

3.90

30

URE'S DIOTIONARY

arTS, MANUFACTURES, AND MINES

VOL. I

LONDON

PRTNTED BY SPOTTISWOODF ANT CO
NEW-STAEET SQUALE

URE'S DICTIONARY

OF

arts, MaNUFACTURES, AND MIINES

containing

Keeper of Mining Records
Formerly Professor of Physics, Government School of Mincs, \&c. \&c.
absisted by numbrous contributors baininet in sciencb and pamiliar with mandracturis

Illustrated with nearly Two Thousand Engravings on Wood

Fifth Edition, chiefly Rewritten and greatly Enlatgbd

IN THREE VOLUMES - VOL. I

LONDON
LONGMAN, GREEN, LONGMAN, AND ROBERTS
1861
> i Letoce schonaty rave tictive tory and Undersuruding of Medicine

PREFACE.

Ir may appear to those who are familiar with the former Editions of Dr. Andrew Ure's Dretionary of Arts, Manufactures, and Mines, that but few words are neeessary for the Introduction to a new issue of a work which is so well known to the publie. If the present Edition appeared under the ordinary eireumstanees of a reprint,-with modern diseoveries, and new applieations added,-little would have been required in the way of prefnee. Sueh, however, is not the ease, for, although this Dictionary is based on, bears the name of, and is in style and intention similar to, the produetion by Dr. Ure, it eannot but be regarded, from the extent of originat matter whieh has been introdueed, as a new publieation.

Dr. Andrew Ure's Dictionarty of Arts, Manufactures, and Mines, has, during many years, oeeupied a very important position in, what may be termed, the Commereial Literature of England.

There were few men more familiar with the applieations of Seience, and the details of all those Arts and Manufactures whieh involved the diseoveries of Chemistry, than the late Dr. Ure. Perhaps no man was more frequently consulted upon questions of patent right, or coneerned in experiments which had for their objeets the removal of difficulties in the processes which the laboratory had given to the manufactory. With these advantages, superadded to such as naturally belong to a eomprehensive mind, trained with much industry in habits of elose observation, it could seareely be otherwise than that a work of a teehnologieal eharneter produced by such a man should reaeh a high standard of excellenee.

Many of the most eminent amongst the living men of scienee, look back with feclings of affeetion to the days when, commencing their studies, they were guided by the elenr light shed upon their paths by Ure's Dictionary of Chemistry. This seienee, since the fourth Edition of that work (the Edition now before me) was published in 1831, has eompletely ehanged its eharacter. One vast division - that of organie chemistry - having been indeed ereated within the thirty years whieh have clapsed, and the theory of ehemical combination having been
cstablished upon a more philosophic basis. Conscquently the features of any new Edition of that work must present an cntirc change, and to the young chemist of the modern school the original must necessarily wear an unsatisfactory aspect. There is, however, one feature in connexion with the original Dictionary of Chemistry of Ure, which it is desirable to sce repeated in all our modern works on that, or any other, branch of science. A peculiarly lucid style distinguished all the articles which proceeded from the pen of Dr. Ure in those days, and many of the essays, devoted to physico-chemical science, are worthy of preservation, as examples, from which writers on similar subjects might learn to reach that clearness of expression united with elegance of diction which distinguishes them, but which is exceedingly rare in this class of literature at present.

The Dictionary of Chemistry slid by degrees into the more comprehensive book, the Dictionary of Arts, Manufactures, and Mines, which became the original of several similar works in this country, in France, and in Germany. During the lifetime of Dr. Ure the latter book passed through four editions, all of which have bcen found to be eminently useful to the manufacturer, the man of business, and the student of technology. In consequence of an arrangement made with Messrs. Newton and Son, of Chancery Lane, we are enabled to retain much valuable matter extracted by Dr. Ure for his last edition from a Series of Essays first published in 'Newton's London Journal of Arts.' The extracts, relating in great part to novelties of an interesting and useful nature displayed in the Great Exhibition of the Industry of all Nations, will be found included under the following heads, viz. : Alum, Beer, Citric Acid, Clay, Envelopes, Glass, Knife-cleaning Machines, Matting, Meats Preserved, Nickcl, Oxalic Acid, Paging Machines, Printing and Numbering Cards, Sand, Soap, Sulphuric Acid, Tartaric Acid, and White Lead.

A careful examination of this work, after the death of Dr. Ure, proved chat the shackles of age had, to some extent, prevented his cmbracing all those applications of science which have been made with most rapid strides within the last few years. Consequently, tho publishers, resolved to spare nothing which should contributo towards maintaining the usefulncss of this work, committed it to my carc, fully eutertaining the view that competeut writers should be engaged, to furnish articles on thoso special industries which they havo made the subject of their particular study.
From an examination of tho list of contributors it will be scen, that in many instances the highest authoritics - men whose original investigations have contributed to support tho dignity of British science have written articles for tho present Edition. Indced, it has been my earnest endeavour to obtain, upon every brauch in each of the threo divisions of this Dictionary, tho most cflicient aid, and to gather information upon every subject, from the most reliable sources.

For the zealous and really kind manner in which assistance has been afforded I am bound to express my obligations. But for this friendly cooperation the task of producing the present work would have been infinitely more laborious than it has proved to be. To the living I can only use general terms of thanks, since any selection would bo unjust, where all have shown so large an amount of earnestness.

Death has, however, removed from the list of our fellow labourers, while the printers have been engaged on this work, three friends to whose names a few words may be allowed, and to whose memory some tribute is due.

There was no one from whom I counted for more assistance in all that related to the applications of chemical science, than from Henry M. Witt. A few articles from the pen of that young chemist appear in these volumes, and had not his too sensitive mind given way under the unfortunate circumstances in which it had pleased Providence to plaee him, there can be no doubt but he would have achieved honours in the path he had chosen. T. H. Menry, whom we have also lost, and whose loss is deeply regretted, was a chemist of longer standing, and consequently better known - especially for the correctness of his analytical investigations, and his perfect knowlcdge of metallurgical chemistry. Herbert Mackworth, one of Her Majesty's Inspectors of Collieries, came to his early end, no doubt, from the zeal which led him, in the practice of his professional duties, into badly-ventilated mines. He was a man ever anxious to improve the condition of the working miner, and to relieve him, as far as possible, from those disastrous accidents which arc so fatal to this industrious class. From hinn I obtained valuable assistance,-beyond that which is indieated by his initials,—on various points connected with engineering as applied to our subterranean operations.

A few words on the plan of the present work. As in the former editions, the mere handicrafts were not included, so in this, they have, unless where they possess more than ordinary interest, been omitted, as it was not possible without greatly extending the work to eomprehend them.

The objects which have been steadily kept in view are the follow-ing:- To furnish a work of reference on all points connected with the subjects included in its design, which should be of the most reliable character. To give to the scientific student and the public the most exact details of those manufactures which involve the application of the discoverics of cither physics or chemistry. To include so much of science as may render the philosophy of manufacture at once intelligible, and cnable the technical man to appreciate the value of abstruse rescarch. To include sueh commercial information as may guide the manufacturer, and fairly represent the history and the value of such Foreign and Colonial productions as arc imported in the rav condition. To present to the public, without much elaboration, a sufficiently copious description of the Arts we cultivate, of the Manufactures for which we are distin-
guished, and of those Mining and metallurgical operations which are so preeminently of native growth, including at the same time a sufficiently detailed aecount of the industries of other states.

The greatest care has been taken to render all the cross-references as complete as possible, without putting the reader to the vexatious proeess of hunting to and fro amongst the pages, for the information for which he seeks. It is hoped that the Dictionary will be found to answer the great end of such a work, and that the facts in which it deals may be found with facility. For all those articles which have not initial letters indieating the authors' names, I am entirely responsible. Of these, a few have been reprinted without much alteration from the former edition; but by far the larger number have been written by me, after having obtained the fullest information from the best authoritics. I have never hesitated to take fresh knowledge from any source, - but if I have omitted to acknowledge the source, the neglect is unintentional.

I eommenced the New Edition of Ure's Dictionary with an earnest determination to render the work as complete and as correct as it was possible for me to make it. I soon became conscious of my imperfect knowledge of many subjects embraced within the scheme, -and even after having laboured to acquire that knowledge from books, I often found there was still a want. In my necessities I have asked the aid of the manufacturer, and the adrice of the man of science-and never having becn refuscd the information solieited, I am led to hope that those who may possess these volumes will find in them more practical knowledge than exists in any work of a similar character. For this they are indebted to the liberal feeling which marks the great manufacturers of England, and distinguishes her men of scicnce. With these remarks my labours are committed to the public-trusting that their verdict will be, that I have used my abilities and my industry so as to produce a Dictionary of Arts, Manufactures, and Mines which will be found practically uscful to all who are engaged in these spccial divisions of human industry, and prove valuable as a book of reference to cvery inquirer.

ROBERT HUNT.

[^0]
LIST OF THE CONTRIBUTORS:

General Editor. - ROBERT HUNT, F.R.S. F.S.S.

KEEPER OF MINING RECORDS, ETC.
G. ANSELL, Esq., Royal Mint.
H. K. BAMBER, Esq., F.C.S., \&c.
E. W: BINNEY, Esq. E.G.S., \&cc. Manchester
H. W. BONE, Esq.

Enameller.
HENRY W. BRISTOW, Ese., F.G.S. Geological Survey of Great Britain.
R. J. COURTNEY, Esq.

Superintendent of Messrs. Spottiswoode and Co.'s. Printing Office.
JAMES DAFFORNE, Ese.
Assistant Editor of the Arl Journal.
JOHN DARLINGTON, Ese
Mining Engineer, Author of Miner's Handbook.
F. W. FAIRHOLT, Ese., F.R.A.S.

Author of Costume in England, Dictionary of Terms in Art, \&c.
E. FRANKLAND, Esq. Ph.D., F.R.S., and C.S. Professor of Chemistry at St. Bartholomew's Hospital, and Lecturer on Chemlstry at the lioyal Indian Military Collegc, Addiscombe.
ALFRED FRYER, Esq.
Sugar Refiner, Manchester.
(The late) T. H. HENRy, Esq., F.R.s. and c.s.
R. HERRING, Esq

Author of History of Paper Manufacture.
James higgins, Ese.
Calico Printer, \&c., Manchcster.
W. herapath, Esq., M.D., \&c.

SAMUEL HOCKING, Esq., C.E., Scville. RICHARD W. HUNT, Esq

Brewer, Lceds.
T. B. JORDAN, EsQ.

Engineer, Inventor of Wood Carving Machiucry. WILLIAM LINTON, Esq.

Artlst, Author of Ancient and Modern Coluurs.

James Mcadam, Jun., Esq.
Secretary of the Royal Society for the Cultivation of Flax in 1reland.
(The late) HERBERT MACKWORTH, Esc., C.E., F.G.S., one of H.M. Inspectors of Coal Miners.
HENRY MARLES, Esq., L.R.C.P.
Author of Euglish Grammar, Currying and Leather.

DAVID MORRIS, Ese., of Manchester.
Author of Collonopolis, \&c.
JAMES NAPIER, Esq., F.C.S.
Author of Manual of Dyeing, Electro-Metallurgy, Ancienl Works in Metal, \&c.
D. NAPIER, Esq., C.E., \&c.
A. NORMANDY, Esq. M.D., F.C.S. Author of Handbook of Commercial Chemistry.
HENRY M. NOAD, Esq. Ph.D., F.R.S. Author of A Manual of Electricily, \&c.
AUGST. B. NORTHCOTE, Esq. F.C.S. Assistant Chemist, University of Oxford.
ROBERT OXLAND, Ese., F.C.S.
One of the Authors of Metals and lheir Alloys.
THOMAS JOHN PEARSALL, Esr.,
F.C.S., Secretary to London Mechanics' Institution.
SEPTLMUS PIESSE, Esq.
Author of Treatise on Arl of Perfumery, \&c.
JOHN ARTHUR PHILLIPS, Esq.
Graduate of the Imperial School of Mines, Paris, Author of Manzal of Mctallurgy.
ANDREW CROMBIE RAMSAY, Esq.
F.R.S. and G.S., Professor of Gcology, Govern. ment School or Mines, Local Director of tho Gcological Survey of Great Britain.
EBENEZER ROGERS, C.E., F.G.S.
latc President of the South Wales Institute of Engincers.
CHARLES SANDERSON, Esq., Sheffield, Author of Papers on Stecl and fron.
E. SCHUNCK, Esq., Ph.D., F.R.S. and C.S.

1R. ANGUS SMITH, Esq., Ph.D., F.R.S. Author nf varinus Papers on Air and Water, Life of Datton, and History of Atomic Theory, \&c.
iV ARINGTON W. SMYTH, Esq., M. A. F.R.S., and G.S., Prnfessor of Mining and Mineralngy, Government School of Mines, and Inspector of Crown Mines.
THOMAS SOPWITH, Esq., C.E., F.R.S., and G.S., Author of Isometrical Drawing, \&e.
ROBERT DUNDAS THOMSON, Esq., M.D., FR.S., Professor of Chemistry in St. Thounas's Hospital College.
ALFRED TYLOR, Esid., F.G.S. Author of Treatise on Metal Work.
A. VOELCKER, EsQ., Ph.D., F.C.S.

Professor of Chemistry, Agricultural College, Cirencester, and Consulting Chemist to the Doyal Agricultural Society or England.

CHARIES V. WAIKER, Esq., F.R.S., F.IT.A.S., Engineer of Telegraphs and Time to the South Eastern Ratlway Company, Anthor of Electrotype Manipulation, Trimslator, of Kamız'Meterology, De la Rive's Electricily, \&c
C. GREVILLE WILLIAMS, Esq. Author of A IIandbook of Chemical Manipulation, se.
(The late) HENRY M. WITT, Esq.,F.C.S. Assistant Chemist, Government School of Mines.
With special assistance and information from the late Sir Wm. Reid, C.B., Governor of Malta; Sir Wm. Armstrong, C.E., \&c.; Robert Mallet, Esq., C.E., F.R.S., \&c.; Captain Drayson, Royal Artillery; George W. Lenox, Esq.; aud many others.

ERRATA.

VOL. II.
Page 423. GUANO, paragraph 20, for "3. Soda lime for platinum," read "Bichloride of platinum." " 489. ICE-HOUSE, ninth line, for "Fig. 984," read "Fig. 985."
"519. Insert the initials E. S. at the end of Indigo.
, 700. LEUCOLINE, for " a compound, \&c.," read "a 5 ynonym of LEUKOL."

