
 LIBRARIES SMITHSONIAN
 INSTITUTION
 LIBRARIES
 SMITHSONIAN

INSTITUTION

NVINOSHLIWS
 N甘INOSHLIWS

VOILOLILSNI

2
20
-1
-1
-1
-1
2 SMITHSONIAN INSTITUTION

2
\sum
0
i
i

 NVINOSHLIWS

Sヨ1 \＆Vy al

NVINOSHLIWS

$$
\text { S } 318 \forall 8817
$$

Sヨ1y४yg17

IBRARIES

INSTITUTION

NOILR1IISNI

Division of Molluefr faction Libruy

THE

JOURNAL OF MALACOLOGY. ESTABLISHED IN 1890 AS "THE CONCHOLOGIST, A JOURNAL OF malacology."

EDITED BY

WALTER E. COLLINGF, M.Sc.,
Lecturer on Zoology and Comparative Anatomy in the University of Birmingham; President of the Midland Malacological

Society ; and President of the Biological Section
of the Birminghan Natural History And
Philosophical Society.

HTTH THE CO.OPERATION OF
DR. JOSEF F. BABOR, The University, Prague.
H. HOWARD BLOOMER, Birmingham.

THE REV. A. H. COOKE, M.A., F.Z.S., Fellow of King's College, Cambridge.
G. K. GUDE, F.Z.S., London.

CHARLES HEDLEY, F.L.S., Australian Museum, Sydney, N.S.W.

HENRY SUTER,
The Museum, Auckland, N.Z.
E. R. SYKES, B.A., F.Z.S., F.L.S., London.
B. B. WOODWVARD, F.G.S., F.L.S., British Museum (South Kensington), London.

Volume X.
1903.

Authors alone are responsible for the statements in their respective papers.

LONDON :

```
DULAU AND CO.,
37. SOHO SQUARE, W.
```

1903.

CONTENTS OF VOLUME X.

PAGE.
Malacological Notes. By E. R. Sykes, B.A., F.L.S. (Illustra- tion.) I
Supposed new species of Helicina and Bulimulus from Costa Rica. By H. B. Preston, F.Z.S. (Illustrations.) 4
A Classified List of the Helicoid Land Shells of Asia. Part v. By G. K. Gude, F.Z.S. 5
On some new species of Slugs collected by Mr. H. Fruhstorfer. By Walter E. Collinge, B.Sc. (Plate i.) 16
Notes on Slugs and Shng-like Molhuscs. By Walter E. Collinge, B.Sc. I7
The Molluscan Fanna of Warwickshire. By H. Overton. 19
A Revision of the Columbellidae of the Persian Gulf and North Arabian Sea, with Description of C. calliope, n. sp. By James Cosmo Melvill, M.A., F.L.S. (Illustration.) 27
The Anatomy of Certain species of Ceratisolen and Solecurtus. By H. H. Bloomer. (Plate ii.) 3 I
Classification of the British species of the genus Solen, Linné. By H. H. Bloomer. 41
On the Origin and Function of the Fourth Aperture in some Pele- cypoda. By H. H. Bloomer. 43
A Classified List of the Helicoid Land Shells of Asia. Part vi. By G. K. Gude, F.Z.S. (Plate iii.) 45
On a new Genus and Species of the Family Phenacohelicidae. By Henry Suter. (Plate iv.) 62
Descriptions of new Land Shells from the Austro-Malayan Region. By E. R. Sykes, B.A., F.L.S. 64

CORRIGENDA.

(See also page 129.)
p. 37, line 34, for it apparently altogether disappears read they apparently altogether disappear.
p. 40 , line 35 , right hand column, for stomach read siphon.
P. 42 , line 35 , insert comma after E. siliqua, and delete the word and
before, and the comma after, Cultellus pellucidus.
p. 82, line 26 , for protuding read protruding.
p. IO2, line 17, for more conspicuous read less conspicuous.

JOURNAL OF MALACOLOGY.

Yol. X.

MALACOLOGICAL NOTES.*

BY E. R. SJKES, B.A., F.L.S.

13.-The Value of the name Rhodina, de Morgan.

Recently, ${ }^{(1)}$ I deseribed and figured a shell from Kelantan, under the name Rholina (?) mirabilis. I felt some doult as to whether the form really belonged to de Morgan's genus, as the single species he referred to it ${ }^{2)}$ was, and is, unknown to me. Dr. Moellendorff ${ }^{(3)}$ expressed the view that the form did really belong to de Morgan's genus. Whether this be so or not the name Phorlina cannot be used in Molhuses, having been employed by Ginenée ${ }^{(4)}$ in 185) 4 for an Australian butterfly. Under these cireumstances I propose the new genus

Plicaxis.

and take as the type my Phodina (?) mirabilis. I feel but little doubt that de Morgan's R. peralensis also belongs here.

Dr. Moellendorff suggests that the group should be reduced to a subgenus of Prosopeas, hut it appears to me to be distinct from the typical Nicobar forms; it may be remarked, with regard to this last name, that Prosopea and Prosopeus had previously been used in Zoology.

[^0]1. Ante, vol. ix, pp. 22, 61.
${ }^{2}$. Bull. Soc. Zool. France, 1 SS5, vol. x, p. 390.
${ }^{3}$. Nachrbl. Deutsch. Malak. Ges., 1002, p. 140
${ }^{4}$. Hist. Nat. Insectrs, Spee. Gen. Lepidoptères, 1851 , vol. viii, p. 19.
14.-Description of Leptachatina henshawi, n.sp.

Shell orately-pyramidal, rimate, somewhat thin, brownish-horny in colour, longitudinally well marked with filiform strix, which become weaker towards the base, apex hlunt. Whorls $5 \frac{1}{2}$, plano-convex, the protoconch being large and smooth, the others senlptured as mentioned above, the last whorl measuring $4 / 7$ of the entire length of the shell. Suture well marked. Month subquadrate, the straight columellar margin being slightly reflected. Plica small and aseending.

Alt. 7 ; diam. max. 3.6 millim.
Mab.-Bucholtz, Kona, 1,800 feet, Ilawaii (comm. Hl. Jenshaw).

This pretty little shell recalls somewhat in appearance Thaanmia omphalorles, Ancey, but lacks the sculpture of the protoconeh and the distinct umbilieal area. The seulpture is similar in nature to that of L. tenebrosa, Pease, of Kanai, dee. I know no very close ally in the Hawaian fama. It is with murh pleasme that I affix to the species the name of Prof. II. Henshaw, to whom I owe both it and many wther interesting Hawaiian shells.

15.-On the name Cataulus.

In 18.t., (iray ${ }^{11}$ mentioned, in the symonymy of Brachypme, the name Tortulose, giving Turlo tortuosus as a type or example. Three vears after ${ }^{(2)}$ the species appears under Megalomastoma, the name Tortulosa not being mentioned.

In 18.51 Pfeifier ${ }^{(3)}$ proposed and diagnosed C'atanlus for three species, tortnosus, templemani, and layardi, no type being named, and the following year he extended ${ }^{(4)}$ the group by the addition of three more species, a course which he also adopted in the well-known "Monographia Pneumonoporum " (p. 136).

[^1]The brothers Adams ${ }^{(5)}$ in March, 1856, used the generic name Tortulosa in place of C'ataulus, giving for the first time a diagnosis of Tortulosa.

In 1858 Pfeiffer ${ }^{(6)}$ under his genus" C'atanlus, states "Species typicae omnes ex insulâ Ceylon allatae sunt, unica ex insulis Nicobaricis, characteribus aberrantibus praedita, ab illis separari potest," and divides Catunlus in the following way :--
A. Ahmormes (Tortulosa, sect. Brachyporlis, (iray
in Proc. Kool. Soc., 1847 , p. 177). § 1 Nr. 1.
B. Normales. § ミNr. 2-13.
and in his sefond supplement ($\mathrm{p} . \mathrm{s}_{7}$) he states: Sertions A. Tortulasa, Cray; B. Cutaulus, Pfr., a course which he equally follows in his third supplement (p. 140).

In 1897, Dr. Kobelt and Herr von Moellendorff" ${ }^{(7)}$ used "C'ataulus, Blanford" for the whole group, and in the following year I carelessly stated that Turbo tortuosus might stand as the type.

Last year Dr. Kobelt ${ }^{(8)}$ suppressed C'atuulus altogether on the ground that it was a synonym of Tortulosa, and proposed a new subgenus of Tortulosa, which he called Eucataulus, with C'ataulus templemani as the type.

From the foregoing facts and especially considering that no type of Cataulus was originally named, and the sulb-division of the group by Pfeiffer in the Supplements to the " Mon. Pneum.," I think that the new name is unmecessary, and that even if Cataulus and Tortulosu be not distinct as genera, still the former may well be used as a section of the latter.

[^2]
SUPPOSED NEW SPECIES OF HELICINA AND BULIMULUS FROM COSTA RICA.

BY H. B. PRESTON, F.Z.S.

Helicina gemma, n.sp.
Shell conical, elevated, bright yellow, apieal whorls frimson, last whorl tinged with orange-searlet for some distance from

$\frac{3}{3}$ the mouth, the muter lip being also of a vivid orangesearlet colour. Whorls 5 , convex, very finely striated with lines of growth. Peristome expanded and slightly reflexed. Aperture rather high and narrow. Operenlum reddish-brown, normal.

Diam. maj. f, alt. 7 millim. Aperture (inside measurement) diam. 2.5, alt. .3 millim.
Hab.-Costa Riea.
A rery beantiful and striking shell, whose nearest ally appears to he H. oweniana, Pfr., from Mexion : from this, however, it difters in being more globular, in the greater eonvexity of the whorls and in having one less, in the narrower aperture, and in the colouration of the onter lip (otherwise similar in both species) extending further up the body whon than it does in I. oveniana.

Bulimulus (Drymaeus) nubilus, n.sp.

Shell elerated, conie, perforate, pale flesh-eolour with a narrow dark purple band extending all round, and at about one millimetre
 behind, the outer edge of the peristome, also with a few similar, thongh less marked hands (corresponding to the periodie months) upon the spire. Whorls 6-7, irregularly malleated, and striated with lines of growth. Apex blunt. Suture impressed. Umbiliens narrow and partly concealed by the reflexed columella. Peristome slightly reflexed at bise. Aperture oval.

Diam. maj. 10.5., alt. 23 millim. Aperture (inside measurement) diam. 5, alt. 9 millim.

Hab.-Azarhar de Cartago, Costa Rica.

A CLASSIFIED LIST OF THE HELICOID LAND SHELLS OF ASIA.

(PART V*)

BY G. K. GUDE, F.Z.S.

xii. FURTIIER INDIA (not including Burma).

This region is very rich in mollusean life, and although many tracts remain to be explored, our knowledge of its fama is sufficiently advanced to warrant some generalisations. The most salient feature, perhaps, is the appearance of Amphilromus, whose headquarters are in the Malay Archipelago, and many of whose species are characterised by great beauty of colour and marking. Other links with the Malaysian fauna are C'hloritis and Xesta. Neocejolis, represented by three speeies, is peculiar to Tonkin. Gianesella, which extends to India, Burma, China, and Japan on the one hand, and to the Malay and Philippine Arehipelagoes on the other, here produces a number of keeled forms. Plectopylis is well represented in Tonkin, producing no less than twenty species, four of which belong to the section Sinicola, hitherto believed to be excllnsively Chinese. With the exception of Plectorylis laomontana, Pir., found in Lass, the genus is absent in the other divisions of this region. Hemiplecta has here gigantic representatives in II. distinsta, II. neptunus, and the heautiful and rare $I I$. cambojiensis.

Turning to the history of our knowledge of the region we find that the "Bonite," in 1837, touched at Touran, in Annam, whence Eydoux and Sonleyet described a number of species in the Zoological portion of the results of the royage in 1852. The American missionary, E. House, was the first to procure land shells of undoubted Siamese origin, and these were deseribed by Redfield and Haines. ${ }^{(1)}$ The French traveller Mouhot, who explored Lans and Cambodia, between 1858 and 1860 , collected there a number of land shells, which were sent to London, and described hy Pfeiffer : some of these were figured in Mouhot's posthumous work published in 186.t. Several Siamese shells sent to the British Museum by Sir .J. Bowring and Sir R. Schomburgk, were described ly Professor von Martens, ${ }^{(2)}$ who himself, in 1861, visited Siam with the Prussian Expedition to Eastern Asia, and deseribed his finds in the publication of the expedition.

[^3]Great impetus to exploration was given by the successive French occupation of Cochin-China, Cambodia, Annam and Tonkin, a number of scientific expeditions traversing the newly-acquired territories. Le Mesle visited Cambodia and Cochin-China, and published his results in conjunction with Mr. Jutes Mabille ${ }^{(3)}$. Mr. A. Morelet utilised the materials collected by Vesen, Massin and Silvestre for his Fama " The shells obtained by Mr. (iermain in Cochin-China were described by Mr. T. de Rochebrune. ${ }^{(5)}$ Mr. L. Morlet dealt with the collections made by Mr. Pavie in Cambodia ${ }^{(6)}$, in Cambodia and Siam ${ }^{(7)}$, and by Mr. Jourdy in Tonkin ${ }^{(8)}$. Mr. de Mortaineourt's collections in Tonkin were published by Mr. Dautzenherg and Baron dHamonville ${ }^{(9)}$, and Capt. Dorr's in Annam by Mr. (i. Wattehled ${ }^{100}$. Mr. Ancey deserilied the new species acpuired in Tonkin Mr. Milledary ${ }^{(11)}$, and those collected hy Mr. M. Comillom in Laos ${ }^{132}$, while Mr. Jules Mahille compiled a treatise on the materials gathered by Mr. Balansal in Tonkin ${ }^{(33)}$.

More recently, Lieut.-('nl. Alessager and 1)r. R. Bavay have collected numbers of undescribed shells in Tonkin, and these form the substance of four articles by Messrs. A. Bavay and Dautzenberg. ${ }^{146}$ The present writer has dealt with the Plectopyl is collected by lient.-Col. Nessager. ${ }^{(15)}$

Finally Dr. von Möllendorff has made numerous additions to the fauna of this region from material obtained by Mr. Rochelen in Annam ${ }^{16}$, and by Mr. Fruhstorfer in Annam and Siam. ${ }^{171}$
A. SIAM.

Family Zonitidae.

Sub-family Ariophantinae.
Genus Euplecta, Simp.
rosamunda, Bens. Menam Pinh, E. Laos.
danae, Pfr. Laos.
dichromatica, Morlet. Between Srakeo and Ong-son.
Genus Nestiva, Semp.
granulosa, Mdffi. :Bangkok.
Genus Xesta, All.
siamensis, Pfr. Pechaburi.
$=$ birmana, Pfr.
v. mouhnti, Pfr.
vallicola, Pfr.
splendens, Hutt.
Sul) family Macrochlaminae.
Gemus Microcminims, Bens.
dugasti, Morlet. Menam Pinh, Laos.
lainesi, Pfr.
resplendens, Phil. Pechaburi, Bang-Pra.
v. subeornea, Pfr. Menam Pinh.
v. ohesior, Mts. Pechaluri, Bang-Pra:
pedina, Bens. Between Bangkok and Chentabun ; between Pasé and Chentabun.

[^4]11. Le Naturaliste, 1888.
${ }^{12}$. Bull. Mus. Marscille, 1898, T. I.
${ }^{13}$. Bull. Soc, Malac. France, 1887, T. IV.
14. Journ. de Conchyl., 1899, 1900.
${ }^{15}$. Op. ci!., 1901.
${ }^{16}$. Nachr. Deutsch. Malak., Gesell., 1893.
1\%. Op. cit., 1900, 1901, 1902.
? malaccana, P'fr.
mitiuscula, Mts.
sinulabris, Mts. Between Bangkok and Pechaburi.
benoiti, Crosse and Fisclı. Between Bangkok and Chentabun; Xieng-Moi ; Luang Prabang, laos.
callojuncta, Anc. Luang Pràbang.
ochtogyra, Mdffi. Bangkok. heptagyra, Mdfir. Kanburi.
brumea, Mdff. Bangkok; Muoklek ; Hlinlap.
Cienus Everettio, (i.--1.
pumicata, Morelet. Ayuthia.
bocourti. Morelet. Battambang.
duhrniana, Pfr. MIt. Sysophon.
Gemis Bersunid, Pfr.
laotica, Meffit. Laos.
Genus Michocrstina, Morch.
beurguignatiana, Mab. and Lems. Banone.
Cienus hemplecta, Alb.
weinkauffiana, Cr. and F. Viatana ; Mt. Sysophon ; between Battimbang and Komping-son.
crossei, Pfr. Vatana ; Mt. Sysophon.
dura, Pfr. Laos.
euterpe, Pír.
zimmayensis, G.-A. Zimmé.
distincta, Pfr. Bangkok ; Siam generally ; Nieng-Nloi, Laus.
$=$ pernobilis, Fér.
v. neptunus, Pfr.
r. pluto, Pfr. Laos.
cambojiensis, Rue.
Genus Drakia, G.-A.
hugonis, Pfr. Vatana; luetween Bangkok and Chentabui.

Sul-family Helicarioninae.

(ienus Helicarion, Fér.
siamensis, Haines. Bangkok.
$=$ pariei, Morlet.
rhaphiellus, Mts.
cochinchinensis, Morelet.
Gehus Dtrgelli, G.--
simmensis, Mdff. Muoklek.
Genus Kiliella, IV. T. Blanf.
mitis, Pfr. Latos.
Genms Smara, Alb.
diplodon. Bens. Laos.
negraludon, W. T. Blanf. Pitsumaloke.
penoti. Anc. Luang Prabang, Latos.
Sul filuily Zonitinae.
Gemis Vithins, Beck.
cochinchinensis, Morelet. Mt. Kimbo.
Genus Trochomorphis, Alb.
benigna, Pfr. Laos.
pariei, Morl. Luang Prubang, Las.
Fanily Helicidae.
Genus Plectorylis, Bens.
Section Chersabela, Gude.
laomontana, Pfr. Luang Prabang, Lios.
Group Epiphallogona, Pils.
Genus Ciminas, Alb.
illustris, Pir. Laos.
dugasti, Morlet, Laos.
Genus Plinispira, Beck.
Sul-genus Triscui., Alb.
galbata, (ikd. Menam-P'inh.
Sub-genus Avgiskll.a, A.Ad.
Section Trachopsis, Pils.
siamensis, Mdff. Muoklek; Kanburi.
(Chloritis siamensis, Mdff.)
norodomiana, Morlet. NiengMoi, Laos.
Genus Chlontris, Beck.

Sub genus Trichochloritis，Pils．
breviseta，Pfr．
tenella，Pfr．Between Banghok and Chentibun．Pnom－ sim－Krean．
remuratrix，Morlet．Between Bassac and Siempang， Laos．
deliciosia，Pir．Laus．
tanquerevi，C＇r．and F＇．Banone．
fumesi，Morlet．Between Bang－ kok amd Chentabun； Sraken．

infantilis，（iredl．Latug I＇rat latige Latos．
Cemus Ginestlal，IV．T．Blanf．
capitilun，Bens．l＇nonn－san－ Krean；Bangkok．
hariola r．carinella，Mdit．Muok－ lek：Kimburi．
perakonsis，（＇r．Between Bangr kok and C＇hentabun．
siamensis，Redf．
（Bulimus siamensis，Redf．）
rostrella，Pfr．Luang I＇rabang， Latos．
heperteleia，Morlet．Laos．
ptychostya，Mts．Between Bangkok and Chentabun Pnom－san－Krean；Ayu－ thia：Xieng－Moi，Latus．
$=$ goniochila，Pir．
syloptyeta，Pir．
$=$ Itychostylit，Prr．non Mts．
diplogramme，Mdff．Bangkok； lliulip；：Mumklek．
（I＇lectotropis diplogramme， Ildili．）．
r．albicans，Mdれ゙．K゙anburi．
Gimus Amphimboniss，Ilb．
aureus，Marten v．leucoxantha， Mts．Between Clienta－ bun and Srakeo．
atricallosus，Gld．？
inversus，Mull．v．curta，Morlet． Battambang．
comes，Pfr．Battambang．
kobelti，Mdff．Hinlap．
glatucolarynx，Duhrn．Pecha－ buri．
r．fasciata，Mts．Pechaburi．
v．albicans，Mdff．
schomburgki，Pfr：Sirakeo ； Elephant Monutains．
v．lecitim t，Mts．
r．crossei，Pfr．
r．monhoti，Mts．
r．fasciata，Mts．
lansiamus，Bavay．
v．albrocaterulescens，Batray． khone．
mouhoti，I＇fi：
roseolabiatus，Fult．
sinensis，Bens．
v．indistincta，Pils．Latos Monn－ tains．
romeri，Pfr．Lados Momtains．
hemicerlas，Rochebr．Bangkok． semitessellatus，Morlet．Srakeo．
xiengensis，Morket．Xieng－Mai Plateat！B Banks of Me－ nam－Pinh；Latag Prat bang ；Prang．
Haris，Pfr．Linang Prabang．
areolatus，Pir．
zebrinus，Pfr．
（iroup Belogona，v．Her．
Belogoni Edabesla，Pils．
Genus Ellota，Hirtin．
similaris，F＇ér．Bang－l＇ra，ete．
tourannensis，Eyd．and Soul．
$=$ gglobula，Lea．
$=$ bolus，Bens．
$=$ clusilis，Vial．
Gemus Cathaica，Mdfí．
Sub－genus Eccathaca，Andr．
brevispira, H. Ad. Between Chentabun and Srakeo.
Genus Plectotropis, Mits.
trichotropis, Pfr. Vatanal.
winteriana, Pfr. Island Kokram, Gulf of Siam.
hupensis. Hde. Menam-Piulh.
= orthocheilis, Hde.
emma, Pfr. Laos.
caseus, Pfr. Laos.
repanda, Pfr. Laos.
Belogona Siphonadera, Pils.
(iemus Helicoduata, Fér.
Sulg gemus Molleniorffia, Anc.
horrida, Pfr. Luang Prabang, Laus.

Doubtefl ind spleiols Records.
Helix dicuolu, Morelet, = Plumorhis dicuelus, Morelet.
Helir truchiscus, Pir.-Originally recorded for Siam, but habitat subsequently corrected to Aru Islands.
Ximinu busiondon, Morelet.-Mr. Sykes found this to the the same as Mestyle insculpte, Pir.. a Morfolk Island shell. The Siam halitat is probably tased on a change of labels. It is, however, a curious coincidence that Professor ron Martens mentions (Ost-Asien, p. 7t) that he fomm in Monssmis collection a shell which the latter received from Bernardi with the habitat Siam. This shell Professor von Martens identifies as ! Trochomorphat insculpta, Pir.

B. COCIIIN CIHNA.

Family Zonitidae
Sul-falmily Ariophantinae.
(ienus Elplecta. Semp.
cochinchinensis, Pfr.
(ienus Xest.I, All.
cidaris, Lame. Preck - Scholl Spighumi-Breithon.
Sub-finliy Macrochlaminae.
(ienus Macrocilimys, Bens.
benoiti, C'r. and F.
(iemus Iemiplecti, Alb.
weinkiuftiana, Cr. and F. Siagon.
distincta, P'fr. Saigon. v. pluto, Pfr. cambojiensis, Reere. Brelum.
$=$ mouhoti, Reere.
Sub-family Helicarioninea.
(ienus Helichriox, Fér. russeolus, Morelet. unguiculus, Morelet. cochinchinensis, Morelet.
Genus Kaliele,, W. T. Blanf. billeheusti, Cr. and F. Vinlı-
long ; Fuyen-Moth
durri, Wattebl.
hueensis, Wattebl.
Sub-family Zonitinae.
Liemus Trochosoxpia, Alb.
salgonensis, C'r. Siagon.
tonkinorum, Mab.
sitpeca, Hde. Tay-nimh.
Family Hesicidae.
(iroup Epiphallogona, Pils.
(ienus Chloritis, Beck.
Sub-genus Trichochloratis, Pils.
rhinocerotica, Hde. 'Tay-ninh.
deliciosi, Pfr.
tenella, Pfr. Spiglumi-Breithon.
tanquereyi, C'r. and F. FuyenMoth.
(ienus Ampildroness, Alb.
atricallosiss, Gild.
(= Bulimus eques, Pfr.)
comes, Pir. v. polymorpha, Tapp. Saigon ; Prov. Baté.
cochinchinensis, Pfr.
cambojiensis, Rve. Brelum.
mouloti, Pfr. Brelum.
fultoni, Ane.
flavus, Pfr. Thu-Dan-Moth; Ving-Long.
r. proxima, Fult.

Genus Ganeable, II. T. Blanf.
galera, Itde. 'Tity ninh.
ptychostyla, Mts.
sitmensis, Redf. r. nubilis, Ane. Long Xuyen.
r. obesuli, Ane. Siagon.
(iroulp Belogona, r. Hher.

Belogona Euadenia, Pils.
Genus Ellota, Hartm.
similaris, Fer.
touramensis, Eyd: and Soul. Fuyen-Moth; Viuh-Long.
(ienus Plectotiopis, Mts.
emma, Pfr. Spigluni-Breithon.
pariei, Morlet.
Ducbiful Reconds.
Amphidromus perversus, L. sultamus, Latm. chloris, Re.
(\therefore C.AMBODLA.

Fiunily Zonitidae.
Sub-fimily Ariophantinae.
(ienus Elplecta, Semp.
hyphasma, P'fr. Kam-Chay.
(iemus Nistiva, semp.
cardiostoma, Melfif.
Sub-family Macrochlaminae.
Gemis Macrochlimis, Bens.
henoiti, Cr . and F .
resplendens, Phil.Kebal-Rouniats,
Gemis Microcistini, Morch.
ramburiana, Mab. and Lem.
Houdoung ; Dommac-
Tenong.
bourgnignatiana, Mab. and Lem. Phmum-Kretch.
Genus Hemplect.a, Alb.
crossei, Pfr. Pnom-Kebal; Moth - Kasa ; PhmumKretcl.
weinkatuffiana, Cr. and F. MothKasat ; Phumereretel.
distincta, Pir.
r. neptumus.
v. pluto, Pfr.

Sul-family Helicarioninae.
Cienus Helicarion, Fér.
russeola, Mor. Chandoc Mountains.
cochinchinensis, Mur. Muth Kissil Dien bai.
stimensis, Itaines.
$=$ panviei, Morlet.
rhaphiellus, Mts.
Sub-family Zonitinae.
Genus Thochongrpis, Alb.
saigonensis, Crosse. Vorvonglovea.
patiei, Morlet. Between Kimupot and Phom P'enh.
Family Helicidae.
(Croup Epiphallogona, Pils.
Gemis Cimiena, Alb.
illustris, Pir. Chandoc Mountains.
Genus Planispie., Beck.
Sub-genus Angiselli, A. Ad.
Section Tracmorsis, Pils.
norodomiana, Morlet. Kimnchay.
(iemus Chlontis, Beek.
Sub-genus Trichocilomitis, Pils.
seriatiseta, Rochebr. Chandoc Mountains.
deliciosa, Pfr. Chandoc Mountains.
quinaria, Pfr.
$=$ guinaria, Pfr.
fouresi, Morlet. Strang-Trong.
(enus Ampiidromus, Alb.
nigrofilosus, Rochebr.
inversus, Mull. v. alboglobosa, Morlet. Between Kampot and Pnom-Penh.
r. annamitica, Cr . and F . Saigon: Fuyen-Moth.
comes, Pfr. Kimpot ; Compentra.
cambojiensis, Rue.
glaucolarynx, Dohrn. v. perrieri, Rochebr. PrekScholl.
eruentatus, Mor.
begini, Morlet. Stung-Trang Platean.
semitessellatus, Morlet. StungTrang : Kampot ; Elephant Mountains.
xiengiensis, Morlet v. multifasciatal (Fult.), Pils.
$=$ contrarius v. multifasciata, Fult.
v. clansi, Pils.
r. tryoni, Pils.

Gemus Ginesella, W. T. Blanf.
styloptycta, Pfr. Yorvong-
lovea; Moth-Kasa;
Phnum-Kretch.
$=$ ptychostyla, Mts.
Group Belogona, v. Ther.
Belogona Eeldenia, Pils.
Genus Euloti, Hartm.
cestus, Bens. Moth-Kasa : PnomPenh.
frilleyi, Cr. and Deb. KebalKhmoch.
touramnensis, Soul. MothKasa.
pilidion, Bens.
Genus Plectotropis, Mts.
repanda, Pfr.
caseus, Pfr.
Belogona Siphonidenia, Pils.
Gemus Helicodonta, Fér.
Sub-genus Moellendorffi, Ane.
horrida, Pfr.
Doubtful Records.
Amphidromus furcillatus, Mouss. laevus, Mull. adamsii, Rue. contrarius, Mull.
D. PULO CONDORE.

Family Zonitidae.

Sub-family Macrochlaminae.
Genus Microcistini, Moreh.
annamitica, Cr . and F .
(iemus Hemblecti, Alb. weinkauftiana, Cr. and F.
crossei, Pfr.
striata, Gray.
= naninoides, Bens.
distineta, Pfr.
$=$ pernobilis, Fér.
Sub-family Helicarioninae.
Genus Kaliella, W. T. Blanf. bonyeri, Cr. and F.

Sub-family Zonitinae.
(ienus Trociomorpila, . Ill). saigonensis, Crosse.

Family Helicidae.

(roup Epiphallogona, Pils.
(iemus Ciloritis, Beek.
Sub-genus Trichochloritis, Pils.
condoriana, Cr . and F .
Genus Ampilidromus, Alb.
dohrni, Pfr.
Genus Ganesella, W. T. Blanf.
siamensis, Redf.
(Bulimus siamensis, Redf.).
Group Belogona, v. Ther.

Belogona Euadenla, Pils. Genus Plectotropis, Pfr.
repanda, Pfr.

Doubtful Records.
Amphidromus sultanus, Lam. Amphidromus chloris, Rve.

E. ANNAM.

Family Zonitidae. Sul-family Ariophantinae.
(iemus Coneeplecta, Miffi.
annamitica, Mdff. Tonran ; Non-njuk.
globulosa, Mdffi. Touran.
Gemus Nestina, Semp.
promiscua, Smith. Prov. BinhDinh.
denserugata, Mdfff. Mt. Dran ; Hong-gong. tenera, Mdffi. Ballach. pharangensis, Mdff. Pharang.
Sub-family Macrochlaminae.
(Genus Macrocillamys, Bens. tecta, Soul. Touran ; Boloven. promiscua, Smith. Binh-Dinh.
Genus Bensonia,
prionotropis, Mdff. Boloven.
Genis Microcystina, Mörel. amuamitica, Mdff. Boloven.
r. subrubella, Mdff. NhaTrang, Is. Baimin.
Genus Heniplecta, Alb. crossei, Pfr. Boloven. damae, Pfr. Boloven.
(iemus Rhysota, All). platytaenia, Mdff. Touran. pergrandis, Smith. Binh-Dinh.
Sub-family Helicarioninae. Genus Kaliella, IV. T. Blanf. dorri, Wattebl. Hué. difficilis, Mdff. Touran.
Family Helicidae.
Ciroup Epiphallogona, Pils.
(ienus Camaena, Alb.
pachychilus, Smith. Binh-Dinh. suprafusca, Mdff. Boloven.
Genus Camafnella, Pils.
frulstorferi, Mdff. Touran ; Non-njuk.
nigricans, Mdff. Phuc-son.
Gemus Cilloritis, Beck.
microtricha, Mdff. Boloven.
diplochone, Mdff. Boloven.
Sul-genus Triciochloritis, Pils. tenella, Pfr. Boloven.
Genus Ganesella, W. T. Blanf.
siamensis, Redf. Pharang; Ballach.
(Bulimus siamensis, Redf.)
v. zonifera, Anc.
v. maxima, Anc.
chondroderma, Mdff. Phucson.
(Plectotropis chondroderma, Mdff.)
Cienus Ampuidromis, Alb.
inversus, Müll. v. annamitica, ('r. and F. Boloven Plateall.
metabletus, Mdffi. Mother and Child Mountain ; Baimin Island.
v. pachychila, Mdffi. Nhatrang.
(and forms flava, alba, tritaeniata, trizona, interrupta, confluens, fusca, Mdfi.)
v. insularis, Mdffi. Baimin Island.
ingens, Mdff.
costifer, Smith. Pror. BinhDinh.
placostylus, Mdff. Phuc-son. haematostoma, Mdff. Boloven Platean.
smithi,' Fult.
v. ventrosula, Mdff. Phucson.
zebrinus, Pfr. v. eudeli, Anc. Binh-Dinh.
rhodostylus, Mdfi. Pharang.
r. simplex, Mdif.
(and forms roseolineata, nigrolineata, ignca, rhabdota, lipartita, subconfluens, Mdffi.)
(iroup Belogona, v. Ther.
Belogona Euadenta, Pils.
Genus Ellota, Hartm.
tourannensis, Eyd. and Soul. Touran ; Pla-rang.
r. robusta, Mdif. Phuc-son.

Genus Pupisomis, Stol.
hueense, Wattell. Hué. f. TONKIN.

Family Zonitidae.
Sub-family Arlophantinae.
Genus Coneuplecta, Mdfff.
confinis, Mdff. Than-moi.
subangulata, Mdff. Than-moi.
ochthogyra, Mdff. Island Bah Mun.
globulosa. Mdffi. Island Ke-Bao. sculptilis, Mdff. Isliand Ke-Bao.
Genus Xestina, Semp.
tongkinensis, Mdff. TuyenKwan.
Sub-family Macrochlaminae.
Genus Macrocilamys, Bens.
tenuigranosa, Dautz. Between Bien-Dong and An-Chau.
alluaudi, Bav. and Dautz. BacKan: That-Khé.
stenogyra, Mdff. Manson Mountains.
glyptoraphe, Mdff. Manson Mountains.
enspira, Mdff. Island Bah-Mun. declivis, Mdff. Than-moi.

Genus Microcystina, Mörch.
mirmido, Dautz. Haiphong. tonkinensis, Mdff. Than-moi. leucocystis, Mdff. Than-moi. v. angigyra, Mdff. Thanmoi.
mansonensis, Mdff. Manson Mountains.
? opaca, Mdff. Island Ke-Bao. Gemus Hemiplecta, All.
weinkauffiana, Cr. Elephant Mountains.
distincta, Pir.
v. funerea, Smith. Vanbu.
v. pallidior, Smith. Yinbu. despecta, Mab.
Suld-family Helicarioninae.
Genus Cryptosoma, G.-A.
imperator v. brumnea, Mdff. Island Bah-Mun.
maleficus, Mab.
fragile, Mdff. Manson Mountains.
Genus Heliciriox, Fér.
roudouyi, Fisch. Yen-Bai ; Quang-Uyen.
tongkinensis, Mdff. Than-moi.
siamensis, Haines. Yanbu.
$=$ paviei, Morlet.
Genis sitala, H. Ad.
striolata, Mdff. Lang-son.
Genus Kaliella, IW. T. Blanf.
regularis, Mdff. Lang-son.
dolichoconus, Miffi. Than-moi. tongkinensis, Mdff. Than-moi.
gradata, Mdffi. Than-mon.
Sub-family Zonitinae.
(ienus Trochomorpha, Alb. bicolor, Mts. Halong Bay. subtricolor, Mab. tonkinorum, Mab.
montana, Mdffi. Long -ma : Mauson Mountains.
Of Uncertan Affinity.

Ariophanta vernaeula, Mab.
Near Aurea Mountains excepta, Mab.
", infima, Mab. ", zero, Mab.
Family Helicidae.
Genus Plectopylis, Bens.
Section Chersaecia, (iude. laomontana, Pfr. Cho-bo.
Section Enduplon, Gude. anceyi, Gude. Bac-Kan: NacRi ; between Cho-moi and That-Khé.
giardi, H. Fisch. Cao-Bang.
havayi, Gude. That-Khé ; NacRi.
persimilis, Gude. That-Khé.
lepida, Gude. Tinh-Tue.
congesta, Gude. Bac-Kan ; NaeRi ; That-Khé.
françoisi, H. Fiseh. Deo-maPhue.
dautzenbergi, Gude. That-Khé between Cho-moi: between Bac-Kinn and NacRi.
pilsbryana, Gude. Islets in Halong Bay:
$=$ villedaryi, Pils. and Gude non Aneer.
sehlumbergeri, Morlet. Niy-Dong-Nay ; Halong Bay ; Elephant Mountains.
villedaryi, Anc. Lang-son ; BachNinh ; Than-moi.
$=$ choanomphala, Mdff.
jovia, Mab. Halong.
moellendorffi, Gude. Than-moi.
phlyaria, Mab.
hirsuta, Mdff. Island Bah-Mun.
Section Sinicola, Gude.
tenuis, (iude. Cho-Ra ; BacKan ; Cho-moi.
fruhstorferi, Mdfif.
fischeri, Gude. Bac-Ǩan.
emigrans, Mdff. Manson Mountains; Bac-Kan ; NacRa; Halong Bay.
(Group Epiphallogona, Pils.
Cenus Cimbeni, Alb.
ricatricosa, Miill. Lang-son.
v. inflata, Mdff. Between Lang-son and Than-moi.
v. obtecta, Fiseh. Lue-Khu; Cao-Bang.
longsonensis, Morlet. Long-son. jaculata, Mab.
hahni, Mab. Nuy-Dong-Nay.
$=$ broti, Dautz. and D'Ham.
subgibbera, Mdff. Between Lang-son and Than-moi.
gabriellae, Dautz and D'Ham, Between Bac-ninh and Lang-son.
$=$ bathmophora, Mab.
$=$ bathymorpha, Pils.
v. subhainanensis, Pils.
hainanensis, H. Ad. Halong Bay ; Elephant Mountains.
xanthoderma, Mdff.
v. ingens, Mdfí. Manson Mountains.
illustris, Pfr.
v. tonkinensis, Smith.
vanbuensis, Smith.
billeti, II. Fiseh. Coa-Bang.
lavezzarii, Bav. and Dautz. Bac-Kan ; That-Khé.
vorvonga, Bav. and Dautz. Phimi ; Bac-Kan ; ThatKhé.
fauveli, Bav. and Dautz. Pihmi ; Bac-Kan.
Genus Neocerolis, Pils.
merarchat, Mab.
mercatorina, Mab. Between Lang-son and Than-moi.
= morleti, Dautz. and D'Hamon.
langsonensis, Bav. and Dautz. Between Lang-son and That-Khé.
Genus Planisiriza, Beck.
Sub-genus Angasella, A. Ad.
section Triscmupsis, Pils.
lambineti, Bav. and Datutz. Bae-Kan ; That-Klhé.
Genus Chloritis, Beek.
marimberti, Bav. and Dautz. Cho-Ra.
duandi, Bav. and Dautz. BacKan.
gereti, Bav. and Dautz. BacKan; Plii-mi.
athrix, Mdfi. Manson Mountailis.
insularis, Mdfi. Isle des Merveilles.
Sub-genus Trichuculuritis, I'ils.
miara, Mab.
lemeslei, Morlet. Song-ma.
balansai, Morlet. Nuy-DongNay; Song-ma; Langson ; Halong Bay; Elephant Mountains.
Genus Amphidromus, Alb.
dautzenbergi, Fult.
Genus Cialepotanis, Anc.
infantilis, Gredl. Haiphong ; Deo-ma-phuc.
$=$ Xesta unilineata, Dautz.
= Kaliella haiphongensis, Dautz.
Genus Ganesella, W. T. Blanf.
perakensis, Crosse. Halong Bay; Elephant Mountains.
v. subperakensis, Pils.
phonica, Mab.
procera, Gude. Than-moi.
eximia, Mdffi. Manson Mountains.
concavospira, Mdff. Than-moi.
onestera, Mab.
rostrella, var. Tanbu.
straminea, Mdff. Than-moi.
oxytropis, Mdff. Island K icBao.
platyconus, Mdfi.
pulchella, Mdff. Manson Mountains.
vatheleti, Bav. and Dautz. Halong Bay.
saurivonga, Bav. and Dautz. Bac-Kian; Tlat-Khé.
v. concolor, B. and D.
coudemi, Bav, and Dautz. BacKan.
Group Belogona, v. Iher.
Beloguna Euadenia, Pils.
Cenus Eulota, Hartm.
jourdyi, Morlet. Thau-moi ; Latng-son ; Dang-son ; Chits.
$=$ rorticellina, Hule.
v. monticola, Mdff. Manson Mountains.
mabillei, Crosse. Chur.
vignali, Bav. and Dantz. ThatKhe.
(ienus Euiradra, Pils.
massiei, Morlet. Song-mia.
pseudopapuina, Mdff. Manson Mountains.
Cenus Plectotropis, Mts.
bonnieri, H. Fisch. Deo-maphue.
Genus Aegista, Alb.
mensalis, Hele. Song-ma.
Beloguna Siphonadenia, Pils.
Gemus Molllendorffia, Aue.
loxotata, Mab.
spurca, Bay. and Dautz. Bac- Species of Uncertan Affinity. Kan.
v. deflexa, Mdff. Manson Mountains.
messageri, Bav. and Dautz. Between Lang-son and That-Khe.
callitricha, Bar. and Dautz. That-Khe.

Helix chytrophora, Mab.
„, struposa, Mab.
,, tenellula, Mab.
,, amphicora, Mal.
,. clopica, Mab.
,, melanotrica, Mab.
,. dectica, Mab.
,. baphica, Mab.

ON SOME SPECIES OF SLUGS COLLECTED BY MR. H. FRUHSTORFER.

Br Walter e. Collinge, b.Sc.
(Plate i.)
In the latter part of $1901^{(1)}$, I deseribed a series of slugs collected by Mr. H. Fruhstorfer, of Berlin. One genus helonging to this collection has already been dealt with in detail ${ }^{33}$, viz., Myotestu, and there yet remain two species of Philomycus, one of Microparmarion and two of Veronicella.

Just as the work upon the alove mentioned species had been completed. I received from Dr. Simroth, a copy of the note, published in the Zoologischen Anzeiger ${ }^{(3)}$, and from it 1 gather that Mr. Fruhstorfer after inviting me to describe the collection and sending me all (?) the examples, has made a similar request to Dr. Simroth, a proceeding, to say the least, unfair and most reprehensible.

As Dr. Simroth has in preparation a work upon the genus Philomycus which includes the two species above mentioned, I have thought it only fair to at present withhold my description of the anatomy, but as the figures of the externals were already drawn, I publish those only. I have written Dr. Simroth to this effect.

Microparmarion bruneopallescens, Cllge.

> Pl. i, figs. 1, 2.

Microparmarion bruneopallescens, Cllge. : Journ. of Malac., 1901, vol. viii, p. 120.
Hub.-Annam (1I. Frulistorfer).
Philomycus fruhstorferi, Cllge. Pl. i, figs. 3, 4.
Philomycus fruhstorferi, Cllge. : Journ. of Malac., 1901, vol. viii, 1. 119.

[^5]Hab.-Nagasaki, Japan (H. Fruhstorfer).
A figure of the animal is now given, also one of the anterior portion of the foot-sole.

Philomycus dendriticus, Cllge.

Pl. i, figs. 5, 6 .
Philomycus dendriticus, Cllge. : Journ. of Malae., 1901, vol. viii, p. 119.

Hab.—Mt. Mausson, 2-3000 ft., 'Tonkin (H. Frulistorfer).
Veronicella fruhstorferi. Cllge.
Pl. i, figs. 7, 8.
Veronicella fruhstorferi, Cllge. : Journ. of Malac., 1901, vol. viii, p. 120 .

Mab.-Mt. Mausson, 2-3000 ft., Tonkin (H. Fruhstorfer).
Veronicella himerta, Cllge.
Pl. i, figs. 9, 10.
Veronicella himerta, Cllge. : Journ. of Malac., 1901, vol. viii, p. 120.
Hab.-Mt. Mausson, 2-3000 ft., Tonkin (H. Fruhstorfer).
EXPLANATION OF PLATE I.
Fig. 1. Microparmarion brunneopallescens, Cllge. Right lateral view. $\times 2$. Fig. ». $\quad, \quad " \quad$ Dorsal view. $\times \geq$. Fig. 3. Philomycus fruhstorferi, Ĺllge. Right lateral view. $\times 1$.
Fig. 4. " ",
Fig. 5. Philomycus dendriticus, Cllge.
Fig. 6. ," ,"
Fig. 7. Veronicella fruhstorferi, Cllge.
Fig. 8. ", "
Fig. 9. Veronicella himertu, Cllge.
Fig. 10.
" "
" ", Portion of anterior region of foot-sole.
Right lateral view. $\times \mathrm{I}$.
Dorsal view. $\times 1$. Dorsal view. $\times 1$. Ventral view.
Dorsal view. $\times 1$. Ventral view. $\times 1$.

NOTES ON SLUGS AND SLUG-LIKE MOLLUSCS.

By WALTER E. COLLINGE, B.Sc.

1.-On the Limax umbrosus of Philippi.

Through the kindness of Dr. Ad. S. Jenson, I have recently had an opportunity of examining a specimen of a slug in the Zoological Museum of the University of Copenhagen, described by Philippi in $1844^{(1)}$ under the name of Limax umbrosus.

Considerable doubt has existed in the minds of malacologists as to the generic and specific identity of this molluse. Lessona and Pollonera, in their well-known work on the Italian slugs ${ }^{(3)}$, classed it as ia synonym of Limax flavus, L., whilst others have regarded it as a variety of that species.

[^6]The specimen I have examined has a label attached bearing the following partieulars: "Limax (Hilax) umbrosns, Phil. Sieilien.-H. F."

It was at once evident on first examination that this specimen was very distinet from L. flacus, and on dissecting it I had no hesitation in referring it to the genus Amalia, Moq., as evidently was the opinion of "H. F.," the writer of the label. I would further point out the very peculiar foot-sole which this species has, viz, two narrow lateral planes marked with fine transverse lines, and two median planes, separated by a zig-zag line thus VVVV, and differing from that of any other species of Amalia with which 1 am acquainted.

2.-On a species of Arion from New Zealand.

Towards the end of $1899, \mathrm{Mr}$. Henry Suter forwarded to me a small collection of shgs from New Zealand, consisting chiefly of specimens of the eommon speeies of Limax, Agriolimax, and Amalia, and a single example of a species of Arion from Auckland. So far as 1 am aware Arion fuscus, (). F. Mull., is the only member of this gemus which has been found in New Kealand, and in spite of careful inquiry, I have as yet been unable to refer the Auckland specimen to any known species, From the external features I should say that it belongs to the subfuscus group, although the mantle is small. The specimen (in alcohol) measures 13.5 millim. in length, and is of a miform light chocolate-brown colour ; foot-sole slightly lighter in colour and smooth.

3.-On the dispersal of Microparmarion, sp.

I have recently received from Mr. Arthur E. Shipley, three examples of a new species of Microparmarion, which were sent to him from Kew, having been received there in some plants forwarded by Mr. R. Shelford, of Sarawak, N. IW. Borneo.

In addition to affording a good example of the artificial distribution of such animals, these partieular slugs offer a further point of interest. On teasing out the contents of the stomach of a specimen which had been cut open, I found numerous bits of vegetable tissue, hyphae and spores of fungi, bits of chitin and many chitinous hairs, and finally, an almost perfect specimen of an ant. The latter, 1 sent to Mr. W. F. Kirby, of the British Museum, who very kindly asked Col. C. T. Bingham to identify it for me, and he writes that it is a specimen of Cremastogaster miri, Forel, and that it is common in Borneo.

The numerous hairs and bits of chitin in the stomach would lead one to suppose, that these insects form a considerable item in the food of this particular species. Whether they are eaten dead or alive, I cannot say.

I had previously received examples of this slug from Mr. Shelford, which I hope to describe in detail later.

4.-Variations in the Foot-fringe of Arion empiricorum.

For some years I have made careful notes upon the variations in the colour of the foot-fringe of our common Arion. The observations have extended over nearly five years, during which time many hundreds of specimens have been examined, with the result that 2.8 specimens out of just over 1,000 have been noted to possess variously coloured foot-fringes. The percentages of these is rather interesting.

Of the white there were 12 , grey 14 , fawn 10 , light brown 13 , chocolate-brown 16, steel-blue 10, greyish-violet 5, pale yellow 29 , deep yellow 56 , brick-red 7 , salmon-pink 6 , orange-red 42 , sepia 8 . In fourteen of these specimens, there were no lineoles.

Exeepting fourteen, all the 228 specimens differed from the type, i.e., were colour variations, and ten were albinos.

A few attempts were made to keep some of the most brilliantly coloured varieties under observation, and it was noticed that those specimens with yellow, light brown, or fawn-coloured foot-fringes, soon underwent a change, whilst all the red coloured ones seemed much more permanent.

NOTES.

The Mollusean Fauna of Warwiekshire.-The council of the Midland Malacological Society have in preparation a Fauna of the Mollusca of Warwickshire in which it is proposed to give all possible information on the species occurring in the County, riz. :-Localities, Food Habits, General Distribution, Gcological Formation of District, and other interesting details. They will be pleased to receive the co-operation of all interested, so that the work may not only be a list, but complete, and a valuable one of reference.

In submitting Molluses, Shells, etc., or information respecting them, workers are requested to give as full details as possible as to :-

1. Locality. 2. Date when collected or observed. 3. Name of the plant on which feeding or where resting. 4. Whether the animal gives off any particular odour. 5. Position, aspect, and general features of locality, viz. :-marsh, wood, ditch, etc., etc. 6. Geological formation of ground. 7. Gencral distribution. S. Whether plentiful. 9. Other particular's, such as size, colour, texture, preponderance of any special form, or other points of interest. Due recognition will be accorded to all such observation.

It is proposed to issue from time to time a summary as to how the work is progressing, whieh will be duly forwarded to all who have contributed.H. Overtos, Clifton Road, Sutton Coldfield.

CURRENT LITERATURE.

Pilsbry, Henry A.-Tryon's Manual of Conehology, ser. ii, rol. xv. (pt. 5s), pp. 49-128, pls. 16-34. Philadelphia : Acarlemy of Natural Sciences. Continuing the gems C'oelocentrum, a further new species, C. exlex, is described and figured. The genus Holospira, Marts., is next dealt with. Dr. Pilsbry remarks that these snails are capable of enduring great heat. Living examples of $I I$. strebeliana and I. nelsoni survived immersion in actually boiling water for some minutes, and, molike other snails, they did not retract in the water. Some acconnt of the anatomy of the genus is given and illustrated. The kiduey is long and narrow, being slightly longer than the pericardinm. Apparently there is no secondary ureter. The generative organs are characterised by the short penis. long vas deferens, the great length of the oviduct and (in II. nelsomi) the receptacular duct also and the absence of accessory organs. The free retractor muscles are excessively long, attached proximally to the axis at about the junction of the cone with the cylindrical portion of the shell. The following species are new : II. tetrelasmus (Mexico) ; II. nelsoni (Sierra Guadalupe, Mexico), a species resembling $I I$. teres, Whe. ; I. dnlli, from the same locality, is an extraordinary species, in which the internal colnmn is wider than in any other known form of the genus, and I. strebeliana, a species chiefly remarkable for its long, cylindrical, many-whorled shell, very blunt at the ends.

Passing next to the Crocoptinae, a short summary of the leading anatomical features of the genus Lrocoptis, Beck, is given, while the following species, etc., are new: U. latu, C.B.Ad., var. antonionis, var. manchionetlensis, subsp. ichnostele; U. uvatu, Deshayes, rar. senctueannue, and U. hendersoni.

A word of praise must be given to the illustrations, which are certainly above the average.

Ortmann, A. E.-Reports of the Princeton University Expeditions to Patagonia, 1896-1599 ; rol.iv, Paleontology-Part II. Tertiary Invertebrates. $1902, \mathrm{pp} .45-332, \mathrm{pls}$. xi-xxxiv.
To must reader's the associations of the name of J. Pierpont Morgan lie " in the steamship in the railway, in the thonghts that shake mankind," rather "than in the mareh of mind." We remark with pleasure and gratitude the notification on the title-page of the bulky volume before us that this millionaire defrayed all charges.

Dr. Ortmann's report is framed on broad lines. Instead of the usual list of species collected and diagnoses of novelties, we have received a complete monograph of the subject. The history of the Tertiary mollusea of Suuth America commenced with Darwin's visit in the "Beagle," and concludes with Hatcher's investigations. From the Patagonian beds are enumerated 132 molluses and brachiopods. All the species, new and old, are described
and iliustrated, giving the memoir especial ralue as a work of reference. The fauna as a whole is discussed with the same thoroughness and the species in detail. An analysis of the data collected leads Dr. Ortmann and Mr. Hatcher to dispute many of the conclusions arrived by Ameghino and ron Ihering.

The fama dealt with is regarded as homogeneons, from shallow water, of Miocene date and Antarctic origin. A comparison of such with similar beds in another hemisphere may be expected to be fruitful of results. The conclusion here adopted is that in late Mesozoic or early Tertiary times, Antarctica enjoyed a milder climate than at present, and extended north to America. New Zealand, Australia, and perhaps Africa. Through the warm and shallow scas that washed the Antarctic Continent, or Archipelago, a fanna ranged from Tasmania to Pataronia.

The Antaretic molluscan fauna entombed at Muddy Creek is the richest, according to the late Professor Tate, known to Paliontology. In comparison with it, the Patagonian fama is a scanty one. We anticipate that the South American deposits are not yet exhausted. Mr. Hatcher's collection mainly consists of large conspicuous shells, and in all probability, the usual complement of small species, measured by millimetres rather than by inches, yet remain to be discurered.-C. Hedler.

Jameson, H. Lyster.- On the Origin of P'earls. Proc. Zool. Soc., 1902, pp. 140-166, pls. xiv-xvii.
Dr. Jameson has investigated the origin of Pearls in Mytilus edulis. After a very brief reference to the work of other in restigators, he describes the structure of the mantle and shell, and defines the meaning of the terms " pearls," " blisters," and "concretions." As the three terms have been very loosely used in the past, it is important to note that they have each a totally different mode of origin, and should not be confused or regarded as synonyms. A pearl is formed in a closed epithelial sac embedded in the tissues, and formed around a parasite (in Mytilus a larval Trematode), which probably causes a specific stimulation. It consists of one or more layers of shell-substance, cnclosing a central in ucleus. Thus there are nacreous pearls, prismatic pearls, periostracum pearls, and hinge pearls. The parasite does not necessarily become the muclens of the pearl, it may escape before calcification, learing behind a gramular substance, which serves as "nucleus" for a pearl.

Blisters are caused by the intrusion of foreign bodies between the mantle and the shell, or by the secretion of a nacreons cicatrix to close perforations of boring molluses, worms, de.

Concretions are small free calcosphaeritie bodies which oceur at times in the comective tissues. In some molluses they are due to the calcification of degenerated Sporocysts or of dead Cercariae, and to other causes.

The author then describes the minute structure, the origin and derelopment of the pearl and the life-history of the parasite. From Dr. Jameson's work it secms that it is possible to infect Mytilus with the parasite, and he discusses the bearing of the facts in his paper upon the problem of artificially producing pearls. It seems clear from this valuable research, that in many molluses yielding valuable pearls, Trematodes are one, if not the exclusive, cause of pearl formation.

Simroth, H.-Die Nacktschmeckenfauna des Russischen liciches. 4to. pp. 321, 27 Tafn., 10 Karten u. 17 textfign. St. Petersburg: 1901 [1902]. Der K. Akad. d. Wissensch.
Of the many magnificent works which have emanated from the pen of the illustrious Leipzig professor, none have exceeded in interest, or surpassed in the wealth and beauty of illustration, the invaluable memoir before us. No review, limited in space, as here, can do justice to such a work, and we are perforce compelled only to give a very brief resume of the contents.

Commeneing with an introduction, Dr. Simroth defines the limits of the region treated of, and the rarious divisions of the same; disensses the supposed centres of origin and the lines of distribution, and concludes with it definition of the term "slug."

Passing to the special part of the work, it opens with a detailed accomet of the anatomy of Ancedenus gigenteus and a consideration of its relationship with other genera. Scattered throughout the accounts of the new genera and species, the author discusses, and adds many original observations and facts to, such subjects as the division of general and species in part by means of colour, the relations of Ileynemamein and Lehmemmia, the origin of the genus Limax, the colour bands of slugs, distribution of I'aralimax', classification of Agriolimax, the genus I'armacella, the Agnathous slugs, conditions of life of the A gnathous slugs, selffertilisation, and a host of points concerning the generative organs, free-mnscles, digestion, affinities, distribution, de. The work is a mine of information, rich and exhanstive in detail and insaluable to every student of malacolory.

The new gencra, species, etc., described are as follows:-Arion subfuschs, Drp. v. femmicus, A. sibiricus, Limax anamowi, Simr. v. imercticas, L. ordubadensis (= colchicus, Simr.), Metalimax elegans, Monochroma brun neum, l'aralimax brandti, v. Mts. forms coriaceus, mubilus, notatus, lilacimus l^{\prime}. marmoratus, I^{\prime}. niger, and form nigerrimus, I^{\prime}. albomaculatus, l '. salumandroides, I^{\prime}. gyratus, I^{\prime}. gracilis, P^{\prime}. ochraceus, I. albocarinatus, I^{\prime}. ruddei, and forms striatus pictus, elegans, variegatus, obscurus; I '. minutus, Agriolimax luevis, Müll. v. perversus, A. agrestis, l. v. turkestanus, A. tuuricus, A. transcaucusicus and vars. simplex and coeciger, A. caspius, 1. subugrestis, simr. v. minutus, A. ilius, A. ananowi, A. osseticus. Tropid ulytopelte is a new subgenus of Lytopelte with L. maculata, Koch and Heyn., as the type ; also Liolytopelte containing two new species, L. caucasica and L.grusina. A new subgenus of Gigantomilax, termed Turcomilax, is described, with G. nanus, Simr., as the type, and of Gigantomilax, s.s. a new species G. robustus. The remaining new species are : Parmucella korschinskii and 5 . rubra, P. levandri, P. persica, I'rigonochlamys minor, Pseudomilax reibischi and P. ananowi.

The genus l'hricolestes named in 1900 is now described with l. udscharicus and P. ponticus $(=P$ 'seudomilax lederi, Lietowski, non Bottger) ; and the genus Hyrcanolestes with II. valentini.

In nearly all cases the new genera are accompanied by a wealth of anatomical descriptions and figures, and, as has already been pointed out, many interesting observations upon their habits, habitat, distribution, aftinities, etc.

Simroth, H.-Uber cinige kïrzlich bescluriebene nene Nacktschnecken, cin Wort zur Aufklärung systematischer Verwirrung. Zool. Anz., 190 -2, Bd. xxr, pp. 355-357.
Dr. Simroth is of opinion that the genus Ostracolethe, described by him in 1901, is the same as Myotestu, Cllge., described in the same year. There are, howeser, quite a number of differences in the two accounts. 1r. Simrothstates that the mantle is perforated, and that though the cleft there projects the fine point of a conch-like shell, while Mr. Collinge recy emphatically states that the shell is flat and plate-like, and entirely covered and enclosed by the mantle. The radula is also a further point upon which the two authors are at variance.

Simroth, H.-Ueber die walurscheinliche Herleitung der Gattungen Monochromo und Paralimux. LiAmn. du Mus. Zool. l'Acad. Imp. Sc. St. Petersb., 1902, T. vii., pp. $283-286$.
Simroth, H.-Ueber die Verbreitung der russisehen Nacktschnecken. Ibid., pp. $\simeq 87,288$.
Simroth, H.-Z̈̈ber das natürliche System der Erde. Verhandl. d. Deutschen Zool. Gesell., 190-2, pp. 19-4.2, fign. 1-9.

Simroth, H.-Veber die Ernahrung der Tiere und der Weichtiere im besonderen. Verhandl. d. V. Int. Kool. Con. Berlin, 1901, 190), pp. 1-9, fig.
Dautzenberg, Ph.-Description de mollusques noureaux prorenant de L'Ile Obi (Moluques). Le Nat., 1902, pp. 247-248, figs. 1-7.
The author describes and figures the following species, all of which are new : Trochomorpha subteruatena, Helix' (Albersia) omissa, M. (P'apuina) groulti, II. (I'.) obiensis and a rar. minor, Leptopoma fulyurens and L. altius.
Dautzenberg, Ph.-Observations sur quelques mollusques rapportes par M. Ch. Allaud, du sud de Madagascar. Bull. Soc. Zool. France, 190ㄹ, T. xxrii, pp. 196-199.
Dautzenberg, Ph.-Rerision des Cyprecidae de la Nourelle-Caledonic. Journ. de Conchyl., 1902, rol. 1, pp. 291-3s 1, pl. vii.
The ('ypraeidue of Xew Caledonia have previonsly been catalogned by Crosse in 1869, who emmerated 45 species, also by Rossiter in 1852, whose list contained 60 species. The present Revision treats of 70 species, and 52 varieties, 12 of which are new, in addition to which 7 monstrosities are described and figured.

Not wishing here to enter into a discussion of the value of the different disisions of the family, the author adopts four principal genera: Cyproen (s.s.) Lupomia, Epona and Trivia.

Dall, W. H.-Synopsis of the Family Veneridae and of the North American recent species. Proc. ए.S. Nat. M[us., 1902 , vol. xxri, pp. $335-412$, pls. xii-xтi.
So far as may be represented by any one family, the Veneridue represents the culmination of Pelecyporl esohtion. Althongh no true Venerid,
in the strict sense, appears before the Tertiary, their recognisable ancestry appears in the Upper Cretaceons or Lower Eocene. In the present synopsis Dr. Dall deals with this fanily in a similar manner to that in which he has already treated other Pelecypod families. Numerous corrections and changes have been made in the nomenclature, and nineteen new species are deseribed and figured.
Ridewood, W. G.-On the structure of the Gills of the Lamellibranchia. Phil. Trans. Poy. Soce, 1903 (ser. B), wol. 195, pp. 1 17-2s 1,61 figs. in text.
We have already given a brief ontline of this valnable work (see ante, $190-$, p. 143) ; the complete paper is now before ns, and we are able to deal with it in greater detail.

The anthor states that in this investigation, 215 species of these Molluses, belonging to 11 senera, are taken into accomnt, and their sills were studied both by means of serial sections and dissected preparations. In almost all cases staining was done by means of borax-carmine, followed by piero-nigrosin. After a brief resume of previons work, and some remarks upon the terminology, he passes on to consider the Exolution of the Synaptorhabdic Gill. After reviewing the opinions of previons writers, and comparing them with his own observations, Dr. Ridewood is led to conchule that in the presence of the many conflicting deseriptions in closely allied forms, the phenomena of gill ontogeny are ext remely difficult to elucidate ; and that, pending some further special researel, we may " conchule that the perforation or slitting into filaments of a continnons gill-membrane is an infraction of the rule that ontogeny is a repetition of phylogeny." It is of interest to note, that the remarkable diversity of structure exhibited hy the ctenidia is not shared by the labial palps. The plication of the lamellae, to which Hancock, and later Dusernoy, attached considerable importance, is now regarded as of less value than the differentiation of principal filaments, which latter are confined to the P'sendolamellibranchia and the Eulamellibranchia. They are not, however, met with in all the Psendolamellibranchs, as Pelseneer imagined, for in some of the later the gills are homorlabric ; in nonplicate gills, principal filaments are also wanting. The anthor considers that the plication of the lamellae and the differentiation of principal filaments are not to be looked mpon as of more than specifie, or at the most, subgeneric value. The apical filaments, cilia, chitinous skeleton, cudothelium, calcified rods, intrafilamentar septa, interlamellar junctions, and interlamellar extensions of the septa, are each dealt with in detail. The calcified rods, on account of the confusion that has arisen with regard to them, are deserving of more than passing notice.. He mentions that these structures are peculiar to the Umiomidue and $M \ddot{u} l l e r i a$, and some authors have failed to discriminate between the thickened bands of chitin, such as occur in the gills of most Eulamellibranchia, and these calcareous rods, which are embedded in the chitin. They are not continuous rods of uniform width extending the full height of the demibranch, but consist of a succession of short rods, which gradually shade off and terminate in the middle of each interfilamentar junction. Dr. Ridewood further states that these rods were discovered by Rengarten in 1853, while the best deseription of them is that given by Janssens, who, in 1893, showed that they are composed of calcinm phosphate, with a little calcium carbonate, and a chitin or conchylin base.

As a result of the investigation, the anthor confirms the riew that ctenidial filaments, held together by ciliated dises, are of essentially simpler structure than those connected by subfilamentar tissue, and the ciliated dise is a more arehaic mode of junction than the cellular connection.

It is proposed to abolish the group Pseudolamellibranchia, to remore Pimm from the Aliculidue and place it in a separate family, the Pimmitue, and to inclule it, and the (1streidue and Limidue, in the Eulamellihranchia. The remaining Aviculidue, tngether with the Pectinidre, Spontylidue, and Dimyidue, are to be joined to the Filibranchia, and to constitute a new group the Eleutherorhabda. With regard to the Septibranchia, Dr. Ridewood does not consider there is sufficient evidence to warmant their remoral from the Eulamellibranchia, as a separate order, and consequently he places them as a sulb-order (''oromyaceu), and unites them with the remaining Lamellibranchia into one order, which he proposes to term Synaptorhabda.

The following is an outline of 1r. Ridewool's classification :-
(1) Order Protobranchia.-This is Pelseneer's order adopted without alteration.
(2) Order Eleutherorhabda.-Arranged in series on the Iwo sides of the gill axis are elongated filaments. Adjacent filaments. are held in position hy stiff cilia disposed in isolated patehes (ciliated dises).
It comprises the sub-orders Dimyacea, Mytilacea, and Pectinacea.
(:3) Order Synaptorhabla.-There are no ciliated dises. The interlamellar edges of adjacent filaments are connected by cellular tissue. These organic interfilamentar junctions are situated at uniform intervals up the filaments, and convert the linear interfilamentar spaces into series of fenestrae.
This order comprises the sub-orders Ostracea, Submytilacea, Tellinacea, Veneracea, C'ardiacea, Myacea, I'holadacea, Inatinacea, and Poromyacea.
Dr. Fidewood recognises that the amount of family disruption this scheme involres will doubtless prove startling to the systematist, and he does not claim that it represents in any way the genetic affinities of the forms inchuded. What he aims at, is the "formation of classificatory tables, admittedly artificial and based each on a single character, so that the taxonomist of the future may, by a process of correlation of these tables and a careful weighing of the respective values of the facts therein laid before him in a compact and readily assimilable form, arrive at the truth concerning the phylogenetic history of the Lamellibranchia." The present work is intended as a contribution towards this ultimate object.

The remainder of the paper, and comprising the bulk of it, consists of a minute survey of gill-structure throughout the Lamellibranchia and is accompanied by numerous figures ; appended to it, is a very full bibliography which seems to contain references to all the literature bearing upon the morphology of Lamellibranch gills.

The paper is indeed one of the most important contributions the subject has yet received, and is one which will serve as a basis for researeh_in year's to come.-- 1 . D. hums.

Dall, W. H.-Review of the Classification of the Cyrenacea. Proc. Biol. Soc. Washington, 1903, pp. i-s.
A brief but important paper, setting forth some surprising changes in nomenclature. Calyculiun, Clessin, is a synonym of Musculium, Link, 1807. Our familiar Pisidium is to he called Corneocyclas, Fernssac, 1818, with seetions and subgenera as follow: :-
Subg. Corneocylas.
Sect. Corneocyclas, s. str., type Corneocyclas pusilla=Pisidium maillum (Gmel.)
Sect. Phymesodr, Liaf., type Cornencyclas virginica = Pisidium virginicum (Gmel.)
Sect. Pisidium, C'. I'fr., type ('ornencyclas ammica=Pisidium annicum (Mull.)
Sect. Cyclocalyx, Dall, type C'orneocyclas scholtzii=Pisidium scholtzii, Cless.
Sulg. C'ymatocyclas, Dall, type Cornencyclus compressa = P'isidium compressum, Prime.
Subg. Tropidocyclas, Dall, type C'orneocyclas henslowiana=Pisidium henslorianum, Shepp.

It the end of the paper it is indicated that Cyclas islamdice is the proper name for our ('yprina islandica (1.).--T. 1). А. ('ockeremi..

EDITOR'S NOTES.

It may not be ont of place to direct attention to several changes which appear in this, the first part of volume x .

Firstly, we offer a hearty welcome to Mr. H. Howard Bloomer, Mr. G. K. Gude, and Mr. Henry Suter, whose names have been added to the list of editorial colleagnes. All are well-known malacologists, and for many years have been active and generous supporters of the Journal.

As to the Journal itself, we have slightly increased the amount of printed matter on each page containing original articles, and the notices of Current Literature, Notes, ete, are printed in a larger type than hitherto.

We have recently received new editions of the well-known and useful catalogues of works and panplilets treating of the Mollusea, issued by Messis. R. Friedlander und Sohn (with upwards of :3,noo titles) and that of Mr. W. Junk (1,70:3 (itles), Joth of Berlin.

THE

JOURNAL OF MALACOLOGY.

A REVISION OF THE COLUMBELLIDAE OF THE PERSIAN GULF AND NORTH ARABIAN SEA, WITH DESCRIPTION OF C. CALLIOPE, N.SP.

By JAMES COSMO MELVILL, M.A., F.L.S.

In the enumeration by Mr. Standen and myself ${ }^{(1)}$ of the Gastropoda collected, mostly by Mr. Frederick W. Townsend, of the Indo-European Telegraph Service, in the Persian Gulf, Gulf of Oman, and northern portion of the Arabian Sea, twenty-six species of Columbellidae are mentioned, of which all excepting one (Aesopus urania, M. and S.) belong to the typical genus Columbella. To this paper we would refer in explanation of the following notes.

A few months ago some additional material was submitted by us, from the same source, to Mr. Stephen Pace, then engaged on his exhaustive and laborious Catalogue of the Columbellidae. We are very much indebted to him for so kindly examining so large a quantity of specimens, and for his pronouncements upon them. He pointed out at the same time one or two errors which had crept into the enumeration ; as well as one important omission, that of C.flavida, Lam.

The following therefore must be taken as a revised list.

[^7]1.-Columbella pardalina, Lam. Columbella propinquans, E.A.Sm.

Probably synonymic. Recorded from both Persian Gulf, Mekran Coast, and North Indian shores.

2.-Columbella rustica, Lam.

Mr. Pace so determines two or three examples collected by Mr. Townsend at Bombay, and which were referred at first to C. fuscata, Sowb. This last is a mative of Panama, St. Elena, and Monte Christo, W. Central America. It is the first reeord of the Mediterranean C. rustica being found beyond the cinlf of Suez. The examples are not quite typical, and we hope a further supply may come to hand, in order that the important question of its gengraphical distribution be more definitely studied.

3.-Columbella versicolor, Sowb.

Hab.-Mekran Coast, near Charbar.
4.-Columbella (Mitrella) agnesiana, Melv. and St.

Hab.-Persian Gulf : Bushire ; Gulf of Oman ; Maskat, 10 fathoms; Mekran Coast : Charbar, sindy mud, 15 fathoms.

5.-Columbella (Mitrella) allzonae, Melv. and St.

Mab.-Persian Gulf : Shaikh Shuaib Island, and at Bushire. Also in lat. $27^{\circ} \mathrm{N}$., long. $52^{\circ} \mathrm{E}$., on the telegraph cable. Received in 1902 from Maskat, at 47 fathoms, very varied in pattern and in fine condition. India: lat. $18^{\circ} 58^{\prime \prime}$ N., long. $71^{\circ} 45^{\prime \prime}$ E., 40 fathoms.
6.-Columbella (Mitrella) astolensis, Melv. and St.

Mab.-Mekran Conast: Astola Island, 3 fathoms, sand. Also off Charbar at 7 fathoms.
7.-Columbella (Mitrella) blanda, Sowb.

Mab.-Persian Gulf : Ciulf of Oman, lat. $24^{\circ} 55^{\prime \prime}$ N., long. $57^{\circ} 59^{\prime \prime}$ E., 30 fathoms, sand and mud.

A beantiful pale form, with clearly traced longitudinal markings, and hardly a vestige of dorsal clonding, has been very recently dredged by Mr. Townsend in the (tulf of Oman, at 20.5 fathoms, also oceurring in the same form off Bahrein in the Persian Culf.

Var. candidans, Melv. and St.
Hab.-Karachi.
An interesting, pure white, ummarbled form.

8.-Columbella (Mitrella) calliope, n.sp.

C. testa orata, versus apicem attenuata, laevigata, solidula, anfractibus octo, quorum duo apicales laeves, vitrei, quatuor his proximi longitudinaliter laevicostati, costis numerosis sed inconspicuis, anfractu ultimo et penultimo laevibus, spiraliter aretissime brunneolineatis, apertura ovatooblonga, labro intus multidenticulato, crassiusculo, columella versus basim recta.

Long. 12, lat. 5 millim.
Hab.-Bombay (Alexander Abererombie, Esq.).

This was formerly esteemed by us as a form of \because marquesa, Caskoin, of the variety b. figured in Reeve, Conch. Icon., f. 217, and so catalogued both in the Bombay list ${ }^{(2)}$, and the enumeration of the Mollusea of the Persian (inlf and Arahian Sea. ${ }^{3)}$

Last year it was examined hy Mr. Stephen Pace, who eonsiders it quite distinet, and worthy of a specific name. We have only seen two or three examples, which, however, show no tendeney to variation, and are identical both in form, marking, and colour.
9.-Columbella (Mitrella) cartwrighti (Pace MS.), Melv.

Hab.-Persian Cinlf : Bahrein Is. (C'aptain C'artwright).
Usually found at about 7 fathoms ; muddy sand bottom.
10.-Columbella (Mitrella) doriæ, Issel.

IIab.-Persian Gulf : Bushire (M. F. Houssay).
Perhaps a variety of C. mindoroensis, Rve. The specimen in the Townsend collection is very doubtfully referred here.
11.-Columbella (Mitrella) euterpe, Melv.

Hab.-India : Karachi (F. W. Townsend), Bombay (A. Abercrombie). Common in both these localities, hut not yet reported elsewhere.

[^8]12. - Columbella (Mitrella) flavilinea, Melv.

Hab.-India : Bombay (A. Abercrombie). Not common ; and as yet not noticed in the Townsend collections.
13.-Columbella (Mitrella) nomadica, Melv. and St.

Hab.-India : Karachi.
A handsome form, figured in the Proc. Zool. Soc. Lond., 1901, vol. ii, pl. xxi, f. 7. Received by Mr. S. Pace : not yet collected by Mr. Townsend.
14.-Columbella (Mitrella) zebra, Gray.

Hab.-Persian Gulf : Linjah, 3 fathoms; Mekran Coast: general.
C. miser, Sowb., and C'. elata, Rve., are apparently but forms of the adove.
15.-Columbella (Mitrella) terpsichore, Leathes.

Hab.-India : Bombay (A. Abercrombie).
Sometimes confused with C. miser, Sowb.
N.B.-(C. (Mitrella) rugulosa, Sowb., had best be erased from the former list. It was reported on insufficient authority, from Karachi, but being a well-marked species, only known from the Galapagos Islands, there but little doubt that it does not occur in Indian Seas.
16.-Columbella (Atilia) albonodulosa, Caskoin.

Mab.-Mekran Coast : Local.
17.-Columbella (Atilia) conspersa, Gaskoin.

Hab.-Persian Gulf ; India : Karachi.
This is synonymous with C. puella, Sowb., from the Andaman Isles.
Amongst the specimens in the Townsend collection from Karachi are some labelled by a lapsus calami, C'. compressa, Gask., a misprint for conspersa.
18. - Columbella (Seminella) melitoma, Melv. and St.

Hab.-India : Karachi.
19.-Columbella (Seminella) phaula, Melv. and St.

Hab. --India : Karachi.
20.-Columbella (Seminella) selasphora, Melv. and St.

Hab.-India : Karachi.
N.B.-C. atomella, Duclos, reported from Bombay, scems an agglomeration, mostly worn, of the three recently separated species just mentioned.
21.-Columbella (Seminella) townsendi, Melv, and St.

Hab.-India Karachi.
22. - Columbella (Conidea) flava, Brug.

Hab.-Mekran Coast ; India: Karachi (Townsend), Bombay (Abercrombie).

This is the C. flevidu of Lamarek.

23.-Aesopus urapia, Melv. and st.

Hab.-Mekran Coast : Local. The white variety (albens) occurring with the type. For a full description of this interesting molluse, see the paper above quoted, p. 407.

THE ANATOMY OF CERTAIN SPECIES OF CERATISOLEN AND SOLECURTUS.

By H. H. BLOOMER.

(Plate ii.)

Coratisolen legumen, L.

Owing to the many points of resemblance of Ceratisolen legumen to the species of Solen, already described by me ${ }^{(1)}$, I purpose contrasting it with Solen ensis in the same manner as I have dealt with S'. siliqua, S. vagina, and S. pellucidus.

External Characters.
C. legumen is comparatively shorter and deeper than S. ensis. It not only curves slightly along its dorsal surface, but also along the ventral one, particularly at the anterior end. The bands of pallial muscles pass round the anterior part of the mantle lobes, and proceed posteriorly to where the dorsal integument is connected with the teeth of the shell (Fig. $1, H$.$) , the latter being situated some distance away from the anterior end.$

The foot (Fig. 1, F.) gradually increases in cleptlı towards its distal end, and is there of considerable size.

The pedal aperture, situated at the anterior end, extends a short distance along the ventral surface, and the mantle lobes at the posterior part of it carry on their inner surfaces a tentacular fringe, which evidently represents the fourth aperture (Fig. 1, F. A.).

Along the dorsal surface from the anterior end to near the teeth of the shell (Fig. 1, II.) there is no concrescence of the mantle lobes, thus forming an aperture to a chamber superior to the anterior adductor muscle. An teriorly this chamber communicates with the pallial chamber, the aperture of which is continuous with the pedal aperture. The edges of the mantle lobes bordering the whole of this dorsal chamber bear a tentacular fringe, but the fringe does not pass round the anterior end of the lobes.

[^9]The free portions of the siphon (Fig. 1, In.s", di Lx. s".) are long and narrow, and their distal ends turn dorsitly.

The inner parts of the bases of the gills are joined together as in S. marginatus.

Miscllittie.

i. The Pallial Muscles.-The muscular bands along the pallial edge pass round the anterior end, and proced posteriorly as far as the junction of the mantle lobes with the dorsal integument, and close to the part of the latter penctrated by the teeth of the shell (Fig. 1. II.). At the prosterior end, where the mantle lubes form the proximal portion of the siphon, the walls of the two chambers are more muscular, and the divisional wall of greater length.

The anterior adductor muscle (Fig. 1, 1. A.) is a broad plate of muscles attaining its maximum depth in the pesterior part. Anteriorly it curves slighty towards the dorsal surface.

The posterior adductor muscle (Fig. 1, l^{\prime}. A.) is situated more pos. terimly, and the musendar dorsal integment between it and the siphon is consequently shortened.
ii. The l'ertal Muscles.-The museles of the distal end of the foot are very strongly developed. The retractor pedis anterior museles are thick, and do not extend far :unteriorly ; while the hifureated parts (Fig. 1, l'. li. A. I^{\prime}. l^{\prime}. I^{\prime}.) are also short. When the muscles reach the foet, the fibres pass in a posterior direction muder, instead of user, the longitudinal pedal muscles, as in s.' marginatns.

The bifurcated farts of the retractur pedis posterior museles (Fig. 1, P. R. l^{\prime}.) are longer than in s'. ensis.

Alamentary Cifila

The oesophagus (Figs. 2 and :3, Ue) is short. proceeds a little distince dorsally ; and curving. passes into the stomach. The stomach is proportionately larger than in s. ensis. There are no divisional walls between the oesophagael and cardiac portions (Fig. .2. ('. st.), while the pyloric portion (Fig. 2, P^{\prime}. st.t.) is large, and assumes a more ventral position, having the appearance of being somewhat drawn towards the pedal cavity. The central cavity (Fig. ㄹ, C'uc.) is large, and its divisional walls are more marked, particulatly on the dorsal and pesterior sides. The sate of the crystalline style (Fig. 1, (. (.)) leares the pylorie portion on its ventral side more anteriorly. It goes some distance along the pedal cavity, as in S'. murginatus. The intestine (Fig. 1, In.) leaves the stomach, and passes directly along the surface of the sae of the crystalline style (Fig. $1, C . C$.$) , adhering to it nearly the whole of its length, going along the$ dorsal surface and returning along the ventral one. It then curves round the pyloric portion, and on its dorsal side continues as the rectum (Fig. 1, R.), the latter runs posteriorly to the cloacal chamber, and terminates

111 a bilobed anus (Fig. 1, A.). As previously mentioned, the antis is situ ated more posteriorly than in s'. ensis.

The liver (Fig. 1, L.) is situated as in S. ensis over the fore-part of the stomach, and passes for a short distance over the anterior adductor muscle, and posteriorly under the stomach as far as where the intestine leaves it.

Nervous Srstem.

The nervous system, like that of s. pellucilus, differs from S. ensis in the number of the pallial nerves. Each anterior pallial nerve gives rise to one branch only, which leaves the main nerve just after it reaches the anterior adductor muscle, and crosses the mantle lobe, then divides, the two parts joining the cirenmpallial nerve.

The posterior pallial nerve does not give rise to any branch which crosses the mantle lobe as in $\stackrel{s}{ }$. ensis.

There is only one cireumpalial nerve.

Chicllatory System.

This is the same as in S'. ensis, excepting in a few minor details.

Solecurtus strigillatus, L.

Enternal Characters.

The mantle lobes are comparatively short and wide. They project separately some little distance anteriorly from the dorsal surface of the anterior adductor muscle, and in a semi-circular curve form the pedal aperture; while posteriorly they are broader, and from a position above the posterior adductor musele run with a slighter curve laterally. In the anterior part of the mantle lobe the muscles of the pallial edge are wide and thiek, but they gradually diminish in width towards the posterior end. The pedal aperture, lying ventrally, pxtends in a dorso-posterior direction, and on each mantle lobe is bordered by a muscular flap. The mantle lobes are connected rentrally with each other by a wide piece of museular tissue, which posteriorly is contimuts with the proximal portion of the inhalent siphonal chamber. Dorsally the proximal portion of the siphon is for some distance from the median line commected with the mantle lobes and the dorsal integument; while the muscles, chiefly from the lateral portion of it, pass under the mantle lobes and afterwards through them in large and powerful siphonal retrator muscles, and are attached to the valves of the shell.

The external surface of the museular tissue comnecting the ventral portions of the mantle lobes, the free edges of the mantle lobes, and the proximal portions of the siphonal chambers are coloured a mottled brown, but the brown colour of the free portions of the siphon is of a more consistent nature. This colutring, however, appears to lje subject to variation, and some specimens are nearly white.

In an extended condition the proximal portion of the siphon is of considerable length, and nearly of a uniform size, but in a contracted state it is larger at the centre and compressed at the ends. The free portions, when fully extended, are likewise of considerable length. One specimen measured $6 \mathrm{c} . \mathrm{m}$. along the median line from the posterior adductor muscle to the anterior adductor muscle, and the proximal portion of the siphon, though not fully extended, was of the same length. Part of the free portions were missing, this being usually the case, as presumably being due to the action of the preservative medium on the arrangement of the circular muscles forming the lateral ribbings, and making them of a somewhat brittle nature. In another instance the proximal portion of the siphon was in a very contracted condition, and only measured 2 c.m.; while the free portion of the exhalent chamber measured $5.5 \mathrm{c} . \mathrm{m}$., and the inhalent one $6.1 \mathrm{c} . \mathrm{m}$.

There is no fourth aperture.
The foot is very large, being deep and muscular. The periostracum passes from the mantle lobes to the edges of the valves.

The dorsal integument posterior to the teeth of the shell is thin, and it is to be observed that the teeth deeply penetrate into the viscera.

The gills are long, and extend in a more or less folded condition to the posterior end of the proximal portion of the inhalent siphonal chamber, to which they are attached.

The inner parts of the bases of the gills are joined together, forming the division between the two siphonal chambers.

Musculature.

i. The Pallial Muscles.-The muscles along the edges of the mantle lobes form anteriorly deep bands, which diminish in width as they pass posteriorly. From the ventral border of the anterior and posterior margins of each lobe proceed two muscular bands, which cross the piece of muscular tissue connecting the ventral edges of the mantle lobes, and converging towards each other, meet and unite at the centre of the tissue. They evidently act as retractor muscles for the purpose of drawing together the ventral parts of the mantle lobes. The walls of the proximal portion of the siphonal chambers (Fig. 4, Ex. S". \& In.s'.) are thick and muscular, and continuous with the dorsal integument and the mantle lobes. Chiefly laterally they give rise to two large muscles which pass through the mantle lobes, and from a large surface adhere to the valves of the shell. These undoubtedly act as siphonal retractor nuscles.

On the inside of each lateral part of the proximal portion of the siphon and between the two chambers, is a large muscular ridge (Fig. 4, S. R.), to which adhere the outer sides of the bases of the gills. At the posterior end of the proximal portion of the siphon it deereases in size, and continues
as the free portions (Fig. 4, Ex. S'. \& In. S'.). The interior muscles of the siphon are chiefly longitudinal and the outer ones circular, the latter thus forming internal and external coverings.

Externally, the free portions of the siphon are ribbed laterally. Internally, they are also ribbed laterally, but not so deeply ; whilst longitudinally there are a number of rounded ribbings, with finer ones between. The chambers gradually taper towards their distal ends.

The anterior adductor musele (Fig. 4, A. A.) is a comparatively narrow plate of muscles. It spreads out on either side from the median line, and obtains its maximum width where it is connected with the valves of the shell. Dorsally, it is joined with the dorsal integument and the mantle lobes. Posteriorly, it is connected with the ventral integument.

The posterior adductor muscle (Fig. 4, P. A.) is also a narrow plate of muscles joined anteriorly by connective tissue with the retractor pedis posterior musele, and posteriorly with the dorsal integument, the siphonand the mantle lobes.
ii. The Pedal Muscles.-The foot (Fig. 4, F.) is very large, deep and muscular. The museles are of three kinds, viz., longitudinal, transverse, and circular. In the proximal portion, where the greater part of the viscera is situated, the walls are thin and the muscles lie close together. Inside the museular integument are two layers of longitudinal museles, between which is a circular layer which passes around the foot at a right angle to its axis. There are numerous bundles of transverse muscles which cross the foot between the other muscles to the pedal integument. They are also plentiful in the proximal part, where they pass either between or through the viscera. Towards the distal half the museles begin to fray out more, intermingle with each other, and gradually increasing in number soon become a network of powerful muscles, thus making the distal portion an exceedingly muscular mass.

The anterior retractor pedis muscles (Fig. 4, P. M. A.) are short and thick, passing at the side of the liver to the valves. When they reach the foot the muscle fibres spread out, passing both ventrally and anteriorly over the inner longitudinal muscles, and bury themselves in the pedal integument. There are no bifurcations of the free portions of the museles.

The posterior retractor pedis muscle (Fig. 4, P. R. P.) is comparatively short, and bifurcates at its posterior end, the bifurcated parts being attached by their dorsal surfaces to the valves of the shell. They are joined by connective tissue with the posterior adductor muscle. On reaching the pedal cavity the muscle spreads out ; and the fibres, passing in an anterior direction as a portion of the longitudinal museles of the foot, eventually merge themselves in the pedal integument.

The elevator pedis museles (Fig. 4, E. P.) are situated at the posterio dorsal point of the foot, and are connected with the valves at their most dorsal parts.

Attached to the shell between each of the elevator pedis and siphonal retractor muscles is a long and murrow muscle, which is connected with the muscular tissue rumning along the base of the gills, and evidently acting as a branchial retractor muscle for the purpose of folding the gills into a close mass when the proximal portion of the siphon is contracted.

Almentary Ganal.

The mouth (Figs. 5 \& (6, M.) a transverse opening of the ventral integument, is sitnated meder the posterior portion of the anterior adductur muscle, and between it and the foot. The lips (Figs. 5 and 6 , A. L. and l. L.), formed ly the junction of the labial palps, project forwardly:

The oesophagns (Figs. jo \& 6, , De.) is narrow, of medium length, and proceds pusteriorly to the stumach.

