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A review of the scaled equation of state proposed for the critical region of fluids and magnets is
given using the language appropriate for fluids. The experimental evidence for the validity of the basic
hypothesis underlying this equation of state is discussed in detail. Experimental data in the critical
regions of CO,, Xe, and He* are then analyzed using a closed-form expression for the chemical potential
as a function of density and temperature. based on scaling ideas. Agreement between the proposed equa-
tion and the experimental data is found for the three substances. The results of the scaling of A, Ap, ¢
data are shown not to be in contradiction with the analysis, also based on scaling ideas, of independent
experimental measurements of both specific heat and vapor pressure.
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1. Introduction

The thermodynamic anomalies in the critical
region are usually described by means of power
laws, assumed to be asymptotically valid approaching
the critical point. Those of direct interest to us are, in
Fisher’s notation [1]':

Coexistence curve: Ap = B(—1t)# (1.1)
Critical isotherm:
Ip(p, Te) —p(pe, Te) |~ p(p, Te) = plpe, Te) |
= A-Ap|Ap|?-? (1.2)

Compressibility:
on the critical isochore, Ky =I't=, T > T.
along the coexistence curve in the one-phase region:

P Kr=T"(—t)~ T<T. (1.3)
Specific heat at constant volume:
on the critical isochore,
C,= (At|a)t« T>T.
C.= Aila')(—t)~* T<T. (1.4)

along the coexistence curve in the one-phase region:

pGy = {dife' Y82 T=T.

*On leave of absence from the University of Rome, Rome, Italy.
**Present address: Temple University, Philadelphia, Penn. 19122
! Figures in brackets indicate the literature references at the end of this paper.

Here Ap= (p—pc)/pe, t=(T—T.)/T. and all proper-
ties are measured in reduced units through the appro-
priate combinations of critical parameters. Thus the
temperature is measured in units 7., the density in
units pe, the chemical potential w(p, T') in units p¢/pe,
the specific heat per unit volume pC, in units p¢/T..
etc. The critical density, pressure and temperature
are therefore unity by definition.

The scaled equation-of-state, recently proposed
[2, 3, 4], is a partial formulation of the thermodynamic
behavior in the critical region, incorporating these
anomalies. In this paper we discuss the critical
region of fluids in the light of this theory. A review of
the basic hypothesis and the formulation of the scaling
laws for fluids is given in section 2. The experimental
evidence for the validity of the basic hypothesis is
discussed in detail in section 3. Our previous tests [5]
of the extent to which experimental data on fluids
possess the scaling property are recalled, and the
points where the early analysis needs improvement
are discussed (sec. 4). An explicit expression for the
equation-of-state in terms of scaled variables is pro-
posed in section 5. The details of the procedure
followed in analyzing the experimental data are given
in section 6. The results of the analysis of the data,
complete with internal and external consistency
checks, are reported in sections 7 to 9. Finally, con-
clusions are presented in section 10.

2. Scaled Equation-of-State

The equilibrium thermodynamic properties of a fluid
are determined by the knowledge of either the Helm-
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holtz free energy per unit volume a(p,T) as a function
of density p and temperature T, or of the corresponding
free energy per mole A(v, T) as a function of molar
volume v and temperature. In the first case the variable
conjugate to the density is the chemical potential
u=(@aldp)r while in the second case the variable
conjugate to the molar volume is the pressure
p=—1(9A4/dv)r. It is a question of which pair of conju-
gate variables is most suitable for discussing thermody-
namic properties in the critical region. We have made
the choice on the basis of symmetry arguments dis-
cussed more fully in the next section. Magnetic
critical phenomena show, by definition, complete
symmetry with respect to the line M=0. Thus, the
spontaneous magnetization is fully symmetric around
M =0. Since the analogy of magnetic and fluid critical
phenomena plays such a basic role in scaling law
theory, we choose the pair of variables which shows
the best symmetry around the critical isochore. It
is well known that for simple fluids the phase boundary
shows more symmetry around p. in the pT plane than
around v, in the vT plane. This and other symmetry
considerations (sec. 3) lead to a preference for the
pair u, p.

Widom [2], using chemical potential, density and
temperature as variables, first proposed an equation-
of-state for fluids; it is exactly equivalent to those
proposed for the Ising model and for magnets [3, 4],
as was shown by Griffiths [4]. The main assumptions on
which this equation is based are the plausible ones that
free energy and chemical potential are regular in p
and ¢ throughout the entire one-phase region with
possible exclusion of the phase boundary. Moreover,
the quantity Au=u(p, t) —u(pe, t) is also assumed
to be regular throughout the entire one-phase region,
and, at least asymptotically, antisymmetric around p..
It should be emphasized that regularity of u and Au
implies regularity of w(p¢, t) at the critical tempera-
ture, as is the case in the lattice gas.

In the following, a review of the properties of the
equation-of-state is given according to Griffiths’
formulation [4]; then, the derived properties of the
free energy and the specific heat are examined.

2.1. The Equation-of-State

The asymptotic equation for the phase boundary,
eq (1.1), suggests the introduction of a variable x
defined by

x=t[|Ap|VB. (2.1)
In terms of this variable, it is hypothesized that the
equation of state is of the form:

Ap=Ap|Ap[>~1h(x). (2.2)
The quantity A(x) is a function of the variable x only,
which according to the requirements of analyticity of
a(p,t), u(p, t), and Au(p, t) must have the following
properties:

(1) Tt is a real positive function of x everywhere in
the range —xy<x < which vanishes at the phase
boundary x=—xy, xo= B8, with a finite slope:

(), = (Ko, =B h(—)vgh-vgso
2.3)
and from the definition given in eq (1.3)
Y =B(B-1)
I"=[B'h'(—xo)xh™]". 2.4)

About x=0 h(x) possesses the series expansion
h(x) =, hpi=ho+hix+hox? + . . .
i=o

so that on the critical isotherm |Au|=ho|Ap|® and
from the definition in eq (1.2)

A= hy 2.5)
(2) For large x, h(x) has the series expansion
h(x) - i nnxﬁ(6+l—2n) (26)
n=1
which means that
Y = [Kelatpe= e~ 2.7)
ap P=pc pepe ’
and
y=B(8—1)=%'
F=ni! 2.8)
(3) The compressibility is given in general by
[p2Kr]'=|Ap| = [Sh(x) s xh'(x)].
B 2.9)

For it to be nonnegative A (x) must satisfy the condition

Boh(x) = xh'(x). (2.10)
Thus, with the definition y=8(8—1), the scaling
law eq (2.2) is consistent with anomalies (1.1, 1.2,
1553)F

2.2. The Free Energy

The free energy per unit volume a(p, t) is only
partially determined by the equation of state:
w=pwu(p, t)=(0aldp). First, since the scaling law
equation is an expression for Au, an unknown function
w(pe, t) multiplied by p enters into the expression
for a(p, t). Secondly, an integration constant Ao(T)
will occur additively. It is assumed that A4o(T) is
an analytic function of the temperature.

In the general case a #0 (0 <a=2—p8(6+1)<1)
we have the following expression for the free energy:

564



a(p.t)=Ao(T)+pu(pe, t)+ |Ap|®+laa(x)

(2.11)
with a.(x) related to A(x) through:

—xai(x) + (2— a)aq(x) =Bh(x) (2.12)

aqo(x) is analytic everywhere for —xp < x < %; near
x=0 it can be written in the form

hlx

l—«

ao(x) = B2+

2—o
—XIﬂcI"‘*f0 [h(y)—hly—ho]lyl“"‘dy}. (2.13)

In the two-phase region a,(x) is constant and equal
to its value on the phase boundary a.(—x0). (The
numerical value of ao(—x0) can be evaluated by using
in eq (2.13) the series expansion for A(y) near y=0
with as many terms as necessary to cover the range

— X0, 0)

For large positive x, a,(x) can be expanded as

= 2—a 1 & - 2—a—28n
aq(x) =Cx? +§E n-lnx2-a-28 (2.14)

‘n=1

the constant C being given by
C=—sz [A(y) —ho—hiyly*—3dy.  (2.15)
0

In the case a=0, the free energy is given by

a(Bp, t)=Ao(T) +p(pe, )p+|Ap[> " ao(x)

~+ hot?In |Ap)| (2.16)
with ao(x) satisfying the differential equation
—xay(x) +2a0(x) =B[h(x) —hox*].  (2.17)

The necessary and sufficient condition for the heat
capacity to be positive is that al(x) < 0 for all x in the
range —x, < x < %, This is hard to translate into any
simple condition on h(x) or its derivatives. However,
the condition that for all x in the range —x)<x <
h"(x) be nonnegative is sufficient for the positivity
of the heat capacity and is useful in constructing
functions.

