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Abstract

Euglenids are protists unicellular flagellates made of parallel proteinaceous strips and microtubules lo-
cated underneath the plasma membrane, they exhibit a highly intriguing shape morphing mechanism
that permits them to move through the media and for the feeding process. Inspired by this behaviour
we develop a model to mimics the pellicle kinematics by linking the pellicle deformations and the
mechanics of the rods by assuming a continuous surface made of adjacent rods. The computational
model works by finding the shape configuration that minimizes the energy functional. We obtain a
wide repertory of possible configurations using axisymmetric cylindrical surfaces and we obtain a re-
duce model for the case of inextensible rods. Additional actuation of pellicle shears should be studied
to obtain a larger set of shape configurations mainly non-axisymmetrical. New numerical studies are
needed to obtain smooth transitions between pairs of stable configurations.
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Chapter 1

Introduction

When I was a kid I used to think that Leonardo da Vinci (1452-1519) was probably the major genius
of all times. I mean, is there something where he was not good at? He could do all in an astonishing
manner, painting, sculpting, designing, inventing. Besides his paintings, the work that is highly re-
membered until now, it is his ability to invent new devices. There is no doubt that a lot of his ideas
came from nature. For instance, his fascination by the mechanical movement of horses and birds that
lead him to design several machineries to try to make humans fly (see Fig. (1.1)).
Nowadays, artists, scientists, mathematicians and engineers in diverse range of areas, are motivated by
nature, by different biological entities that triggers his creativity and curiosity, something that is called
now bioinspiration. In this work we are going to focus our attention in the microworld, in particular,
in single-cell aquatic flagellates denominated euglenids or euglenoids.

Figure 1.1: Study of horses (left) and design of flying machine (right). Images courtesy: Toronto Public
Library under the license CC BY-ND 2.0.

The euglenids are protists unicellular flagellates typically they are 5–50 µm in length. They show a
typical cell membrane consisting of parallel proteinaceous strips and microtubules located underneath
the plasma membrane, what we called in here the pellicle (see Fig. (1.2)). They are known since the
invention of the microscope [2] but some fundamental questions about their evolutionary process and
their fascinating shape morphing mechanism remain open [1].
In 1977, E. M. Purcell [3] begin to explore some of this questions, mainly in how this microswimmers
are able to move at such scales. From this study, the ability of euglenids to move through out the
media, or metaboly, has been investigate it more and more [4]. This behaviour has high potential in
areas such as soft robotics [5, 6], biophysics and bioengineering [7, 8, 9] but also even in mathematics
[10] due to the non-linear partial differential equations that came from the relation between the pellicle
deformations and the actuation shear.
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CHAPTER 1. INTRODUCTION 2

Figure 1.2: a) Phylogenetic relationships of euglenid subgroups. This media file is licensed under the license
CC BY-ND 3.0., b) Eutreptia viridis taken from samples of freshwater stream. © William Bourland, c)
aphagotrophic cell signalling the pellicle proteinaceous strips © Brian S. Leander, d) Colacium © 2001 D. J.
Patterson and Mark Farmer. Images b), c) and d) are licensed under the license CC BY-ND 2.5.. All images
belong to the The tree of life project [1].

In this work we develope a model linking the pellicle deformations and the mechanics of rods
to mimics the shape deformations of the euglenids pellicle. In the chapter 2 we review some of the
fundamental geometric aspects to describe a regular surface. Later on we introduce the model itself
by presenting the mechanics of rods in chapter 3. A reduction of this model can be made by assuming
the inextensibility of rods. At the end of the work, we provide some new lines of investigation to follow
in order to understand these unicellular organisms and the life at microscale.

https://creativecommons.org/licenses/by-nd/2.0/
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Chapter 2

Fundamentals of differential geometry

In this first chapter we are going to introduce the most fundamental concepts of differential geometry
that will be use to model the eugelna pellicle and later on their locomotion. Mainly the review of the
concepts as been done following [11] for which we kept with this notation.

2.1 Regular curves

2.1.1 Parametrized curves

We want to represent the subsets of R3 that could be thought as one-dimensional objects ,i.e., the
curves. To this end we present the following definition

Definition 2.1.1. A parametrized differentiable curve is a map α: I→ R3 of an open interval I = (a, b)
of the real line into R3

The map α(t) = (x(t), y(t), z(t)) is said to be differentiable if the functions x(t), y(t), z(t) are dif-
ferentiable, and t ∈ I is the parameter. We denote the first derivative as α′(t) = (x(′t), y′(t), z′(t)) and
it known as tangent vector or velocity vector.

Example 2.1.2. A classical example is the parametrized curve that has as its trace a helix (see Fig.
2.1). Where the parameter t is the angle between the x axis and the line that goes from the origin to
the point of projection of the point α(t) in the xy-plane.