The stomach (Figs. 4. jand 6, St.) is an irregulaty-shaped sac, containing a number of divisions. 'This applies particularly to the left side, which is divided into four parts by muscular ridges. For convenience, I will call the divisions Anterior. Posterior, Central, and Dorso-central. Towards the centre of the left half is an oval muscular ridge (Fig. 5. (C. D. . A.) completely bordering a deep cavity-the central division (Fig. 5, C. D.). The lumen soon spreads out, and extends in considerable distance interiorly and posteriorly. On the dorsal side, and continnous with this ridge, is a slighter one (Figs. 1 and 5, A. D. R.) passing along the dorsal surface of the stomath down the right side, and retuming along the rentral surface in a more pronomed degree, and joining the ventral side of the ridge of the central division, thas separating the anterior division from the posterior portion of the stomach. The posterio-dorsial part of the ridge of the central division is developed into a muscular papilla (Fig. J, M. P.). From the posterior side of the base of the papilla runs another muscular ridge (Fig. 5, P. s't. Ri.), which first separates the durso-central from the posterior division, and then passes along the dorsal surface in a posterior direction towards the median line, and disappears. The Dorso-central dirision (Fig. 5, D. I).) is smaller, but of considerable depth. and lies abowe the muscular papilla. The P'osterior division (Fig. 5, P. st.) is rery large. The rentral portion, after narrowing, forms the opening of the caecum of the crystalline style (Fig. J, (..(.) and intestine (Fig. 5, In.). The caecum of the crystalline style is a large and long sace, passing first in a ventral direction, then gradually curving, teminates near the dorsal surface of the pedal cavity. When the caecum and the intestine leave the stomach, the intestine (Fig. 4, In.) on the right anterior side of the caecum, they are only partly divided from each other, the intestine being small and appearing as a narrow, deep, and irregular groove on the side of the caecum. At the distal end of the catcom the intestine becomes quite separate, and the typhlosole commences, formed by the invagination of a
portion of the intestinal wall. It then returns along, and comected with the right dorsal side of the caecum for about twothirds the length of the latter, when, becoming free, it makes a few folds and the typhlosole disappears. The intestine then makes a large number of irregular folds, and continuing as the rectum passes through the ventricle, shortly reaches the posterior adductor muscle, passes clusely round it, and returning a short distance along the ventral surface, terminates in a large bilubed anus having a circular appearance (Fig. 4, A.).

The erystalline style (Figs. (6. © 7 . ('. s.') fills the greater part of the catcum, and extends to the anterior portion of the stomach.

The tricuspid body occupies the centre of the stomach, and has branches radiating into the different divisions.

A transverse section across the caecum of the crystalline style and the intestine of Solecurtus cumbidus (Fig. 7), shows the former to be lined with a columar epithelium (E 'p. C'ol.), carrying at dense fringe of long cilis, the nuclei are situated with regularity near the centre of the cells at little elloser to the base than the free end ; while the latter-the intestineis lined with an epithelium ($E^{\prime} \mu$. ('.), consisting of short ciliated cells, broad, and chiefly comected with cach other at the free end, narrowing towards the base, and having undeveloped cells and spaces between. The division of the caecum from the intestine is marked by a constriction of the enveloping muscular layer. On the une side the colummar epithelimen passes inside this constricted part and a short distance along the side of the intestine, gradually merging into the intestinal epithelium. On the opposite side, however, occurs a curious growth (L^{\prime} ' 1 . W.), where the epithelium consists of very long cells of uniform width, and passing from the base to the free end in a slight wave-like course, the nuclei being abundant and situated in the basal portion of the cells. It, however, ends abruptly at the point where the wall projects farthest into the lumen, marking on this side the division between the caecum and the intestine. and the smaller intestinal cells then follow; on the other side of it the cells gradually decrease in length, until they merge into the ordinary columnar epitheliun of the caecum, The cilia on this curions growth of epithelium are seanty and short, and near the intestinal cells it apparently altogether disappears. In this latter part there is a break in the epithelium (Ep. B.), whieh continnes through a number of sections, and then the epithelium resumes its normal condition. It is probably is duct communicating with the gland underneath the epithelium. It may be remarked this curious piece of epithelium closely resembles that deseribed by Johnstone in C'ardium. ${ }^{(2)}$

The liver or digestive gland (Fig. 4, L.) is a large organ surrounding the stomach, with the exception of a small portion of the dorsal and posterior parts. The large bile duct enters the stomach on the ventral surface,

[^10]just anterior to where the intestine leaves it. The small bile duct opens into the central division.

The whole of the viscera in the proximal part of the foot is bound together also with the pedal muscles, by a large quantity of connective tissue.

Checlatury Sistem.

Menegaux ${ }^{(3)}$ states that the general circulatory system agrees with that of solen.

The venous blood is collected into the various sinuses, and from the sinus of the viscero-parietal ganglion it is conveyed by the afferent branchial vessels to the gills, and from them by the efferent branchial vessels to the auricles.

Over the posterior portion of the foot lies the large ventricle, with large triangular auricles. The anterior aorta proceeds a short distance along the rectum, until it reaches the muscular portion of the foot ; then continues under the dorsal integument, and gives off a number of branches which vascularise the viscera, anterior adductor muscle, the mantle lobes, and the foot. The posterior aorta shortly after leaving the ventricle, forms the dilation known as the bulbus arteriosus ; and then, dividing, continues along the mantle lobes, and sends branches to the posterior adductor muscle and the siphon.

The gills extend horizontally from a position between the labial palps, and level with the retractor pedis anterior muscles, right to the posterior end of the proximal portion of the siphon. The inner parts of the bases of the gills are connected together, while the outer parts are joined with the walls of the siphonal chamber, thus separating the exhalent from the inhalent chamber. When the siphon is contracted, the gills are folded on themselves in a close mass, while in an exterided condition these folds disappear.

The gills belong to the type which Dr. Ridewood ${ }^{(4)}$ has termed synaptorhabdic, and he states: "The lamellae are highly plicate, the plicae being flattened anterio-posteriorly, so as to resemble the leaves of a book. The number of filaments in a plica are about 30 in the outer, and 40 in the inner demibranch. The principal filaments are large, and have a hroad, shallow, frontal groove, from the middle of which there sometimes arises a ridge of tall epithelial cells. There is a fair amount of muscle fibre, running some vertically and some horizontally in relation with the principal filaments."

The kidneys are situated posterior to the liver and elevator pedis muscles, but do not extend far posteriorly ; while laterally they go a considerable distance, passing along the mantle lobes to the siphonal retractor muscles. Menegaux ${ }^{(5)}$ states the viscero-renal orifices exist as in Solen.

[^11]
Nervous System.

The cerebro-pleural ganglia are situated between the posterior portion of the anterior adductor muscle and the ventral integument, just anterio-laterally to the retractor pedis anterior muscles. They lie some distance apart, and are joined by a commissure. Anteriorly, each ganglion gives rise to a nerve, which passes underneath the anterior adductor muscle, innervating it, and then continues as the pallial nerve.

Posteriorly, a connective joins each cerebro-pleural with the visceroparietal ganglion. The connective passing between the retractor pedis anterior muscle and the body wall, buries itself in the latter, shortly afterwards it emerges and clings close to the wall. Then, becoming free, it continues between same and the viscera until it reaches the bifurcated parts of the retractor pedis posterior muscles, and passing through the inside wall, joins the viscero-parietal ganglion.

Each cerebro-pleural ganglion is also joined by a connective with the pedal ganglion. The connective immediately becomes buried in the muscular body wall ; and passing between the longitudinal and transverse muscles of the foot, joins the pedal ganglia.

The viscero-parietal ganglia are large and situated between the bifurcated portions of the retractor pedis posterior muscle. Posteriorly the ganglia give rise to two branchial nerves, which pass directly to the gills ; also to two nerves, which give ofi a number of branches, innervating the posterior adductor muscle, the posterior portion of the dorsal integument, and the siphon. On each side one large branch-the pallial nervecrosses the siphonal retractor muscle, and continues round the mantle lobe as the circumpallial nerve.

The pedal ganglia are situated in the proximal portion of the foot above about the centre of the caecum of the crystalline style, among the transverse muscles, and are surrounded by muscular connective tissue. They give off a number of nerves, which, passing between the longitudinal and transverse muscles, innervate the foot.

Solecurtus candidus.

External Characters.
The anterior portions of the mantle lobes curve slightly more than in S. strigillatus. Posteriorly the lobes from a more anterior position over the posterior adductor muscle take a greater curve, and consequently project more posteriorly. The edges of the lobes are more crenulated, particularly the parts bordering the pedal cavity, and they carry a tentacular fringe. The edges of the mantle lobes are of an orange colour, while the remaining part of the animal is nearly white, with the exception of the distal portion of the foot, which has a dirty orange tinge. The internal structure is similar to S. strigillatus. It is impossible to say whether the slight differences noticeable are constant or not, owing to the limited number of specimens examined.

Reference Letters.

ENPLANATLON OF PlATE II.
Fin. 1. Feratisolen legnmen, L. View from the right side, showing alimentary canal, sc. $\times 1 \frac{1}{2}$.
Fif. -. ('eratisolen legumen, L. Longitudinal section of the stomach, showing internal structure of the left sile. $\times 1 \frac{1}{2}$.
Fif. 3. C'eratisolen legumen, L. Longitudinal section of the stomach, showing internal structure on the right side. $\times 1 \frac{1}{2}$.
Fin. 4. Solesutus strigillatns, L. View from the right side, showing alimentary canal. $\times \frac{2}{3}$.
Fin. 5. Solerurtus strigillatus, L. Longitudinal section of the stomach, showing internal structure of the left side. $\times 2$.
Fig. 6. Solecurtus strigillatus, L. Longitudinal section of the stomach, showing internal structure of the right side. $\times 2$.
Fig. 7.-Solecurtus candidus.

CLASSIFICATION OF THE BRITISH SPECIES OF THE GENUS SOLEN, LINNÉ. ${ }^{1}$

By H. H. BLOOMER.

Having recently described some of the chief features in the anatomy of the species of Solen, I now purpose considering how they bear on the question of the present classification. For this purpose it will be sufficient if I only call attention to the chief points by which the other species differ from S. ensis without going into the anatomy of the latter.

The chief differences in S^{\prime}. siliqua are :--It is larger, and quite straight along the dorsal surface. The oesophagus is straighter, and the divisions of the stomach are more pronounced. The cardiac portion does not project so far anteriorly, nor does the posterior end of the pyloric portion rise so much dorsally, and the museular papilla is more central.

In s. marginatus the following are the chief points of difference :It is straight along the dorsal surfice. There is no fourth aperture, and there are no labial grooves. The imer parts of the bases of the gills are joined together. The free portion of the siphon is longer. The pallial and pedal muscles are more developed. The free portion of the retractor pedis anterior muscle is shorter, the bifurcations lie close together, and the fibres of it cross the foot in a posterior direction, passing underneath instead of over the longitudinal muscles. The lips project anteriorly, the oesophagus is longer and proceeds pnsteriorly to the stomach, the latter lying in a more posterior position over the distal end of the foot. The muscular wall dividing the oesophagael from the cardiae portion is more developed, and projects a considerable distance into the stomach, thus separating the anterior part of these divisions from each other. The caccum of the crystalline style is of considerable length, leaves the pyloric portion on its ventral surface, curves, and passes in an anterior direction. The intestine passes along the caecum, round the distal end, and returns along the other side, and is connected with it for the greater portion of the distance. The liver does not project anteriorly over the anterior adductor muscle. Anteriorly each cerebro-pleural ganglion gives rise to only one nerve-the anterior pallial nerve - which has one branch. There is only one circumpallial nerve.

Solen pellucilus possesses some features of resemblance to S. ensis, some to S^{\prime}. marginatus, and others not common to either' of these species.

[^12]It will, therefore, be assumed that the points not hereafter mentioned are the same as in S.ensis. It resembles S. marginatus in the following points:-ln the strong development of the pedal museles. The inner parts of the bases of the gills are joined together. The fibres of the retractor pedis anterior muscles cross the foot under, instead of over, the longitudinal ones. The long oesophagus and position of the stomach. The shape of the anteror part of the stomach. The length and direction of the caecum of the crystalline style. In possessing only one cireumpallial nerve.

The features by which it differs both from S. ensis and S. marginatus are :- The hinge of the shell is situated some distance from the anterior end, and the anterior part of the anterior adductor muscle, together with the dorsal integument, terminate there. What represents the fourth aperture is present at the posterio-ventral part of the pedal aperture. The presence of a supra-pedal chamber at the anterio-dorsal end. The large pyloric portion of the stomach, and of the proximal part of the eaecum of the crystalline style, and the absence of folds in the intestine shortly after leaving the stomach. The numbers of branches of the anterior pallial nerve, which are more than in S. marginatus, but fewer than in S. ensis.

It is admitted that the type of the genus Solen is S. vagina, Linne ${ }^{(1)}$, and it is evident that the anatomical differences between S. vagina and S. ensis and siliqua prevent the two latter being placed in the same genus. In the recent classification ${ }^{(2)}$ these $t w o$ species have been placed in the genus Ensis, schumacher, and 1 do not see any reason why this should be altered. That there are distinctive, and what I have found to be constant, characters. I think I have shown, thus justifying them being treated as separate species, and not varieties. There now remains S. pellucidus. This animal 1 have endeavoured to demonstrate possesses some characters common to S. ensis, some common to S. vagina, and others possessed by neither of them. It, therefore, follows that s. pellucidus cannot be placed in the genus Solen or Ensis. In the before-mentioned classifieation it has been placed in the genus Cultellus, Schum., and as I have not been able to see the type animal of Schumacher's genus (C. magnus), I cannot at present say if anatomieally this is correet or not.

I look upon Solen ragina as a more primitive form, and upon Ensis ensis and E. siliqua, as more specialised forms-perhaps E. ensis slightly more so than the E. siliqua Cultellus pellucidusf coming somewhere between S. vagina and E. siliqua. I do not, however, suggest that any one species has directly originated from the other. Perhaps the following tree will better illustrate what I wish to convey :-

[^13]

Primitive form.

Since the publication of Dr. Ridewood's valuable work on the structure of the gills of the Lamellibranchia no review of their classification wonld be complete without a reference to it ; but as I propose referring to the work in more detail at a later date when dealing with the classification of other genera of the Solenidae, I will only now say that 1 do not see anything in it disagreeing with the above conclusions.

ON THE ORIGIN AND FUNCTION OF THE FOURTH APERTURE IN SOME PELECYPODA.

By H. H. BLOOMER.

It has been suggested that the origin of the fourth aperture corresponds with a rudimentary fissure for the byssus. While this may explain the cause of the orifice in certain of the Pelecypoda, I have from observations come to the conclusion that in others the origin is totally dissimilar ; and, further, in those to which this theory may apply it has in rertain cases since been utilised for an altogether different function. It is noticeable
that in the animals possessing the fourth aperture the concresced ventral portion is comparatively of considerable length. Pelsencer ${ }^{(1)}$ calls attention to this feature. It must, however, be observed that there are genera belonging to these families having proportionately the same extent of rentral concrescence, in which the orifice does not oecur.

I have recently attempted to show that Solen vagina is a more primitive form than Ensis ensis or E. siliqua, that Cultellus pellucidus lies between S. regina and E. siliqua ; and, further, that the position of C'eratisolen legumen is between S'. veginu and C'. pllucilus. S'. vaginu has no fourth aperture, neither has C. legumen, but in the latter the dorsal and ventral surfaces of the pedal aperture earry a tentaenlar fringe, and extend further posteriorly: In ('. pellucilus what represents the forrth aperture is also present, hit whether it is separated from the pedal aperture I have not been able to determine, as this portion is so easily ruptured. However, in the examination of a large mmber of specimens, I have not found any conerescence of the mantle lobes between these parts. In $E \therefore$ eusis and E. siligut the fourth aperture is situated more posteriorly, heing about the centre of the ventral surface. There may be other genera with the orifice betwern these two positions, hat up to the present mone have conne moder my notice. From a morphologieal point of view, it is reasonable to infer that a portion of the pedal aperture first became specialised by developing a tentacular fringe; then this fringe extended posteriorly, and the pallial walls coalesced, separating the fourth from the pedal aperture, and finally the fourth aperture gradually proceded further posteriorly, until it attained a position favourable for the function it originated for.

If either S. ensis or E. siliqua is examined, it will be seen that the fourth aperture is an elliptical opening hordered on both sides by a row of tentacles, those on the one side alternating with those on the other, that from it on the insile of each mantle lohe is a groove, and in these grooves lie the distal portions of the labial palps, the ends of them being near to the upening. The labial palps, and particularly the parts which form the lips, are of considerable length.

From experiments on E.. siligut, I ohserved that when particles of carmine were placed near the aperture they were gradnally drawn in, the greater portion of them being passed between each pair of labial palps, and accumulated near the bases, just in the track where the food travels from the gills to the month. Now, as in all probability the labial palps assist the gills in rejecting ohjectionable matter, as well as being the medium by which the food is conveyed to the month, it appeared possible that the greater portion of the carmine would be detected and ejected by the exhalent aperture, and that is what happened. Nevertheless, I found a certain portion of the pigment had been passed anteriorly to this position, and

[^14]some even near to the mouth itself. I am thus led to believe the fourth aperture is in some degree employed as an accessory food-providing organ. I also observed that the orifice was constantly used for the purpose of ejecting water and foreign matter from the pallial cavity, especially if through irritation the valves were suddenly closed, consequently I further think that in E. siliqua and E. ensis the fourth aperture acts in the dual capacity of an accessory fond-providing organ, and an exhalent orifice for ojecting water or foreign matter, though the latter function is probably a secondary one. In Lutraria elliptica and Thracia pupyracea, the fourth aperture is situated at the anterio-ventral part of the mantle lobes. It is a small orifice, has no tentacular fringe, is surrounded by the very strongly developed muscles of the pallial edge, and is apparently under the control of the animal. The labial palps do not fome near it, being situated in the anterior part, and the portion of the gills lying dorsally are a considerable distance away, so that the apurture is not in close communication with any other crgan, as in lid siliqua. Intratia elliptica used the aperture frequently in suddenly ejecting water or any objectionable matter from the pedal cavity. When particles of carmine were placed close to it, they were not drawn in, as in E. siliqua, the orifice only being used for ejecting water, \&c.. and evidently not as an accessory food providing organ. The origin of the aperture is apparently of a different and more remote period than that of F. siliqua.

A CLASSIFIED LIST OF THE HELICOID LAND SHELLS OF ASIA.
 (PART VI*.)

BY G. K. (:UDE, F.Z.S.
(Plate iii.)

xii. MALAY ARCHIPELAGO.

The region now under consideration possisesses one of the richest and most varied land mollusean famas of the glole. The physical eonditions are eminently favourable to mollusean life, while the splitting up of the region into immmerable islands has contributed to the formation of loral races. The first naturalist to collect land shells here was Rumphins, whon resided in Amboina, where he died in 1706 ; it was not, however, until the beginning of the nineteenth century that the mollusea began to he collected in a systematic manner. The first expedition was that of Bandin to Timor in 1800-1804, and subsequent voyages were made by Freyrinet, Duperrey, Beechey, Dumond d'Urville, Vaillant, and Belcher, the results being published in the various works dealing with the respective expeditions.

[^15]The next two important contributions are hy Dr. A. R. Wallace and Professor E. von Martens, who risited many of the islands, whence they brought home a great number of novelties. The former naturalist published a check-list, the new species being described by Henry Adams; while the latter gave his results in the publication of the Prussian Expedition to Eastern Asia. This work constitutes a veritable landmark in the malacology of the region, and forms the basis of all subsequent work in this lranch of zoology. Beceari, Doria, and d'Althertis followed, while more recently Bock, Forbes, Weyers, Everett. Doherty, O. Strubell, Kukenthal, Weher, Semom, Ten Kate, Fruhstorfer, and Roebelen have further enriched our knowledge hy the addition of new material. Mention must also be made of the sumptunus work on the Mlollusia of Celehes by the Brothers Siarasin, wh have contributed much to that pertion of the famma.

While looking over the collection of Malaysian land shells in the British Musemm, Mr. Smith pointed out to me a few shells collected by Doherty, and others which had been purchased, which had not been worked out, and he kindly placed them at my dispusal. Four appear to be undescribed. and I now append diagnoses and figures of them. Two others were at first believed to be new, and under this impression they were figured. I discovered sulsequently that they were already described.

On glancing at the list of the Helieoids of the Eastern Archipelago, one is struck by the fact that as one goes eastwards the Zonitilae, which as far as mumber of species is concerned, at first preponderate, decrease and give way to the Ifelicillae, which therempon, in their turn, ontmumber the \%mitidar. The dividing line, roughly speaking. appears to be one separating Borneof from C'eleles and the Moluceas. This, however. scarcely anplies to the Lesser Sunda Islands east of Sumbawa. Of the Zonitilae, the genus Dyalia is confined to the Malay Peninsula, Sumatra, Java, and Borneo: while iesta is absent from Simatra and Java; for although I have doubtfully referred one Javan species (dwipaensis) to Sesta, it will probably prove to pertain to Lamprocystis, or some allied genus. Macrochlamys is fairly general in distribution, but appears to be replaced in Borneo by Everettia, which reaches Buru through Celebes. Hemiplecta and Trochomorpha are distributed over the whole group. Macrocycloides has hitherto only been recorded from Borneo, Burn, Amboina, Haruku, and Saparua, being represented in each of these islands by one species. Of Endodontidae only one species is known in Java, and one in Celebes. Coming to the Helicidae, Pseudobba has two species each in Celebes and Sangir. Planispira, s.s., does not appear to occur west of Lombok and Celebes; it has its centre of distribution in the Moluccas, and is replaced in the Aru Islands by the section Cristigibba, which forms a connecting link with the New Guinea fauna. Trachia occurs only (otherwise than on the Continent of Asia) in the Malay

Peninsula and Celebes, connecting the fauna with that of India and Buma. Chloritis is generally distributed, providing another connecting link with the mollnsea of Further India on the one hand, and through the section S'ulcobasis in the Aru Islands, with the fanna of New (fuinea on the other. Albersia and I'apuina range from the Moluceas through the Aru Islands into New Guinea. Rhagada is known only in Sumba, Datha, Flores, and Solor, its extra limital representatives being as far off as North Australia. Amphidromus (an arboreal genus of bright, conspicuous colouring), here finds its head-quarters, and oceurs in most of the islands ; a few off-shoots oceur in Further India. Pseudopartula is known only from Java, Sumatra, and Borneo. Pyrochilus, a small group, possessing four species, is confined to Halmaheira and Batehian. Gianesella is represented by a few species in Sumatra, Java, Borneo. and Celebes, forming another link with the fiuma of the Continent of Asia. The presence of Phoenicobius and Orthostylus in Palawan and neighbouring islands eomects the Bornean with the Philippine fauna, a comnection still further evidenced by the occurrence of Calocochlea in Sangir and the Tukan Bessi group. C'rystallopsis oceurs in Buru, (Goram, and the Aru Islands, thence ranging to the Solomon Islands. Lastly: I'mpisomu is fomm in Penang, the Sumui group, Borneo, Lombok, and Amboina, its remaining members oecurriner in India, Ceylon. Philippine Islands, and Japan.

In the following pages the fanmas of the various islands are treated separately ; and for convenience of reference I have added an index to the slands ; also a Bibliography.

In concluding this series of papers on the Helicoid Land Shells of Asia, I take the opportunity of expressing my deep obligations to Mr. W. E. Collinge, Mr. H. Wallis Kew, Mr. John Ponsonby, and Mr. E. A. Smith for valuable assistance and suggestions.

A few new records of habitat based on specimens (from reliable sources) in my own collection are indicated by an asterisk.

Dyakia smithiania, n.ヶp.

Pl. iii, figs. $1 a, 1 b$.
Whell sinistral, rimate, pramidal, finely striated, the stria cut into gramules by spirals, opaque, lustreless, pale straw-yellow; spire elevated apex acoute, suture shallow. Whorls 6 , Hattened above, tumid below, increasing slowly at first, last whorl twice as wide as penultimate, subangulate at the periphery, not descending in front, slightly dilated towards the mouth. 'Two narrow dark brown bands revolve just below the suture, gradually disalpearing upwards; at the periphery occurs anso ab dark brown band, with a narrow, faint one immediately below it ; these two latter are only visible on the body whorl. Aperture oblique, suborate, margins subparallel ; peristome thin. straight, columellar margin slightly reflected over the narrow perforation of the umbilicus.

Diam. maj. 32. min. 29 ; alt. 25 millim.
Hub.--Sumatra. Type in the British Museum. (Purehased).
This handsome species is quite distinct from any known Dyakia, and I hare mull plasure in assocjating with it the name of the courteous Assistant Keeper of Zoology of the British Museum, Mr. Edgar A. Smith.

Planispira quadrifasciata, Lo (i. vibr. halmaherica, n.var.

Shell discoid, morlerately mbinlicated, dull yellowish, finely striated. Spire depressed, apex Hattened, suture shallow. Whorls $4 \frac{1}{2}$, rather convex abore, romnded at the periphery, subangular romed the umbilicus; last whorl shortly descending in front, dilated towards the mouth, crested and gibbous lochind the peristome. Iperture oblique, subrotuntate; margins approaching : peristome white, scarcely thickened, shortly refleeted, bearing a slight tubercle on the colmmellar margin which is slightly dilated above, overhanging the deep fumnel-shaped umbilieus. Three narrow dark brown bands revolve round the body whorl-ane above and one below the gerpherer, the third round the umbilical angulation.

Diam. maj. 16.5, min. 13 ; alt. $\overline{7} . \overline{\mathrm{J}}$ millim.
Mub.-Dudinga, Halmaheirat (Doherty).
Chloritis unguiculina, Mart.
Pl. iii, figs. $4 u, 4 b, 4 c$.
Two specimens, measming respectively $14 \times 12 \times 8.5$ and $13 \times 11 \times 7.5$ millim., labelled "Alor." (Doherty). Mr. Smith informs me, however, that he is not sure of the habitat. The species hias hitherto only been recorded from Buru.

Chloritis (Trichochloritis) albodentata, Smith. Pl. iii, fig. 7.
Planispira alborlentuta, Smith ; Amm. and Mar. Nat. Hist., 1899. (7), iii, p. 411.

Hub.-Sunth Flores, alt. $3,600 \mathrm{ft}$.
The species is now figured for the first time. The drawing has been made from the type in the British Museum.

Chloritis (Trichochloritis) tabularis, n.sp.
Pl: iii, figs. $5 a, 5 b, 5 c$.
Shell depressed conoid, light fulvous, finely striated, closely covered with hair-sears arranged in quincunx. Whorls 5 , a little convex above, tumid below, rounded at the periphery, angular round the deep narrow umbilicus, increasing slowly, the last twice as wide as penultimate, not descending in front, scarcely dilated towards the mouth. Aperture nearly horizontal,
widely ear-shaped; margins distant, connected by a thin callus, sinuous in outline ; peristome scarcely thickened, shortly reflected, columellar margin dilated above and reflected over the umbilieus.

Diam. maj. 20, min. 17 ; alt. $1:$ millim.
Hab. -Sumatra. (Purchased).

Thersites (Rhagada) suppacostulata, Schepm.

Pl. iii, figs. 6u, 6b, 6c.

The bands in this species vary considerably. In a suite of several specimens in the British Musemm, one has a broad peripheral band ; in the others all the bands are linear. One specimen is pure white, bandless.

IIab.-Sumba (Everett).

Helicostyla (Calocochleas) talautana, n.sp.

Pl. iii, fig. 3.
Shell imperforate conoid, finely st riated, decussated with microscopic spiral lines, the earlier whorls violaceous, the body-whorl straw yellow, or fus:ous chestnut colour. Spire depressed, apex obtuse, suture rather shallow, margined. Whorls $4 \frac{1}{2}$, convex ; last whorl not descending in front. Aperture a little oblique, subrotundate; peristome fulvous rose edged with white, a little thickened, flattened and reflexed; margins eonvergent, comnected hy a thin callus, colamellar margin widened and Hattened. One specimen has a narrow brown peripheral band on the straw yellow body-whorl, a second is bandless ; a third specimen shows a trace of a band on the fuscous clestnut body-whorl.

Diam. maj. 37, min. 30 ; alt. 31-34 millim.
Hab.-Talaut (Doherty),
This new species somewhat resembles Helicostylu tukanensis, Pfr., in outline, but it is considerably larger, and the aperture is less dilated; while the columellar margin is more vertical.

A. MALAY IENLNSULA.

a. Maliced.
(iemus Thochonanina, Mohes. lyelnia, Bens.
Gembs Sesta, Ilb.
malaceana, Pfr.
Genus Hemplecta, Alb.
humphreysiana, Lea.
v. turbinata, Mart.
arguta, Pfr.
monozonalis, Lam. (?)
Genus Rursota, Alb. cymatium, Bens.
chevatieri, Suul.
(denus Deskis, (i.-A
lindstedti, Pir.
amphidroma, Mart.
$?=$ balesticrima, Lea
albersi, Mart.
$=$ janus, Ifr. non C'hemn.
Genus Thmana, Gray.
heliciformis, Pfr.
$=$ ophiria, Pfr.
Geuus Praamudla, F゙itz.
Section Pxr.ambut.a, s.s.
umbonalis, Bens.
tutulus, Bens.
Cienus Cilloritis, Beck.
Section Triciochloritis. Pils. platytropis, Mdfi.
Genus Amphidromus, Alb. aureus v. leucoxantha, Mart. inversus, Müll.
interruptus, Müll.
Genus Eulota, llartm. similaris, Fer.
b. Singapore.

Genus Thochonanini, Mones. lychnia, Bens.
Genus Hemiplecta, Alb.
striata, Gray.
$=$ naninoides, Bens.
$=$ isabella, H. \& J.
humphreysiana v. bifisciata, Mart.
Genus Drakla, (G.-A.
amphidroma, Mart.
Gemus Ampindronles, Alb. aureus v. melanomma, Pfr. comes r. polymorpha, Can. mundus: Pfr.
c. RIotw (Mi RiIn).

Genus Ampirdiomes, Alb. aureus v. melanomma, Pfr.
d. Johore.

Genus Ifemirlecta, Ab.
humphreysiana v. complanata Mart.
e. Silang of Junk ('exlon.

Genus Macrocilaniss, Bens.
resplendens, Phil.
(ientis Drakia, G.-A.
salangana, Mart.
Genus Hemi lecta, Alb.
striata, Gray.
Genus Helicarion, Fér.
praecellens, Mart.
nucleatus, Stol.
Gemus Trochomorpha, Alb.
sculpticarina, Mart.
castra, Bens.
Genus Amphidromus, Alb.
atricallosus, Gould.
$=$ eques, Pfr.
f. Perik.

Genus Euplecta, Semp.
bijuga, Stol.
Genus Xesta, Alb.
malaunyi, de Morg.
Genus Drakia, G.-A.
retrorsia, Cionld.
kintana, de Morg.
$=$ lahatensis, de Morg. (juv.)
Genus Macrocilamys, Bens.
diadema, Dall.
resplendens, Phil.
steploides, S'tol.
hatchongi, de Morg.
jousoufi, de Morg.
bartoni, de Morg.
Genus Microcistina, Mörch.
townsendiana, Nev.
Genus Hearplecta, Alb.
striata v. leechi, de Morg.
sakiayana, de Morg.
floweri, Smith.
Genus Apopamarion, Cllge. partridgei, Cllge.
Genus Paraparmarion, Cllge.
elongatus, Cllge.
Genus Melicarion, Fér.
nueleatus, Stol.
lineolatus, Mart.
lowi, de Morg.
permollis, Stol.
Gemis Lamprocystis, Pfr.
malayana, Mdff.
comulina, AIdfi.
Genus Sitala, H. Ad. carinifera, Stol. pataniensis, de Morg.
Gemus Kaliella, W. T. Blanf. perakensis, Nev.
Genus Vitrinopsis, Semper.
douvillei, de Morg.
(Gaeotis douvillei, de Morg.)
Genus Trochomorpia, Alb.
gr'ubaneri, Mdff.
timorensis, Mart.
? = thieroti, de Morg.
swettenhami, de Morg.
Genus Planispira, Beek.
Sub-genus Trachia, Alb.
penangensis, Stol.
wrayi, de Morg.
hardouini, de Morg.
(ienus Culoritis, Beck.
Section Tricuoculoritis, Pils.
malayana, Meff.
breviseta, Pfr.
Genus Amphidromus, Alb.
aureus v. melanomma, Pfr.
atricallosus, Gould.
perakensis, Fult.
sinensis, Bens. v.
xiengensis, Mor.
Genus Ganesella, W. T'. Blanf. perakensis, Crosse. v. subperakensis, Pils.
bouryi, de Morg.
(ienus Euloti, Hartm.
similaris, Fér.
g. Pening.

Genus Eurlecta, Semp.
bijugra, Stol.
Genus Macrucimamis, Bens. stephoides, S'tol. resplendens, Phil.
Gemus Rifsota, Alb. cymatium, Bens.

Genus Hemiplecta, Alb. striata, Gray.
Genus, Helicarion, Fér. mucleatus, Stol. permollis, Stol.
Genus Sitala, H. Ad. carinifera, Stol.
$=$ Trochomorpha kusana, Aldr.
Genus Kaliella, W. T. Blanf. palmicola, Stol.
Gemus Trochomorpha, Alt. castra, Bens.
cantoriana, Bens. timorensis, Mart.
Genus Planispibi, Beek.
Sub-genus Trachia, Alb. penangensis, Stol.
Gemus Ampmingul's, Alb. atricallosiss, (iould. aureus v. melanomma, I'fr.
Cenus Eulora, Hartm. similaris, Fér.
Gemus Pupisoma, Štul. orcella, Štol.
h. Qued. or Kedai
(ienus Xesta, Nll). malaccana, Pfr.
i. Pulo Lankifa.

Genus Ruysota, Alb. cymatimm, Bens.
j. Kelintan (ol Kiladtan).
(Gemus Euplecta, Semp.
bijuga v. convexospira, Mdtf.
Gemus Macroculaniss, Beas.
stephoides, Stol.
hardwickei v. kelantaneusis, Mdff.
Gemus Hemiplecta, Alb.
humphreysiana, Lea.
Genus Sitala. II. Ad.
carinifera, Stol. subscalaris, Mdff. sublineolata, Mdff.

Genus Trochomorpha, Alb. grubaueri, Mdff. kelantanensis, Mdff. castra, Bens.

Genus Culonitis, Betk. malayana, Mdff.
k. Ligeh (or Ligor?)

Genus (ilrasia, Gray. peguensis, Theob.

1. Nawng Che.

Cienus Cerptosemelus, Cllge. gracilis, Cllge.
in. Jalor.
(ienus Amphondomus, Alb. perversus, L.

> B. SAMUI (iROUP:

Gemus Nista, All. siannensis, Pfr.
Genus Macrochlayys, Bens. limbata, Mdet.

Cemus Hemidecta, All. weinkatffiana v. intlata, Mdfi.
Genus sitala, H. Ad. insularis, Melfi.

Genus Kaliella, W. T. Blinfs subsculpta, Matfi.
(ientis Cilloriths, Mdif.
Section Thecrochmoratis, Pils. platytropis r . simmiana, Miff.
(ienus Ampindmomes, Alb. moniliferus, (foudd.
Genus Pupisomi, Stol. orcella, Stul.
C. SUMAIRA.

Fimily Zonitidae.

Sub-fanily Macrochlaminae.
Gemus Microchlayys, Bens.
malactana, Pir.
convoluta, Desh.
$=\underset{\text { Mart. }}{\text { convallata }}$ v. rufofusca, Mart.
aurea, Mart.
Genus Microcrstinis, Mörclı. intans, Pfr.
Genas Ilcmirlecta, Alb.
densit, A. \& R .
schumacheriana, Ifr.
humphreysiana v. gemina, r.d.B.
hoodjongensis, Smith.
umbilicaris, Le G. v. stmmatrana, Mart.
$=$ desgrazii, Humbr.
arguta, Pfr.
obliquata, Rieeve.
monozonalis, Lam. (!)
castanea, Miill.
marangensis, Ald.
Genus Drakia, G.-A.
amphidroma, Mart.
v. martini, Pfr.
v. mackensiana, Soul.
granaria, Bock.
matrseveeni, Bock.
smithinna, Giude.
weyersi, smith.
rumphii, v.d. 13.
sumatrensis, Monss.
foveata, Pfr.
Sub-family Hellcarioninae.
Genus Ilelicarion, Fér.
boeki, Sinith.
lineolatus, Mart.
sumatrensis, Sehepm.
Genus Srtala, H. Ad.
carinifera v. marangensis, Ald.
Sub-family Zonitinae.
Gehus Vitrina, Gray.
heliciformis, P'ir.
hyalea. Bock.
Genue Trochomorpha; Alb.
planorbis, Less.
bicolur, Mart. costulata, Mart. duhertyi, Ald.
Family Helicidae.
Group Eipipiallugiona, Pils.
Gemis Plantspila, Beck.
Sub-genus Cristheibia, Can.
quadrirolvis, Mart.
Sub-genus Trachis, Alb.
smithi, Buek.
Genus Culohitis, Beck.
Section Thenociloritis, Pils. crassula, Phil.
$=$ störiana, Muluss.
tomentosia, Pifr.
tabularis, Giule.
Genus Ampindronus, Alb.
inversus, Müll.
porcellanus, Mouss.
sumatranns, Mart.
semifrenatus, Mart.
Sub-genus Psecdopartula, Pfi: dohertyi, Aldr.
Gemus (inesella, W. T. Blanf.
gysseriana, Pfr.
$=$ conulus, Mart.
rufufilosia, Boek.
Group Belogona Euddenta.
Genus Plectotrons, Mart.
winteriana, Pfr.
sumatrinla, Mart.
Ducbtful Records.
Trochonanina conus, Phil.
Patula cavernula, Smit.
a. Banca.

Genus Everettia, G.-A. consul, Pir.
Genus Hemiplecta, Alb. mubilicaris, Le G. v. bankana, Mart.
Genus Drakia, G.-A.
amphidroma, Mart, v. mackensiana, Suul.
b. Bilitox.

Gienus Ampindionus, Alb.
aurells v. melanomma, Pfr.
e. Batu Aichipelago.

Genms Hemplecta, Alb. humphreysiana, Lea.
(ienus Drakla, C.-A.
weyersi, Smith. Budjo.
d. Engino.

Genus Macrochlamys, Bens. dohertyi, Hend.
Genus Helicarion, Fér. alleellus, Mart. var.
Genus Trocionorpia, Alb. hartmami, Pfr.
Genus Planispira, Beeka aldrichi, Hend.
Genus Ampindromus, Alb. enganoensis, Fult.
D. JAVA.

Family Zonitidae.
Sub-family Ariophantinae.
Gehus Trochonanisa, Meuss. conus, Phil.
multicarinata, Boettg.

Sub-family Macrochlaminae.
\} Genus Macrochlamys. dwipaensis, Gude.
$=$ jenyusi, Mart. nou Pir.
Genus Microcistina, Mörclı.
infans, Pfr.
Genus Hemiplecta, Alb. densa, A. \& R.
v. herklotsiana, Dohrn.
r. moussoniana, Mart.
v. corrosil, Mouss.
humphreysiana, Lea.
v. turbinata, Mart.
v. complanata, Mart.
v. gemina, v.d. B.
$=$ bifasciata, Mart.
patens, Mart.
moussoni, Pfr.
rareguttatia, Mouss.
inquimata, v.d. B.
umbilicaris, Le G. v. sundana, Mart.
r. Virescems, Mart.
centralis, Mouss.
arguta, P'ti:
bataviama, rid. B.
$=$ intluta, Pfr. (jur)
duplocincta, Mdfi. acutecarinata, Mdff.
marginata, Mdfl.
acelidota, Mdti.
v. robusta, Mdff.
javana, Fér.
$=$ javacensis, Fér.
$=$ javanica, Lam.
(ienus Drakia, G.-A.
regalis, Bens.
$=$ vittatid, A. \& R.
rumphií, v.d.B.
dypeus, Mouss.
$=\mathrm{v}$. zollingeriana, Mart.
v. jagoriana, Mart.
ryssolemma, Alb.
Sub-family Helicarioninae.
Cemis Helicarion, Fér.
lineolatus, Mart.
albellus, Mart.
$=$ wonosariensis, Mouss.
agilis, Mart.
adolfi, Boettg.
perfragilis, Mdff.
fruhstorferi, Mdff.
Genus Parmarion, l. Fisch.
reticulatus, Hasselt.
taeniatus, Hasselt.
pupillaris, Humb.
v. punctata, Mart.
v. marmorata, Mart.
v. vittatal, Mart.
luteus, Mouss.
planus, Mouss.
weberi, Simr.
Genths Microparmation, Simr.
allsteni, Simr.
fruhstorferi, Simr.
boettgeri, Simr.
javanica, Cllge.
Genns Coldncea, Sime.
strubelli, Simur.
(Eentis Lamphocristis, Pfr.
gedeania, Mdff.
frulistorferi, Mdfi.
circumlineata, Mdff.
suloglobosa, Mdff.
exigua, Mdfí.
nana, Mdff.
radiatula, Mdfi.
vitreiformis, Mdfi.
Genus Sitala, H. Ad.
micula, Mouss.
bandongensis, Boettg.
jivvana, Mdff.
Genus Kialiella, W. T. Blanf.
indifferens, Boettg.
javana, Boettg.
acutiuscula, Mdfl.
sitaliformis, Mdff.
platyconus, Mdff.
angigyra, Mdfi.
convexoconica, Mdff.
amblia, Mdff.
densetorta, Mdtí.
viridula, Mdff.
macrostoma, Mdff.
pisum, Mdff.
Sub-family Zonitinae.
Gemus Trociomorpha, Alb. planorbis, Less. v. javanica, Mouss. bicolor, Mart.
hartmanni, Pfr. (?)
tricolor, Mart.
zollingeri, Pfr.
concolor, Boettg. strubelli, Boettg.
Family Endodontidae.
Group Haplogona, Pils.
Genus Pyrimidela, Fitz.
javana, Mdfti.
Family Helicidae.
Group Epiplaldogona, Pils.
Genus Chloritis, Beck.
Section Triciocimoritis', Pils.
c rassula, Phil.
helicinoides, Mouss. non Hombr.
= eryptopila, Mouss. in Coll.
tetragyria, Mdeff.
fruhstorferi, Mdfi.
Gemus Ampimbromes, Ath.
palaceus, Mouss.
v. subaurantia, Fult.
v. appressa, Mart.
v. pura, Mouss.
v. tener, Mart.
winteri, Pfr.
v. inauris, Fult.
heerianus, Pfr. v. robusta, Fult.
javanicus, Sowb.
alticola, Fult.
perversus, Linn.
interruptus, Müll.
v. emaciata, Mart.
v. sultana, Lam.
v. inflata, Fult.
v. elongata, Fult.
porcellanus, Mouss,
filozonatus, Mouss.
furcellatus, Mouss.
$=\mathrm{v}$. flammulata, Mart.
v. virescens, Mart.
elegans, Mouss.
Sub-genus Pseudorartula, Pfr.
galericulum, Mouss.
v. gedeana, Pils.
r. fasciata, Auc.
v. impunctata, Anc.

Genus Ganesella, W. T. Blanf. bantamensis, sinith. Belogona Edapenia, Pils.
Genis Eulota, Hartm. similaris, Fér.
v. subdepressi, Mart.
v. solidula, Monss.
v. Subsimilaris, Mouss.
transversalis, Monss.
Genms Plectotropis, Mart.
rotatoria, v.d.B.
winteriana, Pfr.
sumatrana v. moussoniana, Mart.
intumescens, Mart.
hittoni, Pfr.
= orbicula, Itutt. non Orb.
smiruensis, Mouss.
lencomphala, Mdfi.
epiplatia, Mdff.
trichotrochium, Mdffi.
ciliocincta, Mdff.
schepmani, Mdff.
Genus Helicostyla, Fér.
Section Crystallopsis, Anc.
coelaxis, Pils.
Belogona Sipionadenia, Pils.
Genus Acanthinula, Beck.
perpusilla, Mdff.
tiluana, Mdff.
Doubtful or Spurious Records.
Chloritis ungulina, Fér.
unguicula, Fér.
Crystallopis najas, Pfr.
Helicostyla rustica, Mouss.
a. Madera.

Genus Hemiplecta, Alb. javana, Fér.
Genus Amphinnomes, Alb. filozonatus, Mouss.
Genus Eulota, Hartm. transversalis, Mouss.
Genus Plectotiopis, Mart. squamulosia, Mouss.
b. Bawean.
(iemus Hemiplecta, Alb. bataviana, v.d.B.
Genus Amplubromes, All. interruptus, Müll.
e. Popolit.

Genus Plectotiopis, Mirt. rotatoria, v.d.B.
d. Prince's Island.

Genus Amphidromis, Alb.
aureus, Martyn.
e. Krakatao or Rikata.

Genus Hemiplecta, Alb.
umbilicaris, Le G. v. sumatrana, Mart
arguta, Pfr.
Gemus Chlohitis, Beck.
Section Trichochloritis, Pils.
helicinoides, Mouss.
Genus Amphidronus, Alb.
inversus, Müll.
f. Pulo Sungian (Eillind Dwars in de weg.)
Genus IIemplecta, Alb. virens, Mart.
Gemus Drakta, G.-A.
amphidroma, v. martini, Pfr.
Cienus Trochomorpila, Alb.
bicolor, Mart.
(ienus Amphidromes, Alb.
inversus, Müll.
g. Cifristmas Islano.

Genus Lamproctstis, Pir.
normani, Simith.
mabelae, Smith.
mildredae. Smith.
E. BORNEO.

Family Zonitidae.
Sub-family Ariophantinae.
Gemus Triochonanina, Mouss.
conicoides, Mete.
v. parva, Smith.
v. cremulata, Melff.
labuanensis, Pfr.
tropidophora, A. and R.
whiteheadi, Smith.
heraclea, Smith.
Genus Xesta, Alb.
ghutinosa, Mete.
brotii, Bonnet.
moluensis, Smith.
padasensis, Smith.
thishe, Smith.
baramensis, Koh.
Genus Euplecta, Semp.
bijuga, Stol.

Gemils Xestini, Semp.
themis, Smith.
Sub-family Macrochlaminae.
Genus Everettia, (t.-A.
consul, Pfr.
subeonsul, Smith.
cutteri, H. Ad.
v. haramensis, Kob.
jueunda, Pfr.
v. nana, (4.-A.
hyalina, Mart.
aglaia, Pfr.
v. emarginata, Nev.
cinnamomea, Val.
subimperforata, Sinith.
planior, Smith.
baramensis, Smith.
thalia, Smith.
bocki, Issel.

Genus Microcystina, Mörch.
infans, Pfr.
tersi, Issel.
macdougalli, Issel.
lowi, Issel.
perlucida, Issel.
dyakana, G.-A.
st. johni, G.-A.
pudens, (i.-A.
sechusa, G.-A.
eavernae, (!.-A.
Genus Rhysota, All.
brookei, A. and R. $=$ gigas, Pfr.
v. baramensis, Kob.
borneensis, Pir.
Gemus Hemiplecta, Alb.
densa, A. and R.
v. atrofusca, Mart.
luttikoferi, Schepm.
schumacheriana, Pir.
obliquata, Reeve.
souleyetiana, Pir.
donovani, Pfr
nobilis, Pfr.
arguta, Pfr.
praeculta, Smith.
rabongensis, Smith.
Gemus Drakia, (t.-A.
regalis, Bens.
v. micolor, G.-A.
janus, Chemn.
lindstedti, Pfr.
v. castanea, Smith.
amphidroma, Mart.
v. intermedia, Mart.
mindaiensis, Boek.
= sarawakana, Dohirn.
$=$ mendaiensis (Semp. !), Teni-son-Woods.
intradentata, G.-A.
busauensis, G.-A. (em.).
$=$ busanensis, (t .-A.
v. concolor, Smith.
moluensis, G.-A.
subclebilis, Smith.
densestriata, Schepm.
Genus Macrocrcloides, Mart. obscurata, A. \& R.
Sub-family Hehicarioninae.
(ienus Helicarion, Fér.
homeensis, Pfr.
whiteheadi, Cr.-A.
semiealeareus, Schepm.
Gemus Parmarone l'. Fiseho.
goedhuisi, Schepm.
everetti, Cllge.
intermedium, Cllge.
(ienus Microparmition, Simr.
litteratus, Schepm.
fultoni, Cllge.
constrictus, Cllge.
Gemus Damayintis, Issel.
dilecta, Issel.
carinata, Cllge.
Genus Wiecmanna, Cllge.
dıbia, Wiegm.
gigas, Cllge.
ponsombyi, Cllge.
borneensis, Cllge.
Genus Collingei, Simr.
smithi, Cllge. and Cr.-A.
(Damayantia smithi, C. and ($\mathrm{G} .-\mathrm{A}$.)
pollonerai, Cllge. and (i.-A.
simmothi, Cllge. and ($\mathrm{t} .-\mathrm{A}$.
Gemis Isselestia, Cllge.
plicata, Cllge.
glohosa, Cllge.
(ienus Ibycus, Heyn.
beccarii, Issel.
doriae, Issel.
(iemus Durgella, (i.-A.
hosei, G.-A.
Genus Sitala, H. Ad.
everetti, (i.-A.
singularis, G.-A.
raricostulata, Smith.
baritensis, Smith.
moluensis, Smith.
carinifera, Stol.
= Trochomorpha kusana.Aldr.
angulata, Issel. rumbangensis, Smith.
demissa, Smith.
eara, Smith.
dulcis, SImith.
accepta, Smith. amussitata, Smith. inaequisculptic. Simith.
Genus Kaliflla, W. T. Blanf. doliolum, Pfr. $=$ Sitala orchis, C.-A.
Sul-family Zonitinae.
Genus Trochomorpha, Alb. planorhis, Less.
v. appropinquata, Mart.
v. lessoni, Mart.
r. nummus. Issel.
bicolor, Mart.
metealfei, Pfr.
kinabaluensis, simith.
v. pallida, simitl.

Family Hellicidae.
Group Epiphaloogioni, Pils.
Gemus Chmana, Alb.
Section Puolexicubres, Möreh. trailli, Pfr.
Genus Planispira, Beck. duleissima, Smith.
Sub-gemis Cristigibbi, Can. quadrivolvis, Mart.
Genus Chloritis, Beek.
Section Chloritis, s.s. flexuosa, Pfr. latecostata, Kob.
Section Trichochloritis, Pils. everetti, H. Ad. tomentosa, Pfr. kinabaluensis, Smith. meander, Cr.-A.
Gemus Papeina, Mart. antiqua, A . and R .

Genus Amphidronus, Alb. perversus, Linn.
v. similis, Pils.
$=$ atricallosa, Schepm.
interruptus, Müll.
martensi, Boettg.
inversus, Muill.
hosei, simitl.
adamsi, Reeve.
v. rufocincta, Fult.
r. inornata, Fult.
v. aureocineta, Fult.
v. ruliginosia, Fult.
r. placida, Fult.
r. angulata, Fult.
pictus, Fult.
v. concinna, Fult.
v. connectens (Fult.)
$=$ everetti v. connectens, Fult.
Sub-genus Psfedopartula, Pfr. nasuta, Mete.
Genus Ginesella, W. T. Blanf. niahensis, (t.-A.
subflava, (i.-A.
rufofilosa, Bock.
Belofona Eetadenia, Pils.
Giemus Ellati, Ilartm.
incauta. Simitl.
Genus Plectotropls, Mart. winteriana, Pfr.
grimulus, ($\mathrm{i} .-\mathrm{A}$.
(ienus Pupisomi, Stol. pulvisculum, Issel.
Genis Helicostyla, Fér.
Section Orthostylus, Beck.
satyrus v. minima, Pils.
Doubtfll of Spurious Records. Chloritis unguiculastra, Mart. Euhadra orientalis, Reeve.
a. Palawan (or Paragua).

Family Zonitidae.
Sub-family Ariophantinae.
Genus Trochonanina, Mouss.
paraguensis, Smith.
v. eurystoma, Mdffi.
r. denselirata, Mdfí.
conicoides, Metr.
r. subconvexa, Mdff.

Sul-family Macrochlaminae. (ienus Mhcrochlamis', Bens. psenstes, Smith.
Gemus Microctstini, Moreh st. johni, (i.-A.
Genus Hemplectia, Alb. densa, A. and R. r. everetti, smitli. sclumacheriana. Iff. egeria, Smith.
Suh-family Helicarioninae.
(ienis Limprocystis, Pfr. goniogyra, Mdff. succinea, Pfr. myops. D. and s. chlororaphe, Smith.
Cenus sitila, H. Ad. baritensis, Smith.
Gemus Kaliella, II. T. Blanf. accepta (Smith), Mdfi.
(Sitala accepta, Smitll). infantilis (Smith), Mdff. (Sitala infantilis, Smith).
Gentis ILemitrichis, Mdff. plateni, Dohrn.
Sub-fimily Zonitinae.
(ienus Trochomorpila, All). loocensis, Hid.
boholensis, Semp.
metcalfei, Pfr. repanda, Mdfi. splendens, Semp. pseudosericina, Boettg.
Family Helicidae.
Gromp Epipitallogonit, Pils.
Cenus Chmaevi, Alb. stolidota, Q. and MI.
Section Phoexicobirs, Morel. trailli, Pfr.
v. turrita, Mdff.
monochroa, Sowb.
palawanica, Pfr.
$=$ doriae, Dohrn.
$=$ sauliae, Rre.
r. albolabiata, Mdff.
v. fulva, Mdff.
v. fuscolabiata, Mdfif.
v. confusa, Mdff.
v. fusea, Mdffi.
sauliae, Pfr. (Murigi Istand.)
$=$ palumba, Sour.
lagmae, Hid.
v. gigas, Mdff.
egregia, Desh.
avis, Pfr.
Genus Obba, Beck.
Sub-gemus Oreobra, Pils. camelus, Pfr. (Bakuit Island).
(ienus Chloritis, Beck.
Section Triciochloritis, Pils. inquieta, Dohrn.
(ienus Ampindromes, Alb.
entobaptus, Dohru.
v. gracilis, Fult.
r. contracta, Mdff.
quadrasi v. solida, Fult. r. everetti, Fult.

Belogona Erabenia, Pils.
Gemus Euloti, Hartm.
fodiens, Pfr.
Genus Ifelicustyai, Fér.
Section Orthostyles, Beck.
sittyrus, Brod.
v. palawanensis, Pfr.
v. cyanocephala, Pils.
v. cinerosa. Pir.
r. librosa, Pfr.
b. Bilabic.

Genus Trochoninini, Monss.
labmanensis, Pfr.
paraguensis, Smith.
Genus Lamproctstis, Pfr.
myops, Dohin.
goniogyra, Mdff.
succinea, Mdff.
discoidea, Q. and M.
$=$ balabacensis, Smith.
Genus Camaena, Alb.
Section Phoenicobius, Mörch.
monochroa, Sowb.
lagunae, Hid.
Cenus Amphidromus, Alb.
quadrasi v. versicolor, Fult.
v. dubia, Fult.

Genus Helicostyla, Fér.
Section Corasla, All).
samboanga, H. and J.
c. Mangisi. (Balabac Straits.)

Genus Ampitidromus, Alb.
adamsi v. mangsiana, Pils.
Genus Helicostyla, Fér.
Section Corisia, Alb.
samboanga r : intaminata, Gld.
Section Orthostylus, Beck.
satyrus v. graellsi, Hid.

> d. Panalingoan. (S.W. of Palawan.)

Genus Chloritis, Beck.
Section Trichochloritis, Pils. euphrosyne, Smith.
e. Busuanga. (N. of Palahan).

Genus Camaena, Alb.
Section Phoenicobius, Mörch. monochroa, Sowb.
Genus Helicostyla, Fér.
Section Orthostylus, Beck. satyrus, Brod.

f. Bangety.

Genus Trochonanina, Mouss. alexis, Smith.
Genus Everfttia, (i.-A.
subeonsul, Smith. (also Mengalun Island). bangueyensis, Smith.
Genus Heaiplecta, Alb.
obliquata, Reeve.
Gemus Drikia, G.-A.
lindstedti, Pfr.
Genus Laviprocystis, Pfr. myops, Dohrn.
Genus Chloritis, Beck.
Section Trichochloritis, Pils.
tomentosa v. major, Smitl.
Genus Ampirdromus, Alb.
adamsi, Reeve.
v. subunicolor, Fult.
v. articulata, Fult.
v. simplex, Fult.
r. ornata, Fult.
v. Juteofasciata, Fult.
v. superba, Fult.
quadrasi, Hid.
Genus Helicostyla, Fér.
Section Ortiostylus, Beek.
satyrus, Brod.
g. Sulu Groitp. 1. Sibutu.

Genus Trochonanina, Mouss.
sylvana, S. and D.
bongaoensis, Sinith.
$=$ conicoides v . crenulata, Mdff.
Genus Macrochlamys, Bens.
angulata, Mdff.
Genus Lamprocystis, Pfr. myops, Dohrn.
Genus Kaliella, W. T. Blanf. doliolum, Pfr.
$=$ Sitala orchis, G.-A.
Genus Trochomorpha, Alb. metcalfei, Pfr.
Genus Obba, Beck. marginata, Müll.
v. nana, Mdff.

Genus Chloritis, Beck.
Section Trichochloritis, Pils. sibutuensis, Smith.
Genus Plectotropis, Mart. squamulifera, Muff.
Genus Helicostyla, Fér.
Section Corasla, Alb.
samboanga, II. and J.
$=$ aegrota v . zonata, Smith.

2. Bilatan.

Genus Lamprocystis, Pfr. myops, Dohrn.
Genus Trochonorpha, Alb. metcalfei, Pfr.
Genus Amphidromus, Alb. roeseleri, Mdff.
= maculiferus, v. Smith.
Genus Helicostyla, Fèr.
Section Mypselostyla, Mart. camelopardalis, v. boholensis, Brod.

3. Tawi-Tawi.

Genus Macrochlamys, Bens. angulata, Mdff.
Genus Trochomorpia, Alb. metcalfei, Pfr.

4. Bongao.

Genus Trochonanina, Mouss. conicoides, Metc.
sylvana D. and S.
bongaoensis, Smith.
Genus Macrochlamys, Beus. angulata, Mdff.
Genus Microcystina, Mörch. pseudosuccinea, Mdff. gemmula, Mdff.
Genus Trochomorpha, Alb. metcalfei, Pfr.
Genus Plectotropis, Mart. squamulifera, Mdff.
5. Sulu Island.

Genus Macroclilayys, Bens. angulata v. dimidiata, Mdff.
Genus Trochomorpila, Alb. sylvana, S. and D.
Genus Obbi, Beck.
marginata, Müll..
v. nana, Mdff.

Genus Chloritis, Beck.
Section Trichochloritis, Pils. suluana, Mdff.
Genus Ampidionus, Alb. roeseleri, Mdff.
h. Labuan.

Genus Trochovanina, Mouss.
labuanensis, Pfr.
conicoides, Mete.
Genis Nesta, Alb.
decrespignyi, Higg.
v. pallide-fasciata, (t.-A.

Genus Everettia, G.-A.
jucunda, Pfr. consul, Pfr.
Genus Hemiplecta, Alb. densa, v. ignobilis, Mart. v. lowiana, Mart.

Genus Drakia, G.-A. hugonis, Pfr.
Genus Kaliella, W. T. Blanf. doliolum, Pfr.
$=$ Sitala orchis, G.-A.
Genus Trochomorpis, Alb. planorljis v. lessoni, Mart. ceroconus, Pfr.
Genus Chloritis, Beck.
Section Triciochloritis, Pils. tomentosa, Pfr. plena, C..-A.
Genus Amphidromus, Alb. adamsi v. hamata, Fult.
Genus Plectotropis, Mart. pudica. G.-A.
i. Tici..

Cichus Everettia, G.-A.

Gienus Limprocystis, Pfr.
chlororaphe, Smith.
Genus (innesella, II. T. Blanf. tigaensis, G.-. 1 .
j. Kimemon (or K.iramon).

Genus Everetti., (i.-A.
consul r. rufa, G.-A.
(iemus C'mLoritis, Beck.
section Tricumcuronitis. Pils.
tomentosa, Pfry. handed rar. (i.-. 1.
k. Pelo Lalt.
(ienus Drikta, (i.-.
amphidronar r. mackenstana.
Mart.
mindalensis, Bock.
Gemus Pamarion, H. P. Fisch.
dohertyi, (i.-I.

1. NitcNa (ironp.
2. (impit Natcia (or Bungıram).
(amus Trochoninini, Momss. affinis, simith.
bunguranensis, smitls.
Cimus Evere:tis, (.-. $)$
cinnamomea, Vil.
Genis Microcystina, Möreh. hunguranensis, Smith.
Gemes Hemplecta, Alh. humphreysiama, Lea.
(ienus Drikis, (i.-A. hugonis, Pir.
(iemus sitah. II. Ad. earinifera, stol. baritensis, Suith.
(xemus Truchomorpla, Alb. natunensis, Smith.
(ienus Exbononta, Alh.
Sub-gemus ('uAROP, Alb. perscolpta, Smith.
(icmus Ampimpromes., Alb. aureus \mathcal{V}. matunensis Fult.

ב. MRHASSEN.
(ienus Trochoninina, Mouss. affinis, smith.
(ipmis Everettha, (i.-A. cimnamomea, Val.
(anus Hemplecta, Alb. humphreysiana, Lea. (iemus Sitah. II. Al. sirhassenensis, Smith.
(xemus Trochomorpili, All. natunensis, Smith.

ON A NEW GENUS AND SPECIES OF THE FAMILY PHENACOHELICIDAE.

By HENRY SUTER. (Pate 1v.)

Ranfurlya constanceae, gen. et sp. nov.
Pl. ir, figs. 1-i).
Spirit Specimen: Animal (Figs. 1-2) limaciform, minute, black all orer, with a suberntral visceral hump, the greater part of the viscera protected hy a shell. Which in turn is partly covered by the mantle. Most likely in the living animal the mantle covers the whole of the shell. All the tentaeles are retracted. Neck, sides, and tail rugose, three longitudinal groores on the neck; mantle smonth, minutely punctured. Sole un-
divided, with slight transverse rugae, separated from the foot by a double pedal line. Genital orifice behind the right tentacles; pulmonary orifice on the right anterior side of the mantle, ending in it short distal slit ; anal orifice on the right side just below the middle of the visceral hump. Tail rounded, with a caudal pore.

Total length 6 , height : , height of neek 1.75 millim.
Yisceral hump: length 4.5, height \because, breadth $\because .5$ millimı.
Breadth of sole 1.5 millim.
Shell (Fig. 3) auriform, yellowish-horny, Hexible, membranaceous, transparent, with a notch on the right posterior side; one whorl only, with mieroscopical distant lines of growth.

Length $\because .75$, breadth 1.6 millim.
Jaw (Fig. 4) arcuate, delicate, composed of 1.5 very thin rertical laminae, all of which are separated from one another.

Radula (Fig. 5) elongated tongue-shaped, consisting of about 1.50 straight transverse rows of teeth, the formulat being $1: 3-7-1-7-13$. The last margimal tooth is an minte p)ate with a rudimentary denticle ; in the two following teeth the denticles still coalesce, but show beginning division. The base of attachment in most of the margimals is much broater than high. On the 17 th tooth the division into distinct teeth begins ; the ectocone is always smallest. sometimes bidentate, the mesocone is the stoutest, and the entocone is more slender, and slightly directed towards the centre of the radula. A few quadrate tramsition teeth occur betwecn the marginal and lateral teeth, on which the ectocone is minnte, the mesocone large, reaching to the posterior margin of the base, and the entocone about twice the size of the ectoeone. The laterals have a square base, higher than broad, and are tricuspid. The mesodont reaches a little beyond the posterior margin of the base, the side-cusps are short and with minute cutting points. The central tooth is exactly like the mesial laterals.

On dissecting the minute animal, I found it to be in a rather bad condition for the purpose, but I fully satisfied myself that it was immature. I hope that further search for this shog will provide adult specimens, when the intatemy can be properly worked out.

Hab.-Atckland Islands, where it wats found by Lady ('onstance Knox, who handed it over to the Hon. H. (. Butler, and by whom it wats given to Capt. F. W. Hutton. The latter, with his usual kindness and liberality, kindly sent me the unique specimen for deseription, for whieh my best thanks are due to him.

The genus is named, by kind permission, in honom of his Excelleney the Earl of Ranfurly, K.C.M. G., etc., Governor of New Zealaml, and the species in honour of his Excellency's daughter, lady Constance Knox.

According to the facts brought forward, there can be no doubt about the systematic position of this slug; the presence of at catudal prore, the
jaw composed of mumerous laminac, and the characters of the teeth of the radula clearly prove that it must be included in the family Phenacohelicidae.

Ranfurlya stands in the same relation to Flammulina, as Schizoglossa does to Paryphanta.

Type in my collection.
New Zealand, Auckland, May, 1903.

EXPLANATION OF PLATE IV.

Figs. 1, 2. lianfurlyn constanceae. Animal, magnified 10 times.
Fig. 3. " Shell
Fig. 4. " Jaw. greatly magnified.
Fig. 5. " \quad. Teeth of radula, magnified 720 times.

DESCRIPTIONS OF NEW LAND SHELLS FROM THE AUSTRO•MALAYAN REGION.

By E. R. SYKES, B.A., F.L.S.

Illustrations of the species herein described will be given later. All the "types." except that of Helicina varians, which is in my collection, are in the British Museum.

Xesta sulcatula, n.sp.

Shell depressed-conoid, thin, narrowly perforate ; sculpture microscopic spiral lines above and below, crossing the faint lines of growth. Colour yellowish-green, slightly paler above, with a chestnut line above the suture. Whorls 5, plano-convex, regularly increasing. Mouth lunate; lip thin except for a slight reflexion at its columellar junction, a very thin callus joining the margins.

Alt. 14 ; diam. max. 22.5 millim.
Hab.-Obi.

> Planispira (Crlstigibba) albopieta, n.sp.

Shell openly unbilicated, planorbiform, with the spire a little sunken in the middle, thin, translucent, light brown above, and generally paler below, with a dark zone at the periphery, a white zone just below, and several other white zones (generally interrupted) both above and below; the colour pattern dnes not pass the constriction behind the lip. Whorls $4 \frac{1}{2}$, regularly increasing, with a well-marked suture, the last whorl descending, with a well-marked "crest" and corresponding depression behind the lip. Mouth ovate, somewhat oblique, with the lip white, expanded and reflexed.

Alt. 8.5 ; diam. max. 19 millim.

Hab.-Halmahera; a more polished and shining form from Obi. Notewortly for its colow pattern, consisting of a dark brown peripheral band, and the other white zones, which are usually interrupted.

Papuina callosa, n.sp.

Shell trochiform, yellow-brown, either unicolorous or with a dark chestnut band at the periphery and below the suture on the last whorl, this colouring also being exhibited by the somewhat mamillate protoconch; sculpture well-marked lines of growth and minute granulations, the protoconch having faint radiating striae. Whorls $5 \frac{1}{2}$, flattened, the last whorl descending a little, being flattened on the base, acutely lieeled at the periphery, and somewhat compressed behind the mouth. Mouth sub-quadrate, the lip reflected and expanded, especially on the lower and columellar margins; where it is thickened also internally, and the columellar margin is furnished (generally) with a broad flattened callosity ; the lower margin is slightly impressed from below, producing the effect of an obscure denticle in the middle. The lip is well expanded over the umbilical region, and is purplishbrown in colour, becoming darker at the edges.

Alt. 16.5 ; diam. max. 27 millim.
Hab.-Halmahera.

Papuina wallaceana, n.sp. (P. aurora var. b.)

Shell large, thin, depressed-conoid, moderately umbilicate, the umbilicus being partly concealed by the reflected columellar margin of the lip; slightly compressed on the base ; sculpture consisting only of lines of growth, which give a roughened appearance to the shell ; protoconch small. Colour yellow-brown, with (in the type) six narrow blackishchestnut bands, one at the periphery, two above, and three below ; other specimens lack the bands of colour. Whorls $5 \frac{1}{2}$, slightly convex, with the suture well marked, last whorl a little descending. Mouth sub-ovate, with a lilac peristome, which is reflexed, expanded, and slightly thickened, especially below; columellar margin well reflected over the umbilicus.

Alt. 21 ; diam. max. 36 millim.
Hab.-Waigiou.
Recalling in colour of shell and lip the unlocalised P. pennantiana, but lacks the acute carination of that species ; in shape it resembles a depressed P. multizona! much larger than P. aurora.

Papuina pyrgus, n.sp.

Shell perforate, the pertoration being nearly covered by the reflexed columellar lip, solid, conical; sculpture, well-marked lines of growth; colour olivaceous; spire moderately elongated; protoconch large and smooth. Whorls 7, plano-convex, a trifle concave above the sutures, the last whorl not descending, acutely keeled, with the base flattened. Aper-
ture subtriangular. with the peristome well expanded and reflexed, white, the outer margin simmons, the hasal margin slightly arehed, and the columellar margin reflexed orer the umbilical region, and furnished with a small tooth.

Alt. 30 ; diam. max. 35.5 millim.
IIab.-Waigiou.
Nearly related to I^{\prime}. turris, II. Ad. but more depressed, the cone not being so acute angled.

Leptopoma diplochilus, n..p.

Shell very similar in shape to a somewhat deptessed form of L. vitremm, and densely, microscopieally spially striated. Colour pate lilate with narrow darker spiral lines (fourteen on the last whorl). Lip double, the outer portion very largely expanded and fattenod. with thin edges, sinnate on the colmmellar margin : the imner portion strongly projected forward, slightly on the imner, hat largely on the onter margin. Where it projects 2.j millim.

Alt. 14: dian. max. 15 millim.
Hab.-Waigion.
This remarkable shell is unlike any other species of Leptopomu linown to me, owing to the presence of a donble lip. with the "inner tube" strongly drawn out and recalling some forms of C'yclophorns.

Leptopoma (Leucoptychia) lamellatum, n..n.

Whell moderately umbilicated, thin, pelluwid, turhinate, white, either plain or Hecked with red, or white on the last whorl with red upper whorks, or banded (in one specimen) with dark brown, protoconch moderately sharp; sculpture spiral lirae, on the last whorl there is one at the periphery and five abose : microseopic spiral striation is also present ; the last. half of the last whorl is marked by about twelve strong lamellate, strongelthan and cutting the spiral lirae. Whorls $5 \frac{1}{2}$, moderately convex. Mouth rounded, with the lip thickened and reflected, white, continuous. Opereulum thin, horny, multispiral.

Alt. 16 ; diam. max. 16 millim.
Hub.-WFaigiou.
Closely related to L. scalure, Ad., but much larger and slightly more depressed. Some specimens are larger than the actual ype.

Palaina ponsonbyi, n.sp.
Shell wate-conic, rimate, white, faintly tinted with yellow; protoconch moderately blunt and smooth, the other whorls densely sculptured with closely-set irregular lirae ; those on the last whorl being far more distant than the others. Suture well impressed. Whorls 7, convex, the penultimate the broadest, and the last whorl being compressed and slightly flat-
tened above the junction with the peristome. Mouth nearly round; lip double, the outer portion being moderately expanded, except where the adnate peristome joins the last whorl.

Alt. 4.8 ; diam. max. 2.2 millim.
Hab.-Waigiou.

Omphalotropis waigiouensis, 11.1 .

Whell ovately conic, thin, rimate: sculpture elosely set fine lines of growth; protoconch blant. Colour white or pale yellow. Whorls. $\frac{1}{2}$, convex, suture well impressed, the last whorl measuring nearly $\frac{3}{4}$ of the altitude of the shell. Mouth ovate, lip slightly inerassate and reflexed in the umbilical region, with a light eallas joining the margins.

Alt. 4.8 : diam. max. 3.3. millim.
Mab.-Waigion.
Recalling, in form, (). granum, Pfr.

Helicina varians, 11.s1.

shell thim, depressed conoid ; seulpture none except clusely set liness of growth. Colour in the type specimen yellow, with a reddish-brown band above the periphery ; other specimens are miform yellow, without any banding; or with radiating red-brown streaks, with or without banding, and rarying ground colour. Whorls $4 \frac{1}{2}$, flattened but slightly convex, periphery acutely keeled. Mouth triangular, lip white, lightly reftexed, and subdentate near the junction of the lower margin with the body whorl; a light callus joins the margins.

At. 7 : diam. max. 11 millim.
Mab.-Santa Cruz Jslands.
Belonging to the group of H. suprufasciutu, but latis the spiral seculpture on the upper surface.

NOTES.

A New Irish Vertigo.-The occurrence of a lising example of Vertigo heldi, Clessin, near Ballintoy, Co. Antrim, is recorded by Mr. B. Tomlin (Irish Nat., 1903, vol. xii, p. 110). Dr. Boettger, who has seen the specimen, considers V. heldi as a sub-species of V. alpestris. It differs, howerer, from this latter species in the possession of an additional whorl, and general larger dimensions, it is reddish-brown in colour, has a feeble dentition, and a differently shaped mouth.

GURRENT LITERATURE.

Pilsbry, Henry A.-Tryon's Manual of Conchology, ser. ii, vol. xr. (pt. 59), pp. 129-208, pl. 34 4-55. Philadelphia: Academy of Natural Sciences. Dr. Pilsbry continues the list of species of Urocoptis of Jamaica. Following this the undermentioned subgenera and sections are dealt with, viz., Sub-genns Autocoptis, Pils., dealing with the Haitian forms. Type U. monilifera, Pfr. Subgenus Arangia, Pils. \& Van. Type U. sowerbyana Pfr. The variety montetoronis is new. Sub-genus Ldiostemma, Pils. and Van. Type U. uncata, Gundl. Section Maceo, P. and V. Type and sole species $L^{\text {. interrupta, Gundl. Sub-genus Cochlodinella, P. and V. Type }}$ U. poeyana, Orb. The variety lacteoflua from Cuba, is new. Sub-genus Gongylostoma, Albers. Type C^{Y}. elegans, Pfr. A key to the following sections is then given : Fibricutis, Pils., Sectilumen, P. and Y., Esochara, P. and V., Pycnoptychia, P. and V., Paracallonia, Pils., Callonia, Cr. and Fisch., Liocullonia, P'ils. U. humboldtiana, Pfr. variety peraffinis is a new variety from Western Cuba. It is similar to U. hamboldtiana, but somewhat more solid, less shining, and the striae are widely spaced, especially on the spire. U. oligomesus is a new species from Cuba. It is near to U. saxosa, Poey, but differs from that species chiefly by the much reduced median axial lamella.
Blanford, W. T.-Notes on Mr. W. M. Daly's collections of Land and Freshwater Mollusca from Siam. Proc. Malac. Soc. Lond., 1903, vol. v, pp. $274-284$, pl. viii.
Dr. Blanford emmmerates forty species of which the following are new, Ampullaria dalyi, Melania binodosa, and P'aludomus siamensis.
Kobelt, W. and Mollendorff, O. von.-Catalog der Familie Buliminidae. Nachr. d. Deutsch. Malak. Gesell., 1903, pp. 36-66.
Dimon, A. C.-Quantitative study of the effect of Environment upon the forms of Nassa obsoleta and trivittata from Cold Spring Harbour, Long Island. Biometrika, 1902, vol. ii, pp. 24-43.
The authoress has studied in some detail the variation and correlation of these two species of Nassa. She discusses the influence of density and stillness of the water on depauperization.
Hoyle, W. E.-Notes on the Type Specimen of Loligo eblanae, Ball. Mem. and Proc. Manchester Lit. and Phil. Soc., 1903, vol. 47, No. 9, pp. 10, i pl.
A a result of an examination of the type of this Cephalopod, described by Robert Ball in 1841, Mr. Hoyle confirms the opinion, which had been formed by others as well as himself, that this species is not distinguishable from the Todaropsis veranyi of Girard. The distinctise characters of the genus are given, and of the Irish specimen as fully as its state of preservation permits, accompanied by figures of some of the more critical parts, also a table of the synonymy, with references to the descriptions and figures.
Pace, S.-On the Anatomy of the Prosobranch genus Pontiothauma, E. A. Smith. Journ. Linn. Soc. (Zool.), 1903, vol. xxviii, pp. 455-462, pl. 42.
From an examination of the type specimens of this genus, Mr. Pace concludes that the affinities are with the Mangilinae; but so little is known as
to the anatomy of other allied forms, that at present it is impossible to assign the two known species of Pontiothauma to any precise position in the subfamily. It would, howerer, appear that their nearest allies are Pleurotomella, Verrill, and Spergo, Dall. The author is of opinion that the structure of the soft parts of P^{\prime}. abyssicola, E. A. Sin., justify its remoral from the genus, but before proposing another new name, thinks it advisable to wait until further details are forthcoming regarding Pleurotomella, etc. It seems a great pity that a raluable morphological paper, such as this, could not have been better illustrated.
Marshall, J. T.-Additions to "British Conchology." Part VII. Pp. 59. 'Torquay: 1903.
This paper is a continuation of the series of papers which, under this title, have been appearing since October, 1893, in the Journal of Conchology. The author details numerous interesting facts and observations upon the distribution, size, nomenclature, and variation of the British marine mollusea. The following varieties are described as new :-Cerithiopsis barleei, Jeffr., var. interrupta, Clathurella anceps, Eichw., var. soluta, C. linearis, Mont., var. minor, Pleurotoma brachystoma, Phil., var. alba, Pholas candida, var. cylindracea and Lacuna pallidula var. imperforata.
Glamann, G.-Anatomisch-systematische Beitrage zur Kenntniss der Tracheopulmonaten. Zool. Jahrb. (Abth. f. Morph.), 1903, Bd. 17, pp. 679-762, Tafn. 29-34.
Dr. Glamann gives a detailed account of the anatomy of Aneitella virgata, E. A. Sm., and compares the genus with other Tracheopulmonata, so far as their internal structure is known. The kidney of Aneitella is dealt with in great detail, and compared with that in Aneitea.
Walker, Bryant and Pilsbry, H. A. -The Mollnsca of the Mt. Mitehell Region, North Carolina. Proc. Acad. Nat. Sci. Phila., 1902, pp. 413-442, pls. xxir, xxy.
This is a report based upon material collected in the summer of 1901. The expedition was undertaken primarily for the purpose of exploring Mt. Mitchell, the highest peak of the Appalachian range, with an altitude of 6,711 feet, of whose fauna nothing was known except a few speeies collected by Hemphill in a hurried risit nearly twenty years ago. In all 59 species or sub-species are recorded, of which the following are new : Polygyra tridentata v. tennesseensis, P. tudrewsae subsp. intermedia, Vitrea approxima, V. vanattai, Gastrodonta gularis subsp. theloides and decussata (Pils. and Van.). The only species peculiar to Mt. Mitchell, re-discovered on the present expedition, seems to be the rare little Vitrea clingmani, Dall.
Pallary, P.-Apport a la faude malacologique de l'Arabie et de l'Égypte. Bull. de I' Inst. Égyptien, 1901, pp. 1-8, pl.
The following new species are described and figured: Leucochroa arabica, Helix (Eremina) fourtaui, Limnaea sikenbergeri, Valvata innesi, and P'seudamnicola sinaica.
Pallary, P.-Mollusques recueillis par le Dr. Innes Bey dans le Haut-Nil. Ibid., 1902, pp. 1-14, pls. i, ii.
The author records twenty-four species, of which the following are new : Lanistes innesi, Corbicula artini, Unio fourtaui, Spathella fourtaui, and Spatha innesi.

Pilsbry, Henry A.-The Land Mollusea from Japan and the Bonin 1slands. Proc. Actarl. Nat. Sci. Phila., 1902, pp. $25-32$.
Dr. Pilsbry has in preparation a monographic accome of the non-marine mollusca of the Bonin Islands, in which the undermentioned species will be figured ; in the meantime it is thonght desirable to publish brief notices of Mr. Nakada's discoreries (who is still collecting there). Of the genns /Ielicinte, Lam., the following new species are indicated: II. cupsula, II. ogasururuna, Il. hirusei, Il. yoshiturum and vars urutu and microthect. Dencriptions are given of Alycues biexcisus from Summa, C'yclophorus kitaiensis from Osumi, Diplommatina kiiensis and pudicu from Kii, and Koliella ogusundrunu and Vesopupe dedecore from Hahajima. I new sub-genus of /lirusen, I'ils., is deseribed under the name of Fometestu, with II. mirabilis, n. sp., from Hahajima, as the type. I/ opercnlina, Gild., from Peel Island, is also included in this sulb-gentus.
Pilsbry, Henry A.-hesision of Japanese Vieiparidae, with Notes on Melemia and Bithyniu IDid., pp. 115-1อ1, pl. ix.
" The Viciperidue of Japan, so far as their appearance in the field of literature is concerned, are involsed in mind-destroying chaos," writes the author of this paper, in whose opinion there are four dapanese species, viz, I^{\prime}. mullcutus, lise, of which V. luetu, r. Its., is perhaps only a form, in which
 I. histricus, Gild: and V. sclateri, lfld. Possibly this last species is only a tariety of V . histricas.

Professor Pilsbry is of opinion that I. orytropis, Bens., I. ingullsiona, La non live., and V^{*}. stelmephorn. Bgt. . do not occur in Japan.

The following new varieties are also deseribed : Melamien reiniane $:$ hidachensis and 1/. libertimn 1. latifusus. Fïgures are given of the foms dapanese Vivipurilue, the new rarieties, and of Bithynia stritula. . juponicu, l'ils.
Pilsbry, Henry A.-On the Localitics of 1 . Adams' Japanese Melicidue. Ibid., pp. -23:-2. 10.
Pilsbry, Henry A.-Additions to the Japanese Land Snail Fauna. Nos. VI, Vll. Ibid., pp. 360-35ㄹ, pls. xvii, xiii, xix-xxi ; pp. 517-533, pls. xxvii, xxviii.
Detailed deseriptions are here given of species briefly defined in the author's Catalogne of the Clausilidue of the Japanese Empire, and of the following new species, etc. : (\%. duculis 5 . decupitutu, $($ '. heteropty., $(\because$ subutinu r. lencopeus, C'. curyostomu v. juyi, ('. graciae, C'. pigra, C'. agma, ('.. culopty,r, ('. duemonorum, C'. puchyspira, C'. kurozuensis, C'. plugioptyr, C'. subuculus, ('. nemiopsis, and other new varieties. I list of additions and corrections to the above mentioned Catalogue concludes number vii.
Pilsbry, Henry A.-Sullh-western Land Snails. Ibid., 1P. 510-51こ.
Pilsbry, Henry A.-New Land Mollusca from Idaho. Ibid., p. 593.
P'ristilomu idthoense, n. sp.
Reiss, O. M.-Das Ligament der Bisalien. Morphologie seines Ansatzfeldes seine Wirkung, Abstammung zum Schalenwachisthum. Jahr. Ter. fur Vaterl. Naturk, in II urt., 190こ, Bd. Wiii, pp. 179-291, pls. ii-v.

Matheron，P．－Note sur les Mollnsques Fossiles des Gisements Gardoniens dn midi de la France．Ann．Mıs．d’Hist．Nat．Marseille．－Geologie． 1902 ，T．vii，pp．9—き．．
Repelin，J．－Description des Fames et des Gisements du C＇énomanien Sammatre on d＇ean donce th midi de la France．II．Mothsques．Inn． Mus．d＇Hist．Nat．Marselle．－Geologie，190上，T．vii，11．tio－11ン，pls． i－rii．
The author emumerates 9．5 species，of these 16 are not named，and 58 are described and figured as new．I new genns of Ampilloriulne，termed A tmpul－ Iopsis（A．faujusi，de Serres，type．）is also deseribed．

Andreæ，A．－Zweiter Beitrag zur Binneneonchylienfanna des Miocäns son Oppeln in Schlesein．Jitth．a．d．Rom．－Ins．，190ン，nr．12，pp． 1－31，Fign．1－11．
The new species are 1leacimu（Salasiella）fossilis，Archueozonites conicus， Ityalimin（Iolita）mioctenica，H．（Gyralian）roemeri，n．subgen．，II．（Vitren） procrystalliua，Strobilus bottgeri，Pleurodonte（G＇ulactochilus）silesiacu，Azecu frechi，Coryma oppoliensis and var．turrita，Lencochilus ferdinandi，Planorbis （Gyrorbis）gurichi，Adelopomu martensi，and unnamed species of many other genera．
Springer，Ada－On some living and fossil snails of the genns Physa， found at Las Vegas，New Mexico．Proc．Acad．Nat．Sci．Phila．， 1902 Ip．51：3－516，pl．xxчi．
Schepman，M．M．－Meritima subocellata（Marts．）Schepm．Nachr．d． Deutsch．Malak．Gesell．，100：3，pp． $20-2.2$ ．
Rolle，H．－Einige nene Binnenmollnsken ron den Molukken．Thid．，pp． $\because 3,24$ ．
Adams，Lionel．－The Censit of the British Land and Freshwater Mollusca．Sro，pp，ii，iii．$\underline{0}^{0}$ ，and map．London：1902．Dulan \＆Co．
Reprinted from the Journal of Conchology，190－2，vol．10，pp． $217-237$ ， with an explanation of the＂lice－comnties．＂

Bäcker，R．—Die Jugen eimiger Gastroporlen．Arh．Zool．Instit．Wien， 1902，pp．$\because 59-290,2$ Tafn．
Schweikart，Alex，－Cber die Bildung der Mieropyle und des Chorions hei den Cephalopoden．Zool．An\％．，1903，Bd．xxvi，pp． $21-1-2 \underline{2}$ ．
Diener，C．－Noch ein Wort uber den Typus der Gattung P＇sendomonotis． Centralblatt fur Miner．Geol．u．Pal．，1903，pp．17－19．
Chadwick，W．H．－Self－Fecmulation in Planorbis rortes．Jomrn．Conch．， 1003，rol．10，p． 26.5.
Ancel，P．－Sur les momements de la chromatine et les nueleoles pendant． la periode d＇angumentation de volnme de l＇onoeste d＇Helix．Areh．de Zonl．exp．et gen．， 1902 （3）ser．）．T．x，Suppl．pp．liii－lvii．
Ancel，P．－Sur le déterminisme cyto－sexnel des gamètes glandes génitales d＇Helix pomatiu sans oroeyte．Hhid．，pp．Wiii－lxir．，figs．1，ٌ．
Ancel，P．－Sur l＇hernaphrodisme glandulaire accirlentel et le détermin－ inme cyto－semel des gamètes．Thid．，pp．Inxxi－xcir，

Lacaze-Duthiers, H. de. - Morphologie de Tridacna elongata et de Iippopus. Arch. de Zool. exp. et gen., 1902 (3 ser.), T. x, pp. 19-212, pls. v-x. Boutan, L.-La Detorsion chez les Gastéropodes. Ibid., pp. 241—268, pl. xi.

EDITOR'S NOTES.

We have to thank many of our subscribers, both at home and abroad, for their kind congratulations and expressions of goodwill on the appearance of the first part of another volume.

The collection of Mollusea made by the late Dr. Francis Areher, of Liverpool, and his son, the late Surgeon-Colonel Areher, has recently been presented to the University of Birmingham.

We understand that the well-known J. T. Marshall Collection of British shells has passed into the hands of Mr. J. R. Brockton Tomlin, of Chester.

Messrs. Sowerby \& Fulton have faroured us with a copy of their latest (April, 1903) Catalogue of Cephalopoda, Pteropoda, Gastropoda (Marine and Freshwater), and Scaphopoda, enumerating nearly 4,000 specics. As in their previous catalogues, the names are printed in double cohmms, with wide margins each side, so that it may serve as a check-list also. Musemm eurators and collectors generally will find it both of use and value.

THE

JOURNAL OF MALACOLOGY.

DESCRIPTIONS OF NEW SPECIES OF NASSA, PURPURA, LATIRUS, VOLUTA, CONUS, STOMATELLA AND SPONDYLUS.

By (ł. B. SOllerbI, F.L.S.
(Plate v.)

Nassa optima, n.sp.

