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“Science is a very human form of knowledge. We are always at the brink of the 

known; we always feel forward for what is hoped. Every judgement in science stands 

on the edge of error and is personal: Science is a tribute to what we can know 

although we are fallible” 

J. Boronowsky, extracted from a Gaussian09 quote.  

 

 

 
“Bueno es  saber que los vasos sirven para beber, lo malo es que no sabemos para 

qué sirve la sed” 

Antonio Machado, “Proverbios y cantares”.  
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1.1. On the concept of nanotechnology and its history 

The study of systems in a scale of nanometers is a keystone for understanding the 

properties of matter, not only the properties in such scale (hereafter nanoscale) but 

also in the macroscopic one. The disciplines involved in this field of science are 

diverse and they include chemistry, physics, material science, biology, and statistics 

among others. All these different fields converge in a central branch of science and 

technology called nanotechnology. The term nanotechnology was first coined by 

professor Norio Taniguchi in 1974 in a publication called “On the basic concept of 

nano-tachnology”1. Altough, the concept of nanotechnology is older. To be precise, it 

dates back from 1958 when Nobel prize-awarded Professor Richard Feynman gave a 

lecture2 to the west coast section of the American Physical Society; this lecture was 

titled “Plenty of room at the Bottom”. Prof. Feynman enounced the possibility of 

manipulating individual atoms in order to achieve self-assembling and self-

reproducing devices. That constituted the very first idea of nanotechnology.3 Despite 

introducing the idea that atoms by themselves can store information2 and form new 

devices that work like “little hands”,2 Prof. Feynman establish no consideration about 

the size of the scale that nanotechnology deals with. Professor Taniguchi set this limit 

around 1 nanometer.1 Nowadays the most widely accepted interval ranges from 1 to 

100 nanometers3 and not only it considers the formation of self-assembling and self-

reproducing devices the main goal of nanotechnology, but also embraces a growing 

number of disciplines and technologies, like computational chemistry,4 that work at 

the aforementioned scale whichever their goal is.3 

1.2. On the importance of nanotechnology and its impact 

Despite its early beginnings, nanotechnology did not soar as a hotspot in modern 

science until years later.5 Its development was specially thrived by a key 

development: the invention of the Scanning Tunnelling Microscope (STM) in 1982,6 

this innovation allowed to see, for the first time, an image of surfaces at an atomic 

level, this resolution neared the work scale to that defined by Prof. Feynman2 and 

Prof. Taniguchi1 as the optimal one for nanotechnology. Many other novelties arrived 

after STM, among them, the most outstanding were: synthesis of 

buckminsterfullerene C-607, the finding of carbon nanotubes8, and the Atomic Force 

Microscope (AFM) invention9. 



 

 

All these advances increased considerably the importance of nanotechnology, 

thus causing an upturn in its impact in our daily life. The influence of nanotechnology 

is clearly expressed in the growing number of marketplace products that nowadays 

contain “nanotechnology innovations”10 which totals 1,015 referenced products10. 

This great surge is also found when one looks at the public budgets for 

nanotechnology research and development: The U.S. government supports since 2000 

the National Nanotechnology Initiative (NNI),11 this program has provided funding 

for nanotechnology-related research projects for more than 14,000 million USD12 

from 2000 to 2011, being the budget for 2011 of 1,761.6 USD;12 the European 

Union13 (EU) and Japan14 altogether with emerging countries16 also devote huge 

efforts to nanotechnology. This trend in public budget is followed and even 

overpassed by the business sector investments. This conjunction makes a global 

spending of 3.000 million USD in 200315 and 9,000 million USD in 2005.19 All 

expenditures resulted in a dramatic growth of publications and made patents: 

rocketing from 224 non-overlapping   patent applications in 1991 to 10,067 in 

2008(representing at that year a 1% of the total patent applications) 16. Thus, in the 

same period of time the total number of referenced scientific publications found in ISI 

Web of Science17 that do have the word nanotechnology in their title or as a topic 

passed from 3,630 (year 1991) to 7,192 (year 2008). 

The phenomenal increase in the importance of nanotechnology, clearly shown in 

its faster-than-ever-growing applications (see number of patents16 and commercial 

products10), has raised fears among the scientific community about the safety of some 

nanotechnological innovations.18One of the first concerns about nanotechnology was 

the possibility of introducing self-replicating devices inside living beings3, this 

resembles a “new parasitic life-form”3 that needs to be controlled. These first fears 

about nanotechnology were soon surpassed by other emerging concerns about 

nanotechnology products such as carbon nanotubes (CNTs) and nano-onions.19 On the 

other side, nanotechnology-product-related toxicity remains unlighted since the 

products involved in it are of recent creation. Nonetheless, the works on 

toxicokinetics and toxicodynamics in the long and the short term are growing in 

number and significance.20 The environmental impact of nanotechnology21 products is 

another key fact when we consider the social impact of nanotechnology and it is 

closely correlated with the toxicity of nanotechnology although nanotechnology also 

plays a key role in bioremediation.22,23,24,25 All the aforementioned problems have led 



 

 

the scientific community as well as official regulatory agents to stress the special 

importance of carrying on further research20,21 to assess potential hazards and 

implementing new ethical codes for nanotechnology.21       

1.3. On the applications of nanotechnology 

The impact of nanotechnology in our daily life has grown quickly thanks to the 

number of applications available. These applications belong to daily life products 

although it is far more remarkable the role that nanotechnology plays in high added 

value products in electronics, biomedicine, and biotechnology among others. Some of 

the most relevant applications are made in fields such as nanoelectronics, 

nanobiomedicine, and bionanotechnology. 

1.3.1. Nanoelectronics    

Electronics has been focused mainly on two goals since its creation: increasing 

the power of the devices and reducing their size. These two streamlines produced 

every time new smaller components smaller and more powerful than the previous 

ones. Nonetheless, this race found a serious drawback as soon as the size of some 

components reached the 100 nanometre border. Below this critical size, quantum 

mechanics plays an important role and the main forces in macroscopic world have 

lower significance.2 This was the time for a nanotechnology-based approach.26 

Information storage devices are probably the first one to use nanoelectronics and 

being benefited from it. The reason lies on the ever-growing demand for information 

mass storage memories constrained, at the same time, by room availability. The use of 

carbon nanotubes (CNTs) as electromechanical devices27 in non-volatile memory 

allow CNTs to work like switch elements26 or field-effect transistor (FET).26This 

applicationproduces new devices with  memory densities around several terabits per 

square centimetre althoughThis  density depends on the spatial arrangement of 

CNTs.28  Other molecules have also been tested as single-molecule based memories 

since it can be assumed that the size of the molecule is the limit for the physical 

condensation of a bit of information29. Although the results have not been as 

promising as with CNTs ecept for nanowires.30    

1.3.2 Nanobiomedicine and bionanotechnology  

Bionanotechnology (or nanobiotechnology) and nanobiomedicine have gone 

hand-in-hand since their beginnings, the research projects labelled “nanobio” attracted 

more than a half15 of the venture capital funding raised between 1998 until 2003. This 



 

 

provides us with an idea of the importance and strength of these particular branches of 

nanotechnology.  

Bionanotechnology began at the same time that modern biotechnology: both 

disciplines work with elements of the same scale (from one to several nanometers) 

although, biotechnology initially paid little attention to neither the details neither in 

the nanometer scale nor to engineering-based focus.31 The dawn of modern 

biotechnology can be set in 1973 when the first in vitro bacterial plasmid was built,32 

opening thus the possibility for  mass production of recombinant proteins, one of the 

first successfully cloned and commercially exploited proteins was recombinant human 

insulin in 1978.33  

This production of proteins was tightly related to commercial biomedical 

applications in different fields and nanotechnology came to supply an engineering 

vision of biotechnology and biomedicine that boosted the number of applications and 

the number of fields in which they could be used.34 Some of the most outstanding 

fields revolutionized by nanotechnology are diagnostics and protein engineering. 

1.3.3 Diagnostics    

The usefulness of a diagnostic method falls on the ability of a detector to interact 

with a certain substance that reveals the presence and/or state of a physiological 

condition. Given this definition, it seems clear that details in the nanotechnology scale 

for both detector and detected substance are of vital importance since the 

atomic/molecular factors will be the leading ones in the interaction. Quantum Dots 

(QDs) are key detection tools31 for DNA and proteins35 thanks to the changes in its 

absorption spectra when they bind to a ligand,31 these properties have been used to 

build planar arrays that allow multi detection.31 

Probe-attached CNTs-based electrodes are also of relevant importance in the 

diagnostics field since they show an electric variation as soon as the probe interacts 

with its ligand36. Due to the huge variety of feasible probes37 the applications for these 

devices are numerous and keep growing. Furthermore, the success of the 

aforementioned electrodes lead to the development of other non-carbon made 

nanotubes-based electrodes which also have excellent performances in the same 

field.38 

Moreover, imaging becomes crucial for diagnosing since a high resolution image 

helps assessment and detection of physiological dysfunctions. For instance, cysteine-

arginine-glutamate-lysine-alanine homing peptide39 (CREKA) has a remarkable 



 

 

interest in this field thanks to its high affinity for tumour blood vessels where it can 

cause clotting.39 This high affinity towards tumours can be used as an imaging probe 

when the peptide is attached to a SPIO nanoparticle39 and as a therapeutic tool when 

the peptide is bound to nanoliposomes as a coating.39  

1.3.4 Protein engineering    

Proteins and peptides are of the utmost importance in bionanotechnology and 

nanobiomedicine due to the significant functions they do in living organism. Besides, 

protein and peptides are a part of a number of nanosystems where their interactions 

with ligands strongly affect the mechanism of action.36, 37, 38, 39. These interactions are 

allowed or hindered by the 3-dimensional structure of the protein, the modification of 

this structure strongly affects the functionality of the protein and, thus, the 

manipulation of protein structure reveals itself as one of the most promising fields in 

nanotechnology since these changes may modulate activity or even create new 

functions. 

Amino acids form the primary structure of proteins, which folds to form 

secondary structure that adopts a spatial distribution called tertiary structure. Some 

proteins may have a supra tertiary organization called quaternary structure. This 

hierarchy of protein structures highlights the influence of the amino acid sequence on 

the downstream protein conformations.40 Therefore, this leading role of amino acids 

can be used to modulate protein structure by replacing natural-occurring amino acids 

by other natural-occurring amino acids or by non-coded (non-naturally found) amino 

acids.41, 42, 43 

1.4. On the theoretical approach to nanotechnology 

The quick take-off of nanotechnology in recent years10,16,44 has been accompanied 

by an increase in expenditure,15,19 although there is a limit to the amount of money 

devoted to this end from both public and business sectors. This budgetary constraint 

let us know that refinement and innovation is also required in the proceedings we use 

to develop knowledge and products in nanotechnology. We need to be able to foresee 

the potential applications of a certain discovery or, conversely, discard it as non-

feasible based on solid, reproducible, reality-reproducing, and trustable methods. In 

the face of these endeavours, the theoretical approach to nanotechnology must be 

taken into account. 



 

 

Among different theoretical approaches that can be found, theoretical chemistry 

based on quantum and classical formalisms is probably the most outstanding one. 

This family of in silico methods embraces several simulations to understand the 

structure and function of matter at atomic and nanometre scales: quantum mechanics 

(QM), molecular mechanics (MM), and molecular dynamics (MD) if we consider the 

dimension of time.   

QM methodology holds the highest level of accuracy describing atoms and 

molecules behaviour, although it has a serious limitation at increasing system size. 

Thus, systems made of several dozens of atoms are the only realistically calculable 

ones, being bigger systems computationally unattainable by this method. In spite of 

this drawback, this formalism is specially useful for characterizing small molecules 

such as amino acids,45 conducting polymer’s monomers,46 dyes,47 or even short 

olygomers.48,49,50 This tool have two key focus for this thesis: DFT45,46 and TD-DFT.47 

Classical formalisms, shuch as MM and MD do not depict the electronic nature 

of the atomic level as QM does, but it has a great advantage over the latter . MM and 

MD, the time-considering variant of MM, methods can cope with systems far bigger 

than QM, reaching up to several hundred thousands atoms. This enables these 

techniques to realistically reproduce the properties of big amounts of matter such us 

solvents,51 biological52 and synthetic51 membranes and also entire proteins.53 This 

increment in the amount of atoms is due to a correct treatment of the electronic nature 

of atoms. In order to better fit reality, some of the parameters use in the classical 

formalism can be derived from experiments and/or QM.54 Sometimes, it results 

greatly useful to combine both QM and MM in the so called QM/MM methods. This 

technique treats one part of the system of interest with QM formalism whereas the 

rest is treated with MM formalism; this allows better reproductions of phenomena that 

can just be studied by QM when there are embedded in bigger systems that are just 

attainable at by MM.     

The main conclusion one can obtain from the extensive bibliography on 

approaches to nanotechnology, just scarcely referenced here, is that theoretical 

methods, specially those based on MM and QM are major in silico tools that fit reality 

properly saving time and economic resources for research and also contribute 

significantly to a better understanding and knowledge of nanotechnology. 
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(1) To design and characterize the conformational properties of arginine surrogates. 

Among them, the conformational properties of those derived from proline and from 

Ac5c will be assessed. The role of the solvent polarity and the guanidium group over 

their structural preferences will be studied. 

(2) To characterize structurally indoline carboxylic acid and α-methyl indoline 

carboxylic acid as proline surrogates and to study the influence of the used theoretical 

method in the energy assessment of conformational preferences. 

(3) To elucidate the preferred conformations of phenylazophenylalanine (PAP) and its 

optical behavior. In order to correlate the optical properties with the conformational 

preferences, such features for the new amino acid will be compared with those for 

azobenzene.  

(4) To improve the homing peptide activity of natural home peptide CREKA by 

selective replacement using non-coded engineered amino acid previously studied 

(Cc5REKA). The homing activity of the synthetic peptide will be evaluated by 

exploring its conformational behavior under different conditions and compared to 

those of the wild type peptide. 

(5) To simulate the effect of the hypercrowed environment over the conformational 

landscape of CREKA linked to different kinds of surfaces. The detected structural 

differences between isolation, crowed environment and surface nature are evaluated 

in terms of the conformational variability shown by CREKA in every case.   

(6) To study the conformational dynamics of an engineered peptide. This new 

molecular hybrid is constituted by an engineered β-amyloid fragment that features 

thienylalanines instead of phenylalanines. The inner structural properties of the new 

material will be compared with experimental data in terms of conformational 

restrictions coming from NMR experiments.   

(7) To develop a coherent systematic data base that compiles all available structural 

information of non-coded amino acids, which will be acquired from high level 

theoretical calculations and, if available, high resolution experimental data. The 

information will be graphically presented in terms of structural features of each amino 

acid, easing its use in material science and biomedicine.  



 

 

 



 

 

 

 

 

 

 

 

 

 

3.Methodology 
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3.1. Computational chemistry 

All science insight explored and studied in this thesis comes from the application 

of a well-known set of theoretical methodologies defined as computational chemistry. 

As previously seen, theoretical chemistry includes two main formalisms: quantum 

mechanics (QM) and molecular mechanics (MM). The main difference between these 

formalisms is the level of detail in the treatment of matter. This difference has its own 

expression in the amount of computational effort needed for systems of similar size. 

The presented work of this thesis includes a methods section so this section must 

be understood as a general introduction to the aforementioned techniques. A good 

deeper focus on the question can be found in “Quantum Chemistry” by Ira N. Levine1 

and “Mollecular modeling for beginners” by Alan Hinchliffe.2 

3.2. Quantum Mechanical Methods 

Quantum mechanics focus on the atomic level of matter by dealing with the 

motion of electrons under the influence of the electromagnetic force exerted by 

nuclear charges and other electrons. Most of the QM methods assume that nuclei and 

electron are distinguished from each other and both electron-electron and electron-

nucleus interactions are explicitly described. These interactions lead the contribution 

to both kinetic and potential energies. These energies are computed in the Schrödinger 

equation (equation 3.1.). This equation treats electrons as if these exhibit dual wave-

particle behaviour.  

ψ Eψ Ĥ                          (3.1.) 

Where Ĥ is the Hamiltonian operator containing the kinetic and potential energy 

of the nuclei and electrons, E is the energy of the system and ψ is the wave function 

that describes the molecular orbitals. 

A wave function (ψ) and a probability function (ψ2) can be found for 

monoelectronic atoms. Unfortunately, Schrödinger’s equation is just analytically 

solvable for those atoms having one electron. In case of polyelectronic atoms, one 

must use some simplifying approaches, for instance, considering the molecular wave 

function as a product of unielectronic Atomic Orbitals (AO’s)  

 

 



 

 

3.2.1. The Hamiltonian Operator 

The Hamiltonian operator ( Ĥ ) of a polyatomic system, made of M nuclei and N 

electrons, can be expressed as:  
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where rij, riA, and RAB are the distances between electron-electron, electron-nucleous, 

and nucleus-nucleus, respectively. MA is the relation of the mass of the nucleus A with 

respect to the mass of the electron, ZA is the atomic number of the nucleus A and 2
i  

and 2
A  are the Laplace operators referred to the differentiation between the 

coordinates of the electron i and nucleus A, respectively. The first two terms of 

equation 3.2. show the kinetic energy of the electrons and nuclei respectively, the 

third term deals with the electrostatic attraction between nuclei and electrons, and the 

last two terms take into account, respectively, the electrostatic repulsion between 

electrons and nuclei. The second and fifth terms of equation 3.2. can be added as 

constant by taking into account the Born-Oppenheimer approach. This approximation 

states the motion of nuclei, when compared to the motion of electrons, as neglectable. 

This assumption renders a Hamiltonian operator such as: 

 
   


N

1i

M

1A

N

1i

N

1j ijiA

A2
i

N

1i
el r

1

r

Z

2

1
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3.2.2. Basis sets 

Molecular orbitals can be represented as linear combinations of m basis functions 

(equation 3.4.).3 

 
   ss φφψ 
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                                            (3.4)                                     

where ψi is the ith molecular orbital, φs is the sth basis function and csi are 

weighting coefficients that must be adjusted to get the best molecular orbital. 

Linear Combination of Atomic Orbitals (LCAO) is the approach to generate 

molecular orbitals. In spite that these basis functions are not necessarily atomic 



 

 

orbitals but any set of mathematical functions whose linear combination yields useful 

representations of molecular orbitals. The whole set of those mathematical functions 

that will be used to generate the proper molecular orbitals, is called basis set.  

Slater functions (equation 3.5.) are one of those mathematical functions, which 

allow a good approximation to atomic wave functions. However, large computational 

time is required to obtain their LCAO representation. Using Cartesian Gaussian 

functions (equation 3.6.) reduce considerably the CPU time due to the mathematical 

properties of Cartesian Gaussian functions, these properties allow us to reduce the 

complexity of the integrals (interactions) to be calculated.  

(-br)eaφ            (3.5.)  

)(-br2

eaφ               (3.6.) 

The total wave function ψ is expressed as several combinations of spin-orbitals. 

A spin-orbital is the product of a one-electron spatial orbital and a one-electron spin 

function. This simple approximation allows building total wave function which 

accomplishes with the Pauli’s exclusion principle, which states as following: No two 

electrons can occupy the same spin-orbital. Thus, since the exclusion principle is 

based on approximate (zeroth-order) wave function, a determinant of the form (3.7), 

which satisfies the antisymmetry requirement for a many-electron atom, is called a 

Slater determinant. Consequently, the wave function of the ground-state and excite-

state configurations for any polyelectronic system can be written as Slater 

determinants.  
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STO-nG basis sets 

In spite of being easy to use due to their mathematical properties, Gaussian Type 

Orbitals (GTO) have 2 basic problems:  

●The assessment of energy is often biased  



 

 

●The shape of the orbitals does not fit STO. Unlike the Slater functions the 

Gaussian functions do not have a cusp at the nuclei and they are too short since 

they decay towards zero more quickly.  

In order to combine both properties, easiness for calculations and realistic 

representation of orbitals, one can use a linear combination of Gaussian type orbitals 

(GTO) whose exponent constant (b) and contraction coefficient (a) (eq. 3.6.) are 

adjusted to make the whole orbital fit the shape of a desired STO.4 In this sense, one 

can distinguish between STO-3G, STO-4G or STO-6G basis sets, in which three, 

four, and six Gaussian functions have been used respectively. 

Split-valence basis sets 

As previously seen, STO-nG basis set show serious limitations. One of the most 

important is an incorrect assessment of energy. The rigidity of the minimal basis set 

does not allow incorporating any anisotropy from the molecular environment. The 

core orbitals, unlike the valence orbitals, do not affect chemical properties very much 

and vary only slightly from one molecule to another. Consequently, the split-valence 

approach increases the number of functions used to describe the valence electrons but 

keeping a single function for the inner shells.   

In the present thesis one kind of split-valence basis sets has been used: Pople 

basis sets. Split-valence double-zeta Pople basis sets nomenclature follows the K-

MNG scheme. K is the number of Gaussian functions used to represent the basis set 

functions of the core electrons, M and N indicate that each valence orbital is split into 

two parts being each part represented by M and N Gaussians respectively. Examples 

of these basis sets are 3-21G5 or 6-31G.6 Also, split-valence triple-zeta Pople basis set 

such as 6-311G, in which each valence orbital is split into three parts, have been used 

in the present thesis.  

When atoms bind each other in order to form molecules, atomic charge 

distribution is often distorted from its assumed spherical form, specially for molecules 

with a strongly anisotropic charge distribution. This effect would be poorly depicted 

by the mentioned basis set since they do not allow electrons to move out further of 

that preconceived form. The addition of polarization functions let electrons move in a 

bigger room, thus being able to reproduce the distortion effect. These polarization 

functions have a higher angular quantum number from those atomic orbitals that is 

being adjusted. So,  an extra p orbital for the hydrogen, d orbitals for the first- and 



 

 

second-row elements, and f orbitals for the transition metals, indicated by * or ** 

symbols after the basis set, will be added. 

Another drawback to be solved when considering a basis set is the inability to 

deal with those molecules that present a significant amount of electron density located 

away from the nuclei, such as anions and molecules with lone pairs. This is solved by 

adding diffuse functions, denoted using a “+” for heavy atoms and “++” when involve 

heavy and hydrogen atoms. These diffuse functions are Gaussian Cartesian functions 

and the difference between these and the rest of functions lie in their lower exponent 

constant (b in eq 3.6.). This causes a longer shape of the orbitals. 

3.2.3.  Ab initio calculations 

Ab initio calculations are grounded on solving the Schrödinger equation (eq. 3.1.) 

without using any empirical adjustment, i.e. from first principles. Thus ab initio 

calculations are based only on basic physical theory. As we mentioned before, the 

poly-electronic Schrödinger equation is unsolvable due to the repulsion between 

electrons. The atomic orbital approximation (AO) tries to solve this problem by 

assuming that orbitals have the same shape and size in polyelectronic atoms and in the 

monoelectronic ones, this lead to a missassessment of energy. The Hartrees (father 

and son) were the first to suggest a model that takes into account the AO 

approximation and, at the same time, the repulsion between electrons. By assuming a 

smeared electric potential caused by the rest of electrons, the affection on the electron 

whose spin-orbital was calculated. This new approach did not consider Pauli’s 

principle (exchange energy) and was completed by Fock who introduced the Slater’s 

determinant; the new ab initio method was the Hartree-Fock (HF) method or Self 

Consistent Field (SCF) procedure.7 The HF wave function is approximated to a single 

Slater determinant of spin-orbitals (eq. 3.7.) which makes this function 

antysymmetrized (exchange is effectively considered). In the HF method spin-orbitals 

are split in a harmonic spherical part, an orbital part and a radial function, the radial 

function is optimized by minimizing the variational energy:  

 
ψψ

ψĤψ
ψE           (3.8.)  

Since HF method assumes that every electron moves in an electrostatic field 

generated by the rest of the electrons, the assessment of the energy of the system is 



 

 

biased. HF-SCF wave function takes into account the interactions between electrons 

only in an average way. Consequently, the instantaneous interactions between 

electrons (electron correlation) must be considered since electrons repel each other, 

they tend to keep out of each others's way. Electron correlation plays a key role in 

some important phenomena such as hydrogen bonding, π-stacking, chemical reaction 

(bond breaking and making) and aromatic systems among others. This limitation is 

overpassed by post-HF methods; these methods include different kind of corrections 

that reproduce electron correlation. Two of the most used post-HF methods are Møller 

Plesset (MP) procedure8 and Coupled Cluster (CC) method.9 Møller Plesset is based 

on perturbation theory. The philosophy behind MP methods is that a correction term 

handles electron correlation by promoting electrons from occupied to virtual 

molecular orbitals providing electrons with more room to move and thus making it 

easier for them to show correlation. The Hamiltonian operator is defined as the 

addition of a perturbation operator (V̂ ) to the unperturbed HF Hamiltonian ( 0Ĥ ): 

V̂λĤĤ 0                     (3.9.) 

where λ is a dimensionless parameter taking values compressed between 0 and 1. 

Thus both wave function and energy are described by this perturbed Hamiltonian 

operator.  

(n)n(2)2(1)(0) ψλ...ψλψλψψ                     (3.10.) 

(n)n(2)2(1)(0) Eλ...EλEλEE        (3.11.) 

where ψ(n) is the nth correction of the wave function related to the number of virtual 

spin orbitals and E(n) is the nth correction energy term. Since HF energy is the sum of 

E(0) and E(1) terms, electronic correlation corrections are taken into account from the 

second term (MP2). The MP approach has a serious limit in the perturbation order 

since it consumes a lot of computer resources; the most frequent limit in the available 

commercial software is MP5. MP method shows problems for geometry optimization 

when the starting point is far away from the equilibrium, higher perturbation orders 

are necessary in those cases, for instance MP48 in extreme cases2. 



 

 

The Coupled Cluster method expresses the correlated wave function as a sum of 

the HF ground state determinant plus determinants representing the promotion of 

electrons to virtual molecular orbitals: 
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where n21 T̂T̂T̂T̂    is the cluster operator and the operators nT̂  are 

excitation operators and have the effect of promoting n electrons into virtual spin 

orbitals. It is widely accepted that double excitation operator (n=2) (eq.3.14.) 

represents most of the excitatory contribution, that is why coupled cluster double 

method, CCD, is among the most used ones altogether with CCSD (including single 

and double excitation) and CCSDT (single, double and triple excitations).CCS has 

been used as a rudimentary way to study single excitations. As the number of the 

considered excitations grows, so does the similarity between CC method and full CI. 

3.2.4.  Semiempirical calculations 

Ab initio calculations offer reliability, as they pursue a solution based on the 

Schrödinger’s equation. Unfortunately, a solution with results very close to the 

experimental values is very costly in terms of computational resources, specially for 

large systems. Since the early beginnings of theoretical chemistry, scientists on this 

field have tried to find ways to perform calculations lighter in terms of resource 

consumption. Semiempirical methods (SE) became the key to reduce the 

computational load by introducing the following approximations: 

 Only valence electrons are considered for a Ab initio treatment. 

 Minimal basis set is used for describing valence electrons. Integrals are  

calculated in a simpler way by using experimental data, analytical formulae or 

parameterization. 

Parameters used in SE methods are adjusted to reproduce experimental data. 



 

 

Nowadays, the most used family of semiempirical methods is MINDO family 

(Modified Intermediated Neglect of Differential Overlap), which is very reliable for 

geometry and reaction thermodynamics. Among this family, two of the most used  

methods are PM3,10 which follows the same formalism as the previous SE method 

AM1,11 differences between them are found in the parameterization employed as well 

as in the way to describe functions for the core-core repulsion. 

3.2.5.  Density Functional Theory calculations 

The Density Functional Theory (DFT) is based on the theorems postulated by 

Hohenberg and Kohn12 which state that the ground state energy of a non degenerate 

electronic system is solely defined by an external potential, the electron density and a 

functional of the electron density. Besides, DFT is also based on the variation 

principle which enounces that the energy of any calculated density will always be 

higher than the energy of the actual density.  In consequence DFT does not use the 

wave function but an electron probability density function ρ(x,y,z), i.e. the probability 

of finding an electron in a volume element dxdydz centered on a point with 

coordinates (x, y, z). Assuming r as the position vector of the point with coordinates 

(x, y, z) and taking into account Born and Pauli interpretation, which states that the 

square of a one electron wave function (Kohn-Sham orbitals, ψi in eq. 3.15.) at any 

point is the probability density at that point, the electron density can be written as 

follows: 





n

1i

)(iψr)(ρ
2

r                 (3.15.) 

where n is the number of occupied molecular orbitals. Electronic energy E(ρ) is 

calculated as a simple sum of different contributions that depend on the electronic 

density: 

)(ρE)(ρE)(ρE)(ρE)E(ρ XCJVT                (3.16) 

being ET(ρ) the kinetic energy, EV(ρ) the term containing the potential attractive 

energy electron-nucleus and the repulsive term between nuclei, EJ(ρ) the Coulombic 

repulsion between electrons, and EXC(ρ) the interchange-correlation energy. Usually 

EXC(ρ) is described as a sum of two terms; the exchange term, EX(ρ), and the 



 

 

electronic correlation term, EC(ρ), depending on both terms of the electron density and 

its α and β spin electron density gradient. 

)(ρE)(ρE)(ρE CXXC                 (3.17.) 

The exchange term can be calculated by using approximations that applies a 

homogeneous electron density, such as the Local Density Approximation (LDA)13 

and the Local Spin Density Approximation (LSDA)14. The local density 

approximation performs quite well results. However, it has been shown inadequate for 

some problems.   Thus, some new extensions has been developed, i.a., gradient 

corrected functionals such as the so called Generalised Gradient Approximation 

(GGA) methods, which depend upon the gradient of the density at each point in space 

and not just on its value. Examples of functionals using a homogeneous electron 

density are the VWN15 or the local correlation functional of Perdew (PL).16 Several 

GGA based functionals are reported such as Becke95 (B95),17 Perdew 86 (P),18 

Perdew-Burke-Ernzerhof (PBE),19 Perdew-Wang 91 (PW91)20 and the extremely 

popular Lee-Yang-Parr (LYP).21 The exchange-correlation term can also be calculated 

using the so called hybrid density functionals, which combine a conventional GGA 

method with a percentage of Hartree-Fock exchange. Examples of hybrid density 

functional that combine a part of the HF exchange with DFT exchange-correlation 

include B3LYP,21,22 B3PW91,20,22 MPW1K,23 O3LYP,21,24 X3LYP20,21,25 and BMK.26  

B3LYP is one of the most used hybrid methods in this thesis due to its high 

correlation with experimental values, i.a., geometric and thermodynamic parameters. 

B3LYP obtains its energy from eq 3.18. 
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XC  CX aaa  (3.18.) 

Where EXC is the exchange-correlation energy, EC is the correlation energy and 

EX is the exchange energy. The three different parameter (a0, ax, ac) are coefficients 

determined to fit experimental values of energy whose usual values are 0.2, 0.72 and 

0.8 respectively. 

3.2.6.  Time dependent DFT calculations  

After the introduction of DFT methods which, originally, were time independent, 

the elucidation of DFT for systems with densities evolving with time and position (Eq 



 

 

3.18) was developed. It was E. Runge and E. K. U. Gross who, in 1984, enounced the 

four theorems that were the physical foundation of Time Dependent Density 

Functional Theory (hereafter TD-DFT).27 

● For any external potential, υ(r,t), that can be expressed as a Taylor series 

around t0(initial moment), the time-dependant Schrödinger equation can be 

solved if the initial state, φ0 = φ(t0), is invariable, thus generating a unique density 

map. 

● There is a time-dependent density functional, which is parametrically 

dependant on r and t. 

● Action integral (A) can be represented as a functional dependent on density, the 

density functional and time, A(n,B,t). 

 

● The time-dependence of electron density can be expressed as:    
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(3.19.) 

This method opens huge possibilities for studying any systems that is under 

influence of time-depending varying potential fields. These potential fields can be due 

to moving electrons, moving atoms or an electromagnetic wave like light. These 

possibilities make TD-DFT a major tool for the study of electron excitation and 

relaxation altogether with the accompanying events in chemical systems, that is light 

adsorption and emission. TD-DFT has been used in the present work for studying the 

spectroscopic properties of molecules.        

3.2.7.  Solvent effects 

The solvent effects on the solute must be taken into account since many chemical 

and physical reactions and phenomena happen in condensed phases. There are two 

basic approaches to treat those solvent effects: 

● Explicit solvent models. This approach takes into account all the local 

anisotropies due to solvent molecules by considering all or just a part of solvent 

molecules explicitly. It is probably the most accurate way but it is 

computationally inaccessible for large systems by using ab initio calculations. 

Explicit solvent are more frequent in MM and MD approaches. 



 

 

● Implicit solvent models. This is the most frequent approach in ab initio 

calculations. To describe implicitly the solvent as it is done in the continuum 

models, i.e. while the solvent is described as an infinite dielectric medium, the 

solute is treated at the QM level. In the present thesis the so called Polarizable 

Continuum Model (PCM or MST) has been the most used methodology.28 The 

PCM method generates spheres centered on each atom of the molecule on the 

surface of which point charges are added to simulate the polarization of the 

solvent due to the nuclear charges and electron density of the solute, i.e.. virtual 

point charges are created on the surface of the cavity to fit the derivative of the 

solute electrostatic potential calculated from the molecular wave function.PCM is 

a Self Consistent Reaction Field (SCRF) method that adjust virtual cavity charges 

altogether with solute charges . 

All this process enables us to decompose the solvatation energy into three 

components: 

 Creation of the solute cavity inside bulk solvent. 

 Generation of the van der Waals particle inside the cavity. 

 Generation of the solute charge distribution in solution. 

elecvdWcavsolv ΔGΔGΔGΔG                    (3.20.) 

where ∆Gcav is the work involved to increase the cavity,  ∆GvdW is the 

contribution due to the van der Waals interactions and  ∆Gelec is the electrostatic 

component of the ∆Gsolv and it corresponds to the work required in the polarization 

process. Interaction potential between solvent and solute is introduced in the solute 

electronic Hamiltonian as a perturbation operator ( RV̂ ). Thus, the Schrödinger 

equation is expressed as follows: 

  ψ Eψ V̂Ĥ R
0                      (3.21.) 

where 0Ĥ  is the solute’s Hamiltonian operator. 



 

 

3.3.  Molecular mechanics (MM) simulations 

3.3.1. The force field 

The previously mentioned quantum mechanical methodology (QM) treats matter 

with a high accuracy level, considering atom nuclei and electrons. Unfortunately, 

those methods are highly resource-consuming in terms of computation. Thus, on large 

systems (over 100 atoms), both a big number of processors and a considerable amount 

of computing time are required. This situation makes large systems unrealistically 

attainable by these methods. Clearly, we need of new approaches to downsize the 

necessary amount of time and processors. Molecular mechanics (hereafter MM) 

comes to provide a powerful tool for systems made up to several hundred thousand 

atoms that do not require of the electronic properties study. 

In MM potential energy of a given system is evaluated by a set of equations and 

parameters named “Force Field” (FF), and based on classical mechanics laws. MM 

considers atoms as non-deformable balls, and atomic bonds as springs with harmonic 

potential behaviour. Also, angle bond alterations from ideal values are also 

represented with harmonic potentials, whereas the torsion angle potential function is a 

rotation described by a dihedral angle and a coefficient of symmetry n, around the 

middle bond, as can be seen in eq. 3.22. 
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Equation 3.22. is the equation for the Assisted Model Building and Energy 

Refinement (AMBER) force field (FF).29 E(r) is the expression for the potential 

energy of an atom at position r. AMBER is the force field used for the MM 

simulations of this thesis. The terms included in the equation are: 

● Bond stretching is the first term, that is bond elongation and contraction from 

its equilibrium value (req). This potential is computed as a harmonic potential, 

though some other FFs used anharmonic expressions for this term. Despite this 



 

 

variety of available equations, all models (harmonic and anharmonic) have the 

same behaviour around the equilibrium value. 

● The second term is the harmonic potential for bond angle bending from its 

equilibrium value ( eqθ ). 

● The third term is the torsion angle potential function which models steric 

barriers between atoms separated by 3 covalent bonds (1,4 pairs). This term is 

described by a dihedral torsion from equilibrium value γ to its non-equilibrium 

value ( ) This potential is assumed to be periodic and is often expressed as a 

cosine function. 

The fourth term expresses Van der Waals interactions which is one of the two  

considered non-bonding interactions. Nonetheless, we can reproduce other 

interactions by modifying the exponents of the dividends, for instance, using the 12-6 

potential for Van der Waals interactions and 12-10 for hydrogen bonding (rarely 

used). The rij variable is the distance between the two considered atoms and Aij and Bij 

are parameters that depend of the pair of atoms, these two parameters refer to hard 

core repulsion and dispersive attraction respectively. 

● The fifth term accounts for the other non-bonding interactions called 

electrostatic potential where qi and qj are the point charges of atoms i and j 

respectively, rij is the distance between them, and ε0 is vacuum permittivity. 

It is highly remarkable that, in MM simulations, each atom is defined by three 

main characteristics, which are constituted by: 

● Its hybridization 

● Its formal atomic charge 

● Its nearest neighbours 

These characteristics are represented by the constants written in equation 3.22., 

which altogether with the equilibrium values are taken from AMBER libraries. All the 

terms not found in AMBER libraries must be parameterized either using experimental 

data or by means of ab initio or DFT calculations. In the present thesis charges have 

been obtained from QM ab initio calculations according to either the so-called 

Restrained Electrostatic Potential (RESP)30 fitting or by fitting the quantum 

mechanical and the Coulombic Molecular Electrostatic Potential (MEP).31 

The aforementioned potentials lead to a high number of constants and 

interactions. In spite of the high power of MM for huge systems, it is necessary, 



 

 

sometimes, to reduce the complexity of the system in terms of parameters and 

interactions number. This reduction entails less resource consumption. There are 

several methods to reduce complexity of the systems: 

● United Atom (UA) FFs embed light atoms into the heavy ones they are bound 

to. This is made by adding the Van der Waals radii and charges of the light atoms 

to the heavy ones. By doing this, we can slash down dramatically the number of 

constants and potential energy functions to be calculated. 

● Cut-off is a threshold distance beyond which we do not take into account 

neither non-bonded interactions nor electrostatic potential. This is useful to cut 

down the number of the aforementioned interactions to be calculated. It is 

assumed that, at distances over the cut-off, the contribution of electrostatic and 

non-bonded interaction to the total potential energy is negligible for Van der 

Waals interaction. The remaining electrostatic contribution in distances beyond 

cut-off, which may be significant, can be modelled by Particle Mesh of Ewald 

(PME) method.   

● SHAKE algorithm takes as rigid (non-vibrating) the bonds between hydrogen 

and carbon atoms.  

3.3.2. Molecular Dynamics (MD) 

MD uses Newton’s equations of movement with classic potentials (coming from 

MM) to include time. 

Given an atom i with mass mi and considering that its position is described by a 

three dimensional vector ri, its motion is ruled by Newton’s law 
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vi                       (3.24.) 

where vi and Fi are respectively the velocity and the force acting on the atom i in a 

given moment. Fi can be obtained through equation 3.23. 

i

N

r

r





)E(

Fi                      (3.25.) 



 

 

where E(rN) is given by eq. 3.22. and N is the number of particles in the system. 

Equation 3.24. can be expressed as a Taylor expansion around t, this leads to a 

mathematical expression that allows us to calculate the velocity at each time step 

(Δ t) (Equation 3.26.) 
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By calculating the same Taylor’s expansion for the position vectors (r1) at t+Δ t 

and     t-Δ t, assuming that expansion terms over the third one are negligible we can 

develop the so called leap-frog Verlet algorithm32 (Equations 3.27. and 3.28.) 
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That which can be rearranged as: 
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As we can see there is no expression for velocity in this formula, thought it can 

be calculated as: 
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Time step ∆t might be small enough to simulate those movements with the 

highest frequencies, which normally are the bond vibrations. Consequently time step 

takes values of the order of the femtosecond. It is especially remarkable the C-H 

vibrating frequency since it is one of the smallest frequencies that can be found. Small 

time steps lead to more expensive simulations. 

One of the biggest drawbacks of this method is that it needs to store information 

for position and acceleration for time nt  and  Δtt n  . This increases significantly 



 

 

the computational resources in terms of memory space. However, there is another 

version of the Verlet algorithm named velocity Verlet algorithm that works with 

velocities, positions and accelerations at time tn. 

The CPU time needed for a MD simulation depends on several factors as the 

number of the explicit particles in the system, the time step or the cut-off radii. In 

order to speed up the MD simulation some simplifications might be done such as 

freezing the fastest modes of vibration by constraining the bonds to hydrogen atoms 

to fixed lengths. In this sense, SHAKE or constrained Verlet method33 has been used 

in this thesis. 

3.3.3. Thermodynamic Ensembles 

An ensemble is a collection of all microscopic states that belong to a single 

macroscopic or thermodynamic state. There are five ensembles that are used in MD 

simulations.34 

●The canonical or NVT ensemble, whose thermodynamic state is characterized 

by a fixed number of atoms N, fixed volume V and fixed temperature T. This 

ensemble is widely used to simulate biological systems. 

●The isobaric-isoenthalpic or NPH ensemble, where the number of atoms N, the 

pressure P and enthalpy H are fixed. 

●The isobaric-isothermal or NPT ensemble, with fixed values of number of 

atoms N, pressure P and temperature T. 

●The microcanonical or NVE ensemble, which corresponds to a closed or 

isolated system since energy E, besides the number of atoms N and volume V, is 

fixed. 

In the present thesis NVT and NPT ensembles have been employed. Temperature 

is mainly set by the average kinetic energy of the molecules of the system. 

Consequently temperature can be controlled by adjusting the velocities of each atom. 

Berendsen thermostat rescales velocities of atoms assuming a scale factor λ defined 

as: 
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where τT is the heat bath coupling time and T0 is the set point temperature. 



 

 

Concerning the pressure, a fixed value of it implies that volume must be able to 

fluctuate by dynamically adjusting the size of the unit cell and rescaling all atomic 

coordinates. In the case of Berendsend barostat, a scale factor μ is used to scale 

lengths of the box of the system. 
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where τP is the pressure relaxation time of the barostat and P0 is the set point 

pressure. Equations 3.31. and 3.32. define the so called Berendsen thermobarostat.35 

3.3.4. Periodic boundary conditions and Particle Mesh-Ewald   Summation 

MD simulations are performed in finite systems, this is in a box. In spite using a 

proper size for the box, it is absolutely unavoidable to suffer “wall effects”. These 

effects are caused by the crash of particles against the edges of the box. In order to 

prevent this from happening, MD simulations are usually performed with periodic 

boundary conditions; this is by representing an infinite system. The whole system is 

replicated periodically in all directions so atoms outside the simulation box are simply 

images of the atoms simulated in that box. Periodic boundary conditions ensure that 

all simulated atoms are surrounded by neighboring atoms, either images or not. This 

condition guarantees that atoms moving out of the box at one side are able to enter 

again inside the box at the opposite side because replicas of each particle in all 

duplicated boxes move exactly the same way. Minimum image convention avoid 

duplicate interactions between atoms i and j by taking into account only the 

interaction of atom i with the closest j atom, either original or copy. Thus, periodic 

boundary conditions are useful to correct potential energy errors in Coulombic and 

van der Waals non bonded terms for those systems that none of the molecules inside 

simulation box is covalently bound to another molecular moiety outside the box. 

Concerning the Coulombic non bonded term, the main problem to evaluate it 

correctly is that a sudden cut-off lead to large errors. This entanglement can be solved 

with the use of the so called Particle Mesh-Ewald summation (PME),36 which 

calculate the infinite electrostatic interactions by splitting the summation into short 

and long range parts. For PME, the cut-off only determines the balance between the 



 

 

two parts, and the long-range part is treated by assigning charges to a grid that is 

solved in reciprocal space through Fourier transforms. 

3.3.5. QM/MM calculations 

MM methodology has reached an enormous success in theoretical structural 

biology, polymer and material science. This is due to the ability of MM to cope with 

big systems with a number of atoms up to several hundred thousand. This formidable 

achievement was made at expense of the accuracy for electronic description of the 

system. This lack of accuracy has its highest expression in the lack of electron 

correlation and, as it was mentioned previously in the text, this is major problem for 

reproducing chemical reaction, π-stacking, electron conduction, substrate polarization 

and a long etcetera.    

This limitation forced researchers that studied enzymatic biochemical reactions to 

use simpler models that tried to reproduce the entire system with a lower number of 

atoms to make it computationally accessible. A powerful alternative solution is 

QM/MM methods. They are based in splitting the system in two parts, a small one of 

special interest described at the QM level and the rest of the system described at the 

MM level. QM/MM philosophy was firstly introduced by Warshel and Levitt37 and 

developed by Field, Bash and Karplus.38 QM/MM methods differ, besides the 

classical force field and the QM level of theory employed, in how the two parts are 

connected. There are two way to connect QM and MM parts: 

●Integrated Molecular Orbital + Molecular Mechanics (IMOMM) methods are 

the so called link atom scheme, which uses a monovalent atom to cap the 

unsaturated QM atoms. Normally hydrogen atom is used as link atom.39 The use 

of these fictitious atoms caps the QM part to avoid calculating radical forms and 

has a less complex mathematical treatment. The fictitious atom binds through an 

harmonic potential to the MM part.      

●Integrated Molecular Orbital + Molecular Orbital (IMOMO) are methods 

based in the use of localized orbitals in the boundaries separating the QM and 

MM parts. They are more realistic than the previous method but more 

“expensive” in computational terms. One example is the Local Self-Consistent 

Field (LSCF) method40 in which the bonds connecting both parts are represented 

by a set of strictly localized bond orbitals (SLBOs) that are determined by 

calculations on small model compounds and assumed to be transferable. 



 

 

Within the framework of QM/MM calculations the total Hamiltonian operator is 

defined as the sum of the QM, QM/MM and MM Hamiltonians: 

MMQM/MMQM ĤĤĤĤ        (3.33.) 

where MMQMH /ˆ is expressed as the sum of electron-charge, nuclei-charge and van 

der Waals interaction potentials between QM and MM atoms: 

QM/MM
vdW
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Equation 3.34. can be expanded for a system containing N QM atoms and M MM 

atoms as follows: 
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Thus energy in a QM/MM system is defined as shown in Equation 3.36. 

QM/MMMMQM EEEE                     (3.36.) 

where MMQME / is defined as: 
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                (3.37.) 

3.3.6. Conformational exploration 

One of the fields where MM has developed intensively is the conformational 

exploration for macromolecules. These molecules are usually so big that the QM 

approach is unfeasible, leaving the MM approach as the only possible one. 

Conformational exploration consists on characterizing all the possible conformations 

a molecule is able to adopt.  

For small molecules one considers of the possible values a dihedral may adopt 

and all the possible combinations of values to generate starting points to be optimized 

with QM. This optimization should render the lowest energy minima for that 

molecule. For big molecules such as peptides, proteins, polymers and DNA 

conformational exploration is not so simple. In fact, the high number of dihedrals to 



 

 

be considered, the number of possible values for those dihedrals, and the number of 

combinations makes it unrealistic that combinatorial approach. Besides, for large 

molecules we find problems to locate the global minimum since other quasi 

degenerate minima and high energy conformational barriers might exist, entropic and 

solvatation effects play a key role too. Putting it all together: we need a methodology 

to overcome that conformational barriers and, at the same time, to find the lowest 

energy minima. Two of these methodologies have been used in this thesis: 

3.3.6.1. Simulated Annealing (SA)      

The conformational space for large systems is difficult to explore due to an 

exacerbation of the aforementioned difficulties, high energy conformational barriers 

are highly remarkable stressed. Simulated Annealing (SA) has been widely used to 

search the conformational space of peptides.41,42,43 This optimization algorithm was 

explored very early in the seminal work by Kirkpatrick and Gelatt.44  

SA consists on running MD simulations in systems that are gradually heated. As 

soon as the system reaches a temperature in which kinetic energy is high enough to 

cross through the conformational barriers, temperature is hold. After a period of time 

running at that high temperature, the system is gradually cooled down. This system is 

believed to emulate the natural folding of protein from a random-coil conformation to 

a minimal energy conformation. 

After several cycles, one can obtain series of low energy structures in which we 

can find quasi degenerated structures with the global minimum.  

3.3.6.2. Replica Exchange Molecular Dynamics (REMD)       

REMD45,46 is a methodology to search the conformational space of 

macromolecules by running several non-interacting replica MD simulations 

simultaneously at different temperatures each one. The potential energy of the 

replicas is assessed each certain period of time and then compared pair wise between 

consecutive replicas (consecutive temperatures). 