From the thermodynamic relation p=up—a,
through eq (2.2, 2.11), the equation of state in the
variables p, Ap, t may be derived:

p(p, T)=Ap|Ap|>'h(x) + |Ap|®*![h(x) —aq(x)]

(1) (2.18)
The behavior of the vapor pressure p.(t) and the
pressure above T. on the critical isochore will then
be given, respectively, by

pe(T) =—Ao(T) —aa(—x0) x§72(—12)>7*, t <0

p(pe, t)=—Ao(T)—Ct>2, t > 0. (2.19)
The nonanalytic term is of the form [¢[*~2. Its co-
efficients for positive ¢t differs from that for negative ¢.
However both coefficients are related to h(x), through
eq (2.13) and (2.15) respectively. They are both pos-
itive since aqo(—x) and C are negative. Since the
chemical potential along the critical isochore is as-
sumed non singular at t=0, the singularity in the
pressure is directly related to the singularity in the
specific heat according to the scaling laws. Indeed
the second derivative of the pressure on the critical
isochore according to eq (2.19) diverges with the ex-
ponent « and the same exponent is found for the
specific heat. From

d*a
()

(T in units T,, pC, in units p./T)

pCe=
(2.20)

the scaling equations for the specific heat are derived
to be:

_d40 | Eplpet) d*ulpe, t)
—PCIT="gz +— gz —+tAp—gp
+a(—x0)x§2(2—a)(1—a)(—t)@
two-phase region (25200
_dAy | Pulpe, t),  d*ulpe, t)
—PCIT="g"+ =g — A

+ |Ap|~“Bag(x)
one-phase region.

The singular behavior is described by the term with
(—t)~“ in the two-phase region and by the term with
|Ap|=%/# in the one-phase region. It is therefore de-
rived completely from the properties of h(x); in partic-
ular along the ecritical isochore in the one-phase
region:

ar(x)=C2—a)(l—a)x". (2.22)
Thus pC./T behaves as t~¢: also on any other isochore
t=* is the asymptotic behavior for large x. The complete
expressions for the specific heat on the critical isochore
are:

Lo &, dulpes)

T de dt?
+ao(—x0)x§72(2—a)(1—a)(—t), t<0
_Q=d2Ao+dzg! Pest)
T dr dt?
+C(2—a)(l—a)t*, t>0 (2.23)

in striking analogy with (2.19).
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The coefhicients defined in eq (1.4) are found to be
related to the properties of h(x) by:

Atla=—CQ2—a)(1—a) =Bﬁxh”(Y)y"_ldy

Ajla=— (2—a) (1 —a)a.( —x0) 282

0
Arja=B | "(y)|y|*'dy (2.24)

while the discontinuity in the specific heat across the
phase boundary, ApC,, is given by

ApC,=Bxs~h' (—x0) (— ) (2.25)
For the case a=0, analogous expressions can be de-
rived from a free energy of the form (2.16). In this case
the specific heat has a symmetrical logarithmic sing-
ularity on the critical isochore with a superimposed
finite jump and the pressure at p=p. has singular
terms of the form at?In |¢t|+ b2 with the same value
of a but different b depending on whether T = 0.
Details are given in appendix I.

3. Scaling Symmetries and Real Fluids

3.1. Antisymmetry of the Chemical Potential

The scaling laws assume certain symmetries in the
thermodynamic variables which are present in mag-
netic systems, in the Ising model, and therefore in
the lattice gas, but cannot a priori be expected to hold
in real fluids. In the magnetic case, the spontaneous
magnetization is symmetric w.r.t. the line M=0,
whereas the field is antisymmetric in M. For fluids on
thermodynamic grounds alone, we have the option to
use a p,v or a w.p analogy to the magnetic case. The
lattice gas has a coexistence curve symmetric in the
density whereas the chemical potential is antisym-
metric with respect to the critical isochore. For real
gases, a consideration of the p,v and the w.,p behavior
at different temperatures strongly favors the second
option.

In figures 1 to 3, we show the behavior of Ap=p(p,t)
—p(pe, t) versus |[v—uvc| and of |Au| versus |Ap| for
the gases CO. [6], Ar [7], and He* [8]. Above
the critical temperature, the chemical potential
shows a striking antisymmetry, evidenced by near-
coincidence of the Au(+Ap) and Au(—Ap) curves
over a range of densities up to nearly 50 percent
from critical, and up to temperatures far above
critical. (See figs. 1 and 2 for CO, and Ar.) This anti-
symmetry is absent in the p, v representation. Plotting
Ap versus Ap, approximate antisymmetry is observed
in a small density range only. Thus, above T., the
choice of variables is unambiguously the pair w, p
from the point of view of symmetry. It may be noted
that the practice of analyzing PVT data for critical
anomalies using pressure and density or volume as
variables is still widespread; since the range of anti-
symmetry in these variables is so limited, bias is

readily introduced into the exponents derived in this
way.

Below the critical temperature, the situation is
more involved.

The phase boundary, along which both Ap and Au
are zero, is symmetric around the ‘“rectilinear diam-
eter” p= (pL+pc)/2. Since p# p., we choose the
variable p rather than p. for temperatures below T..
With this variable, neither Au nor Ap is antisym-
metric over an extended range, cf. figures 1 to 3; the
, p representation is still the better of the two, and
far superior to p, v representation. Of course, even
for temperatures only slightly below T., the entire
range of antisymmetry observed above T. (*=50%
in density) is inside the two-phase region.

3.2. Analyticity of u(p, t)

If the chemical potential were fully antisymmetric,
as it is in the lattice gas, then assuming it is regular
everywhere except perhaps on the phase boundary,
1(pe, t) has to be regular in t everywhere on the crit-
ical isochore. This is so because, due to the anti-
symmetry, we can write

w(pe, t) =3[u(+Ap, t) +u(—Ap, 1)1,

the quantities in brackets being chosen in the one-
phase region and therefore being regular at all ¢. Since
the antisymmetry of A is not complete in real gases,
we cannot assume this regularity of w(pe,t) to hold
strictly. We will examine the extent to which it is valid
by considering the specific heat, which by thermody-
namics can be written as
pCo=—pT(3*ul0 T*),+ T (9*pldT?),.  (3.1)
In the lattice gas and in the scaling law formulation,
where w(pe, T) is regular, T(9%u/0T?),, gives no
anomalous contribution to C, on the critical isochore,
the divergence of C, being accounted for entirely
by the divergence of T(9%p/dT?),., as discussed in
section 2. In real systems, however, an anomaly of
(0?°u/9T?),,. may be expected [9]. In fact, even in
the simple case of a Van der Waals fluid, 20 percent
of the jump in C, at the critical point is caused by a
jump in T(9?°u/0T?),., as was shown by Barieau [10].
From eq (3.1) it follows that in the two-phase region
where u and p are functions of T only, pC), is linear in
the density, with slope —T(d?w/dT?) and intercept
+T(d?p/dT?). Alternatively, C, is linear in the volume
with slope T(d?p/dT?) and intercept — T (d?u/dT?).
Experimental evidence on the density dependence of
C, in the two-phase region near T, is unfortunately
scarce. The best source is formed by the C, data for
He* by Moldover [11]. Analyzing his raw data we find
that —T(d2u/dT?) is fairly constant and equal to
3.5%0.2 in reduced units p¢/p.Tc. The C, data for Ar by
Voronel [12] and for steam by Amirchanov [13| show
little or no dependence of —T'(d*u/dT?) on temperature
and values of about 17.5 and 46, respectively, for this
quantity (fig. 4). Thus there is no experimental evidence
for rapid change or divergence of T'(d*w/dT?) in the
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FIGURE 1. The chemical potential difference Aw as a function of the density dif-
Jerence Ap(a), compared with the pressure difference Ap as a function of Ap(b),
and with Ap as a function of the volume difference Av(c), for three isotherms of
CO, (ref. [6]).

Open symbols and dashed lines correspond to the low density side of the isotherms; closed symbols and solid
lines to the high density side.
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FIGURE 2. The chemical potential difference Au as a function of the density dif-
ference Ap(a), compared with the pressure difference Ap as a function of Ap(b),
and with Ap as a function of the volume difference Av(c), for two isotherms of
Ar (ref. [7]).