Pl. v, figs. 1, 2.
Testa ovato-acuminata, crassa, polita, cinerea, albo mifasciata; spira clata, acuta; anfractus 8 , primi $1_{2}^{\frac{1}{2}}$ laeves, sequentes planato convexi, costis numerosis crassis leviter obliquis superne nodulosis instrueti, sulcis interruptis brevibus pancis spiraliter sculpti, sutura breviter canaliculata sejuncti ; penultimus magis convexus, costis evanidis; ultimus $\frac{2}{3}$ longitudinis testae aequans, ventricosus, laevis, superne nodulis inaequalibus paulo elevatis coronatus, basim versus liratus, canaliculatus, rostro brevissimo obliquo acutimarginato ; apertura latiuscula, lamina columel lari callosa, expansa, intus corrugata, supra uniplitata, peristoma ad marginem acutum, extus late plicato varicosum, intus liratum, canalis anticus latiusculus, recurvos, posticus brevis.

Long. 25 , diam. 15 millim.
Hab.-N.W. Australia.
A number of specimens of this interesting species were received from Mr. Bernard H. Woodward, of the West Australian Museum. Compared with N. coronata, Brug., the body whorl is mueh shorter, the spire longer and more acute, the upper whorls being more closely and distinctly plicate; coronation is only faintly indicaterl.

Purpura eudeli, n.sp.

Pl. v, fig. 3.
Testa ovata, depressiuscula, rugosissima, fuscescens; spira brevis; anfractus 3_{2}^{1} rapide accrescenti, primi $1 \frac{1}{2}$ minuti laeves, penultimus convexus, liris 4 spiralibus multituberculatis instructus; sutura concava excavata; anfractus ultimus magnus, longitudinaliter rugose lamellosus transversim octo-costatus, nodulis numerosis elevatis rugosis oblique inclinatis ad marginem concavo productis munitus ; apertura ampla, intus coerulco-cincracea, fusco fasciata, ad marginem nigro-fusco limbata ; columella concava depressa, glabra, luteola, macula fusca elliptica superne picta.

Long. 30, diam. 21 millim.
Hab.-Gorée, West Africa (Eudel).
Several specimens of this remarkable Purpura in the collection of the late Captain Eudel were labelled P. grayi, Kiener, to which it bears some slight external resemblance, but that is a Monoceros and was previously described by Dr. Gray under the name of M. grende. P. eudeli has more affinity with P. patulc, Limn., but having compared it with many specimens of that species in various stages of growth 1 am convinced that it is perfectly distinct.

Lattrus singularis, n.sp.

Pl. v, fig. 10.
Testa elongato-fusiformis, fusca, solidula; spira elato-pyramidata; anfractus 6 , convexi, spiraliter lirati, longitudinaliter striato-laminati, primi 2 laeves, sequentes 3 longitudinaliter plicato-costati, penultimus angulatus, supra angulum leviter concavus, infra convexiuseulus ; sutura angustissime canaliculata; anfractus ultimus $\frac{2}{3}$ longitudinis testa superans, angulata, supra angulum concavo depressa, infra leviter convexus, infra medium concavo attenuatus, ad basim late rostratus; umbilicus fere claudens ; apertura oblonga, intus pallide lutescens, glabra; peristoma acutum, postice angulatum; columella leviter arcuata, lacvis, infra medium obtusissime angulata, haud plicata; canalis latiusculus.

Long. 70, diam. 27 millim.
I am not acquainted with any species of Latirus at all resembling this. It appears to form a link between Latirus and Hemifusus, and may possibly find its place in the latter genus, although its form is more like that prevailing in the former.

Voluta dohrni, n.sp.
Pl. v, fig. 8.
$=$ Voluta dubia, Dohrn : Jahrb. D. Mal. Gesell., 1879, vol. vi, pp. 150-156, pl. iv, figs. 1-3; non Broderip: Zool. Journ., vol. iii, p. 81, pl. 3 , fig. 1 .
The shell is of a rather solid substance, spirally striated throughout,
and has four very oblique plaits on the columella. It is undoubtedly the species figured and described by Dr. Dohrn as Voluta dubia, Brod., from which, however, it is perfectly distinct. Broderip's figure in the Zoological Journal, copied in the Conchologia Iconica, etc., represents a shell so different that it is strange that this species should have been mistaken for it. With the exception of its being spirally striated and somewhat similarly spotted, it differs in almost every respect, and notably in the absence of the remarkable bulb-shaped apex characteristic of V. dubiu, and which has its counterpart in Neptuneopsis gilchristi, Sowerby. Another remarkable error concerns Fusus tessellatus, Schub. and Wagn., which has been placed by Kiener, Reeve and others, in the synonomy of Voluta dubia, and Dr. Dall describes and figures a shell which may well belong to the former species as representing the latter, but Kiener figures and describes as Fusus tessellatus, Schub. and Wagn., a much larger shell of a much more inflated growth and entirely destitute of columella plaits, which may, however, possibly be a full-grown specimen of that species. It is of a very thin, light substance, and does not at all resemble \boldsymbol{V}. dubia.

To crown all this confusion Tryon seeks to unite all these forms with Voluta junonia, with which, in my opinion, they have searcely any affinity.

I have come to the conclusion that there are four perfectly distinct species, namely :-

1. Voluta junonia, Chemn. : Conch. Cab., xi, pl. 177, fig. 1,704.
2. Voluta dubia, Brod. : Zool. Journ., vol. iii, p. 81, plate iii, fig. 1.
$=$ Voluta jumet dubia, Tryon : Man. of Conch., vol. vi, p. 90, pl. 27, fig. 81.
$=$ Voluta (Aurinia) dubia, H. and A. Adams : Gen. Rec. Moll., vol. i, p. 166.
3. Voluta tessellata, Schub. and Wagn.
$=$ Fusus tessellatus, Schub. and Wagn. : Conch. Cab., supp. 3,048.
= Aurinia dubia, Dall : Rep. Blake Gastro., Bull. Mus. Comp. Zool., 1889, xviii, p. 151 ; Proc. U.S. Nat. Mus., vol. xxiv, p. 504, pl. xxix, fig. 11. Non Voluta dubia, Brod.
$!=$ Fusus tessellatus, Kiener : Spec. Gen. et Icon. Coq. Viv., Fusus, p. 39, pl. xxix, fig. 1.
t. Voluta dohrni, Sowerby, n.sp.
=Voluta dubia, Dohrn : Jahrb. D. Mal. Gesell., vol. vi, pp. 150-156, pl. iv, figs, 1-3. Non Brod.
$=$ Voluta junonia var. dubia (pro parte), Tryon: Man. of Conch., vol. vi, pl. 27, fig. 77.

Voluta (Lyria) planicostata, n.sp.
Pl. v, fig. 7.
Testa oblongo-fusiformis, solidula, pallide lutescens, lineis numerosis transversis, pallide aurantiacis vittata; spira elato pyramidalis, convexius-
cula, ad apicem acuta ; anfractus 9 , primi 2 minuti, laeves, sequentes convexiuseuli, longitudinaliter costati, aliter laeves, costis 12 mediocriter elevatis rotundatis; sutura anguste canaliculata; anfractus ultimus $\frac{3}{4}$ longitudinis testae aequans, convexus, infra attenuatus; costis latiuseulis paulo elevatis; prope marginem magis elevatis ; apertura clongata, mediocriter lata; peristoma laeve, leviter incrassata; columella rectiuscula, intus lirata, inaequaliter triplicata; lamina columellari latiuscula, extus conspicue fusco marginata.

Long. 53, diam. 22 millim.
Hab. - ?
Compared with V. delesserliana the shell is more fusiform, smoother, with less numerous and less elevated ribs, and in place of the rich colouring of that species, it has a pale creamy hue, with numerous faint yellowish orange transverse lines. The strongest colour in the shell is found on the margin of the columellar lamina forming a dark brown streak.

The specimen as far as I know is unique, and I have no knowledse of its habitat. Although of pale colour it is in good preservation, and appears to be specifically distinct from its congeners.

Conus boubeeae, n.sp.
Pl. v, fig. 5.

Testa parva conico-subcylindracea. cinerascens, fusco variegata, lineis numerosis interruptis transversis fuscis albo articulatis picta; spira elatiuscula, planato conica; anfractus 7 , primi $2-3$ convexiusculi, deinde leviter concavi, ad marginem carinati, sutura canaliculata sejuneti; anfractus ultimus subeylindricus, supra sub-acute angulatus, basim versus liratus; a pertura angusta, antice latior, intus violaceo tincta.

Long. 16, diam. 8 millim.
Hab.—?
With the exception of the anterior transverse ridges, which are rather strong, the shell is smooth; of a grayish colour mottled with brown, and prettily marked with interrupted lines of brown and white.

On a recent visit to Paris I found several specimens of this interesting little species in the possession of Madame Boubée, after whom I have leasure in naming it.

Stomatella exquisita, n.sp.
Pl. v, fig. 4.
Testa depresse orbicularis, tenuis, pallide luteola, strigis obliquis fuscis picta, liris numerosis intequalibus instrueta, oblique eximie laminato striata; spira depressa, ad apicem breviter elevata; anfractus 3, primus globulosus, albus, laevis, secundus lirato carinatus, ultimus superne depressus, bicarinatus, infra rotunde convexus, inaequaliter multiliratus ; apertura lata, leviter obliqua, intus margaritacea; columella oblique arcuata, tenuiter callosa.

Lat. 12, alt. 7 millim.
IInb.—?
This species is somewhat like S. notata, A. Adams, but the shell is more angular, with two keels more prominent than the remaining lirae.

Spondylus oceldens, n.sp.

Pl. v , fig. 9.
Testa suboblique ovata, crassa ; valva superiori planato-convexa, luteola-aurantio-rufo sex-radiata, undique densissime :adiatum lirata, liris brevis, sime et densissime muricatis; valva inferiori ventricosa, luteola, irregulariter siquamosa.

Long. 60, lat. 49 millim.
Hub.--Philippines (specimen unique).
A remarkable species very densely imbricated, with minute seales, and two or three rows of somewhat larger ones. It is conspicuously co.oured with six orange-red rays.

Spondylus reesianus, n,sp.

Pl. v. fig. 6.

Testa suborbicularis, depressiuscula, aurantiaca, ferrngineo-fusco prope umbonem varigata; undique multilirata, liris tenuissimis, densissime rregulariter aculeatim spinosis, liris principalibus 6 , paulo magis elevatis, squamis crectis elongatis hie illie trifureation ramosis munitis; valva superiori planulata, inferiori convexiuscula.

Long. 55, lat. 53 millim.
Hab.-Moluccas (specimen unique).
This charming shell from the collection of the late Admiral van Rees, is most profusely imbricated with numerous rows of thin spines of unequal length, some of the principal ridges bearing long flattened threeforked scales.

DESCRIPTION OF PLATE V.

Figs. 1, ㄹ. Nassa optima, n.sp.
Fig. 3. Purpura eudeli, n.sp.
Fig. t. Stomatella exquisita, n.sp.
Fig. 5. Conus botbéeae, n.sp.
Fig. 6. Spondylus reesianus, n.sp.
Fig. $7 . \quad$ Voluta planicostuta, n.sp.
Fig. 8. Voluta dohrni, n.sp.
Fig. 9. Spondylus occidens, n.sp.
Fig. 10. Lat irus singularis, n.sp.

NOTES ON WITH ILLUSTRATIONS OF AUSTROMALAYAN LAND SHELLS.

By E. li. SYKES, B.A., F.L.S.

(Plate ri.)
Recently (${ }^{1}$) I described a few shells from the Austro-Malayan Region; illustrations of them are now given.

Papuina wallaceana.-For P. aurora var. b., at p. 65, read P. aurora var. ?

Papuina callosa.-Compare P. pseudolanceolata, Dautz., which latter, if it prove to be identical, has a few days priority.

Leptopoma lamellatum.-There appears to be a good deal of confusion in this group. In my view it is probable that L.tissotiamm, Crosse, multilabre, Lamk., and scalure, Adams, are all varying forms of one widely seattered species. Dr. Kobelt has in "Das Tierreich" placed the Lamarckian species as a monstrosity of L. massenae, a view which, taken though it has been by Pfeiffer and others, has been adversely, and I think correctly, criticised by Tapparone-C'anefri.

It may be pointed out that the figures recently given in the "Con-chylien-Cabinet," purporting to represent L. scalare, Adams, do not agree with Adams' figures, and are probably taken from a Halmahera species and not from the Waigion shell.
ENPLANATION OF PLATE VI.

Figs. 1-3. Cristigibba albopicta, Sykes.
Fig 4. Papuina callosa, Sykrs.
Figs. -), 6. Melicina varians, Sykes.
Fig. 7. Pupuina pyrgus, Sykes.
Figs. \&, 9. Nesta sulcutula, Sykes.
Figs. 10-1ٌ. Leptopoma lamellatum, Sykes.
Fig. 13. Palaina ponsonbyi, Sykes.
Fig. 14. Papuina wallaceana, Sykes.
Fig. 15. Omphalotropis waigiouensis, Sykes.
1"igs. 16-18. Leptopoma diplochilus, Sykes.

[^16]
CONTRIBUTIONS TO A KNOWLEDGE OF THE MOLLUSCA OF BORNEO.
 (PART I••)

By Walter E. COLLINGE, M.Sc., The Unifersity, Birmingilay.
(Plates vii. and viii.)

In June, 1901, I gave a short account of a small collection of slug-like molluses from N.W. Borneo ${ }^{(1)}$ for which I was indebted to the kindness of Mr. R. Shelford, of the Sarawak Museum. Since then he has very kindly sent me two further collections, some of which form the subject of the present paper.

> Damayantia, Issel.
> Damayantia dilecta, Issel.

Damayantia dilecta, Issel : Moll. Born., 1874, p. 390, T. iv, figs. 4-6. Hab.-Matang, 2,500 feet.
The two longitudinal median furrows mentioned by Issel (Moll. Born., p. 28), and which were not diseernible in the speeimens I have previously examined from Mt. Pemissen, are very clearly marked in these specimens. They are really a double row of median rugae, with deep sulci between, so that there are three grooves formed by the deep intervening sulei.

Damayantia simrothi, n.sp.

Pl. vii, figs. $1,2$.
Animal a slaty blue, with anterio-lateral portions a bright yellow. Mantle smooth and completely covering the shell. The keels are yellowish and well developed on the lateral portions of the visceral mass. Head and tentacles slaty blue. The dorsum exhibits a sharp yellow keel which slopes downwards from behind the visceral mass posteriorly. The rugae are ill-defined excepting posterio-laterally, where they are somewhat more distinet. Caudal mucons pore small. Peripodial groove indistinct. Foot-fringe bright yellow in anterior two-thirds, bluish in the posterior third; lineoles exceedingly faint. Foot-sole yellow, narrow, and divided into median and lateral planes.

[^17]Length (in alcohol) 24.5 millim.
Hab.-Kuching.
As yet I am unable to give any particulars of the internal structure of this species. Fxternally it differs from the type of the genus, D. dilecta, Issel, in its colour, in the comparative shorter length of the dorsum posterior to the visceral mass, and in the more pronounced keels on the mantle.

I have much pleasure in associating with the name of this new species that of Professor Heinrich Simroth.

Damayantia rugosa, n.sp.

Pl. vii, figs. 3, 4.
Animal maure or purplish-red in colour : the mantle is devoid of any lateral keels, but is marked by a series of small rugosities. The dorsum is bluntly keeled. Rugae indefinite. Candal mucous pore and peripodial groove small. Foot-fringe deep, of a yellowish-brown colour. Foot-sole same colour, divided into median and lateral planes. ${ }^{(1)}$
length (in alcohol) 16 millim.
Hab.-Kuching.

> Wiegmannia, Cllge.
> Wiegmannia gigas, Cllge.

Wiegmannia gigas, Cllge.: Trans. Roy. Soc. Edinb., 1901. vol. xl, p. 300, pl. i, figs. 6-8; pl. ii, figs. 27, 28.

Hab.-Kuching. Two immature specimens.
Collingea, Simr.
Collingea eranna, n.sp.
Pl. vii, figs. 5, 6 ; Pl. viii, figs. 13, 14.
Animal a dirty yellow, speckled with light-brown posterio-laterally; mantle same colour with darker brown markings. At each side of the head is a dark brownish-coloured band passing from beneath the mantle to the base of the upper tentacles. Dorsum keeled. Caudal mucous pore small. Rugae and peripodial groove indistinct. Foot-fringe same colour as body, no lineoles. Foot-sole a dirty white, not divided into median and lateral planes.

Length (in alcohol) 23.5 millim.
Shell thin, membranaceous, amber coloured, apex indistinct.
Diam. max. 11, min. 6.5 millim.
Hab.-Kuching.
The Generative Organs (Pl . viii, figs. 13, 14).-These differ from those of the four known species, in the elongated vagina and penis and

[^18]the shorter dart gland and dart-sac. The penis protrudes from its sheath, at the distal end, and on the opposite side there is a small conical papilla distal to which the retractor musele is inserted. Only a portion of the dart was present in the dart-sac, and this agrees in form with the proximal portion of that of C. strubelli, Simr.

> Parmarion, P. Fisch.
> Parmarion shelfordi, n.sp.

$$
\text { Pl. vii, figs. } 7,8 \text {; Pl. viii, figs. } 15,16
$$

Animal: the whole of the head, mantle and dorsum is blue, with the medio-lateral portions yellow, the lateral margins of the mantle are also yellow, and there is a prominent lateral keel on the mantle, encireling a little more than two-thirds of the visceral mass. The peripodial groove is distinct and rugae only faintly marked. Foot-fringe blue with deeply indented blotches of yellow. Foot-sole yellowish-brown, divided into median and lateral planes.

Length (in alcohol) 32 millim.
Shell thin, membranaceous oval, with thinner, irregular border, apex indistinct.

Diam. max. 13 , min. 8 millim.
Mab.-Kuching.
In my former paper I stated that possibly the genus Parmarion, sens. str., did not occur in Borneo, but there can be no question, I think, as to the generic position of the molluse here described.

The Generative Organs (Pl . viii, figs. 15, 16).-These are characterised by the long free-oviduct, the form of the penis, the short vas deferens, and the form and shape of the dart. The penis has the beak-like distal portion, so characteristic of most species of the genus, and immediately below this is a collar-like sheath, while beyond, the organ becomes more globose. The vas deferens is very short, also the duct of the receptaculum seminis. The dart at its free end is somewhat flattened, with a sharp cutting edge at each side. Above the aperture leading into the eavity of the dart is a solid calcareous head. Passing downward the flattened form gradually disappears until it becomes oval (Pl . viii. fig. 16).

Philomycus, Raf.
 Philomycus, sp.

From Matang there is a small slug belonging to this genus, which probably may prove to be only a variety of P. bilineatus, Bens. It is a bright yellow in colour, with irregular dark brown (almost black) spots and blotches. In alcohol the specimen measures 20 millim. in length.

I am not aware that the genus has hitherto been recorded from Borneo.

Atopos, Simr. Atopos shelfordi, n.sp.

Pl. vii, figs. 9-12.

Colour of the notum bluish-brown, with a dark, smooth stripe extending along the mid-dorsal line; the whole of the dorsum is finely granulated and spotted with yellow; underside (perinotum?) brown; foot-sole same colour. The keel of the notum is prominent. Length of notum (in alcohol) 64, breadth 11, height 12 millim. Breadth of foot-sole 6 millim. Female generative orifice 12.5 millim. from the male generative orifice.

Hab.-Mt. Penrissen, 4,800 ft., N.W. Borneo. One specimen.
The genus Atopos has not previously been recorded from Borneo.
As only a single specimen has been found I am unable to give more than a very brief description of the internal structure. Mr. Shelford has very kindly given me permission to open the animal, but naturally I have not cared to injure it more than was absolutely necessary to establish its specifie distinctness. It differs from any known species in a number of points in the form of the alimentary eanal and generativ organs, the latter being very distinct. I have not given figures of either system, as the specimen examined is evidently not fully mature.

Reference Letters.

alb.gl.	Albumen gland.
d.gl.	Dart gland.
d.s.	Dart-sas.
f. or.	Free-oviduct.
H.	Portion of the penis protad-
h.d.	Hermap from its sheath.
h.gl.	Hermaphrotite duct.
or.	Oviduet.

p. Yenis.
pr. Prostate.
r.d. Recopitacular duet.
$r . m$. Retractor musele.
r.s. Reeeptaculum seminis.
v. Vestibule.
v.d. Vis deforens.
v.g. Vagina.

EXPLANATION OF PLATES VII. and VHI.
 l'LATE VII.

Fig. 1.	Damayantia simrothi, n.sp.	Right lateral view.	$\times 2$.
Fig. 2.	,, ,"	Dorsal view. $\times 2$.	
Fic. 3.	Damayantio rugosa, n.sp.	Right lateral view.	$\times 2 \frac{1}{2}$
Fie. 4.	,",	Dorsal view, $\times 2 \frac{1}{2}$.	
Fie. 5.	Collingea erama, n.sp.	Right lateral view.	$\times 1 \frac{1}{2}$
Fie. 6.		Dorsal view, $\times 1 \frac{1}{2}$.	
Fig. 7.	Farmariou shelfordi, n.sp.	Right lateral view.	$\times 1 \frac{1}{2}$
Fig. 8.	,, ,	Jorsal view, $\times 1 \frac{1}{2}$.	
Fig. 9.	Atopos shelfordi, 11.sp.	Right lateral view.	$\times 1$.
Fig. 10.	," ,	Dorsal view, $\times 1$.	
Fig. 11.	", ",	Ventral view. $\times 1$.	
Fig. 19.	" "	Portion of the dorsu	, hig

PLATE VIlI.

Fig. 13. Collingea oranna, n.sp.
Fis. $14 . \quad$,, ,
Fig. 15. Parmarion shelfordi, n.sp.
Fig. 16. ,, "

Portion of the generative organs.
Portion of the dart.
The generative organs.
Dart. $\times 17$.

A CLASSIFIED LIST OF THE HELICOID LAND SHELLS OF ASIA.
 (PART VII, ${ }^{\circ}$)

By G. K. GUDE, F.Z.S.
F. CELEBES.

Family Zonitidae.
Sub-family Ariophantinae.
Genus Trochonanina, Mouss. celebesiana, Kob.
Gemus Xesta, Alb.
cincta, Lea.
$=$ menadensis, Mouss.
v. mongondica, Sar.
v. limbifera, Mart.
wallacei, Pfr.
v. bieingulata, Mart.
cidaris, Lam. balantensis, Kob. trochus, Müll.
$=$ sulphurea, Reeve.
$=$ circumpicta, Mouss.
stuartiae, Sowb.
nemorensis, Müll.
celebensis, Pfr.
vitellus, Shutt.
fulvizona, Mouss.
colorata, Mouss.
succincta, Mdff. (? Celebes).
porcellanica, Sar.
semilactea, Sar.
ardens, Sar.
nitida (Mdff.), Sar.
$=$ fulvizona v. nitida, Mdff.
fememae, Sar.
dimidiata, Smith.

Sub-family Macrochlaminae.
Genus Everettia, G.-A.
fulvocarnea, Mart.
möllendorffi, Kob.
Gemus Hemiplecta, Alb.
limbifera, Mart.
semisculpta, Mart.
v. matinangensis, Sar.
rugata, Mart.
v. montana, Sar.
ribbei, Dohrn.
sibylla, Can.
weberi, Sar.
wichmanni, Sar. totojensis, Sar. braam-morrisi, Sar. bonthainensis, Smith.
Genus Macrocycloides, Mart. aberrans, Mdff.

Sub-family Helicarioninae.

Genus Helicarion, Fér.
idae, Pfr.
riedelii, Mart. celebensis, Pfr. adolfi, Boettg. minahassae, Kob. wallacei, Smith. annularis, Kob.
Sub-genus Leptodontarion, Sar.
albaeuminatus, Sar. coriaceus, Sar.
Genus Otesia, H. Ad. flammulata, Q. and G.
viridis, Q. and G.
lenticula, Sar.
ombrophila, Sar.
alsophila, Sar.
hygrophila, Sar.
Genus Lamprocystis, Pfr.
matinangensis, Sar.
cursor, Sar.
macassariea, Sar.
soputensis, Sar.
muscicola, Sar.
indifferens, Smith.
consors, Smith.
consimilis, Smith.
Genus Sitala, H. Ad.
diplotropis, Mdff.
javana v. celebesiana, Mdff. celebica, Sar.
Genus Kaliella, W. T. Blanf.
doliolum, Pfr.
celebesiana, Mdff.
platyconus v . intermedia, Mdff.
Sub-family Zonitinae.
fienus Trochomorpha, Alb. planorbis, Less.
v. ussuwensis, Smith.
gorontalensis, Mart.
minahassae, Sar.
ternatana, Le G.
robusta, Sar.
Genus Vitrinoconus, Semp.
celebesianus, Kob.
marosianus, Sar.
applanatus, Sar.
pileolus, Sar.
Family Endodontidae.
Group Haplogona, Pils.
(ienus Endodonta, Alb. celebica, Sar.
Family Helicidae.

Group Epiphallogona, Pils.
Genus Camaena, Alb.
Sub-genus Pseudobba, Mdff.
mamilla, Fér.
quoyi, Desh.
$=$ undulata, Q . and G .
Genus Obba, Beek.
papilla, Mïll.
v. heroica, Pfr.
v. pygmaea, Sar.
v. platybasis, Mdff.
papilliformis, Mdff.
listeri, Gray.
v. mongondica, Sar.
v. matinangensis, Sar.
v. buolica, Sar.
v. tominica, Sar.
marginata, Mïll.
v. sororcula, Mart.
$=$ devincta, Can.
Genus Planispira, Beek.
Sub-genus Planispira, s.s.
zebra, Pfr.
? = guttata, Le G .
flavidula, Mart.
bulbulus, Mouss.
$=$ bulbus, Mouss.
v. gloriosa, Sar.
tuba, Alb.
v. centrocelebensis, Sar.
howesi (Smith), Sar.
(Chloritis howesi, Smith.)
zodiaca, Fér.
v. unicolor, Sar.
v. bonthainensis (Smith), Sar.
$=$ howesi v . bonthainensis, Smith.
lansbergiana, Dohrn.
Sub-genus Trachia, Alb.
pilisparsa, Mart.
= gabata, Wallace non Gld.
Genus Chloritis, Beck.
Section Chloritis, s.s.
biomphala, Pfr.
minahassae, Sar.
Section Trichochloritis, Pils.
balantensis, Kob.
talabensis, Kob.
plena, G.-A. v. celebensis, Smith. Genus Papuina, Mart.
euchroes, Pfr.
Genus Amphidromus, Alb.
beccarii, Can.
perversus, Lims.
$=\mathrm{v}$. obesa, Mart.
v. nivea, Sar.
v. tener, Mart.
interruptus, Mïll.
$=\mathrm{v}$. infrapicta, Mart.
v. strigosa, Mart.
v. infraviridis, Mart.
v. sultana, Lam.
$=$ makassariensis, H. and J.
maculatus (Fult.), Pils.
$=$ contrarius v. maculata, Fult.
jucundus (Fult.), Pils.
$=$ filizonatus v. jucundis, Fult.
sinistralis, Recve.
v. fasciata, Sar.
v. decolor, Can.
v. rosea, Fult.
v. lutea, Fult.
kruijti, Sar.
Genus Ganesella, W. T. Blanf. bembicodes, Mdff.
leucophlaea, Mart. Belogona Euadenia.
Genus Eulota, Hartm.
suffodiens, Boettg.
$=$ fodiens, Wallace non Pfr.
textoria, Mart.
similaris, Fér.
v. solidula, Mouss.

Genus Plectotropis, Mart. winteriana, Pfr.

Doubtful Record.
Sulcobasis sulcosa, Pfr. (Reeve).

> a. SANGir.

Genus Trochomorpha, Alb. staudingeri, Anc.
Cenus Camaena, Alb.
Sub-genus Pseudobba, Mdff. tirmaniana, Anc. limnaeana, Pfr.
Genus Helicostyla, Fér.
Section Crystallopsis, Anc. leucophthalma, Pfr.
v. fusco-strigata, Auc.

Section Calocochlea, Hartur. tukanensis, Pfr.
b. Talaut (? Talautsej.

Genus Obba, Beck.
meyeri, Mdff.
marginata, Müll.
Gehus Helicostyla, Fér.
Section Corasia, Alb. puella v. lais, Pfr. ${ }^{\text {² }}$
Section Crystallopsis, Anc. physalis, Pfr.
Section Calocochlea, Hartm. tukanensis, Pfr. talautana, Gude.

> c. Tular (or Talaurj.

Genus Helicostyla, Fér.
Section Crystallopsis, Anc. physalis, Pfr.
d. Xulla Islands.

Genis Xesta, Alb. citrina, Linn.

> e. Bangaya.

Genus Xesta, Alb. vitellus, Shutt.
$=$ bangaiensis, Kob.

Genus Hemiplecta, Alb. limbifera v. bangaiensis, Mart.
Gemus Planispira, Beck. zodiaca, Fér.

f. Buton.

Genus Xesta, Alb.
butonensis, Sar.
v. nigrotaeniata, Mdffi.
v. fulva, Mdff.
v. albozonata, Mdff.
v. varia, Mdff.
g. Tukan Bessi Giroup.

Genus Xesta, Alb.
kaledupana, Rolle. Kaledupa. perfragilis, Mdff. Kaledupa.
tomiana, Rolle. Tomia.
Genus Hemiplecta, Alb.
subsulcata, Rolle. Kaledupa.
Genus Amphidromus, Alb.
kuehni, Rolle. Tukan Bessi.
Genus Eulota, Hartm. textoria, Mart. Tomia.
Genus Helicostyla, Fér.
Section Helicostyla, s.s. indusiata, Pfr. Tukan Bessi. thomsoni, Pfr. Tukan Bessi.
Section Calocochlea, Hartm. tukanensis, Pfr.
Section Corasia, Alb.
obliquata, Mdff. non Desh.
h. Saleyer (or Salayar).

Genus Xesta, Alb.
fulvizona, Mouss.
selayarensis, Smith. Bauluan Islet.
Genus Macrochlamys, Bens. minuta, Mart.
Genus Microcystina, Mörch. consueta, Smith.
Genus Hemiplecta, Alb.
rareguttata, Mouss.
$=$ fulvizona v. elatior, Mart.
Genus Amphideonus, Alb. interruptus v. sultana, Lam. annae, Mart.
Genus Eulota, Hartm. textoria, Mart.
Gemis Helicostyla, Fér.
Section Corasia, Alb. subtenuis, Smith.

i. Jampea.

Genus Microcystina, Mörch. consueta, Smith.
Genus Trochomorpha, Alb. jampeana, Smith.
Genus Planispira, Beek. admirabilis, Smith.
Genus Eulota, Hartm. textoria, Mart.
j. Kalao.

Genus Xesta, Alb. kalaoensis, Smith.
Genus Microcystina, Möreh. consueta, Smith.
Genus Kaliella, W. T. Blanf. indifferens, Boettg.
Genus Amphidronus, Alb. kalaoensis, Fult.
Genus Ganesella, W. T. Blanf. crassiuscula (Smith).
(Plectotropis crassiuscula, Smith.)
Genus Eulota, Hartm. textoria, Mart.
k. Boneratu.

Genus Chloritis, Beck.
Section Austrochloritis, Pils. argillacea, Fér.
Genus Ganesella, W. T. Blanf. crassiuscula (Smith).
(Plectotropis crassiuscula, Smith.)

G. LESSER SUNDA ISLANDS.

a. Bali.

Genus Hemiplecta, Alb. rareguttati, Mouss.
v. sparsa, Mouss. baliensis, Mouss. v. waandersiana, Monss. Genus Kaliella, W. T. Blanf. angigyra, Mdff.
Gemus Trochonorpha, Alb. micula, Mouss.
Gemus Amphidromus, Alb. interruptus, Müll.
$=v$. iufrapictus, Mart.
v. emaciata, Mart.
v. sultana, Lanı.
v. mitra, Mart.

Genus Eulota, Hartm. transversalis Mouss.
b. Lombor.

Genus Everettia, G.-A. perglabra, Smith.
Genus Microcystina, Mörch. dyakana, G.-A.
Gemus Trochonanina, Mouss. oxyconus, Mart.
Genus Hemiplecta, Alb. nemorensis, Müll. coffea, Pfr. rufolineata, Smith. internota, Smith. fruhstorferi, Mart. perinsignis, Smith.
Gemus Helicarion, Fér. lineolatus, Mart.
Genus Parmarion, P. Fisch. intermedium, Cllge. everetti, Cllge.
Genus Sitala, H. Ad. collinae, Smith.
Genus Trochomorpha, Alb. bicolor, Mart.

Genus Planispifa, Beck. infracta, Mart.
$=$ porcellana, Pfr. non Grat.
Geuus Plectotropis, Mart. smiruensis, Mouss.
Genus Pupisoma, Stol. pulvisculum, Issel.
e. Sumbawa.

Genus Hemiplecta, Alb. rareguttata, Mouss. halata, Mouss. nemorensis, Mïll. bimaensis, Mouss. adolescens, Smith. sumbawana, Smith.
Genus Durgella, G.-A. sumbawaensis, G.-A. (emend.) $=$ sumbaensis, G.-A.
Genus Trochomorpha, Alb. discreta, Smith.
Genus Planispira, Beck. infracta, Mart.
$=$ porcellana, Pfr. non Grat.
Geuis Amphidromus, Alb. poecilochroa, Fult.
d. Sumba.

Genus Hemiplecta, AIb. baliensis v. soembaensis, Schepm. cochlostyloides, Schepm.
Genus Chloritis, Beek.
Section Austrochloritis, Pils. argillacea, Fér.
Section Trichochloritis, Pils. conjecta, Smith.
$=$ conjector, Fult.
Genus Thersites, Pfr.
Sub-genus Rhagada, Alb. supracostulata, Schepm.
Genus Amphidromus, Alb. latestrigatus, Schepm.
sumbaensis, Fult. consobrinus, Fult. suspectus, Mart.
e. Dana.

Genus Thersites, Pfr.
Sub-genus Rhagada, Alb. colona, Mart.
f. Flores.

Genils Xesta, Alb. polymorpha, Smith. subpolita, Sinith. melanoraphe, Smith. carinocincta, Smith.
Genus Rhysota, Alb. peramoena, Smith.
Genus Hemiplecta. Alb. rareguttata, Mouss.
v. crebriguttata, Mouss.
v. venusta, Beck.
trochus, Miill.
v. pyramidata, Mart.
nemorensis, Miill.
v. endeana, Mart.
everetti, Smith.
floresiana, Mart. vomer, Mart.
Genus Chloritis, Beck.
Section Austrochloritis, Pils. argillacea, Fér. albodentata, Smith.
(ienus Thersites, Pfr.
Sub-genus Rhagada, Alb.
floresiana, Mart.
Genus Amphidronus, Alb.
floresianus, Fult. consobrinus, Fult.
Genus Plectotropis, Mart. winteriana, Pfr. rotatoria, v.d.B.
g. Solor.

Genus Hemiplecta, Alb.
rareguttata, Mouss.
v. crebriguttata, Mart.
v. venusta, Beck.

Gemus Chloritis, Beck.
Section Austrochloritis, Pils. argillacea, Fér.
Genus Thersites, Pfr.
Sub-genus Ruagada, Alb. solorensis, Mart.
h. Adenara.

Genus Xesta, Alb. parcipila, Mart.
Genus Hemiplecta, Alb. rareguttata, Mouss.
v. sparsa, Mouss.
v. erebrignttata, Mart.
v. venusta, Beck.

Genus Chloritis, Beck.
Section Austrochlorites, Pils. argillacea, Fér.
Geuus Planispira, Beek. adenarana, Fult. (emend.)
(ienus Plectotropis, Alb. winteriana, Pfr.

i. Pura.

Genus Hemiplecta, Alb. rareguttata, Mouss.
v. crebriguttata, Mart.

Genus Amphidromus, Alb. oscitans, Mart. inconstans, Fult.

> j. Pantar.

Genus Amphidromus, Alb. inconstans, Fult.

> k. Alor (or OMbai).

Genus Hemplecta, Alb. rareguttata, Mouss. v. crebriguttata, Mart. Genus Chloritis, Beck.

Section Austrochloritis, Pils. argillacea, Fér.
Genus Amphidromus, Alb. oscitans, Mart.
$=$ inconstans var D. Fult. inconstans, Fult. v. gracilis, Mart.

l. Timor.

Genus Xesta, Alb. tumens, Desh. cidaris, Lam. dammaensis, Smith.
Genus Hemiplecta, Alb. stuartiae, Sowb. peaseana, Pfr. inquinata, v.d.B.
Genus Helicarion, Fér. scriceus, Mart.
Crenus Trochomorpha, Alb. tricolor, Mart. timorensis, Mart.
Genus Planispira, Beck. zonaria, Linn.
Genus Chloritis, Beck.
Section Austronhloritis, Pils. argillacea, Fér.
mendax, Mart.
Genus Amphidrgmus, Alb. reflexilabris, Schepm.
contrarius, Müll.
v. subconcolor, Mart.
v. crassa, Fult.
suspectus, Mart.
v. albolabiata, Fult. sinistralis, Reeve.
Genus Eulota, Hartm. similaris, Fér. Spurious Record.
Crystallopsis conformis, Fér. (See Waigiou.)
m. Rotiti.

Genus Xesta, Alb. cidaris, Lam.
Genus Amphidromus, Alb. contrarius, Müll.
n. Samaut.

Genus Chloritis, Beck.
Section Austrochloritis, Pils. argillacea. Fér. mendax, Mart.

H. MOLUCCAS.

a. Gilolo (or Halmahera).

Family Zonitidae.
Sub-family Ariophantinae.
Genus Xesta, Alb.
eitrina, Limn.
aulica, Pfr.
sulfurata, Mart. halmaherica, Strub.
Sub-family Hellcarioninae.
Gemus Helicarion, Fér.
kukenthali, Kob. halmahericus, Kob.
Genus Lamprocystis, Pfr. subangulata, Boettg.
ambonica, Boettg var. Sub-family Zonitinae. Genus Trochomorpha, Alb.
ternatana, Le (t.
lardea, Mart.
timorensis, Mart.
planorbis, Less.
Family Helieidae.
Group Epiphallogona, Pils.
Genus Canaena, Alb.
Sub-genus Phoenicobius, Mlff.
anacardium, Dohrn.
Genus Obba, Beek.
calcar, Mart.
Genus Planispira, Beck.

Sub-genus Planispira, s.s.
halmaherica, Strub.
quadrifasciata, Le fr.
v. halmaherica, Gude.
scheepmakeri, Pfr.
v. halmaherica, Koh.
zonaria, Linn.
endoptycha v. compta, H. Ad.
zonalis, Fér.
$=$ leucostoma, A. and R.
$=$ subangulata, Pfr. jur.
atacta, Pfr.
loxotropis, Pfr.
v. bernsteini, Mart.
v. laticlavia, Mart.
v. pluricincta, Mart.
v. lorquini, Mart.
tietzeana, Rolle.
surrecta, Boettg.
exceptiuncula, Fér.
v. phryne, Pfr.
thetis, Pfr.
Sub-genus Cristigibba, Can.
mersispira, Mart.
giloloensis, Smith.
albopicta, Sykes.
Genus Albersia, H. Ad.
pubicepa, Mart.
zonulata, Fér.
pseudocorasia, Strub.
Genus Papuina, Mart.
vitrea, Fér.
$=$ albula, Le G.
chondrodes, Strub.
lanceolata, Pfr.
callosa, Sykes.
Genus Pyrochilus, Pils.
lampas, Miill. pyrostoma, Fér. pseudolampas, Kob. kukenthali, Kob.
brunonis, Kob.
Belogona Euadenia.
Genus Plectotropis, Mart.
winteriana, Pfr.
b. Morotal (or Morti).

Genus Trochomorpha, Alb. hartmanni, Pfr.
(Cenus Dendrotrochus, Pils. labuanensis, Pfr.*
Gemus Planispira, Beck.
loxotropis, Pfr.
v. bernsteini, Mart.
v. pluricincta, Mart.
c. Ternate Group.

1. Ternate.

Cenus Xesta, Alb. aulica, Pfr.
sulfurata, Mart.
Genus Lamprocystis, Pfr.
subangulata, Boettg.
Genus Trochomorpha, Alb. planorbis, Less.
v. lessoni, Mart.
approximata, Le G.
ternatana, Le G.
Genus Planispira, Beck. quadrifasciata, Le G.
endoptycha, Mart.
atacta, Pfr.
loxotropis v. laticlavia, Mart.
v. lorquini, Mart.
exceptiuncula v. phryne, Pfr.
Genus Papuina, Mart.
pileus, Müll.
= pileata, Gm.
vitrea, Fér.
$=$ albula, Le G.
lanceolata, Pfr.
Genus Plectotropis, Mart. winteriana, Pfr.

2. Tidor.

Genus Trochomorpha, Ailb. planorbis, Less.
ternatana, Le G.

Genus Papuina, Mart. vitrea, Fér.* lanceolata, Pfr.
3. Mareh (or Pottebakkers Eiland).

Genis Trochomorpha, Alb. planorbis, Less.
Genus Planispira, Beck. quadrifasciata, Le (!. v. edentata, Mart. = instricta, Mart. endoptycha, Mart. loxotropis v. lorquini, Mart.
4. Motir (or Moti).

Genus Trochomorpha, Alb. ternatana, Le C .
Genus Planispira, Beck.
Sub-genus Planispira, s.s. aurita, Mart.
Sub-genus Cristigibba, Can. mersispira, Mart.
Genus Papuina, Mart. vitrea, Fér. lanceolata, Pfr.
5. Markian.

Gemus Trochomorpha, Alb. ternatana, Le C.
6. Kaioa (or Kajau).

Gemus Planispira, Beck. quadrifasciata, Le G. v. edentata, Mart. $=$ instricta, Mart. atacta, Pfr.
loxotropis v. lorquini, Mart.
d. Batchian (or Batjan).

Cenus Xesta, Alb. ignescens, Pfr.
luctiosa, Beck.
sulfurata, Mart.
Genus Lamprorystis, Pfr. ambonica, Boettg. v. exigua, Boettg. subangulata, Boettg.
Genus Kaliella, W. T. Blanf. miliacea, Mart.
$=$ milium, Mart.
Gemus Trochomorpha, Alb. planorbis, Less. ternatana, Le G.
v. batchianensis, Pfr.

Genus Planispira, Beck.
Sub-genus Planispira, s.s.
scheepmakeri, Pfr.
zonaria r. coluber, Beck.
endoptycha, Mart.
$=$ compta, H. Ad.
zonalis, Fér.
atrofusca, Pfr.
loxotropis, Pfr.
v. angusticlavia, Mart.
kurri, Pfr.
buelowi, Rolle.
exceptiuncula, Fér.
v. aspasia, H. Ad.
$=$ v. elatior, Mart.
thetis, Pfr.
Sub-genis Cristigibba, Can.
corniculum, H. and J.
$=$ kiesneri, Le G.
semirasa, Mouss.
$=$ moluccensis, Pfr.
expansa, Pfr.
anozona, Mart.
lacteocincta, Smith.
Genus Chloritis, Beck.
Section Sulcobasis, Can.
rubra, Alb.
Genus Albersia, II. Ad.
pubicepa, Mart.
zonulata, Fér.
Genus Papuina, Mart.
gaberti, Less.
pileolus, Fér.
v. turrita, Mart.
v. pyramidata, Mart.
v. convexa, Mart.
rhynchostoma, Pfr.
nodifera, Pfr.
ohlendorffi, Kob.
Genus Pyrochilus, Pils.
sulcocinctus, Mart.
pyrostoma, Fér.
v. extincta, Can.
v. lucernalis, Kob.
v. nigrescens, Kob.
xanthostoma, Herkl.
Genus Plectotropis, Mart.
winteriana, Pfr.
e. Tafally.

Genus Trochomorpha, Alb. planorbis, Less. ternatana, Le Gr.
Genus Planispira, Beck. biconvexa, Mart.
Genus Papuina, Mart. pileolus v. depressa, Mart.

> f. Obi.

Genus Xesta, Alb. obiana, Mdff. suleatula, Sykes.
Genus Macrochlayys, Bens. obiana, Mdff.
Genus Otesia, H. Ad. taeniolata, Mdff.
Genus Trochomorpha, Alb. ternatana, Le G .
v. subternatana, Dautz. bicolor, Mart.
Genus Planispira, Beck.
quadrifasciata v. rollei, MIff.
v. kendigiana, Mdff.
liedtkei, Mdff.
spiriplana, Mdff.
pruinosa, Mdff.
kurri v. obiensis, Dautz.
Genus Albersia, H. Ad.
pubicepa, Mart.
$=$ waterstraati, Mdff.
obiensis, Mart.
= obiana, Mdff.
$=$ omissa, Dautz.
Genus Papuina, Mart.
obiana (Mdff.), Dautz.
$=$ rhynchostoma v . obiana, Mdff.
$=$ groulti, Dautz.
piliscus, Mart.
$=$ pseudosatsuma, Mdff.
= obiensis, Dautz.
v. minor, Dautz.
unicolor (Mdff.), Dautz.
$=$ lanceolata v. unicolor, Mdff.
$=$ pseudolanceolata, Dautz.
g. Ceram.

Genus Xesta, Alb.
eitrina, Linn.
v. tiara, Beck.
v. opaca, Mart.
v. praetexta, Mart.
v. aurantia, Mart.
v. columellaris, Mart.
luctuosa, Beek.
Genus Hemiplecta, Alb. bella, Pfr.
Genus Macrocycloides, Mart. quadrispira, Mart.
Genus Trochomorpila, Alb. lardea, Mart.
Genus Obba, Beck.
kobeltiana, Pfr.
Genus Planispira, Beek.
zebra, Pfr.
$?=$ guttata, Le G.
zonaria, Linn.
v. obliquata, Mart.
v. maculata, Mart.
v. Iunulata, Mart.
v. fasciata, Mart.
v. fasciolata, Less.
v. martini, Schepm.
v. coluber, Beck.
latizona, Pfr.
kurri, Pfr.*
Sub-genus Cristigibba, Can. margaritis, Pfr.
v. zonulella, Monss.

Genus Chloritis, Beck.
Section Chloritis, s.s. ungulina, Linn.
v. minor, Fér.
biomphala, Pfr. martensi, Pfr. circumdata, Fér. molliseta, Pfr. ccramensis, Pfr. unguicula, Fér.
Genus Amphidronus, Alb. laevus, Müll.

$$
?=\text { kobelti, Rolle. }
$$

h. Buru.

Genus Xesta, Alb. citrina v. dimidiata, J'av. Genus Macrochlamys, Bens. amboinensis, Mart. buruana, Mdff.
Genus Everettia, G.-A. consul, Pfr.
Genus Hemiplecta, Alb. peaseana, Pfr.
Genus Microcystina, Mörch. marginata, Mdff. irregularis, Mdff.
Genus Macrocycloidej, Mart. lutea, Mart.
Genus Helicarion, Fér. idae, Pfr. suturalis, Mart. rollei, Mdff.
Genus Otesia, H. Ad.
buruana, Mdff.
Genus Trochonorpha, Alb. planorbis, Less.
tricolor, Mart.
lardea, Mart.
discus, Mdff.
Genus Planispira, Beck.
Sub-genus Planispira, s.s.
zonaria, Linn.
v. fulminata. Mart.
v. coluber, Beck.

Sub-genus Cristicibba, Can.
buruensis, Pons, and Sykes.
Genus Chloritis, Beck.
Section Chloritis, s.s.
unguiculina, Mart.
unguiculastra v. buruensis, Mart.
gruneri, Pfr.
$=$ buruana, Mlfff.
mima, Fult.
selenitoides, Fult.
kuhni, Mdff.
mirabilis, Mdff.
Genus Helicostyla, Fér.
Section Crystallopsis, Auc. najas, Pfr.
i. Amboyna.

Genus Xestina, Semp.
minima, Boettg.
Genus Xesta, Alb. citrina, Linn.
v. dimidiata, Fav.
v. coagulata, Pfr.
vitellus, Shutt.
spiralis, Le G.
ovivitellus, Reeve.
strubelli, Boettg.
Gemus Macrochlamys, Bens.
amboinensis, Mart.
Genus Hemiplecta, Alb.
monozonalis, Lam.
humphreysiana v. rapa, Mïll.
simplex, Lam.

Genus Macrocycloides, Mart. microcyclis, Boettg.
Genus Lamprocystis, Pfr. ambonica, Boettg.
v. exigua, Boettg. gemmula v. pallidior, Boettg. subangulata, Boettg.
Genus Sitala. H. Ad. bandongensis, Boettg.
Geuns Kaliella, W. T. Blanf. miliacea, Mart.
$=$ milium, Mart.
indifferens, Boettg.
Genus Trochomorpha, Alb.
lardea, Mart.
Genus Planispira, Beck.
Sub-genus Planispira, s.s. zonaria v. lineolata, Mart.
v. nitidiuscula, Boettg.
v. fasciolata, Less.
v. collis, Mouss.
v. coluber, Beck.

Sub-genus Cristigibba, Can. tortilabia. Less.
$=$ torticollis, Le G.
= gibbosula, H. and J.
Genus Chloritis, Beck.
Section Chloritis, s.s.
unguiculastra v. amboinensis, Mart.
unguicula, Fér.
$=$ ungulina, Chemn. non L.
Genus Albersia, H. Ad. zonulata, Fér.
Genus Papuina, Mart. pileus, Müll. (? Amboyna.) steursiana, Shutt.
Genus Pupisona, Stol. philippinicum, Mdff.
j. Haruku.

Genus Xesta, Alb. strubelli, Boettg.
v. opaca, Boettg.

Genus Macrocycloides, Mart. sericina, Boettg.
Genus Lamprocystis, Pfr. ambonica, Boettg.
Genus Sitala, H. Ad. bandongensis, Boettg.
Genus Trochomorpha, Alb. lardea, Mart.
Genus Planispias, Beck. zonaria v. nitidiuscula, Boettg.

> k. Saparua.

Genus Nesta, alb. citrina v. dimidiata, Fav. strubelli, Boettg.
Genus Macrochlanys, Bens. martini, Schepm.
Genus Macrocycloides, Mart. saparuana, Boettg.
Genus Kaliella, W. T. Blanf. miliacea, Mart. $=$ milium, Mart. indlifferens, Boettg.
Genus Trochomorpha, Alb. planorbis, Less. v. lessoni, Mart.

Genus Planispira, Beck. zonaria v. nitidiuscula, Boettg.
Genis Chloritis, Beck. unguiculastra v. pilosa, Mart.

1. Keffing Island.

Genus Amphidronus, Alb. laevus, Müll. ? = kobelti, Rolle.
m. Goram.

Genus Xesta, Alb.
citrina v. praetexta, Mart. v. velum, Can.
luctuosa, Beck.
Genus Planispira, Beek.
zebra, Pfr.

Genus Papuina, Mart.
triumphalis, Reeve.
Genus Helicostyla, Fér.
Section Crystallopsis, Anc. uajas, Pfr.
extensa, Müll.
n. Banda Group.

1. Banda neira.

Genus Xesta, Alb. citrina v. dimidiata, Fav.
Genus Macrocilamys, Bens. amboinensis, Mart.
Genus Lamprocystis, Pfr.
ambonica, Boettg. v. exigua, Boettg.
sinica, Mdff.
subangulata, Boettg.
Genus Sitala, H. Ad.
bandongensis, Boettg.
Genus Kaliella, W. 'T. Blanf. doliolum, Pfr.
Genus Endodonta, Alb.
Sub-genus Endodonta, s.s.
Section Thaumatodon, Pils.
philippinensis, Semp.
$=$ philippinica, Bocttg.

Geuis Planispira, Beck. zonaria v. fulminata, Mart.
2. Rozagyn or Rosengain.

Genus Hemiplecta, Alb. inquinata, v.cl.B.*
o. Moluceas (General ; Precise Habitat not Recoried.)

Genus Microcystina, Mörch. misella, Fér.
Geuil Planispira, Beck.
Sub-genus Planispira, s.s. zebra v. embrechtiana, Mouss. ialdae, Pils. chariessa, Pils.
Sub-genus Cristigibba, Can. leptocheila, Can.
Genus Papuina, Mart. lenta, Pfr.
Genus Amphidronus, Alb. teysmanni, Pfr.
Genus Helicostyla, Fér.
Section Crystallopsis, Anc. subvitrea, Pfr.
I. ARU ISLANDS.

Genus Xesta, Alb.
citrina, Linn. luctuosa, Beck. trochiscus, Pfr.
Genus Microcystina, Mörch. misella, Fér.
Genus Trochomorpha, Alb. planorbis, Less.
Genus Planispira, Beck.
Sub-genus Cristigibba, Can. tortilabia, Less.
Genus Chloritis, Beck.
Section Chloritis, s.s. circumdata, Fér.
Section Sulcobasis, Can.
rubra, Alb.
Section Austrochloritis, Pils. occulta, Pfr.
Genus Albersia, H. Ad. zonulata, Fér.
Genus Papuina, Mart. pileus, Müll. blainvillei, Le G. $=$ gärtneriana, Pfr. arrowensis, Le G. lencotropis, Pfr.

> a. Wokan (or Yokañ).

Genus Microcystina, Mörch.
aruensis, Can.
Genus Trochomorpha, Alb. demani, Can.
Genus Planispira, Beck.
Sub-genus Cristigibba, Can.
semirasa, Mouss.
tortilabia, Less.
Genus C'hloritis, Beck.

Section Austrochloritis, Pils. occulta, Fér.

Gemus Albersla, H. Ad. zonulata, Fér.

Cemus Papuina, Mart. pileus, Müll. blainvillei, Le G.

K. KEI OR KE ISLANDS.

Genus Xesta, Alb. citrina, Linn. campylonota, Can. Little Ké

Genus Planispira, Beck.
Section Cristigibba, Can. semirasa, Mouss.
L. MYSOL.

Genus Xesta, Alb.
citrina, Linn.
Genus Planispira, Beck.
Sub-genus Cristigibba, Can. semirasa, Mouss.
$=$ moluccensis, Pfr.
Genus Chloritis, Beck.

Section Chloritis, s.s. circumdata, Fér.

Section Sulcobasis, Can. rubra, Alb.
Genus Papuina, Mart. novoguineensis v. mysolensis, Pfr.

M. WAIGIOU GROUP.

a. Waigiou.

Genus Xesta, Alb. aulica, Pfr.
v. gibbosa, Mart.

Genus Hemiplecta, Alb. dura, Pfr.
Genus Planispira, Beck. kurri, Pfr.
Genus Chloritis, Beck.
Section Chloritis, s.s. circumdata, Fér.
Section Sulcobasis, Can. concisa, Fér.
Genus Albersia, H. Ad. granulata, Q. and G. zonulata, Fér.
Genus Papuina, Mart. turris, H. Ad.
aurora, Pfr.
waigionensis, H. Ad.
wallaceana, Sykes.
pyrgus, Sykes.
Genus Helicostyla, Fér.
Section Cerystallopsis, Anc. conformis, Fér.
b. Rawak.

Cenus Chloritis, Beck.
Section Sulcobasis, Can. concisa, Fér.
Section Austrochloritis, Pils. argillacea, Fér.
cristula, Fér.
c. Gagy or Gagie.

Gemus Planispira, Beck.
kurri, Pfr.

N. SERWATTY GROUP.

a. Damima.

Genus Nesta, Alb. dammaensis, Smith.
Genus Macrochlamys, Bens. psendosuccinca, smith. dammeriana, Mdff.
Genus Otesia, H. Ad. cirrhotropis, Mdff.
Genus Lamprocystis, Pfr. consueta, Smith.
Genus Trochomorpha, Alb.

O. TENIMBER (OR TLMOR LAUT).

Genus Eiuplecta, Semp. orientalis, Mdff.
Genus Xesta, Alb. micholitzi, Mdff.
Gemus Helicarion, Fér. tenimbericus, Mdff.
Genus Trochomorpila, All. planorbis, Less.
Genus Chloritis, Beck.
Section Chloritis, s.s.
eurychasma, Boettg.
Section Austrochloritis, Pils. goniostoma, Mdff.
timorensis, Mart.
Genus Chloritis, Beck. dammaensis, Smith. subcarinata, Mlff.
Genus Eulota, Hartm. subcornea, Smith.
(ienus Plectotropis, Mart. stenomphala, Mdff. Genus Helicostyla, Fér. Section Corasia, Alb. tenimberica, Mdff.
telitecta, Mdff. rhodochila, Mdff. micholitzi, Mdff. tenuitesta, Mdff. Genus Amphidromus, Alb. columellaris, Mdff.
Genus Eulota, Hartin. hemisphaerica, Mdff. tenimberica, Mdff. bitaeniata, Mdff.
Gemus Helicostyla, Fér.
Section Crystallopsis, Anc. tenimberica, Mdff.

Spectes whose Precise Habitats have hitherto Remained Uninown.

Genus Nesta, Alb. atrorubra, Less. $=$? citrina, var.
Genus Hemiplecta, Alb. lennepiana, Pfr. oblita, Pfr.
Genus Trochomorpha, Alb. valenciennesi, Le G. $=$ guilloui, Pfr.

Additions.

Borneo, p. 56.
Gelus Trochonanina, Mouss.
kinabaluensis, Smith.
Sulu Islan d, p. 61.
Genus Helicostyla, Fér.
Section Corasia, Alb. puella, v. lais, Pfr.
lndex to Islands, etc.
The references in Brackets inclicate Islants not separately listed.

Adenara. G.h.
Alor. G.k.
Amboyna. H.i.
Aru Is ${ }^{3}$. I.
Bakuit. (E. a.)
Balabac. E. b.
Bali. Ci.a.
Banca. C.a.
Banda Group. H.n.
Banda Neira. H.n.i.
Bangaya. F.e.
Bangucy. E.f.
Batchian. IL.d.
Batı. C.c.
Bauluan. (F.h.)
Bawean. D.b.
Bilatan. E.g.e.
Biliton. C.b.
Boneratu. F.k.
Bongao. E.g.4.
Borneo. E.
Buru. II.h.
Busuanga. E.e.
Buton. F.f.
Celebes. F.
Ceram. H.g.
Christmas Is.D.g.
Damma. N.a.
Dana. G.e.
Engano. C.d.
Flores. G.f.
Gagy. M.c.
Gilolo. H.a.
Goram. H.m.
Great Natuna. E.l.1.
Halmaheri. H.a.
Haruku. H.j.
Jalor. A.m.
Jampea. F.i.
Java. D.
Johore. A.d.
Junk Ceylon. A.e.
Kaioa. H.c.6.

Kajau. Н.c.6.
Kalantan. A.j.
Kalao. F.j.
Kiledupa. (F.g.)
Karemon. E.j.
Kedah. 1.h.
Keffing. Is, H.I.
Ké. K.
Kelantan. I.j.
Krakatao. D.e.
Labuan. E.h.
Lesser Sumbla. 1s ${ }^{6}$.G.
Licelı. A.k.
Lignr. A.k.
Lombok. (1.1).
Matlura. D.a.
Makkian. H.c.5.
Malacea. A.a.
Malay Peninsula. A.
Mangsi. E.c.
Mareh. II.c.3.
Molnceas. Il. \& Ho.
Morotai. 11.b.
Morti. H.b.
Motir. H.c.4.
Murigi. (E.a.).
Mysol. I.
Natuma (iromp. E.l.
Nawng Clik. A.l.
Obi. II.f.
Ombai. G.k.
Palawan. E.a.
Panalingoan. E.d.
Pantar. G.j.
Paragua. E.a.
Penang. A.g.
Perak A.f.
Popoli. D.c.
Pottebakkers Is.H.c.3.
Princes Is.D.d.
Pulo Lankawa. A.i.
Pulo Lant. E.k.
Pulo Sungian. D.f.

Pura. G.i.
Queda. A.h.
liakata. D.e.
Rawak. M.b.
liouw. A.c.
Rotti. G.m.
Rozagyn. H.n.ㄹ.
Salang, A.e.
Saleyar. K.h.
Sanauw. G.n.
Samui. B.
Sangir. F.a.
Saparua. H.k.
Serwatty. N.
Sibutu. E.g.l.
Singapore. A.b.
Sirhassen. E.1.2.
Solor. G.g.
Sulu Gronp. E.g.
Sulu Is. E.g.5.
Simmatra. C.
Sumba. G.d.
Sumbawa. G.c.
Sunda, Lesser. Is". (i.
Talaur. F.c.
Talaut. F.l.
Tawally. H.e.
Tawi-Tawi. E.g.3.
Tenimber. O .
Ternate Group. H.c.
Ternate Is. H.c.i.
Tidor. H.c.e.
Tiga. E.i.
Timor. G.l.
Timor laut. O.
Tomia. (F.g.)
Tukan Bessi. F.g.
Tular. F.c.
Vokan. I.a.
Waigion Group. M.
Waigiou ls. M.a.
Wokan. L.a.
Xulla. F.d.

FIGURES AND DESCRIFTIONS OF SUPPOSED NEW SPECIES AND VARIETIES OF ENNEA, MACROCHLAMYS, COCHLOSTYLA, STROPHOCHEILUS (BORUS), ODONTOSTOMUS (MORICANDIA), LEPTOPOMA, CATAULUS, COPTOCHEILUS AND TROPIDOPHORA.

By HUGH FULTON.

(Plato ix.)

Ennea oleacea, n.sp.

Pl. ix, fig. 9.
Shell oblong-oval, very slightly perforated, rather thin, whitish, shining; whorls $6 \frac{3}{4}$, very convex, slowly and regularly increasing, first two smooth, remainder distinctly (under the lens) obliquely striated, suture of lower whorls narrowly but clearly margined ; aperture oval ; peristome white, thickened and narrowly expanded, broadened interiorly at point of insertion, margins comneeted by a thin callus.

Maj. diam. 12 ; alt. 22 millim.
IIab.-Ukami, German East Africa.
This shell belongs to the group of E. ovoidca, Brug., obesa, Gibbons, minor, Morelet, and liberiana, Lea. Its nearest ally is perhaps E. obesa, which is more elongate in form and las less convex whorls, the latter increasing much more rapidly than in oleaceu.

Macrochlamys bathycharax, Godw.-Aust.
Pl. ix, fig. 6.
Macrochlamys bathycharax, Godwin-Austen : Ann. and Mag. Nat. Hist., 1888, p. 56.
Allied to M. compluvialis, Blanf., and M. convallata, Bens.. it is like the former in regard to its deeply channeled sutural area, but both are larger and not nearly so depressed in proportion to size, the umbilicus being also more open in the latter species.

Dimensions of figured specimen, maj. diam. $11 \frac{1}{2}$; alt. 5 millim.
The specimen figured, collected by Mr. Booley at Port Blair, which I at first supposed to be a new species, must be, I think, judging from the description only (my search for the type in Godwin-Austen's collection having been unsuccessful) his M. cathycharax, if not, I would propose to name it M. subconcallata.

Cochlostyla delicata, n.sp.

$$
\text { Pl. ix, fig. } 10 .
$$

Shell pyramidally ovate, very slightly perforate, shining, first two and last whorls pure opaque white, middle whorls yellowish with irregular oblique whitish stripes, inconspicuously obliquely striated, and with numerous impressed spiral lines; whorls 6 , moderately convex, regularly increasing; suture impressed ; a perture sub-ovate, interior white; peristome slightly thickened, behind the peristome is a dark brown band about 2 millim. wide which shows through inside of aperture as a bluish colour, and joins the brown margin of peristome, giving it the appearance of being broadly expanded.

Maj. diam. 19 ; alt. 40 millim.
IIab.— ?
This distinct species (probably from New Ireland or New Britain) is allied to C. hindei, Cox, and C. heimburgi, Branesik.

It bears a superficial resemblance to some varieties of C. calobapta, Jonas.

Strophocheilus (Borus) separabills, $11 . \mathrm{sp}$. Pl. ix, fig. 12.

Shell oblong-ovate, imperforate, yellowish-brown below, darker on embryonic whorls which are margined above with golden-yellow ; whorls 5 , rapidly increasing, embryonic portion consisting of $3 \frac{1}{2}$ whorls, clearly marked off and obliquely striated except first whorl which is smooth, the last l_{2}^{1} whorls strongly malleated ; aperture sub-ovate, brown within ; peristome thickened and slightly expanded at basal and columellar margins, pinkish fading to whitish at point of insertion, margins connected by a very thin, well-defined, whitish callus.

Maj. diam. 36 ; alt. 63 millim.
Hab. - ? (probably Peru).
Easily distinguished from other species known to me, by its strongly malleated surface and thin substance.

Odontostomus (Moricandia) toleratus, n.sp.

Pl. ix, fig. 2.
Shell narrowly but deeply rimate or umbilicate, fusiform, rather thin, slightly polished, light yellowish brown with indentations darker, upper part almost smooth, lower whorls distinctly malleated and crossed by microscopic close-set impressed spiral lines only visible under the lers; suture of lower part sub-erenulate; whorls $8 \frac{3}{4}$, slightly convex, tapering at the base, aperture narrowly oblong, interior with a blackish stripe bordering the peristome, and continued at back of columellar fold, white in the throat; peristome slightly pressed outwards, white mar-
gined, deflected backwards somewhat at basal termination, columellar portion gradually widening to point of insertion, margins connected by a thin transparent callus.

Maj. diam. 9 ; alt. 32 millim.
Hab.-Brazil.
This bears great resemblanes to the figure of O. willi, Dohrn, but according to Dohrn's description that species is "delicately and sharply striate longitudinally," a character not present in our species. From O. nasutus, Mts., it can be distinguished by its strongly malleated surface and the absence of the rather conspicuons white spiral hair-lines seen in that species.

Leptopoma placidum, n.sp.

Pl. ix, fig. 7.
Shell almost imperforate, subconical, thin, pellueid, light yellowish colour, ornamented by numerous somewhat interrupted narrow goldencoloured spiral bands, lower whorls with microscopie spiral waved striae, middle whorls with four more conspicuons thread-like keels; whorls $5 \frac{1}{4}$, moderately convex, last rounded ; aperture very oblique, subcircular, opaque white for a short distance within, then transparent; peristome expanded except at columellar margin which is much thinner and almost straight ; operculum normal.

Maj. diam. 10 ; alt. 11 millim.
Mab.-S. Flores Island, lowlands under 500 ft . (Everett).
The narrow conical form of this species and the almost closed umbilicus distinguishes it at once from any other species known to me from that region.

Leptopoma albicans, n.s.

Pl. ix, fig. 5.
Shell globosely conic, narrowly perforate, white, sometimes with a pale reddish band at th periphery continued at suture above, apex reddishbrown, with usual microscopic waved striae, on middle whorls about seven or eight spiral threads; whorls $5 \frac{3}{4}$, moderately convex above, last whorl subcarinate in front, last half rounded ; aperture somewhat oblique, subeircular; peristoms white, narrowly expanded all round, margins joined by a very thin callus ; operculum normal.

Maj. diam. 10 ; alt. 11 millim.
Hab.-Sumba Island (Everett).
This neat little species of the same gross dimensions as the last deseribed is nevertheless quite distinct, its spire is larger in proportion, its peristome smaller and less oblique, and it differs also in coloration and the carinution of its last whorl.

Cataulus connectens, n.sp.
Pl. ix, fig. 4.
Shell fusiformly oblong, solid, narrowly perforate, dark reddish-brown; whorls $9 \frac{1}{2}$, obliquely striated, lower slightly convex, earlier whorls almost straight, the last carinate at the base, aperture circular, pale reddishbrown within ; peristome continuous, yellow, thickened and reflexed, an egg-shaped opening to basal canal. Operculum normal.

Maj. diam. (including peristome) $8 \frac{1}{2}$; alt. 21 millime.
Hab.-Watawala, Ceylon (O. Collet).
Although closely allied to both blanfordi, Dohrn, and decorus, Bens., it can be readily separated from the former by its yellow peristome and from the latter by its smaller size, more slender form, and from both by the peristome being more in line with, or under, the whorls.

Cataulus green v. robusta, nev.
Pl. ix, fig. 1.
Shell more solid than typical greeni, somewhat broader in form, the oblique striae and crenulation at suture maze conspicuous, the notch on upper right margin of peristome varies from being almost entirely absent, to specimens having a small but clearly defined V-shaped one.

With reference to the distinct notch supposed to be characteristic of green, I have before me a specimen of the typical form from Punduloya, which scarcely shows the notch, thus demonstrating the instability of that character.

Maj. diam. $7 \frac{1}{2}$; alt. 17 millime.
Hab.-Dimbula, Ceylon, $5,000 \mathrm{ft}$. (O. Collett).
Coptocheilus perakensis, n. sp.
Pl. ix, fig. 3.
Shell narrowly perforate, moderately solid, reddish-brown, spire flong-ately-conic, obliquely striated, last two whorls margined at the suture, whorls $7 \frac{1}{2}$, slightly convex, aperture circular, brown within; peristome sub-duplicate, expanded, whitish, margins connected by a raised callus, somewhat angular at upper columellar portion ; operculum normal.

Maj. diam. (including peristome) 11, long. 23 millim.
Hab. -Perak (Grubauer).
C. perakensis differs from sectilabrum, Gid., in having no notch or sinus on its peristome, which is thinner, and also by its less convex whorls; from anostoma, Bens., it is distinguished by its smaller aperture, less convex whorls, and its more elongated form. The name Coptocheilus being said to be preoccupied, Kobelt has proposed the name of Schistoloma for this group.

Tropidophora perfecta, n.sp.

Pl. ix, fig. 11.
Shell globosely turbinate widely umbilicated, solid, closely spirally and
obliquely striated on lower whorls, spiral striae wider apart and more conspicuous at umbilical area, yellow at apex, light brown below with numerons narrow spiral bands of a darker colour ; whorls $5 \frac{1}{2}$, rapidly increasing, very convex, last rounded ; aperture sub-circular, moderately oblique, almost blark within; suture cremulated; peristome white; moderately expanded and shortly reflected, almost continnous, slightly intermpted at place of attachment to whorl. Operculum normal.

Maj. diam. 29 ; alt. $\varrho 3$ millim.
Mab.-Fort Dauphin, Madagascar (Sikora).
In coloration this shell somewhat resembles balleata, Sowb., and moulinsi, Grat., but the latter is a much more depressed form and the former not so depressed; it may be readily distinguished from both by its expanded and reflected peristome and its almost black aperture contrasting so strongly with its white peristome.

Tropidophora plurilirata, n.sp.

Pl . ix, figs. $8 a, b$.
Shell moderately umbilicate, globose-conic, rather thick, apex smooth, elsewhere covered with close-set spiral lirae crossed by fine oblique striae, about 40 on last whorl, yellowish brown, with rather indistinet oblique stripes of darker colour, sometimes with a narrow dark brown subperiphereal band; whorls 5, convex, somewhat channeled at suture of middle whorls; aperture sub-oval, interior with brown spiral thread-like lines on a whitish ground ; peristome slightly thickened and narrowly expanded, continuous, angled at upper part at point of attachment to last whorl; operculum normal.

Maj. diam. $16 \frac{1}{2}$; alt. $16 \frac{1}{2}$ millim.
", ", (banded specimen) $15 \frac{1}{2}$; ait. 16 millim.
Hab.-Near Grahamstown, Cape Colony (Miss Leppan).
The spiral lirae are much closer and more numerous than in any of the oth-r S. African forms. T. plurilirata, insularis, Pfr., and transvaalensis, M. and P., are all similar in form and coloration.

EXPLANATION OF PLATE IN.

Fig. 1. Catrulus greeni v. robusta, n.v.
Fig. 6. Odontostomus (Moricandia) toleratus, n.sp.
Fig. 3. Coptocheilus perakensis, n.sp.
Fig. 4. Catoulus connectens, n.sp.
Fig. 5. Leptopoma albicans, n.sp.
Fig. 6. Macrochlamys bathycharax, Godw.-Aust.
Fig. 7. Leptopoma placidum, n.sl).
Fig. 8a, b. Tropidophora plurilirata, n.sp.
Fig. 9. Ennea oleacer, n.sp.
Fig. 10. Cochlostyla delicata, n.sp.
Fig. 11. Tropidophora perfecta, 11.sp.
Fig. 12. Strophocheitus (Borus) separabilis, n.sp.

NOTES.

On the name Lima elliptica.-In 1863 Jeffreys described (Brit. Coneh., vol. ii, p. 81) a shell from the British Seas under this name. Unfortunately the name had been used in August, 1861. by Whiteaves (Amn. Nat. Hist., ser. 3, vol. viii, p. 146) for' a fossil from the "Corallian Oolites of Oxford." Under these circumstances, as I am unable to trace any other name applicable to the recent shell, I propose to name it Lima gwyni, nom. nov.-E. R. Sykes.

Note on a Malformed Specimen of Ceratisolen legumen.-It may be interesting to state that a short time ago I received a specimen of the above species exhibiting a curions state of development. Nothing is present in the growth of the shell to determine the canse of it, though there is a small deflection of the posterio-ventral end of the left valve but this appears to have arisen subsequently through the imperfected growth of the mantle lobe.

The foot is abnormally large. The mantle lobes between the pedal aperture and the proximal parts of the siphon are exceedingly thin, and the pallial museular bands along this portion are nearly altogether wanting. The free portions of both gills are only slightly developed and are very narrow.-H. II. Bloomer.

CURRENT LITERATURE.

Pilsbry, Henry A.-Tryon's Manual of Conchology, ser. ii, vol. xy (pt. 60), pp. 200-323, pls. 56-65. Philadelphia: Aeademy of Natural Seienecs.
Continuing the aceount of the Urocoptidae. Dr. Pilsbry describes the following new species and varieties: U. lavelleana v. trinidudensis (Trinidad); U. fraterna (Western Cuba), like U. capillacea in sliape and colour, but inore coarsely striate, and the axis bears two spiral lamellae; U. hidalgoi v. brevicervix; U. gonzalez i (Western Cuba), similar to U. hidulgni, but more tapering, neek short, and only one axial lamella; U. joaquini (Western Cuba) ; U. discors v. lagunillensis (Western Cuba) ; U. diaphana (Western Cuba) : U. baculum (Cuba); U. ischna (Western Cuba) ; U. rugeli v. euglypta; U. bahamensis v. providentia (Nassau); Spirosterma bellevuensis, n.n. for S. propinqua (Vend.), non S. propinqua, Arango; and S. ipswichensis, n.sp., both from Jamaica.

In an Appendix the author gives a short account of the anatomy of Anis. ospira townsendi, hitherto known by the shell only. The generative organs resemble those of Eucalodium in the long vas deferens, the other characters being common to both Euculodium and Coeocentrum. The genus is somewhat intermediate between these two genera. A. recticosta v. Lownsendi, Pils. and Ckll. is described as new.

The present part completes volume xv. and contains the contents, and

References to Plates. A key to the genera and subordinate groups of Urocoptidae, with a general discussion of the affinities and distribution of the family will form the Introduction to volume xvi, the first two parts of which will contain monographs of the remaining genera, and an Index.
Hedley, C.-Studies on Australian Mollusca. Part vii. Proc. Linn. Soc. N.S.W.; 1902, pp. 596-619, pls. xxix-xxxiii.
Mr. Hedley, in the seventh part of these Studies, discusses Chione lagopэs, Lam., which name supersedes the Venus australis, Sby.; an interesting form of Mactra is figured and deseribed under M. abbreviata, Lam., as a variety, but it appears likely that it will ultimately prove to be a new species. The new species deseribed and figured are : Purpura pseudamygdala, Assiminea pagodella, Caecum lilianum, and eight species of Triphora. Notes on the nomenclature and distribution of many other molluses are given, and figures of Cylindrobulla fischeri, A. Ad. and Ang., Endodonta melbournensis, Cox, E. subdepressa, Brazier, E. otwayensis, Petterd, and E. tamarensis, Petterd.
Kennard, A. S. and Woodward, B. B.-On the Oceurrence of Neritina grateloupiana, Fér. (hitherto misidentified as N. Auviatilis), in the Pleistocene Gravels of the Thames at Swanscomb. Proc. Malac. Soc. Lond., 1903, vol. v, pp. $320-321$.
In 1901 the authors recorded N. Auviatitis, L., as oceuring in countless numbers in a section of the high terrace gravel of the Thames, at Swanseomb. Examples of these have since been submitted to Dr. Boettger, who identifies them as N. grateloupiana, Fér. (=crenulata, Klein). The nearest living form is N. danubialis, Mlf.

The occurrence of this species affords, as the authors point out, an extremely interesting example of the imperfection of the palaeontological record. On the Continent it is unknown in any deposit of later age than the Upper Miocene, in the Thames Valley it appears in the Pleistocene in countless profusion, and is unknown in any later deposits, while the living English species, N. Auviatilis, though known from the Miocene of Germany, is unknown in any deposit older than the Holocene in the British Isles.
Godwin-Austen, H.H.-Further description of the animal of Damayantia carinata
Collinge, showing its similarity to D. smithi, Collinge and G.A., with remarks on this genus of Issel, Collingea of Simroth, and Isselentia of Collinge. Proe. Malac.Soc.Lond., 1903, vol. v, pp. 311-316, pl. xi.
The author contends that the Collingea smithi, Cllge. and G.A., and Damayantia carinata, Cllge., are one and the same thing and that Isselentia, Clige., is probably a subgenus of Damayantia, Issel.

The differences between these three genera are so evident, both externally and internally that any confusion of them can only be duc to either woeful ignorance, or a.strange incapability to pereeive and rightly appreciate their characters. But an author who has deseribed the generative organs of the genus Girasia as "in every way similar to those of Austenia," and those of Austenia as "very similar". to those of Macrochlamys, and those of the latter genus as " like species of Oxytes,". ean scarcely expeet his writings to be taken seriously.
Stiasny, Gustav.-Die Niere der Weinbergsehneeke. Zool. Anz., 1903, Bd. xxvi; pp. 334-344, figs. 1-5.
After pointing out that not a few of the leading text-books are wrong in their account of the kidney of Helix pomatia, the author gives a detailed descrip.
tion of this organ, illustrated by capital figures. It consists of the kidney itself, the primary ureter, which latter extends from an aperture at the apex of the kidney to the posterior corner, and the secondary ureter, being the continuane ${ }^{e}$ from the posterior corner of the kidney to the external aperture.
Dean, Bashford.-Japanese Oyster-Culture. U. S. Fish Commis. Bull., for 1902, 1903, pp. 17-37, pls. 3-7, and 27 figs. in text.
The author gives an interesting account of the culture and living conditions of the Western Pacifie oysters. There are three species of Japanese oysters, viz., a small one, probably a dwarfed salt-water variety of Ostrea cucullata, Born., the shell measures about two inches in length, the actual size of the oyster is, however, rarely larger than one's finger nail. The second form, O. cucullata, which seems the most important one from the culturist's standpoint, averages the size of a "BluePoint," or of an English " native." The third form, O. gigas, Thunb., is of large size, specimens weighing with the shell 4 or 5 pounds, being not infrequent.

The eultural methods in various districts are deseribed in detail, and the regulations imposed by the Japanese Government. The question of introducing and eultivating the Japanese oyster in the United States is next dealt with, and various practical suggestions are put forward.
Robert, A.-Récherches sur le développement des Troques. Arch. de Zool. exp. et gen., 1902 (3 ser.), T. x, pp. $269-538$, pls. xii-xviii, tables xix-xlii.
Professor Robert, already well known for his admirable studies on the anatomy of the genus Trochus, here gives an exhaustive and detailed account of the cell-lineage and development of T. magus.
Anc-l, P. -Histogénèse et strueture de la glande hermaphrodite d'Helix pomatia (Linn.). Arch. de Biol., 1902, T. xix, pp. 389-652, pls. xii-xviii.
Kennard, A. S. and Woodward, B.B.-The Non-Marine Mollusca of the River Lea Alluvium at Walthamstow, Essex. Essex Nat., 1903, vol. xiii, pp. 13-21, figs. 1-3.
Sm'th, Herbert H.-An Annotated Catalogue of Shells of the genus Partula in the Hartman Collection belonging to the Carnegie Museum. Ann. Carnegie Mus., 1901, vol. i, pp. 422-485.

It is with feelings of deepest regret that we have to chronicy the decease of Dr. O. F. von Möllendorff, of Frankfort-on-Main, whose death occurred on August 17th. His numerous writings on the Land Mollusea of Eastern Asia, and especially on those of the Philippine Islands, have added much to our knowledge of many little known Asiatic regions.

We hope to give a further account and portrait of the deceased in the December issue.-W.E.C.

JOURNAL OF MALACOLOGY.

No. 4.
DECFMBER 21st, 1903.
Vol. X.

ON THE RESPIRATORY AND LOCOMOTORY HABITS OF AMPULLARIA GLOBOSA, SWAINSON.

By V. V. RaManan, M.A., F.Z.S., etc.,
Tenali, Kistna Dre, S. India.

Introduction.

The following observations on Ampullaria globosa, Swainson, were made by me by experimenting with the Ampullarian in an aquarium specially constructed for the purpose, and they ranged over a period of nearly two years. At the same time I lost no opportunity of supplementing this method of study, by watching the behaviour of this species in its favourite natural haunts, in and about the city of Madras.

I may mention at the outset, that many of the observations here set forth are completely at variance with those of Fischer and Bouvier ${ }^{\text {a }}$, and Karl Semper ${ }^{(2)}$, made on an allied species A. insulorum, d'Orb. Fischer and Bouvier would sometimes appear to contradict Semper and vice cersà, while my own observations often disagree with those of one or the other, and less frequently with those of both. A number of other interesting points that I have been able to bring together respecting the floating and sinking habits of the Ampullarian, are not even alluded to by them. The discrepancies, in their observations, as compared with mine, must be ascribed to the different nature of the speries with which they were working, viz., A. insulorum, d'Orb., but the serious disagreement between Semper and Fischer and Bouvier, as regards the same species,

[^19]would seem to indicate that the results, of one of them at least, were not based on a prolonged and close examination of its life-habits. At the same time, my observations on the breathing, sinking, and floating habits of A. globosa, Swains., disclose facts which seem to be quite novel as regards the gemus, for I have not found any writer making even a remote reference to them.

Description of A. globosa, Swains.

I have thought it might be useful to give a deseription of the external form of the animal, chiefly because I have not seen a description elsewhere.

Body of a light brownish grey colour above, dotted over with spots of a brilliant black, edged with glowing yellow, and of a pale bluish or slate tint below. Muzzle stout and conspicuous, produced into two long tentacular processes. Tentacles proper, very long and tapering. Eyes prominently statked. Two nuchal lobes, the left one forming a long siphon at the animal's pleasure. Respiratory cavity divided by a septum, the right chamber having a large monopectinate branchia, while that in the left is vestigial. The left chamber functions mainly as a pulmonary sac, when the animal indulges in aerial respiration. The shape of the foot is roughly triangular, with the angles bevelled and the apical portion situated posteriorly. The foot-sole is of a dirty yellowish hue.

Respiratory and Locomotory Habits, Etc.

About every twenty minutes or so, the animal crawls to the surface from the bottom of the aquarium, ${ }^{(3)}$ feeling its way for the air above the waterlevel by its long, lashing, tapering tentacles. When within an inch from the surface, it extends the siphonal tube formed by the curling over of its left nurhal lobe ${ }^{(1)}$, this bringing the orifice of the tube just above the water. Gradually and almost imperceptibly the orifice expands, until at last it comes to have a diameter of 15 millim., and concurrently with the expansion, the tube itself gradually shortens, and the aperture in the centre of the dividing wall between the lung and gill-sacs opens. The nuchal lobe thus diminishes in length, and after attaining the utmost limit of its expansion in breadth, unfolds in sucli a manner that it assumes the shape of a semi-circle, forming only the lower half of the rim of the siphonal orifice, while the other half of the rim is provided for by the basal part of the peristome, the body of the tube itself consisting solely of the pallial lobes. It is curious, that this phenomenon is not mentioned either by Semper or by Bouvier and Fischer. From what they state, one would be led to understand that the siphonal tube undergoes no change at the surface beyond elongation and amplitude. On the

[^20]contrary, the chief feature in the breathing process of our species lies in the fact that the siphonal tube, after it has reached the top, increases enormously in calibre at the expense of length. The orifice maintains this diameter, as a rule, till the completion of the aerial respiration, and slowly contracts afterwards till the lumen comes to be only 5 millim. in diameter. Bouvier and Fischer make out that A. insu'orum, d'Orb, the same species with which Semper experimented, produces in the pulmonary sac movements of ex-and inspiration, by alternately raising and depressing its head in much the same manner as the Cetacea. But this does not occur in the Madras species. The breathing-in is a process of complete suction, induced or oceasioned by the dilatation of the pallial eavity, which, in the absence of acrial respiration, is completely shrivelled up. So far from ever moving its head at all, it lies perfectly quiet, keeping its tentacles loose and motionless, curled either round the margin of the foot or within the constriction between the podial region and the shell.. The siphon meanwhile regains its original length, the animal cioses the aperture in the obligue septum between the pulmonary sac and the branchial cavity, lowers the siphon and admits water into it for aquatic breathing. Professor Semper, in respect to the aquatic respiration immediately following the aerial one, at the surface of the water, says that the A. insulorum, d'Orb., "reverses the margin of the mantle, opening the tube into which the water streams." So far as I have been able to make out, there is no reversion of the rim of the pallial lobes at all in A. globosa, Swains. What takes place is briefly this. The extremely broad orifice through which air enters, becomes somewhat contracted, the siphon regains its length by the infolding of the nuchal lobe, and is lowered hodily under the water, and aquatic respiration begins. Another change is restricted to the circular aperture in the roof of the mantle-cavity, communicating with the pulmonary chamber above. It eloses when the aerial respiration is over and the animal lets down the siphon. To see this aperture in the living state, one has to suddenly seize an animal crawling on land, and before it has had time to close its operculum, to force the latter the other way, when a circular opening in the septum (lower wall of the pulmonary sac) can be seen, contracting and expanding. As a rule, the animal does not absolutely close the siphonal orifice when lowering it under water, only the diameter of the orifice is lessened. But it closes it at once, if, on aceount of some external disturbance, it is obliged to suddenly sink to the bottom. The explanation of this is simple : it wants to avoid the ingress of water, through the unclosed aperture in the septum, into the pulmonary cavity, and therefore completely shuts the siphon. There is no doubt that this contraction and expansion of the aperture which takes place when the amimal is on land, or when it is in water respiring air, has a respiratory significance. And when the siphonal orifice is diminished in size, and then lowered into the water, it is probably to suit the exigencies of aquatic breathing. After a time, the animal again extends its siphon above the
water, opens the aperture in the roof of the mantle-cavity, repeats all the processes above-noted, and thus prepares itself for breathing air, only still later to reduce the diameter of the orifice in a few minutes and lower down the siphon to respire water. This alternation of aerial and aquatic respiration takes place for from 11 to 12 minutes at the surface of the water, and finally, the animal closes its operculum and sinks to the bottom.

At the surface of the water, alternate respiration is not always the rule. The animal may indulge in aerial respiration alone, to a complete exclusion of aquatic breathing. Altogether three modes of respiration can be recognised in the animal's life-habits. They are (i) complete aquatic respiration when the animal is under water ; (ii) eomplete arrial respiration when it is on land ; (iii) rapid alternation of water breathing and air-breathing when it is at the surface of the water. And it is common to find it also (i) at the bottom of the water, without any breathing; (ii) on land, without any breathing; (iii) at the surface of the water, either breathing air alone, or water alone, or doing no respiration. In these cases of non-breathing, the animal feigns death for a few minutes, sometimes a few hours even, and then resumes respiration.

When the animal is in its usual surroundings, the following may be taken to be the normal cycle of its movements for purposes of respiration :-

On the Bottom. ${ }^{(5)}$-The animal lazily crawling and indulging in aquatic respiration, 5 minutes.

In Midwater. ${ }^{(6)}$ - Vigorously crawling to reach the top. Aquatie respiration, 3 minutes, 3 seconds.

At the Top. ${ }^{(7)}$ - Alternation of aerial and aquatic respiration, 11 $\frac{1}{2}$ minutes. 6 aerial respirations at $1 \frac{1}{2}$ minutes each. 6 aquatie respirations at 25 sceonds each, falling to the bottom after elosing its opereulum ${ }^{(8)}$ 2 seconds.

