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Abstract 
 

Biometric writer recognition is a very active field of research that has produced a considerable 

body of scientific work and papers over the last decades. Signature verification has been one 

of the most favoured approaches while others, such as text-dependent recognition, have 

attracted very little attention due to a perceived lack of practical applicability. This dissertation 

is circumscribed to the particular field of online text-dependent writer recognition, based on 

short sequences of text, a field where the number of relevant reference is really scarce. In this 

context, online means that not only the static images of the handwriting are available but also 

their dynamic dimension, that is, data is available as a function of time. What is more, thanks 

to modern acquisition devices, other time-dependent information is also available: the 

pressure exerted while writing, the angles of the writing device with respect to the horizontal 

plane and with respect to the vertical axis, and even the trajectories described while not 

exerting any pressure on the writing surface, when the hand moves in the air while 

transitioning from one stroke to the next (in-air trajectories made up of pen-up strokes).     

The main motivation of this dissertation is the exploration of the aforementioned field of 

online text-dependent writer recognition, in order to provide evidence of the usefulness of 

short sequences of text to perform identification and verification, which are the two tasks 

involved in recognition. From this motivation stem its main goals and contributions: an 

exploration performed from a practical perspective, thus requiring the development of a 

recognition system, and the gathering of evidence concerning the discriminative power of in-

air trajectories, i.e. their ability to discriminate among writers. 

In-air and on-surface trajectories have been analyzed from the perspective of information 

theory and the results yielded by this analysis show that, except for pressure, they contain 

virtually equal amounts of information and are notably non-redundant. This suggests that in-

air trajectories may have a considerable discriminative power and that they may help improve 

the overall recognition performance when combined with on-surface trajectories. 

An innovative writer recognition system that fulfils the abovementioned practical goal has 

been devised. It follows an allographic approach, that is, it does not take into account the 

global characteristics of the text but focuses on character and character-fragment shapes.  

Strokes are considered the structural units of handwriting and any piece of text is regarded as 

two separate sequences, one of pen-up and one of pen-down strokes. The system relies on a 

pair of catalogues of strokes, built in an unsupervised manner by means of self-organizing 

maps, which allow mapping sequences of strokes into sequences of integers. The latter 

sequences, much simpler than the original ones, can be effectively compared by means of 

dynamic time warping, which takes advantage of the neighbouring properties exhibited by 

self-organizing maps. Measures obtained from each sequence can be combined in a later step.  

The recognition system has been experimentally tested using 16 uppercase words from the 

BiosecurID database, which contains 4 executions of each word donated by 400 writers. The 

experimental results obtained clearly sustain the claim that online words have a notable 
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recognition potential and show the suitability of the allographic approach to perform writer 

recognition in the online text-dependent context. Regarding identification, the system 

compares positively to other word-based identification schemas. As for verification, the 

accuracy levels attained do not lie much below the accuracies reported for today’s state-of-

the-art signature verification methods. Furthermore, the results obtained from in-air 

trajectories have substantiated what the information analysis had already suggested: their 

considerable recognition power and their notable non-redundancy with respect to on-surface 

trajectories.  

Finally, a new method to generate synthetic samples of online words from real ones has been 

proposed. This method is based on the recognition system previously described, takes 

advantage of its main characteristics and can be seamlessly integrated into it. Synthetic 

samples are used to enlarge the enrolment sets, which has the effect of substantially 

improving the recognition accuracy of the system. 
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Resum 
 

El reconeixement biomètric de persones basat en l’escriptura (el reconeixement d’escriptors) 

és un camp de recerca molt actiu que ha generat, al llarg de les darreres dècades, un volum 

considerable de treballs i articles científics. La verificació de signatures ha estat la modalitat 

que ha atret més interès mentre que d’altres, com ara el reconeixement basat en el text, han 

rebut molta menys atenció perquè no se’n percebien les possibles aplicacions pràctiques.   

Aquesta tesi doctoral es circumscriu en el camp del reconeixement d’escriptors en la modalitat 

online, depenent del text (text-dependent) i basat en seqüències curtes, un camp en què el 

número de referències rellevants és veritablement escàs. En aquest context, online significa 

que, a més de disposar de les imatges estàtiques de l’escriptura, també es disposa de la seva 

dimensió dinàmica, això és, les dades són accessibles com a funció del temps. També, gràcies 

als dispositius d’adquisició moderns, altres informacions que depenen del temps són 

accessibles: la pressió que s’exerceix mentre s’escriu, els angles de l’instrument d’escriptura 

respecte del pla horitzontal i de l’eix vertical i, fins i tot, les trajectòries descrites quan no 

s’exerceix cap mena de pressió sobre la superfície d’escriptura, en els intervals en què la mà es 

desplaça d’un traç al següent (trajectòries en l’aire constituïdes per traços elevats).  

La principal motivació d’aquesta dissertació és la investigació  en el camp del reconeixement 

d’escriptors en la modalitat online depenent del text, amb intenció de proporcionar evidències 

que avalin la utilitat de les seqüències curtes per a la identificació i la verificació, que són les 

dues tasques compreses en el reconeixement. D’aquesta motivació se’n deriven els seus 

objectius més rellevants: una exploració feta des d’una perspectiva pràctica que requereix, 

doncs, el desenvolupament d’un sistema de reconeixement; i la recerca d’evidència 

relacionada amb la potència discriminant de les trajectòries en l’aire, això és, la seva capacitat 

per a reconèixer escriptors. 

Les trajectòries en l’aire i sobre la superfície han estat analitzades des de la perspectiva de la 

teoria de la informació. Els resultats obtinguts d’aquesta anàlisi mostren que, llevat de la 

pressió, ambdós tipus de trajectòries contenen quantitats d’informació pràcticament 

idèntiques, amb un nivell notable de no redundància. Això suggereix que les trajectòries en 

l’aire potser posseeixen una potència discriminant considerable i que la capacitat global de 

reconeixement pot millorar si es combinen amb les trajectòries sobre la superfície. 

S’ha desenvolupat un sistema de reconeixement innovador que representa l’assoliment de 

l’objectiu pràctic. Aquest sistema està basat en una aproximació al·logràfica, això és, no té en 

compte les característiques globals del text sinó que està focalitzat en les formes dels caràcters 

i dels seus fragments. Els traços són considerats la unitat estructural bàsica de l’escriptura i  

qualsevol fragment de text és entès com un parell de seqüències separades, una de traços en 

superfície i una de traços elevats. El sistema treballa en base a un parell de catàlegs de traços, 

construïts de manera no supervisada amb l’ajut de mapes autoorganitzats, que li permeten 

transformar les seqüències de traços en seqüències de números enters. Aquestes darreres 

seqüències, molt més simples que no pas les originals, poden ser comparades, de manera 

efectiva, mitjançant el dynamic time warping (alineament temporal dinàmic) el qual treu profit 
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de les propietats de veïnatge característiques dels mapes autoorganitzats. Les mesures que 

s’obtenen de cada seqüència poden ser combinades en un pas posterior. 

El sistema de reconeixement ha estat provat experimentalment fent ús de les 16 paraules en 

majúscules de la base de dades BiosecurID, la qual en conté 4 realitzacions de cadascuna 

donades per 400 persones. Els resultats experimentals que s’han obtingut recolzen clarament 

l’afirmació que les paraules online presenten una potència discriminant notable i avalen 

l’adequació de l’aproximació al·logràfica per a dur a terme reconeixement d’escriptors en el 

context online depenent del text. Quant a la identificació, el sistema es compara 

favorablement amb altres mètodes basats en paraules. I, pel que fa a la verificació, els nivells 

de precisió obtinguts no es troben gaire lluny dels nivells assolits pels mètodes de verificació 

de signatura representatius de l’estat de l’art actual.  És més, els resultats que s’obtenen de les 

trajectòries en l’aire han corroborat allò que havia estat suggerit per l’anàlisi de la informació: 

la seva considerable potència discriminant i la seva substancial manca de redundància respecte 

de les trajectòries sobre la superfície.   

Finalment, s’ha proposat un nou sistema de generació de mostres sintètiques de paraules 

online. Aquest mètode està basat en el sistema de reconeixement abans descrit, n’aprofita les 

característiques principals i s’hi pot integrar amb facilitat. Les mostres sintètiques s’utilitzen 

per engrandir els conjunts d’inscripció (enrolment sets), la qual cosa té com a efecte una 

millora substancial de la precisió del sistema. 
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 INTRODUCTION 

 

This chapter is the starting point of this doctoral dissertation. First of all, the main motivation 
that led to the research that will be expounded upon in the forthcoming chapters is stated. 
From this motivation originate the objectives of the thesis, which are formulated in the second 
section, together with the contributions brought by this dissertation. The third section is 
intended to explain the main approach that will be followed and the experimental context in 
which the reported research is set. The fourth section provides the bibliographic references of 
the papers produced during the research period culminating in this dissertation. Finally, the 
fifth and last section outlines the contents of this document.  

 

1.1 MOTIVATION 

In today’s society, with security being a matter of growing concern, biometrics has conquered 

an important role in applications where the identification of individuals is deemed as an issue 

of paramount importance.  

Biometrics is not a single field of research but a variety of not necessarily tightly coupled fields 

that share a similar goal (i.e. the accurate identification of individuals) and similar methods and 

techniques (e.g. pattern matching). Some physiological modalities, such as fingerprint, iris or 

face geometry, are currently being used in practical scenarios (e.g. airports), while behavioural 

modalities, such us handwriting, still lack the recognition provided by the deployment in real 

environments. Nevertheless, handwriting-based recognition is a very active field of research 

and the results reported in scientific literature are quite promising.  

Handwriting itself cannot be regarded as a monolithic field since at least two different focuses 

of attention can be considered: signature-based recognition and text-based recognition. 

Although both focuses share a common foundation, they may require different approaches. 

What is more, it is not even clear whether signature and text are the same or different 

biometric modalities, with some authors opting for the latter. Regardless of whether they are a 

single or two different modalities, signature has received much more attention than text. Does 

this mean that (handwriting of) text is not worth being explored as a biometric modality? The 

motivation of this dissertation is to give an answer to this question. To put it another way, this 

dissertation has as its main motivation to provide evidence that online text, actually short 

sequences of online text, has a recognition potential not far from that of signatures, and that 

it deserves to be considered on its own. 

 



 

 

2 OBJECTIVES AND CONTRIBUTIONS 

1.2 OBJECTIVES AND CONTRIBUTIONS 

The abovementioned motivation crystallises as the two main objectives of this dissertation: 

1. The first objective can be straightforwardly stated: to explore the issue of the 

recognition potential of short sequences of online text from a practical perspective. 

 

2. Since modern acquisition devices such as digitizing tablets and other pressure-sensitive 

devices (e.g. tablets) are becoming more popular and widely used, and since these 

online devices can not only gather invisible information (e.g. pressure and writing 

angles) but even gather it when the writer is not pressing the writing device against 

the writing surface, the following question arises: to what extent is this invisible 

information meaningful and useful for writer-recognition purposes? Thus, the second 

objective of this dissertation can be formulated as follows: to gather evidence of the 

recognition power (discriminative power) of the in-air trajectories performed when 

handwriting.  

During the research period leading to the main results reported in this dissertation, when it 

was already clear that the two main objectives would be fulfilled, a third objective sprang up:  

3. The accuracy of biometric recognition systems is highly dependent on the size of the 

set of samples used to model the users. A simple, although quite naïve, solution to this 

problem is just to get more samples from each user. In the context of the research that 

was being conducted, this solution was absolutely out of the question since it was 

virtually impossible to acquire any single extra sample. But, is it possible to 

synthetically enlarge a set of samples in a way that increases recognition accuracy? 

Thus, the third objective of this dissertation is to explore the possibility of 

synthetically enlarging the sets of samples, aiming at improving recognition 

performance.    

Each objective has led to one or more contributions: 

(a) In order to explore the recognition potential of short sequences of online text, a 

system to perform online text-based writer recognition has been proposed and 

experimentally evaluated. This system is based on an innovative idea: the combined 

use of Self-Organizing Maps and Dynamic Time Warping, and has achieved an accuracy 

level that exceeds the initial expectations. 

 

(b) The second objective has been fulfilled twofold: 

i. The information contained in the in-air trajectories of the handwriting has 

been analyzed from the perspective of the information theory. The results 

firmly suggest that in-air trajectories are rich in information (almost as rich as 

on-surface trajectories) and that this information is, to a considerable extent, 

non-redundant. 

ii. The proposed system is capable of effectively performing recognition using 

only in-air trajectories. The results not only corroborate their potential but 

also their non-redundant nature.     



 

 

3 
 

 INTRODUCTION 

 

(c) Regarding the third objective, a method to generate synthetic samples from real ones 

has been proposed. This method does not only take advantage of the characteristics 

of the writer recognition system that constitutes the first contribution, but can also be 

seamlessly integrated into it. The experimental evaluation of this method has yielded 

promising results. 

1.3 APPROACH AND EXPERIMENTAL CONTEXT 

Writer recognition can be considered from different perspectives: 

1. Regarding the information available, writer recognition can be performed online, when 

spatiotemporal (dynamic) data is available, or offline when only  static images are 

available 

 

2. As for the contents of the handwriting itself, it can be performed in a text-dependent 

way, when it is mandatory that the writer executes a predefined text, or it can be 

performed in a text-independent way, when it is not necessary to execute any 

predefined text. To some extent, signature-based recognition can be considered as a 

text-dependent approach. 

 

3. With respect to the qualities of the handwriting that are taken into account, it can 

follow a structural approach, when attention is focused on global characteristics of the 

text (e.g. curvature), or it can follow an allographic approach, when attention is 

focused on character shapes or on character-fragment shapes 

 

The work reported in this dissertation pertains to the online, text-dependent, allographic 

approach (see Fig. 1.1). To the best of the author’s knowledge, no relevant scientific 

references exist that report research in this specific area. Therefore, this dissertation explores 

a terra incognita area in the writer-recognition field.   

 



 

 

4 APPROACH AND EXPERIMENTAL CONTEXT 

 

Figure 1.1:  Approach of this dissertation and references to relevant works following other 
approaches. To the best of the author’s knowledge, the invisible octant (offline text-
dependent allographic approaches) contains no relevant references. 

To be fulfilled, the objectives of this dissertation require an experimental context where the 

devised system and the hypothesis postulated can be put to the test. Quite often, research in 

biometrics depends upon the existence of databases that contain samples from a large enough 

number of donors to experiment on. Regarding handwriting other than signature, very few 

publicly available databases exist that can straightforwardly be put to use in the specific field 

where the research reported in this dissertation takes place. Some handwriting databases do 

exist, mainly offline though, but they were collected to be used in the recognition of the 

handwriting, not of the writer that had produced it. Fortunately, a joint effort of several 

Spanish universities led to the acquisition of the BiosecurID database [1]. This multimodal 

database, which will be reviewed in a forthcoming chapter, is the true experimental context of 

this dissertation. All the experiments that will be reported upon have been conducted using 

data from the BiosecurID. 

Among others, the BiosecurID database contains 4 repetitions of 16 uppercase Spanish words 

(Fig. 1.2) donated by 400 writers.  
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Figure 1.2:  The 16 uppercase Spanish words in the BiosecurID database, written by one of 
the donors (see section 3.4.2 for further details). 

These 16 uppercase Spanish words will be the short sequences of online text referred to when 

stating the objectives of this dissertation.  

The fact that only uppercase words are considered in the experiments should not be regarded 

as a negative issue. Two executions of the same word by two different writers may be more 

similar in uppercase than in lowercase. Thus, contrary to some intuitions, uppercase-based 

writer recognition seems to pose a more challenging problem, since the less personal the style 

the more difficult to distinguish one writer from the rest because there are fewer differences 

among different writers. What is more, uppercase handwriting seems to be more resilient to 

changes due to aging and mental conditions. Also, uppercase is very often the preferred 

writing method in online-gathering capable devices such as tablets and PDAs.  



 

 

6 PUBLICATIONS 

1.4 PUBLICATIONS 

During the research period leading to this dissertation, several papers have been submitted to 
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publication. 

1.4.1 INDEXED JOURNALS 

 SESA-NOGUERAS, E. AND FAUNDEZ-ZANUY, M. 2012. Biometric recognition using online 
uppercase handwritten text. Pattern Recognition 45, 128-144. (Available online at: 
http://dx.doi.org/10.1016/j.patcog.2011.06.002) 

 

 SESA-NOGUERAS, E., FAUNDEZ-ZANUY, M. AND MEKYSKA, J. 2012. An Information Analysis 
of In-Air and On-Surface Trajectories in Online Handwriting. Cognitive Computation 4, 195-
205 (available online at http://dx.doi.org/10.1007/s12559-011-9119-y). Doi: 
10.1007/s12559-011-9119-y. 

 

 SESA-NOGUERAS, E. AND FAUNDEZ-ZANUY, M. Writer recognition enhancement by means 
of synthetically generated handwritten text. Engineering Applications of Artificial 
Intelligence  
(In press, available online at http://dx.doi.org/10.1016/j.engappai.2012.03.010). Doi: 

10.1016/j.engappai.2012.03.010 

 

1.4.2 CONFERENCES AND WORKSHOPS 

 SESA NOGUERAS, E. 2011. Discriminative power of online handwritten words for writer 
recognition. In Proceedings of the 2011 IEEE International Carnahan Conference on 
Security Technology (ICCST), OES Publications, Lexington, Ky. (Available online at: 
http://dx.doi.org/10.1109/CCST.2011.6095953) 

 

 SESA-NOGUERAS, E. AND FAUNDEZ-ZANUY, M. 2011 Writer recognition by means of stroke 
categorization based on self-organizing maps. In Proceedings of the 21th Italian Workshop 
on Neural Networks (WIRN 2011), IOS Press. 

1.5 THESIS OUTLINE 

From this chapter on, this dissertation has the following structure: 

 Chapter 2 is an introduction to biometrics. Its purpose is to provide the reader with a 

general overview of the topic, emphasizing aspects such as the existence of multiple 

modalities, the parameters usually considered to assess their suitability for 

identification purposes, the architecture of biometric recognition systems and the 

accuracy metrics that measure their performances.  

 

 Handwriting, a specific biometric modality, is the subject of chapter 3. First, the topic 

is briefly introduced from two complementary perspectives: regarding it as a process 

and as the result of that process, that is, a sequence of graphemes on a writing 

http://dx.doi.org/10.1016/j.patcog.2011.06.002
http://dx.doi.org/10.1007/s12559-011-9119-y
http://dx.doi.org/10.1016/j.engappai.2012.03.010
http://dx.doi.org/10.1109/CCST.2011.6095953
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surface. Then, two important issues are introduced: the discriminative power of short 

sequences of text and the comparison between text and signature. Online 

handwriting, that is, handwriting performed with capturing devices able to acquire the 

temporal dimension of the process, is also introduced in this chapter. Finally, a brief 

survey of handwriting databases is provided, paying special attention to the BiosecurID 

database, the database containing all the handwriting samples used in the 

experiments reported in this dissertation.  

 

 Chapter 4 is entirely devoted to the state of the art in writer recognition. Two main 

approaches are considered: text-based and signature-based writer recognition. 

Regarding the former, works addressing the issue of individuality are reviewed first, 

and, after that, relevant references pertaining to the online and offline fields are 

commented upon. The section dealing with text-based approaches is concluded with a 

comprehensive summary that includes most of the references discussed. As for 

signature-based methods, the most successful approaches are considered and special 

attention is paid to the results obtained in signature competitions since they are quite 

often considered the state-of-the-art results on which comparisons should be made. 

 

 In chapter 5, the contents of in-air and on-surface trajectories are compared and 

analysed from the perspective of information theory. First, for each type of trajectory 

and recorded feature, the amount of information (entropy) is computed. As the results 

strongly suggest that both types of trajectories contain equivalent amounts of 

information, the degree of redundancy is also analysed. Finally, the inter- and intra-

writer differences are also scrutinized. 

 

 The recognition system that materialises one of the main objectives of this 

dissertation is thoroughly presented in chapter 6. First section provides a general 

overview, emphasizing the stroke-based approach, the use of automatically generated 

catalogues of strokes and how Dynamic Time Warping is efficiently utilized to compare 

very short sequences of integers that represent executions of online words. The 

second section of this chapter provides a much more detailed view of the system, 

emphasizing relevant aspects such as the segmentation and pre-processing of the 

strokes, the automatic categorization of strokes by means of self-organizing maps, the 

encoding and subsequent comparison of words and the combination of dissimilarity 

measures to obtain word-level measures that encompass partial measures from in-air 

and on-surface trajectories. 

 

 Chapter 7 reports on all the experiments performed in order to assess the 

performance of the system presented in the previous chapter, along with the 

performances related to the in-air and on surface trajectories and their combinations. 

First, the reference experiment, the results of which will be considered as the baseline 

for comparisons, is presented. Later on, the following issues are closely scrutinized: the 

impact of the origin and the number of samples used for building the catalogues, the 

impact the size of the catalogues and the impact of the overall number of words 

considered.  



 

 

8 THESIS OUTLINE 

 

 Chapter 8 addresses the issue of the recognition enhancement achieved when the 

enrolment sets are enlarged with synthetically generated samples. Firstly, the topic is 

motivated, then related work is briefly reviewed, and next the proposed generation 

method is presented. The experimental results obtained are shown and discussed in 

the last sections of the chapter. 

 

 Chapter 9 concludes this dissertation. First, the motivation, the objectives and the 

main contributions are briefly reviewed so that they can be linked to main conclusions. 

Then, these main conclusions are explained in detail and some other conclusions are 

enumerated and commented upon. A glimpse to some research lines, steaming from 

the work just presented puts an end to the chapter and the dissertation. 
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 INTRODUCTION TO BIOMETRICS 

 

This chapter is intended as a brief and general overview of the field of biometrics, to which this 
dissertation is circumscribed. It is organized as follows: the first section provides a definition of 
the term biometrics, introduces its physiological and behavioural modalities and compares 
biometric and non-biometric authentication methods. Biometric recognition systems, for 
identification and verification, are introduced in the second section. In the third section the 
main biometric modalities are enumerated and concisely introduced. The fourth and last 
section presents the metrics more commonly used for measuring the accuracy of biometric 
systems. 

 

2.1 BIOMETRICS TODAY 

The online version of the Merriam-Webster dictionary [2] provides the following definition for 

the term biometrics: 

The measurement and analysis of unique physical or behavioural characteristics 

(as fingerprint or voice patterns) especially as a means of verifying personal 

identity 

From an etymological perspective, the noun biometrics originates from the Greek words βίος 

(bios, life) and μέτρον (metron, measure).  In its earlier usages (circa 1900) it meant 

application of mathematics to biology. The very closely related term biometry (coined circa 

1830) meant calculation of life expectancy [3]. Since its coinage, the term biometrics has 

acquired a verification of the identity of individuals flavour1. Indeed, biometrics has an 

increasing importance in the field of security applications. As this thesis is circumscribed to this 

particular field, this sense is going to be adopted. Nevertheless, it must be said that biometrics 

is starting to get relevance beyond the field of security applications (e.g. in health applications 

[4].) The term biometric (noun) is very often used with the following sense: Information about 

someone’s traits which can be used to prove their identity. In order to avoid confusions 

between biometrics and biometric, biometric modality will be used instead of the latter.  

                                                           
1
 In [170], it is defined as  

The science of establishing the identity of an individual based on the physical, chemical or behavioral 
attributes of the person [Sic].  

David Zhang, in [171], states that  
[…] we are usually concerned with technologies that analyze human characteristics for automatically 
recognizing or verifying identity […] [Sic]. 
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Depending on the traits under consideration, different biometric modalities exist. Typically, 

two categories are considered: physiological biometric modalities and behavioural biometric 

modalities. Physiological modalities are based on direct measurements of parts of the human 

body. Among them: face, iris, retina, hand-palm, hand-veins, wrist-veins and friction-ridges of 

the fingers. Behavioural modalities are based on measurements and data derived from actions 

performed by a person. Handwriting, typewriting (key stroking), speech, gait and gesture are 

biometric modalities belonging to this category. Notice that behavioural modalities depend on 

indirect measures of some characteristics of the human body, thus all behavioural modalities 

have a physiological component. 

It is the growing concern about security in today’s society what is giving biometrics its 

important role in personal identification. In the later years, the demand of strong 

authentication methods and technologies has notably increased. As biometrics is regarded as 

one such strong authentication technology [5], it has become an important and very active 

field of research.   

The identity of an individual can be defined as the information associated with that person in 

a given context, while an identifier is something that points to an individual (or to their 

identity). Identity authentication is the process of establishing an understood level of 

confidence that an identifier refers to a specific identity whereas individual authentication is 

the process of establishing an understood level of confidence that an identifier refers to a 

specific individual. In the biometrics literature, individual authentication of an identifier 

claimed by an individual is very often called verification [6]. Identifiers can be based on 

something material that a person possesses, on something that they know, on something that 

the person is or on something that the person can do. The two last types of identifiers belong 

to the category of biometric identifiers since physiological modalities involve something that a 

person is, while behavioural modalities involve something that a person can do. Table 2.1 

summarizes and compares biometric and non-biometric authentication methods.  
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METHODS BASED ON EXAMPLES 
GENERAL 

ADVANTAGES 
GENERAL  

DRAWBACKS 

Non 
biometric 

Something 
material 
possessed 
(token) 

Id-cards, 
passports, keys 

Quite standard.  
Well accepted. 
Can be (re)issued. 

Can be lost, stolen, faked, 
or shared.  
One individual, multiple 
identities 

Something 
known 

Passwords, pin-
numbers 

Simple and 
economical.  
Can be changed if 
compromised. 

Can be guessed and/or 
cracked. 
Can be forgotten.  
Can be shared.  
One individual multiple 
identities 

Biometric 

Something an 
individual is 

Physiological 
traits: fingerprint, 
iris structure 

Difficult or impossible  
to lose, steal, forget , 
share or fake 

Cannot be changed or 
replaced.  
May vary over time (e.g. 
aging) 

Something an 
individual can 
do 

Behavioural 
traits: 
handwriting, gait 

Difficult or impossible 
to lose, steal or share 

Can be faked. Difficult or 
impossible to change or 
replace.  
May vary over time (e.g. 
aging) 

Table 2.1: Comparison of biometric and non-biometric authentication methods. 

2.2 BIOMETRIC RECOGNITION SYSTEMS 

Biometric recognition systems can be regarded as pattern recognition systems that compare 

acquired biometric data with models (or templates) stored in a database. Depending on the 

biometric modality and on the design of the system itself, the comparison may be based on 

different features extracted from the data. Usually, biometric systems operate in two phases: 

the enrolment phase, the first one, and the testing phase, the second. During the enrolment 

phase the user provides one or more samples of their biometric trait. These samples are pre-

processed and the required features are extracted from the resulting data. With this 

information a model of the user is built and stored within the system. During the testing phase, 

the user provides a sample that undergoes a similar pre-processing, feature extraction and 

model computation procedure. A matching engine then compares the newly obtained model 

with one or all of the previously stored models. The context of application determines whether 

the system performs identification (Fig. 2.1) or verification (Fig. 2.2). Identification involves a 

one-to-many search where, given a sample of unknown origin, the goal is to determine whose 

sample it is. Identification can be used for negative recognition purposes [7] when it is 

necessary to establish whether a person is who he/she denies to be. Identification can also be 

used for positive recognition when, for convenience, the user is not required to claim an 

identity [8]. It is worth noticing that negative recognition can only be performed through 

biometric methods. Verification is a one-to-one comparison where, given two samples, the 

objective is to determine whether they originated from the same individual or not.  

Verification is usually performed for positive recognition purposes, aiming at preventing 

multiple people from using the same identity [7] [8]. 
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Figure 2.1: Graphical depiction of biometric system to perform identification. 
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Figure 2.2: Graphical depiction of biometric system to perform verification. 

2.3 BIOMETRIC MODALITIES 

2.3.1 MAIN BIOMETRIC MODALITIES 

FACE.  Face recognition is a task that humans perform routinely and almost effortlessly. The 

increased availability of computing power has put face recognition in the arenas of security 

systems, human-computer interaction and others [9]. The distinctive features of the human 

face (eyes, mouth nose, eyebrows ...) extracted from still or moving images are used to 

recognize individuals. Face-recognition systems can be based and integrated with existing 

surveillance systems (e.g. CCTV systems). Usually, user cooperation is required during the 

enrolment stage but not necessarily afterwards, during the testing stage, when most systems 

can operate without user involvement.  These systems arise some concerns due to privacy 

considerations and their acceptance is not always high. Facial recognition technologies have 
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some notable weaknesses regarding acquisition conditions, especially lighting and angle. In 

poor conditions, accuracy can diminish drastically. 

VOICE. Speaker recognition systems (or voice-scan systems) aim at extracting, characterizing 

and recognizing the information in the speech signal conveying speaker identity [10]. Thus, 

they recognize the individual who is speaking based on their vocal characteristics. They should 

not be confused with speech recognition systems, the main goal of which is to translate what a 

person is saying. Speech recognition may be used for purposes other than the authentication 

of the speaker or in conjunction with speaker recognition. This modality has some important 

drawbacks: Illness (cold, flu, aphonia) and the emotional state can drastically change a 

person’s voice. Voice also changes with aging. Finally, some acquisition conditions, especially 

ambient noise, can lead to poor performances. 

FINGERPRINT.  Finger-scan systems are the most commonly deployed biometric systems. They 

are based on the comparison of the patterns of ridges and valleys (known as minutiae) found 

in the tips of the human fingers [11].  Fingerprints have a long tradition in forensic applications 

and have been successfully used for decades, possessing some advantages over other 

biometric modalities: they are quite stable, highly discriminative (even monozygotic –identical- 

twins do not share their fingerprints) and easily acquired. They have some drawbacks too: 

some (very rare) medical conditions involve the absence of fingerprints, and manual workers 

manipulating certain substances (acid, cement) may have they fingerprints altered or erased. 

Due to the extended use of fingerprints in forensics and their linking to law enforcement 

agencies and crime scene investigations (popularized by some TV series), finger-scan systems 

may arise some concerns regarding privacy and misuse. 

 

Figure 2.3:  Detail of the structure of ridges and valleys in a fingertip. 

HAND-GEOMETRY. The distinctive aspects of the geometry of the hand, which include the 

height and width of the back, the height and width of the fingers, the area and the perimeter, 

have proven to be useful to perform recognition [12]. Hand-scan systems based on hand-

geometry are generally used for verification purposes only, since they lack the accuracy 

required for identification. Hand-geometry is affected by development, aging, and some 

medical conditions (e.g. arthritis). As an advantage, it is not affected by environmental factors 

that may have an effect on other biometric modalities. It is generally perceived as non-

intrusive. 
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Figure 2.4: Typical hand geometry measurements (taken from [12]). 

The geometry of the hand is not the only hand-related biometric modality. The patterns of the 

ridges and valleys found in the handprints (similar to those in the fingerprints) and the 

patterns of the veins in the back of the hand have also been considered as biometric 

modalities [13] . 

 

Figure 2.5: An infrared (IR) image of the vein patterns in the back of a hand (taken from 
[13]). 

IRIS. individuals can be recognized based on the pattern of the iris, the elastic, pigmented, 

connective tissue responsible for controlling the diameter and size of the pupil. Iris-scan 

systems can achieve high levels of accuracy because the complex textures in this tissue are 

highly distinctive [14]. Iris patterns are very stable since they do not change over a lifetime. 

Despite its accuracy and stability, this biometric modality presents some important 

weaknesses: iris-based systems are difficult to use, tend to yield high rates of false negatives 

and a considerable number of users find them intimidating, even arising visceral reactions. 

RETINA. Iris is not the only eye-based modality. Retina is also a biometric modality [5] . The 

retina is the light-sensitive tissue found on the surface of the back of the eye, whose blood 
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vessels form a unique and highly discriminative pattern. Like iris-based systems, retina-based 

systems are difficult to use and many users find them quite intimidating.  

 
 

 

Figure 2.6: An image of the iris (left) and of the retina (right) (taken from [16] and [17] 
respectively). 

SIGNATURE. Signature-based systems analyze the way a user signs their name, considering 

features such as the shape, the speed and the pressure exerted on the writing surface [5].  A 

set of signatures provided during the enrolment phase are compared against a newly executed 

one. The new signature is deemed authentic or not depending on the degree of similitude 

found. As people are quite used to signature as a way to prove one’s identity, this biometric 

modality is generally well accepted and regarded as non-intrusive. Some drawbacks exist: the 

fact that people may not always sign in a consistent manner and the relative easiness to 

produce good fakes are among the most important. Signature is not the only biometric 

modality that relies on handwriting. Handwritten text is also a biometric modality, leading to 

the field of writer recognition. Although most authors use the term handwriting to refer to 

both text and signature, there is some evidence suggesting they may be different biometric 

modalities [18]. The state of the art on text-based recognition and on signature verification is 

reviewed in chapter 4. 

2.3.2 OTHER BIOMETRIC MODALITIES AND MULTIBIOMETRICS 

Other biometric modalities exist. Among them are key-stroking dynamics, where an individual 

is recognized by means of statistical information related to the manner and rhythm they type 

characters on a keyboard or keypad [19]; gait, where spatial-temporal and kinematic 

parameters related to locomotion can be used to recognize individuals [20][21] and ear, where 

the shape of the outer part of this organ provides discriminative information [22]. Also DNA 

can be considered a biometric modality although as of this writing it is almost exclusively used 

in the context of forensic applications [23].  

Some of the limitations found in systems based on a single biometric modality can be 

overcome by the combination of two or more traits or by the combination of different features 

extracted from a single trait. Systems that rely on such combinations are known as 

multibiometric systems [24]. Multibiometrics relies on fusing information from various 

sources, with Biometric information fusion [25] being an active field of research. 
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2.3.3 COMPARISON OF BIOMETRIC MODALITIES 

The variety and diversity of biometric modalities makes it difficult to compare them. In fact, no 

modality can be claimed to be the best to perform recognition since all have advantages and 

drawbacks. In order to assess the suitability of a biometric modality for security purposes, 

several parameters are usually considered [23].  

 Universality: the trait on which the biometric modality is based should be possessed by 

every person. 