α(t) = (a cos(t), a sin(t), bt), t ∈ R

Figure 2.1: The helix.
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CHAPTER 2. FUNDAMENTALS OF DIFFERENTIAL GEOMETRY 4

Another examples of parametrized curves include the ones that have not one-to-one relation, and
even we could have two or more curves that have the same trace. We could find these examples in [11]
.

The regularity of a curve has a sustantial importance since it allow us to define the arc length and
therefore to write a new parametrization for the curves.

Definition 2.1.3. A differentiable curve α: I → R3 is said to be regular if |α′(t)| 6= 0 for all t ∈ I.

Following this definition we have that a singular point of α(t) is such that α′(t) = 0.

2.1.2 The arc length

Definition 2.1.4. Given a t ∈ I the arc length of a regular parametrized curve α: I → R3 is

s(t) =

∫ t

t0

|α′(t)|dt, (2.1)

where |α′(t)| =
√

(x′(t))2 + (y′(t))2 + (z′(t))2 is the length of the vector α′(t).

The arc length is an intrinsic property of a curve and does not depend on the parametrization.
To get an idea of this formula, we consider the interval [c, d], s.t., a < c < d < b and we divided it as
follows c = t0 < t1 < t2 < · · · < tn = b. Then we can approximate the arc length as

s(t) ≈
n∑
i=1

||α(tn+1)−α(tn)||,

Now, if we have a sufficiently large n we can approximate

α(ti+1)−α(ti)

ti+1 − ti
≈ α′(ti),

for every i, and substituting in the expression above, we found

s(t) ≈
n∑
i=1

||α′(ti)|||ti+1 − ti|,

which we can identify with the Riemann sum and lead us to the expression (2.1). A detail proof can
be consulted in [12].

As we previously mentioned we could have several curves that have the same trace. In other words
we could have several parametrizations for the same curve. In particular we are interested in the
parametrization by the length arc. Let us assume we have a parametrized curve α : I → R3 we can
have also a parametrization β : J → R3 by the arc length that has the same trace. In fact, since we
have that |α′(t)| 6= 0 then using the definition (2.1) we observe that s(t) is strictly monotone, which
implies that we could find an inverse function t = t(s) = s−1, s ∈ s(I) = J . Now if β(s) = α ◦ s−1(s)

β′(s) = α′(s−1(s))(s−1(s))′ = α′(s−1(s))
1

s′(t)
,

and by the definition of arc length we find that the velocity vector is |β′(s)| = 1.

2.1.3 Frenet frame

Since the the main objective is to model the pellicle of the euglena taking into account the elastic
properties we should have some physical quantities that will link the deformation with the geometry
itself. As we will explore in the next chapter, we need a bit more complex geometric object to construct
the final model. Now, we introduce the concepts that will help us to characterize the regular curves.
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Figure 2.2: Curvature α′′(s) normal to the tangent line α′(s)(left). Tangent line, normal and binormal vectors
at s, shadow area is known as osculating plane (right).

Definition 2.1.5. Let α: I → R3 be a parametrized by the arc length curve s ∈ I the quantity
|α′′(s)| = k(s) is called the curvature of α at s.

This quantity tell us how rapidly the the curve "pulls away" from the tangent line at s, in a
neighbourhood of s. (see Fig. (2.2)) Now, at points where k(s) 6= 0 we can define a unit normal vector
as α′′(s) = k(s)n(s). Let us note that

d

dt
(α′(s) ·α′(s)) = 1

⇒ 2α′′(s) ·α′(s) = 0

Therefore, α′(s) is normal to n(s). We denote t(s) = α′(s) the tangent vector, therefore t′(s) =
k(s)n(s). We define the binormal vector b(s) = t(s) ∧ n(s), where "∧" represents the vector product
also known as cross product, and it is normal to the osculating plane (see Fig. (2.2)). Similarly to the
tangent line, b′(s) measures how rapidly the curve "pulls away" from the osculating plane. Let us note
the following

b′(s) = t′(s) ∧ n(s) + t(s) ∧ n′(s) = k(s)n(s) ∧ n(s) + t(s) ∧ n′(s)

⇒ b′(s) = t(s) ∧ n′(s)

From here we observe that b′(s) is normal to t(s), thus b′(s) is parallel to n(s), we denote

b′(s) = τ(s)n(s)

Definition 2.1.6. Let α: I → R3 be a parametrized by the arc length curve s ∈ I the quantity τ(s)
defined by b′(s) = τ(s)n(s) is called the torsion of α at s.