Out of this comparison, one can obtain one of the two options: an exchange 

between two replicas of the heat bath, followed by a concomitant re-scaling of kinetic 

energy, or no exchange. To assess the probability for this exchange, REMD uses a 

metropolis criterion: 
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Where  is the probability of exchange,  iqE  and  jqE are the potential 

energy for the two replicas, BK is the Boltzmann constant, and, MT and NT are the 

temperatures of replicas i and j respectively. 

From equation 3.38. we can deduce that the probability of acceptance of the 

exchange is as follows: 
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Equation 3.39 let be that the smallest the 2T is, the highest the probability of 

acceptance probability is. This relationship collides severely with the fact that it is 

necessary to use big 2T in order to reach high temperatures, in a few number of 

replicas, to overcome energy barriers. Unfortunately, REMD needs an exchange ratio 

over 10% to be a useful technique and this makes mandatory to use a number of 

replicas for big systems. Another way to understand the importance of T is to 

consider that to have a successful exchange the value of the quotient E
E


  must be 

around 1; E  is the energy gap between replicas and E is energy fluctuation of 

each replica during MD. This quotient should have values around 1, then normal 

fluctuations in the energy of the system would be enough to match  the energy 

difference between  the two replicas at some moment,  allowing its exchange. 

The determination of exchange rate (probability) follows a multi-factorial 

scheme: potential energy, temperature, and differences of the two previous factors 

between replicas are keystones. This complexity makes temperature distribution to be 

determined through several algorithms,47 though a trial and error approach is 

necessary for a more precise adjust .       
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4. Characterization of non-coded amino acids  

 

 

 

 

 



 
 

4.1. Side-chain to backbone interactions dictate the conformational 

preferences of a cyclopentane arginine analogue  

4.1.1. Introduction 

Among non-proteinogenic amino acids the conformational propensities of which 

can be exploited in the design of peptides analogues with well-defined backbone 

conformations are 1-aminocycloalkane-1-carboxylic acids1 (known in the abbreviated 

form as Acnc, with n referring to the ring size). Within this series, the cyclopropane 

(Ac3c),1,2 cyclobutane (Ac4c),1,2c,3 cyclopentane (Ac5c)1,2a,3b,4 and cyclohexane 

(Ac6c)1,3b,5 members have been deeply investigated and shown to exhibit a restricted 

conformational space characterized by a high propensity to adopt , backbone 

angles typical of the 310-/-helix (with some distortion in the case of Ac3c). 

When considering a bioactive peptide, amino acids of the Acnc family have 

proven appropriate replacements for proteinogenic residues bearing aliphatic or 

aromatic side chains.6 However, the Acnc series may not be convenient to replace a 

proteinogenic amino acid containing a functionalized side chain which is directly 

involved in the peptide-receptor recognition process and is therefore essential for 

bioactivity. One may yet consider a new family of non-coded amino acids generated 

by attaching the functionalized side chain of a natural residue to the cycloalkane 

moiety in Acnc. This allows the combination of the necessary functionality with the 

particular conformational properties of the Acnc residues (Figure 4.1.1. ). Moreover, 

this may enable the specific orientation of the side chain functionality by selecting the 

appropriate cycloalkane size and stereochemistry.  

Specifically, we have been working on the synthesis7 and structural study8 –both 

theoretical and experimentally– of the amino acids obtained by incorporating a phenyl 

substituent at one of the α carbons of Acnc (n = 3–6). The compounds thus obtained 

can be considered as phenylalanine (Phe) analogues and we denote them as cnPhe, 

where n indicates the size of the cycle, as in Acnc. Since the phenylalanine side chain 

in cnPhe is included in a cyclic structure, the Cα—Cα bond can not rotate freely and, as 

a consequence, the orientation of the aromatic group is dictated by the size (n value) 

and stereochemistry of the cycloalkane ring. It should be noted that the additional 

phenyl substituent may exhibit a cis or a trans relative disposition with respect to the 

amino function. Accordingly, the different cnPhe stereoisomers can be regarded as a 

series of phenylalanine analogues with distinct well-defined side-chain orientations. 



 

 

Indeed, the different spatial arrangement attained by the aromatic substituent has 

proven useful in several applications related to the stabilization of particular peptide 

backbone conformations.8,9 
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Figure 4.1.1. Structure of 1-aminocycloalkane-1-carboxylic acids (Acnc, n: cycle size) and a 

proteinogenic amino acid (represented, in general, as Xaa). Combination of the cyclic structure 

of Acnc with the side-chain functionality in Xaa gives rise to cnXaa residues.  

Within a project aimed at imparting protection against proteolytic cleavage to a 

bioactive peptide with simultaneous stabilization of a folded conformation, we 

became interested in the replacement of an arginine residue (Arg) by a non-natural 

analogue. In particular, we have focused our attention on the arginine analogue 

bearing an Ac5c skeleton, that is, c5Arg according to the nomenclature described 

above (Figure 4.1.1.). As it can be seen, in c5Arg the α carbon is separated from the 

guanidinium group by two carbon atoms, while this segment involves three carbon 

atoms in Arg. Therefore, from a rigorous point of view c5Arg is a substituted Ac5c-

like derivative of nor-Arginine, where nor refers to a reduction of one carbon atom 

with respect to the side chain of conventional Arg. For an L configuration at the α 

carbon, the guanidilated side chain of arginine may exhibit a trans or a cis disposition 

relative to the amino moiety, respectively giving rise to trans- and cis-c5Arg (Figure 

4.1.2.). It should be considered that the charged side chain of c5Arg may interact with 

the backbone not only sterically but also electronically, and this may have a strong 

impact on the structural preferences of the peptide chain. In order to evaluate the 

behavior of the L enantiomer of both trans- and cis-c5Arg, we report a conformational 

study of the corresponding N-acetyl-N’-methylamide derivatives, hereafter denoted as 

Ac-t-L-c5Arg-NHMe and Ac-c-L-c5Arg-NHMe, respectively (Figure 4.1.2). Density 

Functional Theory (DFT) calculations at the B3LYP/6-311+G(d,p) level have been 



 

 

used to locate and characterize the minimum energy conformations. The influence of 

the solvent polarity on the conformational preferences has been examined using a Self 

Consistent Reaction Field (SCRF) method and molecular dynamics (MD) simulations 

with explicit solvent molecules. 
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Figure 4.1.2. Structure of the compounds investigated, containing the trans (t) and cis (c) 

cyclopentane analogues of L-arginine. The backbone and side-chain dihedral angles are 

indicated.  

4.1.2. Methods 

The conformational properties of Ac-t-L-c5Arg-NHMe and Ac-c-L-c5Arg-NHMe 

have been investigated using the Gaussian-03 computer program.10 The structural 

search was performed considering that the compounds under study retain the 

restrictions imposed by the cyclopentane ring on the backbone in Ac5c.4a Accordingly, 

the five minimum energy conformations characterized for Ac-Ac5c-NHMe in ref. 4a 

were used to generate the starting structures for Ac-t-L-c5Arg-NHMe and Ac-c-L-

c5Arg-NHMe. Although for Ac-Ac5c-NHMe such five minima were two-fold 

degenerate due to the symmetry of the molecule, i.e. {φ,ψ,χi} = {-φ,-ψ,-χi}, the chiral 

nature of the two c5Arg derivatives under study requires explicit consideration of both 

{φ,ψ,χi} and {-φ,-ψ,-χi} possibilities. The arrangement of the side group is defined by 

the flexible dihedral angles ζ1 and ζ2, which are expected to exhibit three different 

minima: trans (180º), gauche+ (60º) and gauche– (–60º). Consequently, 5 (minima of 

Ac-Ac5c-NHMe)  2 (chiral nature of c5Arg)  3 (minima of ζ1)  3 (minima of ζ2) = 



 

 

90 minima can be anticipated for the potential energy hypersurface (PEH) E = 

E(φ,ψ,χi, ζ1,ζ2) of each c5Arg-containing derivative. All these structures were used as 

starting points for subsequent full geometry optimizations.  

All geometry optimizations were performed using the B3LYP functional11,12 

combined with the 6-311+G(d,p) basis set.13 Frequency analyses were carried out to 

verify the nature of the minimum state of all the stationary points obtained and to 

calculate the zero-point vibrational energies (ZPVE) and both thermal and entropic 

corrections. These statistical terms were then used to compute the conformational 

Gibbs free energies in the gas phase at 298K (ΔGgp). 

To obtain an estimation of the solvation effects on the relative stability of the 

different minima, single point calculations were conducted on the optimized 

structures using a SCRF model. Specifically, the Polarizable Continuum Model 

(PCM) developed by Tomasi and co-workers14 was used to describe water and 

chloroform as solvents. The PCM model represents the polarization of the liquid by a 

charge density appearing on the surface of the cavity created in the solvent. This 

cavity is built using a molecular shape algorithm. PCM calculations were performed 

in the framework of the B3LYP/6-311+G(d,p) level using the standard protocol and 

considering the dielectric constants of water (ε = 78.4) and chloroform (ε = 4.9) to 

obtain the free energies of solvation (ΔGsolv) of the minimum energy conformations. 

Within this context, it should be emphasized that previous studies indicated that solute 

geometry relaxations in solution and single point calculations on the optimized 

geometries in the gas phase give almost identical ΔGsolv values.15 The conformational 

free energies in solution (ΔGconf) at the B3LYP/6-311+G(d,p) level were estimated 

using the classical thermodynamics scheme: ΔGconf= ΔGgp + ΔGsolv. 

MD simulations in water solution were performed using the NAMD program.16 

The simulated peptides Ac-t-L-c5Arg-NHMe and Ac-c-L-c5Arg-NHMe were placed in 

the center of a cubic simulation box (a= 31.1 Å) filled with 338 explicit water 

molecules, which were represented using the TIP3 model,17 and a negatively charged 

chloride atom as counterion. Atom pair distance cutoffs were applied at 14 Å to 

compute van der Waals interactions. The electrostatic interactions were computed 

using the nontruncated electrostatic potential by means of Ewald Summations. The 

real space term was determined by the van der Waals cutoff (14 Å), while the 

reciprocal term was estimated by interpolation of the effective charge into a charges 

mesh with a grid thickness of 5 points per volume unit, i.e. the Particle-Mesh Ewald 



 

 

(PME) method.18 Bond lengths were constrained using the SHAKE algorithm19 and 

the numerical integration step was 2 fs. 

Before the MD run series was started, 5  103 steps of energy minimization were 

performed to relax conformational and structural tensions. Different consecutive 

rounds of short MD runs were performed to equilibrate the density, temperature, and 

pressure: 0.50 ns of NVT-MD at 298 K (thermal relaxation) followed by 0.25 ns of 

isobaric relaxation (NPT-MD). Both temperature and pressure were controlled by the 

weak coupling method, the Berendsen thermo-barostat20 using a time constant for heat 

bath coupling, and a pressure relaxation time of 1 ps. The coordinates of the NPT-MD 

production runs, which were 10 ns long, were saved every 500 steps (1 ps intervals) 

for subsequent analysis. 

4.1.3. Results and discussion 

Geometry optimization at the B3LYP/6-311+G(d,p) level led to the 

characterization of 28 and 23 different minimum energy structures for Ac-t-L-c5Arg-

NHMe and Ac-c-L-c5Arg-NHMe, respectively. These minima are within relative 

energy (E) intervals of 36.7 and 20.8 kcal/mol, respectively.  

 

 

 

 

 

Figure 4.1.3. Distribution on the Ramachandran map of the minimum energy conformations 

characterized at the B3LYP/6-311+G(d,p) level for the two c5Arg derivatives under study. The 

color and size of the symbols used to represent the backbone conformations depend on the 

relative energy (E) values. Specifically, large and dark blue circles correspond to the more stable 

minima, while small and empty circles are the least stable ones, i.e. both the intensity of the 

color and the size of the circles decrease when the relative enery increases. 
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Figure 4.1.3. represents the , backbone dihedral angles of these minima using a 

color scale (dark blue-to-white) to show the E increase through intervals of 5 

kcal/mol. As it can be seen, almost all regions of the Ramachandran map are visited 

because of the large number of minima characterized. However, the conformational 

space available to the compounds investigated is relatively restricted, especially that 

corresponding to the trans-c5Arg derivative. Thus, only 8 out of the 28 minima found 

for Ac-t-L-c5Arg-NHMe have E values lower than 5 kcal/mol, and all 8 exhibit 

conformations in the αL region (left-handed α-helix; , ≈ 60º,50º) of the 

Ramachandran map. Regarding cis-c5Arg, 7 (out of 23) minimum energy 

conformations have E < 5 kcal/mol and correspond to three different backbone 

conformations, namely αL, eq
7C  (equatorial C7 or inverse γ-turn; , ≈ –60º,60º) and 

C5 (fully extended , ≈ ±180º,±180º). Accordingly, the relative stability of the 

minimum energy conformations characterized for these c5Arg derivatives is strongly 

influenced by the cis / trans disposition of the charged substituent. 

The next two sections present a detailed description of those minimum energy 

conformations characterized for the compounds under study that are more favored, 

not only in the gas phase but also in chloroform and water solutions. These minima 

are denoted using three labels. The first one refers to the backbone conformation type, 

defined by the , dihedral angles. The second label corresponds to the puckering of 

the cyclopentane ring, i.e. endo/exo-envelope (E) or twist (T) conformations (Scheme 

1). Finally, the third label indicates the conformation of the guanidinium side chain, 

that is, the trans (t), gauche+ (g+) or gauche– (g–) arrangement of the dihedral angles 

ζ1 and ζ2. 
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Ac-t-L-c5Arg-NHMe. Table 4.1.1. lists the backbone and side-chain dihedral angles 

of the 13 minimum energy conformations calculated for the trans-c5Arg derivative 

with E < 7 kcal/mol. The global minimum corresponds to an L/’E/g-t conformation 

(Figure 4.1.4.a), in which the backbone adopts an -helical structure and the 

cyclopentane ring accommodates a C’-exo envelope (’E) arrangement. This 

geometry, combined with the gauche–/trans disposition of ζ1/ζ2, allows the formation 

of a strong hydrogen bond between the guanidinium NH and the carbonyl oxygen of 

the acetyl blocking group [d(H···O) = 1.706 Å, <N–H···O = 170.0º]. Modification of 

the envelope arrangement of the cyclopentane moiety from C’-exo (’E) to C’-endo 

(’E) gives rise to a new minimum (L/’E/g-t, Figure 4.1.4.b), that maintains all other 

conformational features present in the global minimum, including the side-

chain···backbone interaction. This ’E-to-’E transition is associated with an energy 

penalty of 1.6 kcal/mol. 

The conformation adopted by both the peptide backbone and the cyclopentane 

ring in the lowest energy conformer is maintained in the third (αL/’E/tg+, Figure 

4.1.4.c), fourth (αL/’E/g-g-, Figure 4.1.4.d), sixth (αL/’E/g+t, Figure 4.1.4.f) and eighth 

(αL/’E/g-g-, Figure 4.1.4.h) minima, which present E values ranging from 2.5 to 4.4 

kcal/mol. Thus, minima # 1, 3, 4, 6 and 8 differ mainly in the arrangement of the 

guanidinium substituent. The diverse orientations exhibited by this group translate 

into different hydrogen-bonding schemes involving the donor sites in the side chain 

(NH/NH2) and the backbone carbonyl groups. Notably enough, two of such side-

chain···backbone interactions exist simultaneously in minimum # 4 (Figure 4.1.4.d), 

although none of them present an optimal geometry. Moreover, to allow their 

formation, the  angle deviates by around 25º from the value characterizing the rest 

of αL/’E conformers (Table 4.1.1.). 



 

 
 

Table 4.1.1.. Dihedral anglesa and relative energies in the gas phase (ΔE) for the minimum energy conformations with ΔE < 7.0 kcal/mol characterized for Ac-t-L-c5Arg-NHMe at the 
B3LYP/6-311+G(d,p) level.a In degrees; see Figure 4.1.2. for definition. b In kcal/mol. c E=-856.744293 a.u. 

 

# 
Conformer 

Backbone dihedral angles Cyclopentane dihedral angles Side group 
ΔEb 

ω0 φ ψ ω χ1 χ2 χ3 χ4 χ5 ζ1 ζ2 

1 αL/’E/g-t 174.8 71.9 19.8 174.5 -0.1 25.3 -40.9 41.2 -25.2 -63.3, 166.9 0.0c 

2 αL /’E/g-t 174.6 71.2 19.6 173.6 -3.9 -21.2 38.6 -41.3 27.8 -59.3, 164.3 1.6 

3 αL /’E/tg+ 177.5 79.0 14.3 177.2 -7.4 31.2 -42.8 38.3 -18.9 -162.8, 96.8 2.5 

4 αL /’E/g-g- 176.2 59.1 45.5 177.9 4.6 21.0 -38.8 42.0 -28.6 -62.7, -94.1 2.8 

5 αL /E/g+t 172.2 56.9 42.2 178.8 -39.0 22.3 4.1 -29.2 41.7 68.4, 174.4 3.0 

6 αL /’E/g+t 173.0 74.0 21.1 176.6 -8.7 32.0 -42.9 37.8 -17.7 75.1, 148.8 3.2 

7 αL /’E/tg+ 177.8 79.0 16.3 176.5 -11.1 -13.3 33.0 -40.4 31.7 -161.8, 98.1 3.8 

8 αL /’E/g-g- 174.7 80.5 17.5 174.3 10.4 15.4 -35.5 42.4 -32.6 -50.3, -87.0 4.4 

9       
eq
7C /E/tg+ -177.8 -73.8 74.8 -175.5 45.0 -34.8 11.1 17.0 -38.2 -155.2, 85.4 5.2 

10 L/E/g-t 164.7 150.9 119.9 179.0 -44.9 36.8 -13.5 15.2 37.0 -68.5, 125.5 5.6 

11 αL/E/tg+ 174.9 60.0 48.4 -179.4 45.3 -38.2 16.6 11.9 -35.4 -143.9, 82.9 6.2 

12 PII/
’E/g-t -170.5 71.0 155.3 -176.0 -5.1 17.8 34.0 -37.7 26.4 -65.0, 159.9 6.5 

13 eq
7C /E/tg- -170.5 -75.2 57.3 179.2 -41.0 24.8 15.6 -27.4 41.9 147.0, -98.3 6.7 



 

 

 

 

Figure 4.1.4. Lower minimum energy conformations of Ac-t-L-c5Arg-NHMe 

obtained from B3LYP/6-311+G(d,p) calculations. The 13 structures depicted 

correspond to the minima listed in Table 4.1.1., i.e. minimum energy conformations 

with E < 7 kcal/mol.  
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On the other hand, changing the cyclopentane envelope arrangement in minimum 

# 3 from C’-exo to C’-endo results in a new minimum (# 7, αL/’E/tg+, Figure 

4.1.4.g), which is 1.3 kcal/mol higher in energy. This destabilization is similar to that 

produced on going from the first to the second minima, which implies the same 

conformational change. 

Finally, two other minimum energy conformations with an αL backbone structure 

and E < 7 kcal/mol were located for Ac-t-L-c5Arg-NHMe, namely conformers # 5 

(αL/E/g+t, Figure 4.1.4.e) and # 11 (αL/E/tg+, Figure 4.1.4.k). They present E 

values of 3.0 and 6.2 kcal/mol, respectively, and are the only minima in Table 4.1.1. 

exhibiting an αL backbone conformation in which the flap of the cyclopentane 

envelope is occupied by the α instead of the γ’ carbon. The fact that no minima with 

an atom other than C’ at the envelope flap is located below E = 3 kcal/mol is a 

significant difference with respect to the unsubstituted derivative Ac-Ac5c-NHMe, for 

which the global minimum was found to exhibit an E cyclopentane arrangement.4a 

The most stable conformer with a backbone disposition other than L is # 9, 

which is unfavored by 5.2 kcal/mol with respect to the global minimum. In this 

structure ( eq
7C /E/tg+, Figure 4.1.4.i), the terminal backbone CO and NH sites form 

an intramolecular hydrogen bond [d(H···O)= 1.948 Å, <N–H···O= 141.6º] defining a 

seven-membered cycle (C7 or γ-turn conformation) and the cyclopentane ring adopts a 

C-exo envelope arrangement. Furthermore, the side chain orientation allows the 

formation of an additional hydrogen bond involving the c5Arg CO and the 

guanidinium NH2 [d(H···O)= 1.671 Å, <N–H···O= 175.3]. The other minimum with a 

C7 backbone structure ( eq
7C /E/tg-, Figure 4.1.4.m.) exhibits similar 

backbone···backbone and side-chain···backbone interactions and differs from the 

former in the endo position occupied by C within the cyclopentane envelope. 

Two additional types of peptide backbone conformation, corresponding to 

extended (β-pleated sheet) or semi-extended (polyproline II) structures were detected 

among the minima characterized for Ac-t-L-c5Arg-NHMe with E < 7 kcal/mol, 

namely minima # 10 (L/E/g-t, Figure 4.1.4.j) and # 12 (PII/
’E/g-t, Figure 4.1.4.l). 

They share a common disposition for the guanidinium side group (gauche-/trans 

arrangement of ζ1/ζ2), that, combined with the different backbone and cyclopentane 



 

 

conformations, leads to the formation of two and one side-chain···backbone 

interactions, respectively, for minima # 10 and 12. 

Table 4.1.2. shows the conformational Gibbs free energies in the gas phase at 

298K (ΔGgp) for the minima listed in Table 4.1.1.. It is worth noting that the addition 

of the ZPVE, thermal and entropic contributions to the E values does not produce 

significant changes in the relative stability order outlined above. Thus, assuming a 

Boltzmann distribution, αL/’E/g-t is the only conformation with a significant 

population at room temperature in the gas phase, since the ΔGgp values of all other 

minima are above 1.5 kcal/mol (Table 4.1.2.). Furthermore, the backbone adopts an 

αL conformation in the seven structures with lower ΔGgp values, indicating that the 

preference for this helical fold is not altered by the addition of the statistical 

corrections. Not surprisingly, Ggp values above 7 kcal/mol were obtained for all the 

minima with E > 7 kcal/mol and, therefore, the contribution of these structures to the 

conformational preferences of Ac-t-L-c5Arg-NHMe are completely negligible. 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 4.1.2. Relative conformational Gibbs free energiesa at 298K for selectedb 

minimum energy conformations of Ac-t-L-c5Arg-NHMe in the gas phase (ΔGgp), 

chloroform ( conf
CHLΔG ) and aqueous solution ( conf

WATΔG ) characterized at the 

B3LYP/6-311+G(d,p) level. 

# Conformer Ggp conf
CHLΔG  conf

WATΔG  

1 αL/’E/g-t 0.0c 2.0 3.2 

2 αL/’E/g-t 1.6 3.1 4.8 

3 αL/’E/tg+ 2.8 0.0 0.0 

4 αL/’E/g-g- 4.1 4.0 5.2 

5 αL/E/g+t 2.4 3.6 4.1 

6 αL/’E/g+t 3.8 3.9 4.7 

7 αL/’E/tg+ 4.2 1.2 1.3 

8 αL/’E/g-g- 6.2 5.9 7.4 

9 eq
7C /E/tg+ 6.4 1.5 1.3 

10 L/E/g-t 6.9 6.7 8.4 

11 αL/E/tg+ 6.4 3.6 3.1 

12 PII/
’E/g-t 5.7 7.7 8.6 

13 eq
7C /E/tg- 8.2 3.8 4.2 

a In kcal/mol. b Minimum energy conformations with ΔE < 7.0 kcal/mol (see Table 4.1.1.). c 
G=-856.436015 a.u 



 

 

The conformational free energies estimated in chloroform ( conf
CHLΔG ) and water 

( conf
WATΔG ) solutions at the same temperature are also included in Table 4.1.2. As it 

can be seen, αL/’E/tg+ (Figure 4.1.4.c) becomes the most favored conformation in 

both solvents, with αL/’E/tg+ (Figure 4.1.4.g) being destabilized by only 1.2 and 1.3 

kcal/mol in chloroform and water, respectively. These results indicate that the solvent 

affects the arrangement of the side chain and, to some extent, the puckering of the 

cyclopentane ring but not the backbone, which in solution retains the preference for 

the α-helical conformation previously detected in the gas phase. 

At this point, it is interesting to establish a comparison between the results 

obtained in this work for Ac-t-L-c5Arg-NHMe and those recently reported for the 

analogous phenylalanine derivative, Ac-t-L-c5Phe-NHMe.8a Thus, for the trans-c5Phe-

containing compound, four different peptide backbone conformations were found to 

be energetically accessible in the gas phase. They correspond to eq
7C , C5, 

ax
7C  and R 

structures, the three latter being destabilized with respect to the former by 0.6, 1.0, 

and 1.5 kcal/mol, respectively. In comparison, only the L backbone conformation is 

accessible to Ac-t-L-c5Arg-NHMe, with no other being located within E < 5 

kcal/mol (Table 4.1.1.). The cyclopentane ring puckering propensities are also 

significantly different for the two compounds. Thus, αE, γE and αE arrangements were 

characterized in the accessible minima of the trans-c5Phe derivative,8a whereas for 

Ac-t-L-c5Arg-NHMe only the ’E disposition is detected. Regarding the behavior in 

solution, the environment was found to alter the conformational preferences of the 

trans-c5Phe derivative from a quantitative point of view but not qualitatively, that is, 

both compounds retain the main conformational trends observed in the gas phase. 

This comparison provides evidence for the different roles played by the 

guanidinium and phenyl side groups in directing the conformational preferences of 

Ac5c and indicates that the presence of a charged guanidinium group in the 

neighborhood of the carbonyl terminus (trans-c5Arg) imposes more severe 

conformational constraints than those induced when an aromatic group is 

incorporated in the same position (trans-c5Phe). This distinct behavior should be 

attributed to the different types of interactions that each side group may establish with 

the backbone. Thus, the phenyl substituent may affect the conformational propensities 

of the rest of the molecule by steric reasons or through the establishment of weak 



 

 

attractive interactions of the N–H···π type21 with the NH groups in the peptide 

backbone. In comparison, the guanidinium side chain mainly interacts with the 

backbone through the formation of hydrogen bonds. The latter interactions have a 

more marked directional character, involve the CO instead of the NH backbone 

groups and are associated with a much higher energy. As a consequence, the 

guanidinium side chain specifically oriented by the cyclopentane ring towards the 

carbonyl terminus has a greater impact on the conformational properties of the 

peptide backbone than a phenyl substituent, and induces conformations different to 

those encountered for peptides incorporating the unsubstituted Ac5c
4a or the 

phenylalanine counterpart, trans-c5Phe.8a 

Ac-c-L-c5Arg-NHMe. The relevant structural parameters of the minimum energy 

conformations with E < 7 kcal/mol characterized for Ac-c-L-c5Arg-NHMe are listed 

in Table 4.1.3. As it can be seen, only 9 minima satisfy this energetic criterion. It 

should be noted that, at variance with the compound described in the previous section, 

in this c5Arg derivative the charged guanidinium group exhibits a cis relative 

orientation with respect to the amino substituent (Figure 4.1.2.). This should reflect in 

different interactions between the side chain and the rest of the molecule (both the 

cyclopentane ring and the peptide backbone) and therefore lead to different 

conformational propensities. 
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Figure 4.1.5. Lower minimum energy conformations of Ac-c-L-c5Arg-NHMe obtained from 
B3LYP/6-311+G(d,p) calculations. The 9 structures depicted correspond to the minima listed in 
Table 4.1.3.,  i.e. minimum energy conformations with E < 7 kcal/mol.
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Table 4.1.3. Dihedral anglesa and relative energies in the gas phase (ΔE) for the 

minimum energy conformations with ΔE < 7.0 kcal/mol characterized for Ac-c-L-

c5Arg-NHMe at the B3LYP/6-311+G(d,p) level. 

a In degrees; see Figure 4.4.2. for definition. b In kcal/mol. c E=-856.7433141 a.u. 

 

# 
Conformer 

Backbone dihedral angles Cyclopentane dihedral angles Side group 

ΔEb 

ω0 φ ψ ω χ1 χ2 χ3 χ4 χ5 ζ1ζ2 

1 
αL/E/g+g+ -178.5 48.0 48.6 180.0 40.4 -26.7 2.0 23.8 -39.6 63.0, 84.6 0.0c 

2 

αL/E/g+t -178.5 48.6 51.6 179.4 43.4 -32.1 7.7 19.9 -38.9 69.5, -163.2 0.5 

3 
αL/E/tg- 180.0 49.8 45.0 -178.7 44.6 -35.2 11.5 16.5 -37.3 151.6, -86.3 1.4 

4 
αL/E/g+g+ -178.3 49.6 42.5 178.1 41.3 -28.6 4.0 22.2 -39.0 54.2, 84.6 1.5 

5 eq
7C /E/tg- -172.0 -72.9 60.3 179.2 42.3 -29.9 5.4 21.0 -38.8 152.8, -84.2 2.3 

6 eq
7C /E/g+t -173.0 -72.8 67.1 -179.6 42.6 -28.7 2.9 24.3 -41.1 70.3, 161.9 3.1 

7 
C5/

’E/g+t 169.4 179.4 131.4 176.9 11.7 -33.6 42.7 -35.7 14.6 61.9, 166.4 4.9 

8 

C5/
’E/tg+ 169.5 -179.9 172.2 -177.3 13.9 -34.6 42.1 -33.5 11.9 -156.0, 99.8 6.1 

9 
PII/E/g-g+ -172.0 -57.8 129.1 -177.5 43.8 -29.4 3.3 24.5 -41.8 -66.6, 111.4 6.9 



 

 

 

The lowest energy minimum characterized for Ac-c-L-c5Arg-NHMe (αL/E/g+g+, 

Figure 4.1.5.a) corresponds to an L backbone conformation with the cyclopentane 

ring arranged as a C-exo envelope and the two side-chain dihedral angles in gauche+. 

This spatial organization orientates both backbone carbonyl oxygens (those in the 

acetyl group and the c5Arg residue) towards the guanidinium side chain, thus allowing 

the existence of two side-chain···backbone hydrogen bonds. The second (αL/E/g+t, 

Figure 4.1.5.b), third (αL/E/tg-, Figure 4.1.5.c) and fourth (αL/E/g+g+, Figure 4.1.5.d) 

minima only differ from the global one in the orientation of the guanidinium side 

group. These conformational transitions bring about significant changes in the 

hydrogen bonding scheme and an energy destabilization ranging from 0.5 to 1.5 

kcal/mol. 

The next minimum ( eq
7C /E/tg-, Figure 4.1.5.e) adopts a different backbone 

conformation. Specifically, the backbone acetyl CO and methylamide NH groups 

form a seven-membered hydrogen-bonded ring typical of the C7 or γ-turn 

conformation. Additionally, this structure is stabilized by a strong side-

chain···backbone interaction involving one guanidinium NH2 and the c5Arg CO 

group. The arrangement of the cyclopentane ring is identical to that observed for the 

four preceding minima. Conformer # 6 ( eq
7C /E/g+t, Figure 4.1.5.f) differs from # 5 in 

the orientation of the side group only, and this is associated with a change in the side-

chain···backbone hydrogen-bonding pattern and an energy cost of 0.8 kcal/mol. 

The next two structures, minima # 7 (C5/
’E/g+t, Figure 4.1.5.g) and # 8 

(C5/
’E/tg+, Figure 4.1.5.h), correspond to a C5 peptide backbone conformation, 

characterized by the presence of a hydrogen bond linking the c5Arg NH and CO sites 

and closing a five-membered cycle. In the case of minimum # 7, the geometry of this 

pseudocycle is severely distorted –as evidenced by the small  angle– to allow the 

involvement of the same CO group in a strong hydrogen bond with the guanidinium 

NH site. The different orientation of the guanidinium side chain in minimum # 8 leads 

to an interaction with the acetyl CO group (instead of the c5Arg CO), and the C5 

conformation accommodated by the peptide backbone is completely regular. It is also 

noteworthy that # 7 is the most stable minimum of the cis-c5Arg derivative in which 

the flap of the cyclopentane envelope is not occupied by the  carbon. This means a 



 

 

 

significant difference with reference to the behavior described above for the trans-

c5Arg derivative. 

Finally, the last conformer in Table 4.1.3. (PII/E/g-g+, Figure 4.1.5.i.) is 

unfavored by 6.9 kcal/mol with respect to the global minimum and corresponds to a 

polyproline II conformation stabilized by a single side-chain···backbone interaction. 

Inspection of Table 4.1.4. indicates that the lowest ΔGgp value corresponds to the 

αL/E/g+t conformation (Figure 4.1.5.b), while the αL/E/g+g+ minimum (Figure 

4.1.5.d) is destabilized by 1.8 kcal/mol. Accordingly, if a Boltzmann distribution is 

assumed, only the αL backbone conformation and the C-exo envelope arrangement of 

the cyclopentane ring are populated in the gas phase at 298 K. For all the minima with 

E > 7.0 kcal/mol, Ggp values above 5.1 kcal/mol were obtained and, therefore, the 

contribution of these structures to describe the conformational preferences of cis-

c5Arg can be considered as negligible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 4.1.4. Relative conformational Gibbs free energiesa at 298K for selectedb 

minimum energy conformations of Ac-c-L-c5Arg-NHMe in the gas phase (ΔGgp), 

chloroform ( conf
CHLΔG ) and aqueous solution ( conf

WATΔG ) characterized at the 

B3LYP/6-311+G(d,p) level. 

# Conformer Ggp conf
CHLΔG  conf

WATΔG  

1 αL/E/g+g+ 2.0 2.4 4.6 

2 αL/E/g+t 0.0c 3.1 4.9 

3 αL/E/tg- 2.1 0.0 0.0 

4 αL/E/g+g+ 1.8 3.4 5.4 

5 eq
7C /E/tg- 3.4 1.0 3.3 

6 eq
7C /E/g+t 2.9 4.5 7.5 

7 C5/
’E/g+t 8.2 5.6 6.9 

8 C5/
’E/tg+ 5.5 3.9 6.1 

9 PII/E/g-g+ 7.7 3.8 4.3 

a In kcal/mol. b Minimum energy conformations with ΔE < 7.0 kcal/mol (see Table 3). c G=-

856.429193 a.u. 

The values of conf
CHLΔG  and conf

WATΔG  are also listed in Table 4.1.4. As it can be 

seen, the only conformations with conf
CHLΔG  < 1.5 kcal/mol are αL/E/tg- (Figure 

4.1.5.c), which is the global minimum in chloroform solution, and eq
7C /E/tg- (Figure 

4.1.5.e), that is destabilized by 1.0 kcal/mol. Accordingly, both the αL and eq
7C  

backbone conformations are expected to exhibit significant populations in this organic 

solvent, while the disposition of the cyclopentane ring and the guanidinium side chain 

seems to be restricted to the C-exo envelope and tg- arrangements, respectively. On 

the other hand, the lowest energy minimum in aqueous solution is αL/E/tg- (Figure 



 

 

 

4.1.5.c), all the other structures being destabilized by more than 3.3 kcal/mol. It is 

worth noting that the αL/E/g+t conformation (Figure 4.1.5.b), which presented the 

lowest ΔGgp value, is unfavored by 3.1 and 4.9 kcal/mol in chloroform and water, 

respectively. 

Again, significant differences are detected when the results obtained in this work 

for Ac-c-L-c5Arg-NHMe are compared to those previously described for Ac-c-L-

c5Phe-NHMe.8a Notably, the conformational space available to the latter compound 

was found to be more restricted than that of the trans derivative as a consequence of 

the high proximity between the amino terminus and the bulky, rigidly held aromatic 

substituent. Thus, only equatorial C7 conformers were found to be accessible at room 

temperature for Ac-c-L-c5Phe-NHMe. Indeed, for this compound, minima with an αL 

backbone arrangement were destabilized by more than 5 kcal/mol, whereas this is the 

only backbone structure energetically accessible to cis-c5Arg (Table 4.1.3.). Also the 

cyclopentane arrangement was found to be substantially different. Thus, the βE 

disposition, which places the β carbon bearing the bulky phenyl ring out of the plane 

defined by the other cyclopentane atoms, proved the most favorable one for the cis-

c5Phe derivative,8a whereas cis-c5Arg largely prefers the αE arrangement. In 

chloroform and aqueous solution, eq
7C /βE remained the only structure energetically 

accessible to Ac-c-L-c5Phe-NHMe. Accordingly, the conformational preferences of 

cis-c5Phe and cis-c5Arg are substantially different since they depend, to a large extent, 

on the need to relieve steric hindrance in the former case and on the ability of the side 

chain to form hydrogen bonds with the backbone in the latter. 

Classical Molecular Dynamics simulations in aqueous solution. In the absence of 

experimental data, classical MD simulations with explicit solvent molecules are 

valuable for describing the favored low-energy conformations of peptides. In order to 

explore the conformational energy surfaces of Ac-t-L-c5Arg-NHMe and Ac-c-L-

c5Arg-NHMe in aqueous solution using this methodology, a specific force-field 

parametrization to represent the stretching, bending, torsional, van der Waals and 

electrostic interactions of these constrained peptides was required. In a previous study 

we showed that no special electronic effect is present in Ac5c
4a and, therefore, the 

stretching, bending, torsional and van der Waals parameters for Ac5c and its 

derivatives can be directly transferred from the Amber force-field.22 Accordingly, 



 

 

 

electrostatic charges have been the only force-field parameters specifically developed 

for trans- and cis-c5Arg.  

Atomic charges for the five minimum energy conformations listed in Table 4.1.1. 

and 3 were calculated by fitting the HF/6-31G(d) quantum mechanical and the 

Coulombic molecular electrostatic potentials (MEPs) to a large set of points placed 

outside the nuclear region. It should be noted that the electrostatic parameters derived 

at this level of theory are fully compatible with the current Amber force-field.22 

Electrostatic potential (ESP) fitting atomic centered charges for trans- and cis-c5Arg 

were derived by weighting the charges calculated for the corresponding minimum 

energy conformations according to Boltzmann populations.23 The weights were given 

by the standard Boltzmann formula using the Ggp values given in Tables 4.1.2. and 

4.1.4. As the charges obtained for trans- and cis-c5Arg were similar, i.e. the absolute 

value of the largest was lower than 0.08 e.u., we decided to simplify the force-field by 

providing a unique set of electrostatic parameters for the two amino acids (Figure 

4.1.6.).  
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         Figure 4.1.6. Electrostatic parameters determined for c5Arg residues. 

MD simulations of Ac-t-L-c5Arg-NHMe and Ac-c-L-c5Arg-NHMe were 

performed at 350 K. The lowest energy conformation was used as starting point of a 

trajectory that was 10 ns long for each compound. Figure 4.1.7. represents the 

accumulated Ramachandran plot for the trans- and cis-c5Arg dipeptides. In both cases 

the most populated conformation in aqueous solution corresponds to the L, which is 

visited much more frequently than the eq
7C conformation during the trajectory. This 

fact is in excellent agreement with the results displayed in Table 4.1.2. and 4.1.4., 



 

 

 

which indicate that the L conformation is the lowest energy minimum. These 

evidences clearly confirm that the conformational space of both trans- and cis-c5Arg 

is severely restricted by the constrains imposed not only by the cyclopentane ring but 

also by the charged guanidinium group, which establish hydrogen-bond interactions 

with the peptide backbone.   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.7. Accumulated Ramachandran plot for Ac-t-L-c5Arg-NHMe and Ac-c-L-c5Arg-

NHMe derived from a MD trajectory 10 ns long in aqueous solution. 

Influence of the guanidinium side group in the conformational properties. In 

order to evaluate quantitatively the consequences arising from the incorporation of the 

guanidinium side group in Ac5c to generate cis- and trans-c5Arg, the isodesmic 

reaction displayed in Scheme 1 has been considered. For different backbone 

conformations and cyclopentane ring arrangements, the energy (Esg) and free energy 
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(Gsg) contribution associated with the side group in Scheme 1 were estimated 

according to equations (1) and (2), respectively. 

       

Ac-Ac5c-NHMe

MeCOHN CONHMe
HN

H2N NH2

CH3
+

Ac-L-c5Arg-NHMe

MeCOHN CONHMe

HN

H2N NH2

+ CH4

R-CH3

 

Scheme 1 

                     

                      

(1)              )( RCHNHMecAcAcCHNHMArgcLAcsg 3545   EEEEE e
 

                     

(2)              )( RCHNHMecAcAcCHNHMArgcLAcsg 3545   GGGGG e
 

In these equations, Esg and Gsg provide an estimation of the energy and free 

energy contribution, respectively, associated to the incorporation of the guanidinium 

side group for a given backbone conformation and cyclopentane ring puckering of 

Ac5c. Table 4.1.5. shows the values calculated considering selected minimum energy 

conformations of both Ac-t-L-c5Arg-NHMe (Table 4.1.1.) and Ac-c-L-c5Arg-NHMe 

(Table 4.1.3.), namely the most stable ones among those for which Ac-Ac5c-NHMe 

was found4a to exhibit a minimum with similar backbone conformation and 

cyclopentane puckering. As no αL minimum with an E cyclopentane arrangement 

was characterized for the cis-c5Arg derivative, the αL/E/g+g+ conformation (the 

global minimum in Table 4.1.3.) was considered in this case. On the other hand, it 

should be noted that the minimum energy conformations previously obtained for Ac-

Ac5c-NHMe through B3LYP/6-311G(d,p) calculations4a have been re-optimized at 

the B3LYP/6-311+G(d,p) level. 

 



 

 

 

The negative values obtained for both Esg and Gsg (Table 4.1.5.) reveal significant 

favorable interactions for all the conformations of Ac-t-L-c5Arg-NHMe and Ac-c-L-

c5Arg-NHMe considered. Specifically, the attractive interactions between the charged 

side group and the polar backbone amide groups produce a significant stabilization for 

the L, eq
7C  and C5 backbone conformations. The strength of this effect is fully 

consistent with the relative energies and free energies obtained for such 

conformations, the most and least attractive interaction being obtained for the L and 

C5 structures, respectively. Overall, these results indicate that the remarkable 

preference of c5Arg towards the L helical conformation is due to the formation of 

strong side-chain···backbone interactions, which are more attractive than those 

established for other backbone conformations. As expected, Gsg is higher than Esg in 

all cases, which should be attributed to the unfavorable entropic contribution 

associated with the disappearance of the strong side chain···backbone interactions. 

Table 4.1.5. Energy (Esg) and free energy (Gsg) contributions associated with the 

guanidinium side group for selected backbone conformations of Ac-t-L-c5Arg-NHMe 

and Ac-c-L-c5Arg-NHMe. 

Compound Conf. L-c5Arg Conf. Ac5c
a Esg Gsg 

Ac-t-L-c5Arg-NHMe αL/E/g+t αL/E -17.1 -13.8 

 eq
7C /E/tg+ eq

7C /E -12.5 -8.4 

 eq
7C /E/tg- eq

7C /E -11.1 -7.3 

Ac-c-L-c5Arg-NHMe αL/E/g+g+ αL/E -19.5 -13.7 

 eq
7C /E/tg- eq

7C /E -14.7 -10.9 

 C5/
’E/g+t C5/

’E -13.2 -9.8 

a From ref. 4a [minima re-optimized at the B3LYP/6-311+G(d,p) level] 

 



 

 

 

4.1.4. Conclusions 

The conformational preferences of Ac-t-L-c5Arg-NHMe and Ac-c-L-c5Arg-

NHMe have been explored using quantum mechanical calculations at the B3LYP/6-

311+G(d,p) level. Results indicate that the cis and, particularly, the trans 

stereoisomers of c5Arg prefer an -helical conformation. Thus, all the minima found 

for Ac-t-L-c5Arg-NHMe and Ac-c-L-c5Arg-NHMe with E  4.4 and 1.5 kcal/mol, 

respectively, exhibit this peptide backbone structure. Furthermore, the preference for 

the α-helical conformation is retained in solution. Also the cyclopentane ring 

puckering is significantly affected by the presence and orientation of the guanidinium 

side chain, and thus, cis- and trans-c5Arg show a marked preference for the C’-exo 

and C-exo envelope arrangements, respectively, in all environmental conditions 

considered.  

The structural preferences exhibited by the c5Arg derivatives are in high contrast 

with those previously observed for the analogous phenylalanine derivatives, Ac-t-L-

c5Phe-NHMe and Ac-c-L-c5Phe-NHMe, which have been shown to prefer the eq
7C  

arrangement. The unique conformational properties observed for c5Arg should be 

attributed to the ability of the side-chain guanidinium group to establish hydrogen-

bond interactions with the peptide backbone, which are particularly attractive when 

the backbone adopts a helical conformation. The present work provides evidence for 

the ability of the side chain to influence the peptide backbone conformation and, 

specifically, illustrates how the latter may be affected by the side-chain nature and 

orientation.  
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4.2. Conformational profile of a proline-arginine hybrid 

 

4.2.1. Introduction 

Design of specific chemical modifications in natural amino acids is a powerful 

strategy to control the conformational properties of short peptides.1 Moreover, non-

coded residues in a peptide chain may result in increased resistance to proteolytic 

degradation.2 Non-proteinogenic amino acids are useful in engineering peptide 

analogues with improved pharmacokinetics and medicinal applications.2,3 

A non-coded amino acid can replace residues in natural peptide sequences if it 

does not disrupt the bioactive conformation of the preplaced segment. The resulting 

peptide must preserve the native shape that interacts with the receptor. When dealing 

with small flexible peptides, a non-coded residue can improve the targeted peptide by 

biasing its conformational equilibrium to a conformational set that guarantees 

function. Thus, the non-proteinogenic amino acid should exhibit a high preference for 

the conformation adopted by the natural residue that is to be replaced. 

Theoretical methods can assist so that only those candidates yielding satisfactory 

results in silico are selected for experimental studies. This evaluation requires (i) 

theoretical study of the wild-type bioactive conformation (if not available 

experimentally); (ii) assessing which amino acid should be replaced; and (iii) design 



 

 

 

of a new non-coded amino acid adequate to replace the targeted position of the 

peptide. The conformational preferences of the new non-coded amino acid need to be 

determined before the replacement is performed. If such conformational preferences 

do not match those of the targeted position, the replacement will not be successful. 

We are involved in a project aimed at improving the bioactivity of the 

pentapeptide Cys-Arg-Glu-Lys-Ala (CREKA). This peptide has biotechnological 

interests because it recognizes molecular markers that are present in tumor blood 

vessels but not in the vasculature of normal tissues,4 thus showing promising 

applications in cancer diagnosis and therapy. Medicinal use is however hampered by 

the poor stability against proteases and short half-life time typically exhibited by small 

and medium-size natural peptides. The conformational landscape of CREKA was 

explored by computational methods under different environmental conditions.5 This 

analysis led to a bioactive conformation exhibiting a turn motif, with the charged side 

chains of Arg, Glu, and Lys oriented toward the same side of the molecule.5 The 

peptide backbone is folded in β-turn centered at the Arg and Glu residues. Arginine 

occupies the first corner position of the β-turn (i+1) and adopts dihedral angles 

corresponding to the -helical (L) region of the Ramachandran map.  

The first attempt to decrease the peptide sensitivity to proteases was made though 

by introducing unspecific chemical modifications that did not affect its overall 

conformational properties.6 Hence, a methyl group replaced the hydrogen atom at 

either N position or Cα position. This simple approach increased in vivo the half-life 

time of the CREKA coated nanoparticles in the tumor vessels.6 However, no effort had 

been made to enhance the stability of the bioactive conformation.5 Then in a second 

stage, we undertook the design of new non-coded amino acids that could bias the 

folding of CREKA towards its bioactive organization, focusing our efforts on arginine 

surrogates. The main goal was to incorporate the side-chain functionality of arginine, 

which is essential for CREKA’s activity, in residue that presented clear 

conformational preferences for the L region of the Ramachandran map.  

A first amino acid was designed by combining a non-coded amino acid of the 

family 1-aminocycloalkane-1-carboxylic acids (Acnc, where n refers to the size of the 

cycle) and the side chain functionality of arginine (Figure 4.2.1.).7 These amino acid 

series had been previously investigated and shown to exhibit a restricted 

conformational space characterized by a high propensity to adopt φ,ψ backbone angles 

typical of the 310-/α-helix (with some distortion in the case of Ac3c).8 The new amino 



 

 

 

acid (denoted as c5Arg) was built by incorporating the side chain of arginine at the β-

carbon atom of Ac5c.7 The intrinsic conformational preferences of the new amino acid 

were studied using theoretical methods, showing that α-helical conformation was 

favored both in the gas phase and in solution. It was remarkable that the ability of the 

guanidinium moiety to form hydrogen bonds with the peptide backbone conditioned 

the conformational features of the parent Ac5c,8d which tends to favor the formation γ-

turn based conformations before α-helix like arrangements. 