Of the above observations, some are not in agreement with Semper's, while a few others do not fit in with those of Bouvier and Fischer, who, however, were working with a different species of Ampullaria (A. insulorum, d'Orb.): that has its home in the Malay Archipelago and elsewhere.

Reing decidedlyAmphibian in its habits, the animal is oceasionally found taking short trips to the land, away from the watery surroundings. It is sometimes unwilling to return to the water for days together. On its

[^21]trips to land, it may either be found crawling or at rest with the operculum closed. If it should be crawling, it keeps the siphon fully expanded, and breathes air. We can at the same time see the circular aperture in the lower wall of the pulmonary sac, opening and contracting, as well as the siphonal orifice in rapid alternation. The contractions and expansions taken together average 12 a minute. The expansion is twice as rapid as the contraction. When it is at rest, it is difficult to say if it breathes or not (see note above). Both in this condition and in that mentioned in footnote 5 , it is almost certain that metabolism is very low, and that respiration, if any, is extremely feeble. The operculum is so hermetically closed that no air can possibly get in.

I have occasionally seen the animal floating on the surface of the water, with its foot and tentacles spread out. When in this posture, it keeps its siphonal orifice closely shut without exhibiting either sort of breathing. There is no doubt that in order to float like this the animal must, in the first instance, fill its pallial cavity with air. And that this is actually the case, I have ascertained by giving a severe blow with the finger on the shell, when the animal was floating at ease. It at once went down on aceount of the blow, and as it sank, gave off a series of bubbles which burst as soon as they reached the surface, thus proving the presence of air in the mantle-cavity.

If we do not, on the other hand, disturb the animal when it indulges in this indolent floating, after 10 minutes or more, it either attaches itself to some plant or other object near at hand, and begins taking in air or water, or sinks to the bottom with its foot fully extended, its tentacles spread out, and its elongated siphon closed. I did not find the slightest alteration of form in the tentacles, siphon or foot. No bubbles of air are given off either when it reaches the bottom or afterwards.

The animal, strange to say, is not able to float from the bottom to the surface, however extended it may keep its body, showing thereby that it is not able to displace a sufficient volume of water to proportionately lessen its weight. This fact seems to contradict my first observation that the animal in a fully expanded state is able to float on the surface of the water, and I am unable to explain the apparent discrepaney.

Thus, whenever the Ampullarian wants to ascend to the surface, it invariably crawls, but when descending, it may either crawl, fall straightway to the bottom after closing its operculum, or, more rarely, may float down. Whenever the animal falls, by suddenly closing its operculum, either voluntarily or on account of interference, bubbles of air are given off ; but not when it crawls or slowly sinks down. Of course, the animal, when roaming undisturbed under water, gives off now and then one or two bubbles (foot-note 5) ; aud these are to be carefully distinguished from the series of bubbles given of by the animal, when it is forcibly pushed down. There is little doubt that the Ampullarian keeps within its body some air for pneumatic needs. If we take, for instance, an animal lying
at the bottom of the aquarium and put it suddenly in hot water, it gives off a series of bubbles before dying. The same thing also happens in the case of an animal which has been long out of water. An interesting point in the animal's ascent is that it is able, despite its bulk, to trust itself safely to the very delicate stems or leaves of aquatic plants. These never bend or move from side to side when it is ascending, and it is probable that its expanded condition contributes to the feat. The plants are so thin that, but for the elaborate hydrostatic adjustment of the animal in spreading out its body, they would otherwise bend or give way under the weight of such a heavy body. We must at the same time remember that the animal uses its discretion in making a distinction as to its manner of movement, whether it shall crawl up hard objects, sucli as the inner side of the aquarium, stones, etc., or ascend the flexible stems of aquatic plants. In the one case, it keeps its foot and tentacles normally spread out, while in the other it produces them to an extraordinary extent, and keeps the body greatly expanded in order to lessen its weight in the water as far as possible, and in order to ascend the leaves of the most delicate and fragile plants, without swaying to one sille or the other. In such cases it is casy to observe the laborious caution the animal takes, lest it should slip down. I have found in the aquarium Ampullarians ascending chusters of leaves as easily as single ones. When they ascend collections of leaves, they do so without differulty. But when they climb a single leaf or stem, they take the utmost precaution, expand their bodies to the greatest limit, and progress gradually. But the most interesting point of all, lies in their careful efforts to extend the foot into a thin leafy expansion and engulf the long narrow leaf or stem wíthin it.

And now marshalling, in couclusion, all the facts we have been able to gather respecting Ampullarian locomotion in water, we get three groups of phenomena, which may be put as follows :---

I.-Floating on the Surface of the Water.

(1.) Active.-Body thoroughly extended or only extended partially. Goes down when disturbed.
(B.) Passive-Body only partially extended. Nothing short of a sharp prick will make the animal close the operculum and sink. A hard knock on the shell with a heavy nail, sends it down, but as soon as the impulse is exhausted, it floats. The animal behaves like a dried cork immersed in water.

1I.-Descending to the Bottom by

(A.) Sinking.-By suddenly withdrawing all the soft parts, closing the operculum and giving off a series of bubbles. This may either be (i) Voluntary, or (ii) Involuntary, when necessitated by any external interference or injury.
(B.) Sinking Slowly.-With all the soft parts well-protruded, or only slightly retracted. Not a single bubble is given off.
(C.) Crauling.-All the soft parts normally extended, and no air-bubbles given off.
III.- Re-Ascending by Means of Crawling.
(A.) Up hard objects.-Body normally extended.
(B.) Up fragile stems or leaves.-A sort of acrobatic progression, carried out with the greatest deliberation. Body extraordinarily spread out.

Judging from the massive nature of the animal's body, one or two explanations scem at first sight necessary to interpret its widely-diverging modes of locomotion : (A) the animal is able to determine its pneumatical adjustments at particular levels of the water, by secreting the needed amount of air from its own tissues, or (B) it is able to inflate itself with the required quantity, deriving it from cither (a) the air which is found dissolved in the water, or (b), the atmospheric air above the water-level. But when closely examined in the light of facts, both of these suppositions fail. For if (A) and (B). (a) were true, it is hard to understand why the animal is not able to float to the surface, but tries to reach it by laboriously crawling up the inner side of the aquarium, or up the plants that may be living in it. (B) (b) breaks down, if we keep, in mind the fact that when slowly sinking to the bottom, there is neither the retraction of soft parts, nor the extrusion of bubbles of air, which this theory requires. Thus, it can be shown that a hypothesis which accounts for one set of facts, does not hold good for the other. Another strange fact to crown the confusion with regard to both (A) and (B), is that the animal is unable to float on the undersurface of the water as Bythinia and Lymnaea are capable of doing. We see, therefore, that the whole phenomenon of Ampullarian locomotion, from the firm adherence of its foot to smooth surfaces, and its slow but steady progression at the surface of the water, down to its mysterious want of power to float to the surface of the pond or aquarium, suggest a series of problems in zoo-merhanics which need thorough investigation. The subject is one also, that does not seem to have been taken up by any of those specialists, who have made the subject of animal mechanics their particular study.

THE ANATOMY OF PHARELLA ORIENTALIS, DUNKER AND TAGELUS RUFUS, SPENGLER.

Br H. H. BlOOMER.

(Plate x.)
I wish first to acknowledge my indebtedness to the direetor of the Natural History Department of the British Museum, Professor E. Ray Lankester, F.R.S., and to Mr. Edgar A. Smith, I.S.O., by whose courtesy I have been enabled to examine a specimen of each of the above species.

Pharella orientalis, Dunker.

External Charac'ters.

The specimen measures 14.5 c.m. long, 1.7 c.m. deep, and along the dorsal surface is slightly curved upwards. The mantle lobes from a position over the posterior part of the anterior adductor muscle, take a deep curve and pass some distance posteriorly before their concrescence, thus the pedal aperture though lying anteriorly extends over the anterior adductor muscle, and on the ventral surface still further posteriorly. The muscles of the pallial edge (Fig. 1, P.M.) form a deep band, and the exterior margins of the lobes are crenulated all round them. The periostracm passes from the pallial edges to the valves of the shell and is abundant at the posterior end. The flaps on the mantle lobes bordering the pedal aperture are very narrow. There is no fourth aperture. The proximal portion of the siphon is strongly developed, while the free portions are extremely short. The tentacles bordering the siphonal openings are very long, particularly the outer ones (Fig. 1, S.T.), some measuring as much as 8 millim. long. The smaller tentacular fringe extends a considerable distance anteriorly along the coneresced portion of the mantle lobes, both dorsally and ventrally.

The foot (Fig. 1, F.) is long, of a nearly uniform depth and axeshaped at the clistal end.

The retractor pedis posterior muscle (Fig. 1, P.R.P.) is long, thereby shortening the distance between the posterior adductor and the siphon. At the posterior end the inner parts of the bases of the gills are joined together for about only one-third of the distance between the siphon and the foot.

The labial palps are relatively short and wide, the outer ones being especially wide.

Musculature.

i. The Pallial Muscles (Fig. 1, P.M.).-These form a deep band round each mantle lobe, and ventrally lie chiefly at right angles to the pallial edge. They obtain their maximum thickness at the line of adhesion to the valves of the shell. At the posterior end they form the proximal siphonal portion and are much more strongly developed (Fig. 1).

The anterior adductor muscle (Fig. 1, A.A.) is a large and nearly eireular muscular plate, joined dorsally and anteriorly with the dorsal integument and mantle lobes, and posteriorly with the foot by the muscular ventral integument.

The posterior adductor muscle (Fig. 1, P.A.) is a large and deep plate of muscles, curving anteriorly and posteriorly towards the flattened dorsal surface. Anteriorly it is connected with the retractor pedis posterior musele, and posteriorly with the proximal portion of the siphon and the dorsal integument.
ii. The Pedal Muscles.-The muscular arrangement of the foot is similar to that of Solon and is strongly developed. The three kinds of museles found in this genus are also present, but in Pharclla orientalis there is a large increase in the number of rows of the transverse muscles. Briefly, on each lateral side are two groups of longitudinal muscles, and between these there is a semi-circular band passing from the dorsal to the ventral surface. Between the two inner and much larger layers of longitudinal museles, are a number of rows of transverse muscles, the fibres of which pass through the longitudinal muscles to the semi-circular layers, and they either continue, or other museular fibres pass from these latter through the outer longiturlinal bundles to the museular pedal integument.

The pedis retractor anterior museles (Fig. 1, P.R.A.) are short and thick, and in the foot proceed mostly in a posterio-ventral direction over instead of under the longitudinal pedal muscles. There does not appear to be any bifurcation of the free portions.

The pedis retractor posterior muscle (Fig. 1, P.R.P.) is a comparatively long muscle, narrow at the sides and increasing in depth towards the median line. The bifurcated parts are short and connected with the posterior adductor muscle. Anteriorly the muscle continues as a portion of the longitudinal muscles of the foot.

Alimentary Canal.

The lips (Figs. 1, 2 and 3, A.L. and P.L.) formed by the union of the labial palps are wide, especially the upper or anterior one, which is of considerable width. The oesophagus (Figs. 2 and 3, Oe.) first runs a little dorsally, then turns posteriorly and opens into the stomach.

The stomach (Fig. 1, St.) is a long and irregularly shaped sae, consisting of a number of divisions which, for convenience, I have termed Anterior-oesophagael, Posterior-oesophagael, Cardiac, Central, and Pyloric.

The anterior oesophagael division (Figs. 2 and 3, A.Oe. St.) is long and narrow and divided from the posterior oesophagael one by a muscular ridge passing round the stomach.

The posterior oesophagael division (Figs. 2 and 3, P. Oe. St.) lies between the anterior oesophagael and the pyloric divisions. At its posterior end is the central division (Fig. 2, C.D.) bordered by a muscular ridge (Fig. 2, C.D.R.).

The dorsal side of this ridge is more developed and represents the muscular papilla of solen (Fig. 2, M.P.). It separates the central from the cardiac division (Figs. 2 and 3, ('. St.). Continuous with it is also a ridge (Fig. 2, Oe. C.R.) which divides the posterior oesophagael from the cardiac division. In the anterior part this museular tissue extends right across, thus completely separating these two divisions.

The pyloric division (Figs. 2 and 3, P. St.) is large and ocenpies the whole of the posterior portion of the stomach. On the right side is a muscular ridge (Fig. 3, P.D.R.) ruming from the posterior oesophagacl ridge nearly round this pylorie division. The ventral portion of the pyloric division narrows and continues as the caecum of the crystalline style (Figs. 1, 2, and 3, (..C.). The caecum is very long and large. It first passes ventrally, then curving, extends a considerable distance along the perlal cavity.

The intestine (Figs. 1 and 3, In.) leaves the ventral surface of the left anterion part of the pyloric division, the typhlosole commencas, and the intestine proceeds first a little anteriorly, curves, and goes ventrally rumning just anterior to the caccum of the crystalline style, from which it is separated by a row of transverse muscles. It then turns anteriorly and forms a number of large folds, in the last of which the typhlosole disappears and the intestine proceeds posteriorly, passing over the right side of the caecum, then going dorsally, passes in a large loop over the posterior part of the pyloric division, and turning posteriorly continues as the rectum (Fig. I, R.). It is shortly afterwards encircled by the ventricle (Fig. I, V.), then passes over the posterior adductor musele into the exhalent siphonal chamber, terminating in a bi-lobed anus (Fig. I, A.).

The liver (Fig. I, L.) lies laterally, ventrally, and partly dorsally around the stomach. The large bile duct enters on the ventral surface of the posterior oesophagael division and the smaller bile duct into the central division.

Circulatory System.

Apparently elosely resembles that of Solen.
As regards the gill structure, Dr. Ridewood ${ }^{(1)}$ states:-" In the five species of Solen examined the lamelle are heterorhablic and plicate, the plication being shallower in Solen orientalis than in the others. The numbers of filaments in a plica are nearly the same in the two demi-

[^22]branchs and run approximately 26 in Solen vagina, 17 in Solen ensis, 12 in Solen fonesi, 22 in Solen (Solena) rudis and 16 in Solen (Pharella) orientalis. The two or three filaments at the apex of the plica are enlarged in Solen fonesi and Solen orientalis. In Solen orientalis there is every gradation from a shallow frontal groove to a shallow frontal ridge, even in filaments cut at the same horizontal level. In all five cases the frontal groove disappears at the ventral elge of the demibranch, where the principal filament presents a distinct frontal ridge."

Nervous System.

The cerebro-pleural ganglia lie lateral to the mouth, under the retractor pedis anterior muscles, and between them and the ventral integment. The commissure comnecting the two ganglia goes in front of the mouth. Each ganglion apparently gives rise to only one anterior nerve, the anterior pallial nerve, which passes gradually outward to the posterio-ventral edge of the anterior adductor muscle, but divides shortly before reaching it, the imner branch going underneath and imervating the muscle, the outer one passing across the mantle lobe and again dividing, the anterior part once more proceeds and divides; both branches join the outer circumpallial nerve, while the posterior part goes posteriorly as the imner circumpallial nerve.

Posteriorly each cerebro-pleural ganglion commumicates with the viscero-parietal ganglion by a comnective. The connective first proceeds between the retractor pedis anterior muscle, and the pedal wall, then emerging, runs between the latter and the viscera, and, reaching the anterior portion of the retractor pedis posterior muscle, passes through the pedal integument to the lateral surface of the muscle and then underneath to the viscero-parietal ganglion.

The cerebro-pedal comective leaves the cerebro-pleural ganglion on the inner side of the cerebro-visceral comnective, and passing partly through and then along the pedal museles, gives off a nerve to the viseera and afterwards joins the pedal ganglion.

The perlal ganglia are situated in the centre of the foot, midway between the dorsal and ventral surfaces, just over the anterior end of the anterior folds of the intestine. The ginglia give off on each side a number of nerves which immervate the foot.

The viscero-parietal ganglia are situated under the posterior adductor musele. From each ganglion arises a branchial nerve which first goes some distance anteriorly and curving outwards passes to the gills. Posteriorly each viscera-parictal ganglion gives off a nerve, the posterior pallial nerve. It passes latero-posteriorly across and under the posterior adductor muscles, then there arises from it a nerve which crosses the mantle lobe and joins the imer circumpallial nerve, and afterwards the outer circumpallial nerve. The main nerve goes along the proximal
portion of the siphon, innervating it and the dorsal integument, and apparently joining the outer cireumpallial nerve.

Tagelus rufus, Spengler.

External Characters.

The specimen measures $5.7 \mathrm{c} . \mathrm{m}$. long and $2 \mathrm{c.m}$. deep. The mantle lobes (Fig. 4, M.L.), which take a slight curve forwardly from the anterior margin of the anterior adductor muscle, are not coneresced along their ventral surface, but are joined together below the extreme siphonal end by a round transverse muscle (Fig. 4, M.C.), the ends adhering to the valves of the shell, and thus resembling the adductor muscles, consequently the pedal aperture extends from the auterior adductor musele to the siphon. There is no fourth aperture. At the posterior end the mantle lobes proceed some distance beyond the proximal portion of the siphon, giving off close to their posterior edges lateral processes (Fig. 4, P.L.P.) which encircle and are connected, with the siphon, thus completely enclosing the posterior end of the pallial chamber.

The teeth of the shell are not very prominent, and do not penetrate into the viscera as in S. strigillatus. The proximal portion of the siphon is short, ${ }^{\text {, }}$, while the free portions (Fig. 4, In. I^{\prime}. and $E x$. S $^{\prime \prime}$.) are of considerable length, the exhalent being longer than the inhalent one, but the openings by which they commmicate with the pallial chamber are small. Large siphonal retractor museles (Fig. 4, S.R.M.) are present and from a large surface adhere to the valves of the shell. The edges of the mantle lobes and the siphon are not characterised by earrying a tentacular fringe. The foot (Fig. 4, F.) is large, comparatively short, and very deep. The inner parts of the bases of the gills are joined together.

Musculature.

i. Pallial Muscles.-The muscles of the pallial edge commence at the anterior adductor muscle as a deep band. This band, after taking a slight eurve, anteriorly, passes posteriorly and gradually decreases in depth until it reaches the proximal siphonal end, where the two mantle lobes are joined together by a round transverse muscle, the musculus eruciformis (Fig. 4, M.C.) described by von Thering ${ }^{(2)}$, and stated by him as being an important character of the super-family Tellinacea, confirming the views of Dall. He believes this cruciform muscle is a special development of the fibres of the mantle edge, and functionally may serve as a secondary adductor.

The siphonal retractor muscles (Fig. 4., S.R.M.) run a short distance anteriorly along the mantle lobes, they pass through them, and spreading

[^23]out dorsally and ventrally, extend in a deep semi-circular direction, forming large surfaces from which they adhere to the valves of the shell.

The anterior adductor muscle (Fig. 4, A.A.) is a plate of muscles of greater length than depth, and divided into two unequal parts by the ventral integument passing between them to the dorsal surface. Anteriorly the muscle is connected with the mantle lobes, and posteriorly with the pedal and the dorsal integument.

The posterior adductor (Fig. 4, P.A.) muscle is a deep plate of muscles flattened anteriorly, and from this side is joined with the bifurcated parts of the retractor pedis posterior musele and dorsal integument, and at the posterior side with the proximal portion of the siphon, the dorsal integument and the mantle lobes.

The pedis retractor anterior muscles (Fig. 4, P.R.A.) run ventrally, apparently over the longitudinal pedal muscles. There is no bifurcation of their free parts.

The pedis retractor posterior musele (Fig. 4, P.R.P.) is very narrow and of considerable length, the posterior parts of the bifureated portions being connected with the posterior adductor muscle.

From the specimen examined it was not possible to trace the pedis elevator or branchial retractor museles, present in S. strigillatus.

Alimentary Canal.

The lips (Figs. 5 and 6, A.L. and P.L.) formed by the junction of the labial palps, point anteriorly. The oesophagus (Figs. 5 and 6,Oe.) is very short, it passes posteriorly and soon opens into the stomach. In shape the stomach (Fig. 4, St.), though similar to that of S. strigillatus, ${ }^{(3)}$ is longer, shallower, and the divisions are not so pronounced. I have, however, used the same terminology for the respective divisions. In the left part of the stomach and anterior to the centre lies the central division (Fig. 5, C.D.), bordered by a muscular ridge (Fig. 5, C.D.R.), which on its dorsal side is developed into a muscular papilla (Fig. 5, M.P.). From this central ridge, proceeds another one (Figs. 5 and 6, A.D.R.) which separates the dorso-central from the anterior division, then passing around the stomach in an irregular manner, divides the anterior from the posterior division.

The anterior (Figs. 5 and 6, A.D. St.) is larger than the posterior division (Figs. 5 and $6, P . D$. St.), and its dorsal surface consists of a very muscular layer. The dorso-central division (Fig. 5, D.D.) is shallower and not so readily distinguished. The posterior division (Figs. 5 and 6, P.D. St.) is larger, depressed dorsally, and deeper at the posterior end.

From its ventral surface proceeds the caecum of the crystalline style (Figs. 5 and $6, C . C$.), which goes ventrally, then curving terminates near the dorsal surface of the pedal cavity. As in S. strigillatus the intestine

[^24](Fig. 5, In.) is only partly separated from the caecum and appears as an irregular groove on the side of the latter. Near the distal end of the caecum the intestinal walls mite, thus completely enclosing it. The intestine (Fig. 4, In.) returns along the dorsal surface, and becoming free passes to the posterior part of the proximal portion of the foot, and makes a large number of folds (Fig. 4, F.In.) at and over the posterior division, then turning posteriorly continues as the rectum (Fig. 4. R.). It passes round the posterior adductor muscle, and on the posterio-ventral surface ends at the anus (Fig. 4, A.). The liver (Fig. 4, L.) surrounds the anterior portion of the stomach with a considerable part lying underneath it. The large bile duct enters on the ventral surface of the anterior division, just in front of the intestine, and the smaller bile duet into the central division.

Circulatory System.

The circulatory system generally resembles that of S. strigillatus. As regards the strncture of the gills, Dr. Ridewood remarks ${ }^{(4)}$:
"The gills of the three species of Solenocurtus examined agree tolerably closely in their general structure. The lamelle are highly plicate, the pliex being flattened antero-posteriorly so as to resemble the leaves of a book. The number of filaments in a plica are about 30 in the outer and 40 in the inner demibranch in Solcnocurtus strigillatus, and Solenocurtus (Tagelus) rufus, while in Solenocutus (Macha) philippinarm the numbers are about 24 and 30 . In Solenocurtus rufus all the interlamellar septa rise high up the demibranch but in the other two species alternate septa are of small vertical extent. Solenocurtus rufus also has in the a pex of the plica, a blood tube which is not noticeable in the other two."

Nervous System.

The nervous system is very similar to that of S. strigillatus, the chief differences being in T. rufus, a smaller number of branches of the posterior pallial nerves and more particularly the absence of the large ones crossing the siphonal retractor muscles.

Reference Letters.

[^25]D.D. Dorso-central division of the stomach.
E.x.S. Proximal portion of the exhatent siphonal chamber.
Eic.S' Free portion of the exhalent siphonal chamber.
F. Foot.
F.In. Folded portion of the intestine
II. Point where the dorsal integument is comnected with the teeth of the shell.
In. Tntestine.
In.S. Proximal portion of the inhatent siphonal chamber.
In.S'. Free portion of the inhalent siphonal chamber.
L. Liver.
M. Month.

1I.C. Museulus crueiformis, a transrerse musele, situated ventrally to the siphon.
M.P. Developed portion of the muscular ridge, representing the museular papilla of Solen.
M.L. Left mantle lobe.

Oe. Oesophagus.
Oe.C.R. Ridge dividing the posterior oesophagael from the eardiae portion of the stomach.
P.A. Posterior admetor musele.
P.D.Et. Posterior division of the stomach.
P.L. Posterior or lower lip.
P.M. Museles of the patlial edge.
P.D.R. Muscular ridge of the stomach running from the oesophagael ridge nearly around the pylorie division.
P.L.P. Lateral processes from the posterior edges of the mantle lobes, which encirele and are connected with the siphon.
P.Oe.St. Posterior oesophagael division of the stomac!.
P.R.A. Retractor pedis anterior musele.
P.R.P. Retractor pedis posterior musele.
P.St. Pyloric division of the stomach.
R. Rectum.
S.T. Tentacles bordering the siphonal apertures.
St. Stomach.
S.R.M. Siphonal retractor musele.
T.P.M. Transverse pedal museles.
V. Ventricle.

ESPLANATION OF PLATE X.

Fig. 1. Pharclla orientalis, Dunker. View from the right side, showing the alimentary eanal, \&e., $\times \frac{2}{2}$.
Fig. 2. Pharella oricutulis. Dunker. Longitudinal seetion of the stomach, showing the internal structure of the left side. $\times 1 \frac{1}{2}$.
Fig. 3. Pharclla orientalis, Dunker. Longitudinal section of the stomach, showing the internal strueture of the right side. $\times 1 \frac{1}{2}$.
Fig. 4. Tagelus rufus, Spengler. View from the right side, showing the alimentary Canal, \&c. $\times 1 \frac{1}{2}$.
Fig. 5. Tagelus rufus, Spengler. Longitudinal seetion of the stomach, showing the internal structure of the left side. $\times 2$.
Fig. 6. Tagelus rufus, Spengler. Longitudinal seetion of the stomach, showing the internal structure of the right side. $\times 2$.

OTTO FRANZ VON MOELLENDORFF.

By DR. W. KOBELT.*

(Plate xi.)
There are men who. born collectors, are predestined to be systematists, who from earliest childhood pick up anything in nature which seems remarkable, and try and give it the right place. Such a man was Dr. Otto Franz von Moellendorff, who on the 17 th of August of this year was taken away from science much too early by a malicious cancerous disease. Born on the 24 th of December in 1848, at Hoyerswerda, he had a leader from the first years of his childhood in his father, who was a Commissioner of Agriculture, and later President of the Natural History Society in Görlitz. The museum of that Society was the envious boy's dearest abode, and when in 1866 he went to the University of Halle, it was quite natural that he should take up the study of Natural Science. As circumstances did not permit of his taking up a scientific career, he devoted his time to the study of Chemistry, but his heart never left Zoology, and the desire to visit foreign countries. Therefore he seized, in 1870, the chance by accepting an offer from Dr. Blau, Cieneral Consul at Serajewo, to accompany him as a teacher for his children to Bosnia.

Bosnia, which was at that time still Turkish and uninvestigated, found Moellendorff, besides his position, which was very suitable to his teaching powers, and later his wife, who was an unwearied companion in his work, a rich field for investigation.

Aheady at that time he was a member of the German Malacological Society, and corresponded with me, an intercourse which has continued without a break for more than thirty years. In his "Fauna of Bosnia," written in 1872, as a thesis for his degree of Doctor of Philosophy, the land and fresh water molluses constitute the chief part. Dr. Blau, knowing the teacher's meommon gifts, induced him to take up the Consulate's career. The only prospects at that time lay in the extreme East, especially in China, so the new doctor of Philosophy reported himself for China, and in 1873 went as Interpreter to Peking. His great talent for languages, and his capability of adapting himself to foreign circumstances and of understanding foreigners, made him advance quickly. We find him

[^26]till 1880 in Peking. Tientsin, and Shanghai ; afterwards as Consul in Canton, Hong Kong, and again at Canton. But for higher positions two things stood in his way-an old family failing, a too stubborn nature, and his love for natural science, which latter seemed to competent judges inexplicable and very suspicious-so, being a master of the Chinese language and intimate with their circumstances, he was transferred to Manila.

In China he had already collected with unwearied perseverance, and made several converts to Malacology, increasing our knowledge in quite an unexpected manner. In the Philippines such results were scarcely to be expected; for, according to the general opinion, the islands had been thoroughly searehed by ('uming, Semper, Jäger, and Quadras, and small species there were totally unknown. This, however, seemed to the new Consul, after his experiences in the South of China, simply impossible, in spite of the assertions of Quadras. Indeed, Moallendorff soon had the opportunity of proving he was in the right. It gave him much pleasure to tell how on the first trip with Quadras to Montalban, near Manila, and face to face with the lime rocks, he said to his companion if there be no small species here, he would confess that he was in the wrong, and throwing themselves full length on the ground at the foot of the rocks, Quadras was the first to find a small operculate, which proved to be a new species. Thereupon, the spell was broken, and quite an mothought-of abundance of minute foms rewarded the collecting. For eleven years, from 1886 to 1896, Moellendorff kept on, so far as his official duties permitted, and not only Quadras as well. but some German friends also. Moellendorff added to the molluscan fuma of the Philippines, directly or indirectly, some eight hundred species. No sacrifice seemed too great to him, in view of his aim-the exact knowledge of the Archipelago.

Alas ! he conld not escape the consequences of his lengthened stay in a tropical climate; anaemia and heart weakness laid hold of him, and in the autimm of 1896 no other choice was left him but to look out for a cooler climate. The German Empire had for a man who had spent twentythree years' service in the tropies sacrificing his health, no other position than the Consulship at Kowno. No choice was left him in consideration of a large family, and so from 1896 until 1901 he had to remain in that remote forlorn place, severed from any intellectual impulse. Here also he did not rest, for he succeedet in rousing some interest for investigation of the home country, and in founding a Natural Science Club.

Then a happier fate appeared to beckon him. The new Frankfurt Academy of Commerce was to be inaugurated and a man with experience in Consular office was sought for to undertake the lectures on Consulate business and commercial geography. As soon as attention was direeted to Moellendorff, who by reason of his great experience and wide learning was particularly adapted for the position, he had only to aecept the position with pleasure ; and so in October, 1901. he settled at Frankfuet. The dream of his life was acemplished, an independent seientifie employmont
was won in a place where intellect and science reigned as in few Universities.
Moellendorff threw himeelf with all his might into the new circumstances, not only in the Academy but also in the Senckenbergisehen Naturforschenden Gesellschaft, whose corresponding member he had been for many years; in the Verein für naturwissenschaftliche Unterhaltung, and in the Anthropological Society, established under his cooperation, he exhibited an ardent and stimnlating activity. Ho undertook in my place the direction of the Malacologieal Department of the Senclienberg Minseum, and commenced to re-arrange the rich collections. But only one happy year was to be granted him. Already in the autumn of 1902 the symptoms of a mysterious disease announced themselves, insignificant in the begimning, but becoming worse and worse. From the first days of 1903 he was obliged to keep to his !ed. It was pitiful to see that strong man, in spite of his healthy lively mind, growing bodily weaker and weaker. On the 17th of August a quiet death released him from his sufferings, which had been endured with exemplary patience.

The masterpicee of Moellendorff's life was his conchological collection. Nine large double rabinets were filled with the treasures which he had collected, partly himself, and partly by exchanging on a !arge seale in the course of more than thirty years. The collection had been worked throngh as few have been, and contains the trpes of at least 1,500 species and loeal forms described and named by him ; also imnumerable specimens obtained from other anthors (co-types), who had very willingly exchanged with the owner of this magnificent collection.

Success has attended the efforts to acquire this collection, as well as all the scientific materials he left behind, for the Senckenbergische Gesellschaft, and thus preserve the same for science. It will thus be possible to complete the Land Molluscan Fama of the Philippines with the help of the list which appeared in 1901. Likewise, I also hope to supply the continuance of the Monograph on the Agnatha for the Conchylienkabinet of Martini and Chemnitz. But the plans which we made together for a Zoogeography of the Plitippines on a large scale, have entirely fallen through, for only a man who has a practical knowledge of the country could execute it. Gone are many other intentions which we both thought to accomplish together. For me the hope is entirely gone, that the man eight years my junior, would one day fulfil what I myself can searcely expect to perform.

Moellendorff was a man of firm principles, of a straightforward and honest nature, perhaps smmewhat too sure of his own opinion, and not easy for everyone to get on with, but absolutely true towards his friends. His power for work was of the first order, and his knowledge was astonishingly many-sided ; there were few branches of knowledge he was a stranger to, and to many men he could be a teacher. During the first decade of his stay in China he wrote several lingliistic and geographical papers of importance. His map of the North of China proved of considerable service
in the campaign against Peking, and by his commmnieations the birds and mammals of the North of China have been more accurately made known. Later he concentrated his attention more and more on the Land Shells, but even in the Philippines he continued to collect all kinds of anmals which did not require a troublesome preparation, and willingly and most unselfishly placed his material at the disposal of amateurs. Even his investigations of New Guinea, and later of Indo-China, have proved of great service. His last work, during which death itself took the pen ont of his hand, was the working up of the collections made by Russian investigators in the centre of China and Tibet. The examination of travellers' collections of this kind he was very fond of.

His papers appeared, for the greater part, in the "Jahrbucher" and "Nachrichtsblatt" of the German Malacological Society, as well as in the Jahresiberichten of the Senckenberg Society, some in English periodicals, as the Proceedings of the Zoological and Malacological Societies of London. the Annals of the Calcutta Museum and of the East Asiatic Society, and the Annals of the St. Petersburg Museum. Of the Mollusean Fauna of the Philippines, a supplement to Semper's Fama, and as a part of Semper's great work, he only accomplished the Agnatha and Naninae; and only the two first parts. containing the Pihytididae, of the monograph of the Agnatha for the second edition of Martini and Chemnitz.

SOME NOTES ON THE SO CALLED APPENDIX OF HELICELLA BARBARA (1.).

By H. OVERTON.

Some short time ago I communicated to the Midland Malacological Society, a paper dealing with varions points in the anatomy of Helicella barbara (L.) = Helix acuta.

There are many points of interest, and they have formed the subject of various papers by different writers. Thus Schmidt, in $1854{ }^{(1)}$, described a small calcareous organ at the base of the penis; Fischer, in $18566^{(2)}$, deseribed and figured the spermatophore; Ashford, in $1885{ }^{(3)}$ gave a figure of the generative organs; as also Moss and Paulden, in $1892{ }^{(4)}$, the latter authors giving a short description.

With reference to the calcareous organ described by Schmidt, I am of opinion that this is a provision to assist in holding the organs together during copulation, so as to ensure the transference of the spermatozoa. As can casily be seen in dissection, the true penis is very short.

There is no true dart-gland in this molluse, but a small, glandular diverticulum, which has been very differently interpreted by various authors. Moquin-Tandon termed it a simple mucous gland, which, as pointed out by Ashford, ean seareely be correct. Hoss and Paulden refer to this organ as a gland of doubtful function ; while Mr. J. W. Taylor ${ }^{(5)}$ describes it as an appendix, and regards it as probable that its affinities are with the semi-independent flagellum in Bithynia, Buliminus, etc.

While this organ cannot be regarded as a simple mucous gland, it certainly is not, in my opinion, homologous with the flagellum of Bithynia, etc.

The gland in question opens into the vestibule on the left-hand side, close to the opening of the short vagina. It is 4.5 millim. in length, with a maximum diameter of 5 millim. and a minimum diameter of $\cdot 2$ millim., and lies coiled upon the vestibule and vagina. Near to the distal end of this organ there is a small muscle, which attaches it to the common duct, opposite and just above the point where the vas deferens is given off (Fig. 1).

[^27]In the absence of any detailed account of the structure of this organ, Mr. Walter E. Collinge has very kindly had prepared for me a series of sections, which, I think, offer evidence of the relationship of this gland with the dart gland of other Helices.

In a transverse section throngh the proximal end (Fig. 2), the external wall is seen to be made up of a connective tissue sheath and a series of circular muscle fibres, which constitute the greater portion of the organ. Within this, at intervals, are groups of small gland cells and a lining layer of columnar epithelial cells. The hmmen in this region has a somewhat stellate appearance, owing to the wall being thrown into a series of large and small longitudinal ridges. Towards the middle of the gland these ridges become less pronounced (Fig. 3) ; otherwise a transverse section through this region differs very little from the condition observed in Fig. 2. In a section through the distal end the gland cells appear to be absent, as also any indication of the longitudinal ridges, and the lumen contains a mass of mucous (Fig. 4).

After comparing the histological structure of this gland with that of other dart-glands, and, taking into consideration its position in relation to the other terminal ducts of the generative organs, I am inclined to regard it as a degenerate dart-gland rather than an appendix or mucous gland.

ENPLANATION OF FIGURES.

Fig. 1 Helicella barbara (L.). The terminal ducts of the generative organs. Reference Letters.-d.g.g. Dart-gland. f.ov. Free-oviduct. ov. Oviduct. p. Penis. pr. Prostrate. r.m. Retractor muscle. r.d. Receptacular duct. v. Vagina. v.d. Vas deferens.
Fig. 2. Transverse section through the proximal end of the degenerate dart-gland. c.m. Circular muscle fibres. c.t. Connective tissue. ep. Epithelium. g.c. Gland cells.

Fig. 3. Transverse section through the middle of the gland.
Fig. 4. Transverse section through the distal end of the gland.

2.

3.

4.

A CLASSIFIED LIST OF THE HELICOID LAND SHELLS OF ASIA. (PART VIII.")

(Conclusion.)
By G. K. GUDE, F.Z.S.
CORRECTIONS.

Volume IX.
Page 4, lst col., after Kaliella monticola, Mdff., add = raymondi, Tryon.

Page 56, 8th line, 1st col., for touaannensis, read touramensis.
18th line, 1st col., for bacca v. pancalet, S. and B., read batanica v. pancala, S. and B. $=$ bacca V. sinistrorsa, S. and B.

Page 57, 9th line, for decent read descent.
10th line, after impossible add reference to Footnote 1.
11th line, 2nd col., for Sinicolo read Sinicola.
Ulth and 25th line, 1st col., for v. imperator, (fld., imperatrix, West, read imperator, Gld., v. imperatrix, West.
Page 97,10 th line, for seven read nine.
Page 100,19 th line, for cight read nine.
Page 101, 36th line, 2nd col., for supersonata read subpersonata.
Page 103, 20th line, 1st col., delete comma after Arabia.
Page 104, 13th line, 1st col., after semisculpta for Mart. read Mouss.
$23 r d$ and 24 th line, 2nd col., delete Euparypha subdentata. This shell has been proved to be Moroccan.
Page 112, 20th line, 2nd col., for globula, Kryn. v. nana, Boettg., read selecta, Klika v. nana, Bocttg.

Page 121, 19 th line, lst col., after pyramidata add Drap.
Page 125, 28th line, Ist col., Owing to a printer's error Jacosta andrewi, Rolle, and J. usticensis, Calc., appear on one line. The latter is a distinct species, and not a synonym, as might be inferred.

Page $126,32 \mathrm{nd}$ line, 2 nd col., for crdelli read erdeli.
Page 128,1 th line, Ist col., schotti is out of alignment.
17 th line, 1st col., for onchynina read onychina.

[^28]
Volume X.

Page 7, 38th and 39th line, 2nd col., delete Sub-genus Angasolla and Section Trachiopsis.

Page 10, 33 rd and 34 th line, 2nd col., for Sub-genus Angasella, Section Trachiopsis read Sub-genus Trachia, Alb.

Page 13, 37th line, 2nd col.. after graduta, Mdff., add haiphongensis, Dautz., Haiphong.

Page 15, 11th and 12th line, 1st col., for Sub-genus Angasella, Section Trachiopsis read Sub-genus Trachia, Alb.

39th line, 1st col., delete Kaliella haiphongensis, Dantz.
44 th line, 2nd col., for Genus Moellendorffia, Ane., read Genus Helicodonta, Fér., Sub-genus Moellendorffia, Ane.

Page 58, 10th line, 1 st col., accepta place under Kaliella.
Page 90, 6th line, 2nd col., for Genus Dendrotrochus read Trochonanina, Mouss.

Additions.

Page 88, k. Alor.
Yestina rugosissima, Mdff. Is. Roma.
Chloritis romaensis. Mdff. Is. Roma.
Amphidromus lactus, Müll. v. romaeusis, Rolle. Is. Roma. v. Kissuensis, Rolle Is. Kissu.
A. inconstans v. rollei, (iude. n.n. = v. gracilis, Rolle, not of Mart.; and forms subsimplex, viridistriata and subporcellana, Rolle. Is. Roma.

Bibliography.

1823.-Hasselt, J. C. van.-Uittreksel uit een' brief van Dr. J. C. van Hasselt aan Professor van Swinden. Algemeene Konst-en Letter-bode, 1893, ii Deel, p. 230.
1824.-Peron, F.-Voyage de Découvertes aux Terres Australes; sur les Corvettes Le Geographe, Le Naturaliste, et la Goëlette le Casuarina, pendant les années 1800-04.
1824.-Quoy et Gaimard.- Voyage autour du monde, exécuté sur les Corvettes de S. M. l'Uranie et la Physieienne pendant les années 1817-20.
1826-30.-Duperrey, L. I.-Voyage antour du monde, exécuté par ordre du Roi, sur la Corvette La Coquille, pendant les années 18:2-25.
1842.-Pfeiffer, L.-Symbolae ad Historiam Heliceorum, ii, p. 17.
1847.-Traill, W.-A few remarks on Conchology and Malacology. Journ. of the Indian Archipelago and Eastern Asia, i, p. 225.
1849.-Mousson, A.-Die Land-und Susswasser-Mollusken von Java.
1839.-Beechey, F. W.-The Zoology of Captain Beechey's Voyage, during a voyage to the Pacific and Behring's Straits, performed
in H.M.S. Blossom, in the years 1825-28. Reptiles, Batrachians and Mollusea, by J. E. Gray.
1846-54.-Dumont d'Urville, J. S. C.-Voyage au Pole Sud et dans l'Oceanie sur les Corvettes l'Astrolabe et la Zélée, exécuté par ordre du Roi pendant les amnées 1837-40. Zoologie par Hombron et Jacquinot.
1841-52.-Eydoux et Souleyet.-Voyage autour du Monde exécuté pendant les amnées 1836 et 1837 , sur la Corvette La Bonite.
1844.-Belcher, Sir E.-The Zoology of the Voyage of H.M.S. Sulphur, during the years 1836-42. Mollusca by R. B. Hinds.
1830-33.-Dumont d’Urville, J.-Voyage de découvertes de l'Astrolabe, exécuté par ordre du Roi, pendant les années, 1826-29. Zoologie par Quoy et Gaimard.
1848.-Belcher, Sir E.-The Zoology of the Voyage of H.M.S. Samarang, during the years 1843-46. Mollusea by A. Adams and Lovell Reeve.
1850.-Junghuhn, Frans.-Java, deszelfs Gedaante, bekleeding, en inwendige structurr. Deel I, p. 464.
1852.-Shuttleworth, R. J.-Diagnosen neuer Mollusken. Mitth. Naturf. Ges., Bern, 1852, p. 193.
1852.-Albers, J.-Neue Heliceen. Zeit. für Malak., ix, p. 186.
1854.-Pfeiffer, L.-Ueber Helix pileus, Mull., und einige nahe Verwandte Formen. Malak. Blätt., i, p. 56.
1859.-Zollinger, H.-Nieuwe Land en Zoetwater Mollusca. Natuurk. Tijdschr. voor Nederl. Indie, xviii, p. 423.
1862.-Martens, E. von.-Ueber Land-und Strandschnecken der Molukken. Malak. Blätt., x, p. 68.
1862.-Martens, E. von.-Ueber die Landschnecken der Molukken. ii. Amboinagruppe. Op. cit., p. 105.
1862.-Martens, E. von.-Ueber die Landschnecken der Inseln Östlich von Java. Op. cit., p. 169.
1864.-Martens, E. von.-Diagnosen neuer arten von Heliceen aus dem Indischen Archipel. Mon. Ber. Kön. Akad. Wiss., Berlin, 1864, p. 264.
1865.-Wallace, A. R.-List of the Land Shells collected by Mr. Wallace in the Malay Archipelago, with descriptions of the New Species by Mr. Henry Adams. Proc. Zool. Soc., 1865, p. 405.
1867.-Martens, E. von.-Die Preussische Expedition nach Ost-Asien. Zooligischer Theil, Band ii, Die Landschnecken, p. 99.
1867.-Novara.-Reise der österreichischen Fregatte Novara um die Erde in den Jahren 1857, 1858, 1859 ; Mollusken von G. R. von Frauenfeld.
1873.-Stoliczka, F.-On the Land Shells of Penang Island, with descriptions of the Animals and Anatomical Notes. Part 2, Helicacea. Journ. Asiat. Soc. Bengal, xlii, part 2, p. 11.
1874.-Tapparone Canefri.-Contribuzioni per una Fauna Malacologica delle Isole Papuane. Ann. Mus. Civ. Genova, vi, p. 548.
1874.-Issel, A.-Molhuschi Borneensi. Ann. Mus. Civ. Genova, vi., p. 336.
1877.--Martens, E. von.-Uebersicht der während der Reise um die Erde in den Jahren, 187t-1876, auf S.M. Sehiff ('azelle gesammelten Land-und Süsswasser Mollusken. Mon. Ber. Kön. Mkad. Wiss., Berlin, 1877, p. 261.
1879.- C'rosse, H.-Mollusques Nouveaux de Perak. Journ. de Coneh., xxvii, p. 198.
1879.-C'rosse, H.-F'aune Malacologique de Perak. Op. cit., p. 336.
1879.-Godwin-Austen, H. H.-Descriptions of Shells from Perak. Proc. Zool. Soc., 1879, p. 734.
1881.-Bock, Carl.-List of Land and Freshwater Shells collected in Sumatra and Borneo. Proc. Zool. Soc., 1881, p. 628.
1883.-Tapparone Canefri.-Tntorno ad alcuni Mollusehi terrestri della Molueche, e di Selebes. Am. Mus. Civ. Genova, xx, p. 143.
1883.-Martens, E. von.-Conchylien von Salanga. Conch. Mitth., ii., p. 129.
1884.-Smith, E. A.-An account of the Land and Fresh Water Mollusea during the voyage of the " Challenger," from Deecmber, 1872, to May, 1876. Proc. Zool. Soc., 1884, p. 258.
1885.-Martens, E. von.- Einige neu erworbene Conehylien aus dem Zoologischen Museum. Sitz. Ber. Ges. Naturf. Fr. Berlin, 1885, p. 190.
1885.-Morgan, J. de.-Note sur rquelques espèees nouvelles de Mollusques terrestres recueillis dans la Peninsule Malaise. Le Naturaliste, 1885 , p. 68.
1885.-Morgan, J. de.-Mollusques terrestres et fluviatiles du Royaume de Perak et des pays voisines. Bull. Soc. Zool. Fr., x, p. 353.
1886.-Martens, E. von.-Einige Land-und Suisswasser-Schnecken von Celebes. Sitz. Ber. Ges. Naturf. Fr., Berlin, 1886, p. 112.
1886.-Möllendorff, O. von.-The Land Shells of Perak. Journ. Asiat. Soc. Bengal, 1r, part 2, p. 299.
1887.-Möllendorff, O, von.-Landschnecken von der Insel Bongao, ete. Jahrb. Deutseh. Malak. Ges., 1887, p. 284.
1887.-Schepman, M. M.-Reisen in Midden-Sumatra, iv., p. 20, Mollusea.
1887.-Smith, E. A.-Descriptions of some New Species of Land Shells from Sumatra, Java, and Borneo. Ann. and Mag. Nat. Hist. (5), xx, p. 130.
1887.-Smith, E. A.-Deseription de quelques espèces de coquilles terrestres de Sumatra, Java, et Borneo. Am. Soc. Roy. Malac. Belg., xxii, p. 215.
1887.-Smith, E. A.-Report on a Zoological Collection made by officers
of H.M.S. " Flying Fish," at Christmas Island, Indian Ocean. Proc. Zool. Soc., 1887, p. 517.
1888.-Smith, E. A.-On the Terrestrial Mollusks of Christmas Island. Proc. Zool. Soc., 1888, p. 536.
1888.-Tenison-Woods, J. E.-Malaysian Land and Freshwater Mollusca. Proc. Limn. Soc., N.S.W. (2), iii, p. 1003.
1889.-Dohrn, H.-Beitrag zur Conchylienfauna des Philippinischen Insel Palawan. Nachr. Deutsch. Malak. Ges., 1889, p. 53.
1890.-Ancey, C. F.-Mollusques terrestres de l'Archipel Sanghir. Bull. Soc. Malac. Fr., vii, p. 145.
1890.-Boettger, O.-Ad. Strubell's Konchylien aus Java, i. Abh. Senck. Naturf. Ges., 1890, p. 137.
1891.-Boettger, O.-Ad Strubell's Konchylien aus Java, ii. und von den Molukken. Abh. Senck. Naturf. (ies., 1891, p. 241.
1891.-Godwin-Austen, H. H.-On a Collection of Land Shells made in Bornco, by Mr. A. Everett, with descriptions of supposed New Species. Proc. Zool. Soc., 1891, p. 21.
1891.-Martens, E. von.-Landschneeken des Indischen Archipels; in "Dr. Max Weber, Zoologische Ergebnisse einer Reise in Niederländisch Ost-Indien," ii, p. 209.
1891.-Möllendorff, O. F. von.-On the Land and Fresh Water Shells of Perak. Proc. Zool. Soc., 1891, p. 330.
1892.-Möllendorff, O. F. von.-Die Landschnecken-fanna der TenimberInseln (Timorlaut). Nachr. Deutsch. Malak. Ges., 1892, p. 81.
189:.-Schepman, M. M.-Land and Fresh Water Shells collected by Dr. H. ten Kate in Soemba, Timor, and other East Indian Islands. Notes from the Leyden Museum, xiv, p. 145.
1892. - Strubell, Bruno. - Landschnecken aus Halmahera. Nachr. Deutsch. Malak. Ges. 1892, p. 41.
1893.-Schepman, M. M.-On a Collection of Shells from the Moluccas. Notes from the Leyden Museum, xv, p. 147.
1893.-Smith, E. A.-On a small Collection of Land Shells from Palawan and Balabac. Amm. and Mag. Nat. Hist. (6), xi, p. 347.
1893.-Smith, E. A.-Descriptions of new Species of Land Shells from Borneo. Journ. Linn. Soc., Zoology, xxiv, p. $3 \not 41$.
1894.-Martens, E. von.-Mollusken, in "Semon, Zoologische Forschungsreisen in Australien und dem Malayischen Archipel, v. Jenaische Denkschriften, viii, p. 83.
1894.-Müllendorff, O. F. von.-Zur Molluskenfauna der Sulu-Inseln. Nachr. Deutsch. Malak. Ges., 1894, p. 205.
1894.-Möllendorff, O. F. von.-On a Collection of Land Shells from the Samui Islands, Gulf of Siam. Proc. Zool. Soc., 1894, p. 146.
1894.-Smith, E. A.-On the Land Shells of the Sulu Archipelago. Ann. and Mag. Nat. Hist. (6), xiii, p. 48.
1894.-Smith, E. A.-On the Land Shells of the Natuna 1slands. Op. cit., p. 453.
1894.-Smith, E. A.-A visit to Damma Island. Land and Fresh Water Shells. Ann. and Mag. Nat. Hist. (6), xiv, p. 59.
1895.-Collinge, W. E. and Godwin-Austen, H. H. - On the Structure and Affinities of some New Species of Mollusea from Borneo. Proc. Zool. Soc., 1895, p. 41 .
1895.-Kobelt, W.-Helix (Phania) Kükenthali, n. Nachr. Dentsch. Malak. Ges., 1895, p. 34.
1895.-Schepman, M. M.-The Mollusea of the Dutch Scientific BorneoExpedition. Notes from the Leyden Museum, xvii, p. 145.
1895.--Smith, E. A.-On a Collection of Land Shells from Sarawak, British North Borneo, Palawan and other neighbouring islands. Proc. Zool. Soc., 1895, p. 97.
1896.-FFulton, H.-A list of the species of Amphidromus, Alb., \&e. Ann. and Mag. Nat. Hist. (6), xvii, p. 66.
1896.-Fulton, H.-Descriptions of New Species of Nanina, Helix: Amphidromus, and Porphyrobaphe. Ann, and Mag. Nat. Hist. (6), xviii, p. 100.
1896.-Martens, E. von.-Land- und Susswasser-Schneeken von den Inseln Lombok und Boneratu. Sitz. Ber. Ges. Naturf. Fr. Berlin, 1896, p. 157.
1896.-Möllendorff, O. F. von.-Binnenmollusken von den Talaut Inseln. Abh. Zool. Museums, Dresden. vi, No. 4, p. I.
1896.-Möllendorff, O. F. von.-Landschnecken von Celebes. Nachr. Deutsch. Malak. (res., 1896, p. 133.
1896.-Smith, E. A.-On a Collection of Land Shells from the Islands of Selayar, Jampea, and Kalao. Ann. and Mag. Nat. Hist. (6), xviii, p. 144.
1896.-Smith, F. A.-On a Collection of Land Shells from South Celebes. Proc. Nalac. Soc., ii, p. 94.
1896.-Smith, E. A.-A List of the Land Shells of the Islands of Batchian, Ternate, and Gilolo. Op. cit., p. 120.
1897.-Collinge, W. E.-Descriptions of Two New Species of Slugs of the Genus Parmarion from Borneo. Proc. Zool. Soc., 1897, p. 778.
1897.-Dall, W. H.-Note on Land Shells from the Malay I'eninsula. Nautilus, xi, p. 37.
1897.-Fulton, H.-Descriptions of Two New Species of Amphidromus. Ann. and Mag. Nat. Hist. (6), Nx, p. 211.
1897.-Kobelt, W.-Schnecken von N.O. Celebes und Banggai. Abh. Zool. Mus. Dresden, vi, No. 5, p. I.
1897.-Kobelt, W.-Land- und Süsswasser-Konchylien ; in "Kükenthal ii, Reiseergebnisse." Abh. Senck. Naturf. Ges., xxiv, p. I9.
1897.-Möllendorff, O. F. von.-Neue Landschnecken von Java. Nachr. Deutsch. Malak. Ges., I897, p. 57.
1898.-Aldrich, T. H.--Notes on some Land and Freshwater Shells from Sumatra, with descriptions of New Species. Nantilus, xii, p. 1.
1898.-Henderson, John B., jr.-A List of Land and Freshwater Shells of Engano, with descriptions of New Species. Nautilus, xii, p. 13.
1898.-Martens, E. Von.-Drei Nene Arten von Landsehnecken. Sitz. Ber. Ges. Naturf. Fr., Berlin, 1898, p. 160.
1898.-Möllendorff, (). von.- Verzeichniss der auf den Philippinen lebenden Landmollusken. Abh. Naturf. Ges. Görlitz, xxii, p. 26.
1898.-Smith, E. A.-A List of the Land Shells of the Island of Lombock, with descriptions of New Species. Proc. Malac. Soc., iii, p. 26.
1898.-Wiegmann, F.-Kükenthals Reiscergebnisse, Land Mollusken, Zootomischer Theil. Abh. Senek. Naturf. Ges., xxiv, p. 289.
1899.-Dautzenberg, Pl.-Contribution à la Faune Malacologique de Sumatra. Ann. Soe. Roy. Malac. Belg., xxxiv, p. 3.
1899.-Fulton, H.-A List of the Species of Land Mollusca collected by Mr. Doherty in the Malay Archipelago, with descriptions of some supposed New Species and Yaricties. Proc. Malac. Soc., iii, p. 212.
1899.-Martens, F. von.-Neue Landsehnecken aus NiederlandischIndien. Areh. für Naturg., lxv, p. 27.
1899.-Möllendorff, O. F. von.-Landschnecken von der Insel Dammer. Nachr. Deutsch. Malak. Ges., 1899, p. 155.
1899.-Ponsonby, J. H.. and Sykes, E. R.-On Planispira (Cristigibba) Buruensis, n.sp., cte., from the Island of Buru. Proc. Malac. Soc., iii, p. 307.
1899.--Sarasin, P. and F.-Die Land-Mollusken ron C'elebes.
1899.-Smith, E. A.-Diagnoses of New Species of Land Shells from the Jslands of Flores, Sumbana, and Sumba. Ann. Mag. Nat. Hist. (7), iii, p. 409.
1899.--Smith, F. A.-Description of Hemiplecta Floweri, n.sp. from Perak. Op.cit., p. 284.
1899.-Smith, E. A.-List of Mollusea from Kina-Balu. Rep. Raffles Libr. and Mus. Straits Settlem., 1899, p. 6.
1900.-Hanitsch, R.-An Expedition to Mount Kina-Balu. Journ. Straits Branch Roy. Asiat. Soc., xxxiv, p. 49 (Mollusea, p. 76).
1900.-Martens, E. von.-Ueber Land- und Süsswasser-Schnecken aus Sumatra. Nachr. Deutseh. Malak. Ges., 1900, p. 3.
1900.-Smith, E. A.-Mollusca, in Charles W. Andrews' "A Monograph of Christmas Island (Indian Ocean)." p. 54.
1901.-Collinge, W. E.-.-On the Anatomy of a Collection of Slugs from N.W. Borneo, ete. Trans. lioy. Soc. Edinb., xl, part ii. p. 295.
1901.-Fulton, H.-Descriptions of New Species of Xesta, Amphidromus, etc., from Madagascar and Perak. Journ. Malac., viii, p. 103.
1902.-- Collinge, W. F.- On the Non-Opereulate Land and Freshwater Molluses, collected by the Nembers of the "Skeat Expedition" in the Malay Peninsula, 1899-1900. Journ. Malac., ix, p. 71.
1902.-Dautzenberg, Plı.-Description de Mollusques nouveaux provenant de l'ile Obi (Moluques). Le Saturaliste, xxis, (published Nov. 1, 1902), p. 21.
1902.-Martens, E. von.-Dic I!ollusken (Conchylien) und die übrigen wirbellosen Thiere im Rmmph'schen Rarität Kammer, in " Rumphius Gedenkboek," Koloniaal Museum, Haarlem.
1902.-Möllendorff. O. F. von.-Binmemollusken aus Perak. Nachr. Deutsch. Malak. Ges.. 1902, p. 161.
1902.-Möllendorff, O. F. von.-Landschnecken von Kelantan. Op. cit., p. 135.
1902.-Möllendorff, O. I' von.-Binnemmollusken ats NiederlandischIndien: 1, Obi-Inseln. Op. cit., p. 185 (published Oct. 23rd, 1902). 2. Insel Buru. Op. cil., p. 196. 3, Insel Kaledupa und Tomia der Tukan-Bessi-Gruppe und Insel Buton. Op. cit., p. 202.
1903.-Dautzenberg, Ph.- Contribution à la Faune Malacologique terrestre et d'eau donce des Iles Obi pt Iolo. Journ. de Conchyl., li, p. 5.
1903.-Möllendorff, O. von.-Nene Landschmecken von Niederlandisch Indien. Nachr. Deutsch. Malak. Ges., 1903. p. 156.
1903.- Rolle, H.-Einige neue Binnenmollusken von den Molukken. Nachr. Deutsch. Malak. Ges., p. 23.
1903.-Rokle, H.-Neue Amphidromus - Formen. Nachr. Deutsch. Malak Ges., 1903, p. 156.
1903.-Sykes, E. R.-Descriptions of New Land Shells from the AustroMalayan Region. Journ. Malac., x, p. 64
1903.-Sykes, E. R.-Notes on, with illustrations of, Austro-Malayan Land Shells. Op. cit.. p. 78.

ON A SMALL COLLECTION OF MARINE SHELLS FROM SURPRISE ISLAND.

By E. R. SIKES, R.A., F.L.Ś.

Recently I received, through the kindness of Mr. H. Suter, some shells which, he stated, " were collected at Surprise Island (Huon Group, N.W. of New Caledonia, $\left.18^{\circ} 3 \mathrm{I}^{\prime} \mathrm{S} ., 163^{\circ} 8^{\prime} \mathrm{E}.\right)$, where Guano is taken and brought to Aurkland." The shells are dead, and many of them are not in good condition ; while, therefore, a list of the species identified is of considerable interest from the point of view of the student of mollusean distribution, it appears wiser to refrain from describing any new forms, even though names cannot be given to several of the species.

I have, therefore, given a bare catalogue, with a few notes at the close of the list.
*1. Siphonaria sp.
2. Solidula sulcata (Gmel.).
3. Tornatina olivula, Adams.
4. Atys naucum (L.).
5. Atys debilis, Pease.
6. Haminea cairnsiana, M. and St.
*7. Conus sp.
8. Cithara apicalis (Montrz.).
9. Cithara reeveana (Desh.).
10. Cithara angiostoma, Pease.
*11. Drillia sp.
*12. Drillia sp.
*13. Ancilla sp.
*14. Marginella lifouana, ('rosse. (?)
*15. Marginella caledonica, Jouss. (?)
16. Pisania fasciculata, Reeve.
17. Sistrum tubereulatum, Blvlle., var.
18. Columbella marquesana, Gask.
19. Columbella plicaria, Montrz.
20. Columbella cumingi, Rve. var.
21. Columbella varians, Sby.
22. Columbella poecila, Sby.
23. Columbella discors, Gimel.
*24. Colubraria sp.
25. Cypraea coffea, Sby.
26. Cypraea limacina, Linn.
27. Cypraea cicercula, Linn.
28. Terebellum subulatum, Lam.
29. Cerithium piperitum, Sby.
*30. Cerithium novae-hiberniae, Ad. (?)
*31. Cerithium zebrum, Kiener.
32. Cerithium (?) sinon, Bayle (clathrata, A.Ad.).
33. Planaxis cingulatus, Ad.
34. Littorina undulata, Gray.
35. Torinia cylindraceum (Chemn.).

[^29]36. Torinia variegatum(Gmel.).
37. Capulus incurvus (Gmel.).
38. Scala sp.
39. Nerita novae-guin ae, Lesson.
40. Nerita albicilla (L.).
41. Clanculus thomasi, Crosse.
42. Clanculus stigmatarius, A . Ad.
43. Chrysostoma paradoxum (Born.). (!)
44. Euchelus ampullus, Tate.
*45. Stomatella sanguinea, Ad.
46. Haliotis sp. juv.
*47. Glyphisnigriradiata (Rve.).
48. Psammobia pennata, Desh.
49. Cryptodon bullula, Rve.
50. Tellina robusta, Hanley.
51. Tellina obliquaria, Desh.
*.5. Tellina sp.

N()TES.

1. May be a young S. sipho, Sby.
2. Probably the young of C^{\prime}. glans, Hwass.

11, 12. Two species, in poor condition, which I am unable to identify.
13. Probably a new species, white with a chalky zone at the suture, and smooth : recalling in form A. sinensis, Sby., as figured in the "Thesaurus.' It differs from A. tricolor in colour, and is also more elongate.
14. Worn, with no trace of the coour markings and a trifle more slender than the typical form.
15. More compressed at the base and with a narrower mouth; it is a marked variety, and may prove to be a species.
24. Very close to C. reticosa, Ad., but may be a new species.
30. Only one specimen, and immature, but I am mable to separate it from this species.
31. See Vignal's careful study of this species (Journ. d. Conchyl., vol. li, p. 21); the form found appears to belong to his variety attenuata.
45. Both S. notata, Ad., and S. speciosa, Ad., are mere varieties.
47. Typical specimens of this shell, which was deseribed without any locality being given, and is, I think, distinct from G. ruippellii, Sby., with which it has been united.
52. A single small specimen, which appears to belong to a new species; allied to T. sericata, Melvill.

PROCEEDINGS OF THE MIDLAND MALACOLOGICAL SOCIETY.

President-Walter E. Collinge, M.Sc.
Vice-President-E. R. Sykes, B.A., F.I.S.
Honorary Members-Di. Henry Fiseher, Prof. I. Plate, Prof. W. C. M'Intosh, M.D., LL.D., F.R.S., Prof. H. Simroth, Prof. H. A. Pilsbry, Sc.D., and Edgar A. Smith, I.S.O.

Treaswer-H. H. Bloomer.
Librarian and Curator-(iuy Breeden.
Council-Guy Breeden, H. Willoughby Ellis, F.E.S., H. McClelland, and Bromley Peebles.

39 tif (Anntal) Meeting, December 12 tif, 1902.
The President in the ehair.
The Annual Report of the Council and the Treasurer's statement were read and arlopted.

The Secretary reported that, as no amendments hal been reeeived to the Council's nominations, the abore-mentioned Council and officers were elected for 1903.

Eximbits.

On behalf of Professor T. D. A. Cockerell, the following shells were shown and distributed amongst the members present:-Astmunclla hyporhyssa v . etentata, Ckll., from Cloud Croft, New Mexieo; A. thomsoniana v. porterce, Pils. and Ckll. ; Vallonia cyclophorella, Ancey ; Pupa blanti, Mosse ; Pyramidula cockerelli, Pils., all from Beulah, N.M. By Mr. Breeden. Speeimens of Amphipeplea glutinosa from the River Bann, Ireland, and sinistrose examples of Itelix nemoralis, from Belfast.

40 th Meeting, Jandari 9th, 1903.
The President in the chair.
Papers Read.
Some notes on the young of Helicigona lapicida (L.). By Walter E. Collinge. Exuibits:

The President exhibited a series of examples of Helicigona lapicida (L.), illustrating the various stages of development from the very young to the adult; also a malformed specimen.

By Mr. Breeden : Darts of IIclix ncmoralis.

41st Meeting, February 13th, 1903.

The President in the chair.
The evening was devoted to the cxamination of a large serics of Asiatic Land Mollusea.

42nd Meetisg, Mircii 13th, 1903.

The President in the chair.
The following nomination for membership was read :-Rev. A. Hann.
Papers Read.
Review of Dr. Ridewood's recent paper on the Structure of the Gills of the Lamellibranchia, by A. D. Imms ; On the Generative Organs of Helicella barbaia (L.). by H. Overton.

Exhibits.

By Mr. Bloomer: Teredo fimbriata, Jeff., from Southport; T. megotara, Han., from Guernsey, and the variety subericola, Jeff., from Jersey ; T. norvegica, Spengler, from Torbay ; T. navalis, L., from Yarmouth, and its variety occlusa, T. pedicellata, Quatref., from Alderney, and Nylophaga dorsalis, Turton. from the West of Ireland.

By Mr. Overton: Teredo megotara, Han., from Ilfracombe; T. norvegica, Spengler, from Deal, and pieces of timber from Deal, with holes in made by the latter species. He also exhibited an example of Helix aspersa with the winter epiphragm in situ.

$$
\text { 43rd Meeting, April 17tif, } 1903 .
$$

The President in the chair.
In the absence of any demand for a ballot, the Rev. A. Hann was unanimously elected a member of the Society.

Exhibits.

By Mr. H. McClelland: A very fine series of shells of Achativa zebra, Lam., and other land shells reeently colleeted in South Africa.

By Mr. H. Overton: A series of banded forms of Itelix pomatia, from Charing, Kent.

44 th Meetivg, May 8th, 1903.
The President in the chair.
Paper Read.
Classification of the British species of the genus Solen, L., by H. H. Bloomer

Exhibits.

Mr. H. McClelland sent specimens of J^{\prime} cronicella natalensis, Rapp., and Urocychus faveseens, Kfst., from Durban.

By Mr. Overton : A series of varieties of Helix hortensis and nemoralis, from Christchurch, Kent, etc.

By Mr. Breeden: Helix nemoralis, H. hortensis, Caecilioides acicula, Vitrea rogersi, cellaria, nitidula, Zonitoides nitidus, and Cochlicopa lubrica var. pellucida, all from Looe, Cornwall.

45 th Meeting, June $12 \mathrm{th}, 1903$.
The President in the chair,

Exilibits.

By the kindness of Professor T. W. Bridge, Sc.D., F.R.S., the members were invited to devote the evening to an examination of a series of drawers from the "Archer Collection" in the University Muxeum. The following families were illustrated:-Solenidne, Clavagellidac, and Teredinidae.

46 th Meeting, October 9tif, 1903.
The President in the chair.

Exhibits.

By the President: Specimens (in alcohol) of Apera burnupi, E. A. Sm., A. gibbonsi, W. G. Binn., and two other specimens of A pera, all from Zululand; three species of Urocyclus and three of Veronicella, also from Zululand.

By Mr. Overton: Helix aspersa, nemoralis and hortensis, Hclicigona arbustorum. Hygromia rufescens, Vallonia pulchella, Pyramidula rupestris, and Ena obscura and montana, all from Birdlip.

On behalf of Mr. H. MeClelland, 43 boxes of Patella, Helcion, and Fissurella, from South Africa, were shown.

CURRENT LITERATURE.

Pilsbry, Henry A.-Tryon's Manual of Conchology, ser. ii, vol. xvi (pt. 61), pp. 1-64. pls. 1-18. Philadephia : Academy of Natural Sciences.
Dr. Pilsbry commences volume xvi with an account of the genus Anoma, Albers, cnumerating twenty species and twenty-two varieties, of which the following are new : A. adamsi, A. jarvisi, A. nitens (Chitty), v. simpsoni, A. levis (C.B.Ad.). v. balteata, and A. nigrescens (C.B.Ad.), v. leucostoma. There is a useful " Key to Species," and many of the forms are figured for the first time.

Passing next to the genus Brachypodella, Beek (Type B. antiperversa), a short account is given of the anatomy. The generative organs are similar to typical Urocoptis. In B. chemnitziana and agnesiana the penis is moderately developed, with the vas deferens and retractor muscle apical. The vagina is at least as long as the penis. The receptaculum seminis is sub-globular, and its duet long and slender. In the viviparous B. chemnitziana the uterus (the oviducal portion of the common duet) is capacious. The pharyns and salivary glands are similar to those in Urocoptis. but the radular sheath is enormously lengthened, stretching far into the visceral cavity. The free retractor muscles are also not unlike those in Urocoptis, only they are united further at the proximal end.

There is no character of the shell common to all the forms of Brachypodella, which will serve to separate the genus from all forms of Urocoptis.

A key, founded upon shell-characters, to the various sub-genera of the genus is given, and a new sub-genus Brevipedella (type B. imitatrix, n.sp.), is described, then follow the following sub-genera: Amphicosimia, Pils. and Van., Stroplina, Mörch, with B. latterradii (Grat.), v. strophina. nov., Liparotes, Pils., Siphonoluemus, Pils., and Gyraxis, Pils., with B. gouldianu (Pfr.), v. sericata, nov.
Kunkel, Karl.-Zuchtversuche mit linksgewundenen Weinbergschnecken (Helix pomatia). Zool. Anz., 1903, Bd. xxvi, pp. 656-664.

As a result of a series of experiments upon the propagation of sinistral Helix pomatia, the author finds that after waking up from their winter sleep they absorb a large quantity of water, equal to about an increase of $40-48 \%$. Under favourable conditions they then proceed to copulate, and again after the eggs have been laid. The young snails copulate in their first year. Darts are not absolutely necessary for copulation. As a rule H. pomatio copulates during, or after, warm rain and under favourable conditions eggs are laid twice in the same summer, on the other hand many do not lay eggs in the same summer. The laying of eggs takes place from the middle of June to the middle of August, and almost always after the warm rain. (iiven moderate moisture and warmth nearly all the eggs develope after about 25 or 26 days, and for $8-10$ days remain in the earth, leaving it when rain falls. If the cggs de relope under pressure, flat forms arise, but no sinistral ones, and normal growth ensues when the pressure ceases. Sinistral specimens produce dextral ones. Given warmth, moisture and food, the suails are active until the end of November.
Nierstrasz, H. F.-Neue Solenogaitren. Zool. Jahrb. (Abth. f. Morph.), 1903, Bd. 18, pp. 359-386, Т. 35. 36.
Dr. Nierstrasz describes three new species of Chactoderma, viz., challengeri, normumi, and canadense. alio Uncimenia neapolitana, gen. et sp. nov.
Murdoch, R.-On the Anatomy of Paryphanta busbyi. Gray. Trans. N.Z. Inst., 1902 , vol. xxxy, pp. 258262 , pl. xxvii.
An account of the anatomy of P'aryphanta busbyi, Gray, has long been looked forward to, and Mr. Aurdoch is to be congratulated on having at last obtained an example of the interesting molluse.

The alimentary canal. so far as it is described and figured, does not appear to differ much from that of P. hochstetteri, Pfr., and the same may be said of the kidney, lung, and pedal gland. The buccal mass and pedal retractors are fused together posteriorly, where they unite with the columella of the shell. The buceal retractor is a broad, powerful. band, lying on the dorsal side of the pedal muscles, branching from the latter are the ocular retractors, which bifurcate towards the anterior ends. The pedal retractors are continuously attached to the foot.

The generative organs differ from the condition which obtains in P. hochstetteri, Pfr.. P. eduardi, Suter, and P. urnula, Pfr., in the extreme reduction of the male organs, and the absence of a receptaculum seminis, and exhibit a remarkable resemblance to the generative organs of Schizoglossa novoseclundica, Pfr.
Melvill, J. Cosmo and Standen, R.-Descriptions of Sixty-eight new Gastropoda. from the Persian Gulf, Gulf of Oman, and North Arabian Sea, dredged by Mr. F. W. Townsend, of the Indo-European Telegraph Service, 1901-1903. Ann. and Mag. N. H. (s. 7), vol. xii, pp. 289-324, pls. xx-xxiii.
Two years ago the authors published the first part of a Catalogue of the Mollusca of the Persian Gulf, etc., enumerating 935 species, of which 77 were new ; to this they now atd 68 new Gastropoda.

Most of the specimens are of small size, thongh a few-e.g., Murex marjoriae, Trichotropis pulcherrima, and the superb Pleurotoma navarchus-are more conspicuous. Special mention may be made of the two new species of Homalaxis, a Fluxina, the first recorded from the Old World, a curious Rissoina (registomoides), a new species of Mctula and many Pleurotomidae, while the occurrence of Kleinella sympiesta, adds a new genus to this region.

Sykes, E. R.-The Zoologieal Record, 1902, vol. xxxix. Division vii. Mollusea. pp. 85. London, 1903.
Mr. Sykes, assisted by Mr. E. A. Smith, again presents us with another year's valuable record, and we should like to direct the attention of all Malacologists to the fact that the Division treating of the Mollusca may now be obtained separately, and at a trifling cost.

Kunkel, Karl.-Zur Locomotion unserer Nachtschnecken. Zool. Anz., 1903, Bd. xxvi., pp. 560-566.
The author's observations on the locomotion of slugs eorroborate Simroth's view, that the species of Arion are slower and more sluggish than the speeies of Limax. His experiments lead him to the following conclusions : a. In decapitated slugs the wave-play does not only remain in the foot, but also in the excised pieces. The explanation of this phenomenon is due, as pointed out by Simroth, to the fact that, " the ganglia in the meshwork of the pedal musculature are sympathetic, and the wave-play is automatic. b. If the wave-play has ceased in individual pieces, it is possible to set these going again by mechanical and light stimuli. The stimulus probably being conducted through certain nerve fibres comnecting the ganglia in the pedal nerve-network with the integumentary nerve cells. c. In the individual pieces of Arion meehanical stimuli produced energetic contraction, while light stimuli produced the wave-play. d. The pieces of Limax exhibited a stronger wave-play. e. If the slugs are divided into three or more parts, the middle piece exhibits less power of movement than the head and tail-pieces. f. Pieces of the head and tail of Limax divided into smaller pieces move more quickly than uninjured animals. g. The young Limaces move more quickly than the adults.

Sykes, E. R.-Notes on some British Eulimidae. Proc. Malac. Soc. Lond., 1903, vol. v, pp. $348-353$, pl. xiv.
All who have at any time attempted the identification of the smaller forms of British Eulima, know how very difficult it is to arrive at a satisfactory decision ; such will welcome Mr. Sykes' timely notes and figures.

A new species is described and figured, E. collinsi, from Guernsey. This is the E. incurva var. monterosatoi of Mr. J. T. Marshall. E. platyacme, n. nom., for E. solida, Jeffreys, should also be noted.

Sykes, E. R.-On the Land Operculate Mollusca collected during the "Skeat Expedition ?? to the Malay Peninsula in 1899-1900. Proc. Zool. Soc. Lond., 1903, pp. 194-199, pl. xx.
The author records 23 species, of which 8, and 1 variety, are new, viz., Lajochilus kobelti, Ditropis cavernae, Pterocyclos subalatus, Rhiostoma jalorensis, Rhaphaulus ascendens, R. perckensis, Smith, var. jalorensis. Opisthostoma annandalei, Diplommatina skeati, and D. laidlawi.

Baker, F. C.-Rib Variation in Cardium. Amer. Nat., 1903, vol. xxxvii, 481-488, figs. 1-7.
Mr. Baker has studied the rib variation of Cardium rodustum, isocardia and muricatum, and finds that robustum is the least variable and muricatum the most, C. isocardia standing midway between these two species. He is of opinion that the number of ribs is not a safe character upon which to found species.

Woodward, B. B.-List of British Non-Marine Mulhsea. Journ. Conch., 1903, vol. 10, pp. 352-367.
Mr. Woodward is to be congratulated upon the publication of, and malaeologists in at last possessing, a List free from personal bias, and one which is stamped with a genuine attempt to deal in a scientific manner with the many difficulties surrounding such a task.

Whether one agrees or disagrees with the author in all points, but few will be found who will not weleome a List free from the burden of varieties, subvarieties, mutations, monstrosities, ete., and one in which the nomenclature is at least in keeping with that adopted by malacologists throughout the world.

The List is accompanied by cleven pages of explanatory notes, and shoukd be in the hands of every malacologist who takes an intelligent interest in the British Non-marine Mollusea.

Davis. J. R. A. and Fleure, H. J.-Patclla (The Common Limpet.) L.M.B.C Memoirs, 1903, vol. x, 76 pp., 4 pls.

The authors are to be congratulated on the completion of this interesting memoir, whieh brings together in a very eoncise manner the leading struetural features of Patclla vulgata. So much has been written upon the anatomy of this speeies, that it was searcely to be expected that any important discoverics would be made, still the authors believe the following points to be new: (1) A lateral glandular streak has been found along each side of the foot of young specimens : resembling that found in Vacelle and its allies. (2) A museular zone, to which the term internal pallial zone is applied, has been found extending in the mantle between the tips of the shell muscle. (3) The structure of the Crop, and inferences consolidation of the visecral hump. (4) The respiratory function of the nuchal cavity as regards damp air. (5) Discussion of the evolution of the present topographical relations of rectum, kidneys, pericardium and heart. (6) Details of mantle innervation and pallial tentacles.

The reproduction of the figures is poor, they would prove much more useful if in the text and if, in some eases, they were larger. An almost entire absence of referenees to the literature, seriously detracts from the value of the work, besides being seareely fair to previous workers.

Dall, W. H.-Synopsis of the family Astartidue, with a revicw of the Ameriean species. Proc. U.S. Nat. Mus., 1903, vol. xxvi, pp. 933-951, pls. lxii-lxiii.
The Astartidae are an ancient group of molluses, from which the Crassatellitidue have diverged in the later Mesozoic and taken definite form in the Eocene. The two families are chiefly diseriminated by the character of the ligament, which in the former family is external as well as the resilium, while in the Crassutellitidac it is separated from the resilium, which, excepting in Eriphyla, is deeply immersed. It would seem that each family has an exceptional and peripheral group. Thus in Eriphyla the process of immersion of the resilium has only begun, but the remaining eharacters of the shell are so close to Crassinella, that the two must obviously be associated in the same family. On the other Land, in Lirodiscus of the Astartidae, the resilium is separated from the ligament, but still remains external, while the other characters link it to Astarte similarly to those which bind Eriphy'a to Crassinella.

Lists of the species of the Eastern and Westem coasts are given and reviewed, and six new species deseribed.

Sturany, R.-Gastropoden des Rothen Meeres. Denk. Akad. Wien, 1903. Bd. Ixxiii, pp. 209-283. Tfn. i-vii.
In a valuable and interesting paper Dr. Sturany records 294 specics, of which the following are new: Fusus bifrons, Nassa thaumasia, steindachneri, xesta, munda, sporadica, stiphra, lathraia, Mitra gonatophora, Columbella erythraeensis, nomanensis, Conus acnleiformis, Rve. form torensis, C. planiliratus, Sby. var. batheon, Pleurotoma potti, inchoata, siebenrocki, nannodes, beblammena, Mangilia pertabulata, epicharis, Solariella illustris, Emarginula harmilensis, Atys lithensis, Clathurella dichroma. Capulus eamaranensis, Eulima muelleriae, orthophyes, Stylifer thielei, Syrnola trivittata, Elusa halaibensis, Triforis senafirensis, and Euchelus crythracensis. All the new species, ete., are beautifully figured, in addition to many of the other species.
Möllendorff, O. von.-Neue Landselmeeken von Niederlandisch Indien: Nachr. Deutsch Malak. Gesell. 1903, p. 156.
Chloritis romaensis and Nestina rugosissima, nn. spp.
Sykes, E. R.-Description of Cerastus dinshawi, n. sp. from Aden, with a note on Otopoma clansum, Sby.. and O. yemenicum. Brgt. Proc. Malac. Soc. Lond.. 1903, vol. v, pp. 338, 339, 2 figs.
Cockerell, T. D. A.-Variation in the Snail-genus Ashmunella. Proc. Ac. Nat Sci. Philad., 1903, pp. 615, 616.
Andrussoff, N.-Studien üher die Brackwasscreardiden. Mém. l'Acad. ImpSci. St. Pétersb., 1903 (s. viii), T. viii, T. xiii, pp. 1-82, T. i-vii.
Perrier, E. et Gravier, Ch.-Sur les causes physiologiques qui ont déterminé la constitution du type Mollusque. Compt. Rendus. 1903, T. exxxvi, pp. 727-731.
Smith, Edgar A.-On KYylophaya praestans, n. sp., from the English coast. Proc. Malac. Soc. Lond., 1903, vol. v, pp. 328-330, figs, i-iv.
Smith, Edgar A.-Note on Macron trochlea. Journ. Conch., 1903, vol. 10, p. 351.

Smith, Edgar A.-A new species of Modiola from Malacea. Journ. Conch.; 1903, vol. 10, p. 368.
Smith, Edgar A.-A List of Species of Mollusea from South Africa, forming an Appendix to G. B. Sowerby's "Marine Shells of South Africa." Proc. Malac. Soc. Lond., 1903, vol. v, pp. $354-402$, pl. xv.

GENERAL REVIEWS.

A Treatise on Zoology. Edited by E. Ray Lankester. Pt. i, second fascicle. Introduction and Protozoa. By J. B. Farmer, J. J. Lister, E. A. Minchin, and S. J. Hickson. 8vo, pp. vi + 451. London, 1903. Adam and Charles Black.
We welcome a further volume of this valuable work, which forms the second fascicle of Part i., and treats of the Structure of Animal and Vegetable Cells, the Foraminifera, Sporozoa, and Infusoria.

In the small space of 46 pp . Dr. Farmer gives an admirable account of the structure of animal and vegetable cells, incorporating many of the latest investigations in cell mitosis. All the articles which have so far appeared have had
a useful bibliographical appendix, and the absence of such to this section is much to be regretted.

Dr. Lister's lucid article on the Foraminifera, will be welcomed as a succinet and clear account of this interesting class.

The most complete, and by far the most important, seetion is Professor Minchin's most timely and valuable treatise on the Sporozoa, which is far and away the finest text-book on the subjeet. Finally, Professor Hickson gives an admirable account of the Infusoria.

As in the previous volumes, the illustrations, many of which are original, are remarkably good, and the general method of treatment leaves nothing to be desired.

A Manual of Zoology. By Richard Hertwig, translated and edited by J. S.
Kingsley. Sro, pp. xi +704 . London, 1903. George Bell and Sons.
This is a translation of the fifth German edition of Professor Hertwig's well-known "Lehrbuch der Zoologie," edited and modified by Professor Kingsley.

The work is intended for beginners, and no more admirable summary of the history and general princlples of zoology could be put in the student's hands than that contained in the first 181 pages. If for no other reason, this alone places the work as one of the best of its kind, and very much superior to the majority. This section is characterised by a clearness and breadth hitherto unknown in any English text-book, and will undoubtedly prove of great value to the elass of students for whom the work is written.

The remaining portion reviews the whole of the animal kinglom, and is remarkably well illustrated.

EDITOR'S NOTES.

On completing the tenth volume, the Editor tenders his grateful thanks to all who have in any way furthered the interests of the Journal during 1903.

The Journal has no permanent endowment ; and, exeepting one year, there has been an amnual deficit on each volume. During the past year a number of subscribers have been struck off the list, all reasonable efforts having failed to obtain their subscriptions to volumes viii, ix, and x. This, of course, has largely increased the defieit on volume x.

We have again to appeal to those subscribers whose subseriptions are in arrear to kindly forward the same.

INDEX TO VOLUME X

1.

> I AGE.

Ampullaria globosa, Swainson. Description of Animal .. 10 2
Ampullaria globosa, Swainson. Respiratory and Locomotory Habits of Io7
Anatomy of Ceratisolen legumen, L. (figs.)
Anatomy of Collingea cranna, n. sp. (figs.).. . $\because \cdot$

Anatomy of Parmarion shelfordi, 11. sp. (figs.)

81
Anatomy of Pharella crientalis, Dunker. (figs.)
Anatomy of Solecurtus candidus. 39
Anatomy of Solecurtus strigillatus, L. (figs.)33

Anatomy of Tageluts rufus, Spengler. (figs.) ..
Annam. Lists of the Helicoid Land Shells of 12
Arion. On a species of ${ }_{*}$ from New Zealand. is
Arion cmpiricorum. Variations in the Foot-fringe of is
Aru Islauds. List of the Helicoid Land Shells of

96
Atopos shiclfordi, n.:p. (fiçs.) .. \mathbb{E}_{2}
Austro-Malayan Region. New Land Shells from
Austro-Malayan Land Shells. Notes on, with ilhustrations of. (figs.)

B.

Billiography of the Helicoid Land Shells of Asia. .. 130
Bloomer, H. H.-"The Aratomy of Certain Species, of Ceratisolen and Selecurtus" -_" Classification of the British species of the genus Solen, Linné." ——"' On the Origin and

Finction of the Fourth Aperture in some Pelecypoda." 43 -_" Note on a malformed specimen of Ceratisolen logumen, L." I O4 - - "The Anatomy of Pharella orientalis, Dunker, and Tagelus rufus, Spengler." 114
Borneo. List of the Helicoid Land Shells of 56
Bulimulus (Drymacus) mubilus, n. sp. (figs.)4

C.

Cambodia. List of the Helicoid
Land Shells of io
Catoulus. On the name .. 2
Cataulus comnectens, 11.sp. (fig.) 102
Cataulus greeni v. robusta, n.v. (fig.)

102
Celebes. List of the Helicoid Land Shells of 83
Coratisolen legumen, L. Alimentary canal. 32
Coratisolen legumen, L. Circulatory system.33

Ceratisolen legumen, L. Exter-
nal characters.
Ceratisolen legumen, L. Malformed specimen of \quad.. IO_{4}
Ceratisolen legumen, L. Musculature.32
$\begin{array}{cccc}\text { Ceratisolen ligumen, L. Nervous } \\ \text { system. } & \text {.. } & . . & . . \\ & 33\end{array}$
Chloritis (Trichochloritis) allodentata, Smith. (fig.) 48
Chloritis (Trichochloritis) tabularis, n. sp. (fig.)4^{8}

Chloritis unguiculina, Mart.
(figs.)
Cochin China. List of the Helicoid Land Shells of 9
Corhlostyla delicata, n. sp. (fig.) 100

Collinge, Walter E.-' On some species of Slugs collected by Mr. H. Fruhstorfer."
-_" Notes on Slugs and!
Slug-like Molluscs." .. 17 ——" Contributions to a knowledge of the Mollusca of Borneo. Part i.'

79
Collingea cranma, n. Sp). (figs.) . So
Colum clla (Mitrella) calliope. 11. Sp. (fig.)

Columbellidas of the Persian Gulf and North Arabian Sea. Revision of the
Conus boubé ac, n s.p. (fig.) . 76
Coptocheilus perakensis, 11. sp.

$$
\text { (fig.) } \quad \cdots \quad \cdots, \quad \ldots \quad 1 O_{2}
$$

Cristigibla albopicta, Sykes (figs.)

78
Current Literature. $20,68,104.141$
D.

Damayantia mgosa, n. sp. (figs.) so
Dayamantia simrothi, n. sp. (figs.) 79
Description of I-cptachatina hen- hod shawi, 11. sp. (fig.)
Description of new Land shells from the Austro-Nalayan Region.
6.4

Description of new species of Nassa, Purpura, Latuus, Voluta, Conus, Stomatilla and Spondylus.

