
WiDir: A Wireless-Enabled Directory Cache Coherence Protocol

Antonio Franques, Apostolos Kokolis, Sergi Abadal†, Vimuth Fernando, Sasa Misailovic, Josep Torrellas
University of Illinois at Urbana-Champaign †Universitat Politècnica de Catalunya

{franque2, kokolis2}@illinois.edu, abadal@ac.upc.edu, {wvf2, misailo, torrella}@illinois.edu

Abstract—As the core count in shared-memory manycores
keeps increasing, it is becoming increasingly harder to design
cache-coherence protocols that deliver high performance without
an inordinate increase in complexity and cost. In particular,
sharing patterns where a group of cores frequently reads and
writes a shared variable are hard to support efficiently. Hence,
programmers end up tuning their applications to avoid these
patterns, hurting the programmability of shared memory.

To address this problem, this paper uses the recently-proposed
on-chip wireless network technology to augment a conventional
invalidation-based directory cache coherence protocol. We call
the resulting protocol WiDir. WiDir seamlessly transitions be-
tween wired and wireless coherence transactions for a given
line based on the access patterns in a programmer-transparent
manner. In this paper, we describe the protocol transitions
in detail. Further, an evaluation using SPLASH and PARSEC
applications shows that WiDir substantially reduces the memory
stall time of applications. As a result, for 64-core runs, WiDir
reduces the execution time of applications by an average of 22%
compared to a conventional directory protocol. Moreover, WiDir
is more scalable. These benefits are obtained with a very modest
power cost.

Index Terms—Multicore, Wireless Network on chip, Directory
cache coherence protocol

I. INTRODUCTION

Exploiting a combination of innovative chip manufacturing
techniques and reduced semiconductor feature sizes, computer
manufacturers continue to increase the core counts of proces-
sor chips. With more on-chip cores and bigger caches, systems
can run bigger problems with limited cost increase. For exam-
ple, Ampere’s Altra [1] uses 7nm technology to support up to
80 ARM cores and a 32 MB Last-Level Cache (LLC) with a
coherent mesh interface on a single die. As another example,
AMD’s EPYC 7742 processor [2] uses a chiplet organization
and 7nm technology to support up to 64 cores (2-way SMT)
and a 256 MB LLC with the Infinity Fabric interconnect.
Further, Intel’s Xeon Platinum 9282 processor [3] uses a dual-
die package and 14nm technology to host up to 56 cores
(2-way SMT) and a 77 MB LLC connected with a mesh
interconnect. In the near future, it is likely that on-chip core
counts will continue to increase.

For these manycores, shared memory is the most popular
programming and execution model. The reasons are shared-
memory’s ease of programming, well-developed existing al-
gorithms, and widespread libraries such as POSIX threads and
OpenMP. To support shared memory at this scale, designers
build directory-based hardware cache-coherence protocols [4].
Designing such protocols is an arduous process. Importantly,
as the core count goes up, it is becoming harder to engineer

cache-coherence protocols that deliver high performance with-
out an inordinate increase in complexity and cost.

As an example, consider patterns where a group of cores
frequently reads and writes a shared variable. Coherence
protocols rely on invalidations to keep coherence [5]–[7], and
do not support these patterns efficiently. As soon as a core
writes the variable, all the other sharers get invalidated, and
any subsequent read by another core suffers a costly cache
miss. Sending invalidations and then re-reading the data cre-
ates long-latency transactions in a large on-chip interconnect.
Update-based protocols [8] are not the solution either, as they
have shortcomings for many common patterns, which has
prompted designers to eschew them. As a result, if program-
mers want to attain high performance, they have to carefully
tune the sharing behavior of their applications, ensuring that
patterns like the ones mentioned appear infrequently.

Wireless Network on Chip (WNoC) is a new technology that
has recently seen a lot of interest [9]–[16]. In WNoCs, each
core or group of cores in a manycore has a transceiver and an
antenna, which it uses to communicate wirelessly with other
cores. While the bandwidth of a WNoC is limited (only one
or a few messages can be transmitting at a time), a WNoC
supports low-latency transfers, since a message can cross a
large manycore in about 5ns [17]. Further, WNoCs naturally
support update multicasts and broadcasts. As a result, WNoCs
have been proposed to speed-up applications on manycores.
For example, WiSync [18] uses it to speed-up synchronization,
while Choi et al. [19] use it to accelerate CNN training in
CPU-GPU heterogeneous architectures, and Replica [20] uses
it to speed-up the execution of communication-intensive and
approximate computations.

An intriguing question is whether a conventional, wired
cache coherence protocol can be augmented to use a wireless
network so that patterns like the ones described above can be
supported efficiently. Frequent read-write sharing by multiple
cores can indeed be efficiently supported by a WNoC: writes
update all sharers without complicated multi-hop coherence
transactions or lengthy message routing; reads can access data
locally. However, to implement a complete coherence protocol,
one needs to carefully combine wired and wireless transactions
in a seamless manner.

In this paper, we present such a protocol, which we call
WiDir. WiDir extends an invalidation-based directory cache
coherence protocol with some wireless transactions. The goal
is to efficiently support frequent read-write sharing within
a group of cores — which has largely eluded conventional
coherence protocols. WiDir seamlessly transitions between

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or 
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/HPCA51647.2021.00034



wired and wireless transactions for the same datum based
on the access patterns in a programmer-transparent manner.
The end result is higher performance without the need to tune
applications and hurt programmability.

For the design in this paper, we start with a conventional
invalidation-based MESI protocol over a wired NoC. For a
given cache line, WiDir uses this protocol when there are few
sharers. Then, when the number of sharers goes over a certain
threshold, the line transitions to the Wireless (W) state, where
sharing between cores uses wireless transactions. When the
number of sharers falls back down to the threshold, the line
goes back to using MESI over the wired NoC. The paper
describes the WiDir protocol transitions in detail.

Our evaluation using simulations running SPLASH and
PARSEC applications shows that WiDir substantially reduces
the memory stall time of the applications. As a result, for 64-
core runs, WiDir reduces the execution time of applications by
an average of 22% compared to plain MESI. Moreover, WiDir
is more scalable than MESI. These benefits are obtained with
a very modest power cost.

Overall, the contributions of this paper are:
• The novel use of WNoCs to enhance a cache coherence
protocol. This use further builds up the case for WNoCs.
• The WiDir directory-based hardware cache-coherence proto-
col that seamlessly combines wired and wireless transactions.
• An evaluation of WiDir.

II. BACKGROUND & MOTIVATION

A. Motivation for Wireless Network On Chip

Traditionally, a wired Network on Chip (NoC) uses a
packet-switched interconnection fabric with each processor
connected to a router as shown in Figure 1. Routers enqueue
packets, compute routes, arbitrate, and dequeue packets in
each hop towards the destination, incurring delays and energy
consumption. To connect the routers, a mesh topology is
typically used due to its simple layout and low link length [21].
However, the average hop count scales proportionally to√
N , where N is the core count. There are other, high-radix

topologies that reduce the network diameter [22], but at the
expense of area and energy cost at the routers.

In contrast, WNoC architectures [9]–[16] are attractive be-
cause they can transfer a message chip-wide with a latency of
only a few clock cycles, regardless of the size of the chip or the
number of cores. Each core or group of cores has an antenna
and a transceiver, as shown in Figure 1. Small antennas in
the mmWave bands and beyond [23]–[26] can be feasibly
integrated, and broadcast messages [18], [20], [27]. Figure 1
shows vertical monopole antennas based on Through-Silicon
Vias (TSVs), which perforate the bulk silicon [26]. Information
coming from a core is modulated by the transceiver and sent
by the antenna. The resulting signals propagate inside the
chip package, bouncing off the metallic heat sink until they
reach the receivers. Propagation causes signals to be attenuated
a few tens of dBs, mainly due to spreading loss and the

relatively high transmission loss in the bulk silicon [28]–
[30]. However, these losses are tolerable [17], and prevent the
enclosed package from acting as a reverberation chamber.

Fig. 1: Wired NoC mesh augmented with a wireless NoC
within a conventional flip-chip package with one vertical
monopole antenna and transceiver per core.

B. Uses of Wireless Network On Chip

There are multiple proposals to use WNoCs to enhance the
architecture of manycores [18]–[20], [27]. In general, these
works leverage the low latency and affordable broadcast of
a WNoC to accelerate key patterns. Mondal et al. [27] and
WiSync [18] use a WNoC to transfer all the accesses to
synchronization variables, which are often traffic hot spots.
In WiSync, synchronization variables are placed in a special
memory called Broadcast memory. Using the WNoC only
requires re-targeting the synchronization libraries or macros
and, therefore, is transparent to programmers. Choi et al. [19]
use a WNoC to transfer a fraction of the traffic generated
during the training of a Convolutional Neural Network (CNN)
in a CPU-GPU integrated architecture. The network design is
architecture-aware and, like WiSync, transparent to the pro-
grammer. Replica [20] uses a WNoC to carry all the accesses
to communication-intensive variables. The programmer has
to explicitly identify these variables, which requires some
effort. These variables are then placed in a special memory
accessible by the WNoC. Replica also introduces approximate
transformations, both in hardware and in software, which
exploit the characteristics of WNoC communication. Mondal
et al., WiSync, and Replica partition the data structures into
those that use the wired and those that use the wireless NoC,
whereas Choi et al. do not.

In this paper, we focus on a different problem: enlisting
both NoCs in supporting cache coherence protocol transac-
tions. Both NoCs need to operate seamlessly together in a
programmer-transparent manner.

C. Scalable Cache Coherence Protocols

Scalable cache coherence is attained through the use of
directories [5]–[7], [31]–[33]. Directory cache coherence is
widely used commercially, such as in Intel’s Core i7 systems.
Commercial systems use invalidation-based schemes [5]–[7]



rather than update ones [8]. This is because, in general, update
protocols create more traffic and are subject to pathological
cases. Examples of such cases are when data is left behind in
a cache after the process migrates to another core, or when
a process simply initializes data structures for several other
processes, which will be running on other cores. There are
proposals for hybrid invalidation-update protocols [34], [35].

