lua programming
language is a big issue for the development of non-trivial systems like GL-Get. To solve this, I
think it would be worth trying to add static type checking to the system. An option would be to
rewrite parts of it in another language, like C/C++, or another one that also runs in the Lua VM,
but it’s a costly process. If Lua continues to be the main language for the system, several
approaches could be used:

• Adding run-time checks

◦ The usual way to check the argument types of a function is to add asserts at the
beginning of the function. If we also want to check the return values, we also have to
add these assertions before each return statement:

local function my_function(a, b)
 assert(type(a) == "number")
 assert(type(b) == "number")
 local result = a + b
 assert(type(result) == "number")
 return result
end

91

7.3. Future work

Fortunately, there are some libraries which simplify this task. For instance, the
typecheck library [122] provides a convenient way to annotate functions to check its
arguments and return types, by creating a wrapper function that does the actual
checks as shown in the example above:

local argscheck = require "typecheck".argscheck

local my_function = argscheck "my_function (int, int) => int" ..
function (a, b)
 return a + b
end

◦ In Lua most values are stored in tables. Even the global variables are accessed through
the _G table. Lua allows plugging additional functionality into tables with the use of
metatables (as explained in the 5.1.3 section). With this in mind and using several
tricks, during the project I created a library called custom_tables, which allows
creating tables with several custom features:

▪ Proxy tables, which get and set the values from another table. It has the advantage
that we can get events even when accessing existing fields.

▪ Geter and seter chaining.

▪ Read-only tables.

▪ Strict tables, which throw an error when trying to read a field that hasn’t been set
yet.

▪ Auto-tables, which create non-existing fields when being accessed, allowing easy
seting of deep-nested fields.

▪ Declared tables, which take a field declaration list and only allow seting or geting
fields from this list.

▪ Typed tables, which are in addition strict and declared tables, and take a list of
field type declaration, and verify that all field sets are of the proper type.

▪ Typed classes, based on Penlight’s class and the typed tables above.

This functionality has already been adopted lately in the project, and several classes
have been created using it, already showing that it helps debugging real world code.
The checks on the typed class are currently limited to the fields. It would be very nice
to extend its features to also check the method types, and to automatically propagate
these checks to the inherited classes.

92

7.3. Future work

◦ Local variables are an open issue, because Lua doesn’t feature triggers to intercept the
geting or seting of local variables, but since their scope is more limited and they can’t
easily be accessed from the outside of their scope, it’s not such a big deal.

• Adding compile-time checks

◦ MoonScript [126]: It’s a scripting language that compiles to Lua and ofers some extra
features, like native classes, but it’s still dynamically typed, like Lua, so we probably
need something more.

◦ TypedLua [127]: It’s an in-development language which is a super-set of Lua (all Lua
code is valid Typed Lua), and it compiles to plain Lua code. It basically allows adding
type annotations to the code, in variable declarations, function arguments or function
return values. It also has limited support for custom table types. When the compiler is
run, it checks for type matching and it does a great job even at type inference. During
the project I evaluated the possibility of adopting it, and it looks promising, but the
implementation is still a bit incomplete.

Anyway, being based on Lua, and being completely interoperable with it, at compile
time we can’t make sure that the functions will be called properly from external Lua
code, so a mixed solution with run-time checks would be ideal. I started implementing
a process that injected run-time checks into the Typed Lua compiler. The generated
code used the previously cited libraries for run-time checks (typecheck for function
types and custom_tables for tables), but I didn’t have time to finish the
implementation and it didn’t reach production code.

◦ Metalua [128]: It’s a framework for building custom functionality into the Lua
language, implementing it using Lua itself. Their tutorials show a few examples of how
to add type checking and native class functionality to the language. It could be worth
checking, but I don’t know how compatible it would be with the existing code.

7.3.3. Add version compatibility checks

A question that’s common for developers is “what’s a proper version number for the next
release?”. Version numbers are ofen assigned on how the developers feel about the importance of
a specific release, but it shouldn’t be like this. For example, there’s some common rules for library
versioning (which were the base for the Semantic Versioning [115] standard):

• Changes that break the existing API should raise the major version, even if no new feature
is added.

• New features that consist of API additions which don’t break the existing API should raise
the minor version.

• Fixes that don’t modify the API at all should only raise the patch version.

While the theory is easy to understand, it’s hard for the developer to make sure he adhered to
the rules. There’s some existing sofware to detect API changes, like API Dif [129], but it usually

93

7.3. Future work

just shows some information and the developer must interpret this and take the final decision.
GL-Get knows a lot of information about the packages, and this could be used to give beter
advice.

Most packages should contain test projects, and these should make sure the API behaves as
expected in that version. In this particular case, a relatively easy solution would be to create a
new command that combined the tests with the main project of two diferent versions of the
same package:

• If the tests of the old version can be built with the main project of the new version, and
can be run successfully, it would mean the newer version didn’t break the API: there’s no
need to raise the major version.

• If the tests of the new version can be built with the main project of the old version, it
would mean no new APIs were introduced: there’s no need to raise the minor version.

• In addition, if the new tests run successfully with the main project of the old version, it
would mean that no behavior change was detected, so it could suggest that the
implementation changes weren’t tested properly (regression tests should be writen to
make sure old bugs aren’t reintroduced).

These automated checks could be used to suggest the next version number to the developer, or to
warn him if he wants to publish a new release with a version number that doesn’t correspond to
the changes.