The latter challenge was though to achieve similar results with a backbone 

constitution closer to that of coded amino acids. Among proteinogenic amino acids, 

proline is known to impart protection against proteolytic cleavage9 as well as to 

nucleate peptide turns,10 with a marked propensity to occupy the i+1 position of β-

turns. Accordingly, following the previous strategy we generated a new residue by 

attaching the arginine side chain to the proline skeleton (see the Supporting 

Information for details). It should be noted that the cyclic nature of proline, that 

includes the amine nitrogen atom in the ring constitution, facilitates a cis arrangement 

of the peptide bond involving the pyrrolidine nitrogen, as compared to other peptide 

bonds, for which the cis form is almost nonexistent.11 Here, however, this issue has not 

been addressed since the targeted arginine in wild-type CREKA presents both peptide 

bonds in trans5 and the new residue is therefore useful only for the latter geometry. 

In a previous work,12 the guanidilated side chain was attached to the -carbon of 

the pyrrolidine ring in a cis configuration with the carboxylic acid moiety, thus giving 

rise to the residue denoted cis-(Pro)Arg in Figure 4.2.1.. The chain length of this 

arginine analogue proved insufficient to reproduce the interactions observed for the 

guanidinium group in the bioactive conformation of CREKA.5,12 Although the 

addition of another methylene unit to the exocyclic guanidilated substituent was 

favorable, incorporation of the resulting residue into CREKA led to the disruption of 

the -turn conformation of the natural peptide.12  

These results led us to design a new arginine surrogate built on a proline skeleton. 

Here, it is the  pyrrolidine carbon that bears the guanidilated arginine side chain and 

the resulting residue is termed cis-(Pro)Arg, where cis refers to the position of the 

guanidilated substituent relative to the carboxylic acid and  denotes the carbon atom 

of the five-membered ring where this substituent is placed (Figure 4.2.1.). Prior to 

testing the modified pentapeptide Cys-cis(Pro)Arg-Glu-Lys-Ala, the conformational 



 

 

 

propensities of the single amino acid have been investigated in depth by theoretical 

methods. As noted above, cis-(Pro)Arg presents a cis orientation between the 

guanidinium and carbonyl moieties –as the previously studied12 cis-(Pro)Arg– in 

agreement with the spatial relationship characterized for the guanilidated segment of 

natural arginine in CREKA.5 However, beyond the CREKA project, other peptides 

incorporating key arginine residues may present the guanidilated side chain oriented 

away form the carbonyl group in the bioactive form. This consideration prompted us 

to also evaluate in this work the conformational propensities of trans-(Pro)Arg 

(Figure 4.2.1.).  
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Figure 4.2.1.. Structure of arginine (Arg) and its proline-like analogues studied 

previously, cis-(Pro)Arg (ref. 8), and in the present work, trans-(Pro)Arg and cis-

(Pro)Arg. The arginine surrogates are named according to the / position of the 

proline skeleton bearing the guanidilated side chain and to the trans/cis relative 

orientation between this side chain and the carboxylic acid.  

We have therefore performed quantum mechanics calculations on the N-acetyl-

N’-methylamide derivatives of both cis-(Pro)Arg and trans-(Pro)Arg, hereafter 

denoted Ac-c-(Pro)Arg-NHMe and Ac-t-(Pro)Arg-NHMe, respectively. The results 

are compared with those reported previously12 for the analogous cis -substituted 

derivative, Ac-c-(Pro)Arg-NHMe. Additionally, parameterization of the two non-

proteinogenic amino acids under study has been carried out before analyzing the 



 

 

 

conformational impact derived from their incorporation into biologically active 

peptides. The dynamical conformational features of the two residues have been 

explored in aqueous solution at room temperature using classical Molecular Dynamics 

(MD) simulations with explicit water molecules. 

4.2.2. Methods 

Quantum mechanical calculations. Density Functional Theory (DFT) methods 

were applied for quantum mechanical calculations, which were performed using the 

Gaussian 03 computer program.13 Specifically, calculations were carried out by 

combining the unrestricted formalism of the B3LYP functional14,15 with the 6-

31+G(d,p) basis set.16 Frequency analyses were carried out to verify the nature of the 

minimum state of all the stationary points obtained and to calculate the zero-point 

vibrational energies (ZPVE) and both thermal and entropic corrections. These 

statistical terms were then used to compute the conformational Gibbs free energies in 

the gas phase (ΔGgp) at 298K.        
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Figure 4.2.2.. Dihedral angles used to identify the conformations of the N-acetyl-N’-
methylamide derivatives of trans-(βPro)Arg and cis-(βPro)Arg studied in this work. The 
(dihedral angles are defined by the atoms in the backbone, whereas the side-chain dihedral 
angles i and ξi are given by the pyrrolidine atoms and the exocyclic side-chain atoms, 
respectively. In particular,  and 0 are defined as C(O)–N–C–C(O) and C–N–C–C,  
respectively. The dihedral angle 1 is given by C–C–C(H2)–C(H2). 

Figure 4.2.2. shows the backbone (0,,) and side chain (i,i) dihedral angles 

that define the conformations adopted by Ac-t-(Pro)Arg-NHMe and Ac-c-(Pro)Arg-

NHMe. The minimum energy structures characterized for these compounds have been 

denoted using a three-label code that specifies the arrangement of the peptide 

backbone, the puckering of the five-membered cycle and the conformation adopted by 



 

 

 

the exocyclic substituent. The first label identifies the backbone conformation type 

according to Perczel’s nomenclature,17 which categorizes the potential energy surface 

E = E() of -amino acids in nine different regions: D, D, D, D, DL, L,L,L, 

and L. The presence of the pyrrolidine ring in proline fixes the  angle near –60° and, 

accordingly, only three of such regions can be accessed,10 namely, L (-turn), L (-

helix), and L (polyproline II). Identical geometric restrictions should apply to the 

arginine surrogates under study since they have a proline skeleton. A trans 

configuration was considered for the amide bonds (0,  ≈ 180º). The second label 

describes the down [d] or up [u] puckering of the five-membered pyrrolidine ring.10a,18 

Such conformational states are also called C
endo and C

exo, respectively, and 

correspond to those in which the C atom and the carbonyl group of proline (or the 

proline-like residue) lie on the same and opposite sides of the plane defined by C, N, 

and C. Specifically, a down puckering was assigned when 1 and 3 were positive 

while 2 and 4 were negative. Conversely, negative values of 1 and 3 and positive 

values of 2 and 4 correspond to an up-puckered pyrrolidine ring. Finally, the 

orientation of the polar exocyclic substituent is described by the third label, which 

indicates the gauche+ (g+), skew+ (s+), trans (t), skew– (s–), gauche– (g–), or cis (c) state 

of each i dihedral angle.  

The conformational search was performed following the strategy used in our 

previous work on cis-(Pro)Arg.12 It was assumed that the two (Pro)Arg derivatives 

under study maintain the geometric restrictions derived from the cyclic nature of 

proline. Thus, the three minimum energy conformations characterized19 for Ac-Pro-

NHMe with trans amide bonds, i.e. L[d], L[u], and L[u], were considered as starting 

geometries for Ac-t-(Pro)Arg-NHMe and Ac-c-(Pro)Arg-NHMe in the present work. 

Regarding the substituent attached to the -carbon of the pyrrolidine moiety, each i 

dihedral was expected to exhibit minima of the gauche+, trans and gauche– type. 

Accordingly, 3 (minima of Ac-Pro-NHMe16)  3 (minima of 1)  3 (minima of 2)  

3 (minima of 3) = 81 minima were anticipated for the potential energy hypersurface E 

= E(i,i) of each (Pro)Arg derivative. All these structures were used as starting 

points for subsequent full geometry optimizations.  

The influence of the solvent on the conformational preferences of the compounds 

under study was quantified by performing Self-Consistent Reaction Field (SCRF) 

calculations on the optimized geometries. Under this formalism, the solute is treated at 



 

 

 

the quantum mechanical level, while the solvent is represented as a dielectric 

continuum. In particular, we used the Polarizable Continuum Model (PCM) developed 

by Tomasi and co-workers to describe the bulk solvent.20 PCM calculations were 

performed following the standard protocol and considering the dielectric constants of 

carbon tetrachloride ( = 2.228), chloroform ( = 4.9), and water ( = 78.4). The 

conformational free energies in solution (Gsol, where sol refers to the solvent) were 

computed using the classical thermodynamics scheme, i.e. for each minimum, the free 

energy of solvation provided by the PCM model was added to the Ggp value.  

Force-field parameterization. The stretching, bending, torsion and van der Waals 

interactions of trans-(Pro)Arg and cis-(Pro)Arg were described classically by 

extrapolating the force-field parameters contained in the AMBER libraries21 for 

proline and arginine. For selected minimum energy conformations, electrostatic 

atomic centered charges were calculated by fitting the HF/6-31G(d) quantum 

mechanical and the Coulombic Molecular Electrostatic Potentials (MEPs) to a large 

set of points placed outside the nuclear region. The electrostatic parameters derived at 

this level of theory are fully compatible with the current parameters of the AMBER 

force-field.21 Electrostatic force-field parameters for the two (Pro)Arg isomers were 

obtained by applying to such atomic charges a strategy based on a Boltzmann 

distribution of multiple conformations, which was originally proposed by different 

authors22 and has been shown to be specially suitable for non-proteinogenic 

residues.7,8c,8d,22b,23 Moreover, this strategy provides conformationally independent 

electrostatic parameters.  

Force-field calculations. MD simulations in water solution were performed using the 

NAMD program.21 The Ac-t-(Pro)Arg-NHMe or Ac-c-(Pro)Arg-NHMe molecules 

were placed in the center of a cubic simulation box (a = 30.6 Å) filled with 955 

explicit water molecules, which were represented using the TIP3 model.25 Negatively 

charged chloride atoms were added to reach electron neutrality. Before the production 

runs, the simulation box was equilibrated for each compound. Thus, 0.5 ns of NVT-

MD at 500K were used to homogeneously distribute the solvent and ions in the box. 

Next, 0.5 ns of NVT-MD at 298K (thermal equilibration) and 0.5 ns of NPT-MD at 

298K (density relaxation) were carried out. The last snapshot of the NPT-MD was 

used as the starting point for production NVT-MD runs at standard conditions.  



 

 

 

The energy was calculated using the AMBER potential.21 Atom pair distance cut-

offs were applied at 12.0 Å to compute the van der Waals and electrostatic 

interactions. In order to avoid discontinuities in the potential energy function, non-

bonding energy terms were slowly converged to 0 by applying a smoothing factor 

from a distance of 10.0 Å. Both temperature and pressure were controlled using the 

weak coupling method26 applying a time constant for heat bath coupling and a 

pressure relaxation time of 1 ps. Bond lengths were constrained using the SHAKE 

algorithm27 with a numerical integration step of 2 fs.  

4.2.3. Results and discussion 

A total of 21 minimum energy conformations were found and characterized for 

Ac-t-(Pro)Arg-NHMe in the gas phase. The conformational parameters of those with   

relative energies (Egp) below 5.0 kcal/mol are listed in Table 4.2.1. (the complete list 

is provided as Supporting Information). In the global minimum (L[u]s–g+t, Figure 

4.2.3.a), the terminal acetyl CO and methylamide NH groups are linked by a hydrogen 

bond [dH···O= 1.793 Å, <N–H···O= 151.3º] closing a seven-membered cycle (-turn or 

C7 conformation), and the pyrrolidine ring adopts an up puckering. The orientation of 

the exocyclic guanidilated side chain, which is defined by the skew–, gauche+ and trans 

arrangement of 1, 2 and 3, respectively, enables the formation of a strong hydrogen 

bond between the carbonyl oxygen of the trans-(Pro)Arg residue and the guanidinium 

NH site [dH···O= 1.628 Å, <N–H···O= 176.2º]. The second (L[u]g–g–s+, Figure 4.2.3.b) 

and third (L[u]g–g–s–, Figure 4.2.3.c) minima also exhibit the seven-membered 

hydrogen-bonded ring typical of a C7 conformation and an up-puckered pyrrolidine 

moiety, while they differ from the global minimum in the orientation of the 

guanidilated side chain. In the L[u]g–g–s+ conformer, the side chain···backbone 

interaction involves an NH2 group in the guanidinium substituent instead of the NH 

site. The less favorable arrangement of the exocyclic side chain in these two 

conformers produces a destabilization of 1.1–1.5 kcal/mol with respect to the global 

minimum. A similar but more pronounced effect is observed for the last minimum 

listed in Table 4.2.1. (L[u]s–tg–, Figure 4.2.3.g). This conformer presents identical 

shapes for both the peptide backbone and the pyrrolidine moiety to those described 

above for the first, second and third minima, but a much higher energy (Egp = 3.7 

kcal/mol). This destabilization should be attributed to the unfavorable steric 

interactions produced within the methylene groups in the side chain to allow the 



 

 

 

formation of a hydrogen bond between the trans-(Pro)Arg CO and the guanidinium 

NH2.  

The most stable structure in Table 4.2.1. exhibiting a backbone conformation 

other than a -turn is L[u]s–g+t, which is unfavored by 2.1 kcal/mol with respect to 

the global minimum. This is noteworthy, since the most stable L conformation with 

trans amide bonds characterized for Ac-Pro-NHMe exhibits a Egp value of 4.9 

kcal/mol.19 The L[u]s–g+t minimum of Ac-t-(Pro)Arg-NHMe (Figure 4.2.3.d) 

presents no hydrogen-bonding interaction within the backbone amide groups, but is 

stabilized by a strong backbone···side chain hydrogen bond. The two additional L 

conformers in Table 4.2.1., L[u]g+g–t (Figure 4.2.3.e) and L[u]g–tg– (Figure 4.2.3.f), 

exhibit similar arrangements for the peptide backbone and the pyrrolidine ring, while 

differing in the orientation of the guanidilated substituent and the topology of the 

associated backbone···side chain interaction. Local repulsions within the aliphatic 

segment in this exocyclic side chain produce a destabilization of 0.9 and 1.4 kcal/mol, 

respectively, relative to the most stable L conformer. 



 

 

 

 

Figure 4.2.3.. Selected minimum energy conformations of Ac-t-(Pro)Arg-NHMe obtained 

from B3LYP/6-31+G(d,p) calculations (Egp < 5.0 kcal/mol, see Table 4.2.1.): (a) L[u]s–g+t; 

(b) L[u]g–g–s+; (c) L[u]g–g–s–; (d) L[u]s–g+t; (e) L[u]g+g–t; (f) L[u]g–tg–; and (g) L[u]s–tg–. 

Intramolecular hydrogen bonds are indicated by dashed lines (H···O distances and N–H···O 

angles are given).
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Table 4.2.1.. Dihedral angles (see Figure 4.2.2.; in degrees), pseudorotational parameters of the pyrrolidine ring (A, P; in degrees), and relative 

energy (Egp; in kcal/mol) of the minimum energy conformations with Egp < 5.0 kcal/mol characterized for Ac-t-(Pro)Arg-NHMe at the 

B3LYP/6-31+G(d,p) level. 

 

a See ref. 16 for definition. b χ0 = –1.7°, χ1 = –22.3°, χ2 = 37.5°, χ3 = –38.2°, χ4 = 25.2°. c E = –856.5567162 a.u. d χ0 = –5.7°, χ1 = –18.4°, χ2 = 34.9°, 
χ3 = –38.0°, χ4 = 27.5°. e χ0 = –8.7°, χ1 = –15.1°, χ2 = 32.5°, χ3 = –37.3°, χ4 = 29.1°. f χ0 = –13.5°, χ1 = –9.2°, χ2 = 27.4°, χ3 = –35.4°, χ4 = 30.7°. g χ0 = 
9.7°, χ1 = –30.7°, χ2 = 40.2°, χ3 = –34.5°, χ4 = 15.5°. h χ0 = 3.0°, χ1 = –24.6°, χ2 = 36.8°, χ3 = –35.1°, χ4 = 20.0°. i χ0 = 3.2°, χ1 = –26.6°, χ2 = 39.6°, χ3 

= –37.4°, χ4 = 21.5°. 

Conformer 0    A, Pa 1 2 3 Egp 

L[u]s–g+t –169.6 –77.8 54.8 178.2 40.1, 92.5b –127.0 61.1 162.8 0.0c 

L[u]g–g–s+ –170.3 –79.9 59.5 179.1 39.0, 98.3d –84.2 –77.5 117.9 1.1 

L[u]g–g–s– –170.3 –80.5 56.1 179.3 38.0, 103.3e –59.8 –49.6 –115.6 1.5 

L[u]s–g+t –169.7 –89.7 –3.5 176.5 36.0, 112.0f –92.4 61.2 156.5 2.1 

L[u]g+g–t –170.2 –73.1 –20.2 179.0 40.5, 76.2g 39.5 –77.7 –173.7 3.0 

L[u]g–tg– –169.9 –76.5 –16.0 177.2 38.0, 85.5h –88.4 155.2 –86.1 3.5 

L[u]s–tg– –169.4 –73.5   44.0 177.3 40.8, 85.5i –126.2 157.4 –87.1 3.7 



 

 

Comparison with the results previously reported12 for Ac-c-(Pro)Arg-NHMe 

provides evidence for the higher flexibility of the -substituted derivative Ac-t-

(Pro)Arg-NHMe studied in the present work. This is due to the presence of an 

additional exocyclic methylene unit in the latter case (Figure 4.2.1.), which broadens 

the conformational space that may be explored by the guanidilated side chain. Yet, the 

number of energetically accessible conformers is small in both cases, as expected 

from the restrictions imposed by the proline skeleton. The two compounds share the 

main structural features of the global minimum, which belongs to the L[u] category 

and exhibits identical patterns for both the backbone···backbone and side 

chain···backbone hydrogen-bonding interactions. However, a highly stable L[d] 

conformer was located12 for Ac-c-(Pro)Arg-NHMe at only 0.4 kcal/mol, whereas no 

L[d] structure appears in Table 4.2.1. for Ac-t-(Pro)Arg-NHMe. Indeed, the only 

L[d] minimum located for the latter compound presents Egp = 19.0 kcal/mol (see 

Supporting Information). Another important difference is the presence of L 

conformers in Table 4.2.1., whereas no Ac-c-(Pro)Arg-NHMe minima12 presented 

this backbone conformation. 

Table 4.2.2. gives the conformational parameters of the five minima 

characterized for Ac-c-(Pro)Arg-NHMe with Egp values below 5.0 kcal/mol (see the 

Supporting Information for a complete list of minima). Interestingly, the backbone 

shape preferred by this compound corresponds to the -helix, whereas the -turn is 

unfavored by at least 2.0 kcal/mol. This is in sharp contrast with that described above 

for the trans-(Pro)Arg derivative, as well as with the behavior observed before for 

the analogous -substituted compound12 [Ac-c-(Pro)Arg-NHMe] and for proline 

itself19 (Ac-Pro-NHMe). Indeed, the most stable -helical minimum characterized for 

Ac-Pro-NHMe with trans amide bonds lies 4.9 kcal/mol above the preferred -turn 

conformer,19 and no minimum energy structure was characterized in the -helix 

region for Ac-c-(Pro)Arg-NHMe.12 This comparative analysis provides evidence for 

the enormous impact that the incorporation of a functionalized side chain able to 

establish hydrogen-bonding interactions with the main-chain amide groups may have 

on the conformational preferences of the peptide backbone. It also illustrates the fact 

that the conformational profile of arginine analogues bearing a proline skeleton 

depends dramatically on the specific position of the guanidilated side chain, that is, 



 

 

the pyrrolidine carbon bearing it and its relative orientation with respect to the 

carboxyl terminus. 

 

Table 4.2.2.. Dihedral angles (see Figure 4.2.2.; in degrees), pseudorotational 

parameters of the pyrrolidine ring (A, P; in degrees), and relative energy (Egp; in 

kcal/mol) of the minimum energy conformations with Egp < 5.0 kcal/mol 

characterized for Ac-c-(Pro)Arg-NHMe at the B3LYP/6-31+G(d,p) level.  

 

Conformer 0    A, Pa 1 2 3 Egp 

L[d]g+g–t –169.7 –86.3 –11.6 175.3   39.6,  

-108.3b 

75.3 –71.4 178.9 0.0c 

L[d]g+ts+ –169.2 –90.1 –4.3 174.5    40.1, 

 -111.7d 

69.2 –172.0 95.2 1.3 

L[d]s–g+t –171.1 –84.1 75.5 –176.7    39.8,  

-117.0e 

–116.3 70.4 164.2 2.0 

L[d]s–ts– –170.3 –83.1 66.4 –178.5    40.0,  

-113.6f 

–104.8 168.1 –93.4 3.1 

L[u]s+g–t –168.7 –66.8 31.8 174.5  43.7, 

78.2g 

127.7 –65.4 178.3 3.9 

a See ref. 16 for definition. b χ0 = –12.4°, χ1 = 31.7°, χ2 = –39.6°, χ3 = 32.0°, χ4 = –12.2°. c E = –
856,554209 a.u. d χ0 = –14.8°, χ1 = 33.5°, χ2 = –40.1°, χ3 = 31.0°, χ4 = –10.0°. e χ0 = –18.1°, χ1 = 
35.0°, χ2 = –39.5°, χ3 = 28.3°, χ4 = –6.3°. f χ0 = –16.0°, χ1 = 34.1°, χ2 = –40.0°, χ3 = 30.0°, χ4 = –
8.8°. g χ0 = 8.9°, χ1 = –32.1°, χ2 = 43.4°, χ3 = –38.2°, χ4 = 18.1°. 

                                                                            
 



 

 

As expected for an -helical conformer, the lowest energy minimum of Ac-c-

(Pro)Arg-NHMe (L[d]g+g–t, Figure 4.2.4.a) exhibits no hydrogen-bonding 

interaction involving the backbone amide groups. However, a very strong hydrogen 

bond is established between the cis-(Pro)Arg CO and the guanidinium NH sites 

[dH···O= 1.595 Å, <N–H···O= 173.4º]. The L backbone conformation and the down 

pyrrolidine puckering are also present in the second minimum (L[d]g+ts+, Figure 

4.2.4.b). However, the less favorable backbone···side chain interaction in this case, 

which involves a guanidinium NH2 moiety, produces a destabilization of 1.3 kcal/mol.  

                                                                                                                        

 

 

 

 

 

 

Figure 4.2.4.. Selected 

minimum energy 

conformations of Ac-c-

(Pro)Arg-NHMe obtained 

from B3LYP/6-31+G(d,p) 

calculations (Egp < 5.0 

kcal/mol, see Table 4.2.2.): 

(a) L[d]g+g–t; (b) 

L[d]g+ts+; (c) L[d]s–g+t; 

(d) L[d]s–ts–; and (e) 

L[u]s+g–t. Intramolecular 

hydrogen bonds are 

indicated by dashed lines 

(H···O distances and N–

H···O angles are given). 
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The remaining Ac-c-(Pro)Arg-NHMe minima in Table 4.2.2. exhibit a -turn 

conformation stabilized by the corresponding hydrogen bond connecting the acetyl 

CO and methylamide NH groups. The two most stable conformers of this type, L[d]s–

g+t (Figure 4.2.4.c) and L[d]s–ts– (Figure 4.2.4.d), retain the down pyrrolidine 

puckering observed in the helical minima and differ from each other in the 

guanidinium site (NH/NH2) that is hydrogen-bonded to the carbonyl group of cis-

(Pro)Arg. Comparison of their relative energies (2.0 and 3.1 kcal/mol, respectively) 

suggests that the guanidinium NH provides a better geometry for hydrogen bonding to 

the main chain and therefore produces a higher stabilizing effect, as observed before 

for the helical conformers (Figures 4.2.4.a and 4.2.4.b). It should be noted that the 

most stable L and L conformers characterized for the trans-(Pro)Arg derivative 

(Table 4.2.1.) also present backbone···side chain interactions involving the NH 

guanidinium site. Therefore, this seems to be a general trend of (Pro)Arg, 

independently of the cis/trans relative orientation of the guanidilated side chain.  

The trans-(Pro)Arg and cis-(Pro)Arg derivatives investigated in this work not 

only differ in their respective preferences to accommodate -turn or -helical 

backbone arrangements. These compounds also exhibit different conformational 

propensities in their five-membered ring. Thus, all minima in Table 4.2.1. exhibit an 

up-puckered pyrrolidine unit, whereas the most stable Ac-c-(Pro)Arg-NHMe minima 

(Table 4.2.2.) present a down puckering. Moreover, the preference for a particular 

arrangement of the five-membered ring is much more pronounced in the former case 

as evidenced by the fact that the first up-puckered minimum of cis-(Pro)Arg lies 3.9 

kcal/mol above the global minimum (Table 4.2.2.) whereas no minima exhibiting a 

conformation other than up was identified below 7.0 kcal/mol for the trans isomer. 

Indeed, arrangements of the pyrrolidine ring rarely observed in proline and proline-

like residues were found to be preferred over the down conformation for this 

compound The contrast between the puckering tendencies of the five-membered ring 

in trans-(Pro)Arg and cis-(Pro)Arg becomes most evident when minima in the L 

region are compared. Thus, for the cis isomer (Table 4.2.2.), the most stable L[d] and 

L[u] minima are separated by an energy gap of 1.9 kcal/mol only, whereas the 

corresponding energy difference for the trans derivative amounts to 19.0 kcal/mol. 

This distinct behavior should be ascribed to the different spatial relative disposition 

between the (Pro)Arg carbonyl and guanidinium groups in the compounds under 



 

 

study. In both cases, the pyrrolidine puckering providing optimal geometry for the 

establishment of hydrogen-bonding interactions between the two groups mentioned is 

preferred. For cis-(Pro)Arg, both substituents lie on the same face of the five-

membered cycle and are therefore close enough to interact for any puckering state. In 

contrast, the two interacting groups exhibit a trans relative orientation in trans-

(Pro)Arg, and it is the up (but not the down) arrangement of the pyrrolidine ring that 

brings them in close proximity, thus allowing for strong hydrogen bonding. For the 

trans isomer, the up puckering is particularly favorable in the case of L conformers, 

because positive  values make the carbonyl oxygen of trans-(Pro)Arg point in the 

opposite direction to where the guanidilated side chain is located. It should be noted 

that no hydrogen bond between the guanidinium group and the backbone exists in the 

only L[d] minimum characterized for this compound. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 4.2.3.. Relative free energya in the gas phase (ΔGgp) and in carbon 

tetrachloride, chloroform and aqueous solutions (ΔGCCl4, ΔGCHCl3, and ΔGH2O, 

respectively) at 298K for selectedb minimum energy conformations of Ac-t-

(Pro)Arg-NHMe and Ac-c-(Pro)Arg-NHMe at the B3LYP/6-31+G(d,p) level. 

 

Conformer ΔGgp ΔGCCl4 ΔGCHCl3 ΔGH2O 

Ac-t-(Pro)Arg-NHMe 

L[u]s–g+t 0.9 1.2 2.5 6.5 

L[u]g–g–s+ 2.6 0.6 0.3 2.6 

L[u]g–g–s– 2.0 1.5 1.9 4.9 

L[u]s–g+t 0.0c 0.0 0.5 2.7 

L[u]g+g–t 3.1 3.2 3.6 4.9 

L[u]g–tg– 4.1 1.2 0.0 0.0 

L[u]s–tg– 5.1 2.4 1.9 4.2 

Ac-c-(Pro)Arg-NHMe 

L[d]g+g–t 0.0d 0.0 1.1 2.1 

L[d]g+ts+ 3.0 0.2 0.0 0.0 

L[d]s–g+t 3.9 4.4 6.5 9.4 

L[d]s–ts– 5.9 3.6 4.1 5.7 

L[u]s+g–t 5.8 6.0 7.9 10.2 

 
a In kcal/mol. b Those given in Tables 4.2.1 and 4.2.2 (Egp < 5.0 kcal/mol). c G = –856.257478 
a.u. 

d G = –856.256685 a.u. 

Table 4.2.3. displays the free energies in the gas phase (Ggp) at 298K for the Ac-

t-(Pro)Arg-NHMe and Ac-c-(Pro)Arg-NHMe minima described above. 

Consideration of the ZPVE, thermal, and entropic corrections to transform Egp into 

Ggp affects substantially the relative energy order of the minimum energy 

conformations characterized for the trans-(Pro)Arg derivative. Specifically, L[u]s–

g+t becomes the most stable conformer, with L[u]s–g+t being destabilized by 0.9 

kcal/mol. Regarding the cis isomer, the relative stability of the L[d]g+g–t minimum is 

enhanced upon addition of these statistical contributions. The Ggp values in Table 

4.2.3. therefore indicate that L is the preferred backbone arrangement for both 



 

 

compounds in the gas phase. Assuming a Boltzmann distribution, the population of L 

conformers at room temperature is about 80% and 100% for the trans and cis 

compound, respectively. In contrast, minima of the L type showed the lowest Ggp 

value for both Ac-c-(Pro)Arg-NHMe,12 and Ac-Pro-NHMe,19 thus indicating a 

substantially higher tendency to adopt conformations in the L region for the arginine 

surrogates investigated in the present work, especially, the cis isomer.  

The effect of solvation was next evaluated by performing single point 

calculations on the optimized structures through the PCM method. The presence of 

chlorinated solvents results in the stabilization of several Ac-t-(Pro)Arg-NHMe 

minima (Table 4.2.3.), in particular, L[u]g–g–s+ and L[u]g–tg–. The relative stability 

of the latter notably increases with the polarity of the solvent. Indeed, it becomes the 

preferred structure in chloroform, even if two other minima exhibit relative free 

energies within a 0.5 kcal/mol interval, and is the only accessible conformation at 

room temperature in aqueous solution. Regarding Ac-c-(Pro)Arg-NHMe, only L 

structures are predicted to be populated either in the gas phase or in the different 

solvents considered (Table 4.2.3.). For this compound, solvation seems to affect 

mainly the arrangement of the exocyclic substituent, with the g+ts+ disposition being 

favored with increasing polarity. Accordingly, L[d]g+ts+ becomes the preferred 

conformation in chloroform and, to a larger extent, in aqueous solution.  

Comparison of the solvation effects described above with those observed before12 

for the -substituted compound Ac-c-(Pro)Arg-NHMe provides further evidence for 

the higher stability of the L conformation in the arginine surrogates investigated in 

the present work. Indeed, minima of the L type showed the lowest G value for the 

cis-(Pro)Arg derivative not only in the gas phase but also in carbon tetrachloride and 

chloroform solutions.12 In water, conformations devoid of intramolecular hydrogen 

bonds between the backbone amide groups are usually favored for small peptides like 

the ones considered and, accordingly, an L conformer became the most populated 

structure for Ac-c-(Pro)Arg-NHMe in this solvent.12 Interestingly, Ac-Pro-NHMe 

was predicted19 to prefer the -helical structure in water. The latter point shows that 

the conformational preferences of proline in aqueous solution are retained to a larger 

extent when the arginine side-chain is attached to the  position of the pyrrolidine 

moiety. 



 

 

As stated in the Introduction, trans-(Pro)Arg and cis-(Pro)Arg are conceived as 

arginine substitutes in biologically active peptides. The conformational consequences 

arising from the incorporation of these arginine surrogates into such peptides may be 

performed by methods like molecular dynamics (MD) simulations. For this purpose, 

previous parameterization of the non-proteinogenic residues is necessary. A specific 

set of force-field parameters was developed for trans-(Pro)Arg and cis-(Pro)Arg to 

describe the inter- and intramolecular interactions within the classical formalism. Our 

previous work showed that there is no special electronic effect that might condition 

the conformational preferences of proline upon addition of the arginine side chain12 

and, therefore, the stretching, bending, torsional, and van der Waals parameters for 

trans-(Pro)Arg and cis-(Pro)Arg were transferred directly from the AMBER force-

field.21 Accordingly, electrostatic charges were the only force-field parameters 

specifically developed for these non-proteinogenic residues.  

Atomic charges were calculated by fitting the HF/6-31G(d) quantum mechanical 

and the Coulombic MEPs to a large set of points placed outside the nuclear region. 

The electrostatic parameters were obtained by weighting the charges calculated for 

the low-energy conformers of each compound according to a Boltzmann 

distribution.22,23 The latter was estimated with the ΔGgp values listed in Table 4.2.3.. 

The L[u]s–g+t, L[u]s–g+t and L[u]g–g–s– structures were considered for the trans 

isomer, whereas L[d]g+g–t was the only conformer used for the cis derivative since 

all the local minima are destabilized by at least 3.0 kcal/mol. The electrostatic 

parameters obtained for trans-(Pro)Arg and cis-(Pro)Arg are given in Figure 4.2.5..  

To check the validity of classical MD simulations in describing the 

conformational properties of the arginine analogues under study, MD with explicit 

solvent molecules were performed on Ac-t-(Pro)Arg-NHMe and Ac-c-(Pro)Arg-

NHMe in aqueous solution at 298K. For each compound, the lowest-energy 

conformation was used as the starting point of a 10 ns trajectory. Figure 4.2.6. 

represents the accumulated Ramachandran plot obtained for each derivative. In both 

cases, the most populated backbone structure corresponds to L, which is visited 

much more frequently than the L region during the trajectory. This finding is in 

excellent agreement with the results displayed in Table 4.2.3., which indicate that L 

is the most favored conformation in aqueous solution for both compounds. 



 

 

                                   

NH
H

H
H

H

O

H

N

H

H

H

H

H

N

NH2

H

H

-0.255

0.036

0.054

-0.101

0.064

0.260

0.005

-0.231
0.079

0.148 0.051

-0.4630.113

0.838

-0.863

0.448

-0.016

0.090

0.598

-0.575

NH
H

H
H

H

O

H

N

H

H

H

H

H

N

NH2

H

H

-0.255

0.036

0.093

-0.044

0.055

0.044

0.090

-0.231
0.119

0.141 0.048

-0.4100.276

0.676

-0.863

0.448

-0.148

0.116

0.598

-0.575

(a) (b)

 

Figure 4.2.5.. Electrostatic parameters determined for the (a) trans-(Pro)Arg and (b) cis-

(Pro)Arg residues. 

 

Figure 4.2.6.. Accumulated Ramachandran plots for (a) Ac-t-(Pro)Arg-NHMe and (b) 
Ac-c-(Pro)Arg-NHMe derived from MD simulations in aqueous solution. 

 

 

 

 

(a)  (b)



 

 

4.2.4. Conclusions 

Two isomers of an arginine surrogate have been built by attaching the arginine 

side chain to the proline β-carbon in either a trans or a cis disposition relative to the 

carboxylic acid. The resulting amino acids, respectively denoted trans-(Pro)Arg and 

cis-(Pro)Arg, combine the conformational restrictions associated with the cyclic 

nature of proline with the side-chain functionality of arginine. Quantum mechanics 

calculations on the N-acetyl-N’-methylamide derivatives of these arginine surrogates 

show that the conformational space available is highly restricted, as expected from 

their proline-like character. Their conformational preferences are essentially 

determined by their cyclic structure and the capacity of the guanidilated side chain to 

establish hydrogen-bonding interactions with the peptide backbone. The latter factor 

is especially significant for the L conformation, which is stabilized with respect to 

natural proline16 and is predicted to be the most populated structure for both (Pro)Arg 

isomers not only in the gas phase but also in aqueous solution. MD simulations show 

that the restricted flexibility and the preference for -helical conformations are kept 

when thermal agitation is included. 

The two non-coded amino acids studied in the present work are suitable 

candidates to replace arginine in bioactive peptides when the natural residue is found 

in the L region, and more specifically, occupying the i+1 position of a -turn of type 

I. In particular, cis-(Pro)Arg may be an excellent replacement for arginine in 

CREKA, and more appropriate than the arginine surrogate considered in a previous 

work.12 Thus, cis-(Pro)Arg is expected not only to increase resistance to proteases 

but also to greatly stabilize the type I -turn found for CREKA. For other biologically 

relevant peptides, either the cis or the trans isomer of (Pro)Arg may be adequate to 

replace arginine depending on the orientation attained by the guanidilated side chain 

in the bioactive conformation.  
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4.3. Conformational Preferences of Proline Analogues with a Fused 

Benzene Ring 

 

 

 

 

 

 

 

 

 

4.3.1. Introduction 

Conformationally constrained amino acids are of growing interest due to their 

powerful capability to stabilize structural motifs in peptides and proteins by selective 

replacements in native sequences. Introduction of rigidity into peptide chains through 

the incorporation of residues with well-defined conformational properties has proven 

useful in the design of bioactive peptides with improved pharmacological profile1 and 

other biologically relevant systems.2 

Proline (Pro) is the only proteinogenic amino acid that can be viewed as 

conformationally constrained. The uniqueness of Pro derives from the presence of the 

five-membered pyrrolidine ring that includes the α-carbon and the amino function. As 

a consequence, rotation about the N–Cα bond is prohibited and the φ dihedral angle is 

forced to adopt values near –60°. This is at the basis of the well-known tendency of 

Pro to act as a turn inductor in peptide chains.3 Another distinct feature of Pro 

associated to its cyclic nature is that the cis and trans states of the peptide bond 



 

 

involving the pyrrolidine nitrogen are closer in energy than for any other 

proteinogenic amino acid. Accordingly, the peptide bond preceding Pro has a non-

negligible probability of accommodating a cis arrangement.3,4  

The high significance of Pro in peptide conformation and biology has stimulated 

the search for new Pro analogues endowed with tailored properties. The incorporation 

of the functional groups present in the side chains of other proteinogenic amino acids 

is particularly appealing in this context. This allows the combination of the particular 

structural properties of Pro with the functionality of other residues. This is the case of 

indoline-2-carboxylic acid (Inc, Figure 4.3.1.), which results from the fusion of a 

benzene ring to the pyrrolidine bond linking the γ and δ carbons in Pro. In fact, Inc 

may be considered as being simultaneously a Pro and a phenylalanine (Phe) analogue. 

Such combination of structural and functional properties may be synergistic and allow 

optimal interaction with the complementary groups in the receptor binding pocket. 

Moreover, at variance with Phe, the aromatic side chain in Inc is anchored in a 

particular orientation with respect to the peptide backbone and this may be exploited 

to investigate the conformational requirements for optimal binding when aromatic 

groups are directly involved in the peptide-receptor recognition process. 

The peculiar conformational and functional properties of Inc have attracted the 

interest of many researchers and, thus, this amino acid has been incorporated –most 

frequently, as a replacement for either Pro or Phe– in a variety of peptides5 exhibiting 

medicinally relevant properties. Moreover, the great deal of patents related to 

biologically active Inc-containing peptides6 provides unequivocal proof of the high 

potential that this amino acid offers in the design of pharmacologically useful 

compounds.  

                     

HN
COOH

Inc MeInc

HN
COOH

Pro



 



HN Me

COOH

             

Figure 4.3.1.. Structure of the proline analogues investigated in the present work, indoline-2-

carboxylic acid (Inc) and (α-methyl)indoline-2-carboxylic acid (αMeInc). 



 

 

However, no work has been devoted to investigate to which extent the additional 

benzene ring in Inc affects the conformational preferences exhibited by Pro. 

Knowledge of the intrinsic structural properties of Inc is yet essential to satisfactorily 

exploit this amino acid in the peptides field. The present paper describes the 

conformational profile of Inc established by quantum mechanical methods. The study 

has been extended to its α-methyl derivative (αMeInc, Figure 4.3.1.) because of the 

structural significance and usefulness of α-methyl amino acids in the design of 

peptides with well-defined conformational properties.7 Specifically, we have 

performed Density Functional Theory (DFT) calculations on the N-acetyl-N’-

methylamide derivatives of the L enantiomers of Inc and αMeInc, hereafter denoted as 

Ac-L-Inc-NHMe and Ac-L-αMeInc-NHMe, respectively (Figure 4.3.2.). Their 

behavior has been compared to that exhibited by the analogous Pro and αMePro 

derivatives investigated in a previous work.8 Moreover, the influence of the 

environment has been examined using both implicit and explicit solvation models 

through the Self Consistent Reaction Field (SCRF) method and a hybrid quantum 

mechanics/molecular mechanics (QM/MM) approach, respectively. 

 A new interface NWChem9/PUPIL10/Amber11 was built to carry out the multi-

scale simulations in the latter case. 
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Figure 4.3.2. Dihedral angles used to identify the conformations of Ac-L-Inc-NHMe and 

Ac-L-MeInc-NHMe. The 0, , , and  angles are defined by using backbone atoms, while 

the endocyclic dihedral angles i are given by the five-membered ring atoms. In particular,  

and 0 are defined by C(O)–N–C–C(O) and C–N–C–C, respectively. 

 

 

 

 



 

 

4.3.2. Methods 

Quantum Mechanical Calculations. Density Functional Theory (DFT) 

calculations have been carried out using the Gaussian 03 computer program,12 by 

combining the Becke’s three parameter hybrid functional (B3)13 with the Lee, Yang 

and Parr (LYP)14 expression for the nonlocal correlation (B3LYP). Although this 

methodology is known to underestimate dispersive interactions and to overestimate 

bonding energies,15 it has been demonstrated to provide a very satisfactory description 

of the conformational properties of constrained amino acids, including Pro8,16 and 

some non-proteinogenic analogues of this residue.17 All DFT calculations in this work 

have been performed by combining the B3LYP method with the 6-31+G(d,p) basis 

set.18  

The backbone (ω0,φ,ψ,ω) and side chain (χi) dihedral angles of Ac-L-Inc-NHMe 

and Ac-L-αMeInc-NHMe are defined in Figure 4.3.2. The φ value (rotation about N–

Cα) is fixed by the geometry of the five-membered ring, whereas the flexible dihedral 

angle ψ is expected to exhibit three minima: gauche+ (60º), trans (180º) and gauche– 

(–60º). Therefore, only three minima can be anticipated for the potential energy 

surface E = E(φ,ψ) of the compounds investigated for a given arrangement of ω0 and 

ω. Regarding the peptide bonds, the methylcarboxamide group (CONHMe) was kept 

in the trans state (ω ≈ 180º), whereas both the cis and trans arrangements (ω0 ≈ 0º or 

180º, respectively) were considered for the amide moiety involving the pyrrolidine 

nitrogen (acetamido, MeCON) due to the well-known tendency of this peptide bond 

to accommodate the cis and trans dispositions in Pro and proline-like residues.3,4 In 

contrast, the up/down conformations typically adopted by the five-membered ring in 

Pro,3a,19 and corresponding to a deviation of the C atom from the plane formed by Cδ, 

N, and Cα, are not applicable to Inc or αMeInc because the fused benzene ring 

imposes coplanarity to the Cβ, Cγ, Cδ and N atoms.  

Accordingly, 3 (ψ minima) × 2 (ω0 cis/trans) = 6 structures were considered as 

starting points for complete geometry optimizations at the B3LYP/6-31+G(d,p) level 

for both Ac-L-Inc-NHMe and Ac-L-αMeInc-NHMe. Frequency analyses were carried 

out to verify the nature of the minimum state of all the stationary points obtained and 

to calculate the zero-point vibrational energies (ZPVE), as well as both the thermal 

and entropic corrections. These statistical terms were used to compute the 

conformational Gibbs free energies in the gas phase (ΔGgp) at 298K. 



 

 

The minimum energy conformations thus characterized have been denoted using 

a two-label code that specifies the ω0 arrangement as cis (c) or trans (t) followed by 

the type of backbone conformation. The latter is defined using the nomenclature 

introduced by Perczel et al.20 that categorizes the potential energy surface E = E(φ,ψ) 

of -amino acids in nine different regions: γD, δD, αD, εD, βDL, εL,αL, δL and γL. In the 

case of Pro or proline-like residues, only the γL (γ-turn or C7), αL (α-helix), and εL 

(polyproline II) conformations are accessible3,8 because φ is confined to values around 

–60°. 

Even if the benzene ring in Inc and αMeInc significantly restricts the flexibility 

of the five-membered cycle, this cycle is not completely flat. Its puckering state has 

been described using the classical pseudorotational algorithm, which uses a very 

simple model based on only two parameters, as previously applied to Pro by Perczel 

et al.21 The pseudorotational parameters A and P, which describe the puckering 

amplitude and the state of the pucker in the pseudorotation pathway, respectively, are 

derived from the endocyclic dihedral angles χi (Figure 4.3.2.) as follows: 
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Accordingly, parameter A is defined to be positive while P falls between –180° 

and 180°.  

To obtain an estimation of the solvation effects on the relative stability of the 

minimum energy conformations, two different approaches were initially followed. 

First, the effect of different solvents covering a wide range of polarities was analyzed 

by performing single-point calculations on the structures optimized in the gas phase 

using a Self-Consistent Reaction Field (SCRF) model at the B3LYP/6-31+G(d,p) 

level. Next, to obtain more precise results in a high-polarity solvent such as water, the 

estimation of the solvation effects was carried out by allowing the previously gas-

phase optimized structures to relax using a SCRF model. SCRF methods treat the 

solute at the quantum mechanical level, while the solvent is represented as a dielectric 



 

 

continuum. In particular, the Polarizable Continuum Model (PCM) developed by 

Tomasi and co-workers was used to describe the bulk solvent.22 This method involves 

the generation of a solvent cavity from spheres centred at each atom in the molecule 

and, subsequently, the calculation of virtual point charges on the cavity surface 

representing the effect of polarization of the solvent. The magnitude of these charges 

is proportional to the derivative of the solute electrostatic potential at each point 

calculated from the molecular wave function. Therefore, the point charges may be 

included in the one-electron Hamiltonian, thus inducing polarization on the solute. At 

that moment, an iterative calculation is carried out until the wave function and the 

surface charges are self-consistent. PCM calculations were performed using the 

standard protocol and considering the dielectric constants of carbon tetrachloride (ε = 

2.228), chloroform (ε = 4.9), and water (ε = 78.4). The conformational free energies 

in solution (ΔG#sol#, where #sol# refers to the solvent) were estimated by using the 

classical thermodynamics scheme, that is, the free energies of solvation provided by 

the PCM model were added to the ΔGgp values. 

Multi-Scale Approach (Hybrid QM/MM Calculations). The advantage of using the 

SCRF model described in the previous section lies in the omission of explicit solvent 

molecules, which produces a computational speedup. Nevertheless, the results 

obtained with this method may be significantly influenced by an important 

assumption: both the solvent configurational sampling and the local anisotropies 

around the solute are implicit in the continuum model. The influence of this 

assumption was evaluated by applying a multi-scale approach based on an explicit 

solvation model to investigate the conformational preferences of Ac-L-Inc-NHMe and 

Ac-L-αMeInc-NHMe in aqueous solution. In this method, the atomic motions are 

handled by molecular dynamics (MD), with energies and forces being calculated by 

dividing the system into two different parts. The compound investigated (solute) is 

treated at the quantum mechanical (QM) level, while molecular mechanics (MM) are 

applied to the rest of the system (solvent) by using a classical potential energy 

function.  

For each compound, two structures were selected for this study, namely the 

lowest energy minima exhibiting ω0 arranged in either cis or trans. Such structures 

were solvated with 1350 and 1408 water molecules for Ac-L-Inc-NHMe and Ac-L-

αMeInc-NHMe, respectively, thus defining a 12 Å buffer region around each 

compound. The solvent and solute molecules were described using the TIP3P23 model 



 

 

and the General Amber Force Field (GAFF),24 respectively. The Amber 1011 code was 

used for all classical calculations. The four resulting systems (two structures for each 

compound) were fully minimized at the MM level, first heated up to 298K using the 

Langevin thermostat during 25 ps at a constant volume (1 fs time steps), and then 

equilibrated using a NPT ensemble for 250 ps at 1 atm and 298K. Subsequently, the 

amino acid derivatives were changed to a QM description, and treated at the SCC-

DFTB25 level, while the water molecules remained within the MM framework. After 

that, the systems were allowed to relax for 100 ps using a constant pressure simulation 

with the parameters previously used for fully classical MD simulations. In all cases, 

atom pair distance cutoffs were applied at 10 Å to compute van der Waals 

interactions. The electrostatic interactions were computed by using the nontruncated 

electrostatic potential by means of Ewald Summations. 

The hybrid QM/MM calculations were run using a new interface, which was 

specially programmed for this work and that allows the incorporation of the 

NWChem9 program as a new QMWorker into the PUPIL26 package (Program for 

User Package Interfacing and Linking). The starting structures for NWChem-PUPIL-

Amber calculations for the cis and trans conformations of each compound were 

extracted from the SCC-DFTB/MD simulation (last snapshot). In all the production 

trajectories, the QM region involving the amino acid derivative was described by 

combining the B3LYP functional with the 6-31+G(d) basis set. Simulations were 

carried out in the NVT ensemble at 298K using a Langevin thermostat with a friction 

coefficient of 10 ps for 6 ps (1 fs time step). Periodic boundary conditions were 

applied in the preparation of the NWChem input so as to wrap neighboring point 

charges around the quantum region. The QM region comprises a total of 268 and 287 

basis functions for Ac-L-Inc-NHMe and Ac-L-αMeInc-NHMe, respectively. 