 Uniqueness (or distinctiveness): given any two persons, the trait should be sufficiently 

different in terms of the features under consideration. Uniqueness is a parameter directly 

related to the discriminative power of the features extracted for any particular biometric 

modality. 

 Performance: which refers to the recognition accuracy a particular modality may yield and 

also to the resources (time, memory, storage...) required to attain that accuracy, and all 

the factors that may have an impact on accuracy and speed. When it comes to recognition 

accuracy, several measures are considered: rate of false rejections, rate of false 

acceptances, rate of failures to enrol, rate of failures to acquire, etc. These will be 

considered in more detail in a further section.   

 Permanence (or stability): referred to the degree of invariance over time of the trait 

considered, with respect to the comparison criterion used to decide whether two samples 

belong to the same individual or not. The notion of permanence can be extended to 

invariance with respect to other factors that may have a significant impact on the traits, 

such as health or weather conditions.   

 Non-circumventability: which refers to the resistance to fraudulent usages, such as forging 

or supplantation (spoofing). 

 Collectability: the degree of acquisition simplicity.  

 Acceptability: which indicates the extent to which the target population is willing to accept 

the use of a particular biometric modality in their daily life. Acceptability depends on many 

different issues such as privacy concerns, intrusiveness, tradition or ease of use and also 

on collectability. 

 

Although some of the aforementioned parameters related to biometric modalities mainly 

apply to the traits themselves (e.g. universality) others also apply and are strongly dependent 

on the system which uses them (e.g. performance.) Table 2.2 compares the biometric 

modalities previously discussed according to the seven aforementioned parameters.   
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Face High Low Medium High Low High Low 

Voice Medium Low Low Medium Low High Low 

Fingerprint Medium High High Medium High Medium Medium 

Hand-geometry Medium Medium Medium High Medium Medium Medium 

Iris High High High Medium High Low High 

Retina High High Medium Low High Low High 

Signature Low Low Low High Low High Low 

Key-stroking Low Low Low Medium Low Medium Medium 

Gait Medium Low Low High Low High Medium 

DNA High High High Low High Low High 

Table 2.2:  Comparison of biometric modalities (adapted from [8]). 

2.4 PERFORMANCE OF BIOMETRIC SYSTEMS: ACCURACY METRICS 

Given two models, the matching engine of a biometric system yields a matching score, a 

measure that quantifies the degree of similarity between them. The higher the score the more 

certain the system is that both models have been produced by the same individual.  In 

verification, the decision whether the two models will be deemed from the same individual or 

not depends on a threshold t: models scoring over t will be considered from the same 

individual, while they will be considered from different individuals if their score is below t.  

Due to a number of factors, two biometric samples from the same individual, even if acquired 

with a very short time difference between them, may not be identical. Thus, in biometric 

systems, perfect matches, that is, two models achieving the highest theoretical score, are 

unlikely to occur2.  The variability between samples from the same individual is termed intra-

user (or intra-class) variability, while the variability occurring between samples of different 

users is termed inter-user (or inter-class) variability. To be useful, a biometric modality should 

allow extracting features exhibiting small intra-user and large inter-user variabilities. Intra-user 

variability is responsible for false non-matches, a situation arising when individuals are not 

correctly identified as who they are. Inter-user variability leads to false matches, where an 

individual is successfully verified as someone else.  

False non-matches, also known as false mismatches or false rejections, are type-I errors while 

false matches, also known as false acceptances, are type-II errors. All biometric systems are 

prone to these two types of errors. Type-I errors are measured by means of the false rejection 

rate (FRR) while type-II errors are measured by means of the false acceptance rate (FAR). The 

                                                           
2
 In fact, a perfect match between two models might indicate that a reply attack has taken place [170]. 
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values of FAR and FRR can be changed by regulating the value of the threshold t. Nevertheless, 

it is not possible to decrease both error rates simultaneously: with a low value of t, the system 

is more tolerant to individual variations, meaning that FRR decrease but FAR increases. Higher 

values of t make the system more secure, that is, less tolerant to false acceptances, decreasing 

the value of FAR but increasing that of FRR (see Fig. 2.7). 

 

Figure 2.7: The two types of score variability. The point where the threshold is located 
determines the behaviour of the system with respect to false non-matches and false 
acceptances. 

Systems with a low FAR can be considered secure and thus suitable to be deployed in 

environments where security is the main concern. When the value of the FAR is low, very few 

unauthorized individuals are incorrectly given access. Systems exhibiting a low FRR are 

considered comfortable for the (righteous) user since very rarely an authorized user is 

rejected. As FAR and FRR are interdependent, so are security and comfort. 

The receiver operating characteristic (ROC) curve is a plot of the false acceptance rate (FAR) 

against the true acceptance rate (1-FRR) for all the operating points (values of the threshold t) 

[26]. It is a very usual way to depict the performance of biometric systems. In some case, 

values of FAR are plotted against those of FRR. Fig. 2.8 shows both types of ROC curves. 
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Figure 2.8:  A ROC curve plotting true acceptance vs. false acceptance rates (left). An 
equivalent ROC curve plotting false rejection vs. false acceptance rates (right). 

Detection Error Tradeoff (DET) curves are another usual way to depict the performance of 

biometric systems [27]. In DET-curves the values of FAR are plotted against the values of FRR in 

a normal deviate scale (Fig. 2.9).   

 

Figure 2.9: A DET-curve plotting false rejection vs. false acceptance rates. 

Several measures have been proposed to summarize in a single value the performance of a 

biometric system. These measures allow, to a certain extent, the comparison of different 

biometric systems. When it comes to verification, the most commonly used are the equal error 

rate (EER) and the minimum of the detection cost function (min of DCF). 

 The equal error rate (EER), also known as crossover error rate is the value that satisfies 

FAR = FRR. The lowest this value, the better the performance (overall accuracy) of the 
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system. In ROC curves plotting FAR against FRR and in DET curves, the value of the EER is 

on the point where the curve cuts the diagonal. 

 The detection cost function (DCF) is the tradeoff between false acceptances and false 

rejections when this two types of errors do not have the same importance. It is defined as  

)1·(··· tfrfrtfafa PPCPPCDCF   (2.1) 

where Cfa and Cfr are the costs of a false acceptance and a false rejection respectively, Pfa 

and Pfr the probabilities of a false acceptance and a false rejection and Pt the a-priori 

probability that the user presented to the system is the one who claims to be (not an 

impostor).  The values of Pfa and Pfr vary as a function of the rejection/acceptance 

threshold t. The minimum of DCF is the best possible tradeoff. When Cfa and Cfr are set to 

1 and Pt is set to 0.5 then minimum of DCF is also known as the half total error rate 

(HTER) or simply the verification error rate (VE). 

)(
2

1
frfa PPVEHTER   (2.2) 

Usually, the verification error rate is higher than the EER. Often, when a positive view is 

preferred, verification accuracy (VA) is used: 

  VEPPVA frfa  1)(
2

11  (2.3) 

Quite often, VE and VA are expressed as percentages.  

For identification, the ratio between the number of well-identified users and the number of 

enrolled users, the identification ratio (IDR), expressed as a percentage, is commonly used. It 

should be noticed that while FAR and FRR may be considered independent of the number of 

enrolled users, IDR is not independent of this number since IDR tends to decrease as the 

number of enrolled users increases.  

As biometric systems are mainly intended to be used in security-related scenarios, FAR, FRR 

and values derived from these two are the measures commonly used to assess their 

performance. In forensic scenarios, IDR is also considered. Nevertheless, other accuracy 

metrics may be taken into account: the failure to enrol rate (FTE), which measures the 

proportion of potential users for whom it is not possible to build a model, and the failure to 

acquire rate (FTA), that measures the proportion of users for who it is not possible to extract 

the required features. The reasons for FTE and FTA mainly depend on the biometric modality 

under consideration. For instance, in a fingerprint-based system they may be caused by 

scarred fingers or difficulties in the placement of the fingers, in face-based systems they may 

be caused by objects worn by the subjects (glasses, hats, scarves, etc.) or by the lighting 

conditions, while in handwriting-based systems they may be due to inconsistent handwriting, 

often caused by poor training in the usage of the writing device [5].   
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The main purpose of this chapter is to introduce the topic of handwriting, not from a general 

perspective but emphasizing those aspects that are more relevant in the context of this 

dissertation. It is organized as follows: the first section gives a general idea about the 

complexity of the process involved in handwriting, briefly reviewing some popular models. The 

second section considers the outcome of the handwriting process, the handwriting itself, 

pointing out the differences and similitudes between text and signature. The third section is 

devoted to online handwriting, the modality on which the recognition method presented in 

this dissertation is based, underlining the distinction between on-surface and in-air 

trajectories. Finally, the fourth section describes some relevant databases containing 

handwriting samples, most of them cited in the chapter on the state of the art, and the 

BiosecurID database, the database that has been used in all the experiments reported in this 

dissertation. 

 

3.1 HANDWRITING AS A PROCESS 

The term handwriting may refer to the complex movements performed by the hand while 

writing a text or to the results of this process, that is, a piece of text written by hand. As a 

process, handwriting is a complex perceptual-motor task, a skill usually learnt at school.  The 

hand is a very complex structure that contains 27 bones (including the wrist), more than 40 

different muscles and that is innervated by 3 nerves each of which performs sensory and 

motor functions [28]. Different types of factors exert influence on the production of 

handwriting: the muscular movements involved in the process are controlled by the central 

nervous system and are partly outside the conscious control of the writer. Thus, the long and 

short term conditions within the central nervous system have an effect on the handwriting. 

Biomechanical factors such as the structure and size of the hand, the arm and the shoulder or 

the state of the muscles (stiffness, elasticity) also influence the produced handwriting. The 

cultural background not only determines the kind of characters written (Asian, Western, Arabic 

...) but also influences directional preferences (are strokes mainly performed left-to-right or 

right-to-left? From top to down or bottom up?) and other factors, such as slant, that affect the 

shape of the produced graphemes. 

3.1.1 MODELS OF HANDWRITING 

Several theoretical models of handwriting generation have been postulated, seeking 

applicability in different, although related, fields: the automated generation of (realistic) 

cursive handwriting, the automated recognition of the handwriting and, to a lesser extent, the 
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automated recognition of the writer. Although it is out of the scope of this dissertation to fully 

review the different models that have been proposed, the forthcoming paragraphs will provide 

some general insights on this matter. The interested reader can find comprehensive overviews 

elsewhere (e.g. [29], [30]) . 

Cybernetics [31] contributed a system model based on a first-order feedback system (Fig. 3.1). 

These systems consist of three components (a comparator, an effector and a sensor) and a 

feedback loop.  By means of a first-order feedback system, the handwriting process can be 

described as follows [32]:  a target letter shape enters the system at a comparator, a 

subsystem that continuously produces a signal based on the difference between the target 

shape and the obtained (written) shape. The signal produced by the comparator activates the 

effector, the subsystem that generates the output. The sensor subsystem gathers information 

about the state of the effector (e.g. velocity), and the already produced shape (visual 

perception) and these data are fed to the comparator through the feedback-loop.  

 

Figure 3.1: Graphical depiction of the first-order feedback system model for handwriting 

This initial model, which provided a first systematic explanation of the handwriting process, 

presents some limitations. Because of timing constraints, it does not seem correct to assume 

that a continuous feedback signal can really exist in the nervous central system. In order to 

overcome this limitation the cognitive motor theory has been introduced. This newer 

approach is based on an open-loop. Only short sequences of simple movements, aimed at 

producing a limited number of shapes (strokes) are determined in advance. The feedback 

information does not affect the stroke under production but the production of future strokes, 

with learning allowing the adjustment of the process [33].  

In 1981, Hollerbach proposed a model based on the assumption that handwriting is produced 

by two oscillatory processes which generate horizontal and vertical signals respectively [34]. 

These signals are combined and superimposed to a constant-velocity left-to-right movement of 

the hand over the writing surface. From a mechanical point of view, such signals can be 

produced by a mass-spring system consisting of a mass (the pen) attached to orthogonal 

antagonistic spring pairs (Fig. 3.2). The human motor system would be responsible for 

controlling the whole system, providing the required stimuli.  
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Figure 3.2:  Graphical depiction of the model for handwriting generation proposed in [34]. 

In [35] Schomaker, Thomassen and Teulings propose a multi-level model in which the 

generation of strokes (in the lowest level of the model) is performed following Hollerbach’s 

model.   

At the stroke-level, the kinematic theory of rapid human movements [36,37] has produced the 

sigma-lognormal model. According to this theory, a stroke is the result of a synergy involving 

agonist and antagonist neuromuscular systems and can be characterized by a lognormal 

velocity profile (Fig. 3.3). 

 

Figure 3.3: Two strokes (up) and their velocity profiles (down). Image taken from [38]. 
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Each stroke is described by its velocity module 
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Where D is the amplitude of the impulse, t0 is the time occurrence of the input command 

initiating the stroke,  is the delay of the neuromuscular response expressed in a logarithmic 

time scale,  is the response time of the neuromuscular system also expressed in a logarithmic 

time scale, s and e are the starting and ending directions of the stroke, respectively and erf is 

the error function. The set of parameters {D, t0, , , s, e} fully describes a single stroke.  

Any handwriting involving a number of strokes could be described by the vectorial summation 

of the delayed sequence of the individual strokes. 
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Where )(tvi


 is the velocity profile of the i-th stroke in the sequence and N is the length of the 

sequence. 

3.2 HANDWRITING AS GRAPHEMES ON A WRITING SURFACE 

The outcome of the handwriting process, the resulting graphemes on a writing surface, can be 

measured and analyzed. This analysis has proven useful in different areas. In the forensic field, 

questioned document examination (QDE) aims at answering questions about documents in 

dispute in a court of law [39]. These questions are mainly related to authorship. In the medical 

field, the study of handwriting has proven to be an aid to diagnose and track some diseases of 

the nervous system. For instance, handwriting skill degradation and Alzheimer’s disease 

appear to be significantly correlated [40] and some handwriting aspects can be good indicators 

for its diagnosis [41] or help differentiate between mild Alzheimer’s disease and mild cognitive 

impairment [42]. Also, the analysis of handwriting has proven useful to assess the effects of 

substances such alcohol [43] [44], marijuana [45] or caffeine [46]. Aided by modern acquisition 

devices, the field of psychology has also benefitted from the analysis of handwriting. For 

instance, in [47], Rosenblum et al. link the proficiency of the writers to the length of the in-air 

trajectories of their handwritings. In a more controversial field, graphology aims at drawing 

conclusions about different psychological traits of the writer based on traits of their 

handwriting [48]  [49]. 

In the field of security-related biometrics, the term handwriting is very often used to designate 

the production of signatures, not to designate the production of text. As signature has been 
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used for centuries as an authentication method, practical approaches have favoured signature 

over any other type of handwriting.  

3.2.1 DISCRIMINATIVE POWER OF (SHORT SEQUENCES OF) ONLINE TEXT 

One of the goals of this dissertation is to explore the extent to which handwriting other than 

signature, and more precisely words or short sequences of text, can be used to recognize 

(identify and verify) writers. Do words and short sequences have enough discriminative power? 

In the context of this dissertation, discriminative power refers to the ability to distinguish, in a 

set of writers, a particular writer from the rest, given a sample of their handwriting. Thus 

defined, discriminative power arises from writer individuality. Writer individuality refers to the 

hypothesis that each individual has consistent handwriting which is distinct from the 

handwriting of other individuals. In the past, several authors have scrutinized this hypothesis 

in the particular case of short sequences of text (isolated characters, isolated words and 

sentences comprising a small number of words) and reached the conclusion that handwriting 

is an individual trait, both in the offline case  (e.g. [50]) and in the online one (e.g.[51]). 

In the forthcoming chapters, it will be shown that isolated handwritten words can indeed be 

used to recognize writers. It will be shown that a single isolated word exhibits a remarkable 

discriminative power, probably not far from that of signatures. The fact that a single word can 

effectively be used to discriminate between writers may lead to a somehow deeper question: 

signature and handwritten text other than signature are one or two different biometric 

modalities? Although it is not the purpose of this dissertation to give an answer to this issue, it 

is worth noting that there seems to be evidence pointing towards the second answer: they 

may well be regarded as different biometric modalities. In [18] Boulétreau, Vincent, Sabourin 

and Emptoz concluded that signature and text handwriting may be not one but two personality 

identifiers. In that paper, they claim that the signing and handwriting behaviours of a writer 

are independent. Therefore, signature and handwriting can be sources of complementary 

information. Boulétreau et al. reached this conclusion after having compared 20 signatures 

and 20 samples of text donated by 48 writers. This comparison showed that the intra-class 

(within-writer) and the inter-class (between-writer) variances for the signature and the 

handwriting were substantially different. Also, they found that the linear correlations between 

the values of the features measured for the signature and for the handwriting were quite low 

(r<0.35). Nevertheless, it must be said that whether this results can be generalized to different 

sets of features or not is an issue not contemplated in the paper.  

3.2.2 TEXT VS. SIGNATURE 

Even if sequences of text and signatures were different biometric modalities, would there be 

any advantage in using the former instead of the latter? The answer to this question is positive 

since sequences of text exhibit some remarkable properties that signatures lack: 

 A compromised word, like a compromised password, can be easily changed. When a 

signature is compromised, it is quite unrealistic to think that it can be easily and 

consistently changed. 

 Some signatures are too short or too simple to be considered appropriate for security 

purposes. Sequences of text, on the other hand, can be made shorter or longer 
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depending on the intended accuracy. Our experiments show that the accuracy 

attained when combining two words is greater than their individual accuracies. 

When these two properties are taken into account, recognition based on sequences of text 

somehow resembles speech-based recognition: text-length and text-contents can be easily 

changed.  

Although signature is a biometric modality quite well accepted, especially for its non-

intrusiveness, it still arises some concerns regarding privacy and the possibility of being stolen 

[52]. As a biometric identifier, words will probably arise fewer concerns. Thus, in some 

environments its acceptability could be greater than that of signatures. Nevertheless, it is not 

in the scope of this dissertation to provide scientific proof of this intuition.  

There is another difference between sequences of text and signature that is worth being 

mentioned: the degree of accepted inter-writer variability. While the inter-writer variability of 

text is heavily constrained by legibility, signature puts no constraints to dissimilarities among 

signers. Although by definition a signature is a written name3 (hence a piece of text), some 

signatures are so stylized and embellished that they cannot be effectively read. A considerable 

percentage of signatures are closer to a drawing than to a text and signatures of different 

signers tend to be quite different from each other. On the other hand, different writers’ 

executions of the same word tend to be much more similar (Fig. 3.4). They have to be similar 

since otherwise they would not be considered the same word. Hence, user verification based 

on text could be combined with text recognition, while this combination, merging a biometric 

schema with a traditional password-like approach, does not seem plausible in the case of 

signature-based verification. Again, text-based recognition is closer to speech-based 

recognition than to signature-based recognition. 

 

Figure 3.4: Signature and word INFATIGABLE by two different writers. Notice that 
dissimilarity between signatures is much higher than between words.  

                                                           
3
 Signature: your name written by yourself, always in the same way, usually to show that something has 

been written or agreed by you. Definition taken from [172]. 
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3.3 ONLINE HANDWRITING 

Traditionally, the analysis of handwriting has been divided into two categories, depending on 

the available information. When only the writing itself (strokes on a paper) is available then 

the analysis is said to be performed in an offline manner. In this category, a great deal of the 

temporal dimension of handwriting is lost (e.g. in what order have the strokes been 

produced?). When spatiotemporal information is available and taken into account, its analysis 

is referred as online. Typical modern digitizing devices, such as the one seen in Fig. 3.5, can 

gather the x-y coordinates that describe the movement of the writing device as it changes its 

position. Furthermore, they can gather other time-dependent data, mainly the pressure 

exerted by the writing device on the writing surface and also two writing angles: azimuth, the 

angle of the pen in the horizontal plane, and altitude, the angle of the pen with respect to the 

vertical axis (Figs. 3.6 and 3.7). 

 
Figure 3.5:  A modern digitizing tablet and pen by WACOM (image from [53]). 
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Figure 3.6:  Azimuth and altitude angles of the writing device with respect to the plane of 
the writing surface. 
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Figure 3.7:  A sample of handwriting and five time-dependent signals recorded by the 
digitizing tablet (from top to bottom: the sample, X-coordinate, Y-coordinate, pressure, 
azimuth and altitude). 

A very interesting aspect of the modern online analysis of handwriting is that it can take into 

account information gathered when the writing device is not exerting pressure on the writing 

surface. Thus, the movements performed by the hand while writing a text can be split into two 

classes: on surface-trajectories, the visible part of the writing; and in-air trajectories, the 
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invisible part. In chapter 5, both types of trajectories will be analyzed, and in chapter 6 a 

recognition schema that gives in-air and on-surface trajectories the same importance is 

presented. 

3.4 HANDWRITING DATABASES  

Databases that provide samples of handwriting from a number of different writers are of 

paramount importance for the research community. These databases provide the necessary 

data to train and test new methods and algorithms and to perform benchmarks of the 

proposed solutions. Standard databases allow that different research teams share a common 

ground, making their measures if not fully comparable at least more comparable than they 

would be without such a common ground. The possibility to compare results is indispensable 

to measure the progress in any scientific field. Some publicly available databases exist that 

contain samples that can be used in the field of text-based writer recognition.   

The first part of the rest of this section will provide a very brief description of some databases 

that are relevant in the field of writer recognition, in both the offline and the online approach. 

We have chosen to comment mainly on the databases containing western script that are 

mentioned in the chapter on the state of the art. The reader may notice that several of these 

databases were not initially intended to be used in writer recognition research but in 

handwriting recognition, although they have later on been successfully applied to writer 

recognition.  

 The last part of this section is entirely devoted to the BiosecurID database since all our 

experiments are based on data contained in it. 

3.4.1 RELEVANT DATABASES 

IAM.  This offline database was first described in 1999 [54] and its contents have grown since 

then. A much more detailed description was published in 2002 [55].  In its newest version (the 

IAM Handwriting Database 3.0 [56] ) it contains 13353 labelled lines of handwritten text 

extracted from 1539 scanned pages produced by 657 writers. It also contains 5685 labelled 

sentences and 115320 isolated and labelled words.  The original purpose of the database was 

to be used in handwriting recognition, actually to train and test word recognizers, but it has 

also been extensively used to perform writer recognition experiments. 

 

CEDAR letter dataset. This is a huge offline database containing 4701 documents produced by 

1567 writers selected to be representative of the US population [50]. Each writer was asked to 

copy the CEDAR4 letter three times. This letter is a document containing 156 words, from a 

lexicon of 124, which includes all characters (letters and numerals). The document was 

carefully designed so that it contained each letter of the alphabet in uppercase at the initial 

position of a word and in lowercase in the initial, middle and terminal positions of a word (see 

Fig. 3.8). Each document was digitized using a desktop scanner and images of paragraphs, lines 

                                                           
4
 Center of Excellence for Document analysis and Recognition (CEDAR) at the University of Buffalo (state 

of New York, USA).   
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and isolated words (Cohen and referred) were manually extracted from each document. The 

eight characters of the word referred were also segmented. 

 

Figure 3.8:  The CEDAR letter (Manuscript is by Enric Sesa). 

FIREMAKER. This offline database [57] contains images of handwriting donated by 250 Dutch 

subjects, mostly students. Each donor was requested to write 4 different A4 pages. On page 1 

they were asked to copy a given text, on page 2 they had to write, in their own words, the 

description of a given cartoon. On pages 3 and 4, the subjects were asked to write uppercase 

forged-style samples. The sheets were scanned and no further segmentation was applied.  

 

UNIPEN.   This online database is the result of the collaborative effort of several research 

institutes and industrial firms that generated the UNIPEN standard and database [58][59]. 

Since 1999, the International UNIPEN Foundation (iUF) hosts the data. Only a portion of the 

database is publicly available: the Train-R01/V07 distribution. The whole database contains, 

among others, thousands of isolated digits, isolated lower and uppercase letters, lower and 

uppercase words, and fragments of texts comprising two or more words. 

 

RIMES. This is another offline database that contains 12723 pages of fully labelled text [60] 

[61] This huge amount of text was produced by 1300 writers who were asked to write 5 

different letters each (in French). From these pages, 100.000 isolated characters, 250.000 

isolated words and 6500 blocks of words were obtained.  
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PSI. This is a non-publicly available database collected at the Laboratoire PSI (University of 

Rouen, France) [62].  It is built out of handwritten letters (in French) donated by 88 writers. 

Each writer was asked to choose from two different letters containing 107 and 98 words 

respectively.  

 

IRONOFF. The IRONOFF (IRESTE ON OFF) is a public dual (both online and offline) handwriting 

database, collected at the École Polytechnique de l’Université de Nantes (France), formerly 

known as IRESTE [63]  [64]. For the same writing it gives access to the digital image (offline) 

and to the pen trajectories (online). Its original purpose was handwriting recognition. Its 

contents include 4086 isolated digits, 10685 isolated lower case letters, 10679 isolated upper 

case letters and 31346 isolated words (28657 French, 2689 English) from a 197 word lexicon. 

All the aforementioned databases contain western script. Other databases exist that contain 

non-western script (e.g. the MADCAT offline database [65] contains Arabic script, the HCL2000 

offline database [66] contains Chinese script, the PE92 offline database [67] contains Korean 

scripts and the ISI [68] offline database contains three different Indian scripts). 

3.4.2 THE BiosecurID DATABASE 

BiosecurID [1] is a multimodal biometric database acquired in the framework of the BiosecurID 

project, a project conducted by a consortium of six Spanish universities (Universidad 

Autónoma de Madrid, Universidad Politécnica de Madrid, Universitat Politècnica de Catalunya, 

Universidad de Zaragoza, Universidad de Valladolid and Euskal Herriko Unibertsitatea). The 

main goal of the project, as stated in [1], was: 

the acquisition of a realistic multimodal and multisession database, statistically 

representative of the potential users of biometric applications, and large enough 

in order to infer valid results from its usage [Sic]. 

Eight different biometric modalities (traits) are represented in the database, namely speech, 

iris, face (still images and videos of talking faces), fingerprints, hand, keystrokes, handwritten 

signature and handwritten text (online dynamic signals and offline scanned images). All data 

was collected in 4 sessions distributed in a time span of 4 months. The number of donors was 

400 with a balanced gender distribution. Table 3.1 summarizes the most relevant statistics 

regarding the participating donors.   

GENDER 

DISTRIBUTION 
AGE DISTRIBUTION HANDEDNESS 

MALE FEMALE 
FROM 18 

TO 25 
FROM 25 

TO 35 

FROM 35 

TO 45 

FROM 45 

ONWARDS 
RIGHT LEFT 

54% 46% 42% 22% 16% 20% 93% 7% 

Table 3.1:  Relevant statistics regarding the donors in the BiosecurID database. 

With respect to online handwritten text, BiosecurID provides data gathered from 3 different 

tasks: a Spanish text handwritten in lowercase, the sequence of digits (from 1 to 9 and 0 in the 

last position) written in a single line, and 16 Spanish words, in uppercase, written each in a line 
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(Fig. 3.9).The writers were asked not to perform neither corrections nor crossing outs. The 

acquisition of these data was carried out with a WACOM INTOUS3 A4 pen tablet, capturing 

seven dynamic features at 100Hz (x-coordinate, y-coordinate, button status (up or down), 

azimuth, altitude and pressure). Data was saved in the SVC format [69]. Table 3.2 gives some 

relevant technical details. 

 
 

Figure 3.9:  Samples of the 3 tasks in the BiosecurID database involving handwritten text. 

FEATURE VALUE 

Active area (WxD) 304.8 x 228.6 mm (12.0 x 9.0 in) 

Coordinate resolution 200 lines per mm (5080 lpi) 

Accuracy ±0.25 mm (±0.010 in) 

Maximum sampling rate 200 Hz 

Maximum. reading height 6.0 mm (0.25 in) 

X-coord range of values [0-30480]  

Y-coord  range of values [0-22860]  

Pressure range of values [0-1023] 

Azimuth range of values [0-3600] 

Altitude range of values [0-900] 

Table 3.2: Relevant technical details regarding the device used to acquire the handwritten 
data in the BiosecurID database. 
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 HIGHLIGHTS OF THE STATE OF THE ART 

IN WRITER RECOGNITION 
 

In this chapter the state of the art in writer recognition is reviewed. Two recognition modalities 
are considered: text-based modalities, reviewed in the first section, and signature-based 
modalities, reviewed in the second. The first section starts with the review of the works on the 
individuality of handwriting published by professor Sargur N. Srihari and his colleagues. Up to 
date, these works are the most comprehensive effort to assess the individuality of handwriting 
and its suitability for recognition purposes. After that, relevant references pertaining to the 
offline, first, and the online field, later, are surveyed. A table, comprehensively summarizing all 
the references in text-based writer recognition previously considered, concludes the first 
section. The second and last section is entirely devoted to review some relevant references 
from the signature-based recognition field, emphasizing the results achieved in several online 
signature-verification competitions. 

 

4.1 TEXT-BASED WRITER RECOGNITION 

Text-based writer recognition has mainly addressed issues related to forensic applications 

where the main purpose is to match a document to a set of samples belonging to an individual 

(e.g. a suspect). Historical document analysis (computerized palaeographic analysis of ancient 

manuscripts) has also received some attention (see, for instance, [70], devoted to writer 

identification of ancient Hebrew documents, [71] devoted to the identification of the 

contributors of  dried plants in the Botanic Museum of Berlin from the handwriting on 

herbarium sheets,  or [72], devoted to the recognition of the author in the context of music 

scores). 

Different criteria can be taken into account to classify the different approaches that have been 

presented. Regarding the kind of available information, the recognition can be performed in an 

offline manner or in an online manner (see chapter 3). Although an accurate analysis of offline 

images may reveal some relevant information on pressure and writing speed [73], it is 

commonly acknowledged that the online approach is bound to produce more accurate results 

due to the increased amount of data available.  

When attention is focused in the text used to perform the recognition then the approaches 

can be text-dependent or text-independent. Text dependent approaches assume that the text 

used to train the recognition system is exactly the same that will be presented to the system 

when it is required to ascertain a writer’s identity. Text-independent approaches do not make 

such assumption since their goal is to identify the authorship of a given document based on 

other documents written by the same person and, probably, having different contents. 
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Text-independency tends to require considerable amounts of text. In [74], Brink et al., 

experimenting with the IAM and the Firemaker databases, concluded that when well-

performing features are considered, the minimum number of characters required is about 100, 

both in models –samples- and questioned documents –queries-. This figure may increase, up 

to 200 characters, for less well-performing features. Any text above these minima does not 

significantly increase accuracy. The authors also concluded that for a fixed number of 

characters in the questioned documents, the recognition accuracy tends to increase when the 

number of characters in the samples grows.  

 

Figure 4.1: A fragment of text containing exactly 100 characters. 

And finally, when the focus of attention lies in the qualities of the writing itself, then two 

categories can be considered: structural approaches and allographic approaches. The former 

approaches focus on structural (sometimes also referred as textural) features of the image of 

the writing, such as slant and curvature. According to [15], these particular features indirectly 

measure pen-grip and pen-attitude preferences. The latter approaches, the allographic, focus 

on the shape of the characters or on the shapes of fragments of characters. From this point on, 

we are going to use the term structural in its broader extent, that is, to refer to global (i.e. 

statistical) features extracted from whole blocks of text. 

4.1.1 INDIVIDUALITY OF HANDWRITING: THE WORKS OF SRIHARI ET AL. 

Most of the works dealing with writer recognition implicitly or explicitly assume that 

handwriting do bear enough individuality as to allow performing recognition, provided this 

individuality can be conveniently extracted from the handwriting samples. In order to tackle 

the issue of weather this assumption is correct or not, motivated by several rulings in the US 

courts concerning expert testimony in the field of handwriting, Srihari, Cha, Arora and Lee 

undertook a study aiming at the validation of the hypothesis that handwriting is individual 

[50]. All their works were based on the CEDAR letter dataset (see section 3.4.1) . 

Two sets of features were considered: macro-features, pertaining globally to each handwritten 

sample, and micro-features, which were locally extracted. The following eleven macro features 

were considered: entropy of grey values, grey-level threshold, number of black pixels, number 

of interior and exterior contours, number of vertical, horizontal, negative and positive slope 

components, slant and height. Gradient, Structural and Concavity (GSC) attributes were used 

as micro-features. Macro-features were extracted at different levels: from the whole 

handwritten document (document-level), from a particular paragraph (paragraph level), from a 

particular-line (line-level), from a particular word (word-level) and from a particular character 

(character-level). Micro-features were only obtained at the character level. 
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Identification was performed by finding the closest match: each questioned sample was 

assigned to the writer that produced the prototype yielding the smallest distance to the 

sample (nearest neighbour rule). Accuracy depended on the level, the features used and the 

number of writers considered. 

When only macro-features were considered, the identification accuracies shown in Table 4.1 

were obtained. The word level corresponds to the words Cohen and referred; the paragraph 

level corresponds to the address block (comprising 11 words); the document level corresponds 

to the entire document. As it could be expected, obtained accuracies were higher at the 

paragraph and document levels. 

NUMBER  
OF WRITERS 

CORRECTLY IDENTIFIED WRITERS 

WORD LEVEL PARAGRAPH LEVEL DOCUMENT LEVEL 

2 88% 97% 99% 

10  62%  81%  96% 

100  28%  49%  81% 

900  9%  36%  59% 

Table 4.1: Identification accuracies (IDRs in percentage) reported in [50] for macro-features. 

Identification accuracy related to micro-features was tested considering the following 

characters:  r, e, f, e, r, r, e, d, b and h. In this case, the combination of micro and macro-

features was also tested. The reported results are shown in Table 4.2. 

NUMBER  
OF WRITERS 

CORRECTLY IDENTIFIED WRITERS 

MICRO-FEATURES ONLY MICRO AND MACRO-FEATURES 

2 99% 99% 

10  98%  98% 

100  90%  95% 

900  82%  88% 

Table 4.2:  Identification accuracies (IDRs in percentage) reported in [50] for the set of 
characters {r, e, f, e, r, r, e, d, b, h}. 