DICTIONARY

arTS, MANUFACTURES, AND MINES.

A

Abstract

ABA. A woollen stuff manufaetured in Turkey.

ABACA. A species of fibre obtained in the Philippine Islands in abundanec. Some authorities refer those fibres to the palm-tree known as the Abaca, or Anisa textilis. There seem, indeed, several well-known varieties of fibre under this name, some so fine that they are used in the most delicate and eostly texturcs, mixed with fibres of the pine-apple, forming Pina muslins and textures equal to the best muslins of Bengal. Of the coarser fibres, mats, eordage, and sail-cloth are made. M. Duehesue states, that the well-known fibrous manufactures of Manilla have led to the manufac. ture of the fibres themselves, at Paris, into many articles of furniture and dress. Their brillianey and strength give remarkable fitness for bonnets, tapestry, carpets, network, hammocks, \&c. The only uanufactured articles exported from the Philippine Islands, enumerated by Thomas de Comyn, Madrid, 1820 (transl. by Walton), besides a few tanned buffalo hides and skins, are 8000 to 12,000 pieees of light sail-cloth, and $200,000 \mathrm{lbs}$. of assorted abaca cordage.
ABIES (in Botany), the fir, a genus of trees which belong to the eoniferous tribe. These trees are well known from their ornamental character, and for the valuable timber which they produce. They yield several resins or gum-resins, whieh are useful in the arts.
ABIES BALSAMEA (the Balm of Gilead fir) produees the Canadian balsam. This tree grows most abundantly in the colder regious of North America.

ABIES CANADENSIS (the hemloek spruce fir). A considerable quantity of the essence of spruce is extracted from the shoots of this tree; it is, however, also obtained from other varieties of the spruce fir.

ABIES PICEA of Linnæus (Avies pectinata of De Candole). The Silver fir, produeing the Burgundy pitel and the Strasburg turpentine.

ABIETINE. A pale yellow, trausparent, viseid exudation from the Abies pectinata, a variety of the silvel fir, growing in the neighbourhood of Strasburg, is conmonly ealled Strasburg turpentine. It contains 35 per cent. of a volatile oil of an agreeable smell, combined with a resin, and a small quantity of the acid of amber, as well as the peculiar body called abietin, a resin of an acid kind, styled thercfore hy some abietic acid. If. the ordinary resin be removed by absolute alcohol, and thic which the digested with carbonate of potash, an abietate of potasl is obtained from in petroleum and cestaltine can be procured. This peeuliar substance dissolves balsam, and is used for attaching of it. Strasburg turpentine resembles Canadian ABLETTE or ABLE, is a natroseopie objeets to glass slips.
to the Bleak, the scales of which are employed for making the fish, but particularly used in the manufaeture of artificial pearls. See Prakis the pearl essence which is

ABRASION. The figuration of materials by wear, Artificial. general, the abrasive tool or grinder is exactly a comnterpart of the surface. In duced; thus, for plane surfaces a flat grinder is employed, and for form to be proa convex grinder. Sec Grindstone; File. is employed, and for eoneave surfaces ACACIA. (L. acacia, a thorn; Gr. àrخ, a Vol. I.

ACETIC ACID.
genus of trees or slurubby plants, inlabiting the tropical regions generally, but extending in souse few instavees into the temperate zone; being found, for example, in Australia, and the neighbouring islands. Botanists are aequainted with nearly 300 species of the acacia; some of these yield the gum arabic and the gum catechu of commeree; while the bark of others yields a large quantity of tamin, especially a varicty which grows in Van Diemen's Land, or 'Tasmania. See Arabrc, Gun ; Catechu.

ACACIA ARABICA. An inhabitant of Arabia, the East Indies, and Abyssinia. One of the plants yielding the gum arabic, wbich is procured by wounding the bark of the trec, after which the sap flows out aud hardens in transparent lumps. This gum is also produced from some other species nearly related to this, as A. Nilotica, A. vera, A. Elrenbergii, A. tortilis, aud A. Seyal, which are natives of Arabia, Nubia, Egypt, Dongola, \&e.

ACACLA CA'TECHU. The eatechn acacia (Mimosa catcchu of Linnæus) is a trea, with a moderately high and stout stem, growing in mountainous places in Bengal and' Coromandel, and in otber parts of Asia. Its unripe pods and wood, by decoction, yield the catechu or terra Japonica of the shops.

ACAJOU (BOIS D'). Tbe Frencb name for mahogany, which sec.
ACESCEN'T. Substances which have a tendency to pass into an acid state ; as an infusion of malt, \&c.

ACETAL. ($\mathrm{C}^{13} \mathrm{H}^{14} \mathrm{O}^{4}$.) One of the products of the oxidation of alcohol nnder the influence of the oxygen condensed in platina black. It is a colourless, mobile, ethereal liquid, boiling at $221^{\circ} \mathrm{F}$. Its density in the fluid state is 0.821 at 72°. The specific gravity of its vapour $4 \cdot 138$ Stas. (mean of tbree experiments): calculation gives 4.083 for fonr volumes of vapour. - For the deseription of the modes of determining vapour volume, see the article Equivalents, Chemical. - Tbc recent researches of Wurtz reuder it cvident that tbe constitution of aectal is quite differeut to what has generally been supposed, and tbat it is in fact glycodietbyline; tbat is to say, glycolc in which two equivalents of hydrogen are replaced by two equivalents of etbyle.-C. G. W.

ACE'TATE. (Acétate, Fr. ; Essigsaure, Germ.) Any saline compound in which the acid constituent is acetic acid. All acetates are soluble in water: tbe least soluble being the acetates of tungsten, molybdenum, silver, and merenry. The acetates, especially those of lead and alnmina, are of great importance in the arts. The acetates are all deseribed uuder their respective bases; - a rule which will bc adopted with all the acids.

ACETIC ACID. (Acide acétique, Fr.; Essiqsuure, Germ.; Acidum aceticum, Lat. ; Eisel, Sax.) The word "acetie" is derived from the Latin acetum, applied to vinegar ; probably tbe earliest known body possessing the sour taste and other properties whicb characterise acids; hence the term Acid, now become generic; botb tbe Latin word and also the Saxon acid being from the root acies (Greek $\dot{\alpha} \kappa \eta$), an edge or point, in reference to the sharpness of the taste.

Vinegar must bave becn known from the most remote periods of antiquity. It is mentioned by Moses.* Hippocrates employed it in medicine under the name b乡us. \dagger Hannibal, in his passage over the Alps, is said to have softened the rocks by fire and vinegar. \ddagger It was known to the alchemists in the more concentrated state in which it is obtained by the distillation of acetate of copper (verdigris); being mentioned both by Geber § and Stahl.

Crystallised acetic acid was first obtained by Westendorf \| and Lowitz. $\mathrm{T}_{\boldsymbol{i}}$
Acetic acid exists in nature only in tbe organised kingdoms, or as a product of the oxidation of organic bodies. According to Vauquelin and Morin it is fonnd in the juices of certain plants, and it probably exists in certain animal fluids.
Gmelin and Geiger state that it has been found in miueral waters, which is quite possible, having been derived from the decay of organic matter originally present.

Acetic acid is produced either by the oxidation, or the destructive distillatiou, of organic bodies containing its elements - carbon, hydrogen, and oxygen.
The oxidation of organic bodies, in order to convert them into acetie acid, may be effected either,-1, by exposing them in a finely divided state to the aetion of air or oxygen gas ; 2 , by submitting them to tbe action of ferments in the presenec of a free supply of atmospheric air ; or, 3, by the action of ehemical oxidising agents.

When acetic acid is procured by the oxidation of organie bodies, it is gencrally alcohol that is employed; but by whatever process alcoliol is transformed into acetic acid, it is always first converted into an intermediate compound, aldeliyde; and this

[^1]being a very volatile body; it is desirable always to effect the oxidation as completely and rapidly as possible, to avoid the loss of alcohol by the evaporatiou of this aldehyde.

Alcohol contains	$\mathrm{C}^{4} \mathrm{H}^{6} \mathrm{O}^{2}$
Aldehyde	
Acetic acid	$\mathrm{C}^{4} \mathrm{H}^{4} \mathrm{O}^{2}$
$\mathrm{C}^{4} \mathrm{H}^{4} \mathrm{O}^{4}$	

The process, therefore, consists first in the removal of two cquivalents of hydrogen from alcohol, which are converted into watcr, - -aldehyde being produced, ...and then the further union of tbis aldehyde with two equivalents of oxygen to couvert it into acetic acid. See Aldehyde.

By the oxidation of alcohol, pure acetic acid is obtained : but the vinegars of commerce are mixturcs of the pure acetic acid with water; with saccharine, gummy, and colouring matters; with certain ethers (especially the acetic ether), upon which their agreeable aromatic flavour depends; with empyreumatic oils, \&c.

The pure acetic acid (free from water and other impurities) may be obtaiued most advantageously, according to Melscns *, by distilling pure acetate of potash with an excess of acetic acid (which has becn obtained by the redistillation of ordinary acctic acid, procured either by oxidising alcohol, or by the destructive distillation of wood) : the acid which first passes over contains water; but finally it is obtained free.
Properties of pure Acetic Acid. - When absolutely pure, acctic acid is a colourless liquid of specific gravity 1.064 , which at temperatures below $62^{\circ} \mathrm{F} .\left(17^{\circ} \mathrm{C}.\right)$ solidifies into a colourless crystalline mass. It has strongly acid properties, being as powerfully corrosive as mauy mineral acids, causing vesication when applied to the skin; and it possesses a peculiarly pungent, though not a disagreeable smell.

The vapour of the boiling acid is highly combustible, and burns with a blue flame. Hydrated acetic acid dissolves campbor, gliadine, resins, the fibrine of blood, and several organic compounds. When its vapour is conducted through a slightly ignited porcelain tube, it is converted entircly into carbonic acid and acetone, an atoln of the acid being resolved into an atom of each of the resultaus. At a white heat the acid vapour is converted into carbonic acid, carburctted hydrogen, and water.
It attracts water with great avidity, mixiug with it in all proportions. Its solution in water increases in density with the increase of acetic acid up to a cerrain point ; but beyond this point its density again diminisbcs. Its maximum density being $1 \cdot 073$, and corresponding to an acid containing $\mathrm{C}^{4} \mathrm{H}^{4} \mathrm{O}^{4}+2 \mathrm{Aq}$., which may be extemporaneously produced by mixing 77.2 parts of crystallised acctic acid with 22.8 parts of water. This hydrate boils at $104^{\circ} \mathrm{C} .\left(219^{\circ} \mathrm{F}\right.$.), whilst the crystallised acid boils only at $120^{\circ} \mathrm{C}$. ($248^{\circ} \mathrm{F}$.) \dagger
Tbe proportion of acetic acid iu aqueous mixtures may therefore be ascertained, within certain limits, by determination of the specific gravity. See Acetimetry.
The following Table, by Mohr, indicates the per-centage of acetic acid in mixtures of different specific gravities; but of course this is only applicable in cases where no sugar or other bodies are present which increase the specific gravity

Abstract of Mohr's Table of the Specific Gravity of Mixtures of Acetic Acid and Water. \ddagger

Per-centage of Acetic Acid, $\mathrm{C}^{4} \mathrm{H}^{4} \mathrm{O}^{4}$.	Deusity.	Per-centage of Acetic Acid, $\mathrm{C}^{4} \mathrm{H}^{4} \mathrm{O}^{4}$.	Density,
100	1.0635	45	
95	1.070	40	
90	1.073	35	1.051
85	$1 \cdot 073$	30	1.046 1.040
80	1.0735	25].034
75	$1 \cdot 072$	20	1.027
70 65	$1 \cdot 070$	15	1.022
60	1.068 1.067	10	1.015
55	1.064	5	$1 \cdot 0067$
50	1.060	1	$1 \cdot 001$

[^2]+ Gerhardt, Chimie Organique, i. 718.

Which numbers closely agree with those obtaincd by Dr. Ure :-

Acid.	Sp. Gr.	Acid.	Sp. Gr.	Acid.	Sp. Gr.
100	1.0620	76	1.0743	52	1.0617
98	1.0650	74	1.0740	50	1.0603
96	1.0680	72	1.0733	45	1.0558
94	1.0700	70	1.0725	40	1.0512
92	1.0715	68	1.0716	35	1.0459
90	1.0728	66	1.0712	30	1.0405
88	1.0730	64	1.0701	25	1.0342
86	1.0735	62	1.0687	20	1.0282
84	1.0738	60	1.0675	15	1.0213
82	1.0740	58	1.0665	10	1.0147
80	1.0750	56	1.0647	5	1.0075
78	1.0748	54	1.0634		

Acetic acid was formerly (and is still by some chemists) viewcd as the hydrated teroxide of a radical acetyl, now called vinyl. See Formble.

$$
\underbrace{\left(\mathrm{C}^{4} \mathrm{H}^{3}\right)}_{\text {Acetyl }} \mathrm{O}^{3}, \mathrm{HO}
$$

And therefore an anhydrous acetic acid, $\mathrm{C}^{4} \mathrm{H}^{3} \mathrm{O}^{3}$, is supposed to exist. Many attempts have been made to isolate this anhydrous acetic acid $\mathrm{C}^{4} \mathrm{H}^{3} \mathrm{O}^{3}$; and a body which has received this name has been quite recently obtained by Gerhardt*, by the double decomposition of chloride of acetyl and an alkaline acetate, thus-

This body Gerhardt describes as a colourless liquid having a strong smell of acetic acid, but associated with the flavour of hawthorn blossom, having a specific gravity of 1.073 , and boiling at $137^{\circ} \mathrm{C}$. ($278^{\circ} \mathrm{F}$.) ; falling in water in the form of oily drops, only dissolving on gently heating that fluid. It is, however, not anhydrous acetic acid, but a compound isomeric with the hypothetical anhydrous acetic acid $\mathrm{C}^{4} \mathrm{H}^{3} \mathrm{O}^{3}$, containing, in fact, double the amount of matter, its formula being $\mathrm{C}^{8} \mathrm{H}^{6} \mathrm{O}^{6}$. See Isomerism.
The impure varieties of acetic acid known as vinegar, pyroligneous acid, \&c., are the products met with in commerce, and therefore those require more minute description in this work.
Before describing the manufacture of these commercial articles, it may be interesting to allude to a method of oxidising alcohol by means of spongy platinum; which may yet meet with extensive practical application. It is a wcll-known fact that spongy platinum (e.g. platinum black), from its minute statc of division, condenses the oxygen of the air within its pores ; consequently, when the vapour of alcohol comes in contact with this body, a supply of oxygen in a concentrated state is presented to it, and the platinum, without losing any of its properties, effects the combination between the oxygen and the alcohol, converting the latter into acetic acid.