4.3.2. Results and discusion 

Ac-L-Inc-NHMe. Table 4.3.1. lists the most relevant structural parameters 

together with the relative energy (ΔEgp) and free energy (ΔGgp) of the three minimum 

energy conformations characterized for Ac-L-Inc-NHMe in the gas phase (Figure 

4.3.3.). As can be seen, the three types of (φ,ψ) backbone structures accessible to Pro,8 

namely γL, αL, and εL, were also characterized as energy minima for Inc. However, as 

explained in the following, important differences are observed between Pro and Inc 

regarding the arrangement of both the five-membered cycle and the acetamido 



 

 

moiety, that is, the peptide bond formed by the acetyl group and the pyrrolidine 

nitrogen (MeCON, given by ω0 in Figure 4.3.2.). Such differences derive from the 

presence of a fused benzene moiety in the latter residue, which produces an important 

restriction of the conformational space. This is clearly evidenced when the three Ac-

L-Inc-NHMe minima in Table 4.3.1. are compared to the seven minimum energy 

conformers located for the analogous Pro derivative (Ac-L-Pro-NHMe) at the same 

level of theory.8 

 

 

 

 

 

 

 

                                        

 

 

 

 

 

 

 

 

Figure 4.3.3.. Representation of the minimum energy conformations characterized for Ac-L-

Inc-NHMe at the B3LYP/6-31+G(d,p) level. Structural parameters and relative energies are 

provided in Table 4.3.1.. 
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   The lowest energy conformation characterized for Ac-L-Inc-NHMe, t-γL 

(Figure 4.3.3.a), presents the acetyl and methylamide terminal groups connected by an 

intramolecular hydrogen bond [d(H···O) = 1.97 Å, <N–H···O = 146.4º] that closes a 

seven-membered cycle. The existence of this hydrogen-bonding interaction typical of 

the γ-turn (also called C7 conformation) requires a trans ω0 angle, which is yet 

severely distorted. Thus, ω0 deviates significantly (–166.6º, Table 4.3.1.) from the 

value corresponding to a trans planar amide linkage (180º). Non surprisingly, the out-

of-plane deviation of this peptide bond is much more pronounced than that observed 

for the γ-turn structure characterized as the global minimum for Ac-L-Pro-NHMe (ω0 

= –172.6º)8 and this difference should be attributed to the additional steric hindrance 

introduced by the aromatic system in Inc. It is worth noting that, for a trans 

arrangement of ω0, the methyl group of the acetyl moiety lies in close proximity to the 

δ position of the pyrrolidine cycle. In Pro, Cδ bears two hydrogen atoms whereas they 

are replaced by a fused benzene ring in Inc (Figure 4.3.1.). Therefore, values of ω0 

near 180º produce a more severe steric conflict in the latter amino acid, which is 

partially alleviated by a distortion of ω0 of almost 14º (Table 4.3.1.).  



 

 
 

 

 

Table 4.3.1.. Dihedral Angles,a,b Pseudorotational Parametersa (A, P), and Relative Energyc (Egp) and Free Energyc (Ggp) for the Minimum 

Energy Conformations Characterized for Ac-L-Inc-NHMe in the Gas Phase at the B3LYP/6-31+G(d,p) Level. 

conf. 0    0 1 2 3 4 (A, P) Egp Ggp 

t-L –166.6 –88.2 64.8 –179.9 –19.2 18.0 –11.4 –0.3 12.6 (19.9, 164.3) 0.0d 0.0e 

c-L –1.1 –82.6 –10.7 –177.3 –18.6 19.6 –14.4 3.2 10.1 (20.6, 154.7) 3.1 1.9 

c-L –3.1 –69.5 158.0 175.3 –14.6 14.8 –10.3 1.6 8.6 (15.7, 158.1) 7.3 5.5 

a In degrees. b See Figure 4.3.2. for definition. c In kcal/mol. d E = –725.747154 au. e G = –725.543471 au.  

 

 



 
 

 

 

Besides the high deviation from planarity observed for the trans amide function 

involving the acetyl group and the pyrrolidine nitrogen (i.e. the acetamido moiety) in 

Ac-L-Inc-NHMe, another effect that should be associated with the presence of the 

benzene ring is the stabilization of the cis state for this peptide bond with respect to 

that found for the analogous Pro derivative. In fact, the different steric interactions 

established between the acetyl substituent (the methyl group or the carbonyl oxygen) 

and the contiguous α and δ positions of the five-membered pyrrolidine ring govern 

the cis-trans equilibrium of this peptide bond. An increase in the steric hindrance 

around Cδ, as occurs on going from Pro to Inc, should translate into a higher 

preference of the more sterically demanding fragment of the acetyl group (that is, the 

methyl unit) to situate far away from Cδ, that is, of this peptide bond to accommodate 

a cis arrangement. Accordingly, a higher percentage of cis conformers is expected for 

Inc with reference to Pro. 

It is therefore not surprising that all other minima characterized for Ac-L-Inc-

NHMe (Table 4.3.1.) exhibit the acetamido moiety in the cis form irrespective of the 

αL or εL arrangement adopted by the peptide backbone (minima c-αL and c-εL, 

Figures 4.3.3.b and 4.3.3.c, respectively). It is worth noting that, at variance with the 

γ-turn structure exhibited by the global minimum, the αL and εL conformations are 

not stabilized by any intramolecular hydrogen-bonding interaction requiring a trans 

configuration of the acetamido group. It seems therefore that, in the absence of 

intramolecular interactions forcing ω0 to be trans, only the cis arrangement is 

favorable. In comparison, both the cis and trans states of ω0 were found to be 

compatible with the εL and αL structures for Ac-L-Pro-NHMe,8 even if trans εL was 

located as a minimum only when levels of theory lower than B3LYP/6-31+G(d,p) 

were used.16b. 

As far as cis ω0 conformers are concerned, Ac-L-Pro-NHMe and Ac-L-Inc-

NHMe present the same stability order, i.e. the c-αL structure was found to be much 

more stable than c-εL for both compounds. 

The influence of the benzene moiety on the conformation adopted by the five-

membered cycle also deserves some comment. The pyrrolidine ring in Pro is known 

to mainly accommodate two puckering states corresponding to envelope 

conformations with Cγ at the flap pointing to the same (Cγ
endo or down) or the 

opposite (Cγ
exo or up) side of the molecule where the carboxylic terminus is 

located.3a,19 Both side-chain conformational states were found to be compatible with 

most of the backbone structures characterized as energy minima for Ac-L-Pro-



 
 

 

 

NHMe, which resulted in a total of 7 minima.8 In Inc, Cγ and Cδ are part of the 

aromatic system and, as a consequence, the Cβ, Cγ, Cδ and N atoms are forced to be 

coplanar. This is shown by the χ3 dihedral, which is defined by the Cβ–Cγ–Cδ–N 

torsion (Figure 4.3.2.) and exhibits values close to 0º for all the minima in Table 

4.3.1.. The α carbon is therefore the only atom in the five-membered ring of Ac-L-

Inc-NHMe that may deviate from planarity, even if its flexibility is partially limited 

by its involvement in two peptide bonds. As a consequence, the five-membered cycle 

in the three Inc minima accommodates an envelope-like shape with Cα at the flap. 

This conformation may be regarded as intermediate between a planar structure and 

the typical envelope adopted by an unrestricted pyrrolidine, as evidenced by the 

relatively small puckering amplitude A = 16–21º (Table 4.3.1.), which is about half 

the value observed for the Ac-L-Pro-NHMe minima8 (A ≈ 37º). For all three 

conformers in Table 4.3.1., deviation of the α carbon from planarity occurs so that to 

increase the distance between the bulkier substituent at Cα, namely the 

methylcarboxamide group, and the vicinal acetyl group. 

Table 4.3.2.. Relative Free Energiesa in the Gas Phase (Ggp), and in Carbon 

Tetrachloride, Chloroform, and Aqueous Solutionsb (GCCl4, GCHCl3, and GH2O, 

respectively) for the Minimum Energy Conformations Characterized for Ac-L-Inc-

NHMe at the B3LYP/6-31+G(d,p) Level. 

conf.  Ggp  GCCl4  GCHCl3  GH2O 

t‐L  0.0  0.0  0.0  5.5 

       c‐L  1.9  1.8  1.3  5.7 

c‐L  5.5  3.2  0.3  0.0 

a In kcal/mol. b Derived from PCM single-point calculations on the structures optimized in the 

gas phase. 

  Table 4.3.2. compares the relative free energies in the gas phase (ΔGgp) to those 

computed in carbon tetrachloride (ΔGCCl4), chloroform (ΔGCHCl3), and water (ΔGH2O) 

solutions for the three Ac-L-Inc-NHMe minima displayed in Figure 4.3.3.. Such 

PCM calculations in solution were performed using the geometries optimized in the 

gas phase. The results obtained indicate that solvation introduces significant changes 



 
 

 

 

in the relative energy order of these structures. In particular, the stability of the c-εL 

conformer increases dramatically with the polarity of the environment. Thus, 

although t-γL remains the preferred conformation in carbon tetrachloride and 

chloroform solutions, these solvents increase the stability of c-εL by 2.3 and 5.2 

kcal/mol, respectively. Moreover, c-εL becomes the most stable conformation in 

water, the other two structures being disfavored by more than 5 kcal/mol. The fact 

that the preferred conformation by Ac-L-Inc-NHMe moves from the γ-turn (t-γL) in 

the gas phase to polyproline II (c-εL) in aqueous solution is not surprising. Indeed, 

conformations devoid of intramolecular hydrogen bonds provide better interactions 

with the solvent, and the relative stabilization produced upon solvation increases with 

the polarity of the environment. 

The greater stabilization observed for the c-εL conformation in comparison to c-

αL could be associated to a larger solvent-induced polarization effect in the former 

case, particularly significant in polar media. According to the results in Table 4.3.2., 

c-εL is the only Ac-L-Inc-NHMe conformer expected to be populated at room 

temperature in aqueous solution. Even if c-εL was also predicted to be the global 

minimum for Ac-L-Pro-NHMe in water,8 c-αL, t-αL, and t-γL conformers were found 

to be energetically accessible at room temperature for the latter compound. These 

results suggest a much superior restriction of the conformational space available to 

the non-proteinogenic amino acid both in terms of ω0 and ψ. 

Ac-L-αMeInc-NHMe. The five minimum energy conformations characterized for 

Ac-L-αMeInc-NHMe in the gas phase are displayed in Figure 4.3.4.. The most 

relevant structural and energy data are given in Table 4.3.3.. Minima exhibiting 

backbone conformations similar to those found for the unmethylated compound 

(Table 4.3.1.), i.e. t-γL, c-αL, and c-εL, were also located for the αMeInc derivative 

and found to exhibit the same stability order. Thus, the global minimum of Ac-L-

αMeInc-NHMe corresponds to t-γL (Figure 4.3.4.a), as described above for the Inc 

derivative. The parameters associated to the intramolecular hydrogen bond [d(H···O) 

= 1.91 Å, <N–H···O = 151.8º] indicate that this stabilizing interaction is stronger in 

the methylated compound. The c-αL (Figure 4.3.4.b) and c-εL (Figure 4.3.4.e) minima 

are destabilized in terms of ΔGgp by 2.2 and 6.0 kcal/mol, respectively, and therefore 

present a stability order similar to that found for the corresponding Inc minima 

(Table 4.3.1.). 

In spite of this parallelism, significant differences are observed between the 

conformational profiles of the two compounds under study. Notably enough, the 
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presence of the α-methyl group led to the characterization of trans minima for the αL 

and εL backbone conformations (Table 4.3.3.), which were not located for the 

unmethylated compound (Table 4.3.1.). Thus, non unexpectedly, α-methylation 

results in the stabilization of the trans arrangement of the amide bond involving the 

pyrrolidine nitrogen, so that it becomes compatible with all the (φ,ψ) backbone 

conformations accessible to a proline-like residue (γL, αL, and εL). This effect is 

produced by the increase in the bulkiness at Cα associated to the replacement of the α 

hydrogen by a methyl group, which operates in the opposite direction to that 

described above for the Pro-to-Inc transition. As a matter of fact, going from Pro to 

Inc results in an enhancement of the steric hindrance at Cδ and a concomitant 

stabilization of the cis disposition of the acetamido moiety, whereas, α-methylation 

of Inc increases the bulkiness at Cα and is therefore expected to produce the opposite 

effect.  

 

 

 

 

 

 

 

 

Figure 4.3.4.. Representation of the 

minimum energy conformations 

characterized for Ac-L-αMeInc-

NHMe at the B3LYP/6-31+G(d,p) 

level. Structural parameters and 

relative energies are provided in 

Table 4.3.3..



4.Characterization of non-coded amino acids 

 

 

The new minimum energy structures characterized upon α-methylation, t-αL 

(Figure 4.3.4.c) and t-εL (Figure 4.3.4.d), present ΔGgp values 3.7 and 3.8 kcal/mol 

above the global minimum, respectively. Hence, for a trans arrangement of ω0, the αL 

and εL backbone conformations are almost isoenergetic whereas they differ in about 4 

kcal/mol when ω0 exhibits a cis state (Table 4.3.3.). This result is particularly 

significant when the εL backbone structure is concerned. In this case, α-methylation 

not only leads to the characterization of a trans minimum without counterpart in the 

unmethylated compound; besides, this new low-energy conformer is much more 

stable than the one exhibiting a cis ω0 arrangement (ΔGgp = 3.8 and 6.0 kcal/mol for 

t-εL and c-εL, respectively; Table 4.3.3.). 



 

 

 

 

Table 4.3.3.. Dihedral Angles,a,b Pseudorotational Parametersa (A, P), and Relative Energyc (Egp) and Free Energyc (Ggp) for the Minimum 

Energy Conformations Characterized for Ac-L-MeInc-NHMe in the Gas Phase at the B3LYP/6-31+G(d,p) Level.a In degrees. b See Figure 4.3.2. for definition. c 

In kcal/mol. d E = –765.060772 au. e G = –764.830288 au.  

conf. 0    0 1 2 3 4 (A, P) Egp Ggp 

t-L –159.2 –84.8 49.2 176.1 –21.4 20.9 –14.2 0.9 13.5 (22.6, 161.2) 0.0d 0.0e 

c-L 5.2 –62.0 –32.8 –175.9 12.8 –13.2 9.5 –1.7 –7.4 (14.0, –23.5) 3.5 2.2 

t-L –174.5 –58.3 –33.5 177.5 18.0 –18.0 12.6 –1.6 –10.8 (19.3, –21.2) 4.6 3.7 

t-L 174.2 –50.2 126.7 –174.9 18.3 –19.0 13.8 –2.7 –10.3 (20.0, –24.1) 4.2 3.8 

c-L 8.0 –52.0 140.8 177.9 20.1 –21.3 15.8 –3.6 –11.0 (22.3, –25.6) 7.0 6.0 
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The conformational features outlined above are clearly seen in Figure 4.3.5., 

which compares the potential energy curves E=E(ψ) calculated for Ac-L-Inc-NHMe 

and Ac-L-αMeInc-NHMe with either a trans (Figure 4.3.5.a) or a cis (Figure 4.3.5.b) 

arrangement of the acetamido peptide bond. Such curves were obtained following the 

flexible rotor approximation, by fixing the value of the dihedral angle ψ while 

allowing the rest of the molecule to relax. Thus, each point of the path was derived 

from a constrained geometry optimization, with ψ being the only variable fixed. The 

ψ space (0° to 360°) was explored in steps of 30°. The energy curves obtained for the 

Inc and αMeInc derivatives with all trans peptide bonds (Figure 4.3.5.a) differ in the 

ψ regions corresponding to the αL and εL backbone conformations, where energy 

minima appear only for the latter compound. In comparison, when the acetamido 

moiety is arranged in cis (Figure 4.3.5.b), the profiles of both compounds exhibit 

minima in the same regions (αL and εL), with extremely high energy barriers being 

observed for the methylated derivative. 

 

                                           Figure 4.3.5. 

 

 

 

 

 

 

                             

                   

(a)  (b) 



 

 

   Another general effect arising from α-methylation is the change in the 

conformation adopted by the five-membered ring. As observed before for Inc, the 

five-membered cycle accommodates an incipient envelope conformation with the α 

carbon deviating slightly from the plane formed by the four other atoms. However, in 

all the minima located for the αMeInc derivative with the exception of the t-γL one, 

the α carbon atom protrudes from the plane in the opposite direction to that observed 

for the Inc minima. This is clearly illustrated by the value adopted by the χ2 dihedral, 

which is close to –12º for the three Inc minima (Table 4.3.1.) and the t-γL αMeInc 

structure (Table 4.3.3.), whereas it approaches 12º for the remaining αMeInc 

conformers in Table 4.3.3.. The reason for this change is that the substituent at Cα 

introducing stronger steric repulsions with the rest of the system in αMeInc is not the 

methylcarboxamide moiety (as was in Inc) but the methyl group. Accordingly, in all 

the αMeInc minima but t-γL, it is the more sterically demanding substituent at Cα 

(methyl) that moves away from the neighboring acetyl group. In the t-γL conformer, 

the five-membered ring probably adopts the shape that provides an optimal geometry 

for intramolecular hydrogen-bonding.  

Finally, comparison of the geometric parameters in Tables 4.3.1. and 4.3.3. 

reveals some non-negligible differences between minima of the same type 

characterized for the two compounds investigated, that is, t-γL, c-αL, and c-εL. In 

particular, the deviation from planarity observed for ω0 in the three Inc minima is 

enhanced in the αMeInc counterparts for both a cis and a trans arrangement. Thus, the 

t-γL ω0 angle deviates by more than 20º from the ideal 180º value in Ac-L-αMeInc-

NHMe, and the cis low-energy conformers also present a larger out-of-plane 

deviation (5–8º) than that observed for the unmethylated compound (1–3º). The (φ,ψ) 

backbone angles also exhibit some remarkable differences. Specifically, the absolute 

value of the φ dihedral is about 20º lower for the c-αL and c-εL conformers of theα-

methyl derivative. The same holds true when comparing the ψ absolute value of the c-

εL and t-γL conformers, while the c-αL structure varies in the opposite direction. All 

these changes should be attributed to the additional steric repulsions introduced by the 

α-methyl group in Ac-L-αMeInc-NHMe. Interestingly, similar differences in 

molecular geometry are observed when Pro and αMePro are compared.8  

 

 



 

 

 

Table 4.3.4.. Relative Free Energiesa in the Gas Phase (Ggp), and in Carbon 

Tetrachloride, Chloroform, and Aqueous Solutionsb (GCCl4, GCHCl3, and GH2O, 

respectively) for the Minimum Energy Conformations Characterized for Ac-L-

MeInc-NHMe at the B3LYP/6-31+G(d,p) Level. 

conf.  Ggp  GCCl4  GCHCl3  GH2O 

t-L 0.0  0.0  0.0  2.8 

c-L 2.2  0.9  0.2  0.0 

t-L 3.7  2.8  1.5  1.6 

t-L 3.8  2.9  2.3  3.4 

c-L 6.0  3.8  1.6  1.2 

a In kcal/mol. b Derived from PCM single-point calculations on the structures optimized in 
the gas phase. 

 

Table 4.3.4. illustrates the effects of the environment on the relative stability of 

the five Ac-L-αMeInc-NHMe minima, as calculated by PCM methods considering the 

molecular geometries obtained in the gas phase. The most remarkable result is the 

stabilization of conformers exhibiting a cis disposition of ω0. Thus, even if t-γL 

remains the preferred conformation in chlorinated solvents, the energy gap between 

this structure and either the c-αL or the c-εL minimum is substantially reduced. This 

effect is even more intense in water, where c-αL becomes the global minimum and all 

other conformers are destabilized by at least 1.2 kcal/mol. The c-αL structure was also 

found to be the most stable conformation for Ac-L-αMePro-NHMe in aqueous 

solution8 but, in this case, both the c-εL and t-αL structures were found within a free 

energy interval of 0.6 kcal/mol. These results evidence a higher restriction of the 

conformational space available to αMeInc in comparison to αMePro in this 

environment. Similar differences –although less marked– to those commented above 

for Inc and Pro are therefore observed when their respective α-methyl derivatives are 

compared. 



 

 

PCM Geometry Optimizations. In the previous sections, the effect of the 

environment on the conformational preferences of Ac-L-Inc-NHMe and Ac-L-

αMeInc-NHMe was evaluated by considering the molecular geometries obtained in 

the gas phase, that were submitted to single-point calculations using the PCM model. 

This SCRF method has been shown to provide reliable results for a number of solutes, 

for which geometry relaxation in solution gave very similar free energies of 

solvation.27 However, an overestimation of the relative stability of conformers with ω0 

arranged in cis was detected for Pro and αMePro when using PCM single-point 

calculations.8 This effect, which seemed to be particularly marked in high-polarity 

solvents, might be related to the existence of some internal geometric stress in such 

constrained cyclic solutes. In order to test this possibility, PCM geometry 

optimizations were performed in aqueous solution using as starting geometries all the 

minima characterized for Ac-L-Inc-NHMe and Ac-L-αMeInc-NHMe in the gas phase 

(Tables 4.3.1. and 4.3.3.). In addition, the t-εL conformation, which was derived from 

QM/MM calculations (see below), was also used as starting geometry for Ac-L-Inc-

NHMe. The results obtained are summarized in Table 4.3.5., which shows the relative 

free energies and the most representative dihedral angles. 

Comparison of the ΔGH2O values displayed in Tables 4.3.2. and 4.3.5. for Ac-L-

Inc-NHMe indicates that, even if molecular geometry optimization does not alter the 

structure characterized as global minimum in aqueous solution, the energy gap 

between the most and least stable conformer is substantially reduced. Specifically, 

geometry relaxation results in the stabilization of the c-αL and t-γL minima by 4.1 and 

2.0 kcal/mol, respectively. Thus, although c-εL remains the preferred backbone 

conformation for Ac-L-Inc-NHMe, the c-αL structure is destabilized by 1.6 kcal/mol 

(5.7 kcal/mol in Table 4.3.2.) and becomes more stable than t-γL. Moreover, 

according to the results in Table 4.3.5., both the cis and trans states of ω0 should be 

accessible to Ac-L-Inc-NHMe at room temperature. In particular, the c-εL and t-εL 

conformers differ only in 0.8 kcal/mol. On the other hand, the backbone dihedrals in 

Table 4.3.5. are very similar to those listed in Table 4.3.1., the largest difference being 

detected for the ψ angle of the c-εL structure (6.3º). 

Analysis of the results obtained for Ac-L-αMeInc-NHMe reveals some 

remarkable changes in molecular geometry. Specifically, the ψ dihedrals in Tables 

4.3.3. and 4.3.5. differ in more than 10º for three of the five minima (above 15º for the 

t-εL structure) and a significant variation (near 7º) is also observed for ω0 in the c-εL 



 

 

conformer. Conversely, the differences in the ΔGH2O values displayed in Tables 4.3.4. 

and 4.3.5. are quantitatively inferior to those commented for the unmethylated 

compound, although qualitatively more significant. Thus, the greatest ΔGH2O 

difference observed for the αMeInc minima corresponds to the t-εL structure, which is 

stabilized by 2.0 kcal/mol in Table 4.3.5.. However, geometry optimization brings 

about a change in the relative energy order of the minima. PCM single-point 

calculations in aqueous solution predicted any of the cis αMeInc minima to be more 

stable than any of the trans conformers (relative stability: c-αL > c-εL > t-αL > t-γL > t-

εL, Table 4.3.4.), whereas geometry relaxation resulted in the t-αL and t-εL structures 

becoming lower in energy than the c-εL one (relative stability: c-αL > t-αL > t-εL > c-εL 

> t-γL, Table 4.3.5.). In fact, the latter model suggests an almost equal preference for 

the cis and trans disposition of ω0 for both the αL and εL backbone arrangements as 

denoted by the differences in the ΔGH2O values between the corresponding pair of 

minima (0.5 and 0.2 kcal/mol, respectively; Table 4.3.5.). In comparison, such 

differences reach 1.6 and 2.2 kcal/mol, respectively, in Table 4.3.4., with the cis form 

being preferred in both cases. 

 

 

 

 

 

 



 

 

 

Table 4.3.5.. Backbone Dihedral Angles (in deg), Pseudorotational Parameters (A, P; in deg) and Relative Free Energy in Aqueous Solution 
(GH2O; in kcal/mol) of Ac-L-Inc-NHMe and Ac-L-MeInc-NHMe  

a χ0 = –21.2º, χ1 = 20.0º, χ2 = –12.9º, χ3 = –0.1º and χ4 = 13.7º. b χ0 = –13.0º, χ1 = 13.7º, χ2 = –10.2º, χ3 = 2.5º and χ4 = 7.0º. c χ0 = –14.0º, χ1 = 14.1º, χ2 = –10.1º, χ3 = 
1.7º and χ4 = 8.1º. d G = –725.568457 au. e The coordinates used as starting point were derived from hybrid QM/MM simulations. f χ0 = –14.6º, χ1 = 14.0º, χ2 = –
9.3º, χ3 = 0.5º and χ4 = 9.3º. g χ0 = –22.8º, χ1 = 22.4º, χ2 = –15.4º, χ3 = 1.1º and χ4 = 14.4º. h χ0 = 10.3º, χ1 = –10.6º, χ2 = 7.7º, χ3 = –1.4º and χ4 = –6.0º. i G = –
764.850972 au. j χ0 = 18.1º, χ1 = –17.6º, χ2 = 12.1º, χ3 = –1.0º and χ4 = –11.3º. k χ0 = 16.8º, χ1 = –16.5º, χ2 = 11.5º, χ3 = –1.3º and χ4 = –10.3º. l χ0 = 15.6º, χ1 = –16.3º, 
χ2 = 12.2º, χ3 = –2.8º and χ4 = –8.6º

conf. 0    (A, P) GH2O 

Ac-L-Inc-NHMe 

t-L –166.7 –90.1 68.3 –178.3 (22.1, 163.7)a 
3.5 

c-L 4.4 –81.5 –13.1 –178.6 (15.0, 155.1)b 
1.6 

c-L –1.6 –73.9 151.7 175.3 (15.1, 157.6)c 
0.0d 

t-L
e –173.3 –76.5 148.8 176.6 (15.3, 162.1)f 

0.8 

Ac-L-MeInc-NHMe 

t-L –158.3 –86.6 50.0 177.0 (24.1, 160.8)g 
2.3 

c-L 3.3 –60.9 –34.0 –175.0 (11.2, –23.4)h 
0.0i 

t-L –177.7 –51.7 –43.1 –176.8 (19.2, –19.2)j 
0.5 

t-L –174.4 –50.9 141.8 176.3 (17.9, –20.2)k 
1.4 

c-L 1.1 –52.3 151.2 175.2 (17.3, –25.3)l 
1.6 



 

 

 

Multi-scale Approach (Hybrid QM/MM). Although PCM geometry optimizations 

decreased the ΔGH2O values of conformations with ω0 arranged in trans, the relative 

stability of cis structures might be still overestimated. It should be noted that only the 

trans arrangement of ω0 has been detected experimentally for Ac-L-αMePro-NHMe.28 

Even if the fused aromatic ring in αMeInc is expected to increase the population of cis 

conformers with respect to αMePro, the fact that an α-tetrasubstituted proline 

derivative presents similar propensities to accommodate the cis and trans states of ω0 

is a priori surprising. 

In order to analyze whether the limitations of the PCM approach are due to the 

solvation protocol used in this method or to the omission of explicit solute-solvent 

interactions, additional calculations were performed. In particular, the effects of the 

first solvation shell, which are particularly important in protic solvents, on the 

conformational preferences of Ac-L-Inc-NHMe and Ac-L-αMeInc-NHMe were 

examined by performing hybrid QM/MM calculations in explicit water. Two 

trajectories were run for each compound differing in the cis/trans arrangement of the 

acetamido moiety (ω0). Table 4.3.6. lists the average values of the backbone dihedral 

angles and the populations for the conformers calculated using hybrid QM/MM 

simulations, in which the solute, i.e. Ac-L-Inc-NHMe or Ac-L-αMeInc-NHMe, was 

described at the B3LYP/6-31+G(d) level. The ΔG# values listed in Table 4.3.6., which 

were derived from the populations using a Boltzmann distribution, refer to the relative 

stability of the different backbone conformations detected during each trajectory. All 

snapshots obtained from the QM/MM calculations were processed in order to 

characterize the most visited conformers during the simulations, the backbone 

conformations being categorized according to Perczel’s nomenclature.20  

The most populated conformation of Ac-L-Inc-NHMe corresponds to εL, 

independently of the cis/trans initial state of ω0. This backbone structure combined 

with a trans disposition of ω0 (t-εL) was not identified as an energy minimum in the 

gas phase (Table 4.3.1.). However, subsequent geometry optimizations using the 

PCM method suggested this conformation to be very stable in solution (Table 4.3.5.). 

The populations observed for the c-εL and c-αL conformations are very similar and 

correspond to a relative free energy difference (ΔG#= 0.2 kcal/mol) significantly 

smaller than that obtained with the PCM approach, particularly when single-point 



 

 

calculations were performed (ΔGH2O = 5.7 and 1.6 kcal/mol in Tables 4.3.2. and 

4.3.5., respectively).  

Table 4.3.6.. Backbone Dihedral Angles (in deg), Population (in %) and Relative Free 

Energya (G#; in kcal/mol) Derived from the Trajectoriesb Run for Ac-L-Inc-NHMe 

and Ac-L-MeInc-NHMe in Explicit Water Using Hybrid QM/MM Simulations. 

Standard Deviations are Shown. 

conf. 0    population G# 

Ac-L-Inc-NHMe (cis)b 

c-L  –8.0±10.6 –73.6±9.3 161.5±11.1 176.6±12.5 51 0.0 

c-L 3.4±12.9 –72.6±10.8 –27.1±15.4 –175.7±8.1 42 0.2 

c-L 8.4±8.8 –91.6±7.4 22.1±14.8 –175.7±8.1 7 2.3 

Ac-L-Inc-NHMe (trans)b 

t-L –178.3±10.6 –77.5±14.3 140.2±12.8 –178.3±10.9 90 0.0 

t-L –179.4±8.0 –79.7±11.8 113.7±4.5 –176.5±8.0 10 1.3 

Ac-L-MeInc-NHMe (cis)b 

c-L 3.9±13.3 –59.7±13.0 –47.2±8.7 –173.9±8.9 100 0.0 

Ac-L-MeInc-NHMe (trans)b 

t-L –176.5±10.1 –59.6±8.6 –33.6±14.3 –179.4±10.0 79 0.0 

t-L –152.7±11.0 –85.5±8.4 43.1±19.1 –174.9±10.2 21 0.8 

a G# values were estimated for each trajectory from the population values assuming 
a Boltzmann distribution of conformers. b Two trajectories differing in the cis or trans 
arrangement of 0 were run for each compound. 



 

 

 
               

 

Figure 4.3.6.. Model of a selected snapshot from a trajectory of Ac-L-αMeInc-NHMe in 

explicit water obtained from multi-scale simulations (hybrid QM/MM). The hydrogen bonds 

established between the water molecules and the CO or NH moieties of the peptide backbone 

are represented by red and blue dotted lines, respectively. 

The energy difference between cis and trans conformers for Ac-L-Inc-NHMe was 

estimated by averaging the energies recorded during the hybrid QM/MM trajectories, 

which included the electronic energy of the solute, the classical energy of the solvent 

and the interaction energy of the quantum and classical regions. In order to obtain 

such average values, the first 2 ps of each QM/MM trajectory were rejected, the 



 

 

resulting energy difference being derived from the data recorded during a total 

simulation time of 8 ps (4 ps for each conformation). In this way, the trans disposition 

of ω0 was predicted to be 4.5 kcal/mol lower in energy than the cis state for this 

compound. Taking as a basis this high energy difference and assuming comparable 

entropy contributions to the free energy for both peptide bond arrangements, a very 

high population of trans conformers may be expected for Ac-L-Inc-NHMe according 

to the QM/MM approach. This result differs significantly from those derived from 

PCM calculations, which suggested the cis state of ω0 to be preferred (Tables 4.3.2. 

and 4.3.5.).  

For the α-methylated derivative, the most populated backbone conformation falls 

in the αL region for both a cis and a trans arrangement of ω0 (Table 4.3.6.). This result 

is in excellent agreement with the data displayed in Table 4.3.5.. Surprisingly enough, 

conformers exhibiting an εL backbone structure were not detected in the QM/MM 

simulation for this compound. The results from hybrid QM/MM and PCM 

calculations with geometry relaxation also show discrepancies with regard to the 

energy gap between the t-γL and t-αL conformations, which was estimated to be 0.8 

(Table 4.3.6.) and 1.8 (Table 4.3.5.) kcal/mol, respectively. The backbone dihedral 

angles in Table 4.3.6. do not differ substantially from those obtained when the 

molecular geometry is relaxed through a SCRF method, with the highest deviation 

being detected for the ψ dihedral in the c-αL minimum (≈13º). Wider variations (of up 

to 45º) were observed for the unmethylated compound. The energy difference 

between the cis and trans conformers of Ac-L-αMeInc-NHMe was obtained from the 

data recorded during the last 4 ps of each QM/MM simulation and indicated that the 

trans arrangement is 6.0 kcal/mol more stable than the cis one. This finding indicates 

that α-methylation of Inc increases the stability of the trans disposition of ω0, as 

expected. However, the hybrid QM/MM calculations performed seem to overestimate 

the stability of the trans arrangement of ω0, since a non-negligible percentage of cis 

conformers (superior to that exhibited by Pro) is expected for the Inc-containing 

compound. Clearly, further work in this context, including experimental studies –to 

the best of our knowledge, non available to date–, is necessary before the 

conformational propensities of Inc and αMeInc regarding the cis-trans arrangement of 

ω0 is unambiguously established.  

The discrepancies between the results provided by the implicit and the explicit 

solvation models applied could be caused by imperfections of the PCM protocol. In 



 

 

particular, the separation of the solute from the nearest solvent molecules is not large 

enough for the solute to see a continuous solvent. Accordingly, the solute fails to see a 

uniform dielectric constant,29 and this deficiency becomes particularly significant in 

the presence of a polar solvent like water. Additionally, QM/MD allows the whole 

system to relax considering the anisotropies around the first solvation shell.  

The differences in predicting the relative stability order of cis and trans 

conformers provided by the PCM and QM/MM methods should be attributed mainly 

to the local anisotropies and the hydrogen-bonding network characterizing the latter 

type of calculation, which results in a higher restriction of the degrees of freedom and 

therefore leads to a limited number of accessible conformations. Figure 4.3.6. 

illustrates the main hydrogen bonding interactions established between the water 

molecules of the first solvation shell and the CO and NH moieties in the peptide 

backbone for Ac-L-αMeInc-NHMe exhibiting a trans acetamido moiety. It should be 

noted that no significant differences were observed for the four systems studied 

regarding the number of water molecules arranged in the first solvation shell, which 

ranged from 33 to 35 in all cases. However, averaged life-time increments in the most 

populated hydrogen-bonds were observed for both the unmethylated (23.2 and 24.9 ps 

for cis and trans Ac-L-Inc-NHMe, respectively) and methylated (21.5 and 32.8 ps for 

cis and trans Ac-L-αMeInc-NHMe, respectively) compounds. Accordingly, the Inc 

and, particularly, the αMeInc derivative seem to be stabilized by a stronger hydrogen-

bonding network when the peptide bonds are arranged in trans. This could account, at 

least in part, for the higher stability predicted by the QM/MM approach for the trans 

conformers of Ac-L-Inc-NHMe and Ac-L-αMeInc-NHMe. 

4.3.3. Conclusions 

The conformational preferences of Ac-L-Inc-NHMe and its α-methyl derivative, 

Ac-L-αMeInc-NHMe, have been explored in the gas phase by quantum mechanical 

calculations at the B3LYP/6-31+G(d,p) level. Such amino acids are proline analogues 

bearing a benzene ring fused to the Cγ–Cδ bond of the pyrrolidine moiety. Moreover, 

the influence of the environment on the conformational preferences of these 

compounds has been examined using both a PCM SCRF method and a hybrid 

QM/MM approach with explicit solvent molecules. The following conclusions have 

been drawn: 



 

 

The presence of the fused aromatic moiety further reduces the intrinsically low 

conformational flexibility of Pro. This feature is reflected by the annihilation in Ac-L-

Inc-NHMe of some of the minima previously detected for Ac-L-Pro-NHMe in the gas 

phase at the same level of theory. In particular, a restriction of the flexibility of the 

five-membered ring and a higher preference for the cis state of the peptide bond 

involving the pyrrolidine nitrogen is observed for the non-proteinogenic amino acid. 

α-Methylation of Inc results in the appearance of new minima exhibiting a trans 

arrangement of this peptide bond. Regarding the (φ,ψ) backbone preferences, the γ-

turn motif (t-γL) was found to be the global minima for the two compounds 

investigated in the gas phase and in chlorinated solvents. 

   The presence of a polar solvent like water leads to the stabilization of 

conformations devoid of intramolecular hydrogen-bonding interactions. In particular, 

the semiextended polyproline II (εL) and the folded α-helical (αL) conformations were 

found to be favored for Ac-L-Inc-NHMe and Ac-L-αMeInc-NHMe, respectively. This 

result is in accordance with the higher propensity to accommodate folded 

conformations typically exhibited by α-methyl amino acids when compared to their 

non-methylated counterparts. The results derived from PCM and QM/MM methods in 

this respect are in good agreement. 

   PCM single-point calculations on the geometries optimized in the gas phase 

seem to overestimate the stability of conformations exhibiting the peptide bond 

involving the pyrrolidine nitrogen arranged in cis, especially in aqueous solution. 

Relaxation of the molecular geometries in the latter environment produces a 

significant reduction of the energy gap between cis and trans conformers for a given 

(φ,ψ) backbone type. Elimination of the internal geometric stress seems essential to 

improve the description of the solvent effects on solutes with high conformational 

constraints like the ones investigated. Hybrid QM/MM simulations using explicit 

water molecules predict the trans arrangement of this peptide bond to be favored over 

the cis one by 4.5 and 6.0 kcal/mol for Ac-L-Inc-NHMe and Ac-L-αMeInc-NHMe, 

respectively. In this case, the stability of trans conformers is probably overestimated. 
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4.4. Phenylazophenylalanine: a key building block of 

photoresponsive biomimetic systems 

 

                                       

 

   

 

 

 

4.4.1. Introduction 

A number of photoresponsive peptides and polypeptides, reactive to light to give 

reversible variations of their structure and conformation, have been designed and 

studied in the last decades.1-9Such reactions are accompanied by changes of physical 

properties, which can be exploited to develop potential applications, e.g. 

photomechanical biotransducers and actuators, or regulators in biological processes.  
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Photoresponsive peptides are obtained by introducing photoactive ligands 

(chromophores) on the peptide chain, through chemical modification. Azobenzene 

(AB), which undergoes a reversible cis-trans photochemical isomerization (Scheme 

1), is often considered as an optimal photochrome.10 Irradiation at 1 320-340 nm 

converts the thermodynamically most stable trans isomer to the cis isomer. The latter 

reverts thermally, or upon irradiation at 2  420 nm.11 Because the structure and 

dipole moments of the two isomers strongly differ, the chemical incorporation of AB 

at strategic positions can be used to reversibly modulate not only the peptide 

conformation but also the binding affinity, thereby creating semisynthetic 

biomaterials whose activity can be controlled photochemically. Three effective 

strategies in terms of conformational control have been devised to incorporate the AB 

chromophore: (i) the peptide backbone approach, in which the chromophore is 

inserted into the backbone (Scheme 2a); (ii) the side-chain cyclization approach, in 

which non-consecutive residues are cross-linked through their side chains with 

suitable AB derivatives (Scheme 2b); and (iii) the selective incorporation of unnatural 

amino acids that contains the chromophore in the side chain (Scheme 2c).  
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Scheme 2 

Amongst AB-containing unnatural amino acids, phenylazophenylalanine, 

hereafter abbreviated PAP (Figure 4.4.1.) is particularly attractive due to its 

simplicity, the side chain chromophore being separated from the backbone by a single 

methylene unit. PAP has been successfully used to photomodulate the binding affinity 

and activity of peptides and proteins.3,12-17 Whilst AB and several of its derivatives 

have been the focus of extensive experimental18-22 and theoretical23-29 investigations, 



 

 

studies aiming at understanding the structural and optical properties of AB-containing 

unnatural amino acids remain extremely limited. Thus, although the relationships 

between the secondary structures and the UV-Vis spectra of poly(-L-glutamic acid) 

featuring AB side chain were reported,30-33 the intrinsic properties of its 

photoresponsive building blocks have yet to be tackled.  

This work intends to fill this gap by presenting a comprehensive study of the N-

acetyl-N’-methylamide derivative of L-PAP, hereafter denoted Ac-L-PAP-NHMe, in 

which the AB side group may adopt both trans and cis conformations. More 

specifically, Density Functional Theory (DFT) calculations have been used to provide 

a complete characterization of the trans and cis isomers, abbreviated Ac-L-(t) PAP-

NHMe and Ac-L-(c)PAP-NHMe, respectively. Calculations have allowed to ascertain 

not only the influence of the isomerization of the AB core on the , backbone 

dihedral angles, but also the impact of the latter on the conformation of the 

chromophore, which is defined by the dihedral angle  (Figure 4.4.1.). For this 

purpose, the potential energy surface E=E(,), i.e. the ,-Ramachandran map, and 

the minimum energy conformations have been determined for both Ac-L-(t)PAP-

NHMe and Ac-L-(c)PAP-NHMe. Furthermore, the changes of dipole moment and 

electronic transition wavelength induced by the AB isomerization (i.e. the =(,) 

and =(,) maps, respectively) have been examined, to quantify the influence of 

the molecular conformation on the electrostatic features of the system. We wish to 

emphasize that, to the best of our knowledge, the interplay between the spectral 

properties of the photoresponsive amino acid and the backbone conformation has 

never been systematically investigated before. This is performed for the first time, by 

using Time-Dependent Density Functional Theory (TD-DFT).34 

  4.4.2. Methods 

Nomenclature. The minimum energy conformations of the two isomers of Ac-

PAP-NHMe have been denoted using three labels. The first one corresponds to the 

trans (t) or cis (c) disposition of the AB chromophore and refer to the Ac-L-(t)PAP-

NHMe and Ac-L-(c)PAP-NHMe isomers, respectively. The second label identifies the 

backbone conformation, which is defined by the , dihedral angles, using the 

nomenclature introduced by Perczel et al35 more than 15 years ago. Finally, the third 

label indicates the conformation of the dihedral angles 1 and 2, that is, the trans (t), 

gauche+ (g+), gauche- (g-), skew+ (s+), skew- (s-) and cis (c). 



 

 

Geometry optimizations. All calculations were performed using the Gaussian 0336 

computer program. All geometry optimizations were performed in gas phase at the 

B3LYP/6-311++G(d,p) level.37,38 A complete exploration of the potential energy 

surface E(,) was performed by mapping the Ramachandran plot for both 

trans ( 180º) and cis ( 0º) isomers of the L-Pap dipeptide. Calculations were 

performed on a grid of points on the (,) space with 30º intervals, the dihedral 

angles 0, , 1 and 2 being initially positioned at 180º in all cases. At each point of 

the grid, the geometry was optimized by keeping the dihedral angles  and  

constrained during the minimization process. Possible energy minima on the surface 

were investigated for all low-energy regions of the trans and cis maps by performing 

fully-relaxed geometry optimization. Thus, starting points for complete geometry 

optimization were generated by combining selected low energy backbone 

arrangements for the trans and cis isomers with different dispositions of the dihedral 

angles 1 and 2. Frequency analyses were carried out to verify the nature of the 

minimum state of all the obtained stationary points, and to determine the zero-point 

vibrational energies (ZPVE) as well as the thermal and the entropic corrections. These 

statistical terms were used to compute the Ggp values at 298 K. 

Calculations in Aqueous Solution. To obtain an estimation of the hydration 

effects on the relative stability of the different minima, single point calculations were 

conducted on the optimized structures with a SCRF model. Specifically, the 

Polarizable Continuum Model (PCM) developed by Tomasi and co-workers39 was 

used in this work. The PCM model represents the polarization of the liquid by a 

charge density appearing on the surface of the molecular-shaped cavity created in the 

solvent. PCM calculations were performed with B3LYP/6-311++G(d,p) method using 

the standard protocol and considering the dielectric constant of water (= 78.4) to 

obtain the free energy of solvation (ΔGsolv) of the minimum energy conformations. 

The conformational free energies in solution (ΔGH2O) were estimated at the same level 

by using the classical thermodynamics scheme: ΔGH2O= ΔGgp +ΔGsolv. 

TD-DFT Calculations. Electronic transition were evaluated by determining the 

vertical electronic energies by means of TD-DFT calculations.[34] Using the 6-

311+G(d,p) basis set,38 the following functionals were tested for these calculations:  
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VSXC 40, B3LYP 37, PBE0 41, BMK 42 and BHandHLYP 37. Molecular 

geometries used for TD-DFT calculations were derived from both partial and 

complete geometry optimizations at the B3LYP/6-311+G(d,p) level (i.e. geometries 

calculated to construct the E=E(,) maps and minimum energy conformations, 

respectively).



 

 

 

 

4.4.3. Results and discussion 
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Figure 4.4.1.. Structure of the compound investigated, Ac-PAP-NHMe. The 

backbone and side chain dihedral angles are indicated. 

Figure 4.4.1. presents the nomenclature used for both the side chain and 

backbone dihedral angles of Ac-L-PAP-NHMe, the dihedral angle  being used to 

define the trans and cis isomers of this dipeptide (i.e.  180º and 0º for Ac-L-(t)PAP-

NHMe and Ac-L-(c)PAP-NHMe, respectively). The Ramachandran maps E=E(,) 

of the two isomers of Ac-L-Pap-NHMe were calculated at the B3LYP/6-311++G(d,p) 

level by keeping the backbone dihedral angles , constrained during the 

minimization process. In all cases the side chain dihedral angles 1 and 2 and the two 

peptide bonds (0 and ) were initially positioned at 180º, even although they were 

allowed to relax. The E=E(,) maps obtained for the dipeptide with the AB arranged 

in trans and cis are displayed in Figures 4.4.2.a and 4.4.2.b, respectively, whereas 

Figure 4.4.2.c depicts the difference between the two surfaces (i.e. E=E[,;Ac-L-

(t)PAP-NHMe] - E[,;Ac-L-(c)PAP-NHMe]).  
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Figure 4.4.2.. E=E(,) maps calculated at the B3LYP/6-311++G(d.p) level for the Ac-

PAP-NHMe dipeptide with the AB arranged in (a) trans and (b) cis, i.e. Ac-L-(t)PAP-NHMe 

and Ac-L-(c)PAP-NHMe isomers, respectively. The difference between the two surfaces, 

E[,;Ac-L-(t)PAP-NHMe] - E[,;Ac-L-(c)PAP-NHMe], is represented in (c). 

As can be seen, the regions corresponding to relative energies within 6 kcal·mol-1 

of the global minimum are closely confined for both trans and cis conformations. 

Furthermore, it is noticeable that the position of the energetically accessible regions in 

the E=E(,) map are not significantly influenced by the trans or cis arrangement of 



 

 

 

the AB chromophore, even though the  value affects the regions of higher energy. As 

a consequence, in both cases the regions of lower energy are located around the semi-

extended conformations with , -120º,120º, and , 65º,-60º. These values are 

typically found in the -sheet and the -turn motifs, respectively.  In opposition, the 

helical conformations (, 60º, 60º) are destabilized by at least 4 kcal/mol.  

The E=E(,) map indicates that the Ac-L-(t)PAP-NHMe isomer is favored 

with respect to Ac-L-(c)PAP-NHMe in the whole potential energy surface, the lowest 

energy difference, at , 120º, 75º, being of approximately 7 kcal/mol. However, 

this energy difference ranges from 15 to 17 kcal/mol over more than a half of the 

map, including the regions associated to the semi-extended conformations. The 

analysis of the dihedral angle  for all the structures indicates variations smaller than 

1.5º, i.e.  ranges from 179.4º to -179.5º and from 8.7º to 10.1º for the trans and cis 

isomer, respectively. These values are very similar to those predicted for the free AB 

(i.e. when the chromophore does not act as a substituent of the amino acid) at the 

same level of theory: 179.9º and -9.9º for the trans and cis isomer, respectively.  

Starting geometries for complete optimizations were selected from the E=E(,) 

maps (the conformational search process is described in the Methods section). Full 

gas-phase geometry optimizations, followed by frequency calculations allowed to 

locate 14 and 18 minimum energy conformations for Ac-L-(t)PAP-NHMe and Ac-L-

(c)PAP-NHMe, respectively, which were distributed within a relative energy interval 

of 7.4 and 7.7 kcal/mol. Tables 4.4.1. and 4.4.2. list the backbone and side chain 

dihedral angles, as well as the relative total (Egp) and free (Ggp) energies of all 

minima calculated for trans and cis isomers, respectively. Five and seven of them 

present Ggp  1.5 kcal/mol for the trans and cis isomer, respectively, being sketched 

in Figures 4.4.3. and 4.4.4..  The minimum energy conformations have been denoted 

using a three-label code, which specifies the AB isomerism, the arrangement of the 

backbone conformation, and the dihedral angles 1 and 2 (see the Methods section 

for details). 