To address the issue of verification, Srihari et al. used three-layered artificial neural networks 

(ANN). Regarding macro-features, each AAN (one for the word level, one for the paragraph 

level and another one for the document level) was trained with data (pairs of distances) 

coming from 250 writes. Later on, each ANN was tested with data coming from two disjoint 

sets of 250 users not previously used. At the paragraph level data was obtained from the 

address block, while at the word level data was obtained from the word referred. With regard 

to micro-features, the ANN was trained with data obtained from the set of characters {r, e, f, e, 

r, r, e, d, b, h}, acquired from 964 writers. Table 4.3 summarizes the best reported results for 

both types of features. 
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MACRO-FEATURES MICRO-FEATURES 

WORD LEVEL PARAGRAPH LEVEL DOCUMENT LEVEL { r, e, f, e, r, r, e, d, b, h } 

83.1%  
(FRR=14.5%;  
FAR=19.3%) 

89.1% 
 (FRR=14.2%;  

FAR=7.6%) 

95.95%  
(FRR=4.5;  

FAR=3.6%) 

91.75%  
(FRR=10.0;  
FAR=6.5%) 

Table 4.3:  Highest verification accuracies (VAs) reported in [50] for macro and micro 
features. 

Eventually, Srihari and his colleagues concluded that the hypothesis of handwriting 

individuality could be accepted with a 95% confidence. They also pointed out that finer 

features could have allowed reaching the same conclusion with a higher, near 100%, 

confidence.  

In [75], Zhang et al. extended the research in [50] analyzing the discriminative powers of 

individual characters. Actually the characters [‘0’-‘9’], [‘a’-’z’] and [‘A’-‘Z’] were scrutinized. 

Experiments regarding identification and verification were performed, using, in both cases, a 

simple nearest neighbour classifier. The same micro-features reported in [50] were 

considered. The testing sets comprised documents from 500 different writers. The 

identification results showed very different performances depending on the character. Thus, 

the character ‘1’, the worst performing, yielded a 1.6% correct identification ratio, the 

character ‘0’, the second worst performing, a 4.88%; while the characters ‘G’ and ‘M’, the first 

and the second best performing, yielded identification ratios about 35%. Regarding 

verification, similar results were observed. Character ‘1’ had an accuracy of 61.79%5 (the 

lowest) while characters ‘I’ and ‘G’ had accuracies about 79% (the highest). Other experiments 

also reported in the same paper, showed that combinations of characters outperformed single 

characters and that longer combinations outperformed shorter ones. In order to assess the 

discriminability measure of individuality of each character in a classifier independent way, 

Zhang et al. proposed a measuring method based on the receiver operating characteristic 

(ROC) curve. Applying this method, the 62 characters considered in the aforesaid experiments 

were ranked according to their discriminative power. Table 4.4 shows the ranking. 

  

                                                           
5
 Notice that a verification accuracy (VA) of 61.79% accounts for a FAR+FRR=76.42%. 



 

 

39 
 

 HIGHLIGHTS OF THE STATE OF THE ART IN WRITER RECOGNITION 

 

RANK CHARACTER RANK CHARACTER RANK CHARACTER RANK CHARACTER 

1 G 17 n 33 4 49 e 

2 b 18 V 34 5 50 p 

3 N 19 A 35 t 51 1 

4 I 20 w 36 k 52 T 

5 K 21 L 37 Q 53 x 

6 J 22 v 38 2 54 7 

7 W 23 y 39 z 55 3 

8 D 24 S 40 g 56 i 

9 h 25 E 41 o 57 c 

10 F 26 R 42 6 58 O 

11 r 27 s 43 q 59 C 

12 H 28 f 44 9 60 X 

13 B 29 U 45 a 61 0 

14 M 30 Z 46 P 62 1 

15 m 31 u 47 8     

16 d 32 Y 48 J     

Table 4.4:  Handwritten characters ranked in descending order of discriminative power, as 
reported in [75]. Digits appear in red. 

The research in [50] was also extended in [76]. The particular purpose of this paper was to 

assess the discriminative power of digits. Using the micro-features already described in [50], 

the authors found identification rates ranging from 1.8% (digit 1) to 13.8% (digit 5) and 

verification accuracies ranging from 70.6% (digit 1) to 79.6% (digits 2 and 4). When it comes to 

the discriminative power of each digit, the authors used the Bhattacharya distance to measure 

the separation between the probability density function (pdf) of the intra-user distances and 

the probability density function of the inter-user distances. According to this criterion, the 

digits were ranked as shown in Table 4.5, which also shows the achieved identification rates 

and verification accuracies.  

RANK 1 2 3 4 5 6 7 8 9 10 

DIGIT 2 5 3 8 6 1 4 7 9 0 

IDENTIFICATION 
(IDR) 

12% 13.8% 11.4% 10.9% 10.3% 1.8% 12.9% 11.2% 9.9% 6.8% 

VERIFICATION 
(VA) 

79.6% 79.8% 77.5% 76.8% 78.4% 70.6% 79.6% 76.7% 78.9% 74.8% 

Table 4.5: Handwritten digits ranked in descending order of discriminative power, as 
reported in [76]. 

The reader may notice that digits are ranked differently in [75] and in [76]. This might be due 

to the fact that in [75] the ranking criterion is based on the ROC curve, while in [76] it is based 

on the Bhattacharya distance. 

As in [75], the effect of the combination on the recognition accuracies was also explored. From 

this exploration it was concluded that, although longer combinations tend to perform more 
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accurately, the addition of some digits may have a negative impact on the verification 

accuracy. 

There exist other studies that address the issue of the discriminative power of digits. In [77], 

Leedham and Chachra used a different set of features to assess the identification and 

verification performance of isolated digits and even considered the case where forged digits 

were present. Unfortunately, the small number of writers, only 15, prevents a fair comparison 

with [76] (1000 writers). 

Another study that complements the research in [50] was carried out by Zhang and Srihari and 

reported in [78]. The purpose of this new study was that of becoming a first step towards 

establishing objective measurements of individuality of handwritten words. The following four 

words were considered: been, Cohen, Medical and referred. The words Cohen and referred 

had already been used in [50]. Experimentation was carried out using GSC micro-features as 

described in [50], represented with a 1024-bit vector. Identification relied in a nearest 

neighbour classifier while verification relied in a 6-nearest neighbour classifier. The testing 

phase comprised 875 writers. Table 4.6 summarizes the best reported values for identification 

and verification. 

WORD been Cohen Medical referred 
COMBINATION OF 
THE FOUR WORDS 

IDENTIFICATION  
(IDR) 

 46%  44%  47%  49%  83% 

VERIFICATION  
(VA) 

 41%  43%  47%  49% 90.94% 

Table 4.6: Best recognition performances for the words been, Cohen, Medical, referred and 
their combination, as reported in [78]. 

In 2004, yet another study on the discriminative power of words was published by Tomasi, 

Zhang and Srihari [79]. This time, the first 25 words from the CEDAR letter were considered. 

Four different feature sets were used, three of which relied on the segmentation of words into 

characters. Words were tested individually and, in a second phase, the ten best performing 

were combined. Authors concluded that segmentation did not seem to make any substantial 

difference, that longer words tended to perform better and that words containing highly 

discriminative characters (e.g. G) performed well. Table 4.7 summarizes the best reported 

results for single words. 
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WORD 
IDENTIFICATION 

(IDR) 
VERIFICATION 

(VA) 
WORD 

IDENTIFICATION 
(IDR) 

VERIFICATION 
(VA) 

From 64% 34% York   

Nov   14707   

10   To   

1999   Dr   

Jim   Bob  33% 

Elder 65% 35% Grant 67% 43% 

829   602   

Loop   Queensberry 66% 34% 

Street   Parkway 66% 35% 

Apt   Omar   

300   West  33% 

Allentown 66% 29% Virginia  58% 

New      

Table 4.7: Words considered in  [79] and their best recognition performances, as reported by 
the authors. Overall highest performances appear in red. Blank cells correspond to non-
reported results. 

4.1.2 OFFLINE APPROACHES 

4.1.2.1 Text-independent structural approaches 

An early attempt to perform writer identification was made in 1977 by B. Arazi [80]. Arazi 

proposed to perform writer identification by means of histograms of vertical and horizontal 

run-lengths of background intensity values [80]. Accuracy reached 100% although experiments 

were carried out with 13 writers only. 

In 2000 Said, Tan and Baker, building upon a previously published work [81], presented a paper 

that has become a classic in the field of writer recognition, being one of the most cited [82]. 

Each individual’s handwriting was regarded as a potentially different texture so that texture 

recognition algorithms could be applied. More precisely, they used a multi-channel Gabor 

filtering technique and grey-scale co-occurrence matrixes to extract features from the images 

of the text. Experimenting with a small set of 20 writers and 25 blocks of text from each one, 

the identification accuracy reaches 96% when the Gabor-related features are considered. 

Gabor filters have also been applied to writer recognition of Chinese texts ([83]). The textural 

approach of Said et al. based on the classification of the texture has inspired many other 

researchers who have proposed alternative ways to represent and recognize textures (e.g. 

[84], for Chinese handwriting and [85] for Arabic handwriting). 

One year later, in 2001, Marti, Messerli and Bunke, proposed a recognition system [86] based 

on twelve line-level features that mainly correspond to visible characteristics of the writing 

(Table 4.8). 
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LINE-LEVEL FEATURE 

f1 Height of the upper zone of the line (see Fig. 4.2) 

f2 Height of the middle zone of the line 

f3 Height of the lower zone of the line 

f4 Ratio of height of upper zone to height of middle zone (f1/f2) 

f5 Ratio of height of upper zone to height of lower zone (f1/f3) 

f6 Ratio of height of middle zone to height of lower zone (f2/f3) 

f7 
Writing width (The median of the lengths of the runs of white  
pixels between two black runs in the row with more black  
to white and white to black transitions ) 

f8 Ratio of height of the middle zone to writing width (f2/f7) 

f9 Mean value of the slant angle 

f10 Standard deviation of the slant angle 

f11 Fractal dimension of writing 
6
 

f12 Second dimension of writing 

Table 4.8: Line-level features used in [86] . 

 

Figure 4.2: An example of the three zones of a handwritten line considered in [86]. 
(Representation is approximate). 

An image of text is described as a sequence of twelve-dimensional vectors, each vector 

corresponding to a line. Two different classifiers were considered: a k-nearest neighbour 

classifier and a feed-forward neural network. In both cases, experimentation was carried out 

using samples from 20 different writers. Different experiments were performed considering 

different subsets of the twelve features previously described, mainly to overcome potential 

problems deriving from the redundancy between features f1, f2, f3 and f7 and the ratios 

computed from them (f4, f5, f6 and f8). Eventually, the best identification performance was 

achieved by the neural network when all twelve features were considered simultaneously. In 

that case, identification rate reached 90.7%. 

The set of twelve features proposed by Marti et al. was enlarged by Hertel and Bunke [87]. 

They considered features (a) extracted from the connected components found in the 

handwriting images (average distance from consecutive bounding boxes, average distance 

between components of the same word, average distance between words, etc) (b) extracted 

from enclosed regions –blobs enclosed from loops- (e.g. average roundness of the blobs) (c) 

features extracted from the upper and lower contour (slant, frequency of local maxima and of 

local minima etc.) and (d) fractal features similar to those presented in [88] and used in [86]. 

The combination of this huge set of features yielded a 90.7% identification rate when tested 

with 50 writers and a single line of text. With a whole page of text and the same number of 

writers, the accuracy reached 99.6%. 

                                                           
6
 High values of both f11 and f12 typically correspond to legible handwritings while low values usually 

correspond to badly formed writings. For an accurate explanation of the meanings of f11 and f12 refer 
to [88]. 



 

 

43 
 

 HIGHLIGHTS OF THE STATE OF THE ART IN WRITER RECOGNITION 

4.1.2.2 Text-independent allographic approaches 

Lambert Schomaker and Marius Bulacu show a preeminent position among the most cited 

researchers in the field of writer recognition. In a 2004 paper [89], they proposed to use a 

histogram of connected component contours (CO3) usage as a feature. According to this 

proposal, a writer would be modelled as a discrete probability function (PFD) of CO3 usage. A 

connected component contour is the shape of a character or of part of a character, obtained 

by segmentation. A codebook of prototypical CO3s is computed by means of a self-organizing 

map (see Fig 4.3). This codebook, obtained from samples coming from writers not included in 

the testing phase, is used to compute all the required PDFs. Using only this feature, 

identification rates ranging from 72% to 85% are attained when experimenting with 150 

writers producing uppercase handwriting. The authors also consider other non-allographic 

features based on edge directions and the effect of combining them with the aforementioned 

allographic feature (95% IDR). This combination of features was enhanced and further 

explored in [90], a paper published in 2007 that will be reviewed in a forthcoming section. In 

another paper [91], also published in 2004, the use of CO3s is extended to mixed-style 

(uppercase and lowercase) handwriting achieving a 97% identification accuracy when 

experimenting with 150 writers. 

 

Figure 4.3: A codebook of 1089 CO
3
s prototypes derived from two paragraphs of Dutch text 

written by 100 writers. Clustering was achieved by means of a self-organizing map (Taken 
from [89]). 

Another frequently cited allograph-based recognition system was proposed in 2005 by 

Bensefia, Paquet and Heutte [92], [93]. Like in the previously described works by Schomaker et 

al., Bensefia and his colleagues based their proposal on the construction of a codebook of 
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prototypical shapes (graphemes). In this case, graphemes are obtained by a segmentation 

algorithm based on the analysis of the minima of the upper contour. The codebook of 

prototypical shapes is obtained by repeatedly applying sequential clustering. Those shapes 

that are always clustered together are regarded as members of an invariant clusters and each 

invariant cluster constitutes a prototype (Fig. 4.4). 

 

Figure 4.4: A set of invariant clusters (prototypes) obtained from handwriting samples  
(Taken from [92]). 

Each one of the prototypes in the codebook constitutes a binary feature. Documents are 

characterized using a vector space model (VSM) and recognition is performed following an 

information retrieval (IR) approach [94]. Each document is described by means of a vector 

containing, for each feature, a weight calculated as the product of the frequency of that 

feature in that particular document by the inverse document frequency of that feature (the 

inverse of the number of documents in the database that contain the feature). Similarity 

between documents is defined as the normalized inner product of the vectors that define 

them. Identification is carried out by obtaining a similarity-sorted list of documents matching 

the questioned one. The reported accuracy ranges from 86% (experimenting with 150 writers) 

to 95% (experimenting with 88 writers). In order to cope with the possibility that a 

writer/document under identification does not belong to the reference database, a verification 

approach based on a mutual information criterion is proposed: two documents are deemed 

written by the same author if their features show a strong independence on the writer (low 

mutual information between features and writers). Reported verification accuracy is about 

96%. 

Jain and Doermann presented, in the 2011 edition of the International Conference on 

Document Analysis and Recognition (ICDAR), a paper [95] with yet another allographic 

proposal, based on K-adjacent segments (KAS). A KAS is an ordered sequence of K lines where 

each pair shares an endpoint (see Fig. 4.5). As in most allographic approaches, a codebook is 

required as a starting point to represent documents as vectors of prototype frequencies. Some 

experiments were conducted to determine the best performing values for K (finally set to 3) 

and the size of the codebook (finally set to 300). The approach was tested against two 

databases: the IAM database (650 writers, English text) and the MADCAT database (325 

writers, Arabic script). The following identification rates were reported: 99.8% with 127 writers 

from the IAM database, 3 training samples and an IAM-based codebook; about 90% with 302 

writers from the MADSET database, 7 pages as training samples and a MADSET-based 

codebook, and 92.1% with the 650 writers from the IAM database and a MADSET-based 
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codebook. This last result suggests that KAS codebooks may be, to some extent, independent 

of the language.  

 

Figure 4.5:  Some prototypical K-adjacent segments (K=3) extracted from a codebook (Taken 
from [95]). 

4.1.2.3 Text-independent mixed approaches 

Mixed approaches are the ones that consider features of both types and combine them in 

order to obtain an enhanced performance. 

In [90] Bulacu and Schomaker, presented an approach that combines structural and allographic 

features (see Table 4.9). As structural features they consider the probability density functions 

(PDFs) of several angles, the PDFs of the horizontal and vertical run-lengths on background and 

the autocorrelation in the horizontal raster. A single allographic feature is considered: the PDF 

of the graphemes found in the writing. Here a grapheme is an allographic fragment (a 

character, part of a character or part of more than one character) segmented from a line of 

text (see fig 4.7). In order to compute this PDF, a codebook of 400 graphemes generated by k-

means clustering is used. The authors perform several sets of experiments. In one of them 

they establish the recognition performance of each feature. Feature f2, the hinge of the 

contour, turns out to be the most discriminative one (80% identification rate and 4.8% EER 

experimenting with 900 writers); f4, the allographic feature, is the second best performing 

(76% identification rate and 5.8% EER). In another set of experiments, the performances of 

different combinations of features are considered. The combination of f2 and f4 is one of the 

best-performing combinations (86% identification rate and 2.9% EER with 900 writers). The 

best performance, with 900 writers is achieved when features f2, f4, f5h and f5v are combined 

(87% identification rate and 2.6% EER). Up to date, the results reported in this paper are 

considered the best in the field of offline text-independent writer recognition.  
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FEATURE TYPE 

f1 One-dimensional PDF of the contour direction –slant- (angle  in Fig 4.6-a) Structural 

f2 
Two-dimensional PDF of the hinge of the contour –curvature-  

(angles  1 and 2 in Fig 4.6-b) 

Structural 

f3h 
Two-dimensional PDF of the horizontal co-occurrences at both  

ends of a background run (angles  1 and 3 in Fig 4.6-c) 

Structural 

f3v 
Two-dimensional PDF of the vertical co-occurrences at both  

ends of a background run (angles  1 and 3 in Fig 4.6-d) 

Structural 

f4 PDF of the graphemes found in the writing. Allographic 

f5h One-dimensional PDF of the horizontal run-lengths on background  Structural 

f5v One-dimensional PDF of the vertical run-lengths on background Structural 

f6 The autocorrelation in the horizontal raster. Structural 

Table 4.9:  Set of structural and allographic features considered in [90]. Names of features 
are those given by the authors. 

    
(a) 

 

(b) (c) (d) 

Figure 4.6:  Examples of contour angles. Slant (a), hinge (b), horizontal co-occurrences (c) 
and vertical co-occurrences (d). Images taken from [90]. 

 

Figure 4.7:  A codebook of 400 graphemes obtained by K-means clustering. Taken from [90]. 

The mixed approach proposed by Bulacu and Schomaker in [90] was also successfully applied 

to Arabic handwriting [96] (IDR=88% and EER=6% with 350 writers) thus suggesting its script-

independent nature. 

In a paper published in 2010 [97], Siddiqi and Vincent proposed another mixed approach that 

combines allographic and structural features. The allographic feature considered is the PDF of 
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prototypic writing shapes. A codebook of very simple writing shapes (see Fig. 4.8) is built by 

clustering writing fragments with a k-means clustering algorithm (K set to 100). The allographic 

feature achieves identification rates of 84% (650 writers from the IAM database) and 74% (375 

writers from the RIMES database). Verification performances are EER=4.49% (IAM) and 

EER=10.57 (RIMES). Regarding structural features, these are based on contours. Two different 

representations of the contours are considered: one based on Freeman chain codes [98] and 

another one based on approximating polygons. The former representation is aimed at 

grabbing details at the pixel-level whereas the latter is aimed at grabbing more coarse-grained 

details. Using these two representations, a set of 14 features is defined. When combined, 

structural (contour-based) features alone yield identification ratios of 89% (650 writers from 

the IAM database) and 85% (375 writers from the RIMES database). In this case, verification 

performances are EER=2.46% (IAM) and EER=4.87 (RIMES). Finally, the combination of both 

allographic and structural features produces the following results: IDR = 91% (IAM), IDR=84% 

(RIMES), IDR = 88% (IAM+RIMES); EER=2.23% (IAM) EER=4.90% (RIMES), EER=2.86% 

(IAM+RIMES). 

 

Figure 4.8:  A codebook of 100 simple written shapes  (Taken from [97]). 

4.1.2.4 Other text-independent approaches 

Some approaches can neither be considered structural nor allographic. For instance, in a paper 

published in 2004 [99], Schlapbach and Bunke describe a system that performs writer 

recognition by means of handwriting recognition. They use, for each writer, an HMM trained 

to transcript (recognize) the handwriting of that particular writer. Transcriptions also include a 

log-likelihood score. More accurate transcriptions are expected to have higher scores. To 

recognize a writer a line of text produced by them is submitted to each HMM and the 

authorship is granted to the writer whose HMM produces a better transcription (i.e. with the 

highest score). The experiments yield an identification rate of 96.56% (with 100 writers) and an 

EER of 2.5% (120 writers). In 2006, the same authors presented a paper [100] that somehow 

complemented the work in [99]. They used, for each writer, a Gaussian mixture model (GMM) 

which is computed based on nine pixel-level features extracted using a sliding window. 
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The interested reader may find a comprehensive summary of less recent text-independent 

offline identification methods, dating from 1977 until 1983, in [101].  

4.1.2.5 Text-dependent approaches 

When it comes to text-dependent offline approaches, it is worth mentioning the works of Zois 

and Anastassopoulos. In [102] a writer recognition method based on a single word 

(‘characteristic’ written both in English and Greek) is proposed. The morphologically processed 

horizontal profiles of the word are used as features. Experimenting with a database consisting 

of 45 repetitions of the aforementioned word written by 50 users, the proposed method 

achieves an identification rate higher than 96% and a verification error smaller than 2.5% In 

[103] the same authors propose a method based on the fusion of word-level measures taken 

from the different words of a short sentence. Each word in the sentence is used separately 

from the rest in order to derive a decision about the authenticity of the writer. At the word 

level, the method is similar to that reported in [102]. The performance of their method is 

tested with a database containing 4800 sentences from 20 different writers. The experimental 

results show a verification error of less than 1% when five-word sentences are considered. 

Bensefia, Paquet and Heute, in 2004, also proposed a text-dependent approach based on a 

single word [104]. Their method, belonging to the allographic family, segments words into 

sequences of graphemes (not necessarily characters) and then compares them by means of 

the Levenshtein distance. Experimenting with 5 repetitions of the French word manuscript 

donated by 20 different writers the approach yields a false acceptance rate of about 15% (no 

other performance metrics are reported). 

The works of Srihari et al. presented in section 4.1.1 can, to some extent, also be considered 

text-dependent approaches. 

4.1.3 ONLINE APPROACHES 

The online field has almost completely been monopolized by signature verification and, 

therefore, the number of relevant scientific references dealing with non-signature approaches 

is quite small. What is more, when the topic of online writer recognition is circumscribed to 

the use of single words or short sentences, then the number of available references is really 

very scarce. 

Contrary to what happens in the offline field, where most approaches are text-independent, in 

the online field, text-independent approaches do not seem to have attracted much attention 

from the scientific community. The reason might lie in its perceived lack of applicability both in 

the forensic field (e.g. suspects are not likely to produce several samples of online handwriting) 

and in the security field since a system relying on not previously know text to validate a user 

may be impractical due to the amount of text required. Nonetheless, some approaches exist 

and they deserve some attention. Moreover, the current situation may change in the future as 

tablet-like devices allowing handwritten input modalities become more and more popular, as 

the trend seems to be. 

4.1.3.1 Text-independent allographic approaches 

In 2007, Chan, Tay and Viard-Gaudin presented an allographic approach [105] based on the 

shapes of the letters (and not in the shapes of portions of letters or fragments of the 
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handwriting as is common in offline approaches due to the difficulty of obtaining more precise 

segmentations). A set of 10 different prototypes of each of the 26 letters in the English 

alphabet is used. Each prototype, built by a slightly modified version of the k-means clustering 

algorithm, is intended to model a specific allographic variation of a letter. Because prototyping 

at the character level requires a segmentation process involving character recognition, Chan 

and his colleagues use a language-aware industrial handwriting recognition software engine 

(MyScript SDK). The following seven time-dependent features are taken into account: x and y 

coordinates, curvature of x and y coordinates, direction of x and y coordinates and the status 

of pen-up or pen-down. Each writer is modelled as the frequency distribution of their usage of 

the letter prototypes. Recognition is performed by following an information retrieval (IR) 

approach [94] (somehow similar to the one proposed in [92]) where the allograph (prototype) 

frequency (tf) and the inverse document frequency (idf) are used to compute a weighted 

Euclidean distance between the vectors representing the models and the query. The 

identification accuracy of the proposed method is about 95% when experimenting with 82 

writers.  

In a paper published in 2009 [106], Tan et al. present an improved version of the framework 

described in the previously reviewed paper.  The same language-aware recognition software is 

used for segmentation purposes and the same seven features are considered. The novelty in 

[106] lies in the fact that each character, in a model or in a query, is not assigned to a single 

class (prototype) but instead a fuzzy membership is considered thus allowing a more accurate 

representation of the variability regarding writing style. Experimenting with 120 writers, a 

maximum identification accuracy of 99.2% is attained when 2 is used as distance metric. 

Another approach similar to that of Chan et al. ([105]) was proposed, in 2008, by Niels, 

Grootjen and Vuurpijl [107]. The achieved accuracy reaches 100% when more than 30 

characters are used in the queries. Experimentation was performed with a reduced database 

comprising samples from 43 writers. Nevertheless and contrarily to the approach of Chan et 

al., this approach assumes that samples have been pre-segmented into characters. 

4.1.3.2 Text-independent structural approaches 

In a paper by Li, Sun and Tan published in 2007 [108], the idea of using discrete probability 

distribution functions (PDFs) as features is extended to the online field. Actually their method 

relies in the comparison of histograms of pressure levels, velocity, azimuth and altitude, 

extracted from segmented strokes. 12 different types of strokes are considered (primary 

stroke types) so that for each writer (document) and feature, 12 histograms can be obtained, 

one for each type of stroke. This method was used to identify the writer of Chinese texts. 

Experiments involving 55 individuals who donated three pages of handwriting, two used for 

training, one for testing, yielded a maximum accuracy about 90%. The aforementioned paper 

also reports on the individual performance of each feature (Table 4.10). 
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FEATURE 
IDENTIFICATION RATE 

(IDR) 

PDF of velocity  82% 

PDF of pressure 77% 

PDF of azimuth 68% 

PDF of Altitude 62% 

Table 4.10: Reported performances of the different features considered in [108]. 

Schlapbach, Liwicki and Bunke presented, in 2008, a work where online data is not obtained 

from a conventional digitizing tablet but from a whiteboard [109].  Data is acquired by means 

of an eBeam whiteboard system [110], which consists of a normal pen in a special casing 

that sends infrared signals to a receiver located in one of the corners of the whiteboard (See 

Fig. 4.9). 

 

Figure 4.9:  Data acquisition from a whiteboard and a capturing device positioned in the 
upper left corner  (Taken from [109]). 

In their work, Schlapbach et al. consider five different sets of features: a point-based feature 

set, containing features captured at the point level (writing speed, writing direction and 

curvature); an extended point-based feature set, containing the features of the previous set 

plus a considerable number of other more complex features; a point-based offline feature set 

containing features computed from a two-dimensional matrix representing an offline version 

of the data; an all point-based feature set, containing all the features in the three previously 

described sets; and a stroke-based feature set containing features captured from whole on-

surface trajectories (in-air trajectories are not taken into account). Each writer is modelled by a 

Gaussian Mixture Model (GMM). First a Universal Background Model (UBM) is obtained using 

all the available training data (coming from all writers) and, afterwards, a specific GMM is 

adapted to each writer using their own training data. Recognition is performed as follows: a 

text line (or paragraph) of unknown origin is presented to each one of the models. Then, each 

model returns a log-likelihood score for the given text and authorship is granted to the writer 

whose model produces the highest score. Table 4.11 summarizes the identification 

performances achieved by this method. 
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FEATURE SET 
IDENTIFICATION RATE 

LINE LEVEL PARAGRAPH LEVEL 

Point-based set 48.67% 88.56% 

Extended point-based set 71.84% 95.75% 

Point-based offline set 71.64% 96.44% 

All point-based set 88.96% 98.56% 

Stroke based feature set 62.55% 92.56% 

Table 4.11: Identification performance achieved by each set of features at the line and 
paragraph level, as reported in [109]. The highest performances are achieved by the all 
point-based feature set. 

4.1.3.3 Text dependent approaches 

Zuo, Wang and Tan, proposed in 2002, a two-phase text-dependent identification schema for 

Chinese handwriting [111]. In the first phase, Principal Component Analysis (PCA) is used in 

order to determine, for each writer, a set of words that best characterize their writing. In the 

second phase recognition is carried out only taking into account the writer’s characterizing 

words. The writer’s identity is established measuring the distances between words that pertain 

to their characterizing set. In these schema each word is represented as a grey-scale image 

with the grey level obtained from the pressure signal. Accuracy depends on the number of 

words in the set. Experimenting with 40 writers that donated 10 repetitions of a Chinese text 

containing 40 words, the identification rate ranged from 86.5%, with only one word, to 97.5% 

with ten words. 

Another non-western script based method falling in the category of the online text dependent 

approaches was presented in 2004 by Thumwarin and Matsuura [112]. They proposed a writer 

recognition in which the trajectory and velocity of the baricenter of the pen movement are 

computed and their Fourier coefficients obtained. These coefficients are considered the input 

(velocity) and the output (trajectory) of a Finite Impulse Response system (FIR system). Then, 

the impulse response is regarded as the feature that characterizes the handwriting. 

Experimentation is carried out with a database of Thai numerals and scripts obtained from 81 

writers. The reported verification accuracy is about 98.85% (FRR=1.50, FAR=0.80). 

In 2006 Joulia Chapran presented her research on writer identification [51]. Excluding our own 

papers ([113],[114]) this is, to the best of the author’s knowledge, the only paper that, up to 

the date, has been published in an indexed journal and that is devoted to online writer 

recognition based on isolated short words from western script. Chapran describes a writer 

identification system based on the serial combination of a Bayes classifier and a minimum 

distance classifier. A set of 11 features is chosen (4 static, 7 dynamic) from a larger set of 46 

(28 dynamic, 18 static) after an analysis aimed at identifying the most discriminative subset of 

features, that is, those features that exhibit the highest separation between the intra-writer 

and the inter-writer distributions. Table 4.12 contains the set of 28 dynamic features 

considered. In the pre-processing phase, the invisible in-air trajectories are eliminated from 

the samples. Experimentation is carried out using a database of 45 writers who produced 25 

repetitions of each of the following five English words: February, January, November, October 

and September. An identification rate of 95% is achieved with at least one of the classifiers 

trained and tested with the whole set of samples. 
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ORIGIN DYNAMIC FEATURE 

Time Relative duration of writing 

Pressure 

Average pressure 

Amplitude of pressure 

Average displacement in pressure 

Amplitude of displacement in pressure 

Average pressure acceleration 

Amplitude of pressure acceleration 

Number of pen-ups 

x-coordinate 
and 

y-coordinate 

Average horizontal displacement 

Amplitude of horizontal displacement 

Average vertical displacement 

Amplitude of vertical displacement 

Average Cartesian displacement 

Amplitude of Cartesian displacement 

Average horizontal acceleration 

Amplitude of horizontal acceleration 

Average vertical acceleration 

Amplitude of vertical acceleration 

Average Cartesian acceleration 

Amplitude of Cartesian acceleration 

Altitude 
Average altitude 

Amplitude of altitude 

Azimuth 

Average azimuth 

Amplitude of the azimuth 

Average angular displacement in azimuth 

Amplitude of angular displacement in azimuth 

Average angular acceleration in azimuth 

Amplitude of angular acceleration in azimuth 

Table 4.12: Dynamic features considered in [51]. In red the most discriminative.
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4.1.4 SUMMARY OF TEXT-BASED RECOGNITION APPROACHES 

The following table comprehensively summarizes the most relevant references regarding text-based writer recognition surveyed in the preceding sections. 

Author(s) and 
reference(s) 

Year(s) Domain Approach # of writers Sample size (aprox.) 
Best reported Accuracies 

Identification (IDR) verification 

Arazi [80] 1977 
OFFLINE, 

TI 

STRUCTURAL 
Histograms of run-lengths of 

background intensity 
13 9 lines of text 100%  

Said et al.  
[81] 
[82] 

1998, 
2000 

OFFLINE, 
TI 

STRUCTURAL 
Texture analysis (Gabor filters 
and greyscale co-ocurrence) 

20 
Small blocks of text (8 

lines) 
96% EER = 0.57% 

Zois et al. 
[102] 

2000 
OFFLINE, 

TD 
STRUCTURAL 

Morphological features 
50 

45 repetitions of the 
word characteristic 

96.5% (English) 
97% (Greek) 

VA=97.7% (English) 
VA=98.6 (Greek) 

Zois et al. 
[103] 

2001 
OFFLINE 

TD 
STRUCTURAL 

Morphological features 
20 

Sentence with five 
words 

 VA=99% 

Marti et al. 
[86] 

2001 
OFFLINE, 

TI 

STRUCTURAL 
Features based on visible 

characteristics of the writing 
20 

5 text pages containing 
from 5 to 11 lines each 

90.7%  

Srihari et al. 
[115][50] 
 

2001-
2002 

OFFLINE 
TD 

STRUCTURAL 
Macro and micro (GSC) features 

Differed numbers 
from a database of 

1500 
 

9% (words Cohen and referred, 900 
writers, macro features). 88% (set 
of characters, 900 writers, micro 
and macro features) 

VA=83.1% (word 
referred, 250 users, 

macro features). 
VA=91.75% (set of 

characters, 964 writers, 
micro features) 

Zuo et al. [111] 2002 
ONLINE, 

TD 

STRUCTURAL 
Distances between writer 

dependent characteristic words 
obtained by PCA 

40 
40 words (Chinese). For 

each writer 10 words 
are selected 

86.5% (1 word) 
 

97.5% (10 words) 
 

Zhang and 
Srihari [78] 

2003 
OFFLINE 

TD 
STRUCTURAL 

Micro (GSC) features 
875 From 1 to 4 words 

49% (word referred); 83% 
(combination of four words) 

VA= 49% (word 
referred); 

VA=91% (combination of 
four words) 
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Author(s) and 
reference(s) 

Year(s) Domain Approach # of writers Sample size (aprox.) 
Best reported Accuracies 

Identification (IDR) verification 

Hertel and 
Bunke 
[87] 

2003 
OFFLINE, 

TI 

STRUCTURAL 
Features based on visible 

characteristics of the writing 
50 

One line or one page of 
text 

90.7% (one line) 
99.6% (one page) 

 

Tomasi et al. 
[79] 

2004 
OFFLINE 

TD 
STRUCTURAL 

(different sets of features) 
1000 One word 67% (word Grant) VA=43% (word Grant) 

Bensefia et al. 
[104] 

2004 
OFFLINE 

TD 
ALLOGRAPHIC 

Levenshtein distance 
20 French word manuscrit  FAR=15% 

Thumwarin et 
al. [112] 

2004 
ONLINE 

TD 

STRUCTURAL 
FIR system from Fourier 

coefficients of trajectory and 
velocity of baricenter of pen 

movement 

81 
5 scripts (Thai numerals 

and/or words) 
 

FRR=1.50% 
FAR = 0.80% 

Schlapbach et 
al. [99] 

2004 
OFFLINE, 

TI 
Recognition based on 

transcription (uses HMMs) 
100 (identification) 
120 (verification) 

27 to 54 text lines 96.56% EER =2.5% 

Schomaker et 
al. [89] 

2004 
OFFLINE, 

TI 

STRUCTURAL 
and ALLOGRAPHIC 

Connected component 
contours and edge-based 

features 

150 
Half paragraph 

(Uppercase) 
85% (allographic approach only) 

95% (mixed approach) 
 

Schomaker et 
al. [91] 

2004 
OFFLINE, 

TI 

ALLOGRAPHIC 
Fragmented component 

contours 

150 (Firemaker 
database) 

up to 210 (Unipen
7
 

database) 

Half paragraph 
(Firemaker) 

One paragraph (Unipen) 

97% firemaker 
83% Unipen with 210 writers 

 

Bensefia et al. 
[92] [93] 

2005 
OFFLINE, 

TI 

ALLOGRAPHIC 
Grapheme clustering and 

information retrieval 

88 from the PSI 
database (French) 

150 
from the IAM 

database 
(English) 

One page of text (107 
words) in the PSI 

database. 
 