This may be illustrated by a very simple experiment. Place recently ignited spongy platinum, loosely distributed on a platinum-gauze, at a short distance over a saucer containing warm alcohol, the whole standing under a bell-glass supported by wedges on a glass dish, so that on removing the stopper from the bell-glass a slow current of air circulates through the apparatus; the spongy platinum soon begins to glow, in consequence of the combustion going on upon its surface, and acetic acid vapours are abundantly produced, which condense and run down the sides of the glass. The simultaneous formation of aldchyde is, at the same time, abundantly proved by its peculiar odour.

In Germany this method has been actually carried out on the large sealc. and, if it were not for the high price of platinum and the heavy duty on alcohol, it might be

[^3]extensively employed in this country, on account of its clegance and extreme simplicity.

Manufacture of Vinegar

A. -By acetous Fermentation.

All liquids which are susceptible of the vinous fermentation arc capable of yielding vinegar. A solution of sugar is the essential ingredient, which is converted first into alcohol, and subsequently into acetic acid. The liquids employed vary according to circumstances. In this country the vinegar of commerce is obtained from an infusion of malt, and in wine countries from inferior wines.

The oxidation of alcohol is remarkably facilitated by the presence of nitrogenised organic bodies in a state of change, called ferments, hence the process is frequently termed acetous fermentation. Now, although in most cases the presence of these ferments curiously promotes the process, yet they have no specific action of this kind; for we have already seen that, by exposure to air in a condensed state, alcohol, even when pure, is converted into acetic acid; and, moreover, the action of oxidising agents, such as chromic and nitric acid, \&c., is capable of effecting this change.
However, in the presence of a ferment, with a free supply of air, and at a temperature of from 60° to $90^{\circ} \mathrm{F}$., alcohol is abundantly converted into acetic acid.

At the same time that the alcohol is converted into acetic acid, the nitrogenised and other organic matters undergo peculiar changes, and often a white gelatinous mass is deposited, -which contains Vibriones and other of the lower forms of organised beings,-and which has received the name of mother of vinegar*, from the supposition that the formation and development of this body, instead of being a secondary result of the process, was really its exciting cause.

1. Wine Vinegar. (Vinaigre, Fr.; Weinessig, Germ.) Wine vinegar is made of the best quality, and on the greatest scale, at Orleans in France, out of wines which have become more or less acidulous, and are, thercfore, of inferior value. When the vinegar is made from well-flavoured wines, it is prefcrable to every othcr for the use of the table. The old method pursued in the vinaigreries consists merely in partially filling a series of large casks placed in three or four ranges over each other, in a cellar warmed with a stove to the temperature of $85^{\circ} \mathrm{F}$., with the wine mixed with a certuin proportion of ready-made vincgar as a ferment. Low-roofed apartments are the most suitable ; when there is a high ceiling it is necessary to elevate the "mothers," in order that they may occupy the higher strata of warm air. This trouble is dispensed with when the roofs are low. Experience has proved that in high-roofed apartments, where the tuns are placed at different levels, the uppermost work off quicker and better than the others. More wine is added, in successive small portions, as fast as the first has become acetificd, taking care that a free ventilation be maintained, in order to replace the carbonic acid produced by fresh atmospheric oxygen. In summer, under a favourable exposure of the windows and walls of the fermenting room to the sun, artificial heat is nut needed. Each cask is of about 60 gallons' capacity, and into each cask of the set is poured $\frac{1}{3}$ rd its capacity of winegar, to which 2 galls. of wine are added, and weekly, afterwards, 2 galls. more. About 8 galls. are drawn off at the end of four weeks as vinegar, and then successive additions of wine are made as before to the casks. These are laid horizontally in rows upon their gawntrees, and are pierced at the upper surface of the front end with two holes: one, called the eye, is two inches in diameter, and serves for pouring in the charges through a funnel; the other is a small air-hole alongside. The casks should never be more than ${ }_{3}^{2} \mathrm{rds}$ full, otherwise a sufficient body of air is not present in them for favouring rapid acetification. At the end of a certain period, the deposit of tartar and lees bccomes so great that the casks must be cleared out. This renovation usually takes place cvery 10 years; but the casks, when made of well-scasoned oak and bound with iron hoops, will last 25 years. The wine, as well the vinegar produced, should be clarified by being slowly filtered through beech chips, closely packed in a large open tun. When wincs are new, and somewhat saccharine or too alcoholic, they acetify reluctantly, and nced the addition of a little yeast, or even water, to the mixture; and when they are too weak, they should be enriched by the addition of some sugar or stronger wine, so as to bring them to a uniform state for producing vinegar of normal strength. To favour the renewal of fresh air into the upper part of the hogsheads, it would be advisable to pierce a two-inch hole ncar to the upper level of the liquid when the cask is fullest, by which means the heavy carbonic acid would fall out, and be replaced by the atmospheric air at the superior apertures.
[^4]
ACEIIC ACID.

Wine vinegar is of two kinds, white and red, according as it is prepared from white or red wine. White wine vinegar is usually preferred, and that made at Orleans is regarded as the hest.

Dr. Ure found its average specific gravity to he $1 \cdot 019$, and to contain from $6 \frac{1}{2}$ to 7 per cent. of real acid ; aecording to the Edinburgh Pharmacoperia, its specific gravity varies from 1.014 to 1.022 .
2. Malt Vinegar. (British Vinegar ; in Gcrmany called Malz-Getreide or Bieressig.) In England vinegar is chiefly made from an infusion of malt, by first exciting in it the alcololic fermentation, and subsequently inducing the oxidation of the alenhol into acetic acid.

For details of the processes of malting and brewing the alcoholic liquor, we must refer to the special articles on these suhjects, confining our attention here more especially to the latter stages of the operation.

From 6 bushels of malt, properly crushed, 100 gallons of wort may be extracted ly due mashing, the first water of infusion being of the temperaturc of $160^{\circ} \mathrm{F}$., and the next two progressively hotter, for exhausting the soluble saccharine matter. When the wort is cooled to 75°, from 3 to 4 gallons of good yeast are stirred into it in the fermenting tun, and when it has heen in hrisk fermentation for about 40 hours, it is ready for transference into the vessels in which the acetification is to be accomplished.

The transformation of the fermented wort into vinegar was formerly effeeted in two ways, which were entirely opposite in their manner of operation. In onc case the casks containing the fermented malt infusion (or $g y / l$) were placed in close rooms, maintained at a uniform temperature, as already described in the preparation of wine vinegar ; in the other, they were arranged in rows in an open ficld, where they remained many months. As regards the convenience and interests of the manufacturer, it appears that each method had its respective advantages, hut both are now almost entirely ahandoned for the more modern processes to be descrihed - a short notice of the fielding process is, however, retained.

When fielding is resorted to, it must be commenced in the spring months, and then left to complete itself during the warm season. The fielding method requires a much larger extent of space and utensils than the stoving process. The casks are placed in several parallel tiers, with their hung side upwards and left open. Beneath some of the paths which separate the rows of cask are pipes communicating with the "back" at the top of the hrewhouse; and in the centre of each is a valve, opening into a concealed pipe. When the casks are ahout to be filled, a flexible hose is screwed on to this opening, the other end heing inserted into the hung-hole of the cask, and the liquor in the "gyle back" at the hrewhouse, hy its hydrostatic pressure, flows through the underlying pipe and hose into the cask. The hose is so long as to admit of reaching all the easks in the same row, and is guided hy a workman.
After some months the vinegar is made, and is drawn off by the following operation : a long trough or sluice is laid hy the side of one of the rows of casks, into which the vinegar is transferred hy means of a syphon, whose shorter limb is inserted into the bung-hole of the cask. The trough inclines a little from one end to the other, and its lower end rests on a kind of travelling tank or cistern, wherein the vinegar from several casks is collected. A hose descends from the tank to the open valve of an underground pipe, which terminates in one of the buildings or stores, and, by the agency of a steam boiler and machinery, the pipe is exhansted of its air, and this causes the vinegar to flow through the hose into the valve of the pipe, and thence into the factory buildings. By this arrangement the whole of the vinegar is speedily drawn off. From the storehouse, where the vinegar is received, it is pumped into the refining or rape vessels.
These rape vissels are generally filled with the stalks and skins of grapes or raisins (the refuse of the British wine manufacture is generally used), and the liquor being admitted at the top, is allowed slowly to filter through them; after passing through, it is pumped up again to the top, and this process is repeated until the acetification is complete. Sometimes wood shavings, straw, or spent tan, are substituted for the grape refuse, but the latter is generally preferred.
By this process, not only is the oxidation of the alcoliol completed, hut coagulable nitrogenous and mucilaginous matter is separated, and thus the vinegar rendered lright. It is finally pumped into store vats, where it is kept mutil put into casks for sale.
3. Sugar, Cider, Fruit, and Beet Vini:gars. An excellent vinegar may be made for domestic purposes by adding, to a syrup consisting of one pound and a quarter of sugar for every gallon of water, a quarter of a pint of good yeast. The liqnor being maintained at a heat of from 75° to $80^{\circ} \mathrm{F}$., acetification will proceed so well that
in 2 or 3 days it may be raeked off from the sediment into the ripening eask, where it is to be mixed with 1 oz . of eream of tartar and 1 oz . of crushed raisins. When completely freed from the sweet taste, it should be drawn off clear into bottles, and closely eorked up. The juices of currants, gooseberries, and many other indigenous fruits, may be aeetified either alone or in combination with syrup. Vinegar made by the above proeess from sugar should have fully the Revenue strcugth. It will keep much better than malt vinegar, on aeeount of the absence of gluten, aud at the present low priee of sugar will not cost more, when fined upon beech ehips, than 1s. per gallon.
The sugar solution may likewise be replaced by honey, cider, or any other alcoholic or saeeharine liquid. An endless number of preseriptions exist, of which the following example may suffiee:- 100 parts of water to 13 of brandy, 4 of honey, and 1 of tartar.

Messis. Neale and Duyek, of London, patented a process, in 1841, for the manufacture of vinegar from beet-root.

The saeeharine juiee is pressed out of the bect, previonsly rasped to a pulp, then mixed with water and boiled ; this solution is fermented with yeast, and finally acetified in the usual way, the proeess being aecelerated by blowing air up throngh the liquid, whieh is plaeed in a cylindrieal vessel with fine holes at the bottom.

In some factories large quantities of sour ale and beer are converted into vinegar; but it is usually of an inferior quality, in consequenee of being liable to further fermentation.

Dr. Stenhouse has shown that when sec-weed is subjeeted to fermentation, at a temperature of $96^{\circ} \mathrm{F}$., in the presenee of lime, acetate of lime is formed, from whieh acetie acid may be liberated by the proeesses described under the head of Pyroligneous Aeid. Although sueh large quantities of sea-weed are found on all our eoasts, it does not appear that they have yet been utilised in this way, although they would still be, to a certain extent, valuable as manure after having been subjeeted to this proeess.
4. The Gerian or Quici-Vinegar Process. (Schnellessigbcreitung.)-In the manufaeture of vinegar it is highly important that as free a supply of air should be admitted to the liquid as possible, since if the oxidation take place but slowly, a considerable loss may be sustained from mueh of the aleohol, instead of being eompletely oxidised to aeetie aeid, being only converted into aldehyde, which, on aeeount of its volatility, passes off in the state of vapour. This is seeured in the German proeess by greatly enlarging the surface exposed to the air; whieh, however, not only diminishes or prevents the formation of aldchyde, but also greatly curtails the time neeessary for the whole process. In faet, when this method was first introdueed, from the supply of air being insufficient, very great loss was sustained from this eause, whieh was, however, easily remedied by increasing the number of air-holes in the apparatus.

This quick-vinegar process consists in passing the fermented liquor (whieh generally eontains about 50 gallons of brandy of 60 per eent., and 37 gallons of beer or maltwort, with $\frac{1}{\text { voon }}$ of ferment,) two or three times through an apparatus ealled the Vinegar Generator (essigbilder).

This apparatus consists of an oaken tub, narrower at the bottom than at the top, firnished with a loose lid, A, with a funnel, through whieh the liquids for eharging the graduator are supplied; below this is a perforated shelf, B, having a number of small holes, loosely filled with paekthread, about six inehes long, and prevented from falling through by a knot at the upper end. Through this lid there likewise pass some glass tubes, open at both ends, c , which, having their apertures above and below the shelf, aet as air vents. At a distanee of about eighteen inelies from the bottom is plaeed another perforated diaphragm, at \mathbf{D}; and two inches above this the tub is perforated with eight or ten equidistant holes, $\mathbf{x} \mathbf{e}$, an ineh to an ineh and a half iu diameter, which serve to admit atniospheric air. The space, F, between the diaphragm and the perforated lid, is filled with sharings of beechwood ; by percolating through which, the solution is exposed, over a very eousiderable surfaee, to the oxidising influence of the air, which passes in a current upwards
 through the apparatus. One incli above the
pipe, c , the upper curvature of whieh stands one ineh below the air-holes in the side of the tub; so that when the liquid in the bottom of the generator, whieh has passed through the shavings, colleets up to this level, it runs off into any vessel plaeed heneath to reeeive it.

The analogy between aeetifieation and ordinary proeesses of decay, and even combustion, is well seen in this proeess; for as the oxidation proeeeds, the temperature of the liquid rises to 100° or even $104^{\circ} \mathrm{F}$. ; but if the temperature generated by the process itself be not sufficient, the temperature of the room in whieh the tuns are placed should be artifieially raised.

By this method 150 gallons of vinegar can be manufactured daily in ten tuns, which one man ean superintend ; and the vinegar, in purity and clearness, resembles distilled vinegar.

It is better to avoid using liquors containing much suspended mucilaginous matter, which, colleeting on the chips, quickly chokes up the apparatus, and not only impedes the proeess, but contaminates the produet.

The chips and shavings may with advantage be replaced by ellarcoal in fragments, which, by the oxygen it eontains condensed in its pores, still further accelerates the process. The chareoal would of course require re-igniting from time to time.

Proeesses for the rapid formation of vinegar have likewise been adopted iu this eountry. So long ago as the year 1824, Mr. Ham obtained a patent for the following method, whieh is still in operation at several works:-

The apparatus eonsists of a large vat, in the eentre of which is placed a revolving pump, having two or more shoots pierced with holes, so as to cause a constant shower of wash - fermented wort - to descend. The lower part of the vat is charged with wash, the upper part with birch twigs, piled as high as possible, but without interfering with the revolution of the shoots. Between the surface of the wash and the joist whieh supports the birch twigs, a space of three or four inehes is unoeeupied, and holes are perforated in it, to admit a current of air, either from the atmosphere or from a blowing apparatus.