Combined with the web service described in section 7.3.1, we could also ofer a way to easily
check and visualize the compatibility of two arbitrary versions, which isn’t only based on the
version number.

7.3.4. Testing framework

While developing the aforementioned custom_tables library, I tried to adopt the Lua community
standards, and with that I discovered another testing framework called busted [130], which
seems to be the standard nowadays.

We’re using Telescope [125] for GL-Get’s unit and executable tests. While it’s functional, it has
several limitations (it’s very simple), and it seems to be unmaintained. For instance, Telescope
was missing an XML report file output (which I implemented), but busted already supported it, in
addition to many more advanced features.

It could be worth trying to replace the testing framework to work with busted.

7.3.5. Modularization

When new functionality was needed, it was implemented directly into the application. We kept a
“utils” folder for helpers and features that were not directly related to GL-Get. It contains lots of
stuf, like the logging system or the VCS and build system abstractions, with an interface ad-hoc
to our needs at the moment.

94

7.3. Future work

Many of these things could be very useful if they were properly extracted as libraries and their
API was revisited to ofer an interface generic enough to cover what could be needed by other
projects. That would probably also improve the code quality, since the current APIs were done
without much thought.

Additionally, it would be interesting to adopt the LuaRocks [72] system to manage the project
dependencies. We’re using several third party Lua libraries. Right now we’re basically using git
submodules, and keeping up to date with them is geting harder. Our libraries could also be
packaged as LuaRocks and the same system could be used to fetch and update our own libraries.

7.3.6. Use a single programming language

When we started working on the project, it was our first real contact with the Lua programming
language. At that time it seemed sensible to have a mix of Lua and C/C++ modules that
interacted well with each other, based on our needs. We ended up having some modules, like the
command line options parsing, implemented unnecessarily in C/C++. In the end, it made the
implementation harder (one had to switch constantly between languages to implement new
features), and these features were almost impossible to test.

It would be interesting to migrate as many modules as possible to a common language (whatever
is the chosen direction, either Lua or C/C++).

7.3.7. Improve extensibility

Right now the system is very tightly coupled with Premake and it’s based on strong conventions.
Here are a few examples:

• The package versions must follow the Semantic Versioning [115], which is a good
standard, but some existing third party projects use incompatible numberings (like
OpenSSL, which puts leters atached to the numbers: 1.0.1t). For these we now try to
convert their versions into a number compatible with Semantic Versioning, but we don’t
always achieve the desired efect.

• It would be nice to allow alternative project generation and build systems and custom
test runners, like having the ability to call arbitrary commands or shell scripts. As an
example, GL-Get isn’t aware of its own tests (and it can’t be used to run them) because
they’re not compiled programs, they’re a set of shell and Lua scripts.

• The package structure in the file-system is very strict. The good point is that people
working on the same organization will quickly get the structure of packages maintained
by other developers. On the other hand, it’s too restrictive to use third party or legacy
packages: these have to be migrated to the GL-Get structure, which means moving or
renaming files, and it forces us to have our own versions of those projects, and it makes it
much harder to keep up to date with the upstream projects.

• The package manifest must reside inside the package VCS. It would be very useful to be
able to specify the sources location in the manifest and the package structure, so we
could create GL-Get packages for third party projects much easier. This would allow us

95

7.3. Future work

for example to have a repository of external projects by just storing their manifests and
some helper files which would “overlay” on top of the upstream projects.

7.4. Personal conclusions
Personally, when I entered the company, I felt like the lack of package management was very
frustrating, and the used solutions were very rudimentary (like using batch files to lock the
revision of SVN externals…), so having the opportunity to work on this project came in handy
and it was very appreciated. I think we’ve contributed a bit to the tranquility and sanity of
sofware developers.

Having worked on this project for over a year and a half has been a really great experience. I’ve
learned a lot (mainly Lua, which I’ve loved and I’ve hated, with the second one winning the
batle), and I’ve enjoyed working with a team of amazing professionals.

Being critic, the current implementation isn’t as complete as I would like, and it feels a bit rough
sometimes. Anyway, overall the result is good: it can be used, and it has already made some
developers happy. We can always come back to improve it.

If I could restart it from scratch, I would probably change the implementation language for
something with static typing. It gets on my nerves to know there may be many typing errors
currently hidden in the code, which won’t be uncovered until a concrete codepath is executed.

All in all, I feel we’re in the good direction and I hope we can continue polishing it until we reach
a stage of maturity where it would make sense to release it outside of Gamelof. I think it could
be very helpful for a lot of developers out there, and the company seems open to the possibility.