We have that for every value of the parameter s, we have the associated Frenet frame, t(s), b(s),n(s),
which rules the behaviour of the curve locally. Let us compute n′(s), since n(s) = b(s) ∧ t(s)

n′(s) = b′(s) ∧ t(s) + b(s) ∧ t′(s) = τ(s)n(s) ∧ t(s) + b(s) ∧ k(s)n(s)

⇒ n′(s) = −k(s)t(s) + τ(s)b(s)

We can think that a curve is a combination of bending and twisting. Thus, is will be ruled by the
Frenet formulas

t′(s) = k(s)n(s), (2.2a)
n′(s) = −k(s)t(s)− τ(s)b(s), (2.2b)
b′(s) = −τ(s)n(s). (2.2c)

In equations (2.2) we have adopted the sign convection of [11], but other authors use −τ(s).
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2.2 Regular surfaces

In this section we introduce the concepts and definitions around the regular surfaces along with the
first and second fundamental forms, that will help us to make measurements over a surface. In the
next chapter we connect these notions with the geometric objects to complete the model.

Definition 2.2.1. A subset S ⊂ R3 is a regular surface if for every point P ∈ S, there exists a
neighbourhood V ⊂ R3 and a map x : U → V of an open set U ⊂ S onto V ∩ S ⊂ R3 such that

1. x is differentiable.1

2. x is a homeomorphism.2

3. For each q ∈ U the differential dxq : R→ R3 is one-to-one.

Figure 2.3: Representation of the map x that defines a regular surface S.

2.2.1 The tangent plane

In order to present the fundamental forms that will complete the brief analysis of the regular curves, we
lack the concept of tangent plane. The definition of regular surface guarantees that the set of tangent
vectors at p ∈ S constitutes a plane.

Proposition 2.2.2. Let x : R2 → S be a parametrization of a regular surface S and q ∈ U . The vector
dxq(R2) ⊂ R3 coincides with the set of tangent vectors to S.

A detail proof can be seen in [11]. The plane dxq(R2) that passes through x(q) will be called
tangent plane, denoted by Tp(s), and it does not depend on the parametrization. The parametrization
x determines a basis { ∂x

∂u ,
∂x
∂v } of Tp(s). We can also define a normal vector for every point q ∈ U by

N(q) =
xu ∧ xv
|xu + xv|

.

2.2.2 First fundamental form

The concept of first fundamental form in one of the key concepts that will handle through this work
because it allow us to make measurements over a surface, as we explain further below.

Given two vectors v,w ⊂ R3 we consider the Euclidean inner product 〈v,w〉 = v1w1 + v2w2 + v3w3.
If v,w ∈ Tp(S), we define

1This is that there exists the partial derivatives xu,xv
2This means that x has an inverse x−1which is continuous.
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Figure 2.4: Differential of area over a surface.

Definition 2.2.3. The quadratic form,

Ip(w) = 〈w,w〉 = |w|2 ≥ 0

is called the first fundamental form Ip(w) on Tq(S) of the regular surface S ⊂ R3 at p ∈ S.

Taking the basis {xu,xv} of Tp(q) we can express the vectors as v = v1xu+v2xv, w = w1xu+w2xv
and computing the first fundamental form associated we have

Ip (w) = 〈w,w〉p
= 〈xuw1 + xvw2,xuw1 + xvw2〉p
= 〈xu,xu〉p (w1)2 + 2 〈xu,xv〉pw1w2 + 〈xv,xv〉p (w2)2

= E (w1)2 + 2Fw1w2 +G (w2)2 ,

or in the matrix form

Ip (w) = [w1 w2]

[
E F
F G

] [
w1

w2

]
,

where we have defined the coefficients of the first fundamental form:

E = 〈xu,xu〉p , (2.3a)

F = 〈xu,xv〉p = 〈xv,xu〉p , (2.3b)

G = 〈xv,xv〉p . (2.3c)

As we mentioned before, we connect the first fundamental form with the local properties of a regular
surface. First, we consider a parametrized curve α(t) over a surface S, we know that the arc length is
given by

s(t) =

∫ t

t0

|α′(t)|dt,

if α(t) = x(u(t), v(t)) it is easy to check that the arc length is given by

s(t) =

∫ t

t0

√
E(u′)2 + 2Fu′v′ +G(v′)2dt,

We can also compute the area of a bounded region over a surface. To show this, we consider an
approximation of the parallelogram with vertices x(u0, v0), x(u0, v0 + dv0), x(u0 + du0, v0), x(u0 +
du0, v0 + dv0) (see Fig. (2.4)). Therefore, we can approximate dA = |xudu ∧ xvdv|. Thus, we define
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Definition 2.2.4. Let R ⊂ S a bounded region of a surface on a neighbourhood of the parametrization
x : U ⊂ S → R2, the quanitity A(R) defined as

A(R) =

∫
Q
|xu ∧ xv|dudv, Q = x−1(R),

is called the area of R.

It can be proven (see [12]) that

det

[
E F
F G

]2

= EG− F 2 = |xudu ∧ xvdv|,

therefore, the area is related with the coefficients of the first fundamental form as

A(R) =

∫
Q

√
EG− F 2dudv,

Several examples for computing the coefficients and the mentioned properties can be consulted else-
where [11, 12, 13].