If the wash be maintained at a temperature of from 90 to $100^{\circ} \mathrm{F}$., and the supply of liquid duly proportioned to the mass of the trigs, a charge is generally aeetified in about a fortnight. The aeetification can of course be arrested at any moment, and the eurrent of air increased or diminished at will.

Generally in England mueh larger tuns are used than in Germany, the larger mass of matter thus undergoing oxidation generating so much heat that no artifieial elevation of temperature is required; and in consequence of the promotion of the process in this way, one of these large tuns, fifteen feet wide at the bottom, fourteen at the top, and thirteen high, turns out as mueh vinegar as is in Germany obtained from six tubs eighteen feet high and four feet wide.

B.-By destructive Distillation of Wood. Pyroligneous Acid.

The general nature of the proeess of destruetive distillation will be found detailed under the head of Distilllation, Destructive; as well as a list of produets of the rearrangement of the moleeules of organie bodies under the influence of heat in closed vessels. We shall, therefore, at onee proeeed to the details of the process as speeially applied in the manufaeture of acetic aeid from wood.

The forms of apparatus very generally employed on the Continent for obtaining at the same time crude acetic acid, eharcoal, and tar, are those of Schwartz and Reiehenbach; but in France the process is earried out with speeial reference to the production of acetie aeid alone.

The following is a description of that in use at Nuits and Rouen :-
Into large eylindrieal vessels (fig. 2) made of rivetted sheet iron, and having at their top and side a small sheet-iron cylinder, the wood intended for making ehareoal is introdueed. To the upper part of this vessel a cover of sheet iron, b, is adapted, whieh is fixed with bolts. This vessel, thus elosed, represents, as we see, a vast retort. When it is prepared, as we have said, it is lifted by means of a swing erane, c , and plaeed in a furnaee, D (fig. 3), of a form relative to that of the vessel, and the opening of the furnaee is envered with a dome, E , made of masonry or briekwork. The whole heing thus arranged, heat is applied in the furnace at the bottom. The moisture of the wood is first dissipated, but by degrees the liquor ceases to be transparent, and becomes sooty. An adapter tube, A, is then fitted to the lateral cylinder. This adapter enters into another tabe at the same degree of inelination which commenees the condensing apparatus. The means of condensation vary according to the localities. In eertain works they cool by means of air, by making the vapour pass through a long series of eylinders, or sometimes, even, througl a series of casks connected together; but most usually water is used for eondensing, when it cap be easily procured in abundance. The most

ACETIC ACID.

simple apparatus employed for this purpose consists of two cylinders, F F (fig. 3), the one within the othcr, and which leave between them a sufficient space to allow a considerable body of water to circulate along and cool
 the vapours. This double cylinder is adapted to the distilling vessel, and placed at a certain inclination. To the first double tube, $\mathbf{F} \mathbf{F}$, a second, aud sometimes a third, entirely similar, are connected, which, to save space, return upon themselves in a zigzag fashion. The water is set in circulation by an ingenious meaus now adopted in many different manufactories. From the lower extremity, G, of the system of eondensers, a perpendicular tube rises, whose length sloould be a little more than the most elevated point of the system. The water, furnislied by a

reservoir, \mathbf{l}, enters by means of the perpendicular tube through the lower part of the system, and fills the whole space between the double cylinders. When the apparatus is in action, the vapours, as they condense, raise the temperature of the water, whicl, by the column in $\mathrm{L} G$, is pressed to the upper part of the cylinders, aud runs over by the spout k. To this point a very short tube is attacled, which is bent towards the ground, and serves as an overflow.

The condeusing apparatus is terminated by a conduit in bricks covered and sunk in the ground. At the extremity of this species of gutter is a bent tube, E, which, diseharges the liquid prodnct into the first cistern. When it is full, it empties itself, by means of an overflow pipe, into a great reservoir; the tube which terminates the gutter pluuges into the liquid, and thus intercepts communication with the inside of the apparatus. The disengaged gas is brought back, by means of pipes mi, from onc of the sides of the conduit to the under part of the ashpit of the furnace. These pipes are furnished with stopcocks, 1 , at some distance in front of the furnace, for the purpose of regulating the jet of the gas, and interrupting, at pleasure, communication with the inside of the apparatus. The part of the pipes which terminates in the furnace rises perpeudicularly several inches above the ground, and is expanded like the rose of a watering-can, . The gas, by means of this disposition, can distribute itself uniformly under the ressel, without sufferiug the pipe which conducts it to be obstructed by the fuel or the ashes.

The temperature necessary to effect the carbonisation is not at first considerable : however, at the last, it is raised so high as to make the vessels red hot; and the duration of the process is uecessarily proportioual to the quantity of wood carbonised. For a vessel which shall contain about 5 meters cube (nearly 6 cubic yards), 8 hours of fire is sufficient. It is known that the carbonisation is complete by the colour of the flame of the gas: it is first of a yellowish red; it becomes afterwards blue, when more carbonic oxide than carburetted hydrogen is evolved; and towards the end it becomes entirely white, - a circunstance owing, probably, to the furuace being more heated at this period, and the combustion therefore morc complete. There is still another means of knowing the state of the process, to which recourse is more frequently had; that is the cooling of the first tubes, which are not surrounded with water: a few drops of this fluid are thrown upon their surface, and if they evaporate quietly, it is judged that the calcination is sufficient. The adapter tube is then unluted, and is slid into its junction pipe; the orifices are immediately stopped with plates of iron and plaster loam. The brick cover, E , of the furnace is firet removed by means of the swing crane, then the cylinder itself is lifted out and replaced immediatcly by another one previously clarged. When the cylinder which has been
taken out of the furnace is entirely cooled, its eover is removed, and the charcoal is emptied. Five cubic meters of wood firnish abont 7 chaldrons and a lialf of charcoal.

Since the carbonisers of Reichenbach and Schwartz are employed with special reference to the manufacture of wood charcoal, the condensation of the volatile products being only a secondary consideration, they will be more appropriately described under the liead of Charcoal.

In England the distillation is generally carried out in large iron retorts, placed horizontally in the furnace, the process, in fact, closely resembling the distillation of coal in the manufacture of coal gas, excepting that the retorts are generally larger, being sometimes 4 feet in diametcr, and 6 or 8 feet long. Gencrally two, or even threc, are placed in each furnace, as shown in fig. 4, so that the firc of the single furnace, a, plays all round them. The doors for charging the retorts are at one end, b (fig. 5), and the pipe for carrying off the volatile products at the other, c, by which they are conducted, first to the tar condenser, d,
 and finally through a worm in a large tub, e, where the crude acetic acid is collected.

Of course, in different loealities an endless variety of modifications of the process are employed.

In the Forest of Dean, instead of cylindrical retorts, square sheet-iron boxes are used, 4 ft . fiin. by 2 ft .9 in ., which are heated in large square ovens.

Dr. Ure gives the following descriptiou of special works in Glasgow:-
The cylinders here employed are 6 feet long, and both ends project a little beyond the brickwork. One end has a disc, or round plate of cast-iron, well fitted and firmly bolted to it, from the centre of which an iron tubc, about 6 inches in diameter, procecds, and enters at a right angle the main tube of refrigeration. The diameter of this tube may be from 9 to 14 inches, according to the number of cylinders. The other end of the cylinder is called the month of the retort; this is closed by a disc of iron, smeared round its edge witl clay-lute, and secured in its place by irou wedges. The charge of wood for such a cylinder is about 8 cwt . The hard woods - oak, aslh, birch, and beceh - are alone nsed in this manufactory, fir not being found to answer. The heat is kept up during the day, and the furnace allowed to cool during
the night. Next morning the door is opened, the chareoal removed, and a new charge of wood introdueed. The average product of crude vinegar is 35 gallons. It is much contaminated with tar, is of a deep brown eolour, and has a specific gravity of 1.025 . Its total weight is therefore about 300 lbs ; but the residuary charcoal is found to weigh no more, than one-fifth of the wood employed; henee nearly onelialf of the ponderable matter of the wood is dissipated in incondensable gases.

With regard to the relative advantages of eylindrieal retorts or square boxes, it should be remarked, that the eylinders are more adapted for the distillation of the large billets of Gloucestershire and the refuse ship timber of Glasgow, Newcastle, and Liverpool; but, on the other hand, where light wood is used, sueh as that generally carbonised in the Welsh factories, the square ovens answer better.

The most recent and ingenious improvement in the manufaeture of pyroligneous aeid is that patented by the late Mr_{1}. A. G. Halliday, of Manchester, and adopted by several large manufaeturers. The proeess consists in effecting the destruetive distillation of waste materials, such as sawdust and spent dyewoods, by causing them to pass in eontinuous motion throngh heated retorts. For this purpose the materials, whieh are almost in a state of powder, are introdueed into a hopper, \boldsymbol{B} (fig. 6), whence they desceud into the retort, B, being kept all the while in eonstant agitation, and at the same time moved forward to the other end of the retort by means of an endless serew, s. By the time they arrive there, the charge has been completely carbonised, and all the pyroligneous aeid evolved at the exit tube, t. The residuary charcoal falls through the pipe \mathbf{D} into a vessel of water, E , whilst the volatile products eseape at F, and are eondensed in the usual way.
Several of these retorts are generally set in a furnaee side by side, the retorts are only 14 inches in diameter, and eight of these retorts produce in 24 hours as much aeid as 16 retorts 3 feet in diameter upon the old system. In the manufacturing districts of Lancashire and Yorkshire, where sueh immense quantities of spent dycwoods aecumulate, and have proved a souree of annoyance and expense for their removal, this proeess has afforded a most important means of eeonomieally eonverting them into valuable products - charcoal and acetic aeid.
Mention should also be made of Messrs. Solomons aud Azulay's patent for employing superheated stean to effect the carbonisation of the wood, whieh is passed dircetly into the mass of materials. Sinee the steam accompanies the volatile products, it necessarily dilutes the acid; but this is in a great degree eompensated for by employing these vapours to eoneentrate the distilled produets, by eausing them to traverse a coil of tubing placed in a pan of the distillates.
As regards the yield of aeetic aeirl from the different kinds of wood, some valuable facts have been eollected and tabulated by Stolze, in his work on Pyroligneous Acid :-

Properties of the crude Pyroligneous Acid.

The erude pyroligneous aeid possesses the properties of aeetie aeid, eombined with those of the pyrogenous bodies with whieh it is assoeiated. As first obtained, it is blaek, from the large quantity of tar whieh it holds in solution; and although eertain resins are removed by redistillation, yet it is impossible to remove some of the empyreumatic oils by this proeess, and a speeial purifieation is neeessary.

In eonsequence of the presence of ereosote, and other antiseptie hydroearbons, in the erude pyroligneous aeid, it possesses, in a very eminent degree, anti-putreseent properties. Flesh steeped in it for a few hours may be afterwards dried in the air without eorrupting; but it becomes hard, and somewhat leather-like: so that this mode of preservation does not answer well for buteher's meat. Fish are sometimes eured with it.

Purification of Pyroligneous Acid.

This is effeeted either, 1st, by eonverting it into an aeetate, - aeetate of lime or soda, - and then, after the purifieation of these salts by exposure to heat suffieient to destroy the tar, and repeated reerystallisation, liberating the aeid again by distilling with a stronger aeid, e.g. sulphurie.

Or, 2nd, by destroying the pyrogenous impurities by oxidising agents, sueh as binoxide of manganese in the presenee of sulphurie aeid, \&e.

The former is the method generally adopted.
After the naphtha has been expelled, the aeid liquor is run off into tanks to deposit part of its impurities; it is then syphoned off into another vessel, in whiel is either milk of lime, quieklime, or ehalk; the mixture is boiled for a short time, and then allowed to stand for 24 hours to deposit the exeess of lime with any impurities whieh the latter will earry down with it. The supernatant liquor is then pumped into the evaporating pans.
The evaporation is effected either by the heat of a fire applied beneath the evaporating pans, or more frequently by a coil of pipe in the liquor through whieh steam is passed - the liquor being kept eonstantly stirred, and the impuritics whieh rise to the surfaee during the proeess earefully skimined off.

From time to time, as the evaporation advanees, the aeetate of lime whieh separates is removed by ladles, and plaeed in baskets to drain; and the residual motherliquor is evaporated to dryness. This mass, by ignition, is eonverted into earbonate of lime and aeetone.
If the aeetate of lime have been proeured by direetly saturating the erude aeid, it is ealled brown acctate; if from the aeid onee purified by redistillation, it is called grey acetate.

From this grey acetate of lime acetate of soda is now prepared, by adding sulphate of soda to the filtered solation of the acetate of lime. In performing this operation, it is highly important to remembor that, for every equivalent of acetatc of lime, it is necessary to add two eqnivalents of sulphate of soda, on account of the formation of a double sulphate of soda and lime. The equation representing the change being:-
$\underbrace{\mathrm{CaO}, \mathrm{C}^{4} \mathrm{H}^{3} \mathrm{O}^{3}}_{\text {Acetate of lime. }}+2\left(\mathrm{NaO}, \mathrm{SO}^{3}\right)=\underbrace{\mathrm{NaO}, \mathrm{C}^{4} \mathrm{H}^{3} \mathrm{O}^{3}}_{\text {Acetate of soda. }}+\underbrace{\mathrm{CaO}, \mathrm{SO}^{3} . \mathrm{NaO}, \mathrm{SO}^{3}}_{\text {Double salt. }}$

Or, if sulphuric acid be considered as a bibasic acid, which this very re-action so strongly justifies-
$\underbrace{\mathrm{C}^{4} \mathrm{H}^{3}(\mathrm{Ca}) \mathrm{O}^{4}}_{\text {Acetate of lime. }}+\underbrace{\mathrm{Na}^{2} \mathrm{~S}^{2} \mathrm{O}^{s}}_{\text {Sulphate of soda. }}=\underbrace{\mathrm{C}^{4} \mathrm{H}^{3}(\mathrm{Na}) \mathrm{O}^{4}}_{\text {Acetate of soda. }}+\underbrace{\mathrm{Ca}_{\mathrm{Na}} \mathrm{N}^{2} \mathrm{~S}^{2} \mathrm{O}^{8}}_{\text {Double salt. }}$

If this point be neglected, and only one equivalent of sulphate of soda be used, one-half of the acetate of lime may escape decomposition, and thus be lost.