95% 
with the PSI database 

 
86%  with the IAM database 

 

VA=96% 

Schlapbach et 
al. [100] 

2006 
OFFLINE 

TI 
STRUCTURAL 

Gaussian mixture model (GMM) 
100 27 to 54 text lines 98.46%  

                                                           
7
 Unipen is an online database. The on-line xk, yk coordinates were transformed to a simulated 300-dpi image using a Bresenham line generator and an appropriate brushing 

function [Sic] 
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Author(s) and 
reference(s) 

Year(s) Domain Approach # of writers Sample size (aprox.) 
Best reported Accuracies 

Identification (IDR) verification 

Chapran [51] 2006 
ONLINE 

TD 

STRUCTURAL 
Minimum distance and Bayes 

classifiers, using selected 
dynamic and static features 

45 
25 repetitions of one 

word 
95%  

Bulacu et al.  
[90]  

2007 
OFFLINE, 

TI 

STRUCTURAL 
and ALLOGRAPHIC 

Textural characterization. 
Allograph characterization. 

900 (combining 
writers from 2 

databases) 

From 3 lines to a full 
page 

87% 
 

EER = 2.6% 

Chan et al. 
[105] 

2007 
ONLINE, 

TI 

ALLOGRAPHIC 
Distribution of character 

prototypes and information 
retrieval 

82 Not reported 95%  

Li et al. [108] 2007 
ONLINE 

TI 

STRUCTURAL 
Histograms of pressure, velocity 

and angles 
55 

One page of Chinese 
text. 

90%  

Schlapbach et 
al. [109] 
 

2008 
ONLINE, 

TI 
STRUCTURAL 

GMM 
200 

8 paragraphs of 8 lines 
(average) each 

(captured from a 
whiteboard) 

88.96% (line) 
98.56% 

(paragraph) 
 

Niels et al. 
[107] 

2008 
ONLINE, 

TI 

ALLOGRAPHIC 
Distribution of allograph 

prototypes and information 
retrieval 

43 
From 10 to 100 

characters 
100% (with 30 or more characters)  

Tan et al. [106] 2009 
ONLINE, 

TI 

ALLOGRAPHIC 
Fuzzy Distribution of character 

prototypes and information 
retrieval 

120 
3 lines of text ( 160 

characters) 
99.2%  

Siddiqi et al. 
[97] 

2010 
OFFLINE, 

TI 

STRUCTURAL 
and ALLOGRAPHIC Distribution 

of elementary shapes and 
contour-based features 

375 (RIMES 
database) 

And 
650 (IAM database) 

Not reported 

85% (RIMES) 
91% (IAM) 

88% (IAM + RIMES) 
 

EER=4.87% (RIMES); 
EER=2.23%(IAM) 

EER = 2.86% 
(IAM+RIMES) 

Jain at al. 
[95] 

2011 
OFFLINE, 

TI 

ALLOGRAPHIC  
Distribution of K-Adjacent 

Segments 
127 Two or three sentences 99.8%  

Table 4.13: Summary of text-based recognition approaches (TI and TD stand for text-independent and text-dependent, respectively).
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4.2 SIGNATURE-BASED WRITER RECOGNITION 

Signature has a long tradition as a method to prove one’s identity (legal documents, banking 

transactions) and it is one of the most widespread means of personal verification, if not the 

most widespread. Therefore, it should not come as a surprise that signature verification is the 

handwriting modality that has attracted more research efforts and that has produced more 

scientific publications. Works until 1993 have been extensively surveyed in [101] and in [116]. 

Subsequent works up to 2000 are surveyed in [117]. More recently (2008), Impedovo and Pirlo 

have presented a very comprehensive survey containing more than 350 references [118].  

Like handwriting in general, signature verification can be performed offline, when only the 

scanned images of the signatures are available, or online, when time-dependent data are 

available. Although some offline approaches exhibit a remarkably good performance ([119], 

[120] ), online methods tend to outperform them. 

A wide variety of methods has been proposed to tackle signature verification [118]. Among the 

most relevant are Hidden Markov Models (HMM) and Dynamic Time Warping (DTW). In the 

SVC2004 competition [69] (see section 4.2.5), the first place was for a DTW-based system and 

the second was for a HMM-based system. 

4.2.1 HMM-BASED APPROACHES 

HMMs are one of the most popular methods belonging to the category of statistical methods. 

An HMM is a finite state machine where a probability density function (PDF) is associated with 

each state. States are connected by transition probabilities. Training is carried out using the 

Baum-Welch algorithm. The likelihood that a sequence of feature vectors was generated by a 

given model can be computed by the Viterbi algorithm. HMMs have become very successful in 

speech recognition ([121]) and handwriting recognition. They can manage signals of different 

time duration. Usually a left-to-right topology is used. Like other statistical methods, HMMs 

require a considerable number of training samples to achieve an acceptable performance. 

In [122] Yang, Widjaja and Prasad proposed a method where signatures were described by the 

normalized directional angle function of the distance along the signature trajectory. A 6-state 

left-to-right HMM was used to model each signer. Although pen-up information was not 

explicitly recorded, when the distance between two consecutive points was greater than a 

threshold, a pen-up was assumed. Under certain circumstances, the performance was 

improved if those assumed pen-ups were considered. Experimenting with 31 signers, a 

FRR=1.75% and a FAR=4.44% were achieved. 

Yoon, Lee and Yang, reported an EER of 2.2% also using an HMM but representing signatures 

by velocity and trajectory in polar space [123]. Experimentation was carried out with 

signatures from 100 signers. 

In 2003, Ortega-García, Fiérrez-Aguilar, Martín-Rello and González-Rodríguez proposed a 

system [124] where each signer is modelled by a left-to-right 4-state HMM. Signatures are 

represented using 24 time-sequences: x and y coordinates, pressure, azimuth, altitude, path-

tangent angle, path velocity magnitude, log curvature radius and the first and second-order 

derivatives of all the aforementioned. Very low verification errors are achieved when 
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considering a posteriori signer-dependent thresholds: EER<1% for both random and skilled 

forgeries (experiments were performed with signatures from 50 different signers). This work 

was extended in 2007 by Fiérrez-Aguilar, Ortega-García, Ramos and González-Rodríguez [125]. 

This time, each signer is modelled by a left-to-right 2-state HMM and signatures are 

represented using time sequences similar to those reported in the previous work, although 

azimuth and altitude are discarded because, according to the authors, they may degrade the 

verification performance. Again, very low verification errors are achieved: EER=0.05% with 

random forgeries and EER = 0.74% with skilled forgeries (145 signers, a posteriori user-

dependent thresholds). This system also participated to SVC2004 with excellent results. 

4.2.2 DTW-BASED APPROACHES 

DTW is a template matching technique well suited to cope with random variations due to the 

writer’s behaviour (pauses, hesitations) [126]. In DTW, the questioned and reference 

signatures are compared by means of a dynamic programming strategy that can manage the 

variability in the signatures’ lengths. As HMMs, DTW has been very successfully applied to 

speech and speaker recognition. 

In [127] Jain, Griess and Connell proposed a method, based on DTW that considers a single 

global feature (the number of strokes) and a set of local ones (x and y coordinates, the 

difference between two consecutive x coordinates, the same for y coordinates, the sine and 

cosine of the angle with the x-axis, the curvature, the speed and some others). The similarity 

measure obtained is compared against a threshold that is the combination of a global one and 

a writer-dependent one. Experimenting on a database containing more than 1000 signatures 

from 102 signers, their method achieves low error rates (FRR=2.8%,  FAR=1.6%). 

Another system also based on DTW and that considered a stroke-oriented description of 

signatures was presented by Bovino, Impedovo, Pirlo and Sarcinella [128] (also in [129] by 

Impedovo and Pirlo). Segmentation into strokes is not performed according to the pen-

up/pen-down status feature provided by the acquisition device. Instead a more sophisticated 

method is used: in a first step the whole signature is split into segments based on the analysis 

of the local maxima in the vertical direction. In a second step each segment is split into strokes 

on the basis of the local minima in the vertical direction. The reader should take into account 

that some signatures are performed with a single pen-down stroke. To cope with this 

possibility a segmentation procedure such as the one described and used by the authors is 

required. Furthermore, this segmentation approach also copes with the problems posed by 

long strokes as those found in the embellishments of some signatures. The questioned 

signature and the model signature are aligned according to the points found by the analysis of 

the local extremes. As this technique splits each test and reference signature into the same 

number of strokes there is no need for any treatment of the additional or missing strokes. Each 

pair of matched strokes can be compared within several representation domains. Actually, 

they are compared according to position, velocity and acceleration and the different resulting 

distances are combined to obtain a single similarity measure. An EER of 0.4% is achieved when 

simple averaging is considered (experimentation carried out with 15 signers that produced 

both real and forged samples). 
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In [130] Lee, Yoon, Soh, Chun and Chung also presented a system based on DTW that aligns 

signatures after having segmented them by means of geometric extrema detection. An EER of 

0.98% is reported when experimenting with signatures, without skilled forgeries, provided by 

271 people. Accuracy experiments a small decrease to an EER of 1.08% when a limited number 

of forgeries, realized by 5 people, are considered. 

4.2.3 OTHER APPROACHES 

Other popular approaches to tackle signature verification are neural networks (NN) and 

support vector machines (SVM) [131]. In [132], Lee compares the performance of three 

different types of NNs and the best accuracy is attained by a Bayes multilayer perceptron 

(EER=2.67%). In [133] Justino, Bortolozzi and Sabourin report a FAR=1.68% and a FRR=3.5% 

when using a SVM and experimenting with offline signatures donated by 40 signers. In [134], 

Özgündüz, Şentürk and Karsligil, also using a SVM and experimenting with offline signatures 

from 70 signers report a FAR=0.11% and a FRR=0.02%.  

Fàbregas-Peinado and Faúndez-Zanuy presented, in 2009, a system based on the Biometric 

Dispersion Matcher (BDM) [135]. 

Mixed approaches also exist. For instance, in [136] Faundez-Zanuy proposed a combination of 

Vector Quantization (VQ) and DTW. The combination is performed by means of score fusions 

and the results are satisfactory since the proposed scheme outperforms other algorithms, 

achieving minimum detection cost function (DCF) values equal to 1.37% and to 5.42% for 

random and skilled forgeries respectively, when using a database of 330 signers. When 

compared to HMM and DTW, VQ exhibits a low computational burden. In subsequent works 

([137,138]), VQ-based signature verification has been improved.  

4.2.4 APPROACHES CONSIDERING PEN-UP INFORMATION 

Although the number of references reporting online approaches for signature verification is 

quite large [118], the number of significant references that explicitly report the use of pen-up 

information is meagre. In the following paragraphs two works that we have found relevant will 

be briefly commented. 

Brigitte Wirtz, in [139] presented an online signature verification method based on stroke 

segmentation and a variant of the DTW algorithm. Her approach considered strokes as the 

natural structural units of the signature. Both pen-down and pen-up strokes are taken into 

account. According to the author:  

‘[...]The near strokes, that are not visible in the signature image, are used in the 

same way as the visible strokes since they carry shape and dynamic 

information.’[Sic].  

DTW is used to compute the distance between (position-matching) strokes. In their 

contribution to the final similarity measure, the distances between different pairs of strokes 

can be weighted differently according to their robustness. In order to cope with additions or 

omissions in the stroke sequence, the DTW algorithm was modified so that it was allowed, in a 

very constrained way, to consider the distance between strokes occupying non-matching 

positions in the reference and test sequences. According to the author, when compared to 
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other non stroke-based systems, Wirtz’s renders better accuracies. Nevertheless, the number 

of signers and samples used in testing does not allow to draw significant conclusions. We are 

commenting on this work because our proposal presents some similarities with Wirtz's: stroke-

based segmentation and consideration of both pen-down and pen-up strokes. The use of DTW 

is quite different: in Wirtz's work, DTW is applied to the strokes themselves while we apply it 

to sequences of integers (stroke indexes). 

In [140] Yanikoglu and Kholmatov presented an online signature verification system based on 

the Fast Fourier Transform (FFT). They propose to use pen-up-related data to improve the 

verification performance. In their work, pen-up data is not directly gathered by the acquisition 

device but interpolated from the last and first points of the pen-down strokes that precede 

and follow a period in time where no data was acquired. These periods are detected using the 

timestamps of consecutive points. The incorporation of this pen-up-related data helps increase 

the overall performance when the system is tested with skilled forgeries (From an EER of 

9.09% to an EER of 6.20%). Nevertheless, the overall accuracy of the proposed system lies 

below that of state-of-the-art approaches. 

4.2.5 SIGNATURE COMPETITIONS 

Since 2004 several competitions have been organized. In these competitions all the 

contestants are provided with exactly the same datasets to train and test their systems. 

Furthermore, all competing systems are tested under the same conditions. All this has the 

virtue of rendering the results fully comparable. 

In 2004 took place the First International Signature Verification Competition (SVC2004) [69]. 

SCV2004 aimed at allowing researchers to evaluate the performance of their verification 

systems. The contestants were proposed two different verification tasks. In the first task, only 

positional information was available whereas in the second task positional information was 

complemented with pen inclination (azimuth and altitude) and pressure. Testing was carried 

out with signatures from 60 different donors. For each donor, 10 genuine and 20 forged 

signatures were considered. When skilled forgeries were taken into account, the winning 

system, for both tasks, was [141], based on DTW and presented by Kholmatov and Yanikoglu, 

from Sabanci University (Turkey). When only random forgeries were considered the best 

results were achieved by an anonymous system (task 1) and by the HMM-based system [125] 

submitted by Universidad Autónoma de Madrid (task 2). Although the results from SVC2004 

are widely cited and quite often still considered the state-of-the art figures in online signature 

verification, the following facts should not be disregarded [142]: first of all, the signatures 

were not true ones but made up signatures since the donors were advised not to use their real 

signatures. Secondly, the signers had different cultural origins and, finally, the size of the 

testing database was limited (60 users) with all signatures collected in a single session. 

Other public campaigns have been organized for comparing advances in online signature 

verification. In 2009, the BioSecure evaluation campaign (BSEC’2009) [142] was held. 

BSEC’2009 had several different goals: to assess the impact of the acquiring device (a digitizing 

tablet or a PDA touch screen), to assess the impact of time variability (single session vs. 

multisession) and to assess the impact of signature complexity. Also in 2009, was held the 

ICDAR 2009 Signature Verification Competition (SigComp2009) [143]. This competition 
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included online and offline modalities, with the online modality clearly outperforming the 

offline one. In 2011, the BioSecure Signature Evaluation Campaign (ESRA’2011) was held [144]. 

One of its main goals was to assess the impact of the quality of the skilled forgeries in the 

accuracy of online verification systems. Table 4.14 summarizes the best results achieved in the 

aforementioned competitions. 

COMPETITION TESTING CONDITIONS 
PERFORMANCE (EER) 

WITH SKILLED FORGERIES 
WITH RANDOM 

FORGERIES 

SVC2004  

[69] 
Tested with signatures from 
60 donors. One session only 

2.84% with x and y 
coordinates only 

1.85% with x and y 
coordinates only 

2.89% with x and y 
coordinates, pressure and 
writing angles 

1.70% with x and y 
coordinates, pressure 
and writing angles 

ICDAR 2009 
(SigComp2009) 

[143] 

Tested with signatures from 
100 donors (online modality) 

2.85% with x and y 
coordinates, pressure and 
writing angles. 

 

BSEC’2009  

[142] 

Tested with signatures from 
382 donors, acquired from a 
digitizing tablet and from a 
PDA 

2.20% (from tablet) and 
4.97% (from PDA) with x 
and y coordinates only 

0.51% (from tablet) and 
0.55% (from PDA) with 
x and y coordinates only 

1.71% (from tablet) with x 
and y coordinates, 
pressure and writing 
angles. 

0.42% (from tablet) 
with x and y 
coordinates, pressure 
and writing angles. 

3.48% (from tablet) with x 
and y coordinates, 
pressure and writing 
angles. Multisession 

1.37% (from tablet) 
with x and y 
coordinates, pressure 
and writing angles. 
Multisession 

ESRA’2011  

[144] 

Tested with signatures from 
382 donors acquired during 
two sessions. Two devices 
used: a digitizing tablet and a 
PDA. 

2.85% (from tablet) and 
7.15% (from PDA) with x 
and y coordinates only. 
Forgeries of good quality 

 

2.43% (from tablet) with x 
and y coordinates, 
pressure and writing 
angles. Forgeries of good 
quality 

Table 4.14:  Best results achieved in the online signature verification competitions. 
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55   
 AN INFORMATION ANALYSIS OF IN-AIR 

AND ON-SURFACE TRAJECTORIES 
 

This chapter details the analysis of the in-air and on-surface trajectories that constitute the 
pen-up and pen-down strokes found in online handwriting. This analysis, performed from the 
perspective of the information theory, is independent of any recognition system since no 
assumption is made on how the analyzed data will be used to perform recognition. Three 
different issues are considered: (a) the amount of information found in each type of trajectory, 
(b) the level of redundancy between them and (c) the differences, for each type of trajectory, 
among the intra- and the inter-user cases.  
The chapter is organized as follows: the first section (re)introduces the distinction between in-
air and on-surface trajectories, showing some graphical examples. The second section provides 
a very brief introduction to information theory, highlighting the definitions of the measures 
that are used thereafter. In the third section, the core of the chapter, the results of the analysis 
are presented. Finally, the fourth section summarizes the most relevant conclusions drawn 
from the results of the analysis. 

 

5.1 IN-AIR VS. ON SURFACE 

In chapter 3, the distinction between on-surface and in-air trajectories has been introduced.  

On-surface trajectories (pen-downs) correspond to the movements executed while the writing 

device is touching the writing surface. Each of these trajectories produces a visible stroke. 

In-air trajectories (pen-ups) correspond to the movements performed by the hand while 

transitioning from one stroke to the next. During these movements the writing device exerts 

no pressure on the surface.  

Fig. 5.1 shows an execution of the word INEXPUGNABLE where the distinction between pen-up 

and pen-down strokes has been emphasized.   
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Figure 5.1: Execution of the word INEXPUGNABLE as captured by the acquisition device. 
Image at the top shows both pen-up and pen-down strokes. Images at the bottom show 
pen-down (left) and pen-up (right) strokes separately. 

Applications based on the analysis of online handwriting (mainly character recognition and 

online signature verification systems) have paid little or no attention at all to in-air trajectories. 

Indeed, all the attention has been focused on on-surface trajectories while in-air ones have 

been disregarded or simply discarded. The results of our research show that in-air trajectories 

not only contain individual information but that this information is rich enough to perform 

writer recognition and that it can be combined with information from on-surface trajectories 

to enhance the recognition accuracy, since both types of information are to a considerable 

extent non-redundant.  Our research extends the reach of the hypothesis of writer 

individuality to the invisible part of handwriting and gives evidence pointing towards a positive 

answer: the invisible part of handwriting contains enough personal information to successfully 

discriminate among writers.  

Fig. 5.2 shows two executions of the word BIODEGRADABLE performed by two different 

writers. Notice how in-air trajectories are quite different from one writer to the other while 

quite similar when performed by the same writer. This difference may suggest a noticeable 

inter-writer variability and lower intra-writer variability for this type of trajectories. Also notice 

that in-air trajectories appear to have a considerable degree of complexity. 
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Figure 5.2: On-surface (top) and in-air (bottom) trajectories from different executions of the word BIODEGRADABLE performed by two writers.

WRITER 1 / SESSIONS 1 and 2 WRITER 2 / SESSIONS 1 and 2 
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5.2 BACKGROUND ON INFORMATION THEORY 

In order to facilitate the understanding of the following sections, this section provides a very 

brief introduction to information theory. The most relevant aspects, connected to the results 

shown in this dissertation, are highlighted. The interested reader can find in the literature 

much more in-depth treatments of the topic (e.g. [145] [146])  

If X is a random variable with several possible values x and a marginal probability distribution 

function p(x), the entropy of X, measured in bits, is defined as 





Xx

xpxpXH ))((log)()( 2   (5.1) 

H(X) is a measure of the uncertainty associated with X. If X is a source of data or a message, 

then H(X) measures the average information content in X. Other equivalent interpretations are 

also possible. For instance H(X) is the average number of bits (binary symbols) required to 

encode all the possible outcomes (values) of X. 

For two random variables, X and Y, with possible values x and y, a joint probability distribution 

function p(x,y) and marginal distribution functions p(x) and p(y) respectively, the following 

measures are often considered:    

(a) Conditional entropy, often called equivocation in information theory, quantifies the 

remaining entropy (i.e. the uncertainty) of one of the variables when the value of the other 

one is know. It is defined as: 


 


Xx Yy

xypyxpXYH ))|((log),()|( 2  (5.2) 

(b) Joint entropy, a measure of the amount of information in the joint system of X and Y. Its 

definition is: 


 


Xx Yy

yxpyxpYXH )),((log),(),( 2   (5.3) 

(c) Mutual information, a measure of the amount of information shared by X and Y. It is 

defined as: 

(5.4) 

 

Intuitively, a low value for );( YXI suggests that X and Y provide different, non redundant, 

information. Notice that 0);( YXI if and only if X and Y are independent (the knowledge of 

one has no effect whatsoever on the knowledge of the other).

 
These three measures are tightly related to each other: 

),()()()|()();( YXHYHXHYXHXHYXI   (5.5) 


  


Xx Yy ypxp
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)()(

),(
(log),();( 2
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 AN INFORMATION ANALYSIS OF IN-AIR AND ON-SURFACE TRAJECTORIES 

Fig. 5.3 graphically depicts the relations among conditional entropy, joint entropy and mutual 

information, as shown in [146]  

 

Figure 5.3 Relations among the individual entropies (H(X), H(Y)), the conditional entropies 
(H(X|Y), H(Y|X)), the joint entropy (H(X,Y)) and the mutual information (I(X;Y)) 

In order to facilitate the comparison of amounts of mutual information obtained from 

different pairs of random variables, I(X;Y) can be expressed relative to H(X,Y): 

),(/);();( YXHYXIYXI    (5.6) 

Thus, relative mutual information I’(X;Y) is the proportion of the joint entropy that is shared by 

both random variables.  

5.3 INFORMATION ANALYSIS OF TRAJECTORIES 

In the forthcoming subsections, in-air and on-surface trajectories will be scrutinized from the 

perspective of the information theory. The following issues will be analyzed: the average 

amount of information contained in each feature of each type of trajectory, the amount of 

information they share (redundancy), and the differences between the intra and the inter-

writer measures of the mutual information. All the measures have been obtained from the 16 

uppercase words in the BiosecurID database (described in 3.4.2). A subset of 100 writers has 

been considered, each one providing 4 repetitions of each word, thus totalling 400 executions 

of each word. 

5.3.1 ENTROPY OF EACH FEATURE 

For each word, type of trajectory and feature, the entropy has been computed. The results are 

shown in Table 5.1. Each figure was obtained averaging the 400 executions of each word. All 

entropies are expressed in bits (i.e. log2 is considered when computing H(x)). Figure 5.4 

provides a summarized view of data in Table 5.1. 
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WORD TEXT LENGTH 
PRESSURE X-COORD Y-COORD AZIMUTH ALTITUDE 

IN-AIR ON-SURF. IN-AIR ON-SURF. IN-AIR ON-SURF. IN-AIR ON-SURF. IN-AIR ON-SURF. 
AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD 

W1 BIODEGRADABLE 12 n/a n/a 7,7 0,2 7,6 0,4 7,7 0,3 7,1 0,4 7,2 0,3 4,1 0,5 4,0 0,5 3,1 0,6 2,6 0,5 

W2 DELEZNABLE 10 n/a n/a 7,6 0,2 7,3 0,4 7,1 0,3 6,9 0,4 6,9 0,3 3,9 0,5 3,8 0,5 3,0 0,6 2,5 0,5 

W3 DESAPROVECHAMIENTO 18 n/a n/a 7,9 0,2 8,0 0,4 7,9 0,3 7,4 0,3 7,4 0,3 4,3 0,5 4,1 0,5 3,1 0,5 2,6 0,5 

W4 DESBRIZNAR 10 n/a n/a 7,6 0,2 7,1 0,5 7,4 0,3 6,7 0,4 7,1 0,3 3,9 0,6 3,9 0,6 3,0 0,6 2,7 0,5 

W5 DESLUMBRAMIENTO 15 n/a n/a 7,8 0,2 7,6 0,5 7,8 0,3 7,1 0,4 7,4 0,3 4,1 0,5 4,0 0,6 3,1 0,6 2,7 0,5 

W6 DESPEDAZAMIENTO 15 n/a n/a 7,8 0,2 7,8 0,4 7,7 0,3 7,2 0,4 7,3 0,3 4,2 0,6 4,1 0,6 3,0 0,6 2,7 0,5 

W7 DESPRENDER 10 n/a n/a 7,6 0,2 7,1 0,5 7,3 0,3 6,7 0,5 7,0 0,3 3,9 0,5 3,9 0,6 2,8 0,6 2,6 0,5 

W8 ENGUALDRAPAR 12 n/a n/a 7,7 0,2 7,4 0,5 7,6 0,3 6,9 0,4 7,2 0,3 4,1 0,6 4,1 0,5 3,1 0,6 2,6 0,5 

W9 EXPRESIVIDAD 12 n/a n/a 7,6 0,2 7,4 0,4 7,3 0,3 6,9 0,4 7,0 0,3 4,1 0,5 4,1 0,5 3,0 0,5 2,7 0,5 

W10 IMPENETRABLE 12 n/a n/a 7,7 0,2 7,5 0,4 7,5 0,3 7,0 0,4 7,1 0,3 4,2 0,6 4,1 0,6 3,0 0,6 2,7 0,5 

W11 INEXPUGNABLE 12 n/a n/a 7,6 0,2 7,5 0,5 7,4 0,3 7,0 0,4 7,0 0,3 4,2 0,5 4,1 0,5 3,1 0,6 2,7 0,6 

W12 INFATIGABLE 11 n/a n/a 7,6 0,2 7,3 0,4 7,2 0,4 6,9 0,3 6,9 0,4 4,0 0,5 4,0 0,6 3,0 0,6 2,5 0,6 

W13 INGOBERNABLE 12 n/a n/a 7,6 0,2 7,3 0,5 7,6 0,3 6,9 0,4 7,2 0,3 4,2 0,5 4,1 0,5 3,1 0,6 2,6 0,5 

W14 MANSEDUMBRE 11 n/a n/a 7,6 0,2 7,3 0,5 7,5 0,3 6,8 0,4 7,2 0,3 4,2 0,5 4,2 0,5 3,2 0,6 2,7 0,5 

W15 ZAFARRANCHO 11 n/a n/a 7,6 0,2 7,3 0,5 7,5 0,4 6,8 0,6 7,1 0,5 4,2 0,5 4,1 0,6 3,2 0,6 2,6 0,5 

W16 ZARRAPASTROSA 13 n/a n/a 7,7 0,2 7,6 0,4 7,8 0,3 7,0 0,8 7,3 0,8 4,3 0,5 4,2 0,5 3,3 0,6 2,8 0,6 

Average over the 16 words n/a n/a 7.7 0.2 7.4 0.5 7.5 0.3 7.0 0.4 7.1 0.4 4.1 0.5 4.1 0.5 3.1 0.6 2.6 0.5 

Table 5.1:  Entropy in bits (average –avg- and standard deviation –std-) of each feature.
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Figure 5.4:  Entropy of each feature. The values shown are the averages among the 16 words 
of the entropies shown in table 5.1. 

The following facts are worth noticing: 

(a) Pressure and coordinates contain much more information than writing angles. For 
instance, in the in-air case, the entropy of the X coordinate is about 7.5 bits. This 

represents a 27.5
180 different states for this feature.  For the azimuth, the entropy is 

about 4.1 bits, representing 24.1
17 different states.  Nevertheless, these differences 

among features should not come as a surprise since their ranges of possible values, 
imposed by the acquisition device, are rather different too (see Table 3.2 in chapter 3).   

(b) If pressure is not taken into account, the global amount of information (considering all 
the other features) is almost the same in both types of trajectories. Figs. 5.1 and 5.2 
already suggested that for the X and Y coordinates the amount of information in the in-
air case might not be much lower than in the on-surface case, because both cases do not 
appear to have very different degrees of complexity. 

(c) X-coordinate and Y-coordinate, especially the latter, tend to have higher entropies in on-
surface trajectories 

(d) On the other hand, both azimuth and altitude have higher entropies in in-air trajectories 
(e) Variability (measured by the standard deviation of the entropy of the 400 executions 

considered) is low. This means that, in average, there are no great differences among 
users and sessions. 

 

5.3.2 REDUNDANCY BETWEEN IN-AIR AND ON-SURFACE TRAJECTORIES 

The fact that in-air and on-surface trajectories are different does not imply that they convey 

entirely different information. Mutual and the relative mutual information between pairs of 

measures of the same feature, taken from in-air and on-surface trajectories, will be used in 

order to evaluate the degree of redundancy between in-air and on-surface trajectories. 
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For a given word and feature f , 
e

ufa  and 
e

ufs respectively denote the in-air and on-surface 

values of that feature for the e-th execution of this word performed by writer u. 
surfaceairJoint 

 
denotes the average joint entropy between pairs of measures (one in-air, one on-surface) of 

that feature taken from the same user and execution. Analogously, 
surfaceairMutual 

and 

surfaceairRMutual 
denote the average mutual information and relative mutual information 

between pairs of measures of a feature, taken from the same user and execution: 
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surfaceair fsfaHavgJoint


   (5.7) 

));((
,

e

u

e

u
ue

surfaceair fsfaIavgMutual


   (5.8) 

));('(
,

e

u

e

u
ue

surfaceair fsfaIavgRMutual
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Table 5.2 contains the average values obtained for
surfaceairJoint 

 , 
surfaceairMutual 

and

surfaceairRMutual 
. In the case of

surfaceairRMutual 
, the standard deviation is also shown. Fig. 

5.5 provides a summarized view of the proportion between joint entropy and mutual 

information.
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WORD TEXT LENGTH 
X-COORD Y-COORD AZIMUTH ALTITUDE 

JOINT MUTUAL RMUTUAL JOINT MUTUAL RMUTUAL JOINT MUTUAL RMUTUAL JOINT MUTUAL RMUTUAL 

AVG AVG AVG STD AVG AVG AVG STD AVG AVG AVG STD AVG AVG AVG STD 

W1 BIODEGRADABLE 12 8,4 6,8 0,81 0,03 8,4 5,8 0,70 0,04 6,5 1,6 0,25 0,09 5,2 0,5 0,10 0,06 

W2 DELEZNABLE 10 8,0 6,4 0,80 0,03 8,0 5,6 0,71 0,04 6,2 1,6 0,25 0,08 4,9 0,5 0,10 0,06 

W3 DESAPROVECHAMIENTO 18 8,7 7,1 0,82 0,02 8,7 6,0 0,68 0,04 6,8 1,6 0,23 0,09 5,2 0,5 0,09 0,06 
W4 DESBRIZNAR 10 8,0 6,4 0,79 0,03 8,0 5,6 0,70 0,04 6,1 1,6 0,26 0,09 5,0 0,6 0,12 0,07 
W5 DESLUMBRAMIENTO 15 8,5 6,8 0,80 0,03 8,5 5,9 0,69 0,04 6,5 1,7 0,26 0,09 5,1 0,6 0,11 0,06 

W6 DESPEDAZAMIENTO 15 8,5 6,9 0,81 0,02 8,5 5,9 0,69 0,04 6,6 1,7 0,26 0,09 5,1 0,6 0,10 0,06 

W7 DESPRENDER 10 8,0 6,4 0,79 0,04 8,0 5,6 0,70 0,04 6,1 1,7 0,28 0,10 4,9 0,6 0,12 0,08 
W8 ENGUALDRAPAR 12 8,3 6,6 0,80 0,03 8,3 5,7 0,69 0,04 6,4 1,8 0,28 0,10 5,1 0,6 0,11 0,06 

W9 EXPRESIVIDAD 12 8,1 6,5 0,80 0,03 8,1 5,8 0,71 0,04 6,3 1,9 0,29 0,09 5,0 0,6 0,12 0,08 

W10 IMPENETRABLE 12 8,3 6,6 0,80 0,03 8,3 5,8 0,70 0,04 6,4 1,8 0,28 0,10 5,1 0,6 0,12 0,07 
W11 INEXPUGNABLE 12 8,2 6,6 0,80 0,03 8,2 5,7 0,70 0,04 6,4 1,9 0,29 0,09 5,1 0,6 0,12 0,07 
W12 INFATIGABLE 11 8,0 6,4 0,80 0,03 8,0 5,7 0,71 0,04 6,2 1,8 0,29 0,10 4,9 0,6 0,13 0,08 

W13 INGOBERNABLE 12 8,3 6,6 0,80 0,03 8,3 5,7 0,69 0,04 6,4 1,9 0,30 0,10 5,1 0,7 0,13 0,08 

W14 MANSEDUMBRE 11 8,2 6,5 0,79 0,03 8,3 5,8 0,69 0,04 6,4 1,9 0,29 0,09 5,1 0,6 0,12 0,07 
W15 ZAFARRANCHO 11 8,2 6,5 0,79 0,03 8,2 5,7 0,69 0,05 6,4 1,9 0,29 0,10 5,1 0,6 0,12 0,07 

W16 ZARRAPASTROSA 13 8,4 6,8 0,81 0,03 8,4 5,9 0,70 0,04 6,6 1,9 0,28 0,09 5,4 0,6 0,11 0,06 

Average over the 16 words 8.3 6.6 0.80 0.03 8.3 5.8 0.70 0.04 6.4 1.8 0.27 0.09 5.1 0.6 0.11 0.07 

Table 5.2: Relations between in-air and on-surface trajectories measured by their joint, mutual and relative mutual information. Columns containing values of relative 
mutual information appear shadowed to facilitate reading. 
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Figure 5.5:  Comparison of joint entropy and mutual information. The values shown are the 
averages among the words of the values shown in table 5.2. 