2.2.3 Second fundamental form

In this section we expose the second fundamental form, that roughly speaking can be consider as the
curvature of a regular surface. To this end we need the definition of a Gauss map

Definition 2.2.5. Let S ∈ R3 be a regular surface with an orientation3 N. The map N : S → S2,
where S2 is the unit sphere in R3, is called the Gauss map.

From this definition we notice that the map dNp : Tp(S) → TN(p)(S
2) takes any parametrized

curve α(t) ∈ S, with α(0) = p and map it to a parametrized curve N ◦ α(t) ∈ S2. Noticing that the
tangent vector t = dNp(α

′(0)) (see Fig. 2.5), we see that dNp measures how much N pulls away from
N(p) on a neighbourhood of p.
One can prove that the map dNp : Tp(S)→ TN(p)(S

2) is a self-adjoint map (see for instance [11]), and
this allow us to associate a quadratic form:

Definition 2.2.6. The quadratic form IIp defined in Tp(S) as,

IIp(v) = −〈dNp(v),v〉

is called the second fundamental form of the regular surface S at p ∈ S.

Similarly to what we did with the first fundamental form, we can take the basis {xu,xv} and
express the second fundamental form as

IIp(α
′) = −

〈
dN(α′), α′

〉
= −

〈
Nuu

′ + Nvv
′,xuu

′ + xvv
′〉

= e(u′)2 + 2fu′v′ + g(v′)2

where e, f, g are the coefficients of the second fundamental form:

e = −〈Nu,xu〉 , (2.4a)
f = −〈Nu,xv〉 = −〈Nv,xu〉 , (2.4b)
g = −〈Nv,xv〉 . (2.4c)

Now we present some additional concepts but the reader should consult [14, 15] for a complete
deduction and analysis. Considering an orthonormal basis {e1, e2} of Tp(S), the second fundamental
form has two extreme values called the principal curvatures restricted to a circle over Tp(S). Then the
map dN is expressed in terms of these quantities as dN(e1) = −k1e1, dN(e2) = −k2e2. Moreover, we
can define the following

3It admits a normal field N over the whole surface
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Definition 2.2.7. Let dN be the differential of the Gaussian map, the determinant of the dN, K,
is called the Gaussian curvature, and the negative half of the trace of dN, H, is called the mean
curvature, and they are express in terms of the principal curvatures as

K = k1k2, H =
k1 + k2

2
.

Figure 2.5: Normal and geodesic curvatures.

Let us consider a curve C ⊂ S over a surface S ⊂ R3, we can relate the unit tangent vector t, with
the normal tangent vector n as k = dt

ds = kn + kg ,where kn and kg are the normal and geodesic curve
vectors, respectively (see Fig.(2.5)).

It is not very useful to present all the relations between the presented geometric properties, but we
should mention that all of these concepts will characterize a regular surface. As we move along through
this work we may present some specific concepts that we could have not shown yet. We must keep
in mind that our main objective is to model the pellicle of the euglena but we lack some geometric
objects, those are called rods, these are presented in the next chapter together with some mechanical
properties.



Chapter 3

Euglenids pellicle model

In this chapter we are going to present the mathematical model to describe the metaboly, cell movement
typically showing a shape shifting, of the euglenids, linking the mechanics of the rods and the surface
kinematics as it is proposed in [16, 17]. We proceed to find the energy functional that describes
the deformed configuration so we can implement the computational algorithm that minimizes this
functional given the boundary conditions.

3.1 Pellicle deformation

The euglenids pellicle is a novel cytoskeleton comprised of parallel proteinaceous strips and micro-
tubules positioned beneath the plasma membrane [9]. Roughly speaking, we can consider the pellicle
made of adjacent strips connected between them (see Fig. 3.1). To obtain a mathematical model to
describe the kinematics of the pellicle we consider the proteinaceous strips as elastics rods. The elastics
rods are elastic slender bodies, this means that their length in one spatial dimension is much greater
than the other two. In this section we only present a general description and how we link these with
the contiuum model presented in the next section. For a complete theory, see [18].

Figure 3.1: Scanning electron micrographs of euglenids pellicle showing the tangent vector fieldm0, s0. Original
image taken from The tree of life project, © 2003 Brian S. Leander (left). Euglena pellicle made of adjacent
rods. Modify image under the license CC BY-ND 2.0. (upper right). Reference and deformed configurations of
a rod (lower right).

Let us consider a reference configuration surface parametrized by x0(u, v) and mapped into a de-
formed configuration parametrized by x(u, v) =

∑3
i=1 x

iei, then we can write the gradient deformation

10
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tensor using the Cauchy-Green deformation tensor as [19]

C = F TF = Id+ γ (s0 ⊗ x0 + x0 ⊗ s0) + γ2x0 ⊗ x0,

Also, the components of the Cauchy-Green tensor in the basis {x0,i, i = u, v}, where the comma
denotes the partial differentation, are equal to the ones of the metric tensor, and given by the scalars
products of the tangent vectors to the deformed surface

Cij = gij = x,i ·x,j .