Open symbols and dashed lines correspond to the low density side of the isotherms: closed symbols and solid
lines to the high density side.
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FIGURE 3. The chemical potential difference Ap as a function of the density dif-
ference_ Ap(a), comp{tred with the pressure difference Ap as a function of Ap(b),
and with Ap as a function of the volume difference Av(c), for two isotherms of

He'(ref. (8)).
Open symbols and dashed lines correspond to the low
lines to the high density side.

two-phase region. In all these cases, on the contrary,
rapid increase of T(d?p/dT?) near T. is clearly
indicated (fig. 4).

In the one-phase region, the quantities (32%p/0T?),
and (02u/dT?), in eq (3.1) are functions of density and
temperature, thus this equation does not tell us any-
thing about T(9%u/dT?),,.. The scaling laws, however,
predict that also in the one-phase region there is only
one contribution to pC, which is antisymmetric in the
density (cf. eq (2.21)). This term is linear in p and its
coefficient is —T(9%u/0T?),.. In the cases of He*, Ar
and steam [13], this linearity of the antisymmetric part
of pC, seems to hold rather well in the one-phase
region, and its slope varies little with temperature and
is close to the value observed in the two-phase
region. Specifically, for He* we find 3.5 for

CTG 0T,

above T. from the linear antisymmetric part of
Moldover’s supercritical C, data, and 3.9 = .4 from Hill
and Lounasmaa’s C, data somewhat further away from
critical [14]. We conclude that the scant experimental
evidence presently available suggests that (02p/dT?),,
depends on temperature much more strongly than
(92u/d0T?),,. Thus, the hypothesis that p(pc, T) is
regular at T. is not contradicted by experimental
evidence: if very careful measurements of the specific
heat near the critical point would show an anomaly
in (02u/dT?),,., then the basic hypothesis of the scaling
laws, that both w and Aw are analytic throughout the
one-phase region, would be invalid and the scaling in
terms of A, Ap, t would only be an approximation.

density side of the isotherms: closed symbols and solid
200 T T
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FIGURE 4A. (pC,/T)y for steam (ref. [13]) is reduced units as a

function of the reduced density differences Ap.

Thq slope of the specific heat isotherms is (d2u/dT?);; and does not show any appreciable
variations. The intercept of the isotherms at Ap=—1 equals (d2p/dT?), and increases

by over a factor 2 from 300 to 373 °C.
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FIGURE 4B. (pCy/T)y for Argon (ref. [12]) in reduced units
as a function of the reduced density difference Ap in the
two-phase region.

The slope of the specific heat isotherms is — (d*u/dT*);; and does not show appre-
ciable variations. The intercept at Ap=—1 is (d?p/dT?), and increases considerably.
The isochore at Ap=1.006(p= 0.533 g/cm?®) is thermodynamically inconsistent with
the others.

4. A Preliminary Check of the Scaling Property

The proposed equation of state, eq (2.2), implies an
interesting scaling property which can be formulated
in a variety of ways. For instance, if the chemical
potential difference | A | is divided by |t |, eq (2.2)
predicts that the result is a universal function of the
variable x only.

| A | /]t [°=G(y)
y=|x|#=]Ap|/]| |’

4.1)

where

Using this representation we have shown [5] that this
scaling property holds within certain bounds in the
critical region of fluids. The scaled chemical potential
differences of CO> [6], Xe [15], SFs [16], N»O [17], and
CCIF; [17], obtained partially from classical PV'T data,
partially from optical density versus height measure-
ments, fall on two branches of a universal curve. The
representation (4.1) transforms the critical isotherm to
infinity. This is a drawback which can be avoided by
considering other representations. In the present
paper we will instead scale |Au| by |Apl|®, thus
obtaining the universal function A(x). With this repre-
sentation the critical isotherm (x=20) is simply a point
inside the range of definition of x. In the previous
analysis the scatter around the curve was appreciable
for several reasons. First of all, one should expect
deviations from corresponding states between these
various substances. Secondly the choice of parameters
B and & was not optimized and it was not investigated
whether these exponents are indeed the same for all
substances. Thirdly, it was not certain that for all the
points correction terms to the asymptotic form of the
equation of state at the critical point gave a negligible
contribution. In the case of the van der Waals gas and
in particular cases in the Ising model, the form of the
correction terms and the range in which their contribu-

tion is negligible are known; however, nothing is known
a priori for real gases. Finally, the possibility of a
systematic experimental error in part of the data
analyzed in reference [5] is not excluded. In this paper
we report the results of a detailed study of the experi-
mental behavior of fluids in the critical region in which
we have given attention to all these questions. First
we have not assumed corresponding states but rather
studied the gases substance by substance. This
severely limits the choices of gases: of the substances
analyzed in reference [5] only for CO, and Xe the data
are sufficient for a detailed analysis, to which we
can add the recent data on He* by Roach [8].

By proposing, furthermore, an explicit expression
for h(x) it was possible to transform the scaling
problem into a linear least-squares problem. A good-
ness of fit criterion could be established and the scaling
optimized by varying the parameters 8 and 7. Finally,
for some of the substances, a tentative determination
of the extension of the range of validity of the asymp-
totic form of the equation of state was made.

5. Proposed Form for h(x)

The series expansion for A(x) valid for large «x,
eq (2.6), contains terms of the form xY=2A" For real
fluids the value of the exponents vy and B are close to
4/3 and 1/3 respectively. A closed form for A(x),
having all the required properties, will not be found
in a simple real expression like the ratio of two poly-
nomials [4]. The requirement that A(x) be zero at
x=—2x9, will be satisfied if, following the suggestion
of Widom [2], we write

x+X()

h(x) = D(x). (5.1)

X0

The behavior of the experimental data, using reason-
able values for 8 and 8, shows a linear dependence of
h(x) on (x+x) in an appreciable range of x including
x=0, suggesting that ®(x) may be considered as a
correction term important for large values of x. Assume:

2B 1 (8—1)/2—1/2B
®(x)=E, [1+E2 (’”’—") ]

X0

287 (y—1)/28
_ [1+E._, (ﬂ) ]y (5.2)

X0

with E,, E, constants. The corresponding expression
for h(x):

287 (vy-1)/28
h(x)=E1<x~w> [1+E2<M> ]y

(5.3)
X0 X0
satisfies the following requirements:
(a) is analytical everywhere for —xy < x < o,
(b) B6h(x) > xh'(x): the isothermal compressibility
is not negative,
(c) A" (x) = 0: sufficient for the positivity of the heat
capacity,
(d) at x=—1x0, h(x) is nonanalytical but ' (—x) =E,
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is finite: the compressibility on the phase
boundary is finite and behaves like (—¢)~7,

(e) on the critical isochore (x— ), h(x) has the
series expansion:

h(x) :xy[ 2 anx— " + i bnx_":l~ (5.4)
=0

n=1

The first term of this series expansion leads to the
correct behavior of the isothermal compressibility.
The second series on the right-hand side of this equa-
tion, however, gives spurious terms. Since experi-
mentally 28 <1 but 48> 1, the leading extra term
x>~ ! is then the third in the large x expansion of A(x).

The equivalent expansion of Aw in terms of Ap at
constant ¢t > 0 is

A’U“:Ap[ fo,,(t)Apz"—F Ex gn(t) |AP|”/B]~

n=0 n=1

(5.6)

The first two terms fo(t)Ap and fi(¢)Ap? are of the
correct form but the third term g, (¢) | Ap |8 - Ap will
lead to a divergence of the fourth derivative of Au with
respect to Ap at Ap=0. Thus the function (5.3) fulfills
most of the conditions imposed upon A (x) but does not
give the correct behavior for density derivatives of
Ap higher than the third on the critical isochore.
However we do not consider this a serious drawback.
Experimental Ax data near the critical isochore are
usually beset with so many uncertainties that deter-
mination of these higher derivatives is impossible
anyway.

Expression (5.3) is a form for A(x) with a small num-
ber of adjustable parameters, namely, x,, 8, 8, E; and
E .., which is suitable for a linear least-squares analysis
of the experimental data. Defining

g(x)= [M] 28/(v1)

—[d 26/(v-1)
— [®(x)]
the assumption (5.2) for ®(x) implies linear dependence
of g(x) on [ (x+x0)/x0]?# according to

(5.7)

x+xo

28
s = o[ 14+ (2220) ).