The following facts are worth noticing: 

(a) X-coord shows a redundancy of about 6.5 bits (with relative mutual information around 
0.8, that is, about 80%) while Y-coord shows a redundancy of slightly less than 6 bits 
(70%). Although in both cases redundancy is high, there is still a significant amount of 
non-redundant information (20%-30%).  The reader should notice that entropy being a 
logarithmic measure, one bit of difference amounts to a multiplication factor of 2 in the 
number of states. Thus, a difference of 1.5 bits between the joint entropy and the 

mutual entropy (as in the X-coordinate) amounts to a multiplication factor of 21.5 
 2.83 

in the number of states. 
(b) On the other hand, azimuth and altitude, especially the latter, show a very low 

redundancy. In the case of azimuth, it is less than 2 bits (25%-30%) and when it comes to 
altitude, it is less than 1 bit (about 10%) 

(c) Variability, measured by the standard deviation, is low (azimuth and altitude) and very 
low (X-coord, Y-coord). This means that, on average, all users/sessions have a similar 
behaviour with respect to redundancy. 

5.3.3 INTER-WRITER AND INTRA-WRITER DIFFERENCE 

From a biometric recognition perspective, the fitness of a feature to perform recognition does 

not only depend on the amount of information it contains but also on the difference between 

the intra-writer and the inter-writer case. Given a feature f, it is highly desirable that different 

measures of f taken from the same writer are closer to each other than measures taken from 

different writers. From an information theory perspective, it would be desirable that the 

amount of mutual information was higher when considering the same writer (intra-writer) 

than when considering different writers (inter-writer). The average difference between both 

cases will be used as a mean to evaluate the potential usefulness of a given feature. 
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As in the previous subsection, for a given word and feature f , 
e

ufa  and 
e

ufs respectively 

denote the in-air and on-surface values of that feature for the e-th execution of this word 

performed by user u. For a given word and feature, 
air

uIntra  and 
surface

uIntra denote the 

average values for all measures of the relative mutual information between different 

executions of this word performed by writer u.  
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u fsfsIavgIntra 
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 (5.11) 

Analogously, for a given word and feature, 
air

uInter  and 
surface

uInter denote the average value 

of the relative mutual information between executions of this word performed by writer u and 

any other writer.  
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Where  * means any execution. 

Finally, air

uDiff and 
surface

uDiff denote the differences between the inter-writer and the intra-

writer measures for the in-air and on-surface cases respectively: 

air

u

air

u

air

u InterIntraDiff   (5.14) 

surface

u

surface

u

surface

u InterIntraDiff   (5.15) 

Should 0air

uDiff  and 0surface

uDiff  , this would mean that, on average and relative to their 

joint entropies, the executions from writer u share more information among them than they 

share with executions from other writers. 

Table 5.3 shows, for each word and feature, the average values for 
surface

uDiff  and their 

standard deviation. The reader will notice that the averages are all positive but quite close to 

zero. In order to determine whether these average values are significantly positive, they have 

been put to a Student’s unilateral paired t-test with the following parameters: null hypothesis

0)(:0 


surface

u
u

DiffavgH ; alternative hypothesis 0)(:1 


surface

u
u

DiffavgH ; degrees of 

freedom: 99. For each feature, the third column (p-val) contains the p-value of the test. The p-

value is the probability of obtaining an average value for 
surface

uDiff   as extreme as the one that 
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was actually obtained, assuming that the null hypothesis is true. Table 5.4 shows the same 

results for the in-air trajectories. 

Prior to being put to the Student’s t-test, all the differences have been put to a Kolmogorov-

Smirnov test in order to determine whether it can be assumed that they follow a normal 

distribution (a precondition for the applicability of the t-test). With a significance level of 

α=0.05, the normality hypothesis is only rejected in four cases (out of 144): the differences for 

the altitude of on-surface trajectories in words 1, 2, 3 and 16. All the other differences are 

consistent with the normality hypothesis.   

Fig. 5.6 summarizes and compares the p-values obtained for both types of trajectories. P-

values below 0.05 (significance level α=95%) may be considered statistical evidence of a 

significant difference. 
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WORD TEXT 
PRESSURE X-COORD Y-COORD AZIMUTH ALTITUDE 

AVG STD P-VAL AVG STD P-VAL AVG STD P-VAL AVG STD P-VAL AVG STD P-VAL 

W1 BIODEGRADABLE 0,003 0,02 6,4E-02 0,018 0,02 1,2E-13 0,017 0,02 7,1E-12 0,019 0,05 2,3E-04 0,017 0,04  

W2 DELEZNABLE 0,004 0,02 3,1E-02 0,025 0,02 1,7E-19 0,023 0,02 5,9E-17 0,021 0,05 4,1E-05 0,020 0,04  
W3 DESAPROVECHAMIENTO 0,003 0,02 9,4E-02 0,017 0,02 1,1E-15 0,016 0,02 3,4E-12 0,019 0,05 1,2E-04 0,017 0,03  

W4 DESBRIZNAR 0,003 0,02 8,4E-02 0,018 0,02 5,5E-12 0,017 0,02 1,3E-10 0,025 0,06 1,3E-05 0,024 0,04 1,3E-07 

W5 DESLUMBRAMIENTO 0,003 0,02 6,1E-02 0,018 0,02 4,9E-14 0,015 0,02 4,7E-09 0,022 0,06 9,4E-05 0,021 0,04 5,3E-06 

W6 DESPEDAZAMIENTO 0,003 0,02 1,0E-01 0,016 0,02 3,1E-12 0,016 0,02 1,2E-10 0,022 0,06 4,3E-04 0,020 0,04 8,9E-07 

W7 DESPRENDER 0,004 0,02 2,2E-02 0,018 0,02 8,3E-13 0,018 0,02 1,3E-11 0,026 0,07 5,1E-05 0,024 0,04 1,1E-08 
W8 ENGUALDRAPAR 0,004 0,02 2,1E-02 0,018 0,02 1,1E-13 0,014 0,02 9,2E-10 0,024 0,06 3,7E-05 0,017 0,04 2,6E-05 

W9 EXPRESIVIDAD 0,005 0,02 1,5E-02 0,020 0,02 8,5E-18 0,019 0,03 6,2E-12 0,022 0,05 4,9E-05 0,025 0,05 9,6E-07 

W10 IMPENETRABLE 0,003 0,02 8,5E-02 0,018 0,02 5,3E-14 0,017 0,02 3,3E-12 0,023 0,06 1,3E-04 0,021 0,04 4,0E-06 

W11 INEXPUGNABLE 0,003 0,02 5,8E-02 0,021 0,02 5,4E-16 0,018 0,02 2,1E-11 0,021 0,05 6,5E-05 0,021 0,05 1,4E-05 

W12 INFATIGABLE 0,004 0,02 4,1E-02 0,024 0,02 5,7E-18 0,023 0,03 3,8E-15 0,019 0,05 1,9E-04 0,023 0,04 2,1E-07 

W13 INGOBERNABLE 0,003 0,02 6,8E-02 0,019 0,02 1,0E-11 0,017 0,02 2,3E-10 0,024 0,06 3,5E-05 0,020 0,05 8,5E-06 
W14 MANSEDUMBRE 0,003 0,02 1,1E-01 0,020 0,02 1,2E-16 0,017 0,02 2,7E-11 0,019 0,05 1,9E-04 0,023 0,05 5,6E-06 

W15 ZAFARRANCHO 0,003 0,02 6,1E-02 0,019 0,02 5,8E-16 0,019 0,02 1,9E-13 0,022 0,06 3,5E-04 0,013 0,04 1,1E-03 

W16 ZARRAPASTROSA 0,003 0,02 6,7E-02 0,015 0,02 6,6E-12 0,014 0,02 3,2E-08 0,020 0,05 2,6E-04 0,018 0,04  

Average over the 16 words 0,003 0,02 6,1E-02 0,019 0,02 1,7E-12 0,018 0,02 2,4E-09 0,022 0,06 1,4E-04 0,020 0,04 9,7E-05 

Table 5.3:  Differences in relative mutual information between the inter-writer and intra-writer case for on-surface trajectories. P-values shadowed green correspond to 
statistically significant differences (α=95%). No p-values have been computed for altitude in words 1, 2, 3 and 16 because differences did not pass the normality test. 

 

 

 

 



 

 

74 

 

WORD TEXT 
X-COORD Y-COORD AZIMUTH ALTITUDE 

AVG STD P-VAL AVG STD P-VAL AVG STD P-VAL AVG STD P-VAL 

W1 BIODEGRADABLE 0,011 0,02 4,9E-06 0,011 0,02 3,7E-06 0,017 0,05 1,2E-03 0,015 0,04 1,4E-04 

W2 DELEZNABLE 0,010 0,03 2,5E-04 0,010 0,02 5,8E-05 0,015 0,05 2,4E-03 0,014 0,04 4,7E-04 
W3 DESAPROVECHAMIENTO 0,009 0,02 2,4E-04 0,009 0,03 2,0E-04 0,015 0,05 1,9E-03 0,010 0,03 2,4E-03 

W4 DESBRIZNAR 0,014 0,03 4,3E-06 0,012 0,03 1,1E-04 0,022 0,05 2,5E-05 0,018 0,04 4,3E-05 

W5 DESLUMBRAMIENTO 0,013 0,03 2,1E-06 0,013 0,02 4,1E-07 0,018 0,05 6,1E-04 0,013 0,04 6,7E-04 

W6 DESPEDAZAMIENTO 0,011 0,03 2,7E-05 0,010 0,02 5,0E-05 0,017 0,06 2,7E-03 0,013 0,04 5,3E-04 

W7 DESPRENDER 0,019 0,03 2,1E-09 0,018 0,03 8,1E-11 0,025 0,07 1,2E-04 0,021 0,05 1,0E-05 
W8 ENGUALDRAPAR 0,011 0,03 1,5E-04 0,011 0,03 6,4E-05 0,021 0,06 2,2E-04 0,014 0,04 9,1E-05 

W9 EXPRESIVIDAD 0,013 0,03 1,0E-06 0,013 0,03 1,5E-06 0,016 0,05 1,1E-03 0,018 0,05 7,7E-05 

W10 IMPENETRABLE 0,011 0,02 3,3E-06 0,011 0,02 1,9E-06 0,018 0,06 1,5E-03 0,017 0,04 6,7E-05 

W11 INEXPUGNABLE 0,014 0,02 7,0E-08 0,013 0,02 3,4E-07 0,018 0,05 3,3E-04 0,015 0,04 1,4E-04 

W12 INFATIGABLE 0,012 0,03 1,5E-05 0,013 0,02 3,0E-07 0,019 0,06 8,3E-04 0,019 0,04 3,1E-06 

W13 INGOBERNABLE 0,012 0,03 3,4E-06 0,013 0,03 9,7E-07 0,020 0,06 3,6E-04 0,017 0,05 1,8E-04 
W14 MANSEDUMBRE 0,014 0,03 3,8E-06 0,014 0,03 5,3E-07 0,018 0,05 6,3E-04 0,017 0,04 1,1E-04 

W15 ZAFARRANCHO 0,012 0,03 1,8E-06 0,013 0,03 1,4E-06 0,021 0,06 5,2E-04 0,015 0,04 1,7E-04 

W16 ZARRAPASTROSA 0,010 0,02 1,0E-04 0,010 0,03 9,7E-05 0,016 0,06 6,4E-03 0,010 0,03 1,5E-03 

Average over the 16 words 0,012 0,03 5,0E-05 0,012 0,03 3,7E-05 0,018 0,06 1,3E-03 0,015 0,04 4,2E-04 

Table 5.4:  Differences in relative mutual information between the inter-writer and intra-writer case for in-air trajectories. P-values shadowed green correspond to 
statistically significant differences (α=95%). 
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 AN INFORMATION ANALYSIS OF IN-AIR AND ON-SURFACE TRAJECTORIES 

 

 

Figure 5.6:  P-values for the differences in relative mutual information between inter-writer 
and intra-writer measures (average values among the words in tables 5.3 and 5.4). 

Notice that, for both types of trajectories, with a significance level of =0.01 the null 

hypothesis would be rejected in all cases except for pressure. This means that from a purely 

statistical point of view, all features but pressure exhibit, in average, a significant difference 

between the intra-user and the inter-user case. When it comes to pressure, even if the average 

difference is positive for all words, the variability (standard deviation) is high enough to 

prevent a clear rejection of the null hypothesis (p-values range from 0.01 to 0.1). 

5.4 CONCLUSIONS 

The experimental results presented in the previous section support the claim that in-air 

trajectories contain as much information as on-surface trajectories. For four of the five 

features considered (all except pressure) the difference between the on-surface and the in-air 

case is lower than a single bit, usually some tenths of a bit (see Table 5.1). In fact, the only 

substantial difference between the two types of trajectories lies in the information provided by 

pressure, the fifth feature under consideration. When it comes to redundancy, the results 

show that although it is noticeable in the case of the X-coord and the Y-coord, it is low and 

very low in the case of azimuth and altitude respectively (see Table 5.2). From a global 

perspective it cannot be said that in-air and on-surface trajectories are entirely non-redundant. 

Nevertheless, although a certain amount of redundancy is present, it is far from seeming to be 

enough to deem the in-air trajectories as superfluous. Entropy and redundancy, the latter 

measured by mutual information and relative mutual information, show, for all the analyzed 

words and features, a low variability. This fact is important because it somehow implies that 

the obtained results are valid for a great majority of writers since they show a similar 

behaviour with respect to these measures. 
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When both aspects, amount of information in each type of trajectory and non-superfluousness 

of the in-air trajectories, are considered together there seems to be no need to discard the 

information contained in in-air trajectories, as it is often done in handwriting-based biometric 

recognition systems. What is more, it may be advisable to gather and process this information 

separately. Research results presented in chapter 7 will also give support to the notion that in-

air trajectories are rich in information. 

Regarding the biometric potential of both types of trajectories measured by the difference 

between the intra-user and the inter-user cases, the results are not conclusive. On the one 

hand, the differences are always positive and, except for pressure, statistically significant. On 

the other hand, these differences are very close to zero which may prevent their use as a score 

of the similitude between different executions of the same word. Nevertheless, this lack of 

conclusiveness does not imply that handwriting words do not possess a considerable biometric 

potential; it just means that the information theory and, more precisely the selected measures 

and the experiments performed, cannot prove the existence of this potential. Fortunately, the 

recognition schema presented in chapter, 6 along with the experimental results presented in 

chapter 7, does give evidence that words and short sequences of text can perform well in 

biometric recognition tasks.  
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66   
 A RECOGNITION SYSTEM BASED ON 

CATALOGUES OF PEN-UP AND PEN-DOWN 

STROKES AND DYNAMIC TIME WARPING 
 

This chapter is entirely devoted to the recognition system that constitutes one of the major 
contributions of this dissertation. This system can perform identification and verification and, 
in both cases, can use strokes from in-air and/or on-surface trajectories. It is based on an 
innovative allographic approach that relies on catalogues of strokes built in an unsupervised 
manner by means of Self-Organizing Maps, and on Dynamic Time Warping to compare the 
sequences of strokes that constitute the sequences of online text. The first section presents a 
general overview of the recognition method. A much more in-depth view is given in the second 
and last section. All the experimental results regarding the recognition system will be reported 
in the next chapter.  

 

6.1 OVERVIEW OF THE PROPOSED METHOD 

The recognition approach proposed in this dissertation considers strokes as the structural units 

of handwriting. Any piece of text is regarded as two separate sequences, one of pen-down (on-

surface) and one of pen-up (in-air) strokes. These sequences are obtained from the original 

sequence of alternated pen-down and pen-up strokes. Each stroke, as gathered by the 

acquisition device, is itself a sequence of multi-dimensional points.  

The core of the proposed method consists of encoding each one of these sequences of strokes 

as a sequence of class-prototypes, where each class-prototype represents a whole class of 

strokes. As each class-prototype can be encoded as an integer, a very simple representation is 

achieved (Fig. 6.1). 

Once encoded, sequences of strokes (now sequences of integers) can be compared by means 

of dynamic time warping (DTW). This comparison yields a measure of the dissimilarity between 

the compared sequences. The obtained measure of dissimilarity can then be used to perform 

recognition.  

The encoding of strokes requires the existence of a catalogue of class-prototypes. In fact, such 

a catalogue is a set of classes, each class represented by its prototype. During the encoding 

stage, each stroke is encoded as the integer number representing the prototype of its class. 

Several clustering methods can be used to obtain set of classes that are somehow 

representative of the variability of the strokes found in different writers’ executions of a piece 

of text [147]. Nevertheless, the proposed method demands that prototypes can be easily 
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compared to each other since sequences of class-prototypes are going to be DTWed and DTW 

is itself a time-consuming algorithm. In order to minimize the comparison effort required 

during dissimilarity computation, a classification method that preserved the topology of the 

space of original strokes was opted for. This way, strokes that are closer to each other are 

represented by the same prototype or by prototypes that are themselves closer to each other 

and whose distance is easily computed. Self-organizing maps (SOMs) [148] provide 

classifications that meet this topology-preservation condition. 

 

Figure 6.1: Graphical depiction of the re-encoding of sequences of strokes into sequences of 
prototypes represented by integers. 

A number of users provide repetitions of the same word. Each word is decomposed into two 

sequences, one of pen-up and one of pen-down strokes. All sequences of pen-up strokes are 

shown to a SOM and as a result a catalogue of pen-up strokes is obtained. This catalogue is an 

indexed set of classes, each class represented by a prototype. An analogous procedure is 

followed to obtain the catalogue of pen-down strokes (Fig. 6.2). 
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Figure 6.2:  Schematic overview of the construction of the catalogues of strokes. 

Once a pair of catalogues is available, each writer can be modelled as a set of encoded 

sequences of pen-up and pen-down strokes. During the enrolment stage, each user provides a 

number of repetitions of the same word. Each word is decomposed into two sequences of and 

the corresponding encoded sequences are obtained by substituting each stroke by the index of 

the nearest stroke in the catalogue (Fig.  6.1). A graphical depiction of the user modelling 

process is given in Fig. 6.3.  

 

Figure 6.3: Schematic overview of a user’s model construction. 

During verification, the word the authorship of which is questioned is decomposed into the 

two sequences of its pen-down and pen-up strokes and each sequence is encoded using the 

same catalogues that were used to build the models. Then, each sequence is compared (DTW) 

against the sequences in the alleged user’s model and each comparison yields a dissimilarity 

measure. Pen-up dissimilarity measures are combined into a single measure (
upw ) and the 

same is done with the pen-down dissimilarity measures ( downw ). These two measures are then 

combined into a single dissimilarity measure of the whole word ( wordw ). As a final step, a score 

( wordSC ) is obtained from wordw . If this measure is lower than a predefined global threshold, 
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the questioned word is deemed authentic; otherwise it is deemed false (Fig. 6.4). If only one 

type of stroke is used for verification, the score (
upSC

 
or downSC ) is directly obtained from the 

corresponding dissimilarity measure. For identification, the comparison is made against all the 

known models and the authorship is granted to the user whose model produces the highest 

score (i.e. the lowest dissimilarity). 
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Figure 6.4:  Schematic overview of the devised verification process.
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6.2 DETAILED VIEW OF THE PROPOSED METHOD 

6.2.1 SEGMENTATION AND PRE-PROCESSING OF STROKES 

The proposed method relies in data that, prior to any pre-processing adheres to the SVC 

format [69]. Each execution of a word is given as seven time-sequences (vectors) that 

hereafter will be called features: x(t), the x coordinate; y(t), the y coordinate; ts(t), a time 

stamp value; bs(t), the button status value (0 for pen-up, 1 for pen-down); az(t), the azimuth; 

al(t), the altitude and pr(t) the pressure. All features have the same length, varying from 

execution to execution. Thus, the execution of a word can be formally described as a matrix 

 )(),(),(),(),(),(),( tprtaltaztbsttstytx with ],1[ Nt where N is the length (number of 

sampling units) of the execution. 

Segmentation into strokes is straightforwardly achieved thanks to the bs(t) feature (pr(t) could 

also have been used). A pen-down stroke starts at a point where bs(t) changes from 0 to 1 and 

ends at a point where bs(t) changes from 1 to 0. More formally, a pen-down stroke starts at st

and ends at et ( se tt  ) if ],[,1)( es ttttbs  and 0)( 1 stbs (or )1st and 0)( 1 etb (or 

)Nte  . Pen-up strokes can be characterised analogously. 

Thus, a non-pre-processed pen-down stroke can be described as a matrix 

 )(),(),(),(),(),(),( tprtaltazttsttstytx  where ttbs 1)( and whose starting and end-

points follow the definition given above. A non-pre-processed pen-up stroke can be described 

in an analogous manner. 

After segmentation, two sequences are obtained from each word: one of pen-down strokes 

and another one of pen-up strokes. If there is a pen-up stroke at the beginning of the word, 

then this pen-up stroke is discarded. 

Stroke pre-processing has deliberately been kept to a minimum (the impact of a more 

elaborated pre-processing in the overall performance of the method is left as a possible future 

line of research).  However, some stroke-level pre-processing is required in order to extract 

and weight the desired features and to equalize the lengths of all strokes, so that they can be 

presented to a SOM.  

After segmentation, each stroke undergoes the following steps: 

1. Non-selected features (time-stamp and button-status) are removed 
 

2. Data is resampled to be accommodated in a fixed number of points, equal for all strokes. 
For long strokes this means downsampling whereas it means upsampling for shorter ones. 
Resampling is performed by nearest neighbour interpolation and no filter is applied to the 
data being resampled. The actual resampling procedure is as follows: a vector 

),...,( 1 qvvV  of length q is resampled into a new vector ),...,( 1 pvrvrVR  of length p, 

with kvr  ( pk 1 ) being: 
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AND DYNAMIC TIME WARPING 



 


 othervisevr

qkifv
vr

k

k

k
,

'

1

'
 (6.1) 

where 1))1((' 
p

q
kroundk         

After resampling, a pen-down stroke can be formally described as a matrix where each 

column has been resampled. That is:  )(),(),(),(),( tprRtalRtazRtyRtxR . Similarly, a 

resampled pen-up stoke can be described as  )(),(),(),( talRtazRtyRtxR . 

The resampling step is required because strokes presented to a SOM must all have the 

same size (i.e. the same number of points). The actual resampling size (p) has been set to 

the nearest integer greater than or equal to the average size of the strokes to be 

presented to the SOM. 

3. All the selected features: x(t), y(t), az(t), al(t) and pr(t) are normalized to mean 0 and 
standard deviation 1. 
 

4. Features are weighted. Some features are more relevant with respect to discrimination 
than others and thus are weighted accordingly. Our preliminary experiments (conducted 
with the purpose of having a first assessment of the proposed method) suggested that the 
relevance of a feature depends on the type of the stroke. For instance, y(t) appears to  be 
more relevant than x(t) in pen-down strokes but the other way round in pen-up strokes. 
Furthermore, al(t) and az(t) seem to be slightly more relevant in pen-down strokes than in 
pen-up ones.  
The actual relative weights of the features were experimentally set to the following values: 

 For pen down-strokes, 27.0dxw , 35.0dyw , 20.0dprew , 09.0dazw , 

09.0dalw , for the x coordinate, y coordinate, pressure, azimuth and inclination 

respectively. 

 For pen up-strokes, 50.0uxw , 37.0uyw , 05.0uazw , 08.0ualw , for the x 

coordinate, y coordinate , azimuth and inclination respectively. 
 

These values were obtained using a simple brute-force search approach the goal of which 

was to maximize the identification rate for the word BIODEGRADABLE (values for pen-up 

and pen-down strokes were searched separately). Later on, the same values were tested 

for the rest of words, introducing slight variations. In all cases, the modified values yielded 

worst identification rates. Eventually it was decided to apply the same weights to all 

words. 

 A fully pre-processed pen-down stroke can be described as 

 )(),(),(),(),( tRprwtRalwtRazwtRywtRxw dprdaldazdydx 
 
and a fully pre-

processed pen-up stroke as  )(),(),(),( tRalwtRazwtRywtRxw ualuazuyux 

where R  denotes normalization after resampling and  denotes scalar multiplication. 
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6.2.2 CONSTRUCTION OF THE CATALOGUES OF STROKES 

A set of pre-processed strokes, coming from different users and sessions (but from the same 

word) is presented to a SOM in order to train it. The purpose of this step is to generate a set of 

classes (clusters) each one representing a whole set of strokes. After training, each unit in the 

map is a prototype of a class of strokes.  

It is important to guarantee that the catalogues possess the property of topology preservation 

(continuity in the mapping) [149]. Topology preservation means that strokes that are close to 

each other are mapped close in the catalogues. This property can be measured using the 

topographic error (the proportion of all strokes for which first and second best-matching 

prototypes are not adjacent units). 

In the main experiments, reported in the next chapter, the following settings have been used: 

 150 units in a sheet-shaped two-dimensional lattice with a hexagonal neighbourhood 

topology (Fig. 6.5). The final number of units may slightly vary because it is automatically 

optimized to improve the accommodation of the data presented to the SOM.  

 The training is performed during 240 epochs: 40 rough-training epochs (high learning rate 

and high neighbourhood radius) and 200 fine-training epochs (lower learning rate and 

lower neighbourhood radius). The actual construction of the SOMs is left to the SOM 

Toolbox[150][151], a specialized Matlab [152] package. 

 

Figure 6.5:  Hexagonal neighbourhoods in a two-dimensional lattice. 

With the aforementioned settings a topographic error of less than 5% (usually about 3.5%) is 

achieved. This amount of topographic error has been considered acceptable and no further 

reduction has been pursued. 

The construction of the catalogues of strokes has to be regarded as a one-time initialization 

step that could be critical for the performance of the recognition process. In a real 

environment, where users are enrolled as they come and therefore it is unfeasible to wait until 

all or most of them are known, the catalogue has to be built with just a portion of all the users 

the system will have and/or using data from writers that will not be enrolled. One of the 

remarkable properties of the proposed system is that its performance is not critically affected 

by the origin of the data used to train the SOM (users enrolled or not enrolled in the system). 
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Furthermore, the system exhibits a good performance even when the catalogues are built 

from data from few users (see section 7.2 for further details).  

Figs. 6.6 and 6.7 show the prototypes in the catalogues built from strokes coming from the 

executions of words DESBRIZNAR and ZAFARRANCHO. Notice that in the pen-down catalogues 

some strokes resemble entire characters (mostly R, S, N, C and Z) while the rest are just parts 

of characters. In all the catalogues shown, some pairs of prototypes seem almost identical. 

This is so only apparently because even if they have similar XY trajectories, they may differ in 

pressure and/or writing angles (Figs. 6.8 and 6.9). 
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Figure 6.6:  Catalogues built out of pen-down strokes from words DESBRIZNAR (up) and 
ZAFARRANCHO (down). 
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Figure 6.7: Catalogues built out of pen-up strokes from words DESBRIZNAR (up) and 
ZAFARRANCHO (down). 
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XY-trajectory Azimuth 

  
Altitude Pressure 

 
 

 

Figure 6.8: Different projections of the catalogue of pen-down strokes built from executions 
of the word DELEZNABLE (X vs. Y, top-left; Azimuth vs. time, top-right; altitude vs. time, 
bottom-left and pressure vs. time, bottom-right). 

XY-trajectory Azimuth 

  
Altitude  

 
 

 

Figure 6.9:  Different projections of the catalogue of pen-up strokes built from executions of 
the word DELEZNABLE   (X vs. Y, top-left; Azimuth vs. time, top-right and altitude vs. time, 
bottom-left). 
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6.2.3 ENCODING OF STROKES 

As each unit in the catalogue is identified by a positive integer (its index) each stroke can be 

represented by the identifier of the unit whose prototype is nearest to the stroke. That unit is 

called the Best Matching Unit (BMU) of the stroke. Strokes in each sequence (pen-up and pen-

down) are encoded using the corresponding catalogue built in the previous phase. 

So, when considering strokes of a given type (up or down), a sequence 

nssS ,...,1  (6.2) 

where each is  is a pre-processed stroke of that type , will be encoded as  

)(),...,( 1 nsBMUsBMUSE   (6.3) 

being BMU the function returning the index (in the SOM) of the best matching unit (BMUIdx) 

for the given stroke. Eventually 

nBMUIdxBMUIdxSE ,...,1  (6.4) 

where iBMUIdx is the index of best matching unit for the i-th stroke in  the sequence. 

6.2.4 DTW OVER SEQUENCES OF ENCODED STROKES 

The dissimilarity between a pair of sequences 11

11 ,..., mBMUIdxBMUIdxSE 
 

and 

22

12 ,..., nBMUIdxBMUIdxSE   where j

iBMUIdx  is the best matching unit for the i-th stroke 

in the j-th sequence is computed by means of straightforward implementation of the standard 

DTW algorithm [126]  (see Fig. 6.10). 
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Figure 6.10: DTW algorithm to compute the dissimilarity between a pair of sequences of 
strokes. 

The function COST(Index1, Index2) computes a measure of the dissimilarity between two 

(indexes of) stroke prototypes and is based on the neighbouring properties of the SOM that 

materializes the catalogue of strokes. More specifically, this dissimilarity is based on the 

length, in number of units, of the shortest path between the two prototypes in the catalogue 

of strokes: USP(Index1, Index2). USP is suitable for the purpose of computing a distance 

between strokes because SOMs exhibit topological preservation (see section 6.2.2): strokes 

close to each other tend to be clustered into neighbouring units. So, in most cases, the closer 

the best matching units of any two strokes, the closer the strokes themselves. Thanks to this 

property, the distance between two strokes can be represented by the distance of their best-

matching units in the SOM and from this distance a measure of dissimilarity can be obtained. 

Several different definitions of COST have been considered, among them: 

),(),( 2121 IndexIndexUSPIndexIndexCOST   (6.5) 

)1),(ln(),( 2121  IndexIndexUSPIndexIndexCOST  (6.6) 

),(

21
21),(

IndexIndexUSP
eIndexIndexCOST    (6.7) 

 

Algorithm DTW 

Input: encoded sequences of strokes SE1 of length m and SE2 of length n 

Output: DISS, the dissimilarity between the two input sequences 

 

CM is a (m+1)x(n+1) matrix of real numbers with indexes ranging from (0,0) to (m,n); 

 

Initialize CM with all positions equal to +∞, except CM(0,0) = 0; 

 

for i in 1..m 

for j in 1..n 

);,(: 21

ji BMUIdxBMUIdxCOSTc 
 

if CM(i-1,j)  < CM(i,j-1) and CM(i-1,j) < CM(i-1,j-1) 

c := c + CM(i-1,j); 

else if CM(i,j-1)  < CM(i-1,j) and CM(i,j-1) < CM(i-1,j-1) 

c := c + CM(i,j-1); 

else 

c := c + CM(i-1,j-1); 

end of if 

CM(i,j)  := c; 

end of inner for 

end of outer for 

 

DISS = CM(m,n)  / (m+n); 
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AND DYNAMIC TIME WARPING 

The definition based on the natural logarithm yielded the best results and has been used in all 

the recognition experiments reported in this dissertation. 

6.2.5 COMBINATION OF DISSIMILARITY MEASURES 

During verification, each sequence of encoded pen-down (or pen-up) strokes in a model has to 

be compared with the corresponding sequence in the questioned word (see Fig. 6.4). Each 

comparison yields a dissimilarity measure. All these measures have to be combined into a 

single one. To this purpose, an opinion-level fusion with a fixed-rule strategy has been used 

[153]. In order to decide which function to use, the maximum (select the biggest dissimilarity), 

the minimum (select the lowest dissimilarity) and the average were tested. The best results, 

both in terms of identification rate and verification performance, were obtained when using 

the minimum function.  

Once a single measure for each kind of stroke is obtained, these measures have to be 

combined in order to obtain a single word-level measure. This time an opinion-level fusion 

with a trained-rule strategy is applied [153].
 

The world-level dissimilarity measure ( wordD ) is the weighed summation of the dissimilarity 

measures for pen-down ( downD ) and pen-up (
upD ) strokes: 

updowndowndownword DwDwD  )1(   (6.8) 

The weighting factor ( downw ) was determined by means of a brute-force search in the interval 

[0,1]. The goal of this search was to maximize the identification rate for the word 

BIODEGRADABLE. The best value found was 585.0downw . This value has been used in all the 

experiments described in this dissertation.  