When we consider cylindrical axisymmetric surfaces, we can choose the orientation of the pellicle rods
such that, x0,u = m0 and x0,v = s0, then a given function γ(u, v) that represents the actuation given
by pure simple shear should satisfy the non-linear partial differential equations[

xu · xu xu · xv
xu · xv xv · xv

]
=

[
1 + γ2 γ
γ 1

]
.

The Gaussian curvature of the target metric can be obtain by differentiating the metric tensor, as it
is explained in [11] as

K = (γ,v − γγ,u),u.

We proceed to analyze the mechanics of the rods so we can finally write down the energy functional
and obtain the computational model.

3.2 Mechanics of rods

In order to describe the deformation of the rod we consider the following. First, we consider a refer-
ence configuration at a time t0, and evolves into a deformed configuration at time t (see Fig. (3.1)).
Moreover, we consider a centre line (dashed line) that is parallel to the z coordinate, it is denoted by
s. Now, to track the twist and bending we consider the material frame (d1,d2,d3), this frame it is
considered to be orthogonal under small deformations and it is attached to the centre line. The centre
line and the triad constitute a Cosserat curve.

We make the following assumptions:

• The rods has uniform properties along its length. All cross-sections are identical

• Under uniform or small strain, the material frame deforms in a rigid manner when we vary s.

From these assumptions, it can be proven that the material frame satisfies the following equations

d′1(s) = τ(s)d2(s)− κ(2)(s)d3(s) (3.1a)

d′2(s) = −τ(s)d1(s) + κ(1)(s)d3(s) (3.1b)

d′3(s) = κ(2)(s)d1(s)− κ(1)(s)d2(s) (3.1c)

We can immediately note the similarity with the Frenet equations presented in the previous chap-
ter. The functions κ(1)(s), κ(2)(s) represent how much the material frame rotates around d1 and d2,
respectively (bending in plane and out-of-plane). The function τ(s) represents how much the material
frame rotates around the tangent d3 (twist). These equations can be rewritten in terms of the Darboux
vector, Ω(s) as

d′1(s) = Ω(s)× d1, d′2(s) = Ω(s)× d2, d′3(s) = Ω(s)× d3

where Ω(s) = κ(1)(s)d1(s) + κ(2)(s)d2(s) + τ(s)d3(s) represents the total rate of rotation per unit
length along the centre line.

At this point, we lack the relation between the surface and the rods, which complete the pellicle
model. This is presented in the following section where symmetric considerations are made.
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3.3 Continuum model of euglenids pellicle

We can consider a continuum model of the euglenids pellicle since this is made of few tens of adjacent
rods, as reported in [19]. The metaboly is assumed to be produced by simple shear along the pellicle
strips. Our main goal is to create a continuum model of the pellicle surface linking the rods kinematics
to the surface kinematics. To this end we present the following approach.

Figure 3.2: Reference configuration (left) mapped into a deformed configuration (right)

Let us assume a reference configuration that is mapped through x(u, v) into a deformed configu-
ration as it is shown in the figure (3.2). We assume that the rods are aligned with the v coordinate in
the reference configuration. In the deformed configuration we have the normal vector to the surface,
defined as before

N =
xu ∧ xv
|xu + xv|

.

We introduce a unit tangent vector to the surface defined as

b =
1

|xv|
xv ∧N =

1

|xv| |xu ∧ xv|
xv ∧ (xu ∧ xv)

=
1√

G
√
EG− F 2

(Gxu − Fxv) .

As we can see in the Fig.(3.2), the stretch of the connectors λcon, i.e., the projection of the xu along
the vector b and the stretch of the rods λrod are given by

λcon = xu · b =

√
EG− F 2

√
G

=
√
E − F 2/G,

λrod = |xv| =
√
G.
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Where we keep the notation of [11] for the coefficients of the first fundamental form. Let us note that
if we impose the inextensibility of rods, that is, G = 1, the inextensibility of connectors λcon = 1 is
equivalent to the area conservation, since

√
EG− F 2 = 1.

We have that the surface is made of adjacent rods, therefore we assume that the material frame
(d1,d2,d3) can be expressed as follows

d1 = N, d2 = b, d3 =
xv
|xv|

.

Now, let us note that if we take the equations (3.1), and assume that the material frame remains
almost orthonormal, that is di · dj = 0, we can write the rods strains κ(1), κ(2), τ as

κ(1) = −d′3 · d2, κ(2) = d′3 · d1, τ = d′1 · d2.

where the notation " (·)′ " represents the partial derivative with respect to the parameter v. This
can also be seen if we consider the covariant derivative that is the projection of the d′3 onto the plane
spaned by d1,d2

Dd3

dv
=
(
d′3 · d2

)
d2 +

(
d′3 · d3

)
d3 =

(
d′3 · d2

)
d2,

since d3 · d3 = 1. It can be proven that the rod strains κ(1), κ(2) are the geodesic and the normal
curvatures respectively.
From this equations we can compute the rod strains and we get

κ(1) =
1√

EG− F 2
(−xu · xvv +

F

G
xv · xvv),

κ(2) =
xvv ·N√

G
=

g√
G
,

τ =
1√

G
√
EG− F 2

(−GN · xuv + FN · xvv) =
1√

G
√
EG− F 2

(Fg −Gf)

Additionally we compute the strain associated to the connectors along the direction given by b using
the second fundamental form

κcon = IIp(b) = −〈dN,b〉 =
eG2 − 2fFG+ gF 2

G(EG− F 2)
.