74
Description of supposed new species and varieties of Ennea, Macrochlamys, Cochlostyla, Strophocheilus (Borus), Odontostomus (Moricandia), Leptopoma, Catau. lus, Coptocheilus and Tropidophora.99

Dyakia smithiania, 11. sp. (figs.) 47
E.

Editor's Notes. .. 26, 72, 146
Ennea oleacca, 11. sp. (fig.) .. 99

F.

Fourtli Aperture. On the Oricin and Function of the * * in some Pelecypoda. .

Fulton, Hugh.-" Figures and Descriptions of supposed new species and varieties of Ennea, Macrochlamys, Cochlostyla, Strophocheilus (Borus), Odontostomus (Movicandia), Leptopoma, Cataulus, Ciptocleclus, and Tropidophora."

99

G

General Reviews. 145
Gude, G. K.-"A Classified List of the Helicoid Land Shells of Asia. Part v." ——" A Classified List of the Helicoid Land Shells of Asia. Part vi." -_" A Classified List of the Helicoid Land Shells of Asia. Part vii." . . . ———"A Classified List of the Helicoid Land Shells of Asia. Part viii." 129

H.

Helicalla barjara (L.). Some notes on the so-called Ap- 120 pendix of
Helicina gcmma, 11. sp. (figs.) 4
Helicina variairs, 11. sp. .. 67
Helicina varians, Sykes. (tigs.) 78
Helicoid Land Shells of Asia. A Classified list of the $5,45,83,129$
Helicoid Land Shells of Asia. A Bibliography of the .. 130
Helicostyla (Calocochleas) talautana, n. sp. (fig.) 49
Heynemanı1, D. F. (see Kobelt, W.)

1ここ
I.

Index to Islands, etc., of Asia... 98
India, Further. List of the Helicoid Land Shells of5

J.

Java. List of the Helicoid Lan Shells of . .
K.

Kei or Kie Islands. List of the Helicoid Land Shells of .. 96
Kobelt, W. " Otto Franz von Moellendorff." I 22

L.

Latirus singularis, n. sp. (fig.) 74
Leptachatina hen:hawi, n. sp. (fig.) 2
Leptopoma albicans, n. sp. (fig.) 101
Leptopoma diplochilus, 11. sp. .. 66
Leptopoma diplochilus, Sykes. (figs.) $\quad . \quad . \quad . \quad 78$
Leptopoma placidum, 11. sp.

Leptopoma (Lcucoptychia) lamellatum, n. sp.66

Leptopoma (Leucoptychia) lamellatum, Sykes. (figs.) .-
Lesser Sunda Islands. List of the Helicoid Land Shells of the
Lima clliptica. On the name.. Iot
Lina gwyni, n. nom. 104
Limax umbrosus of Philippi. On the

M.

Macrochlamys bathycharax, Godw.--Aust. (fig.)

99
Macrochlamys subconvallata, Fulton.

99
Malacological Society. Proceedings of the Midland
Malay Archipelago. List of the Helicoid Land Shells of the
Malay Peninsula. List of the Helicoid Land Shells of the49

Melvill, I. Cosmo.-"A Revision of the Columbellidae of the Persian Gulf and North Arahian Sea, with description of C. calliope, n. sp." \quad " \quad On 27

Microparmarion. On the dis-
persal of ..
..
a
Microparmarion bruneopallescens, (llge. (ligs.) ..
Mi llendorff. 1)r. O. F. von .. 106
Moellendorff. Otto Franz von. 122
Moluccas. List of the Helicoid Land Shells of

89
Molluscan Fauna of Warwick-
shire.
Mysol. List of the Helicoid Land Shells of

96

N .

Nassa optima, 11. sp. (figs.) .. 73

O.

Odontostomus (.Moricandia) tolcratus, n. sp. (fig.)
. 100
Omphalotrop is waigionensis, n.sp. 67
Omphalotropis waigionensis, Sykes. (fig.)
Overton, H.- "The Molluscan Fauna of W'arwickshire.".. 19 --" Some notes on the socalled Appendix of Helicella barbara (L..)."

P

Palaina ponsonbyi, n. sp. .. 66
Palaina ponsonhyi, Sykes. (fig.) 78

Parmarion shelfordi, n. sp. (figs.) SI
Papuina callosa, n. sp. 65
Papuina callosa, Sykes. (fig.).. 78
Papuina pyrgus. 11. sp. . .. (15
Papuina pyrgus, Sykes. (fig.).. 78
Papuina wallaceana, 11. sp. .. 05
Papuina wallacana, Syke. (fig.) $\quad . \quad 78$
Pharclla orientalis, Dunker. Alimentary canal. 115
Pharclla vientalis, Dunker. Circulatory system. 116
Pharella oricntalis, Dunker. External claracters. IIt
Pharclla oricnta'is, Dunker.
Musculature.
Pharclla orientalis, Dunker. Nerrous system. 117
Phenacohelicida: On a new gemus and species of the Family

62
Ph lomycus dendriticus, Cllge. (figs.) . $\quad . \quad$.
Philomycus fruhstorici, Cllge. (figs.)
${ }^{17}$

Philomycus, sp. from Borneo. .. \&i

Planispira (Cristigibba) albo-	
picta.	

| Planispiru (Cristigibba) | | |
| :---: | :---: | :---: | :---: |
| picta, | albo- | |
| 8 | | |

Planispira quadrifasciata, Leg. var. halmaherica, n. var. (figs.)
4^{8}
Plicaris, gen. nos. 1
Preston, H. B. - " Supposed new species of Helicina and Bulimulus from Costa Rica."
Proceedings of the Midland Malacological Society... ..
Pulo Condore. List of the Helicoid Land Shells of. . .. I I
Purpura cudeli, 11. sp. (fig.) .. 74

R.

Ramanan, V. V.-." On the Respiratory and Locomotory Habits of Ampullaria glob̆osa, Swainson." .. 107
Ranfulyaconstancear, gen. et sp. nov: (figs.)
Rhodina, de Morgan. The Value
of the name ..
Rhodina, de Morgan. The Value
of the name
62

S.

Samui Group. List of the Helicoid Land Shells of the ..
Serwatty Group. List of the Helicoid Land Shells of the 07

Siam. List of the Helicoid Land Shells of6

Slugs and Slug-like Molluscs. Notes on $\quad . \quad . \quad . \quad 17$
Solecurtus candidus. External characters.
Solccurtus strigillatus, L. Alimentary canal. 36
Solecurtus strigillatus, L. Circulatory system.38

Solecurtus strigillatus, L. External characters.
Solecurtus strigillatus, L. Musculature.33

34
Solecurtus strigillatus, L. Nervous system.39

Solen, Linné. Classification of the British species of the genus41

Sowerby, G. B.- " Descriptions of new species of Nassa, Latirus, Voluta, Conus, Stomatella and Spondylus."
Spondylus occidens, is. sp. (fig.)
Spondylus reesianus, n. sp) (fig.) 7
Stomatella exquisita, n. sp). (fig.) 76
Stroplocheilus (B orus) sipurabilis, 11. sp. (fis.)

Sumatra. List of the Helicoid Land Shells of
Surprise Island. On a small collection of Marine Shells from
Suter, Henry.-"On a new genus and species of the Family Phenatohclicida,." 62
Sykes, E. R.-" Malaculogical Notes." ——Descriptions of new Land Shells from the Austro-Malayan Region.".. 64 -_Notes on, with Illustrations of, Austro-Malayan Land Shells."

78 -_" On the name Lima clliptica." 104
_-" On a small collection of Marine Shells from Surprise Island."

137

T.

Tagelus rufus, Spengler. Alimentary canal.

II9
Tagelus rufus, Spengler. Circu-
latory system. 200
Tagelus rufus, Spengler. External characters. I 18
Tagelus rufus, Spengler. Musculature. I I 8
Tagelus rufus, Spengler. Nervous system.

120
Tenimber (or Timor Laut). List of the Heticoid Land Shells of 97
Thersites (Rhagada) supracostulata, Schepm. (figs.) .. 49
Tropidophora perfecta, n. sp. (fig.) IO2
Tropiduphora plavilirata, n. sp. (figs.) IO3

V.

Veronicella fruhstorfori, Cllge. (figs.) I7
Icronicolla himerta, Cllge. (figs.) I7
lietigo. A New Irish 67
Foluta duhbni, n. sp). (fig.) . 74
Voluta (L.yria) planicostata, 11. sp. (fig.) .75

W.

Waigion Group. List of the Helicoid Land Shells of the 96
Warwickshire. Molluscan Fama of 19

X.

Yesta sulcatula, 11. sp. 64

Ex. Exis
pA
P.RF F
se PEAR $4 A_{4}$

$D D P, D$

5.

6.

H H.B. del. an nat

In. "Ep.C.
Huth Lithr Iondon

Ia
$2 a$.

$2 b$.

5 a.

$6 a$
AS Huth lith aà rat.

a.

3.

1 b .

7.

$5 b$.

6 b.

4a

46.

4 c.

2

5.

3.
2.

4.
arn. of Malacology. $190 \cup$, Vol. X, pt 3.

Fies. 1-8, M. P. P.
Fis ${ }^{3}$ 9-12, F. J.F

Huth, Lithr London.

9

12.

13.

15.
W.E.C. del. ai nat

14.

MOLLUSCA OF BORNEO

NEW SPECIES OF LAND SHELLS.

dourri, of Malacology, 1503 , Voi. X, pt. 4

5.

6.
H.H.B del ad nat.

$$
F
$$

＝

$$
\frac{5-1}{2+2}
$$

（a）
（20－2 n

Dr. OTTO FRANZ VON MOELLENDORFF. BORN DECEMBER $24 \mathrm{TH}, 1848$. DIED AUGUST 17TH, 1903.

THE

JOURNAL OF MALACOLOGY. established in 1890 as "the conchologist, a journal of malacology.'

EDITED BY

WALTER E. COLLINGE, M.Sc.,
Lfeturer on Zoology and Comparative Anatomy in the Unitersity of Birmingham ; Presidext of the Midland Malacological.

Society ; and President of the Biological Section of the Birmingham Natural History and Philosophical. Suciety.

WITH THE COOPERATION OF
DR. JOSEF F. BABOR, The University, Prague.
H. HOWARD BLOOMER,

Birmungham.
THE REV, A. H. COOKE, M.A.. F.Z.s., Fellow of King's College, Cambridge.

> G. K. GIDE, F $\%$ S. S .,
> London.

CHARLES HEDLEY, F.LAS., Australian Museum, Sydney, N.S.IF.

HENRY SUTER,
The Museum, Auchland, N.Z.
E. R. SYKES, B.A., F.Z.S., F.L.s., London.
B. B. WOODWARD, F.G.S., F.L.S., British Museum (Soutt, Kensington), London.

Volume XI.

1904.

Aultors alone are responsible for the statements in thew respective papers.

LONDON :

DULAU AND CO., 37, SOHO SQUARE, IW.

CONTENTS OF VOLUME XI.

1.JGE.
Nutes on Thersites (Hutra) bellemdenkerensis, Braz, and bedtomal Braz. By Hugh Fuiton. I
A Critical List of the Syhoeronipa Section of Thersites. By Hugh Fulton. (Plate i.) 2
Notes on the Anatomy of the Generative Organs of Ariophanter juliana, Gray By H. Overton. (Illustrations.) 12
Notes on Slugs and Slug-like Molluses. By Walter E. Collinge, M.Sc.. 14
On a collection of Marine Shells from Port Alfred, Cape Colony. By Edgar A. Smith, I.S.O. (Plates ii, iii.) 2 I
Note on Courlla rormella, Ner., Ms. By (i. K. Gube, F.Z.S. (Illustrations.) $+5$
Description of a new species of Arianculus from Ageria. By Walter E. Collinge, M.Sc. 47
Some Recent Slug Papers. By D. F. Heynemann. 48
Note on Testacella haliotidea, Drap. By the Rev. A. H. Coore, M.A. 49
Note on Parmacella deshayesii, Moq--Tand. By Walter E.Collinge, M.Sc.49
On some new species of Melania and Jullienia from Yunnan and
Java. By Hugh Fulton. (Plate iv, figs. 1-5.) 51
On a collection of Land Shells from Gebi Island, Moluccas, withdescriptions of new species. By Hugh Fulton. (Plate iv,figs. 6-11.)53
Note on Leptopoma menilalre, Strubell. By Hugh Fulton. (Plate iv, figs. 12, 13 .) 55
On certain deposits of semi-fossil shells in Hamakua district, Hawaii, with descriptions of new species. By Professor H. Wetherbee Henshaw. (Plate v, figs. i-8.) 56
Report on semi-fossil Land Shells found in the Hamakua district Hawaii. By C. F. Axcey. (Plate v, figs. 9-23.) 65
Descriptions of some new species of Cingalese and Indian Marine Shells. By H. B. Preston, F.Z.S. (Plates vi, vii.) 75
Descriptions of Twelve new species and one variety of Marine Gastropoda from the Persian Gulf, Gulf of Oman, and Arabian sea, collected by Mr. Fi. W. Townsend, 1902-1904. By James Conmo Melvill, M.A., F.L.S. (Plate viii.) 79
Note on Mitra stephamurla, Melv., with description of a proposed new valicty. By James Cosmo Melvill, M.A., F.L.S. (Plate viii, figs. I6, 17.) 86
On some Non-Marine Shells from the Austro- and Indo-Malayan Regions. By E. R. Sykes, B.A., F.L.S. (Plate ix.) 87
The Helicoid Land Shells of Asia. Corrections and Additions. By G. K. Gude, F.Z.S. 93
Note on Two varieties of Arion vulifurus, Drap. By Walter E. Collinge, M.Sc. 9^{8}
Proceedings of the Midland Malacological Society. 15
Current Literature. 16, 50, 72, 98
Editor's Notes 20, 100

LIsT OF ILLUSTRATIONS IN VOLUME XI.

PAGE
Species and Varieties of Thersites. Plate I. 10
Ariophanta juliana, Gray. Terminal ducts of the generativeorgans.I 3
diropharta juliana, Gray. Dissection of dart-sac. 14
Ariophanta juliana, Gray. Incompletely formed spermatophore. 14
New species of South African Marine Shells. Plates II and III 44
Corilla erronella, Nev., MS. 45
New species of Land and Freshwater Shells. Plate IV. 55
New semi-fossil Hawaiian Land Shells. Plate V. 7 I
New Indian and Cingalese Marine Shells, Plates VI and VII. 78
New Gastropoda from the Persian Gulf. Plate VIII. S_{5}
Non-Marine Shells from the East Indies. Plate IX. 92

JOURNAL OF MALACOLOGY.

NOTES ON THERSITES (HADRA) BELLENDENKERENSIS, BRAZ., AND BEDDOMAE, BRAZ.

By HUGH FIIITON.

Having examined an authentic specimen of heddomce, Brow, from the collection of the late Capt. C. E. Beddome, I have no hesitation in plaring it as a variety of lollomomberenir, Brat., a species that is most variable in size and form. 'The variety leddomae is thinner, generally more depressed, and the minute ziczac sculpture is more distinct, being just discernable (on fresh specimens) without a lens.
'The specimen mentioned above is of similar dimensions to the type, but two other specimens before me, one of which was collected together with hellemlonleronsis in ()ueensland by Emil Weiske, the cther being in I)r. Cox's collection and labelled hellemtenkerensis, are more depressed, viz. :
maj. diam. : 4^{1}; alt. 30 . (Coll. Weiske).
$" \quad, \quad 38 ; \quad, \quad 28$. (Coll. Dr. Cox)
The original figure of hellemlentierensis in the l'roc. \%ool. Soc., 1875 , t. 4 , f. 4 and copied in 'Tryon's Manual, vol. vi, pl. 34, fig a does not agree with the dimensions given in the description, viz. : . Ilt. 17, greater diameter 22 , lines ($=$ Alt. $3^{6, \text { maj. diam. } 45 \text { millim.) whereas the figure measures, }}$ alt 45 , maj. diam. 44 millim.

Judging from specimens I have examined the figure is out of proportion, being much too high in proportion to its diameter.

[^30]
A CRITICAL LIST OF THE SPHOEROSPIRA SECTION OF THERSITES.

By HUGH FULTON.

(Plate i.)
The collections of Ir. James C. Cox of Sydney, and of the late Capt. C. E Beddome, both rich in specimens of this group, having passed through my hands, I have had the opportunity of examining many typical specimens, and thought a critical list might be of some service.

One great difficulty in working out this group has hitherto been the lack of authentic material, so many of the species having been founded upon such slight characters, that without one had for comparison actual types or co-types, it was quite impossible to identify specimens with any certainty from descriptions. Fortunately, the collections mentioned above contained many co-types, especially of the forms described by John Brazier of Sydney, whose descriptions, often without figures, and very rarely with comparative notes, generally indicate but characters common to the whole group.

It is probably owing to lack of authentic material at his disposal, that 1)r. H. A. Pilshry's comparatively recent monograph in Tryon's Manual is not up to his usual excellent form ; his division of the section into perforate and imperforate species is not a natural one, for example. antersoni, Cox, occurs both perforate and imperforate, and the same thing occurs in other species of the group.

In this list I have endearoured to arrange the various forms according to their relationship and have added notes upon their distinguishing characters.

I am greatly indebted for valuable assistance to Col. Beddome, Ir. James C. Cox, Chas. Hedley, Esq., John Ponsonby, Esq., and Edgar A. smith, Esq.

Group of incei, Pfr
1.-T, incei, Pfr.
P.Z.S., 1845 , p 126 ; Cox's Monog. Aust. L. Sh., pl. 5, fig. 5 .
$=$ rhallisi. Cox: P.Z.S., 1873 , p. 565 , pl. 4 , fig. 3 .
$=$ appentimatata, Pfr.: P.Z.S., i S54, p. 149 ; Cox: Monog. Aust. L, Sh., pl. 5, fig. ir.
$=$ thatcheri, Cox: P.Z.S., 1870 , p. 170 , pl. 16, fig. 2.
$=$ liamni, Braz : Proc. Linn. Soc. N.S.W. (i). 1876, p. 97.
$=$ hilli, Braz. : P.Z.S., 1875 , p. 32, pl. 4, fig. 3 .
$=$ julhstonei, Braz. : P.Z.S., 1875, p. 32, pl. 4, fig. 2.
$=$ hetyensis, Braz.: P.L.S., N.S.W. (i), i\$72, p. z.
$=$ fratifomisisi, Cox: Monog. Aust. L. Sh., p. irt, pl 20, fig. I3.
Lon.-Queensland.

Types of incei and appentimlata in British Museum.
Compared witl the type of incei, typical appenticulata is a little flatter in form, thatcheri a little broader, hilli smaller and more conical : johnstomei same form as hilli, but larger; bayensis is simply a thicker form of appenticulatu, praetemissi is the lighter coloured variety with no circumumbilical brown patch, but that character is not constant.

I have not seen a speciman of hallisi, but judging from the description and figure, it is evidently almost identical with typical inere.

The foregoing comparisons are made from typical specimens, but they are closely linked together by intermediate forms, proving that they belong to one species.

Pilsbry, in Tryon's Manual of the Mollusca, vol. vi, p. 167, had evidently not a typical specimen of ineei before him, but rather one of the varieties, as he distinguishes it by the absence of the brown circum-umbilical patch, a character that is present in the type specimen of iurei.
T. incei v. yepponensis, C. E. Beddome.

Proc. Linn. Soc. N.S.IV., 1897 , vol. xxii, p. 123 figd.
Loc-Yeppon, near Rockhampton, Queensland.
A lighter-coloured shell, and with the umbilicus more excavately open than in typical intei.

2-T. lessoni, Pir.
Pfr. Sym., 1846 , iii, p. 71 ; Reeve : Con. Icon., fig. 754.
$=$ seminitfa, Morelet: Journ. de Conchyl., 1 S64, p. 289.
= parsoni, Cox: P.Z.S., 1872 , p. 18, pl. 4, fig. 2.
Loc.-Queensland.
Types in British Museum.
The types of lessoni and parsomi represent the extremes of this species, the former being very small and somewhat depressed, whereas the latter is larger and rather higher in the spire than usual. Although lossoni, by reason of its dark brown colour, white peristome, and absence of spiral bands on the lower whorls, is readily separable from incei; yet it agrees so closely in other respects, that I am doubtful as to whether it can be anything more than a colour variety of that species. The earlier whorls are lighter in colour and the middle ones have generally two or three narrow spiral bands

T. lessoni v. aureedensis, Brazier.

P.Z.S., 187 I, p. 640 ; Tryon's Man. of Conch., vol. viii, p. 2S2, pl. 54, figs 7-9.

Loc -Yeppon, near Rockhampton, Queensland.
Type in Australian Museum.
Very similar above to lessoni in form and coloration, but slightly flatter below and with a broad light-yellowish circum-umbilical patch; the triangular dilated portion of the peristome at the point of insertion is white, whereas in lessoni it is of a brownish colour.

T. Iessoni v. lutea, r, var.

$$
\text { l'l. i, fig. . } 1
$$

Lor.-N. Queensland.
Same form as lessoni v . amperdensis, h, of a light-yellowish colour Of three specimens before one one is entirely bandless, but the other two have the narrow light-brown spiral bands on earlier whorls, the same as one finds on most specimens of aureedensis.

3.-T. curtisiana, Pir.

$$
\text { P.7.S., } 1863, \text { p. } 5=8 .
$$

$=$ bala, Braz.: Proc. Linn. Soc. N.S.W. (iii), 1878 , p. 78, pl. S, fig. 4. Lor.--'Townsville and Magnetic Is., Queensland.
Somewhat like losomi in form and coloration, but the whorts increase rather more rapidly in size, it has half a whorl less, the aperture is not quite so broad, the peristome is less dilated at the point of insertion and of a light reddish-brown colour, not white as in Ifssomi.
4.--T. andersoni, Cox.
P.Z.S., 18 7 1, p. 644 , pl. 52, fig. 4.

Lor.-Rockhampton, Queensland.
Type in British Museum.
This species is most variable in size: of the twenty before me the following are the dimensions of four specimens:-

Alt. i 8 ,	"	,	26	"
Alt. 21,	,	"	33	,
Alt. 26,			30	

Some specimens are quite inperforate, but more commonly it is more or less perforate.

Pilsbry in Tryon's Manual, vol vi, p. 172, pl. 39, figs. 82 and 83 , describes and figures perforate specimens of this species as ymlei, but gives a figure of the true yulti on plate 23 , figures 65 and 66.

Andersomi can be separated from incei by its thinver substance, its less oblique, less expanded, and, brown peristome, it is also less openly umbilicated and has half a whorl less,

From ? fulei it can be distinguished by its lighter coloration and narrower bands above, its narrower umbilicus and much less expanded peristome.

5.-T. yulei, Forbes.

Appendix Voy. "Rattlesnake," i852, p. 377, pl. 2, fig. 6.
$=$ rambimi, Cox: P Z.S., 1870 , p. 170, pl. if, fig. 1.
Lor.-Queensland.
Types in British Museum.

The types of yulei and rainbirdi are extreme forms, the type of yulei being a small light-coloured, and depressed form, whilst the type of rainhimiti is large, globose, and darker-coloured ; the very large series before me closely connects these two torms.

The broadly-expanded, dark-brown peristome and excavated umbilicus, differentiates this form from its allies.

Group of firazeri.

6.-T. frazeri, Gray.

Zool. Beechey's Voy. Moll., i839, p. i43, pl. 38, fig. 6.
$=$ mosemani, Braz. : P.Z.S., 1875 , p. 33, pl. 4, fig. 6 .
Lor.-New South W'ales and Queensland.
This species varies greatly in size and coloration ; a specimen before me is of a light yellowish-brown with only one colour band, situated at the suture of the lower whorls; another has an additional one at the periphery of the last whorl, whilst others are nearly covered with dark brown spiral bands. The colour of the peristome varies from black to a light bluish-grey.

Some of the larger forms approach informis, Mouss., but the latter can be readily separated by its higher spire and more rapidly increasing whorls.

The shell described as mossmani is a rather globose form of frozeri with a black peristome; the original figure is misleading, being much higher in proportion to width, according to the dimensions given in the description.
T. Prazeri \mathfrak{r} : flavescens, Hedley.

I have not seen this remarkable variety said to be "of a uniform light yellow, lip pure white."

Lor:-Corumbui Creek, Queensland.
7.-T. rawnesleyi, Cox.
P.Z S., 1873 . p. 5^{64} pl. 48, fig. 2.

Lor.-Mt. Elliott, Queensland
A heasy form of a uniform dark brown, with a thick and broadly expanded peristome.
T. pawnesleyi v. mazee, Bra\%

Proc. Linn. Soc. N S.W., 1878 (iii), p. 79. pl. 8, fig. 5.
Lor.-Rockingham Bay, Queensland.
From typical rumesleyi this differs chiefly in coloration, having numerous dark-brown spiral bands upon a light yellowish-brown ground; it varies greatly in size and resembles firtseri, but can be separated by the thicker peristome and smaller aperture.

All the firaseri group have the microscopic waved striation, although it is almost obsolete in some specimens.

In fraseri there are generally on the middle whorls more or less conspicuous (under a strong lens) microscopic spiral impressed lines, which I have not seen on specimens of mazes.
8.-T. rockhamptonensis, Cox.

$$
\text { P.Z.S., } 1873, \text { p. }{ }^{1} 50 .
$$

$=$ moreslyi, Angas: P.Z.S., i 876, p. 267, pl. 20, figs. 8, 9 .
Loc.-Rockhampton, Port Denison, Queensland.
A solid form somewhat similar to rounesleyi var. mazee in coloration but readily distinguished by its Hat base and its thinner and darker coloured peristome.

Morestyi was described from an elevated specimen of roclihamptonensis.
T. rockhamptonensis r. pallida, Hedley \& Musson.

Proc. Linn. Soc. N.S IV., 189 r, p. 556.
Loc:-Rockhampton, Queensland.
I have not seen this shell, which is described as "bandless, of a tawny yellow colour." I thought my lessomi v. lutea was this variety and sent a specimen of that to Mr. Hedley, but he writes " your shell is quite different, the type specimen of pallicla is an odd shell, I have seen none like it and now doubt if it is not an abnormal individual."

Group of whurtomi.

9.-T. bebias, Brazier.

Proc. Linn. Soc. N.S.W. (iii), 1878 , p. 78 .
Lor.-Garden Is., Rockingham Bay, Queensland.
Almost identical with thertomi in general appearance, but the umbilicus is less open, some specimens being quite imperforate: may or may not have a circum-umbilical brown patch. The chief distinction between this and whatoni is the difference in the microscopic sculpture, the latter consists of closely-set, silk-like, slightly waved striae, whereas in belicts: it is coarser and more granular.

10.-T. zebina, Brazier.

Proc. Linn. Soc. N.S.IV., 1878 , p. 78 , pl. S, fig. 2.
Lor.-I Iouglas River, Queensland
Type in Australian Museum, Sydney.
Very close to lebias but thicker, more globose, and its microscopic granulated sculpture is more conspicuous. It is said by Brazier to be imperforate, but I have a slightly perforate specimen before me.

11 -T. whartoni, Cox.

P.Z.S., 1871 , p. 55, pl 3, figs. 5, 5a.
$=$ mourilyana, Braz. : P.Z.S., 1895, p. 31, pl. 4, fig. ı.
Loc.-Port Denison, Queensland.
Type in British Museum.
A thin multi-banded shell approaching some of the varieties of mul!frarensis, but distinguished by its microscopical sculpture, which consists of oblique, closely-set, slightly waved, almost struight striae ; this sculpture is seen (under the lens) to be quite distinct from that of bebias and its allies.
12.-T. cookensis, Brazier.

> Proc. Linn. Soc. N.S.W. (i), 1875, p. 17.
> $=$ tomsoni, Braz. : P.L.S.N.S.W. (i) 1876 , p. 97 .
> $=$ cookensis, Braz. : Tryon's Man. of Conch., vol. vi., p. 97 .
> Loc.-Gould Is., Rockingham Bay, and Frazer's Is., Queensland (not Cooktown, ticle Brazier).

This has the same microscopic sculpture as beliats, but is smaller, darkercoloured, the aperture not quite as broad and slightly less oblique. The shell is of a somewhat thicker substance, and the colour bands do not show clearly through the aperture as in belias, the interior being almost opaque whitish ; the peristome of cooliensis is also thicker and darker in colour.

13.-T. mulgravensis, Brarier.

> Pl. i, fig. i.

$$
\text { P.Z.S., } 1872, \text { p. } 2 \mathrm{I} .
$$

$=$ mulyracei, Braz. : Proc. Roy. Soc. Queensland, 1889 , p. гог.
Ler:-Palm Is., N.E. Australia.
With regard to this species, figured here for the first time, there must, I think, have been some error in the dimensions given, viz., alt. i in. i line ; greater diam. 2 in. 4 lines. (Alt. 27 ; diam. 58 millim). A shell of these dimensions would be a most remarkable form for this group. A specimen from the collection of the late Capt. C. E. Beddome of Tasmania, who had many shells named by Brazier, measuring alt 32 ; maj. diam. (including peristome) 34 millim., answers better to Brazier's description, "turbinately globose."

Since writing the above Mr. Charles Hedley has been kind enough to measure the type specimen in the Australian Museum and gives the follow ing dimensions : alt. 30 ; maj. diam. 3^{8} millim.

I have only seen one specimen.
T. mulgravensis v. palmensis, Brazier.

$$
\text { Pl. I, fig. } 5,6 .
$$

Proc. Linn. Soc. N.S.W. (i), 1876 , p. 105.
l.oc.-I'alm Is., Queensland.

An extremely variable form, the typical specimens being solid and globose-conic whilst others are depressed and of thin substance, resembling "hlortuni. The microscopic sculpture is the same as that of belicas, but palmensis is larger, has the umbilicus more open and is further distinguished by it uniformly coloured peristome (which may be dark or whitish) the colourbands not extending to the edge as in belias.
T. mulgravensis v. meridionalis, Brazier.

$$
\text { Pl. i, fig. } 7,8 .
$$

Proc. Linn. Soc. N.S.W. (i), iS8o, vol. 5, p. 45 .
Loc:-Palm Is., Queensland.
Described from a young specimen, adult specimens being thicker, and the peristome lighter in colour.

This uniform yellowish variety with a narrow sutural dark-brown band, occurs also with a narrow band, at the periphery of last whorl.

Group of homfieldi, Cox.

14-T. informis, Mous:.

Journ. de Conchyl., 1869 , p. 59, pl. 4, fig, 3.
Lor. - Port Mackay, Queensland.
The largest species of the group (see note under frazeri). A bandless variety occurs of a uniform dark drown with a narrow yellowish subsutural border.

15 -T. blomfieldi, Cox.

$=v$. traroensis, Hed. © Musson : Proc. Linn. Soc. N.S.W. 1891, p. 556 , Viag. Magenta, pl, 2 , fig. 5.

Lor.-Port Curtis, Queensland.
I distinct species, readily distinguished by its light-coloured earlier whorls, contrasting with the very dark-brown lower ones. Under a strong lens the lower whorls are seen to have more or less obsolete, numerous spiral impressed lines.

The variety marmensis is the lighter-brown variety, but specimens before me show various degrees between that and the darker typical colour.
16.-T. concors, n. sp.

Pl. I, fig. 3.

$=$ fervoni, Pils. (not Cox) : Tryon's Man. of Conch., vol. vi., p. 16z, pl. 35, figs. $1 \mathrm{I}, 12(\operatorname{not} 13)$.
Shell sub-globose. solid, narrowly but deeply umbilicated, light-coloured above, with two narrow indistinct light-brown spiral bands on the middle whorls, last whorl of a very dark-brown, with a narrow conspicuous yellowish band at the suture ; whorls $4 \frac{1}{2}$, last descending in front. Aperture very oblique, rather dark within. Peristome moderately expanded, dark brown, triangularly dilated at point of insertion and partly covering the umbilicus.

Maj. diam. 35 ; alt 28 millim.
Loc.-Gayndah, Queensland.
This species is very like blomfieldi in coloration, but more compressed in form, the umbilicus is more open, and the peristome not so broadly expanded.

It is quite distinct from rurtisiana, Pfr., although bearing a superficial resemblance to that species.

> 17.-T. croftoni, Cox.
> I.Z.S., 1872, p. 18, pl. 4 , fig..

Lev.-Hydrometer River, Queensland.
Type in British Museum.
18.-T. coxi, Croise.

Journ. de Conchyl., ı866, p. 195 ; Conchyl. Ciab., p. 534, pl. 163, ligs. 5, 6.
Lor.- Port Molle and Port I)enison, ()neensland.
Mthough always easily separated, almost the only difference between croftomi and coe i is that of coloration.

GROUP OF mucrleayi.

19.-T. oconnellensis, Cox.

$$
\text { P.Z.S., } 187 \text { r, p. 55, pl. 3, figs. 4, fat }
$$

Loc.-'The OComell River, lort l)enison, (Queensland.
Type in British Museum.
I distinct form easily distinguished by its basal flatness (the spire varies greatly in height) and broadly excarated umbilical area.

$$
\begin{aligned}
& \text { 20.-T. arthuriana, Cox. } \\
& \text { P./..S., iS73,]). } 564, \text { pl. } 41 \text {, figs. } 1, ~ 1 a .
\end{aligned}
$$

Ler.-LL. Is., N. ()ueensland.
Nearest to the foregoing species, but lighter-coloured above, the last whorl is more rounded and the umbilicus not nearly so broadly excavated.
21.-T. gratiosa, Cox.
P.Z.S., 187 ı, p. 53, pl. 3, figs. 1, 1 a.

Loe.-Whitsunday Is., ()ueensland.
Type in British Museum.
A distinct form, easily recognised.
22.-T. etheridgei, Brazier.

Pl. 1 , fig. 2.
Proc. Linn. Soc. N.S 11 . (ii), 1877 , P. 25 .
Lor.-Andromache River, N.E. Coast of Australia.
'Type in Col. Beddonte's collection.
Inffers from !;ratio se in haviug a white peristome and numerous yellowish spiral bands on lower ; ant of the last whorl. It is probably only a variety of gratiost. I have only seen two examples.

> 23.-T. macleayi, Cox.
P.Z S., 1864, p. 485 , figs. 1 - 3 .

Lof.-Whitsunday Is., and Port I)enison, Queensland.
Somewhat similar to !fratiosa in form, but readily separated by its very different coloration.

Group or areenhilli.

24.-T. greenhilli, Cox.

Journ. de Conchyl., 1865, p. 46, ; Monog. Aust. L. Sh., p. 40, pl. 9, fig. I and pl . is, fig. S.
Lor:- U'pper 1)enison River, Queensland.
Closely allied to sardalaliata, from which it differs in beiner generally thinner, of a rounder form, darker in colour, and readily separated by its conspicuous (under the lens) microscopical granular sculpture.

Pilsbry, in 'Tryon's Manual of Conchology, places this under beutistes.
25.-T. sarda'abiata, Cox.
P.Z.S., 187 I , p. 54 . pl. 3, fig. 3.

Ler:-MIt. I ryander, Port Denison, Queensland.
Type in British Museum.
A light straw-coloured shell allied to aremhilli.

MOSITION IOUHTFU1.
rucurlute, liér, Hist. Moll., pl. iob, figs. 6, 7.
Species placed ander Sphomespica by Pilsbry in Tyron's Manual of Conchology; but belonging to other seetions.
butrmeyi, Cos. (Ifalia?).
lueddomae, Brazier. (IIcertra).
Intlomitonkerensie, Brazier. (Halla).
Throullwati, Brazier. (Sulrobasis?).
meetli, Cox. (Section ?).
hironi, Brazier. (I'apuina).
mitchellae, Cox. (Thersites).
niromeerte, Brazier. (IIculiec).
"esaselensis, Cox. (Rhaydulu.).

IN1)EX.

No.
No.
andersoni, Cox ...

+ lutea, Fulton, $=$ lessoni, var.
2
macleayi, Cox. 23
meridionalis, Braz. $=$ mulgraven sis, var.
mitchellae, Cox. (page 1o).
moresbyi, Angas, = rockhamptonensis.
momrilyana $=$ whartoni.
beddomae $=$ bellendenkerensis, var.
bellendenkerensis, Braz (page 10).
blomfieldi, Cox. 15
broadbenti, Braz. (page 10).
challisi, Cox, = incei.
coarctata, Fér. (page 10).
concors, Fulton. 16
cookensis, Braz. 12
coxi, Crosse. is
creedi, Cox. (page ro).
croftoni, Cox.
curtisiana, Pfr. 3
etheridgei, Braz.... 22
flavescens, Hedley, $=$ fraseri, var. 6
frazeri, Gray. 6
gratiosa, Cox. 21
greenhilli, Cox. 24
hamni, Braz., = incei.
hilli, Braz., = incei.
hixoni, Braz. (page Ic).
incei, Pfr.
-

ma:ze, Braz, = rawnesleyi, var.
mussmani, Braz., = frazeri.
mulgravensis, Braz.
nicomede, Braz. -(page 10).
oconnellensis, Cox.
pallida, Hed. \& Mus., = rockhamptonensis, var,
palmensis, Braz., = mulgravensis, var. 13
pursomi, Cox, = lessoni
pratermissi, Cox, = incei
rainbirll, Cox, = yulei.
rawnesleyi, Cox.
... 7
rockhamptonensis, Cox. ... 8
sardalabiata, Cox. 25
seminiypra, Morelet, = lessoni
thatcheri, Cox, = incei.
tomsoni, Braz., = cookensis.
warroensis, Hed. \& Mus., $=$ blomfieldi, var.
wesselensis, Cox. (page 1o).
whartoni, Cox.
yepponensis, Beddome, $=$ incei, var.
yulei, Forbes.
jolnstonei, Braz., $=$ incei.
lessoni, Pfr. z zebina, Braz.

NOTES ON THE ANATOMY OF THE GENERATIVE ORGANS OF ARIOPHANTA JULIANA, GRAY.

BY H. OVERTON.
Sutton Coldticld, Warwick

The specimens, which have furnished the following account are some that were collected by the late Mr. Oliver Collett at Galle, Ceylon.

The position of this species in the genus Ariophanta, I do not, at present, propose to diseuss : like many other members of the grenus far too little is known of its internal structure, in fact there is a striking absence of any thorough and detailed statement of the anatomical characters of this genus. Semper (Reisen Arch. Philip. 1870) has gisen short descriptions of certain organs in different species, and Lieut-Col. Godwin- Austen has still more briefly referred to the generative organs of various species, but his remarks together with the indistinct nature of the drawings illustrating them, are atmost useless for purposes of comparison, indeed, it is difficult to attach any serious value to them whatever.

Fig. I.-Generative Organs, as seen when separated from the external gencrative orifice.
Reference Letters, - diá, Diverticulan of penis. d.g. Dart gland. d.s. Dart-sac. c.f. Epiphallus. foz. Free-oviduct. k.s. Kalk-sac. oz'. Oviduct. f. Penis. fr. Prostate. r.m. Retractor muscle. r.s. Keceptaculam seminis. i. Vestibule. z.d. Vas deferens. i.g. Vagina.

Fig. 2.-Generative Organs, with the penis, etc., turned on one side. Lettering as in Fig. 1.

Externally the generative orifice opens into the vestibule into which the penis opens posteriorly and dorsally, the dart-sac anteriorly and ventrally, and the ragina in the middle.

The vagina is a moderately long tube-like duct, having its internal wall thrown into four longitudinal plications, which are continued into the freeoviduct. At the opening of the receptaculum seminis they form a series of serpentine folds, beyond which they run in a straight series for a short distance, and then in the bulbous portion of the free oviduct they become more numerous and rise up in a very prominent manner. 'The receptaculum seminis is a heart-shaped sac, and sessile. The penis is a large muscular organ with a thick-walled muscular diverticulum, at the apex of which is the retractor muscle At the junction of the penis and diverticulum the kalk-sac is given off. 'This sac is a large muscular body, with smooth internal walls, and in one specimen contained a hard calcareous body measuring 2 by .7 millim., which in all probability was a spermatophore incompletely formed. From the anterior end of this sac the epiphallus is given off, which leads to the narrow vas deferens. The dart-sac is a large muscular tube, and contains a small fleshy dart, which exhibits a concentric ribbing.

Judging from the generative organs this species seems to be nearer to Eipplecta, Semper, than to Ariophanta, s.s.

Fins. 3.-Dissection of dart-sac to show the fleshy dart. Figs. 4 and 5 .-Dorsal and hateral views of incompletcly formed spermatophore. REFERFNCE LETTERS-d. Dart. aid.d.s. Wall of dart-sic.

NOTES ON SLUGS AND SLUG-LIKE MOLLUSCS.*

By W.ALTER E. COLLINGE, M.Sc.

5 - On a new and interesting genus of Slugs.

Some short time ago I received from l'rofessor Plate of Berlin, a very interesting collection of slugs, numbering upwards of a hundred specimens, mostly belonging to the genus lemomirella, Blainville. Amongst these are three slugs, which at first sight I thought belonged to the genus Atopws, Simr., but on opening the bottle in which they were contained with some specimens of l'ermicella, it was at once evident that I had before me a slug which could not be referred to any known genus. Unfortunately Dr. Plate does not know where the specimens were collected: there is one large example and two much smaller specimens.

Externally the large specimen, which measures 75 millim., in length, looks somewhat like a unicoloured Atoprs: it is a dirty sepia-brown in colour, very slightly keeled posteriorly, the tail end attenuated and the foot-sole extending a little bejond the dorsum, On the sides of the dorsum are a series of seven or eight obliquely directed grooves, rising from the perinotum, and as these pass in a backward direction on the sides of the dorsum they divide in a dendritic manner into finer grooves. The generative orifice is situated on the right side, close to the foot-sole and 44 millim. from the posterior end of the body. The teeth of the radula are as in Veromirella.

[^31]
6.-Arion subfuscus from the Orkney Isles

I am indebted to the kindness of I)r. Geo. E. Ahan, for a peculiar specimen of Arion sulfuscus;, Drap., collected by him in the Orkney Isles during the summer of 1903 .

Externally the specimen is much darker in colour than those usually met with, and the foot-sole and foot-fringe are a light-brown, the former without lineoles.

Internally the chief differences from the normal condition are confined to the generative organs. The typical appearance is so well-known that I need not here describe it, beyond pointing out the very characteristic form which the free-oviduct exhibits in this species. In the specimen under consideration instead of the]-shaped free-oviduct, and the gradually tapering sperm duct. the former was thrown into a series of saccular dilatations and nearly twice as long as usual, while the sperm duct was a fine wary tube of almost equal dimensions throughout.

I have elsewhere ${ }^{(1)}$ described and figured the variations met with in the generative organs of this species, in some hundreds of specimens dissected during 1892-1895, and these were exceedingly few. This is the first I have met with since, and quite distinct from any previously described.
7.-Absence of the Male Generative Organs in Arion hortensis, Fer.

It may be of interest to record that recently when opening a specimen of this mollusc collected in the south of England, I was somewhat surprised to find the whole of the male portion of the generative organs absent. As in other cases recorded for different species of this genus, the sperm duct, vas deferens, receptaculum seminis and duct, and the prostatic canal, were all wanting.

PROCEEDINGS OF THE MIDLAND MALACOLOGICAL SOCIETY.

47th Meeting, November isth, 1903.
The President in the chair.
Exhibits.
By Mr. Gay Breeden: Series of shells of different species of Limnaca from various localities.

By Mr. Collinge : A drawer from the Huntergarron Collection containing British species of Limhata.
+8th (ANNUAL) MEETING, December ilth, igj3.
The Fresident in the chair.
The Annual Report of the Council and the Treasurer's statement were read and adopted.

In the absence of any amendments to the Council's nominations, the followins

Council and officers were delared elected for 10 or 4.
President-Walter E. Collinge, M.Sc.
I'ice-President-E. R. Sykes, 13..I., ト…...S.
Tratarrer-H. H. Bloomer.
Sccretary-H. Overton.
Libraman and Curator-Gny Breeden.
Conncil-Guy Breeden, H. Willoughby Ellis, F.E.S., H. McClelland, and Bromley 1'eebles.

にxhilits.

By Mr. McClelland : A small collection of South African marine shells.

$$
\text { 49TH MEETING, JANUARY } 15 \mathrm{TH}, 1904 .
$$

The President in the chair, who delivered his Presidential Address, entitled "Some neglected branches of Malacology."

50TH MEETING, MARCH IITH, 1904.
The Presiclent in the chair.
The Secretary announced and laid upon the table a number of additions to the Library.

Exhibits.

On behalf of Mr. McClelland: A very small, but full grown specimen of Helix nemoralis.

By Mesers. Collinge, Breeden and Overton: Collections of the British species of Pisidium from various localities.

CURRENT LITERATURE.

Pilsbry, Henry A.-Manual of Conchology, ser. ii, vol. xvi (pt. 62) pp. 65-128, pls. 19-3 I, (pt. 63). pp. 129-192, pls. 1-15, (pt. 64), pp. 193-329, (pt. 64a), pp. i-xl, pls. 16-37. Philadelphia: Academy of Natural Sciences.
Continuing the genus Brachypodella, the author describes the Jamaican species, the sub-genera Simplicorix, Pilsbry, Mychostoma, Albers, with B. diminuta, n. sp., B. alba (C. B. Ad.), vars. cos, minima, slriata, and occidentalis, nov., and Apoma, Beck.

Turning next to the genus Pincria, Poey (Type P. bealliana, Poey), the fom known species are reviewed.

The genus Macroccramus, Guilding, which follows next, stands apart from all other genera of Lrocoptinac. Anatomically it has not yet been described. The senus is represented in Haiti by three groups of species: the groups of M. tenuiplicatus, of M. klatteaums, and of M. limeatus. In the latter group M. signalus var. salleamus, M. richaudi, vars. lincatistrigatus and sublineatus are new, as also M. gabbi irom sunto Domingo. In the group of M. tcuuiplicatus the var. swifliamus of that species is new, and in the M. klaticanus group M. sub-cylindricus is a new species. The East and Central Cuban species follow.

The next genus Microccramus, Pils. and Van., is also undescribed anatomically. The following are described as new: M. gossci (Pfr.), var. proaidenlia, and M. pe itiunus (Orb.), var. perconicus.

The Megaspindac, Pils., are next commenced. The author remarks that the members of this family seem to have been differentiated from their allies, the Clausiliidac, in the Northern Hemisphere of the Old World, during Mesozoic time. Eomogaspira represents a branch which attained high specialisation at the dawn of the Eocene in Western Europe, and shortly thereafter became extinct, either in consequence of over-specialisaticu, or as a result of physical changes in the unstable geography of this area. The ancestors of Perrieria and Coclocion made their way south-eastward to Papua and Australia, while the Brazilian Megaspira traces its forebears over the mid-Atlantic, like the Streptaxidae, Ampullariidae, of the same region, from tropical Africa, whence they migrated to South America over the Cretaceous land-bridge supposed to have spanned the Atlantic.

The following genera are reviewed, Callioncpion, Pils. and Van., Mesaspıra, "Lea," Jay, Eomegaspira, Pils., and Perricria, Tap. Can.

An Index to the Urocoplidac and Megaspiridac follow, and the author then passes on to the Achatinidae.

In this last mentioned family the following genera are treated of : Pseudachatina, Albers, with P. pyramidata, Kob. v. kobeltiana, n. var., P. daillyana, n.sp., from West Africa ; Atopocochlis, Cr. \& Fisch. ; Psendutrochus, H. \& A. Ad., with P. morcletianus (Desh.) v. pallidior, n. var. : Perideriopsis, Putz. ; Limicolaria, Schum., with L. Iryouiana, L. ağalhina, L. lucalana, and L. felina, Shuttl. v. zcbra, all new and from West Africa ; L. flammata (Caill.) v. smilhi and L. Longa, both new from East Africa; Burfoa, Bourg., and Mctachatinu, Pils.

The supplementary part ($6 \not+a$) is an exceedingly interesting one, and is entirely devoted to the Urocoptidae.

Commencing with a definition of the family, the author passes at once to the general morphology. The general structure of the pallial organs is rather that of the Bulimulidac than of the Clausiliidac. The generative organs have been examined in a few species of Eucalodinm, Coclocentrum, Berendlia, Anisospira, Epirobia, Holospira, Irocoptis, and Brachypodella. In the first six genera they are characterised by a usually very short, thick penis, with a long epiphallus, the retractor muscle is inserted on the diaphragm, and the receptaculum seminis has a long duct arising not very high on the vagina. In the two remaining genera, the penis is longer, the epiphallus apparently obsolete, aud the receptacular duct arises higher. The alimentary canal is long and varies considerably in the different genera, the pharynx or buccal mass, however, is always short, as in the Heliciduc. The jaw and radula are subject to much variation. Respecting the free retractor muscles, in Eucalodinn the pharyngeal and left retractors branch from the root of the columellar, and then the ocular, which is thus united for a short distance with the columellar. Anteriorly the two oculars unite to form a muscular plate over the pharyn.. In Coclocentrum the left ocular and pharyngeal retractor are united for a third of their length, and the pharyngeal retractor gives off a band to each anteriorly. In Holospira the left ocular is united part way with the pharyngeal and the right with the columellar muscles. In Crocoptis brecis the muscles arise as in Encalodium, but are independent distally, and the right ocular. functions also as a penial retractor. Finally in Brachypoldlla chemnitziana the pharyngeal and ocular retractors are united for a third of their length, and the columellar runs free of them. From the morphological right retractor a group of fibres arise which pass to the vas deferens and vagina.

The form, colouration, sculpture, and axis of the shell are next dealt with, followed by a consideration of the significant characters and evolution of the family. It is pointed out that many genera are in the stage termed phylogerontic by Hyatt. They are in the old age of the race, and Dr. Pilsbry believes that many phyla will not outlast the present geological period. Evidences of decadence are seen in the specialisation of the radula, the decreasing growth-power indicated by the fusiform shape of
the shell, and the laxity of coil, while the structure af the axis indicates that many phyla have passed their acme of specialisation, and are on the decline.

Parallel and convergent evolution is well illustrated by certain shell characters, and comparisons are instituted between the shells of the different genera. The geological and zoogeographical data bearing on the family are next reviewed, together with historical notes on the classification and that adopted in the present work. Finally an analytical key to genera completes this valuable and interesting work.

We have long wished to see the biological side of each family dealt with, and it is by no means an easy task the author has had to deal with. The work has been well done, as one would expect from an expert of such great ability, indeed no higher praise can be given to volume xvi than to say it is worthy of the reputation of its author.

In conclusion we must regret, with all malacologists who appreciate this magnificent monograph, the exceedingly careless manner in which the different parts of this volume are stitched. There is no reasonable excuse for stitching nearly three-eights of an inch into the pages and plates of any work.

Hedley, Charles.-Scientific Results of the Trawling Expedition of H.M.C.S. "Thetis." Mollusca, Part II. Mem. Aus. Mus., 1903, vol. iv, pt. 6, pp. 327+02, pls. xxxvi-xxxviii, and 53 figs. in text.
The second part of Mr. Hedley's paper treats of the Scaphopoda and Gastropoda, and records + species of the former, of which 2 are new, and 161 of the latter. 35 of which are new.

Epigrus (Type!Rissoa ischuus, Tate) is a new genus allied to Scrobs, Watson, and My:a (M. cresa, n. sp.) is a new genus of the Pyrancllidac, umbilicate, with few whorls, no columella fold, and the tip produced anteriorly. A new genus of the Buccinidac related to Hiudsia is described under the name of Fasciuns (Type F. lypicus, n. sp.). In several points it recalls Colubraria, but lacks the varices on the upper whorls, in other Nassa, but the pattern of the sculpture is foreign to that genus, while the large ıpex and absence of columella plications separate it from Hilldsia.

We note with some disappointment, the absence of anatomical details for any of the new genera or species.
Melvill, J. Cosmo and Ponsonby, J. H. -Descriptions of Thirty-one Terrestrial and Fluviatile Mollusca from South Africa. Ann. Mag. Nat. Hist., 1903 (s. 7.), vol. xii, pp. $595-609$, pls. xxxi, xxxii.
This the seventeeth contribution towards the elucidation of the non-marine Molluscan fauna of South Africa, includes descriptions of eleven species of Ennca, cight of Trachycrslis, two of Aucv/us, and one each of ten other genera.

Trachycystis scolopendra is an interesting species, and perhaps the most remarkable South African Helicoid yet described. Fallwulus crazfordiamus is a particularly fine and interesting dextral species, with six unusually complicated peristomatal processes. A very handsome species of Tropidophora, and a Choudrocyclus may also be mentioned.

Eliot, C.-On some Nudibranchs from East Africa and Zanzibar. Part II. Proc. Zool. Soc. Lond., 1903, pr. 250-257.
The author describes two new genera and five new species, none of which, however, are figured.

Ceralophyllidia africaua, gen et. sp. nov., is described from a single specimen, possessing a buccal aparatus similar to that of Phyllidtopsis, with the back studded with papillae. Plcurophyllidiclla loralit, gen. et sp. nov., is also described from a single specimen and appears to be intermediate between Plcurolcura and Plcurophyllidia. The remaining new species aree-Baeolidia major, Cerberilla africana, and Ercolania zanziharica,

Dall, W. H.-Contributions to the Tertiary Fauna of Florida. Pt. vi. Trans. Wagner Free Inst. Sci. Philad., 1903, vol. iii, pp, xir, $1219-1654$ pls. xtriii1 x .
We heartily congrutulate Dr. Dall on the completion of his great work. The first part was issued in 1890 , and further parts have been issued from time to time, the sixth completing this invaluable monograph. In all the work comprises upwards of seventeen hundred printed pages and sixty beautiful plates containing over eleven hundred figures.

In the present part the author continues his review of the Telcodesmacea, following with the Anomalodesmaceit, and describes many new species in both orders. The Brachiopoda are next treated of, and finally a most interesting and valuable " Discussion of the Geology" is given.

Dall, W. H. and Bartsch, P.-Synopsis of the Genera, Sub-genera and Sections of the family Pyramidellidae. Proc. Biol. Soc. Washington, 1904, vol. xvii, pp. 1-6.
The authors recognise four genera, viz., Pyramidella, Lam., Turbonilla, Risso, Odostomia, Flem., and Murchisonella, Mörch. The first gemus is then divided into ${ }_{2}+$ sub-genera and sections of which the following are new: Milda, (Type Obeliscns reculricosus, Quoy), I'olusta (Type Pyramildlla anricoma, Dall), Callolonschacus (Type P. jamaicensis, Dall), (lfa (Type P. (Ilfa) cossmanni, nom. nov. = Syrnola slriala, Cossm.), Trofucas (Type P. subulala, A. Ads.), V'asua (Type P^{\prime}. panmotensis, Tryon), Cossmanuica (Type P.clandestima, Desh.), Orinella, nom, nov. (Type ()rimu pinsuicula, A. Ads.), Sulcorinclla (Type P. (S.) dodona, in. sp.), Iphiana (Type Syrnola densislriala, Garrett), and Symolima (Type Syruola rubra, Pse.).

The second genus is divided into 21 sub-genera and sections the following being new : Saccoina, nom. nov. (Type Sfica monlerosatoi, Sacco), l'isma (Type Ealimella tcnuis, Sby.), Lancella, nom. nov. (Type Turbonilla (Lancca) clongalu, Pse.), Asmunda (Type Chemnitzia lurrila, C. B. Ad.) and Baldra (Type Turbonilla (B.) archert, n.sp.).

The genus Odostomia contains 40 sub-genera, the following io being new : 'illia (Type O. (F.) pilsbryi, n.sp.), Folinella (Type Amoura anguliferens, De Fol.), Bcsla (Type Chrysallido contexa, Cpr.), Esila (Type C. lacunala, Cpr.), Haldra (Type C. ploolis, Cpr.), İidia (Type Parlhenia armata, Cpr.), Evalina (Type O. (E.) americana, n.sp.), Slomega (Type O. cinspicha, Ald.) Heida (Type Syrnola calvosacusis, Dall), and Lysacme (Type Chrysallida clausiliformis, Cpr.).

Kennard, A. S. and Woodward, B. B.-Holocene Deposits at Clifton Hampden, near Oxford. Proc. Cotteswold Nat. Field Club, 1903, vol. xiv, pp. 191-203. The authors record $5+$ specits of land and freshwater shells from three beds on the banks of the Thames at Clifton Hampden, of which 15 are land and 39 freshrvater forms. As the authors remark it is not often that in these recent deposits any marked super-position of beds occurs, hence the importance of the present section, in which Bed A. yielded 30, Bed B. 49 , and Bed C. 26 species.

Knight, G. A. F.-A Visit to the Outer Hebrides in search of Mollusca. Trans. Perthshire Soc. Nat. Sci. 1903, vol. iii, pp. 193-217.
Mr. Knight gaves an interesting account of a holiday spent in the Outer Hebrides in search of Mollusca. He records 71 species and 9 varieties of marine molluscs, 8 species and I variety of land, and 1 species and variety of freshwater.

Collinge, Walter E.-Report on the Non-operculate Land Mollusca. Fasciculi Malayenses, Zoology, 1904, vol. i, pp. 205-218, pl. xi-xiii.
The author describes the collection made by Messrs. Annandale and Rohinson during 1901-2 in the Mahy Peninsulia.

A new species of Damayamlia is described and one of Parmarion, atso one of the gemus Alopos.

Atter examinins the anatomy of the Helicarion lowi of de Morgan, Mr. Collinge is of opinion that it can not be retained in that gemus. It is closely related to certain species of Arioplumla, and he suggests that it should be placed in the genus Nilgiriat.

The variety martcusi of Hemiflecta salamsana is also new, as well as the variety slobosus, Fulton, of Amplidifomus feraliensis, Fult.

MeIntosh, Prof -The Story of a Pearl. Zool., 1904 (s. 4), vol. viii, pp. $41-56, \mathrm{pl}$. I.
Professor McIntosh gives interesting account of the views of the earlier writers on pearl formation, as well as those of recent times.

Lebour, Marie V.-Additions to the List of Matine Mollasca of Northumberland. Report Northumberland Sea Fish. Comm... 1903, r. 50.
The authoress addi to her previous lists, Limafonlia nisu, Johnst., Goniodoris medosa, (Mont.), Doris bilamullala, L., and Trochus liclacimas, Fabr.

Thiele. Joh. - Anatomisch-systematische I'ntersuchungen einiger Gastropoden. Wiss. Erseb. dentschen Tiefsee-Exped. a. d. Danpfer "Valdivia" J8g8-18yg, $1903,13 \mathrm{~d}$. vii, pr. 14) $-17+$, T(n. vi-is.

Bavay, A. and Dautzenberg, Ph.-Description de coquilles nouvelles del'IndoChine. Jotrn. de Conchil. son3, vol. li, pp. 201-236, pls. vii-xi.
The authors in this their third contributi n to lle mollusca of the Indo-China region, describe and figure mumerous new species and varieties, amongst those we may number is especially interesting : Streplawis (odontartomon) mabillci, Silala aculecarimala, Bowsidua messerscri and gircti, and Helicomorpla scalamides. In addition to the new species, figures are also given of some hitherto untigured.

EDITOR'S NOTES.

The Editor again appeals to those subscribers whose subscriftions are one, two or three years in arrear to kindly forward the same. Unless these subscriptions are paid during the present year, the question of the continued publication of the Journal will have to be seriously considered.

W'e note with much pleasure the election of our editorial colleague, Mr. E. R. Sykes, to the Presidency of the Malacological Society of London.

T'HE

JOURNAL OF MALACOLOGY.

No. 2.

ON A COLLECTION OF MARINE SHELLS FROM PORT ALFRED, CAPE COLONY.

BY EDGAR A. SMITH, I.S.O., British Mu-eum (Natural History) London. (Plates ii, iii.)

In the early part of last year the British Museum received from Lieut.-Col. W. H. 'Turton, R.E., a large series of shells collected by him at Port Alfred, Cape Colony. The collection is of interest, as it contains a considerable number of new forms and also a few others which are new to the known fauna of South Africa. It also shows how rich in species this particular locality evidently is. It has been thought useful and interesting to give a list of the species as all were obtained at one place and within the short period of two or three month. Besides the species enumerated, there are numer ous specimens which, being beach-rolled, (the whole collection having been obtained on the shore), are beyond recognition. Others are too young to be dealt with and a few belong to families, I ermetirlae, Ostraeilcue, etc., which are extremely difficult to determine. Probably altogether about fifty species are comprised in this unnamed material which are not included in the following list, and Colonel Turton writes that he has upon a second visit to Port Alfred found a considerable number of species which were not in his first collection. It is not therefore improbable that some four hundred and fifty species will eventually be recorded from this one locality.

All the species about to be enumerated, excepting those new to the fauna, ${ }^{(1)}$ are quoted and references given, either in Sowerby's "Marine Shells of South Africa," or in my paper in the Proc. Malacol. Soc., vol. v, pp. 354-402.

[^32]
A. List of Species.

Spirula peroni, Lamk.
Melampus acinoides, Morelet.
Gadinia costata, Krauss.

* Ampullarina africana, n.sp.

Siphonaria concinna, Sowb.
Siphonaria capensis, Q. \& G. var
Siphonaria aspera, Krauss.
Bulla ampulla, Limn.
Hydatina physis, Limn.
Haminea natalensis, Krauss.
Cylichna cylindracea, Pennant.
Tornatina voluta, Q. \& G.
Actaeon albus, Sowb.
Retusa truncatula, Brug
Terebra capensis, Smith.
*'Terebra suspensa, n.sp.
Conus infrenatus, Reeve.
Conus pictus, Reeve.
Conus bairstowi, Sowb.
Conus tinianus, Hwass.
Clionella kraussi, Smith.
Clionella bipartita, smith.
Clionella subventricosa, Smith.
Clionella rosaria, Reeve.
Clionella sinuata, Born. var.
Clionella (?) platystoma, Smith.
Clavatula gravis, Hinds.
Pleurotoma fultoni, Sowb.
Drillia rousi, Sowb.
Drillia caffra, Smith
Drillia layardi, Sowb.
Drillia diversa, Smith.
Drillia bairstowi, Sowb.
Drillia hottentota, Smith.

* Drillia albonodulosa, n.sp.
* Drillia thetis, n.sp.
* Drillia nivosa, n.sp.
*Drillia subcontracta, n.sp.
*Drillia praetermissa, n.sp.
Clathurella capensis, Smith.
Clathurella ponsonbyi, Sowb.
Clathurella grayi, Reeve.
*Clathurella crassilirata, n.sp.
Clathurella verucosa, Sowb.
Mangilia septangularis, Mont.
Mangilia amplexa, Gld.
*Mangilia alfredi, n.sp.
Daphnella (?) sulcata, Sowb.
Daphnella capensis, Sowb. ($=$ Columbella capensis.)
*Glyphostoma siren, n.sp. Mitromorpha volva, Sowb. Alcira elegans, H. Ad. Columbella lightfooti, Smith. Columbella pyramidalis, Sowb.
Columbella algoensis, Sowb.
Columbella albuginosa, Rve.
Columbella cerealis, Menke.
*Columbella adjacens, n sp.
Cancellaria semidisjuncta, Sowb.
Cancellaria foveolata, Sowb.
Ancilla obtusa, Swainson.
* Ancilla reevei, n.sp.

Ancilla obesa, Sowb.
Ancilla fasciata, Rve.
Incilla albozonata, n.sp.
($=$ A. cinnamomea, Sowb. non Lamk.)
Ancilla marmorata, Rve.
Marginella ornata, Kedfield.
Marginella mosaica, Sowb.
Marginella piperita, Hinds.
Marginella bairstowi, Sowb.
Marginella albocincta, Sowb.
Marginella punctilineata, Smith, var.
Marginella neglecta, Sowb.
Marginella zonata, Kiener:
Marginella keenii, Marratt.

* Marginella pura, n.sp.

Marginella pellicula, Marratt?
Marginella burnupi, Sowb.
*Marginella differens, n.sp.
Marginella cylindrica, Sowb.
Marginella algoensis, Smith.
Marginella fallax, Smith.

* Marginella corusca, Reeve.
* Narginella dulcis, n.sp.
* Marginella munda, n.sp.
* Marginella pseutes, n.sp).

Voluta africana, Rve.
Mitra picta, Rue.
Mitra latruncularia, Rve.
Mitra patula, kie.
Mitra merula, Sowb.
Mitra capensis, Dkr.
Mitra canaliculata, Sowb.
Mitra euzonata, Sowb.
Mitra bathyraphe, Sowb.
Mitra kowiensis, Sowb.
Fasciolaria heynemann: I kr
Latirus rousi, Sowb.
Latirus bairstowi, Sowb.
Fusus ocelliferus, Bory, var. robustior, Sowb.
*Fusus cingulatus, n.sp.
Melapium linéatum, Lamk.
Cominella lagenaria, Lamk
Cominella tigrina, Kiener.
Cominella porcata, Gmelin.
Cominella elongata, Dkr.
Cominella unifasciata, Sowb.
Cominella puncturata, Sowb.
Cominella capensi , Dkr.
Cominella angusta, Sowb.
Tritonidea insculpta, Sowb.
Euthria fuscotincta, Sowb.
Sylvanocochlea ancilla, Hanley:
Eburna papillaris, Sowb.
Nassa crawfordi, Sowb.
Nassa pulchella, A. Ad.
Nassa poecilosticta, 11.sp. ($=\mathrm{N}$. coccinea (A. Ad.), Sowb.)
Nassa pyramidalis, A. Ad.
Nassa speciosa, A. Ad.
Nassa serotina, A. Ad. var.
Nassa kraussiana, Dkr.
Nassa (Demoulia) abbreviata, Gmel.
Nassa retusa, Lamk.
Bullia callosa, Wood.
*Bullia trifasciata, n.sp.
Bullia laevissima, Gmel.
Bullia tenuis, Rve.
Bullia annulata, Lamk.
Bullia rhodostoma, Gray.
Bullia semiusta, Rve.
Bullia diluta, Krauss.
Bullia pura, Melvill.
Murex uncinarius, Lamk.
Murex scrobiculatus, Dkr.
Murex babingtoni, Sowb.
Murex kieneri, Rve.
Murex crawfordi, Sowb.
'Irophon insignis, Sowb.
Purpura capensis, Petit.
*Purpura texturata, n.sp.
I'urpura squamosa, Lamk.
Purpura cataracta, Chemn.
Purpura castanea, Küster. (Syn. Cominella unifasciata, Sowb.)
Latiaxis rosaceus, Smith.
Coralliophila rubrococcinea, Melv. \& Standen.
Lotorium sauliae, Rve.
Lotorium africanum, A. Ad.
Lotorium leucostoma, Lamk. var.
L. otorium doliarium, Lank.

Lotorium klenei, Sowb.
Lotorium olearium, Desh.
Lotorium argus, Lamk.
Kanella granifera, Lamk.
Ranella anceps, Lamk.
Cassis achatina, Lamk.
I) oliuin dunkeri, Hanley.

Radius aurantia, Sowb. ?
Cyprata citrina, Gray. var.
Cypraea edentula, Sowb.
Cypraea minoridens, Melvill.
Cypraeovula capensis, Gray.
Trivia oniscus, Lamk.
Trivia vesicularis, Gaskoin.
Trivia formosa, Gaskoin.
Trivia oryza, Lamk.
Cerithium pingue, A. Ad.
${ }^{*}$ Cerithiopsis trilineata, Phil. Cerithiopsis exquisita, Sowb. Cerithiopsis foveolata, Sowb. Trifora perversa, Linn.
*'Trifora convexa, n.sp.
*'Irifora fuscomaculata, n.sp.
Trifora cingulata, A Ad.
*Trifora fuscescens, n.sp.
'Iurritella carinifera, Lamk Littorina knysnaensis, Phil.
Littorina africana, Phil) iala dubia, Sowb Diala pinnae, Krauss, var? Assiminea bifasciata, Nevill.
Assiminea umlaasiana, Smith.
*Rissoina alfredi, n.sp.
Rissoina elegantula, Angas.
Rissoa fenestrata, Krauss.
*Rissoa perspecta, n.sp.
Rissua argentea, Sowb.
*Rissoa conspecta, n.sp. Rissoa (Cingula) caffra, Sowb. Torinil dorsuosa, Hinds Torinia variegata, Gmelin. Crepidula (Crypta) aculeata, Cmelin. Crepidula (Crypta) adspersa, 1)kr. Crepidula (Trochita) helicoidea, Sowb. Crepidula (Mitrella) chinensis, Linn. Natica imperforata, Gray. Natica forata, Rve.
*Natica decipiens, n.sp.

* Natica napus. n.sp. Natica didyma, Bolten. lanthina globosa, Swains. Ianthina communis, Lamk. Ianthina exigua, Lamk. Scala aculeata, Sowb. var. Scala coronata, Lamk. Scala fragilis, Hanley ? Scala lactea, Krauss.
* Acrilla gracilis, H Ad. Syrnola capensis, Sowb.
*Mormula rissoina, A. Ad.
*' 'rurbonilla hofmani, Angas.

Turbonilla tincta, Sowb.
Turbonilla laevicostata, Sowb.
Turbonilla tegulata, Sowb.
*'Turbonilla gemmula, n.sp.
l'urbonilla bathyraphe, Sowb.
*Turbonilla decora, n sp.
Cingulina circinata, A. Ad.
Odostomia robusta, Sowb. var.
Odostomia lavertinae, Smith.
Odostomia (Ondina) lucida, Sowb.
Miralda crispa, Sowb.
Graphis pellucida, Sowb.
Eulima distorta, Desh.
*Eulima distincta, n.sp.
Eulima dilceta, Smith
Eulima langleyi, Sowb.
Eulima simplex, Sowb.
*Eulimella nivea, n.sp
*Eulimella minor, n.sp. Niso balteata, Sowb.
*Niso interrupta, Sowb. Astralium taylorianum, smith. 'Turbo (Ocana) cidaris, var. natalensis. 'Turbo (Samarticus) sarmaticus, Lim. Leptothyra sanguinea, Linn.

* Leptothyra armillata, A. Ad.

Phasianella elongata, K rauss.
Phasianella kochi, Phil.
Phasianella bicarinata, I)kr.
Phasianella capensis, 1)kr.
Clanculus miniatus, Anton.
Calliostoma bicingulatum, Lamk.
Gibbula tryoni, Pilsbry.
Gibbula multicolor, Krauss.
Gibbula benzi, Krauss.
Gibbula fucata, Gld.
Gibbula cicer, Menke.
Oxystele impervia, Menke.
Oxystele tabularis, Krauss.
Oxystele tigrina, Chemn.
Oxystele merula, Chemn.
*Cynisca forticostata, n.sp.
Cyclostrema planulata, Sowb.
*Ethalia africana, n sp.

Haliotis sanguinea, Hanley:
Haliotis midac, Limn.
Pupillia aperta, Sowb.
Fissurellidaea hiantula, lamk.
Fissurellidaea concatenata, Cr. ©lisch. (rassatella acuminata, Sowb.
Fissurella natalensis, Krauss.
Glyphis elizabethat, Smith
Glyphis calyculata, Sowb.
Glyphis spreta, Smith.
Glyphis elevata, Dkr.
Patella variabilis, Krauss.
Patella rustica, Linn.?
Patella umbella, Cimelin.
Patella granularis, Limn.
Patella argenvillei, Kirauss?
Patella plicata, Born.
Patella longicosta, Lamk.
Patella oculus, Born.
Patella (Olana) cochlear, Gmelin.
Patella (Patina) pruinosa, Krauss.
Helcion pectinata Linn.
Chiton tulipa, (2. © G.
Callochiton castaneus, Wood.
Dinoplax gigas, Gmelin.
Acanthochites garnoti, Blainville.
I entalium belcheri, Sowb.
Lima rotundata, Sowb.
*Lima perfecta, n.sp.
Pecten tinctus, Reeve.
Margaritifera capensis, Sowb.
Mytilus (Chloromya) perna, Limn.
Mytilus (Aulacomya) variabilis, var ?

* Modiola tenerrima, n.sp.

Modiola petagnae, Scacchi. var ?
Modiola lignea, Reeve.
Modiolaria coenobita, Vaillant.
Arca lactea, Linn.
Arca obliquata, Wood.
Glycimeris queketti, Sowb. jun.?
*Limopsis pumilio, n.sp.
*Hochstetteria velaini, n.sp.
*Hochstetteria limoides, n.sp.
Thecalia concamerata, Brug. Carditella rugosa, Sowb.
*('arditella laticostata, n.sp.
Neocardia angulata, Sowb.
Cardita elata, Sowb.
*Cardita minima, n.sp.
Cardium turtoni, Sowb.
(ardium natalense, Sowb)
l osinia hepatica, Lamk.
Venus rerrucosa, Limn.
Meretrix ('livela) compressa, Sowb.
Meretrix (Chione) kochi, Phil.
Sunetta ovalis, Sowb.
Circe pectinata, Linn.
'Tapes corrugatus, Gmelin
Venerupis robusta, Sowb.?
Schizodesma spengleri, Gmelin.
Mactıa ovalina, Lamk.
Standella solandri, Gray: (Syn. P'etricola lyra, Melvill).
(Gastrana abilgaardiana, Spengler.
Tellina rosea, Spengler.
T'ellina natalensis, Krauss.
Tellina ponsonbyi, Sowb.
Tellina triangularis, Chemm.

* Tellina regularis, n.sp.

Psammotellina capensis, Sowb.
Nacoma littoralis, Krauss.
Macoma cumana, Costa, var. ?
I) onax serra, Chemn.

Donax sordidus, Hanley.
*Semele capensis, n.sp.
*'Theora oralis, n.sp.
Solen capensis, Fischer.
Cultellus decipiens, n sp.
(= pellacidus, Sowb. non P'emnant).
Loripes clausus. Philippi.
($=$ L. lacteus, Sowb. non Linn).
Lucina despecta, n.sp. (= L. columbella, Sowb.non Lamk.)
*Lucina valida, n.sp.
Cryptodon globosus, Forsk.
Felania subradiata, Sowb.
*Pholas fragilis, Sowb.
Nucula nucleus, Limn.
*Tellimya similis, n.sp.
*Montacuta macandrewi, Fischer. Lasaea australis, souverbie.

Kellia rotunda, Desh.
Kellia mactroides, Hanley.

* Lepton fortidentatus, n.s].
B. Descraptions of New Spectes ant Remarks upon a few OTHER PRENOUSLY IESCRIBEW FORMS

Drillia thetis, n.sp.
lly. ii, fig. 1.
Testa parva ovato-fusiformis, alba, rufescens, vel fuscescens; anfractus normales 5 convexi, costis obliquis leviter flexuosis (in anfr. penultimo 10-12) instructi, inter costas spiraliter tenuiter striati, sutura obliqua sejuncti, ultimus infral medium contractus, costis inferne evanidis, et pone labrum interdum plus minus obsoletis ; apertura parva, irregulariter sub-ovata, longit. totius \% fere aequans ; labrum tenue, arcuatim prominens, superne late sed haud profunde sinuatum ; columella leviter areuata, callo tenui induta.

Longit. 10 millim., diam. 4 : apertura + millim. longa, 2 lata.
The rather convex whorls, the oblique and slightly flexuous ribs and the close fine spiral striae, are the principal features of this species. It seems to be variable in colour, some specimens being entirely white, others reddish or brownish. Some white examples have a hrown zone below the suture and another round the middle of the body-whorl, and one pale specimen has soine distant, obscure, reddish spots upon the upper part of the whorls. The spiral striae are most conspicuous between the costae.

Drillia subcontracta, n.sp.

Pl. ii, fig. 2.
Testa elongatil, fusca, ad apicem mamillata, anfractus 8 , superiores duo laeves, convexi, caeteri supra concavi, infra convexi, costis obliquis circiter 12, supra attenuatis, instructi, inter costas spiraliter fortiter striati, ultimus infra medium contractus, et costis obsoletis circa basim sulcatus ; apertura sub-ovalis, suprat et infra contracta, longit. totius circiter $\frac{1}{3}$ aequans ; labrum tenue, haud profunde sinuatum ; columella oblique arcuata, callo tenui pallido induta.

Longit. 12 millim., diam. 4.5 : apertura + millim. longa, 2 lata.
The body-whorl is well rounded at the middle and then contracted below. I spiral striation or groove at the periphery, which also winds up the spire just above the suture, is usually more strongly marked than the rest.

Drillia albonodulosa, n. sp.

Pl. ii, fig. 3.
Testa parva, rufo-fusca, serie nodulorum alborum cincta, ovato-fusiformis ; anfractus sex, superiores iotundati, laeves, caeteri supra excavati, infra convexi, costis nodiformibus albis obliquis infra instructi, spiraliter striati, ultimus ad medium nodose costulatus, infra circa basim oblique et fortius striatus ; apertura parva; labrum ad marginem tenue, extus incrassatum, supra valde sinuatum ; columella rectiuscula, callo tenui superne tuberculiforme induta.

Longit. S. 3 millim., diam. 4 ; apertura 3.3 millim longa, r. 5 lata.
A solid little species, well characterised by its style of colouration.

Drillia praetermissa, n. sp.

$$
\text { Pl. ii, fig. } 4
$$

Testa breviter subfusiformis, fuscescens, pallide costulata, rufo-fusco maculata, lineis spiralibus albo et fusco articulatis subobscuris omata ; anfractus 8-9, apicales ?, cacteri supra concave declives, infra convexiusculi, costis obliquis $12-15$ in concavitate obsoletis instructi, spiraliter tenuiter striati, ultimus costis infra medium evanidis, circa basim fortius strictus; apertura longit. totius ${\underset{1}{1} \text { i }}^{4}$ adaequans, intus fuscescens; labrum arcuatim prominens, tenue, supra rotunde sinuatum ; columella fere recta, callo tenui supra tuberculiforme induta.

Longit. 18 millim., diam. 7 .
Allied to D. mirest, but differing in colour and in its spire being more produced.

Drillia nivosa, n , sp .

Pl. ii, fig. 5.
Testa mediocriter elongata, pallide fuscescens, lineis numerosis spiralibus albo et fusco-puncticulatis ornata ; spira elongata, ad apicem mammillata; anfractus 7 , duo superiores rotundati, laeves, caeteri supra concavi, infra convexi, costis obliquis (in concavitate obsoletis) I 2-14 instructi, et spiraliter leviter striati, ultimus infra medium costis evanidis, circa basim fortius striatus; apertura longit. totius circiter $\frac{3}{8}$ adaequans; labrum tenue, arcuatum, supra subprofunde sinuatum ; columella levissime curvata, callo tenui, superne tuberculiforme indutum.

Longit. 17 millim., diam. 6.5 ; apertura 6.5 longa, 3 lata.
Two or three of the dotted lines around the middle of the whorls are more clearly defined than the rest. The specific name has reference to the white specks which cover the surface.

Clathurella erassilirata, n. sp.

Pl. ii, fig. 6.
Testa parva, fusiformis, albida, infra suturam et circa basim fuscotincta; anfractus 7 ?, supra declives, infra liris duobus crassis spiralibus rotundatis
instructi, ultimus triliratus, infra concave contractus et oblique striatus; apertura longit. totius circiter $\frac{3}{8}$ aequans; labrum supra ad suturam profunde et rotunde sinuatum, antice rufotinctum ; columella rectiuscula, vel leviter sinuosa, callo tenui induta.

Longit. 8 millim., diam. 3.5 .
Well characterised by the strong rounded spiral lirae and the deep labral sinus.

Glyphostoma siren, n. sp.
Pl. ii, fig. 7.
Testa parva, oblonga, dilute fuscescens, circa medium anfract. ultimi albo zonata ; spira gradata, ad apicem obtusa; anfractus 5 , superiores $1 \frac{1}{2}$ laeves, convexi, caeteri convexiusculi, costis longitudinalibus circiter 10 et liris spiralibus (in anfr. ultimo 3-4) cancellati, ultimus liris circiter ro cinctus ; apertura angusta, longit. totius $\frac{1}{2}$ haud aequans: labrum incrassatum, superne conspicue sinuatum, intus sex-denticulatum; columella rectiuscula, callo tenui induta, tuberculis $2-3$ minutis in medio munita.

Longit. 5.5 millim., diam. 2.3 : apertura 2.5 millim. longa, i lata.
A rather strongly cancellated species, of a pale brownish colour with a zone round the middle of the body-whorl, which is also partly visible above the suture of the spire.

Daphnella (?) sulcata (Sowerby).

Cominella (?) sulcata, Sowerby: Marine Shells S. Afr., p. ir, pl. i, fig. so, bad :
Hab.-Port Elizabeth (Sowb.).
The type of this species is in poor condition, so that certain features appear to have been overlooked in the original description. Of the six whorls the two apical ones are smooth, rounded, conspicuously large and mamilliform; the rest are rather convex and spirally grooved and ridged. They also exhibit lines of growth in the sulci, producing a sub-cancellated appearance, and the spirals are also faintly sub-granose. The labrum is a little thickened, ascends slightly upon the whorl above, and has a few minute tubercles upon the thickening within. 'The spiral lirae are about seven in number on the penultimate whorl and eighteen to twenty upon the last.
'This species does not fall conveniently into any known genus, and although placed provisionally in the genus Cominella by Mr. Sowerby, it might with equal propriety be located in Tritomidea. In size and some other respects it recalls the general facies of some forms of Daplinella.

Most examples are uniformly light corneous and generally have a row of brown spots at the middle of the body-whorl, which is also continued up the spire.

Mangilia alfredi, n. sp.
Pl. ii, fig. 8.
Manfiliat mostuta, Sowerby (nee Donovan) : Marine Shells. S. Afr. p. 7 .
Hal).-Algoa Bay (Sowb.).
This South African species differs from IV. rostata in form, the aperture being shorter and broader, also in the six or seven ribs being more regularly continuous up the spire. and especially in the much stronger spiral striation. The striae are close-set, hair-like, continued on and between the costae, and are easily observable under a simple lens The colour is somewhat variable. Some specimens are white with a broad band round the middle of the bodywhorl. Others are light brownish, and with or without a darker peripheral zonc.

Ancilla albozonata, n. $s p$.

Pl. ii, fig. 9.

Testa oblonga, supra acuminata, fusca, ad apicem alba, infra suturam et infra medium anfractus ultimi et circa basim albozonata: spira convexe acuminata, callo tenui induta ; apertura elongata, longit. totius circiter $\frac{7}{10}$ aequans, intus fusca, antice infra columellam alba; labrum tenue, parum arcuatum, supra ad insertionem album, antice ad extremitatem zonae externae albo tinctum ; columella antice quasi reflexa, oblique sulcata, fuscescens.

Longit. 20 millim., diam., 10 ; apertura 14 longa, 4.5 lata.
The coloration of this species is characteristic and constant. The top of the spire is white, a white band falls round the upper part or shoulder of the body-whorl, a narrower white zone accompanies the upper of the two oblique grooves across the lower part of the whorl, the base of which is also white. The surface is smooth, exhibiting only faint lines of growth.

Smaller than A cinnanomea, Lamk., from the Red Sea, and differently coloured. It is the rinnamomea of Sowerby's "Marine Shells of S. Africa," p. 16 .

Ancilla reevei, n. sp.

Pl. ii, fig. io.
Testa elongato-ovata, pallide carnicolor, infra suturam pallidior, laevis; spira plus minus callo pallido induta ; anfractus 5 ?, ultimus magnus, elongatus, conveviusculus, antice oblique bisulcatus, cingulo inter sulcos fusco maculato; labrum pallidum, parum arcuatum : columella antice incrassata, quasi reflexa, oblique sulcata, alba, vel dilute rosea.

Longit. 22 millim., diam. 10 ; apertura 12.5 millim. longa, 4.5 lata.
The colour is a pale fleshy tint, with a whitish or brownish zone beneath the suture, sometimes with a series of brown spots or dots upon the lower edge of it. The oblique girdle upon the front part of the body-whorl is also generally spotted with red. The reflexed columella is margined on the left side with an excavation or groove.

Testa breviter fusiformis, rimata, aurantia, ad angulum anfractuum albo cincta; anfractus 6, duo superiores globosi, laeves, caeteri supra ohlique declives, in medio angulati et serie nodulorum instructi, tenuiter spiraliter lirati ; ultimus lira conspicua paulo infra medium cinctus, antice in rostrum brevem productus; apertura supra irregulariter ovata, antice in canalem obliquum brevem producta: labrum simplex, tenue ; columella arcuata, laevis, callo tenui albo induta.

Longit. 28 millim., diam. 14 ; apertura cum canali 14 millim. longa, 5.5 lata.

Recognisable by its style of colouration and the infraperipheral conspicuous lira. The nodules at the angle of the whorls gradually increase in size with the growth of the shell. 'There are about nine on the body-whorl.

Terebra suspensa, n. sp.
Pl. ii, fig. 12.
Terehra pertusct, Sowerby (nec Born): Marine Shells S. Afr., p. 24.
'Testa parra, clongata, alba, pallide fusco maculata, ad apicem fuscescens; anfractus 12, duo superiores (protoconcha) laeves, dilute fusci, rotundati, mammaeformes, caeteri lente accrescentes, leviter convexi, paulo infra suturam subconstricti, costis longitudinalibus numerosis tenuibus arcuatis instructi, inter costas spiraliter punctati, ultimus ad peripheriam rotundatus, circa bisim zona fusca cinctus : apertura parva; columella alba, brevis, rectiuscula, antice obliqua ; canalis brevissimus, obliquus.

Longit. 20 millim., dian. 4.5 ; apertura 4 millim. longa, 2 lata.
Hat.-Port Elizabeth (Sowb.).
This species differs from ' T. pertusid of Born in its much smaller size, finer and more numerous spiral series of punctures, rather shorter whorls, and in colour. The dark infrasutural band, so characteristic of T. pertusa, is wanting in the present species. The upper part of the whorls in Born's species is smooth between the riblets and is marked off by a conspicuous row of punctures, whereas in T. suspense it is punctate between the costae, and less clearly defined.

Columbella (?) pyramidalis, Sowerby.

Columliella (Mitrella) pyramictalis, Journ. Conchol., Vol. vii, p. 370 ; Marine Shells S. Afr. Append., p. 10, pl. vi, fig. 4.
Hal.- Port Elizabeth (Sowb.).
Variable in colouration, sometinces being white, streaked with brown at intervals, and generally with an interrupted narrow opaque white line at the periphery, sometimes bordered above with a brown line which ascends the spire above the sutural line. Some specimens are pale brown, streaked or mottled with white, and dotted with brown at the pale periphery and upon the slight infrasutural margination. The lower part of the body-whorl in some of these specimens is whitish. The species has a Terebra-like appearance.

Mitromorpha volva, Sowerby, var.

Pl. ii, fig. 13 .
Testa ovato-fusiformis, supra pallide fuscescens, infra albida, circa medium anfract. ultimi fusco notata vel zonata ; spira conica, ad apicem mamillata ; anfractus 6 , superiores duo laeves, rotundati, caeteri spiraliter lirati (liris in anfr. penult 4, infimo caeteris majori, albo, fusco picto, in ultimo circiter 15), in interstitiis longitudinaliter tenuiter striati : apertura angusta, longit. totius $\frac{1}{2}$ vix aequans; labrum tenue, vix incrassatum et supra inconspicue sinuatum; columella rectiuscula, laeris, in medio obsolete incisa.

Longit. 7.3 millim., diam. 3 ; apertura 3.5 millim. longa, I lata
At once recognised by its spiral sculpture and fusiformly ovate form. The whitish lira spotted with brown round the middle of the body-whorl, passes up the spire above the suture and is rather thicker than the rest. The specimens differ somewhat in colour, being of a rich brown tint, excepting the upper part of the whorls which is white with a few brown spots.

This variety differs from the type in colour and the stronger lirae. The typical form is uniformly very light brown, although described as white. It usually has five lirae on the penultimate whorl, whereas there are only four in the present variety.

Marginella punctilineatd, smith.

Two specinuens differing somewhat from the type in colour. They are dirty whitish with slender brown lines, which are indistinctly dotted as in the normal form. The lower part of the columella is more or less stained with olive brown.