In multiprocessors with large core counts, it is very costly
for the directory to keep presence bits for all possible cores
that could share a line at a time. As a result, designers use
limited pointer schemes [6], [7], where a directory entry can
only keep pointers to a handful of cores for each line. When
the number of cores that want to share a line overflows the
available limited pointers, a special action is taken, such as
setting a broadcast bit, evicting a pointer, or re-configuring
the directory entry. From then on, the directory will record
sharing information in a less precise or less efficient manner.

The motivation for limited-pointer schemes is experimental
data showing that an individual write often invalidates only a
few caches [36]. But, as the machine’s core count increases,
the average write invalidates more caches. Further, if the write
did not invalidate the sharers, more sharers would accumulate,
and a later write with invalidation would be more expensive.

To gain insight into this issue, we modeled writes that
update rather than invalidate, and measured the number of
sharers that a line accumulates until the line is evicted from
the LLC. For the 64-core machine and applications described
in Section V, this number is on average 21 sharers. We then
considered the cores that shared the line before a write, and
measured what fraction of them re-read the line after the write.
Such fraction is, on average, 56%. This data suggests that
if, under some circumstances, we allow a write to perform a
wireless update to the sharers rather than invalidating them,
we may improve performance.

III. DESIGN OF WIDIR

A. Main Idea

State-of-the-art directory protocols for large core counts
use invalidation-based limited pointer (or coarse-vector)
schemes [6], [7], [37]. As more and more cores read a shared
line, the limited pointers for the line overflow, and a special
action is taken in the directory entry for the line, such as
setting a broadcast bit, evicting a pointer, or reconfiguring the
directory entry. A subsequent write (and sometimes even a
read) becomes more expensive. For example, it may trigger
the broadcast of an invalidation to all the cores in the machine.
As a result, existing cache coherence protocols for large
core counts are unable to efficiently support groups of cores
frequently reading and writing a shared line.

Wireless communication is ideally suited to this type of
sharing pattern. The writer core broadcasts the update to all
the current sharers in a short, fast, multicast transaction. As
the sharers issue subsequent reads, they obtain the up-to-date
version of the datum from their caches.

In this paper, we present a hybrid directory-based cache
coherence protocol that combines a wired and a wireless

component. We call the protocol WiDir. The directory entry
for any given shared line can dynamically transition between
wired and wireless coherence transactions during program
execution, depending on the current access pattern.

Initially, a line uses an invalidation-based protocol operating
on the wired NoC. When the number of sharers for the line
reaches a certain threshold count (e.g., when all the pointers
to sharers are used up), the line transitions to using wireless
coherence transactions.

Later, the protocol may revert back to using wired coherence
transactions for the line. This occurs when the directory
realizes that the number of active sharers of the line has
decreased below a certain threshold count. The directory is
aware of this case because it is informed when a sharer
invalidates or evicts the line from its cache — either because
the sharer is not interested in the line anymore or because it
needs the cache space for another line.

The WiDir protocol is supported by a manycore like the
one shown in Figure 2. Each node in the manycore contains:
a core with private caches (i.e., L1 instruction and data caches
in the figure), a local slice of the shared last level cache (LLC)
and its corresponding directory slice, a network interface, a
local router to connect to the wired network, a transceiver,
and two antennas to communicate wirelessly. To reduce costs
in a large manycore, multiple neighboring nodes could share
a single antenna pair.

Fig. 2: Manycore that supports the WiDir protocol.

Following Abadal et al. [18], we use a data antenna and
a tone antenna to communicate via a wireless data channel
and a wireless tone channel, respectively. The data channel
is centered at the 60 GHz frequency, and is used for data
and most coherence messages; the tone channel is centered
at 90 GHz and is used as a special-purpose acknowledgment
channel. The data channel uses the BRS wireless protocol [38].
In this protocol, when a node has data to transmit, it first listens
to the medium. When the medium is free, the node transmits
a 1-cycle preamble, and leaves the second cycle empty to find
out if there was a collision. If there was a collision, the node
squashes the transmission and, after potentially an exponential
back-off period, it restarts the transmission from the beginning;
otherwise, the node completes the transmission in the next few



cycles. No further collision is possible because no other node
will attempt to transmit until the current transmission uses up
its allocated wireless cycles.

Cache coherence protocol messages issued by the local core
or the local directory controller are passed via the network
interface to the transceiver or the local wired NoC router,
depending on the type of message that is being sent. For
incoming messages from either of the two networks, the
process is the same but in reverse.

B. Basic WiDir Operation

WiDir augments a vanilla invalidation-based directory co-
herence protocol with a new state, called Wireless or Wireless
Shared (W). In this state, a write by one of the sharers sends
the fine-grain update, rather than the cache line, through the
wireless network, and updates the caches of all the other
sharers. A read by a sharer gets the latest version of the datum
from its cache. The wireless network serializes all the updates
to any lines in W state.

In W state, the directory does not record which cores share
the line, but only how many do. A line enters the W state from
the Shared (S) state of the wired protocol, when the number of
sharers goes above a MaxWiredSharers threshold. Cores with
a line in W state are supposed to actively share the line, by
regularly reading/writing the line. If a core does not do that,
the hardware invalidates the local copy of the line and sends a
signal to the directory, which decreases the count of wireless
sharers. When the count decreases to MaxWiredSharers, the
line transitions to the S state of the wired protocol.

The directory structure changes little from a conventional
design. Without loss of generality, WiDir builds on top of a
conventional MESI protocol, with a directory implementation
that uses i shared pointers with broadcast (DiriB) [6], [7].
However, many other implementations, such as a Coarse
Vector design (DiriCVr) [7] can easily be adapted as well. The
one constraint is that MaxWiredSharers is no higher than the
number of sharer pointers supported by the directory scheme
(i.e., i in DiriB or DiriCVr).

Figure 3 shows the structure of the directory and caches in
the conventional protocol augmented with WiDir. The changes
added by WiDir are in bold. The changes are as follows.
First, one of the states is W. Second, when a directory entry
changes to W, the field of sharer pointers becomes a count
of the sharer cores (SharerCount). Third, the Broadcast bit is
always zero. Finally, each line in the private caches has a field
called UpdateCount, which will be described later. Note that
the SharerCount field needs to have as many as log2 N bits,
where N is the core count in the manycore. This is because a
wireless line may be shared by all the cores in the manycore.

To understand how WiDir works, we describe the two
main transactions, namely the S→W transition and the W→S
transition. In the process, we will see the need for two new
primitives for wireless cache-coherence protocols, namely the
Selective Data-Channel Jamming (Jamming) and the Tone-
Channel Acknowledgment (ToneAck). The former gives the
directory the ability to reject incoming transactions for a

Fig. 3: Cache and directory structure of a conventional proto-
col augmented (in bold) for WiDir.

directory entry that the directory is currently operating on; the
corresponding primitives in wired protocols are bouncing or
buffering incoming transactions if the directory entry is busy.
The second primitive gives the directory the ability to receive
acknowledgment messages from many cores very cheaply. The
primitives are discussed in Section III-C.

1) Transition from Shared to Wireless: When the directory
receives a read/write request from a new core for a line that is
already shared by MaxWiredSharers cores, the directory initi-
ates the transition of the line to W. It does so by broadcasting a
BroadcastWirelessUpgrade message (BrWirUpgr) for the line
on the wireless data channel. It also sends a WirelessUpgrade
response (WirUpgr) with the line to the requesting cache using
the wired network.

Immediately on reception of BrWirUpgr, all the Tone an-
tennas in the manycore (including the one in the node with the
directory that initiated the message) start a ToneAck operation.
For the initiating directory, this operation fully terminates only
when each of the nodes in the machine completes one of the
following operations: (i) the node determines that it does not
contain the line in its private cache, (ii) the node finds out that
it contains the line in its private cache and sets its cache state
for the line to W, (iii) the node had requested the line using
the wired network and has finally received either the line or
a bounced response from the directory; if it has received the
line, it has set its cache state for the line to W.

Once the ToneAck operation is complete for the initiating
directory, the directory stores a count of the sharer nodes
(SharerCount) in the sharer pointers field, and changes the
state to W. From now on, all writes by the sharer processors
use the wireless data network. In particular, the core that, by
issuing a request triggered the transition to W, if it intended to
write, it now retries the write using the wireless data network.

However, other nodes complete their ToneAck operation at
different times before the initiating directory does. When they
do, they resume execution. It is possible that one of the sharer
nodes now issues a write (now using the wireless data network)
before the initiating directory has fully terminated the ToneAck
operation. The directory has to prevent this from happening
because its transition is not completed. Consequently, after



starting the ToneAck operation, the antenna in the node with
the initiating directory starts a Jamming operation for this line
in the data channel. This prevents any core from successfully
updating this line using the wireless data channel.

After the transition is fully completed, if a new core issues
a read/write request to the line, the transaction will reach the
directory using the wired network. In this case, the directory
responds to the requester with WirUpgr and the line, using the
wired network and, importantly, increments SharerCount.

2) Transition from Wireless to Shared: When cores keeping
a line in W state are not interested in frequently read-
ing/writing the line anymore, the line should return to S. To
be able to do so, WiDir augments each line in each private
cache with a short counter (e.g., 2 bits) called UpdateCount,
which detects when the local core is not interested in the line
anymore. When a cached line enters the W state, UpdateCount
is cleared. From then on, every time that the cache receives
a wireless update, UpdateCount is incremented; every time
that the local core accesses the line, UpdateCount is reset. If
UpdateCount reaches a certain threshold count, it is assumed
that the local core is uninterested in the line. Hence, the hard-
ware invalidates the line in the cache and sends a PutWireless
message (PutW) to the directory indicating that the core is no
longer a sharer. PutW is sent through the wired network to
avoid consuming wireless bandwidth for such a non-critical
message.