96

8. Bibliography

8. Bibliography
1: Gameloft, http://www.gameloft.com
2: iOS, https://developer.apple.com/ios/
3: Android, http://www.android.com
4: Tizen, http://www.tizen.org
5: CMake, https://cmake.org
6: qmake, http://doc.qt.io/qt-5/qmake-manual.html
7: Premake, http://premake.github.io
8: Conan package manager, https://www.conan.io
9: biicode, http://www.biicode.com
10: CPM, http://www.cpm.rocks
11: Pacm, http://sourcey.com/pacm
12: CVM, https://github.com/Offirmo/cvm
13: The Lua programming language, http://www.lua.org
14: Asana, http://asana.com
15: Subversion, https://subversion.apache.org/
16: Subversion's externals definition, http://svnbook.red-
bean.com/en/1.2/svn.advanced.externals.html
17: Boost C++ Libraries, http://www.boost.org/
18: So you want to write a package manager,
19: Nix Package manager, https://nixos.org/nix/
20: RPM, http://www.rpm.org/
21: Apt, https://wiki.debian.org/Apt
22: Fink, http://www.finkproject.org/
23: Steam, http://store.steampowered.com/
24: pkgsrc, http://www.pkgsrc.org/
25: Pacman, https://www.archlinux.org/pacman/
26: pkgutil, http://pkgutil.net/
27: Portage, https://wiki.gentoo.org/wiki/Project:Portage
28: MacPorts, http://www.macports.org/
29: Homebrew, http://brew.sh/
30: iOS App Store, https://www.apple.com/appstore
31: Chocolatey, http://chocolatey.org/
32: Google Play, https://play.google.com/
33: Zero install, http://0install.net/
34: Windows Store, http://apps.microsoft.com/
35: Mac App Store, http://www.apple.com/es/osx/apps/app-store/
36: FreeBSD Ports, http://www.freebsd.org/ports/
37: Nintendo eShop for Wii U, http://www.nintendo.com/wiiu/downloads/
38: Nintendo eShop for 3DS, http://www.nintendo.com/3ds/downloads/
39: Xbox Games Store, https://store.xbox.com/
40: PlayStation Store, https://store.playstation.com/
41: Go, https://golang.org/
42: C#, https://msdn.microsoft.com/en-us/library/kx37x362.aspx
43: pip, http://www.pip-installer.org/
44: PHP, http://php.net/
45: Perl Package Manager, https://metacpan.org/pod/PPM
46: PAR: Perl Archive Toolkit, http://par.perl.org/

97

8. Bibliography

47: npm, https://www.npmjs.com/
48: Ruby, http://www.ruby-lang.org/
49: PyPI: Python Package Index, https://pypi.python.org/pypi
50: PECL: PHP Extension Community Repository, http://pecl.php.net/
51: PEAR: PHP Extension and Application Repository, http://pear.php.net/
52: cpan, https://metacpan.org/pod/distribution/CPAN/scripts/cpan
53: Comprehensive Perl Archive Network (CPAN), http://www.cpan.org/
54: The Perl programming language, https://www.perl.org/
55: Java, https://www.java.com
56: Conda, http://conda.pydata.org/docs/
57: Swift, https://swift.org/
58: Maven, https://maven.apache.org/
59: CABAL: Common Architecture for Building Applications and Libraries,
https://www.haskell.org/cabal/
60: Glide, https://glide.sh/
61: godep, https://github.com/tools/godep
62: NuGet, https://www.nuget.org/
63: Python, https://www.python.org/
64: LuaDist, http://luadist.org/
65: Hackage, https://hackage.haskell.org/
66: Haskell Language, https://www.haskell.org/
67: Go Tool, https://golang.org/cmd/go/
68: C / C++ reference, cppreference.com
69: RubyGems, https://rubygems.org/
70: Buildout, http://www.buildout.org/
71: Composer, https://getcomposer.org/
72: LuaRocks, https://luarocks.org/
73: Packagist, https://packagist.org/
74: PPM Index, http://code.activestate.com/ppm/
75: CocoaPods, https://cocoapods.org/
76: QuickLisp, https://www.quicklisp.org
77: JavaScript, https://en.wikipedia.org/wiki/JavaScript
78: Objective-C,
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/ProgrammingWithObjec
tiveC/Introduction/Introduction.html
79: Go packages, https://golang.org/pkg/
80: Common Lisp, https://common-lisp.net/
81: Apache Ivy, http://ant.apache.org/ivy/
82: cpanm, https://metacpan.org/pod/distribution/App-cpanminus/bin/cpanm
83: Maven Central, maven.org
84: Node.js, https://nodejs.org
85: Swift Package Manager, https://github.com/apple/swift-package-manager
86: cpanp, https://metacpan.org/pod/distribution/CPANPLUS/bin/cpanp
87: Gradle, http://gradle.org/
88: local::lib, https://metacpan.org/pod/local::lib
89: Bazel, http://bazel.io/
90: CoApp, http://coapp.org/
91: Make, https://en.wikipedia.org/wiki/Make_(software)
92: Xcode, https://developer.apple.com/xcode/
93: MSBuild, https://msdn.microsoft.com/en-us/library/dd393574.aspx