D

(5.8)

Explicit expression for the parameters A, I', ['"and the
jump in specific heat across the phase boundary, in
terms of the parameters which appear in the suggested
form for h(x), eq (5.3), can be derived $rom eq (2.4) to
(2.8 and 2.25) and are as follows;

NS [1 +E2] (y-1)/28
r*l :xGVEl[EZ]('Y*I)/Zﬁ
(l”)—l 2(1/B)x0’7E1, F/[" :B[Ez] (1-y)/28

A(pCy).=Bx§2E(—t)— (5.9)
The values of the parameters A+, A and A; can be
evaluated numerically from (2.24) with the explicit
form of h(x). (See appendix II for details.)

6. Analysis of the Experimental Data

6.1. Evaluation of the Difference in Chemical Potential
Ap from pov Isotherms

The difference in chemical potential

Ap=p(p, t) —pu(pe, t)

along isotherms for CO, [6], Xe [15], and He* [8] is
obtained by graphical integration of the pressure
volume experimental isotherms according to
uip, 0) p(p, O
Ap= d
ulpes O

= vdp. 6.1)

[l(p(., t)

In performing the integration the knowledge of the
lower limits, the parameters p. and p(pc, t), is crucial.
Experimentally, these parameters are known only to
some degree of approximation and their uncertainty
could introduce a systematic error in the analysis of
the data. However, since Au(p, t) is with good ac-
curacy an antisymmetric function of Ap this property
can be used as a criterion to establish the position of
the point [pc, p(pe, t)] along an isotherm. That is, we
will define p. and p(pc, t) as the coordinates of the
point with respect to which Aw is an antisymmetric
function of Ap in an appreciable range of Ap. Of course
the values of p. must be the same for all isotherms. At
the same time, when the data extend over a large range
of density, an estimate of the extension of the range of
antisymmetry can be given. Actually this has been
possible only for CO. and He?; the range of anti-
symmetry extends to about 50 percent in density for
CO; and to about 35 percent for He* for supercritical
isotherms while it appears to be smaller in both cases
for T<T. [for T<Te Ap=p(p, )= w(peoex, t) =1 (p,t)
—w(pe, t)]. These are rough estimates which obvi-
ously depend on the experimental error of the data.
Since our aim is to inspect the validity of an asymptotic
form of the equation-of-state Aw(Ap, t) which is
antisymmetric in Ap, we will restrict the analysis
to points which satisfy this symmetry requirement
within experimental error.

6.2. Gravity Effect

For all three substances the experimental measure-
ments have been carried out in cells of finite height A.
When the critical point is approached, there is a large
density gradient in the cell; consequently, the average
density will be different from the density at the level
where the pressure is measured. To correct for this
error, an a priori knowledge of the density profile,
or equivalently, of the chemical potential as a function
of density, would be needed. Since this is the quantity
to be determined in the first place, this knowledge is
not available. Thus the option left is to omit those data
that are greatly beset with this error. The effect is
most pronounced very near the critical point, and, in
terms of pressure, the correction is at most p.gh. If the
difference between the measured pressure and the
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TABLE 1.

CO2, chemical potential difference Apu= u(p, t) — u(p, t) at various densities Ap= (p— p.)/p. and temperatures T for CO»

The Ap, Ap data are in reduced units, the factors used for reducing the experimental data of ref. [6] are p. = 236.7 Amagat and p/p.=0.3075 atm Am.!

TG 10> Ap 10* Ap IrAC 10?0 Ap 104 Ap e 10 Ap 100 Ap
29.929 28.34 8.2 318185 4.76 %3 32.054 3.86 6.2
9.48 385 13.98 34.1
15.03 10.8 22.32 87.5
20.93 31.0 —5.11 —8.8
=k ) —0.8 —11.94 —24.0
—6.99 —2.4 —19.05 —59.2
—10.57 —4.2 —24.65 —112.2
—15.18 —10.4 =2 —185.0

—21.00 —30.9
30.409 23.82 6.0 31.320 4.72 1.7 34.720 9.76 81.6
—24.22 =71 9.61 5.3 21.41 235.1
15.13 15.0 —10.96 94.0
20.96 &3lall =19195 =207%2
=& T =17 =1 —364.2

—6.93 =530

—10.58 —6.7

= 15,253 =15l

2091 =31
31.013 13.02 3.1 3I*523 9.50 8.3 40.087 .95 24.6
15.20 6.1 14.67 19.1 11.34 276.1
21.21 24.2 20.28 42.9 —6.98 —157.4

27.14 70.6 —8.60 =D

—12.88 =2 —15.02 —20.1

15850 S0l —21.17 —49.4

—18.59 —13.9 —26.45 —101.5

—21.79 —27.3

pressure on the critical isochore is less than three
times this amount, we have rejected the point.

7. The Data

A critical examination of the internal consistency of
each set of data has been performed before proceeding
to the analysis. This led to the following conclusions.

(a) CO, data [6]. The internal consistency is good.
Since the cell height was unspecified and varied from
point to point, the gravity cutoff was arbitrarily taken
at Ap=0.006 bar. The data for A, Ap, T are listed in
table 1.

(b) Xe data [15]. The cell height being 1 ¢m, the
gravity cutoff is at 0.003 bar. The data have been taken
along isotherms and along isochores. As shown in
figure 5, there is a discrepancy between the two sets
of measurements. The reason for the discrepancy is
not clear; however in the isochoric measurements
check points taken at the beginning and at the end
of each run are in agreement, while in the isothermal
measurements no check points are available. We will
therefore assume that the isochoric measurements are
more reliable. We will then analyze the Aw, Ap data
evaluated from isotherms constructed from the iso-
choric data. This leaves us with a relatively small
amount of data and therefore the result of the analysis
will be of a somewhat qualitative character. The data
are listed in table 2.

TABLE 2. Xe, chemical potential difference Ap=pu(p, t) —p(pe, t)
at various densities Ap=(p—p.)|p. and temperatures T for Xe

The Ap. Au data are in reduced units, the factors used for reducing the experimental
data of ref. [5] are p.=1.110 g/em? and p¢/pe=51.84 (cm?/g) atm.

e 10:Ap | 10Au =0 102p | 10'Ap
16.790 3.01 0.5 | 17.590 6.14 9.5
6.14 1.5 14.57 31.5

14.57 9.5 —095 | —1.4

—499 | —1.0 —251 | —35

—9.16 | —3.7 —387 | —5.7

—1319 | —-174 —499 | —7.1

—1347 | -83 —9.16 | —15.8

—13.19 | —26.9

16.990 3.01 1.5 | 17.990 6.14 14.1
6.14 3.6 14.57 43.2

14.57 15.5 —0.95 | —2.2

—4.99 | —1.9 —251 | —53

—9.16 | —6.1 —279 | —5.4

—13.19 | —11.8 —387 | —83

—13.47 | —13.1 —4.99 | —10.8

—9.16 | —23.1

—13.19 | —37.8

17.190 6.14 5.8 | 18.390 3.01 9.0
14.57 20.6 6.14 19.3

—499 | —27 —095 | —27

—9.16 | —86 —387 | —115

—13.19 | —16.1 —499 | —14.5

—13.47 | —-17.7 —9.16 | —29.6

—13.19 | —48.6

—13.47 | —50.5
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FIGURE 5. Comparison between isothermal and isochoric
measurements on Xe [15].

Full symbols and the solid lines show the isothermal measurements. Open svmbols
show the position of points obtained in isochoric measurements; for the data at 7'=16.590 °C
these are direct experimental data, for the other isotherms they are obtained by linear
interpolation of the p, t isochores in a range of 0.01 °C.

(c) He* [8]. In this experiment the dielectric constant
of a very thin layer of He* (0.025 cm) between two con-
denser plates was measured as a function of tempera-
ture and pressure. There are three sources of sys-
tematic error to be discussed. The first is the gravity
effect. Although density gradients between the
condenser plates are negligible, the pressure was
measured at a level above the cryostat. Even if the
head correction to the top of the cell could be ac-
curately estimated, an unknown head approximately
2.5 em above the level of the condenser from the top of
the cell, is present. This gives a gravity cutoff of
0.0003 bar. The second source of error lies in the con-
version of dielectric constant to density using a
Clausius-Mosotti relation with constant molar polar-
izability a= 0.1230 cm3/mol. However, if a depends on
the density as observed for He? [18],

a(cm3/mol)=0.1234—1.11 X 10~*p/p.,

then the first order correction to a density difference
Ap calculated assuming constant « would be
1.11 X 10~* (1/a+ Ap)Ap. This correction is different
at the low- and at the high-density side, and would,
at Ap ~ 30 percent, amount to 2.6 X 10~ in Ap on the
vapor side and 2.8 X10~* on the liquid side, respec-
tively. Since the uncertainty in Ap is about 3 X104,
this is a borderline correction; however, if applied, it

would slightly improve the antisymmetry of the
A, Ap data.