After the separation of the double salt, the solution of acetate of soda is drawn off, any impurities allowed to subside, and then concentrated by evaporation until it has a density of 4.3 - when the acetate of soda crystallises out, and may be further purified, if requisite, by another re-solution and re-crgstallisation. The contents of the mother liquors are converted into acetone and carbonate of soda, as before.

The crystallised acetate of soda is now fused in an iron pot, at a temperature of about 400°, to drive off the water of crystallisation, the mass being kept constartly stirred. A stronger heat must not be applicd, or we should effect the decomposition of the salt.

For the production of the acetic acid from this salt, a quantity of it is put into a stout copper still, and a deep cavity made in the centre of the mass, into which sulphuric acid of specific gravity 1.84 is poured in the proportion of 35 per cent. of the weight of the salt; the walls of the cavity are thrown in upon the acid, the whole briskly agitated with a wooden spatula. The head of the still is then lutcd, and eonnected with the condensing worm, and the distillation carried on at a very gentle heat. The worm should be of silver or porcelain, as also the still head ; and even silver solder should be used to connect the joinings in the body of the still. The still is now generally heated by a steam "jacket." See Disticlation.

The acid which passes over is nearly colourless, and has a specific gravity of 1.05 . That which collects at the latter part of the operation is liable to be somewhat empyreumatic, and therefore before this point is reached the recciver should be changed; and throughout the entirc operation, care should be taken to avoid applying too high a temperature, as the flavour and purity of the acid will invariably suffer.
Any trace of empyreuma may be removed from the acid by digestion with animal chareoal and redistillation.

A considerable portion of this acid crystallises at a temperature of from 40° to $50^{\circ} \mathrm{F}$, constituting what is called glacial acetic acid, which is the compound $\mathrm{C}^{4} \mathrm{H}^{4} \mathrm{O}^{4}$ (or $\mathrm{C}^{4} \mathrm{H}^{3} \mathrm{O}^{3}, \mathrm{HO}$).

For culinary purposes, pickling, \&cc., the acid of specific gravity 1.05 is diluted with five times its weight of water, which renders it of the same strength as Revenue proof vinegar.
Several modifications and improvements of this process have recently been introduced, which require to be noticed.
The following process depends upon the difficult solnbility of snlphate of soda in strong acetic acids: -100 lbs . of the pulverised salt being put into a hard glazed stoneware receiver, or decp pan, from 35 to 36 lbs. of concentrated sulpharic acid are poured in one stream upon the powder, so as to flow under it. The mixture of the salt and acid is to be made very slowly, in order to moderate the action and the heat generated, as much as possible. After the materials have been in intimate contact for a few hours, the decomposition is effected ; sulphate of soda in crystalline grains will occupy the bottom of the vessel, and acetic acid the upper portion, partly liquid and partly in crystals. A small portion of pure acetatc of lime added to the acid will free it from any remainder of sulphate of soda, leaving only a little acetate in its place; and though a small portion of sulphate of soda may still remain, it is unimportant, whereas the presence of any free sulphuric acid would be very injurious. This is easily detected by evaporating a little of the liquid, at a moderate heat, to dryness, when that mineral acid can be distinguished from the nentral soda sulphate. of the greatest improvements in csome distillation, which is due to M. Mollerat, is oue of the greatest improvements in this process, and depends upon the insolubility of the
sulphate of soda in aeetic aeid. The sulphate of soda thus reeovered, and well drained, serves anew to deeonpose aeetate of lime; so that nothing but this eheap earth is eonsumed in carrying on the manufacture. To obtain absolutely pure acetic aeid, the above aeid has to be distilled in a glass retort.

Völckel recommends the use of hydrochloric instead of sulphurie aeid for deeomposing the aeetate.

The following is his deseription of the details of the process :-
" The erude aeetate of lime is separated from the tarry bodies whieh are deposited on neutralisation, and evaporated to about one-half its bulk in an iron pan. Hydrochlorie acid is then added until a distinctly aeid reaetion is produeed on cooling; by this means the resinous bodies are separated, and come to the surfaee of the boiling liquid in a melted state, whence they can be removed by skimming, while the compounds of lime, with ereosote, and other volatile bodies, are likewise decomposed, and expelled on further evaporation. From 4 to 6 lbs . of hydrochloric aeid for every 33 gallons of wood vinegar is the average quantity required for this purpose. The acetate having been dried at a higl temperature on iron plates, to ehar and drive off the remainder of the tar and resinous bodies, is then deeomposed, by hydrochloric acid, in a still with a copper head and leaden condensing tube. To every 100 lbs . of salt about 90 to 95 lbs . of hydrochlorie acid of speeifie gravity 1.16 are required. The acid comes over at a temperature of from 100° to $120^{\circ} \mathrm{C}$. $\left(212^{\circ}\right.$ to $248^{\circ} \mathrm{F}$), and is very slightly impregnated with empyreumatie products, while a mere cloud is produced in it by nitrate of silver. The specifie gravity of the produet varies from 1.058 to $1 \cdot 061$, and contains more than 40 per eent, of real acid; but as it is seldom required of this strength, it is well to dilute the 90 parts of hydrochloric acid with 25 parts of water, These proportions then yield from 95 to 100 parts of acetic aeid of specific gravity 1.015.

This proeess is recommended on the seore of economy and greater purity of produet. The volatile empyreumatie bodies are said to be more easily separated by the use of hydrochlorie than sulphuric acid; moreover, the ehloride of calcium being a more easily fusible salt than the sulphate of lime, or even than the double sulphate of lime and soda, the aeetie aeid is more freely evolved from the mixture. The resinous bodies also decompose sulphuric aeid towards the end of the operation, giving rise to sulphurous aeid, sulphuretted hydrogen, \&e., whieh contaminate the produet.

The deeomposition of aeetate of lime or lead by means of sulphurie acid has many inconvenicnees, and there is danger of the produet being contaminated with sulphuric acid. Christl* was therefore induced to employ hydroehlorie acid as a decomposing agent, and has found that when this aeid is not used in excess, the distillate contains scareely an appreciable traee of ehlorine. A mixture of 100 lbs . of raw aectate of lime, obtained from the distillation of wood, and containing 90 per eent. of neutral aeetate, with 120 lbs . of hydroehlorie aeid (20° Baumé) is allowed to stand during a night, and then distilled in a eopper vessel. The application of heat requires to be gradual, in order to prevent the somewhat thick liquor from running over. The produet of aeetic aeid amounts to about 100 lbs . of $8^{\circ} \mathrm{B}$.; it has a faint yellow colour and empyreumatie odour, whieh may be perfeetly removed by treatment with wood chareoal and subsequent reetification.
In order to obtain the acetate of lime suffieiently pure, Vollekel \dagger adopts the following proeess :- The raw pyroligneous acid is saturated with lime without previous distillation. A part of the resinous substances dissolved in the acid are thus separated in combination with lime. The solution of impure acetate of lime is allowed to stand until it beeomes clear, or it is filtered, then evaporated in an iron pan to about onehalf, and hydroehlorie acid added until a drop of the cooled liquid distinctly reddens litmus-paper. A part is sometimes distilled off iu a copper still, in order to obtain wood-spirit. The addition of acid serves to separate a great part of the resin still held in solution, whieh eollects together in the beiling liquid, aud may be skimmed off, and likewise decomposes the eompounds of line with ereosote, and some other imperfectly known volatile substanees which are driven off by further evaporation. As these volatile substanees have little or no aetion npon litmus-paper, its being reddened by the liquor is a sign, that not only are the lime eomponnds of these substances deeomposed, but also a small quantity of aeetate of lime. The quantity of acid neeessary for this purpose varies, and depends upon the nature of the pyroligneous aeid, whic l_{1} is again dependent upon the quantity of the watcr in the wood from whieh it is obtained. Three luundred pints of wood-liquor will require from 4 to 6 lbs. of hydrochlorie acid.

The solution of acetate of lime is evaporated to dryness, and a tolcrably strong licat applicd at last, in order to remove all volatile substances. Both operations way bo
performed in the same irou paus; but when the quantity of salt is large, the latter may be more advautageously effected upon cast-iron plates. The drying of the salt requires very great care, for the empyreumatic substances adhere very strongly to the acetate of lime, as well as to the compound of resin and acetic acid mixed with it, and when not perfectly separated, pass over with the acetic acid in the subsequent distillation with an acid, communicating. to it a disagreeable odour. The drying must therefore be continued until, upon cooling, the acetate does not smell at all, or bit very slightly. It then has a dirty brown colour. The acetic acid is obtained by distillation with hydrochloric acid, in a still with a copper head and leaden condenser ; and when proper precautions are taken, the acetic acid does uor contain a trace of either metal. The quantity of hydrochloric acid required cannot be exactly stated, becausc the acetate of lime is mixed with resin, and already formed chloride of calcium. In most instances 90 or 95 parts by weight of acid, $1 \cdot 16$ specific gravity, are sufficient to decompose completely 100 parts of the salt, without introducing much hydrochloric acid into the distillate.

The distilled acetic acid possesses only a very faint empyreumatic odour, very different from that of the raw pyroligneons acid ; it is perfectly colourless, and should only become slightly turbid on the addition of nitrate of silver. If the acid has a yellowish colour, this is owing to resin having been spirted over in the distillation. It is therefore advisable to remove the resin, - which is separated on the addition of hydrochloric acid, and floats upon the surface of the liquid,- either by skimming or filtration through a linen cloth. The distilled acid has a specific gravity ranging between 1.058 and 1.061 , containing upwards of 40 per cent. of anhydrous acetic acid. It is rarely that acid of this strength is required ; and as the distillation is easier when the mixture is less concentrated, water may be added before or towards the end of the distillation. Völckel recommends as convenient proportions -

> 100 parts of acetate of lime,
> 90 to 95 hydrochloric acid,
> 25 parts water,
which yield from 95 to 100 parts of acetic acid of $1 \cdot 105$ specific gravity; 150 litres of raw pyroligneous acid yield about 50 lbs . of acetic acid of the above specific gravity.

The acid prepared in this way may be still further purified by adding a small quantity of carbonate of soda aud redistilling ; it is thus rendered quite free from chlorine, and any remaining trace of colour is likewise removed. The slight empyreumatic smell may be removed by distilling the acid with about 2 or 3 per cent. of acid chromate of potash. Oxide of manganese is less efficacious as a purifying agent.

Although pure acetic acid may be procured by the distillation of vincgar, the whole of the acid cannot be obtained except by distilling to dryness, by which means the extractive substances are burnt, and the distillate rendered impure. In order to obviate this difficulty, Stein* proposes to add 30 lbs . of salt to every 100 lbs . of vinegar; the boiling-point is thus raised, and the acid passes over completely.

By the Quick Process of Ham, when the fermentation is finishcd, the greatest care ought to be taken that all access of air is excluded from the wash, and that its temperature be reduced to, and maintained at, a heat below the point where acctification commences. Those who, like Messrs. Hill, Evans, and Co., of Worcester, attach great importance to the fabrication of the best keeping viuegars, are in the habit of filtering the fcrmented wash, aud also of storing it away for many months in a cool situation ere it is passed through the acetifier; and there cannot be a moment's doubt concerning the great value of this practice, not only as regards the appearance and flavour of the resulting vinegar, but also in respect to its dietetic and sanitary properties.

All recently fermented wash contains a quantity of partially decomposed gluten, sume of which is mechanically suspended merely, but by far the larger portion exists in a state of solution through the agency of carbonic acid gas.

A filter will remove the former, but time alone can dissipate the carbonic acid and lead to the deposition of the soluble gluten. At all events, time is the only a vailable remedy, for though heat would expel the carbonic acid, yet it would at the sauc tiule drive off the alcohol; and agitation in contact with air, though it removed the curbonic acid, would tend to the formation of acetic acid, by which the gluten would be kept in solution more decidedly than before, and thus lead to the production of a turbid, ropy, and impure vinegar, extremcly liable to decompose and undergo the putrefactive fermentation. It is obvious, thercfore, that the theoretical conditions needed in the treatment of fermented wort by the vinegar-maker are precisely those which we have shown to be in use at Worcester. That is to say, the gluten, when insoluble, should

[^5]be removed by a filter, and when held in solution by earbonie acid, this must be slowly expelled by keeping at a temperature too low for aeetification to take place, and whieh may be assumed at less than $55^{\circ} \mathrm{F}$. Fermented wort stored away at this temperature for six months will flow to the aeetifier perfeetly limpid and bright; it will eause no deposition of gluten upon the bireh twigs, and thus seeure complete oxidation ; it will rapidly take on the grateful flavour of acetic ether, and never beeome tainted by the formation of that noxious produet aldehyde, whieh so frequently contaminates ill-made vinegar.

Presuming, however, that all the neeessary preeautions, witl respeet to eare in washing, fermenting, and keeping the wort, have been attended to, we may now pass on to the aeetifier, that is to say, Ham's aeetifier.

This is a wooden vat or vessel (fig. 7) about 12 feet in height, and from 7 to

8 feet in diameter, elosed at top and bottom, exeept at the opening for the introduction of the wash and the exit of the vinegar. The sides are perforated by a few small holes for the admission of air, and within are three floors or partitions perforated with numerous holes for the passage of the wash through them. Upon these floors are laid bundles of bireh twigs, to favour the dispersion and division of the fluid which passes through the aeetifier, and is thus brought into the most immediate contact with the oxygen contained in the vessel, or admitted through the openings in its sides. The fluid or wash is admitted at the top of the acetifier, and suffered to trickle slowly through the masses of bireh twigs and through the partitions, thus eausing a rapid absorption of oxygen, and consequent production of vinegar, which with any undecomposed wash flows out at the bottom of the vessel, and is again pumped up to the top, and so on until the proeess is finished. If we examine the circumstanees eonnected with the formation of vinegar in this way, we shall perceive, that it is a case of partial eombustion, or, in other words, an example in which an organic compound undergoes oxidation at a temperature and under conditions which prevent the eompletion of the change.