6.2.6 FROM DISSIMILARITIES TO SCORES 

Dissimilarity measures computed by the DTW algorithm or obtained by the combination of 

other dissimilarity measures are transformed into scores. A score SC is obtained from a 

dissimilarity measure ds by means of the following formula: 

max2

1

1

ds

ds

e

sc


   (6.9) 

Where dsmax is the greatest value expected by a dissimilarity measure. The ultimate purpose of 

this transformation is to shift dissimilarities into a common range, mapping high dissimilarities 

into low scores and low dissimilarities into high scores. 

Fig. 6.11 graphically depicts the the mapping of relative dissimilarities (values of maxds
ds

) into 

scores. 
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Figure 6.11:  Mapping of relative dissimilarities into scores. 
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77   
 EXPERIMENTAL RESULTS 

 

This chapter reports on the relevant experimental results yielded by the recognition system 
presented in the previous chapter, when it is applied to the sixteen uppercase words in the 
BiosecurID database. It is organized as follows: the first section describes the experimental 
process and presents the results that thereafter will be considered the baseline for subsequent 
comparisons. Sections two to five analyze the impact of the origin of the catalogues, of the 
number of writers that provide samples to build the catalogues, of the number of units in the 
catalogues and of the number of words used to recognize a writer, respectively. Finally, the 
main conclusions drawn from the results are summarized in the sixth section.  

 

Several experiments have been devised to serve a double purpose: first to evaluate the 

performance of the proposed system and the impact of different settings. And second, to 

assess the effect of combining two or more different words, thus increasing the length of the 

text-sequences used for recognition.  

All the experiments described in this dissertation have been carried out using data from the 

BiosecurID database (described in section 3.4.2) and, in particular, data of the 16 handwritten 

words. Although the number of writers that donated their handwriting was 400, a close 

inspection of the acquired data revealed that 30 of them did not follow the required 

conditions since their samples contain corrections, crossing-outs or more than one word in a 

line. These writers have been discarded and therefore the total number of writers available for 

experimentation is 370.   

In order to facilitate the comparison of the results obtained, one of the experiments will be 

regarded as the reference experiment. The results of this experiment, fully described in the 

following section, will constitute the baseline on which to make comparisons.  

7.1 REFERENCE EXPERIMENTAL PROCESS, REFERENCE EXPERIMENT 

AND REFERENCE RESULTS 

The whole set of 370 writers has been divided into two disjoint subsets of 50 (the catalogue 

subset) and 320 (the train-and-test subset) writers.  

During the catalogue-building phase all data in the catalogue subset is used to build the 

catalogues of pen-up and pen-down strokes. As the BiosecurID database provides 4 executions 

(obtained in different sessions) of each word, this means that the catalogues have been built 

with strokes obtained from 50x4=200 executions of each word (See Fig. 6.2 in chapter 6). 
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The data in the train-and-test subset is used in the train-and-test phase as follows: for each 

writer, 3 of the 4 executions of each word are used to build the model for that writer (thus a 

model contains 3 re-encoded sequences of pen-up strokes and 3 re-encoded sequences of 

pen-down strokes. See Fig. 6.3 in chapter 6). The fourth execution is used for testing (see Fig. 

6.4 in chapter 6). For each type of stroke, each testing execution is compared against the 

3x320=960 sequences in the models, yielding 320 dissimilarity measures (each model produces 

3 measures, one per sequence, but only 1 is retained). Thus, the total number of dissimilarity 

measures obtained is 3202 = 102400 (320 intra-writer measures and 102080 inter-writer 

measures). From these measures, the identification rate, the verification error and the equal 

error rate are computed. 

The train-and-test phase is repeated four times. Each time a different session is used for 

testing. Fig. 7.1 provides a graphical description of the experimental process. 

 

Figure 7.1:  Graphical depiction of the experimental process that led to the results shown in 
Table 7.1. 
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 EXPERIMENTAL RESULTS 

Table 7.1 summarizes the results obtained in the four repetitions of the test-and-train phase. 

Values shown are the averages. Standard deviations are given in Table 7.2. Figs. 7.2, 7.3 and 

7.4 give a graphical representation of data in Table 7.1. Figs. 7.5 and 7.6 show the DET-curves 

for the best and the worst performing words.  

The following facts are worth noticing: 

1. Performance of pen-up and pen-down strokes is quite similar. In some cases pen-up 

strokes slightly outperform pen-down ones (e.g. word DESPRENDER). The information 

analysis reported in chapter 5 already showed that, except from pressure, the amount of 

information in each type of trajectory was quite similar  

2. The measures obtained when combining information (dissimilarities) from the two types of 

strokes always outperform the measures obtained prior to the combination. The 

information analysis also suggested that the two types of trajectories contained a certain 

amount of non-redundant information.  
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WORD TEXT LENGTH 

IN-AIR 
TRAJECTORIES  

(PEN-UP STROKES) 

ON-SURFACE 
TRAJECTORIES  

(PEN-DOWN STROKES) 
COMBINATION 

Mean IDR Mean VE Mean EER Mean IDR Mean VE Mean EER Mean IDR Mean VE Mean EER 

W1 BIODEGRADABLE 12 80,0% 4,35% 4,72% 81,4% 4,29% 4,62% 93,0% 2,67% 2,88% 

W2 DELEZNABLE 10 72,1% 5,89% 6,23% 73,8% 4,48% 4,69% 88,4% 2,98% 3,29% 

W3 DESAPROVECHAMIENTO 18 89,8% 2,98% 3,28% 89,3% 3,62% 3,91% 96,4% 2,05% 2,50% 

W4 DESBRIZNAR 10 74,3% 5,10% 5,61% 71,6% 5,77% 5,99% 86,6% 3,59% 3,75% 
W5 DESLUMBRAMIENTO 15 83,9% 3,82% 4,12% 84,2% 3,93% 4,22% 94,7% 2,49% 2,74% 

W6 DESPEDAZAMIENTO 15 89,1% 3,39% 3,60% 84,4% 4,47% 4,62% 94,5% 2,84% 3,00% 

W7 DESPRENDER 10 71,3% 5,55% 5,69% 67,7% 6,58% 6,88% 84,2% 4,26% 4,59% 

W8 ENGUALDRAPAR 12 72,0% 5,76% 6,09% 71,2% 6,33% 6,86% 86,5% 4,18% 4,51% 

W9 EXPRESIVIDAD 12 75,5% 5,05% 5,69% 79,3% 4,00% 4,16% 91,9% 2,50% 2,81% 

W10 IMPENETRABLE 12 78,4% 4,90% 5,22% 73,1% 5,55% 5,98% 88,5% 3,25% 3,51% 
W11 INEXPUGNABLE 12 82,3% 4,05% 4,29% 83,4% 4,18% 4,53% 94,5% 2,45% 2,58% 

W12 INFATIGABLE 11 79,2% 4,38% 4,60% 79,5% 4,04% 4,29% 90,9% 2,24% 2,42% 

W13 INGOBERNABLE 12 74,8% 5,56% 5,83% 81,3% 5,03% 5,25% 90,9% 3,66% 3,93% 

W14 MANSEDUMBRE 11 63,4% 6,81% 7,09% 68,6% 7,87% 8,28% 84,1% 5,60% 5,87% 

W15 ZAFARRANCHO 11 63,1% 7,40% 7,58% 65,2% 7,13% 7,42% 81,9% 5,26% 5,69% 
W16 ZARRAPASTROSA 13 61,9% 8,22% 8,59% 67,3% 6,81% 7,20% 81,9% 5,37% 5,57% 

Average over the 16 words 75,7% 5,20% 5,52% 76,3% 5,25% 5,56% 89,3% 3,46% 3,73% 

Table 7.1: Results obtained in the reference experiment. 
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 EXPERIMENTAL RESULTS 

WORD 

IN-AIR 
TRAJECTORIES 

(PEN-UP STROKES) 

ON-SURFACE 
TRAJECTORIES 

(PEN-DOWN STROKES) 
COMBINATION 

Std. 
dev. IDR 

Std. 
dev. 
VE 

Std. 
dev. EER 

Std. 
dev. IDR 

Std. 
dev. 
VE 

Std. 
dev. EER 

Std. 
dev. IDR 

Std. 
dev. 
VE 

Std. 
dev. EER 

W1 3,07% 0,35% 0,28% 2,80% 0,23% 0,29% 1,97% 0,25% 0,30% 

W2 2,74% 1,19% 1,08% 2,38% 0,70% 0,67% 2,52% 0,29% 0,19% 

W3 1,41% 0,27% 0,60% 1,18% 0,37% 0,60% 0,74% 0,46% 0,45% 

W4 1,70% 0,20% 0,26% 3,21% 0,65% 0,60% 1,60% 0,33% 0,36% 

W5 1,48% 0,28% 0,17% 2,85% 0,29% 0,40% 1,05% 0,45% 0,58% 
W6 1,99% 0,74% 0,80% 2,18% 0,49% 0,45% 1,04% 0,70% 0,75% 

W7 1,12% 0,32% 0,26% 4,25% 0,75% 0,89% 1,72% 0,18% 0,32% 

W8 0,97% 0,82% 0,96% 2,64% 0,32% 0,46% 1,56% 0,38% 0,52% 

W9 2,61% 0,90% 1,24% 0,64% 0,57% 0,55% 1,30% 0,90% 1,17% 

W10 2,60% 0,82% 0,84% 3,77% 0,73% 0,89% 3,18% 0,67% 0,69% 
W11 1,95% 0,44% 0,58% 2,59% 0,37% 0,65% 1,47% 0,22% 0,30% 

W12 1,16% 0,18% 0,12% 2,41% 0,15% 0,12% 1,06% 0,24% 0,29% 

W13 1,39% 0,29% 0,31% 2,08% 0,35% 0,53% 1,36% 0,22% 0,39% 

W14 2,34% 0,53% 0,64% 3,48% 0,52% 0,28% 1,81% 0,36% 0,17% 

W15 2,83% 0,37% 0,39% 3,36% 0,39% 0,47% 1,28% 0,24% 0,29% 
W16 3,07% 0,84% 0,79% 0,69% 0,40% 0,64% 1,37% 0,47% 0,50% 

Table 7.2: Standard deviations corresponding to the results shown in table 7.1 
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Figure 7.2: Identification rates (IDRs) obtained in the reference experiment. 
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Figure 7.3:  Verification Errors (VEs) obtained in the reference experiment. 
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Figure 7.4: Equal Error Rates (EERs) obtained in the reference experiment. 
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Figure 7.5:  DET-plots for the best-performing words in terms of verification error (DESAPROVECHAMIENTO mean VE=2.05%) and equal error rate (INFATIGABLE, mean 
EER=2.42%). 
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Figure 7.6: DET-plots for the two worst-performing words: MANSEDUMBRE (mean VE=5.60%, mean EER=5.87%) and ZARRAPASTROSA, (mean VE=5.37%, mean 
EER=5.57%).
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 EXPERIMENTAL RESULTS 

7.2 IMPACT OF THE ORIGIN OF THE CATALOGUES. ENDOCATALOGUES 

AND EXOCATALOGUES 

As it has already been stated, the catalogues of strokes are a critical part of the proposed 

schema. Therefore, it is important to get some knowledge on the impact that some decisions 

regarding their construction may have on the overall performance of the system. One such 

decision is the origin of the strokes used to train the SOMs. These strokes could come from the 

same writers that, later on, would be enrolled, or they could come from different writers that 

would never be enrolled in the system. The former type of catalogues will be referred as 

endocatalogues while the latter will be referred as exocatalogues. Endocatalogues imply that 

prior to the enrolment phase a certain amount of users is already known. This situation may 

be, in most practical cases, quite unrealistic since users are enrolled as they come and it may 

make little sense to have to wait until a minimum amount of them is ready to provide their 

samples. On the other hand, exocatalogues are a more realistic option since it is feasible to 

obtain data from anonymous donors (e.g. writers in a public database), use this data to build 

the catalogues and later on enrol the real users of the system as they come. 

Experiments show that the origin of the writers used to build the catalogues may have little or 

no impact at all on the performance of the system. Two variations of the reference 

experimental process have been run. Both variations consider endocatalogues: 

 In the first variation, catalogues are built out of executions from 50 users that will also be 

used in the train-and-test phase. The train-and-test phase is carried out with those 50 

users plus other 270 users (totalling 320 users as in the train and test subset of the 

reference experiment). 

 In the second variation the catalogue and the train-and-test subsets contain exactly the 

same 320 users. 

The results obtained in the two aforementioned variations are summarized in Table 7.3. Notice 

that they are not given in a per-word basis but as the average over the 16 words. Fig. 7.7 

provides a graphical view of the same data. 

ORIGIN AND 
NUMBER OF 

WRITERS TO BUILD 
THE CATALOGUES 

IN-AIR 
TRAJECTORIES (PEN-UP 

STROKES) 

ON-SURFACE 
TRAJECTORIES (PEN-

DOWN STROKES) 
COMBINATION 

Mean 
IDR 

Mean  
VE 

Mean 
EER 

Mean 
IDR 

Mean  
VE 

Mean 
EER 

Mean 
IDR 

Mean  
VE 

Mean 
EER 

Exocatalogue, 50 
(reference experiment) 

75,7% 5,20% 5,52% 76,3% 5,25% 5,56% 89,3% 3,46% 3,73% 

Endocatalogue, 50 75,9% 5,19% 5,48% 76,9% 5,24% 5,56% 89,4% 3,42% 3,66% 

Endocatalogue, 320 76,6% 4,76% 5,07% 77,2% 4,89% 5,15% 90,2% 3,15% 3,01% 

Table 7.3:  Average over the 16 words of the recognition performance as a function of the 
origin and number of the writers used to build the catalogues. 
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Figure 7.7: Graphical view of the data shown in Table 7.3. 

The significance of the difference between the results obtained using an endocatalogue of 50 

writers and an exocatalogue of the same number of writers has been studied. For each word 

and performance metric (IDR, EER, and VE) the difference between one and the other case has 

been calculated. For each metric, the set of 16 differences has been normalized to mean 0 and 

standard deviation 1 and put to a Kolmogorov-Smirnov test. In all three cases, the set of 

differences has been found to be consistent with the hypothesis of normality (H0: the set of 

differences follows a normal distribution; H1: the set of differences does not follow a normal 

distribution; with a significance level of =0.05, H0 is never rejected therefore normality can 

be assumed). As a final step, each normalized set has been put to a Student’s bilateral paired t-

test with null hypothesis H0: the difference is zero; alternative hypothesis H1: the difference is 

not zero; degrees of freedom 15. Table 7.4 shows the p-values obtained. Notice that in all 

cases and for all metrics, the null hypothesis cannot be rejected since the p-values are far from 

the usual rejection levels (0.05 or less). Therefore, there is no statistical evidence that 

performance is different when using an endocatalogue. 
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 EXPERIMENTAL RESULTS 

 

 

IN-AIR 
TRAJECTORIES (PEN-UP 

STROKES) 

ON-SURFACE 
TRAJECTORIES (PEN-DOWN 

STROKES) 
COMBINATION 

IDR VE EER IDR VE EER IDR VE EER 

p-
value 

0.60 0.88 0.63 0.16 0.84 0.94 0.50 0.45 0.34 

Table 7.4:  P-values obtained when testing the hypothesis that the difference between the 
endo-50 and the exo-50 cases is non-null. 

7.3 IMPACT OF THE NUMBER OF WRITERS USED TO BUILD THE 

EXOCATALOGUES 

Another issue that deserves some attention is the impact of the amount of data used to build 

the catalogues. In order to assess this impact the reference experiment has been re-run with 

catalogues made out of executions coming from 10, 20, 30 and 40 users. Table 7.5 and Fig. 7.8 

show the results obtained.  

NUMBER OF 
WRITERS TO BUILD 

THE 
EXOCATALOGUES 

IN-AIR 
TRAJECTORIES (PEN-UP 

STROKES) 

ON-SURFACE 
TRAJECTORIES (PEN-

DOWN STROKES) 
COMBINATION 

Mean 
IDR 

Mean  
VE 

Mean 
EER 

Mean 
IDR 

Mean  
VE 

Mean 
EER 

Mean 
IDR 

Mean  
VE 

Mean 
EER 

10 75,2% 5,30% 5,63% 75,3% 5,50% 5,78% 89,0% 3,52% 3,80% 

20 76,1% 5,26% 5,56% 76,2% 5,22% 5,52% 89,3% 3,48% 3,71% 
30 76,1% 5,28% 5,55% 76,4% 5,15% 5,47% 89,6% 3,35% 3,59% 

40 75,9% 5,26% 5,62% 76,2% 5,23% 5,54% 89,2% 3,39% 3,66% 

50 (reference experiment) 75,7% 5,20% 5,52% 76,3% 5,25% 5,56% 89,3% 3,46% 3,73% 

Table 7.5:  Average over the 16 words of the recognition performance as a function of the 
number of writers used to build the catalogues. 
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Figure 7.8: Graphical view of the data shown in table 7.5. 

The significance of the difference between the results obtained using an exocatalogue of 50 

writers (reference experiment) and an exocatalogue of 10 writers has been analyzed. A 

procedure similar to the procedure described in the previous subsection (impact of the 

number of writers) has been followed: first the normality of the differences has been tested 

and the hypothesis has not been rejected. After that, the sets of differences have been put to a 

Student’s bilateral paired t-test with null hypothesis H0: the difference is zero; alternative 

hypothesis H1: the difference is not zero; degrees of freedom 15. Table 7.6 shows the p-values 

obtained. Only for pen-down strokes, and especially for VE, there seems to be some statistical 

evidence than an exocatalogue built with strokes from 10 users performs worse than an 

exocatalogue built out of data from 50 writers. 

 

IN-AIR 
TRAJECTORIES (PEN-UP 

STROKES) 

ON-SURFACE 
TRAJECTORIES (PEN-DOWN 

STROKES) 
COMBINATION 

IDR VE EER IDR VE EER IDR VE EER 

p-
value 

0.38 0.34 0.35 0.07 0.013 0.06 0.23 0.42 0.39 

Table 7.6: P-values obtained when testing the hypothesis that the difference between the 
exo-10 and the exo-50 cases is non-null. In green the case where there is statistical evidence 
of a significant difference (p-value < 0.05). In yellow the cases where there might be some 
evidence of a significant difference (p-value slightly above 0.05).   
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 EXPERIMENTAL RESULTS 

7.4 IMPACT OF THE SIZE OF THE CATALOGUES (NUMBER OF UNITS) 

Another issue that deserves some attention is the size, in number of units, of the catalogues. 

Bigger catalogues may require longer training time and will demand larger amounts of storage. 

The lower these time and space requirements, the wider the number of devices on which the 

proposed schema could be deployed.    

Table 7.7 shows the performances obtained for different sizes of the catalogues. Fig. 7.9 is a 

graphical view of the data contained in the table. 

NUMBER OF 
UNITS IN THE 
CATALOGUES 

IN-AIR 
TRAJECTORIES (PEN-UP 

STROKES) 

ON-SURFACE 
TRAJECTORIES (PEN-

DOWN STROKES) 
COMBINATION 

Mean 
IDR 

Mean  
VE 

Mean 
EER 

Mean 
IDR 

Mean  
VE 

Mean 
EER 

Mean 
IDR 

Mean  
VE 

Mean 
EER 

50 68,3% 6,23% 6,57% 68,5% 6,31% 6,72% 85,1% 4,02% 4,27% 

100 74,2% 5,45% 5,79% 74,0% 5,56% 5,88% 88,2% 3,54% 3,84% 
150 75,7% 5,20% 5,52% 76,3% 5,25% 5,56% 89,3% 3,46% 3,73% 

200 76,1% 5,22% 5,56% 78,0% 4,97% 5,27% 89,9% 3,33% 3,65% 

250 76,9% 5,13% 5,44% 78,5% 4,81% 5,11% 90,1% 3,22% 3,52% 

300 77,1% 5,16% 5,50% 79,6% 4,74% 5,06% 90,6% 3,23% 3,48% 

350 77,1% 5,05% 5,37% 79,7% 4,69% 4,95% 90,9% 3,23% 3,52% 
400 76,8% 5,13% 5,43% 80,5% 4,55% 4,84% 90,8% 3,14% 3,42% 

450 77,2% 5,13% 5,46% 80,6% 4,55% 4,82% 91,0% 3,12% 3,37% 

500 76,8% 5,20% 5,53% 80,7% 4,52% 4,88% 91,0% 3,15% 3,48% 

Table 7.7:  Average over the 16 words of the recognition performance as a function of the 
number of units in the catalogues. Results of the reference experiment are in red. 
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Figure 7.9: Graphical view of the data shown in Table 7.7. 

The significance of the difference between the results obtained using an exocatalogue of 50 

writers and 150 units (reference experiment) and other exocatalogues of 50 writers and a 

varying number of units has been studied. In all cases the differences have been found 

consistent with a normal distribution and have been put to a Student’s bilateral paired t-test 

with exactly the same hypothesis and degrees of freedom than in the preceding cases. Table 

7.8 shows the p-values obtained. The following can be noticed: 

(a) The difference between 50 and 150 units is always statistically significant (p-value << 

0.05). 

 

(b) The difference between 150 and 200 units is significant for pen-down strokes and for 

the combination of strokes (except for the EER) but no for the pen-up stokes.  

 

(c) For verification (VE and EER) pen-up strokes show no significant difference when going 

from 150 to 300 or 500 units. 
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UNITS 

IN-AIR 
TRAJECTORIES  

(PEN-UP STROKES) 

ON-SURFACE 
TRAJECTORIES  

(PEN-DOWN STROKES) 
COMBINATION 

IDR VE EER IDR VE EER IDR VE EER 

50 vs. 150 units 10
-10

 10
-9

 10
-8

 10
-9

 10
-6

 10
-7

 10
-9

 10
-7

 10
-7

 

150 vs. 200 units 0.23 0.81 069 10
-4

 10
-3

 0.01 0.02 0.02 0.16 

150 vs. 300 units 10
-3

 0.66 0.87 10
-8

 10
-5

 10
-5

 10
-4

 10
-3

 10
-3

 

150 vs. 500 units 0.04 0.98 0.88 10
-8

 10
-6

 10
-6

 10
-6

 10
-3

 10
-4

 

Table 7.8: P-values obtained when testing the hypothesis of differences among several 
values for the number of units used in the construction of the catalogues. In green the cases 
where there is statistical evidence of a significant difference (p-value < 0.05). 

From the previously reported statistical tests it seems plausible to infer that pen-up strokes 

probably require smaller catalogues to achieve an acceptable performance, and that they are 

less sensitive to the increase in the number of units. 

7.5 IMPACT THE OF NUMBER OF WORDS 

In chapter 3 it has been asserted that the longer the sequence of text, the greater the accuracy 

of the recognition. In order to cast some evidence onto this affirmation, the results obtained in 

the reference experiment have been further combined. This is equivalent to the addition of an 

extra combination step in the recognition process, in which the dissimilarity measures 

obtained from two (or more) different words are combined and yield a single dissimilarity 

measure. Fig. 7.10 shows a graphical depiction of the verifications process when it involves not 

one but two words. 

 

 

Figure 7.10:  Verification process involving two words. 
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Figs. 7.11 and 7.12 provide a graphical summary of the average performances obtained with 

one, two, three and four words. Next two subsections give more detailed information. 

 

Figure 7.11:  Average IDR as a function of the number of words combined. 

 

Figure 7.12: Average verification accuracy (VE and EER) as a function of the number of words 
combined. 

7.5.1 COMBINATION OF TWO DIFFERENT WORDS 

Tables 7.9, 7.10 and 7.11 contain all the performance metrics obtained with pairs of words 

from the BiosecurID database. Figs 7.13 and 7.14 show the best and the worst verification 

enhancements achieved when combining two words. Notice that in all cases, without 

exception, the combination outperforms the words being combined, both in identification 

performance (IDR) and verification accuracy (VE and EER).  
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  88,4% 96,4% 86,6% 94,7% 94,5% 84,2% 86,5% 91,9% 88,5% 94,5% 90,9% 90,9% 84,1% 81,9% 81,9% 

BIODEGRADABLE 93,0% 97,7% 99,1% 97,2% 98,9% 98,6% 97,7% 97,9% 98,4% 98,0% 99,3% 98,4% 98,5% 97,5% 97,6% 98,3% 

DELEZNABLE 88,4%  98,3% 98,0% 98,8% 98,1% 96,6% 97,3% 98,4% 97,3% 98,8% 98,7% 98,1% 96,6% 97,7% 97,3% 

DESAPROVECHAMIENTO 96,4%   98,6% 98,8% 98,7% 98,1% 98,4% 98,4% 98,2% 99,1% 98,9% 98,9% 98,0% 97,8% 98,3% 

DESBRIZNAR 86,6%    98,1% 97,5% 96,1% 97,2% 97,3% 97,3% 98,8% 98,3% 98,4% 96,1% 96,8% 96,7% 

DESLUMBRAMIENTO 94,7%     98,3% 97,0% 98,2% 99,1% 98,3% 99,2% 98,8% 98,8% 98,4% 98,5% 98,4% 

DESPEDAZAMIENTO 94,5%      97,1% 97,8% 98,3% 98,1% 98,8% 98,6% 98,6% 97,1% 97,3% 98,0% 

DESPRENDER 84,2%       96,8% 97,8% 95,7% 97,9% 97,9% 97,3% 93,8% 96,6% 96,8% 

ENGUALDRAPAR 86,5%        97,1% 96,8% 98,0% 98,0% 98,0% 95,8% 95,8% 96,8% 

EXPRESIVIDAD 91,9%         97,5% 98,8% 97,9% 98,3% 97,0% 97,3% 97,7% 

IMPENETRABLE 88,5%          98,1% 97,3% 97,7% 95,9% 97,4% 96,9% 

INEXPUGNABLE 94,5%           98,3% 98,4% 97,3% 98,1% 98,4% 

INFATIGABLE 90,9%            97,7% 97,2% 96,8% 97,3% 

INGOBERNABLE 90,9%             96,3% 97,2% 97,7% 

MANSEDUMBRE 84,1%              95,7% 96,6% 

ZAFARRANCHO 81,9%               94,4% 

Mean over all 
possible combinations 

97,7% 
               

Table 7.9: Results  for IDR. Highlighted values are the best (99.3%) and the worst (93.8). Original values for each individual word are shown in red. 
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  2,98% 2,05% 3,59% 2,49% 2,84% 4,26% 4,18% 2,50% 3,25% 2,45% 2,24% 3,66% 5,60% 5,26% 5,37% 
BIODEGRADABLE 2,67% 1,42% 1,00% 1,58% 1,06% 1,58% 1,60% 1,79% 1,00% 1,32% 1,00% 1,03% 1,35% 1,91% 1,90% 1,90% 
DELEZNABLE 2,98%  1,39% 1,66% 1,47% 1,62% 1,97% 1,77% 1,26% 1,82% 1,31% 1,23% 1,59% 2,09% 2,13% 2,09% 
DESAPROVECHAMIENTO 2,05%   1,46% 1,32% 1,65% 1,70% 1,68% 1,19% 1,65% 1,11% 1,04% 1,48% 1,96% 2,00% 1,79% 
DESBRIZNAR 3,59%    1,56% 1,86% 2,24% 2,13% 1,69% 1,76% 1,35% 1,42% 1,59% 2,52% 2,52% 2,19% 
DESLUMBRAMIENTO 2,49%     1,75% 1,84% 1,80% 1,34% 1,74% 1,14% 1,22% 1,53% 2,10% 1,91% 1,71% 
DESPEDAZAMIENTO 2,84%      2,13% 2,21% 1,72% 1,70% 1,20% 1,28% 1,63% 2,22% 2,25% 1,94% 
DESPRENDER 4,26%       2,34% 1,82% 2,10% 1,62% 1,22% 1,99% 2,72% 2,08% 2,03% 
ENGUALDRAPAR 4,18%        1,64% 2,11% 1,72% 1,73% 2,08% 2,79% 3,03% 3,05% 
EXPRESIVIDAD 2,50%         1,52% 1,31% 1,32% 1,37% 2,16% 1,48% 1,57% 
IMPENETRABLE 3,25%          1,52% 1,54% 2,05% 2,61% 2,34% 2,11% 
INEXPUGNABLE 2,45%           1,27% 1,54% 2,27% 1,80% 1,74% 
INFATIGABLE 2,24%            1,68% 2,10% 2,12% 2,00% 
INGOBERNABLE 3,66%             2,64% 2,43% 2,10% 
MANSEDUMBRE 5,60%              3,29% 3,13% 
ZAFARRANCHO 5,26%               3,79% 

Mean over all  
possible 
combinations 

1,81% 

Table 7.10: Results  for VE. Highlighted values are the best (1%) and the worst (3.79%). Original values for each individual word are shown in red. 
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  3,29% 2,50% 3,75% 2,74% 3,00% 4,59% 4,51% 2,81% 3,51% 2,58% 2,42% 3,93% 5,87% 5,69% 5,57% 
BIODEGRADABLE 2,88% 1,63% 1,18% 1,78% 1,11% 1,73% 1,82% 1,98% 1,11% 1,54% 1,09% 1,24% 1,49% 2,17% 2,13% 2,05% 
DELEZNABLE 3,29%  1,56% 1,88% 1,71% 1,82% 2,27% 1,81% 1,41% 1,95% 1,50% 1,47% 1,86% 2,34% 2,52% 2,27% 
DESAPROVECHAMIENTO 2,50%   1,64% 1,41% 1,73% 1,95% 1,88% 1,27% 1,80% 1,27% 1,23% 1,72% 2,10% 2,20% 1,96% 
DESBRIZNAR 3,75%    1,73% 2,25% 2,41% 2,42% 1,81% 1,96% 1,64% 1,57% 1,79% 2,74% 2,73% 2,49% 
DESLUMBRAMIENTO 2,74%     2,03% 2,09% 1,95% 1,35% 1,88% 1,32% 1,34% 1,88% 2,21% 2,19% 2,04% 
DESPEDAZAMIENTO 3,00%      2,44% 2,41% 2,02% 1,81% 1,40% 1,51% 1,96% 2,48% 2,48% 2,27% 
DESPRENDER 4,59%       2,64% 2,02% 2,33% 1,78% 1,40% 2,28% 2,89% 2,34% 2,26% 
ENGUALDRAPAR 4,51%        1,82% 2,46% 1,87% 2,11% 2,26% 2,99% 3,37% 3,36% 
EXPRESIVIDAD 2,81%         1,78% 1,48% 1,49% 1,55% 2,29% 1,70% 1,87% 
IMPENETRABLE 3,51%          1,70% 1,64% 2,20% 2,80% 2,58% 2,31% 
INEXPUGNABLE 2,58%           1,56% 1,79% 2,36% 1,98% 1,95% 
INFATIGABLE 2,42%            1,81% 2,21% 2,35% 2,26% 
INGOBERNABLE 3,93%             2,97% 2,74% 2,27% 
MANSEDUMBRE 5,87%              3,80% 3,44% 
ZAFARRANCHO 5,69%               4,00% 

Mean over all  
possible 
combinations 

2.02% 

Table 7.11: Results  for EER. Highlighted values are the best (1.09%) and the worst (4%). Original values for each individual word are shown in red.
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Figure 7.13: DET-plots for the best-performing combinations of words in terms of 
verification error (BIODEGRABLE+DESAPROVECHAMIENTO, mean VE=1%) and equal error 
rate (BIODEGRADABLE+INEXPUGNABLE, mean EER=1.09%). 

 

 

Figure 7.14: DET-plot for the worst-performing combination of words in terms of verification 
error and equal error rate (ZAFARRANCHO+ZARRAPASTROSA, mean VE=3.79%, mean 
EER=4%). 
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 EXPERIMENTAL RESULTS 

7.5.2 COMBINATION OF THREE AND FOUR WORDS 

The word-level combination process can be extended to an arbitrary number of words. The 

cases of three and four words have been scrutinized and the results are summarized in Tables 

7.12, 7.13 and 7.14 (three words) and 7.15, 7.16 and 7.17 (four words). 

PERFORMANCE IDR WORDS 

BEST 99.8% 

W1, W5 and W11 BIODEGRADABLE+DESLUMBRAMIENTO+INEXPUGNABLE 

W2, W4, and W12 DELEZNABLE+DESBRIZNAR+INFATIGABLE 

W3, W4, and W12 DESAPROVECHAMIENTO+ DESBRIZNAR+INFATIGABLE 

WORST 97.9% 

W4, W7 and W14 DESBRIZNAR+DESPRENDER+MANSEDUMBRE 

W7, W10 and 
W14 

DESPRENDER+IMPENETRABLE+MANSEDUMBRE 

W8, W14 and 
W15 

ENGUALDRAPAR+MANSEDUMBRE+ZAFARRANCHO 

MEAN 99.1% 

Table 7.12: Summary of IDRs obtained when combining three different words. 

PERFORMANCE VE WORDS 

BEST 0.61% 
W1, W3 and 
W12 

BIODEGRADABLE+DESAPROVECHAMIENTO+INFATIGABLE 

WORST 2.78% W14, W15, W16 MANSEDUMBRE+ZAFARRANCHO+ZARRAPASTROSA 

MEAN 1.29% 

Table 7.13: Summary of VEs obtained when combining three different words. 

PERFORMANCE EER WORDS 

BEST 0.71% 
W1, W3 and 
W12 

BIODEGRADABLE+DESAPROVECHAMIENTO+INFATIGABLE 

WORST 3.04% W14, W15, W16 MANSEDUMBRE+ZAFARRANCHO+ZARRAPASTROSA 

MEAN 1.47% 

Table 7.14: Summary of EERs obtained when combining three different words. 
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PERFORMANCE IDR WORDS 

BEST 99.9% 

W2, W4, W7 and W12 
DELEZNABLE+DESBRIZNAR+ 
+DESPRENDER+INFATIGABLE 

W2, W4, W9 and W12 
DELEZNABLE+DESBRIZNAR+ 
+EXPRESIVIDAD+INFATIGABLE 

W4, W7, W12 and W16 
DESBRIZNAR+DESPRENDER+ 
+INFATIGABLE+ZARRAPASTROSA 

WORST 98.6% W7, W10, W14 and W16 
DESPRENDER+IMPENETRABLE+ 
+MANSEDUMBRE+ZARRAPASTROSA 

MEAN 99.5% 

Table 7.15: Summary of IDRs obtained when combining four different words. 