The third source of error is more elusive and is
related to the use of the Tss He* vapor pressure scale
[19] near the critical point of He* . This scale relates
the vapor pressure to the temperature by an equation
which is analytic at the critical point. This is contrary
to the current ideas about critical point anomalies.

According to the scaling laws, the divergence of the
specific heat imples a similar divergence in d?p,/dT?.
Moldover [11] estimates from his specific heat measure-
ments that vapor pressures near the critical have to be
assigned temperatures up to 0.0007 K below those on
Tss. One can avoid this difficulty by calibrating the
thermometer independent of the Tsg scale, or by cali-
brating it on this scale in a temperature range not too
close to T, (say below 5 K).

In the present experiment it appears that a germani-
um thermometer has been calibrated on the Tss scale
in the range from 5 K to the critical point, and, more-
over, that this calibration was extrapolated to tempera-
tures above critical. From Moldover’s estimate of the
size of the correction below T., and assuming that all
temperatures are measured relative to critical, it
seems corrections to T.—T will be below 0.5 mK.
For T>T., where extrapolation is involved, the
correction may well increase; we will assume that for
isotherms further from critical the temperature is not
known to better than 1 mK.

The A, Ap, T data for He* are listed in table 3. Other
data on He?! are available in the work of Edwards [20].
These data are restricted to the region T' < T, and yield
information on the phase boundary and the behavior
of the compressibility for t <0. We have chosen to
check the scaling properties on Roach’s data because
in this case also the region above the critical tempera-
ture has been explored. We will compare the results
with the results of Edwards only qualitatively because
a direct comparison of the coexistence curves in the
pT plane by the two authors shows some as yet
unresolved discrepancies.

8. The Analysis of the Au, Ap, t Data

Using conventional linear least-squares techniques,
we fitted g(x), defined by eq (5.8), as a function of
[(x+x0)/x0] 2% and obtained estimates for E,, E, and
their errors. The computations were performed
using the general purpose program OMNITAB [21].
The experimental values of Au, Ap, and T (tables 1-3)
were used to evaluate x and g(x) by using suitable
values for p¢, B, 8, xo, and T¢. We took B and xo from
a preliminary analysis of coexistence curves. A more
refined analysis, to be published [22], yields values for
B and xo which are only slightly different from the ones
we used (see table 4). The fit of the Au, Ap, t data is
repeated for different values of & and 7. until a min-
imum in the standard deviation of the fit is reached.
The value for T, corresponding to the minimum agrees
with the critical temperature obtained from fitting the
coexistence curve [22] (table 4).

Weights were assigned to A, Ap, and ¢ in the fol-
lowing way. The precision of the experimental pres-
sure, temperature and density was estimated from the
description of the respective experimental methods.
From the pressure error o, the error in Au was esti-
mated as o,=20)/p.. The estimated errors in the
reduced quantities Au, Ap, t are listed in table 5.
The fit was performed assuming that the variable
[(x + x0)/x0]*# is free of error and that the variable g(x)
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TABLE 3. He?, chemical potential difference Ap=pu(p, t) —u(p..t) at various densities Ap= (p—p.)|p. and temperatures T for He*
The Ap, Ap data are in reduced units, the factors used for reducing the experimental data of ref. [8] are pe=0.069 g/cm® and p o/ pe=2.475 10* torr cm?¥/g.

T K 102Ap 10°Au TK 102Ap 10584 TK 10:Ap 10°Au TK 102Ap 10°Au
5.1097 33.58 2.68 | 51793 | —20.28 | —1.33 | 5.1929 13.67 0.84 | 5.221 8.04 1.29
35.38 6.71 —21.99 | —2.29 17.78 2.10 10.99 2.30
—-25.30 | —5.08 21.28 4.15 16.65 4.66
—28.68 | —9.74 25.10 7.89 21.54 8.69
28.35 12.91 25.74 14.38
5.1406 29.86 3.77 31.23 18.93 30.22 23.47
32.14 7.74 34.71 28.95 —855 | —1.40
34.15 12.36 | 5.1795 18.64 0.95 —-16.46 | —1.33 —14.14 | —3.05
—29.99 | —3.51 19.64 1.13 —20.46 | —3.12 —-20.16 | —6.86
3333 | —10.25 21.68 2.40 -24.03 | —6.11 —-25.14 | —12.88
—36.01 | —17.57 23.25 3.64 —28.06 | —11.93 —30.32 |-23.71
31.61 15.63 —31.77 | —20.26
—35.83 | —33.83
5.1666 22.75 1.25
25.73 3.79 | 5.1822 19.99 .74 | 5.201 12.91 1.10
27.64 6.14 21.71 2.90 17.45 2.62
29.78 9.53 23.23 4.09 21.20 511 | 5.264 1.55 0.69
25.45 9.76 7.22 3.27
51663 | —23.65 | —1.50 | 5.1835 | —18.13 | —1.18 29.19 16.08 12.90 6.61
~26.65 | —4.39 —-20.30 | —2.19 33.13 26.18 20.14 13.69
—-30.17 | —10.02 ~12.03 | —0.98 27.84 28.12
—-33.71 | —18.75 —1541 | —1.98 —3.68 | —1.55
—35.78 | —25.61 | 5.1862 18.96 1.86 —19.86 | —4.17 —8.83 | —3.97
21.19 3.27 —2335 | —17.37 —1459 | —17.67
23.65 5.41 —27.03 | —12.35 —20.04 | —13.24
—-17.61 | —1.16 —31.01 | —20.89 —26.10 | —23.87
-19.78 | —2.17 —35.09 | —33.85
5.315 5.97 4.93
4.54 3.34
—9.90 | —8.04
—11.12 | —9.66

TABLE 4. Critical parameters for CO,, Xe, and He'.

In most cases the error bars denote standard errors obtained by the least squares analysis. The ones marked by asterisks have been established by observing that systematic deviations

from the fitted equation are present if the parameter is varied by this amount or more.

CO, Xe He?
B |values used in the fite.....oeveveeeeareeeerereerenrensesenes {0'35 0.35 0.359
sl 0.135 0.186 0.36
Pc IO ANTISYINIMELTY . cocuneereernsnscnnscsesessensesssnssasanssss 236.7 Amagat 1.110 g/cm? 0.0693 g/cm?
T. 30.96 +=0.04 °C* 16.58 +0.03 °C* 5.1884 =0.0008 K*
) f fit of the Ap. Aw. ¢ dat 4.6+0.1* 4.6+0.1%* 4.45+0.10*
By 500 0 RE SR s s BERE s s 2.36+0.02 2.96+0.07 2.78+0.03
E, 0.30+0.02 0.37+0.03 0.48 +0.03
B 0.347 0.351 0.355
;2 from fit of coexistence curve, [22]...............ccooeeai. 232:%33/9\m ?}gg S 83280 wfom?
e, 1 30.96 °C 16.59 °C 5.1887 K

contains all experimental uncertainties oy, o,, o
Using propagation of errors the weight to be attributed
to g(x) is found to be

oo () 6 ]
IS i

In order to obtain reliable values for the critical expo-

TABLE 5. Estimated experimental errors in the reduced density
difference (o). reduced chemical potential difference (o) and in
the reduced temperature (o)

g, Oy (3
(B, PV S 3.3%x10- 6.5X10-> 2.0x10->
Xedatasinn i i, 2.0x10-* S orEl 0y 3.4X10-¢
A P A AL B30 1.2X10-4 5.0 X10-3
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nents and coefficients, we have to make sure that
contributions from possible corrections to the asymp-
totic form of the equation of state are negligible in
the range of data considered. Correction terms which
do not possess the antisymmetry property are readily
excluded by restricting the analysis to the range of
antisymmetry. Because the form of antisymmetric
correction terms is unknown, their contributions can-
not be evaluated. However, such terms will scale in
a way different from the asymptotic term; therefore,
points for which their contribution is important will
show systematic deviations from the fit. For one sub-
stance, namely COs, for which many data are available
on isotherms substantially higher than critical, the
- effect of points outside the range of validity on the
values of the parameters may be observed and an
estimate of the range derived.