98

8. Bibliography

94: Apache Ant, http://ant.apache.org/
95: Jenkins, https://jenkins.io/
96: Git, https://git-scm.com/
97: GitLab, https://gitlab.com/
98: Microsoft Visual Studio, https://www.visualstudio.com/
99: Babelua VS extension, https://babelua.codeplex.com/
100: Vim, http://www.vim.org/
101: Notepad++, https://notepad-plus-plus.org/
102: GCC, the GNU Compiler Collection, https://gcc.gnu.org/
103: Decoda, http://unknownworlds.com/decoda/
104: Lua for Windows, https://github.com/rjpcomputing/luaforwindows
105: Vagrant, https://www.vagrantup.com/
106: Oracle VirtualBox, https://www.virtualbox.org/
107: Docker, https://www.docker.com/
108: Atlassian Jira, https://www.atlassian.com/software/jira
109: Atlassian Confluence, https://www.atlassian.com/software/confluence
110: LibreOffice, https://www.libreoffice.org/
111: yEd Graph Editor, https://www.yworks.com/products/yed
112: Microsoft Project, https://products.office.com/project/
113: MSBuild bugs are solved as "Won't fix",
https://connect.microsoft.com/VisualStudio/feedback/details/1023369/msbuild-doesnt-parse-
environment-variables-in-sln-files
114: NVIDIA CodeWorks for Android, https://developer.nvidia.com/codeworks-android
115: Semantic Versioning, http://semver.org/
116: Lua-users wiki, http://lua-users.org/wiki/
117: Penlight Lua Libraries, http://stevedonovan.github.io/Penlight
118: Lua's require function reference, https://www.lua.org/manual/5.1/manual.html#pdf-require
119: LuaFileSystem, http://keplerproject.github.io/luafilesystem/
120: lua-compat-5.3, https://github.com/keplerproject/lua-compat-5.3
121: tableshape, https://github.com/leafo/tableshape
122: typecheck, Gradual type checking for Lua, https://github.com/gvvaughan/typecheck
123: ansicolors.lua, https://github.com/kikito/ansicolors.lua
124: Jeffrey Friedl’s Simple JSON Encode/Decode in pure Lua, http://regex.info/blog/lua/json
125: Telescope, https://github.com/norman/telescope
126: MoonScript, http://moonscript.org/
127: Typed Lua, https://github.com/andremm/typedlua
128: Metalua, http://metalua.luaforge.net/
129: API Diff, http://www.apidiff.com/en/
130: busted, elegant Lua unit testing, http://olivinelabs.com/busted/

99

8. Bibliography

100

 PART 3. ANNEXES

101

102

9. Annex I: User manual

9. Annex I: User manual

9.1. Install

9.1.1. Download

You can find the latest release and its download link in the Releases page.

9.1.2. Install

The GL-Get binary is a standalone command line application that can be used from any folder
without the need to run a specific install process.

We recommend puting it in a folder visible to the system search path (using your operating
system's PATH environment variable) for ease of use.

9.1.3. Basic configuration

GL-Get has an internal default configuration that should work out of the box on most cases. In
case you need to change any seting, the procedure is described in the Configuration section.

You'll probably have to setup your SVN credentials in a config file. For this, create a file called "gl-
get_config.lua" in the home folder of your user (usually c:\users\username) with content similar
to this:

return
{
vcs =
{

repo =
{

{
type = "svn",
location = "https://server_root/*",
username = "your_username",
password = "your_password"

}
}

}
}

GL-Get uses an environment variable in order to refer to the shared folder. Decide where you
want this folder to be (shared packages like Boost will be stored there, so it should have plenty of
free space) and set the GL_GET_SHARED_FOLDER environment variable to point to this path. A
sensible value can be something like "C:\GL-Get-packages" or "/var/db/GL-Get", depending on
your operating system.

103

9.2. Configuration

9.2. Configuration
WARNING: The config files are in fact Lua scripts, so keep in mind you'll have to escape any "\" in
the specified paths using "\\".

The configuration files can be used to set a number of global setings. It mainly involves global
setings to be used across the system.

These setings can be overridden by stacking definitions in several configuration files.

The "gl-get_config.lua" file will be looked for in the following locations, from more general to
more concrete:

• In the home folder of the user

• In the folder of the binary (just on Windows)

• In the Workspace's .gl-get directory

• In the current working directory

It has the following format:

return
{
 curl =
 {
 path = "curl"
 },
 defaults =
 {
 abi_map =
 {
 Debug = "ds-er",
 Release = "os-",
 Gold = "ost-"
 }
 },
 manifest =
 {
 dirname = "manifest",
 filename = "_manifest.lua"
 },
 new_project =
 {
 configurations = { "Debug", "Release" },
 platforms = { "Windows:x86,x86_64" }
 },

104

9.2. Configuration

 premake =
 {
 embedded_version = "5.0.0-alpha7-gl",
 path = "premake5.exe"
 },
 shared_folder =
 {
 environment_variable = "GL_GET_SHARED_FOLDER",
 --path = ""
 },
 svn =
 {
 path = "svn"
 },
 vcs =
 {
 default_type = "svn",
 repo =
 {
 {
 type = "svn",
 location = "https://default_server_location/"
 }
 }
 },
 version_constraints =
 {
 --["GL-Get-premake-utils"] = "0.0.1"
 },
 workspace =
 {
 tmp_dirname = ".gl-get"
 },
 default_build =
 {
 server =
 {
 url = "default_server_location",
 user = "default_user",
 token = "default_token",
 }
 }
}

105

9.2. Configuration

Setings are grouped in several sets:

• Tools:

◦ svn: Subversion configuration

▪ path: the path to the svn binary.

◦ curl: cURL configuration

▪ path: the path to the curl binary.

◦ premake: Premake configuration

▪ path: the path to the Premake binary.

▪ embedded_version: the version number of the embedded Premake.

• Internal paths:

◦ manifest

▪ dirname: location inside the package where the manifest file is located.

▪ filename: name of the manifest files.

◦ workspace: this is the folder where the main package resides.

▪ tmp_dirname: name of the temporary folder where the workspace information is
cached.

◦ shared_folder: this is the folder where the dependencies that are installed as
common for all projects will go.

▪ environment_variable: the name of the environment variable where the shared
folder location will be taken from.

▪ path: the actual location of the shared folder. It’s automatically filled by the
contents of the environment variable.