 



 

 

Table 4.4.1.. Backbone and side chain dihedral angles (Figure 4.4.1.; in degrees), relative energy and free energy in the gas-phase (Egp and Ggp; 
in kcal/mol) and relative free energy in aqueous solution (GH2O; in kcal/mol) for the minimum energy conformations of Ac-L-(t)PAP-NHMe 
calculated at the B3LYP/6-311++G(d,p) level. 

# 0    1 2  Egp Ggp GH2O 

t-DL-tg+ 177.6 -155.8 154.6 174.3 -169.4 71.8 / -107.8 -179.8 0.0a 0.0b 3.0 

t-L-g-s+ -174.3 -84.5 75.0 -175.5 -57.8 113.0 / -67.1 180.0 0.4 0.6 2.8 

t-L-tg+ -179.5 -83.7 82.4 -174.5 -165.0 86.0 / -93.8 -179.9 0.4 1.1 2.7 

t-L-g+g+ -170.1 -120.6 16.1 173.8 55.1 82.3 / -97.3 -179.6 1.6 1.1 3.3 

t-L-g+g+ -175.0 -82.6 58.7 178.5 43.0 78.8 /-101.6 -179.9 0.4 1.5 8.3 

t-L-g+g+ -170. -117.3 15.9 174.1 54.3 80.0 / -99.8 179.7 1.5 1.9 4.2 

t-L-g-s+ -168.0 -106.8 6.1 174.4 -61.0 115.2 / -65.2 -179.8 2.7 2.0 0.0 

t-DL-g+s+ 175.7 -154.2 165.5 -178.5 61.3 92.0 / -87.9 -179.9 2.2 2.1 0.6 

t-D-g-s+ 174.1 73.4 -54.2 -178.6 -59.6 103.6 / -75.6 180.0 1.8 2.2 3.1 

t-D-tg+ 173.1 73.3 -65.9 177.4 -170.2 77.4 / -102.6 180.0 3.8 4.5 3.4 

t-D-g+s+ 170.6 -162.3 -38.0 -174.3 62.7 97.3 / -83.0 -179.9 6.2 6.0 6.4 

t-D-tg+ -164.5 63.8 -157.8 -176.8 -160.4 56.5 / -125.4 179.8 6.9 6.8 6.5 

t-D-g+g+ 173.3 56.3 -29.9 -177.8 69.6 81.0 / -101.0 179.8 7.0 7.9 8.1 

t-D-tg+ 174.7 -153.4 -65.0 -177.1 -174.6 71.2 / -108.7 180.0 7.4 6.6 0.8 
a E= -1067.714321 a.u. b G= -1067.416009 a.u. 



 

 

Table 4.4.2.. Backbone and side chain dihedral angles (Figure 4.4.1.; in degrees), relative energy and free energy in the gas-phase (Egp and Ggp; in kcal/mol) and relative free 

energy in aqueous solution (GH2O; in kcal/mol) for the minimum energy conformations of Ac-L-(c)PAP-NHMe calculated at the B3LYP/6-311++G(d,p) level. 

# 0    1 2  Egp Ggp GH2O 

c-DL-tg+ 176.3 -157.3 165.7 176.1 -158.3 71.8 / -109.1 9.8 0.2 0.0b 3.5 

c-L-tg+ 178.8 -84.0 81.3 -174.2 -164.7 89.9 / -91.0 9.2 0.0a 0.5 1.6 

c-L-g-s+ -175.9 -84.2 75.0 -175.4 -60.0 110.6 / -70.6 9.1 0.4 0.5 1.4 

c-DL-g-s+ 174.4 -126.5 144.1 178.6 -64.8 91.1 / -87.3 8.2 1.6 0.5 0.0 

c-L-g+g+ -170.5 -117.1 14.8 173.6 56.0 83.4 / -97.2 9.4 1.4 1.3 4.5 

c-DL-g+s+ 175.6 -153.8 165.0 -171.3 61.9 93.6 / -86.7 9.4 1.5 1.3 0.7 

c-L-g+g+ -174.6 -82.8 59.5 178.9 43.5 81.9 / -99.4 9.3 0.1 1.4 7.7 

c-D-g-s+ 174.6 73.1 -55.2 -178.7 -60.8 104.7 / -75.8 9.6 1.7 2.3 2.0 

c-D-tg+ 176.6 73.1 -64.2 178.2 -172.2 76.2 / -104.1 9.0 2.9 3.5 3.6 

c-D-g-s+ 168.8 73.4 16.5 -177.9 -60.9 105.7 / -74.9 9.4 4.3 4.3 0.6 

c-L-tg+ -170.9 -88.6 -19.5 176.5 -172.2 72.4 / -109.3 8.9 5.6 5.0 1.1 

c-D-tg+ 174.2 -154.0 -62.3 -176.7 -174.6 74.2 / -105.7 8.9 6.5 6.2 0.9 

c-D-g+s+ 1706 -162.5 -39.2 -174.4 62.5 100.1 / -81.3 10.0 6.4 6.4 7.3 

c-D-s+s+ 170.1 68.0 31.5 -177.9 -133.9 102.5 / -78.2 9.3 6.6 6.7 1.1 

c-D-g-s+ 173.9 -122.1 -92.8 -179.2 -67.1 94.2 / -83.9 7.5 7.6 6.8 2.3 

c-D-tg+ -164.8 63.8 -156.6 -177.5 -159.2 57.4 / -125.5 9.1 6.8 7.1 5.8 

c-D-g+g+ 171.7 54.3 -26.3 -178.4 64.3 80.9 / -100.8 8.8 6.1 8.3 9.3 

c-D-g+g+ 168.5 51.8 37.4 -176.2 54.8 83.5 / -98.8 9.6 7.7 9.2 5.3 
a E= -1067.689001 a.u. b G= -1067.390678 a.u. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4.3.. Ac-L-(t)PAP-NHMe minimum energy conformations with with Ggp ≤ 1.5 

kcal/mol at the B3LYP/6-311++G(d,p) level: (a) t-DL-tg+; (b) t-L-g-s+; (c) t-L-tg+; (d) t-L-

g+g+; and (e) t-L-g+g+. 
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Figure 4.4.4.. Ac-L-(c)PAP-NHMe minimum energy conformations with with Ggp ≤ 1.5 

kcal/mol at the B3LYP/6-311++G(d,p) level: (a) c-DL-tg+; (b) c-L-tg+; (c) c-L-g-s+; (d) c-

DL-g-s+; (e) c-L-g+g+; (f) c-DL-g+s+; and (g) c-L-g+g+. The c-DL-g-s+ (d) is the 

conformation with lowest free energy in aqueous solution.  
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The lowest energy minimum of Ac-L-(t)PAP-NHMe, t-DL-tg+ (Figure 4.4.3.a), 

adopts a semi-extended backbone arrangement (C5 conformation), in which the CO 

and NH moieties of the PAP residue defines a five-member cycle with parameters 

d(H···O)= 2.200 Å and N-H···O= 106.3º. In this case, the orientation of the 

substituent leads to the formation of a weak N-H··· attractive interaction between 

the amino of the N-methylamide blocking group and the photochrome. This 

interaction may be defined by, on the one hand, the distance between the amide 

hydrogen and the center of the aromatic ring [d(H···Ph)= 3.409 Å] and, on the other 

hand, the angle formed by the N-H bond and the phenyl ring plane (Ph= 18.6º). The 

ability of the  electron density to interact with proton donors has long been 

recognized43-43 and has recently been identified as a stabilizing factor of peptide and 

protein structures.46-49 The next two minima, t-L-g-s+ and t-L-tg+ (Figures 4.4.3.b and 

4.4.3.c, respectively), present a L backbone conformation with the terminal acetyl CO 

and methylamide NH sites forming a seven-member hydrogen bonded ring. These 

two minima lack of stabilizing interactions of the N-H··· type and, the main 

differences between them is the orientation of the AB group, as well as the strength of 

the intramolecular hydrogen bond.   

The backbone conformation of the t-L-g+g+ (Figure 4.4.3.d) geometry is actually 

in between the L and L regions, and though no intramolecular hydrogen bond was 

detected in this structure, it is isoenergetic to t-L-tg+ in terms of Ggp. Such an 

outcome can be attributed to the orientation of the side group that allows the 

formation of a weak N-H··· interaction. The t-L-g+g+ (Figure 4.4.3.e) minimum, 

which shows a Ggp value of 1.5 kcal/mol, presents both backbone···backbone 

(hydrogen bond) and backbone···side chain (N-H···) interactions. This structure, 

isoenergetic to both t-L-g-s+ and t-L-tg+ ones in terms of Egp, is nevertheless 

destabilized because of the unfavorable vibrational corrections obtained for the g+g+ 

arrangement of the side group. The backbone conformations of the remaining 9 

minima, in which Ggp ranges from 1.9 to 7.9 kcal/mol, is distributed as follows: 2 L, 

1 DL, 2 D, 3 D and 1 D. It is worth noting that the conformations in the helical (L 

and D) and L regions are sterically inaccessible for Ac-L-(t)PAP-NHMe. In short, 

our results indicate that the trans disposition of AB group reduces the conformational 

flexibility with respect to alanine.50,51.



 

 

This effect is mainly due to the broadening of the gap that separates the energy 

minima, as well as the emergence of backbone···chromophore steric clashes in the 

helical structures.  

Regarding to Ac-L-(c)PAP-NHMe, the most stable conformation in terms of Ggp 

corresponds to the c-DL-tg+ (Figure 4.4.4.a), that is completely similar to the most 

favored trans conformer NHMe (t-DL-tg+ in Figure 4.4.3.a), but for the  angle. As 

expected, the trans-to-cis isomerization of the AB group increases the free energy by 

15.9 kcal/mol. This is in clear agreement for the trans-to-cis of free AB, which shows 

an energy difference of 15.8 kcal/mol at the same theoretical level. The geometric 

parameters indicate that the strength of both the hydrogen bond and N-H··· 

interactions is only slightly larger for Ac-L-(c)PAP-NHMe than for Ac-L-(t)PAP-

NHMe. The next two minima, c-L-tg+ and c-L-g-s+ (Figures 4.4.4.b and 4.4.4.c, 

respectively), differ in the orientation of the side group, and are both unfavored by 0.5 

kcal/mol in terms of Ggp, suggesting that the strength of the backbone···side chain 

interactions is similar in each case. The dihedral angles (1 and 2) of the fourth 

minimum at 0.5 kcal/mol, c-DL-g-s+ (Figure 4.4.4.d), preclude the formation of the 

N-H··· interaction found in the global minimum. Finally, the c-L-g+g+(a), c-DL-

g+s+ and c-L-g+g+(b) conformations (Figures 4.4.4.e, 4.4.4.f and 4.4.4.g, 

respectively), which present Ggp values close to 1.3-1.4 kcal/mol, do not benefit 

from interactions between the backbone and the side chain, as the d(H···Ph) 

systematically exceeds 5 Å. The backbone conformation of the remaining 11 minima, 

presenting Ggp ranging from 2.3 to 9.2 kcal/mol, is distributed as follows: 3 D, 3 αD, 

1 αL, 3 D and 1 D. As it can be seen, both the L and D were identified as energy 

minima for the Ac-L-(c)PAP-NHMe isomer, indicating that the helical arrangement is 

only forbidden when the chromophore adopts a trans disposition.  

The values of the relative free energy in aqueous solution (GH2O), obtained with 

the PCM method, of all the minima calculated for Ac-L-(t)PAP-NHMe and Ac-L-

(c)PAP-NHMe are also listed in Tables 4.4.1. and 4.4.2., respectively. The relative 

free energy intervals are slightly larger than those found in the gas-phase, reproducing 

the tendency recently pointed out for dipeptides made of amino acids bearing one or 

two phenyl side groups.52-54 Solvation induces important changes in the energy 

ranking of the conformers. Specifically, the t-L-g-s+ (Figure 4.4.5.a), t-DL-g+s+ 

(Figure 4.4.5.b) and t-D-tg+ (Figure 4.4.5.c), which are unfavored in the gas-phase by 



 

 

2.0, 2.1 and 6.6 kcal/mol, respectively, become the most stabilized conformers in 

water, being the only three structures of Ac-L-(t)PAP-NHMe with GH2O ≤ 1.5 

kcal/mol. The most remarkable characteristics of these three conformers are: 1) the 

NH and CO moeities of the polar amide groups are highly exposed, allowing 

attractive electrostatic interactions with water; and 2) the accessibility of the 

hydrophobic side group is partially hindered by the backbone. This is especially true 

for the most stable geometry since its backbone dihedral angles are in the border 

between the L and L regions, therefore precluding the formation of the seven-

member hydrogen bonded ring.  

 

 

 

Figure 4.4.5.. Conformations of Ac-L-(t)PAP-NHMe with GH2O ≤ 1.5 kcal/mol calculated 

using the PCM model: (a) t-L-g-s+; (b) t-DL-g+s+; and (c) t-D-tg+. 
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Figure 4.4.6.. Selected conformations of Ac-L-(c)PAP-NHMe with GH2O ≤ 1.5 kcal/mol 

calculated using the PCM model: (a) c-D-g-s+; (b) c-L-tg+;  (c) c-D-s+s+; and (d) c-D-tg+.   

Regarding to Ac-L-(c)PAP-NHMe, seven conformers with Ggp ranging from 0.5 

to 6.7 kcal/mol show GH2O ≤ 1.5 kcal/mol. The larger conformational flexibility of 

the cis isomer with respect to its trans counterpart can be mainly explained by the 

lower accessibility of the aromatic rings in the cis conformation, therefore reducing 

the repulsive interactions between side group and the solvent. This point is clearly 

evidenced in Figure 4.4.4.d, which shows that the two internal sides of the aromatic 

rings are protected from the solvent in the most stable conformer (c-DL-g-s+) in 

aqueous solution. For the other low energy conformations in water environment, the 

helical arrangements, namely c-D-g-s+ (Figure 4.4.6.a), c-L-tg+ (Figure 4.4.6.b) and 

c-D-s+s+ (Figure 4.4.6.c) with respective GH2O of 0.6, 1.1 and 1.1 kcal/mol, deserve 

special attention as they are significantly unfavoured in the gas-phase. Previous 

theoretical studies on model dipeptides of both proteinogenic55 and synthetic56,57 

(a) (c)

(b) (d)



 

 

amino acids indicated that, in general, helical conformations are significantly 

stabilized in aqueous solution due to a relatively high dipole moment that yields 

attractive electrostatic interactions. Our present results confirm that trend. The three 

remaining low energy conformations correspond to the c-DL-g+s+ (Figure 4.4.4.f), c-

D-tg+ (Figure 4.4.6.d) and c-L-g-s+ (Figure 4.4.4.c) with GH2O= 0.7, 0.9 and 1.4 

kcal/mol, respectively. The stability of the former and the latter are relatively similar 

in gas-phase (Ggp= 1.3 and 0.5 kcal/mol, respectively) and water, while the c-D-tg+ 

conformation gains 5.3 kcal/mol.  
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Figure 4.4.7.. Free energies in the gas-phase (black symbols) and in aqueous solution (gray 

symbols) of the minimum energy conformations obtained for the trans (squares) and cis 

(triangles) stereoisomers of Ac-PAP-NHMe relative to the structure of lowest energy 

independently of the disposition of the AB group, i.e. c-DL-tg+ and  t-L-g-s+ in the gas-phase 

and aqueous solution, respectively. The 32 conformers have been ordered following the 

increasing relative free energy in the gas-phase. 

Figure 4.4.7. compares the relative free energy in the gas phase and water of the 

driven out minimal energy conformers, the global minimum of the trans Ac-L-PAP-

NHMe being used as benchmark. As previously mentioned, the solvent induces 

significant modifications of the relative energy order of the minima calculated for 

both Ac-L-(t)PAP-NHMe and Ac-L-(c)PAP-NHMe. However, the energy gap 

separating the trans and cis geometries remains almost constant. Indeed, the free 



 

 

energy difference between the most stable conformation of each isomer is 15.9 

kcal/mol (gas-phase) and 14.9 kcal/mol (water). The relative stability of the two 

isomers is essentially independent of the external forces, even though the 

conformational preferences of the backbone are tuned by the medium. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4.8.. =(,) (in Debyes) maps calculated at the B3LYP/6-311++G(d.p) level for 

the Ac-PAP-NHMe dipeptide with the AB arranged in (a) trans and (b) cis, i.e. Ac-L-(t)PAP-

NHMe and Ac-L-(c)PAP-NHMe isomers, respectively. The difference between the maps 

calculated for the two isomers, [,;Ac-L-(t)PAP-NHMe] - [,;Ac-L-(c)PAP-NHMe], is 

represented in (c) 

Figure 4.4.8. compares the =(,) maps calculated for Ac-L-(t)PAP-NHMe 

and Ac-L-(c)PAP-NHMe. The latter isomer presents the lowest [highest] dipole value 

in the semi-extended (, 120º,-120º) [helical (, 60º, 60º)] region, while the 
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polyproline II (, 60º, 150º) [semi-folded (, 180º, 0º)] region displays the 

lowest [highest] dipole when the chromophore is arranged in trans. The =(,) 

(Figure 4.4.8.c), clearly describes the impact of AB photoisomerization on the  of 

Ac-L-PAP-NHMe, that can be as large as ~5 Debyes. These results allow to conclude 

that when the chromophore-containing amino acid is placed in close proximity to a 

substrate or ligand binding site in an enzyme, receptor, or ion channel, the variation in 

the  accompanying the geometric changes can be used to regulate and control the 

binding affinity and, consequently, the activity of peptides and proteins.  

The complete =(,) absorption maps for Ac-L-(t)PAP-NHMe and Ac-L-

(c)PAP-NHMe have been determined using TD-DFT calculations,34 which are known 

to provide accurate results for a reasonable computational effort, if a suitable 

functional is selected.58-40 In order to select the most appropriate TD-DFT level, 

calculations were first conducted on five minima of each isomer, which included the 

structures of lowest and highest energy as well as three additional minima separated 

by approximately regular Egp intervals.  Specifically, we collated the UV-vis 

performance of five typical functionals (see Method Section) combined with the 6-

311+G(d,p) basis set, which was reported to be adequate for the AB and its 

derivatives.29,64 The wavelengths calculated for the first n* and * transitions 

(hereafter denoted np and pp), that are relevant for isomerization of the AB, were 

compared with the experimental data determined for the trans and cis isomer of free 

AB.65 The closest agreement between measurements and simulations was provided by 

the BMK functional, which was consequently selected to compute the np and pp of 

all the optimized geometries used to construct the E=E(,) maps.   

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4.9.. np=np(,) and pp=pp(,) maps (n* and * transitions, respectively) 

calculated at the TD-BMK/6-311+G(d,p) level for the Ac-PAP-NHMe dipeptide with the AB 

arranged in (a) trans and (b) cis. The difference between the maps calculated for the two 

isomers, is represented in (c). Units in nm.   

 

* n*
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Figure 4.4.9. shows the =(,) absorption maps calculated for Ac-L-(c)PAP-

NHMe and Ac-L-(t)PAP-NHMe, respectively. It turns out that, in all cases, the 

variations of the transition wavelengths with the backbone dihedral angles , are 

relatively limited, independently of the trans or cis arrangement of the AB side group. 

More specifically, the largest variation, which is as small as 10 nm, occurs in the 

np(,) and pp(,) maps of Ac-L-(t)PAP-NHMe and Ac-L-(c)PAP-NHMe, 

respectively, while the variations in the other two computed maps are smaller than 4 

nm. The np and pp values for the two Ac-L-PAP-NHMe isomers were determined 

considering a Boltzmann distribution of the calculated peptide backbone 

conformations (i.e. using the populations derived from the E=E(,) potential energy 

hypersurfaces to weight the =(,) values). The resulting values are np= 479 nm 

and pp= 270 nm for Ac-L-(t)PAP-NHMe, and np= 484 nm and pp= 267 nm for Ac-

L-(c)PAP-NHMe. Thus, small shifts of  np= +5 nm (red shift) and pp= -3 nm 

(blue shift) are predicted for the trans to cis isomerization of Ac-L-PAP-NHMe. 

These shifts are practically identical to those found for free AB calculated in the gas-

phase at the same theoretical level:  np= +4 nm and pp= -3 nm. These results are 

consistent with those calculated for poly(glutamic acid) featuring a photochromic side 

chain.33 Specifically, TD-DFT calculations predicted bathochromic and hypsochromic 

shifts for the n* and * transitions, respectively, when the dye changes from 

trans to cis, even though np and pp changed very few nm with the conformation 

of the polypeptide.  

In order to ascertain the influence of the peptide backbone on the photochromic 

behavior of the AB moiety, excitation energies have been compared with those 

calculated for free AB: np= 480 nm and pp= 269 nm for the trans isomer, and np= 

484 nm and pp= 266 nm for the cis one). Bathochromic shifts of around 0.5 nm are 

predicted for the n* transition of both the trans and cis isomers, while the * 

transition shows hypsochromic shifts of around 1 nm. These small changes indicate 

that the incorporation of the AB chromophore to a peptide does not induce relevant 

changes neither in np nor in pp values, the spectra of free AB being preserved. 

On the other hand, the value of the oscillator strength associated to the n* 

transition is lower for the trans isomer than for the cis one in the whole , map (i.e. 

it varies from 110-4 to 810-4 and from 0.025 to 0.030 for the trans and cis isomer, 

respectively). The average value weighted according to a Boltzmann distribution of 



 

 

conformations is 210-4 and 0.035 for the trans and cis isomers, respectively. For the 

* transition the values of oscillator strength range from 0.013 to 0.037 for the 

trans isomer and from 0.025 to 0.070 for the cis one, while the weighted averages are 

0.024 and 0.052, respectively.  

4.4.5. Conclusions 

The conformational and optical properties of Ac-L-(c)PAP-NHMe and Ac-L-

(t)PAP-NHMe have been studied using DFT and TD-DFT calculations, respectively. 

The calculated E=E(,) maps indicate that the regions of lower energy correspond 

to those typically associated to the -sheet and -turn secondary structures for the two 

isomers. In spite of this resemblance, the Ac-L-(t)PAP-NHMe isomer is favored with 

respect to Ac-L-(c)PAP-NHMe in the whole map, the energy difference between the 

two isomers ranging from 7 to 17 kcal/mol. A conformational search process led to 

identify 14 and 18 minimum energy conformations for Ac-L-(t)PAP-NHMe and Ac-L-

(c)PAP-NHMe, respectively, even though only 5 and 7 of such minima showed Ggp 

values lower than 1.5 kcal/mol. The lowest energy minimum found for the two 

isomers in the gas-phase corresponds to a semi-extended conformation stabilized by: 

an intramolecular N-H···O=C hydrogen bond and a N-H··· interaction. Thus, the 

only difference involves the dihedral angle  of the AB side group, which increases 

the free energy 15.9 kcal/mol when changes from trans to cis. On the other hand, we 

found that helical conformations are sterically forbidden for Ac-L-(t)PAP-NHMe but 

not for Ac-L-(c)PAP-NHMe, even though they are destabilized by at least 4.3 

kcal/mol in the gas-phase.  

Aqueous solvent produced important changes in the conformational preferences 

of Ac-L-(t)PAP-NHMe and Ac-L-(c)PAP-NHMe, the number of conformations with 

GH2O values lower than 1.5 kcal/mol being 3 and 7, respectively. Solvation stabilizes 

conformations in which the accessibility of the polar amide groups and the aromatic 

rings of the AB side group is maximum and minimum, respectively. The lowest 

energy conformation in aqueous solution is the t-L-g-s+ and c-DL-g-s+ for the trans 

and cis isomers, respectively, which are unfavored by 2.0 and 0.5 in the gas-phase. 

Interestingly, the relative stability of all the helical conformations identified for the cis 

isomer is significantly enhanced in solution. 

The calculated pp=pp(,) and np=np(,) absorption maps indicate that the 

variations of the transition wavelengths with the backbone dihedral angles , is 



 

 

reduced (i.e. smaller than 10 nm) for both Ac-L-(t)PAP-NHMe and Ac-L-(c)PAP-

NHMe. The transition wavelength predicted by averaging the values of the map 

according to a Boltzmann distribution are: np= 479 nm and pp= 270 nm for Ac-L-

(t)PAP-NHMe, and np= 484 nm and pp= 267 nm for Ac-L-(c)PAP-NHMe. The 

shifts predicted for the trans-to-cis isomerization of Ac-L-PAP-NHMe,  np= +5 nm 

(red shift) and pp= -3 nm (blue shift), are very similar to those obtained for the free 

AB at the same theoretical level ( np= +4 nm and  pp= -3 nm). In opposition, the 

calculated =(,) maps evidenced that the isomerization of AB has a significant 

impact on the  of Ac-L-PAP-NHMe (i.e. around 5 Debyes). Accordingly,  has been 

proposed as key property to regulate and control the activity of L-PAP containing 

peptides and proteins. 
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5. Engineering of bioinspired system



 



 

5.1. Exploring the Energy Landscape of a Molecular Engineered 
Analog of a Tumor – Homing Peptide 
 
5.1.1. Introduction 

The systematic use of nanostructures for clinical applications is rapidly 

becoming a central milestone in modern nanomedicine. Among the possible nano-

approaches, treatment systems based upon nanoparticles able to target tumor cells, 

rapidly took the lead.1 Even though the first generation of nanoparticles relied on 

vessel ‘‘leakiness’’ for preferential accumulation in tumors - which limited the 

efficiency of such particles because of their low penetration capability into the 

targeted tumors - they were trapped by the sustained high pressure of the interstitial 

tumor fluid.2 

An alternative approach is targeting the nanoparticles to specific molecular 

receptors in blood vessels: tumors express many molecules that are not 

significantly populated in normal tissues and the receptors are available for direct 

binding of species in the blood stream.3–5 Different nanosystems have been 

proposed, such as the super-paramagnetic iron oxide (SPIO) nanoparticles coated 

with dextran, by Ruoslahti and co-workers. These nanoparticles are able to home to 

tumors while amplifying their homing activity through a mechanism that resembles 

formation of blood clots by platelets.6 The bioactive part of these nanoparticles is 

the coating peptide, which can recognize selectively clotted plasma proteins.6 This 

short linear peptide (CREKA, Cys-Arg-Glu-Lys-Ala) was recently discovered by in 

vivo screening of phage-display peptide libraries3,7 for tumor-homing peptides in 

tumor-bearing MMTV-PyMT transgenic breast cancer mice.8 Synthesized CREKA 

labeled with the fluorescent dye 5(6)-carboxyfluorescein (FMA) was detectable in 

human tumors from minutes to hours after intravenous injection, whereas it was 

essentially undetectable in normal tissues.9 

For the last three years we have devoted our efforts to devise protection 

strategies of CREKA against proteolytic cleavage with concomitant stabilization of 

the bioactive folded conformation.10-12 Following determination of the bioactive 

conformation, specific replacements were designed using non-coded amino acids. 

This strategy is expected to grant proteolytic protection and, simultaneously, allow 

control of the conformational preferences. Exploration of CREKA conformational 

preferences was performed under conditions in which the homing peptide was 



 

experimentally shown to bind to the clotted plasma proteins: as a free peptide, 

attached to a nanoparticle, and inserted into a viral capsid protein (in a phage 

display library10). Independently of the simulation conditions, the most favored 

organizations often featured turn motifs, which generally involved Cys and either 

Glu or Lys. Among this variety of turn organizations, a common pattern was 

observed in all simulated cases: a β-turn arrangement that involves the formation of 

a hydrogen bond between Cys and Lys residues. This organization was identified as 

the bioactive motif, which enabled the formation of salt bridges between the side-

chains of all ionized amino acids, since the curvature site made them protrude 

outward. Once the bioactive structural profile was delineated, non-coded amino 

acids were used in order to enhance the protection against proteolytic cleavage and 

the homing activity.13 

A key question relates to the final choice of the non-coded amino acid in the 

substituted position which should satisfy the bioactive conformational 

requirements. Examination of the conformation adopted by Arg in the bioactive 

organization shows that it is located at position i+1 of a -turn.10 If one searches 

the conformational preferences of small peptides and proteins, this position is 

usually occupied by Pro.14-16 Hence, initially, a new amino acid with a Pro scaffold 

and Arg side chain, named (Pro)Arg, was modeled.12 Subsequent work12 showed 

that inclusion of this residue significantly reduced the conformational flexibility of 

the peptide, enhancing its tendency to accommodate partially folded conformations 

centered at the Arg site. In addition, inspection of the lowest energy conformation 

indicated that the ionized side chains faced the same side of the molecule, a feature 

that seems to have a role in the peptide bioactivity. However, insertion of this Arg 

surrogate presented drawbacks: despite the similarities described above, the turn 

conformations adopted when (Pro)Arg replaced Arg did not match the most 

favored conformations previously described,10 since it shifted the conformational 

preferences of the CREKA analog towards γ-turn formation. Therefore, the search 

for appropriate amino acid backbones continued. 

Within that context, a specific family of non-coded amino acids, the 1-

aminocycloalkane-1-carboxylic acids18-19 (known in the abbreviated form as Acnc, 

with n referring to the ring size), have been recently proposed as a structural tool 

for conformational control and enhancement of naturally occurring structural 

motifs.19-23 This series of residues exhibits a restricted conformational space 



 

characterized by a high propensity to adopt φ,ψ backbone angles typical of the 310-

/-helix (with some distortion in the case of Ac3c).23-25 As we previously 

mentioned, in the majority of the most favored CREKA conformations Arg is at 

position i+1 of a -turn motif.10. In such arrangement, the backbone dihedral angles 

adopted by the residue are in the regions corresponding to the aforementioned 

helical structures. Hence, in order to take advantage of Acnc conformational 

preferences, a new amino acid was designed by attaching the Arg functionalized 

side-chain to the cycloalkane moiety in Ac5c, the resulting compound being 

denoted c5Arg (see scheme I).26 c5Arg is a substituted Ac5c-like derivative of nor-

arginine, where nor refers to a chain-length reduction of one carbon atom with 

respect to the Arg side-chain.26 A complete conformational characterization showed 

that the new residue preserved the conformational preferences corresponding to 

those expected for its Ac5c skeleton,25 which makes it suitable for tests as a 

CREKA homing peptide-enhancing modification.  

 

HN

NH2

NH2

H2N COOH

 
Scheme I 

This work reports the conformational preferences of a new CREKA analog, 

hereafter denoted Cc5REKA, obtained by substituting Arg by the cis enantiomer of 

c5Arg, where cis refers to the relative position of the guanidinium group in the 

cycloalkyl segment. Specifically, results obtained in previous quantum mechanical 

calculations on both the cis and trans isomers of c5Arg suggest that, a priori, the 

former is the best to fulfill the structural requirements of the peptide.26 The energy 

landscape of the new peptide analog has been explored by techniques based upon 

molecular dynamics (MD) simulations, i.e., modified simulated annealing MD 

(SA-MD)27 and replica exchange MD (REMD)28.  

 

 



 

5.1.2. Methods 

Conformational Search and Force-Field Calculations. The conformational 

preferences of Cc5REKA were explored using both modified SA-MD and REMD 

sampling strategies. The first methodology, which was previously used to study the 

conformational preferences of the parent peptide,10,11 is based on the minimization 

of conformations generated at the initial and intermediate states of several SA-MD 

cycles. In the SA-MD technique the high starting temperature is gradually reduced 

during the simulation, allowing the system to surmount energy barriers. In spite of 

this, in practice, it is known that such sampling technique does not always lead the 

system to the most stable region at the end of the simulation. However, recent 

studies showed that this limitation can be overcome, since very low energy 

structures can be reached by minimizing structures generated during the SA-MD 

cycles.27 Accordingly, such modification of this sampling technique was found to 

be robust enough to obtain conformations close in energy to the global minimum 

but located in different regions of the potential energy hypersurface, when the 

extracted conformations from each SA-MD cycle are minimized.10-12 

The same conformational profile was studied using REMD.28 This MD based 

technique speeds convergence relative to brute force conventional MD.27 The 

method is based on the generation of a number of copies (“replicas”) of the system 

that span from the temperature of interest (e.g., physiological temperature) to 

heated states, which facilitates overcoming the free energy barriers. Periodic swaps 

of neighboring replicas, which are performed while preserving an overall 

Boltzmann-weighted ensemble at each temperature (Monte Carlo based criterion of 

swap acceptance), enable conformations to heat up and cool down. Nonetheless, 

recent work has indicated that for short peptides the optimum convergence of the 

sampling can be obstructed by a combination of two factors:29 the intrinsically high 

flexibility of these systems and the limited thermal agitation associated with the 

reference temperature. In this work we show that under normal conditions flexible 

systems may not reach some conformations of medium energy rank, affecting 

significantly the final bioactive ensemble of conformations.  

Computational details. Energy calculation. The conformational energy for all 

the simulated systems was calculated using the Amber force field.30 All bonding 

and non bonding parameters were extracted from Amber libraries30 except for those 

describing the non coded residue which were previously optimized and tested.26 



 

Molecular models. The simulated system consisted of the Cc5REKA peptide 

attached to a surface through the sulfhydryl group of the Cys residue. The N- and 

C-termini of the peptide backbone were capped with acetyl (Ac, MeCO-) and 

methylamide (-NHMe) groups, respectively. The surface was formed by 100 

spherical particles distributed in a 10×10 square (45.90×45.90 Å2), with van der 

Waals parameters R= 2.35 Å and ε= 0.90 kcal·mol-1 and no electric charge. This 

system, which is identical to that considered for CREKA in our previous work,10 

mimics the experimental conditions,3,7 i.e. the peptide linked to the surface of a 

nanoparticle. Therefore, the results obtained in this work for the CREKA analog 

have been compared with those reported for natural CREKA attached to an 

identical surface (system III in ref. 5), unless otherwise indicated. The Cc5REKA 

analog attached to the surface was placed in the center of a cubic simulation box 

(a= 45.90 Å) filled with 2663 explicit water molecules, which were represented 

using the TIP3 model.31 Two chloride ions and one sodium ion were added to the 

simulation box to reach electric neutrality (net charges were considered for Arg, 

Lys, and Glu at neutral pH). 

Simulated annealing. Prior to the production cycles with the modified SA-

MD, the system was equilibrated. 0.5 ns of NVT-MD at 500 K were used to 

homogeneously distribute the solvent and ions in the box. Next, thermal 

equilibration for 0.5 ns in the constant-NVT ensemble at 298 K, followed by 

density relaxation for 0.5 ns in the constant-NPT ensemble at 298 K, were 

performed. The last snapshot of the NPT-MD was used as the starting point for the 

conformational search process. This initial structure was quickly heated to 900 K at 

a rate of 50 K/ps to force the molecule to jump to a different region of the 

conformational space. Along 10 ns, the 900 K structure was slowly cooled to 500 K 

at a rate of 1 K/ps. A total of 500 structures were selected and subsequently 

minimized during the first cycle of modified SA-MD. The resulting minimum 

energy conformations were stored in a rank-ordered library of low energy 

structures. The lowest energy structure generated in a modified SA-MD cycle was 

used as starting conformation of the next cycle.  

Atom pair distance cut-offs were applied at 14.0 Å to compute the van der 

Waals and electrostatic interactions. In order to avoid discontinuities in the 

potential energy function, non-bonding energy terms were forced to slowly 

converge to zero, by applying a smoothing factor from a distance of 12.0 Å. Both 



 

temperature and pressure were controlled by the weak coupling method, the 

Berendsen thermobarostat,32 using a time constant for heat bath coupling and a 

pressure relaxation time of 1 ps. Bond lengths were constrained using the SHAKE 

algorithm33 with a numerical integration step of 2 fs. All MD simulations were 

performed using the NAMD program.34 

Replica Exchange Molecular Dynamics. Simulations were performed using 

the AMBER 10 program.35 In order to use the low complexity of the system to 

ensure a reasonable replica swaps ratio of acceptance (approaching a Partial 

Replica Exchange Molecular Dynamics model), 8 replicas were exponentially 

distributed in the temperature range from 283.8 K to 418.7 K.36 Exchanges were 

attempted every 40 ps between all neighboring replicas with an average acceptance 

rate of 16%, above the minimal acceptance rate for the complexity of the studied 

peptide.36 The REMD trajectories resulted in a cumulative simulation time of 41 ns. 

Between replica exchanges, the system was evolved using NVT Langevin MD37 

with a damping coefficient of γ= 2.5 ps-1 and an integration step of 2 fs. The 

replicas were previously equilibrated by a set of short runs (isothermal and isobaric 

equilibration), and completed with a final NVT run of 0.5 ns to ensure that each 

replica reached the target temperature. In all cases the surface particles were fixed 

at the initial positions and only peptide, water molecules, and ions were allowed to 

move. Atom pair distance cut-offs were applied at 14.0 Å to compute the van der 

Waals and electrostatic interactions. Bond lengths involving hydrogen atoms were 

constrained using the SHAKE algorithm33 and explicit water molecules of TIP3 

model31 were used in every replica except for evaluating the replicas energies 

before the swapping process. In order to increase the global efficiency of the 

technique, a hybrid solvent model was used to evaluate each replica total energy.38 

Specifically, 118 explicit water molecules were taken into account as a first 

hydration shell while the rest of solvent contribution was computed using 

Generalized Born Model implemented by Hawkins and coworkers,39 using the late 

parametrization of Tsue and Case.40 The REMD data were collected from the last 

10 ns of simulation at the targeted temperature of 300 K to perform clustering 

analysis. 

Conformation Classification and Clustering Analysis. In order to construct 

a list of unique minimum energy conformations, each set of structures provided by 

either modified SA-MD or REMD were compared among them. The list was 



 

organized by rank ordering all the unique minimum energy conformations found 

following an increasing order of energy. In the case of SA-MD, previously listed 

conformations that appear at a new cycle were discarded. The criterion to identify 

unique minimum energy conformations was already developed in previous work, 

and it is based on defining virtual dihedral angles combined with the computation 

of the interaction pattern, i.e. identification of salt bridges, hydrogen bonds and 

dipole-dipole interactions.10 

Five virtual dihedral angles were defined considering the -carbon atoms of 

the five residues, the methyl carbon atom of the acetyl and N-methylamine capping 

groups, and one acetyl hydrogen atom. The existence of different interactions is 

accepted on the basis of the following geometric criteria: (a) salt bridges: distance 

between the centers of the interacting groups shorter than 4.50 Å; (b) hydrogen 

bonds: H···O distance (dH···O) shorter than 2.50 Å and <N-H···O angle higher than 

120.0°; and (c) dipole-dipole: distance between dipoles shorter than 3.00 Å and the 

interaction has not been counted as a hydrogen bond. Two structures were 

considered different if they differ in at least one of their virtual dihedral angles by 

more than 60° or in at least one of the interactions counted. All the structures 

categorized as different were subsequently clustered according to a criterion based 

on the presence of the intramolecular interactions mentioned above.  

5.1.3. Results and discussion 

Clustering Analysis Following the previously developed analysis strategy, we 

classified the microstructures generated by both SA-MD and REMD following a 

hierarchical clustering.10 In this process, each structure is compared with the rest of 

the structures obtained using the same strategy and included in a cluster that 

presents the same main-chain conformation and the same polar interaction types. 

This analysis provides important information about the population of 

conformations generated for the studied system and, additionally, it serves as a 

simple and efficient criterion of convergence for SA-MD (i.e. when no new 

conformations are obtained in the annealing cycles the search is concluded). In 

Figure 5.1.1. the convergence of the exploration clearly shows that after 9 cycles 

the number of new conformations does not increase. Moreover, the number of 

different structures produced for the peptide analog, 1125, is close to the number of 

different structures described for the wild type peptide, 1306, after an equivalent 



 

number of SA-MD cycles.10 However, the significant reduction of the number of 

different minima, 14%, seems to indicate that the replacement has succeeded, at 

least in terms of reduction of the conformational flexibility. On the other hand, 

much faster convergence was reached by REMD considering the same criterion 

(i.e. the number of newly explored conformations), a plateau being obtained after 

only 8 ns of cumulative simulation time, and the maximum number of explored 

conformations was found to be only 550. Below, we further show that this 

relatively small number of different structures may be enough to represent the most 

relevant conformational features of the bioactive organization for Cc5REKA 

peptide.  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 5.1.1..- Number of unique minimum energy conformations found using SA-MD (red 

line, solid squares) and REMD (blue line, empty squares) the number of minimum energy 

structures in the conformational search process. 

Although the main goal of the current study was assessing the suitability of 

c5Arg as a homing enhancer, comparison between two different conformational 

search strategies for short peptides is necessary. Despite the general perception that 

REMD is the most suitable strategy to explore the conformational space of any 
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given molecule, recent works have pointed out the flaws of the method when 

dealing with highly flexible peptides.41 These limitations were attributed to the 

inherent efficiency of REMD for locating deep basins. Thus, when the energy 

profile that separates the lowest energy structure and other low energy arrangement 

is not sufficiently rough, the exploration can be confined to those structures of 

lower conformation energy. In this study, the rapid convergence is apparently 

reached by biasing the conformational ensemble towards those structures that 

presented lower potential energy.  

Figure 5.1.2., which depicts the energy distribution of all the generated 

structures, shows a Gaussian and a bimodal function for the SA-MD and REMD 

methods, respectively. These profiles indicate that for REMD the lower energy 

basins are overpopulated while zones that might represent intermediate potential 

energy ranges are not explored. Despite the apparent independent evolution of each 

trajectory, these results show that replicas close to the target temperature may 

present some degree of structural correlation. Thus, in cases of very flexible 

peptides longer cumulative time should be used to complete a proper exploration of 

the conformation space (i.e., higher computational effort). Taking into account that 

only the last 10 ns of simulation were collected to obtain statistical information 

about the conformational distribution at the given temperature, the computational 

resources used by REMD for obtaining 40 ns of cumulative simulated time were 

significantly larger than those committed for reaching the search convergence using 

SA-MD. It is worth noting that in our case this methodology has allowed us to 

obtain an energy distribution closer to a canonical ensemble than the one reached 

by REMD. The main difference between the two methods is the introduction of the 

temperature as a variable in the conformational search process, which imposes a 

heavier thermal hindrance for reaching those conformations that are kinetically less 

favored. As we show later, the first peak of the bimodal distribution derived from 

the REMD results corresponds to those conformations that are similar to the wild 

type bioactive motif, while the second peak corresponds to organizations that do 

not resemble those of lower energy. The central void in the population of medium 

energy structures may denote kinetic traps that preclude the formation of transient 

structures at 300 K. These structures, which are needed to reach the conformations 

that belong to the lowest energy rank, are only described by the SA-MD method. 

 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.2..- Distribution of energies for the minimum energy conformations of Cc5REKA 

found using SA-MD (red line) and REMD (blue line). The profile obtained with CREKA using 

SA-MD (green line, ref. 10) has also been enclosed for comparison. All energies are relative to 

the corresponding global minimum. 

It was previously demonstrated that the bioactive profile of CREKA mainly 

corresponds to the lowest energy conformations.12 Because both the brute force-

based simulations (SA-MD) and the statistically rigorous exploration (REMD) 

techniques drove toward the most energetically relevant structures, they should be 

equally efficient in assessing the conformational preferences of the Cc5REKA 

analog. Our REMD results still might suggest the presence some degree of 

deficient exploration. These apparent restrictions though can be surpassed by 

considering a higher number of replicas, which would allow overcoming the 

REMD limitations when it is used to search the energy landscape of small flexible 

peptides. Nevertheless, it should emphasized that this option increases remarkably 

the computer resources devoted to the conformational search.41  

Conformational features. A detailed analysis of the conformational 

exploration performed by both SA-MD and REMD shows interesting features and 

differences that are inherent to these techniques. Figure 5.1.3., which shows the 

Ramachandran plots for the five residues of Cc5REKA, suggests that SA-MD 
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covers wider extent of the main chain conformational space than REMD. However, 

the former method explores conformations that are accessible, without representing 

the effect of the temperature agitation (i.e. the kinetics accessibility of these 

conformations at a determined temperature). Thus, most of the conformations 

obtained by SA-MD might not be reachable at the studied reference temperature. 

As we have previously indicated, this is not a surprising feature since this technique 

was designed to speed up the search of the most relevant conformational minima at 

a specific temperature. Despite this difference, the lower energy structures derived 

from the two techniques are almost coincident (Figure 5.1.3.). In other words, at 

300 K the most relevant conformations for the studied pentapeptide analog are well 

represented with relatively short trajectories and with a limited amount of replicas. 

It is worth noting that at such temperature some conformations that are separated 

by 4 or 5 kcal·mol-1 from the lowest energy structure, which were detected via SA-

MD, are not found by REMD. These conformations that had a meaningful 

contribution in the conformational profile of the wild type segment10-12 require 

higher thermal agitation to be reached. This question though does not invalidate our 

bioactive motif of both wild type and the peptide analog, since the physiological 

conditions are represented by temperatures that feature almost 10 degrees above the 

studied conditions.  

Regarding the conformational space accessible by c5Arg (position 2 in 

Cc5REKA), Figure 5.1.3. shows that the non-coded amino acid has achieved its 

primary goal: it restricts the conformational freedom of the peptide and, 

simultaneously, favors specific conformation profiles. The flexibility reduction is 

selective because the cyclic nature of the Arg surrogate favors the adoption of the 

conformation that the coded Arg presents in the bioactive conformation.10 

Independently of the exploration method, the main-chain conformations found for 

the second residue of the Cc5REKA analog mainly clustered at the two α regions of 

the Ramachandran plot, which correspond to the more favored conformations 

found for a single c5Arg residue in aqueous solution.26. In both cases the structures 

of lower energy (blue and black dots in Figure 5.1.3.) present conformations for 

Cc5REKA’s 2nd position that are located at the αL region, which corresponds to that 

adopted by Arg in the parent CREKA peptide. On the other hand, the lower 

efficiency exhibited by the SA-MD method for locating the more stable 

conformations widens the range of explored conformations for c5Arg, with a 



 

significant number of Cc5REKA arrangements with relative energies higher than 5 

kcal·mol-1 versus the tight conformation distribution observed using REMD. 

However, in the case of the SA-MD exploration, those Cc5REKA structures that 

were within 2-3 kcal·mol-1 from the absolute minimum again showed 

conformations at the αL region, which was the main objective of introducing c5Arg 

as Arg surrogate. 

Despite the initial success, in order to enhance the homing activity, the biased 

conformation of c5Arg in the peptide analog should also favor the formation of turn 

conformations beyond the residue position. As we mentioned before, we had 

already tried enhancing the stability of the β-turn featured by the bioactive 

conformation of CREKA replacing the Arg by another surrogate of low 

conformational flexibility, (Pro)Arg.12 In fact, the incorporation of this Pro 

derivative into CREKA also reduced the conformational flexibility, especially at 

the position 2. However, it caused the disruption of the desired -turn 

conformation, apparently because of the drastic structural changes that the Pro 

skeleton introduced in the dynamics of the adjacent residues. In the case of c5Arg, 

despite fixing the conformational preferences of position 2, the higher flexibility of 

the Ac5c skeleton25 facilitates the adjacent Glu adopting the proper conformation 

for the continuation of the turn (Figure 5.1.3.). Thus, in the minimum energy 

conformations found for the Cc5REKA analog, Glu usually falls in the same region 

that was featured for the parent peptide, making possible the formation of the β-

turn.10-12 

 

 

 

 

 

 

 



 

Figure 5.1.3.. Ramanchandran Plot of the main chain dihedral angles (φ,ψ) for the fives 
residues of Cc5REKA for the structures of low energy generated by both SA-MD and REMD. 
Grey dots represent all the structures generated by SA-MD, whereas blue dots correspond to 
the 5 minima of lowest energy. Dark brown dots depict all the structures generated by REMD, 
whereas black dots indicate the 5 minima of lowest energy. 

Structural comparison between the lowest energy conformations. 

Examination of the backbone conformations for the most favored arrangements of 

Cc5REKA reveals several features that are closely related with the exploration 

efficiency and the effect of c5Arg on the conformational properties of CREKA. 

Figure 5.1.4. plots the Root Mean Square Difference (RMSD) correlation between 

the 10 lowest energy structures obtained in each landscape exploration (Cc5REKA 

generated by SA-MD and REMD, named SAn and REn, respectively, where n 

refers to rank position and number 01 the lowest energy structure) and their 

structural correlation with the previously determined bioactive conformational pool 

of the wild type homing peptide10 (named WTn following an analogous 

nomenclature). As can be seen, the most favored conformations generated by 

REMD are significantly similar between themselves. The largest main-chain 

difference between the structures is 1.83 Å, which corresponds to a pair of almost 

iso-energetic conformations, RE04 and RE05. Again, this feature indicates that the 



 

conformational space explored by REMD is essentially restricted to 

peptide organizations with low energy, which is consistent with the 

results showed in the previous sections.  