We have the necessary elements to characterize the deformed surface. We only lack the parametrization
that is consider in the following section.

3.3.1 Axisymmetric cylindrical surfaces

The analysis that we present here is done by considering only axisymmetric cylindrical surfaces because
they give a wide variety of shapes and have great potential to model several situations of the euglenids
metaboly. The main difference with respect the following section is that in here we consider that the
connectors could stretch, causing the shape shifting to be more complex.

For this particular surfaces we have the following parametrization [19]

x(u, v) =


r(v) cos

(
u
R0

+ ψ(v)
)

r(v) sin
(
u
R0

+ ψ(v)
)

z(v)

 ,



CHAPTER 3. EUGLENIDS PELLICLE MODEL 14

where v = (0, L0), u = (0, 2πR0). From this parametrization we can find all the coefficients of the first
and second fundamental form by direct calculations using Eqs. (2.3),(2.4). We obtain

E =

(
r

R0

)2

, F =
r2ψ′

R0
, G = r′2 +

(
rψ′
)2

+ z′2 (3.2a)

e = − rz′

R2
0

√
r′2 + z′2

, f = − rψ′z′

R0

√
r′2 + z′2

, g =
z′
(
r′′ − rψ′2

)
− r′z′′

√
r′2 + z′2

(3.2b)

m = xu · xvv =
r

R0

(
rψ′′ + 2r′ψ′

)
, n = xv · xvv = r′r′′ + z′z′′ + rψ′

(
rψ′′ + r′ψ′

)
(3.2c)

Using the above results it is possible to write down the elastic energy as a superposition of the bending
and twist of the rods and the connectors

E[x] = ρ

∫
Ω0

[
Krod

2
(λrod − 1)2 +

Kcon

2
(λcon − 1)2

+
B1

2

(
κ(1) − κ(1)∗

)2
+
B2

2

(
κ(2) − κ(2)∗

)2
+
T

2
(τ − τ∗)2 +

Bcon

2
(κcon − κ∗con)2

]
dudv

(3.3)

where Ω0 = [0, L0]× [0, 2πR0] and the κ(1)∗, κ(2)∗, τ∗, κ∗con are spontaneous rod strains.
If we compare the energy functional with the one followed by [18], we note that the constants B1, B2

are related with the denominated moments of inertia, that are given by

I(1) =

∫
D

(y − y0)dxdy, I(2) =

∫
D

(x− x0)dxdy.

where D is the area of the cross-section. They represent how the centre line of the rods is deformed
under some strains. For a circular cross-section, this value is expressed as

I(1) = I(2) =
πr4

4
.

The following section explains how the model could be reduced to make our algorithm more efficient.

3.3.2 Reduce model: inextensible rods

The inextensibility of rods and connectors can be model taking the limit ρKcon, ρKrod →∞ in the Eq.
(3.3), from this will obtain the new expressions for the coefficients of the first form

E = 1 + γ2, F = γ, G = 1.

This reduction permits to express the parametrization in terms of γ(v) only as

r = R0

√
1 + γ2, ψ′ =

γ

R0 (1 + γ2)
, z′ =

√
1− (R0γγ′)

2

1 + γ2
. (3.4)

As we did previously we compute the coefficients (e, f, g,m, n) in terms of γ(v) and we obtain

e = − 1

R0

√
(1− (R0γγ′)

2) (1 + γ2),

f = − γ

R0

√
1− (R0γγ′)

2

1 + γ2
,

g =
R2

0γ
′2(γ4 + γ2 + 1) +R2

0γ
′′(γ3 + γ)− γ2

R0

√
(1− (R0γγ′)2)(1 + γ2)3

,
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m = −γ′, n = 0.

Let us note that in this limit the energy contributions due to the connectors does not exists, therefore
the elastic energy is

E[γ, γ′, γ′′] = ρ

∫
Ω0

[
B1

2

(
κ(1) − κ(1)∗

)2
+
B2

2

(
κ(2) − κ(2)∗

)2
+
T

2
(τ − τ∗)2

]
dudv

This is a reduce model since we only have the energy functional in terms of γ, γ′, γ′′ instead of r, ψ, z and
their derivatives. To use the computational model we have to find the first variation of this functional,
the procedure can be seen in Appendix A. From this first variation it is also possible to obtain the
Euler-Lagrange equations, but this remains for future work.
In the following section we explore the above models and discuss the results.