When the home directory receives a PutW for a line, it
decrements the SharerCount for the line. If the counter reaches
MaxWiredSharers, the line should transition to S.

To do so, the directory broadcasts a WirelessDowngrade
message (WirDwgr) for the line on the wireless data channel.
As each node receives the message, its cache controller checks
if the cache indeed has the line. If it does not, no action is
taken, otherwise, an acknowledgment message is sent to the
directory with the sender’s node ID. These messages use the
wired network to save wireless bandwidth. When the directory
receives all the MaxWiredSharers acknowledgments expected,
it stores the sharer IDs in the Sharer Pointer field in the
directory entry. In addition, if the LLC line is Dirty, it is
written to memory. Finally, the state is set to S. The transaction
is now complete and the directory accepts new requests. From
now on, all communication occurs via the wired network.

When a core evicts a W line from its private cache because
it needs the space for another line, the hardware also sends a
PutW through the wired network to the directory, which will
decrease SharerCount and may trigger a WirDwgr. In addition,
to keep the directory up to date, a node always informs the
directory when any line is evicted from its private cache.
While this is not strictly needed for non-W lines to attain
the functionality we desire, we do it for simplicity.

C. Primitives for Wireless Protocols

To support efficient wireless cache coherence protocols, we
propose the following two primitives.

1) Selective Data-Channel Jamming: Conventional cache
coherence protocols provide support for a directory to stop

(i.e., buffer) or reject (i.e., bounce) new transactions directed to
a directory entry that is currently busy. We propose to provide
a similar primitive, called Jamming, for wireless directory
protocols. Jamming builds on the BRS wireless protocol [38].
As indicated in Section III-A, in BRS, the second cycle
of every transmission is left idle, so that the transmitting
transceiver can listen if any transceiver reports (with a brief
negative-Ack) a collision in the first cycle.

With this support, when a directory temporarily wants to
prevent any new wireless transaction on a line, it proceeds
as follows. It directs its transceiver to listen to every message
initiation in the wireless data-channel network. If the first cycle
of the message includes a destination address equal to the
line’s address (or potentially equal if all the address bits were
available), the transceiver forces an interruption of the message
by sending a negative-Ack, similarly as if a collision occurred.
As a result, the message will be aborted. With this support,
the directory prevents transactions to the line (with some false
positives), while enabling transactions to other lines.

2) Tone Channel Acknowledgment: In conventional cache
coherence protocols, some transactions require a directory
to collect acknowledgment messages from multiple nodes.
Such messages take a long time to arrive and, in addition,
cause network contention. We propose to support an equivalent
primitive for wireless directory protocols called ToneAck that
allows the directory to receive acknowledgments from many
processors very cheaply. In fact, since wireless messages are
broadcasted, ToneAck involves an acknowledgment from all
the cores.

ToneAck is triggered when a transceiver initiates a cer-
tain packet transmission in the wireless data channel —
e.g., a WirUpgr message requested by the local directory.
In ToneAck, all the transceivers except the initiating one
produce a continuous tone in the Tone channel; the initiating
transceiver simply monitors for the existence the tone. In
parallel, each node performs a certain operation (which may
be a simple check to determine that no action is needed) and,
once completed, removes its tone from the Tone channel. Once
the initiating transceiver notices that there is no tone in the
channel, it knows that all nodes have completed their task.

Effectively, ToneAck enables a fast global acknowledgment
operation. We have used ToneAck in Section III-B1 to perform
a global transition from Shared to Wireless state. A similar
support has been proposed by TLSync [39] and WiSync [18]
for efficient core synchronization. However, this is the first
time that this idea is used as part of the transactions of a
cache coherence protocol.

D. Summary: Why Adding Wireless Support To Coherence

Adding support for wireless communication in a large
manycore provides the ability to perform several types of co-
herence transactions very efficiently, especially those involving
multicasting. While the bandwidth of a wireless network is
limited, the latency of any given transaction is very small.
These properties perfectly fit the sharing pattern considered
in this paper: groups of cores frequently reading and writing



a shared location. Read and write operations do not need
the complicated multi-hop protocol transactions required by
invalidation-based protocols, or the lengthy routing of mes-
sages required by invalidation- or update-based protocols in
wired NoCs. Instead, writes transfer a fine-grained update
(rather than a cache line) with about 5ns [18], and reads are
local.

IV. DETAILED DESIGN

Figures 4a and 4b show the diagram of all possible transi-
tions between stable states of WiDir in the controllers of the
private cache and directory, respectively. The transitions are
annotated with descriptive labels. As seen in the figures, we
have the four MESI states plus the wireless (W) state.

(a) Private cache controller. (b) Directory controller.

Fig. 4: Transitions between stable states of WiDir in the
controllers of the private cache (a), and directory (b). In the
figures, black lines are core-initiated transactions; dashed red
lines are directory-initiated transactions; and the blue text is
the added wireless coherence transitions.

Rather than describing the complete protocol in detail, we
focus only on the transitions that come from W or go to W.
Tables I and II describe such transitions for the controllers
of the private cache and directory, respectively. Each row
considers one transition and describes when the transition
happens and the action taken.

A. Private Cache Controller Transitions

As shown in Table I, there are four cases of I→W tran-
sitions. The first two are when the directory is in W state
and the cache issues a read request (i.e., a GetS) or a write
request (i.e., a GetX) (while indicating that the core is not a
sharer) to the directory. In this case, the cache receives, via

the wired network, a wireless upgrade message (WirUpgr) plus
the line from the directory, and sends back a wireless upgrade
acknowledgment (WirUpgrAck) to the directory via the wired
network. The cache line transitions to W. Then, if the request
was a GetX, the cache issues the update wirelessly.

The other two cases are when the cache issues a GetS or
GetX (again, while indicating that the core is not a sharer)
to the directory that triggers a directory transition to W. In
this case, the local transceiver receives a broadcast wireless
upgrade message (BrWirUpgr) via the wireless network, and
turns on the tone channel. Then, when the cache receives, via
the wired network, a WirUpgr plus the line from the directory,
it transitions to W and tells the transceiver to turn off the tone
channel. Then, if the request was a GetX, the cache issues the
update wirelessly.

There are two cases of S→W transitions. The first one is
when the local transceiver receives a BrWirUpgr message via
wireless from the directory because the latter transitions to
W. In this case, the transceiver turns on the tone channel, the
cache transitions to W, and the transceiver turns off the tone
channel.

The second case is when the cache issues a GetX to the
directory (while indicating that it is already a sharer) and, by
the time it gets to the directory, the latter has transitioned to W.
In this case, the transceiver receives a BrWirUpgr via wireless,
and turns on the tone channel. The cache transitions to W and
the transceiver turns off the tone channel. Finally, the cache
issues the update wirelessly.

There are two cases of W→W transitions. The first one is
when the core reads; in this case, the hardware reads from the
cache and clears the UpdateCount for the line. The second
case is when the core writes. In this case, the transceiver
broadcasts the updated word (WirUpd) via the wireless data
network. When the transceiver indicates that the broadcast has
succeeded, the local cache is also updated. The UpdateCount
for the line in the cache is cleared.

There is one case of W→S transition. It is when the local
transceiver receives a wireless downgrade message (WirDwgr)
from the directory via wireless because SharerCount decreased
to MaxWiredSharers. In this case, the cache controller sends a
wireless downgrade acknowledgment message (WirDwgrAck)
that includes the core ID to the directory via the wired
network. The line state is changed to S.

There are two cases of W→I transitions. The first is when
the cache evicts a line in W state. In this case, the cache
controller informs the directory by sending it a PutW message
via the wired network. The second case is when the local
transceiver receives a wireless invalidate message (WirInv) for
a line from the directory via wireless because the directory
is evicting the line. The cache invalidates the line and, if the
core has a pending write on the line, it squashes it and retries
it.

B. Directory Controller Transitions

As shown in Table II, the transition S→W occurs when the
directory receives a GetS or GetX from a non-sharer cache



TABLE I: State transitions that come from W or go to W for the controller of the private cache.

Transition When? Action
I → W Cache issues GetS to directory and directory is in W Cache receives a WirUpgr+line via wired, sends WirUpgrAck back to directory via

wired, and transitions to W
Cache issues GetX to directory (while indicating that
it is not a sharer) and directory is in W

Cache receives a WirUpgr+line via wired, sends WirUpgrAck back to directory via
wired, and transitions to W. The cache issues the update wirelessly

Cache issues GetS to directory triggering a directory
transition to W

Transceiver receives a BrWirUpgr via wireless, and turns on the tone channel. When
the cache receives a WirUpgr+line via wired, it transitions to W and notifies the
transceiver to turn off the tone channel

Cache issues GetX to directory (while indicating that
it is not a sharer) triggering a directory transition to
W

Transceiver receives a BrWirUpgr via wireless, and turns on the tone channel. When
the cache receives a WirUpgr+line via wired, it transitions to W and notifies the
transceiver to turn off the tone channel. The cache issues the update wirelessly

S → W Transceiver receives a BrWirUpgr from the directory
via wireless because the latter transitions to W

Transceiver turns on the tone channel, the cache transitions to W, and the transceiver
turns off tone channel

Cache issues GetX to directory (while indicating that
it is already a sharer) and, by the time it gets to the
directory, the latter has transitioned to W

Transceiver receives a BrWirUpgr via wireless, and turns on the tone channel. The
cache transitions to W and the transceiver turns off the tone channel. Finally, the cache
issues the update wirelessly

W → W Core reads UpdateCount is cleared
Core writes Transceiver broadcasts the updated word (WirUpd) via wireless. When the transceiver

indicates that the broadcast succeeded, the local cache is updated and UpdateCount
is cleared

W → S Transceiver receives a WirDwgr from the direc-
tory via wireless because SharerCount decreased to
MaxWiredSharers

Cache sends WirDwgrAck (including core ID) to directory via wired, and changes the
state to S

W → I Cache evicts W line Cache notifies the directory with PutW via wired
Transceiver receives a WirInv via wireless from the
directory because the directory wants to evict the line

Cache invalidates the line and, if the core has a pending write on the line, it squashes
it and retries it

TABLE II: State transitions that come from W or go to W for the directory controller.