Every one must have observed that when eommon eoals are thrown upon a firc, a volatile portion immediately bursts into flame, while eopious particles of soot or earbon are thrown off unburnt; though of the other constituent of the coal, that is to say, the hydrogen gas, no partiele eseapes unoxidised. This arises from the faet, that, except at very high temperatures, hydrogen has a greater affinity for oxygen than carbon has; eonsequently, as the supply of oxygen from atmospherie air in the immediatc neighbourhood is limited, the hydrogeu seizes upon its cquivalent to the exclusion of the carbon, which, thereforc, remains and constitutes soot. Exaetly in the same way the hydrogen of the alcohol in the wash oxidises to the exelusion of the carbon, and vivegar is formed from the remaining or carbonaceous elcment, which beeomes itself slightly oxidised. Thus 2 atoins of alcohol are eomposed of :-

Carbon	-	-	-	-	-	-	4 atoms.
Hydrogen	-	-	-	-	-	-6	
Oxygen	-	-	-	-	-	-2	

whilst aeetic aeid acid or purc radical vinegar contains of -

Carbon	-	-	-	-	-	-	-	-	4 atoms.
Hydrogen	-	-	-	-	-	-	-	3	
Oxygen	-	-	-	-	-	-	-	-	3

If, therefore, we suppose the contact of air with alcohol to have led to the absorption of oxygen, so as to have oxidised three atoms of hydrogen, and thus produced three atoms of water, we have left -

Carbon -	-	-	-	-	-	-	-	-	4 atoms.
Hydrogen	-	-	-	-	-	-	-	-	3
Oxygen	-	-	-	-	-	-	-	2	

which, by the mere absorption of another atom of oxygen, bccomes -

Carbon -	-	-	-	-	-	-	-	-	4 atoms.
Hydrogen	-	-	-	-	-	-	-	-	
Oxygen	-	-	-	-	-	-	-	-	3

or pure acetic acid, with which the water produced from the hydrogen remains in union and forms vinegar. From the above it follows, that as the oxidisation of hydrogen generates heat or caloric, there ought to be a very appreciable rise in temperature during the passage of the wort through the acetifier. And, in practice, this is found to be the case; so that precautions are needed to prevent the heat from rising so high as to vaporise the remaining alcohol of the wash. The temperature sought to be obtained is about 90° to $92^{\circ} \mathrm{F}$., at which oxidation goes on freely, and the loss of alcohol is moderate. In using the word moderate, we speak practically rather than chemically ; for in reality the loss is very serious with strong worts. From practical results, conducted with more than ordinary care, it has been ascertained that about one-third of all the extractive matter of the malt and grain is lost or dissipated during the processes of fermentation and acetification. Thus, a wort having a specific gravity of 1.072 , or, in technical language, weighing about 26 lbs per barrel, affords vincgar containing $5 \cdot 4$ per cent. of pure acetic acid, and a residuary extract of 10 lbs . from 36 gallons. The former of these would indicate 35 lbs . of sugar, or 13.7 lbs per barrel of gravity; whilst the latter shows 3.8 lbs . per barrel ; the two united bcing only $17 \cdot 5 \mathrm{lbs}$. instead of 26 , the original weight. The loss, therefore, has been 8.5 lbs ., or from a specific gravity of 1.072 to less than 1.050 . This prodigious destruction of extract seems to imply that great improvements may yet take place in the manufacturc of vinegar.

The manufacture of vincgar, by Ham's process, is an extremcly iuteresting operation, and when conducted with proper care furnishes results of the most satisfactory and uniform eharacter. These, however, are not to bc obtained without a vast amount of experience and the most vigilant attention on the part of the manufacturcr. Thus a differcace in the water, in the malt, in the mode of washing, in the cooling of the wort, or in the fermentation of the wort, will each give rise to modifications in the acetifying proeess which no subsequent skill or labour can rectify. There secms no doubt that the most important points in Ham's method are the cooling and fermentation of the wort ; though, where perfection is sought for, no one of the other conditions can be omitted or neglected with impunity. We shall, therefore, proceed to treat of these conditions seriatim, rather than in the order of their importance. At first sight it might be supposed that the purer the water the better ; that is to say, the less the amount of earthy or saline constituents the morc valuable the water would be for making vinegar. Experiencc, howevcr, teaches us the contrary; and science confirms the truth of this teaching, by pointing out the real nature of the operation. When pure water is made to act at a high temperature upon the ordinary ingredients of a vincgar-maker's mash tun, it is not alone the sugar, gum, and starch of the grain which enters into solution, for under such circumstances the gluten is also dissolved ; but this gluten is composed of vegetable albumen and vegetable gelatine, the former of which, as is well known, is capable of bcing decomposed and precipitated by many earthy and metallic salts, of which the sulphate of lime is onc. If, therefore, this salt exists in the water cmployed for the fabrication of viuegar, or of ale or beer, the wort will contain little or no vegctable albumen; consequently, the vinegar or beer made with such water never becomes cloudy or ropy, as happens when pure water is uscd, for these defects arise from au cxecss of albuminous matter. The water uscd for making the celebrated Burton ale contains a great deal of sulphate of lime; and the spring water of Worcester, which is employed by the cxtensive firm of Hill, Evans, and Co., in that city, vinegar-nuakers, contains also a very large amount of sulphate of lime, and no doubt contributes much towards maintaining the well-cstablished reputation of that firm. Whencver, therefore, much
VoL. I.
sulphate of lime exists in water, without the presence of any noxious ingredient, such water may always be relied upon as favourable for the production of good beer and viuegar.

As regards the malt, or rather the mixture of malt and grain, employed for the produetion of wort, the common Seoteh distillers' formula is the best, eontaining, as it always does, a considerable per-eentage of oats, for the long husk of the oat greatly facilitates the operation of draining, and thus secures the thorough separation of the wort from the spent grains.

In pruetiee it is found neeessary to ferment only two gravities, a high and a low, all the other qualities of vinegar being made by mixing or diluting these after aeetifieation. The most eommon, and unquestionably the best, gravity for fermentation is that which in teelnieal language weighs about 20 lbs., or has a specifie gravity of 1.056 ; the other, or that inteuded for strong or proof vinegar, being of specific gravity 1.072 : this latter affords a vinegar containing about $5 \frac{1}{2}$ per eent. of anhydrous acetie acid.

In every iustanee the fermentation must be carried to its utmost limit, or to zero at least; and in eooling the wort prior to fermentation, great eare must be used to prevent the accession of the acetous fermentation lefore the yeast is added; for if this happens to any considerable extent, the nitrogenised matter of the yeast is then permanently retained in solution by the aeetic aeid, and this may give rise to the inconvenience ealled the "mother." To secure a perfeet vinegar by Ham's proeess, as much attention is required during the cooling and fermentation as for the finest ale; and this axiom cannot be too strongly inculcated into the minds of vinegar-makers. The heat of the fermenting tun should not exceed $75^{\circ} \mathrm{F}$., as the alcohol formed by the proeess is apt at higher temperatures to pass off in considerable quantity with the earbonic aeid, and thus give rise to a loss of vinegar. Presuming that the fermentation has been well condueted, and that the specific gravity of the wash is as low as water, or 1000 , the next step is to pass it through that apparatus which eonstitutes the great peeuliarity of Ham's process. This apparatus is called the acetifier.-Ure.

C. - Manufacture of Acetic Acid from Acetate of Copper.

Before the process for pyroligueous aeid, or wood vinegar, was known, there was only one method of obtaining strong vinegar praetised by ehemists; and it is still followed by some operators, to prepare what is called radieal or aromatie vinegar. This eonsists iu decomposing, by heat alone, the erystallised binaeetate of copper, commonly, but improperly, ealled distilled verdigris. With this view, we take a

8
 stoneware retort (fg .8), of a size suited to the quantity we wish to operate upon, and eoat it with a mixture of fireclay and horsedung, to make it stand the heat better. When this eoating is dry, we introduee into the retort the erystallised acetate slightly bruised, but very dry; we fill it as far as it will hold without spilling when the beak is eonsiderably inclined. We then set it in a proper furnaee. We attaeh to its neek an adopter pipe, and two or three globes with opposite tubulures, and a last globe with a vertieal tubulure. The apparatus is terminated by a Welter's tube, with a double braneh; the shorter issues from the last globe, and the other dips into a flask filled with distilled vinegar. Every thing being thus arranged, we lute the joinings with a putty made of pipeclay and linseed oil, and eover them witl glue paper. Eaeh globe is placed in a separate basin of eold water, or the whole may be put into an oblong trough, through whieh a constant strenm of eold water is made to flow. The tubes must be allowed a day to dry. Next day we proeeed to the distillation, tempering the heat very nieely at the beginning, and inereasing it by very slow degrees till we see the drops follow each other pretty rapidly from the neck of the retort, or the end of the adopter tube. The vapours which pass over are very hot, whenec a series of globes are neeessary to condense them. We should renew, from time to tiue, the water of the basins, aud keep moist pieees of cloth npon the globes; but this demands great caro, especially if the fire be a little too brisk, for the vessels becoue, in that case, so lot, that they would infallibly be broken if touehed suddenly with eold water. It is always easy for us to regulate this operation aceording to the emission of gas from the extremity
of the apparatus. When the air bubbles succced cach other with great rapidity, we must damp the fire.
The liquor which passes in the first half hour is weakest; it proceeds, in some measure, from a little water sometimes left in the crystals, which, when well made, however, ought to be auhydrous. A period arrives towards the middle of the process when we see the extremity of the beak of the retort, and of the adopter, covered with crystals of a lamellar or needle shape, and of a pale green tint. By degrees these crystals are carried into tbe condensed liquid by the acid vapours, aud give a colour to the product. These crystals are mercly some of the cupreous salt forced over by the heat. As the process approaches its conclusion, we find more difficulty in raising the vapours; and we must then augment the intensity of the heat, in order to continuc their disengagement. Finally, wc judge that the process is altogether finished, when the globes become cold, notwithstanding the furnace is at the hottest, and when no morc vapours are evolved. The fire may then be allowed to go out, and the retort to cool.

As the acid thus obtained is slightly tinged with copper, it must be rectified bcfore bringing it into the market. For this purpose we may make use of the same apparatus, only substituting for the stoneware retort a glass one, placed in a sand-bath. All the globes ought to be perfectly clean and dry. The distillation is to be conducted in the usual way. If we divide the product into thirds, the first yields the feeblest acid, and the third the strongest. We could not push the process quite to dryness, because there remain in the last portions certain impurities which would injure the flavour of the acid.

The total acid thus obtained forms nearly one-half of the weight of the acetate cuployed, and the residuum forms threc-tenths; so that about two-tenths of the acid have been decomposed by the heat, and are lost.- Ure.

Other metallic acetates may be used instead of the acctate of coppcr, but with variable results as to the amount of acetic acid which they yield. Acetates which have easily reducible oxides - as those of copper, silver, mercury, lead, \&c. - afford a larger proportion of acetic acid; but acetone marsh gas, as well as carbonic oxide and carbonic acid, invariably accompany it. The acetate of silver gives no acetoue; whilst those of the alkaline earths yield chiefly acetone or marsh gas, being converted into carbonates. See Acetone.

Anhydrous Acetic Acid, as madc by Gerhardt, is obtained by mixing perfectly dry fused acetate of potash with about half its weight of chloride of benzoyle, aud applying a gentle heat; when a liquid distils over, which, after being rectified, has a constant boiling point of $279^{\circ} \mathrm{F}$., and is heavier than water, with which it does not mix until after it has been agitated with it for some time. It dissolves at once in hot water, forming acetic acid.

Impurities and Adulterations.

In order to preveut the putrefactive change which often takes place in vinegar, when carelessly prepared by the fermentation of malt winc, \&cc., it was at one time supposed to be necessary to add a small quantity of sulphuric acid. This notion has long since been shown to be false; nevertheless, since the addition of 1 part of sulphuric acid to 1000 of vinegar was permitted by an Excise regulation, and thus the practice has reccived legal sanction, it is still continued by many manufacturers. So long as the quantity is retained within these limits, and if pure sulphuric acid be uscd (great care being taken that there is no arsenic present in such oil of vitriol, as is not unfrequently the case in inferior varieties), no danger can ensue from the habit; but occasionally the quantity is much overpassed by dishonest dealers, of whom it is to be hoped there are but few.

Dr. Ure mentions having found by analysis in a sample of vinegar, made by onc of the most cminent London manufacturers, with which he supplied the public, wo less than 175 grains of the strongest oil of vitriol per gallon, added to vincgar containing only $3 \frac{6}{\frac{6}{0}}$ per cent. of real acetic acid, giving it an apparent strength after all of only 4 per cent., whercas standard commercial vinegar is rated at 5 per cent.

The methods of determining sulphuric acid will be given, once for all, under the head of Acidmetny, and therefore nced not be described in every case where it occurs: the same remark applies to hydrochloric acid and others.

Hydrochloric acid is rarcly intentionally added to vinegar ; but it may accidentally he present when the pyroligneous acid has been purified by Völckel's process. It is detected by the preeipitate which it gives with solution of nitrate of silver iu the presence of nitric acid.

Nitric aeid is rarely found in vincgar. For its method of detection, sec Nithic Acin. Wine vincgar generally contains tartaric acid and tartrates; but it is purified from them by distillation.

Sulphurous acid is occasionally met with in pyroligneous acid. This is recognised by its bleaching action on delicate vegetable colours, and by its conversion, under the influence of nitric acid, into sulphuric acid, which is detected by chloride of barium.

Sulphuretted hydrogen is detected by acetate of lead giving a black colouration or precipitate.

Metallic Salts.-If care be not taken in constructing the worm of the still of silver or earthenware, distilled acetic acid is frequently contaminated with small quantitics of metal from the still, copper, lead, tin, \&c. These metals are detected by the addition of sulphuretted hydrogen, as is fully discussed under the head of the individual metals. Copper is the most commonly found, and it may be detected in very minute quantities by the blue colour which the solution assumes ou being supersaturated with ammonia.

It is not uncommon to add to pyroligncous acid, a little colouring matter and acetic ether, to give it the colour and flavour of wine or malt vinegar ; but this can hardly be called an adulteration.

The presence of the products of acetification of cider may be detected by neutralising the vinegar with ammonia, and then adding solution of acetate of lime. Tartrate of limic is, of course, precipitated from the wine vinegar, while the pearly malic acid of the cider affords no precipitate with the lime, but may be detected by acetate of lead, by the glistening pearly scales of malate of lead, hardly soluble in the cold.

Uses of Acetic Acid.

Acetic acid is extensively employed in the arts, in the manufacture of the various acetates, especially those of alumina and iron, so extensively employed in calico printing as mordants, sugar of lead, \&cc. It is likewise used in the preparation of varnishes, for dissolving gums and albuminous bodies; in the culinary arts, especially in the manufacture of pickles and other condiments; in medicine, externally, as a local irritant, and internally, to allay fever, \&c.

For the treatment in cases of poisoning, we refer to Taylor, Pereira, and other medical authorities. - H. M. W.