• Commands defaults:

◦ new_project

▪ configurations: list of configurations used to fill the newly created projects.

▪ platforms: list of platforms used to fill the newly created projects.

◦ default_build: setings regarding build configuration, both client and server side
(Jenkins).

▪ server: specifies a Jenkins server

• url: the URL of the Jenkins host

• user: the Jenkins user to operate on behalf of

106

9.2. Configuration

• token: the server token for the Jenkins server

◦ defaults

▪ abi_map: the default map of ABI flags for each configuration to use when
building packages that don’t have it configured themselves.

• version_constraints: an array of versions associated to specific packages. Those versions
will be used regardless of what version is requested in the dependency tree.

• vcs: configuration of the version control systems

◦ default_type: the VCS type to use for the VCS configurations that don't specify an
explicit type.

◦ repo: an array of VCS configurations that will be used as matches to expand concrete
VCS configurations. The complete documentation is available in the next section.

Each of the configuration files can contain any subset of these setings.

9.3. VCS configuration
A VCS configuration is a table that specifies several parameters. Most of the parameters are
specific to the concrete VCS type. "type" is the only common parameter, which specifies the
concrete VCS type to use, represented as a string. The available types at the moment of writing
are "fs" and "svn", with "git" in the way. Each VCS type defines its valid parameters.

9.3.1. VCS types

fs

This is basically a VCS mock used in tests, backed by the filesystem. It has a single parameter:

• location: The location in the filesystem that will be used as the root for the repository.

Here’s a FS VCS configuration example:

{
 type = "fs",
 location = "c:/tmp/my_repo"
}

svn

Subversion. The valid parameters are:

• location: The URL to use as the root of the repository.

• username: The user name to use in the credentials to access the repository.

• password: The password corresponding to the specified user name to use in the
credentials to access the repository.

107

9.3. VCS configuration

Here’s a Svn VCS configuration example:

{
 type = "svn",
 location = "http://svn.example.com/repo",
 username = "my_username@example.com",
 password = "my_sikrit"
}

git

This is still WIP. The valid parameters are:

• location: The URL to use as the root of the repository.

Here’s a Git VCS configuration example:

{
 type = "git",
 location = "http://git.example.com/repo"
}

9.3.2. Tips & tricks

Implicit VCS type

If the type of a VCS is skipped, the default is used. The default can be specified in the global
config's vcs.default_type. So, for example, in the context of the following global configuration:

{
 vcs =
 {
 default_type = "svn"
 }
}

the following VCS configuration:

{
 location = "http://git.example.com/repo"
}

would result in the following efective VCS configuration:

108

9.3. VCS configuration

{
 type = "svn",
 location = "http://git.example.com/repo"
}

Common VCS configurations

Sometimes you may want to share some parameters among several VCS configurations (like base
packages locations or login credentials). This can be achieved using common VCS configurations,
which can be configured in the global config's vcs array. Each entry is a VCS configuration itself,
but the way they're used depends on some parameters:

Base packages locations

Most packages will be located on common repositories. These common locations can be declared
as standard VCS configurations. These configurations can optionally have an associated name so
they can easily be referenced from other places, like in package dependencies. Here's an example:

{
 vcs =
 {
 stable = {
 type = "svn",
 location = "http://svn.example.com/stable"
 },
 incubator = {
 type = "svn",
 location = "http://svn.example.com/incubator"
 }
 mine = {
 type = "fs",
 location = "c:/my_packages"
 }
 }
}

NOTE: Currently these base locations will only use the location field. Extra parameters will be
ignored.

Configuration extenders

When some arguments are common to many VCS configurations, we can create a common VCS
configuration that will be used as a patern, using the location to match the concrete VCS
configurations.

When specifying a concrete VCS configuration, it will be matched with the common
configurations, first using the VCS type, and then using a VCS specific criteria, commonly

109

9.3. VCS configuration

matching the location, which can contain patern globs (* and ?). In case several common
configurations match a given VCS configuration, the selected will be the one with the "longer
match" (longer location parameter).

Once a match is found, all the parameters in the common configuration missing in the concrete
VCS configuration are copied to it, expanding the concrete configuration.

As an example, in the context of the following global configuration:

{
 vcs =
 {
 {
 type = "svn",
 location = "http://svn.example.com/repos/*",
 username = "repos_username",
 password = "repos_password"
 },
 {
 type = "svn",
 location = "http://*example.com/*",
 username = "global_username",
 password = "global_password"
 }
 }
}

the following VCS configuration:

{
 type = "svn",
 location = "http://svn.example.com/repos/application"
}

would result in the following efective VCS configuration:

{
 type = "svn",
 location = "http://svn.example.com/repos/application",
 username = "repos_username",
 password = "repos_password"
}

because it matched both common configurations, but the longest match was the first one.

110

9.3. VCS configuration

This other VCS configuration:

{
 type = "svn",
 location = "http://example.com/libs/library",
 username = "custom_user"
}

would result in the following efective VCS configuration:

{
 type = "svn",
 location = "http://example.com/libs/library",
 username = "custom_user",
 password = "global_password"
}

because it just matched the second common configuration.

9.4. Actions
The current section will talk about the concepts required in order to use each of the actions, but
it will not discuss the particular command line arguments. GL-Get is auto-documented, which
means that the application itself can show help about each of the actions and their valid options.
As a reference, chapter 10 gathers the current help messages as shown by the application.

9.4.1. Creating a package

It creates a new package, which can be used to start working on a new project.