Transition When? Action
S → W Directory receives a GetS or GetX from a non-sharer

cache via wired and the new number of sharers for
the line is now higher than MaxWiredSharers

Transceiver broadcasts BrWirUpgr via wireless and turns on jamming for the line.
Directory sends WirUpgr+line to the requester via wired. Once the tone channel is
silent, directory sets the state to W and sets SharerCount, and jamming is turned off

W → W Directory receives from a cache via wired a GetS or
GetX (while indicating that it is not a sharer)

Transceiver turns on jamming, and directory sends WirUpgr+line via wired to the
requester. When the directory receives its WirUpgrAck via wired, it increments
SharerCount and the transceiver turns off jamming

Directory receives a GetX from a cache via wired
(while indicating that it already is sharer). The cache
does not know that the directory is already in W

Directory discards message since a previously-sent BrWirUpgr via wireless already
provided the information about the new directory state

Transceiver receives an update (WirUpd) via wireless
from a sharer cache

SharerCount is incremented

Directory receives a PutW via wired SharerCount is decremented and is still higher than MaxWiredSharers
W → S Directory receives a PutW via wired SharerCount is decremented and now becomes MaxWiredSharers. Transceiver broad-

casts WirDwgr wirelessly and directory waits for WirDwgrAck acknowledgments via
wired. Upon receiving all MaxWiredSharers WirDwgrAcks, the directory records their
core IDs in the sharer pointers, writes the line to memory if it is dirty in the LLC,
and sets the state to S

W → I Directory evicts a line shared wirelessly Transceiver broadcasts a WirInv via wireless. If the line is dirty in the LLC, the line
is written to memory

via the wired network, and the new number of sharers for
the line is now higher than MaxWiredSharers. In this case,
the local transceiver broadcasts a BrWirUpgr via the wireless
network and turns on jamming in the wireless data network
for the line. The directory sends WirUpgr plus the line to the
requester node via the wired network. Once the transceiver
detects that the tone channel is silent, the directory sets the
state to W and sets SharerCount to the count of sharers, and
jamming is turned off.

The transition W→W occurs in four cases. The first one
is when the directory receives from a cache via the wired
network a GetS or GetX (while indicating that the cache is
not a sharer). In this case, the transceiver turns on jamming

and the directory sends, via the wired network, a WirUpgr
plus the line to the requester. When the directory receives a
WirUpgrAck via the wired network, it increments SharerCount
and the transceiver turns off jamming.

The second case is when the directory receives a GetX from
a cache via the wired network (while indicating that the cache
is already a sharer). The cache does not know that the directory
is already in W. In this case, the directory discards the message
since a previously-sent BrWirUpgr via the wireless network
already provided the information about the new directory state.

The third case is when the transceiver in the node of the
directory receives an update (WirUpd) via the wireless network
from a sharer cache. In this case, the directory increments



SharerCount. The fourth case is when the directory receives
a PutW message via the wired network, as a result of a
wireless sharer evicting the line from its cache. In this case,
the directory decrements SharerCount and finds that the value
is still higher than MaxWiredSharers.

The W→S transition occurs when the directory receives
a PutW message via the wired network as before but, as
the directory decrements SharerCount, it finds that the value
is MaxWiredSharers. In this case, the transceiver broadcasts
WirDwgr wirelessly, and the directory waits for WirDwgrAck
acknowledgments from MaxWiredSharers cores via the wired
network. Upon receiving them, the directory records their core
IDs in the sharer pointers, writes the line back to memory if
the Dirty bit in the LLC is set, and sets the state to S.

The transition W→I occurs when the directory evicts a line
shared wirelessly. In this case, the transceiver broadcasts a
WirInv message via the wireless network. If the Dirty bit of
the line in the LLC is set, the line is written to memory.

C. Correct Operation of Wireless Transactions

Writes that use the wireless network, like all other writes,
are kept in a core’s write buffer until they complete. The
process of performing such a write involves multiple steps.
First, the local transceiver has to obtain access to the wireless
data network. Then, the transceiver has to succeed in sending
the packet without collisions. Once the packet is guaranteed to
successfully transmit (i.e., when the second cycle in the trans-
mission indicates that there is no collision), the transceiver
signals the write buffer to merge the write into the local cache.
Once the merging is done, the write is complete.

Before the transceiver manages to successfully send a packet
through the wireless network, the transceiver may receive
wireless updates to the line from remote cores. In this case,
such updates are performed before the local one. It is also
possible that the transceiver receives a wireless invalidation
for the line (WirInv) because the line’s entry in the directory
in a remote node is being evicted. In this case, the local cache
line is invalidated and the local write is retried. As the local
write retries, it will issue a transaction using the wired network
that will cause the directory to allocate a new entry for the
line. In all of these transactions, successful transmission in the
wireless network acts as a serialization point. These wireless
transactions cannot change local state in caches or directories
until the packet is guaranteed to successfully transmit in the
wireless network.

A wireless read-modify-write (RMW) instruction is imple-
mented in a similar way. When the RMW instruction reaches
its turn to execute according to the consistency model, the
hardware issues a read followed by a write to the correspond-
ing line. The read reads the line from the L1 and marks it
as non-evictable; the write does not update the line yet and,
instead, reaches the local transceiver, to be sent to the wireless
network. From the time the write is issued until it is guaranteed
to successfully transmit in the wireless network, the hardware
monitors for any incoming wireless transaction that updates
or invalidates the line. If one such transaction is received,

TABLE III: Architecture modeled. RT means round trip.

General Parameters
Architecture Manycore with 64 cores
Core Out of order, 4-issue wide, 1GHz, x86 ISA
ROB; ld/st queue 180 entries; 64 entries
Write buffer 64 entries
L1 I+D caches Private 64KB, WB (data), 2-way, 2-cycle RT, 64B lines
L2 cache Shared, per-core 512KB bank (32 MB total), WB
L2 bank 8-way, 12-cycle RT (local), 64B lines
On-chip network 2D-mesh, 1 cycle/hop, 128-bit links
Off-chip memory Connected to 4 memory controllers, 80-cycle RT

WiDir Parameters
Cache Coherence Enhances a Dir_3_B MESI directory protocol
Data Wireless channel 60GHz, 20Gb/s, 4 cyc. transfer + 1 cyc. collision detect.
Tone Wireless channel 90GHz, 1Gb/s, 1 cycle transfer latency
MaxWiredSharers 3 sharers/line
MAC Protocol BRS [38] (exponential backoff)
Transceiver At 65nm: 0.25mm2, 30mW [17], [41], [42]
Data converter At 65nm: 0.03mm2, 0.72mW [43]
Serializer/Deserializer At 65nm: 0.04mm2, 10.8mW [44]
Data+tone antennas At 65nm: 0.08mm2 [45]
All RF circuit in node At 65nm: Area: 0.4mm2, Transmitting: 39.4mW, Re-

ceiving: 39.4mW, Idle: 26.9mW (power gating analog
amplifier, with transient energy of 1.14 pJ)

the write fails and is not sent to the wireless network. The
hardware then retries the whole RMW instruction. Otherwise,
as soon as the transceiver acknowledges that the write is
guaranteed to successfully transmit in the wireless network,
the write updates the L1 and the RMW instruction completes.

V. EVALUATION METHODOLOGY

We use the SST [40] simulation framework as a cycle-level,
execution-driven simulator to model a server architecture with
64 cores. The architecture parameters, as well as the energy
and area of the wireless components are shown in Table III.
Each processor tile is composed of an out-of-order core with
private L1 instruction and data caches. L2 is shared and
physically distributed across the processor tiles. For the NoC,
we use a 2D-mesh topology with a latency of 1 cycle per hop.
We augment the simulator to model in detail the transmissions
and collision handling required by the wireless network. The
data channel of the wireless network has a bandwidth of 20
Gb/s. This is adequate to transmit a 64-bit word and its address
in 4 cycles. Collision detection adds one additional cycle.

We use McPAT [46] and CACTI [47] to model the energy
consumed by cores and memory hierarchy, as well as a
calibrated DSENT [48] to model the energy of the wired links
and routers. To compute the power and area consumed by
the wireless hardware (transceiver, data converter, serializer,
deserializer, and antennas), we use and adapt published data
in 65 nm technology [17], [41]–[45], [49]. Because some of
the components’ data were given only for 16 Gb/s, we linearly
scaled up their power and area to match our 20 Gb/s bit rate.
The next step would be to scale these numbers down to the 22
nm technology used for the rest of the system. The power and
area of the wireless components would be lower, as proposed
by other researchers [50], [51]. However, in this paper we
choose to be conservative and not scale them down. Finally,
the energy parameters of the wireless components in Table III
also take into consideration the fact that the transmitter’s power



amplifier and the receiver’s low noise amplifier can be power
gated when not in use [17], [52].

Our evaluation assumes a highly reliable wireless technol-
ogy. In the past, wireless on-chip links encountered sizable
error rates [53]–[55]. However, improvements in recent years
(e.g., [56]) have enabled wireless on-chip links with error
rates like those of on-chip wires (10−15), making corrupted
messages extremely infrequent. Note also that the rate of these
noise-related errors can be made arbitrarily low by increasing
the signal strength.

To evaluate the efficacy of our design, we compare it to a
Baseline manycore system that uses the Dir3B MESI directory
protocol without the wireless support of WiDir. We evaluate
a wide range of multi-threaded applications from SPLASH-
3 [57] and PARSEC [58]. These applications are listed and
characterized by their L1 misses-per-kilo-instruction (MPKI)
for Baseline in Table IV. They have different levels of fine-
grained data sharing, as well as different access patterns.

TABLE IV: Evaluated applications characterized by L1 MPKI
in Baseline.