Actually, for CO., omitting points within the range
of antisymmetry for the isotherms between 29.929 and
34.720 °C does not affect the results of the fit while
including points with Ap > 11 percent at 40 °C and
Ap > 1.4 percent at 50 °C (next point at 15%) introduces
systematic deviations and an apparent lowering of the
value of 6.

For Xe the temperature range of the data is quite
small and no appreciable effect was observed omitting
points at large densities on any isotherms. For Het
omitting points within the range of antisymmetry for
the isotherms between 5.109 K and 5.202 K does not
affect the results while the inclusion in the analysis
of the points with Ap >30 percent at T=5.221 K,
Ap > 28 percent at T=5.264 K and with Ap > 11 per-
cent at T'=5.313 K introduces systematic deviations
which again apparently lower the value of §.

In table 4, the values of the parameters obtained by
fitting the Aw, Ap, ¢ data are listed. The value of p. is
that with respect to which Au is antisymmetric. The
parameters E;, E, are least-squares estimates, as
explained before; the errors listed are standard de-
viations. The parameters & and T. were varied step-
wise. The values given minimize the standard deviation
of the fit. The errors in 8§ and T are estimates obtained
by observing that systematic deviations from the fitted
equation arise if the parameters are varied by this
amount or more. They do not take into account the
effect of small variations in 8 and x. For the three
substances, the values found for the exponents B and
d are the same within the error bounds. To decide if
the small observed differences are significant, more
accurate determinations of the exponents are needed.
Of the other parameters describing the critical point
behavior, E; and E» do not show large variations either;
the only parameter varying greatly from substance to
substance is xy.

In figures 6A to 8A the optimized function A(x)
is compared with the experimental data for the
three substances in a log log plot. It is seen that the
Jlog h(x) is a smooth and nearly linear function of
log (x+x0). Deviations from linearity are important
only for quite large value of x. The point at x= 0 (critical
isotherm) behaves like any other point at finite x.
The agreement with the experimental points is best

seen from the deviations plots shown in figures 6B
to 8B where the relative difference between the
experimental and the calculated value of h(x) is plotted
versus log [(x+x0)/%]. No evidence of systematic
deviations is found.

Figure 8B indicates that for He* the error limits
are somewhat too narrow. Some of the errors in table 5
must have been underestimated. An adjustment of
the estimated error in the pressure could remedy this
problem. In view of the arbitrariness of this procedure,
we have not done this. Moreover, statistical estimates
for parameters and their standard deviations are
usually not very sensitive to the exact weighing
procedure used.

From the values of 8, 8, £, and E», and using the
equalities

y=B(6-1)
2—a=8(5+1)

(8.2)

and definitions of A, I', I" . . ., eq (5.9), we have
determined the parameters listed in table 6. If 8 and &
are constant from substance to substance, obviously
the same would be true for the exponents y and a.
Of the other parameters also A and the ratio I'/T"
seem to be remarkably steady. Therefore the critical
isotherms of the three gases should approximately
coincide; our previous study, implicitly assuming
this coincidence, yielded a value of & slightly higher
than the one found presently. This must be due to the
inclusion in the previous analysis of other data not
studied here. The compressibility ratio I'/T" is sub-
stantially smaller than our previous estimate obtained
by graphical determination of slopes of isotherm
(see below). Our new value agrees reasonably well
with the value obtained for Xe by Wilcox and Balzarini
[23] using optical interferometry, namely I'/I"" =4.9.

For each substance, internal consistency checks
have been made by comparing experimental critical
isotherm and compressibility data with values pre-
dicted by our equation.

An example is figure 9 for CO,, where the inverse
compressibility (9A) on the critical isochore above T,
and along the phase boundary below 7. is shown;
moreover, the critical isotherm is plotted (9B). For
the latter, it is seen that the experimental data agree
quite well with the calculated curve. This is also the
case for the compressibility above T.. However, below
T., the experimental points show systematically lower
compressibilities than our equation predicts. These
points have been obtained by graphical determination
of the slope of isotherms near the phase boundary,
and by assuming linearity of p versus Ap in an appre-
ciable range. The optical measurements [17] indicate
strong curvature of these isotherms, suggesting that
slopes taken from PVT data tend to underestimate the
limiting compressibility. The function (5.3) predicts
a very small range of linearity; the discrepancy is then
explained by the fact that the experimental points do
not define the true limiting behavior. The refractive
index measurements of Edwards [20] in He* permit
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CARBON DIOXIDE. MICHELS

mT = 303.078
®T = 303.559
AT = 304.163
ol £71 = 304.335
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FIGURE 6A. Log-log plot of h(x) versus (x+ xo)/xo for COs.

The solid line represents h(x) according to eq (5.3) with parameters given in table 4. Experimental points are
shown with estimated errors in the variable A(x).
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FIGURE 6B. Relative deviation Ah(x)/h(x)= [hezp(x) — hjitea(x)]/hep(x) versus
log [(x+x0)/x0] for CO..

Vertical error bars represent all experimental uncertainties.
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FIGURE TA. Log-log plot of h(x) versus (x+ xo)/xo for Xe.

The solid line represents h(x) according to eq (5.3) with parameters given in table 4. Experiment points are
shown with estimated errors in the variable A (x).
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FIGURE 7B. Relative
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deviation  Ah(x)/h(x)= [hezp(x) = hjitea(x)]/herp(x)  versus
log [(x+xo0)/x0] for Xe.

Vertical error bars represent all experimental uncertainties.
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FIGURE 8A. Log-log plot of h(x) versus (x+ xo)/xo for He*.

The solid line represents h(x) according to eq (5.3) with parameters given in table 4. Experimental points are
shown with estimated errors in the variable A (x).
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FIGURE 8B. Relative deviation Ah(x)/h(x)= [hesp(x) = hpittea(x)]/hezp(x) versus
log [ (x+x¢)/x0] for He*.

Vertical error bars represent all experimental uncertainties.
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another estimate of the range in which p is linear in
Ap and also in this case important deviations from
linearity set in at reduced densities only a few percent
away from the phase boundary. The values of y' =1.26
and I''=3.8 X 10-2 determined by Edwards are in good
agreement with our values for He* shown in table 6.

TABLE 6. The critical exponents y and « and the calculated param-
eters which describe the behavior along the preferred curves:
critical isochore (I' and ') and critical isotherm (A); also the
parameters describing the specific heat along the critical isochore

[A+, A, ApC(—t)].

CO. Xe He*
1.26 =0.06 1.24+ .04
0.04 0.05
5.9X10-2 1.30xX 10!
1.43 X102 3.59%102
4.1 3.6
383 3.2
3.70 1.06
4.80 1.42

28 7.3

We note that the values 0.76 and 0.56 reported for A in ref. [5] actually were the values
of log A. We note also that the values for ApC,(—1)* reported in ref. [28] correspond to the
actual values multiplied by a.

e T=31013°C
[ oT-=3.037°C

1073 L L0
103 102 o
t=|T-Tc| /T

FIGURE 9. Comparison between the experimental results and the
prediction of the fit for the compressibility on the critical isochore
above T, the compressibility on the phase boundary below T,
(94) and the critical isotherm (9B).

The experimental results for the compressibility are obtained assuming that the {1 p
isotherms are linear in p in an appreciable range around pc(T >Te) or near the phase

boundary (T < T.). The solid lines represent the prediction from the fit of the Ap, Ap,
t data.

8. Consistency Checks: Vapor Pressure and
Specific Heat

In section 2 it was shown that the scaled equation
of state predicts the nonanalytic behavior of the free
energy a(p, t) and therefore of the pressure and of

the specific heat at constant volume. Thus external
consistency checks of the scaling of the Au, Ap, t data
are obtained by comparing the anomalies implied for
pressure and specific heat with an independent
analysis of the directly measured values of p and C,.