By default it will create a sub-directory of the current working directory, named afer the
package, but a destination path can be specified.

It needs the name of the package and the information of the main project. When used without
arguments, it will run a wizard that will ask for the missing information.

It can also optionally upload the new VCS repository.

9.4.2. Checking out

It checks out a package from the repository, together with its dependencies. There are several
ways to specify the package to check out:

• With the package name and optionally the repository name.

• With the package repository URL.

• With the final URL that points to the concrete branch or tag.

111

9.4. Actions

When the final URL isn’t given, some more information must be specified, like the package
version, a branch or a tag.

A checkout mode and a profile can be specified if desired.

By default it will be checked out into a sub-directory of the current working directory, named
afer the package, but a destination path can be specified.

9.4.3. Updating

It can be used to download the latest changes from the package repository and its dependencies.

By default it will try to locate the workspace in the current working directory, but a destination
path can be specified.

9.4.4. Generating the project files

It generates the project files for the current package. By default it also generates the project files
of its dependencies, but they can be skipped.

By default it will try to locate the workspace in the current working directory, but a destination
path can be specified.

It generates the project files for a specified toolset. If a toolset can target more than one platform,
the target platform also has to be specified. In case a platform has a single toolset, the platform
can also be specified without the toolset as an alternative. If nothing is specified, the current host
platform will be used as a default.

If the toolset can only generate a single architecture at a time, the architecture will also have to
be specified.

9.4.5. Building the projects

It builds all the projects in the package.

By default it will try to locate the workspace in the current working directory, but a destination
path can be specified.

A toolset and a platform have to be specified, but one of them may be skipped in case it can be
deduced from the other one, like for the generation action.

At least one or more architectures and configurations have to be specified. Optionally it can build
all the combinations.

9.4.6. Running the tests

It runs the test projects of the package and checks for their result.

It uses the same options as the build action, in order to select which binaries have to be run.

112

9.4. Actions

9.4.7. Adding a project

It creates a new project on an existing package.

By default it will try to locate the workspace in the current working directory, but a destination
path can be specified.

The name, type and the container project group of the new project are required. A UUID can be
specified, but a new one is automatically generated otherwise.

9.4.8. Adding a dependency

It can be used to add a new dependency to an existing package.

By default it will try to locate the workspace in the current working directory, but a destination
path can be specified.

Dependencies have two main groups of options:

• Where the dependency is added:

◦ Directly into a project group: at least the project group has to be specified.

◦ Into a project: both the project group and the project name are required.

◦ If the new dependency references another package, a folder name has to be specified.

• Target of the dependency:

◦ When it’s an internal dependency: a project group is mandatory, and a project name is
optional (not needed when we want to target a project group).

◦ When the target is external, we have to specify the name of the target package and
the related options required to access it: its repository name, the version, branch, tag,
or the URL in case it’s a legacy package. It can also optionally target the latest
available version.

Optionally the dependency can be marked as being forced to be shared or not.

9.4.9. Validating the package

The validate action can be used to make sure everything’s right in a package.

By default it will try to locate the workspace in the current working directory, but a destination
path can be specified. It can also be given the same options as to the checkout action, and it will
perform a temporary checkout in order to run all the checks.

Once it has a package workspace, it will generate the project files, it will build the projects, and it
will run all the test projects, in addition to running some extra package validation checks.

For this it will need the same options as the build and test actions (the toolset, platform,
architecture and configuration).

113

114

10. Annex II: Command line options reference

10. Annex II: Command line options reference
This chapter collects the command line documentation, as shown by the tool itself, with the
available actions and their options. Some of the default values or valid values shown may change
depending on the host system or its configuration.

10.1. Global options
This section shows the global options and the main available actions. All the global options can
be specified with all the actions:

Usage: GL-Get.exe <Global options> <ACTION> [action-options]

GL-Get is an apt-get like dependency manager, capable of bootstraping, configuring
and building projects with a command line instruction.

Global options:

General options:
 -h [--help] Shows this help message
 --common-folder arg (=c:\glget) This is the folder where the dependencies
 that are installed as common for all projects
 will go
 --no-color Disables colored output

Utilities paths:
 --svn-path arg (=svn) Path of the Subversion executable
 --curl-path arg (=..\..\tools\curl\curl.exe)
 Path of the curl executable

Advanced options:
 --tmp-path arg (=.gl-get) Path of the temporary working directory
 -d [--debug] [=arg(=1)] Specifies the extra debug messages level
 --package-path arg Adds the specified path to the lua package.path
 --premake-scripts arg Specifies the location of Premake's scripts
 --commands-path arg Path for looking for custom commands

Available actions:
 add-dependency Add a dependency to a project
 add-project Add a project to a package
 build Builds a GL-Get project
 checkout Checks out a versioned package
 create Creates the a new package
 generate Generates a GL-Get project
 glget Helper commands for GL-Get developers
 info Gives information about the current project_instance.
 show-config Show GL-Get configuration
 show-dependencies Shows the package dependencies
 show-version Show version information for GL-Get
 test Tests a GL-Get project
 update Updates a GL-Get working copy
 validate Verifies a GL-Get working copy

115

10.2. add-dependency action

10.2. add-dependency action
Usage: GL-Get.exe <Global options> add-dependency <Add-dependency options>

Use this command to add a dependency to a GL-Get project.