SPLASH-3 [57] PARSEC [58]
Name MPKI Name MPKI Name MPKI

water-spa 0.49 fft 5.05 blackscholes 0.13
water-nsq 2.86 lu-nc 21.52 bodytrack 7.51
ocean-nc 16.05 lu-c 1.9 canneal 23.21
volrend 2.44 radix 9.41 dedup 4.1
radiosity 5.28 barnes 9.53 fluidanimate 1.27
raytrace 10.05 fmm 1.88 ferret 6.34
cholesky 5.92 freqmine 8.84

For the SPLASH-3 applications, we use the default input
sets as described in [57] and, for PARSEC, we use the standard
simsmall [58]. The input set sizes were chosen to allow
running the default region of interest of each application to
completion within a realistic time frame of up to a few days
of simulation.

VI. RESULTS

In this section, we analyze the data sharing, and then
evaluate performance, energy, and area. Finally, we perform a
sensitivity analysis.

A. Data Sharing Analysis
Figure 5 considers only the wireless updates in WiDir, and

shows a histogram of the number of sharers that are updated
per write. We group the number of sharers in bins: up to 5,
6-10, 11-25, 26-49, and 50 or more. The figure shows that, for
many applications, a wireless write updates many caches. For
other applications, only a few caches are typically updated.
On average, we see that updates with few sharers (up to 5)
account for 36% of these writes. On the other hand, updates
with many sharers (50+) account for 37% of these writes. The
latter typically correspond to highly-shared variables, such as
locks and barriers. This category is the one that offers the
highest benefit from the wireless mode.

Note that the detection of lines with many sharers does not
require any user effort. The hardware automatically identifies
them and switches them to wireless mode.

wate
r-s

pa

wate
r-n

sq

oce
an

-nc

vo
lre

nd

rad
ios

ity

ray
tra

ce

cho
les

ky fft
lu-

nc lu-
c

rad
ix
ba

rne
s

fm
m

bla
cks

cho
les

bo
dy

tra
ck

can
ne

al
de

du
p

flu
ida

nim
ate fer

ret

fre
qm

ine

Ave
rag

e
0

20

40

60

80

100

Nu
m

be
r o

f U
pd

at
ed

 S
ha

re
rs

 (%
)

Up to 5 6-10 11-25 26-49 50+Up to 5 6-10 11-25 26-49 50+

Fig. 5: Number of sharers updated upon a wireless write in
WiDir.

B. Performance Analysis

Cache Misses. Figure 6 shows the L1 misses per kilo instruc-
tion (MPKI) in WiDir and Baseline, normalized to Baseline.
The figure is broken down into read and write misses. We
can see that, on average, the MPKI is reduced by 15%. The
misses eliminated are coherence misses. WiDir removes them
by virtue of updating the sharers of a wireless line upon a
write, as opposed to invalidating them.

wate
r-s

pa

wate
r-n

sq

oce
an

-nc

vo
lre

nd

rad
ios

ity

ray
tra

ce

cho
les

ky fft
lu-

nc lu-
c

rad
ix
ba

rne
s

fm
m

bla
cks

cho
les

bo
dy

tra
ck

can
ne

al
de

du
p

flu
ida

nim
ate fer

ret

fre
qm

ine

Ave
rag

e
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
PK

I O
ve

r B
as

el
in

e

Baseline WiDir Reads WritesBaseline WiDir

Fig. 6: Misses-per-kilo-instruction in WiDir and Baseline,
normalized to Baseline.

The reduction in MPKI is especially large in radiosity. For
this application, Figure 5 showed that over 90% of the wireless
writes in WiDir update 50+ sharers. Updating so many sharers,
as opposed to invalidating them, achieves a large reduction
in MPKI. Other applications that see a sizable reduction in
MPKI are water-spa, ocean-nc, barnes, and fmm. Most of
these applications have a large average number of wireless
sharers updated per write (Figure 5). However, the two figures
are not perfectly correlated because there are also misses to
non-wireless lines.
Memory Latency. Figure 7 shows the overall latency of
memory operations in WiDir and Baseline, normalized to
Baseline. This latency is computed by counting, for a each
request, the number of cycles from the time the request enters
the ROB until it retires from the ROB, and then adding over all
the loads and over all the stores. The figure is broken down into
loads and stores. Note that this computation does not take into
account the fact that some accesses stall the ROB while others



are simply overlapped with the former. However, it gives some
insight into the relative importance of memory cycles in the
two architectures.

wate
r-s

pa

wate
r-n

sq

oce
an

-nc

vo
lre

nd

rad
ios

ity

ray
tra

ce

cho
les

ky fft
lu-

nc lu-
c

rad
ix
ba

rne
s

fm
m

bla
cks

cho
les

bo
dy

tra
ck

can
ne

al
de

du
p

flu
ida

nim
ate fer

ret

fre
qm

ine

Ave
rag

e
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ti
m

e 
to

 R
et

ire
 L

oa
ds

 a
nd

 S
to

re
s

Baseline WiDir Loads StoresBaseline WiDir

Fig. 7: Overall latency of memory operations in WiDir and
Baseline, normalized to Baseline.

We see that WiDir reduces the total latency of memory
access in nearly all of the applications. Moreover, the reduc-
tions are similar in both loads and stores. Some applications
such as ocean-nc, raytrace, fft, lu-c, and fmm have large
latency reductions. These applications are likely to be sped-up
significantly by WiDir. Overall, on average, WiDir reduces the
total latency of memory accesses by 35% over Baseline.
Wired Network Hops. In a conventional wired protocol, read
and write miss transactions often require multiple coherence
hops (or legs), as the directory forwards messages to other
sharers. In a large chip, such as the 64-core manycore that we
are considering, each of these legs of a coherence transaction
ends up incurring a high cost due to the large number of
network hops that each message has to go through in the wired
mesh.

To assess this cost, we count, for each leg of a coherence
transaction in Baseline, the number of network hops that the
message has to go through. Table V shows the fraction of
messages in our applications that need a certain number of
network hops in a leg. We group the number of hops in bins
of 0-2, 3-5, 6-8, 9-11, and 12-16 hops. We can see that more
than half of all the messages in the baseline have to perform
at least 6 network hops per leg to reach their destination. In
contrast, in WiDir, writes to wireless lines are broadcasted to
all sharers in a single hop. This capability reduces memory
and communication latency.

TABLE V: Distribution of number of network hops per leg for
messages sent through the wired mesh, in the 64-core Baseline
architecture.

Number of Hops per Leg 0-2 3-5 6-8 9-11 12-16
% of Messages 17% 22% 31% 21% 9%

Execution Time. Figure 8 presents the execution time of the
applications in WiDir and Baseline, normalized to Baseline.
From top to bottom, the graphs show runs for 64 cores (a),
32 cores (b), and 16 cores (c). Each bar is broken down into
cycles when the execution is stalled due to a pending memory
access (Memory stall) and the rest of cycles (Rest).

wate
r-s

pa

wate
r-n

sq

oce
an

-nc

vo
lre

nd

rad
ios

ity

ray
tra

ce

cho
les

ky fft
lu-

nc lu-
c

rad
ix
ba

rne
s

fm
m

bla
cks

cho
les

bo
dy

tra
ck

can
ne

al
de

du
p

flu
ida

nim
ate fer

ret

fre
qm

ine

Ave
rag

e
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

No
rm

al
ize

d 
Ex

ec
ut

io
n 

Ti
m

e Baseline WiDir Memory stall RestBaseline WiDir

(a) 64 cores

wate
r-s

pa

wate
r-n

sq

oce
an

-nc

vo
lre

nd

rad
ios

ity

ray
tra

ce

cho
les

ky fft
lu-

nc lu-
c

rad
ix
ba

rne
s

fm
m

bla
cks

cho
les

bo
dy

tra
ck

can
ne

al
de

du
p

flu
ida

nim
ate fer

ret

fre
qm

ine

Ave
rag

e
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

No
rm

al
ize

d 
Ex

ec
ut

io
n 

Ti
m

e Baseline WiDir Memory stall RestBaseline WiDir

(b) 32 cores

wate
r-s

pa

wate
r-n

sq

oce
an

-nc

vo
lre

nd

rad
ios

ity

ray
tra

ce

cho
les

ky fft
lu-

nc lu-
c

rad
ix
ba

rne
s

fm
m

bla
cks

cho
les

bo
dy

tra
ck

can
ne

al
de

du
p

flu
ida

nim
ate fer

ret

fre
qm

ine

Ave
rag

e
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

No
rm

al
ize

d 
Ex

ec
ut

io
n 

Ti
m

e Baseline WiDir Memory stall RestBaseline WiDir

(c) 16 cores

Fig. 8: Execution time in WiDir and Baseline, normalized to
Baseline for 64 (a), 32 (b), and 16 (c) core executions. The
bars are broken down into memory stall cycles and the rest of
cycles.

Consider first the 64-core runs (Figure 8a). We can see that,
in Baseline, many of the cycles are wasted to memory stall. On
average, nearly 65% of the cycles fall into this category. With
WiDir, many applications reduce their execution time, some-
times substantially. Such reductions are caused by decreases
in the memory stall cycles. The Rest cycles change only a
little, although sometimes they go up noticeably. The reason
for the change is that the timing of the instructions changes
between WiDir and Baseline. On average, WiDir manages to
reduce over one third of the memory stall time. As a result, on
average, the total execution time of the applications reduces
by 22%.

Generally, the applications that benefit the most from WiDir
have some of the highest percentages of memory stall cycles



in Baseline. They include ocean-nc, radiosity, raytrace, and
barnes. Wireless transactions directly reduce the number of
misses and, hence, the memory stall time. However, there are
also applications where WiDir has practically no impact. They
include blackscholes, bodytrack, dedup, ferret, and freqmine.

As we decrease the number of cores in the architecture, the
speed-ups decrease. Specifically, for 32 cores (Figure 8b) and
16 cores (Figure 8c), the average execution time reduction of
the applications is 11% and 4%, respectively. With fewer cores,
the latency of the wired network is smaller and, in addition,
variables are shared by fewer cores.