Chapter 4

Results

The computational model that we implement works as follows. We consider only inextensible surfaces
but using the complete model (in terms of r, ψ, z) and the reduce model (in terms of γ only). For the
first one, we write down the energy functional (see Eq. (3.3)) and its first variation in terms of the
r, ψ, z and their derivatives that are interpolated using B-splines [20], sufficiently smooth functions so
we can compute their derivatives, this is

rh(v) =

n∑
i=1

Bi(v)ri, ψh(v) =

n∑
i=1

Bj(v)ψj , zh(v) =

n∑
i=1

Bk(v)zk.

Afterwards we compute the geometric configuration that allows to minimize this functional using a
pre-built MATLAB function called fminunc(). We apply a set of boundary conditions: a) increase
the basal radius, b) compressing the cylinder from the top, c) compressing the cylinder from both the
top and base, d) increase both the basal and top radius. The numerical integration to obtain the total
energy is done by a quadrature rule. We obtain a wide variety of configurations that are shown in Fig.
(4.1).

Figure 4.1: Shape configurations for axisymmetric cylindrical surfaces. Fig. (a) shows the model using the
parameter values B1 = 100, B2 = 1, T = 1. (b) uses the parameter values B1 = 1, B2 = 100, T = 1, (c)
B1 = 1, B2 = 2, T = 1, and (d) B1 = 1, B2 = 1, T = 100.

16
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In order to analyze the kinematics behaviour we vary the parameter values B1, B2, T . Several shape
configurations are obtain varying this parameters as it is shown in Fig. (4.1). Let us note that the
case T >> B1, B2 gave us some shape configurations that are not realistic, since has abrupt changes
in the surfaces. In Fig. (4.2) we observe the pellicle kinematics for the cases B1 >> B2, T , and
B1 ∼ B2 ∼ T . For the first one we observe smooth transitions between all the configurations (4.2)
(a)-(b), meanwhile for the second one (4.2)(c)-(d) we note that some of the transitions are not smooth.
A new problem arises, given two known stable states and we want to know the transition between
them. One possibility to solve this concern is to use the Nudged Elastic Band (NEB) algorithm [21]
to find the smooth transition between the possible states but this will remain as a future work.

Figure 4.2: Pellicle kinematics for parameter values B1 = 100, B2 = 1, T = 1 (left) B1 = 1, B2 = 2, T = 1
(right). Figures (b)-(c) correspond to compress top and base, and (a)-(d) to increase basal radius.

The case of the reduce model is explained right below. Let us note that from our consideration of
only axisymmetric surfaces γ = γ(v), we have that the Gaussian curvature is given by

K = −(γγ,v),v

and we can distinguish the cases: γ = const ⇒ K = 0 that produces cylindrical surfaces, γγ,v =
const ⇒ K = 0 that produces cones and annuli and γγ,v 6= const ⇒ K 6= 0 producing spheres and
pseudospheres as in [19].

Figure 4.3: Cones and flat annular regions using the square-root dependence in the actuation shear γ.
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In this case we only consider the square-root dependence for the actuation shear, that is

γ(v) =
√
A(1− u/L0) +Bu/L0

that results in cones and flat annular regions. The constants A,B ≥ 0 have to satisfy the embeddability
condition

|B −A| ≤ 2L0

R0
.

From Eq.(3.4) it is easy to check that the quantity z′(v)/r′(v) is independent of u, which leads to
truncated cones, as the ones shown in (4.3).
Finally, we compare the two models by computing the total energy in each case which remains the
same for a wide range of parameter values. We lack some analysis and comparison between the two
models by exploring a wider range of actuation shear, leading to the whole family classified as in [19].



Chapter 5

Conclusions

In this work we link the geometrical properties of the euglenids surface and the mechanics of the rods
via the first and second fundamental forms and Crosserat curve. We model the euglenids’ pellicle kine-
matics by proposing a continuum model and considering axisymmetric cylindrical inextensible surfaces
with pure simple shear actuation. This results in a wide variety of shape configurations according to
the specific types of boundary conditions. The inextensibility of rods let us to make a reduction of the
model improving the algorithm efficiency.

Several aspects remains open to explore, such as the variety of actuation shear to construct a larger
family of surfaces [19, 16]. We also can study the transitions between states by the use of some algo-
rithm to minimize the energy functional, for instance the NEB [21].
3D printed models based on computational results can be obtain to give a step forward to the im-
plementation of soft robotics and novel mechanisms inspired by this shape morphing mechanism of
euglenids [5, 6, 8].

Some fundamental aspects about why the euglenids have this shape shifting mechanism remains un-
clear, some studies [16, 17] analyze the metaboly by linking the local actuation by the pellicle shear
with the shape control. Even recently has been shown that crawling is ruled by the confinement [22]
deeper analysis needs to be done to understand this particular and highly intriguing metaboly of these
unicellular organisms. In general lots of fundamental questions have to be explore to understand the
physics of life.