Marginella munda, i1. 5p.
Pl. ii, fig. 14.
Testa parva, fusiformis, alba, lineis angustis rosaceis subundulatis picta: anfractus $4-5$ leviter convexi, sutura obliqua sejuncti; labrum mediocriter incrassatum, album, ad extremitatem posticam roseo maculatum ; columella infra callo alloo reflexo induta, quadriplicata.

Longit. 7 millim., diam. 3.3.
A small species characterised by its fusiform shape and style of colouration.

Marginella pura, n. .p.

Il. ii, fig. 18.
Testa 1. metcalfei similis, sed duplo major, antice minus contracta.
Longit. 6 millim., diam. 3.75 .
This species quoted by Mr. Sowerby (Marine Shells S. Africa, p. 20) as the 1. metcalfei of Angas, differs in size and shape. The Port Jackson shell is only + millim. in length, 2.5 in diameter, and is more contracted anteriorly. It is also not so pure white as the present species. Both have four columellar plaits. I cannot separate M. metcaljei and M. or-hrarea, both of Angas, and both from New South Wales.

Marginella differens, n. sp.

Pl. ii, fig. 19.
Testa parra, ovata, alba, nitida; spira brevis, ad apicem obtusa; anfractus $3 \frac{1}{2}$ celeriter accrescentes ; labrum incrassatum, intus denticulatum ; columella callo induta, quadriplicata.

Longit. 5 millim., diatm. 3.25 .
This species was quoted by Mr. Sowerby (Marine Shells S. Africa, p. zo) under the name of M. bullwsa, Reeve. It is shorter than that species, has coarser denticulation within the labrum, the columella callus is n ore defined, and the second plication from the base is more produced to the left over the whorl. The plicae are usually four in number, but an indication of a fifth is sometimes observable. 'The denticles on the labrum are in the form of short lirae which are visible exteriorly through the transparency of the shell.

Marginella dulcis, n. sp.

$$
\text { Pl. ii, fig. } 20 .
$$

Testa parra, alba, polita, subpellucida: spira brevissima alba, obtusa; anfractus 4 : apertura angusta: labrum mediocriter incrassatum, intus laeve vel liris minutis brevibus 16 - 17 denticulatum : columella quinque vel sexplicata, plicis duobus anticis aliis majoribus.

Longit. 3.5 millim., diam. 2.2.
A very small subpellucid shell with the labrum smooth or minutely denticulate or lirate within ; with a slight noteh at the base or anterior end of the aperture, and six columellar folds, of which the two anterior are larger than the rest, which look more like minute denticles than plicae, and in adult specimens may be more or less obscured by callus.

Marginella pseustes, n. sp.

$$
\text { Pl. ii, fig. } 2 \text { I. }
$$

Testa minuta, ovata, alba, pellucida, nitida ; spira rotundata, haud exserta; anfractus 3 , ultimus fere totam testam formans ; apertura angusta : labrum extus valde incrassatum, intus laeve, longit. totam testae aequans; columella triplicata, plica antica obliqua, maxima, inferne labro juncta.

Longit. 2 millim., diam. r.3.
I very small species, ovate, with a rounded apex, a conspicuously thickened lip for so sma'l a shell, and three folds at the anterior end of the columella, of which the basal one is the thickest and unites with the labrum in front.

> Purpura texturata, n. sp.

Pl. ii, fig. I 5 .

Testa parva, ovato-turrita, palli le rufescens, supra porcas spirales rufo punctata; anfractus 6, superiores duo l.teves, convexi, mamillaeformes, caeteri supra concavi, in medio nodose a gulati, liris minutis spiralibus, incrementique lineis undique cancellati, ultimus poreis quatemis transversis instructus; apertura pallida, rufo fasciata, longit. totius $\frac{1}{2}$ paulo superans; columella alba, parum arcuata, callo tenui induta.

Longit. 22 millim., diam. 13 : apertura 12 millim. longa, 6 lata.
Remarkable on account of the finely cancellated surface, the nodose angle of the whorls and the style of colouration. The ground colour is very light red, varied with dark brown or red dots or short lines upon the nodose angle of the whorls, and upon the three lower transverse ridges upon the body-whorl. Of these, that nearest the angle is also slightly nodose. The protoconch, consisting of about two whorls, is larse, smooth and yellowish. The labrum is thin and very finely crenulated within the margin.

Quite distinct from P. rapmsisis, Petit. The fine cancellation is quite different from the sculpture of that species.

Purpupa castanea, Küster.
Purpura rastemea, Krauss MSS., Küster: Conch. Cab., p). I 70, pl. xxviii, figs. S, 9.
Cominella unifasiata, Sowerby: Journ. Conchol., vol. v, p. 3 ; Marine Shells S. Africa, p. 11, pl. i, fig. 11; Appendix, p. 4, var. concolor.
Mal.-Cape Agulhas (Küster) : Port Elizabeth and Natal (Sowb.).
The variety comcolor of Sowerby's Cominella mifariata is the same as the typical form of cositanea.

Nassa poecilosticta, n. sp.
Pl. ii, fig. 16.
Testa acuminato-ovata, colore variabilis, aurantia vel fusca, sordide albida fusco lineata et punctata, circa medium anfractus ultimi linea interrupta fusca vel linea alba saepe picta; anfractus circiter δ convexiusculi, costis leviter obliquis $12-16$ lirisque spiralibus numerosis supra et inter costas continuis instructi, ultimus infra medium liris paucis crassioribus cinctus ; apertura parva; labrum mediocriter incrassatum, intus liris brevibus 10-11 munitum, saepe pallidum, interdum in medio macula fusca pictum ; canalis anticus saepe fusco tinctus: columella arcuata, callo tenui tuberculis $3-4$ gerente amicta.

Longit. 14 millim., diam. 7 ; apertura intus +.5 millim. longa, 3 lata.
This species is I believe the N. coremea of A. Adams MSS. as understood by Mr. Sowerby (Marine Shells S. Africa, p. I2). As, however, I have never seen a scarlet specimen, and its colouration is so variable, I venture to propose the name poerilusticta for this apparently quite common shell. The manuscript name coceinea may therefore be disregarded in future. Mr. Sowerby in the Appendix to the above work (p. 5), has suggested that this species is the same as N. coccinella, Lamarck. 'Ihis, however can scarcely be correct, as that species by general consent is regarded as synonymous with the common N. inerassata of British and European coasts.

Some specimens of the present species are uniformly orange, excepting the lip which is white within. Sometimes this variety has a white line round
the middle. Other specimens are uniformly rich brown. Some are dirty whitish, transversely lineated and dotted with brown, often with a more conspicuous interrupted line at the periphery which also passes up the spire above the suture. One specimen has the upper part of the shell pale, dotted with brown, and the lower half of the body-whorl bright orange. The costae are much more oblique in some examples than in others. In N. fuscolineata, Smith, from Japan, a closely allied species, the ribs slope in the opposite direction.

Bullia trifasciata, n. sp.

$$
\text { Pl. ii, fig. i } 7
$$

Testa oblonga, subturrita, alba, fuseo fasciata; anfractus 7 , vix convexi, sutura alba callosa obliqua discreti, spiraliter sulcati, sulcis in anfr. penultimo circiter 7 , anfr. ultimus infra suturam leviter turgidus, deinde contractus, transversim sulcatus : apertura irregulariter ovata, supra acuminata, intus fuscescens, subfasciata; labrum tenue, arcuatum ; columella callo albo crasso reflexo induta.

Longit. 39 millim., diam. 18.
Allied to R. ammlata, Lamarck, but differently coloured, with a narower body-whorl, a less sharply turreted spire, and a broader columellar callosity. Of the three brown bands upon the hody-whorl, the uppermost npon the swollen edge of the whorl is the darkest.

Natica napus, n. ip.

Pl. ii, fig. 22.
Testa globosa, anguste umbilicata, alba, lineis incrementi tenuibus striisque spiralibus tenuissimus sculpta; spira brevis, obtusa, conoidea; anfractus 6 convexiusculi, ultimus infra suturam zona opaca alba ornatus et prope aperturam leviter concave depressus ; apertura alba; columella incrassata, reflexa, supra callo crassiusculo labro juncta.

Diam. maj. 31 millim., min. 24 : alt. 32.
'This species is rather like \boldsymbol{N}^{\prime}. uher, Valenciennes, from Peru, but has a different columellar callosity, and the columella itself is not so straight. N^{\top}. rapulum, Reeve, is the same species as N. ulver.

Natica decipiens, n. n .

$$
\text { Pl. ii, fig. } 23 \text {. }
$$

'Testa parra, globosa, anguste umbilicata, lutescens, lineis undulatis numerosis luteis picta, infra suturam zona alba fusco-maculata, circa basim anfractus ultimi maculis fuscis notata, et infra umbilicum fusco tincta; spira bre is obtusa ; anfractus quatuor, convexi, lineis incrementi striati, ultimus antice oblique descendens ; apertura albida ; columella callo fusco umbilicum semiobtegente instructa.

Diam. maj. 9 millim., min. 6.5 : alt. 8.
Allied to N. queketti, Sowb., but differently coloured, the body-whorl descends more, and there are differences in the umbilical opening and the columellar callus

Rissoina alfredi, r.sp.

Pl. ii, fig. 24.
Testa elongata, acuminata, alba; anfractus circiter ıo, normales septem fere plani, oblique costati, costis leviter arcuatis, circiter 14, ultimus costis infra undulatis instructus, circa basim inter costas tenuiter liratus: apertura obliqua, acuminate ovalis ; labrum paulo incrassatum ; columella callo tenui reflexo induta.

Longit. 7 millim., diam. 2.5 .
A pure white shell with very oblique ribs and some fine striae around the base of the body-whorl, where the costae are slightly waved.

Rissoa perspecta, n.sp.
Pl. ii, fig. 25
'Testa minuta, elongato-ovata, alba, pellucida, laevis : spira obtusa, ad apicem rotundata ; anfractus 4 , convexiusculi, infra suturam late hyalino-marginati, ultimus elongatus ; apertura parva, pyriformis, $\frac{1}{3}$ longit. totius subaequans ; peristoma continuum, leviter incrassatum, margine externo subpatulo, columellari, subreflexo, appresso.

Longit. 2 millim., diam. r.
The form and colour are different in R. conspecta and the whorls are rounder. The peristome in the present species is thicker and a little patulous, and the pellucid margination below the suture is broader than in comsperta.

Rissoa conspecta, n.sp.
Pl. ii, fig. 26.
Testa minuta, ovato-turrita, pallide fuscescens subpellucida, nitida, lineis incrementi tenuibus striata, imperforata; spira ad apicem rotundata, obtusa ; anfractus 5 convexi, infra suturam hyalino-marginati ; apertura ovatopyriformis, circiter $\frac{1}{3}$ longit. totius adaequans ; peristoma continuum, margine externo tenui, columellari leviter vel vix reflexo.

Longit. 2 millim., diam. i.
A very small glossy shell, of a pale brownish colour, without any sculpture, excepting the lines of growth. The peristome is perhaps rather paler than the rest of the whorl.

Eulima distincta, n.sp.
Pl. iii, fig. ı.

Testa parva, breviter subulata, alba, polita, ad apicem haud acuta, saricibus pluribus instructa ; anfractus 8 fere plani, infra suturam leviter obliquam zona angusta pellucida ornati, ultimus ad medium obtuse vel obsolete angulatus ;
apertura piriformis ; labrum leviter incrassatum ; columella arcuata, anguste reflexa.

Longit. 4.5 millim., diam. 1.5 .
The slightly thickened labrum and the varices, or former labra, are the peculiar features of this species.

Eulimella nivea, n.sp.
Pl. iii, fig. 2
Testa alba, elongata, subulata, nitens, minute spiraliter substriata et lineis incrementi tenuibus sculpta; anfractus circiter 12 fere plani, sutura profunda leviter obliqua sejuncti, ultimus ad peripheriam rotundatus ; apertura parva, rotunde subquadrata : labrum tenue ; columella incrassata, reflexa.

Longit. 10 millim., diam 2 ; apertura 1.3 longa.
I long, gradually tapering shell, consisting of numerous slowly increasing whorls which are separated by a deep suture. All three examples have lost the protoconch.

Eulimella minor, n.sp.

$$
\text { Pl. iii, fig. } 3 \text {. }
$$

Testa elongata, sracilis, alba, polita, subpellucida; anfractus 10 , duo apicales globosi, sinistrales, transversim siti, caeteri fere plani, sutura obliqua distincta sejuncti, infra suturam zona subopaca angusta cincti, ultimus ad peripheriam rotundatus ; apertura subpiriformis : labrum simplex; columella leviter incrassata et reflexa.

Longit. 5 millim, diam. 1 ; apertura .75 longa.
A narrower shell than E. nirec, with longer, more rapidly increasing whorls. It is also more pellucid and exhibits an infrasutural zone.

Turbonilla gemmula, n.sp.
Pl. iii, fig. 4
Testa minima, pellucida, nitens, costis numerosis flexuosis obliquis tenuibus instructa ; anfractus norme les sex, convexi, sutura profunda obliqua sejuncti, ultimus costis infra medium obsoletis ; apertura parva, irregulariter ovata; columella rectiuscula, levissime incrassata et reflexa.

Longit. 3.5 millim., diam. I.
A very small pellucid shell with $17-18$ oblique and slightly flexuous ribs, six normal whorls and a globose protoconch, consisting of about two whorls. Apparently there is no spiral sculpture of any kind.

Turbonilla decora, n.sp.
Pl. iii, fig. 5 .
Testa elongata, alba; anfractus normales sex convexi, longitudinaliter oblique tenuiter costati, inter costas spiraliter striati, sutura obliqua profunda sejuncti, ultimus costis infra medium plus minus obsoletis, lineisque spiralibus haud interruptis ; apertura longit. totius circiter $\frac{1}{4}$ aequans ; columella vix incrassata, leviter reflexa, haud plicata.

Longit. \& millim., diam. 1 .
The embryonic sinistral shell forms a globose apex and consists of about two and a half whorls. The ribs on the penultimate whorl are about twenty in number and the spiral striae about ten.

Trifora fuscescens, n. sp.

PI. iii, fig 6.
Testa parra, gracilis, fuscescens, quadricingulata, cingulo supremo aliis majori, planiusculo, caeteris subaequalibus rotundatis; anfractus circiter 18 . fere plani, ultimus cingulis septenis prope aperturam lineis incrementi sectis et subgranosis cinctus ; apertura parva, rotunde quadrata, antice brevissime oblique canaliculata; labrum tenue, postice ad suturam sinuatum, in medio subpatulum, ad marginem leviter crenulatum.

Longit. 11.5 millim., diam. 2.25 .
Some of the specimens named T. cintulatus, A. Ad., by Mr. Sowerby (Marine Shells of S. Africa, p. 36), belong to the present species. None of them agree with Adams' species, which was described from the Red Sea, and has strong longitudinal sculpture between the spirals.

Trifora fuscomaculata, 1 . sp.

$$
\text { Pl. iii, fig } 7 \text {. }
$$

'Testa elongata, gracilis, alba, fusco irregulariter maculatat ; anfractus circiter 20 planiusculi, lente accrescentes, quadricingulati, cingulis tuberculatis, duobus medianis aliis majoribus, longitudinaliter sulcati, subcancellati, ultimus infra peripheriam cingulis tribus haud granosis ornatus ; ipertura rotunde quadrata, antice breviter oblique canaliculata; columella supra arcuata, callo tenui induta.

Longit. 17 millim., diam. $3 \cdot 5$.
Var. (Pl. iii, fig. 8) Testa angustior, minor, cingulis tribus, superioribus aequalibus, distinctius et confertim tuberculatis.

Longit. 15 millim., diam. 3
The typical form is more distinctly blotched with brown than the variety.
Trifora convexa, n. sp.
Pl. iii, fig. 9.
Testa parva, fusca, ad apicem albida; anfractus 1 o convexi, supremi duo pallidi, laeves, caeteri tricingulati, cingulis granosis, duobus inferioribus magis conspicuis, sutura filiformi sejuncti, ultimus ad peripheriam rotundatus, cingulis sex instructus; labrum subpatulum ; columella callo crasso pellucido induta, supra incurva.

Longit. 5.5 millim., diam, fere 2.
The suture is marked by the lira which encircles the periphery of the body-whorl, and winds up the spire at, but above the actual suture.

Ethalia africana, n. sp.

Pl. iii, figs. 10, im.
Testa minuta, depressa, orbicularis, pellucido-alba, nitens, supra et infra plus minusve spiraliter microscopice striata; spira depressa; anfractus tres, celeriter accrescentes, ultimus callo conspicuo supra instructus, et infra callo crasso umbilicale munitus, ad peripheriam rotundatus; apertura fere circularis, marginibus callo columellari crasso junctis.

Diam. maj. 1.75 millim ; alt fere 1
Remarkable on account of the callosity upon the upper surface of the body-whorl. Very like E. perspirum and E. lurila, A Ad., from China and Japan, but with more basal callus, I esides the callosity upon the upper surface. It is the Teinostoma lucidum of Sowerly's "Marine Shells of S. Africa," p. 13.

Cynisea forticostata, n. sp.

l'l. iii, figs. 12, 13.

Testa ('. !ramulıáa similis, sed costis spiralibus crassioribus et minus numerosis instructa.

Diam. maj. $7 \cdot 5$ millim., alt. 6 .
This species is of the same form as C'. !romulnea, Dunker (= C' ! !ranulatum, A. Ad.), lut is distinguished by its fewer and stronger spiral ridges. They are seven in num' er on the hody-whorl and prettily granular in wellpreserved specimens, the one bordering the deep umbilicus being especially strong. In Dunker's species the ribs number 4-5 on the upper surface of the last whorl and $6-7$ below. The colour of this species is white, sometimes dotted with pink above upon the ridges.

Retusa truncatula (Bruguièr).
Ltriculus trumratulus, Bruguière: Jeffreys, Brit. Conch., vol. iv, p. +21 ; Pilsbry, Man. Conch., vol. xv, p. 205 , pl. xxi, figs. 11,12 , pl. xxiii, figs. 62-64.
Hal.-N. Europe, Mediterranean, Adriatic, Canaries.
1 helieve this species has been erroneously quoted by Mr. Sowerby as ('ylichua umbilicata, Mont. (Marine Shells S. Africa, p. 52).

Ampullarina africana, i1. sp.

$$
\text { Pl. iii, fig I } 4 .
$$

Testa minima, irregulariter ovata, perforata, pallide fuscescens ; anfractus 5, convexi, laeves, sutura profunda sejuncti ; apertura concolor, piriformis; peristoma continuum, margine columellari albo, reflexo, externo intus prope insertionem incrassato.

Longit. 4 millim., diam. 3 .
A small species without any striking characters. The surface is smooth, excepting very faint lines of growth. The whorls are very convex, and the suture almost chamelled. The upper part of the whorls is more opaque than the lower portion, the shell being thickened within. This is seen within the aperture at the upper part.

Cultellus decipiens, n.sp.
Cultellus pellucitus, Sowerhy (non Pennant) : Marine Shells S. Africa, p. 54.
'Testa C. pellucitlo similis, sed major, latere antico longiore.
This species is very like the well-known C. pellucitus, Pennant, of the British coast, but attains large dimensions, the largest specimen examined being 53 millim. in length. The position of the beaks is proportionately further back, so that the anterior portion of the shell is rather longer. The strengthening rib within the valves, which is in front of the hinge teeth, is longer, straighter and almost parallel with the dorsal edge.

Semele capensis, n.sp.
Pl. iii, figs ${ }_{5}, 16$.
Testa parva, antice latior, postice acute rotundata, fere aequilateralis, compressa, albida, radiatim tenuissime striata, lineisque incrementi distantibus lamelliformibus onata; umbones acuti, laeves; sinus pallii profundus, rotunde acuminatus ; cicatrix antica elongata, postica latior.

Longit. in millim., alt. 8, diam. 3.5
This species may attain larger dimensions than those here given. Its sculpture (Fig. 16) recalls that of certain Tellinue such as T. tessellata, Desh., T'. carnicolor, Hanley, etc.

Theora ovalis, n. sp.

Pl. iii, fig. 17.
Testa parva, tenuissima, ovalis, alba, fere aequilateralis, antice subbrevior, postice vix angustior ; valvae nitidae. incrementi lineis tenuissimis striatae, mediocriter convexae ; um' ones parvi, acuti, leviter prominentes; dens cardinalis unicus in utraque valva, et fossa ligamenti margine incrassato pone limitata.

Longit. 9.5 millim, alt. 7. diam. 3.5 .
There are only the faintest indications of lateral teeth on the hinder margin in each valve, and I cannot trace any pallial simus.

Tellina regularis, n. sp.
Pl. iii, fig. is.
Testa parva, inaequilateralis, tenuis, subpellucido-albida, vel dilutissime fuscescens, concentrice tenuissime striata; margo dorsi anticus rectiusculus, leviter descendens, posticus brevior, magis declivis; latus anterius acute rotundatum, posterius subrostratum ; dentes cardinales valvae dextrae duo divergentes; dens lateralis anticus brevis, prope umbones situs, posticus longior, tenuior ; dentes cardinales valvae simistrae duo, laterales nulli ; sinus pallii profundissimus.

Longit. 14 millim., alt. 10 , diam. 4-5
Some specimens are marked with radiating, broken-up, hair-like pellucid lines.

Macoma litoralis, Krauss.

This is the Tellina (Macoma) calcarea of Sowerby's Marine Shells, S. Afr., p. 57 , and is separable from that northern species by its rather more equilateral form and by the pallial line which generally extends across the valves, reaching practically from scar to scar. The shell is sometimes white and sometimes reddish, and attains larger dimensions than the specimen described by Krauss. The largest example examined is 35 millim. in length.

Lucina despecta, n. sp.

Lurina rolumbella, Sowerly (non Lamarck): Marine Shells S. Africa, p. 6I.

Testa 1 . rolumbellae paulo similis, sed tenuior, liris concentricis magis confertis, lunula infra umbones haud excavata, sulco obliquo postico minus profundo, umbonibus laevibus, haud concentrice liratis, marginibus valvarum intus laevibus, haud denticulatis.

Longit. 23 millim, diam. 16, alt. 24
Hal.- Port Elizabeth (Sowerby) ; Port Alfred (Turton).
Some specimens are white heneath the thin pale deciduous periostracum, others are rose tinted externally and of a deeper shade within. The hinge is more delicate than in L. cohumbella, especially the lateral teeth. It is remarkable that so distinct a shell should have been confused with that species.

Lueina valida, n.sp.

Pl. iii, fig 19.

Testa parva, solida al'a, subpiriformis, inaequilateralis, confertim concentrice lirata et radiatim striata, um' ones prominentes, acuminati, incurvati ; valvae crassae, sulcis $2-3$ remotis concentricis sculptae intus ad marginem ventralem minute crenulatae.

Longit. 7 millim., alt. 7 , diam. 4 .
Belonging to the same group as L. perton, Lamk., but smaller, and more solid. The two or three grooves at intervals are peculiar, and apparently indicate periods of arrested growth. 'The radiating striae cut across the concentric lirae and give them a somewhat granose appearance. The lirae are closely packed, being merely separated from one another by striae-like grooves.

Lopipes clausus, Philippi.

Lucina clausa, Philippi : Abbild., vol. iii, p. ıor, pl. ii, fig. 2.
Loripes lacteus, Linn : Soweriy, Marine Shells S. Africa, p. 6r.
This South African shell is quite distinct from the European L. lacteur, heing rather flatter, much larger. having a deeply excavated lunule, and differing in other respects as pointed out by Phillippi.

Lepton fortidentatus, n.sp.

Pl. iii, fig. 20.
Testa parva, triangulariter ovata, aequilateralis, mediocriter convexa, alba, undique conspicue punctata, lineisque incrementi hic illic striata; margo dorsi utrinque declivis, vix curvatus, ventralis late arcuatus; latera acute rotundata; dens lateralis crassus prope umbonem in utraque valva, posticus gracilior.

Longit. 5.5 millim., alt. 4, diam. 2.5 .
Remarkable on account of the pitted surface, very like that of a finely punctate thimble.

Tellimya similis, n.sp.

Pl. iii, fig. 2 I .
Testa parva, leviter compressa, oblonga, utrinque rotundata, inferne rectiuscula vel in medio incurva, leviter inaequilateralis, nitida, lineis incrementi striata ; margo dorsi utrinque declivis; latus anticum rotundatum, posticum paulo angustius ; dentes duo divergentes valvae sinistrae subvalidi et margo utrinque umbonem valvae dextrae prominens; pagina interna laevis, nitida.

Longit. 6.5 millim., alt. 4.5 , diam. 2.5 .
Allied to Tellimya prorlurfa, Smith, from St. Helena, but less convex, longer in proportion to the height, and with longer, stouter, and more divergent teeth in the left valve.

Cardita (?) minima, n.sp.

 Pl. iii, fig. 22.Testa oblique subpiniformis, minima, mediocriter compressa, laevis, incrementi lineis tenuihus striata, pellucido-alba, vel pallide rosea, lineis opacis, albis, plerumque interruptis et guttatis, radiatim picta, radiis duo'rus, rufescentibus aliquando ornata; umbones acuminati, antice curvati ; margo dorsi posticus elongatus, curvatus, anticus hrevior, concavus; lunula excavata, margine distincto circumdata ; cardo validus, dente unico in valva sinistra, duobus in valva dextra, postico valde prominente, margine postico valvae sinistrae et antico valvae dexrae sulco instructo; pagina interna allida, vel rosacea, radiata, margine ventrali leviter dentato.

Longit. 3 millim., alt. 3. diam. 2.
Provisionally placed in the genus Cardita until more specimens are available, so that the hinge-characters can be more thoroughly examined. Allied to Cardita elata, Sowerby, hut not costate like that species, and different in colour and form.

Carditella laticosta, n.sp.
Pl. iii, fig. 23.
Testa parva, oblonga, compressa, valde inaequilateralis, alla, interdum rufo maculat., costis radiantibus latis curvatis 12 instructa, lineisque incrementi striata; margo dorsi anticus lrevis, valde declivis, posticus longior, vix
descendens, ventrali fere parallelus : latus anticum anguste rotundatum, posticum latius, ohlique curvatum ; uml ones parvi, acuti; lunula angusta, excavata; pagina interna alba, radiatim fortiter sulcata, supra marginem dorsalem rufo tincta.

Longit. 7.5 millim., alt. 4.5 , diam. 3 .
The hinge is normal, consisting of a single cardinal tooth in the right valve and two in the left, with two laterals in each valve, whereof the anterior in the right and the posterior in the left are a little stonter than the others.

Hochstetteria velaini, n.sp.

Pl. iii, fig. 24.

Testa parva, obliqua, tenuis, alha, lineis pellucidis in medio radiata, inaequilateralis, nitida, convexa, incrementi lineis striata, supra latus posticum lira tenui, ab umbone usque ad marginem producta, instricta; latus anticum obliquum, parum arcuatum. posticum leviter incurvatum ; umbones prominentes, incurvati ; linea cardinis crassa, fere recta, transversim striata, in medio fossa ligamenti triangulari sculpta; pagina interna marginihus ventrali et postico cren latis.

Longit. 3.5 millim., alt. 4, diam. 2.5 .
The slender lira on the posterior side runs down a shallow depression in the valves, which causes the faint sinuation in the outline. Named after the author of the genus.

Hochstetteria limoides, n.sp.

$$
\text { Pl. iii, fig. } 25 \cdot
$$

T'esta minima, ovato-subpiriformis, alba, fere aequilateralis, radiatim tenuissime costulata ; latus anticum ol lique truncatum, leviter excavatum, posticum curvatum; umhones prominentes ; linca cardinis crassa, transversim stıiata, in medio fossa ligamenti angusta o' liqua interrup ta, ad extremitatem posticam infra dentibus lateralihus duohus tul erculiformihus instructa; pagina interna leviter radiatim sulcata, ad marginem tenuissime denticulata.

Longit. 2.6 millim., alt. 3.3, diam. 2.
As regards form and the radiating costae, this species has the appearance externally of a minute Lima.

Modiola tenerrima, n.sp.

Pl. iii, fig. 26.
Testa parva, oblonga tenuis, antice angustata, postice parlo dilatata, pallida, purpureo tincta, maculata et lineata, lineis incrementi tenuissimis sculpta, antice infra umbones sulcis $2-3$ radiantibus ornata; margo dorsi rectus, pulcherrime minute denticulatus, ventralis levissime incurvatus; pagina interna margaritacea, lineis rufo-purpureis subundulatis variegati.

Longit. 13 millim., alt. 7, diam. 4.5.

Quite distinct from any of the other S African mussels. The most remarka' le feature is the prettily dentate dorsal margin of the valves, the crenulation extending on both sides the umbones. The two or three radiating sulci at the anterior end are visible within the valves also.

Limopsis pumilio, n.sp. Pl. iii, figs. $27,28$.

Testa minima, trigona, crassa, alha vel rufo maculata, lacvis; margo dorsi utrinque valde declivis, rectiusculus, ventralis curvatus ; umbones peculiares, I asi truncati ; cardo crassissimus, dentibus anticis tribus, posticis quaternis munitus ; sulcus ligamenti profundus ; pagina interna radiatim striata; cicatrices profundae.

Longit. 3 millim., alt 3.25 . diam. 2 .
Remarkable for the strength of the hinge and the peculiar umbones which have the appearance of being truncate, but, when the tip is closely examined, appear to have a circular cap.

Lima perfecta, n.sp.
Pl. iii, fig. 29.
Testa parva, convexa, alha, radiatim costata et sulcata, costis granosis, sulcis acpuanti n!s, clausa, antice oilique truncata, profunde excarata, postice et inferne regulariter curvata ; valvae crassiusculae ; area dorsalis parva, excavata. fossa ligamentali of liqua triangulari sculpta; pagina interna radiatim sulcata, ad murginem late dentata.

Longit. 12 millim, alt. 15 , diam. 10.
The costae are about eighteen in number, exclusive of a few finer ones near the posterior margin, and those in the anterior excavation which are also finer than those on the central part of the valves.

EXPLANATION OF PLATES．

Plate II．

Foikg．1．Drillia lhelis，n．sp．
Fíg．2．Drallia subconatacla，n．sp．
Fig．g．3．Drillia albonodulosa，n．sp．
Figs．＋．Drillia fractermessa，n．sp．
Fiar． 5 Drillial mia＇osa，n．sp．
－ies．6．Clalharella crassiliata，n．sp．
Fig．7．Glyphosioma sirch，n．sp．
Figg．8．Mattslia alficati，n．sp．
loig．9．Aucilla albozomala，n．sp．
Fig．10．ducilla recici，11．sp．
Fis．．1．Fusus cimsulatus，n．sp．
Fig．12．Torbora suspeotsar，11．sp．
Fig．13．Milromorfta aolia，Sowb，var．

Fig．Iq．Marsinclla munda，n．sp．
「゙̈is．Ij．Purpura lexlurala，n．sp．
F゙iss．16．Vassa pocilosticha，n．sp．
Figs．17．Bullia trifasciala，12．sp．
Fig．18．Marsinclla pura，n．sp．
Fig．19．Marsinclla differeas，n．sp．
F゙ig．20．Marsinclla dulcis，11．sp．
F゙is．2I．Marsinclla peastes，n．sp．
Fig．22．Nertica hapus，n．sp．
Figs．23．Nalica decificus，11．sp．
Fig．24．Rissoilla alfiedi，1．sp．
Fig．25．Rissea porsfecta，11．sp．
Fig．26．Rissoa conspecta，n．sp．

Plate III．

Fig．1．Enlima dislincla，11．sp．
Fig．2．Eulimilla nieda，n．sp．
Fig．3．Éulimilla minor，n．sp．
Fig．＋．Turbomilla scmmula，n．sp．
Fig．5．Turbonilla decora，n．sp．
Fig．6．Trifora fuscescens，n．sp．
Fig．7．Trifora fuscomaculata，n．sp．
Fig．8．Trifora fuscomaculata，var．
Fig．9．Trifora conzexa，n．sp． Figs．10，II，Elhalia africana，n．sp． Figs．12，13，Cynisca forticoslala，n．sp．
Fig．It．Ampullarilla africallet，11．sp．
Fig．15．Sentele capensis，n．5p．

Figs．16．Scumele capeinsis，sculpture
［magnified．
Fig．17．Thionat oidis，in．sp．
Fig．18．Tellina resularis，n．sp．
Figs．19．Lncina ralida，n．sp．
Fig．20．Lcplon forlidentalus，n．sp．
Fig．21．Tcllimya similis，n．sp．
Fig．22．Cardita minima，n．sp．
Fig．23．Cardilclla laticostata，n．sp．
Fig．24．Hochstetleria oclaimi，n．sp．
Fig．25．Hochslettcra limoides，n．sp．
Fis．26．Modiola lentrrima，n．sp．
Figs．27，28．Limopsis pumilio，11．sp．
Fig．29．Lima perfectar，n．sp．

NOTE ON CORILLA ERRONELLA, NEV., MS.

By G. K. GUDE, F.Z.S.

The collection of the late Hugh Nevill, which came under the hammer at Stevens' Sale Rooms on the roth of May last, contained a number of shelis of Corilla, which, at first, I was inclined to regard as a new species.

The lot was acquired by Mr. H. B. Preston, who kindly placed several of the specimens at my disposal and upon closer examination the shell in question appears to be identical with one which Colonel Beddome received years ago with the manuscript name Helix erronella, Nev., Ceylon, and which I figured and named provisionally Corilla erronea, var. erronella (Science Gussip, (N.S.) III, (1896) p. 127, fig. 16.) The large amount of material now at command enables one to form a more accurate estimate as to its rank, and in view of the constant and considerable differences both in the ordinary shell characters and in the armature, I have no hesitation in according it specific rank. Unfortunately no record of the precise habitat has been found, but there can be no doubt that the shells were collected in Ceylon.

I am now in a position correctly to define the species and to illustrate the armature more fully from specimens opened for that purpose. Copilla erronella, Nev., Ms.
Shell discoid, elliptic, widely umbilicated, dark corneous, or chestnut ; a little shining alonve, polished below, finely and regularly ribbed; spire plane, suture

impressed; whonls $4 \frac{1}{4}$ to $4 \frac{1}{2}$, slightly flattened above, rounded at the periphery, tumid below, increasing slowly at first, the last suddenly widening and dilated at the aperture, deflected infront, constricted behind the peristeme ; nepionic whorls ($1 \frac{1}{2}$) almost smooth. Aperture nearly horizontal, ovate-obcordate, margins distant, united by a sinuous fold on the parietal wall. Peristome fuscous or pinkish, thickened and well reflexed; upper margin very shortly ascending at first, then descending, with a more or less strong inward inflection; outer margin curved, lower margin with a strong oblong tubercular tooth. Parietal armature consisting of three elongated curved folds: the
first (upper) shortest ; the second longest, united to the sinuous fold at the aperture, free posteriorly ; the third—near the lower suture-slowly ascending posteriorly. Palatal folds four: the first (uppeı) shortest, slightly curved, descending posteriorly; the second longest, the anterior half ascending, the posterior half almost horizuntal ; the third, a little longer than the first, scarcely curved, descending very obliquely poiteriorly ; the fourth nearly as long as the second, curved parallel with, and near to, the lower suture, and reaching nearly to the aperture.

Major diam. 16-18, minor 12.5 ; alt. 5.5 millin.
Hal. - Ceylon. Type in Col. Beddome's collection.
From Corilla erronea, Alh., its nearest ally, C. erronella differs in its more regular contour and its smaller size. The riblets are more pronounced and more regular and do not anastomose, while the incised spiral lines on the lower surface, so conspicuous a feature in C. erronea and many of its allies are usually lacking. In the armature there are ronsiderable differences: the the second parietal fold, which in C. m^{2} mea is united posteriorly to the first, is here quite free posteriorly. The palatal folds are generally shorter and much nearer the peristome, being all visible from the aperture; while the third fold, which in C. erronea is very short and nearly horizontal, is here longer and obliquely descending. Figs. $1-3$ show the shell in three different positions, while a diagrammatic view of the armature is given in figs. 4 and 5, the former showing the parietal folds and the latter exhibiting the palatal folds as they appear within on the outer wall. A number of immature shells show the usual five palatal folds, the first four very oblique, the fifth small and horizontal, but no parietal barriers, which do not appear to be formed until the shell reaches maturity.

DESCRIPTION OF A NEW SPECIES OF ARIUNCULUS FROM ALGERIA.

By WALTER E. COLLINGE, M. Sc.,

The University, Birmingham.
Some short time ago I received from Mr. P. Pallary a number of live specimens of Algerian slugs, amongst which was the specimen forming the subject of this paper. Unfortunately there was only a single specimen, but Mr. Pallary has very kindly promised to try and procure more, in order that a more detailed account may be given of the generative organs and a coloured figure of the animal.

I have much pleasure in associating the name of Mr. Pallary with this interesting species.

Ariunculus pallaryi, n. sp.

Animal (alive) reddish-brown, darker medio-dorsally, with three faint, ill-defined, blackish lines running from the posterior border of the mantle to the tail, where they converge; mantle smooth, light brown, with faint reddish tinge, which latter quickly disappears on placing in alcohol ; head and tentacles yellowish-brown, darker dorsally. Rugae elongated, flat, clearly marked by definite sulci. Caudal gland well defined, but partially hidden by the margin of the foot. Respiratory orifice situated towards the anterior end of the mantle. Generative orifice about half way between the right upper tentacle and the respiratory orifice. Peripodial groove sharply marked. Foot-fringe and foot-sole lighter in colour, latter divided into median and lateral planes.

Length (alive) 72 millim. ; (in alcohol) 50.
Shell a thick, somewhat pyriform calcareous plate.
Maj. diam. 6.2 millime., min. 4.
Hab.-Echmühl, Oran, Algeria (P. Pallary).
This, the largest known species of Ariunculus, at first sight gives one the impression of an elongated form of Avion sulfuscus, Drap. Anatomically it is very distinct from any of the described species.

The vestibule of the generative organs leads into an elongated vagina, which suddenly widens out to form a large globular sac, with a somewhat complicated internal structure. From the posterior and outer border of this sac the receptacular duct is given off, while ventrally and slightly anteriorly is a large retractor muscle. On the same side at the anterior end is the free-oviduct, and at the opposite side and posteriorly the sperm-sac arises.

The remaining organs have not yet been examined in any detail.

SOME RECENT SLUG PAPERS.

By. D. F. HEYNEMANN.
Frankfort on Main.

Dr. Simroth has recently sent me two papers on Slugs, a group of molluscs upon which he has been working for many years with inexhaustible zeal and success.

The first is on the Philomyritue and Arionidae (Sitz. Der, naturf. Gesell. Leipzig, Jan. fIfth, 1902) of which, as well as the second, the reprint is just coming to hand. A more detailed treatise of the two families is promised, which will he published in Tokio, in the meantime a preliminary account is given, which draws into the range of discussion, in the course of various divisions devoted to anatomy, such genera as Oopelta, Anarenus, etc. Of the genus Philomycus the following are treated of : P. striatus, v. Mas., from Java, P. balius, n.sp., and P. tonkinensis, n.sp, both foo Tonkin, P. taimanensis, n. sp., from Formosa, P. looderleini, n.sp., from the Island of Liu-Kiu, P. bitineatus ?, Bens., from the Japanese Islands, P. melachloror, n.sp., from' 'su-shima, an island between Japan and Korea, and P. viperimus, n.sp. from Japan.

The second paper has has the title "Weber die vo Hern Dr. Neman in Abessinien gesammelten aulacopoden Nacktschnecken (Zool. Jahrl). (Abth. f. Syst.), igo3, Bd. I9). Of the three families discovered, viz., the Iayinulidae, Limacilae, and Croryrlilae, the concurrence of which in the Abessinian highlands presents a most remarkable circumstance, the Vayimu. liflae are reserved for a later occasion and only the genera Ayriolimar, Atiscon, and Spirotocon are dealt with. The following are described as new : A,friolimax afer, uatalevensis, !gardullanus, yofanus, ylandulosus, lioschamus, limtanus, concrementosus, litffanus, alossinicus, , deckoni, gimirranus, fucus, and limatoiles, the latter as the link between Agriolimax; Mörch, and Lrhmannia, Heyn.

After Dr. Simroth's recent description of a similarly large number of species of this genus from the Caucasus (Die Nacktschnecken des Russischen Reiches, 1901), where he locates the centre of origin of the genus, it certainly surprises me to see described such a variety of species from a very distant district, without an example of any of those of the Palacearctic region. Dr. Simroth, however, does not fail to give an explanation, he considers the difficulty to he very simply solved by the Pendulum theory, which has been defended and perfected by him. The theory of the pole of oscillation between Sumatra in the east, and Equador in the west ; the only: points in the world which have retained their equatorial position from early times, and from which the remains of ancient species existing then in refuge, could spread according to the temporary changes in the formation of dry land along the equator again, and from there northward; and southwards, according to Dr. Simroth.

In the Urocycliflae there are described from the Neumann coliection, Atoron erlanypri, Spirotoron neumanni, and from the former collection of Stuhlmann S. stuthmanni.

Finally the opportunity is taken to set up a new genus Varania, with a single new species V. loennbergi, found in the stomach of a species of Varamus in Cameroon by Mr Loennberg of Upsala.

There were also found at the same time some 60 or 70 Veronicellas.
Simroth assumes that Slugs from the Cameroons have up to the present been unknown, but he overlooks the fact that he himself has reviewed a work by Adolf d'Ailly (Contributions à la conuaissance des Mollusques terrestres et d'eau douce de Kaméroun), in which various slugs are mentioned, e.g. Aspidelus chaperi, Morelet, Vagimula plearoprocta, v. Martens, and Urocyclus buchholzi, v. Martens, and that he declared the Urocychus to be very like his Dendrolimax continentalis.

NOTES.

Note on Testacella haliotidea, Drap. My garden at Aldenlam abounds in this curious slug. In digging over last rear's celery bed, the gardeners turned it up by dozens, and I observed that it was numerous in a series of broad bands stretching across the bed, while in other parts of the area it was absent. These broad bands represented the former position of the celery trenches : doubtless the manure attracted the worms, and the worms the Testacella. Perhaps it was for a similar reason that we found it abundant on an old marrow bed.

As a rule, it was living at a depth of about 12 inches. On four separate occasions I found it on the surface ; twice under large flint stones, once under a heavy elm log, the latter being in a part of the garden never under cultivation. On the fourth occasion I noticed a large specimen crawling across a wide gravel walk at eleven o'elock on a fine bright morning. This seemed to me remarkable, for I have never before observed the creature taking a voluntary walk in the upper world, and there was no indication that my specimen had been the prey of a bird, nor had there been any disturbance of the soil anywhere near.

Since the above was written, I have satisfied myself by repeated observation, that the Testacella habitually crawls about on the surface of the ground.
А. Н. Сооке.

Note on Parmacella deshayesii, Moq.-Tand. In February last Mr. P. Pallary sent me a number of living slugs fron Echmïhl, Oran, Algiers, amongst which were some examples of Parmacella deshayesii, Moq.-Tand. Some of these I turned out in the garden beneath a mass of cabbage and lettuce leaves. On March 26th, I noticed they were pairing, and a few days later there were two or three groups of egrs averaging a dozen each. The eggs of this mollusc are oval, and when deposited have a pearly lustre, which, however, quickly disappears leaving them a dead opaque white. The maximum diameter is 6 millim., and the minimum 4 On April 27th, about a third had hatched out and I was hoping I should be able to rear them, but turning over the lettuce leaves on May, 7 th, I found all had been killed by the night frosts, as well as some adults which arrived on April 21 st.

CURRENT LITERATURE.

Hoyle, William E.-Reports on the Scientific Results of the Expedition to the Tropical Pacific, in charge of Alexander Agassiz, on the U.S. Fish Commission Steamer "Albatross," from August, I889, to March, 1900, Commander Jefferson T. Moser, U.S.N., Commanding. Report on the Cephalopoda. Bull. Mus. Comp. Zoöl. Camb., Mass., 1904, vol. xliii, pp. 1-71, plts. 1-12, text figs. A-G.
The collection here described by Dr. Hoyle consists of thirty species, distributed in nineteen genera, of which the following are new : Staurotenthis hippocrepinm, Frockenia clara, gen. et sp. nor., Tremoctopus scatensns, Polypus uculifer, Cirrobrachinm filiferum, gen. et sp. nov., Loligo diomedeac, Rhynchotenthis chuni, Mastigotenthis dentata; in addition to these, there are a few forms to which the author has not found it possible to affix names.

A List of Stations, with the species obtained at each is given, and an Appendix treats of the Luminous Organs of Pterysioteuthis siardi and Abratiopsis hoylci.

The paper is beautifully illustrated. In the preparation of certain plates the author remarks that he has "utilised a number of water-colour drawings made on the expedition by Mr. Agassiz and Mr. Magnus Westergren whilst the animals were stitl fresh and the colours of life retained. It would be well if this practice had been followed on other expeditions, as the appearance of Cephalopoda changes very markedty after preservation in alcohol."
Melvill, J Cosmo.-Descriptions of twenty-three species of Gastropoda from the Persian Gulf, etc. Proc. Malac, Soc. Lond., 190t, vol. vi, pp. $51-60$, pl. v.
Melvill, J. Cosmo.-On Bertlais, a proposed new genus of Marine Gastropoda from the Gulf of Oman. Ibicl., pp. 61-63, figs. I, 1 I.
The type of this genus was described some short time back as Scalu (Constontia) intertexa, Melv. \& Stand. Since then Mr. Melvill has submitted the shell to Dr. Dall, who regards it as belonging to a new genus. Its nearest ally, Mr. Melvill regards as Iclis, while Constantia is not far removed.

As has already been suggested by Mr. Edgar A. Smith, Onoba egresta, A. Ad., also belongs to the same genus.
Melvill, J. Cosmo. - Note upon Clie'a sibbosa, Born, and its limits of variation. Ibid., pp. 64, 65 .
Burne, R. H. - N tes on the Nervous Systern of the Pelecypoda. Ibid., pp. $41-47$, figs. i-iii.
Collinge, Walter E.-Some Remarks on the genera Damayantia, Issel., Collingca, simr., and Isselentia, Cllge. Ibid., pp. 9-12.
Collinge, Walter E.-Contributions to the Terrestrial Zoology of the Faroes. By Nelson Annandale. Land and Freshwater Mollusca. Proc. Roy. Physical Soc. Edinb., 1904, vol. xv, pp. 153, 154.
Simroth, Heinrich. - Über Ostracotethe und einige Folgerungen für das System der Gastropoden. Zeit. f. wiss. Zool., 1904, Bd. 1xxvi, pp. 612-672, T. xxxii.
Dr. Simroth here gives a more detailed account of Ostracolethe frultstorferi described in 1901, and which he regards as synonymous with Myotesta, Cllge.
Simroth, H.-Über Philomyciden and Arioniden. SB. Naturf. Gesell. Leipzig, 1901 pp. $32-45$.

THE
JOURNAL OF MALACOLOGY.

No. 3
Septemper 29th, 190.4.
Yol. XI.

ON SOME NEW SPECIES OF MELANIA AND JULLIENIA FROM YUNNAN AND JAVA.

By HUGH FULTON.
(Plate is.)
Melania aeruginosa, n. sp.
Pl. iv, fig. I .
Shell solid, dark rusty brown, smooth, surface somewhat shining, sculptured with a few distant oblique and rather obtuse folds, prominently channelled at the suture, the margin of which, especially on the last whorl, is rather prominent ; apex eroded, $5 \frac{1}{2}$ whorls remaining, almost flat, aperture sub ovate, bluish-grey within; peristome thin, sinuous above.

Maj. diam. $13 \frac{1}{2}$; alt. 33 millim.
Hatl--Soekaboemi, Java.
Strongly characterised by its canaliculate suture.
Melania dulcis, n.sp.
Pl. iv, fig. 2.
Shell rather thin, dark brown, elegantly ornamented by spiral rows of small granules, six on the last whorl, with two other less granular striae below. Apex slightly eroded, $7 \frac{1}{2}$ whorls remaining, slightly convex ; aperture broadly ovate, light bluish-grey within, the interstices between the external granules showing through as darker-coloured squarish spots ; peristome very thin.

Maj. diam. I 2; alt. 44 millim.
Hab.- Yunnan-fu Lake, Yunnan.
A distinct and very elegant species.
Melania fortitudinis, n. sp.

$$
\text { Pl. iv, fig. } 3 \text {. }
$$

Very solid, yellowish-olive colour, spirally striated, seven or eight spiral costae on the last whorl, crossed by oblique folds which are prominently noduled

[^33]above, margined at the suture by a somewhat depressed nodulous channel. Aper somewhat eroded, 6 whorls remaining, moderately convex, aperture natrowly orate, bluish-grey within, peristome acute

Maj. diam. $12 \underset{\underline{2}}{1}$; alt. 37 millim.
Hab.-Sockaboemi, Java.
This species has some superficial resemblance to the Ceylon form \mathbf{M}. Inoti, I ohm, but that has coarser sculpture and the whorls increase more rapidl:

Melania lauta, n. sp.

Pl. iv, fig. 4.
Shell thin, dark brown, ornamented by spiral rows of granules. Apex eroded, 4 whorls remaining, slightly convex ; aperture ovate, bluish-grey within ; peristome rather thin.

Maj. diam. 12 ; alt. $2 S$ millim.
Hal.-- I'unnan-fu Lake, Yunnan.
In general character very like Iuleis, but much shorter and much more deeply depressed at the basal area of the columella

Jullienia carinata, u. sp.
Pl. iv, fig. 5 .
Shell subglobular, whitish, covered by a light yellowish-brown periostracum, middle whorls somewhat darker than apex and body-whorl ; slightly rimate or excasated at the umbilical area: whorls $4 \frac{1}{2}$, rapidly increasing, with very fine arcuate lines of growth, otherwise smooth, with two keels, a rather thick and prominent one at the periphery and a less developed one situated below the suture of the latter part of the last whorl ; aperture sub-oval, very oblique ; peristome continuous, rather thick, whitish and shining.

Maj. diam. $5 \frac{1}{2}$; alt. 5 millim.
Hab.-Yuman-fu Lake, Y'unnan:
The nearest form known to me is Jullienia costata, Poir., but that species is easily separated by its less globular form and spiral costae.

ON A COLLECTION OF

LAND SHELLS FROM GEBI ISLAND, MOLUCCAS, WITH DESCRIPTIONS OF NEW SPECIES.

By hegil fllton.
(Plate jv.)

The species noted in this paper were collected by Mr. John Waterstradt on the island of Gebi, which is situated about midway between Waigiou and Halmahera Islands.

1. - Xesta aulica, Pir.
2.-Planispira kupri, Pir.

Numerous varieties occur of this species and the variation in size is remarkable ; the following are the dimensions of two extreme forms :-
A. Maj. diam. (including peristome) 21 ; alt. io millim.
B. , , , 30 ; , 13 ,

> 3.-Papuina unicolor, Pir.

Ifli,r unicolur, Pfr:: Proc. Zool. Soc, 1845, p. 64 .
Ampelita unicolor, Pils.: Tryon's Man. Moll., vol. vi, p. 37, pl. 5, fies. $7+-76$.
An interesting discovery, as the habitat of this species was hitherto unknown, and owing to its similarity in form to some species of imprelita, it had been thought by some to be from Madagascar.

> 4 - Papuina fallax, n. sp.
> Pl. iv, figs. $6,7$.

Shell somewhat depressed, narrowly perforate, rather thin, apex dark brown, following whorls yellowish-brown, the last being darker in colour and subangulate at the periphery which is ornamented by a very narrow dark brown spiral band; umbilicus encircled by a jellowish patch ; suture well defined by à whitish line ; whols 5, moderately convex, slowly increasing, last decending; aperture sub-oval, grey within ; peristome moderately expanded, slightly reflected, dilated at point of insertion, almost covering the umbilicus.

Maj. diam. 27 ; alt. 19 millim.
This species has a remarkable resemblance both in form and colouration to the Cuban Cepolis (Coryda) alauda, v. strobilu*, Fér. Quite distinct from any other species of Papuina known to me, the nearest being P. labium, with which, however, it cannot be confused.
5.-Albersia subsphoerica, n. sp.

$$
\text { Pl. iv, figs. S, } 9 .
$$

Shell subglobose, moderately solid, imperforate, medium dark brown with a darker narrow spiral band bordered below by a similar one of a yellowish colour situated a little above the periphery of last whorl and continued for a short distance at the suture : covered throughout $1 y$ oblique rows of closeset hair-scars ; whorls $+\frac{1}{2}$, moderately consex, rapidly increasing, last shortly descending : aperture subcircular, outer band showing faintly through : peristome slightly expanded. broadened at point of insertion, a circum-umbilical dark patch, inner columellar edge white, ending abruptly below with a ather acute angular projection.

Maj. diam. 24 : alt. 17 millim.
Near A. pisurlmemesia, Strubell, but slightly more shobose, the whorls are more closely coiled and the h ir-scars are more numerous. The lines of growth in fiseuluroreside are rather conspicuous at the suture, giving it a somewhat crenulated appearance, whereas in subsphomerire the suture is simple.

Of the three specinens before me one does not show the tooth-like projection noted in the deseription of the type. and the third specimen only shows it very faintly

6.-Leptopoma gebiensis, n. sp.

Pl. iv, figs. $10,11$.
Shell umbilicated, subconic, moderately thick, colouration variable, generally whitish ground with reddish-brown spiral bands which are often more or less interrupted, last whorl with eight white striae, one at the periphery, four above and three below, between these are momerous much finer striae; whorls $5 \frac{1}{2}$, moderately convex, last rather acutely keeled in front ; aperture circular, spiral striae showing through the interior: peristome expanded, double (in adult specimens), imer edge more or less exserted, white, columellar portion narrow, broadening at lower part ; operculum normal.

Maj. diam. 17 ; alt. 15 millim.
, 14 ; , 12 ,"
Similar in form to L. reenilutme, Strubell, but that species is much smoother, the peristome is less oblique and the last whorl is rounded in front, not moderately keeled as in yebiensis.

NOTE ON LEPTOPOMA CRENILABRE, STRUBELL.

By HUGH FULTON.

(Pl. iv. figs. I2, 13)
Theabove species was described by Bruno Strubell in the Nachr. d. d. Malak. Gesell., 1872 , p. 48. In Martini \& Chemnitz, 1902, pt. clxx, p. 4 12, pl. 52, figs. $1-5$, Kobelt describes and figures a shell purporting to be Strubell's arenilalne.

Having had the opportunity of examining the type specimens of remilalure from the Strubell Collection, I find that they do not agree with Kobelt's description and figures, but do agree with the original description.
I. cremilalior is very near L. citream, but is of a thicker substance, and readily distinguished by the back of the peristome being more or less reticulated. Strubell describes it as being smooth, lut by the aid of a lens one can just discern several spiral keels standing out from the usual microscopic spiral striae.

The shell figured by Kobelt is probably a variety of hatmahevirum, Strubell.
I give a figure of the type specimen (Pl. iv, fig. I2), and of a banded and larger specimen (fig. 13) from the collection of the late Bruno Strubell.

EXPlANATION OF PLATE IV.

Fig. I. Melania acrusimosa, n. sp.
Fig. 2. Mclania dulces, n. sp.
Fig. 3. Mclania forthludiuis, n. sp.
Fig. t. Mclania lanla, n. sp.
Fig. 5. Jullicnia carimata, n. sp.
Fig. 6, 7. Papuina fallax, n. sp.
Fig. .s, 9. Albersia subsphoerica, n. sp.
Figs. Io, I I. Leplopoma scbiensis, n. sp.
Figs. 12, 13. Leflotoma crenilabre, Strubell,

ON CERTAIN DEPOSITS OF SEMI-FOSSIL SHELLS IN HAMAKUA DISTRICT, HAWAII, WITH DESCRIPTIONS OF NEW SPECIES.

By H. WETHERBEE HENSHAW.

(Plate v.)

The island of Hawaii, the youngest as well as the largest of the Hawaiian group, has received comparatively little attention from conchologists. This neglect no doubt is in no small degree due to the fact that the Achatinellictae, which have chiefly excited the interest of students, are but sparingly represented on Hawaii, there being but three species, and these by no means the most conspicuous of the group. The discovery, therefore, of deposits of fossil, or rather of se:ni-fossil, shells in the Hamakua district, containing a number of undescribed species, is not without interest. Before adverting to the deposits, a brief description of the region is necessary to a proper understanding of their relation to the present fauna.

The districts of Kohala and Hamakua comprise the northern end of the island of Hawaii. This is by far the oldest part of the island, and probably it had grown ancient before the fires that resulted in the upbuilding of the huge mountain mass of Mauna Kea to the south, and the still more recent Mauna Loa, were jet kindled. With little doubt then the northern end of Hawaii was first to receive its fauna from the much older islands to the north, and it in turn served as a nursery for the rest of the island as its lavas were upheaved from the depths of ocean, cooled, and were slowly clothed with vegetation.*

[^34]Much of the coast line of Hamakua is very precipitous, especially near Wraipio Valley, the cliffs there 1 ising sheer to a height of $600-800$ fect. Formerly no doubt the forest extended clear to the brink of the cliffs, but for many rears past waving sugar cane has usurped the place of the forest, ever creeping steadily upwards, until now the cane fields have reached a final limit of about $1, S o o$ feet.

Above the present limit of the cane is a belt of forest. Most of this has been fenced from cattle for the past twenty yeas to preserve the water supply, and in many places the land is as densely covered as it ever was with kukui, ohias, and with the usual variety of ferns, shrubs and plants that go to make up the Hawaiian forest. Is rare inhabitants of the depth of this forest, but more abundant on its edges and in the partial openings, are founcl Surciupa iuromspirua, Ancey, S. licolorata, Ancey, S. liuhmsit, Ancey, one or two others of the genus and a number of the minute species of land shells.
'There are portions of this forest-belt where the timber is very thin, and here live on the ahakea (Bobea rlation; Gaud.), the ohias (Ibromeirleros pm! ! morpha, Gaud.), and the koolea trees (Mymine lissertiana, A. D. C.), the Arhatinella horneri, Baldw., and the A. haraïensin, Baldw., species which seem to wholly shun the dense forest and inhabit only isolated trees where light and warmth abound. This open forest section has been invaded by the all-conqering " Hilo grass" (Pasfatum conjugatum) which apparently is destined to materially affect the future of both the forest and the shells. It grows here most luxuriantly in a dense mass which effectually screens the earth from the life-giving sun, and smothers in its embrace all the seeds that fall from the trees above. To the presence of this grass in the open district here described, 1 attribute the fact, that, though fenced from cattle, there are absolutely no young trees coming forward, the probable result being the extinction, in the not distant future, of the trees and the shells inhabiting them.

Above the timbered belt just mentioned, and distant from the sea some six miles, are the so-called Waimea Plains. To the north and west are the Kohala mountains, which rise to the height of about 8,000 feet.

To-day the plains are almost entirely treeless, except here and there for scattered pua trees which form the home of the Achatinella physa. There still stand, however, many skeleton trunks of the ohia and koa trees, whose naked and broken branches like outstretched arms, seem raised in protest against the fate that has overtaken them and and their fellows lying on the ground. Less than fifty years ago it is said to have been impossible to ride anywhere over the present plains except by trails because of the multitude of fallen tree trunks that everywhere blocked the way. This brings the forest down to comparatively recent times, and there is no reason to doubt the generally received tradition that a century ago the present plains were covered with an impassably dense forest, a fact essential to remember in comnection with the fossil remains to be described presently.

That this forest was of the usual island type is certain, and it consisted for the most part of ohia and koa together with numerous smaller trees like the pua, kopiko, ahakea, tree lobelias and many other shrubs and berry bearing trees, with the usual tangle of ieie vines and ferns.

The forest, proper, probably never extended in this region much, if any above 3,000 or 3,500 feet. Above this altitude the slopes are steeper and the soil more scanty and rocky. Here the mamani begins to be numerous, a tree which indicates a thin and poor soil, a scanty rain supply and a considerable altitude.

The region of the Waimea plains appears never to have had a large (as compared with some other parts) rainfall. In the absence of definite data it may be assumed to be not far from 40 inches at Mana on their upper border, that figure being the average for several years in the town of Waimea as given by Professor C. J. Lyons. A small rainfall would seem to be indicated also from the fact that nowhere on the plains appear marked evidenees of erosion. The deep gulches which gash the windward side of the island at short intervals are on the plains conspicuous by their abence, although nowhere are they deeper and more numerous than a few miles to the north east in the rainy Kohala mountain district. 'The Kohala mountains in fact, scem to intercept and rob the trades of their moisture before they reach the plains. The surface of the plains is by no means flat, but is gently and in places quite steeply rolling. On their upper edge and probably on the very edge of the former forest, at an altitude of about 3,000 feet, occur the semi-fossil deposits which form the subject of this paper. The fossils have been found in two distinet localities, viz., at Mana and at Palihoukapapa. The two places, however, are only about four miles apart, and though the latter is several hundred feet higher than the former, to all intents they may be considered conchologically to be one and the same. There is, however, some difference in the character of the deposits at the two places. At Mana the shells occur in the horizontal strata, two or three inches thiek, and under a deposit of about a foot of humus. The very primitive digging implements at the writer's disposal prevented anything like a thorough examination of the extent of the deposits, but the evidence all goes to show in that in no one spot are they extensive. All that were found were included within an area of a few hundred square yards, the shell-bearing strata in some spots occupying only a few square feet, in others a few squar yards.

At Palihoukapapa the deposits are, or seem to be, even less extensive, and instead of being in horizontal strata are in the nature of pockets, sometimes containing a bushel or more of shells. Over how large an area here the deposits occur there are no present means of telling.

I see no reason to doubt that the shells in both localities are entirely local in origin, and that they were swept into their present position by water resulting from local freshets. In certain favoured localities in the islands, shells
of various species occur in extraordinary abundance. In the case of the deposits in question it need be assumed only that an unusual mortality occurred simultaneously among the shells of a ceitain district, such as invariably follows a forest fire, and that there shortly ensued a deluge that washed the dead shells into their present abiding place. The gentle slope of the land around the deposits in both localities entirely favours this supposition.

That the shells forming the deposits camot have been carried from any considerable distance is proven by the condition of vast numbers of the fossil surrinear, many of which when cleaned from dirt might almost seem to have been alive but yesterday. 'The steeper slopes of Mauna Kea are not more than four miles to the south west of the localities in question, but the general lay of the land, and the fact that a well defined ridge intervenes, forbids the assumption that the shells originated on the distant slopes of the mountain and wete tramsported to their present position, even if the condition of the shells themselves did not prove the contrary.

The humus above the fossils in both localities is perfectly homogeneous, and the general absence in it of shells is especially noteworthy, indicating to the writer that the destruction of the fossils resulted from the destruction of the forest, or at any rate occurred at about the same time, the locality then ceasing, except in a small way, to be a shell producing one. Had the forest persisted after the deposition of the fossils, the humus overlying the fossils would contain evidence of the fact in the presence of shells, either of the same or of other species, which would have re-populated the forest. The grass in the neighbourhood still shelters a few small species like Leptachatina and Tornatrllina, and it is probable that the genera Pupa and Wirrorystis are still represented here and there although none rewarded our search. Specimens of Sureimed lomomsis, Sykes, were found hard by, and the Achatimella μ hysa, Newc., also is found in the neigbourhood. Dead shells of the above species were found on the surface of the ground and perhaps an inch or so below, but further down they seem to be entirely warting.

In connection with the question of the age of the deposits, it is to be said that the humus everywhere presents the appearance of having been laid down by the natural decay and deposit of the tropical vegetation. Nevertheless, I cannot think that such is the case, but believe that most of the humus above the shells must have been washed into place subsequent to the deposit of the shells. The deposition of a foot of humus by natural decay, even in a luxuriant semi-tropical forest, must require several hundred years, and the condition of the shells generally would seem to negative any such age. It is true that in a few places the shells have been reduced to lime, all semblance of their form and character having disappeared. On the other hand, thousands of the frail Succineas, Tornatellinas, and Purets, as well as many of the more substantial species like the Amostras and the Achatinellas are but slightly affected by time.

That the deposits of fossils are confined to the two localities in question is not for a moment to be believed. A well-worn trail at Palihoukapapa, and some deep holes dug by cattle at Mana, chanced to reveal the presence of the shells in these two localities ; but no doubt there are similar deposits in many other places on the Waimea Plains and elsewhere in the northern end of the island. Indeed the author has heard that in the district of Kohala such deposits are by no means uncommon.

In a paper published in 1887 (Hawaiian Amual), Mr. 1). 1). Batdwin speaks of extensive portions of the Hamakia and Kona districts at altitudes of 3,000 to 5,000 feet, "where the soil is filled with millions of sub-fossil shells of this [Succinea] family." In a recent letter to the writer, Mr. Bahdwin mentions these deposits more in cletail, and states that he made several hurried trips to the region above Honakad and in the vicinity of Waimea in the years from 1865 to 1872 and again in 1878 . In all of the open country above the forest, the ground was " white with dead Suceineas and probably other shells. The shells were quite evenly distributed through the light surface soil." Later, through the agency of floods, the surface shells here mentioned may have been swept into pockets and so formed deposits similar to those examined by the writer.

Indecd, in several specimens of Surcined, faint traces of colour are still visible, the original deep rech or maroon having fitded to pink. 'The same is true of some of the smaller shells.

In a climate like that of Arizona and in dry earth even frail shells might be preserved almost intact for several hundred years; but the climate of the Waimea plains is by no means a dry one in this extreme sense. Heary dews are the rule all through the year, and rains are probably frequent enough to kecp the humus damp all the time except in seasons of drought when it is likely to dry for a few inches only from the top. That frail shells like the Sureinect could long be preserved in damp and porous humus, even though a foot from the surface, is not credible. All things considercd, it does not seem likely that the fossil shells date back more than a century, and it is probable that they and the forest perished at the same, or nearly the same time.

As to some extent confirmatory of the theory of the recent age of the shells, the writer has recently learned that about fifty years age, more or less, an extensive forest fire raged in this section, and this may have been the caluse of the simultaneous destruction of such vast quantities of mollusca.

The following siur ineas are believed to be undescribed species. All four are without doubt extinct in the region in question.

In examing several thousand specimens of these semi-fossil sucrinets, one cannot fail to lie impressed with the considurable diversity in shape and size of individuals, presumably of the same species. The difficulty in treating such materials consists not in the finding of new species but rather in the exercise of due restraint in naming forms evidently closely related to living
species but exhibiting greater or less differences. Living species of this group are difficult enough of determination, even with the aid of abundant material and field notes. How much greater the chances of error with only fossil material available! The author has intended to be extremely conservative in describing forms, preferring to leave a few for future describers rather than to add to the number of synonyms, already too many, in this group.

Succinea maxima, n. sp.

Pl. v, figs. I, z.

Shell elongate, narrow, rather thick, lines of growth fairly distinct. Spire very small, considerably less than $\frac{1}{3}$ the whole length of shell, conical, slightly produced, apex mammilliform, suture moderate. Whorls, 3 ; ultimate whorl very large. Aperture large, but slightly oblique, orate, reduced above. Columella but slightly curved. Peristome simple, acute.

Long. 24, lat. i 1.5 millim. ; long. apert. 16 millim.
Hal.-Mana, Hamakua, Hawaii.
This species is without doubt the largest of the genus yet discovered in the Hawaiian Islands, and differs also otherwise from described forms The axis of the shell is nearly medial, the apex forming but a very slight angle with the body of the shell. The apex is very small in comparison with the lest whorl, averaging less than one-third the length of the latter. A single specimen of this species was found in the Palihoukapapa deposits, but the species albounds in those at Mana.

Succinea mirabilis, n. sp.

$$
\text { Pl. v, figs. } 3,4 \text {. }
$$

Shell moderately thick and firm, acutely cone-shaped with very obliquely truncated base; lines of growth distinctly marked ; spire relatively large, autish, mammilliform, composed of two convex whorls with well-defined sutures ; aperture rather narrowly orate, rather less than two-thirds the length of the shell ; columella decidedly curved and slightly reflexed : peristome simple, acute.

Long. i6, lat. 8 millim. ; long. apert. i i millim.
Hal.-Palihoukapapa, Hamakua, Hawaii.
As regards its shape, this shell is far the most remarkable of Hawaiian Succineas, living or extinct. The lower whorl spreads widely, and the aperture is so oblique to the axis that, when the shell is placed on its base, the apex makes a very acute angle. The apex is also very large as compared with the lower whorl, being contained in the latter only twice. The species appears to be only moderately abundant in the deposits.

This species bears a very remarkable resemblance to the S. infundituliformis, Gould, from Tahiti.

Succinea pristina, 11. sp.

Pl. v, figs. 5, 6.
Shell elongate, moderately thick (in large individuals very thick), lines of growth usually moderately marked (in some large specimens strongly so): spire produced, nearly half the length of shell, aper acute, sutire moderate ; whorls $3 \frac{1}{2}-4$; aperture only of moderate size, narrowly ovate, but slightly oblique to axis of shell ; columella moderately cursed; peristome simple, acute, thin.

Long. 17.5 , lat. 8 millim, : long. apert. 8 millim.
Hal.-Mana, Hamakua, Hawaii
This species differs markedly from the previous one, especially in lacking the spreading base, and in the much less oblique aperture lis relations are much closer with the S. protrata, Sykes. It appears, however, to bave been much larger than this species, and the shell is much thicker, froforoto being one of the most fragile of Hawaian siureiners:. Iristina appears to be even more closely related to the s. fromerte, Gould.

One individual, considerably the largest of fifteen, meatsures as follows: Long. 21, lat. in millim. : long apert. is millim.

The coloumation of this species when in life probably differed much from that of protrarta, which is brown or hom colour. I single specimen of fristine has retained its colour sufficiently to show that the columella and base were of a deep red or maroon like the s'. Htectommi, Anc., and the s. bicolorata, Anc.

Succinea gibba, n. sp.

Pl. v, figs. $7,8$.
Shell broadly ovate; lower whorl large and strongly convex; lines of growth but slightly defined : spire very short, obtuse, mammilliform, of two whorls, less than one-third whole length of shell ; suture shallow and narrow; whorls 3 : aperture large, broadly orate; columella much curved, slightly reflexed posteriorly ; peristome simple, acute.

Long. 20, lat. 12 millim. ; long. apert. 14 millim.
Hul,-Mana, Hamakua, Hawaii.
This species seems to be quite distinct from any of the insular forms. It is chiefly remarkable for its great size and for the very marked convexity of the lower whorl.

Below is appended a complete list of the semi-fossil shells found in the above mentioned localities. Thorough investigation of the deposits and of others in the northern part of Hawaii, will no doubt add other species to the list and also.reveal additional undescribed forms.

The smaller species have all been identified by Mr. Ancey from material sent him, and the author is gleatly indebted to this conchologist for a list of the forms detected by him including the new species. Where Mr. Baldwin or the author are responsible for the identifications, this fact is indicated by the name in brackets.

As will be noticed the greater number of forms from the deposits are of species still existing, either on Hawaii or the others islands. The list contains representatives of most of the genera of Hawaiian land shells, and the number of genera as well as species sufficiently attest the former wonderful richness in molluscan life of this particular region.

1. Ichatinella physa, Newc.

Abounds in the deposits of Mana. Mr. Ancey is inclined to riew this shell as a new variety because of its size, an idea at first shated by the author who now, however, adopts Mr. Baldwin's opinion of its specific identity with $y^{\prime h} y s a$.
2. Ichatinella homeri, Baldw. [Henshaw].

Two or three individuals only from Mana deposits which art several hundred feet above the present usual range of the species.
*, Imastra senilis, Baldw. [Baldwin]. Very abundant at Palihoukapapa.
. * fossilis, Baldw [Baldwin]. Common at Palihoukapapa.
5. ", flavescens, Newc. [Henshaw]. Rare in the Mana deposits but abundant enough living at an elevation of 2,000 feet or so.
6. *. Amastra conica, Baldw. [Baldwin].
7. * ", sinistrorsa, Baldw. [Baldwin].
8. *Pseudohyalinia meniscus, Anc.
9. Vitrea hawailensis, Anc.
10. *Punctum homeni, Anc.
11. Endodonta laminata, I'se.
12. . nuda, Inc.
13. * $"$ henshawi Anc.
14. * ,, hystricella, P'r. var. paucilamellata, Anc.

I5. ", lanaiensis, Sykes.
16. Nesopupa acanthinula, Anc.
7. , sp.
is. ," baldwini, Anc. var. centralis, Anc.
Lyropupa perlonga, I'se.
2o. * ", mirabilis, Anc var. hawaiiensis, Anc
21. * ,, magdalenae, Inc. var. prisca, Anc.
22. Leptachatina henshawi, Sykes.
23. ", konaensis, Sykes.

24 " arborea, Baldw.
25. ", simplex, Pse.
26. ", sp.
27. ", imitatrix, Sykes.
28. ," sp.
29. Tomatellina newcombi, Pfr. ?
30. ", cincta, Anc.
31. ", procerula, Anc.
32. ", macromphali, Inc.

Figs. I, 2. Succiucal mavima, n. sp.
Figs. 3. 4. Succinca mirabilis, n. sp.
Figs. 5, 6. Succiluca pristina, n. sp.
Figs. 7, 8. Succinca gibba, n. sp.

REPORT ON SEMI-FOSSIL LAND SHELLS FOUND IN THE HAMAKUA DISTRICT, HAWAII.

By C. F. ANCEY.

(Plate v.)
The shells listed in the following pages were discovered at a place called Palihoukapapa, on the Hamakua slope of Mauna-Kea, Kawaii, at an elevation of 4,000 feet. Professor Henshaw has kindly sent me some dirt in which the minute species were found. He reports other similar localities on the same island "where there are extensive deposits of fossilised land shells about a foot below the surface of humus. Nearly all the known genera of Hawaian land shells are represented in these deposits by species, some still extant, others probably now extinct."

1.-Pseudohyalinia meniscus, n.sp.

$$
\text { Pl. v, figs. 9, } 10 .
$$

Testa perdepressa, tenuissima, emortua alba, haud nitens, latissime umbilicata, sub lente striis obliquis incrementi, parum profundis, confertim exarata; spira leviter convexa vel fere plana, anfractus $3 \frac{1}{2}$, regulariter sed subceleriter crescentes, convexi, sutura impressa, ultimus depressus, soepe ad aperturam leniter deflexus, infra concavus, umbilico tertiam partem diametri superante, apertura obliqua, transverse oblonga, parum lunata, margine supero antice convexi prodeunte; peristoma simplex, rectum, ad columellam haud dilatatum.

Diam. maj. $1 \frac{2}{5}, \min .1 \frac{1}{3}$; alt. $\frac{1}{2}$ millim.
A more depressed shell than P. latuaiensie, Pft., more distinctly sculptured and with a much larger umbilicus. It may be referable to Charopa rather than Pieuluhyalinia.

2.-Vitrea hawaiiensis, n.sp.

Differt a V. mololaiensi, Sykes, et a V. lanaiensi, Sykes, testa magis elevata, anfractibus altius convolutis et umbilico minore ; a V. pauxillo, Gould, cui peraffinis differt etiam testa minus depressa, paulo convexiore, colore luteovirescente, umbilico profundiore, circulari.

Diam. maj. $4 \frac{1}{3}$, min. $3 \frac{2}{3}$; alt. $2 \frac{1}{3}$ millim.
The above description is from recent specimens found on Olaa, Hawaii, by Mr. Thaanum. A single specimen from Palihoukapapa is referable to his species.

3.-Punctum horneri, in.sp.

Pl. v, figs. $1 \mathbf{1}, 12$.

Testa depressa, tenuis, orbicularis, emortua albida rel pallide fulvida, apice pallidiore laevigatal excepto striis exilibus incrementi subtiliter exarata; spird convexa, parum elevata, obtusa ; anfractus + convexiusculi, sutura impressa discreti, regulariter atque lente crescentes, ultimus convexiusculus, circa umbilicum mediocrem, quartam diametri partem paeno aequantem subdepressus : aperatura subobliqua, lunata, subrotundata: peristoma acutum, haud dilatatum, marginibus distantibus.

I iam. maj. ı, min. i ; alt. $\frac{1}{2}$ millim.
This minute shell is closely allied to the European I^{\prime}. 1 !!!!maeum, Drap. It is also recent on Oahu.
4.-Endodonta laminata, Pease.

Pl. v, figs. $13,14$.
Not hitherto recorded from Hawaii. The specimens of this and the following Limturtutter retain their usual coloured brown stripes on a pale ground.
5. - Endodonta (Thaumatodon) nuda, Anc.

One or two imperfect examples seem to be referable to this species, originally described from fresh specimens from Olaa, Hawaii.

6. -Endodonta (Thaumatodon) henshawi, n.sp.
 Pl. 5, figs. 15, 16.

Testa parra, orbicularis, emortua alba, vestigiis strigarum fuscarmm plerumque, superne praesertim eleganter lateque maculata, costulis acutis confertis (circa +5 in ultimo anfractu), radiantibus insculpta, haud nitida, aperte et mediocriter umbilicata; spira convexiuscula, parum elevata; anfractus $+\cdots \frac{1}{4}$ convexi, sutura impressa discreti, regulariter crescentes, ultimus cylindricus, flexuose costulatus ; apertura parum obliqua, lunatocircularis, in pariete laminis duabus volventibus et in interiore basis marginis dextri denticulis 5 acutis aequidistantibus (2 superis soepe obsoletis) armata ; peristoma simplex, ad columellam nullomodo dilatatum: umbilicus tertiam diametri partim haud superans.

Diam. maj. 2, min. $\frac{1}{2}$; alt. I millim.
This is the smallest member of the group of E. contorta, Fér., hitherto described. The apertural armature is very much alike in E. nuda, E. ringens, and E. contortct. A similar species, also probably extinct, but with a larger umbilicus, was detected by the Rev. E. W. Thwing, in an extinct crater of the Kona coast ; it is undoubtedly another new species which I propose to name E. thuingi, after its discoverer. The present one, which seems to be abundant, is respectfully dedicated to Professor Henshaw, to whom I am much indeted for the whole of the material now considered, and for valuable notes on other Hawaiian shells.

7.-Endodonta hystricella, Pir. var. paucilamellata, n. var. Pl. v, fig. 17.

Testa orbicularis, rotuliformis, convexo-depressa, aperte sed mediocriter umbilicata (umbilicus circa i millim. latus), subfossilis alba, late fulvo strigata, strigis in ultimo anfractu fulminatis; costulis acutis, subarcuatis, dehinc flexuosis omata ; spira convexa, parum elevata, apice planato ; anfractus 5 convexi, regulariter crescentes, sutura perimpressa, ultimus cylindricus, in adultis supra medium ad aperturam plano-declivis: apertura obliqua, lunato-rotundata, marginibus acutis haud expansis, pariete laminis volventibus 2, supera paulo validiore munito.

Diam. maj. vix 5 , min $4 \frac{1}{2}$; alt. 2 millim.
I have nut been fortunate enough to procure authentic specimens of E. hystricella, but refer to Pfeiffer's species some shells from Makawao, Maui. These have, however, three palatal laminae, while in the subfossil form there are more. Hence these are possibly specifically distinct, as moreover the true E. hystricella has not yet been found on Hawaii. However, I prefer to subordinate them to the latter, because besides the laminae there are not many differences. It is right to observe that in some allied forms the palatal laminae present in typical examples are reduced in number or even wanting in others. I am th erffore confident that Nesophila, lilsbry, a sectional name based on that feature, has no value whatever, unless it may be retained for Helix tiara, Mighels, a large form of quite a distinct type, from the island of Kauai. In general shape and contour this is much like Stephanola rissimitis, d'Orb., from Chili, but the palate is furnished with small parallel and numerous revolving lirae.

8.-Endodonta lanaiensis, Sykes.

A single good specimen. Greatest diam. 4, high $1 \frac{1}{2}$ millim.
9.-Nesopupa acanthinula, Anc.

Rare, but frequent in a living state in Oahu, Hawaii, and probably other islands.

10.-Nesopupa, sp.

A single broken specimen, with the teeth of Pupa nemcomln, but larger and more elongate. I similar but smaller form is found living on Oahu and Hawaii.

11.-Nesopupa baldwini, Anc, var. centralis, Anc.

Also found living at Olaa, Hawaii (Thaanum). This and others mentioned in the present paper will be fully illustrated in other contributions to the malacological fauna of the Hawaiian islands actually in the press. The typical specimens, with a more produced spire of $5 \frac{1}{2}$ whouls are from Molokai and Maui.

12.-Lyropupa perlonga, Pease.

The identification is somewhat doubtful, as I have never met with Oahu specimens and all those I have seen from Hawaii (Palihoukapapa, Mana, and an extinct crater on the Kona coast) are subfossil. They are, however, in fair condition and of a brown or dark colour. The description and figure given by Boettger (Conch. Mittheil., i, p. 69, pl. xii, fig. 16) apply tolerably well to these. They measure $2 \frac{1}{2}$ millim. in length and $1 \frac{1}{2}$ in diameter, and have $5 \frac{1}{2}$ whorls. The long superior palatal lamella extends on the peristome and forms, with a well developed angular fold a small, circular, nearly closed simus. There are about 15 or 16 riblets on the last whorl.

Lyropupa pertonya and L. "ostata, P'ease (= rubana, Dall) are, I think, the only dextral forms of the group.

13.-Lyropupa mirabilis, Anc. var. hawaiiensis, n. var.

Pl. v. fig. is.

Differt a typo (ex montibus "W'aianae "insulae Oahu) testa plerumque paulo majore, robustiore, costulis pallidis, dente lamelliformi infero in fauce aperturae magis valido et elongato : anfract 6.

Long. $2 \frac{1}{2}$, diam. $1 \frac{1}{4}$, long. apert. ${ }_{4}^{3}$ millim.
There are twenty or twenty-two costulat on the last whorl, while in the type specimen there are about twenty-two to twenty-four, and there is no trace of a pale ill-defined zone on the last whorl. 'The angular lamella is weakly developed and scarcely produced, in fact reduced to a mere tubercle.
14.-Lyropupa magdalenae, Anc. var. prisea, n. var.

Pl. v. fig. 19.
This form agrees pretty well with Boettger's figure of Pu,a lyrata, Gould, (Conch. Mitth., i,]. 61, pl. xii, fig. 17), but I do not think it may be taken as the true L. Igrata. Numerous sinistral species and forms, all very much alike, have been shown to exist on the various islands of the Hawaiian group, and one of these, from Olaa, I have referred to Pupa lyratu, although I am by no means certain of the identity. Gould's description should equally be applied to other things, but not to species with a strong angular fold such as this. The diagnosis of the subfossil specimens of Palihoukapapa is as follows :
I)'ffert a typo (ex Palama ins. Oahu) habitu plerumque magis cylindrico, costis validioribus, albescentibus, zonula pallida conspicua in parte superiore anfractus ultimi et rima umbilicari minus aperta.

Long. 23, lat. $1 \frac{1}{2}$ millim.
I observed about 15 to 17 ribs on the last whorl, while I counted about ${ }^{1} 5$ in the examples of the typical lot from Oahu. There are 14 in number in another new species detected at Olaa, Hawaii (L. clathratula), a form in which the upper palatal lamella does not reach the outer edge of the peristome. In L. Iyrata, or rather the one I ascribe to lyrata, there are 12 strong distant
ribs on the last whorl ; its palatal folds are very close to each other, the most deeply seated (the inferior) beginning near the end of the superior. Besides, there is a very slight point-like denticle far within the base.
15.-Achatinella physa, Newc. var. procera, Anc.

I have not seen good full-grown examples, but refer, with some doubt, a very young shell to this.

Mr. Sykes has changed the well-known name A. physa, Newc., to confusa, Sykes, because he supposed A. haraiiensis, Bald., to equal the true physa. Mr. Baldwin writes that his hanaiiensis, was discovered in a spot unexplored when Newcomb described his physa, hence the latter name may stand for what is generally distributed in collections, from the Kohala mountains and the Hamakua slope of Mauna-kea.

> 16.-Amastra senilis, Baldw.
> 17-Amastra fossills, Baldw.
> 18.-Amastra, sp.

A juvenile specimen, with conic spire and keeled body-whorl, probably distinct from the former species.
19.-Leptachatina henshawi, Sykes.

Probably referable to this species, although not so strongly sculptured.
20.-Leptachatina konaensis, Sykes.
21.-Leptachatina arborea, Baldw.
22.-Leptachatina simplex, Pease.
23.-Leptachatina. sp.

A puzzling form, somewhat like the Maui L. !prana, Newc.
24.-Leptachatina imitatrix, Sykes.
25.--Leptachatina, sp.

Like the latter, but larger and with ia more produced spire.
26. -Tornatellina newcombi, Pfr. (?)
27.-Tornatellina cincta, Anc.

Quite identical with typical specimens found in a living state on Maui, Oahu, and Hawaii.
28.-Tornatellina procerula, Anc.

Large examples. Also from Maui.
29.-Tornatellina macromphala, Anc.

Also from Maui.
30 -Tornatellina extincta, Anc.
lound at first subfossil in the sandy isthanus between East and West Maui. I received later fresh specimens collected at Kaupakalua, Maui, ly Mr. Baldwin.

31 --Tornatellina oblonga, Pease.
32.-Tornatellina compacta, Sykes. (3)
33.-Tornatellina fusca, Auc.

One or two young specimens of this remarkable species.
24. - Tornatellina rudicostata, 11. np.
l'I. F . figs. 20, 21 .
Tresta oblong(o-attenuata, perforata, emortual albida (statu recenti verisimiliter comea), liris confertis acutis fere rectis, parum regularibus, in ultimo subflexuosis insigniter exarita ; spira sat producta, conoidea, obtusula: anfractus o convexi, regulariter crescentes, sutura impressa propter plicas crenulata discreti ; primi laevigati, ultimus oblongus, parum attenuatus, dorso ct fersus aperturam sulco mediano concentrico impressus ; apertura vis oblicua, subirregulariter truncato-ovalis, in adultis. Lamina parietali valida excepta inermis : columella incrdssatula, arcuata : peristoma acutum, rectum, margine columellari dilatat, expanso.

Obs. Apertura in junioribus, practer laminam parietalem plicis acutis duabus columellaribus et lamina transversa longa rolventi in interiore palati armata.
long. $2 \frac{1}{2}$, diam. $1 \frac{1}{4}$; alt. apert. ${ }_{4}^{3}$ millim.
In extraordinary species, quite unlike anything described in the genus. The general aspect is that of a rery small Lerptaclutina henshanf, but the ${ }^{\text {b }}$ licae are coarser and irregular. 'The sculpture is quite unusual in the genus. No living forms are allied to this.

35-Tornatellina cyphostyla, n.sp.

$$
\text { Pl. r, figs. 22, } 23 .
$$

Testa conoideo-oblonga, gracilis, laevigata, subfossilis alba, tenuis, nitida, aperte sed minute perforata ; spira conica, elongata, lateribus rectis, summo obtuso : anfractus 6 parum convexiusculi, regulariter crescentes, sutura lineari, appressa discreti, ultimus oblongus, subattenuatus; apertura distincte obliqua. truncato-ovalis, lamina unica rolventi validiuscula in pariete armata; columella regulariter arcuato-declivis, subincrassata, inermis ; peristoma simplex, acutum, rectum, margine extero post insertionem arcuato, columellari expanso, perforationem haud claudente.

Obs. Columella juniorum biplicata.
Long. 2_{4}^{3}, diam. 1 I/3: alt. apert. I millim.
A very distinct species, of regular outline. Its principal characters are the conic spire, barely consex whorls, appressed sutures and oblong aperture not at all widened below and slightly oblique. The columellar margin is gently curved and without plicae except in young specimens, and the parietal lamella is rather strong.
36.-Succinea, sp.

Related to 心. cepulla, but more oblong, and to s. souleyeti, Anc., which is, I think, distinct from ropulla.
37.-Succinea, sp.

Allied to S. linlensi, Anc., but not quite so oblique.
38.-Succinea. sp.

Like the preceding one, but more slender and more pointed spire,
39.-Succinea inconspicua, Anc.

40 -Succinea, sp.
I single specimen of a peculiar form, next to S. casta, Anc. var henshari, Anc, but smaller and more elongate.
41. - Succinea, sp.