C. Energy and Area Analysis

Energy. Figure 9 shows the energy consumed by WiDir and
Baseline, normalized to Baseline. The energy is broken down
into the energy of the core, the private L1s, the shared L2 plus
directory, the wired NoC, and the WNoC.

wate
r-s

pa

wate
r-n

sq

oce
an

-nc

vo
lre

nd

rad
ios

ity

ray
tra

ce

cho
les

ky fft
lu-

nc lu-
c

rad
ix
ba

rne
s

fm
m

bla
cks

cho
les

bo
dy

tra
ck

can
ne

al
de

du
p

flu
ida

nim
ate fer

ret

fre
qm

ine

Ave
rag

e
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

No
rm

al
ize

d 
En

er
gy

Baseline WiDir
Core L1 L2+Dir NoC WNoC
Baseline WiDir

Fig. 9: Energy consumed by WiDir and Baseline, normalized
to Baseline.

We see that Baseline spends on average about 60% of the
energy in the core, 5% in the instruction and data L1 caches,
20% in the shared L2 and directory, and 15% in the wired
NoC. In WiDir, we have the same categories plus the energy
contribution of the WNoC.

The WNoC and coherence protocol of WiDir reduce the
cost of polling operations and long distance communications.
Therefore, they reduce the energy consumption. On average,
the energy consumed by WiDir is 21% lower than in Baseline.
Across applications, the energy reductions are very similar to
the execution time reductions (Figure 8a). In addition, we can
see that the energy contribution of the WNoC is modest: on
average, it is 5.9% of the WiDir energy.

Finally, since the energy reduction of WiDir is roughly
similar to the execution time reduction, we conclude that the
power consumed by Baseline and WiDir are very similar.
Area. Table III showed that an estimate of the area overhead
of the transceiver, data converter, serializer, deserializer, and
antennas at 65nm technology is 0.4 mm2. Several authors [50],
[51] argue that the area reduces linearly with the feature size.
Consequently, we expect that, for a current technology like
10 nm or lower, the area overhead of the wireless network
support is modest.

D. Speedup and Sensitivity Analysis

As the number of cores in the manycore increases, so does
the overhead of traditional coherence protocols, as well as
the cost of traversing the wired mesh. With WiDir, the added
wireless coherence protocol reduces the overhead of the cache
lines that are highly shared and would suffer the most. The
result is a better scalability of WiDir with the number of cores
than Baseline.

Figure 10 shows the execution speedup of WiDir and
Baseline as the number of cores increases. The speedups are
computed relative to the execution time of Baseline with four
cores. From the figure, we can see that, up to 16 cores, the
difference in speedup between WiDir and Baseline is small.
This is because the cost of traversing the wired network is
small, and the number of cores sharing a cache line is typically
modest. As a result, WiDir cannot provide much benefit.
However, as the size of the chip increases to 32 and 64 cores,
WiDir benefits from having more cache lines in wireless mode,
while Baseline is harmed by the increased cost of traversing
the wired network. Thus, the average speedups of WiDir and
Baseline diverge. Hence, WiDir is more scalable.

Fig. 10: Average execution time
speedup of WiDir and Baseline over
the 4-core Baseline.

Max
Wired

Sharers
Sp. Coll.

prob.

2 1.22x 6.93%
3 1.43x 3.14%
4 1.38x 2.24%
5 1.31x 1.70%

TABLE VI: Speedups of
WiDir over Baseline, and
collision probability in
WiDir, for different val-
ues of MaxWiredSharers.

We now consider the effect of the threshold for the number
of cores that need to be sharing a line, for the line to switch
to wireless (MaxWiredSharers). Recall that the default value
of MaxWiredSharers is 3. In this section, we change its value
to 2, 4, and 5.

For the different values of MaxWiredSharers, Table VI
shows two measures: (i) the average execution time speedup
of WiDir over Baseline for 64-core runs (Sp.), and (ii) the
probability of collisions of messages in the wireless network
in WiDir (Coll. prob.). The values for MaxWiredSharers equal
to 3 are 1.43x and 3.14%, respectively.

When we switch to wireless mode sooner (i.e., MaxWired-
Sharers equal to 2), more lines are in wireless mode. This
increases contention and collisions in the wireless medium
(from 3.14% to 6.93%), and in turn hurts speedups (from 1.43x
to 1.22x) compared to the default MaxWiredSharers value of
3. It can be shown, however, that some applications such as
lu-nc, fmm, and canneal actually attain higher speedups when
switching to wireless mode sooner.

When we increase the threshold to switch to wireless later
(MaxWiredSharers equal to 4 and 5), fewer lines are in



wireless mode. Hence, we reduce the amount of traffic in
the wireless medium, which in turn decreases the probability
of wireless collisions (from 3.14% to 2.24% and 1.70%).
However, the result is reduced speedups (from 1.43x to 1.38x
and 1.31x), due to missing opportunities to use the wireless
medium. No application attains a higher speedup with these
higher MaxWiredSharers values.

Overall, our default MaxWiredSharers value of 3 works best.

VII. RELATED WORK

Wireless Architectures. We described WiSync [18], Choi et
al. [19], Mondal et al. [27], and Replica [20] in Section II.
Other works use a WNoC to accelerate the communication
patterns of applications such as graph analytics [59], molecular
dynamics simulations [60], and brain-machine interfaces [61].
These other works differ from WiDir in that the wireless links
are used to reduce the average network latency regardless of
the coherence state. Further, the network is optimized for a
particular set of applications only.

There are many proposals for Medium Access Control
(MAC) protocols for WNoCs [62]–[65]. WiDir has used BRS,
but practically any other WNoC MAC protocol could be used
as well.
Snooping-based Protocols. WiDir’s wireless network pro-
vides a totally-ordered interconnect and efficient broadcasting
to satisfy misses with low latency. Snooping protocols [4], [34]
also use a totally-ordered interconnect. Several works extend
snooping coherence to unordered interconnects to improve its
scalability [66]–[72]. The idea is to provide ordering guaran-
tees, either at the protocol level via tokens associated to each
cache line [67] or at the network level using global timestamps
[66], snoop-order numbers [69], a logical embedded-ring [68],
or a dedicated ordering network [70]–[72]. Depending on the
protocol, the scalability is fundamentally limited by the in-
creasing ordering buffer requirements, latency of serialization,
or inefficiency of filling a mesh NoC with broadcasts.
Protocols with Emerging Interconnect Technologies. Op-
tical/RF transmissions via shared nanophotonic waveguides
[73]–[77] or transmission lines (TLs) [39], [78]–[82] can
provide ordered broadcast. Some proposals use these global
interconnects to implement conventional snooping coherence
[73], custom limited directory protocols [75], race-free pro-
tocols via globally shared locks [74], or to speed-up syn-
chronization [39], [83]. Compared to wireless networks, both
nanophotonics and TLs are more energy efficient and provide
higher bandwidth because of their guided nature. However,
network design becomes more complex than wireless because
a maze of physical waveguides/TLs needs be planned and
laid down. Both technologies also have scalability issues in
globally-shared networks. In nanophotonics, there are losses
added by each and every power divider, modulator, coupler,
and receiver along the path. In TLs, there is the need of
a centralized arbiter for the bus, and of overcoming signal
reflections with amplifying stages between segments, which
are costly and complicate the design.

Scalable Directory Protocols. We outlined a variety of pro-
tocols with scalable directories [6], [7], [33] in Section II.
Another way to scale the directory is by dividing the manycore
into coherence domains [84], where only the nodes in the same
domain are kept coherent with each other. WiDir, instead, not
only allows the directory to scale without domain restrictions,
but also boosts performance by enabling broadcast updates of
highly-shared lines.

VIII. CONCLUSION

To handle sharing patterns where a group of cores frequently
reads and writes a set of shared variables, this paper used on-
chip wireless network technology to augment a conventional
invalidation-based directory cache coherence protocol. The re-
sulting protocol, called WiDir, seamlessly transitions between
wired and wireless coherence transactions for the same line
based on the program’s access patterns in a programmer-
transparent manner. In this paper, we described the protocol in
detail. Further, an evaluation showed that WiDir substantially
reduces the memory stall time of applications. For 64-core
runs, WiDir reduced the execution time of applications by an
average of 22% compared to MESI. Moreover, WiDir was
shown to be more scalable than MESI. These benefits were
obtained with a very modest power cost.

ACKNOWLEDGMENTS

This work was funded in part by NSF Grant No. CCF-
1629431 and by EU’s Horizon 2020 Research and Innovation
Programme Grant No. 863337 (WiPLASH).

REFERENCES

[1] Ampere Altra 64-Bit Multi-Core ARM Processor. https:
//amperecomputing.com/altra/, accessed April 16, 2020.

[2] AMD Epyc 7742 Processor. https://www.amd.com/en/products/cpu/
amd-epyc-7742, accessed April 16, 2020.

[3] Intel Xeon Platinum 9282 Processor. https://www.intel.com/
content/www/us/en/products/processors/xeon/scalable/platinum-
processors/platinum-9282.html, accessed April 16, 2020.

[4] M. Dubois, M. Annavaram, and P. Stenström, Parallel Computer Orga-
nization and Design. Cambridge University Press, 2012.

[5] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J. Hen-
nessy, M. Horowitz, and M. Lam, “The Stanford DASH Multiprocessor,”
IEEE Computer, 1992.

[6] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz, “An Evaluation
of Directory Schemes for Cache Coherence,” in International Sympo-
sium on Computer Architecture (ISCA), 1988.

[7] A. Gupta, W.-D. Weber, and T. Mowry, “Reducing Memory and Traffic
Requirements for Scalable Directory-Based Cache Coherence Schemes,”
in International Conference on Parallel Processing (ICPP), 1990.

[8] H. Grahn, P. Stenstrom, and M. Dubois, “Implementation and Evaluation
of Update-Based Cache Protocols Under Relaxed Memory Consistency
Models,” in Future Generation Computer Systems, 1995.