19



Appendix A

First variation of energy

The computational algorithm requieres the energy functional as well as their first variation form in
order to find the configuration that minimizes Eq. (3.3). In here we present the deduction of the first
variaton for the reduce model. From here we can obtain also the Euler-Lagrange equations but this
remains as future work.
The first variation of the total energy Π(γ) is

δΠ(γ) =

∫ (
∂E

∂γ
γ̃ +

∂E

∂γ′
γ̃′ +

∂E

∂γ′′
γ̃′′
)
dv (A.1)

We have to calculate each of this terms. For the first term we have that

∂E

∂γ
=

∂E

∂κ(1)

dκ(2)

dγ
+

∂E

∂κ(2)

dκ(2)

dγ
+
∂E

∂τ

dτ

dγ
= B1(κ(1)−κ(1)∗)

dκ(1)

dγ
+B2(κ(2)−κ(2)∗)

dκ(2)

dγ
+T (τ −τ∗)dτ

dγ

Then we compute
dκ(1)

dγ
= 0,

dκ(2)

dγ
=
dg

dγ
=

1

R0

(
1−

(
R0γγ

′)2)−1/2 (
1 + γ2

)−3/2 [
R2

0

(
4γ3γ′2 + 3γ2γ′′ + γ′′ + 2γγ′2

)
− 2γ

]
+

1

R0

[
R2

0γ
′2γ
(

1−
(
R0γγ

′)2)−3/2 (
1 + γ2

)−3/2 − 3γ
(
1 + γ2

)−5/2
(

1−
(
R0γγ

′)2)−1/2
]

(
R2

0(γ4γ′2 + γ3γ′′ + γγ′′ + γ2γ′2 + γ′2)− 2γ
)
,

An alternate form of dg
dγ is

dg

dγ
=

1

R0(γ2 + 1)5/2(1− (R0γγ′)2)3/2

[
γ′′(R4

0γ
6γ′2 +R4

0γ
4γ′2 +R2

0γ
2 +R2

0)

− γ5(R4
0γ
′4 +R2

0γ
′2) + γ3(3R4

0γ
′4 + 4R2

0γ
′2 + 1) + γ(R4

0γ
′4 −R2

0γ
′2 − 2)

]
dτ

dγ
= g + γ

dg

dγ
− df

dγ
,

The remaining term to compute is

df

dγ
=

(
1− (R0γγ

′)2
)1/2

R0 (1 + γ2)1/2

[
R2

0γ
′2γ2

1− (R0γγ′)
2 +

γ2

1 + γ2
− 1

]
.

For the second term we have that

20
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∂E

∂γ′
=

∂E

∂κ(1)

dκ(1)

dγ′
+

∂E

∂κ(2)

dκ(2)

dγ′
+
∂E

∂τ

dτ

dγ′

dκ(1)

dγ′
=− 1

dκ(2)

dγ′
=

dg

dγ′
=

2

R0

[
R2

0(γ4γ′ + γ2γ′ + γ′)
] [

(1− (R0γγ
′)2)−1/2(1 + γ2)−3/2

]
+

1

R0

[
R2

0γ
′γ2
(

1−
(
R0γγ

′)2)−3/2 (
1 + γ2

)−3/2
] [
R2

0(γ4γ′2 + γ3γ′′ + γγ′′ + γ2γ′2 + γ′2)− γ2
]

df

dγ′
=

R0γ
3γ′√

(1− (R0γγ′)2)(1 + γ2)

An alternate form of dg
dγ′ is

dg

dγ′
= −

R0γ
′ [R2

0γ
6γ′2 −R2

0γ
5γ′′ + γ4(R2

0γ
′2 − 1)−R2

0γ
3γ′′ + γ2(R2

0γ
′2 − 2)− 2

]
(γ2 + 1)3/2(1− (R0γγ′)2)3/2

For the third term we have that

∂E

∂γ′′
=

∂E

∂κ(1)

dκ(1)

dγ′′
+

∂E

∂κ(2)

dκ(2)

dγ′′
+
∂E

∂τ

dτ

dγ′′

dκ(1)

dγ′′
=0

dκ(2)

dγ′′
=

dg

dγ′′
=

1

R0

[
R2

0(γ + γ3)
]

(1− (R0γγ
′)2)−1/2(1 + γ2)−3/2 =

R0γ√
(1− (R0γγ′)2)(1 + γ2)

dτ

dγ′′
=

d

dγ′′
(γg − f) = γ

dg

dγ′′
− df

dγ′′
(= 0) = γ

dτ

dγ′′

Using the expressions above we obtain the first variation Eq.(A.1) and then we proceed to use
the computational model to obtain the shape configuration. The Euler-Lagrange equations can be
obtained by solving

∂Π(γ̂)

∂ε

∣∣∣∣
ε=0

= 0

where γ̂ = γ + εγ̃.
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