Add-dependency options:

Parent project options:
 --destination arg The destination path where the action will take place
 --project-group arg The project group to add the project to ("" means the
 main project group)
 --project arg The project to add the project to ("" means the main
 project)
 -f [--folder] arg The folder to add the dependency to
 -s [--shared] Add as shared dependency

Subversion options:
 -l [--location] arg The URL of the repository root
 --username arg The svn user to use for authenticating with the server
 --password arg The svn password matching the user specified in
 svn.username

New dependency:
 -p [--package] arg The name of the package
 -v [--version] arg The package version
 --repo arg The name of the repository to look for the package
 -t [--tag] arg The VCS tag
 -b [--branch] arg The VCS branch ("" means the main branch)
 -r [--revision] arg The VCS revision
 --vcs arg (=svn) The VCS type for the package. The valid values are:
 svn, fs
 --last-version Use the last available version

10.3. add-project action
Usage: GL-Get.exe <Global options> add-project <Add-project options>

Use this command to add a project to a GL-Get package.

Add project options:
 --destination arg The destination path where the action will take place
 --project arg Project name
 --project-group arg The project group to add the project to
 -t [--type] arg The type of the project
 --uuid arg The UUID of the project

116

10.4. build action

10.4. build action
Usage: GL-Get.exe <Global options> build <Build options>

Use this command in order to verify if a current working copy is ready to be commited.

Build options:
 --destination arg The destination path where the action will take
 place
 -t [--toolset] arg The target toolset. The valid toolsets for the
 Windows platform are: VS2012, VS2013, VS2015.
 -l [--platform] arg The target platform. The valid platforms are:
 Android, iOS, Linux, MacOSX, tvOS, Windows,
 Windows10.
 -a [--architecture] arg The target architecture. The valid platforms for
 the Windows platform are: X86, X86_64.
 -c [--configuration] arg The target configuration.
 --all Targets all architectures and configurations.
 --all-architectures Targets all architectures.
 --all-configurations Targets all configurations.
 --cleanup Erase the temporal folder after verify.
 -r [--remote-url] arg Remote URL of the build server.

10.5. checkout action
Usage: GL-Get.exe <Global options> checkout <Checkout options>

Use this command to perform a checkout of a GL-Get package.

Checkout options:

Package to checkout:
 --destination arg The destination path where the action will take
 place
 -m [--mode] arg (=source) The checkout mode. The valid values are: source,
 binary
 --profile arg The package profile. The valid values are: devel,
 main, full
 -p [--package] arg The name of the package
 -v [--version] arg The package version
 --repo arg The name of the repository to look for the
 package
 -t [--tag] arg The VCS tag
 -b [--branch] arg The VCS branch ("" means the main branch)
 -r [--revision] arg The VCS revision
 --vcs arg (=svn) The VCS type for the package. The valid values
 are: svn, fs

Subversion options:
 -l [--location] arg The URL of the repository root
 --username arg The svn user to use for authenticating with the server
 --password arg The svn password matching the user specified in
 svn.username

Optional dependencies:
 --with-optionals Install all the optional dependencies
 --with arg List of optional dependencies to install

117

10.6. create action

10.6. create action
Usage: GL-Get.exe <Global options> create <Create options>

It creates a new package by filling its manifest file and optionally creating its
VCS repository.

Create options:

New package options:
 --destination arg The destination path where the action will take place
 -p [--package] arg Package name
 -v [--version] arg Initial package version
 --skip-vcs Skip creating the VCS repository
 --vcs arg The VCS type for the package. The valid values are:
 svn, fs

Main project options:
 -t [--type] arg The type of the project
 --uuid arg The UUID of the project

10.7. generate action
Usage: GL-Get.exe <Global options> generate <Generate options>

Use this command in order to generate the project files of the package.

Generate options:
 --destination arg The destination path where the action will take
 place
 -t [--toolset] arg The target toolset. The valid toolsets for the
 Windows platform are: VS2012, VS2013, VS2015.
 -l [--platform] arg The target platform. The valid platforms are:
 Android, iOS, Linux, MacOSX, tvOS, Windows,
 Windows10.
 -a [--architecture] arg The target architecture. The valid platforms for
 the Windows platform are: X86, X86_64.
 --skip-deps Skip the dependencies, only generate the main
 package

10.8. glget action
Usage: GL-Get.exe <Global options> glget <ACTION> [action-options]

Helper commands for GL-Get developers

Available actions:
 release Releases a new version of GL-Get

10.8.1. release action
Usage: GL-Get.exe <Global options> glget release

Releases a new version of GL-Get

118

10.9. info action

10.9. info action
Usage: GL-Get.exe <Global options> info <Info options>

Use this command to view information about the current project_instance.

Info options:
 --destination arg The destination path where the action will take place

10.10. show-config action
Usage: GL-Get.exe <Global options> show-config

Use this command to show the configuration GL-Get will use.

10.11. show-dependencies action
Usage: GL-Get.exe <Global options> show-dependencies <Show-dependencies options>

Use this command to visualize the dependency tree of the main package of a workspace.

show-dependencies options:
 --destination arg The destination path where the action will take place

10.12. show-version action
Usage: GL-Get.exe <Global options> show-version

Use this command to display version information for the GL-Get tool.

10.13. test action
Usage: GL-Get.exe <Global options> test <Test options>

Use this command in order to verify if a current working copy is ready to be commited.