[9] S. Abadal, J. Torrellas, E. Alarcón, and A. Cabellos-Aparicio, “Or-
thoNoC: A Broadcast-Oriented Dual-Plane Wireless Network-on-Chip
Architecture,” IEEE Transactions on Parallel and Distributed Systems,
vol. 29, no. 3, pp. 628–641, 2017.

[10] G. Ascia, V. Catania, S. Monteleone, M. Palesi, D. Patti, J. Jose, and
V. M. Salerno, “Exploiting Data Resilience in Wireless Network-on-Chip
Architectures,” ACM Journal on Emerging Technologies in Computing
Systems (JETC), vol. 16, no. 2, pp. 1–27, 2020.

[11] D. DiTomaso, A. Kodi, D. Matolak, S. Kaya, S. Laha, and W. Rayess,
“A-WiNoC: Adaptive Wireless Network-on-Chip Architecture for Chip
Multiprocessors,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 26, no. 12, pp. 3289–3302, 2015.



[12] A. Karkar, T. Mak, N. Dahir, R. Al-Dujaily, K.-F. Tong, and A. Yakovlev,
“Network-on-Chip Multicast Architectures Using Hybrid Wire and
Surface-Wave Interconnects,” IEEE Transactions on Emerging Topics
in Computing, vol. 6, no. 3, pp. 357–369, 2018.

[13] K. Duraisamy, Y. Xue, P. Bogdan, and P. P. Pande, “Multicast-
Aware High-Performance Wireless Network-on-Chip Architectures,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 25, no. 3, pp. 1126–1139, 2017.

[14] D. W. Matolak, A. Kodi, S. Kaya, D. Ditomaso, S. Laha, and W. Rayess,
“Wireless Networks-on-Chips: Architecture, Wireless Channel, and De-
vices,” IEEE Wireless Communications, vol. 19, no. 5, pp. 58–65, 2012.

[15] S. H. Gade and S. Deb, “HyWin: Hybrid Wireless NoC With Sandboxed
Sub-Networks for CPU/GPU Architectures,” IEEE Transactions on
Computers, vol. 66, no. 7, pp. 1145–1158, 2017.

[16] N. Mansoor, P. J. S. Iruthayaraj, and A. Ganguly, “Design Methodology
for a Robust and Energy-Efficient Millimeter-Wave Wireless Network-
on-Chip,” IEEE Transactions on Multi-Scale Computing Systems, vol. 1,
no. 1, pp. 33–45, 2015.

[17] X. Yu, J. Baylon, P. Wettin, D. Heo, P. Pratim Pande, and S. Mirabbasi,
“Architecture and Design of Multi-Channel Millimeter-Wave Wireless
Network-on-Chip,” IEEE Design & Test, vol. 31, no. 6, 2014.

[18] S. Abadal, A. Cabellos-Aparicio, E. Alarcón, and J. Torrellas, “WiSync:
An Architecture for Fast Synchronization Through on-Chip Wireless
Communication,” in International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2016.

[19] W. Choi, K. Duraisamy, R. G. Kim, J. R. Doppa, P. P. Pande, D. Mar-
culescu, and R. Marculescu, “On-Chip Communication Network for
Efficient Training of Deep Convolutional Networks on Heterogeneous
Manycore Systems,” IEEE Transactions on Computers, vol. 67, no. 5,
pp. 672–686, 2018.

[20] V. Fernando, A. Franques, S. Abadal, S. Misailovic, and J. Torrellas,
“Replica: A Wireless Manycore for Communication-Intensive and Ap-
proximate Data,” in International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2019.

[21] D. Sánchez, G. Michelogiannakis, and C. Kozyrakis, “An Analysis of
on-Chip Interconnection Networks for Large-Scale Chip Multiproces-
sors,” ACM Transactions on Architecture and Code Optimization, vol. 7,
no. 1, p. Article 4, 2010.

[22] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu, “Kilo-NoC: A
Heterogeneous Network-on-Chip Architecture for Scalability and Ser-
vice Guarantees,” in International Symposium on Computer Architecture
(ISCA), 2011.

[23] H. M. Cheema and A. Shamim, “The Last Barrier: On-chip Antennas,”
IEEE Microwave Magazine, vol. 14, no. 1, pp. 79–91, 2013.

[24] Q. J. Gu, “THz Interconnect: The Last Centimeter Communication,”
IEEE Communications Magazine, vol. 53, no. 4, pp. 206–215, 2015.

[25] J. Wu, A. Kodi, S. Kaya, A. Louri, and H. Xin, “Monopoles Loaded
With 3-D Printed Dielectrics for Future Wireless Intra-Chip Commu-
nications,” IEEE Transactions on Antennas and Propagation, vol. 65,
no. 12, pp. 6838–6846, 2017.

[26] V. Pano, I. Tekin, I. Yilmaz, Y. Liu, K. R. Dandekar, and B. Taskin, “TSV
Antennas for Multi-Band Wireless Communication,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 10, no. 1,
pp. 100–113, 2020.

[27] H. K. Mondal, R. C. Cataldo, C. A. M. Marcon, K. Martin, S. Deb, and
J.-P. Diguet, “Broadcast- and Power-Aware Wireless NoC for Barrier
Synchronization in Parallel Computing,” in International System-on-
Chip Conference (SOCC), 2018.

[28] S. Abadal, C. Han, and J. M. Jornet, “Wave Propagation and Channel
Modeling in Chip-Scale Wireless Communications: A Survey From
Millimeter-Wave to Terahertz and Optics,” IEEE Access, vol. 8, pp. 278–
293, 2019.

[29] Y. Chen and C. Han, “Channel Modeling and Characterization for
Wireless Networks-on-Chip Communications in the Millimeter Wave
and Terahertz Bands,” IEEE Transactions on Molecular, Biological and
Multi-Scale Communications, vol. 5, no. 1, pp. 30–43, 2019.

[30] I. El Masri, T. Le Gouguec, P.-M. Martin, R. Allanic, and C. Quendo,
“Electromagnetic Characterization of the Intrachip Propagation Channel
in Ka- and V-Bands,” IEEE Transactions on Components, Packaging
and Manufacturing Technology, vol. 9, no. 10, pp. 1931–1941, 2019.

[31] L. M. Censier and P. Feautrier, “A New Solution to Coherence Problems
in Multicache Systems,” IEEE Transactions on Computers, 1978.

[32] D. Chaiken, J. Kubiatowicz, and A. Agarwal, “LimitLESS Directories:
A Scalable Cache Coherence Scheme,” in International Conference

on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 1991.

[33] D. Sanchez and C. Kozyrakis, “SCD: A Scalable Coherence Directory
With Flexible Sharer Set Encoding,” in International Symposium on
High Performance Computer Architecture (HPCA), 2012.

[34] S. J. Eggers and R. H. Katz, “Evaluating the Performance of Four
Snooping Cache Coherency Protocols,” in International Symposium on
Computer Architecture (ISCA), 1989.

[35] F. Dahlgren, “Boosting the Performance of Hybrid Snooping Cache Pro-
tocols,” in International Symposium on Computer Architecture (ISCA),
1995.

[36] A. Gupta and W.-D. Weber, “Cache Invalidation Patterns in Shared-
Memory Multiprocessors,” IEEE Transactions on Computers, 1992.

[37] J. Laudon and D. Lenoski, “The SGI Origin: A ccNUMA Highly
Scalable Server,” in International Symposium on Computer Architecture
(ISCA), 1997.

[38] A. Mestres, S. Abadal, J. Torrellas, E. Alarcón, and A. Cabellos-
Aparicio, “A MAC Protocol for Reliable Broadcast Communications
in Wireless Network-on-Chip,” in International Workshop on Network
on Chip Architectures (NOCARC), 2016.

[39] J. Oh, M. Prvulovic, and A. Zajic, “TLSync: Support for Multiple
Fast Barriers Using on-Chip Transmission Lines,” in International
Symposium on Computer Architecture (ISCA), 2011.

[40] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield,
M. Weston, R. Risen, J. Cook, P. Rosenfeld, E. CooperBalls, and
B. Jacob, “The Structural Simulation Toolkit,” ACM SIGMETRICS
Performance Evaluation Review, vol. 38, no. 4, 2011.

[41] X. Yu, H. Rashtian, and S. Mirabbasi, “An 18.7-Gb/s 60-GHz OOK
Demodulator in 65-nm CMOS for Wireless Network-on-Chip,” IEEE
Transactions on Circuits And Systems -I: Regular Papers, vol. 62, no. 3,
2015.

[42] X. Yu, S. P. Sah, H. Rashtian, S. Mirabbasi, P. P. Pande, and D. Heo,
“A 1.2-pJ/bit 16-Gb/s 60-GHz OOK Transmitter in 65-nm CMOS for
Wireless Network-on-Chip,” IEEE Transactions on Microwave Theory
and Techniques, vol. 62, no. 10, 2014.

[43] B. Xu, Y. Zhou, and Y. Chiu, “A 23-mW 24-GS/s 6-bit Voltage-Time
Hybrid Time-Interleaved ADC in 28-nm CMOS,” IEEE Journal of Solid-
State Circuits, vol. 52, no. 4, 2017.

[44] S. Saxena, G. Shu, R. K. Nandwana, M. Talegaonkar, A. Elkholy,
T. Anand, W. S. Choi, and P. K. Hanumolu, “A 2.8 mW/Gb/s, 14 Gb/s
Serial Link Transceiver,” IEEE Journal of Solid-State Circuits, vol. 52,
no. 5, 2017.

[45] F. Gutierrez, S. Agarwal, K. Parrish, and T. S. Rappaport, “On-chip
Integrated Antenna Structures in CMOS for 60 GHz WPAN Systems,”
IEEE Journal on Selected Areas in Communications, vol. 27, no. 8,
2009.

[46] S. Li, J. H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi,
“McPAT: An Integrated Power, Area, and Timing Modeling Framework
for Multicore and Manycore Architectures,” in International Symposium
on Microarchitecture (MICRO), 2009.