8.1. Vapor Pressure and Pressure Along the Critical
Isochore at 7' > T,

The prediction of the scaling law for these quantities
has been given in eq (2.19). If the analytic part 4T
were known, a direct analysis of the pressure would
yield information on the terms with |#|2~® and on the
value of the exponent « itself. In a relatively small
range of ¢t we can assume that a polynomial in ¢ gives
an accurate representation of the function A,(T).
With a given set of experimental data one can then
observe the difference in the fit obtained with a
polynomial in ¢ of degree n (perfectly analytic behavior)
or with a polynomial of degree (n—1) plus a term
D|t|>*-«. However, the indications are that « is small
(= 0.1); thus unless very accurate determinations of
the vapor pressure over a not too limited range of
temperatures are available, the values of @ and D
will have large uncertainty, even if the nonanalytic
expression gives an improved fit to the data. The
product D« is expected to be approximately constant
and perhaps somewhat better determined. Vapor
pressure data and pressure on the critical isochore
above T'. should be independently fitted and compared
to see whether the analytic part and the values of « are
the same. For Xe a reasonable amount of information
is available at T<T. in the data of Michels et al.
[24], namely, eleven data points between 247.2 K and
289.2 K. We have fitted these data with a 3d degree

polynomial and with the nonanalytic expression

P—Dc
Pe

=at+bt2—a.(—x0)x§2(—1t)2 . (9.1)

Although the two functions have the same number of
adjustable constants, the nonanalytic expression
has a standard deviation of a factor 4 smaller for
any « between 0.04 and 0.08. Due to the fact that
there are no points very close to 7., small variations
in T (and p.) do not affect the results. Values of the
constants a, b, aq(—2x0)x§2 are given in table 7.
Because of the scarcity of data we did not study the
dependence of the parameters on the range.

TABLE 7. Constants of the vapor pressure equation:
Ap/p.=at+bt>—as(—x0)x¢2(—1)>"2,
for Xe ref. [24] and CO; ref. [25]

a a —-b —ao( —%0) %872 — aaa — xo)x§2
Xe 0.04]/6.02+.01 |76x2 82+2 3.28+0.08
0.06| 6.02 47 53 3.18
0.08| 6.02 32 38 3.04
CO, 0.046.980=.002|85.1+.8 93.8+.7 3%
0.06 |6.984 51.1+ .4 60.1+=.5 3.60+.3
0.0816.988 34.2+.3 43.4+ .4 3.46+.3
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TABLE 8.

Parameters describing the behavior of the specific heat along the critical isochore: comvarison between values derived (a) from fit

of the Ap, Aw, t data, (b) from fit of vapor pressure data, (c) from direct measurement of C, (d) our analysis of the experimental C data

of ref. [11]

In the table blank spaces indicate that a numerical value for the parameter could be derived by the measurement but is not available at present. A dash (—) indicates that information

on the parameter cannot be derived from the corresponding analysis.

d*p(pe,t) d24(t)
Az A+ ) e s i S 7P e e (—t)@
a 1 C) T de2 dlz APCz ( t)
COzuvvenien (a) 0.04 it 4.3 — — — 39
(b) 0.04 7.06 = s 170 =
D, CH (a) 0.04 4.8 3.7 — = = 28
(b) .04 6.2 — == 150 —
.06 5.8 — — 94 ==
(c) .065 4.4 29 —44
Het ..ol (a) .05 1.4 1 — — — o)
(d) .04t0.11 ~ 1.3 ~9 —20to—6 —8.9:£0.2 23.5t09.5 8.0

For CO., precise vapor pressure data have been
recently measured [25], with 29 points between —5 °C
and 31 °C. Here, the data were fitted to a 3d degree
polynomial and a nonanalytic expression analogous
0 (9.1). Use of the nonanalytic expression decreases
the standard deviation of the fit by a factor 7. T¢, «
and the range were varied and an optimum fit was
obtained for a between 0.04 and 0.10 for the range
4 to 31 °C. From the coefficient of the nonanalytic
term, and using the scaling laws eq (2.19) and (2.24),
values for A /o are derived and compared with those
obtained from scaling the Au, Ap isotherms of Xe
and CO; in table 8. In view of the large uncertainty
in the value of « and the correlation between « and
A;; we feel the agreement is reasonable. In the same
table, values for 4 /a from direct measurements of
the specific heat are also presented. We will discuss
the agreement below.

The constant b in the vapor pressure equation yields
an estimate of —7Td?4,(t)/dt*, which is also given
in table 8.

8.2. Specific Heat

From the scaling law eq (2.21) it is seen that in the
one phase region

d2Ay(t)
dt*

2
[T+ £48) 1 (TLell] |pie=—ai(x) 02)
that is, the quantity on the left-hand side is a function
of the variable x only; its properties are related to
the properties of h(x). If functional forms of a;(x) and
d*A,
dr*
to check the scaling of data measured at various
densities and temperatures. The situation would then
be analogous to the scaling of the Aw, Ap data, but
while in the latter case only one function A(x) had to

could be postulated this relation could be used

362-197 O-69—2

be chosen, here we have two unknown functions

dt?
assumptions, we decided to analyze only those specific
heat data that are close to the critical isochore. For
these the scaling laws predict the following behavior:

and al(x). In order to avoid making additional

C,«:Cu+ (A +/J)Tt7a
C,-ZC()+ (Aﬁ/a)Tl _tlia

t > 0 One-phase region
9.3)
t < 0 Two-phase region

with

Co== de? de?

T |:d2/1~(p(-, t) + dzA()(t) :l

assumed to be constant in a small range of ¢. If this
asymptotic form is assumed valid over a comparable
range of t above and below T, one can determine the
values of the parameters «, Co, A", A, by fitting
expressions (9.3) to the experimental data; systematic
deviations should appear at the same values of [¢| on
both branches.

Experimental data are available for He* in the
measurements of Moldover [11] and for Xe in the
measurements of Edwards, Lipa and Buckingham [26].
We made an analysis of the raw data on helium and
obtained the range of values given in table 8. As an
example, a plot of (C,—Cy)T "' with Co=—0.7 J/em? K
or 15.5 reduced units is given in figure 10. The data at
T < T. are on a straight line of slope a«=0.06 and the
same value of « is compatible with the data at 7> T;
in the latter case the points with ¢t <10~? may be
slightly affected by gravity. From the values of C, and
the known value of Td*u(pe, t)/dt? values for d*4/dt>
are derived. (Table 8.) The C, data for Xe have been
analyzed by the authors [26] according to eq (9.3) with
T assumed constant and equal to 7. They conclude
that any value of a between 0 and .12 gives a reason-
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FIGURE 10. Log-log plot of the experimental data on the specific

heat of He?, ref. [11].

In this plot C,, Cy are in J/cm® K. Cy has been assumed constant and equal to —0.7 J/em?*
K. and T.=5.1889 K. The solid lines are lines of slope a=a’'=0.06. Similar plots are
obtained with Cy in the range —0.3 to —0.9 J/cm® K. The corresponding values of a will
range from a=0.04 to «=0.11.

able fit to the data; their values for the parameters are
also listed in table 8.

The comparison with the values of the same param-
eters as obtained from the analysis of the A, Ap, ¢
data is quite good. It should however be mentioned
that in the case of helium our value of @ does not seem
to agree with the value given recently by Moldover by
a scaling-law analysis of his data. In appendix I we
discuss Moldover’s procedure and the possible reason
for the disagreement.

In conclusion, there are presently no indications of
serious inconsistencies between the scaling-law
approach of the equation of state, and the behavior of
vapor pressure and specific heat of CO., Xe and He*.

9. Conclusions

In applying the scaling laws in their present formula-
tion to the critical region of fluids, the antisymmetry
of the chemical potential with respect to the critical
density is a prerequisite. We observed this antisym-
metry in the experimental data in the critical region
of a number of fluids in an appreciable range of density
and temperature. As we have pointed out (sec. 3), a
corollary of the antisymmetry is the analyticity of
w(pe, T) at T.. This analyticity has been found not to
be contradicted by the scarce experimental C, data
presently available. Scaling of the experimental Apu,
Ap, t data for He*, CO, and Xe has been shown to be
possible within experimental precision in a density
range of about =30 percent from critical and for tem-
peratures within —1 percent to + 3 percent from criti-
cal. A form we propose for the scaling function h(x)
fits the data for these three fluids and predicts reason-
able values for the anomalous part of C, and of the
vapor pressure. The values of the critical exponents
determined by the use of the function vary only slightly
from substance to substance. There is hardly if any

dependence on the quantum parameter A* [27]. The
coefficient E; and E, in our equation do not vary ap-
preciably either from substance to substance; thus the
deviations from corresponding states are almost com-
pletely described by the parameter x,, or B, alone,
which parameter varies considerably from substance
to substance.