Test options:
 --destination arg The destination path where the action will take
 place
 -t [--toolset] arg The target toolset. The valid toolsets for the
 Windows platform are: VS2012, VS2013, VS2015.
 -l [--platform] arg The target platform. The valid platforms are:
 Android, iOS, Linux, MacOSX, tvOS, Windows,
 Windows10.
 -a [--architecture] arg The target architecture. The valid platforms for
 the Windows platform are: X86, X86_64.
 -c [--configuration] arg The target configuration.
 --all Targets all architectures and configurations.
 --all-architectures Targets all architectures.
 --all-configurations Targets all configurations.

119

10.14. update action

10.14. update action
Usage: GL-Get.exe <Global options> update <Update options>

Use this command in order to update a GL-Get working copy previously checked out with
the checkout command

Update options:
 --destination arg The destination path where the action will take place

10.15. validate action
Usage: GL-Get.exe <Global options> validate <Validate options>

Use this command in order to verify if a current working copy is ready to be commited.

Validate options:

Build information:
 --destination arg The destination path where the action will take
 place
 -l [--platform] arg target platform to be verified.
 -a [--architecture] arg target architecture to be verified.
 -o [--toolset] arg target toolset.
 -c [--configuration] arg target configuration to be verified.
 --cleanup erase the temporal folder after verify.

Subversion options:
 -l [--location] arg The URL of the repository root
 --username arg The svn user to use for authenticating with the server
 --password arg The svn password matching the user specified in
 svn.username

Validate svn information:
 -p [--package] arg The name of the package
 -v [--version] arg The package version
 --repo arg The name of the repository to look for the package
 -t [--tag] arg The VCS tag
 -b [--branch] arg The VCS branch ("" means the main branch)
 -r [--revision] arg The VCS revision
 --vcs arg (=svn) The VCS type for the package. The valid values are:
 svn, fs

120

	Part 1. Introduction
	1. Preamble
	1.1. Context
	1.2. Motivation
	1.3. Objectives
	1.4. Document structure

	2. Beginnings
	2.1. Initial status
	2.2. Team
	2.3. Programming languages

	Part 2. Development
	3. Specification
	3.1. Problem
	3.1.1. Sharing code
	3.1.2. Versioning
	3.1.3. Project file creation
	3.1.4. Continuous integration

	3.2. Analysis of the existing tools
	3.2.1. System package managers
	3.2.2. Language package managers
	3.2.3. Project dependency managers
	3.2.4. Project file creators
	3.2.5. Build tools
	3.2.6. Continuous integration tools

	3.3. Requirements analysis
	3.3.1. Functional requirements
	3.3.2. Non-functional requirements

	3.4. Used tools
	3.5. Use cases
	3.5.1. Actors
	3.5.2. Use case diagram
	3.5.3. Use case description

	4. Design
	4.1. Concepts
	4.2. System architecture
	4.3. Application architecture
	4.3.1. Actions and command line options
	4.3.2. Configuration
	4.3.3. Logging
	4.3.4. Platform specification
	4.3.5. VCS abstraction
	4.3.6. Embedded Premake integration
	4.3.7. Embedded scripts
	4.3.8. Source extractor
	4.3.9. Build system
	4.3.10. Remote build system
	4.3.11. Package definition
	4.3.12. Manifest
	4.3.13. Package cache
	4.3.14. Premake extension and translation tree
	4.3.15. Package resolution
	4.3.16. Package checkout
	4.3.17. Workspace

	5. Implementation
	5.1. Lua code
	5.1.1. Arguments checking
	5.1.2. Modules
	5.1.3. Classes
	5.1.4. Error handling

	5.2. C/C++ code
	5.3. Standalone executable
	5.3.1. Embedded scripts
	5.3.2. Dependencies
	5.3.3. Main application

	5.4. Bootstrapping
	5.5. External libraries
	5.6. Tests

	6. Planning and costs
	6.1. Planning
	6.2. Costs
	6.2.1. Human resources
	6.2.2. Other costs
	6.2.3. Total cost computation

	7. Conclusions
	7.1. Achieved goals
	7.2. Problems found
	7.2.1. Lack of design
	7.2.2. Lua

	7.3. Future work
	7.3.1. Web service
	7.3.2. Add static typing
	7.3.3. Add version compatibility checks
	7.3.4. Testing framework
	7.3.5. Modularization
	7.3.6. Use a single programming language
	7.3.7. Improve extensibility

	7.4. Personal conclusions

	8. Bibliography

	Part 3. Annexes
	9. Annex I: User manual
	9.1. Install
	9.1.1. Download
	9.1.2. Install
	9.1.3. Basic configuration

	9.2. Configuration
	9.3. VCS configuration
	9.3.1. VCS types
	9.3.2. Tips & tricks

	9.4. Actions
	9.4.1. Creating a package
	9.4.2. Checking out
	9.4.3. Updating
	9.4.4. Generating the project files
	9.4.5. Building the projects
	9.4.6. Running the tests
	9.4.7. Adding a project
	9.4.8. Adding a dependency
	9.4.9. Validating the package

	10. Annex II: Command line options reference
	10.1. Global options
	10.2. add-dependency action
	10.3. add-project action
	10.4. build action
	10.5. checkout action
	10.6. create action
	10.7. generate action
	10.8. glget action
	10.8.1. release action

	10.9. info action
	10.10. show-config action
	10.11. show-dependencies action
	10.12. show-version action
	10.13. test action
	10.14. update action
	10.15. validate action