[47] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee, and
V. Srinivas, “CACTI 7: New Tools for Interconnect Exploration in
Innovative Off-Chip Memories,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 14, no. 2, pp. 1–25, 2017.

[48] C. Sun, C.-H. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.-S.
Peh, and V. Stojanovic, “DSENT - A Tool Connecting Emerging Photon-
ics With Electronics for Opto-Electronic Networks-on-Chip Modeling,”
in International Symposium on Networks-on-Chip (NOCS), 2012.

[49] C. W. Byeon, K. C. Eun, and C. S. Park, “A 2.65-pJ/bit 12.5-Gb/s
60-GHz OOK CMOS Transmitter and Receiver for Proximity Commu-
nications,” IEEE Transactions on Microwave Theory and Techniques,
2020.

[50] S. Abadal, M. Iannazzo, M. Nemirovsky, A. Cabellos-Aparicio, H. Lee,
and E. Alarcón, “On the Area and Energy Scalability of Wireless
Network-on-Chip: A Model-Based Benchmarked Design Space Ex-
ploration,” IEEE/ACM Transactions on Networking, vol. 23, no. 5,
pp. 1501–1513, 2015.

[51] M. F. Chang, J. Cong, A. Kaplan, M. Naik, G. Reinman, E. Socher,
and S.-W. Tam, “CMP Network-on-Chip Overlaid With Multi-Band
RF-Interconnect,” in International Symposium on High Performance
Computer Architecture (HPCA), 2008.

[52] H. K. Mondal, S. Kaushik, S. H. Gade, and S. Deb, “Energy-Efficient
Transceiver for Wireless NoC,” in International Conference on VLSI
Design and International Conference on Embedded Systems (VLSID),
2017.



[53] S. Abadal, E. Alarcón, A. Cabellos-Aparicio, M. C. Lemme, and M. Ne-
mirovsky, “Graphene-Enabled Wireless Communication for Massive
Multicore Architectures,” IEEE Communications Magazine, vol. 51,
no. 11, pp. 137–143, 2013.

[54] A. Ganguly, P. Pande, B. Belzer, and A. Nojeh, “A Unified Error
Control Coding Scheme to Enhance the Reliability of a Hybrid Wireless
Network-on-Chip,” in 2011 IEEE International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems, pp. 277–
285, IEEE, 2011.

[55] S. Deb, A. Ganguly, P. P. Pande, B. Belzer, and D. Heo, “Wireless
NoC as Interconnection Backbone for Multicore Chips: Promises and
Challenges,” IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, vol. 2, no. 2, pp. 228–239, 2012.

[56] X. Timoneda, S. Abadal, A. Franques, D. Manessis, J. Zhou, J. Torrellas,
E. Alarcón, and A. Cabellos-Aparicio, “Engineer the Channel and Adapt
to it: Enabling Wireless Intra-Chip Communication,” IEEE Transactions
on Communications, vol. 68, no. 5, pp. 3247–3258, 2020.

[57] C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “SPLASH-3: A
Properly Synchronized Benchmark Suite for Contemporary Research,”
in International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2016.

[58] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Bench-
mark Suite: Characterization and Architectural Implications,” in Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT), 2008.

[59] K. Duraisamy, H. Lu, P. P. Pande, and A. Kalyanaraman, “High-
Performance and Energy-Efficient Network-on-Chip Architectures for
Graph Analytics,” ACM Transactions on Embedded Computing Systems,
vol. 15, no. 26, pp. 1–26, 2016.

[60] X. Li, K. Duraisamy, J. Baylon, T. Majumder, G. Wei, P. Bogdan,
D. Heo, and P. P. Pande, “A Reconfigurable Wireless NoC for Large
Scale Microbiome Community Analysis,” IEEE Transactions on Com-
puters, vol. 66, no. 10, pp. 1653–1666, 2017.

[61] X. Li, K. Duraisamy, P. Bogdan, J. R. Doppa, and P. P. Pande,
“Scalable Network-on-Chip Architectures for Brain–Machine Interface
Applications,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 26, no. 10, pp. 1895–1907, 2018.

[62] A. Franques, S. Abadal, H. Hassanieh, and J. Torrellas, “Fuzzy-Token:
An Adaptive MAC Protocol for Wireless-Enabled Manycores,” in De-
sign, Automation and Test in Europe Conference (DATE), 2021.

[63] K. Duraisamy, R. G. Kim, and P. P. Pande, “Enhancing Performance
of Wireless NoCs With Distributed MAC Protocols,” in International
Symposium on Quality Electronic Design (ISQED), 2015.

[64] N. Mansoor and A. Ganguly, “Reconfigurable Wireless Network-on-
Chip With a Dynamic Medium Access Mechanism,” in International
Symposium on Networks-on-Chip (NOCS), 2015.

[65] S. Jog, Z. Liu, A. Franques, V. Fernando, S. Abadal, J. Torrellas, and
H. Hassanieh, “One Protocol to Rule Them All: Deep Reinforcement
Learning Aided MAC for Wireless Network-on-Chips,” in Symposium
on Networked Systems Design and Implementation (NSDI), 2021.

[66] M. M. Martin, D. J. Sorin, A. Ailamaki, A. R. Alameldeen, R. M.
Dickson, C. J. Mauer, K. E. Moore, M. Plakal, M. D. Hill, and D. A.
Wood, “Timestamp Snooping: An Approach for Extending SMPs,” in
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2000.

[67] M. Martin, M. D. Hill, and D. A. Wood, “Token Coherence: Decoupling
Performance and Correctness,” in International Symposium on Computer
Architecture (ISCA), 2003.

[68] K. Strauss, X. Shen, and J. Torrellas, “Uncorq: Unconstrained Snoop
Request Delivery in Embedded-Ring Multiprocessors,” in International
Symposium on Microarchitecture (MICRO), 2007.

[69] N. Agarwal, L.-S. Peh, and N. K. Jha, “In-Network Snoop Ordering
(INSO): Snoopy Coherence on Unordered Interconnects,” in Interna-
tional Symposium on High Performance Computer Architecture (HPCA),
2009.

[70] B. K. Daya, C.-H. O. Chen, S. Subramanian, W.-C. Kwon, S. Park,
T. Krishna, J. Holt, A. P. Chandrakasan, and L.-S. Peh, “SCORPIO: A
36-Core Research Chip Demonstrating Snoopy Coherence on a Scalable
Mesh NoC With in-Network Ordering,” in International Symposium on
Computer Architecture (ISCA), 2014.

[71] W.-C. Kwon and L.-S. Peh, “A Universal Ordered NoC Design Platform
for Shared-Memory MPSoC,” in International Conference on Computer-
Aided Design (ICCAD), 2015.

[72] B. K. Daya, L.-S. Peh, and A. P. Chandrakasan, “Low-Power on-
Chip Network Providing Guaranteed Services for Snoopy Coherent and
Artificial Neural Network Systems,” in Design Automation Conference
(DAC), 2017.

[73] N. Kirman, M. Kirman, R. Dokania, J. F. Martinez, A. B. Apsel,
M. A. Watkins, and D. H. Albonesi, “Leveraging Optical Technology in
Future Bus-Based Chip Multiprocessors,” in International Symposium
on Microarchitecture (MICRO), 2006.

[74] D. Vantrease, M. H. Lipasti, and N. Binkert, “Atomic Coherence: Lever-
aging Nanophotonics to Build Race-Free Cache Coherence Protocols,” in
International Symposium on High Performance Computer Architecture
(HPCA), 2011.

[75] G. Kurian, J. E. Miller, J. Psota, J. Eastep, J. Liu, J. Michel, L. C.
Kimerling, and A. Agarwal, “ATAC: A 1000-Core Cache-Coherent
Processor With on-Chip Optical Network,” in International Conference
on Parallel Architectures and Compilation Techniques (PACT), 2010.

[76] C. Batten, A. Joshi, V. Stojanovic, and K. Asanovic, “Designing
Chip-Level Nanophotonic Interconnection Networks,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 2, no. 2,
pp. 137–153, 2012.

[77] C. Thraskias, E. Lallas, N. Neumann, L. Schares, B. Offrein, R. Henker,
D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of
Photonic and Plasmonic Interconnect Technologies for Intra-Datacenter
and High-Performance Computing Communications,” IEEE Communi-
cations Surveys and Tutorials, vol. 20, no. 4, pp. 2758–2783, 2018.

[78] A. Carpenter, J. Hu, J. Xu, M. Huang, and H. Wu, “A Case for Globally
Shared-Medium on-Chip Interconnect,” in International Symposium on
Computer Architecture (ISCA), 2011.

[79] A. Carpenter, J. Hu, O. Kocabas, M. Huang, and H. Wu, “Enhancing Ef-
fective Throughput for Transmission Line-Based Bus,” in International
Symposium on Computer Architecture (ISCA), 2012.

[80] J. Oh, A. Zajic, and M. Prvulovic, “Traffic Steering Between a Low-
Latency Unswitched TL Ring and a High-Throughput Switched on-Chip
Interconnect,” in International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2013.

[81] J. W. Holloway, G. C. Dogiamis, and R. Han, “Innovations in Terahertz
Interconnects: High-Speed Data Transport Over Fully Electrical Tera-
hertz Waveguide Links,” IEEE Microwave Magazine, vol. 21, no. 1,
pp. 35–50, 2020.

[82] B. M. Beckmann and D. A. Wood, “TLC: Transmission Line Caches,”
in International Symposium on Microarchitecture (MICRO), 2003.

[83] J. L. Abellán, J. Fernández, and M. E. Acacio, “Efficient Hardware
Barrier Synchronization in Many-Core CMPs,” IEEE Transactions on
Parallel and Distributed Systems, vol. 23, no. 8, pp. 1453–1466, 2012.

[84] Y. Fu, T. M. Nguyen, and D. Wentzlaff, “Coherence Domain Restriction
on Large Scale Systems,” in International Symposium on Microarchi-
tecture (MICRO), 2015.