The following Table from the "Statistical Abstract" will give an idea of the progress and extent of the vinegar trade : -

	1841.	1842.	1843.	1844.	1845.	1846.
Home manufac- ture (gallons)	$3,102,098$					
Imports - Of these retain- ed for home consumption -	23,695	175,722 41,311	$2,993,061$ 21,784	$2,828,043$		
88,722	195,967	93,821				

Our importations were in 1856 as follows, according to the Trade and Navigation returns:-

			Gallons.	Computed Real Value.	
Hanover	-	-	-	1,156	
Hanse Towns	-	-	-	357	22
Hansland -	-	-	-	3,675	272
Hrance	-	-	-	-	26,285
1,642					
Portugal -	-	-	-	241	15
Spain -	-	-	-	236	15
Other parts -	-	-	-	2,890	181

At present there are in this country about fifty manufacturers, who make about, $4,000,000$ gallons annually; of these the five principal ones are in London, and they make ncarly balf the entire quantity.

ACE'TIMETER. An apparatus used for determining the strength of vinegar.
ACETIMETRY. Determination of the Strength of Vinegar.-If in vinegars wr werc dealing with mixtures of pure acctic acid and watcr, the detcrmination of the density might to a certain extent afford a criterion of the strength of the solution ; but vincgar, especially that obtaincd from wine and malt, invariably coutains gluten, saccharine, and mucilaginous matters, which increase its density and render this method altogether fallacions.

The only accurate means of determining the strength of vinegar is hy ascertaining the quantity of carbonate of soda or potash neutralised by a given weight of the vinegar under examination. This is performed by adding to the vinegar a standard solution of the alkaline carhonate of known strength from a bruette, until, after boiling to expel the carhonic acid, a solution of litmus previously introduced into the liquid is distinctly reddened.
The details of this process, which is equally applicable to mineral and other organic acids, will he found fully descrihed under the head of Acidimetry.
Roughly, it may he stated that every 53 grains of the pure anhydrous carhonate of soda, or every 69 grains of carbonate of potassa (i.c. one equivalent), correspond to 60 grains of acetic acid $\left(\mathrm{C}^{4} \mathrm{H}^{4} \mathrm{O}^{4}\right)$.*
It is ohvious that preliminary examinations should be made to ascertain if sulphuric, hydrochloric, or other mineral acids are present; and, if so, their amount determined, otherwise they will he reckoned as acctic acid.
The British malt vinegar is stated in the London Pharmacopeia to require a drachm (60 grains) of crystallised carhonate of soda (which contains 10 equivalents of water of crystallisation) for saturating a fluid ounce, or 4.46 grains; it contains, in fact, from $4 \cdot 6$ to 5 per cent. of real acetic acid.
The same authorities consider that the purified pyroligneous acid should require 87 grains of carhonate of soda for saturating 100 grains of the acid.
Dr. Ure suggests the use of the hicarhonate of potash. Its atomic weight, referred to hydrogen as unity, is 100.584 , while the atomic weight of acetic acid is 51.563 ; if we cstimate 2 grains of the bicarbonate as equivalent to 1 of the real acid, we shall commit no appreciahle error. Hence a solution of the carbonate containing 200 grains in 100 measures will form an acetimeter of the most perfect and convenient kind; for the measures of test liquid expended in saturating any measure - for instance, an ounce or 1000 grains of acid - will indicate the numher of grains of real acetic acid in that quantity. Thus, 1000 grains of the above proof would require 50 measures of the acetimetrical alkaline solution, showing that it contains 50 grains of real acetic acid in 1000, or 5 per cent.
Although the hicarbonate of potash of the shops is not absolutely constant in composition, yet the method is no douht accurate enough for all practical purposes.
The acetimetrical method employed hy the Excise is that recommended by Messrs. J. and P. Taylort, and consists in estimating the strength of the acid hy the specific gravity which it acquires when saturated hy hydrate of lime. Acid which contains 5 per cent. of real acid is equal in strength to the best malt vinegar, called hy the makers No. 24, and is assumed as the standard of vinegar strength, under the denomination of " proof vinegar." \ddagger Acid which contains 40 per cent. of real acetic acid is, thercfore, in the language of the Revenue, 35 per cent. over proof; it is the strongest acid on which duty is charged hy the acetimeter. In the case of vinegars which have not heen distilled, an allowance is made for the increase of weight due to the mucilage present; hence, in the acetimeter sold hy Bate, a weight, marked m, is provided, and is used in trying such vinegars. As the hydrate of lime employed causcs the precipitation of part of the mucilaginous matter in the vinegar, it serves to remove this difficulty to a certain extent. (Pereira.)-H. M. W.

ACETONE, syn. pyroacetic spirit, mesitic alcohol, pyroacetic ether. $\mathrm{C}^{6} \mathrm{H}^{6} \mathrm{O}^{3}$. A volatile fluid usually obtained by the distillation of the acetates of the alkaline earths. It is also obtained in a variety of operations where organic matters are exposed to high temperature. Tartaric and citric acids yicld it when distilled. Sugar, gum, or starch, when mixed with lime and distilled, afford acetone. If crude acctate of lime he distilled, the acetone is accompanied by a small quantity of ammonia and traces of methylamine. The latter is due to the nitrogen contained in the wood ; the distillate from which was used in the preparation of the acctate of lime. Crude acetone may be purified hy redistilling it in a water-bath. A small quantity of slaked lime should be added previous to distillation, to comhine with any acid that may be present. When pure, it forms a colourless mohile fluid, hoiling at $133^{\circ} \mathrm{F}$. Its density at 18° is 0.7921 , at 32° it is 0.8140 . The density of its vapour was found by cxperiment to he $2 \cdot 00$; theory requires $2 \cdot 01$, supposing six volumes of carbon vapour, twelve volumes of hydrogen, and two volumes of oxygen to he condensed to four volumes. When acetone is procured from acetate of lime, two equivalents of the latter are decomposed, yiclding one equivalent of acetonc, and two equivalents of carbonate of lime. It has heen found that a great number of organic acids, when distilled under similar cir-

[^6]cumstances, yield bodies bearing the same relation to the parent acid that acetone does to acetic acid: this fact has caused the word acetone to be used of late in a more extended sense than formerly. The word ketone is now gencrally used to express a neutral substance derived by destructive distillation from an acid, the latter losing the elements of an equivalent of carbonic acid during the decomposition. Theoretical chemists are somewhat divided with regard to the rational formulk of the ketones. An overwhelming weight of evidence has been brought by Gerhardt and his followers, to prove that they should be regarded as aldehydes in which an equivalent of hydrogen is replaced by the radical of an alcohol. Thus common acetone ($\mathrm{C}^{6} \mathrm{H}^{6} \mathrm{O}^{2}$) is aldehyde ($\mathrm{C}^{4} \mathrm{H}^{4} \mathrm{O}^{2}$), in which one cquivalent of hydrogen is replaced by methyle, $\mathrm{C}^{2} \mathrm{H}^{3}$.

Acetone dissolves several gums and resins, amongst others sandarach. Wood spirit, which sometimes, owing to the presence of impurities, refuses to dissolve sandarach, may be made to do so by the addition of a small quantity of acetone.

When treated with sulphuric acid and distilled, acetone yields a hydrocarbon called mesitylene or mesitylole, $\mathrm{C}^{18} \mathrm{H}^{12}$.-C. G. W.

ACETYL. Two radicals are known by this name, namely, $\mathrm{C}^{4} \mathrm{H}^{3}$ and $\mathrm{C}^{4} \mathrm{H}^{3} \mathrm{O}^{2}$. Their nomenclature has not, as yet, been definitely settled. Some chemists (following Berzelius, who denied the existence of oxidised radicals) regard acetyl $\mathrm{C}^{4} \amalg^{3}$ as a radical, the teroxide of which constituted acetic acid. The followers of Gerhardt, on the other hand, consider acetic acid to contain a radical of the formula $\mathrm{C}^{4} \mathrm{H}^{3} \mathrm{O}^{2}$. The latter is generally knowu as acetyl. Dr. Williamson proposes to call it othyl. The hydrocarbon $\mathrm{C}^{1} \mathrm{H}^{3}$ is now assumed to exists in aldehyde, which can be regarded as formed on the type two atoms of water, thus:-

$$
\mathrm{O}^{3}\left\{\begin{array}{c}
\mathrm{C}^{4} \mathrm{H}^{3} \\
\mathrm{H}
\end{array}\right.
$$

In the above formula we have 2 atoms of water, in which 1 equivalent of hydrogeu is replaced by the non-oxidised radical $\mathrm{C}^{4} \mathrm{H}^{3}$, which may very conveniently be named aldylc, to recall its existence in aldehyde.-C. G. W.

ACETYLAMINE. ($\mathrm{C}^{4} \mathrm{H}^{5} \mathrm{~N}$.) An oily alkaloid, produced by acting with the oil of olefiant gas (Dntch liquid, or chloride of ethylene) on an alcoholic solution of ammonia. According to M. Natanson, its discoverer, it boils at $424^{\circ} \mathrm{F}$. Its density at 59° is $0.975-\mathrm{C}$. G. W.

ACHROMATIC, destitute of colour. White light consists, as is shown by its decomposition by a prism, of several coloured rays, having different degrees of refrangibility. (See Ligut.) When, therefore, white light passes through any transparent body, such as a lens, it is liable to this decomposition to a greater or a less extent, and hence colour is produced. This is termed chromatic aberration. Many, especially old-fashioned, telescopes exhibit objects surrounded by beautifully coloured fringes. Now the means which have been devised to prevent this are termed achromatic, signifying the deprivation of colour.

ACHROMATIC LENS. Hale, in 1733, constructed lenses which did not produce chromatic dispersion. In 1757 Dolland arrived, by a perfectly independent examination, at the same discovery, and published it.

A lens may be regarded as a number of prisms united round a centre; therefore a ray of light falling on a lenticnlar glass is decomposed, and the rays being of unequal refrangibility, they have on its axis as many foci as there are colours. The images, therefore, of objects which are produced at these points are superimposed, more or less, aud the edges fringed with indistinct colours. The least refrangible rays unite at foci further away than the more refrangible; and the object songht for, and attained, by both Hale and Dollaud, was the means of uniting these rays at one focal point. They combined flint-glass with crown-glass, and found that, by a suitable curvature given to the object-glasses, the images seen through them were distinct, and free from these adventitious colours.

Tclescopes, microscopes, \&c., fitted -up with such combinations of lenses as those described, are called achromatic telescopes.

ACID. (Acidus, sour, L.) The term acid was formerly applied to bodies which were sour to the taste, and in popular language the word is still so nsed. It is to be regretted that the necessities of science have led to the extension of this word to any bodies combining with bases to form salts, whether such combining body is sour or otherwise. Had not the term acid been established in language as expressing a sour body, there wonld have becn no objection to its use; but chemists now apply the term to substances which are not sour, and which do not change blue vegetable colours; and consequently they fail to convey a correet idea to the popular wind.

Hobbes, in his "Compntation or Logic," says, " A name is a word taken at pleasure to serve for a mark which may raise iu our mind a thought like to some thought we had before, and which, being prononnced to others, may be to them a sign of what thought the speaker lad, or bad not, before in his miud." This philosopher thus truly
expresses the purpose of a name; and this purpose is not fulfilled by the term, acid, as now employed.
Mr. John Stuart Mill, in his "System of Logic," thus, as it appears not very happily, endeavours to show that the term acid, as a scientific term, is not inappropriate or incorrect.
"Scientific definitions, whether they are definitions of scientific terms, or of common terms used in a scientific sense, are almost always of the kind last spoken of: their main purpose is to serve as the landmarks of scientific classification. And, since the classifications in any science are continually modified as scientific knowledge advances, the definitions in the sciences are also constantly varying. A striking instance is afforded by the words acid and alkali, especially the former. As experimental discovery advanced, the substances classed with acids have been constantly multiplying; and, by a natural consequence, the attributes connoted by the word have receded and become fewer. At first it connoted the attributes of combining with an alkali to form a neutral substance (called a salt), being compounded of a base and oxygen, causticity to the taste and touch, fluidity, \&c. The true analysis of muriatic acid into cllorine and hydrogen caused the sccond property, composition from a base and oxygen, to be excluded from the connotation. The same diseovery fixed the attention of chemists upon hydrogen as an important element in acids; and more recent discoveries having led to the recognition of its presence in sulphuric, nitric, and many other acids, where its existence was not previously suspected, there is now a tendency to include the presence of this clement in the connotation of the word. But carbonic acid, silica, sulphurous acid, have no hydrogen in their composition; that property cannot, therefore, be connoted by the term, unless those substances are no longer to be considered acids. Causticity and fluidity have long since been excluded from the characteristics of the class by the inclusion of silica and many other substances in it; and the formation of neutral bodies by combination with alkalis, together with such electro-chemical peculiarities as this is supposed to imply, are now the only differentia which form the fixed connotation of the word acid as a term of chemical science."

The term Alkali, though it is included by Mr. J. S. Mill in connection with acid in his remarks, does not stand, even as a scientific term, in the objectional position in which we find acid. Alkali is not, strictly speaking, a common name to which any definite idea is attached. Acid, on the contrary, is a word commonly cmployed to signify sour. With the immense increase which organic chemistry lias given to the number of acids, it does appear necessary, to avoid confusion, that some new arrangement, based on a strictly logical plan, should be adopted. This is, however, a task for a master mind ; and possibly we must wait for another generation beforc such a mind appears among us.
In this Dietionary all the acids named will be found under their respective heads; as Acetic, Nitric, Sulphuric Acids, \&e.

ACIDIFIER. Any simple or compound body whose presence is necessary for the production of an acid; as oxygen, chlorine, bromine, iodine, fluorine, sulphur, \&cc. \&c.

ACIDIMETER. An instrument for measuring the strength or quantity of real acid contained in a free state in liquids. The construction of that instrument is founded on the principle that the quantity of real acid present in any sample is proportional to the quantity of alkali which a given weight of it can neutralise. The instrument, like the alkalimeter (see Alkalimeter), is made to contain 1000 grains in weight of purc distilled water, and is divided accurately into 100 divisions, each of which therefore represents 10 grains of pure distilled water; but as the specific gravity of the liquids which it serves to measure may be heavier or lighter than pure water, 100 divisions of such liquids are often called 1000 grains' measure, irrespectively of their weight (specific gravity), and accordingly $10-20$ \&c. divisions of the acidimeter are spoken of as $100-200$ \&c. grains' measure; that is to say, as a quantity or measure which, if filled with purc water, would have weighed that number of grains.