PERFORMANCE VE WORDS 

BEST 0.51% W1, W5, W9 and W11 
BIODEGRADABLE+DESLUMBRAMIENTO+ 
+EXPRESIVIDAD+INEXPUGNABLE 

WORST 2.22% W8, W14, W15 and W16 
ENGUALDRAPAR+MANSEDUMBRE+ 
+ZAFARRANCHO+ZARRAPASTROSA 

MEAN 1.04% 

Table 7.16: Summary of VEs obtained when combining four different words. 

PERFORMANCE EER WORDS 

BEST 0.58% W1, W3, W9 and W11  
BIODEGRADABLE+DESAPROVECHAMIENTO+ 
+EXPRESIVIDAD+INEXPUGNABLE 

WORST 2.36% W8, W14, W15 and W16 
ENGUALDRAPAR+MANSEDUMBRE+ 
+ZAFARRANCHO+ZARRAPASTROSA 

MEAN 1.20% 

Table 7.17: Summary of EERs obtained when combining four different words. 
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 EXPERIMENTAL RESULTS 

7.6 CONCLUSIONS 

The results obtained in the experiments and reported in the previous sections show that data 

gathered from online handwritten words carry enough information to effectively discriminate 

among writers. Identification rates (IDR) and verification errors (VE and EER) suggest that 

handwritten words may be of applicability in online biometric recognition systems. Long words 

(such as DESAPROVECHAMIENTO) and combinations of two or more words exhibit a 

considerable recognition performance. Although much care has to be taken when comparing 

the performance of different biometric modalities because of their inherent differences and 

because the conditions under which they are tested may vary greatly (for instance in today’s 

state of the art, methods relying on signatures consider skilled forgeries), we consider that this 

recognition performance may, in some cases, lie not much below than that of signatures.  

It is worth noticing that the experiments described in the previous sections have been carried 

out with a very limited number of repetitions for training, constrained by the number of 

repetitions provided by the BiosecurID database (only four repetitions were available and one 

of them had to be used for testing). From this fact, the following two conclusions may arise:  

(a) first, there may be room for further improvement of the identification ratios and 

verification errors, could more repetitions be available for training and  

 

(b) second, in a real verification scenario, the proposed approach may compare positively 

with respect to others with regard to  users’ comfort and acceptance because 

enrolment is easy, little invasive and can be performed quickly.     

The separation of pen-down and pen-up strokes, one of the aspects that contribute to the 

novelty of the presented approach, has proven to be worthwhile. On the one hand it has given 

us the possibility to show that the invisible and often discarded or not considered per-se, in-air 

trajectories of the writing device, not only carry a noticeable amount of information but this 

information is meaningful and useful for biometric recognition purposes. The identification 

and verification performances of pen-up strokes have been found to be virtually equal to those 

of pen-down strokes. This result is quite encouraging for it reinforces the idea that pen-up 

strokes not only are worth being considered but deserve to be analyzed on their own. On the 

other hand, experiments also show that the dissimilarity measures obtained from both types 

of strokes can be successfully combined into a single measure, with the latter outperforming 

the former ones. This result is also relevant because it provides further evidence that pen-up 

and pen-down strokes contain a certain amount of non-redundant information (see chapter 5), 

again reinforcing the idea that both types of strokes are worth taking into account. 

When it comes to the combination of measures from single words, the experiments show that 

the combinations outperform the measures being combined. This provides some evidence to 

the notion that it is possible to improve the overall performance asking the user to write 

longer sequences or just combing shorter words. Needless to say that the experiments have 

been constrained by the words provided by the BiosecurID database, which are all quite long 

(no less than 10 letters). But even so, the fact that the combinations outperform the words 

being combined may well imply that, in a practical environment, combinations of shorter 
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words may yield reasonable results too, probably dependent on the total length of the 

sequence.  

The experiments have also addressed the issue of the initialization of the system and, more 

precisely, the issues of the amount of data required to bootstrap the system and of the source 

of this data, since the proposed method heavily relies on the construction of the catalogues of 

strokes. This construction must take place before the recognition system is put to work, that is, 

before the first user is enrolled. It has been shown that these catalogues can be built from sets 

(of samples) of limited size and that the samples can come from the same users that will later 

on be enrolled in the system (endocatalogues) or even from users that will not be enrolled in 

the system (exocatalogues). What is more, the overall performance of the recognition does 

not seem much affected neither by the number of samples nor by their origin. 
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88   
 RECOGNITION ENHANCEMENT BY MEANS 

OF SYNTHETICALLY GENERATED TEXT 
 

In this chapter a method to generate synthetic executions of online words is presented. This 
method, inspired and based on the recognition system previously presented in chapter 6, is 
used to enlarge the enrolment sets, aiming at improving the overall recognition performance. 
The chapter is organized as follows: the first section introduces the topic of synthetic 
executions and their use in the enlargement of sets of samples. The second section presents 
an overview of related works, focusing exclusively on sample duplication, the technique 
chosen to generate new sequences of text from the available ones.  The third section presents 
the generation method, and the fourth reports on the experimental results achieved, focusing 
on two issues: the discriminative power of the synthetic samples themselves, and the 
enhancements obtained when they are used to enlarge the enrolment sets. The last section 
comments on the conclusions drawn from the reported results.   

 

8.1 WHY SYNTHETIC EXECUTIONS 

Recognition based on online handwriting, like all other biometric recognition approaches, 

involves two stages: enrolment and testing. During the enrolment stage, the user has to 

produce a set of handwriting samples: the enrolment set (further details have been given in 

chapters 2 and 6). The number and the quality of the samples acquired during the enrolment 

stage is an issue of cornerstone importance because a low number leads to poor performance: 

when the number of samples per user decreases, their ability to effectively discriminate the 

modelled user from the rest decreases too. In fact, the size of the enrolment set is a critical 

parameter in recognition systems based on signature [154] and on handwriting in general. 

Recognition approaches that build models that depend on a larger number of parameters, 

such as the approaches based on neural networks or statistical methods, tend to require larger 

enrolment sets in order to attain an accurate enough estimation of those parameters.  

Unfortunately, it is not always possible to acquire enrolment sets of the required size and 

quality. On the one hand, potential donors may be unwilling to donate large numbers of 

samples of their handwriting due to concerns regarding their future use and possible security 

compromise. On the other hand, the quality of samples may be compromised due to fatigue if 

the donor is requested to produce an excessive number of samples in a single session. If the 

solution to the last issue is to collect one or a little amount of samples in each session during 

an increased number of sessions, a considerable number of donors may be lost in the way.  
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The uses of synthetically generated biometric data are manifold. The synthetic enlargement of 

datasets, the generation of synthetic human-like traits and the generation of synthetic 

individuals are among the most relevant.  

 The synthetic enlargement of datasets aims at increasing the number of samples per user. 

New samples are obtained transforming and/or combining real samples.  

 The synthesis of human-like traits is an approach typically followed in applications that 

require synthesizing speech or handwriting. Primitive units taken from a pool constructed 

from real samples are combined to produce the required speech or writing.  

 The generation of synthetic individuals is based on the creation of models for a given trait 

in a population. Once the model of a trait is created, it can be sampled to synthesize new 

individuals. This approach helps overcome the scarcity of biometric-data donors since 

synthetic individuals can be used to test the performance of new developed systems, even 

when no real data is available. 

In [155], Yanushkevich et al. state that automatically generated data helps creating meaningful 

sets of data variations that can improve the performance of existing identification systems. 

Focusing on security issues, they also point out other uses for synthetically generated 

biometric data such as the improvement of the robustness of the biometric devices thanks to 

the availability of forged-like data that can help modelling, and thus detecting, forgeries.   

The synthetic enlargement of the enrolment set is a mean to increase the size of this set 

without increasing the burden put on the user during the enrolment stage. Not only the 

recognition accuracy may benefit from the use of synthetic data: the ability to improve the 

performance without the need to ask the user for an increased number of samples during the 

enrolment phase may also have a positive impact on collectability, when compared to a similar 

improvement achieved by just asking for more real samples. Furthermore, an improved 

collectability may also lead to a greater degree of acceptability. Thus, synthetically enlarging 

the enrolment set may have benefits spanning three of the seven factors that impact on the 

quality of a biometric system (see section 2.3.3): performance, collectability and acceptability. 

8.2 RELATED WORK: SAMPLE DUPLICATION 

When the main goal of generating synthetic data is to increase the size of the available 

datasets, the strategy of choice is sample duplication [156]. Through a series of different 

transformations, one or several samples from the same individual produce one or more new 

(different) samples that will be regarded as belonging to that individual. The method proposed 

in this dissertation belongs to this category. This section highlights some relevant aspects and 

papers related to the application of sample duplication aimed at the enlargement of the 

available datasets, first in handwriting recognition and later in writer recognition. 

8.2.1 SAMPLE DUPLICATION IN HANDWRITING RECOGNITION 

Handwriting recognition, the recognition of written text8, not of its author, is a discipline 

closely related to writer recognition since they share some methods and techniques. It can be 

                                                           
8
 The main goal of handwriting recognition is the extraction of a symbolic representation from the 

spatial forms that constitute a handwritten text.  
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 RECOGNITION ENHANCEMENT BY MEANS OF SYNTHETICALLY GENERATED TEXT 

performed in a writer-dependent way or it can be performed independently of the writer. In 

the former case, the recognition system is trained with samples from a single writer and its 

goal is to recognize the writing of that specific user. Writer-dependent recognition has in the 

later years attracted some research attention thanks to the flourish of pen-based devices such 

as PDAs and PC-tablets. In writer-independent recognition, the system is trained with samples 

from multiple writers and its goal includes recognizing the writing of previously unknown 

individuals. In both cases, the sizes of the training sets are of paramount importance and their 

enlargement is a question that has been often addressed in the literature.  

In [157], Mori et al. report small improvements in the recognition performance of a K-Nearest 

Neighbour (K-NN) classifier when synthetically generated numerals are combined with real 

samples. Generation is performed by means of a method proposed by the authors. In [158], 

Cano et al. apply slant, shrink, erosion and dilation to images of single characters acquired 

from different writers. The transformed images are added to the training set of a K-NN 

classifier and a 4% improvement in the recognition rate is reported. Varga and Bunke, in [159], 

generate synthetic textlines from existing lines of handwriting from different writers by means 

of geometrical transformations and thinning/thickening operations. When the synthetic lines 

are included in the training sets of an HMM-based cursive handwritten sentence recognizer, 

the recognition rate is improved in 29 out of 33 cases. Using the same HMM-based recognizer, 

Varga, Kilchhofer and Bunke in [160]  assess the impact produced by the enlargement of the 

training set with lines generated from character templates and the Delta LogNormal 

handwriting generation model. Some of the enlarged training sets perform better than the 

non-enlarged. Also Helmers and Bunke, in [161], report some improvements in the 

performance of the same recognizer when using a generation technique that synthesizes 

handwritten-like text from ASCII text by means of a dictionary of n-tuples (groups) of 

characters. 

In the online field, much less explored than the offline, it is worth mentioning the work of 

Mouchère and Anquetil. In [162] they use synthetically generated characters to increase the 

number of available samples while trying to preserve the user’s writing style. Both offline and 

online transformations are applied to the original online samples. Offline transformations are 

classical image transformations, actually stretching and slope, while online transformations are 

speed and curvature changing. With sets of 360 samples (up to 10 original, the rest synthetic 

ones) of each character they achieve recognition rates that surpass those of reference (86.9% 

vs. 79.36% with 3 original samples). 

8.2.2 SAMPLE DUPLICATION IN WRITER RECOGNITION 

To the best of the authors’ knowledge no relevant references exist in the scientific literature 

dealing with sample duplication applied to non-signature-based writer recognition. For this 

reason, all the references in this section address sample duplication from within the signature 

based approach. 

Duplicated samples are most often produced by distorting, in different ways and with different 

techniques, one or more real samples. For instance, Huang and Yan in [163] present an offline 

signature verification method based on a neural network. In order to tackle the issue of the 

relatively large number of samples required to train the network, they propose to artificially 
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enlarge the enrolment set by means of new samples obtained by applying perturbations to a 

small set of genuine ones. The perturbations applied are slant distortion, horizontal and 

vertical size distortion, rotation, and perspective view distortion. Slightly distorted samples are 

presented to the network as genuine ones, whereas heavily distorted ones are presented as 

forgeries. Experimenting on a database of over 3000 (real) signatures donated by 21 people 

they achieve a false acceptance rate of 11.1% and a false rejection rate of 11.8%, when 

considering skilled forgeries. It is interesting to note the large number of synthetic samples 

used: regarding reference genuine samples, the network is trained with 8 real and about 300 

synthetic ones. Regarding samples of forged signatures, over 600 synthetic samples (plus real 

ones, up to 3000) are presented to the neural network.  Also in the offline field, de Oliveira et 

al. propose, in [164], a technique for the automatic generation of new signatures obtained 

from the deformation of real samples (Fig. 8.1). This technique is applied to the reconstruction 

of the trajectories of the pen obtained from the offline images of the signatures. The signals 

that represent the trajectories of the pen are deformed by their convolution with deforming 

functions. Deformations include uniform and non-uniform scaling, uniform and non-uniform 

rotation and their combination.  

 
Figure 8.1: An original signature (top left) and three synthetic ones obtained by the 
deformation procedures presented in [164] (Image taken from [164]). 

In [165], Rabasse, Guest and Fairhurst introduce a method for the generation of static 

signature images from dynamic (online) data. Their method aims at generating the x-y 

trajectories of synthetic signatures from two real ones, the seed signatures, produced by the 

same user (Fig 8.2). Seed signatures are first size-normalized and then derivative dynamic time 

warping (DDTW) is applied to map points in one seed to points in the other. New signatures 

are generated by interpolating points between mappings. In a final stage, variability is 

introduced within the synthesized signatures. The added variability is modelled according to 

the natural variability occurring within the user’s signature samples. In order to assess whether 

the synthesized signatures are representative of the real ones, the authors use a commercial 

signature verification engine to compare the verification rates obtained when comparing real 

signatures with other real signatures and the rates obtained when comparing real signatures 

with synthesized ones. Similar error rates (FAR and FRR) are reported. 
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Figure 8.2: Seed signatures (leftmost) and four new signatures synthesized from them by 
means of the method presented in [165] (Taken from [165]). 

In the online field, distortion is again the method of choice to obtain synthetic samples. In 

[166], the methodology introduced in [165] is extended in order to synthesize dynamic data (x-

y coordinates plus pressure, time, status, azimuth and altitude). In the performed experiments, 

the authors found similar enrolment rates but lower verification rates. Even if the verification 

performance in the latter work was slightly lower for synthetic signatures, the works by 

Rabasse et al. clearly point out the suitability of synthetically generated signatures to 

represent real ones.  

Munich and Perona, in [167], use duplicated samples in training and in testing. In their system 

duplicated samples are produced by means of resampling by spline interpolation, and affine 

deformations (horizontal and vertical affine scaling). In training, the duplicated samples 

increase the size of the training set. In testing, duplicated samples increase the number of 

skilled forgeries available. According to the authors, the use of duplicated samples in training 

and testing helps achieving a better estimation of the statistical performance of the system 

(measured by equal error rate –EER-). In their experiments, this particular use of duplicated 

samples leads to a slight increase in error rates. 

In [168] Galbally et al. propose a generation method based on three different kinds of 

distortions sequentially applied to the original samples. These distortions are: (a) addition of 

noise, (b) resampling by a given factor and (c) amplification/attenuation. The parameters that 

characterize the distortions are estimated from a dataset not used in testing and are aimed at 

capturing the intra-user variability. Using a state-of-the-art HMM-based signature verification 

system, the authors perform some experiments the results of which show that when synthetic 

samples are added to the real ones, the verification performance is notably increased. They 

report up to a 70% improvement (the system yields a 23.84% EER when trained with one real 

sample. This EER decreases to a 7.87% when 19 synthetic samples are added to the real one). 

The improvement reported by Galbally et al. show that synthetically enlarged enrolment sets 

can outperform non-enlarged ones. 

 
Figure 8.3: Real signature (leftmost) and synthetic ones obtained from it using the method 
described in  [168] (taken from [168]). 
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The strategy of duplicated samples also has a potential in the analysis of the behaviour of 

signature-verification systems to help understand why forged signatures are accepted or 

genuine ones rejected. For instance, in [169] Djioua et al. present a software tool based on the 

Kinematic Theory of rapid human movements that can generate modified signatures from real 

samples by varying some parameters. The authors plan to use those modified signatures to 

assess how signature-verification systems react to them.  

8.3 PROPOSED METHOD 

8.3.1 GENERAL OVERVIEW 

This subsection concisely summarizes the algorithm that generates synthetic sequences of 

strokes. The next subsection will provide a more detailed explanation. 

1. Two samples from a given user are taken. From each sample, two sequences are obtained, 

one of pen-up and one of pen-up strokes. 

2. Each sequence of strokes is encoded as a sequence of integers, using an existing pair of 

catalogues. 

3. The sequences of encoded pen-down strokes (one from each sample) are aligned using 

DTW. As a result, a sequence of alignment steps is obtained. Each alignment step is one of 

{Match, Insertion, Deletion} 

4. The processing of the sequence of alignment steps yields a new sequence of (non 

encoded) pen-down strokes. This processing is performed, alignment step by alignment 

step, as follows: 

a. If the step indicates that the encoded strokes match, a new stroke is generated by 

averaging the two corresponding non encoded strokes 

b. If the step indicates an insertion, the inserted stroke is added to the end of the 

sequence under generation. 

c. If the step indicates a deletion, nothing is done. 

Steps 3 and 4 are repeated for pen-up strokes. 

Fig. 8.4 graphically depicts the synthesis process for pen-down strokes. Pen-up strokes follow 

the very same process.  
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Figure 8.4: Schematic overview of the synthesis process for pen-down strokes. 

8.3.2 DETAILED DESCRIPTION 

11

11 ,..., mssS 
 
and 

22

12 ,..., nssS   denote the original sequences of strokes (pen-up or pen-

down) that will be used to produce a new synthetic sequence. 
1S  

and 
2S  come from  different 

executions of the same word produced by the same writer. 
j

is denotes the i-th stroke of the j-

th sequence. 

As in section 6.2.3, 
11

11 ,..., mBMUIdxBMUIdxSE 
 

and 
22

12 ,..., nBMUIdxBMUIdxSE   

denote the encoded versions of S1 and S2 respectively. 
j

iBMUIdx  denotes the index of the 

stroke prototype corresponding to  the i-th stroke in the j-th original sequence. 

pasasAS ,...,1 denotes the sequence of alignment steps obtained when DTW is applied to 

1SE  
and 

2SE . },,{ DeletionInsertionMatchasi   

NS denotes the new synthetic sequence. 

The algorithm that generates the synthetic sequences from the real ones is detailed in Figs. 8.5 

and 8.6. 
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Figure 8.5: Algorithm used to obtain synthetic sequences from a pair of real ones. 

The function average(stroke1, stroke2, w) computes a new synthetic stroke that is the 

weighted average of the two parameters. Actually each feature of each stroke is transformed 

into the frequency domain by a discrete Fourier transform (DFT) and the resulting sequences 

of coefficients are averaged. First sequence is given weight w while the second is given weight 

1-w.  The new sequences of coefficients, one per feature, are transformed back to the original 

time domain applying an inverse discrete Fourier transform (IDFT).   

 

 

 

 

Algorithm. Generate synthetic sequence of strokes 

Input: original sequences S1 and S2; catalogue of strokes; weight W of sequence S1 

Output: NS 

 

Obtain SE1 and SE2 from S1 and S2 respectively, using the given catalogue; 

 

AS := apply DTW-alignment to SE1 and SE2 to align SE1 with SE2 

 

NS := ; 

 

indexS1 := 1; 

indexS2 := 1; 

 

for each 
ias in AS 

 switch on 
ias  

  case Matchasi   

   
);,,(: 21

21
wssaveragens indexSindexS

  
add ns to the end of NS; 

   indexS1 := indexS1 + 1;  

indexS2 := indexS2 + 1; 

 

  case Insertionasi   

   
add  

1

1indexSs
 
to the end of NS; 

   indexS1 := indexS1 + 1; 

 

  
case Deletionasi   

   indexS2 := indexS2 + 1; 

 end of switch 

end of for each 
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Figure 8.6: Version of the DTW algorithm that obtains the sequence of alignment steps used 
to generate synthetic sequences.   

 

Algorithm. DTW-alignment 
Input: encoded sequences of strokes SE1 of length m and SE2 of length n 
Output: AS, the sequence of alignment steps 
 
CM is a (m+1)x(n+1) matrix of real numbers with indexes ranging from (0,0) to (m,n); 
 
MS is a mxn matrix of alignment steps with indexes ranging from (1,1) to (m,n); 
 
Initialize CM with all positions equal to +∞, except CM(0,0) = 0; 
 
for i in 1..m 
 for j in 1..n 

  );,(: 21

ji BMUIdxBMUIdxCOSTc 
 

  if CM(i-1,j)  < CM(i,j-1) and CM(i-1,j) < CM(i-1,j-1) 

   step := Insertion; 
   c := c + CM(i-1,j); 
  else if CM(i,j-1)  < CM(i-1,j) and CM(i,j-1) < CM(i-1,j-1) 

   step := Deletion; 
   c := c + CM(i,j-1); 
  else 

step := Match; 
   c := c + CM(i-1,j-1); 
  end of if  

  CM(i,j)  := c; 
  MS(i,j) := step; 
end of inner for 
end of outer for 
 
i := m;  
j := n; 

AS := ; 
while i≠1 or j≠1 
 step := MS(i,j); 
 switch on step 
  case step = Insertion

 
   i=i-1; 
  case step = Deletion

 
   j=j-1;

 

  
case step = Match 

   i=i-1; j=j-1; 
 end of switch 
 Add step to the beginning of AS 
end of while 
Add MS(i,j) to the beginning of AS 
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The function COST(Index1, Index2) is exactly the same one used in recognition (see section 

6.2.4). 

Notice that DTW-alignment is non-commutative because it can yield different sequences of 

alignment steps depending on the order of the input parameters SE1 and SE2. An insertion is a 

stroke in the first sequence with no corresponding matching in the second, while a deletion is a 

stroke in the second sequence with no corresponding matching in the first. What will appear 

as an insertion when aligning SE1 with SE2 will appear as a deletion when aligning SE2 with SE1. 

As the sequence of alignment steps drives the generation of new sequences of strokes, two 

different synthetic sequences can be generated from each pair of original sequences. 

Figs. 8.7 and 8.8 show a pair of real sequences of strokes and the new sequences synthetically 

generated from them. Notice that, in the case of pen-down strokes, the generated executions 

are perfectly legible. Although not shown in the figures, pressure and writing angles have also 

been synthesized. 

Real Synthetic 

  

  

Figure 8.7: Two real executions, pen-down strokes only, of the word BIODEGRADABLE (left) 
and the synthetic executions generated from them with w=0.5 (right).  
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Real Synthetic 

  

  

Figure 8.8: Pen-up strokes corresponding to the two real executions of the word 
BIODEGRABLE shown in the previous figure (left) and the sequences synthetically generated 
from them with w=0.5  (right). 

8.4 EXPERIMENTAL RESULTS 

Two different experiments have been carried out: 

 The first one considers an enrolment set that only contains synthetically generated 

executions. The purpose of this experiment is to assess the recognition performance of the 

synthetic executions when compared to the recognition power of the original executions 

they derive from, that is, to evaluate how much recognition performance they retain. 

 

 The second experiment considers an enlarged enrolment set, that is, an enrolment set that 

contains original executions and all the synthetic ones generated from them. Its purpose is 

to reveal the impact of the addition of synthetic executions to the enrolment set. 

 

Fig. 8.9 shows the different types of enrolment sets. 
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Figure 8.9: The three different types of enrolment sets considered in the experiments. 

The experimental process is identical to the reference experimental process described in 

section 7.1 and depicted in Fig 7.1, except for the enrolment sets used. In the reference 

experiment, enrolment sets used in traininig (to build models) were always original enrolment 

sets, that is, they did not contain any synthetic executions, whereas the enrolment sets 

considered in the experiments reported in this chapter are the synthetic enrolment sets (first 

experiment) and the enlarged enrolment sets (second experiment)     

 

Regarding the generation of the synthetic executions, 18 different synthetic executions have 

been obtained from each pair of original ones, using weights (W) ranging from 0.1 to 0.9 with a 

step of 0.1. As each invocation of the generation algorithm produces 2 sequences (see section 

8.3.2 and Fig. 8.5), 18 sequences (new executions) result from the 9 different weights 

considered.  Thus, all synthetic enrolment sets contain 54 executions while all enlarged 

enrolment sets contain 57 executions.  

 

Notice that synthetic executions are only used in the training stage. No synthetic execution is 

used neither to build the catalogues of strokes nor for testing: the catalogues are exactly the 



 

 

131 
 

 RECOGNITION ENHANCEMENT BY MEANS OF SYNTHETICALLY GENERATED TEXT 

same ones that were used in the reference experiment while the sample used in testing (i.e. 

the sample being compared with the models) is always a real execution.   

8.4.1 RECOGNITION PERFORMANCE OF THE SYNTHETIC EXECUTIONS  

As it has been stated before, the main goal of this experiment is to assess the amount of 

recognition performance that remains in synthetic executions. Tables 8.1, 8.2 and 8.3 

comprehensively show the results obtained. For each word and metric (IDR, VE and EER), the 

result obtained with the synthetic enrolment set is compared to the result yielded by the 

reference experiment (original enrolment set). The difference is given as the percentage of 

increase/decrease (∆%) with respect to the value obtained in the reference experiment: 

 For IDR, a positive difference means that the synthetic enrolment sets outperform the 

original ones (more writers correctly identified). 

 

 For VE and EER, a negative difference means that the synthetic enrolment sets 

outperform the original ones (less verification error, smaller equal error rate). 

It is worth noticing that in most cases the synthetic enrolment sets clearly outperform the 

original ones: 

 For IDR, synthetic enrolment sets always outperform the original ones. Moreover, a 

higher increment is achieved for those words that showed a lower performance 

(Pearson’s correlation coefficient between the original values and the increments is 

minus 0.93 for pen-up strokes, minus 0.84 for pen-down strokes and minus 0.94 for 

the combination).  

 

 For VE, only in one case the synthetic enrolment sets do not outperform the originals 

(word DESAPROVECHAMIENTO, pen-up strokes). Nevertheless, in the case of the 

combination of both types of strokes synthetic enrolment sets always outperform the 

original ones. 

 

 For EER, only in two cases the synthetic enrolment sets do not outperform the 

originals (words DESLUMBRAMIENTO and DESPEDAZAMIENTO, pen-down and pen-up 

strokes, respectively). In the case of the combination, synthetic enrolment sets always 

outperform the original ones.  
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WORD TEXT 

IN-AIR 
TRAJECTORIES (PEN-UP STROKES) 

ON-SURFACE 
TRAJECTORIES (PEN-DOWN STROKES) 

COMBINATION 

REFERENCE 
ENROLMENT 

SET 

SYNTHETIC 
ENROLMENT 

SET 

∆ (IN % 
WRP. 

REFERENCE) 

REFERENCE 
ENROLMENT 

SET 

SYNTHETIC 
ENROLMENT 

SET 

∆ (IN % 
WRP. 

REFERENCE) 

REFERENCE 
ENROLMENT 

SET 

SYNTHETIC 
ENROLMENT 

SET 

∆ (IN % 
WRP. 

REFERENCE) 

W1 BIODEGRADABLE 80,0% 83,1% 3,9% 81,4% 86,3% 6,0% 93,0% 94,8 1,9% 

W2 DELEZNABLE 72,1% 78,2% 8,5% 73,8% 78,0% 5,8% 88,4% 92,0 4,2% 

W3 DESAPROVECHAMIENTO 89,8% 92,2% 2,6% 89,3% 91,3% 2,2% 96,4% 97,1 0,7% 

W4 DESBRIZNAR 74,3% 77,7% 4,5% 71,6% 77,0% 7,4% 86,6% 90,2 4,1% 

W5 DESLUMBRAMIENTO 83,9% 88,2% 5,1% 84,2% 89,3% 6,0% 94,7% 96,2 1,6% 

W6 DESPEDAZAMIENTO 89,1% 91,3% 2,5% 84,4% 88,7% 5,1% 94,5% 95,9 1,4% 
W7 DESPRENDER 71,3% 76,5% 7,2% 67,7% 72,1% 6,5% 84,2% 89,2 5,9% 

W8 ENGUALDRAPAR 72,0% 77,0% 6,9% 71,2% 76,7% 7,8% 86,5% 90,2 4,3% 

W9 EXPRESIVIDAD 75,5% 81,6% 8,1% 79,3% 84,5% 6,6% 91,9% 94,8 3,1% 

W10 IMPENETRABLE 78,4% 83,8% 6,8% 73,1% 79,0% 8,0% 88,5% 91,6 3,5% 

W11 INEXPUGNABLE 82,3% 85,7% 4,2% 83,4% 88,0% 5,5% 94,5% 96,2 1,8% 
W12 INFATIGABLE 79,2% 82,7% 4,4% 79,5% 82,8% 4,1% 90,9% 93,1 2,5% 

W13 INGOBERNABLE 74,8% 79,5% 6,2% 81,3% 85,4% 5,0% 90,9% 93,4 2,8% 

W14 MANSEDUMBRE 63,4% 70,2% 10,9% 68,6% 75,4% 9,9% 84,1% 87,9 4,5% 

W15 ZAFARRANCHO 63,1% 70,4% 11,5% 65,2% 71,6% 9,8% 81,9% 85,6 4,6% 

W16 ZARRAPASTROSA 61,9% 69,9% 13,0% 67,3% 72,8% 8,2% 81,9% 85,9 5,0% 

Average over the 16 words 75.4% 80.5% 6,6% 76.3% 81.2% 6,5% 89.3% 92.1% 3,2% 

Table 8.1: Comparison of IDRs obtained with original and synthetic enrolment sets. Positive increments (green) mean that the synthetic enrolment sets outperform the 
original ones. 
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WORD TEXT 

IN-AIR 
TRAJECTORIES (PEN-UP STROKES) 

ON-SURFACE 
TRAJECTORIES (PEN-DOWN STROKES) 

COMBINATION 

REFERENCE 
ENROLMENT 

SET 

SYNTHETIC 
ENROLMENT 

SET 

∆ (IN % 
WRP. 

REFERENCE) 

REFERENCE 
ENROLMENT 

SET 

SYNTHETIC 
ENROLMENT 

SET 

∆ (IN % 
WRP. 

REFERENCE) 

REFERENCE 
ENROLMENT 

SET 

SYNTHETIC 
ENROLMENT 

SET 

∆ (IN % 
WRP. 

REFERENCE) 

W1 BIODEGRADABLE 4,35% 3,59% -17,4% 4,29% 3,96% -7,7% 2,67% 2,31% -13,5% 

W2 DELEZNABLE 5,89% 5,00% -15,1% 4,48% 4,05% -9,6% 2,98% 2,73% -8,4% 

W3 DESAPROVECHAMIENTO 2,98% 3,05% 2,1% 3,62% 3,02% -16,5% 2,05% 1,68% -18,1% 

W4 DESBRIZNAR 5,10% 5,08% -0,5% 5,77% 5,36% -7,2% 3,59% 3,10% -13,6% 

W5 DESLUMBRAMIENTO 3,82% 3,20% -16,2% 3,93% 3,83% -2,5% 2,49% 2,19% -12,0% 

W6 DESPEDAZAMIENTO 3,39% 3,98% 17,6% 4,47% 3,78% -15,5% 2,84% 2,36% -16,9% 
W7 DESPRENDER 5,55% 4,06% -26,8% 6,58% 5,93% -9,9% 4,26% 3,77% -11,4% 

W8 ENGUALDRAPAR 5,76% 4,92% -14,5% 6,33% 5,52% -12,8% 4,18% 3,75% -10,3% 

W9 EXPRESIVIDAD 5,05% 4,06% -19,5% 4,00% 3,69% -7,8% 2,50% 2,03% -18,9% 

W10 IMPENETRABLE 4,90% 4,61% -6,0% 5,55% 4,79% -13,7% 3,25% 2,68% -17,5% 

W11 INEXPUGNABLE 4,05% 3,44% -15,2% 4,18% 3,59% -14,0% 2,45% 1,86% -23,9% 
W12 INFATIGABLE 4,38% 5,08% 15,9% 4,04% 3,85% -4,7% 2,24% 2,17% -3,2% 

W13 INGOBERNABLE 5,56% 5,16% -7,2% 5,03% 4,22% -16,2% 3,66% 3,12% -14,9% 

W14 MANSEDUMBRE 6,81% 6,25% -8,2% 7,87% 6,93% -12,0% 5,60% 4,56% -18,5% 

W15 ZAFARRANCHO 7,40% 6,72% -9,2% 7,13% 6,37% -10,6% 5,26% 4,60% -12,6% 

W16 ZARRAPASTROSA 8,22% 7,34% -10,7% 6,81% 5,86% -14,0% 5,37% 4,36% -18,9% 

Average over the 16 words 5,20% 4,72% -8,17% 5,25% 4,67% -10,91% 3,46% 2,95% -14,54% 

Table 8.2: Comparison of VEs obtained with reference and synthetic enrolment sets. Negative increments (green) mean that the synthetic enrolment sets outperform 
the original ones. 
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WORD TEXT 

IN-AIR 
TRAJECTORIES (PEN-UP STROKES) 

ON-SURFACE 
TRAJECTORIES (PEN-DOWN STROKES) 

COMBINATION 

REFERENCE 
ENROLMENT 

SET 

SYNTHETIC 
ENROLMENT 

SET 

∆ (IN % 
WRP. 

REFERENCE) 

REFERENCE 
ENROLMENT 

SET 

SYNTHETIC 
ENROLMENT 

SET 

∆ (IN % 
WRP. 

REFERENCE) 

REFERENCE 
ENROLMENT 

SET 

SYNTHETIC 
ENROLMENT 

SET 

∆ (IN % 
WRP. 