This groups with S'. tetrafona, Anc., of Mani and S. pmetrate, Anc., of Olaa, Hawaii. In most specimens there is a well marked angular shoulder on the upper of the last whorl.

Although most of the sucrinate are probably new species, though in some instances, very near to some of the recent forms, I do not wish to name them, because they will be described and figured by Professor H. W. Henshaw.

EXPLANATION OF PLATE V.

Figs. 9, io. Pscudoluatimia méniscus, n. sp.
Figs. II, I2. Punctum hormori, n. sp.
Figs. 13, It. Endodonta laminala, Pease.
Figs. 15, 16. Endodomla (Thammatodon) henshawi, n. sp.
Fig. 17. Eludodonla liystricella, Pfr. var. faucilamellala, n. var.
Fig. Is. Lyropupa mirabilis, Anc, var. latäailensis, n. var.
Fig. 19. Lyropupa maşsdalchac, Anc. var. frisca, n. var.
Figs. 20, 21. Tornalellina radicoslala, n, sp.
Figs. 22, 23. Tormatellina cyphoslyla, n. sp.

CURRENT LITERATURE.

Baker, F. C. -The Molluscan Fauna of the Dells of Winconsim. Trans. Ac. Sc. St. Louis, 1904, vol. xir; pp. 99-105.

Baker, F. C. - Notes on Plamerlis Irumatus Miles. Ibid., pp. 107-110.
The writer is of opinion, after examining several thousand specimens of P. tritolits and comparing them with exmples of P. Irnncalus, that the latter is the ancestral form of the former species, and not vici zersa as he has proviously stated.

Baker, F. C.-The Arrangement of the Collection of Mollusca in the Chicago Academy of Sciences. Musems Journ., 190t, vol. iii, pp. $357-360, \mathrm{pl}$. sliv.

Girty, George H. - New Molluscan Genera from the Carboniferous. Proc. U.S. Nat. Mus., Inof, vol. xxvii, pp. $721-73^{6}$, pls. xlv-xlwii.
The new senera and species described and figured are : Limifecten tewanus, Plenrophorella papillosa, clazinlites lionardensis, and Schuchertilla, n. nom., "proposed for shells having the type of structure for which the name ()rllothctes is at present in use." Type S. lens, White.

Hedley, C. -The Effect of the Bassian Isthmus upon the existing marine fauna : a study in ancient geography, Proc. Limn. Soc. N.S.W., 1903, pp. 876-883.

Hedley, Charles.-Additions to the Marine Molluscan fama of New Zealand. Rcc. Aust. Mus., 1904, vol. v, pp. 86-97, figs. It-25.
The new genera and species are : Plenrodon matians; licrlicifrouns mstilus, gen. and sp nov., referred with some doubt to the Cardifidac; Schismope brceis and S. rosia ; Incisura, nov. gen., type Scissurclla lylllctuncusis, Smith : P'uncturclla demissa, Liotia polyplanra, Caccum disitulum, Conhlonvia corvisalu, Rissoa sutcri, Enlima paxillus, and Leiostraca murdochi.

Pecten airiculoides, Smith, is transferred to the genus Cyclopecten, Carditclla delta, Tate and May, to Cana, and Daphuclla snbstriala, Suter, to Mitromorpha, thus adding three genera and two species new to the New Zealand fauna.

Sykes, E. R.-Description of two new species of Mclania from the New Hebrides. Proc. Malac. Soc. Lond., 190+, vol. vi, pp. I3, If, figs. 1,2.
The two new species are M. morli and M. cimgilifcra.
Sykes, E. R.-On the Mollusca procurred during the "Porcupine" Expeditions, 1869-1870. Supplemental Notes, Part I. Ibid., pp. 23-40, pl. iii.
This is an exceedingly valuable piece of work, and no one is better qualified to undertake it than Mr. Sykes.

Numerous points in nomenclature are dealt with, two new species are described and figured, viz., Retusa marshalli and Cylichna obscura, and figures are given of C. hocrucsi (Weinkauff), C. clongata (Jeffreys), Actcon slobnlinus (Forbes), Bulla striatula, (Forbes), Rctusa lactca (Jeffreys), and R. cxcaiata (Jeffreys).

Sykes, E. R.-The Hawaiian species of Opcas. Ibid., pp. 112, i13, figs. I-4.
Figures of 0. juncens (Gould), O. pyrgiscus (Pfr.), and descriptions and figures of O. henshawi, n, sp., and O. prestoni, n. var. Law'aiicnsis.

Sykes, E. R.-On the Polyplacophora. In Herdman, Report . . on the Pearl Oyster Fisheries of the Gulf of Manaar. Part I, Suppl. Rep. iv, pp. 177-I8o, pl. i. London, 4 to, 1903.
The collection includes nine species. Of these, three are identified (one doubtfully) with known forms; one species of Callochiton, three of Ischnochilon, and one of Tonicia, are new.

Sykes, E. R.-Zoological Record, 1903, vol. xi. Div. vii. Mollusca. London : July 1904.
This invaluable work reaches us considerably earlier than in previous years, and although possibly not quite so complete as in former years, it is a great advantage to have the same so promptly.

So far as the general Record is concerned there are no salient alterations, but the cross references are perhaps not so complete as in previous issues.

Pallary, Paul.-Additions a la faune conchyliologique de la Méditerranée. Ann. Mus. d'Hist. Nat. Marseille-Zoologie-1903, T. viii, pp. 5-16, pl. i.
Pallary, Paul.-Quatrième contribution a l'étude de la faune malacologique du Nord -Oueste de l'Afrique. Journ. de Conchy1., 1904, vol. lii, pp. 5-58, pls. i-iii.
In this interesting memoir the author describes and figures a peculiar Parmaccllalike shell for which the genus Vancheria is established. I'. tingitana, the type, is known from the shell only, which is dextral and larger than any known form. It is to be hoped that Mr. Pallary will ultimately succeed in finding the living animal.

Many new species of Hch.x are described and figured, as well as new species of Limunaea, Valvata, and Melanopsis.

Hoyle, W. E.-A Diagnostic Key to the Genera of Recent Dibranchiate Cephalopoda. Mem. and Proc. Manchester Lit. and Phil. Soc., 1904, vol. xlviii, No. 21, pp, I-20.
What must prove a most useful aid to workers on the recent Dibranchiate Cephalopoda, has been drawn up by Dr. Hoyle in preparation for a systematic account of the recent Cephalopoda to be published in the "Tierreich " of the German Zoological Society and Berlin Academy.

Eliot, C. -On some Nudibranchs from East Africa and Zanzibar. Part III. Proc.
Zool. Soc. Lond., 1904, pp. $354-385$, pls. xxxii-xxxiv. Part IV. Ibid., pp. $380-$ 406, pls. xxiii, xxiv.

The author, in these two papers, treats of the Cryptobranchiate Dorids, which are represented by 49 species of which I genus and 25 species are new. In examining the value of the chief points by which the sub-families and genera under consideration can be differentiated, it is pointed out that such characters as the rhinophores and branchial and the generative organs are disappointing as a means of classification ; while the characters of the dorsal surface and general texture, the foot, and the mouth parts are regarded as forming a fairly good indication of relationship. The internal organs, in the author's opinion do not offer many features which serve for the purpose of classification.

Bartsch, Paul.-A new Ashmunella from New Mexico. Smithsonian Miscell. Coll., 1904, vol. 47, pp. 13, 14.
Ashmunella townsendi, n. sp., is most nearly related to A. rhyssa, Dall, but is much smaller than that form and is uniformly more strongly sculptured. Loc. Ruidoso, New Mexico.

Hyde, Ada H.-The Nerve Distribution in the Eye of Pecten irradians. Mark Annivers. Vol., 1903, pp. 471-482, I pl.

Hyde, Ada H.-The Retinal Nerve-ending in the Eye of Pecten. Biol. Bull., 1904, vol. 6. p. 317.

Knight, G. A. F.-A Visit to the Onter Hebrides in search of Mollusca. Trans. Perthsi. Soc. Nat. Sci., 1903, vol. 3, pp. 193-217, map.
Stenta, M.-Zur Keuntniss der Strömungen im Mantleraum der Lamellibranchiaten. Arb. Zool. Inst. W'ien, 1903, Bd. It, Pp. 211 -2\&の, I Taf.
Zugmayer, Erich.- ̈̈ber Sinnesorgane an den Tentakeln des Genns Cardinm. Zeit. f. wiss. Zool., 1904, Bd, 1xxvi, pp. 7 78-5 8, Taf. xxix.
Sassi, M.-Zur Anatomie von Inomia chlutpinm. Aıb. Zool. Inst. Wien, Bd. it, pp. SI-06, I Taf.
Thesing. C.-Beiträge zur Spermatogenese deı Cephalopoden. Zeit. f, wiss. Zool. 190 + , Bd. Ixxvi, pp. 9t-136, Tfn. viii, ix.

Wettstein, E.-Zur Anatomie ron Crppoplax laratarmis, Burrow. Jena. Zeitschr. 1903, Bd. xxxviii, $\mathrm{pp} .473-504,3$ Taf.
Rice, E. L.-Preliminary Report on the Development of the Gill in Mytilus. Ohio. Nat., 1904, vol. iv, p. 5 I.
Drew, Gilman A.-The Anatomy and Embryongy of Pecten temuicostatus. Bir 1. Bull., 19nt, vol. 6, p. 307.
Budington, R. A.-Nervolus Resulation of the Heart of l'thus metcharia. Ibid., pr. 311, 312 .
Smallwood, W. M.-Nitural 1history of Itaminea solitaria Say. Amer. Nat., 1904. rol. 3 , $\mathrm{pp} \cdot 207-225,16$ fiss.

DESCRIPTIONS OF SOME NEW SPECIES OF CINGALESE AND INDIAN MARINE SHELLS.

By h. B. Preston, f.Z.S.

(Plates vi and vii.)
The -peries about to be described formed part of the collection of the late Mr. Hugh Nerill, who was for many years resident in Ceylon, and a portion of whose collection came into my hands upon its dispersal during the early part of the present year. Although exact localities were often not given, all the present species, with one exception, are undoubtedly from Ceylon,

Cythara nevilliana, n. sp.
Pl . vii, figs. $\mathrm{I}, 2$
Shell subfusiform, obtuse, solid, uniformly white ; whorls 5-6, convex, coarsely ribbed and spirally grooved, giving the shell a cancellated appearance: suture impressed; aperture high and narrow; columella curved, somewhat rough ; peristome slightly thickened and bent inwands over the aperture, the edge being serrated by the spiral grooves.

Alt. 5 millim. ; diam. maj. 2.5. Aperture, alt. 3 millim. ; diam. . 5.
Hal.-Ceylon.
Clathurella bulleni, n. sp.
Pl. vii, figs. $3,4$.
Shell ovate, solid, brownish lilac, or ornamented on the last whorl with a boad peripheral yellowish-white band, and on the earlier whorls with a very narrow, but distinct, band of a similar hue ; whorls 8, convex, transversely ribbed and spirally grooved, giving the shell a coarsely granulated appearance; suture well impressed ; aperture narrow, one third of the height of the whole shell : columella curved ; peristome thickened and bent inwards.

Alt. 6 millim. ; diam. maj. 3. Aperture, alt. 2 millim. ; diam. .5.
Hab.-Ceylon.

Thala ceylanica n. sp.

$$
\text { Pl vi, figs. r, } 2 .
$$

Shell slender, attenuated ; whorls $7-8$, sculptured with closely set transverse ridges crossed by finer spiral lines, giving the shell a granulated appearance ; colour pink, mottled and streaked with white and pale chestnut, the latter colour developing into a broad peripheral band on the body-whorl ; aperture narrow ; columella four-plaited ; peristome thickened and slightly notched above.

Alt. ro millim. ; diam. maj. 2.5. Aperture, alt. 4 millim. ; diam. maj. . 5. Hal.-Ceylon.

Nassa (Phrontis) siva, 11. sp.

Pl . vi, figs, 3,4 .

Shell ovately conic, spirally striated, especially on the apical whorls and lower portion of the body-whorl, and coarsely ribbed throughout except on the last half of the body-whorl, where the lower portion of the ribs becomes obsolete ; whorls $8-9$, somewhat convex, pale brownish-yellow, ornamented with two chestnut bands ; suture impressed ; columella distinctly plaited, expanded and extending above into a callosity bearing a single plait near the junction of the peristome with the whorl above : peristome thickened and slightly reflexed, having five denticles just inside the aperture, the uppermost being more strongly developed than the others ; aperture obliquely ovate ; canal short and rather broad.

Alt. 12.5 millim ; diam. maj. 6.5. Aperture, alt. 6 millim.; diam. maj. 2
Hab.-Ceylon.
Nassa (Phrontis) gangetica, n. sp,

$$
\text { Pl. vi, figs. } 5,6
$$

Shell fusiform, spirally striate (at the base only) and coarsely rib'sed except on the last half of the body-whorl, where the surface becomes quite smooth bearing only a row of tubercles just below the suture ; whorls 8 , fawn colour ; suture impressed; columella extending into a callosity reaching to the junction of the peristome with the whorl above and bearing a plait in this region ; peristome thickened, slightly reflexed having two obsolete plaits on the inner sufface ; aperture ovate ; canal short ; operculum horny, unguiform, with an apical nucleus.

Alt. 10.5 millim.; diam. maj. 4.5. Aperture, alt. 3 millim.; diam maj. 1. Hal.-Calcutta.

Murex (Ocinebra) sykesi, n. sp.

$$
\text { Pl. vi, figs. } 7,8
$$

Shell ovate, solid, five varicose, coarsely ribbed and cancellated on the varices, whorls 6-7 ; aperture oval ; peristome produced; canal only
slightly recurved ; the shell is of a pinkish-white colour, having a brown band just below the periphery; in many specimens the region of the canal is tinged with rose pink, but this character does not appear to be always constant.

Alt. 20 millim. ; diam. maj. 13. Aperture, alt. 5 millim. ; diam. maj. 3. Hal.-Ceylon.
This species appears to be most nearly allied to Murex (Orinelro () murula, Reeve. from the Philippines, but differs in being much more oval in general shape and the canal being less recurved than is the case in that species; moreover it has only five varices on the body-whorl whereas in II. nucula there are six.

Coralliophila dissimulans, n.sp.

$$
\text { Pl. vii, figs. } 5,6
$$

Shell conical, exteriorly white ; whorls 5-6, obliquely ribbed, the ribs in places being raised into tubercles ; suture impressed ; aperture ovate ; columella somewhat curved, tinged with pinkish purple ; canal short and curved ; peristome thin, erect ; interior of shell painted with a chestnut coloured band below the periphery and ending abruptly about two millimetres from the edge of the peristome.

Alt. 9 millim. ; diam. maj. 6.5. Aperture, alt. 4.5 millim. ; diam. I. 5. Hal.-Ceylon.

Mucronalia birtsi, 11. sp.
Pl. vii, figs. $7,8$.
Shell fusiform, rather attenuated, smooth, polished, semi-transpasent white ; whorls 9 , convex, the apex strongly mucronated; suture slightly channelled ; aperture inversely auriform ; columella twisted ; peristome simple.

Alt. 12.5 millim. ; diam maj. 5. Aperature, alt. 4 millin. ; diam 2.
Hab.-Ceylon.
This species appears to be somewhat closely allied to II. IMiliminarum, Sby., but is easily distinguished from that species by its more elongate form, the more transparent texture of the shell, and by the presence of the channelled suture which is not noticeable in M. phitippinarum.

Styloptygma lacteola, 1. s.
Pl. vi, figs. 9, 10.
Shell attenuate, fusiform, polished, striated with lines of growth transparent white, encircled with an opaque milky-white band below the suture; whonls $9-10$, slightly convex, and flattened above, giving the impressed suture an almost channelled appearance ; columella arched ; aperture obliquely ovate ; peristome simple.

Alt. 9 millim. ; diam. maj. 2. Aperture, alt. 2 millim. ; diam. maj. I
Hab.-Galle, Ceylon.

The apical whorls in many of the specimens examined are tinged with bright pink, but as this is not apparent in all, it is probably caused by the presence of decaying portions of the animal showing through the somewhat transparent shell.

Mactra delicatula, n. sp.

Pl. vi, fig. in.
Shell triangular, rather oblique, thin, equilateral, somewhat flattened, greyishwhite tinged with purple deepening towards the umbonal region, striated with lines of growth, these being rather irregular anteriorly; anterior side rounded into a sharp keel ; posterior end flattened, sculptured with fine striae giving a silky appearance, and produced to an obtuse angle.

Alt. 2 I. 5 millim. ; length 25.
Hah.-Ceylon
M. delicatula var, nivea, n. var.

$$
\text { Pl. vi, fig. } 12 .
$$

Shell rather smaller, somewhat more lightly striate, pure white except for a very slight tinge of purple on the umbones.

Alt. 17 millim. : length 20.5 .
Hab.-Ceylon.
Mactra taprobanensis, u. sp.

$$
\text { Pl. vii, fig. } 9 .
$$

Shell, ovate, convex, smooth, white painted with pale brown rays of irregular breadth ; u:nbones brownish purple, small ; anterior end produced, rounded, posterior end obtusely angled; interior sometimes pale brownish purple, sometimes white tinged with pale brown.

Alt. 7.5 millim. ; length 10.5 .
Hall.-Ceylon.

Explanation of plates.

Plate vi.

Figs. 1, 2. Thala ceylanica, n. sp.
Figs. 3, +. Nassa (Phrontis) siza, u.sp.
Figs. 5, 6. Nassa (Phronlis) gangetica, n. sp.

Figs. 9, 10. Shroplysma lacteola, n. sp.
Fig. 11. Maclra delicalula, n. sp.
Fig. 12. Maclra delicatuta var. nī̀ca, n. var.

Figs. 7, 8. Murex (Ocincbra) sykesi, n. sp.

Plate vii.

Figs. 1, 2. Cylhara nčillıuna, n. sp. Figs. 3, 4. Clathurella bulleni, 11. sp. Figs. 5. 6. Coralliophila dissimulans, n. sp.

Figs. 7,8 , Mucromalia birtsi, n. sp.
Fis. 9. Mactra laprobancusis, n. sp.

DESCRIPTIONS OF TWELVE NEW SPECIES AND ONE VARIETY OF MARINE GASTROPODA FROM THE PERSIAN GULF, GULF OF OMAN, AND ARABIAN SEA, COLLECTED BY MR. F. W. TOWiNSEND, 1902-1904.

By JAMES COSMO MELX'LLL, M.A., F.L.S.

(Plate , iii.)

I senture to offer another short instalment of deseriptions of Gastropoda from the Persian Gulf and contiguous seas, all dredged by Mr. F. IV. Townsend, during the past three years (1902-1904).

His last consignments come principally from Dabai, in the Persian Gulf proper, a locality that proved extremely rich, especially in Pelecypoda, though most of the Mollusca obtained had already been catalogued as found elsewhere in the neighbourhood.

But the majority of the following, it will : e noted, come from the one almost inexhaustible station already descanted upon in previous papers. ${ }^{(1)}$ This material (excepting as far as the Scaphopoda and I'elecypoda are concerned) is now thoroughly worked out, and it is hoped that a list may be eventually drawn up of all the many forms found in it, as the results are believed to have been rarely, if ever, eclipsed by any previous single haul of the dredge.

Aclis thesauparia, ${ }^{(2)}$ п. 1 .

Pl. viii, fig. I.

A testa minutissima, obtecte umbilicata, orato-fusiformi, delicata, alba, anfractibus 9 , quorum $3 \frac{1}{2}$ apicales, caudati, omnino laeves, pervitrei, nitentes, caeteris apud suturas impressis, spiraliter acuticarinatis, ultimo ct penultimo quatuor, antepenultimo, tribus carinis praeditis, interstitis laevibus, superficie haud nitente, apertura rotunda, peristomate paullum expanso, incrassato, super umbilicum et apud basim columellarem squarrosé effuso

Long. 2.50, lat. 1 millim
Mcel, -Gulf of Oman, lat. $24^{\circ} 58^{\prime}$ N.. long $56^{\circ} 54^{\prime}$ E., 156 fathoms.
Very small, but wonderful in its perfection of form and sculpture. The apical whorls are almost caudate, three to four of almost uniform narrow build, quite smooth and glossy, the remainder being uniformly acutely keeled The thickened peristome with a squarish extension of the columellar base halt hides the narrow umbilicus.

In sculpture it shows kinship with A. aswaris.

[^35]
Rissoina (Phosinella) phormis, ${ }^{(3)}$ n. sp.

$$
\text { Pl. viii, fig. } 2 .
$$

K. testa parra, ovato-oblonga, alba, solidula, imfractibus 6-7, quorum apicales 2 , vitrei, perlateves, cateteris apud suturas impressis, undique densé clathratulis, interstitiis squarrosis, apertura oblique ovata, peristomate incrassato extus aspero, intus litevigato, columella oblicua, simplice.

Long. 3.50 , lat. 1.50 millim
Hab.-Gulf of Oman, lat. $24^{c} 58^{\prime}$ N., long. $56^{3} 54^{\prime}$ E., 156 fathoms.
But few examples of a small cancellately whorled lisisiona, smaller than any species of the subgenus. Thosinglla that occur in the same seas. All seem dead shells, but in all probability the shell would be colourless in life.

Ethalia carneolata, Mes. var. rubrostrigata, now.
l'l. viii, fig. 3 .
E. testa cum forma typica comenit, sed ommino laerigata, nitida, perobseure anfractum apud ultimun bivittat:a, undique longitudinaliter rubris flammis et lineis pulcherrima omata.

Hal). - Dabai, Persian (iulf.
A rery few specimens dredged in $190+$ at the above locality, differing mainly in painting from the original type of this species. but so remarkable and conspicuous is this form, that it is considered worthy of being specially singled out under a varietal name. For description of E. corneolatu, vide Mem. and l'roc. Manch. Soc., No. 7, p. 19, pl. vii, figs. 25, 26.

Omphalius collingei, n. - - .

l'l. viii, fig. 4.

O. testa crassil, mediocri, conica, nigrobrumnea, anguste et profunde umbilicata, anfractibus 6 , quorum apicales $1 \frac{1}{2}$ laeves, informes, vitrei, caeteris spiraliter granocostatis, costis ad regionem anfractuum superiorem juxta suturas duabus praecipue majoribus nodulorum ordinibus decoratis, nodulis mitidis, rotundis, laeribus, infra, antepenultimo et penultimo binis, ultimo tribus gemmarum ordinibus usque ad peripheriam praeditis, carina peripheriali crassa, ordine noduloso duplicato, regione basali. circa umbilicum sex ordinibus nodulorum parvis, symmetricis, aequidistantibus, apertura trapezoide intus margaritacea, labro angulato, area columellari infıa umbilicum bi vel tricalloso, callo albo, nitente.

Alt. 15 , diam. 16 millim.
Remarkable in its resemblance to certain South American Omphatii, c.g. U. 4 -carinatus and 4 -costutus, Wood, of which it is the Eastern exponent. It may be distinguished by its blackish-brown colour, thickened substance, and neat concatenaton of variously sized rows of spiral noduled gemmae, the
larger rows just below the sutures, and towards the centre of the whorls, and likewise rery much expressed in thickness with doubled rows of nodules, at the periphery on the last whorl. At the base, concentrically around the umbilicus are spirally ranged six uniform rows of small nodules.

I venture to dedicate this species to Mr. W. E. Collinge, as a very slight mark of esteem and appreciation of his unwearied labours in the cause of Malacology.
since describing the a ove, another specimen has come to hand, from a second station in the Persian Gulf, through the medium of Miss M. Lehour.

Turritella illustris, n, sp.
Pl. viii, fig. 5.
T'. testa gracili. attenuata, delicata, alloa, violaceotincta, vel pallidissime brumnea longitudinaliter indistinctis flammis decorata, anfractibus 17, quorum apicalis parrus, laevis, caeteris apud suturas multum impressis, spiralite acuticarinatis et tornatis, carinis irregularibus, majoribus cum minoribus alternantibus, anfractus apud supernos 5, tribus ultimis 7 , praeditis, apertura orato-trapezoide, lal ro tenui, paullum ad basim effuso, columella paullum incrassata.

Long. 2.25 , lat. 55 unc.
Hab,-Dabai, Persian Gulf.
An elegant species, its nearest congeners leeing firstly To. flammulata, Kiener, from West Africa, which it resembles in its spiral ornamentation, and likewise, to some degree, in the pale flame-like blotehes on, especially the upper, whorls : this is however, a mone delicately moulded shell. And also to ' T ' 'ulfoni, Melv., also from the Persian Gulf, it bears a close resemblance, but differs in the more irregular carinations, pale colouration, and the spiral blotches, from its congener, which is always unicolorous white.

To Mr. Edgar smith I am indebted for pointing out the salient characteristics of this species.

Eulimella aeaea, ${ }^{(4)}$ n. sp.

Pl . viii, fig. 8.
E. testa gracillima, attenuata, irregulari, alba, laevi, parum nitida, anfractibus ad S, quorum apicalis ipse exteme revolutus et inversus, huic proximo paullum abnomi et irregulari, caeteris laevibus, ad suturas rotunde impressis, apertura oblonga, labro ad hasim patulum effuso, columella fere recta.

Long. 4, lat. 1.50 millim., sp. maj.
" 2, ", I ", sp. min.
An abnormally whorled and formed shell, most akin, so far as the inhabitants of the Persian Gulf are concemed, to E. feetrosict, Melv., but the revolute apical whorl is more strongly developed, and the surface perfectly smooth throughout, with no sign of spiral striation. The smallest example before me has the mouth in the greater state of perfection, this exhibiting the normal Eulimelloid character.

Odostomia dorica, ${ }^{(5)}$ n. sp.

$$
\text { Pl. viii, fig. } 9 .
$$

O. testa owato-fusiformi. solidula, crassa, alba, anfractibus 7 , quorum apicales 2 heterostrophi, sitrei, excavati, laeves, cateris apud suturas canaliculatis, sradatis, duobus supernis longitudinaliter undique multicostulatis, costulis arctis, tribus ultimis laevibus, apertura fere rotunda, intus spiraliter striata, labro ad hasim crassiore, plica columellari forti.
long. f, lat 2 millim.
Hath. - I'ersian Ciulf, Maskat, 15 fathoms.
I solid incrassate species, somewhat rude in buide, columella very strons'y once plated, whorls rery excavate at the sutures, scalate, the apex glassy and heterostrophe while the two or three next uppermost whorls exhibit longitudinal riblets, the remaining whorls being quite smooth.

Oscilla faceta, n. sp.

ll. viii, fig. 10.
O testa pergracili, angusta, alba. delicata, anfractibus $S-9$, quorum 2 apicales, heterostrophi, vitrei, laceses, cacteris arcte spiraliter acuticarinatis et et tomatis. carinis duabus apoud supemos, tribus apud antepenultimum et penultimum, ultimo anfractu ad sex carinas, superficie interstitiali laevigata sel obscure sub lente alveata, apertura orato-oblonga, labro tenui, columella fortiter uniplicata.

Long. 3 50, lat. i. 50 millim., sp. max.
,. 3 ., I ,, sp. min.

Huel. Gulf of Oman. Lat. $2458^{\prime} \mathrm{N}$, long. $566^{\circ} 5 \mathrm{E} .156$ fathoms.
It first decmed :n attenuate variety of O. imtira, Nelv., ${ }^{(6)}$ a not infreguent species in these seas, this proposed new form differs in its far more graceful and uniformly narrowed contour, more oval aperture, and stronger columellar plica. Were it not for the presence of this last feature, indeed, it might be considered at l'in!mtime, near (\because. isseli, Tryon, which is very abundant in many parts of the North . Irabian Sea. Iraradia Irorleteris, (iould, a Rissoid, likewise has a strange superficial resemblance to this alliance of $I^{2} y$ romillellilue in these seas, as we have already mentioned. ${ }^{\text {(7) }}$

Oscilla jocosa, il. sp.
Pl. viii. fig. it.
O. testa minuta, orato-conic:i, alba, anfractibus $5-6$, quorum 2 apicales heterostrophi, vitrei, in proportione magni, caeteris tri-, ultimo anfractu sex ve] septem carinulatis, carinis paullum obtusis, superficic interstitiali sub lente

[^36]lepide alveata, ultimo ad peripheriam subangulato, apertura orato-rotunda, labro tenui, angulata, columella uniplicata.

Long. 2, lat. . 75 millim.
Heth. -Gulf of Oman. Lat. 2458^{\prime} N., long $56^{\circ} 5 t^{\prime}$ E., 156 fathoms.
The smallest by far of the four Osillae yet detected as occurring in this region, and of which rery few specimens have come to light. It appears mature, the angle at the periphery alone will distinguish it from its congeners.

Mumiola carbasea, ${ }^{(8)}$ n. sp ,

Pl. viii, fig. 12.

M. testa orato-oblonga, parum perforata, delicata, albo-lactea, papyracea, anfractibus 6 , quorum $1 \frac{1}{2}$ apicales, globulosi, vitrei perlaeves, apice ipso depresso, caeteris gradatulis, undique tenui costatis, costis fere rectis, interstitiis arctissime spiraliter liratis, costis ultimum apud anfractum mumero circiter is, interdum ad basim fere evanidis, apertura ovata, labro tenni, columella simplice, paullum incrassata.

Long. 3 , lat. 1.30 millim.
Allied to $I /$ spiratu, Ad., found also in the Arabian Sea; hut its gradate whorls, depressed globular apex, delicate ribs, and oval mouth with simple unplaited columella, differentiate this species from its congeners.

Eulima (Subularia) hypolysina, n. sp.

Pl. viii, fig. 13 .
E. testa vitrea, aciculata, per-attenuata, delicatissima, anfractibus 8-9, undique albo-hyalinis, laevissimis, politis, ad suturas impressis, tumidulis, lateribus infra fere rectis, ultimo interdum obscure spiraliter rufozonulato, paullum producto, apertura anguste oblonga, labro superne, juxta suturas, sinuato.

Long. 3 50, lat. I millim.
Hat, - Gulf of Oman. Lat. $24^{\circ} 58^{\prime} \mathrm{N}$. , long. $5654^{\prime} \mathrm{E}$. 156 fathoms.
This narrow, hyaline little species, of extreme frasility and delicacy, is, as peinted out to me first by Mr. E K. Sykes, chiefly remarkable for the rounding off, and consequent smuate appearance of the thin, flevuous and slightly effuse outer lip, as it approaches the suture In this respect. though not to so great an extent, it assimilates the terrestrial H!/fulysion flomertiere, II. and P., from Natal, a genus allied to Opers, and the specific name is proposed from that circumstance. E: (S'ubutariu) biviltuta. H. A. A. Id., occurring most plentifully with it, at no stage of its existence presents the same characteristics.
8. Cabasus, white sail-cloth, from the papyraceous texture.

Mangilia posidonia, ${ }^{(9)}$ n. sp.

$$
\text { Pl. viii, fig. } 1+
$$

M. testa minuta, breviter fusiformi, solidiuscula, alba, anguliferi, anfractibus S, quorum $2 \frac{1}{2}$ inconspicui, vitrei, laeves, apicales, cateris apud suturas multum impressis, longitudinaliter paucicostatis, costis crassis, undique spiraliter angulato-liratis, ultimo anfractu octo liris praedito, penultimo, simul ac antepenultimo tribus apertura anguste oblonga, labro incrassato sinu indistincto sed lato, haud profundo, columella simplice.

Long. 5, lat. 2 millim.
Ilat.-Gulf of Oman. Lat. $24^{\circ} 58^{\prime} \mathrm{N}$., Jong. $56^{\circ} 54^{\prime}$ E., 156 fathoms.
A not infrequent species in dredged shell sand from the above locality, its nearest congener being IV. arlamantina, Melv., ${ }^{(10)}$ a more squarely formed Mangilie, with distinctly larger, globular, vitreous apical whorls.

Daphnella eulimenes, ${ }^{(11)}$ n. sp.

$$
\text { Pl. viii, fig. } 15 .
$$

D. testa parwa, elegranter fusiformi, alba, delicata, anfractibus $7-8$, quorum apicales decussatuli, caeteris leniter supra versus suturas angulatis, arcte sed irregulariter cancellatis interstitiis plus minus quadratulis, apertura oblonga, labro incrassato, sinu patulo sed nequaçuam profundo, columella fere recta paullum apud basim producto.

Long. 6. lat. 2 millim.
Hat, -Gulf of Oman. Lat. $24^{\circ} 58^{\prime}$ N., long. $56^{\circ} 58^{\prime}$ E., 156 fathoms.
Of the same alliance as I). nereilnm and 1). cemphitrites, M. \& S., but more gracefully formed, and gently slopingly angled below the sutures. Very rare at the above locality.

An opportunity is here taken of figuring two species from the Persian Gulf region, viz.,
Mathilda carystia (Fig. 7.).
Solarium admirandum (Fis. 6).
Both were described in Ann and Mag. N. H., ser. vii, pp. 22 I - 223 , but owing to exigencies of space, have been, till now, left unpourtrayed.

[^37]
EXPLANATION OF PLATE VIII,

Fís. I. Aclis lhesamotia, n. sp.
Fis. 2. Rissoilut phormis, n. :p.
Fis. 3. Ellalia carncolala, Melv. var. rubroslrigala, n. var.
Fig. 4. Omplutims collinşi, n. sp.
Fing 5. Turrililla illustris, n. sp.
Fis. (6. Solarimm (Torinia) admirandum, M. \& S.
F゙is. 7. Mallilda caryslia, M. \& S.
Fig. S. Eulimella acaea, n. sp.
Fig. 9. Odosfomia dorica, 11. sp.
Fig. Io. Oscilla facela, 11. sp.
Fig. if. Oscilla jocosa, n. sp.
Fig. 12. Mamiola carbasea, n. sp.
Fiss. 13. Enlima (Subularia) hypolysina, n. sp.
Fig. It. Mansilia posidonia, n. sp.
Fis. 15 Daplanclla eulimenes, n. sp.
Fig. I6. Mitra (Callithea) stcphamacha, Melv.
Fis. I\%. ,
"
"
var. astephana, n. var.

NOTE ON MITRA STEPHANUCHA, MELV., WITH DESCRIPTION OF A PROPOSED NEW VARIETY.

ij J.MMES COSMO MELVILL, M.A., F.L..S.
(Plate viii, figs. 16, 17.)

Sinee leecmber i 896 , when the first examples of this fine molluse were described, it has been been frequently dredged, and is now fairly generally to be forind in collections

The largest specimen we have seen, now figured, came from the neighbourhood of Muscat, in 1901 (this being the original and central habitat for the species), and measures longitudinally 45 as against 42 millimetres in the type This individual is of a warm and cinereous-brown. The whorls are at least ${ }_{5} 5$ in number, the actual apex not being quite perfect, while the spiral row of strong echinulate coronals in the upper part of the longitudinal ribs is extremely well developed. Below these, only traces of the usual transverse interrupted diark line, so conspicuous ats a rule, exist, and this is followed loy a plaingrey and somewhat indistinct spiral band.

As a contrast to this, a remarkable form has been fuite recently dredged in the locality given below, and as it possesses so many points of similarity to . M. stophlermurliot it is the wisest course to deem it a marked variety, at all erents till more specimens come to hand.

I therefore characterise it thus:

Mitra (Costellaria) stephanucha, Mell. var. astephana, ${ }^{(12)}$ nov.

Shell in general form and coloration as in the type, but much smaller, 11-12 whorled, perhaps not quite full grown, the $2 \frac{1}{2}$ apical, glassy pale brown, the rest longitudinally ibbed. ribs shining, smooth. number on the body whorl 13 as arainst $10-1$ in the normal form, when mature, upper whorls interstitially spirally punctately sulcate, less deeply, but still conspicnously on the lower whorls, there being a grey central zone at the centre of the basal, as in the type, with interrupted spiral dark line between the ribs on the five last whorls. The echinate and acutely-noduled coronal, on the other hand, round the upper portion of the ribs is well nigh or quite obsolete, giving a perfectly differemt character to the facies of this new varicty, pro posed from this circumstance, to be called (sistrphtum. Indeed, it seems comparable with such a species as . II (Costrllaria) nomlilymetr, A. As from the Philippines. I would add, that Messts. Sowerby \& Fulton, in their last issued elaborate catalogue of Mollusca (April, 1903, p. 18) classify $1 /$. stephemurha as a rallithem, in which subgenus. 11. sti!muturim and semumisu!!! are placed The variety just described certainly bears a relationship to thene latter, and we are mot sure that Callithea does not therefore suit the spectie. better than C'astellariu: but the two sub-divisions run sery' dosely torether, and are not well defmed.

Long 20, lat. 6.50 millinn.
Hah.-Gulf of Oman. Lat $26^{\prime} 6^{\prime} \mathrm{N}$,, long. $5^{6} 53^{\prime}$ E., 15 fathoms.

ON SOME NON-MARINE SHELLS FROM THE AUSTRO- AND INDO-MALAYAN REGIONS.

By E. R. SYKES, B.A., F.L.S.

(Plate i...)
Tue forms dealt with in the following paper have come to me from several sources, mainly however, from Herr Fruhstorfer.

Thanks to the kindness of Mr. Edgar Smith, to whom I owe many thanks for his unfailing help, I have also had the advantage of seeing a series in the possession of the British Museum.

All the actual "types" are in my own collection.

Trochomorpha gulielmi, n. sp.

Pl. ix, figs. $1 \mathrm{I}, 12$.
Shell widely and openly umbilicate, depressed conoid, thin, horn colour ; sculpture well-marked lines of growth, cut, on the lower surface, by numerous, close-set, miscroscopic spirals ; suture well-marked ; whorls $6 \frac{1}{2}$, regularly increasing, plano-consex, the last whorl not descending, with an acutely angled periphery, base moderately inflated: mouth subquadrate, lip thin but slightly incrassated on the columellar margin.

Diam max. 35 ; alt. (from apex to base of last whorl in front) 8 ; diam. max. of mouth i 5 millim.

Hub - Engano.
Trochomorpha dautzenbergi, n. sp.

Pl. ix, figs. $13,14$.

Shell moderately and openly umbilicate, subdepressed conoid, rather thin, chestnut-brown ; sculpture lines of growth, obscurely marked on the base by traces of microscopic spirals; whorls $6 \frac{1}{2}$, regularly increasing, flattened, the last whorl not descending and a triffe concave just above the very acute angled periphery, base flattened but a little inflated : month subpuadrate, lip thin but slightly incrassated on the columellar margin.

Diam. max. 31 ; alt. (from apex to base of last whorl in front) 78 ; diam. max. of mouth 13 millim.

Hut. - Engano.
These two handsome forms may be separated by the following characters. In T ! \quad limtmi the shell is larger, lighter in colour, more depressed, and the whorls are slightly more swollen, and there is an absence of the concavity just above the periphery on the last whorl. The spiral sculpture on the base is also more marked, and the base itself is a little more swollen. I have adopted the names given to them in MS. by Herr Fruhstorfer.

Albersia waigiouensis, n. sp.

> Pl. ix, fig. ı6.

The shell now under consideration appears to be widely distributed in collections under the name of 1 . ffrcmulutu. (). \& (i., and perhap)s the most serviceable method will be to diagnose it by comparison with that species.

Shell differing from 1. !framuleta in the following respects: shell mone depressed in proportion to the width ; colour a little darker and a white zone is present below the dark encircling band, with indications of another zone above : sculpture consisting of a very large number of minute spirals which, cutting the lines of growth produce the effeet of microscopic granulation, this marking eradually fades out towards the apex, which is almost smooth : contrasted with .I. !ramulata the shell differs in the presence of the dense spirals and the absence of the coarse granulation on the last whorl ; the mouth in the present species is twisted at the columellar junction and has an obsolete tubercle.

Diam. max. 47 millim.
The habitat is Waigion, and I believe all the records of A. gramulata from the Island belong to the present species, and not to the true A !framulata whose habitat is Port Dorey, New Guinea.

Planispira (Vulnus, n. sect.) endoptycha, Martens.
var. depressa, n. var.
Shell somewhat more flattened.
Hut) - Waigiou.
This species was described by ron Martens as a Heli.. from Batjan, Mareh, and 'lernate : I have a typical specimen said to have come from Obi, and a mose depressed form from Waigiou. Whether the IJorrasia compta of Henry Adams really belongs here, as has been suggested, it is hard to say ; the type does not appear to be in the British Museum. The species is placed by Mr. Pilsbry under the genus Planispira in a separate group with P. poreltana, Grateloup. P. muloptycha appears to me to be well worthy of a separate sectional name, being characterised by a thin deciduous periostracum, and the remarkable indentations on the last whorl at the periphery and also on the base, but, apart from these characters resembling Cristititima. To this group P. poreellana, and Helir infracta, Mrtns., probably also belong. I'ulmus also recalls the Costa Rican Arerellia marneili, Crosse.

Planispira (Cristigibba) gebiensis, n. sp.

Pl. ix, figs. $7,8$.

Shell moderately umbilicate, large, almost flat, slightly gibbous, crest behind the lip small, closely covered with a hairy periostracum, lines of growth obscure : whorls 5 (?), the apex broken ; colour in general dark-brown on the last whorl, becoming lighter on the earlier whorls, with two white zones just
above the periphery, the lower being the broader, and a third white zone at the suture, noticeable for a whorl and a half from the mouth : mouth broadly: ovate, large, lip well expanded, and slightly reflected on the outer margin, more noticeably so on the columellar margin and at the base, the external colouring of the shell is seen inside the mouth, and the colouring is produced to the edge of the lip.

Diam. max. 30 ; alt. (to base of lip) 12 millim.
Var. a. Similar to type, but the crest stronger, the colour a pale straw yellow with a white zone just above the periphery and narrower brown zone just below, with indications of another white zone just above this and at the suture ; periostracum a little more noticeable.

Diam. max. 28 : alt. (to base of lip) 12 millim.
Mab.-Gebi Island.
Planispira (Cristigibba) fruhstorferi, n. sp.
Pl. ix, figs. 9, 10.
Shell almost flat, horn-brown, openly umbilicated ; sculpture well-marked lines of growth and a number of closely-set, small, pits, resembling the hairscar markings seen on species of Allperia, and showing that when alive the shell is clothed with a deciduous hairy periostracum ; whorls $4 \frac{1}{2}-5$, convex, and separated by a deep suture, the last whorl is swollen and has a wellmarked crest behind the outer lip : mouth descending above, ovate, with a darker brown marking just inside, lip whitish-hom colour, lightly incrassate and subreflexed, a very thin callus joining the margins.

Diam. max 13.8 ; alt 6.5 millim
Hal - Obi.
A small form, whose most striking characters are its uniform brown colour and its sculpture.

Obba subgranulata, n. sp.

$$
\text { Pl. i.x, figs. } 5,6
$$

Shell perspectively umbilicated. depressed, with a very acute peripheral keel ; pale brown, with two chestnut bands above the periphery and two below; those nearest the periphery being by far the wider: protoconch light chestnut; smooth, save for radiating lines, the residue of the shell minutely irregularly granulate, with a few scattered hairs on the last whorl, and some wrinkles behind the lip; whorls $+\frac{1}{2}-5$ flattened, the last whorl much descending at the mouth and somewhat compressed ; aperture very oblique, outer margin acutely angled, lip moderately thick, expanded, reflected, white, with a fairly thick callus joining the margins.

Alt. io ; diam. max. 27 millim.
Hal.-Batjan.

Recalling O. marginata, Müll., but differing in the sculpture, compression of the last whorl, shape of the spire, etc. From \%. hoolipliance, Pfr., which it appears to resemble in sculpture, the general shape, descending last whorl, etc., should suffice to distinguish the present shell. I have seen two specimens, agreeing entirely except in size. It is always difficult to say whether a sculpture of the nature of that found on the present shell is formed by close-set pits or real granules.

Papuina ecolorata, n. sp.

Pl. ix, fig. 2.

Shell trochiform, umbilicate, thin, transparent, white faintly tinged with pale yellow, protoconch large, polished, smooth, the residue of the shell lightly marked by growth lines and, very obscurely, subgranulose: whorls $5 \frac{1}{2}-6$, the earlier ones somewhat convex, the later flattened, the last whorl strongly keeled at the periphery, flattened on the base, and somewhat compressed behind the mouth; aperture rery slightly descending, subquadrate, white within, the lip at the upper edge of the outer margin is not reflected, but gradually becomes so towards the base, and the columellar margin is incratssated, well expanded and reflected over the umbilicus, half concealing it.

Alt. (to base of lip) i6 ; diam. max. 28 millim.
Hab.-Batjan.
Though this shell has no striking peculiarities still, as I have been unable to attach it to any form known to me, I have given it a name. Its only salient characters are the thin shell and entire absence of any colour pattern.

Papuina semibrunnea, n. sp.

Pl. ix, fig. I .
Shell umbilicate, orbicular-conoid, apex somewhat acute, fairly solid, with a thin deciduous periostracum, lines of growth moderately distinct, traces of micruscopic granulation are seen, chiefly on the base ; apex chestnut brown, after about the first whorl and a half a white zone appears below the suture. gradually widening until the upper half of the last whorl is white and the lower (hasal) half chestnut-brown : whorls $5 \frac{1}{2}$, plano-convex, suture indistinct, the last whorl is subcarinate and descends considerably at the mouth; mouth elongate oval, within it is chestnut-brown with white zones at the periphery and below the suture, lip well expanded and slightly reflected, chestnut-brown marked with white just below the insertion of the columella, columellar margin slanting, well reflected and almost covering the umbilicus.

Alt. (to base of lip) 15 : diam. max, 20 millim.
Hall.-Gebi Island,

Papuina lanceolata, Pfr. var. pulehrizona, n. var-

Shell similar in shape to the typical form, but a trifle mose elevated and the lower margin of the peristome a little more curved. Colour pattern of the base precisely as in the type, but there is a broad zone of a chestnut colour above the periphery leaving a narrow white zone both above and below it, the upper white zone being seen on earlier whorls.

Hal, Obi.
I think this is only a colour mutation, but as seen from above, it looks quite a distinct species. My specimen is not quite so beaked as the typical form, but this is probably not a constant character.

Perrieria canefriana, n. sp.
Pl. ix, figs. 3,4 .
Shell sinistral, spire elongate and gradually tapering towards the apex, truncate, uniform dark chestnut brown in colour, somewhat polished ; sculpture well marked lines of growth ; whorls remaining 7, plano-convex, regularly increasing to the last whorl, very little, if at all, ascending in front : aperture somewhat pyriform, dusky brown within, peristome whitish, continuous, somewhat thickened, the outer margin a little expanded, and the columella rather twisted and truncate.

Alt, 24.5 ; diam. max. 6.4 : alt. apert. 7.3 , diam. apert. 5 millim.
Hab.-OBi.
This interesting discovery extends the range of the genus, hitherto known only from New Guinea. The present species is by far the smallest of the three described and may be separated from P. minor, Smith, by its darker colour, more tapering form, and by the columella being more twisted. As Mr. Pilsbry states "the internal structure of the shell has not been investigated," I have broken up a specimen, which is now figured. The axis is much twisted, and I am unable to trace any armature upon it. I doubt if Pervieria belongs to the Meguspivilue; may it not be really referable to the Achatinidae?

Leptopoma ponsonbyi, n. sp.

Pl . ix, fig. I 5.

Shell turrited, moderately umbilicated, obscurely marked by lines of growth, microscopically densely spirally striated, with a number of small filiform carinae, five on the last whorl but one, these carinae being most numerous in the umbilical region ; colour horny brown with a pale zone just below the suture, this zone being marked with irregular blackish-brown blotches ; whorls $5 \frac{1}{2}$, convex ; aperture round, duplex, the outer portion very widely expanded except on the columellar margin, flattened, bending a trifle backwards and the surface a little wrinkled.

Alt. 8.3 ; diam. max. (with lip) 8 millim.
Hab-Obi.

The forms at present recorded from Obi are, latilabre, Martens (described as a variety of vitirum, L.ess.), meyalostomit, Mlldff., futyurans, Dtz., and altius, Dtz. From all these the present species may be severed by its form (like leucorrhaphe. Mattens) and the remarkable expansion of the lip. I much doubt if L. fut!urall: really came from Obi; I have it from the same collector as from Batjan.

It gives me special pleasure to name this shell after Mr. J. H. Ponsonby, by whose knowledge 1 have so often profited.

Leptopoma leucorrhaphe, Nartens.
var. cingillus, n. rar.
Shell like a dwarf lemormoph, which it sesembles in colour pattern, the height, however, is only 9 in place of 12 millim. : spirals more numerous and more closely-set, there being 6 insteatd of 5 om the last whon lout one. The habitat is Gebi in place of Hodinga, Halmahera, from which latter I have a typical specimen (coll. Doherty).

Ameria plicaxis, 1i. sp.
Pl. ix, fig. 17.
Shell closely related to Ameria ohione, Rolle, but it may be at once distinguished by the shape of the spire, which in that species is very short and swollen, the upper whorls beine very conves. In the present form the spire is drawn out and is of the usual "Physoid" shape: the columella has also the strong twisted fold characteristic of A. abichac.

Alt. 22 ; diam. max. 11 ; alt. apert. 12 ; lat. apert. 5.5 millim.
Hab.-Obi.
It has been sugrested to me that this may be the Physa molucensis of Lesson. His description is very brief and 1 fancy the species will prove to be unidentifiable; it must howerer be sought in the fauna of Amboina. The only figure 1 have seen purporting to represent it is that in the "Conch.-Cab," which is certainly not the present species. It may' also be noted that Lesson's shell was is millim. in height.

EAPLANATION OF PLATE IX.

Fis. I.	Papuina simibrunutia, n. sp.
Fis. 2.	Paphinat coloralar, n. sp.
Fisss. 3, +.	Perricria cancfitatha, n. sp.
Figs. 5, 6.	Obba snbsranmlata, n. sp.
Figs. 7, 8.	Planispira (Crisli@ibba) scbicnsis, n. sp.
Figs. 9, 10.	Planispira (Cristisibba) frulustorfcra, n. sp.
Figs. II, 12.	Trochomorplia suliclmi, n. sp.
Figs. 13, 14.	Trochomorpha dantzenbersi, n. sp.
Fig. 15.	Leplotoma fonsonbyi, n. sp.
Fig. 16.	Albersia midigione nsis, n. sp.
Fig. 17.	Ameria plicaxis, n. sp.

THE HELICOID LAND SHELLS OF ASIA. CORRECTIONS AND ADDITIONS.

IBy G. K. GUDE, F.Z.S.

Thanks chiefly to the carefuk and painstaking scrutiny to which Mr. Ponsonlyy has subjected my lists of the Helicoid Land Shells of Asia in the two previous volumes of this Journal, a number of slips and inaccuracies have come to light, and I have thought it useful to tabulate these. Several new species have in the meantime been published, a list of which is appended.

From Mr. H. Rolle, of Berlin, I have lately received, with some other Turkestan shells, two species which appear never to have been described, and although he informs me he thinks they were published some years ago in the "Nachrichtsblatt de1 leutschen Malakozoologischen Gesellschaft." as I have been unable to trace them in this publication, I append diagnoses.

Cathaica (Eucathaica) Sturanyi, Rollc, n. sp.

Shell umbilicate, depressed-conoid, opaque, pale comeous abore, pearly below, slightly fuscously streaked ; finely striated, decussated with excessively fine spiral lines. Spire depressed, apex obtuse but rather prominent, sutures deep. Whorls 5 , convex, rouncled at the periphery. Last whorl not deeending in front, slightly dilated at the mouth. Aperture oblique, subcircular: margins convergent, united by a thin callus on the parietal wall. Peristome whitish. scarcely thickened: upper and outer margins straight, basal margin slightly reflected, columellar margin slightly dilated, but not impinging upon the wide umbilicus which distinctly shows half the penultimate whorl.

Diam. maj. 19.5, min. 17 ; alt. I m millim.
Mal.-Osh. Prov. Ferghana, Western Turkestan.
Three specimens. 'Type in my collection.
The new species resembles in shape ('. middemdornti, Gerstf., but that shell is thinner, translucent, more depressed, possesses one more whorl, and has sometimes a peripheral band, while the aperture is less rounded, and the lower margin is more reflected and straight. It is also more distinctly striated and strongly sculptured spiratly:

Cathaica (Campylocathaica) hermanni, Mlldff., n. sp.
shell narrowly umbilicatel, conoid, pale fulvous above. whitish at the side and below, finely irregularly ribbed, decussated by microseopic spiral lines, which are more distinct near the aperture. Spire elevated, apex obtuse, suture impressed. Whorls $5-5 \frac{1}{-}$, rounded, tumid below, last whorl slightly de-
cending in front, a little shouldered abore, and scarcely dilated at the mouth. Aperture subrotundate, margins approaching, minted by a thin callus on the parietal wall; peristome white, slightly thickened; upper marsin slightly ascending, straight, outer and lower margins reflected, columellar magin dilated overhanging the deep narrow umbilicus.

Siam maj. 13, min. 11.5 ; alt. 9 millim.
Hoth.- Ilexander Range, Issig Kul, Western Turkestan.
Three specimens Type in my collection.
Compared with (. reftereri, Rosen, its nearest ally, (\because hermemmi is smaller and more elevated in the spire. C. rettereri, morenver, has at white peripheral band, is smoother and possesses pronominced impressed spirals. Another closely allied species is U', mesolfura, Mart., but that shell is still smaller, with a much narrower mobilicus, more flattened whorls and a white peripheral band.

CORRECTIONS.

Volume 1X.

Page 7,7 th line, ist col., delete $=$ frilleyi, Cr. and Deb.
Page 7, 6th line, and col., delete constantiae, H. Ad., and insert on page S, between Eucathaica fasciola, Drap., and E. cardiostoma, Mdff.

Page S, 6th line from below ist col., delete anceyi, Mdff., and insert on page 6 , between Laeocathaica filippina, Hde, and L. subsimilis, Desh.

Page 8, th line from below and col., delete dejeana, Hde., and insert on page 6, between Laeocathaica filippina and L. anceyi, Mdff.

Page 53, 26 th line, 2 nd col., for Fruticicola mesoleuca, Mart., read Campylocathaica mesoleuca, Mart.

Page 100, 29th line, 1st col., for Genus Vitrea, Fitz., read genus Polita, Held.

Page 102, 33 rd line, 1 st col., for Vitıea aequata, Mouss., read Polita aequata, Mouss.

Page ro4, ist col., the three species placed under Vitrea transfer to Polita. and line, ist col., for patuliformis read patulaeformis.
7 th line from below, and col., for lenkoreana read lenkoranea.
Page 112 , 9 th line, for Vitrea read Polita.
z2nd line, ist col., for Genus Vitrea, Fitz., read Genus Polita, Held. 25 th line, ist col., for cyprea read cypria.
Page if 5 , 3 rd line from below, ist col, delete v. anprazonata, Mouss.
Page in6, 6th line, and col., for Mart. read Mort.
Page 1if, and line, ist col, for lenkorana read lenkoranea.
Page 118 , 7 th line, 2 nd col., for erdelli read erdellii
Page 120,15 th line, and col., for asemnis, Bourg., read solida (Zglr.), Kob., $=$ asemnis, Bourg., $=$ ciliciana, Bourg.

Page 120,27 th line, 1 st col., for Byzantum read Byzantium.
Page 121 , Sth line, ist col., for Genus Vitrea, Fitz., read Genus Polita, Held.

1oth and 2 8th line, and col., delete $=$ rissoana, Pfr.
I 2 th line 1 st col., for Retinella aequata, Mouss., read Polita aequata, Mouss.

2oth line, 2nd col., for asemnos read asemmis.
25 th line, ist col., for Genus Vitrea, Fitz., read Genus Polita, Held.
Page 122, 3 rd line, ist col, for Genus Vitrea, Fitz., read Genus Polita, Held.

Sth line, ist col., for Retinella aequata, Mouss, read Polita aequata, Mouss.

9th and roth lines, ist col., transfer Retinella hydatina, Rossm, and R. sorella, Mouss., to Vitrea.
${ }^{1} 7^{\text {th }}$ line, 1 st col., for cyprea read cypria.
Page 123, 19th line, ist col., for Vitrea protensa, Fér., read Polita protensa, Fér.

Page 126, 2 2nd line, 2nd col., for Retinella aequata, Mouss., read Polita aequata, Mouss.
$25^{\text {th }}$ line, 2nd col., for Retinella protensa, Fér., read Polita protensa, Fér.

Page 128 , ioth line from below, ist col, for crenophila, Pfr., $=$ muscicola, Bourg., read muscicola, Bourg., $=$ crenophila, Pfr.

Page 129, 5th line, 2nd col., for Borug, read Bourg.
r6th line, ist col., delete beilanica, West.
i8th line, ist col., asemnis, Bourg., = solida, Zglr., read solida, Zglr., = asemnis, Bourg.

Volume X .

Page 9, Sth line, ist. col., for hupensis, Hde., read hupensis, Gredl.
Page 11, 4th line, 2nd col, for ptychostyla, Mts., read ptychostyla, Pfr. 32 nd line, ist col., for Genus Microcystina, Mörch, read Genus Sesara, Alb., and with annamitica, Cr. and F., place below Kaliella bouyeri, Cr . and F .

Page 12, 22 nd line, ist col, delete promiscua, Smith.
3 Ist line, ist col,, for Hemiplecta danae, Pfr., read Euplecta danae, Pfr.
Page 13, 29th line, ist col., for Coneuplecta globulosa, Mdff., read Coneuplecta möllendorffi, n.n. = globulosa, Mdff., Nachr. Bl., 1901, p. 112, not globulosa, Mdff., Nachr. Bl., 1900, p. 120.

Page 50, $4^{\text {th }}$ line from below, and col., for Helicarion lowi, de Morg., read Nilgiria lowi, de Morgan, fide Collinge.

32 line, 2nd col., for sakayana, de Morg., read sakaya, de Morg.
Page 52, under 9th line, ist col., insert section Trichochlorites, Pils.
Page 55, 24 th line, ist col., delete $=$ cryptopila, Mouss. in coll.
Page 56, 7 th line, and col., for helicincides, Mouss., read helicinoides v, cryptopila, Mouss.

Page 58,24 th and 25 th line, ist col., delete kinabaluensis, Smith and r. pallida, Smith, and transfer to page 56 under 'Trochonanina labuanensis, Pfr.

Page 59, Sth line, ist col., for Genus Macrochlamys, Bens., read Genus Everettia, G.-A.

Page 62, 18 th line, 1 st col., for Mart., read Soul.
Page 83. igth to 23 rd lines, ist col., trachus, Müll., and synonyms, stuartiae, Sowb., and nemorensis, Müll., transfer to and col., under Hemiplecta.

Page 86, 3 rd line from below, ist col., for Genus Microcystina, Mörch read Genus Lamprocystis, Pfr.

Page 88, under 30th line, ist col., insert section Trichochloritis, Pils.
Page 92, 19 th line, and col., for unicolor (Mdff.), Dautz., $=$ pseudolanceolata, read pseudolanceolata, Dautz., $=$ unicolor (Mdff.), Dautz., non Pfr.

Page 97, $9^{\text {th }}$ line, 1 st col., for Genus Otesia, H. Ad., read Genus Coneuplecta, Mdff.

ADDITIONS.

Volume IX.

Page 6, ist col., under Euplecta dichromatica, Mor., insert Genus Coneuplecta, Mdff. mecongana, Mdff., Laos.

Page 7, ist col., after th $^{\text {th }}$ line ravidula insert globosa, Preston, Shan-tung.
Page 52 , under Tibet add, Euconulus fulvus, Drap. N.E. Tibet. Pliocathaica orithya v. conica, Andr. Baa Yalley. P. pulveratrix v. strigillata, Andr. Wan-saong

Page 53, under Eastern Turkestan add Pliocathaica orithya v. unifusciata, Andr. Kaschgar. Under Mongolia add, Euconulus fulvus, Drap. 'Farim Basin. Zonitoides nitidus, Müll. Kuldja.

Page 99, after 5 th line, end col., diaphora, West., insert krynickii, Andr. Kopet lagh. Mfter igth line. ist col., insert mesoleuca, Mart. Ferghana.

Page 102, under Mesopotamia add, Levantina michoniana.
Page 104, under 17 th line, ist col., Helicidae, insert Group Haplogona, Genus Pyramidula, Fitz., rupestris, Drap. Schah Rud.

Page in 6 , under 32 nd line, and col., Levantina ceratomma, Pfr., insert casta, West. In ist col., under Zonites, Montf., add, anthesi, Kob. Pergamos, and insignis, Naeg. Gulek, Cilicia In end col., under Tachea atrolabiata, Kryn., add the following varieties : intercedens, Ret. Batoum ; maxima, Kob. Suchuin Kaleh; decussata, Bttgr. Kutais ; albolabiata, Kob.: hyrcana, Dohrn. Rescht, and malleata, Kob. Lenkoran.

Page in 8, 2nd col., under Pyramidula, Fitz., add, rupestris, Drap. Gulek, Cilicia. Under Heliomanes derbentina, insert millepunctata, Bttgr.

Page 119, ist col., under Jacosta rozeti, Mich., insert subcalcaratia, Naeg. Kissik.

Page 120 , under igth line, ist col., atrolabiata, Kryn., insert v. intercedens, Ret. 'Trebizond. Under 23 rd line, ist col., aimophila, Bourg., insert triangula, Naeg. Eski Schehir. Under 5th line, and col, v. taurica, Kryn., insert salisi, Mab Lebanon. Under 1 th line, 2 nd col., v. anatolica, Kob, insert v. trojana. Kob. Trojad, and v. libanica, Kob. Lebanon Under 15 th line, and col., solida, Zglr, insert v. ionica, Mart Gulek Under 22 nd line, end eol., pathetica, P'arr., insert pomacella v. attalus, Kob. Pergamos. Under 2Sth line, and col., issica, Kob. and Rolle, insert blumi. Kob. Cilicia. Under 3 th line, and col., escherichi, Bttgr, insert nucula v. merssinae, Kob.
lage 122 , under Kalymnos, after Levantina spiriplana, Oliv., add v. valentini, Kob.

Page 126, after 6th line, ist col., v. cypria, Kob,, insert comarae, Kob.
Page 127, under Heliomanes derbentina insert millepunctata, Bitgr.
lage $\mathbf{1 2 9}$, under Helicogena add, dickhauti, Kob. ? Palestine, and pseudopomatia, Kob. Cherkli.

Volume X .

Page 13, and col., under Helicarion siamensis, Haines, insert Genus Microparmarion, Simr., bruneopallescens, Cllge., annamica, Cllge. = andamanica, Cllge. Mekong Valley.

Page 50 , under Perak add, Damayantia minima, Cllge.
Page 52, under Nawng Chik add, Euplecta bijuga Stol., Macrochlamys splendens l'hil., 1)yakia salangana v. martensi, Cllge., Hemiplecta sakaya, de Morg., Nilgiria lowi, de Morg., Ariophanta janus, Chemn., Parmarion malayana, Cllge., 'Trochomorpha timorensis, Mart., Sitala infula, Bens.

Page 57 , under 2 oth line, ist col., v. atrofusca, Mart., insert v. annectens, Mart. In 2nd col., under Damayantia, Issel, add, simrothi, Cllge., rugosa, Cllge. ; under P.ımarion, P. Fisch., add, shelfordi, Cllge. ; under Collingea, Simr., eranna, Cllge.

Page 58 , under 7 th line, 2nd col., martensi, Bttgr., insert v. capistrata, Mart. Under 16 th line, and col., v angulata, Fult. insert v. obliquata, Mart. Under $34^{\text {th }}$ line, ist col, quadrivolis, Mart.. insert semiquadrivolvis, Mart.

Page 59, under 23 rd line, and col., inquieta, lohrn, insert brachystoma, Mart. Under 29 th line, 2nd col., v. everetti, Fult., insert waterstraati, Rolle, and weyersi, l)autz

Page 61 2nd col, bottom of page, insert h. 2. Doat Island. Genus Everettia. G.-A., consul. Pfr., and jucunda, Pfr.

Page 90, ist col., bottom of page, insert a. 2. Gebi. Xesta aulica, Pfr. Planispira kurri, Pfr.. Papuina unicolor, Pfr., = Ampelita unicolor, Auct., P. fallax. Fult, and Albersia subsphaerica, Fult.

Page 92, after 3rd line, znd col., kurri v. obiensis, Dautz., insert Subgenus Cristigibba, Can. albopicta, Sykes.

Page 9S, add to Index, Bunguran. E. 1. i. Doat Island. E. h. 2. Dwars in de Weg. D. f. Gebi. H. a. 1. Mengalun (E. f.). Roma. G. k. 2 (see Vol. X, p. 130).

NOTE.

Note on Two varieties of Arion subfuseus, Drap. Mr. H. Overton has recently submitted to me for identification two examples of Arion subfuscus, Drap., coltected by him in Sutton Park, Sinton Coldheld.

The larger of the two specim: $: 1$, although not quite full grown is undoubledly referable to the variety flusctlus, Cllge., described by me in 1803 (Ann. and Mas. N. H., I893, s. 6. vol. xii, p. 252) as Arion flasellus

The smaller specimen, when alive, exhibited two dark grey lateral bands, the portion beneath being white as well as the foot-fringe and foot sole. The whole of the dorsum was a light grey ; the mantle similar to the type.

Walter E. Collinge.

CURRENT LITERATURE.

Pilsbry, Henry A.-Manual of Conchology, ser. ii, vol. xvii (pt. 65), pp. I-64, pls. 1-10. Philadelphia : Academy of Natural Sciences.
With the commencement of volume xvii the genus Achatina, Lamarck, is dealt with. After a few motes on the distribution, parasites and nomenclature, a key to the West African species is given, and the systematic review commenced.

The following new forms are described : A. achatina, L. yar monochromalica, from Angola, and A. occidentalis, from Coriseo Island, West Africa. A. panthera, Fér. var. leucostya, Wasin I sland, northern Zanzibar, var. clurysoderma, from Manitius, and A. fulica, Fér. var coloba.
Jones, K. H. and Preston, H. B.-List of Mollusca collected during the commission of H.M.S. "Waterwitch" in the China Seas, 1900-1903, with descriptions of new species. Proc. Malac. Soc. Lond., I904, vol. vi, pp. I3S-151, 7 figs. in text.
One hundred and seventeen species are listed of which the following are new : Enlota slobosa, Limuaca mars, L. (Gulnaria) zihartoni, L. (G.) shanhusensis, L. ((r.) pelliti, Assiminca norbursi, and Pecten (Chlamys) farreri.
Petch, T. - The Published Records of the Land and Fresh Water Mollusca of the East Riding [of Yorkshirt], with Additions. Trans. Hull Sci. and Field Nat. Club, 1904, vol. iii, pp, 121-172, pls, xii, xiii.
Mr. Petch's paper forms an admirable resumé of the work done in this particular district on the Land and Freshwater Mollusca, but it is greatly to be regretted that, at a time when malacologists are prepared to sink all petty differences as to special views on nomenclature, in order to obtain uniformity. that the ofd nomenclature has here been adhered tn; apart from this feature, the list is admirable and reflects great credit on its author.

Sykes, E. R.-On a new species of Amastra from the Hawaiian Islands. Ann, and Mag. N. H., 190 +s .7), vol, xis, pp. 159, 160, 2 figs.
Amastra (Kithait) rex. n. sp., somewhat recalls in form and appearance Helicina asslutinans. It belongs to the group of A. alata, Pir., and A. hcliciformis, Ancey.

Eliot, C. N. E.-On the Doris planala of Alder \& Hancock. Proc. Malac. Soc. Lond., 190+, vol. vi, pp. I8o, 18 I.
The author has examined specimens of Platydoris planata from Plymouth, and finds that they have all the essential characters of the genus Geilodoris. Whether or not the G. complanala, Bergh, is specifically distinct is doubtful, but if the same, the name planata (A. and H., I855) has priority. Possibly the Platydoris flanala examined by Garstang may be distinct from those now described.

Hedley, C.-Studies on Australian Mollusca. Pt. viii. Proc. Limn. Soc. N.S.W'., 190t, pp. $182-2$ II, pls. viii-x.
The author poments out that the Coxictla confusa, Smith, is the same as C. budgerensis (Johust.) which latter name has priority, and that the Bythinia richmondiana, Petterd, must yeild to the prior Hydrobia pelterdi, Smith. To the same species is referred the r'ufal allodonta of Musson and Hedley. Descriptions and figures of fourteen new species are given and one new genus Stita, allied to Rissoina (type S. fcrrisinea, n. sp.), in addition to which many species are figured for the first time. Lima sydncyensis is a new name for L. brunnca, Hedley non Cooke.

Smith, Edgar A.-Note on Terebra hedteyi, Tate. Ibid., pp. $211,212$.
Mr. Smith points out that this is not a Terebra. The late Professor Tate stated that Cingutina brazieri, Angats, belonged to the genus Tercbra and as the species-name was already in use in the latter genus, he changed it to hedleyi.

The author adds that he very much doubts whether this so-called species is anything more than a variety of C. circinuld, A. Adams.

Roebuck, W. D.-Re-establishment of Limax lenctlus as a British species. Journ. Conch., r9ot, vol. ii, pp. 106-ro9.
All malacologists who take any interest in the Slug fauna of the British Isles will be pleased to learn that the author has satisfactorily established this slug as a member of our fauna. From the pine-woods of the Forest of Rothiemurchus, in the Vicecounty of Easterness many examples have been received, also from Clackmannshire, about Inver, near Dunkeld, Perthshire, and Invercannie, near Banchory, Kincardineshire.

Hoyle, William E.-Report on the Cephalopoda. From Rpt. on Pearl Oyster Fisheries of the Gulf of Manaar. Roy. Soc. Lond., I90t.
The collection of Cephalopoda obtained by Prof. Herdman, though small, contains several novelties. The Octopods preponderate, and many are immature.

The new species are Polyphs herdmani and Parborescens. In this later the surface presents a number of branched papillae ; there are one or two over each eye, about a dozen on the back, a few on the ventral surface, and in most cases one or two on the outer aspect of each arm. The nature of these bodies is, as yet, very obscure. The possibility of their being either glandular or phosphorescent seems to be excluded by the fact that the fibrils come up to and give off a radiating tuft, whilst against a sensory function is urged the fact of the fusion of their lower portion with the surrounding tissues, and as yet no nerves have been traced to them. Possible, although it seems very doubtful, they may be parasitic.

Bartsch, Paul.-Notes on the genus Sonorclla, with descriptions of new species. Smiths. Miscell. Coll., 1904, vol. +7, pp. 187-200, pls. xxviii-xxxiii.
The author finds that a careful examination of the nuclear whorls shows varations along several lines, and these may be utilised in grouping the species. Upon these varations he divides the genus up into four groups, viz., i. Group of S. wolcoltiana, ii. Groupof S. Hachilana, iii. Group of S. magdatcnsis, and iv. Group of S. fisheri.

In the second group S. ashmmil, S. nclsoni, S. goldmani, S. merrilli, S. dalli, S. mearnsi, and S. bailcyi are new species, with a new subspecies of the latter, orculli. In the fourth group S. fisheri is also new.

All the species are well illustrated.
Bartsch, Paul.-A new species of Amphidromus. Ibid., pp. 292, 293, pl. xlvi. A gossi, n. sp., from Mount Kin Baloo, North Borneo, 13,000 feet.

Pallary, Paul-Addition a la faune Malacologique du Golfe de Gabès. Journ. de Conchyl., 1904, vol. lii, pp. 212-248, pl. vii.
The author describes and figures ten new species and five subspecies from this region.
Couturier, M.-Catalogue des Coquilles Paléarctiques de la Collection Hagenmüller. Ann. Mus. d Hist. Nat. Marseille-Zoology, I903, T. viii, pp. 21-67.
Vayssière, A. Recherches zoologiques et anatomiques sur les Mollusques Opistobranches ou Golfe de Marselle. Supplement. Itid., pp. 73-108, pls. ii, iii.

Heath, Harold. The habits of a few Solenogastres. Zool. Anz. 1904, Bd. 27. np. 457-461.
Roebuck, W. D.-Radnorshire Slugs. Journ. Conch., 1904, vol. xi, p. 128.
Fischer. H. et Dautzenberg, Ph.-Catalogue des mollusques terres et fluviatiles de l'Indo-Chine orientale cités jusqu'ì ce jour. Mission Pavie, 1904, pp. I-6i.
Fischer, H.-Remarques sur le Colnmbella terpsichorc, Sow., et sur l'Euchclus cry'll raccusis, Stur. Journ. de Conchyl., 1904. vol. lii, pp. 59, 60.

Dautzenberg, Ph. et Dollfus, G. F.-Études critiques sur la nomenclature avec examen des genres I'cclunculus et Glycimeris, Ibid., pp. 109-122.
Vayssière, A.-Étude zoologique de l'Archidoris stcllifira, H. von Ihering. Ibid., pp. 123-130, pl. iv.
Lamy, Edouard.-Liste des Arches conservées avec étiquettes de Lamarck dans les collections du Muséun de Paris. Ibid., pp. 132-167, pl. v.

Randles, W. B.-Some observations on the Anatomy and Affinities of the Trochidac. Quart. Journ. Micros. Sci., 1904. vol. 78 , pp. 33-78, pls. iv.-vi.
Melvill, J. Cosmo.-Descriptions of twenty-eight species of Gastropoda from the Persian Gulf, Gulf of Oman, and Arabian Sea, dredged by Mr. F. W. Townsend, of the Indo-European Telegraph Service, 1900-1904, Proc. Malac. Soc. Lond.. 1904, vol. vi, pp. 158-169, pl. x.
Melvill, J. Cosmo. - Conus coromandelicus, Smith, its probable affinities, and systematic position in the family Conidac. Ibid., pp. 170-173, figs. I, 2.

EDITOR'S NOTES.

On completing another volume, the Editor tenders his grateful thanks to all who have in any way furthered the interests of the Journal during I904.

It is with feelings of deep regret that we learn of the death of Professor E. von Martens.

INDEX TO VOLUME XI.

F.

Fulton, Hugh. - "Notes on Thersites (Hadra) bellendenkerensss, Brate, and bedtomac, Braz." "A Critical List of the Sphocrospira section of Thersites.
"On some new species of Mclania and Jullicuia Yumman and Java.'

PAGE

I

2

51
--"On a collection of Land Shells from Gebi Island, Noluccas, with description of new species." -"Note on Leflopoma cremilabre, Strubell.'
Fusus ciusulalus, 11. sp. (tiss.) ... 30

G.

Glyphoslomat siren, n. sp. (igg.) ... 28
Gude, G. K.-"Note on Corilla cromella, Nev., IS."
_-"The Helicoid Land Shells of Asia. Corrections and Additions."

H.

Henshaw, H. Wetherbee- "On Certain deposits of semifossil Shells in Hamakua district, Hatwaii, with descriptions of new species." Heymemann, D. F. - "Some Recent Slug Pitpers."... ...
Hochisfetlerial limoides, n. sp. (fig.)
Hochslelleria adelaine, tu. sp. (tig.)
J.

Jullicula caritula, in. sp. (fig.) 52

L.

Leplon fortidentalns, n. sp. (fig.) +I
Leptopoina crenilabre, Strubell. (fig.)55

Leplopoma scbiensis, n. sp. (fig.) it
Leptopomal loncorrlaplic, Martens
var. cingillus, 11. var. $\quad . .92$
Letlopomat ponsonbyi, n. sp. (fig.) 91
Lima perfecta, n. sp. (fiss) ... 43
Limopsis pumilio. n. sp. (ffigs.)... 43
List of semi-fossil Land Shells of
Hawaiian Isles.

List of Species of Marine Shells			
from Port Alfred, Cape			
Colony.	\ldots	\ldots	\ldots

Lacina despecta, n. sp. ... 40
Lucina ralida, n. sp. (fig) ... to
Lyropupa magdalenac, Anc. var. prisca, n, var. (fig.) ...
Lyropupa mirabilis, Anc. var. hamaiicusis n. var. (fig.) ...
M.

N.

N゙assa poccilosticla, n. sp. (fig.) ... 3,
$\begin{array}{cccc}\text { Nassa (Pluroutis) gangetica, n. sp. } & \\ \text { (fggs.) } & \ldots & \ldots & \ldots \\ 76\end{array}$
Nassa (Phorolis) siara, n. sp. (figs.) -6
Xiltica decipicus, n. sp. (fig.) ... 3t
Nalica mufus, n. sp. (fig.) ... $3+$

O.

Obba subsramilata, n. sp. (figs.) S9
Odostomia dorica, r. sp. (fig.) ... 82
Omphalius collingei, n. sp (fig.) so

Orkney Isles, Arion subfuscus
from the

Oscilla fuceta, n. sp. (fig.) \ldots 太.
Oscilla jucosa, n. sp. (fig.) ... 82
Overton, H.-" Notes on the Anatomy of the Generative Organs of Ariothanta juliatla, Gray.'

1 ．

	PAGE
Parmma colorita，nl．sp．（fig．） Pafuina fullax，n．sp．（fios）	
Papuina lancoolala，Pfr．var． phlchrizona，n．var．	91
Pafuina semibrmunea，，．sp．（fig．i	90
Papuina umicolor，Pfr．Habitat of	53
Parmazellar destayesii，Moq．－ Tand．Note on ．．．．．．	49
Perricriat cantiratha，n，sp．tfig．）	1
Plamstira（Cristigibba）frultstor－ fori， $11 . \mathrm{sp}$ ．（figs．）	89
Planispira（Cristisibiba）gebicusis， 11．sp．（figs．）	88
Planispinn（Cristiglblat）gechicnsis， varicty of ．．．．．．．．	8S
Planisfira（I＇ulmas）cudoptochu， Matens var．dificssa，n var．	SS
Preston，H．13．－．＂Descriptions of some new species of Cingalese and Indian Ma－ rine Shells．＂	75
Proceedings of the Midland	
Malacological Society．	15
Pseudohyulinia meniscus，n．sp． （figs．）	65
Puactum horutri，n．sp．（figs．）．．．	66
Purpura texturata，n．sp．（fig．）	32
R ．	
Risson comspectu．n．sp．（fig．）	3.5
Rissoa fersfecta，n．sp．（fig．）	35
Rissomm alfredi，n．sp．（fig．）．．．	35
Rissoint（I＇hosimilla）phormis， 11 ． sp ．（fis．）	so
S．	
Semtele cutcusis，n．sp．（figs．）	39
Slug Papers．Some recent	＋＇
Slugs．Notes on＊and Slug－ like Molluses．	＋
slugs．Onanew and interestins gemus of	1.4
Smith，Edgar A．－On a collec－ tion of Marine Shells from	
Port Alfred，Cape Colony．	12
Solarimul（Torinia）admirandum， Melv．and Stand．（fig）	it
Sphoerospira Section of Thersites． A critical list of the	2
Sphoerosfira．Species placed under，by Pilsbry．	0
Stroptrsma taclcota，n．sp．（fig．）	77
Stuccincas sibla，n．s．p．（figs．）．．．	62
Succinea mavima，n．sp（figs．）．．．	61
Succinca miralitis，n．sp．（fig．）	61
Succinea pristima，n．sp．（figs．）．．．	62

1＇AGE
Suctuciduc of Hawaii．．．．．．． 5^{6}
Sykes，E．R．－＂On some Non－ Marine Shells from the Austro and Indo－Malayan Region．＂
\therefore

T．

Tcllimưa stmilis，n．sp．（fig．）．．+1
Tellimar regularis，n，sp．（fig．）．．． 39
Terebra susfeusa，n．sp，（tig．）．． 30
$\begin{array}{ccccc}\text { Testacclla hatiofidea，Drap．Note } \\ \text { on } & \ldots & \ldots & \ldots & \ldots \\ \text { ．．．．}\end{array}$
Thata certanica，n，sp．（tigs．）．．． 76
Theora oralis，n，sp．（fig．）．．．39
Thersites．A critical list of the
Sphoerosfira section of \ldots
2
Thersites concors，n，sp．（fig．）．．．ふ
Thersiles etheridgci，Brazier．（fig．） 9
Thersites lessoni v，luten，n．var．
（fis．）
$\begin{array}{cccc}\text { Thersites mutsratensis，Brazier．} \\ \text {（fig．）} & \ldots & \cdots & \ldots \\ 7\end{array}$
Thersites muls
Thersites mulstuarusis merid－ 7 iomslis，Brazier（figs．）．．8
Thersites（Hadra）bellendenter－
ellsis，Mraz．Notes on ．．．
Thersites（Hatra）beddontac，
Tornatellina cyfhostyta，n．sp． （tigs．）$\quad . . \quad$ ．．．．．．
Tormateltina indicostater，m．sp （tigs．）－$\quad . . \quad$ ．．． 70
Trifora conteste，n．sp．（fig．）．．． 37
Triforn fuscesccus，11．sp．（fig．）．．． 37

| Triforat fuscomactulata， | | | |
| :---: | :---: | :---: | :---: | :---: |
| （tig．） | ．． | sp． | |

Trochomorpha dautzenberst，n．

Turbomilla decura，n．sp．（fig．）．．． 30
Turbouilla semmuta，n．sp．（fig．） 30
Tiuritilla illustris，n，sp．（fig．）．．．ふ̈

V．

litha hazaiiensis，n．sp．．．．わち
I＇ulıus，n．sect．．．．．．．．．．is

Y．

Yumnan and Java．On some new species of Mclania and 7 Inllicnia from

EXPLANATION OF゙ PLATEI.

Fig. 1. Thersitos mulgraremsis, Brazier
2. \quad etherilffei, Brazier.

3 " \quad "оncor's, n. sp.
4. , lossomi, Pfr. var lntect, n. var.
5. \quad, mal!framosis, Brazier var. palmomsis, Bra\%. Typical form.
6. ", mul!f(tronsis, Brazier var. palmomsis. Braz. Depressed form.
7. ", \quad "ul!frurensis, Brazier var. merifionalis', Braz.
8. ,, mul!nt(rensis, Brazier var mevilionctis, Braz Banded.

The position of the figures are as under:

10.

A H Searle del et inth

11.

12

13.

$$
\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}
$$

Journ of Malacolosy, 1904, Vol. XI. Pt. 4.
Pl.VI

4

6

A.H.Searle del.etlith

JOURNAL

 of
malacology

Gstablished in 1800 as "The Conchologist, a 3ourmal of ethatacologe." EDITED BI

WALTER E. COLLINGE, B.Sc.,
The U'nizersity, Birmingham,
President of tile Midland Malacolooical Society, WITH THE CO-OPERATION OF

Dr. JOSEF F. BABOR.	CHARLES HEDLEY, F.L.S.
H. HOWARD BLOOMER.	HENRY SUTER.
REY. A. H. COOKE, M.A., F.Z.S.	E. R. SVKE, B.A., F.Z.S., F.L.S.
G. K. (iUDE, F.Z.S.	B. B. WOODWARD, F.G.S., F.L.S.

"BLICKS
35 PRICES
From
£13:13:0 brief sizb

Cash or easy payments.

A
RE BSOLUTELY LONE MONGST TYPEWRITERS
in combining such essential features as :-

1. PORTABILITY.
2. NO RIBBON.
3. visible writing.
4. INTERCHANGEABLE TYPE.
5. PERFECT PERMANENT ALIGNMENT.
6. CAN BE ADJUSTED TO WRITE ON RULED LINES.
List No. 232, Post Free, tells all about them.

TH: BLICKH:

TYPEWRITER CO.
Head Office-Newcastle-on-Tyne.
Only London Depot : 9, Cheapside, E.C. Manchester Depot: 74, Market Street. Glasgow Agency : 334 Sauchiehali Street. And most large Towns.

EDE, SON \& RAVENSCROFT,

ESTABLISHED 1689.
thlephone 602 holborn.

ROBE

By Special appointments
To H.M. the King, H.M. the Queen, and H.R.H. the Prince of Wales.
Church, University, Law \& Municipal Robes.
93 \& 94 , CHANCERY LANE, LONDON:

CONCILIUM BIBLIOGRAPHICUM,

ZURICH-NEUMUNSTER, SWITZERLAND.
(Founded in 1895 by the International Congress of Zoology. Reorganlzed with the support of the Swiss Goverameat.)

Analytical Card Bibliography of Mollusca including all publications since 1896. Price 28s. (with minor notices 38 s.) Annual Subs. about 15s.-Any desired choice of topics can also be supplied :-Pelecypoda 10s. 5d., annually about 4s. Amphineura 1s. 5d., annually about 6 d ., etc. Without palaeontology cheaper. Cheap edition correspondingly less.

Manuscript Card Catalogue of New Species and Genera since 1901. -Copies supplied at ld. per reference. Any desired combination, e.g. new species of Helix, new genera ot Tectibranchs, new Molluses from Borneo, from Devonshire (it any), from Mexico, etc.

Established over 50 Years.

Also Successor to
WALTER DAVIS, Bookbinder, for 22 years at $23 \& 24$, Suffolk St.

10, HOLLOWAY HEAD,
 4 Doors from Horse Fair,

 BIRMINGHAM.

Books Bound to any Pattern. Magazines, Music, \&c. PARCELS OF BINDING SENT FOR ON RECEIPT OF POST CARD.

Microscopical \& Lantern Slides

3 IUstrative of every Department of

ZOOLOGY, BOTANY, AND GEOLOGY, At the uniform rate of $6 /-$ per doz.

The Student's Series of 48 Preparations in Elementary and Advanced Botany sent out packed in rack boxes at $£ 1$ Is. net, post free. This series contains 14 Type Preparations, which can only be supplied separately at 1s. to 1s. 6d. per slide.

Stem Structure, Leaf Structure, Floral Structure, Ovaries, Fruits, Seeds, Plant Hairs, Scales, and Glands, 6s. per dozen. Type Slide Preparations of the Mouse, the Newt, the Earthworm, Peripatus, Cerianthus, and Alcyonium, 1s. to 1s. 6d. per slide.

Sets Slides of Foraminifera, 9d. to Is. per Slide.
Sections of Cotton, Flax, Hemp, Jute, China Grass, Wool, Silk, \&c., at ls. per slide. microscopical and lantern slide circulating library.
Slides, to the number of 300 per year, supplied in sets as required by Subscribers will be sent, post paid, for the Annual Subscription of $£ 1 \mathrm{ls}$. payable in advance.

The Slides will be sent one or two days prior to the day of the Lecture or Exhibition, and must be returned the day following the lecture, post paid. Special post boxes will be provided for this purpose, which will obviate the usual trouble of packing.

The whole of our very extensive stock will be at the disposal of Subscribers, and Lists of additions to it will be sent from time to time.

FLATTERS \& GARNETT, LTD., 48, DEANSGATE, MANCHESTER.

```
SEND FOR LISTS, &C., FREE PER POST.
```


JOHN J. HEATH,

 Established 1828.General Engraver, Stationer, etc. BRASS DOOR PLATES.

Medical Account Forms Engraved \& in Facsimile.
Fleet Street, Summer Row, Binmingham.

A. S. HUTH, LITHOGRAPHER,

Illustrations for Scientific Publications
Carefully reproduced from Natural Specimens or Drawings. Estimates, and Specimens of work sent on application.

II4, VILLIERS ROAD, WILLESDEN GREEN, LONDON, N.W.

R. FIELD \& Co.,

Opticians and Scientific Instrument M AKERS,

142, Suffolk Street, Birmingham.

Makers of

Established 1817.
WRIGHT \& ANDERTON'S Striated Silver Lantepn Screens.
BAYLEY'S Polarimeter.
WELDON Range Finder, \&c., \&c.

STUDENT'S MICROSCOPE

Of best Continental model, with best diagonal rack and pinion course adjustment, best triangular bar screw fine adjustninent, draw tube, joint for inclination, $\frac{1}{8}$ in or $\frac{1}{6}$-in objective, and r-in. (double combination) objective, and eye-piece, \&c., in case, £5-5-0.

SALT \& SON, Ltd. SURGICAL INSTRUMENT and APPLIANCE MANUFACTURERS,

CUTLERS TO HIS MAJESTY.
ESTABLISHED OVER 100 YEARS.
Telephone No. 2655.