The present analysis has made it clear that new
experiments are needed; in fact, several of the above
conclusions are tentative because of lack of sufficiently
precise and extensive experimental information. In
particular, the fundamental question of the antisym-
metry of Au should be further investigated. Most useful
would be studies of the density profile in the gravity
field both above and below T, since this is a direct
probe of the w, p relation. Particular care should be
given to avoid vertical temperature gradients. At the
same time, the behavior of d*u(pc, t)/dt> should be
elucidated by precise C, versus p measurements in
the two-phase region approaching the critical tem-
perature as closely as possible. C, measurements in
the one-phase region, particularly at T. and along the
two-phase boundary below T, will, in addition, provide
better information about the exponents a and «'. The
specific heat measurements should be supplemented
with measurements of the pressure on the critical
isochore both above and below T, to check whether
the divergence of C, is indeed fully explained by the
divergence of (9?p/dt?). Finally, precise PVT data are
needed, in particular near the two-phase boundary.
The most useful approach would be to obtain as many
of these properties as possible for the same substance.

At the present level of experimental precision the
scaling idea, including the assumption of antisymmetry
of Aw, and the equation we propose, seem to hold
satisfactorily. If, from more refined data, systematic
deviations from our function were found but scaling
is still observed, other closed-form expressions for the
function h(x) could be considered. For instance, a
modification of our function, which could give a better
agreement close to the phase boundary, and at the
same time move the nonanalyticity at x=—2x to a
point x=—ux;(x; > xo) inside the two-phase region, is
readily obtained by replacing (x on()) ZB in eq (5.3) by

2
(%{)x’) B. More precise data could also reveal devia-
tions from scaling in the present density-temperature
range. This might lead to a refinement of the defini-
tion of the asymptotic range without necessitating
fundamental changes in the scaling ideas.

However, should it be found that the property of
antisymmetry is not fulfilled, then basic changes in the
scaling formulation are needed, for instance by choos-
ing new variables such as a combination of pressure
and chemical potential. Within the framework of the
scaling laws as presently used, the most significant
need, from a phenomenological point of view, is the
formulation of the free energy as a function of density
and temperature, since the knowledge of the Au, Ap,
t equation of state by itself yields only a partial descrip-
tion of the critical region.
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10. Appendix |
When a=0, eq (2.16) and (2.17) must be used to

derive expressions for the equation of state in terms
of the variables p, p, t and for the specific heat.
For the pressure one obtains

p="2p|Ap|>~h(x) + |Ap[>*[h(x) — as(x) ]

— hot?In |Ap| — A(T) (AL1)
which gives on the critical isochore:
p(pe, t) =—Ao(T) — BGt>— Bhot? In t
po(T) =—Ao(T) — £ [ao( — x0)x0> — BhaIn x0]
—Bhot2Int|  (AL2)

where G is an undetermined constant and a(—x)
may be evaluated from the expression for ao(x) valid
near x = 0:

ao(x) :B{%ho+h|x+Fx2

—xzj. [A(y) —ho—hiy—hoy*] |y | ~dy} (AL3)
)

(

where F' is a constant related to G by

F=(,‘+fxd_y [h(Y)_hj:—hx}’_ hs
y - 15F57

]. (AL.4)

0

The nonanalytic part is then composed of two parts,
at?Int term with the same coefhicient above and below
T., and a t2 term with different coefficient for t >0
ort <0.

For the specific heat one obtains for t >0

C, d?4 d*u(pe, t) 7
_BT_: e “d’; + aj(x) +2hs In |Ap).
(AL5)
On the critical isochore:
ai(x) =2Bhs In x+3Bh>+ 286G (AL6)
_Cy_ 4y | Pulpc, t)
T=ar: T dr ~+2Bhs In t + 3Bhs + 286G
(AL7)
in the two-phase region:
. pCv _JZA() dz,U«(Pr'» t)
T = dT‘ dt2 +2Bh3 ln |t|
— 2Bk In xo+ 3Bhs +2 W (AL8)

Therefore the asymptotic expressions for the specific
heat on the critical isochore are
C,=AInt+B, t>0
(AL9)

C,=Alnt+B_ t<0
with
A=2Bh2=Bhn(0)
B. =3Bh2+ 286
B_ = 3Bh2 _2th ln xo+ 2(10( _X())X(p—z

(AL.10)

Except for B., which contains the undetermined
constant G, these coefficients can be numerically
evaluated from the properties of A(x).

The expression for the jump in the specific heat
across the phase boundary is

APC,« = (B/Xo)h’ (_xtb)-

In contrast to the case a >0 or a < 0, this disconti-
nuity is independent of the temperature.

Since the equation for the discontinuity in pC,
when crossing the phase boundary does not involve
any unknown constant, the experimental determina-
tion of this jump would provide the most direct
information about «'.

(AL11)

11. Appendix Il

Numerical evaluation of the coefficient for the
specific heat.
A+*[a— This coefhicient is given by the integral

F Ky tdy (AIL1)
0

where A" (y)y*~! diverges near y=0.

Assuming € small but different from 0 the integral
between € and infinity is evaluated by standard
numerical integration. For the interval 0—e, A"(y)
is given by

h'(y) =2hs+ 6hyy + 12hyy>+. . . (AIL.2)
then
€ h" o h ea €a+l
[ Wy ray=am Eron, £
eu+‘l
+12h4a+2+. ... (AIL3)

For € sufficiently small, € < 0.1x¢, evaluating the first
two terms only is sufficient.

Aj/a—The calculation of this coefficients involves
the evaluation of a.(—x¢), which from 2.13 depends
on the integral

z0
[T oyt b+ eyl an

or

0
L (he— hs|y| + haly|2+. ) |y|*td|y| (AIL5)

581



which is of the same form as the integral involved
in the evaluation of 4*/a. The same procedure is then
chosen, the integration between 0 and € is performed
using the series expansion and gives a contribution

ho € €
= |:E' h,'; a+1+h4 (X+2+ .] (AII6)

whereas the integral between € and xy is evaluated
by standard numerical integration techniques.

12. Appendix Il

Moldover’s analysis of his He* specific heat data
on 7 isochores is based on the assumptions that
T(d*w/dT?),. is a constant (independent of T) and
that the density independent part of the specific heat
possesses a weak temperature dependence:

— T[d2u(pe, t)/dt?] — T(d?Ao/dT2) = a+ bt. (AIIL1)

The singular part of the specific heat in the one-
phase region, the term — T |Ap |~/ a"(x) in eq (2.21),
is chosen as

—T|Ap|~#a"(x) = A|Ap|~E[1 + x|x|¥-1]*/¥, (AIIL2)

The complete expressions for the specific heat that
are used to fit the experimental data are as follows:

pCo=DAp+a+bt+A|Ap|~*B[1+ x|x|V-1] -V,

one-phase region

pCl,zDAp+a,’ +b[+A’(_t)7a’,

two-phase region (AIIL.3)
D, a,a, a o,b, N, A, and A’ are constants to be
determined by the fit.

The assumption AIIL.2, allows to analyze simul-
taneously all C, isochores, which is a very attractive
procedure. However as Moldover points out, the as-
sumed functional dependence of x is not in complete
agreement with the scaling ideas; the most serious
problem (in our opinion) being that it does not have
a power series expansion around x=0.

With eq (AIIL3) the specific heat data on all iso-
chores scale nicely. The numerical value of the con-
stant D[=—T(d*u/dT?),.] determined by the fit is in
agreement with our value (see III). However, the
constants a and a’ are found to be different (a’ is
positive and a is negative) which implies that although
the singularity in C, is assumed to be described by
the term [Ap|~*#a”(x) in the one phase region and
by a term A'(—¢)~® in the two phase region, an
additional jump in C, is present on the phase boundary.

The values of a’ derived by this analysis, o’ =0.16,
is in disagreement with the value a’=0 reported in
his thesis and also with the value a’ ~ 0.05 that we
find fitting the data in the two-phase region using
(AIIL.3) with b =0.

The additional jump in C, and the high value of

a, ' are not in agreement with our scaling analysis
of PVT data on He® Further investigations of the
properties of the function (AIIL.2), its range of validity
and the sensitivity of the values of the parameters
to variation in the form of the function are needed.
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