Figure 5.1.4.- Main chain structural correlation between each 10 structures of lowest energy 

generated by SA-MD for CREKA (WTn, ref .10), using SA-MD for Cc5REKA (SAn) and 

REMD for Cc5REKA (REn). The correlation is computed as the structures pair Root Mean 

Square Deviation (RMSD). Each color represents a specific RMSD interval of values in which 

the deviation value of two intersecting structures is situated: green color means RMSD 

between two structures is lower than 1.3 Å, white is comprised between 1.3 Å and 2.0 Å, 

yellow between 2.0 Å and 3.0 Å and, finally, orange higher than 3.0Å. 

 

 



 

On the other hand, SA-MD appears a more efficient tool when exploring the 

conformation of small peptides since high structural diversity is observed among 

those structures of lower energy. This feature becomes especially remarkable for 

the SA02 conformation, which features a γ-turn that does not correspond to the β-

turn motif frequently found in Cc5REKA. However, differences among the rest of 

the conformations of Cc5REKA obtained using both methodologies are relatively 

small, essentially reflecting small variations in the β-turn motif with respect to the 

most favored organization. Hence, the use of c5Arg has achieved another primary 

goal: its incorporation in CREKA instead of Arg drastically restricts the potential 

organizations to those that characterized the bioactive structure for the parent 

pentapeptide (i.e. the β-turn). Thus, Figure 5.1.4. reveals that the majority of 

backbone conformations are very similar to that described for the bioactive 

organization of CREKA, with exception of the aforementioned structure SA02.  

Table 5.1.1. lists the main electrostatic interactions detected in the four 

arrangements of lower energy for both the parent peptide and Cc5REKA. It is worth 

noting that WT01, WT03 and WT04, despite their evident differences, share 

important features that make them part of the bioactive profile of CREKA. The 

three conformations are folded into a β-turn and all expose the charged side chain 

to the solvent on the same side of the peptide chain.10-12 When comparing their 

interaction patterns, both present remarkable similarities in the central segment, -

REK-. Specifically, in WT01 (Figure 5.1.5.a) and WT04 the backbone of Lys (N-H) 

and Cys (C=O) interact through a hydrogen bond, closing a type II β-turn. On the 

other hand, in WT03 the Lys backbone (N-H) forms a hydrogen bond with the 

terminal acetyl blocker (Ac), defining an α-turn that may easily transform into a β-

turn if the competing Ala C=O forces tightening the turn (Ac and Ala are mutually 

blocked by both amide groups forming two interlocked hydrogen bond). The 

topological outcome of this complex arrangement resembles WT01 and places the 

ionized side-chains in the proper position for the formation of salt bridges. In 

summary, with the exception of WT02, the structures mainly differ in the 

conformation adopted by both terminal group.



 

 
 

Table 5.1.1..- Comparison between the Interaction Pattern of the four Minima of Lowest Energy Generated for Natural CREKA and its Analogue 
Cc5REKA using both SA-MD and REMD a 

 
 Cc5REKA (SA-MD)  Cc5REKA (REMD)  CREKA (SA-MD) d 
      

SA01 HB Lys(N-H)···(O=C)Cys 1 RE01 HB Glu(N-H)···(O=C)Ace1 WT01 HB Lys(N-H)···(O=C)Cys1 

 HB Ala(N-H)···(O=C)Glu 2  HB Lys(N-H)···(OOC--,side chain)Glu  SB Arg···Glu  

 HB c5R(C=O)···(+H3N,side chain)Lys  SB Lys···Glu  SB Lys···Glu 

 SB Lys···Glu     

      

SA02 HB c5R((N-H)···(O=C)Ace2 RE02 HB Glu(N-H)···(O=C)Ace1 WT02 HB Ala(N-H)···(O=C)Arg1 

 HB Glu(N-H)···(O=C)Cys2   HB Lys(N-H)···(O=C)Ace3  HB NEM(N-H)···(O=C)Glu1 

 HB c5R(N-H2 guanidinium)···(O=C)Glu  HBc5R(N-H2 guanidinium)···(O=C)Ala   SB Arg··Glu 

 HB Ala(N-H)···(OOC--,side chain)Glu  SB Lys···Glu   

 HB Nem(N-H)···(OOC--,side chain)Glu     

 SB Lys···Glu     

      
SA03 HB Lys(N-H)···(O=C)Cys1 RE03 HB Glu(N-H)···(O=C)Ace1 WT03 HB Lys(N-H)···(O=C)Ace3 

 HB c5R(N-H)···(O=C)Lys2  HB Lys(N-H)···(O=C)Ace3  HB Ala(N-H)···(O=C)Ace 4 

 SB Lys···Glu  SB Lys···Glu   HB Nme(N-H)···(O=C)Cys4 

     SB Arg···Glu 
      

SA04 HB Lys(N-H)···(O=C)Cys1 RE04 HB Ala(N-H)···(O=C)Cys3 WT04 HB Lys(N-H)···(O=C)Cys1 

 HB c5R(N-H2 guanidinium)···(O=C)Cys  SB Lys···Glu  HB Ala(N-H)···(O=C)Cys3 

 HB c5R(N-H2 guanidinium)···(O=C)Lys    HB Nme(N-H)···(O=C)Cys4 

 SB Lys···Glu    SB Arg···Glu 

     SB Lys···Glu 
a Interaction pattern: hydrogen bonds and salt bridges are labeled as HB and SB, respectively. b Four minima generated according to reference 10 Classification of tight turns as 
function of the distance (in number of residues) between hydrogen bond donor and acceptor(refe?):1 β-turn (i,i+3),2 γ-turn(i,i+2),3 α-turn (i,i+4),4 π-turn, (i,i+5) 



 

 

Analysis of the four lower energy conformations obtained for Cc5REKA using 

REMD (Table 5.1.1.) demonstrates that they all have identifiable counterparts in 

the structures characterized for the parent peptide, with the exception of structure 

RE01 (Figure 5.1.5.b). The latter conformation features a single β-turn at the C 

terminus, which involves the N-H of Glu and the C=O of the acetyl blocking group, 

that was not observed in any CREKA conformation. This organization is partially 

due to the interaction between the guanidinium group of c5Arg and the C=O of Ala, 

which precludes the formation of other hydrogen bonding patterns more similar to 

those observed in CREKA. R02 and R03 define arrangements intermediate between 

the α- and β-turns, leading to turns at the C termini with geometries slightly wider 

than that typically expected for a conventional β-turn. However, a simple 

rearrangement of the N terminal group would easily facilitate the formation of the 

proper turn since in those two conformations the hydrogen bonding acceptor is the 

C=O of the terminal Ac, whereas in the bioactive conformation of CREKA it is the 

C=O of Cys. Finally, R04 features an α-turn that presents a similar topology to that 

observed in the parent peptide (Figure 5.1.5.c). Thus, c5Arg favors the formation of 

a turn that makes possible the correct spatial location of the Glu and Lys ionized 

side chains allowing their interaction (Figure 5.1.6.a). 

Results obtained with SA-MD show a better match with the expected 

arrangements for Cc5REKA. This search strategy allows locating low energy 

structures that adopt the β-turn featured by WT01 and WT04. Thus, the N-termini 

organization adopted by SA01, SA03 and SA04 (Figures 5.1.6.b and 5.1.6.c, 

respectively) correspond to that found for WT01, even though some differences are 

observed at the C terminus. Finally, SA02 presents a double γ-turn conformation 

(Figure 5.1.5.d), which was also predicted for other Ac5c-containing peptides.21,23 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.5..- Detailed representation of selected low energy conformations obtained for 

CREKA and Cc5REKA. Main chain is represented by solid cartoons, with standard protein 

conformational colors (blue and white for turn motifs). Heavy are represented with solid scaled 

balls and its bonds with solid sticks following CPK colors convention. Hydrogen atoms were 

removed for clarity. The depicted structures are: (a) WT01 (extracted from ref. 10) (b) RE01 

(c) RE04 (d) SA02 (e) SA03 (name codes are explained in text). 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.6..- Superimposition of selected structures of Cc5REKA with the lowest energy 

conformation of CREKA (named in the text WT01, ref. 10). In all cases main chains are 

represented by solid cartoons, green color depicting WT01 structure and cyan color 

corresponding to each particular Cc5REKA structure. Heavy are represented with solid scaled 

balls and its bonds with solid sticks following CPK colors convention. Hydrogen atoms were 

removed for clarity. The superimposed structures are: (a) RE04 (b) SA01 (c) SA03 (name 

codes are explained in text).



5.1.4. Conclusions 

The conformational preferences of a homing peptide synthetic analog have 

been widely explored by different techniques based on MD simulations. 

Independent of the strategy, our results have indicated that the recently engineered 

residue, c5Arg,26 does accomplish its design aim, which is to reduce the 

conformational freedom of the CREKA peptide,10 biasing the accessible 

conformations towards those that feature the bioactive one. The lower energy 

conformations of Cc5REKA involve the formation of β-turn motifs centered around 

the second and third residues of the synthetic analog, similar to those observed in 

the parent peptide.10 At the same time, this conformational bias aids the formation 

of an interaction network between the side-chains of the central residues, which 

was described as a necessary feature for the bioactivity of CREKA (i.e., the 

orientation of the ionized central side chains towards the same side of the turn 

allows their interaction with the tumor vessel receptors). In this context, it is worth 

noting that even in those conformations that were not described by the parent 

peptide, such as RE01 and SA02, the final topological distribution of the side chains 

guarantees that the formation of the required interaction pattern.  

On the other hand, differences between the two methodologies demonstrate 

that the temperature is an important variable in the Cc5REKA conformational 

preferences. Even though the energy differences among the ten absolute lowest 

energy conformations are less than 5 kcal·mol-1
 some of them are not detected at 

the REMD reference temperature. Thus, the lower thermal agitation featured under 

normal conditions precludes the complete coverage of the bioactive conformational 

profile. In contrast, the SA-MD, which is a technique that explores the most 

relevant regions of the energy landscape without help from higher temperatures, 

allows obtaining conformations of Cc5REKA that were previously reported as 

relevant for CREKA’s bioactivity. Both the lack of thermal distribution in the 

generated ensembles and the redundant production of conformations starting from 

those that are already located in low energy regions facilitated the identification of 

quasi-degenerated energy arrangements that were not detected at the REMD 

targeted temperature.  

In summary, results derived from the exploration of the conformational 

bioactive profile of Cc5REKA demonstrate that inclusion of the engineered residue 

c5Arg as Arg replacement does achieve the objectives of its design: not only could 



 

 

the new surrogate protect the homing peptide from the protease activity but also 

increase the stability of the bioactive conformation previously determined for the 

wild type peptide CREKA. These results confirm our strategy12,13,19-23,26 that is 

aimed to re-design natural amino acids to improve properties of biotechnological 

interest in natural peptides.  
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5.2. Atomistic modelling of peptides bound to a chemically active 

surface: conformational implications 

 

5.2.1. Introduction 

Nanotechnology approaches represent the ultimate frontier in diagnosis and 

treatment of diseases. Among different possible strategies, nanoparticle-based 

systems have taken the lead in tumor treatments.1-9 Tumor chemical markers direct 

the nanoparticle-based device towards the malignant cells, being specially efficient 

if the molecular targets are receptors located in blood vessels grown around 

tumors.3-9 Within this context, nanoparticles recently proposed by Ruoslahti and co-

workers deserves special attention since they home to tumors amplifying their own 

homing activity by stimulating platelet clots formation.8 These biomimetic 

nanoparticles were coated with a short linear peptide that recognizes clotted plasma 

proteins and selectively homes to tumors.8 This peptide, with sequence Cys-Arg-

Glu-Lys-Ala (CREKA, Cys-Arg-Glu-Lys-Ala), was recently discovered by in vivo 

screening of phage-display peptide libraries4,10 for tumor-homing in tumor-bearing 

MMTV-PyMT transgenic breast cancer mice.11 CREKA peptide labeled with the 



 

 

fluorescent dye 5(6)-carboxyfluorescein (FMA) was detectable in human tumors 

from minutes to hours after intravenous injection, while it was essentially 

undetectable in normal tissues.12  

On the other hand, enhancement of the homing activity of peptides or 

improvement of their resistance towards proteolytic activity require explicit 

knowledge of their conformational preferences, in particular of the bioactive 

conformation/s. Experimental determination of the bioactive conformation is 

frequently a difficult task due to the peptide inner flexibility. A feasible alternative 

is based on the use of computer simulation techniques, which allow explore the 

conformational preference of peptides and proteins. Recently, we determined the 

bioactive conformation of CREKA using a multiple conformational search strategy 

based on Molecular Dynamics (MD) simulations.13,14 Calculations were performed 

using a simplified description of different experimentally-tested environments. In 

one of these, a single CREKA molecule was bound to the surface of a nanoparticle, 

which was mimicked by attaching the sulfhydryl group of the Cys residue to the 

center of a square surface formed by 100 rigid van der Waals spherical particles 

(10×10). Clustering analyses of the results for this environment showed that the 

bioactive conformation of CREKA presents both a -turn motif and strong 

electrostatic interactions involving the side chains of Arg, Glu and Lys.13,14 These 

results were used to suggest the synthesis of different CREKA analogs based on the 

chemical modification of single residues, which led to improve the homing peptide 

activity and to prove the turn shape of the bioactive conformation.15  

Despite of the successful outcome of the bioactive conformation assessment, 

we were aware that a single peptide molecule covalently tethered to a surface is a 

very rough description of a nanoparticle delivery system. For example, the 

nanoparticles used Ruoslahti and co-workers were spherical (50 nm of diameter) 

and each one was coated by a large number of peptide molecules, i.e. around 8000 

peptides per particle.8 In order to improve the reliability of our molecular models 

and to overcome the serious limitations of atomistic MD simulations when dealing 

with surfaces with relatively high concentrations of flexible molecules covalently 

tethered (i.e. MD is very inefficient for dense systems since the motion of 

individual entities is easily hampered by steric hindrances), we recently developed 

a simple methodology to generate uncorrelated, energetically relaxed and 

representative structures.16   



 

 

The new method16 consisted of a combination of an algorithm that generates 

representative atomistic microstructures of the coated surface, a procedure to 

construct energetically reliable configurations of the whole simulation box 

(including solvent molecules and ions, if present), and a relaxation method to 

minimize non-bonding interactions. We successfully investigated the conformation 

of CREKA peptides covalently tethered to a surface under diverse conditions, such 

as different density of peptides per Å2 (ranged from 3·10-4 to 1.67·10-2) or ionic 

strengths. Clustering analysis of the peptide conformations revealed that the 

structure identified as bioactive is the most stable and populated cluster in all cases. 

However, our initial approach was very simple and did not account for the 

interactions between the surface and the tethered molecules (i.e. the surface was 

considered as an inert element), even although they may play a major role in 

biasing the conformation of the peptides.  

In this work, we present a significant improvement of this new methodology 

by introducing a chemical descriptor for the surface and considering the 

peptide···surface interactions in the construction and relaxation algorithms. The 

strategy allows describe active surfaces made of crystalline materials, like metals, 

which are the frequently used in nanomedicine. Moreover, the method can be also 

applied to other surfaces (e.g. clays and carbon – both graphite and diamond 

allotropic forms –). The influence of the active surface on the peptide conformation 

has been examined on CREKA, results obtained in the present work being 

compared with those reported for a completely inert surface.16 However, it should 

be remarked that this is not intended to provide a deep and rigorous investigation of 

CREKA peptide, but to illustrate the potential utility of the new methodology in 

applications involving peptides attached to an active surface through a test case.  

5.2.2. Methods 

The principles followed to design the generation, construction and relaxation 

algorithms were described in detail in our previous work.[16] Accordingly, in this 

section we only provide a brief background and describe the modifications that 

have been introduced to transform the inert surface into active.  

The main steps followed to model the systems under study are summarized in 

Figure 5.2.1. The method consists of a three steps procedure. First, molecules 

tethered to the surface are generated without atomic overlaps or, in the case of 



 

 

systems with a very high density of molecules per Å2, with atomic overlaps lower 

than a given threshold. In the second step the simulation box is constructed by 

filling it with the counter-ions (in the case of charged molecules), solvent (if 

desired) and salt molecules (if the ionic strength is increased). In order to 

effectively eliminate the overlaps created in the first step for systems with a very 

high density of peptides per Å2, the positions of the tethered molecules and the 

counter-ions are relaxed prior to filling the simulation box with explicit solvent 

molecules. Finally, the conformation and position of the molecules attached to the 

surface as well as the position of the ions and solvent molecules are relaxed. 

 

                          

Figure 5.2.1.. General flowchart of the theoretical strategy used to build peptides tethered 
to active surfaces. 

 



 

 

Generation Algorithm. The generation algorithm is inspired in previously 

reported algorithms which provide atomistic models of amorphous polymers.[17-19] 

The positions of the atoms linked to the surface are randomly selected with the 

following restriction: the minimum distance between two of such atoms must be 

larger than 2.1·R, R being the van der Waals radius. Each tethered chain is built 

following the strategy previously developed for comb-like polymers,[18] which is 

based on two principles: 

(a) The radii of atoms are reduced multiplying them by a factor  < 1. The use 

of scaled radii allows increase the computational efficiency, especially for dense 

systems, without produce any detriment in the reliability of the microstructures 

obtained at the end of the process (i.e. unfavorable van der Waals interactions are 

easily relaxed). 

(b) Atomic positions are generated residue-by-residue using a stochastic 

procedure. For each residue the backbone is generated before the side chain.  

It should be noted that no definition of the peptide···surface interactions is 

required in this step. This is because the only energy evaluation performed during 

the generation of the peptide molecules, which is used to accept or reject atomic 

positions in (b) through a Monte Carlo (MC) criterion, is exclusively based on 

short-range interactions with the immediate neighbors. 

Construction of the Simulation Box. The simulation box is filled using a 

two-step process. The first involves the insertion of both counter-ions and ions 

forming salt molecules while the box is filled with solvent molecules in the second. 

The initial positions of the ions inside the simulation box are randomly selected but 

avoiding atomic overlaps with the previously generated peptides. These positions 

are further relaxed by applying random displacements moves, which are accepted if 

the energy of the configuration obtained after the displacement of the ion is lower 

than that of the configuration before such displacement. Before adding the solvent 

molecules, tethered peptides and ions are relaxed together, 80% of the moves 

corresponding to peptides. Finally, each solvent molecule is positioned at a position 

that produces attractive interaction energy with both the previously generated 

solvent molecules and the peptides. No scaling of the van der Waals radii is used in 

this algorithm.  

In this case the relaxation of both ions and peptides is performed considering 

the influence of the surface. For this purpose, the surface is parceled in a grid of 



 

 

points that represent the atom nuclei forming the ultra structure of the surface. The 

position of these points is equivalent to those atoms in the corresponding crystal 

structure. The grid of points defines the reference positions to calculate the 

interaction energy between the molecules located in the simulation box (i.e. 

peptides, solvent molecules and ions) and the surface. In this work we have 

considered a metallic surface, the evaluation of the interaction energy being 

described through a conventional Lennard-Jones potential. Thus, the contribution 

of the surface is evaluated by computing atom pair distances between any particle 

in the simulation box and all the surface points that are within a previously defined 

cutoff distance.  

Relaxation. The energy of the peptides tethered to the surface, the ions and the 

solvent molecules is minimized through a relaxation algorithm, which is applied 

using periodic boundary conditions at the x- and y-directions (i.e. those used to 

define the surface). In order to avoid an erroneous description of the system in the 

z-direction, the c axis of the simulation box is divided into two different regions. 

All the solvent molecules contained in the simulation box that are placed bellow a 

specific distance to the c axis edge are allowed to move during the relaxation 

process, while the solvent molecules above such distance are kept at fixed 

positions. Each relaxation cycle consists of the following three steps: 

(a) The interaction energy is evaluated for each movable solvent molecule. The 

positions of the molecules with higher interaction energies are varied by 

introducing a random displacement and a random rotation. The moves are accepted 

or rejected using a typical MC criterion. 

 (b) The positions of all the ions are improved by applying random 

displacements that are accepted when the energy decreases. 

(c) The values of the dihedrals angles (90% of the moves) and the position 

(10% of the moves) of the tethered peptides are relaxed applying the same 

procedure that was used for the construction of the simulation box. The only 

difference is that in this case several randomly chosen dihedral angles move 

simultaneously.  

As in the construction algorithm, the influence of the surface has been 

considered in the relaxation algorithm. The procedure used to define the position of 

the metallic atoms in the surface and the potential employed to define the 



 

 

interaction with all the particles contained in the simulation box were identical to 

those described above. 

Molecular models and simulation details 

The theoretical strategy presented in this work was applied to explore the 

conformational space of CREKA peptides tethered to a metallic surface (see below) 

and surrounded by water molecules. In all cases the sulfur of the Cys was used to 

form the covalent linkage to the surface. The dimensions of the simulation box 

were a=b= 60 Å and c= 90 Å, where the regions along the c-axis defining the 

movable and fixed solvent molecules during the relaxation were defined by c1= 60 

Å and c2= 30 Å, respectively. The MC criterion involved in the generation and 

relaxation algorithms was applied considering a temperature of 300 K.  

The molecular model was built using the density of tethered CREKA peptides 

(, in peptides per Å2) experimentally used by Roushlati and co-workers: = 0.083 

peptides·Å2, which is equivalent to thirty peptides attached to the surface. The 

system was completed with ninety counter-ions (320 Na+ + 60 Cl-) and 9621 water 

molecules. The chemical nature of the surface was represented using gold (Au), 

which is frequently used as sustaining metal for peptides. 

The energy of the peptides was calculated using the following analytical 

potential function: 
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where the first sum represents a series expansion for the torsional term followed by 

the Lennard-Jones and electrostatic terms. Non-bonding interactions of atoms 

connected by three atoms (1-4 interactions) were treated as in the AMBER force-

field,[20] applying a scaling factor of 0.5. The energy involving the solvent 

molecules and the ions was calculated using the non-bonding terms of Eqn (1), 

while the Lennard-Jones was the only term used to evaluate the interaction between 

the surface and the rest of species. Non-bonding interactions were evaluated using a 

cutoff of 14.0 Å. Force-field parameters for the CREKA peptide and the ions were 

taken from the AMBER libraries,[20,21] while OPLS van der Waals parameters for 

Au particles[22] were used to compute the interaction between the surface and the 

rest of species (σAu=1.789 Å and εAu=0.193 kcal·mol-1). The Au nuclei were placed 

at the (100) lattice positions of a cubic F unit cell with crystallographic parameter 



 

 

a=2.93 Å. Although this parameter is 1.4% larger than the experimental one (a= 

2.89 Å), it was chosen for consistency with the van der Waals parameters of Au 

(i.e. this parameters predict that the closest distance is 2.93 Å).[22] Finally, water 

molecules were represented using the TIP3P model.[23] Bond lengths and bond 

angles, which were also taken from the AMBER libraries,[20] were kept fixed. A 

total of 1000 atomistic microstructures were generated and relaxed.  

The results obtained for this system, hereafter denoted Au-S/30, have been 

compared with those previously obtained for an identical molecular model with 

exception of the surface,[16] which was considered inert (i.e. the interaction between 

the surface and the rest of chemical species was neglected). In next sections the 

system with an inert surface has been denoted Inert-S/30. It should be noted that the 

computational resources required to simulate Au-S/30 were one order or magnitude 

larger that those used for Inert-S/30, which were also significant due to large 

density of peptides per Å2. This is because the number of interactions between atom 

pairs increased considerably when the surface participates in the construction and 

relaxation algorithms. 

5.2.3. Results and discussion  

 

 

 

 

 

 

 

 

 

 

Figure 5.2.2. Normalized distribution of relative energies (in kcal/mol) for the 

microstructures of Au-S/30 and Inter-S/30 models obtained using the computational strategy 

presented in Figure 5.2.1.. 
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Figure 5.2.2. depicts the distribution of energies associated to the relaxed 

microstructures produced for Au-S/30 and Inert-S/30 models. The shape of the two 

distributions fits to a Gaussian function, which reflects the reliability of our 

theoretical approach. It is well-known that the shape of the distribution of minima 

for a given model resembles a Gaussian functions when the conformations of the 

can be described in terms of rotational isomers.[24,25] Although the width of the 

Gaussian function depends on the number generated microstructures, such number 

was identical for the two surfaces under study. Furthermore, as was demonstrated 

in our previous studies on amorphous polymers,[17-19] the generation method used in 

this work tends to provide representative microstructures rather than random ones. 

This feature guarantees that the left side of the Gaussian distribution is well 

described after generating a relatively low number of microstructures. The 

Boltzmann distributions displayed in Figure 5.2.2. clearly depend on the surface, 

the function becomes more narrow when the surface is allowed to interact with the 

chemical species contained in the simulation box. Thus, in general terms, it can be 

state that the conformational flexibility is smaller for Au-S/30 than for Inert-S/30.  

The conformational features of the CREKA peptide in Au-S/30 and Inert-S/30 

models have been analyzed by considering each molecule as an independent case. 

A list of unique peptide conformations was constructed for each model by 

comparing all the molecules for all the produced microstructures. The list was 

organized by ranking all the unique peptide conformations according to their 

energies. Previously listed conformations were discarded from the list. A unique 

peptide conformation was identified if it did not share a set of selected structural 

parameters, which involve virtual backbone dihedral angles and intramolecular 

interactions. Virtual dihedral angles were defined considering the -carbon atoms 

in the CREKA peptide, whereas the presence of polar interactions was accepted on 

the basis of geometric criteria: (a) hydrogen bonds: distance H···O shorter than 

2.50 Å and angle N-H···O larger than 120.0º; (b) salt bridges: distance between 

the geometric centers of the interacting groups shorter than 4.50 Å. The interaction 

pattern was also used to discriminate between side chain and main chain interacting 

groups. Two conformations were considered different if they differ at least in one 

virtual dihedral angle by more than 60º or in one of the interactions counted. For 

each model all the conformations categorized as unique were clustered according to 



 

 

a criterion based on the presence of the interactions mentioned above: salt bridges 

and hydrogen bonds.  

The number of unique conformations (clusters) and the percentage of 

structures present in each cluster for the two models are depicted in Figure 5.2.3.. 

These percentages refer to the total amount of peptide conformations present in the 

1000 microstructures (i.e. 30 peptides  1000 microstructures= 30000 

conformations) produced for the Au-S/30 and Inert-S/30 models. Figure 5.2.3. also 

includes the conformational preferences of a single CREKA molecule attached to a 

surface (hereafter referred as MD-S/1), which were previously determined by MD 

simulations.[13] For this purpose, the results derived from such simulations have 

been clustered in this work using the procedure discussed above. The different 

environments in which CREKA was simulated led to a distribution of 

conformations with 45, 40 and 89 clusters for Au-S/30, Inert-S/30 and MD-S/1, 

respectively, although only a small number of such clusters contained a significant 

number of structures. Specifically, the number of clusters that involve more than 

1% of the total amount of conformations was 11, 16 and 20, respectively. 

Moreover, this number ranges from 2 to 5 if the threshold is increased to 10%. The 

results displayed in Figure 5.2.3. indicate that the conformation of CREKA is 

significantly restricted when the effects of the neighboring molecules, which are 

associated to the density of peptide per Å2, are included in the model. On the other 

hand, independently of nature of the surface the results of the clustering are very 

similar, suggesting that the conformation of CREKA is dominated by the 

intramolecular interactions rather than by the intermolecular ones. Moreover, 

further analysis of each cluster shows that the conformation proposed as bioactive 

is predicted among the most favored ones independently of the characteristics of 

the surface (see below). However, significant differences have been observed 

depending on the activity of the surface since the C termini of the peptides may be 

attracted by it. 

The results presented in Figure 5.2.3. clearly narrow the conformational 

characterization of CREKA to the most representative clusters obtained for the 

different models. In the case of Au-S/30 and Inert-S/30 more than 80% of the total 

amount of produced peptide conformations was clustered within the first seven 

clusters. The energy difference between the lead conformations of the most and 

least favored of such clusters was of only 3.0 kcal mol-1. Accordingly, the most 



 

 

relevant conformational descriptors have been focused on those seven lead 

conformations. On the other hand, these results have been compared with the 

features observed using an isolated peptide tethered to a surface (MD-S/1). In the 

latter case the first ten clusters concentrate 80% of the produced conformations.  

Figure 5.2.4. depicts the Ramachandran plot of the Arg, Glu and Lys residues 

in the most populated clusters of Au-S/30 and Inert-S/30 models. As it can be seen, 

most of the conformations clustered around a narrow region of the Ramachandran 

map, this feature being particularly evident for the Glu. Indeed, this trend was 

already described as one of most remarkable conformational characteristics of 

CREKA peptide, since the bioactive ensemble was based on tight-turns nucleated 

around Glu residue.[13] On the other hand, the conformational preferences of MD-

S/1 are similar to those of Au-S/30 and Inert-S/30 suggesting again that the 

conformational preferences exhibited by the central segment of CREKA are driven 

by intramolecular interactions. For the three studied systems the most relevant 

differences are found at the C-termini of the peptide (Lys), while the central core 

(Arg and Glu) tends to present very low conformational variability (i.e. the , 

values observed for Au-S/30 and Inert-S/30 are close to those obtained for MD-

S/1). 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2.3.. Percentage of structures in each of the 40 and 45 clusters found in the 

simulation conditions corresponding to (a) Inert-S/30 and (b) Au-S/30, respectively. 

Clusters are ordered considering the energy of the lead conformation (from the 

lowest to the highest), which corresponds to the most stable microstructure within the 

cluster. Results derived from MD simulations on a single CREKA molecule attached 

to a surface (reference 12) are displayed in (c) for comparison (MD-S/1 set in text). 
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Figure 5.2.4.. Ramachandran plot distribution for the three central residues of CREKA, 

considering the most representative minimum energy structures for the Inert-S/30 (black dots), 

Au-S/30 (green dots) and MD-S/1 (blue dots) models. 



 

 

In spite of Figure 5.2.4. suggests that the conformational preferences of the 

CREKA are independent of the surface, there are some differences among the 

conformations produced for Au-S/30 and Inert-S/30 that deserve consideration. The 

organizations obtained for the C-termini of the peptide when the surface 

participates or not in the interaction energy are significantly different. Thus, in Au-

S/30 the edge of the peptide that is far from the group directly tethered to the 

surface (i.e. Cys side chain) is able to bend, interacting not only with other peptide 

chains but also with the surface itself. Accordingly, the metallic surface partially 

affects the conformational properties of the tethered peptides. Specifically, 

unspecific peptide···surface van der Waals interactions induce chains to move 

away when the intrinsic conformational tendencies of the peptides allow them to 

bend and intermolecular interactions do not reduce their flexibility (Figure 5.2.5.a). 

In contrast, the lack of peptide···surface interactions facilitates that a large amount 

of molecules lay on the surface of the simulated barrier, as is reflected in Figure 

5.2.5.b for Inert-S/30. However, it should be emphasized that for Au-S/30 the 

interactions with the surface are not strong enough to revert decisively the intrinsic 

conformational preferences of the peptide core, as is evidenced in Figure 5.2.4. for 

the Arg and Glu residues. 

 

 

 

 

 

 

 

 

 

Figure 5.2.5.. Axial (top panels) and equatorial 

(bottom panels) projections of a representative 

microstructure for the (a) Au-S/30 and (b) Inert-

S/30 models. Ions, solvent molecules and the c-

axis have been omitted to clarify the picture. 



 

 

In order to extend the analysis over the conformational particularities of each 

studied model, the structural correlation among all the low energy conformations 

has been established. Thus, the produced conformations have been compared 

transversally, beyond the theoretical methodology used to obtain them or the 

characteristics of the surface. Specifically, the backbone Root Mean Square 

Deviation (RMSD) of the last four residues has been computed for all possible 

pairs of conformations. The results of this analysis, which are plotted in Figure 

5.2.6., confirm the influence of the surface activity in the more favored 

arrangements of the peptide molecules. Thus, inspection of the similarities among 

the different models indicates that, in general, the conformations obtained for MD-

S/1 are closer to those produced for Au-S/30 than for Inert-S/30. The Au-S/30 

conformations present 48% of the computed chain pair RMSDs below 2.0 Å, while 

this percentage reduces to 35% for the Inert-S/30 conformations. As it was 

mentioned above, the MD-S/1 model allowed consider peptide···surface 

interactions through a surface descriptor (i.e. the spheres used to define the 

nanoparticle were allowed to interact with the peptide molecule through a Lennard-

Jones potential, even though they did not represent any realistic material).[13] 

Accordingly, the two models with active surfaces reached similar molecular 

conformations, even though the molecular environments were different (i.e. 

isolation and high density of molecules per Å2 for MD-S/1 and Au-S/30, 

respectively). 
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Figure 5.2.6.. Conformational correlation expressed through the RMDS of the backbone 

atoms for the most representative conformations produced for the three models. Filling colors 

represent different degrees of similarity referred to the value of RMSD: less than 1.3 Å green; 

higher than 1.3 Å and lower than 2.0 Å white; higher than 2.0 Å and lower than 3.0 Å orange; 

and higher than 3.0 Å red. The labels NA#, A# and WT# refer to the conformations of the 

more populated clusters produced for Inert-S/30, Au-S/30 and MD-S/1, respectively. 

 

 

 

 



 

 

5.2.4. Conclusions 

The previously developed strategy has been extended by including a potential 

that describes the attractive and repulsive interactions between the surface and the 

rest of chemical species in the construction and relaxation algorithms. The surface 

descriptor is based on a grid of points that represents the geometrical organization 

of atoms or molecules in a crystalline structure. Accordingly, the new strategy is 

able to produce energetically representative structures of flexible peptides tethered 

to a surface with chemical identity. Although the description of the systems 

modeled using this new procedure is more realistic, the computational resources 

required for simulations also increase significantly.  

In order to examine the influence of the surface activity on the conformational 

preferences of peptide, a system formed by 30 CREKA molecules covalently linked 

to an Au surface of 6060 Å2 has been simulated using this new strategy. Results 

have been compared with those obtained for: (1) a system with identical chemical 

composition with exception of the surface, which is not able to interact with 

peptides, solvent molecules nor ions (i.e. inert surface); and (2) a system formed by 

a single peptide molecule attached to a van der Waals surface, which was 

previously studied using conventional MD simulations. . 

Analysis of the results indicate that the omission of the chemical definition of 

the surface produce spatial arrangements for the peptides that might preclude the 

proper organization of the side chains. Specifically, the Au surface affects the 

orientation of the CREKA molecules by influencing the conformation of the edge 

residues and the subsequent organization of the ionized side chains. Even though 

the intrinsic preferences of the peptide main chain remain practically unaltered by 

the active surface, a proper description of the ionized side chains requires a reliable 

definition of the interactions with the surface. Thus, an erroneous representation of 

the ionized side chains organization would lead to a misunderstanding of the 

nanoparticle function hampering potential further chemical improvements. 
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5.3. Self-Assembly of a Designed Amyloid Peptide Containing the 

Functional Thienylalanine Unit 

 
5.3.1. Introduction 

Peptide-based systems are the focus of immense research activity, for 

applications in bionanotechnology. The palette of natural amino acids already offers 

an impressive scope for the design of novel structures and functionalities. Beyond 

this, the incorporation of non-natural amino acids into peptides and proteins has 

attracted huge interest, with the potential to develop novel biomaterials with 

properties distinct from those available in the natural world. Tirrell and co-workers 

have pioneered the use of protein engineering to incorporate non-natural amino acids 

into proteins via the use of stop (nonsense) codons or 4-base codons.
1,2 

The non-

natural amino acids are coupled to tRNA using a suppressor tRNA that is not 

recognized by the host synthetase enzymes that couple the amino acids to tRNA. This 

method has been used to incorporate analogues of many amino acids
1,3 

including ,β-



 

 

2-thienylalanine
3,4 

and ,β-3-thienylalanine,
5 

abbreviated 2-Thi and 3-Thi, 

respectively. Incorporation of thienylalanine residues is of considerable interest in the 

development of polypeptides with conductivity, arising from the creation of extended 

conjugated electronic systems.
5 

A recent computational investigation, using quantum 

mechanical/molecular mechanics (QM/MM) calculations and molecular dynamics 

(MD) simulations, has explored delocalization and π-stacking in peptides containing 

3-Thi.
6 

The calculated peptides were based on mutations (isoleucine and/or valine 

substitutions with 3-Thi) of peptides (based on a motif from E. coli galactoside 

acetyltransferase) that MD simulations indicated form ,β-helices.
7,8 

Charge transfer 

properties were also investigated.
6  

Several groups have reported the linking of thiophene moieties into peptide-

based hybrids. Klok and co-workers first reported such conjugates comprising a 

head-to-tail coupled tetra(3-hexylthiophene) linked to the silk-mimic peptide 

GAGAG.
9 

Antiparallel ,β-sheet structures were observed, pointing to the ability of 

the peptide to guide the self-assembly of the thiophene units. The self-assembly into 

fibrils of oligopeptides containing a dithiophene central unit has been examined.
10 

This was shown to be due to π-π stacking interactions, and strong photoluminescence 

was observed, ascribed to possible twisted H-aggregates. A tetra-oligothiophene has 

been conjugated at both ends to a G(TV)3G(aF)G peptide sequence (aF ) azido-

phenylalanine) attached at the N termini to a PEG chain to enhance solubility.
11 

The 

(TV)3 repeat favors the formation of ,β-sheets (to disrupt this during synthesis, an O 

to N-acyl transfer switch strategy was used). Fibril formation in the hybrid system 

was observed; however, electronic properties were not reported.  

In the present paper, we exploit a peptide motif previously developed in our 

group as a basis to present 2-Thi in β-sheet based fibrils and nanotubes. In contrast to 

previous work, the thienyl group is incorporated within the peptide sequence within a 

non-natural amino acid. The peptide is based on AAKLVFF, which contains the 

KLVFF core motif Aβ(16-20) from the amyloid , peptide, extended at the N terminus 

by two alanine residues. It has previously been shown that this peptide forms twisted 

fibrils in water
12 

and nanotubes in methanol,
13 

and the structure of these has been 

investigated in detail using transmission electron microscopy, X-ray scattering, and 

multiple spectroscopic methods
14,15 

as well as computer simulation.
15 

Here, we 



 

 

investigate the self-assembly of (2-Thi)(2-Thi)VLKAA in which the terminal 

phenylalanine residues are replaced by 2-Thi and the sequence is reversed (i.e., N and 

C termini are switched). The sequence is reversed because in FFVLKAA the large 

distance between the negatively charged C terminus and the π-electron density of 

side phenyl groups at the F residues would be expected to lead to intramolecular 

folding (β-turn structure), promoting the formation of π-π interactions between the 

two aromatic groups. This arrangement is expected to be preserved upon substitution 

of F by 2-Thi, as indicated by MD simulations, which is essential to induce 

intramolecular electron transfer processes. It should be noted that this is not the case 

for AAKLVFF in which ,β-sheet self-assembly is observed even in dilute solution.
15 

On the other hand, the closeness of the 2-Thi residues to the C terminus in (2-Thi)(2-

Thi)VLKAA is expected to enhance the stacking of the two thienyl groups. The 

substitution of aromatic residues was expected not to disrupt β-sheet formation; 

however, the 2-Thi residues are expected to confer interesting π-stacking and, 

potentially, conductivity properties.  

5.3.2. Methods 

Fmoc-alanine-OH, Fmoc-lysine(Boc)-OH, Fmoc-leucine-OH and Fmoc-valine-

OH, Fmoc-alanine−Wang resin (0.72 mmol g−1 substitution) , HBTU (2-(1H-

benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate) were purchased 

from Novabiochem (UK). Fmoc-L-2-Thienylalanine-OH, trifluoroacetic acid (TFA), 

piperidine and triisopropylsilane were purchased from Sigma-Aldrich. HOBt/DMF (a 

mixture of 1-hydroxybenzotriazole and dimethylformamide), DIEA/NMP (a mixture 

of diisopropylethylamine and N-methylpyrrolidone), and NMP were obtained from 

Applied Biosystems(UK). Water (HPLC grade), acetonitrile (HPLC grade) and 

diethyl ether were purchased  from Fisher Scientific (UK).  
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Scheme 1. Molecular structure of (2-Thi)(2-Thi)VLKAA 

The peptide H-(2-Thi)(2-Thi)VLKAA-COOH (Scheme 1) was synthesized by 

solid phase methods using standard FastMoc chemistry [Fmoc (9-

fluorenylmethyloxycarbonyl) protecting group and activation by HBTU /HOBt ] on a 

0.25 mmol scale with a fully automated peptide synthesizer (433A Applied 

Biosystems), which allowed for direct conductivity monitoring of Fmoc deprotection.  

Peptide H-(2-Thi)(2-Thi)VLKAA-COOH was assembled from the C-terminus 

toward the N-terminus and was attached to the resin at the C-terminus by the α-

carbonyl group of the amino acid. According to the standard FastMoc protocol, the 

first step of the reaction was to remove the Fmoc protecting group from the preloaded 

amino acid using a solution of piperidine in NMP. The next step was activation of the 

carbonyl group of the new amino acid (dissolved in NMP) using HBTU (dissolved in 

HOBt, DIEA, and DMF). The activated amino acid was transferred from the 

activation vessel to the reaction vessel containing the previously deprotected amino 

terminal group of the peptide chain, and coupling was performed. To obtain the 

highest coupling efficiency, four times excess of each amino acid was used in 0.25 

mmol cycles. Peptide attached to the solid support was obtained from the synthesizer. 

In the cleavage step, the peptide attached to the resin was treated with a mixture of 

95% TFA, 2.5% triisopropylsilane, and 2.5% water, and was stirred at room 

temperature for approximately 4 h, followed by filtration. During the cleavage the 

side chain protecting groups (Boc) were removed by TFA. The obtained peptide 

solution was precipitated in cold diethyl ether and the crude product was separated by 

centrifugation and decanting the supernatant. The crude peptide was redissolved in 

HPLC grade water/acetonitrile co-solvent (1:1) and subjected to reverse phase HPLC 

(Perkin Elmer 200) for purification. The following conditions were employed: a 

mobile phase of HPLC grade water and acetonitrile with 0.1% trifluoroacetic acid 



 

 

(TFA) was used. During HPLC process the acetonitrile portion increased linearly 

from 0% to 90% over 20 min and then decreased linearly to 0% over 10 min. A 

sample injection (injected with Perkin Elmer Series 200 Autosampler) of  100-150 

L was run on a C18 semi-preparative column (Macherey-Nagel) for 30 min with 

flow rates 4 ml/min at 35C (Perkin Elmer Series 200 Peltier Column Oven), where a 

UV/vis detector (Perkin Elmer Series 200 UV/VIS Detector) monitored the sample 

elution at 254 nm. The fractions of (2-Thi)(2-Thi)VLKAA were collected, followed 

by lyophilization to give  a white solid (RP-HPLC retention time:11.97 min). ESIMS 

m/z for C37H58N8O8S2 [M+H]+ calcd 807.38, found [M+H]+, 807.38; [M+2H]2+/2 

calcd 404.20, found 404.20. 1H NMR (400 MHz methanol-d4, ppm): 0.87 (m, 12H), 

1.30 (dd, J = 11.6 Hz, 7.2 Hz, 6H), 1.37 (q, J = 7.2 Hz,  2H), 1.47-1.64 (m, 6H), 1.72 

(m, 1H), 1.94 (sep, J = 7.2 Hz, 1H), 2.82 (t, J = 7.2 Hz, 2H), 3.10 (dd, J = 21.6 Hz, 

8.4 Hz, 1H), 3.23 (m, 2H), 3.40 (dd, J = 15.4 Hz, 4.8 Hz,  1H), 3.98 (dd, J = 8.4 Hz, 

4.4 Hz,  1H), 4.10 (m, 1H), 4.21- 4.35 (m. 4H), 4.66 (m, 1H), 6.82 (m, 2H), 6.90 (m, 

2H), 7.13 (t, J = 3.2 Hz, 1H), 7.25 (dd, J = 4.4 Hz, 2 Hz,  1H),8.02-8.06, 8.11-8.17 

and 8.26-8.28 [NH, NH2 10 H]. 

Fourier Transform Infra-red (FTIR) spectroscopy. Spectra were measured on a 

Nicolet Nexus spectrometer with DTGS detector. Solutions of (2-Thi)(2-

Thi)VLKAA in D2O  (1 wt %) or MeOD (1 wt%) were sandwiched between two 

CaF2 plate windows (spacer 0.006 mm) Spectra were scanned 128 times over the 

range of 4000‐900 cm-1. Spectra of dried films were obtained with an Attenuated 

Total Reflectance (ATR) cell after deposition of a 0.03% water solution on a ZnSe 

crystal (128 scans, 4700-700 cm-1).  

Circular Dichroism (CD). Spectra were recorded on a Chirascan spectropolarimeter 

(Applied Photophysics, UK). CD for 1 wt% solutions was performed using (2-Thi)(2-

Thi)VLKAA dissolved in water or methanol and loaded into 0.01 mm thick quartz 

cover slip cuvettes. Spectra were measured with a 0.5 nm step, 1 nm bandwidth and 1 

second collection time per step at 20 C. Measurements were repeated four times. CD 

spectra on dilute conditions (0.03%) were performed using a 0.1 cm quartz cell and 

reported as an average of 8 consecutive scans (2 nm bandwidth, 2 s  time constant, 

0.2 nm step). 

Fluorescence Spectroscopy. Spectra were recorded on a Cary Eclipse Varian 

Fluorescence Spectrometer with samples in a 1.0 cm quartz cuvette. Spectra were 



 

 

measured for (2-Thi)(2-Thi)VLKAA in water or methanol (0.03 wt.%). The solvent 

spectra were recorded for reference. The spectra were recorded from 279 to 490 nm 

using an excitation wavelength ex= 265 nm. Excitation spectra were recorded at an 

emission wavelength Excitation spectra were measured at em = 300 nm for the same 

samples. Background spectra from the corresponding solvents were subtracted. 

X-Ray Diffraction (XRD). Diffraction patterns were obtained for stalks prepared by 

drying filaments of the peptide. Solutions of peptide (0.5 wt% in water of 2 wt% in 

methanol) were suspended between the ends of a wax-coated capillary and dried. The 

stalk was mounted (vertically) onto the four axis goniometer of a RAXIS IV++ x-ray 

diffractometer (Rigaku) equipped with a rotating anode generator. The XRD data was 

collected using a Saturn 992 CCD camera.  

Cryogenic-Transmission Electron Microscopy (Cryo-TEM). Experiments were 

performed at Unilever Research, Colworth, Bedford, UK. A solution of (2-Thi)(2-

Thi)VLKAA in water (1.0 wt%) was blotted and vitrified using a Gatan Cp3 

cryoplunge system. Samples were prepared at a controlled temperature of 22 °C and 

at a relative humidity around 90%. A 3 µl drop of the solution was placed on a 400-

mesh copper TEM grid (Agar) covered with a perforated carbon film (plasma 

treated). The drop was automatically blotted and the sample was plunged into liquid 

ethane (−183 °C) to form a vitrified specimen,16, 17 then transferred to liquid nitrogen 

(–196°C) for storage. Specimens were examined in a JEOL JEM-2100 electron 

microscope at 200 kV, at temperatures below −175 °C. Images were recorded 

digitally on a Gatan UltraScan 1000 cooled CCD camera using DigitalMicrograph 

(Gatan) in the low-dose imaging mode to minimize beam exposure and electron-

beam radiation damage.  

Negative Stain TEM.  High resolution TEM (HR-TEM) was done using a JEOL 

JEM-2010 microscope operated at 200 kV. Droplets of the peptide solution (1 wt % 

(2-Thi)(2-Thi)VLKAA in methanol were placed on Cu grids coated with a carbon 

film (Agar Scientific, UK), stained with uranyl acetate (1 wt %) (Agar Scientific, 

UK) and dried. 

Atomic Force Microscopy (AFM). Measurements were performed in air using a 

Veeco Multiprobe IIIa instrument, at room temperature (20°C) in tapping mode by 

using non-conductive Si tips with a force constant of about 40 N/m and a typical 

curvature radius on the tip of 7 nm. 



 

 

Quantum Mechanical Calculations. QM calculations on the N-acetyl-N’-

methylamide derivative of 2-Thi, abbreviated Ac-(2-Thi)-NMHe, were performed 

using the B3LYP18, 19 functional combined with the 6-31+G(d,p) basis set,20 i.e. 