REFERENCE) 

W1 BIODEGRADABLE 4,72% 3,83% -18,8% 4,62% 4,37% -5,4% 2,88% 2,43% -15,9% 

W2 DELEZNABLE 6,23% 5,64% -9,6% 4,69% 4,23% -9,8% 3,29% 2,76% -16,3% 

W3 DESAPROVECHAMIENTO 3,28% 3,06% -6,8% 3,91% 3,19% -18,4% 2,50% 1,81% -27,5% 

W4 DESBRIZNAR 5,61% 5,15% -8,1% 5,99% 5,64% -5,9% 3,75% 3,33% -11,1% 

W5 DESLUMBRAMIENTO 4,12% 3,68% -10,7% 4,22% 4,28% 1,4% 2,74% 2,35% -14,1% 

W6 DESPEDAZAMIENTO 3,60% 3,65% 1,4% 4,62% 4,06% -12,0% 3,00% 2,50% -16,6% 
W7 DESPRENDER 5,69% 5,19% -8,8% 6,88% 6,30% -8,4% 4,59% 4,14% -10,0% 

W8 ENGUALDRAPAR 6,09% 5,25% -13,8% 6,86% 5,84% -14,8% 4,51% 4,22% -6,5% 

W9 EXPRESIVIDAD 5,69% 4,52% -20,6% 4,16% 3,98% -4,4% 2,81% 2,19% -22,2% 

W10 IMPENETRABLE 5,22% 4,39% -15,8% 5,98% 5,01% -16,3% 3,51% 2,97% -15,3% 

W11 INEXPUGNABLE 4,29% 4,13% -3,8% 4,53% 3,93% -13,4% 2,58% 2,11% -18,5% 
W12 INFATIGABLE 4,60% 4,36% -5,2% 4,29% 4,22% -1,7% 2,42% 2,33% -3,7% 

W13 INGOBERNABLE 5,83% 5,24% -10,1% 5,25% 4,69% -10,7% 3,93% 3,29% -16,1% 

W14 MANSEDUMBRE 7,09% 6,48% -8,5% 8,28% 7,28% -12,1% 5,87% 5,00% -14,8% 

W15 ZAFARRANCHO 7,58% 6,51% -14,2% 7,42% 6,50% -12,4% 5,69% 4,82% -15,2% 

W16 ZARRAPASTROSA 8,59% 7,59% -11,7% 7,20% 6,16% -14,4% 5,57% 4,70% -15,6% 

Average over the 16 words 5,52% 4,92% -10,32% 5,56% 4.98% -9,93% 3,73% 3,18% -14,96% 

Table 8.3: Comparison of EERs obtained with reference and synthetic enrolment sets. Negative increments (green) mean that the synthetic enrolment sets outperform 
the original ones. 
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8.4.2 IMPACT OF ENLARGING THE ENROLMENT SET WITH SYNTHETIC 

EXECUTIONS 

This experiment assesses the impact of enlarging the original enrolment set with synthetic 

executions (enlarged enrolment set). The results obtained are shown in Tables 8.4, 8.5 and 8.6.  

As in the preceding experiment, for each word and metric, the difference with respect to the 

reference results is given as the percentage of increase/decrease  (∆%). Figs. 8.10 and 8.11 

show the DET-plots for the words achieving the maximum and the minimum enhancements. 

The reader will notice that although some particular differences exist, the results in this 

experiment are very close to the results yielded by the previous one. Thus, the enlarged 

enrolment sets outperform the original ones but virtually in the same measure that the 

synthetic enrolment sets did. Nevertheless, a difference that may be of importance does exist: 

there is no case where the enlarged enrolment sets perform worse than the original ones. 

At the end of the section, Tables 8.7, 8.8 and 8.9 summarize the results obtained when two or 

more words are combined. Notice that the enhancements observed for single words persist 

when more than one word is considered, except for identification where the high rates 

obtained prevent further improvements.  
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WORD TEXT 

IN-AIR 
TRAJECTORIES (PEN-UP STROKES) 

ON-SURFACE 
TRAJECTORIES (PEN-DOWN STROKES) 

COMBINATION 

REFERENCE 
ENROLMENT 

SET 

ENLARGED 
ENROLMENT 

SET 

∆ (IN % 
WRP. 

REFERENCE) 

REFERENCE 
ENROLMENT 

SET 

ENLARGED 
ENROLMENT 

SET 

∆ (IN % 
WRP. 

REFERENCE) 

REFERENCE 
ENROLMENT 

SET 

ENLARGED 
ENROLMENT 

SET 

∆ (IN % 
WRP. 

REFERENCE) 

W1 BIODEGRADABLE 80,0% 83,7% 4,6% 81,4% 85,9% 5,6% 93,0% 94,9% 2,0% 

W2 DELEZNABLE 72,1% 78,6% 9,0% 73,8% 78,4% 6,3% 88,4% 91,9% 4,0% 

W3 DESAPROVECHAMIENTO 89,8% 92,1% 2,5% 89,3% 91,3% 2,2% 96,4% 97,1% 0,7% 

W4 DESBRIZNAR 74,3% 77,8% 4,7% 71,6% 76,8% 7,2% 86,6% 90,0% 3,9% 

W5 DESLUMBRAMIENTO 83,9% 88,3% 5,2% 84,2% 89,0% 5,7% 94,7% 96,3% 1,7% 

W6 DESPEDAZAMIENTO 89,1% 91,2% 2,4% 84,4% 88,9% 5,4% 94,5% 95,8% 1,3% 
W7 DESPRENDER 71,3% 76,6% 7,3% 67,7% 72,4% 6,9% 84,2% 89,3% 6,0% 

W8 ENGUALDRAPAR 72,0% 76,9% 6,8% 71,2% 76,7% 7,8% 86,5% 90,2% 4,3% 

W9 EXPRESIVIDAD 75,5% 81,4% 7,8% 79,3% 84,5% 6,6% 91,9% 94,8% 3,1% 

W10 IMPENETRABLE 78,4% 83,8% 6,9% 73,1% 79,0% 8,0% 88,5% 91,6% 3,4% 

W11 INEXPUGNABLE 82,3% 85,9% 4,4% 83,4% 87,7% 5,1% 94,5% 96,2% 1,8% 
W12 INFATIGABLE 79,2% 82,8% 4,5% 79,5% 82,7% 3,9% 90,9% 93,2% 2,6% 

W13 INGOBERNABLE 74,8% 79,6% 6,4% 81,3% 85,7% 5,4% 90,9% 93,5% 2,9% 

W14 MANSEDUMBRE 63,4% 70,2% 10,7% 68,6% 75,2% 9,7% 84,1% 88,1% 4,7% 

W15 ZAFARRANCHO 63,1% 70,2% 11,3% 65,2% 71,5% 9,7% 81,9% 85,6% 4,6% 

W16 ZARRAPASTROSA 61,9% 70,4% 13,8% 67,3% 72,3% 7,5% 81,9% 85,7% 4,7% 

Average over the 16 words 75.4% 80,6% 6,8% 76.3% 81,1% 6,4% 89.3% 92,1% 3,2% 

Table 8.4: Comparison of IDRs obtained with original and enlarged enrolment sets. Positive increments (green) mean that the synthetic enrolment sets outperform the 
original ones. 
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WORD TEXT 

IN-AIR 
TRAJECTORIES (PEN-UP STROKES) 

ON-SURFACE 
TRAJECTORIES (PEN-DOWN STROKES) 

COMBINATION 

REFERENCE 
ENROLMENT 

SET 

ENLARGED 
ENROLMENT 

SET 

∆ (IN % 
WRP. 

REFERENCE) 

REFERENCE 
ENROLMENT 

SET 

ENLARGED 
ENROLMENT 

SET 

∆ (IN % 
WRP. 

REFERENCE) 

REFERENCE 
ENROLMENT 

SET 

ENLARGED 
ENROLMENT 

SET 

∆ (IN % 
WRP. 

REFERENCE) 

W1 BIODEGRADABLE 4,35% 3,53% -18,9% 4,29% 3,95% -8,0% 2,67% 2,31% -13,5% 

W2 DELEZNABLE 5,89% 5,39% -8,5% 4,48% 3,99% -11,0% 2,98% 2,65% -11,1% 

W3 DESAPROVECHAMIENTO 2,98% 2,84% -4,9% 3,62% 3,07% -15,1% 2,05% 1,70% -17,0% 

W4 DESBRIZNAR 5,10% 4,85% -5,0% 5,77% 5,26% -8,9% 3,59% 3,11% -13,3% 

W5 DESLUMBRAMIENTO 3,82% 3,36% -12,0% 3,93% 3,78% -3,8% 2,49% 2,16% -13,3% 

W6 DESPEDAZAMIENTO 3,39% 3,36% -0,7% 4,47% 3,73% -16,6% 2,84% 2,34% -17,6% 
W7 DESPRENDER 5,55% 5,01% -9,8% 6,58% 5,92% -10,0% 4,26% 3,72% -12,7% 

W8 ENGUALDRAPAR 5,76% 4,89% -15,0% 6,33% 5,60% -11,6% 4,18% 3,78% -9,5% 

W9 EXPRESIVIDAD 5,05% 4,20% -16,7% 4,00% 3,69% -7,6% 2,50% 2,04% -18,4% 

W10 IMPENETRABLE 4,90% 4,29% -12,4% 5,55% 4,71% -15,2% 3,25% 2,64% -18,8% 

W11 INEXPUGNABLE 4,05% 3,72% -8,3% 4,18% 3,49% -16,6% 2,45% 1,82% -25,8% 
W12 INFATIGABLE 4,38% 3,92% -10,5% 4,04% 3,73% -7,6% 2,24% 2,13% -4,7% 

W13 INGOBERNABLE 5,56% 4,97% -10,6% 5,03% 4,13% -18,0% 3,66% 3,02% -17,4% 

W14 MANSEDUMBRE 6,81% 6,05% -11,2% 7,87% 6,80% -13,6% 5,60% 4,55% -18,7% 

W15 ZAFARRANCHO 7,40% 6,20% -16,1% 7,13% 6,28% -11,8% 5,26% 4,52% -14,2% 

W16 ZARRAPASTROSA 8,22% 7,10% -13,6% 6,81% 5,82% -14,5% 5,37% 4,35% -19,0% 

Average over the 16 words 5,20% 4,60% -10,90% 5,25% 4,62% -11,87% 3,46% 2,93% -15,31% 

Table 8.5: Comparison of VEs obtained with reference and enlarged enrolment sets. Negative increments (green) mean that the synthetic enrolment sets outperform 
the original ones. 
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WORD TEXT 

IN-AIR 
TRAJECTORIES (PEN-UP STROKES) 

ON-SURFACE 
TRAJECTORIES (PEN-DOWN STROKES) 

COMBINATION 

REFERENCE 
ENROLMENT 

SET 

ENLARGED 
ENROLMENT 

SET 

∆ (IN % 
WRP. 

REFERENCE) 

REFERENCE 
ENROLMENT 

SET 

ENLARGED 
ENROLMENT 

SET 

∆ (IN % 
WRP. 

REFERENCE) 

REFERENCE 
ENROLMENT 

SET 

ENLARGED 
ENROLMENT 

SET 

∆ (IN % 
WRP. 

REFERENCE) 

W1 BIODEGRADABLE 4,72% 3,89% -17,6% 4,62% 4,37% -5,5% 2,88% 2,41% -16,3% 

W2 DELEZNABLE 6,23% 5,57% -10,6% 4,69% 4,14% -11,8% 3,29% 2,80% -14,9% 

W3 DESAPROVECHAMIENTO 3,28% 3,06% -6,7% 3,91% 3,26% -16,5% 2,50% 1,82% -27,1% 

W4 DESBRIZNAR 5,61% 5,06% -9,8% 5,99% 5,55% -7,4% 3,75% 3,31% -11,8% 

W5 DESLUMBRAMIENTO 4,12% 3,67% -10,8% 4,22% 4,08% -3,4% 2,74% 2,33% -15,1% 

W6 DESPEDAZAMIENTO 3,60% 3,59% -0,2% 4,62% 3,91% -15,4% 3,00% 2,50% -16,6% 
W7 DESPRENDER 5,69% 5,22% -8,2% 6,88% 6,33% -7,9% 4,59% 4,14% -9,8% 

W8 ENGUALDRAPAR 6,09% 5,22% -14,3% 6,86% 5,80% -15,4% 4,51% 4,14% -8,2% 

W9 EXPRESIVIDAD 5,69% 4,45% -21,8% 4,16% 3,82% -8,2% 2,81% 2,18% -22,3% 

W10 IMPENETRABLE 5,22% 4,39% -15,8% 5,98% 4,85% -19,0% 3,51% 2,97% -15,3% 

W11 INEXPUGNABLE 4,29% 4,14% -3,5% 4,53% 3,75% -17,3% 2,58% 2,10% -18,7% 
W12 INFATIGABLE 4,60% 4,22% -8,3% 4,29% 4,00% -6,8% 2,42% 2,33% -3,9% 

W13 INGOBERNABLE 5,83% 5,25% -10,0% 5,25% 4,61% -12,0% 3,93% 3,34% -14,8% 

W14 MANSEDUMBRE 7,09% 6,43% -9,2% 8,28% 7,19% -13,1% 5,87% 4,99% -15,0% 

W15 ZAFARRANCHO 7,58% 6,62% -12,7% 7,42% 6,42% -13,4% 5,69% 4,91% -13,6% 

W16 ZARRAPASTROSA 8,59% 7,58% -11,8% 7,20% 6,13% -14,9% 5,57% 4,61% -17,2% 

Average over the 16 words 5,52% 4,90% -10,71% 5,56% 4,89% -11,77% 3,73% 3,18% -15,04% 

Table 8.6: Comparison of EERs obtained with reference and enlarged enrolment sets. Negative increments (green) mean that the synthetic enrolment sets outperform 
the original ones. 
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Figure 8.10: DET-plots for the words achieving the maximum enhancements when enlarged 
enrolment sets are considered (INEXPUGNABLE, -25.8% in VE, and DESAPROVECHAMIENTO, 
-27.1% in EER). 

 

Figure 8.11: DET-plot for the word achieving the minimum enhancement when enlarged 
enrolment sets are considered (INFATIGABLE, -4.7% in VE, and –3.9% in EER).
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Table 8.7: Comparison of IDRs obtained with reference and enlarged enrolment sets when different words are combined. Positive increments (green) mean that the 
synthetic enrolment sets outperform the original ones. 

NUMBER 
OF WORDS 

WORST AVERAGE BEST 

REFERENCE 
ENROLMENT 

SET 

ENLARGED 
ENROLMENT 

SET 

∆ (IN % WRP. 
REFERENCE) 

REFERENCE 
ENROLMENT 

SET 

ENLARGED 
ENROLMENT 

SET 

∆ (IN % WRP. 
REFERENCE) 

REFERENCE 
ENROLMENT 

SET 

ENLARGED 
ENROLMENT 

SET 

∆ (IN % WRP. 
REFERENCE) 

1 5.60% 4.60% -17,9% 3.46% 2.95% -14,5% 2.05% 1.68% -18,0% 

2 3.79% 3.05% -19,5% 1.81% 1.44% -20,4% 1.00% 0.80% -20,0% 

3 2.78% 2.22% -20,1% 1.29% 1.00% -22,5% 0.61% 0.50% -18,0% 

4 2.22% 1.57% -29,3% 1.04% 0.79% -24,0% 0.51% 0.38% -25,5% 

Table 8.8: Comparison of VEs obtained with reference and enlarged enrolment sets when different words are combined. Negative increments (green) mean that the 
synthetic enrolment sets outperform the original ones. 

NUMBER 
OF WORDS 

WORST AVERAGE BEST 

REFERENCE 
ENROLMENT 

SET 

ENLARGED 
ENROLMENT 

SET 

∆ (IN % WRP. 
REFERENCE) 

REFERENCE 
ENROLMENT 

SET 

ENLARGED 
ENROLMENT 

SET 

∆ (IN % WRP. 
REFERENCE) 

REFERENCE 
ENROLMENT 

SET 

ENLARGED 
ENROLMENT 

SET 

∆ (IN % WRP. 
REFERENCE) 

1 5.87% 5.00% -14,8% 3.73% 3.18% -14,9% 2.42% 1.81% -25,2% 

2 4.00% 3.20% -20,0% 2.02% 1.65% -18,3% 1.09% 0.92% -15,6% 

3 3.04% 2.47% -18,8% 1.47% 1.17% -20,4% 0.71% 0.61% -14,1% 

4 2.36% 1.88% -20,3% 1.20% 0.95% -20,8% 0.58% 0.47% -19,0% 

Table 8.9: Comparison of EERs obtained with reference and enlarged enrolment sets when different words are combined. Negative increments (green) mean that the 
synthetic enrolment sets outperform the original ones. 

NUMBER 
OF WORDS 

WORST AVERAGE BEST 

REFERENCE 
ENROLMENT 

SET 

ENLARGED 
ENROLMENT 

SET 

∆ (IN % WRP. 
REFERENCE) 

REFERENCE 
ENROLMENT 

SET 

ENLARGED 
ENROLMENT 

SET 

∆ (IN % WRP. 
REFERENCE) 

REFERENCE 
ENROLMENT 

SET 

ENLARGED 
ENROLMENT 

SET 

∆ (IN % WRP. 
REFERENCE) 

1 81.9% 85.9% 4,9% 89.3% 92.1% 3,2% 96.4% 97.1% 0,7% 

2 93.8% 95.6% 1,9% 97.7% 98.6% 0,9% 99.3% 99.5% 0,2% 

3 97.9% 98.5% 0,6% 99.1% 99.4% 0,3% 99.8% 99.8% 0,0% 

4 98.6% 99.1% 0,5% 99.5% 99.6% 0,1% 99.9% 99.9% 0,0% 
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8.5 CONCLUSIONS 

The results yielded by the experiments performed to assess the impact of enlarging the 

enrolment sets with synthetic samples generated with the proposed method may be deemed 

positive and very promising.  

Firstly, it has been shown that the synthetic enlargement of the enrolment sets of a writer 

recognition system based on handwritten short sequences of text can lead to a noticeable 

improvement in its recognition performance, especially in the verification task. Although an 

improvement of this kind has already been reported in the signature field (e.g. [168]), this is 

the first time, to the authors’ best knowledge, that such a possibility is reported regarding a 

non-signature-based schema.  

Secondly the results also show the effectiveness of the proposed method. Regarding the 

verification task, they are quite promising: in all cases the impact of enlarging the enrolment 

sets is positive (lower VE and EER), with the improvement ranging from a humble -3.9% (EER, 

word INFATIGBLE) to a noticeable -27.1% (EER, word DESAPROVECHAMIENTO). The average 

improvement is about -15%, both for VE and EER. With regard to the identification task, the 

impact is also always positive but of a more humble magnitude: from 0.7% to 6% (words 

DESAPROVECHAMIENTO and DESPRENDER) with an average of 3.2%.  When 2 or more words 

are combined, similar enhancements are observed. Fig. 8.12 concisely summarizes the results.    

The enhancement rates reported in the experiments have to be analyzed within the context in 

which they have been obtained. It has to be taken into account that the recognition system 

already yielded high identification rates and low verification errors without the addition of 

synthetic samples.  It is the magnitude of the improvements along with the fact that in some 

cases there was little room for improvement what make us think that the results are quite 

encouraging.  

The fact that the performance of the recognition system is improved by the synthetic 

enlargement of the enrolment sets may also have a positive impact on collectability and 

acceptability, two features to be taken into account when evaluating a biometric system. This 

possibility would help in keeping enrolment easy, little invasive and performed quickly.  
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Figure 8.12:  Comparison of identification (top) and verification (bottom) performances for 
the reference and the enlarged enrolment sets, as a function of the number of words 
considered.  
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99   
 CONCLUSIONS AND A BRIEF LOOK TO 

THE FUTURE 
 

This is the final chapter of this doctoral dissertation. It contains two sections devoted to the 
main conclusions drawn from the research reported on in the previous chapters, and to the 
future lines of research that may stem from the work done. 

 

9.1 CONCLUSIONS 

Several conclusions can be drawn from the results presented in the preceding chapters. All 

main conclusions are related to the objectives enumerated in the introduction and to the 

contributions that materialize the accomplishment of those objectives. Fig. 9.1 is a concise 

summary of these aspects of the work: its motivation, objectives, contributions and main 

conclusions. In the forthcoming subsections each main conclusion will be elaborated in more 

detail, together with other relevant conclusions. 
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Figure 9.1: Motivation, objectives, contributions and conclusions of this dissertation. 

9.1.1 REGARDING THE DEVELOPED SYSTEM AND THE APPROACH FOLLOWED 

The objectives of this dissertation required the existence of a recognition system capable of 

using the words in the BiosecurID as its raw material.  During the first stages of the research, 

some approaches that had obtained good results in the signature-verification field were 

considered (VQ, DTW, HMMs) and experimentally assessed but the performances obtained 

were not even slightly comparable to those attained with signatures. Thus it was decided to 

design a new recognition system from scratch. This new recognition system had but a few 

significant requirements: it had to be capable of using both in-air and on-surface trajectories in 

order to draw conclusions about their relative recognition potentials, and it had to attain 

reasonable accuracies. 

The recognition system eventually developed fulfils the aforementioned requirements. It 

addresses the issue of text-based writer recognition from an allographic perspective (see Fig. 
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1.1 in chapter 1), a perspective that to the author’s best knowledge, had never before been 

considered for text-dependent online approaches. The following characteristics of the system 

can be highlighted: 

 It is based on an innovative idea: the combined use of topology-preserving 

catalogues of strokes (codebooks), obtained from Self-Organizing Maps, and 

Dynamic Time Warping. Thanks to the use of these catalogues, Dynamic Time Warping 

is applied to very short and simple sequences, substantially reducing the overall 

computational burden9.   

 

 It can perform the two tasks involved in recognition: identification and verification.   

 

 In-air and on-surface trajectories are considered separately therefore their recognition 

potentials can be assessed independently. The yielded results (dissimilarity measures) 

can be combined in order to obtain full-word measures.  

 

 Finally, the system successfully addresses the issue of text-based writer recognition 

from an allographic perspective. 

When it comes to the accuracy level achieved when experimenting with words from the 

BiosecurID database, it must be said that it exceeds the initial expectations: 

MAIN CONCLUSION #1: The allographic approach has proven suitable to perform writer 

recognition in an online and text-dependent context, achieving a high accuracy level.  

Regarding identification, the system compares positively to other word-based recognition 

systems (see Table 9.1). As for verification, the experiments have shown that, with single 

words, a performance not far from that of signature-based system can be attained. A more 

elaborated comparison with signature verification approaches is provided in the next 

subsection.  

  

                                                           
9
 Dynamic Time Warping has a quadratic time and space complexity (O(N

2
) where N is the length of the 

sequences to be compared). 
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FIELD SOURCE 
RECOGNITION PERFORMANCE (IDR) 

WORST AVERAGE BEST 

ONLINE 

This dissertation. Original enrolment 
set. One Word 

81.9% 
(ZAFARRANCHO) 

89.3% 96.4% 
(DESAPROVECHAMIENTO) 

This dissertation. Extended 
enrolment set. One word 

85.6% 
(ZAFARRANCHO) 

92.1% 97.1% 
(DESAPROVECHAMIENTO) 

Zuo et al. [111] 86.5% with 1 Chinese word.   

Chapran [51] 95% (with 25 repetitions of 1 word) 

OFFLINE 

Zois et al. [102] 
97% (with 45 repetitions of Greek word 

χαρακτηριστικό)  

Zhang and Srihari [78] 49% (Word referred) 

Tomasi et al. 
[79] 

67% (Word Grant) 

Table 9.1:  Identification performances obtained in the experiments reported in this 
dissertation and performances reported in relevant references. 

From the experiments reported in chapter 7 other relevant conclusions regarding the 

proposed recognition system can be drawn: 

(a) The system can be bootstrapped with data from a limited number of writers (e.g. just 10 

writers). 

 

(b) The system can be bootstrapped with data not originating from the users that will be 

enrolled (exocatalogues), without any remarkable loss in accuracy, neither in 

identification nor in verification. 

 

(c) Although accuracy is affected by the size of the catalogues, not especially large ones (e.g. 

100 or 150 units) achieve good performances. 

 

(d) The limited number of samples required to achieved the reported performances, makes 

the enrolment phase, for this particular system, easily and quickly performed, thus 

benefitting acceptability and collectability. 

9.1.2 REGARDING THE RECOGNITION POTENTIAL OF SHORT SEQUENCES OF 

ONLINE TEXT AND ITS COMPARISON WITH THE RECOGNITION POTENTIAL 

OF SIGNATURES 

In the opening chapter, the main motivation of this dissertation was stated as that of providing 

evidence that short sequences of online text had a recognition potential  not far from that of 

signatures and that they deserved to be considered on their own. This motivation translated 

into an objective of practical nature: a recognition system had to be built in order to explore 

the recognition potential of online text. Conclusions regarding the system itself have centred 

the preceding subsection; when it comes to its particular application to the online words 

contained in the BiosecurID database, the following main conclusion can be drawn:   

MAIN CONCLUSION #2: reported experimental results clearly sustain the claim that the 

online words in the BiosecurID do have a notable recognition potential. 



 

 

147 
 

 CONCLUSIONS AND A BRIEF LOOK TO THE FUTURE 

Nevertheless, the original question still remains to be answered: how do short sequences of 

text compare to signatures? Although much care has to be taken when comparing the 

performance of different biometric modalities because of their inherent differences and the 

great variability of the conditions under which they are tested (number of writers, number of 

samples per writer, number of sessions during which the samples were collected, features, 

availability and use of in-air information, presence of skilled forgeries, global or local threshold, 

etc.) [118], the figures shown in Table 9.2 substantiate the assertion that constitutes the third 

main conclusion: 

MAIN CONCLUSION #3:  the online words in the BiosecurID database show a verification 

performance that do not lie much below the performances reported for today’s state of the 

art signature verifications methods. 

SOURCE 
VERIFICATION PERFORMANCE (EER) 

WORST AVERAGE BEST 

This dissertation. Original enrolment set. One 
Word 

5.87% 
(MANSEDUMBRE) 

3.73% 2.42% 
(INFATIGABLE) 

This dissertation. Extended enrolment set. One 
word 

4.99% 
(MANSEDUMBRE) 

3.18% 1.82% 
(DESAPROVECHAMIENTO) 

This dissertation. Original enrolment set. Two 
words 

4.00% 2.02% 1.09 

This dissertation. Original enrolment set. Three 
words 

3.04% 1.47% 0.71% 

This dissertation. Original enrolment set. Four 
words 

2.36% 1.20% 0.58% 

SVC2004  with random forgeries [69] 1.70% 

BSEC’2009  with random forgeries, multisession 

[142] 
1.37% 

Table 9.2: Verification performances obtained in the experiments reported in this 
dissertation and state-of-the-art performances achieved in signature competitions. 

Words such as DESAPROVECHAMIENTO or INFATIGABLE and the combination of two or more 

words yield verification errors that may compare positively to verification accuracies reported 

for signature-based systems.  

Another relevant conclusion accompanies the last two main ones: 

(e) Combining two or more words results in enhanced performances: with four words almost 

100% mean identification rate is achieved. Also with four words, an outstanding best EER 

of 0.58% has been obtained. 

It is worth noticing that the performance experiments described in this dissertation have been 

carried out with a very limited number of repetitions for training, constrained by the number 

of repetitions provided by the database: only four repetitions were available and one of them 

had to be used for testing. Should there have been an ampler number of repetitions, the 

accuracies might have been higher. It is also remarkable that these results have been attained 

in the few years devoted to this particular research, a short period of time when compared to 

the time (and research teams) required to attain today’s state-of-the-art signature verification 

accuracies.  
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Taking into account the particular context where the experimentation took place, other 

interesting questions may arise: to what extent can the results be extrapolated to different 

contexts such as other databases and/or to lowercase sequences? Although for the time being 

it is not possible to give an assertive answer to such questions, (and therefore no relevant 

conclusions can be drawn) the following reflections may cast some light onto the issue: first, 

the proposed recognition system makes very few assumptions regarding the information on 

which it operates, other than it must adhere to the SVC format [69]. Also, it is worth noticing 

that many modern acquisition devices can gather the same information (x,y, pressure and 

writing angles). More humble devices may not gather the writing angles, but their overall 

weight is not high (18% for pen-down strokes and 13% for pen-up ones). Even if the 

information regarding the in-air trajectories were not available, the degradation of the 

recognition performance could still be bearable. Secondly, neither the system has been 

specifically tuned to work with uppercase sequences, nor lowercase sequences cannot be 

processed the same way uppercase ones have been processed. Therefore nothing prevents the 

application of the system to lowercase, or even mixed-case, sequences. Whether the 

performance would be similar or not, it would be expected that under similar conditions, 

lowercase sequences would yield comparable or even better results since it is believed that 

recognition based on uppercase text is a more challenging problem.  

9.1.3 REGARDING THE RECOGNITION POTENTIAL OF IN-AIR TRAJECTORIES 

The theoretical approach reported in chapter 5 firmly suggested that in-air trajectories 

contained a considerable amount of information and that a significant portion of it might be 

non-redundant with respect to the information contained in on-surface trajectories.  The 

information analysis of both types of trajectories rendered the following conclusions: 

(f) Except for pressure, the amount of information in each one of the features considered is 

virtually the same in on-surface and in-air trajectories.  

 

(g) Although both types of trajectories share information, there is a significant amount of 

non-redundancy.  

The recognition performances achieved by the proposed system (see chapter 7) substantiated 

from a practical perspective what the theoretical approach had suggested: 

MAIN CONCLUSION #4: In-air trajectories have a considerable discriminative power, 

sometimes matching or even outperforming the discriminative power of on-surface 

trajectories.   

MAIN CONCLUSION #5: Non-redundancy between in-air and on surface trajectories can be 

exploited in order to obtain enhanced performances when both types of trajectories are 

considered. 

9.1.4 REGARDING THE METHOD TO GENERATE SYNTHETIC SAMPLES AND ITS USE 

TO ENLARGE THE ENROLMENT SETS 

The third objective of this dissertation, ensuing from the fact that the number of samples per 

writer provided by the BiosecurID database is rather limited, was that of exploring the 

possibility of enhancing the recognition performance of the proposed system by enlarging the 
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enrolment sets with synthetically generated samples. The method proposed in chapter 8 

fulfils this objective and yields promising results: with one word, the enhancement in 

verification ranges from a humble 3.7% to a noteworthy 27.5% with an average of 15%. In the 

case of identification, enhancement ranges from 0.7% to 5.9% with an average of 3.2%. As 

identification rates were already quite high, room for improvement was scarce. As far as the 

author knows, this is the first attempt to apply sample duplication ever reported in the field of 

text-based writer recognition.   

MAIN CONCLUSION #6: synthetically generated samples are capable of enhancing the 

recognition performance, especially in verification. 

From this main conclusion, another one can be drawn: 

(h) Having a method that improves the performance without requiring the writer to provide 

an extra amount of samples may have a positive impact on collectability and 

acceptability.  

It is also important to notice that the enhancement achieved thanks to synthetic samples does 

not interfere with the enhancement achieved when combining two or more words. On the 

contrary: 

(i) The enlargement of the enrolment sets and the combination of two or more words 

strengthen each other providing a higher degree of performance enhancement. 

Although the proposed synthesis method has proved its effectiveness in a particular 

recognition system, it could also be applied to other text-based online recognition schemas or 

adapted to work with them, since it is based on simple yet effective and easy to apply ideas: 

stroke separation, stroke alignment and weighted stroke averaging.    

9.2 FUTURE WORK 

Except for signature-based systems, text-dependent online writer recognition, the field in 

which this dissertation is circumscribed, has not favoured the attention and the efforts of a 

considerable number of researchers. Therefore, the research on which we are reporting is but 

a starting point from which several other lines of research may stem. The following is a non-

exhaustive list of issues that may deserve some attention in the short- or mid-term: 

 The proposed system could be applied to short uppercase sequences and to sequences of 

digits. Also, the recognition potential of the in-air trajectories within these sequences 

could be analyzed, from a theoretical and from a practical perspective. 

 

 To present, only the features directly gathered by the acquisition device have been taken 

into account. But new features can be computed from the aforementioned and their 

relevance could be assessed. Velocity and acceleration (first and second order derivatives), 

often used in online signature verification, could be a starting point. Others may be, for 

instance, the initial set of features considered in [51] (shown in Table 4.12). The set of 

features to consider could be further extended with the addition of features of global 
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nature, extracted from the whole sequence or in a per-stroke basis. Also, other pre-

processing schemas (see section 6.2.1) could be considered.   

 

 The work presented in this dissertation gives evidence of the usefulness of in-air 

trajectories since their combination with on-surface information consistently renders 

improved performances. Is in-air information as relevant for signature as it appears to be 

for text? If so, could in-air trajectories be used, in a similar way, to improve the 

performance of online signature verification systems? Most of these systems already 

exploit the information within the in-air trajectories since it is considered that, being 

invisible to the human eye, these trajectories are difficult to forge therefore giving an extra 

resilience to the methods that do not discard them [118]. Some authors just use them as a 

way to perform segmentation, while others take them fully into account, but do not 

separate them from on-surface ones. Nevertheless, the real impact of in-air trajectories on 

the performance of signature verification systems is an issue that has not received much 

consideration and that is the reason why it could become an interesting line of future 

research. Finally it is important to recall that not all signatures provide in-air information 

since it is not unusual for some signers to perform their signatures without ever lifting the 

writing device. What is more, there may be fewer pen-up strokes in a signature than in a 

long word (such as the ones in the BiosecurID database). Obviously, the potential of in-air 

trajectories may be highly conditioned by these two issues. 

And finally, there is a more ambitious line of research on which we have already started 

working: health. Security issues have virtually monopolized all research on biometrics. But 

biometrics can go beyond security and land on other fields, with health being one of such 

fields. Preliminary results on the analysis of online handwriting and drawings, aiming at the 

characterization and diagnose of neurodegenerative conditions such as Alzheimer’s disease 

and other forms of dementia, are quite encouraging though far from conclusive. In-air 

trajectories may end up playing an important role in the aforementioned analysis since they 

seem to be particularly sensitive to the writer’s health state.  
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