Instrument Makers by appointment to . . .
THE BIRMINGHAM GENERAL HOSPITAL,
THE BIRMINGHAM CHILDREN'S HOSPITAL,
THE BIRMINGHAM ORTHOPEDIC HOSPITAL,
And many other Midland Infirmaries and Institutions.
Best Instrumests \& Terms for MICROSCOPES. DISSECTING CASES,
OSTEOLOGY, and all STUDENTS \& HOSPITAL REQUISITES.
Removed to New and Enlarged Premises, specially erected to meet their requirements
5, CHERRY STREET, BIRMINGHAM.
Lighted throughout by Electricity. Machinery driven by Electric Power. AN INSPECTION OF ESTABLISHMENT INVITED.

THE
 JOURNAL OF MALACOLOGY.

The Subscription is 12/- for the Volume of Four Numbers ; for this Surn (prepaid) the Journal is sent post free to any part of the World.

BACK VOLUMES.

The Editor possesses no further copies of volumes i-vi, but occasionally copies are to be had, and are supplied in order of application.

Of volumes vii-ix a few sels remain, price £r is. od. per volume.

TO CONTRIBUTORS.

All expenses of publication and illustration are paid by the Proprietor. Lithographic plates are usually used in illustrating.

Contributors desiring separate Copies of their papers will be furnished with the same on payment of the Printer's Charges, if ordered when returning proof. Prepayment by P.O. is requested.

All Communications should be addressed to the Editor : W. E. COLLINGE, THE UNIVERSITY, BIRMINGHAM.

London : Messrs. Dulau \& Co., 37, Soho Square.
Berlin : Messrs. R. Friedländer \& Sohn, Carlstrasse II.

WANTED well preserved Specimens (in alcohol)
 of the following genera of Molluses :-

Africarion, (A. A.
Anadenus, Heyn.
Δ pera, Heyn.
Atopos, Simr.
Ariolimax, Nürch.
Aspidelns, Morel. Austenia, \&. A. Acrope, Albers. Ariunculus, I.ess. Binneya, J. (4. Coop. Cystopelta, Tate. Collingea, Simr: 'ryptostracon, II. G. B. Jamayantia, 1ssel. Daudebardia. 11 tm . Ennea, II. © A. Acl. Pistria, Poirier. Simuilax. Bttgr. (illidSIA, Gray. Gigantomilax, Bttgr. (ieomalacus, Allm. (iibbulina, Beck.

Glandina, Shm. Itclicarion, Fér. Hyalimax, H. is A. Ad. Hesperarion, simr. Hemphillia, l:Id. \& B. Hyreanelestes, Simr. Hycus, Heyn. Janella, Gray. Letourneuxia, Bgt. Lithotis, Blanf. Lytopelte, Bttgr.
Nieroparmarion, Simr:
Mariaclla, Gray. Myotesta, Cllge. Neojanelli, ckill. Gmalonyx, dorb. Oopelti, Mörch Otoconcha, IInttn. P'aralimax, Btter. l'urmacochlea, E. A. Sin. l'amarion, lisech.

Parmacelliv, L'uv. Parmella, 11. Ad. Paryphanta, Albers. Peltella, Webb, \& I I n B. Phrixolestes, Simr. Hutcnia, Stab. Prisma, Simr. Prophysaon, Bll. \& B. P'seudomilax, Bttgr. Rhytila, Albers. Schizoglossa, Herley. Selenochlanys, Bttgr. Tebemophorus, Bimn. Triehotoxon, Simr. Trigonochlamys, Bttgr. Tentacella, Cui. Erocyelus, Gisay. Velifera, II: (:. Bimn. Veronicella, Blain. Vitrinopsis, Memp. Zonites, Montf.

Full partieulars stating names of species, number of specimens, price or desiderata, should be adhecssed as under.

List of Duplicates will be forwarded on Application.

W. E. COLLINGE, THE UNIVERSITY, BIRMINGHAM.

ALFRED H. SAUNDERS

(Editor, Optical Magic Lantern Journal),

Lanternist \& Lantern Slide Maker,

(WET COLLODION PROCESS,)
By Appointment to the
Uninersity of Jirmingbam.

PROJECTION AND SCIENCE LANTERNS BUILT TO ORDER.

Prince's Clambers, 6, Corporation St., BIRMINGHAM.

STUDIO-109, CITY ROAD.

FOR SALE

THE VALUABLE AND EXTENSIVE COLLECTION

OF

 Land, Freshwater \&

 Land, Freshwater \& Mapine Shells

 Mapine Shells}

FORMED BY THE LATE

Mr. G. SHERRIFF TYE (of Birmingham).
Collection 1.-Unionidae. Lpwards of $8(0)$ specimens, of. which about 700 are British. There are many rare and unique forms all in beatiful condition. The collection is contained in a Cabinet 3ft. Gin. \times Pft. Bin. \times Jit. 3in. high, with $\because \because$ drawers, sliding glass covers. Specimens mounted on glass tablets. Several Monographs, lamphlets, and late owners MSS.
Collection 2.-British Land and Freshwater. Tpwards of 4,000 specimens, including numerous rarieties, $\& e$, and series showing range of colour variation. Contained in malogany eabinet $3 \mathrm{ft} .6 \mathrm{in} . \times 1 \mathrm{ft} .3 \mathrm{in}$. $\times 3 \mathrm{ft}$. high, with 26 graduated drawers ($\frac{3}{2}-$ ㄴin. deep inside). Glass covers ind mounted as No. 1.
Collection 3.-British Marine Shells. A Store Cabinct 3 ft . $0 \mathrm{in} . \times 1 \mathrm{ft} .6 \mathrm{in}$. $\times 1 \mathrm{ft}$. 9 in . high, 7 drawers, containing about 1,500 specimens.
Offers are invited for all or any of the collections. For further particulars, \&c., apply
Mr. Cecil Tye, 10, Richmond Road, Handsworth, Birmingham.

THE JOURNAL OF MALACOLOGY.

Established in 189" as "The Conchologist, a Journal of Malucology."

No. 1.
MARCH, 1903.
VOL. X.

Contents.

Page.
By E. R. Sykes, B.A., F.I.S. 1
Malacological Notes.

Supposed New Species of Helicinu and Dulimulus from Costa Rica.
By H. B. I'reston, F.Z.S.4

A Classified List of the Helicoid Land Shells of Asia. Part v.

By G. K. Gude, F.Z.S. 5

On some species of Slugs collected by Mr. Fruhstorfer.
By Walter F. Coldnef, B.Sc. 16
Notes on Slugs and Slug.like Molluses. By Wilter E. Collinge, B.Sc. 17
The Mollusean Fauna of Warwickshire.
By H. Overton.
19

Current Literature. Reviews by Cimares Hedeey, F.L.S., A.D. Tmas., Prof. T. D. A. Cockerell, and Walter E. Collinge.

Don't forget

 to ask your Stationer for
BARKER \& GOODRIDEE'S

(Late with HENRY STONE \& SON, LTD., BANBURY.)
Letter Files, Letter Trays, Index Letter Files, Stationery Boxes and Cabinets, Letter Filing Cabinets, Office Pigeon Holes, \& c., \&c.,

Special Cabinet Boxes and Files made to order for any purpose.

To Concbologists.

H. B. PRESTON, F.Z.S:

Begs to inform Collectors and others that he will be pleased to formard on applieation priee list of any GENERA included in his

LARGE AND VARIED STOCK OF SHELLS.

SELECTIONS SENT ON APPROVAL. MUSEUMS SUPPLIED.

A very fine series of the rarer British Marine Shells now on hand.
Address-H. B. PRESTON, F.Z.S.,
3, Sydney Terrace, Fulham Road, London, S.W.
Two minutes walk from South Kensington Station.
W. HARRIS, 176, Bristol Street, Birmingham,

HORTICULTURAL BUILDFR, CABINET MAKER, \&c.
Contractor for Fittings and Joinery Work to The Cniversity of Birminglam, and the Wueen's Faculty of Medicine.
Fstimates given for every description of Woohwork, Cabinet Making, 110 ase (arpentry, de. Repairs promptly attended to.

Living Specimens for the Microscope.

Volroa, Spirogyra, Desmids, Diatoms, Amoba, Arcella, Actinosphærium, Vorticella, Stentor, Jyhra, Floseularia, Stephanoceros, Molicerta, and many other Specimens of Pond life. I'rice $1 /$ - per Tuke, Post Free. Helix pomatia, Astacus, Amphioxus, Rana, Anodon, ete., for Disscetion purpeses.

THOMAS BOLTON, 2t, BALAALL ItEATII ROAD, Bmarnghim.

JAMES SWIFT \& SON,

 Manufacturing Opticians,

 Manufacturing Opticians,}

Seren Gold Meials ararded for Optical Excellence.

Abstract

Situdent's Mieroseope fitted with $\frac{2}{2}$ in. and $\frac{1}{6} \mathrm{in}$. Objectives, sliding comse adjustment. micrometer screw fine adjustment for slow focussing, eye-piece and inis diaphragm, in Cabiset - £J 50

Double nose piece and extra eye.piece 100
Fig. 2 Student's Stand, as per illustration with $\frac{2}{3} \mathrm{in}$. and $\frac{1}{6} \mathrm{in}$. Objectives, eye-picee and iris diaphragm, in C'abinet
£7 15 0
Double nose-piece and extra eye-picce
150
Prof. Delepine's microscope, as used in the Birmingham University, with course and fine ardjustments, extra large stage covered with vuleanite, $\frac{2}{5} \mathrm{in}$. $\frac{1}{6} \mathrm{~m}$. and $\frac{1}{2} \mathrm{in}$. Objectives, Abbe condenser N.A. $1-2$ fitted with iris diaphram and special focussing adjustment, triple nosepiece and eycpicee, in Cabinet $£ 15 \quad 0 \quad 0$

This stand is used in all the prineipal laboratories throughout the kingdom.

UNIVERSITY OPTICAL WORKS, 81, TOTTENHAM COURT ROAD, LONDON, W.

THE

JOURNAL

OF
 MALACOLOGY

Gstablished in 1890 as "The Conchologist, a gommal of datacology." EDITED BY

"BLICKS" $=$ "ex
Cash or easy payments.
Dr. JOSEF F. RABOR. CHARLES HEDLEI, F.L.S.
H. HOWARD BLOOMER. REV. A. H. COOKE, M.A., F.Z.S. G. K. GUDE, F.Z.S.

HENRY SUTER.
B. B. WOODWARD, F.G.S., F.L.S.

ARE BSOLUTELY LONE MONGST TYPEWRITERS G. वan men iouite to wite ON RULED LINES,
List No. 232, Post Free, tells all about them.

THE BLICKENSODRFER

TYPEWRITER CO. Head Office-Newcastle-on-Tyne. Only London Depot: 9, Cheapside, E.C. Manchester Depot: 74, Market Street. Glasgow Agency: 334 , Sauchiehall Street. And most large Towns.

EDE, SON \& RAVENSCROFT,

ESTABLISHED 1689. TELEPHONE 602 HOLbORN.

ROBE

By Special appointments
To H.M. the King, H.M. the Queen, and H.R.H. the Prince of Wales. Church, University, Law \& Municipal Robes.
93 \& 94 , CHANCERY LANE, LONDON:

CONCILIUM BIBLIOGRAPHICUM,

ZURICH-NEUMUNSTER, SWITZERLAND.

(Founded in 1895 by the International Congress of Zoology. Reorganized with the support of the Swiss Government.)

Analytical Card Bibliography of Mollusca including all publications since 1896. Price 28s. (with minor notices 38s.) Annual Subs. about 15s.-Any desired choice of topies can also be supplied :-Pelecypoda 10s. 5d., annually about 4s.Amphineura 1s. 5d., annually about 6 d ., etc. Without palaeontology cheaper. Cheap edition correspondingly less.

Manuscript Card Catalogue of New Species and Genera since 1901. -Copies supplied at ld. per reference. Any desired combination, e.g. new species of Helix, new genera of Tectibranchs, new Molluscs from Borneo, from Devonshire (if any), from Mexico, etc.

Established over 50 Years.

Also Successor to WALTER DAVIS, Bookbinder, for 22 years at $23 \& 24$, Suffolk St.

10, HOLLOWAY HEAD,
4 Doors from Horse Fair, BIRMINCHAM. F. W. HAWKINS \& SON, StylesPlain, Neat, Antique \& Elegant. Bookbinders.

Books Bound to any Pattern. Magazines, Music, \&c. PARCELS OF BINDING SENT FOR ON RECEIPT OF POST CARD.

LANTERN SLIDES. 6/

Lantern Slides of Natural History Subjects. 6/- per dozen, Send for New Catalogue, just issued, 3d. post free. Lantern Slides prepared to order from negatives, book illustrations, drawings \&c., at special rates.
Hand-Painted Lantern Slides. From $1 / 3$ to $5 /-$ each. Microscopical Slides, in Botany, Zoology, \&c. From 6/- per dozen. List Post Free.

Student's Series of 48 Slides, in Elementary and Advanced. Botany. In Box 21/- Post Free.
Book of Diagrams to illustrate above Slides, $1 /-$ mett.
Microseopes and Accessories, and all kinds of Dissecting Instruments, Mounting Requisites, Stains, Chemicals, Glassware, \&c.

OPTICAL LANTERNS, LENSES, SCREENS, \&c.

Laboratories-16 \& 18, Church Road, Longsight.

JOHN

 Established 1828 .General Engraver, Stationer, etc. BRASS DOOR PLATES.

Medical Account Forms Engraved \& in Facsimile.
Fleet Street, Summer Row, Bimmingham.

A. S. HUTH, LITHOGRAPHER,

Illustrations for Scientific Publications

Carefully reproduced from Natural Specimens or Drawings Estimates, and Specimens of work sent on application.

114, VILLIERS ROAD, WILLESDEN GREEN, LONDON, N.W.

R. FIELD \& Co.,

Opticians and Scientific Instrument MMEERS,

142, Suffolk Street, Birmingham.

Makers of
Established 1817.
WRIGHT \& ANDERTON'S Striated Silver Lantern Screens.
BAYLEY'S Polarimeter.
WELDON Range Finder, \&e., \&c.

STUDENT'S MICROSCOPE

Of best Continental model, with best diagonal rack and pinion course adjustment, best triangular bar screw fine adjustment, draw tube, joint for inclination, $\frac{1}{8}$ inn. or $\frac{1}{6}$-in. objective, and r-in. (double combination) objective, and eye-piece, \&c., in case, £5-5-0.

WANTED well preserved Specimens (in alcohol) of the following genera of Molluses :-

Africarion, (i. A. Anadenus, Heyn. Apera, Heyn. Atopros, simir. Ariolimax, Mürch. Aspidelus, Norel. A Ustesia, (1. A. Acrope, Albers. Ariunculus, less. Bimmeya, J. (i. Coop). Cystopelta, T'ate. Collingea, Sims. Cryptostracon, II. (: 1). Damayantia, Isucl. Ditudehardia, IIton. Einnca, II. ©A. Acl. Vistrja, P'orice. Eumilax. Bttgr. (IIRASIA, Cray. Gigantomilax, Biterr. (icomalacus, Allm. (iib)ulina, Bock.
(ilandina, Shm. Helicarion, Fér. Hyalimax, H. \& A. Acl. Hesperarion, Simr. Hemphillia, Bld. \& J. Hyreanolestes, Sime. Iliyens, Heyu. danella, Ciray. Jetourneuxia, Bgt. Lithotis, Blanf. Lytopelte, Bttgr. Nicroparmariven, simm.
Mariaella, firay. Myotesta, Cllge. Néojauclla, Ckil. Omalonyx, d'(Orb. Oopelta, Mürch ()toconchat, Huttn. Paralimax, Bttegr. Pitmatochlea, F: A. Sm. Parmarion, Fisch.

Parmacella, C'uv.
Parmella, H. Ad. Paryphanta, Albers. Peltella, Webb, \& Vian b. Phrixolestes, Dimr. Plutenia, Ntab. Irisma, Simr. Prophysaon, Bhl. \& B. Psendumilax, Betgr. Rhytida, Albers. Schizoglossit, Hedley. Selenochlamys, Bettgr. Tebennophor'us, Binn. Trichotoxon, Sime. Trigonochlanys, Bttgr. Testacella, C'uv. Urocyelus, Gray. Velifera, IV. (1. Binm. Veronicella, Blain. Vitrinopsis, Kemp. Kunites, Montf.

Full particulars stating manes of species, mumber of specimens, price or desiderata, shoudd be ahlilessed as under.

List of Duplicates will be forwarded on Application.

W. E: COLLINGE, THE UNIVERSITY, BIRMINGHAM.

SWINDEN and SONS,

(ESTABLISHED 1825.)

RELIABLE CLOCKS AND WATCHES.

27, 28, \& 29, Temple St., Birmingham.

THE JOURNAL OF MALACOLOGY.

The Subscription is $12 /$ - for the Volume of Four Numbers; for this Suin (prepaid) the Journal is sent post free to any part of the World.

BACK VOLUMES.

The Editor possesses no further copies of volumes i-vi, but occasionally copies are to be had, and are supplied in order of application.

Of volumes vii-ix a few sets remain, price £i 1 S . od. per volume.

TO CONTRIBUTORS.

All expenses of publication and illustration are paid by the Proprietor. Lithographic plates are usually used in illustrating.

Contributors desiring separate Copies of their papers will be furnished with the same on payment of the Printer's Charges, if ordered when returning proof. Prepayment by P.O. is requested.

All Communications should be addressed to the Editor :
W. E. COLLINGE, THE UNIVERSITY, BIRMINGHAM.

London : Messrs. Dulau \& Co., 37, Soho Square.
Berlin : Messrs. R. Friedländer \& Sohn, Carlstrasse II.

W. JUNK. BERLIN, W.5.,

Publisher \& Second-hand Bookseller,

 FOR CONCHOLOGY, BUYS ALL WORKS AND JOURNALS ON
MOLLUSCS.

JUST OUT

CATALOGUE ON MOLLUSCA,

THE MOST COMPLETE, IEVER PUBLISHED.
Gratis and Post Free.

ALFRED H. SAUNDERS

(Editor, Optical Magic Lantern Journal),

Lanternist \& Lantern Slide Maker,

(WET COLLODION PROCESS,)
By Appointment to the
Nuiversity of Jirmingbam.

PROJECTION AND SCIENCE LANTERNS BUILT TO ORDER.

Prince's Clambers, 6, Corporation St., BIRMINGHAM.

STUDIO-109, CITY ROAD.

FOR SALE

THE VALUABLE AND EXTENSIVE COLLECTION

Land, Freshwater \& Marine Shells

FORMED NY THE LATE

Mr. G. SHERRIFF TYE (of Birmingham)..
Collection 1 -Unionidae. Upwards of suosmemens, if which abont 700 are british. There are many rate and uninue forms all in boantiful' condition. The collection is contamed in a Cabinet 3ft. Fin. $x=\mathrm{ff}$. Bin. x Eft. 3in. high, with 28 drawers, slidng glass covers. Speemens mounted on glass tablets. Several Monographs, Pamphlets, and late owners MSS.
Collection 2.-British Land and Freshwater. Lpwatls of 4,000 specimens, including numerous rarictics, dec, anl series showing range of colour variation. Contaned in mahotany cabinet 3 it . 6in. \times Ift. Bin. $\times 3$ ft. high, with 26 graduated drawers ($\frac{3}{3}$-2in. decp inside). Glass covers and mounted as No. 1.
Collection 3.-British Marine Shells. A Store Cabinct 3 it . Oin. $\times 1 \mathrm{ft}$. Gin. $\times 1 \mathrm{ft}$. fin. high, 7 drawers, containing about 1,500 specimens.
Offers are invited for all or any of the collections. For further particulars, \&c., apply
Mr. Cecil Tye, 10, Richmond Road, Handsworth, Birmingham.

THE JOURNAL OF MALACOLOGY.

Established in 1590 as "The Conchologist, a Journal of Malacology."

No.2. JUNE, 1903.	VOL. X .
Contents.	
A Revision of the Colnmbellidae of the Persian (Guli and North Arabian Sea, with deseription of C. calliope, in. sp. By J. Cosmo Melvill, M.A., I.L.S.	bian IL.S.S.
The Anatomy of eertain species of Ceratisolen and Selectitus. By II. H. Blooneri.	NEL: 31
Classifieation of the British species of the genus Solen. Linné. By H. H. Bloomer,	омеR. H1
On the Origin and Funetion of the Fourth Aperture. By H. H. Bloomer.	OMER. 43
A Classified List of the Helicoid Land Shells of Asia. Part vi. By G. K. Gude, F.Z.S.	I.Z.S.
On the new Genus and Species of the Family Phenacollelicidae. By Henry Suter.	UTER. (6)
Deseriptions of new Land shelfs from the Austro-Malayan Region. By E. R. Syies, B.A., F.L.S.	L.S. 64
Current literature. Nutes.	

Don't forget to ask

your Stationer for

BARKER \& GOODRIDGE'S

(Late with HENRY STONE \& SON, LTD., BANBURY.)
Letter Files, Letter Trays, Index Letter Files, Stationery Boxes and Cabinets, Letter Filing Cabinets, Office Pigeon Holes, \&c., \&c.,

Special Cabinet Boxes and Files made to order for any purpose.

> ESTIMATES GIVEN.

Please mention this Joumal in replyin! to Advertisements.

To Concbologists.

H. B. PRESTON ${ }_{3}$ F.Z.S \mathbf{S}_{3}

Begs to inform Collectors and others that he will be pleased to forward on application price list of any GENERA included in his

> | LARGE AND VARIED STOCK OF SHELIS. |
| :---: |
| SELECTIONS SENT ON APPROVAL. MUSEUMS SUPPLIED. |
| A very fine series of the rarer British Marine Shells now on hand. |
| Address-H. B. PRESTON, F.Z.S., |
| 3, Sydney Terrace, Fulham Road, London, S.W. |
| Two minutes walk from south Kensington station. |
| MO. HARRIS, 176, Bristol Street, Birmingham, |
| Contractor for Fittings and Joinery Work to The University of Birmingham, |
| and the Queen's Faculty of Medieine. |
| Estimates given for every description of Woodwork, Cabinet Making, |
| House Carpentry, de. Iepairs promptl? altended to. |

Living Specimens for the Microscope.

Volvox, Spirogyra, Desmids, Diatoms, Amœba, Areella, Actinosphærium, Vorticella, Stentor, IIydra. Floseularia, Stephanoceros, Melicerta, and many other Specimens of Pond Life. Price 1/- per Tube, Post Free. Helix pomatia, Istacus, Amphioxus, Rana, Anodon, etc., for Dissection purposes.

THOMAS BOLTON, 25, BALSALL HEATH ROAD, Birmingham.

JAMES SWIFT \& SON,
 Manufacturing Opticians,

Seven Gold Meaculs awarded for Uptical Excellence.

Abstract

Student's Mieroscope fitted with $\#$ in and ${ }_{6}^{1} \mathrm{in}$. Objectives, sliding course adjustment, micrometer screw fine adjustment for slow focussing, eye-piece and iris diaphragm, in Cabinet - £5 50

Double nose-piece and extra cye.piece $\quad 10 \quad 0$

Fig. 2 Student's Stand, as per illustration with $\frac{2}{3}$ in. and $\frac{1}{6} \mathrm{in}$. Objectives, eye-piece and iris diaphragm, in Cabinet

Double nose-piece and extra eye-piece 150
Prof. Delepine's microscope, as used in the Birmingham University, with course and fine adjustments, extra large stage covered with vuleanite, $\frac{2}{3} \mathrm{in}$. $\frac{1}{6} \mathrm{nn}$. and $1^{\frac{1}{2}} \mathrm{in}$. Objectives, Abbe condenser N.A. $1 \because 2$ fitted with iris diaphram and special focussing adjustment, triple nosepiece and eyepicce, in Cabinet £l5 $0 \quad 0$

This stand is used in all the principal laboratories throughout the kingdom.
UNIVERSITY OPTICAL WORKS, 8I, TOTTENHAM COURT ROAD, LONDON, W.

JOURNAL

 OF MALACOLOGYEstablished in 1890 us " The Conthologist, a Sournal of attancology." EDITED By

\author{

WALTER E. COLLINGE, M.Sc., The University, Birmingham, President of the Midland Malacological Socibty, WITH THE CO-OPERATION OF
 | Dr. JOSEF F. RABOR. | CHARLES HEDLEY, F.L.S. |
| :--- | :--- |
| H. HOWARD BLOOMER. | HENRY SUTER. |
| REV. A. H. COOKE, M.A., F.Z.S. | F. R. SYKES, B.A., F.Z.S., F.L.S. |
| G. K. GUDE, F.Z.S. | B. B. WOODWARD, F.G.S., F.L.S. |

}

"BLICKS". $=$ Cash or easy payments.

A Amin
in combining such essential features as:-

1. PORTABILITY.
2. NO RIBBON.
3. VISIBLE WRITING.
4. INTERCHANGEABLE TYPE.
5. PERFECT PERMANENT ALIGN-

MENT.
6. CAN BE ADJUSTED TO WRITE ON RULED LINES.
:List No. 232, Post Free, tells all about them.

THE BLICK ENSDERFER

TYPEWRITER CO.
Head Office-Newcastle-on-Tyne
Only London Depot : 9, Cheapside, E.C. Manchester Depot: 74, Market Street. GlasgowAgency: 334 Sauchiehall Street. And most large Towns.

EDE, SON \& RAVENSCROFT,
 FSTABLISHED 1689.

 By Special appointments

To H.M. the King, h.il. the Queen, and H.R.H. the Prince of Wales. Church, University, Law \& Municipal Robes.
$93 \& 94$, CHANCERY LANE, LONDON

CONCILIUM BIBLIOGRAPHICUM,

ZURICH-NEUMUNSTER, SWITZERLAND.

(Founded in 1895 by the International Congress of Zoology. Reorganized with the support of the Swiss Government.)

Analytical Card Bibliography of Mollusca including all publications since 1896. Price 28s. (with minor notices 38s.) Annual Subs. about 15 s .-Any desired choice of topics can also be supplied :-Pelecypoda 10s. 5d., annually about 4s. Amphineura 1s. 5d., annually about 6 d ., etc. Without palaeontology cheaper. Cheap edition correspondingly less.

Manuscript Card Catalogue of Neiv Species and Genera since 1901. - Copies supplied at ld. per reference. Any desired combination, e.g. new species of Helix, new genera of Tectibranchs, new Molluses from Borneo, from Devonshire (it any), from Mexico, etc.

Estabilisted over 50 Years. 10, HOLLOWAY HEAD,

Also Successor to
WALTER DAVIS, Bookbinder,
for 22 years at $23 \& 24$, Suffolk St.

4 Doors from Horse Fair, BIRMINCHAM.

F. W. HAWKINS \& SON, StylesPlain, Neat, Antique \& Elegant. Bookbinders.

Books Bound to any Pattern. Magazines, Music, \&c.

```
PARCELS OF BINDING SENT FOR ON RECEIPT OF POST CARD.
```


LANTERN SLIDES. 6/-

Lantern Slides of Natural History Subjects.
6/- per dozen, Send for New Catalogue, just issued, 3d. post free. Lautern Slides prepared to order from negatives, book illustrations, drawings \&c., at special rates.

Hand-Painted Lantern Slides. From $1 / 3$ to 5/- each. Microscopical Slides, in Botany, Zoology, \&c. From 6/- per dozen. List Post Free.
Student's Series of 48 Slides, in Elementary and Advanced Botany. In Box 21/- Post Free. Book of Diagrams to illustrate above Slides, $\mathbf{1} /-$ mett.

Mieroscopes and Accessories, and all kinds of Dissecting Instruments, Mounting Requisites, Stains, Chemicals, Glassware, \&c.

OPTICAL LANTERNS, LENSES, SCREENS, \&c.

> FLATTERS \& GARNETT, Lłd., 48, DEANSGATE, MANCHESTER.

Laboratories-16 \& 18, Church Road, Longsight.

JOHN J. HEATH,

 Established 1828.General Engraver, Stationer, etc. BRASS DOOR PLATES.

Medical Account Forms Engraved \& in Facsimile.
Fleet Street, Summer Row, Bimmingham.

A. S. HUTH, LITHOGRAPHER,

Illustrations for Scientific Publications
Carefully reproduced from Natural Specimens or Drawings Estimates, and Specimens of work sent on application.

II4, VILLIERS ROAD, WILLESDEN GREEN, LONDON, N.W.

R. FIELD \& Co.,

Opticians and Scientific Instrument

 MAKERS,142, Suffolk Street, Birmingham.

Makers of
Established 1817.

WRIGHT \& ANDERTON'S Striated Silver Lantern Screens.
BAYLEY'S Polarimeter.
WELDON Range Finder, \&c., \&c.

STUDENT'S MICROSCOPE

Of best Continental model, with best diagonal rack and pinion course adjustment, best triangular bar screw fine adjustment, draw tube, joint for inclination, $\frac{1}{8}-\mathrm{in}$. or $\frac{1}{6}$-in. objective, and r-in. (double combination) objective, and eye-piece, \&ic., in case, £5-5-O.

WANTED well preserved Specimens (in alcohol) of the following genera of Molluses :-

Africarion, G. A. Anadenus, Heyn. Apera, Heyn. A topos, Simr. Ariolimax, Mürch. Aspidelus, Morel. Austenia, G. A. Aerope, Albers. Arimnculus, Less. Binneya, J. (:. Coop. Cystopelta, Tate. Collingea, Simr. Cryptostracon, W. G. B. Damayantia, Issel. Daudebardia, Htm. Ennea, H. \& A. Ad. Estria. Poirier. Eumilax. Bttgr. GIIRASIA, Cray. Gigantomilax, Bttgr. Geomalacus. Allm. Gibbulina, Beek.

Glandina, Shm. Helicarion, Fér. Hyalimax, H. \& A. Ad. Hesperarion, Simr. Hemphillia, Bld. \& B. Hyrcanolestes, Simr. lbyeus, Heyn. Janella, Gray. Letourneuxia, Bgt. Lithotis, Blanf. Lytopelte, Bttgr. Mieroparmarion, Simr. Mariaella, Gray. Myotesta, Cllge. Neojanella, Ckll. Omalnnyx, d'Orb. Oopelta, Morch Otoconcha, Huttn. l'aralimax, Bttgr. Parmacochlea, E. A. Sm. l'armarion, Fisch.

Parmacella, Cuv. Parmella, H. Ad Paryphanta, Albers. Peltella, Webb, \& Van B. Phrixolestes, Simr. l'lutenia, Stab. Jrisma, Simr. Prophysaon, Bld. \& B. P'seulomilax, Bttgr. Rhytida, Albers. Schizoglossa, Hedley. Selenochlamys, Bttgr. Tebennophorus, Binn. Trichotoxon, Simr. Trigonochlamys, Bttgr. Testacella, Cuv. Urocyelus, Gray. Yelifera, W. G. Binn. Veronicella, Blain. Vitrinopsis, Semp. Zonites, Montf.

Full particulars stating names of species, number of specimens, price or desiderata, should be adilressed as under.

List of Duplicates will be forwarded on Application.
W. E. COLLINGE, THE UNIVERSITY, BIRMINGHAM.

SWINDEN and SONS,

(ESTABLISHED 1825.

reLiable clocks and watches.

27, 28, \& 29, Temple St., Birmingham.

Please mention this Journal in replying to Advertisements.

THE JOURNAL OF MALACOLOGY.

The Subscription is $12 /$ - for the Volume of Four Numbers ; for this Sum (prepaid) the Journal is sent post free to any part of the World.

BACK VOLUMES.

The Editor possesses no further copies of volumes $\mathrm{i}-\mathrm{vi}$, but occasionally copies are to be had, and are supplied in order of application.

Of volumes vii-ix a few sets remain, price $£ 1$ is. od. per volume.
TO CONTRIBUTORS.
All expenses of publication and illustration are paid by the Proprietor. Lithographic plates are usually used in illustrating.

Contributors desiring separate Copies of their papers will be furnished with the same on payment of the Printer's Charges, if ordered when returning proof. Prepayment by P.O. is requested.

All Communications should be addressed to the Editor : W. E. COLLINGE, THE UNIVERSITY, BIRMINGHAM.

London : Messrs. Dulau \& Co., 37, Soho Square.
Berlin : Messrs. R. Friedländer \& Sohn, Carlstrasse II.

W. JUNK. BERLIN, W.5.,

Publisher \& Second-hand Bookseller,

FOR CONCHOLOGY,
BUYS ALL WORKS AND JOURNALS ON
MOLLUSCS.
JUST OUT
CATALOGUE ON MOLLUSCA,
the most complete, ever published.
Gratis and Post Free.

Please mention this Journal in replying to Alvertisements.

WHEN FOUND, make a note of -

To which we add

DON'T LOSE YOUR NOTES,

Put them into an Alphabetical Card Index, the only elastic system for private and business records, which is equal to every emergency.

WRITE TO
LIBRARY BUREAU, Ltd., Inventors of the Card System, 58, The City Arcades, BIRMINGHAM.
LONDON. MANCHESTER. NEWCASTLE-ON-TYNE.

ALFRED H. SAUNDERS

(Editor, Optical Magic Lantern Journal),
Lanternist \& Lantern Slide Maker,
(WET COLLODION PROCESS,)
By. Appointment to the
Vaniversity of Kirmingbam.

PROJECTION AND SCIENCE LANTERNS BUILT TO ORDER.

Prince's Chambers, 6, Corporation St., BIRMINGHAM.

STUDIO-109, CITY ROAD.

THE JOURNAL OF MALACOLOGY.

Established in 1890 as "The Conchologist, a Journal of Malacology."
No. 3. OCTOBER 20th, 1903. VOL. X.
Contellts.
Descriptions of new species of Nassa, Purpura, Latirus, Voluta, By G. B. Sowerby, F.L.S. Page.
Conus, Stomatella, etc. 73
Notes on, with lllustrations of, Austro Malayan Land Shells.
By E. R. Sykes, B.A., F.L.S. 78
Contributions to a knowledge of the Mollusca of Borneo. Part i.
By Walter E. Collinge, M.Sc. 79
A Classified List of the Helicoid Land Shells of Asia. Part vii.
By G. K. Gude, F.Z.S. 83
Figures and Descriptions of supposed new species and varieties of Ennea, Macrochlamys, etc.
By Hugh Fulton. 99
On the name Lima elliptica.
By E. R. Sykes, B.A., F.L.S. 104Note on a malformed specimen of Ceratisolen legumen, L.
By H. H. Bloomer. 104

Don't forget

 to ask your Stationer for
BARKER \& GOODRIDGE'S

(Late with HENRY STONE \& SON, LTD., BANBURY.)
Letter Files, Letter Trays, Index Letter Files, Stationery Boxes and Cabinets, Letter Filing Cabinets, Office Pigeon Holes, \&c., \&c.,

Special Cabinet Boxes and Files made to order for any purpose.
ESTIMATES GIVEN.

Please mention this Journal in replying to Adrertisements.

To Concbologists.

H. B. PRESTON F F Z $_{1} S_{3}$

Begs to inform Collectors and others that he will be pleased to forward on application price list of any GENERA included in his

LARGE AND VARIED STOCK OF SHELLS. SELECTIONS SENT ON APPROVAL. MUSEUMS SUPPLIED. A very fine. series of the rarer British Marine Shells now on hand.
Address-H. B. PRESTON, F.Z.S.,
3, Sydney Terrace, Fulham Road, London, S.W.
Two minutes walk from South Kensington Station.
W. HARRIS, 176, Bristol Street, Birmingham,
HORTICULTURAL BUILDER, CABINET MAKER, \&c.
Contractor for Fittings and Joinery Work to The University of Birmingham, and the Queen's Faculty of Medicine.
Estimates given for every description of Woodwork, Cabinet Making, House Carpentry, \&c. Ricpairs promptly attended to.

Living Specimens for the Microscope.

Volvoz, Spirogyra, Desmids, Diatoms, Amœba, Arcella, Actinosphærium, Vorticella, Stentor, Hydra. Floscularia, Stephanoceros, Melicerta, and many other Specimens of Pond Life. Price 1/- per Tube, Post Free. Helix pomatia, Astacus, Amphioxus, Rana, Anodon, ete., for Dissection purposes.
thomas bolton, 25, Balsall heath Road, Birmingham.

JAMES SWIFT \& SON,
 Manufacturing Opticians,

Seven Gold Medals awarded for Optical Excellence.

Student's Microscope fitted with $\frac{2}{3} \mathrm{in}$. and $\frac{1}{6} \mathrm{in}$. Objectives, sliding course adjustment, micrometer screw fine adjustment for slow focussing, eye-piece and iris diaphragm, in Cabinet
£5 50
Double nose-piece and extra eye.piece $\quad 10 \quad 0$
Fig. 2 Student's Stand, as per illustration with $\frac{2}{8} \mathrm{in}$. and $\frac{1}{6} \mathrm{in}$. Objectives, eye-piece and iris diaphragm, in Cabinet
£7 150
Double nose-piece and extra eye-piece 150

Prof. Delepine's microscope, as used in the Birmingham University, with course and fine adjustments, extra large stage covered with vulcanite, $\frac{2}{3}$ in. $\frac{1}{6} \mathrm{n}$. and $\frac{1}{2} \mathrm{in}$. Objectives, Abbe condenser N.A. $1 \cdot 2$ fitted with iris diaphram and special focussing adjustment, triple nosepiece and eyepiece, in Cabinet $£ 1500$

This stand is used in all the principal laboratories throughout the kingdom.
UNIVERSITY OPTICAL WORKS, 81, TOTTENHAM COURT ROAD, LONDON, W.

JOURNAL

OF
 malacology

 EDITED BY

WALTER E. COLLINGE, M.Sc., The Universily, Birmingham, President of the Midland Malecological Society, WITH THE COOPER.ITION OF
Dr. JOSEF F. BABOR. H. HOWARD BLOOMER. REV. A. H. COOKE, M.A., F.Z.S. G. K. GUDE, F.Z.S.
CHARLES HEDLEI, F.L.S.
HENRY SUTER.
E. R. SYKES, B.A., F.Z.S., F.L.S.
B. B. WOODV゙ARD, F.G.S., F.L.S.

ARE BSOLUTELY LONE MONGST TYPEWRITERS List No. 232, post Free, tells all about them.

THE BLICKENSDERFER

TYPEWRITER CO.
Head Office-Newcastle-on-Tyne
Only London Depot • 9, Cheapside, E.C. Manchester Depot: 74, Market Street. GlasgowAgency : 334 Sauchiehall Street. And most large Towns.

EDE, SON \& RAVENSCROFT,

ESTABLISHED 1689.
TELEPHONE 602 HOLBORN.

$R O B E$

By Special appointments
To H.M. the King, H.M. the Queen, and H.R.H. the Prince of Wales. Church, University, Law \& Municipal Robes. \bar{g} 93 \& 94, CHANCERY LANE, LONDON.

CONCILIUM BIBLIOGRAPHICUM,

ZURICH-NEUMUNSTER, SWITZERLAND.

(Founded in 1895 by the International Congress of Zoology. Reorganized with the support of the Swiss Government.)

Analytical Card Bibliography of Mollusca including all publications since 1896. Price 28s. (with minor notices 38s.) Annual Subs. about 15s.-Any desired choice of topies can also be supplied :-Pelecypoda 10s. 5d., annually about 4s. Amphineura 1s. 5d., annually about 6.d., etc. Without palaeontology cheaper. Cheap edition correspondingly less.

Manuscript Card Catalogue of Neiv Species and Genera since 1901. -Copies supplied at ld. per reference. Any desired combination, e.g. new species of llelix, new genera ot Tectibranchs, new Molluses from Borneo, from Devonshire (it any), from Mexico, etc.

Pstablished over 50 Vears. 10, HOLLOWAY HEAD,

Also Successor to
WALTER DAVIS, Boukbinder, for 22 years at $23 \& 24$, Suffolk St.

4 Doors from Horse Fair, BIRMINGHAM.

F. W. HAWKINS \& SON,

 Styles-Plain, Neat,
Antique of Elegant. Bookbinders.

Books Bound to any Pattern. Magazines, Music, \&c. PARCELS OF BINDING SENT FOR ON RECEIPT OF POST CARD.

LANTERN SLIDES. 6/

Lantern Slides of Natural History Subjects.
6/- per dozeu, Send for New Catalogne, just issued, 3d. post free. Lantern Slides prepared to order from negatives, book illustrations, drawings \&c., at special rates.
Hand-Painted Lantern Slides. From $1 / 3$ to 5/- each. Microscopical Slides, in Botany, Zoology, \&c. From 6/- per dozen. List Post Free.
Student's Series of 48 Slides, in Elementary and Advanced Botany. In Box 21/- Post Free. Book of Diagrams to illustrate above Slides, $1 /-$ nett.
Mleroseopes and Accessories, and all kinds of Dissecting Instruments, Mounting Requisites, Stains, Chemicals, Glassware, \&c.

OPTICAL LANTERNS, LENSES, SCREENS, \&c.

FLATTERS \& GARNETT, Ltd., 48, DEANSGATE, MANCHESTER.

Laboratories-16 \& 18, Church Road, Lungsight.

JOHN J. HEATH

Established 1828.

General Engraver, Stationer, etc. BRASS DOOR PLATES.

Medical Account Forms Engraved \& in Facsimile:
Fleet Street, Summmer Rovy, Bimmingham.

S HUTH F. Huth, Edinburgh. LITHOGRAPHER,

Illustrations for Scientific Publications
Carefully reproduced from Natural Specimens or Drawings Estimates, and Specimens or work sent on application.
II4, VILLIERS ROAD, WILLESDEN GREEN, LONDON, N.W.

A few Copies of the Portrait

OF THE LATE

Dr. O. F. VON MOELLENDORFF

Are being mounted on boards, suitable for framing.

Orders for same. accompanied by P.O. 2s. 6d. should be sent to the Editor as early as possible.

WHEN FOUND, make a note of-

To which we add

DON'T LOSE YOUR NOTES,

Put them into an Alphabetical Card Index, the only elastic system for private and business records, which is equal to every emergency.

WRITE TO
LIBRARY BUREAU, Ltd., Inventors of the Card System, 58, The City Arcades, BIRMINGHAM.

LONDON. MANCHESTER. NEWCASTLE-ON-TYNE,

SWINDEN and SONS,

restaulusteo

RELIABLE CLOCKS AND WATCHES.

27, 28, \& 29, Temple St., Birmingham.

THE JOURNAL OF MALACOLOGY.

Established in 1590 as "The Conchologist, a Journal of Malacology."

No. 4.
DECEMBER 21st, $1903 . \quad$ VOL. X

Contents.

$$
\begin{aligned}
& \text { On the Respiratory and Locomotory Habits of Ampullaria glohosa, } \\
& \text { Swainson. } \\
& \qquad \text { By V. V. Rananan, M.A., F.Z.S. } \\
& 107
\end{aligned}
$$

The Anatomy of Pharella orientalis, Dunker, and Tayelus rufus, Spengler.

By H. H. Bloomer. IIt
Otto Franz von Moellendorff.
By Dr. W. Kobelt. $1 \because 2$
Wome Notes on the so-called Appendix of Helicella barbura (L.).
By H. Overton.
126
A Classified List of the Helicoid Land Shells of Asia. Part viii. (Conclusion).

By G. K. Gude, F.Z.S.
129
On a Small Collection of Marine Shells from Surprise Island.
By E. R. Sykes, B..A., F.L.S.
Proceedings of the Midland Malacological Society.

Don't forget to ask your Stationer
for

BARKER \& COODRIDEE'S

(Late with HENRY STONE \& SON, LTD., BANBURY.)
Letter Files, Letter Trays, Index Letter Files, Stationery Boxes and Cabinets, Letter Filing Cabinets, Office Pigeon Holes, \&c., \&c.,

Special Cabinet Boxes and Files made to order for any purpose.

ESTIMATES GIVEN.
Please mention this Journal in replying to Advertisements.

H. B. PRESTON F $_{3} Z_{1} S_{13}$

Begs to inform Collectors and others that he will be pleased to forward on application price list of any GENERA included in his

LARGE AND VARIED STOCK OF SHELLS. SELECTIONS SENT ON APPROVAL. MUSEUMS SUPPLIED.
A very fine series of the rarer British Marine Shells now on hand.
Address-H. B. PRESTON, F.Z.S.,
3, Sydney Terrace, Fulham Road, London, S.W.
Two minutes walk from South Kensington Station.

W. HARRIS, 176, Bristol Street, Birmingham,

HORTICULTURAL BUILDER, CABINET MAKER, \&c.
Contractor for Fittings and Joinery Work to The University of Birmingham, and the Queen's Faculty of Medicine.
Estimates given for every description of Woodwork, Cabinet Making, House Carpentry, \&c. Iiepairs promptly attended to.

Living Specimens for the Microscope.

Volvox, Spirogyra, Desmids, Diatoms, Amœba, Arcella, Actinosphærium, Vorticella, Stentor, Hydra. Floseularia, Stephanoceros, Melicerta, and many other Specimens of Pond Life. Price 1/- per Tube, Post Free. Helix pomatia, Astacus, Amphioxus, Rana, Anodon, etc., for Dissection purposes.
thomas bolton, 25, Balsall heath road, Birminghan.

JAMES SWIFT \& SON,
 Manufacturing Opticians,

Seven Gold Medals a warded for Uptical Excellence.

Abstract

Student's Microscope fitted with $\frac{2}{5} \mathrm{in}$. and $\frac{1}{6} \mathrm{in}$. Objectives, sliding course adjustment, micrometer screw fine adjustment for slow focussing, eye-piece and iris diaphragm, in Cabinet £5 50

Double nose-piece and extra eye.piece $\quad 10 \quad 0$

Fig. 2 Student's Stand, as per illustration with $\frac{2}{3} \mathrm{in}$. and $\frac{1}{6} \mathrm{in}$. Objectives, eye-piece and iris diaphragm, in Cabinet - . $£ 7150$

Double nose-piece and extra eye-piece
150

Prof. Delepine's microscope, as used in the Birmingham University, with course and fine adjustments, extra large stage covered with vulcanite, 年in. $\frac{1}{6} 1 \mathrm{n}$. and $\frac{1}{1} \mathrm{in}$. Objectives, Abbe condenser N.A. $1 \cdot 2$ fitted with iris diaphram and special focussing adjustment, triple nosepiece and eyepiece, in Cabinet $£ 1500$

This stand is used in all the principal laboratories throughout the kingdom.
UNIYERSITY OPTICAL WORKS, 81, TOTTENHAM COURT ROAD, LONDON, W.

JOURNAL

OF
 malacology

Egtablishcd in 1890 as " "Che Centhologist, a sournal of etatiacologg." edited by

WALTER E. COLLINGE, M.Sc.,
The Universily, Birminghan,
President of the Midand Malacological Society, WITH THE CO-OPERATIUN OF
Dr. JOSEE F. RABOR.
H. HOWARD BLOOMER.
REV. A. H. COOKE, M.A., F.Z.S.
G. K. GUDE, F.Z.S.
CHARLES HEDLEY, F.L.S. HENRY SUTER.
E. R. SYKES, B.A., F.Z.S., F.L.S.
B. B. WOODWARD, F.G.S., E.L.S.

EDE, SON \& RAVENSCROFT,

fSTABIINHED 1689.

$R O B E$

TELEPHONE 602 HOLBORN.

By Special appointments
To II.M. the King, H.M. the Quefn, and H.R.H. the Prince of Wales. Church, University, Law \& Municipal Robes.
93 \& 94, CHANCERY LANE, LONDON:

CONCILIUM BIBLIOGRAPHICUM,

ZURICH-NEUMUNSTER, SWITZERLAND.

(Founded In 1895^{5} by the Internatlonal Congress of Zoology. Reorganized with the support of the Swiss Goverament.)

Analytical Card Bibliography of Mollusca including all publications since 1896. Price 28s. (with minor notices 38 s.) Annual Subs. about 15 s . - Any desired choice of topies can also be supplied :-Pelecypoda 10s. 5d., annually about 4 s .Amphineura 1s. 5d., annually about 6d., etc. Without palaeontology cheaper. Cheap edition correspondingly less.

Manuscript Card Catalogue of New Spectrs and Genera since 1901. - Copies supplied at ld. per reference. Any desired combination, c.g. new species of Ilelix, new genera ot Tectibranchs, new Molluscs from Borneo, from Devonshire (it any), from Mexico, etc.

Established over 50 Years.
Also Successor to
WALTER DAVIS, Bookbinder, for 22 years at $23 \& 24$, Suffolk St.

10, HOLLOWAY HEAD,
4 Doors from Horse Fair, BIRMINGHAM.

Styles-
plaln, Neat.
Antique \& Elegant. Bookbinders.

Books Bound to any Pattern. Magazines, Music, \&c. PARCELS OF BINDING SENT FOR ON RECEIPT OF POST CARD.

LANTERN SLIDES. 6/-

Lantern Slides of Natural History Subjects.

6/- per dozen, Send for New Catalogue, just issued, 3d. post free. Lantern Slides prepared to order from negatives, book illustrations, drawings \&c., at special rates.

Hand-Painted Lantern Slides. From $1 / 3$ to $5 /$ - each. Microscopical Slides, in Botany, Zoology, \&c. From 6/- per dozen. List Post Free.
Student's Series of 48 Slides, in Elementary and Advanced Botany. In Box 21/- Fost Free. Book of Diagrams to illustrate above Slides, $1 /-$ nett.
Microseopes and Aecessories, and ali kinds of Dissecting Instruments, Mounting Requisites, Stalins, Chemicals, Giassware \&e.

OPTICAL LANTERNS, L=ISES, SCREENS, \&c. FLATTERS \& GARNETT, Ltd., 48, DEANSGATE, MANCHESTER.
Laborat ries-16 \& 18, Church Road, Longsight.

THE JOURNAL OF MALACOLOGY.

Eslablished in İgo as "The Cionchologisl, a Jonrmal of Malacolognv."
No. 1.
APRIL, 1904. VOL. XI.

Contents.

Note on Thersilcs (Hadra) bellendenkercnsis, Braz., and beddomae, Braz.

By Hugh Fulton.
I
A Critical List of the Sphoerospira Section of Thersiles.
By Hugh Fulton.
2

Notes on the Anatomy of the Generative Organs of Ariophanla julialla, Gray.

By H. Overton.
Notes on Slugs and Slug-like Molluscs.
By Walter E. Cullinge, M.Sc.
Proceedings of the Midland Malacological Society.
Current Literature.

Don't forget

 to askyour Stationer
for

BARKER \& COODRIDCE'S

(Late with HeNry stone \& SON Ltd., Banbury.)

Letter Files, Letter Trays, Index Letter Files Stationery Boxes and Cabinets; :hetter Filing Cabinets, Office Pigeon Holes, \&c., \&c.,

Special Cabinet Boxes and Files made to order for any purpose.

```
ESTIMATES GIVEN.
```

Please mention this Journal in replying to Advertisements.

To Concbologists.

H. B. PRESTON, F.Z.S.,

Begs to intorm (ollectors and others that he will be pleased to forward on application price list of any GENERA incluterd in his

Living Specimens for the Microscope.

Volvox, Spirogyra, Desmids, Diatoms, Amœba, Arcella, Actinosphærium, Vorticella. Stentor, Hydra. Floscularia, Stephanoceros, Melicerta, and many other Specimens of P'ond Life. Price 1/- per Tulc, l'ost Free. Helix pomatia, Astacus, Amplinxus. Rana, Ancton, etc., for Dissection purposes.

TiJOM.IS BOLTON, 25, BALSALL HEATH ROAD, Pu:M:Ni:ham.

JAMES SWIFT \& SON,
 Manufacturing Opticians,

Seven Gol 1 Medals awarded for Oplietl Excellence.

Abstract

Student's Microscope fitted with $\frac{2}{3} \mathrm{in}$, and $\frac{1}{6} i n$. Objectives, sliding course adjustment. micrometer serew fine adjustment for slow focussing, eye-piece and iris diapliragm, in Cabinet £5 50 Double nose-piece and extra eye-piece $\quad 10 \quad 0$ Fig. 2 Student's Stand, as per illustration with $\frac{2}{3} i n$. and $\frac{1}{6}$ in Objectives, eye-piece and iris diaphragm, in Cabinet $\quad . \quad$ £7 150

Double nose-piece and extra eye-piece I5 0

Prof. Delepine's microscope, as used in the Birmingham University, with course and fine adjustments, extra large stage covered with vulcanite, $\frac{8}{3} \mathrm{in} . \frac{1}{6} \mathrm{In}$. and ${ }_{1} \frac{1}{2}$ in. Objectives, Abbe condenser N.A $1 \cdot 2$ fitted with itis diaphram and special focussing adjustment, triple nosepiece and eyepiece, in Cabinet £l5 00

This stand is used in all the principal laboratories throughout the kingdom.

UNIVERSITY OPTICAL WORKS, 81, TOTTENHAM COURT ROAD, LONDON, W.

THE JOURNAL OF MALACOLOGY.

Establishcit in IN'go as "Thic Conchologisl, a Jonrnal of Malacology."
No. 4. DECEMBER, 1904. VOL. XI.

Contents.

Page.
75

Descriptions of Twelve new species and one variety of Marine Gastropoda from the Pursian Guli, Guli of Oman, and Arabian Sea, conlected by Mr. F. Wr. Townsend. 1902-1904.

By J. Cosmo Melvili, M.A., F.L.S. 79

On some Non-Marine shells, from the Austro- and Indo-Malayan Region.
By E. R. Sikes, B.A., F.L.S. 87
The Helicoid Land shells of Asia. Corrections and Additions.
By G. K. Gt'de, F.Z.S. 93
Note on Two sarictics of Arion subfusche, Drap.
By Walter E. Cullinge, M.Sc. 9
Current Literature. 98
Title Page, Contents, and Index to Volume Xi.

THE JOURNAL OF MALACOLOGY.

Edited by Whlter. E. Collinge, The University, Birmingham.

TO CONTRIBUTORS.

All expenses of publication and illustration are paid by the Proprietor Lithographic Plates are usually used in illustrating.

Contributors desiring separate Copies of their papers will be furnished with the same on payment of the Printer's Charges, if ordered when returning proof. Prepayment by P.O. is requested.

Plates, $2 / 3$ per 25 if uncoloured; if coloured at the same rate for every colour.

BACK VOLUMES.

The Editor possesses no further copies of volumes i-vi, but occasionally copies are to he had, and are suppiied in order of application.

TO SUBSCRIBERS

All Subscriptions should be forwarded to the publishers. The Sulscription is $12 /$ - for the Volume of Four Numbers ; for this sum (prepaid) the Journal is sent post free to any part of the World.

London : Messrs. Dulau \& Co., 37, Soho Square.
Berlin : Messrs. R. Friedländer \& Sohn, Carlstrasse II.

H. B. PRESTON $\mathrm{F}_{\mathrm{Z}} \mathrm{Z} . \mathrm{S}_{\mathrm{E}}$,

Begs to inform Collectors and others that he will he pleasid to torward on
application price list of any (iENERA included in his
LARGE AND VARIMD STOCK OF SHELLS.
SELECTIONS SENT ON APPROVAL. MUSEUMS SLPPLIED.
A very fine series of the rarer British Nasine shells now on hand.
Address-H. B. PRESTON, F.Z.S.,
3. Sydney Terrace, Fulham Road, London, S.W.

Two minutes walk from South Kensington Station
W. HARRIS, 176, Bristol Street, Birmingham, horticultural builder, Cabinet Maker, \&c.

Contractor for Fittings and Joinery Work to The University of Birmingham, and the Queen's Faculty of Nedicine.
Lstimates given for every description of Woodwork, Cabinct Making, House Carpentry, \&e. Repairs, ramit? attinded to.

Living Specimens for the Microscope.

Volvos, Spirngyra, Desmils, Diatoms, Amœba, Arcella, Actinosphærium, Vortiedla, Stentor, Hydra Floscularia, Stephanoceros, Melicerta, and many other Specimens of P'ond Life. Price $1 /-$ per Tube, lost Free. Helix pomatia, Astacus. Amphioxus, Rana, Anodon, etc., for Dissection purposes.

THOMAS BOLTON, 25, BALSALL HEATH ROAD, Bifmintham.

JAMES SWIFT \& SON,

Manufacturing Opticians,

Seaen Gold Medals awarded for Optical Excellence.

This Microscope is used by the principal Bacteriologists and Medical Officers throught the Country.

Professor Delepine's Bacteriological Microscope as used in the Birmingham University, fitted with coarse adjustment, patented slow adiustment for fine focussing, extra large stage covered with vulcanite, $2 / 3-\mathrm{in}, 1 / 6$-in. and $\frac{1}{12}$-in. oilimmersion lens, Panaplanatic Series, Abbe Condenser with iris diaphragm and focussing adjustment, triple dustproof nosepiece and eyepiece, in Cabinet.
£15 00

UNIVERSITY OPTICAL WORKS,

 81, TOTTENHAM COURT NOAD, LONDON, W.Just Published. 456 pp. Crown 8vo. 7s. 6d. net Re-issue of Jeffreys' "British Conchology," Volume I., as a separate Work, at a reduced price, with the original plates

Land and Freshwater Shells of Great Britain

$13{ }^{\top}$
JOHN GWYN JEFFREXS, F.R.S., F.G.S., \&c.

LONDON
JOHN VAN VOORST, PATERNOSTER ROW
$190 \pm$

PUBLISHER'S NOTE

THE first volume of John Gwyn Jeffreys' work on Britis/h Conchology, published in five volumes, having been out of print for some time, the publisher, in response to numerous requests, has re-issued a limited edition under the title of Land and Freshwater Shells of Great Britain.

This volume of Mr Jeffreys' work has attained wide popularity among Conchologists, and the publisher hopes that the new issue, now published at a reduced price, may be welcomed by many who do not possess Mr Jeffreys' larger work.

SOME PRESS NOTICES OF THE ORIGINAL EDITION

The Spectator says

"Pleasantly and agrecably written, without derogration from the accuracy and dignity befitting a contribution offered to science by one of its accredited upholders."

Blackwood's Magazine says

"A compact and comprehensive hand-book of the subject has been a desideratum with naturalists, which this volume seems calculated to supply. Mr Jeffreys is well known from his previous contributions to the science, and if his details of the characieristics of each species are as aceurate as they are carefully and clearly put together, his book-which, though necessarily compressed, is easily and agreeably written-will prove a very useful one."

The Athenæum says

". . . a valuable and useful addition to our zoological literature. The descriptions are full and lucid, and the accounts of the habits of many of the more interesting species are well chosen, and written in a very pleasant style. The geographical distribution of the species and their geological relations are also fully and satisfactorily treated."

The Gardener's Chronicle says

". . . an accessible, readable, reliable work on land-shells, alike adapted to the seientific inquirer and the amateur who is amused by collecting them. An author more eompetent to fulfil his task, or more judicious in his mode of treating it, could not have been found."

NATURE-STUDY.

An Illustrated Monthly for Nature Students, Teachers and General Readers.
2d.; Annual Subscription, 2/6 prepaid.
Fine paper edition, 5/- per annum. specimen copy free.

CHARLES MOSLEY, LOCKWOOD, HUDDERSFIELD. LONDON : ELLIOTT STOCK, 62, Paternoster Row, E.C.

STEPHENSON \& GRAY,

Tailors and Habit Makers,

BIRMINGHAM.

RECENT MOLLUSGA, GLASS-TOPPED BOXES \& CONCHOLOCICAL WORKS. SOWERBY \& FULTON (Established by c. B. SOWERBY, 1860).

SOME PARTICULARS OF THE LARGEST \& FINEST STOCK OF SHELLS IN THE WORLD At March Ist, 1904.-Number of Cabinets 64 , containing 1,205 drawers, 28 glass cases.
Number of species of shells: Land (Inoperculate) .. 7,123
". (Operculate) .. $\quad 2.179$
Marine and Freshwater 9,777
Pelycypoda and Brachiopoda 3,309
Total 22.388
CATALOGUES CONTAINING 12,000 SPECIES.
SALE. PURCHASE. EXCHANGE.
COLLECTIONS AND SPECIMENS NAMED AND ARRANGED. SOWERBY \& FULTON, Kew Gardens, near LONDON.

ESTAB:ISHED 1845. BOWEN \& EDWARDS, manufacturers of FIRECLAY GOODS, COAL FACTORS, \&c.

s and Offices - - Northwood Street, Birmingham. Coal Wharf - - - Snow Hill, Birmingham.

STOURBRIDCE FIRE BRICKS \& BLOCKS OF ALL DESCRIPTIONS.

Special Sizes $\mathbb{\&}$ Shapes made to Engineers' or Customers' Drawings. GROUND FIRECLAY, CANNISTER, \&c. MELTING POTS FOR CLASS AND METAL. COAL for Household and Manufacturing purposes supplied by Truck or Boat to Customers' Station or W'harf.

JOHN PLACE,
 MAKER OF

High-Class Electric and Lime-Light Lanterns
For Scientific purposes, and all Appartus connected with same.
43, BULL STREET, BIRMINGHAM.
Having made and operated Lanterns upwards of 40 years for the principal Scientists, I can guarantee satisfaction.

Sole maker of - . -
"THE POWERFUL" HIGH PRESSURE LIME-LIGHT JET.

JOSEPH BARROWS \& CO., WINE AND SPIRIT MERCHANTS,

51, SNOW HILL,
4I, HIGH STREET,
38, ASTON STREET,
BIRMINGHAM.
Head Offices:
58, BATH STREET.

THE

JOURNAL

of
 mALACOLOGY

Establisbcd in 1890 as "Tbe Concbologist, a Foumal of Malacbology." EDITED BY

> WALTER E. COLLINGE, M.Sc., The University, Birmingham.
> President of the Midland Malacological. Society, WITH THE CO.OPERATION OF

Reference kindly fermitted to the Editor of this Fournal.

BLICK ${ }^{\text {ensderfer }}$. . TYPEWRITERS

do a deal that their rivals do not, and all that they do BLICKS DO BETTER
for half the money and with quarter the weight.

£9 to £11 11s. Fcap. Size.
Large cash discounts or easy time payments.

List 232 and "Case for The BLICKENSDERFER," post free, tells all about it. BLICKENSDERFER TYPEWRITER CO., Newcastle-on-Tyne.
London Depot: 9, CHEAPSIDE, E.C.
Manchester: 74, MARKET STREET.
Also Leeds, Liverpool, Brlstol, Birmingham, Belfast, Dublln, Edlnburgh, Glasgow, etc.

EDE, SON \& RAVENSCROFT,
 ESTABLISHED $1689 . \quad$ TELEPHONE 602 HOLBORN.

ROBE

By Special Appointments
To H.M. The King, H.M. The Queen, and H.R.H. The Prince of Wales. Church, University, Law \& Municipal Robes. 93 \& 94, CHANCERY LANE, LONDON.

CONCILIUM BIBLIOGRAPHICUM.
 ZURICH-NEUMUNSTER, SWITZERLAND.

(Founded in 1895 by the International Congress of Zoology. Reorganized with the
support of the Swiss Government.) support of the Swiss Government.)

Analytical Card Bibliography of "olluse 2 including all publications since 1896. Price 28s. (with minor notices 38s.) Annual Subs. about 15s.-Any desired choice of topics can also be supplied :-Pelecypoda 10s. 5 d ., annually about 4 s .Amphineura 1s. 5d., annually ahout 6u., etc. Without palaeontology cheaper. Cheap edition correspondingly less.

Manuscript Card Catalogue of Neiv Spectrs and Grnera since 1901. - Copies supplied at 1d. per reference. Any desired combination, c.g. new species of Helix, new genera ot Tectibranchs, new Molluses from Borneo, from Devonshire (it any), from Mexico, etc.

Established over 50 Years. 10, HOLLOWAY HEAD,
Also Successor to WALTER DAVIs, Bookbinder, for 22 years at $23 \& 24$, suffolk st.

4 Doors from Horse Fir,
BIRMINCHAM.

F. W. HAWKINS \& SON,

 Styles -M:in, Nest.
Antigue de Elegant. Bookbinders.

Books Bound to any Pattern. Magazines, Music, \&c PARCELS OF EINDING SENT FOR ON RECEIPT OF POST CARD.

LANTERN SLIDES. 6/

Lantern Slides of Natural History Subjects.
6/- per dozen, Send for New Catalogue, just issued, 3d. post free. Lantern Slides prepared to order from negatives, book illustrations, Irawings \&c., at special rates.
Hand-Painted Lantern Slides. From $1 / 3$ to 5/- each. Microscopical Slides, in Botany, Zoology, \&c. From 6/- per dozen. List Post Free.
Student's Series of 48 Slides, in Elementary and Advanced Botany. In Box 21/- Post Free. Book of Diagraus to illustrate above Slides, $1 /-$ nett.

Microseopes and Accessories, and all kinds of Disseeting Instruments, Mounting Requisites, Stains. Chemicals, Glassware de.

OPTICAL LANTERNS, LENSES, SCREENS, \&c.

THE JOURNAL OF MALACOLOGY.

Estublished in İgo as "The Conchologish, a Jonrnal of Malacolosn'."

Don't forget

to ask

your Stationer

for

BARKER \& COODRIDCE'S

(Late with HENRY STONE \& SON Ltd., Banbury.)
Letter Files, Letter Trays, Index Letter Files Stationery Boxes and Cabinets, Letter Filing Cabinets, Office Pigeon Holes, \&c., \&c.,

Special Cabinet Boxes and Files made to order for any purpose.

```
ESTIMATES GIVEN.
```

Please mention this Journal in replying to Advertisements.

H. B. PRESTON, F.Z.S:

Begs to inform (ollectors and others that he will the pleased to forward on application price list of any GENERA inctudedin his

LARGE AND VARIED STOCK OF SHELLS.
selections sent on approval.
MUSEUMS SLII I,II.D
A very fine series of the rarer British Marine Shells now on hand. Address-H. B. PRESTON, F.Z.S.,
3. Sydney Terrace, Fulham Road, London, S.W.
Two minutes walk trom South Kensington Station
W. HARRIS, 176, Bristol Street, Birmingham,
HORTICUITURAL IBUHIDER, CABINET MAKER, \&C. Contractor for Fittings and Joinery Work to The Uniwersity of Birmingham, and the Queen's Faculty of Medicine.
Estimates given for every deseription of Woolwork, Cabinet Making, Ilouse Carpentry; \&e. Lepairs frimptio atterded to.

Living Specimens for the Microscope.

Volvos, Spirogyra, Desmids, Diatoms, Amœoba, Arcella, Actinospherium, Vorticella. Stentor, II yrira Flosenlaria, Stephanoceros, Melicerta, and many other Specimens of Pond Life. I'rice 1/- per Tule. Post Free. Helix pomatia, Astacus, Amphioxus, Rana, Anodon, cte., ior Dissection purposes.
thomas bolton, 25, balsall heath roid, Birmingmam.

JAMES SWIFT \& SON,
 Manufacturing Opticians,

Seven Goll Medals autarded far Opicell Excellence.

Student's Microscope fitted with $\frac{3 n}{5}$ and $\frac{1}{6} \mathrm{in}$. Objectives, sliding course adjustment. mirrometer screw fine adjustment for slow focussing, eye-piece and iris diapuagm, in Cabinet £. 50

Double nose-piece and extra eye-piece $10 \quad 0$
Hig. 2 Student's Stand. as per illustration with $\frac{2}{3}$ in. and $\frac{1}{6}$ in Objcetives, eye-picce and iris diaphragm, in Cabinet
£ 7150
Double nose-picee and extra eje-piece 150
Prof. Delepine's microseope, as used in the Dirmingham University, with course and fine aljustments, extra large stage covered with vulcanite, $\frac{2}{3}$ in. $\frac{1}{6}$ in. and $\frac{1}{12} \mathrm{in}$. Objectives, Abbe condenser N.A $1 \because 2$ fitted with iris diaphram and special focussing adjustment, triple nosppiece and eyepicee. in Cabinet £15 0 o

This stand is used in all the prineipal laboratories throughout the kingtom.
UNIVERSITY OPTICAL WORKS,
81, TOTTENHAM COURT ROAD, LONDON, W.

Establisbe in 1890 as "Cbe Concbologist, a Fournat of IDalacology." EDITED BY
 WALTER E. COLLINGE, M.Sc., The University, Birmengham.
 President of the Minfand Malacologicar. Soctety, WITH THE CO-OPERATION OF
 Dr. JOSEF BABOR.
 H. HOWARD BLOOMER.
 G. K. GUDE, F Z. ৬.
 REV. A. H. COOKE, M.A., F.Z.S.
 CHARLES HEDLEY, F.L.S.
 HENRY SUTER.
 E. R. SYKEs, R.A., F.Z.S., F.L.S.,
 R. B. WOODWHRD, F.G.S., F L.S.

Refuence kindly permitted to the Editor of this Fournat.

BLICK ${ }^{\text {ensderfer }}$
 . . TYPEWRITERS

do a deal that their rivals do not, and all that they do BLICKS DO BETTER
for half the money and with quarter the weight

$£ 9$ to £11 11s. Fcap. Size. Large cash discomits or easy time payments.

List 232 and "Case for The BLICKENSDERFER," post free, tells all about It.
BLICKENSDERFER TYPEWRITER CO., Newcastle-on-Tyne.

EDE, SON \& RAVENSCROFT,
 ESTABLISHED 1689.
 TLLEPHONE 602 HOLBORN.

ROBE

By Special Appointments
To h.m. The King, h.m. The Queen, and H.R.H. The Prince of Wales.
Church, University, Law \& Municipal Robes.
93 \& 94, CHANCERY LANE, LONDON,

CONCILIUM BIBLIOGRAPHICUM.

ZURICH-NEUMUNSTER, SWITZERLAND.

(Founded in 1895 by the International Conyress of Zoology. Reorganized with the support of the Swiss Government.)

Analytical Card Bibliography of Mollusca including all publications since 1896. Price 28s. (with minor notices 38s.) Annual Subs. about 15 s .-Any desired choice of topics can also be supplied :-Pelecypoda 10s. 5d., annually about 4s.Amphineura 1s. 5d., annually about 6d., etc. Without palaeontology cheaper. Cheap edition correspondingly less.

Manuscript Card Catalogue of Nein Species and Genera since 1901. - Copies supplied at ld. per reference. Any desired combination, e.g. new species of Helix, new genera ot Tectibranchs, new Molluses from Borneo, from Devonshire (it any), from Mexico, etc.

Estabilshed over 50 Years.

Also Successor to
WALTER DAVIS, Bookbinder,
for 22 years at $23 \& 24$, Suffolk St.

10, HOLLOWAY HEAD,
4 Doors from Horse Fair,
BIRMINGHAM.
F. W. HAWKINS \& SON, Styles-

Plain, Neat.
Antique \& Elegant. Bookbinders.

Books Bound to any Pattern. Magazines, Music, \&c.

PARCELS OF BINDING SENT FOR ON RECEIPT OF POST CARD.

LANTERN SLIDES. 6/der

Lantern Slides of Natural History Subjects.
6;- per dozen. Send for New Catalogue, just issued, 3 d. post free. Lantern Slides prepared to order from negatives, book illustrations, lrawings fc., at special rates.

Hand-Painted Lantern Slides. From $1 / 3$ to 5/- each. Microscopical Slides, in Botany, Zoology, \&c. From 6/- per dozen. List Post Free.
Student's Series of 48 Slides, in Elenientary and Advanced Botany. In Box 21/- Post Free.
Book of Diagrams to illustrate above Slides, $1 /-$ nett.
Mieroseopes and Accessories, and all kinds of Dissecting Instruments, Mounting Requisites, Stains. Chemicals, Giassware, \&c.

OPTICAL LANTERNS, LENSES, SCREENS, \&c.

FLATTERS \& GARNETT, Lłd.,

 48, DEANSGATE, MANCHESTER.Laboratories-16 \& 18, Church Road, Longsight.

THE JOURNAL OF MALACOLOGY.

Established in ISyo as "The Conchologisl, a Jomrnal of Malacologr."

No. 3.
SEPTEMBER, 1904.
VOL. XI.

Contents.

On sone new species of Mclania and Jullicnia from Funnan and Java. By Hegh Fulton. 51

On a collection of Land Shells from Gebi Istand, Moluceas, with descriptions of new species.

By Hegh Felto.s.
Note on Lephotoma ctenilabre, strubell.
By Hegh flleton.
On Certain deposits of semi-fossil Shells in Hamakua District, Hawaii, with descriptions of new species.

By H. Wetherby Hershalf:
5^{6}
Report on semi-fussil Land Shells found in the Hamakua District,
Hawaii. By C. F. ANcer. 65

Current Literature. $\quad 7^{2}$

Don't forget to ask
your Stationer
for

BARKER \& COODRIDCE'S

(Late with HENRY STONE \& SON Ltd, Banbury.)

Letter Files, Letter Trays, Index Letter Files, Stationery
Boxes and Cabinets, Letter Filing Cabinets, Office Pigeon Holes, \&c., \&c.

Special Cabinet Boxes and Files made to order for any purpose.

```
ESTIMATES GIVEN.
```


H. B. PRESTON, F:Z.S.,

Begs to inform Collectors and others that he will be pleased to forward on application price list of any GENERA includerl in his

LARGE AND VARIED STOCK OF SHELLS.
SELECTIONS SENT ON APPROVAL. MUSEUMS SUPPI.IED.
A very fine series of the rarer British Marine Shells now on hand.
Address-H. B. PRESTON, F.Z.S.,
3. Sydney Terrace, Fulham Road, London, S.W.
Two minutes walk from South Kensington Station
W. HARRIS, 176, Bristol Street, Birmingham,
HORTICULTURAL BUILDER, CABINET MAKER, \&c.
Contractor for Fittings and Joinery Work to The University of Birmingham, and the Queen's Faculty of Medicine.
Estimates given for every deseription of Woodwork, Cabinet Making, House Carpentry, \&e. Repairs jromptly attended to.

Living Specimens for the Microscope.

Yolvoz, Spirogyra, Desmids, Diatoms, Amœba, Areella, Actinosphærium, Vorticella. Stentor, Hydra Flescularia, Stephanoceros, Melicerta, and many other Specimens of Pond Life. P'rice 1/- per Tube, Post Free. Helix pomatia, Astacus, Amplioxus, Rana, Anodon, etc., for Disseetion purposes.

THOMAS BOLTON, 25, BALSALL HEATH ROAD, Birmingham.

JAMES SWIFT \& SON,

JOURNAL

of
 mALACOLOGY

Egtablisbed in 1890 as " Tbe Concbologist, a Foumal of MDalacology." EDITED BY

> WAI,TER E. COLLINGE, M.Sc.,
> The University, Birmingham.
> President of the Midi.and Malacologicaf. Society, WITH THE CO.OPERATION OF
> CHARLES HEDLEY, F.L.S. HENRY SUTER.
> E. R. SYKES, B.A., F.Z.S., F.L.S.,
> B. B. WOODWARD, F.G.S., F.L.S.

Reforence kindly permitted to the Editor of this \mathfrak{F} ournal.

3 (2) ensderfer

 . . TYPEWRITERSdo a deal that their rivals do not, and all that they do BLICKS DO BETTER for half the money and with quarter the weight.

£9 to £11 11s. Fcap. Size.
Large cash discounts or easy time payments.

List 232 and "Case for The BLICKENSDERFER," post free, tells all about it.
BLICKENSDERFER TYPEWRITER CO., Newcastle-on-Tyne.

EDE, SON \& RAVENSCROFT, ESTABLISHED 1689.
 TELEPHONE 602 HOLBORN.

ROBE

By Special Appointments
To H.m. The King, H. M. The Queen, and H.R.H. The Prince of Wales.
Church, University, Law \& Municipal Robes.
93 \& 94, CHANCERY LANE, LONDON.
London
Berlin
Messrs. Dulau \& Co., 37, Soho Square. Messrs R. Friedlander \& Sohn Carlstrasse 11.

CONCILIUM BIBLIOGRAPHICUM,

ZURICH-NEUMUNSTER, SWITZERLAND.

(Founded in 1895 by the International Congress of Zoology. Reorganized with the support of the Swiss Government.)

Analytical Card Bibliography of Mollusca including all publications since 1896. Price 28s. (with minor notices 38s.) Annual Subs. about 15 s .-Any desired choice of topics can also be supplied :-Pelecypoda 10s. 5d., annually about 4s.Amphineura 1s. 5d., annually about 6d., etc. Without palaeontology cheaper. Cheap edition correspondingly less.

Manuscript Card Catalogue of New Species and Grnera since 1901. - Copies supplied at ld. per reference. Any desired combination, e.g. new species of Helix, new genera of Tectibranclis, new Molluses from Borneo, from Devonshire (it any), from Mexico, etc.

Established over 50 Years.
Also Successor to
WALTER DAVIS, Bookbinder, for 22 years at $23 \& 24$, Suffolk St.

10, HOLLOWAY HEAD,
4 Doors from Horse Fair, BIRMINGHAM.

Styles-
Plain, Neat.
Antique \& Elegant. Bookbinders.

Books Bound to any Pattern. Magazines, Music, \&c. PARCELS OF BINDING SENT FOR ON RECEIPT OF POST CARD.

LANTERN SLIDES. 6/-

Lantern Slides of Natural History Subjects.
6'- per dozen, Send for New Catalogue, just issued, 3 d. post free. Lantern Slides prepared to order from negatives, book illustrations, srawings \&c., at special rates.

Hand-Painted Lantern Slides. From $1 / 3$ to 5/- each. Microscopical Slides, in Botany, Zoology, \&c. From 6/- per dozen. List Post Free.

Student's Series of 48 Slides, in Elementary and Advanced Botany. In Box 21/- Post Free.
Book of Diagrams to illustrate above Slides, 1/- nett.
Mieroseopes and Accessories, and all kinds of Disseeting Instruments, Mounting Requisites, Stains. Chemicals, Glassware, \&c.

OPTICAL LANTERNS, LENSES, SCREENS, \&c.
FLATTERS \& GARNETT, Lłd., 48, DEANSGATE, MANCHESTER.

[^38]Microformed by Fresorvation Services $\mathrm{mfm} \# 5071$ 3.22 .94
 BRARIES SMITHSONIA
 IIN1IISNI

NVINOSH IIWS

NVINOSHIIWS INSTITUTION

LIBRARIES zsヨ1 प甘y 17

NOILOLILSNI

ILOLILSNI

 NVINOSHLIWS

\qquad
 $\frac{1}{-1}$
 SMITHSONIAN

SMITHSONIAN
 SヨI甘甘yg17 LIBRARIES

INSTITUTIC

SMITHSONIAN

NOILחLILSNI N甘INOSHLIWS
 NVINOSHLIWS S ヨid甘ygl7
 institution

r ∞ 0 0 0 m 0

 LIBRARIES SMITHSONIANSヨly४ 8

IBRARIES

OILחIIISNI

SMITHSONIAN

INSTITUTI

NVINOSHLIWS

INSTITUTI

[^0]: - See Vol. viii, p. 109.

[^1]: ${ }^{1}$. Proc. Zool. Soc:, 1847, p. 177.
 ${ }^{2}$. Nomencl. Moll. Brit. Mus. Part I, p. 30.
 ${ }^{2}$. Zeitschr. f. malak., vol. viii, p. 149.
 ${ }^{4}$. Cat. Phan. Brit. Mus., p. 95.

[^2]: 5. Gen. Ree. Moll., vol. ii, p. 285.
 6. Mon. Pneum. Suppl. I, p. 87.
 ${ }^{7}$. Nachrbl. Deutsch. Malak. Ges., p. 141.
 s. Das Thierreich, Cyclophoridae, p. 281.
[^3]: - See ante. vol. ix, p. 112.
 ${ }^{1}$. Ann, Lyceum Nat. Hist., New York, 1853-55.
 ${ }^{2}$. Proc. Zool. Soc., 1860.

[^4]: 3. Journ de Conchyl., 1866.
 ${ }^{+}$. Series Conchyl. Livr. IV, 1575.
 ${ }^{5}$. Bull. Soc. Philom. Paris, 1881.
 e. Journ. de Conchyl., I883, 1884, 1886.
 \because Op. cit., 1889.
 s. Op. cit., 1886.
 ${ }^{2}$. Journ. de Conchyl., 1887.
 4. Op. cit., 1886.
[^5]: 1. Journ. Malac., 1901, vol. viii, p. 118-121.
 \because Op. cil., 1902, vol. ix, p. 11-16, 1l. 1.
 ${ }^{3}$. Zool. Anz., 1902, Bd. xxv, p. 355-357.
[^6]: ${ }^{1}$. Euum. Moll. Siciliae, $\mathbf{1 8} 14$, ii, p. 102.
 2. Mungy. dci Linacidi Ital., 18s2, 1. 43.

[^7]: ${ }_{1}$ Proc. Zool. Soc. Lond., 1901, vol. ii, pp. $327-460$, I'ls. xxi-xxiv.

[^8]: 2 Mem. Manch. Soc., 1893 (s, 4), vol. vii, pp. 17-51.
 3 Op. cit.

[^9]: 2. Journ. Malac, 1901, pp. $36 \& 97 ; 1902$, pp. $18 \& 133$.
[^10]: * Cardium, Liverpool Marine Biological Committee Memoirs.

[^11]: Récherchés sur la circulation des Lamellibranches Marins, 1890.
 \pm Pliil. Trans, 1903 (8er. B.), vol. 195, pp. 147-204.
 ${ }_{5}$ Up. cit.

[^12]: 1 Read at a meeting of the Midland Malacological Society.

[^13]: 1 British Conchology, Jeffreys.
 1 A History of British Mollusca and their shells. Forbes and Hanley.
 1 Synopsis of the Solenidae of North America and the Antilles. Dall.
 2. List of British Marine Mollusca prepared by a Committea of the Conchological Society of Great Britain and Ireland.

[^14]: 1 Introduction à l'etude des mollusques.

[^15]: *See ante, p. 165.

[^16]: 1. Ante, Pl . 64-67.
[^17]: * My best thanks are here tendeled to the Council of the Birmingham Natural History and Philosophical Society, for their kindness in defraying the cost of the original drawings.

 1. Trans."Roy. Soc. Edinb., 1901, vol. xl., p1. 295-312, Pls. i-iii.
[^18]: 1. In my former paper, in the diagnosis of the geuus, it was stated, in error, that the footsole was not divided into median and lateral planes.
[^19]: 1. I had no opportunity of consulting at first-hand Fischer and Bouvier's paper on the babits of breathing in A. insulorum. d'Orb., in Comptes Rend., cxi, pp. 200 et seq., alluded to in Lang's Textbook of Comparative Anatomy (English Translation), vol. ii, p. 90, so I base my remarks on the summary given by Cooke, in the volume on Molluses in the Cambridge Natural History Series p. 15 S .
 2. Animal Life (International Sci. Ser), pp. 191, 192, 418 and 449.
[^20]: 3. My Aquarium was a small glass tank 21 feet square.
 4. In discussing the breathing habits of A. insulorum, d'Orb., Prof. Semper tells us that the elongated tube is formed by an incurving of the margin of the mantle. If he means by mantle, the pallial lohes as distinct from the cervical lobes, the observation is not applicable to our Madras species. Vide Semper: Animal Life, M. 418 et seq. Of course the pulmonary chamber which becomes the main part of the tube at alater stage, is made up of the pallial lobes.
[^21]: 5. When on the bottom, the animal may occasionally be found at rest with its operculum shut for hours, and sometime for days together. Whether respiration is going on in any latent fashion or is temporarily suspended at that time, it is impossible to say. The oxygen stored up in the pulmonary cavity might perhaps be then sufficient for the low metabolism.

 But when crawling on the bottom, bubbles of gas sometimes collect round the siphonal edge. These may eitber be carlonic acid gas given off by the lung or the branchial sac, or the atmospheric air retained in the pallial cavity for pneumatic purposes. The siphonal aperture is of moderate size and uniform in shape.
 6. 3 minutes and 3 seconds is the time it takes for retting up my aquarium, which measures 1 foot and ${ }_{2}^{3}$ inches high.
 7. When the animal indulges in complete aerial respiration at the surface of the water, the siphonal edge can often be seen contracting and expanding thythmically and sometimes lying in a unifonmly extended state for minutes together. This contraction and expansion may correspond to the expiratory and inspiratory processes of respiration.
 8. lnstead of sinking, it may occasionally crawl down.

[^22]: 1. Phil. Trans. Roy. Soc., 1903 (ser. 13), vol. 195, 11]. 142-20t.
[^23]: 2. Proc. Acad. Nat. Sci. Philad., 1900, pp. 480, 481, 2 figs.
[^24]: 3. Journ. Malae., 1903, vol. x, p. 36,
[^25]: 4. Op, cit.
[^26]: - Translated and communicated by Herr D. F. Heynemann, from the Nachr. Deutsch. Malak. Gesell., 1303, pp. 161-167.

[^27]: 1. Geschleghtsapparal der Stylommatophoren.
 2. Journ, de Conchyl., 1856 .
 3. Journ. Conch., 1885 , vol. iv, 1). 270.
 4. Trans. Dlanchester Mlicros. Soc., 189.2, pp. 1-5, 11.
 5. Monog. L. \& F. Moll., 1900, vol. i, p. 363.
[^28]: * See ante, 1. 83.

[^29]: - See notes at end of list.

[^30]: Journ. uf Matac., 1904, vol. xi, No. s.

[^31]: * See ante, 1903, vol. x, p. 17

[^32]: t. Marked in the list with an asterisk.

 Juukn. of Malac., 1go4, vol, xi, No. 2.

[^33]: Journ, of Malac., rgo4, vol xi, No. 3.

[^34]: + The extraordinary development of the Succincidae upon the island of Hawaii suggests the possible hypothesis that this island, the present metropolis of the group, was the first of the Hawaiian islands to receive the fiuccinea stock, and that the other islands have been snccessively colonized from it rather than the converse. Even when the present comparatively extensive deforestation of the more northerly islands of the group is taken into account, the relative scarcity of the Succincidae upon them is difficult to understand. Dating hack in origin to a vastly greater antiquity than Hawaii, the northern islands would naturally be assumed, upon a priori grounds, to have received their Succinea stock first; hence they should be richer in species than the comparatively recent island; the contrary is true.

 There is, however, one important factor of the problem not to be overlooked. The Succineidac appear to have had the island of Hawaii pretty much to themselves from the very first, the comparative scarcity of other land shells there, leaving them practically without competition. Thus favolled by a comparatively free field, and with a general environment extremely favourable to their habits. the Succineas, though perhaps with a long start upon the other islands, having later obtained a foothold upon the big island may have attained their present rich development upon it in a comparatively short time.

 As a factor in the development of the species of a group, time would appear to be a less important element than favourable environment and, above all, freedom from direct competition.

 The principal competitors of the Succineas for food are the genera Amastra and Leptachatina, perhaps ciarclia, and the Zonitidac. All of these, but especially Amastra, live chiefly upon decaying vegetation and perhaps upon the fungi found theteon. The island of Hawaii is poor in species of all these groups, Carclia being wholly absent, nor as a rule are any of these species strongly represented by individuals.

 Upon Oahu the fcatinellitae proner, the Amastras and the genus Auricula have attained a development equalled upon no other island although both Maui and Molokai are greatly favourad by the former. Upon Kauaitre genus Leptachatina has differentiated an extraordinary number of species (many jet undescribed), and this genus and Carelia, the latter found upon no other island, appear to have preem oted the field. Thus several of the islands seem to have favoured one or two groups which, having once gained the ascendency, have been able to hold it against all molluscan competitors.

[^35]: r. Ann. \& Mag. N. H., r903, ser, vii, vol. 12, p. 289 ; Proc. Mal. Sxe, vi, p. 51 ; ibid., p. 159.
 2. Thesaurarius, treasured.

[^36]: 5. Doricus, from its severely classic build.
 6. Proc. Mal. Soc. Lond., vol. ii, p. 112, pl. viii, f. 5.
 7. Proc. Zool. Soc . roar, pt. II, p. 369.
[^37]: 9. Poseicion, Neptune.
 10. Proc. Mal. Soc., vol. vi, pt, 11I, p. 165, pl. x, fig. 18.
 ir. Ei' $\lambda i \mu^{\prime} \epsilon^{\prime} \imath^{\prime} \eta-a$ Nereid.
[^38]: Laboratories-16 \& 18, Church Road, Longsight.