B3LYP/6-31+G(d,p). Classical electrostatic charges were derived for the 3-Thi 

residue by fitting the QM and the Coulombic molecular electrostatic potentials 

(MEPs), which were calculated on a large sets of point outside the nuclear region. 

The QM-MEP was calculated at the HF level combined with the 6-31G(d) basis set,21 

i.e. HF/6-31G(d). All the calculations were carried out using the Gaussian 03 

computer program.22  

Molecular Dynamics Simulations. The simulated peptide was placed in the center 

of a cubic simulation box (a= 37.97 Å) filled with 1781 explicit water molecules, 

which were represented using the TIP3 model.23 One negatively charged chloride 

atom was added to the simulation box to reach electric neutrality (one positive net 

charge was considered for the Lys residue at neutral pH). The energy was calculated 

using the AMBER force-field.24, 25 All parameters were taken from the AMBER 

libraries with exception of the partial atomic charges for the 2-Thi residue, which 

have been explicitly developed in this work (see below and Figure 5.3.S2). Atom pair 

distance cut-offs were applied at 14.0 Å to compute the van der Waals interactions. 

Electrostatic interactions were computed using the non-truncated electrostatic 

potential with Ewald Summations.26 The real space term was determined by the van 

der Waals cut off (14.0 Å), while the reciprocal term was estimated by interpolation 

of the effective charge into a charge mesh with a grid thickness 5 points per volume 

unit, i.e. using the particle-mesh Ewald (PME) method.26 Both temperature and 

pressure were controlled by the weak coupling method, the Berendsen thermostat,27 

using a time constant for heat bath coupling and pressure relaxation time of 1.0 ps. 

Bond lengths were constrained using the SHAKE algorithm28 with a numerical 

integration step of 2 fs. All classical calculations were performed using the Amber 10 

computer program.29  

Before the production series, the thermodynamic variables of the system were 

equilibrated. The energy of the system was initially minimized to relax 

conformational and structural tensions using the conjugate gradient method for 5×103 

steps. Next, different consecutive rounds of short MD runs were performed in order 

to equilibrate the density, temperature and pressure. First, solvent and the charged 

chloride atom were thermally relaxed by three consecutives runs, while the peptide 
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was kept frozen: 0.5 ns of NVT-MD at 500 K were used to homogeneously distribute 

the solvent and ions in the box. Second, 0.5 ns of isothermal and 0.5 ns isobaric 

relaxation were run. Finally, all the atoms of the system were submitted to 0.15 ns of 

steady heating until the target temperature was reached (298 K), 0.25 ns of NVT-MD 

at 298 K (thermal equilibration) followed by 0.5 ns of density relaxation (NPT-MD). 

The end of the density relaxation simulation was the starting point of the molecular 

simulations presented in this work. All the simulations were performed at 298 K and 

constant pressure of 1 atm. The coordinates of all the production runs, which were 15 

ns long, were saved every 500 steps (1 ps intervals) for subsequent analysis. 

5.3.2. Results and discussion 

FTIR spectra (Figure 5.3.1) reveal features associated with -sheets, in particular for 

the case of water as solvent, a prominent peak is observed the amide I region at 1619 

cm-1 in solution (shifting slightly to 1625 cm-1 for a dried film).30 The peak at 1672 

cm-1 is due to residual TFA from the peptide synthesis,31, 32 however there is a small 

shoulder peak at 1684 cm-1 for the solution and more pronounced at 1693 cm-1 for the 

dried film. This latter feature is often associated with antiparallel ordering of -

sheets.30, 33, 34 Peaks associated with -sheets at 1624 cm-1 and 1695 cm-1 are observed 

for the methanol solution, with a shoulder at 1677 cm-1. In contrast to water, features 

in the amide II region at 1419cm-1 and 1450 cm-1 are stronger than those in the amide 

I region.30 These peaks are assigned to a CH2 deformation mode and N-H in plane 

bend/C-N stretch modes respectively.30, 35, 36  

 

 

 

Figure 5.3.1.. FTIR data for peptide in (a) 1 wt% D2O solution (top: black line) and a dried 

film (bottom: red line) prepared from an 0.03 wt% solution, (b) 1 wt% methanol solution. 
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Figure 5.3.2.. Circular dichroism spectrum, obtained for (2-Thi)(2-Thi)VLKAA in (a) water, 
(b) in methanol. The black lines are for 1 wt% solutions, the red lines are for 0.03 wt% 
solutions. 

The circular dichroism spectra (Figure 5.3.2.) show pronounced differences 

depending on concentration of (2-Thi)(2-Thi)VLKAA. In dilute solution (0.03 wt% 

peptide in either water or methanol), there is no evidence for the usual CD spectrum 

from -sheets, however at higher concentration the spectra show a minimum just 

below 220 nm, close to the position expected for a -sheet structure.30 The maximum 

at 244 nm is almost certainly from the -thienylalanine chromophore. It is known 

that natural aromatic amino acids give maxima in the range 250-270 nm, close to the 

location of the observed maximum. 37, 38 We are unaware of previous reports of CD 

spectra for peptides containing thienylalanine. Since FTIR shows features from -

sheets for 0.03 wt% solutions, we conclude that CD at the same concentration is 

simply not sensitive to these structures. The extent of -sheet secondary structure 
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may increase with concentration, leading to the clear evidence of -sheets in the CD 

for 1 wt% solutions, which is consistent with the results from FTIR. 

Both CD and FTIR confirm that (2-Thi)(2-Thi)VLKAA forms -sheets. Further 

support is provided by Congo red staining, a characteristic diagnostic of amyloid 

formation. Figure 5.3.S1 shows polarized optical microscopy images of a sample 

before and after staining with Congo red. The uptake of the dye leading to 

characteristic green birefringence is clear. The presence of birefringence in the 

sample without dye indicates that this peptide forms a liquid crystal phase in 

1 wt% aqueous solution 

(a)                                                (b) 

 
                            

  
 

 

 

 

Figure 5.3.3.. Fluorescence spectra measured for 0.03 wt% solutions in water and methanol, 
(a) emission, (b) excitation.                            

Background subtracted fluorescence spectra are presented in figure 5.3.3.. 

Raman scattering from water39 gave rise to a peak in the emission spectrum that was 

removed when the background was subtracted. We use 265 nm as an excition 

wavelength because this is a standard wavelength to reveal aromatic residues in 

amyloid peptides.40, 41  The emission spectrum shows a peak with a maximum at 301 

nm. In the excitation spectrum, the two peaks at 273 nm (water) and 275 nm 

(methanol) can be safely assigned to solvent Raman scattering. The broad shape of 

the absorption at 260 nm and the shape of the emission spectrum (peaked at 301 nm) 

leads to an assignment of these features to the presence of residual Fmoc groups. 

 



 

 

 

Figure 5.3.4.. XRD patterns from stalks dried from (a) 0.5 wt% aqueous solution, (b) 2 wt% 

methanol solution.  

The x-ray diffraction data shows a cross-beta pattern (figure 5.3.4.) with 

meridional 4.8 Å reflections and main equatorial reflections for a sample dried from 

an 0.5wt% solution at 24.8 Å and 10.7 Å. The positions of these reflections (arising 

from the stacking of -sheets) were 23.2 Å and 9.2 Å for the sample dried from a 2 

wt% solution. The reduction in these spacings may reflect more dense packing of -

sheets as the concentration of peptide is increased. However there is better alignment 

of the fibres within the stalk for the latter sample. The XRD data thus supports the 

presence of -sheet structures in stalks dried from solutions at different 

concentration. 

Cryo-TEM is a powerful method to determine the structure of self-assembled 

structures such as peptide fibrils. The aqueous solvent is vitrified, thus trapping the in 

situ structure and avoiding possible drying effects that result from sample preparation 

for conventional TEM experiments. Figure 5.3.5.a presents a representative cryo-

TEM image from a 1 wt% solution of (2-Thi)(2-Thi)VLKAA in water. There is clear 

evidence for twisted tapes, as observed for the related peptide AAKLVFF in water.12, 

14 The maximum width is typically around 30 – 40 nm, it is difficult to estimate the 

thickness of the tapes since the “edge-on” images of tapes approach the resolution of 

the images. Since cryo-TEM proved problematic using methanol as solvent (due to 



 

 

its high volatility), conventional TEM was performed. The image in figure 5.3.5.b 

shows a twisted tape structure for (2-Thi)(2-Thi)VLKAA in methanol, in contrast to 

AAKLVFF which forms nanotubes in methanol.13-15 
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Figure 5.3.5.. (a) Cryo-TEM image from a 1 wt% solution of (2-Thi)(2-Thi)VLKAA in water, 

(b) TEM image from the peptide in methanol. 

 

 



 

 

           (a)                                                      (b)                                               (c) 

 

Figure 5.3.6.. Representative AFM images for (2-Thi)(2-Thi)VLKAA dried onto silicon (a) 

from 0.03 wt% solution, (b) from 1 wt% solution, (c) blobs structure from an 0.03 wt% 

solution. 

AFM experiments were carried out on dried films supported on mica, after 

deposition and overnight drying of diluted (0.03%) and concentrated (1%) peptide 

water solutions. For diluted solutions, regions with peptide filaments several microns 

long and 50±10 nm thick were observed (figure 5.3.6.a). However, regions showing 

almost globular structures with 170(±50)  140(±40) nm2 surface dimensions were 

also detected (figure 5.3.6.b). In the case of films obtained from 1% aqueous 

solutions only regions densely covered by peptide interlaced fibrils of the same 

dimensions (several microns long and 56±8 nm thick) can be observed (figure 

5.3.6.c). 
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Figure 5.3.7.. SAXS data (open symbols) for an 0.5 wt% solution of (2-Thi)(2-Thi)VLKAA in 

water, with model fit (solid line) described in text. 

A SAXS intensity profile obtained for an 0.5 wt% solution in water is shown in 

figure 5.3.7., along with a fit that enabled fibril dimensions to be obtained. The data 

were fitted to a form factor of a polydisperse uniform long cylinder, using the 

software SASfit.42 The expression for the form factor is provided elsewhere.42, 43 The 

fit parameters were as follows: fibril radius R = 4.95 nm, Gaussian polydispersity  = 

31%, cylinder length L = 1652 nm, electron density contrast with respect to solvent  

= 2.3  10-5 (intensity units), flat background = 0.00015 (intensity units). The fit is 

much more sensitive to cylinder radius than cylinder length (since L >> R). This 

model is seen to describe the SAXS data very well, and more complex models that 

allow, for example, for the observed twisting of the fibrils44 are not justified because 

multiple form factor minima are not observed. These are probably washed out by 

polydispersity. The fibril radius corresponds to a diameter around 10 nm, which can 

be considered an effective value considering the twisted nature of the fibrils. The 

apparent large polydispersity in radius is consistent with the variation in fibril width 

and thickness as observed by cryo-TEM. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.3.8.  Self-supporting hydrogel of peptide (2-Thi)(2-Thi)VLKAA (2% wt in D2O). 

 

At higher concentration, (2-Thi)(2-Thi)VLKAA was observed to form a 

hydrogel (figure 5.3.8.). Peptide hydrogels are of interest as responsive delivery and 

sensor systems, 45-48 and incorporation of the 2-Thi moiety may ultimately lead to 

responsive conductivity properties which will be investigated in future work. 

Table 5.3.1.. Backbone Conformation, Backbone and Side Chain Torsion Angles 

(figure 5.3.S2),a and Relative Energy (ΔE)b for the Minimum Energy Conformations 

of Ac-(2-Thi)-NHMe and Ac-(3-Thi)-NHMec at the B3LYP/6-31+G(d,p) Level 

#c 0    1 E(2-Thi) E(3-Thi) 

IC eq
7   -172.8 -84.4 74.4 -175.9 -55.2 0.0 0.2 

IIC eq
7   -174.7 -82.9 59.8 179.0 44.8 0.1 0.0 

C5 177.8 -156.6 157.2 174.4 -170.2 0.2 0.4 

IIIC eq
7  -179.2 -82.9 80.9 -174.7 -165.4 1.1 0.4 

ax
7C  172.9 74.3 -53.5 -178.4 -59.1 1.8 1.7 

a In degrees. Dihedral angles are identical for the two dipeptides (see text). b In kcal/mol. c The 

three minima with a eq
7C  backbone conformation has been labeled as IC eq

7  , IIC eq
7  , 

and IIIC eq
7   following the order of stability. 



 

 

QM calculations on Ac-(2-Thi)-NMHe indicated that intrinsic conformational 

preferences of 2-Thi are very similar to those previously reported for 3-Thi.6 More 

specifically, the linkage between methylene and the thienyl ring does not produce any 

change in the backbone and side chain dihedral angles (Table 5.3.1.), which are 

practically identical in the 2-Thi and 3-Thi containing dipeptides. The only difference 

between the two compounds corresponds to the relative energies (E in Table 5.3.1.) 

that undergo some small variations. However, the eq
7C  and ax

7C  are clearly the most 

and least favorable backbone conformations, respectively, in both cases. Atomic 

centered electrostatic charges were calculated for all the minimum energy 

conformations shown in Table 5.3.1. and, subsequently, weighted according to the 

Boltzmann population of each minimum to derive the electrostatic force-field 

parameters for the 2-Thi residue. 

MD simulations on (2-Thi)(2-Thi)VLKAA were performed at 298 K considering 

two different protocols. In the first one (MD1) the temporal evolution of the peptide 

was examined without imposing any restraint, while in the second one (MD2) the 

restraints derived from NMR experiments were included in the potential through a 

harmonic expression with a soft constant (kr= 10 kcal/mol·Å2). The restraints 

imposed in MD2 correspond to 5 main chain – main chain, 14 main chain – side 

chain and 19 side chain – side chain distances. In both cases the fully extended 

conformation was used as starting point. Despite the fact that QM calculations predict 

that eq
7C  (also denoted inverse -turn) is the most stable conformation of the 2-Thi 

residue, comparison between theoretical results and available experimental data 

reported for other amino acids show that the stability of this conformation is 

overestimated when computational methods are applied to small model systems 

(dipeptides) in the gas-phase.49-51 This led us to consider the  (or extended 

conformation), which is destabilized by only 0.2 kcal/mol with respect to the L 

(Table 5.3.1.) as a suitable alternative for the starting conformation.  

 



 

 

 

Fig 5.3.9. Backbone dihedral angle distributions for the peptide residues in MD1 (red) and 

MD2 (blue) simulations. Trajectories were 15 ns long and snapshots were saved at 1 ps 

intervals. 

Analysis of the distribution for the five central residues (figure 5.3.9.) reveals 

some differences in the secondary structures reached by MD1 and MD2. For MD1 

the dihedral angle  of Ala and Lys exhibits a large degree of flexibility, while the 

{,} distribution of the 2-Thi residue falls into four different clusters. Specifically, 

the four regions visited by the 2-Thi residue in the simulation without restraints 

correspond to the eq
7C  (, -70º,65º), ax

7C  (, 70º,-65º), L (, -50º,-50º) and 

PII (, 70º,-120º) with populations of 30%, 27%, 21% and 14%. In contrast, the 

two backbone dihedral angles occupy well-defined clusters in MD2 indicating that 

once the secondary structure compatible with the imposed NMR restraints has been 

reached it is preserved during the rest of the trajectory. The flexibility of the peptide 

in MD1 as well as its well-defined secondary structure in MD2 are also evidenced in 

figure 5.3.10., which displays the temporal evolution of both the end-to-end distance 
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(de-e) and the radius of gyration (Rg). Thus, de-e ranges from 4.939 to 18.838 Å and 

from 8.435 to 13.570 Å in MD1 and MD2, respectively, the average value being 

14.0062.840 and 12.1870.649 Å. The average value of Rg, which is 6.1100.319 

and 5.1440.042 Å for MD1 and MD2, respectively, indicates that the conformation 

found for (2-Thi)(2-Thi)VLKAA in dilute aqueous solution does not correspond to 

that of a fully extended nor semi-extended strand.  

 

 

 

 

 

 

 

 

 

 

 

Fig 5.3.10. Temporal evolution of the end-to-end distance (de-e) and the radius of gyration (Rg) 

for MD1 (red and pink, respectively) and MD2 (dark blue and light blue, respectively) 

simulation 

 

 

 

Fig 5.3.11. Snapshots of (2-Thi)(2-Thi) VLKAA taken from the MD1 simulation at 1.0, 4.5 

and 15.0 ns.  
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Figure 5.3.11. shows the structure of the peptide at selected snapshots (1.0, 4.5 

and 15.0 ns) recorded during the MD1 trajectory. It can be seen that the most 

essential conformational trends of the peptide are preserved during the whole 

simulation: the backbone adopts a folded conformation in which the polar amide 

groups and the positively charged side group of Lys tend to be exposed to the solvent 

molecules. Although the side groups of the 2-Thi residues exhibit an enormous 

flexibility, the distance between the centers of mass of the two aromatic rings was 

larger than 6.2 Å during the whole trajectory. As attractive interactions between two 

thiophene rings have been reported to exist at distances of around 3.8 and 4.8 Å for 

the planar -stacked and perpendicular T-shaped arrangements,52, 53 respectively, we 

conclude that the side chains of the 2-Thi residues are not able to interact promoting 

intramolecular -electron transfer processes. On the other hand, inspection of the 

backbone conformation in figure 5.3.11. allows rationalize the large fluctuations 

found for MD1 in both the de-e and Rg (figure 5.3.10.). Although in general terms the 

molecular shape is retained during the whole simulation, breathing movements result 

in the continuous formation and disruption of intramolecular hydrogen bonds altering 

the molecular dimensions. For example, while the structure at 1.0 ns does not present 

any intramolecular hydrogen bond, those at 4.5 and 15.0 ns exhibit two and one 10-

membered hydrogen bonded rings, respectively, which correspond to the 

amide···amide intramolecular interactions typically associated with the -turn motif. 

Detailed analysis of the stored coordinates indicates that the changes in the hydrogen 

bonding pattern occur during the whole MD1 trajectory. 

In contrast, the structure reached for (2-Thi)(2-Thi)VLKAA by imposing NMR 

restrictions in MD2 was preserved during the whole trajectory. This is evidenced in 

figure 5.3.12.a, which shows the superimposition of 15 peptide conformers taken 

from snapshots separated by intervals of 1ns. figure 5.3.12.b provides details of the 

averaged conformation, which allows describe at the atomistic level the structure 

compatible with the NMR data. As it can be seen, two N-H···O intramolecular 

interactions defining a 7- and 13-membered hydrogen bonded rings, which 

correspond to the -turn and -helix motifs, respectively, have been identified in this 

conformation. Furthermore, as was suggested by the low value of Rg (figure 5.3.10.), 

it correspond to a highly folded conformation, even though the polar peptide groups 

are exposed to the solvent with the only exception of those involved in intramolecular 



 

 

hydrogen bonds.  Another important finding is that the aromatic groups of the two 2-

Thi residues are separated by only ~4.6 Å, their relative orientation being like a 

distorted T-shape. Accordingly, this structure seems to be stabilized by an attractive 

non-covalent interaction between the two aromatic rings, suggesting that it may be 

used as a building block to create a -stacking ladder through a self-assembly 

processes. It is worth noting that these results confirm our initial assumption (see 

Introduction), according to which the reversal of the sequence promotes the 

formation of - interactions. Thus, the carboxylate group at the C terminus is 

completely exposed to the solvent without inducing any repulsive interaction with the 

-electron density of the thienyl groups. In addition, the positively charged N 

terminus enhances the stability of the - interaction since the distance between the 


3NH  moiety is located at about 4.8 Å from the center of mass of the second 2-Thi 

residue.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.3.12. (a) Superimposition 

of snapshots saved from the 

MD2 simulation at 1 ns 

intervals. (b) Averaged 

coordinates of (2-Thi)(2-Thi) 

VLKAA derived from the 

MD2 simulation. 

 



 

 

5.3.3. Conclusions 

The self-assembly of a peptide incorporating the non-natural amino acid β-2 

thienylalanine has been investigated, in water and methanol. The peptide has been 

designed on the basis of a previously studied motif AAKLVFF which forms twisted 

fibrils in water and nanotubes in methanol. For (2-Thi)(2-Thi)VLKAA, a twisted 

fibril morphology is observed in both water and methanol and CD and FTIR confirm 

a ,-sheet structure. Hydrogelation is observed at higher concentration. Quantum 

mechanics calculations are used to examine the conformation and charge distribution 

within the β-2-thienylalanine amino acid. This is complemented with molecular 

dynamics simulations on isolated (2-Thi)(2-Thi)VLKAA peptides which reveals 

turn-like structures. The aggregation of these peptides into β-sheet fibrils is currently 

being investigated, as are the electronic properties which are expected to be of 

interest due to charge delocalization and π-stacking. The ability to form hydrogels in 

a concentration dependent manner is noteworthy for potential applications as 

responsive nanomaterials incorporating electronic functionality.  
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6.Design of a non-coded amino acid data base  



 

 

 
 
 
 



 

 

6.1. NCAD, a data base integrating the intrinsic conformational 

preferences of non-coded amino acids 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1.1 Introduction 

The repertoire of amino acids currently available for application in life and 

materials sciences is rapidly expanding. Besides the 20 genetically coded -amino 

acids contained in proteins, more than 700 different amino acids have been found in 

Nature1 (most of them, also -amino acids), and many others have been synthesized 

by organic chemists.1a,2 These residues are joined under the common name of non-

proteinogenic or non-coded amino acids (nc-aa). Although they are rigorously 

excluded from ribosomally-synthesized native peptides and proteins, several 

naturally occurring peptides (produced non-ribosomally) have been found to contain 

nc-aa.2i,3 Additionally, they are increasingly used to improve the pharmacological 

profile of natural peptides endowed with biological activity4 (to confer resistance 

against enzymatic degradation, enhance membrane permeability, or increase 

selectivity and affinity for a particular receptor). Nc-aa have also led to the 

development of efficient drugs of non-peptidic nature.5 Moreover, recent advances in 

biotechnology have paved the way for protein engineering with nc-aa.6 Thus, proteins 



 

containing residues with fluorescent,7 redox-active,8 photosensitive groups,7c,9 or 

other side chains endowed with specific chemical reactivity10 or spectroscopic 

properties,11 may serve as biosensors and spectroscopic or biophysical probes, as well 

as to construct systems for drug delivery and diagnosis through imaging useful in 

medicine.6–11 Nc-aa have also found application in nanobiology to promote the self-

assembly of nanostructures.12 Other remarkable applications of nc-aa include the 

development of bio-inspired synthetic organic polymers that emulate the shape and 

properties of natural peptides and proteins.13 

In spite of the great significance and potential utility of nc-aa in modern biology, 

biomaterials engineering and medicine, structural information is only available for a 

limited number of them. Specifically, the intrinsic conformational preferences of nc-

aa, which are typically obtained by sampling the potential energy hypersurface of 

small peptide systems incorporating them through sophisticated quantum mechanical 

calculations at the ab initio or Density Functional Theory (DFT) levels in the absence 

of external forces, have been reported for only several tenths of these compounds. 

Knowledge of such intrinsic conformational preferences is however essential to 

understand the features that distinguish these nc-aa from the coded ones and, 

therefore, for a complete and satisfactory exploitation of their capabilities. Structural 

data yielded by crystallographic or spectroscopic studies on peptide sequences 

incorporating nc-aa are also available for an increasing number of cases. Comparison 

of such experimental information with that derived from high-level theoretical 

calculations helps establish the influence of the external packing forces, the solvent 

effects, and the chemical environment on the conformational propensities of nc-aa. 

In practice, the use of nc-aa with well-characterized conformational properties is 

frequently limited because the relevant information is highly dispersed. Indeed, the 

quantum mechanical calculations describing the intrinsic conformational preferences 

of these compounds are typically reported in physical chemistry journals, while their 

synthesis appears in organic chemistry publications. Crystallographic and 

spectroscopic studies of small peptide sequences containing nc-aa are usually 

developed by organic and peptide chemists and published in journals specialized in 

these fields. In contrast, many applications of nc-aa are tested by researchers working 

on protein engineering, medicine, or materials science. This highly dispersed 

information together with the wide and diverse potential applications of nc-aa made 

us realize that the design of a simple informatics tool integrating the contributions 



 

supplied by the different research fields would facilitate the use of these compounds 

in many practical applications. To this aim, we have built a data base of nc-aa 

containing the fundamental conformational descriptors and relevant bibliographic 

information about experimental studies and already developed practical applications. 

This user-friendly on-line facility is intended as an aid to the development of new 

applications by combining the structural descriptors with thermodynamics criteria for 

a proper selection of nc-aa compatible with the user-defined requirements.   

In this work, we present NCAD (Non-Coded Amino acids Data base), a data 

base conceived and created to identify the nc-aa that are compatible with a given 

structural motif, which is the key requirement for the application of these compounds 

in life and materials sciences. The data base integrates structural and energetic 

descriptors of those nc-aa whose intrinsic conformational properties have been 

previously studied using ab initio or DFT quantum mechanical calculations and 

reported in the literature. The information about NCAD presented in the following 

sections is organized as explained next. First, the most relevant aspects of the data 

base are described, such as structure, contents, technical features, and relationships 

allowed among the different descriptors. Next, -tetrasubstituted-amino acids, 

being the first family of nc-aa integrated into the data base, are presented. The 

conformational preferences of these compounds, which have been the subject of 

extensive study by our research groups, are examined and discussed using the overall 

information captured in the data base. Finally, the utility and applicability of the data 

base is illustrated with a simple example. Specifically, conformationally restricted 

analogues of the neuropeptide Met-enkephalin are designed through targeted 

replacements with nc-aa, using the information incorporated in the data base. 

 

 

 

 

 



 

6.1.2. Methods 

 NCAD: Contents, Tools and Technical Features  

 

 

 

Figure 6.1.1.. Schematic graphic algorithm showing the structure of the NCAD data base. 

Figure 6.1.1. portrays the NCAD contents. The information contained in the data 

base for each nc-aa is the following: 

a) A complete description (dihedral angles, three-dimensional structure, 

relative energy, etc) of all the minimum energy conformations found for each 

amino acid using ab initio or DFT quantum mechanical calculations. It should be 

noted that such theoretical studies are carried out on small peptide systems of 

general formula RCO-Xaa-NHR’ (Xaa = amino acid; R and R’ = Me or H). 

When several theoretical studies were available in the literature for a particular 

amino acid, the information was extracted from that using the highest level of 

calculation. Conformational studies based on calculations less accurate than ab 

initio or DFT methods, i.e. molecular mechanics based on classical force-fields, 



 

semiempirical procedures, etc, have not been considered for NCAD. It is worth 

noting that only in a few cases are the atomic coordinates of the minimum 

energy conformations supplied by the authors as Supporting Information of the 

original article. Accordingly, in order to incorporate such coordinates into the 

data base for all nc-aa, all minimum energy conformations for which coordinates 

were not available have been re-calculated using the same theoretical level as in 

the original study. Although this is an arduous and extremely time-consuming 

task, we considered it essential for the usefulness of the data base. Throughout 

the theoretical works describing the conformational propensities of nc-aa, 

different nomenclature systems are used to term the energy minima located. We 

have unified them so that only the nomenclature introduced by Perczel et al.14 is 

used in NCAD to identify the backbone conformation of the different minima 

characterized for each amino acid. According to it, nine different conformations 

can be distinguished in the potential energy surface E=E(,) of -amino 

acids,14 namely D, D, D, D, DL, L,L,L, and L. This information is 

particularly useful to check the compatibility of the minima energetically 

accessible to a particular nc-aa with the secondary structure motifs typically 

found in peptides and proteins (helices, sheets, turns, etc).  

b) Bibliographic information related to experimental data, when available. 

Selected references describing the synthesis and characterization of each 

particular amino acid in its free form, as a salt, or with the amino group 

adequately protected for use in peptide synthesis are given. Also references 

providing experimental information about the conformational preferences of the 

amino acid are included in NCAD. These concern mainly structural studies of 

peptides incorporating nc-aa using either spectroscopic or crystallographic 

techniques. Furthermore, in selected cases, atomic coordinates extracted from X-

ray crystal structures have also been included in the data base. Such three-

dimensional structures allow a direct comparison with the minimum energy 

conformations predicted by theoretical calculations. Upon request and 

permission of the authors, we plan to include in NCAD examples of crystal 

structures of peptide sequences incorporating different nc-aa. This does not 

intend to be comprehensive, since we are aware that the crystal structures of 

peptides and proteins containing nc-aa are already stored in specialized data 



 

bases, like the Cambridge Structural Data base15 (CSD) and the Protein Data 

Bank16 (PDB). 

c) Applications reported for each particular nc-aa divided into two main 

categories, namely, those related to the biological properties of the amino acid 

(or compounds incorporating it), and applications in materials science. The most 

relevant publications in each field, either papers in scientific journals or patents, 

are given. 

As commented above, NCAD has been conceived to contain all those nc-aa 

whose intrinsic conformational propensities have been determined through ab 

initio or DFT quantum mechanical calculations. Such amino acids may be chiral 

or not. In the former case, two enantiomeric forms do exist for a given amino 

acid. Obviously, the conformational preferences of only one enantiomer have 

been calculated and are included in the data base, since those of the enantiomeric 

species may be obtained by simply changing the signs of the dihedral angles. 

The bibliographic information concerning synthesis, spectroscopic 

characterization, experimental structural properties, and applications included in 

the data base covers the two enantiomers as well as the racemic form, when 

applicable. 

Figure 6.1.2. shows the entity-relationship diagram17 (ERD) of NCAD. This 

diagram summarizes the conceptual representation of the information stored in the 

data base, as well as their inter-relational scheme. The entities are shown in squares, 

the relationships are lines between boxes, and their multiplicities are displayed using 

numbers or stars following ERD standards. All the experimental and theoretical 

information in the data base has been extracted from relevant literature sources and, 

accordingly, all data available in NCAD for a given amino acid are connected with 

the bibliographic references. Labels (labelexp, labelappli entities) allow the 

identification of the applications described for each amino acid as well as the 

experimental data. The data base also stores the atomic coordinates of the minimum 

energy conformations (minimum) predicted by a particular quantum mechanical 

method (theory), which have been extracted from the literature (bibliography), and its 

correspondence with secondary structure motifs (conformation-secondarystructure). 

Furthermore, internal coordinates, such as dihedrals angles (dihedrals) for both the 

backbone and the side chain, can be easily obtained from the data base for each 

minimum energy conformation of a given amino acid.  
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Figure 6.1.2.. Chen’s diagram showing the relationships among the entities in NCAD. 

NCAD can be easily used by non-experts in informatics, since the interface 

designed applies a simple windows system. This system provides access to six 

folders. The first one (Figure 6.1.3.a) is used to define the criteria (one or several, i.e. 

.AND. or .OR.) applied to the search. These may be chosen among the following: (i) 

the chemical nature of the side chain, i.e. aromatic, aliphatic, charged, or polar (non-

charged); (ii) the category, which corresponds to the structural feature distinguishing 

a particular family of nc-aa, e.g. -tetrasubstituted -amino acids, dehydro -amino 

acids, N-substituted -amino acids, -amino acids, etc; (iii) the molecular formula of 

the amino acid; (iv) the type of backbone conformation located among the energy 

minima, according to the nomenclature established by Perczel et al.,14 i.e. D, D, D, 

D, DL, L,L,L, and L; (v) the (,) backbone dihedral angles corresponding to 

such energy minima, with both the values and the tolerance being specified by the 

user; (vi) the name of the researcher who performed the theoretical or experimental 



 

investigation (author); (vii) the experimental studies reported in the literature relative 

to synthesis and characterization or to conformational properties; and (ix) the 

applications (in medicine or materials science) described. 

The amino acids fulfilling all the selected criteria are displayed in a list (Figure 

6.1.3.a) (by default, when no criterion is specified, all residues included in NCAD are 

listed) and a report with the search criteria and results may be generated. The user 

can select three different nomenclatures to indicate the amino acids names: 

systematic, common or abbreviated (usually resembling the three-letter code used for 

proteinogenic amino acids), e.g. 2-amino-2-methylpropanoic acid, -aminoisobutyric 

acid or Aib, respectively. It should be noted that the common and abbreviated names 

are not available for all residues.  

Selection of an amino acid from this list allows access to all the information 

stored in the data base for this particular residue, which is presented in the remaining 

five folders. The “general info” folder provides the chemical description of the amino 

acid, including a graphical scheme of its chemical structure and the types of 

experimental studies and applications available. These data together with the 

corresponding bibliographic references stored in the data base for the selected amino 

acid may be exported to a report. The “conformations” folder (Figure 6.1.3.b) 

displays information extracted from the theoretical study performed at the highest 

quantum mechanical level reported in the literature. Specifically, it includes the 

bibliographic source, the number of minima characterized, the list of dihedral angles 

and energy of each minimum, the position of each minima within the Ramachandran 

map, and the quantum mechanical method used in the theoretical study. A report 

containing this information may be generated. Furthermore, this folder allows a 

graphical inspection of each minimum energy conformation with the molecular 

visualization software Rasmol.18 This is made possible by accessing the atomic 

coordinates stored in the data base through an internal call of the interface. The 

atomic coordinates of each minimum energy conformation may be also extracted. 

The next two folders provide bibliographic data about experimental studies (synthesis 

and characterization, conformational propensities) and reported applications in 

medicine and materials science. Such bibliographic information is not intended to be 

comprehensive but rather present some significant publications in the field. Thus, 

these folders supply essential information reported for the amino acid considered, but 

a systematic literature search is recommended if this amino acid is finally selected by 



 

the user for practical applications. Finally, the last folder allows access to the X-ray 

crystal structures of peptide sequences containing the selected amino acid that are 

available in the data base. Three-dimensional visualization of these structures is made 

through the Rasmol software.18  

-Tetrasubstituted -Amino Acids 

Because of our interest in -tetrasubstituted -amino acids and their relevance in 

the design of peptides with well-defined conformational properties,19 this is the first 

family of nc-aa integrated into NCAD. Table 6.1.1. lists the 29 -tetrasubstituted -

amino acids whose intrinsic conformational propensities have been determined to 

date using ab initio or DFT quantum mechanical methods20–37 according to a 

literature search. This list is expected to be dynamic and thus be updated when 

studies on new compounds in this category are reported. Other families of nc-aa will 

be integrated into NCAD in the near future. 

-Tetrasubstituted amino acids are characterized by an -carbon atom bearing 

four substituents (different from hydrogen) and hence are also called quaternary 

amino acids. They are usually divided into two subtypes, depending on whether the  

carbon is involved in a cyclic structure or not. Notably, the former has been studied 

much more frequently, the number of entries in the data base being 24 and 5, 

respectively. Regarding chirality, 9 residues in Table 6.1.1. present two identical 

substituents at the  carbon and are therefore achiral, namely Aib, Ac3c, Dpg, Dbg, 

Ac4c, Ac5c, Adt, Ac6c, and Toac. The remaining 20 amino acids present at least one 

chiral center. In the latter case, only the low energy minima of one enantiomer 

(usually L) have been considered for incorporation into NCAD, those of the other 

enantiomer being easily deducible by simply changing the sign of both (,) angles. 

When two or more chiral centers are present in the molecule, the stereochemistry is 

indicated through the R/S instead of the L/D nomenclature (the S configuration at the 

 carbon usually corresponding to L). 
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Figure 6.1.3.. Interface system used to interact with the NCAD data base. (a) Window used 

to perform the search. (b) Window showing details about the theoretical study at the highest 

quantum mechanical level reported in the literature for the nc-aa selected; the Rasmol 3D-

view of a selected minimum energy conformation and the report are also displayed (both are 

generated through internal calls of the interface upon the user’s request).



 

Table 6.1.1.. -Tetrasubstituted -amino acids stored in NCAD. The systematic 

name (and the common and abbreviated names,a when available), the chemical 

structure, and the reference reporting the quantum mechanical study are given for 

each amino acid. 

Abbreviated 
name 

Systematic name 
(common name) 

Structure Ref. 

Aib 2-amino-2-methylpropanoic acid 
(-aminoisobutyric acid) 

H2N COOH

CH3 CH3

 

20 

Ac3c 1-aminocyclopropanecarboxylic acid 

H2N COOH  

21 

(1S,2S)c3Phe (1S,2S)-1-amino-2-phenylcyclopropanecarboxylic acid 

H2N COOH

Ph

 

21 

(1S,2R)c3Phe (1S,2R)-1-amino-2-phenylcyclopropanecarboxylic acid 

H2N COOH

Ph

 

21 

L-c3Dip (S)-1-amino-2,2-diphenylcyclopropanecarboxylic acid 

H2N COOH

Ph Ph

 

22 

(2S,3S)c3diPhe (2S,3S)-1-amino-2,3-diphenylcyclopropanecarboxylic acid 

H2N COOH

Ph
Ph

 

23 

Dpg 2-amino-2,2-diphenylacetic acid  
(diphenylglycine) 

H2N COOH

Ph Ph

 

24 

Dbg 2-amino-2-benzyl-3-phenylpropanoic acid  
(dibenzylglycine) 

H2N COOH

PhPh

 

25 

Ac4c 1-aminocyclobutanecarboxylic acid 

H2N COOH  

26 

 

Ac5c 1-aminocyclopentanecarboxylic acid 

H2N COOH

 

27 



 

Adt 4-amino-1,2-dithiolane-4-carboxylic 

acid 

H2N COOH

SS

 

28 

(1S,2S)c5Phe (1S,2S)-1-amino-2-phenylcyclopentanecarboxylic acid 

H2N COOH

Ph H

 

29 

(1S,2R)c5Phe (1S,2R)-1-amino-2-phenylcyclopentanecarboxylic acid 

H2N COOH

H Ph

 

29 

(1S,2S)c5Arg (1S,2S)-1-amino-2-(guanidinomethyl)-cyclopentanecarboxylic acid 

HN

H2N NH2

H2N C

H

 

30 

(1S,2R)c5Arg (1S,2R)-1-amino-2-(guanidinomethyl)-cyclopentanecarboxylic acid 

NH

H2N NH

H

H2N COOH

 

30 

Ac6c 1-aminocyclohexanecarboxylic acid 

H2N COOH  

31 

(1S,2S)c6Phe (1S,2S)-1-amino-2-phenylcyclohexanecarboxylic acid 

H2N COOH

Ph H

 

32 

(1S,2R)c6Phe (1S,2R)-1-amino-2-phenylcyclohexanecarboxylic acid 

H2N COOH

H Ph

 

32 

Toac 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl-4-carboxylic acid 

H2N COOH

N

O·
CH3

CH3

H3C

H3C

 

33 

— (1S,2R,4R)-2-aminobicyclo[2.2.1]heptane-2-carboxylic acid 
COOH

NH2

 

34 



 

— (1R,2R,4S)-2-aminobicyclo[2.2.1]heptane-2-carboxylic acid 

NH2

COOH  

34 

— (1S,2S,3R,4R)-2-amino-3-phenylbicyclo[2.2.1]heptane-2-
carboxylic acid COOH

NH2

Ph

 

34 

— (1S,2S,3S,4R)-2-amino-3-phenylbicyclo[2.2.1]heptane-2-
carboxylic acid COOH

NH2

Ph
 

34 

— (1R,2S,3R,4S)-2-amino-3-phenylbicyclo[2.2.1]heptane-2-
carboxylic acid 

NH2

COOH
Ph

 

34 

— (1R,2S,3S,4S)-2-amino-3-phenylbicyclo[2.2.1]heptane-2-
carboxylic acid 

NH2

COOH

Ph

 

34 

L-(Me)Pro (2S)-2-methylpyrrolidine-2-carboxylic acid 
[(-methyl)proline)] N

H COOH

Me

 

35 

L-(Ph)Pro (2R)-2-phenylpyrrolidine-2-carboxylic acid 
[(-phenyl)proline] N

H COOH

Ph

 

35 

— (1S,2R,3R,5R,6R,7S,8R,9R,10R)-8-
aminopentacyclo[5.4.0.0(2,6).0(3,10).0(5,9)]-undecane-8-carboxylic acid 

H2N COOH
 

36 

— (S)-4-aminopentacyclo[6.3.0.0(2,6).0(3,10).0(5,9)]-undecane-4-
carboxylic acid 

H2N COOH  

37 

a In the abbreviated name, the configuration is defined by the L/D nomenclature when only the  carbon is chiral (L 
usually corresponding to S). When two or more chiral centers are present, the R/S stereochemical descriptors are used 
instead. 

Figure 6.1.4. presents Ramachandran maps corresponding to the (,) backbone 

dihedral angles of all the energy minima reported for the 29 -tetrasubstituted -

amino acids included in the data base.20–37 Those chiral in nature (Figure 6.1.4.a) are 



 

represented together with the minima calculated by ab initio quantum mechanical 

methods for the N-acetyl-N’-methylamide derivative of L-alanine38 (MeCO-Ala-

NHMe), as a reference for proteinogenic amino acids. The non-chiral -

tetrasubstituted residues (Figure 6.1.4.b) are compared with the glycine minima 

(calculated ab initio on MeCO-Gly-NHMe38). The latter map is centrosymmetric, 

since two points (,) and (–,–) are equivalent for achiral amino acids. 

As can be seen, tetrasubstitution at the  carbon affects the location of the 

minimum energy conformations typically found for proteinogenic residues. 

Specifically, the L conformation (intramolecularly hydrogen-bonded seven-

membered ring, also denoted C7 conformation), which was found38 at (,) = (–

86,79) and (–86,72) for Ala and Gly, respectively, tends to evolve towards lower 

absolute  values upon replacement of the -hydrogen atom by a substituent. The 

distortion of the  dihedral angle shown by quaternary -amino acids is maximal for 

1-aminocyclopropanecarboxylic acid (Ac3c, Table 6.1.1.), which presents a L 

minimum at (,) = (–77,34),21 as a consequence of the peculiar stereoelectronic 

properties of the three-membered ring.3 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.1.4.. Ramachandran maps showing all 
the minimum energy conformations predicted by 
quantum mechanical calculations for the -
tetrasubstituted -amino acids included in NCAD 
(see Table 6.1.1.): (a) chiral residues (black 
squares) compared with Ala (grey squares); (b) 
achiral residues (black squares) compared with 
Gly (grey squares). 



 

The  backbone dihedral angle characterized for the -helix conformation also 

deviates to lower absolute values when the  carbon is tetrasubstituted. Thus, the L 

conformation of Ala was located at (,) = (–61,–41),38 (as was for Gly38) whereas 

that of its -methylated counterpart, -aminoisobutyric acid (Aib, Table 6.1.1.) is 

found at (–65,–31).20 A similar trend, or even more pronounced, is observed for most 

amino acids in Table 6.1.1., either chiral or not. Thus, for example, Ac5c, Ac6c, and 

L-c3Dip exhibit L minima with (,) values (–73,–15),27 (–70,–20),31 and (–80,–

20),22 respectively. This apparently minor change brings about important 

consequences and, indeed, Aib and other quaternary -amino acids are known to 

stabilize the 310-helix19 rather than the -helix typically found for proteinogenic 

amino acids. The slight difference in the backbone dihedral angles translates into 

significant variations in the parameters associated to each helical structure, including 

the hydrogen bonding pattern, which involves residues i and i+3 in the 310-helix and 

residues i and i+4 in the -helix.40 Quaternary -amino acids can therefore be used 

to design helical structures exhibiting hydrogen-bonding schemes and geometries 

different from those formed by standard amino acids. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.1.5.. As in Figure 6.1.4., but only 

minimum energy conformations with a 

relative energy below 2.0 kcal/mol are 

considered. 



 

Another effect of -tetrasubstitution is the stabilization of minimum energy 

conformations that are not usually detected experimentally for coded amino acids 

because they are energetically unfavored. This feature is clearly observed when only 

the minima found for quaternary amino acids within a relative energy interval of 2.0 

kcal/mol, i.e. those energetically accessible, are considered and compared with Ala or 

Gly (see Figures 6.1.5.a and 6.1.5.b for chiral and achiral residues, respectively). 

Specifically, the D and L regions of the (,) map are visited by some -

tetrasubstituted amino acids, like Aib20 and (1S,2R)c3Phe21 but not by Ala38 or Gly.38 

Furthermore, the L conformation is energetically accessible to several of the nc-aa 

considered, whereas the Ala38 L minimum is unfavored by near 4.0 kcal/mol with 

respect to the global minimum and the same holds true for Gly.38 Moreover, minima 

in the D region are found under the threshold of 2.0 kcal/mol for several amino acids 

in Table 6.1.1., among which are not only those of achiral nature, and therefore 

presenting an identical propensity to accommodate L and D conformations, but also 

some exhibiting an L configuration, like (1S,2S)c5Arg.30 Therefore, tetrasubstitution 

at the  carbon may result in the stabilization of conformations typically accessed by 

D amino acids even if the L chirality is maintained.   

The features commented above illustrate the great conformational impact that 

may derive from the presence of -tetrasubstituted amino acids in a peptide chain, 

which has been demonstrated in numerous investigations.19,40 Nowadays, the 

usefulness of this family of nc-aa in the control of peptide conformation is beyond 

doubt, but the practical application to the design of biologically relevant molecules or 

peptide-based materials is only in its earliest stages. NCAD is intended to mean a 

significant contribution to its development. 

6.1.3. Results and discussion 

In Silico Molecular Engineering for Targeted Replacements in Met-Enkephalin 

Using NCAD: A Test Case 

We provide in this section a computational design study aimed at constructing 

mutants of Met-Enkephalin using information extracted from NCAD. This is not 

intended to provide a deep and rigorous investigation of the resulting peptides, but to 

illustrate the potential utility of the data base in applications involving peptide and 

protein engineering through a test case.  



 

The Met-enkephalin neurotransmitter is a pentapeptide (Tyr-Gly-Gly-Phe-Met) 

that interacts with opioid receptors.41 Opioid systems play a significant role in pain 

medication and opiate dependence, regulate dopamine release and are thought to be 

important for drug-induced reward. Interestingly, no unique native structure has been 

found for Met-enkephalin, whose conformational flexibility has been examined using 

a wide variety of experimental techniques (e.g. X-ray crystallography, NMR, circular 

dichroism, and infrared, ultraviolet and fluorescence spectroscopies).42 Accordingly, 

this short peptide is able to adopt different conformations depending on the biological 

context, which explains its ability to interact with opioid receptors of the , , and  

types.41 The multiple conformational states accessible to Met-enkephalin are 

therefore at the basis of its poor selectivity of action. A number of theoretical studies 

using both conventional and advanced simulation methods based on molecular 

dynamics (MD) and Monte Carlo (MC) algorithms have been devoted to explore the 

energy landscape of Met-enkephalin and have shown its ill-defined conformational 

state.43–45 

We have examined the information stored in NCAD to propose targeted 

replacements able to stabilize one of the conformations experimentally detected for 

Met-enkephalin. Specifically, we considered the conformation identified by NMR for 

Met-enkephalin in fast-tumbling bicelles.46 The atomic coordinates of this 

conformation were extracted from the Protein Data Bank16 (PDB code: 1PLW).  

The peptide was placed in the center of a cubic simulation box (a = 44.6 Å) 

filled with 2916 explicit water molecules, which were represented using the TIP3 

model.47 The N- and C-termini were described using the positively charged 

ammonium and the negatively charged carboxylate groups, respectively. All the MD 

simulations were performed using the NAMD computer program.48 In order to 

equilibrate the density of the simulation box, different consecutive rounds of short 

MD runs were performed. Thus, 0.5 ns of NVT-MD at 350K were used to 

homogeneously distribute the solvent in the box. Next, 0.5 ns of NVT-MD at 298K 

(thermal equilibration) and 0.5 ns of NPT-MD at 298K (density relaxation) were run. 

After this, the peptide conformation was equilibrated by running a 3 ns trajectory of 

NVT-MD at 298K. The last snapshot of this trajectory was used to determine the 

(,) dihedral angles of the three central residues of Met-enkephalin (Gly-Gly-Phe), 

which define the most flexible region of the peptide. The (,) values thus obtained 

were (83,77) for Gly2, (61,–81) for Gly3, and (–66,–38) for Phe4, which correspond 



 

to the D, D, and L conformations, respectively, according to Perczel’s 

nomenclature.14  

These structural parameters have been used to design targeted substitutions in 

Met-enkephalin aimed at reducing the flexibility of the peptide backbone so that the 

particular conformation selected is stabilized. This molecular design pursues the 

validation of the performance and usefulness of the NCAD data base. The following 

criteria were considered in the design: (i) the side chain functionality of the nc-aa 

selected should be similar to that of the natural residue to be replaced, which is 

essential to preserve the biological functions of the peptide; and (ii) the intrinsic 

conformational properties of the selected nc-aa must be consistent with the 

conformation adopted by the targeted residue in the parent peptide. Based on these 

selection criteria and the structural parameters provided by MD for the Gly-Gly-Phe 

peptide fragment, three different mutations were proposed using the information in 

NCAD:  

(a) Replacement of Gly2 or Gly3 by -aminoisobutyric acid (Aib, see Table 

6.1.1.). This amino acid bears two methyl groups at the  position (instead of 

the two -hydrogen atoms in Gly) and presents low-energy minima20 located at 

the L and L regions of the Ramachandran map, with (,) angles (–65,–31) 

and (–76,58), and relative energies 1.7 and 0.0 kcal/mol, respectively, at the 

MP2/6-31G(d)//HF/6-31G(d) level. Given the non-chiral nature of Aib, these 

minimum energy conformations are equivalent to the enantiomeric D and D, 

characterized by (,) dihedrals (65,31) and (76,–58), respectively. The latter 

values fit very well with those provided by MD for the Gly2 [(83,77)] and 

Gly3 [(61,–81)] residues of Met-enkephalin. The mutants resulting from these 

substitutions are denoted G2 and G3.  

(b) Replacement of Phe4 by (2R,3R)-1-amino-2,3-

diphenylcyclopropanecarboxylic acid, known in the abbreviated form as 

(2R,3R)c3diPhe. This cyclic -tetrasubstituted residue contains a cyclopropane 

ring bearing two vicinal phenyl substituents in a trans relative disposition [see 

the (2S,3S) enantiomer in Table 6.1.1.]. It retains the side chain of Phe and 

shows an energy minimum of the L type characterized by (,) values (–67,–

27),23 which closely resemble those obtained for Phe4 in Met-enkephalin in the 

MD trajectory described above, (–66,–38). Moreover, (2R,3R)c3diPhe has been 



 

shown experimentally to exhibit a high propensity to adopt L conformations 

due to the interaction between the two rigidly held aromatic groups and the 

peptide backbone.49 The mutant resulting from the replacement of Phe4 by 

(2R,3R)c3diPhe in Met-enkephalin is denoted F4. 

(c) MD trajectories of 6 ns were performed for the wild-type peptide and the 

three mutants designed. The starting geometries for the mutants were 

constructed using the coordinates stored in the data base for the minimum 

energy conformation selected for each nc-aa. The protocols applied for thermal 

equilibration and density relaxation were identical to those described above. 

All each nc-aa. The protocols applied for thermal equilibration and density 

relaxation were identical to  

those described above. All the force-field parameters for the MD simulations 

were extracted from the AMBER libraries,50 with the exception of the 

electrostatic charges for the nc-aa, which were taken from the papers quoted 

in the data base.  

Figure 6.1.6. shows the accumulated Ramachandran plots obtained through 6 ns 

of simulation corresponding to the Gly2, Gly3 and Phe4 residues for the wild-type 

peptide. As can be seen, the two Gly residues sample all the accessible regions of the 

(,) space, which is consistent with the large conformational flexibility observed for 

Met-enkephalin in aqueous solution both by experimental42a,b,d–f and theoretical 

techniques.43–45 The Phe4 residue also exhibits a great flexibility, although it only 

explores conformations in the left-half part of the map, as expected from its L 

configuration (in comparison, for the non-chiral Gly residue, the left and right parts 

of the map are energetically equivalent). Therefore, all three residues are actually 

found to adopt (,) values in all the regions that are energetically accessible to 

them. In other words, no selectivity is detected towards a particular structure among 

those allowed to L (in the case of Phe) or achiral (in the case of Gly) coded residues. 

It is worth noting that the sampling of the conformational space shown in Figure 

6.1.6. is in excellent agreement with that obtained for the same peptide using replica 

exchange MD.45 

 

 



 

 Figure 6.1.6.                                Figure 6.1.7. 

 

Figure 6.1.6.. Backbone (,) dihedral angles distributions obtained for the Gly2, Gly3, and 

Phe4 residues in wild-type Met-enkephalin. 

Figure 6.1.7.. Backbone (,) dihedral angles distributions obtained for the Aib2, Aib3, and 

(2R,3R)c3diPhe4 residues in the G2, G3, and F4 mutants of Met-enkephalin. 

 

Figure 6.1.7. shows the (,) distributions obtained for the nc-aa included in 

mutants G2, G3 and F4 of Met-enkephalin. Table 6.1.2. displays the population of 

the different backbone conformations, which is expressed in terms of number of 

visits to a certain region of the Ramachandran map during the MD trajectories. These 



 

data provide evidence for the great conformational selectivity induced by the -

tetrasubstituted amino acids used. In particular, for the G2 mutant, the Aib residue 

(Gly2 substitute) falls exclusively in the D region. Accordingly, the substitution 

designed using NCAD successfully restricts the conformational flexibility of the 

Gly2 residue and, moreover, preserves the selected arrangement. Thus, the 

replacement of Gly2 by Aib results in the stabilization of the conformation adopted 

by the coded residue in the starting geometry. 

Replacement of Gly3 by Aib also has a conformational confinement effect 

although less intense. Indeed, only the D, D, and D structures are adopted by the 

Aib residue in the G3 mutant (Figure 6.1.7.), their respective populations being 

29.5%, 66.1% and 4.4% (Table 6.1.2.). In contrast, Gly3 in the unmodified peptide 

was found to visit all nine regions used by Perczel et al.14 to describe the 

conformational space. We also note that the two regions most populated by Gly3 in 

the wild-type system, namely D and D, are kept by Aib in the G3 mutant. Thus, 

although the Gly-Aib exchange proved less restrictive in G3 than in G2, the results 

obtained for the G3 mutant illustrate again that properly selected nc-aa can be 

successfully used to reduce the conformational freedom of biological 

(macro)molecules through the stabilization of selected secondary structure motifs.  

Table 6.1.2.. Relative shares of populations (%) found for selected residues in wild-

type Met-enkephalin (Gly2, Gly3, and Phe4) and for the -tetrasubstituted -amino 

acids included in the G2, G3, and F4 mutants.a 

 
D
 

D
 

D
 

D
 

DL
 

L
 

L
 

L
 

L
 

Gly2 25.1 8.9 3.1 0.5 5.0 1.0 10.1 34.0 12.3 

Gly3 29.2 7.3 30.3 3.6 7.0 1.9 5.7 7.3 7.7 

Phe4 0.0 0.0 0.0 19.1 18.4 3.5 2.9 21.7 34.4 

 

Aib2 (G2) 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Aib3 (G3) 29.5 4.4 66.1 0.0 0.0 0.0 0.0 0.0 0.0 

(2R,3R)c3diPhe4 (F4) 0.0 0.0 0.0 0.0 0.0 0.0 13.1 4.7 82.2 
a The nine types of backbone conformation defined in ref. 14 have been considered 

 



 

Table 6.1.3..  Ratio between the populations of conformationsa found for the -

tetrasubstituted -amino acids in the G2, G3, and F4 mutants and the corresponding 

proteinogenic residues in wild-type Met-enkephalin. 

  
D


D
 

D
 

D


DL


L


L


L
 

L
 

Aib2 (G2) 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Aib3 (G3) 1.0 0.6 2.2 0.0 0.0 0.0 0.0 0.0 0.0 

(2R,3R)c3diPhe4 (F4) –b –b –b 0.0 0.0 0.0 4.5 0.2 2.4 

a The nine types of backbone conformation defined in ref. 14 have been considered. b This 
conformation was not adopºted by the -tetrasubstituted residue. 

 

To further evidence the magnitude of the conformational restrictions introduced by 

the nc-aa in this study, Table 6.1.3. displays the ratio between the populations of the 

conformations found for the quaternary -amino acids and those of the 

corresponding coded residues in the wild-type peptide. For instance, mutant G3 

increases the population obtained for the D conformation of Gly3 in Met-enkephalin 

by a factor of 2.2. 

In the F4 mutant, the restricted geometry of (2R,3R)c3diPhe affects mainly the 

 angle, which remains fixed in the neighborhood of –60º during the whole MD 

trajectory (Figure 6.1.7.). In comparison, the Phe4 residue in Met-enkephalin was 

found to cover all the possible negative values of : –180º <  < –50º (Figure 

6.1.6.). As a result, the L conformation, which corresponds to that adopted by 

Phe4 in the original arrangement selected, significantly increases its population 

from the wild-type peptide (34.4%) to the F4 mutant (82.2%) and becomes the 

most visited structure during the simulation of the latter peptide. The selectivity 

ratio for the F4 mutant is 4.5 and 2.4 for the L and L regions, respectively (Table 

6.1.3.). Accordingly, the nc-aa used as a Phe4 substitute also stabilizes the desired 

conformation and further proves the utility and potential applicability of the new 

data base. 

 

 

 

 



 

6.1.4. Conclusions  

NACD (Non-Coded Amino acids Data base) is an easy-to-use research tool 

that integrates the intrinsic conformational preferences of non-coded amino acids to 

facilitate their use in the design of peptide- or protein-based compounds useful in 

different fields of the life and materials sciences. Our aim is to provide the outcome 

of structural studies of nc-aa, including their properties and chemical 

characteristics, obtained by scientists in the organic and physical chemistry 

disciplines to those focusing on biological, bioengineering and medicinal 

applications, bringing the fields together. The information provided in NCAD, 

which is not available in other data bases, is also expected to be a useful resource 

for protein designers, modelers and experts in bioinformatics. The present paper 

presents the structure and informatics architecture of the data base, the interface 

that connects the data base with the users, the description of the first family of nc-

aa integrated into the data base (-tetrasubstituted -amino acids), and a test case 

showing the applicability of the data base. Researchers can now easily select the 

most appropriate residue from a collection of nc-aa with well established 

conformational properties and introduce it in a peptide sequence or any other 

(macro)molecule. Additional families of non-proteinogenic amino acids will be 

included in NCAD in due course. 
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6.2.1 Introduction 

Apart from the genetically coded -amino acids found in proteins, there is a large 

number of amino acids grouped under the common name of non-proteinogenic or 

non-coded amino acids (nc-aa). Some of these nc-aa are present in nature, occurring 

in non-ribosomally produced peptides (e.g. antibiotics); however, most are 

synthesized by chemists. Among the latter, those used for protein engineering1-6 and 

nanobiology7-12 are particularly interesting, and their applications extend to many 

fields such as pharmacology (drug design),13,14 biotechnology (biosensors),15,16 and 

nanomedicine (systems for drug delivery and diagnosis through imaging).17,18 

In spite of the great significance and potential utility of nc-aa in modern biology, 

biomaterials engineering, and medicine, structural information is available only for a 

limited number of these.  In the last two decades, the intrinsic conformational 

preferences of several tens of nc-aa have been investigated through sophisticated 

quantum mechanical calculations at the ab initio or Density Functional Theory (DFT) 

levels. Specifically, these reliable theoretical methods have been used to sample the 



 

potential energy hypersurface of small peptide systems incorporating such nc-aa in 

the absence of external forces. At the same time, crystallographic and spectroscopic 

structural data on peptide sequences incorporating nc-aa are becoming available for 

an increasing number of cases. Comparison of such experimental information with 

that derived from high-level theoretical calculations helps establish the influence of 

packing forces, solvent effects, and the chemical environment on the conformational 

propensities of nc-aa. 

In practice, the use of nc-aa with well-characterized conformational properties is 

frequently limited because the relevant information is highly dispersed. Quantum 

mechanical calculations describing the intrinsic conformational preferences of these 

compounds are typically reported in physical chemistry journals, while their synthesis 

and crystalline structures developed by organic and peptide chemists are published in 

journals specialized in these fields. In contrast, many applications of nc-aa are tested 

by researchers working on protein engineering, medicine, or materials science. In 

order to integrate the dispersed contributions about nc-aa, which is expected to 

facilitate their practical application in many research fields, a database of nc-aa was 

recently built.19  

NCAD (Non-Coded Amino acids Database) is a database conceived and created to 

identify the nc-aa that are compatible with a given structural motif, which is the key 

requirement for the application of these compounds in the life and materials sciences. 

The database, which is publicly accessible through a web page, integrates structural 

and energetic descriptors of those  nc-aa whose intrinsic conformational properties 

have been previously studied using ab initio or DFT quantum mechanical calculations 

and reported in the literature. In our recent work19 we described the technical aspects 

of the database (structure, contents, informatics features and relationships among the 

different descriptors) and presented the first family of nc-aa integrated into it. 

Specifically, we discussed the relevance of -tetrasubstituted -amino acids in the 

design of peptides with well-defined conformational properties and described the 29 

-tetrasubstituted -amino acids whose intrinsic conformational propensities have 

been determined to date using ab initio or DFT quantum mechanical methods 

according to a literature search.19 

In this work, we extend NCAD to three new families of compounds: (i) N-

substituted -amino acids; (ii) thio--amino acids; and (iii) diamines and diacids 

surrogates of -amino acids that are used to build pseudopeptides containing one (or 



 

more) retropeptide link(s), that is, a peptide bond in reversed direction to that of its 

immediate neighbors. The members of three such series can be used to engineer 

peptides and proteins incorporating modifications at the conventional –NHCO– 

peptide bond. Below, the work is organized as follows. First, a brief description of the 

contents and structure of NCAD is provided. After this, the three families of amino 

acids integrated in the database are presented. Next, the utility of the database is 

illustrated by engineering helical models using the information of the diamines and 

diacids included in NCAD. Finally, the conclusions of the work are outlined. 

NCAD: Integrating the intrinsic conformational preferences of non-coded amino 

acids 

NCAD integrates information about nc-aa whose intrinsic conformational 

preferences have been studied by applying ab initio or DFT quantum mechanical 

calculations to the smallest peptide systems which contains them (that is, the nc-aa 

bearing the amino and carboxylic acid termini as an amide, typically capped with the 

acetyl and methylamide groups). The information contained in NCAD is divided into 

three categories: 

1) Minimum energy conformations. All the minima found for each compound 

contained in the database are described in detail. Dihedral angles, atomic 

coordinates and relative energies obtained at the highest level of theory among 

those used to study each nc-aa are stored through inter-connected descriptors. The 

backbone conformations of the different energy minima contained in NCAD have 

been identified using the nomenclature proposed by Perzcel et al.,20 which 

distinguish nine different conformations in the potential energy surface E=E(,) 

of -amino acids (i.e. D, D, D, D, DL, L, L, L, and L). This information is 

essential to check the compatibility of the different energy minima with the 

secondary structural motifs typically found in peptides and proteins. 

2) Bibliographic information describing the available experimental information. 

Specifically, the following items are reported for each amino acid: (i) synthesis 

and characterization of the free form or with the amino group adequately protected 

for use in peptide synthesis; and (ii) spectroscopic and structural characterization 

when incorporated into peptides, the atomic coordinates extracted from the X-ray 

crystal structures being also included in selected cases.   



 

3) Applications. The most relevant publications and patents describing the use 

of nc-aa in related fields along with the biological properties and relevance in 

materials science. 

The labels identifying the information stored in the database are connected 

through a relational scheme. This facilitates the search process, which can be 

performed using a single or several descriptors. NCAD is accessed through a user-

friendly interface, which integrates a simple window system, thus facilitating the use 

by non-experts in informatics. The interface is divided into six folders, the first one 

being used to define the criteria applied to the search process. The available search 

criteria are: (i) the chemical nature of the side chain; (ii) the structural feature which 

distinguishes a particular family of nc-aa; (iii) the molecular formula; (iv) the type of 

backbone conformation according to the nomenclature established by Perczel et 

al.;20,21 (v) the values of the (,) dihedral angles, with the tolerance being specified 

by the user; (vi) the name of the researcher who performed the theoretical or 

experimental investigation; (vii) the experimental data reported in the literature 

relating to the synthesis and characterization; and (viii) the applications described in 

the literature. The amino acids fulfilling all the search criteria are displayed in a list. 

Once the user selects a given amino acid from this list, the information stored in the 

database is presented in the remaining five folders of the interface. The specific 

information provided in each folder was detailed in our previous work.19 

6.2.2 Methods 

Amino-acid surrogates leading to peptides with modified peptide bonds  

In our previous work,19 we provided evidence for the usefulness of the -

tetrasubstituted -amino acids stored in NCAD in the control of peptide 

conformation. Another means of modulating the conformational properties of peptides 

can come from the modification of the peptide bond itself. This change should perturb 

the intramolecular hydrogen bonding network, the electronic distribution, and the 

steric hindrance, thus affecting the conformational preferences of the peptide chain. 

N-substituted -amino acids. In N-substituted amino acids, the hydrogen atom 

attached to nitrogen is replaced by a functional group. The substituents most 

frequently used are: alkyl (N-alkylation), hydroxyl (N-hydroxylation) or amino (N-

amination). To the best of our knowledge, reliable theoretical studies at the ab initio 

or DFT quantum mechanical levels on the intrinsic conformational preferences of N-
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substituted amino acids have been performed only for N-methylalanine,22 N-

hydroxyalanine23 and N-aminoglycine24 (Table 6.2.1.).  

N-alkylation (in particular, N-methylation) has been largely used to change the 

pharmacological properties of peptides. Remarkable biological and pharmacological 

profiles have been observed for many N-methylated peptides.25 The conformational 

preferences of N-methylated amino acids are dictated by increased steric hindrance 

and lack of hydrogen-bond donor ability associated with the replacement of the 

hydrogen atom by a methyl group.26,27 Figure 6.2.1.a presents the Ramachandran map 

corresponding to the (,) backbone dihedral angles of all the energy minima 

reported for the N-acetyl-N’-methylamide derivatives of the N-methylated -amino 

acid included in the database, namely N-methylalanine.22 The minima derived from 

ab initio quantum mechanical calculations for the analogous derivatives of glycine 

and alanine28 (MeCO-Gly-NHMe and MeCO-Ala-NHMe, respectively) are also 

shown in Figure 6.2.1.a as a reference for proteinogenic amino acids. As it can be 

seen, the effect of the replacement of the amide hydrogen of Ala by a methyl group on 

the low-energy minimum (DL) is very significant, with the minimum being 

annihilated. The disappearance of this minimum should be attributed to the repulsive 

interactions produced by the confrontation of the N-methyl group and the oxygen 

atom of C=O moiety. 

 

 

 

 
 
 
 
Figure 6.2.1.. Ramachandran maps showing all the 
minimum            energy conformations predicted by 
quantum mechanical   calculations for N-modified 
-amino acids included in NCAD (see Table 6.2.1.): 
(a) N-methylglycine (black squares) and N-
methylalanine (gray squares); and (b) N-
aminoglycine (black squares) and N-hydroxyalanine 
(gray squares). Minimum energy conformations of 
Gly (black triangles)      and Ala (grey triangles) 
have been included for comparison. Minima with 
relative energies lower and higher than 2.0 kcal/mol 
are represented by large and small symbols, 
respectively. 



 

The N-hydroxylation and N-amination of peptides have been used to impart 

conformational rigidity through the formation of intramolecular hydrogen bonds with 

neighboring C=O groups.29,30 Besides its hydrogen-bonding abilities,  the N-hydroxyl 

group has been proven able to chelate metal ions, which may be of use for the design 

of peptides which can bind specifically to proteins containing metals in the active 

site.29 The Ramachandran map in Figure 6.2.1.b shows all the energy minima reported 

for the N-acetyl-N’-methylamide derivatives of N-hydroxyalanine23 and N-

aminoglycine,24 which are compared to those of Ala and Gly,28 respectively. As can 

be seen, replacement of the amide hydrogen by a hydroxyl or amino group entails 

drastic conformational changes. The most remarkable ones can be summarized as 

follows: (i) the lowest energy minimum of Ala (L) evolves towards L upon N-

hydroxylation; (ii) the extended DL conformation of Ala is not a minimum in N-

hydroxyalanine; (iii) the steric interactions induced by the N-amino group produces a 

destabilization of the DL conformation in N-aminoglycine; and (iv) N-amination of 

Gly leads to the characterization of new local minima located at the L, D, D, and L 

regions of the Ramachandran map. 

Thio--amino acids. Within the surrogates used to replace the amide bond of 

peptides, the thioamide functionality, in which the carbonyl oxygen is replaced by a 

sulfur atom, is amongst the most synthetically accessible.31-33 This modification not 

only affects the proteolytic stability and bioactivity of peptides;34-36 it also produces 

significant changes in the secondary structure relative to the parent peptides.37-38 Both 

amides and thioamides are planar and exhibit high energy barriers for rotation about 

the C–N bond.40,41 However, the length of the C=S bond in thioamides (0.45 Å 

larger than the C=O linkage in amides) and the distinct stereoelectronic features of the 

sulfur atom (its van der Waals radius is 32% larger than that of oxygen and sulfur is 

less electronegative) affect the hydrogen-bonding abilities of the thioamide bond and 

translate into a reduced proton-acceptor character.42 

The influence of this amide-thioamide replacement on the intrinsic conformational 

properties has been studied only for Gly and Ala (Table 6.2.1.).43 It has been found 

that the sulfur atom reduces drastically the conformational flexibility of thioglycine 

when compared to the coded amino acid. Thus, the only minimum energy 

conformation identified for thioglycine,43 which is two-fold degenerate, corresponds 

to a -turn motif (Figure 6.2.2.). Therefore, the minima found for Gly28 at the DL and 
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 regions of the Ramachandran map are annihilated upon replacement of oxygen by 

sulfur. Figure 6.2.2. shows a Ramachandran map with the five minima found for 

thioalanine.43 The three minima detected for Ala28 were also identified as minimum 

energy conformations for thioalanine and exhibit similar relative energies. Thus, L is 

the most stable conformation for the two amino acids while the relative energies of 

the D and DL structures differ in 0.6 and 1.4 kcal/mol, respectively. The relative 

energies of the two additional minima characterized for thioalanine, L and D, are 

above 4 kcal/mol. Accordingly, the changes produced in Ala by the presence of the 

sulfur atom are considerably less important than those observed for Gly.   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2.2.. Ramachandran maps showing all the minimum energy conformations predicted 

by quantum mechanical calculations for Thio--amino acids included in NCAD (see Table 

6.2.1.): thioglycine (black squares) and thioalanine (gray squares). Minimum energy 

conformations of Gly (black triangles) and Ala (grey triangles) have been included for 

comparison. Minima with relative energies lower and higher than 2.0 kcal/mol are represented 

by large and small symbols, respectively. 

 
 
 



 

Table 6.2.1.. N-substituted -amino acids and thio--amino acids stored in NCAD. 

The systematic name (and the common name), the chemical structure, and the 

reference reporting the quantum mechanical study are given for each amino acid. 

Systematic name 

(common name) 

Structure Ref. 

(S)-N-methyl-2-aminopropionic acid  

(N-methyl-L-alanine) 
HN COOH

H3C H

CH3  

22 

(S)-N-hydroxy-2-aminopropionic acid  

(N-hydroxy-L-alanine) 
HN COOH

H3C H

OH  

23 

hydrazinoacetic acid  

(N-aminoglycine) 
HN COOH

H H

NH2  

24 

aminothioacetic acid 

(thioglycine) 
H2N C

H H

S

OH

 

43 

(S)-2-aminothiopropionic acid 

(L-thioalanine) 
H2N C

H3C H

S

OH

 

43 

 

Diamides and diacids used to build retropeptide bonds. In the last decades, a great 

deal of effort has been devoted to the chemistry of the so-called retropeptides or 

partially modified retropeptides,44-50 in which the direction of all or some peptide 

bonds is reversed, i.e. NH–CO instead of CO–NH (Scheme 1). When the 

stereochemistry of one or more amino acids of the reversed segment is inverted, the 



 

resulting pseudopeptide is termed retroinverso. 1,1-Dicarboxylic acids (malonic acid 

derivatives) are used to initiate the retropeptide sequence, while the direction of the 

peptide bond can be restored by incorporating an 1,1-diamine unit (Scheme 1).  
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Reversal of the peptide bond has been used for designing bioactive 

pseudopeptides,50-54 for engineering and mirroring protein secondary structural 

motifs,55-58 and for the construction of synthetic (bio)polymers mimicking the 

structures found in fibrous proteins.59,60 NCAD includes the conformational 

preferences of 5 diacids and 4 diamines (Table 6.2.2.) that are surrogates of the 

following -amino acids: Gly,60,61 Ala,60 Val,62 -aminoisobutyric acid (Aib), and 

dehydroalanine63 (Ala). Considering that the , dihedral angles in -amino acids 

define the rotation about the C–N and C–C(O) bonds, respectively, the 

conformation of the diacids is given by 1,2 and that of the diamines by 1,2. 

Scheme 2 compares the backbone dihedral angles of the N-acetyl-N’-methylamide 

derivatives, N,N’-dimethylamide derivatives, and N,N’-diacetyl derivatives of the -

amino acids, diamines and diacids, respectively.  
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Scheme 2 

The Ramachandran map in Figure 6.2.3.a shows the location of the minimum 

energy conformations found for the N,N’-dimethylamide derivatives of the diacid 

surrogates of Gly, Ala, Aib, Val, and Ala, hereafter denoted dc-Gly,61 dc-Ala, dc-

Aib, dc-Val,62 and dc-Ala,63 respectively (Table 6.2.2.). The minimum energy 

conformations of the dc-Ala and dc-Aib derivatives were not reported in the literature 

and have been calculated in this work at the B3LYP/6-31G(d) level (the dihedral 

angles and relative energies are given in the Supporting Information). The resulting 

conformations have been used for engineering a 310-helical retropeptide (see below).  

 

 

Figure 6.2.3.. Ramachandran maps showing all 

the minimum energy conformations predicted by 

quantum mechanical calculations for diacids (a) 

and diamines (b) analogues of -amino acids 

included in NCAD (see Table 6.2.1.). (a) 

Diacids: dc-Gly (black squares), dc-Ala (black 

circles), dc-Aib (gray triangles), dc-Val (gray 

diamonds) and dc-la (empty circles); (b) 

Diamines: dm-Gly (black squares), dm-Ala 

(black circles), dm-Aib (gray triangles) and dm-

Val (gray diamonds). The nomenclature used for 

the different diacids and diamines is discussed in 

the text.  Minima with relative energies lower 

and higher than 2.0 kcal/mol are represented by 

large and small symbols, respectively. 
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Table 6.2.2.. Diacids and diamines analogues of -amino acids stored in NCAD. The 

systematic name (and the abbreviated name used in this work), the chemical structure, 

and the reference reporting the quantum mechanical study are given for each amino 

acid. 

Systematic name 

(abbreviated name) 

Structure Ref. 

malonic acid  
 (dc-Gly) 

HOOC COOH

H H

 

61 

methylmalonic acid 
(dc-Ala) 

HOOC COOH

H3C H

 

This work 

dimethylmalonic acid  
(dc-Aib) 

HOOC COOH

H3C CH3

 

This work 

isopropylmalonic acid  
(dc-Val) 

HOOC COOH

H

CH3

H3C

 

62 

methylenemalonic acid  
(dc-Ala) 

HOOC COOH

CH2

 

64 

methylenediamine 
(dm-Gly) 
 H2N NH2

H H 60 

1,1-ethylenediamine 
 (dm-Ala) 

H2N NH2

H3C H 60 

2,2-propylenediamine 
(dm-Aib) 

H2N NH2

H3C CH3 This work 

1,1-isobutylenediamine 
(dm-Val) 

H2N NH2

H

CH3

H3C

62 



 

 

Due to molecular symmetry, structures characterized by dihedral angles 1,2; -

1,-2; 2,1; and -2,-1 are energetically degenerate (Figure 6.2.3.a). The lowest 

energy conformation was found at 1,2 45º,120º for all the diacids but dc-Ala, in 

which case, the global minimum appears at 1,2 13º,142º. This small difference 

should be attributed to the hybridization state of the  carbon atom, namely sp2 for 

dc-Ala and sp3 for dc-Gly, dc-Ala, dc-Aib, and dc-Val. These non-symmetric 

conformations are very similar to those found in the crystal state for malonamide 

derivatives.64 On the other hand, Figure 6.2.3.a shows that the minima of dc-Ala 

with relative energies larger than 2 kcal/mol (i.e. minima with 1,2= 25.0º, 25.0º 

and 126.0º, 126.0º)  are located in the map diagonals. However, the lowest energy 

conformation remains asymmetric (12), even though this diacid is chemically 

symmetric. 

Figure 6.2.3.b shows the energy minima found for the N,N’-diacetyl derivatives of 

the Gly, Ala, Aib and Val diamine surrogates, hereafter denoted dm-Gly,60 dm-Ala,60 

dm-Aib, and dm-Val,62 respectively. The minimum energy conformations of the dm-

Aib derivative have been calculated in this work at the B3LYP/6-31G(d) level (see 

the Supporting Information). For the reason mentioned above, structures with 1,2; -

1,-2; 2,1; and -2,-1 are energetically equivalent, as reflected by the map 

symmetry. As can be seen, the lowest energy conformations of the diamines are 

located in the  region at 1,2 60º,60º. In addition, dm-Aib shows a low energy 

minima destabilized by 1.0 kcal/mol at 1,2= 49º,173º. Minima with relative 

energies higher than 2 kcal/mol are essentially located in the map diagonal as well as 

in the regions labeled as  and . As expected, the  regions are scarcely populated for 

diamines and diacids derivatives (Figure 6.2.3.), whereas they are found to be 

preferred by the N-acetyl-N’-methylamide derivatives of proteinogenic amino acids. 

This is because in the latter compounds, the  conformations are stabilized by an 

intramolecular hydrogen bond defining a seven-membered ring, whereas this 

interaction is not possible in diamines and diacids. 

 

 

 



 

6.2.3 Results and discussion 

In silico molecular engineering of a 310-helical motif using NCAD: A test case 

In this section, we present a computational design study aimed at constructing 

non-symmetric retropeptides exhibiting a 310-helix conformation by using information 

extracted from NCAD. This is not intended to provide a deep and rigorous 

investigation of the resulting retropeptides, but to illustrate the potential utility of the 

database in applications involving peptide and protein engineering through a test case.  

It is well known that Aib-based peptides have a remarkable tendency to adopt 

helical conformations both in solution and in the solid state.65-69 Helices of the 310 

type are overwhelmingly formed by Aib homopeptides, independently of the 

environmental conditions, whereas small peptides containing a mixture of Aib and 

proteinogenic -amino acids are found to accommodate either - or 310-helices 

depending mainly on the peptide size and the Aib content. 

In an earlier work, we used retropeptide bonds to enhance the stability of the 310-

helix with respect to the -helix in peptides containing Aib.70 Specifically, Aib-

containing homoretropeptides (hereafter denoted rAib-n, where n indicates the 

number of residues) cannot form the intramolecular hydrogen-bonding network that 

stabilizes the -helix (ii+4) and this results in unfavorable interactions between the 

C=O groups of residues i and i+4. In contrast, the molecular architecture of rAib-n 

(Scheme 3) in which diacid and diamine surrogates of Aib are alternated, (dm-Aib–

dc-Aib)n/2, is fully compatible with the hydrogen-bonding scheme of the 310-helix 

(ii+3). These features are schematically depicted in Figure 6.2.4., whereas Figure 

6.2.5. shows the 310-helix adopted by rAib-n. 
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Figure 6.2.4.. Hydrogen bonding network for the - and 310-helices (ii+4 solid line and 

ii+3 dashed line, respectively) of Aib-n and rAib-n.  

 

 

 



 

 

 

Figure 6.2.5.. Axial (top) and equatorial (bottom) representation of the 310-

helix adopted by rAib-n. 

rAib-n are symmetric molecules, i.e. the two ends of the peptide 

are identical, which may be a limitation in some recognition 

processes. The information stored in NCAD for diamines and diacids 

was carefully examined considering the similarities between the 

backbone dihedral angles and relative stability of the minima found 

for dc-Aib and dm-Aib. Analysis of the conformational preferences 

of these residues indicates that two different strategies can be 

followed to design a non-symmetric retropeptide based on rAib-n through a single 

mutation without decreasing the stability of the 310-helix. The first strategy requires 

the replacement of dc-Aib or dm-Aib by dc-Ala or dm-Ala, respectively (i.e. removal 

of a methyl group in a diacid or diamide). The second involves the replacement of 

either dc-Aib or dm-Aib by the corresponding Val analogue. Although the helical 

conformation is energetically accessible for the diacids and, specially, the diamines of 

both Ala and Val, the larger conformational flexibility of the Val derivatives and the 

larger steric interactions expected for the isopropyl group in comparison to the methyl 

substituent suggest that the replacement of dc-Aib or dm-Aib by the corresponding 

Ala analogue is more appropriate. Accordingly, the first strategy was selected for 

further investigation.     

We first examined the most appropriate position to carry out the targeted 

replacement. For this purpose, six mutants of a retropeptide containing 12 residues, 

rAib-12 [i.e. (dm-Aib – dc-Aib)6], were considered, their sequences being: 

Diamine-1:  dm-Ala – dc-Aib – (dm-Aib – dc-Aib)5 

Diacid-1:  dm-Aib – dc-Ala – (dm-Aib – dc-Aib)5 

Diamine-2: (dm-Aib – dc-Aib) – dm-Ala – dc-Aib – (dm-Aib – dc-Aib)4  

Diacid-2: (dm-Aib – dc-Aib) – dm-Aib – dc-Ala – (dm-Aib – dc-Aib)4 

Diamine-3: (dm-Aib – dc-Aib)2 – dm-Ala – dc-Aib – (dm-Aib – dc-Aib)3  

Diacid-3: (dm-Aib – dc-Aib)2 – dm-Aib – dc-Ala – (dm-Aib – dc-Aib)3 
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The six retropeptides were built up in a 310-helix conformation with initial 

backbone dihedral angles for diacids and diamines 1,2 = 1,2 = -40.7º,-30.3º. 

These values were selected in a previous work as being representative for this helical 

conformation.71 The molecular geometry of the six retropeptides was submitted to 

complete geometry optimizations using the B3LYP quantum mechanical method72,73 

combined with the 6-31G(d) basis set. The relative energy of the six mutants under 

study is represented in Figure 6.2.6.. Interestingly, the three retropeptides mutated at a 

diacid position are systematically more stable than those mutated at the diamines, 

even though the energy difference is small (1 kcal/mol). Furthermore, diacid-3 is 

slightly more stable than diacids-1 and -2. This result indicates that the most favorable 

mutation occurs at the center of the helix.  

 

Figure 6.2.6.. Relative energy (black squares and solid line) and h (empty squares and dashed 

line) of the six mutants of rAib-12 studied in this work. The sequence of the mutants as well as 

the definition of h are provided in the text. 

Comparison of the backbone dihedral angles obtained for the six optimized 

mutants to those derived from geometry optimization of rAib-12 at the same 

theoretical level indicates that the conformational distortion introduced by dm-Ala 

and dc-Ala is almost negligible. Thus, the largest distortion was observed for diamine-

1, where the 1 dihedral of dm-Ala differ in 16.2º from the corresponding angle in 

rAib-12. For the rest of the mutants, no deviation was found to exceed 10º. Similarly, 



 

the end-to-end distance remained almost identical for the mutants and the parent 

peptide, the largest difference being 0.08 Å for diamine-1 and diacid-3. These results 

confirm that the helical stability of rAib-12 is retained in the six mutants investigated. 

In order to quantitatively evaluate the effect of the mutation in the energetic stability 

of the 310-helix, the following isodesmic reaction has been considered: 

rAib-12 + CH4  mutant + CH3CH3   (1) 

Thus, the loss of stability of the helix (h) has been defined according to: 

                 h= E(mutant)+E(CH3CH3)-E(rAib-12)-E(CH4)    (2) 

where E refers to the energy of the different species. Figure 6.2.6. includes the values 

of h for the six mutants under study. As expected, the profile obtained for h fits that 

of the relative energies, even though the former is 0.3 kcal/mol higher. These results 

allow us to conclude that breaking the molecular symmetry of rAib-12 by 

replacement of one Aib surrogate by the corresponding Ala analogue produces a 

destabilization of only 0.3 kcal/mol.  

 Inspection of the dipole moments calculated for the mutants indicates that 

incorporation of dm-Ala or dc-Ala produces a very small variation with respect to 

rAib-12 (= 0.225 Debyes), the largest variation being of only 0.092 Debyes 

(diamine-1). Accordingly, the energy preferences displayed in Figure 6.2.6. should 

not be attributed to electrostatic changes in the helix. However, a detailed analysis of 

the intramolecular distances may help explain such a relative energy profile. 

Specifically, inspection of rAib-12 indicates that the methyl groups of the dm-Aib 

residues form a weak interaction with the oxygen atom of a proximal O=C moiety, 

which in turn, is involved in an intramolecular hydrogen bond with a neighboring 

amide hydrogen. This van der Waals interaction is illustrated in Figure 6.2.7., which 

also indicates that the average C-H···O=C distance is 2.750.01 Å. Evaluation of 

such a distance for the six mutants under study shows that removal of the methyl 

group induces a variation that becomes significantly larger at the mutated positions 

(Figure 6.2.7.). Thus, the distance increases by 0.320.02 and 0.250.01 Å in the 

retropeptides mutated at the diamines and diacids, respectively, with respect to that 

found in rAib-12, and this may contribute to the stability differences observed (Figure 

6.2.6.).  
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Figure 6.2.7. Detail about the C-H···O=C interaction (arrows) in the 310-helix of rAib-12 and 

diamine-1. Averaged H···O distances are indicated. 

 

 

 



 

6.2.4 Conclusions 

In this work, NCAD has been extended through the incorporation of residues that 

may be used as building blocks for the construction of peptides with modified peptide 

bonds. The information related to N-substituted -amino acids, thio--amino acids, 

and diamines and diacids used to build retropeptides described in the literature has 

been collected and integrated into the database. The conformational propensities of 

the new -amino acid surrogates incorporated into NCAD have been compared to 

those of the corresponding coded residues. We also present an example illustrating the 

utility of NCAD and the usefulness of the new amino acid surrogates in peptide 

engineering. More specifically, the information contained in NCAD has been used to 

propose targeted replacements able to break the molecular symmetry of a retropeptide 

sequence designed to stabilize the 310-helix with respect to the -helix. 
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7.Summary and discussion of the results 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 



 

The title of this thesis “A computational approach to the engineering of 

bioinspired nanosystems: design, applications and information management” clearly 

embeds the aim of this work. Computational methods in theoretical chemistry have 

proven to be useful and efficient tools for studying complex systems. This thesis has 

used several of these computational strategies to elucidate both structural features and 

physicochemical properties for new non-coded amino acids. This information has 

been used to modify bio-inspired systems. This subjacent work rational is clearly 

shown in its chapter-based structure  

● Characterization of non-coded amino acids   

● Nanotechnological applications of designed peptides 

● Development of a data base of available knowledge of non-coded amino acids. 

 

The main structural and functional role in peptidic based molecules is played by 

amino acids. Control over the conformational preferences of amino acids holds the 

key for modulating structure and function of peptides and proteins. In this context 

non-coded amino acids arise as very promising modulators due to the huge palette of 

available molecules and the plasticity inherent to their design.  

The use of conformationally restricted non-coded amino acids that act as 

surrogates for the natural-occurring ones is a powerful tool to restrain the 

conformational variability of proteins. These restraints imposed by non-coded amino 

acids may retain a protein in its bio-active conformation thus enhancing its activity 

and, at the same time, introduce new features such as resistance to proteolysis, 

bolstered ligand affinity and new spectroscopic properties among others. Regarding 

the variety of non-coded amino acids, three main types are highlighted in the first 

chapter: those conformationally restricted and derived from i) cyclic side chain amino 

acids, ii) proline analogues and iii) optically active amino acids. The first two types 

induce severe conformational restrictions due to steric hindrance of the side chain (i) 

or the inclusion of the peptide backbone in the cyclic side chain (ii). These two types 

have been used to develop arginine surrogates (c5Arg and ProArg, respectively) that 

show a restricted conformational profile and can be used in peptide engineering, thus 

reducing the conformational variability of the peptide while retaining some key 

features of arginine. Out of type ii, indoline-carboxlic acid (Inc) and its alpha 

methylated (αMeInc) derivatives are an even more conformationally restricted 



 

subgroup thanks to the benzene ring fused with the proline ring, converting them in 

feasible restrained surrogates for proline. Besides, these group of amino acids have 

interesting structural properties regarding the cis/trans isomerization of their peptide 

bond because, alike most of amino acids, it has a significant preference for the cis 

arrangement. Amino acids in group iii are of outstanding interest not only for their 

conformational properties but also for their optical ones; a good example from this 

family being phenylazophenylalanine (PAP). Optical and structural properties of PAP 

make of it a candidate to not only modulate the structural properties of proteins and 

peptides thanks to the photoisomerization but also to be used as a spectroscopic 

probe. 

Some relevant uses of non-coded amino acids in engineered systems are exposed 

in the second chapter of the present thesis. These examples clearly illustrate the 

usefulness of these amino acids as structure/activity modulators. The arginine 

surrogate c5Arg shows to be an excellent structural modulator of mutated Cc5REKA 

peptide; the lower conformational variability of the non-coded amino acid, when 

compared to the natural one, is expressed in Cc5REKA as a structural bias close to the 

conformations described as bio-active in  CREKA wild type. This effect of 

conformationally restricted non-coded amino acids of groups i and ii over the 

conformational landscape of peptides and proteins is caused by the steric hindrance of 

the cyclic side chain of the new amino acid, the backbone reduced flexibility if the 

cyclic side chain includes the backbone and physicochemical interactions between the 

side chains of the amino acids. An example of peptide engineering can be observed 

when a β-amyloid fragment is modified to feature thienylalanines instead of 

phenylalanines. These replacements are expected to not only alter the conformational 

landscape of the peptide but to promote electron conductivity. These replacements 

lead to new interactions between the aromatic moieties of the molecules, thus 

enhancing new intra and inter-catenary interactions, the latter ones at relevant high 

concentration. This peptidic system is expected to show self-aggregation, which 

opens new fields for peptide engineering based on non-coded amino acids.     

The molecular hyper-crowding of a system, which can be understood as an effect 

of the concentration, is a keystone for understanding the conformational preferences 

of peptides: as concentration increases, so does the probability of finding both the 

same intra-chain interactions and new ones between non-linked chains. This major 

effect has been studied implicitly for CREKA homing peptide when it is covalently 



 

linked to a surface at a significant peptide density; these conditions allow seeing the 

effects of intra and inter-catenary interactions over the conformational profile of the 

peptide.  

As it has been demonstrated, non-coded amino acids are extremely important in 

the engineering of bio-inspired systems. Theoretical chemistry offers powerful tools 

for their study at high resolution level and the information generated by these means 

has been, is and will be published through articles in indexed scientific publications. 

The number and diversity of those journals makes it an endeavor to find the 

calculated conformational characteristics of those molecules. Besides, theoretical 

research in the field started decades ago and this implies not only a spread of articles 

between publications but also a widespread distribution in time. All the mentioned 

facts become troublesome questions for scientists both interested in doing new 

research and looking for available knowledge to be used in applications. Furthermore, 

the need for a systematized and ordered data base of theoretical structural information 

of non-coded amino acids is expected to grow even more in the upcoming years. The 

third chapter of this thesis reports the design, implementation and running of 

NCADB: a data base devoted to store theoretically-obtained conformational 

information of non-coded amino acids and, if available, experimentally-acquired 

information of the same molecules. Yet, NCADB not only offers the compilation of 

all this knowledge but it also relates it to existing bibliography, authors and practical 

uses of the filed compounds. The interface of NCADB is user-friendly in order to ease 

the search for non-expert users. This new available tool for scientists is intended to 

eventually cover all main types of non-coded amino acid. At the moment though, it 

allows searching amino acids whose side chains have been modified and those with 

modified carbonyl or amine groups. The combination of a user-friendly display of 

information, customized searches and potential uses information renders a unique data 

base. 

In summary, all the presented work offers a taste of theoretical approaches to be 

used in designing new non-coded amino acids, studying their properties and assessing 

their potential uses, such as engineering new bio-inspired systems throughout specific 

replacements with non-coded amino acids. 

  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

8. Conclusions 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

(1) The conformationally restricted arginine surrogate c5Arg shows a clear 

preference for α-helical backbone conformations due to side chain-main chain 

interactions involving the guanidium group. The helical conformation is the 

most energetically accessible, independently of the polarity of the solvent. This 

conformational trend is featured without regard of the chosen isomer for the side 

chain arrangement and suggests a strong tendency to be found at i+1 position in 

β-turns in proteins. 

(2) The proline-derived arginine analogue (Pro)Arg adopts an α-helical 

conformation for its two side chain isomers in polar and apolar solvents, this 

preference is maintained in spite of considering thermal agitation. These facts 

suggest that (Pro)Arg has new conformational properties not exactly matching 

those of proline that allow it to replace arginine in proteins when present at i+1 

position in β-turns.              

(3) Proline derived Inc and αMeInc show a significantly reduced conformational 

profile in comparison to proline due to the benzene moiety fused to the pyrrol 

ring. The α-helical conformation is preferred in water for the two compounds 

whereas γ-turn is adopted in gas phase and chlorinated solvents for both of them, 

although α-helical is also accessible for αMeInc in the latter solvents as a 

product of the steric stress induced by the methyl group. A dramatic restriction 

of the flexibility of the pyrrol ring is also found: no clear envelope forms are 

indentified, just the α carbon shows a little deviation from the pyrrol plane. 

(4) The energetics of cis/trans isomerism of the peptidic bond involving pyrrol 

nitrogen shows a significant variability depending of the chosen solvation 

model. Single point calculations and optimizations with a continuum model of 

solvent point to cis isomer as the preferred arrangement whereas trans 

configuration is the most energetically favored in the QM/MM. Inner structural 

tension, water entropic contribution and hydrogen bonding ability must be taken 

into account to explain these divergences. 

(5) The full conformational landscape of PAP has been investigated for the two 

isomers of the azobenzenic side chain: both cis and trans tend to adopt semi-

extended backbone conformation as the lowest energy one in gas phase. 

Differences arise as α-helical arrangements become unreachable for trans but 

not for cis in gas phase, though they are energetically less favored. The solvation 

with a continuum model of water modifies energetic order for trans that shifts its 



 

most favored conformation to γL, while for cis the global minimum remains a 

semi-extended conformation and helical conformations increase their stability. 

The energy difference between cis and trans isomers remains favorable to the 

latter throughout the energy landscape ranging from 7 to 17 kcal·mol-1.  

(6) Two optical properties of PAP have been studied and compared to those for 

azobenzene: n*(np) and *(pp) wavelength transitions are almost 

identical for azobenzene and PAP. Moreover, variations for those values upon 

trans to cis isomerization are in clear agreement with data from azobenzene, a 

bathochromic shift (4 nm) for np and hypsochromic shift (-3 nm) for pp. The 

variation of pp=pp(,) and np=np(,) is never above 10 nm. All these facts 

suggest that the incorporation of azobenzene to a peptide scaffold does not alter 

significantly its optical properties, even if the peptide backbone changes its 

conformation. 

(7) Non-coded amino acid c5Arg is an optimal replacement for arginine in the 

homing peptide CREKA to become the engineered peptide Cc5REKA. The 

conformational landscape of Cc5REKA shows that the minimal energy 

conformations are biased towards those reported as bioactive for CREKA. The 

β-turn centered in second and third residues that is usually depicted by CREKA 

is stabilized by the conformational preferences of c5Arg. This non-coded amino 

acid also allows the saline bridge interaction between the charged side chains of 

the central fragments amino acids and should introduce resistance to proteolysis. 

(8) High density of CREKA peptide linked to a surface restricts conformational 

variability of the peptide in comparison to infinite dilution. This trend is featured 

without regard of the chemical activity of the surface. Despite these restraints, 

the lowest energy conformations found in each case are similar among them, 

especially for the three amino acids of the central fragment. Intra-molecular 

interactions of CREKA might play a more significant role than the inter-

molecular in the structural preferences of the peptide. 

(9) The dynamic conformational behavior of (2-Thi)(2-Thi)VLKAA has been 

evaluated to ascertain the effect of concentration (i.e. inter-molecular 

interactions) on the conformational behaviour of the peptide. The results of MD 

simulations show significant differences in the backbone conformations adopted 

by the five central amino acids of the peptide depending on the fulfilment of 

NMR-derived restraints. Those alterations are not translated into major changes 



 

in the radius of gyration of the peptide but they cause peptide end-to-end 

distance to be far less changing in comparison to the unrestrained MD 

simulation. NMR-derived restraints favours major proximity between the side 

chains of the two β2-thienylalanine units.  

(10) In order to rationally gather key information for potential uses of non-coded 

amino acid in biomedical and material science, a data base (NCADB) has been 

designed including conformational information obtained at high theoretical level 

for non-coded amino acid. The data base displays a user-friendly interface that 

enables searches by conformation, side chain chemical nature, amino acid 

biological type, publications author, experimental characterization and applied 

available knowledge. NCADB includes non-coded amino acids form different 

types: alpha-tetrasubstituted alpha amino acids, diamines and diacids for 

retropeptides, N-subtituted amino acids and thio-amino acids. The usefulness of 

the NCADB has been demonstrated through two examples of molecular 

engineered molecules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 