ACIDIMETRY. Acidimetry is the name of a chemical process of analysis by means of which the strength of acids - that is to say, the quantity of pure free acid contained in a liquid - can be ascertained or estimated. The principle of the method based upon Dalton's law of chemical combinations; or, in other words, upon the fact that, in order to produce a complete reaction, a certain definite weight of reagent is required.

If, for example, we take 1 equivalent, or 49 parts in weight, of pure oil of vitrol of specific gravity 1.8485 , dilute it (of course within limits) with no matter what quantity of water, and add thereto either soda, potash, magnesia, ammonia, or their carbonates, or in fact any other base, until the acid is neutralised - that is to say, until blue litmus-paper is no longer, or only very faintly, reddened when moistened with a drop of the acid liquid under examination,-it will be found that the respective weights of
each base required to produce that effect will greatly differ, and that with respect to the bases just mentioncd these weights will be as follows : -

This being the case, it is evident that if we wish to asecrtain hy such a method the quantity of sulphurie acid or of any other acid contained in a liquid, it will be neecssary, on the one haud, to weigh or measure aecurately a given quantity of that liquid to be examined, and, on the other hand, to dissolve in a known volume of water the weight above mentioned of any one of the hases just alluded to, and to pour that solution gradually into that of the aeid until neutralisation is obtained; the number of volumes of the hasie solution which will have heen required for the purpose will evidently indicate the amount in weight of acid which existed in the liquid under examination. Acidimetry is therefore exactly the reverse of alkalimetry, since in principle it depends on the numher of volumes of a solution of a base diluted with water to a definite strengtl, which are required to neutralise a known weight or measure of the different samples of acids.

The solution containing the known weight of base, and eapahle therefore of saturating a known weight of acid, is called a "test-liquor;" and an aqueous solution of ammonia, of a standard strength, as first proposed by Dr. Ure, affords a most cxact and convenient means of effecting the purpose, when gradually poured from a graduated dropping-tube or aeidimeter into the sample of aeid to be examined.

The strength of the water of ammonia used for the experiment should he so adjusted that 1000 grains' measure of it (that is, 100 divisions of the alkalimeter) really contain one equivalent (17 grains) of ammonia, and consequently neutralise one equivalent of any one real acid. The speeific gravity of the pure water of ammonia employed as a test for that purpose should he exactly 0.992 , and when so adjusted, 1000 grains' measure (100 divisions of the acidimeter) will then ncutralise exactly 40 grains, or one equivalent, of sulphuric acid (dry).

49	"	,		sulp
37.5	"	",	",	$\begin{array}{r} \text { Vitriol, sp. gr. } 1 \cdot 848.5, ~ \\ \text { chloric acid (} \end{array}$
54	"	"	",	nitric acid (dry)
60	"	",	",	crystallised aeetic aeid.
45 -	"	,"	",	oxalic acid.
150	"	",	"	tartaric acid.
51	"			acetic acid.

And so forth with the other acids.
A standard liquor of ammonia of that strength hecomes, therefore, a universal aeidimeter, siuce the number of measures or divisions used to cffect the neutralisation of 10 or of 100 grains of any one aeid, being multiplied by the atomic weight or equivalent number of the acid under examination, the product, divided by 10 or by 100 , will iudicate the per-eentage of real acid contained in the sample. The proportion of free acid heing thus determined with precision, even to $\frac{1}{50}$ th of a grain, in the course of five minutes, as will be shown presently.
'The most eonvenient method of preparing the standard liquor of ammonia of that speeifie gravity is by means of a glass bead, not but that specific-gravity bottles and hydrometers may, of course, be employed; hut Dr. Ure remarks, with reason, that they furnish incomparahly more tedious and less delicate means of adjustneent. The glass head, of the gravity which the test-liquor of ammonia should have, floats, of eourse, in the middle of such a liquor at the temperature of $60^{\circ} \mathrm{F}$; but if the strength of the liquor hecomes attenuated by evaporation, or its temperature increased, the attention of the operator is iminediatcly called to the fact, sinee the differenee of a single degree of heat, or the loss of a single liundredth part of a grain of ammonia per cent., will cause the bead to sink to the hottom-a degree of precision which no hydrometer ean rival, and which could not otherwise be obtained, execpt by the trouhlesome operation of accurate weighing. Whether the solution remains uniforn in strength is best ascertained hy introducing into the bottle containing the ammonia test-liquor two glass beads, so adjusted that one, being very slightly heavier than the liquid, may remain at the bottom; whilst the other, being very slightly lighter, reaches the top, and remains just under the surfaec as long as the liquor is in the normal state ; but when, by the cvaporation of some ammonia, the liquor beeomes weaker, and consequently its specific gravity greater, the bead at the bottom rises towards the surface, in whieh ease a few drops of strong ammonia should be added to restore the halancc.

An aqueous solution of ammonia, of the above strength and gravity, being prepared, the acidimetrical process is in every way similar to that practised in alkalinetry; that is to say, a known weight, for example, 10 or 100 grains of the sample of acid to be examined are poured into a sufficiently large glass vcssel, and diluted, if need be, witb water, and a little tincture of litmus is poured into it, in order to impart a distinct red colour to it; 100 divisions, or 1000 grains' measure, of the standard ammonia test-liquor above alluded to, are then poured into an alkalimetcr (whicb, in tbe present case, is used as an acidimeter), and the operator procecds to pour tbe ammonia test-liquor from the alkalimeter into the vessel containing the acid under examination, in the same manner, and with the same precautions used in alkalimetry (see Alfalmietry), until the change of colour, from red to blue, of the acid liquor in the vessel indicates that tbe neutralisation is complete and tbe operation finished.

Let us suppose that 100 grains in weight of a sample of sulphuric acid, for example, have required 61 divisions (610 water-grains' measure) of the acidimeter for their complete neutralisation, since 100 divisions (that is to say, a whole acidimeter full) of the test-liquor of ammonia is capable of ncutralising exactly 49 grains - one equivalent - of oil of vitriol, of specific gravity 1.8485 , it is clear that the 61 divisions employed will have neutralised 29.89 of that acid, and, consequently, the sanıple of sulphuric acid examined contained that quantity per cent. of pure oil of vitriol, representing $24 \cdot 4$ per cent. of pure anhydrous sulphuric acid: thus -

Divisions. Oil of Vitriol.

The specific gravity of an acid of tbat strength is 1.2178 .
In the same manner, suppose that 100 grains in weight of hydrochloric acid have required 90 divisions (900 grains' measure) of the acidineter for their complete neutralisation, the equivalent of dry hydrochloric acid gas being $36 \cdot 5$, it is clear that since 90 divisions only of the ammonia test-liquor have been employed, the sample operated upon must have contained per cent. a quantity of acid equal to 33.30 of dry hydrochloric acid gasn i solution, as shown by tbe proportion:-
Divis. Hydrochloric acid.

$$
100: \quad 36 \cdot 5 \quad:: \quad 90: x=32 \cdot 85
$$

The specific gravity of such a sample would be $1 \cdot 1646$.
Instead of the ammonia test-liquor just alluded to, it is clear that a solution containing one equivalent of any other base - such as, for example, carbonate of soda, or carbonate of potash, caustic lime, \&c.-may be used for the purpose of neutralising the acid under examination. The quantity of these salts required for saturation will of course indicate the quantity of real acid, aud, by calculation, the per-centage thereof in the sample, thus: - Tbe equivalent of pure carbonate of soda 53, and that of carbonate of potash 69, either of these weigbts will represent one equivalent, and consequently 49 grains of pure oil of vitriol, 36.5 of dry hydrochloric acid, 60 of crystallised, or 51 of anhydrous acetic acid, and so on. The acidimetrical assay is performed as follows :-
If with carbonate of soda, take 530 grains of pure and dry carbonate of soda, obtained by igniting the bicarbonate of that base (see Alicalimetry), and dissolve them in 10,000 water-grains' measure (1000 acidimetrical divisions) of distilled water. It is evident that cacb acidimeter full (100 divisions) of such a solution will then correspond to one equivalent of any acid, and accordingly if the test-liquor of carbonate of soda be poured from the acidimeter into a weighed quantity of any acid, with the same precautions as before, until the neutralisation is complete, the number of divisions employed in the opcration will, by a simple rule of proportion, indieate the quantity of acid present in the sample as before. Pure carbonate of soda is easily obtained by recrystallising once or twice the crystals of carbonate of soda of commeree, and carefully washing them. By beating them gradually they melt, and at a very low red heat entirely lose their water of crystallisation and become converted into pulverulent anhydrous neutral carbonate of soda, which should be kept in well closed bottles.
When carbonate of potush is used, then, since the equivalent of carbonate of potash is 69 , the operator sbould dissolve 690 grains of it in the 10,000 grains of purc distilled water, and the acidimeter being now filled with this test-liquor, the assay is carried on again precisely in the same manner as bcfore. Neutral carbonate of potash for acidimetrical use is prepared by heating the bicarbonate of that base to redness, in order to expel onc equivalent of its carbonic acid ; the residue left is pure neutral carbonate of potash; and in order to prevent its absorbing moisture, it should be put,
whilst still hot, on a slab placed over concentrated sulphuric acid, or chloride of calcium, under a glass bell, and, when sufficiently cool to be handled, transferred to bottles carefully closed.
To adapt the above methods to the French weights and measurcs, now used also generally by the German chemist, we need only substitute 100 decigrammes for 100 grains, and procced with the graduations as already described.

A solution of caustic lime in cane sugar has likewise been proposed by M. Pcligot for acidimetrical purposes. To prepare such a solution, take purc caustic lime, obtained by heating Carara marble among charcoal in a furnace; when sufficiently roasted to convert it into quicklime, slake it with water, and pour upon the slaked lime as much water as is necessary to produce a milky liquor ; put this milky liquor in a bottle, and add thereto, in the cold, a certain quantity of pulverised sugar-candy; close the bottle with a good cork, and shake the whole mass well. After a certain time it will be observed that the milky liquid has bccome very much clearcr, and perhaps quite limpid; filter it, and the filtrate will be found to contaiu about 50 parts of line for every 100 of sugar employed. Tbe liquor should not be heated, because saccharate of lime is much more soluble in cold than in hot water, and if heat were applied it would become turbid or thick, though on cooling it would become clear again."

A concentrated solution of lime in sugar being thus obtained, it should now be diluted to such a degree that 1000 water-grains' measure of it may be capable of saturating exactly one equivalent of any acid, which is done as follows:-Take 100 grains of hydrochloric acid of specific gravity $1 \cdot 1812$, that weight of acid contains exactly one equivalent $=36.5$ of purc hydrochloric acid gas; on the other hand, fill the acidimeter up to 0 (zero) with the solution of caustic lime in sugar prepared as abovesaid, and pour the contents into the acid until exact neutralisation is obtained, which is known by testing with litmus-paper in the usual manner already described. If the whole of the 100 divisions of the acidimeter had been requircd cxactly to neutralise the 100 grains' weight of hydrochloric acid of the specific gravity mentioned, it would have been a proof that it was of the right strength; but suppose, on the contraly, that only 50 divisions of the lime solution in the acidimeter have been sufficient for the purpose, it is evident that it is half too strong, or, in other words, one equivalent of lime $(=28)$ is contained in those 50 divisions instead of in 100. Pour, therefore, at once, 50 divisions or measures of that lime-liquor into a glass cylinder accurately divided into 100 divisions, and fill up the remaining 50 divisions with water ; stir the whole well, and 100 divisions of the lime-liquor will, of course, now contain as much lime as was contained before in the 50 ; or, in other words, 100 acidimetrical divisions will now contain 1 equivalent of lime, and therefore will be capable of exactly neutralising 1 equivalent of any acid.

When, however, saccharate of lime is used for the determination of sulphuric acid, it is necessary to dilute it considerably, for otherwise a precipitate of sulphate of lime would be produced. This reagent, moreover, is cvidently applicable only to the deternination of such acids the lime salts of which are soluble in water.

Instead of a solution of caustic lime in sugar, a clean dry piece of white Carara marble may be used. Suppose, for example, that the acid to be assayed is acetic acid, the instructions given by Brande are as follows:-A clean dry piece of marble is selected and accurately weighed; it is then suspended by a silk thread into a known quantity of the vinegar or acetic acid to be examined, and which is cautionsly stirred with a glass rod, so as to mix its parts, but without dctaching any splinters from the weighed marble, till the whole of the acid is saturated, and no further action on the marble is observed. The marble is then taken out, washed with distilled water, aud weighed; the loss in weight which it has sustained may be considcred as equal to the quantity of acetic acid present, since the atomic wcight of carbonate of lime $(=50)$ is very nearly the same as that of acetic acid $(=51)$. Such a process, however, is obviously less exact than those already described.

But, whichever base is employed to prepare the test-liquor, it is clear that the acid tested with it must be so far pure as not to contain any other free acid thau that for which it is tested, for in that case the results arrived at would be perfectly fallacious. Unless, thereforc, the opcrator has reason to know that the acid, the strength of which has to be cxamined by that process, is genuine of its lind, he must make a qualitative analysis to satisfy himself that it is so; for in the contrary casc the aeid would not be in a fit statc to be submitted to an acidimetrical assuy.

The strength of acids may also be ascertaincd by detcruining either the volumes or the weight of carbonic acid gas disengaged from purc bicarbonate of soda by a giveu weight of any acid.

For measuring exactly the volumes of carbonic acid tlus expelled, Dr. Ure's appa-

[^7]ratus, represented in the figure, may be used. As it is absolutely requisite, for the success of the experiment, that the whole of the acid taken for exaniination should be completely saturated, the operator must accordingly take care to use a little more bicarbonate than is necessary for the purpose.
Now the equivalent number of bicarbonate of soda is 75 , and the carbonic acid contained therein $=44$; that of oil of vitriol is 49 ; wherefore by mixing together 75 grains of pure bicarbonate of soda with 49 grains of pure oil of vitriol, 44 grains of carbonic acid gas will be expelled, equal in bulk or volume to 2381 acidimetrical divisions (23,810 water-grains' measure). These proportions, however, would be inconvenient, the more especially as the acidimeter in question should contain exactly 10,000 water-grains' measure, marked in series of 10 divisions from 0 (zero) at the top down to 100 , such an arrangement at once enabling the operator to read off the amount of real acid per cents.; and accordingly a weight, or proportion of acid capable of disengaging exactly 10,000 water-grains' measure of carbonic acid from a quantity of bicarbonate more than sufficient to supersaturate it is used. That weight or portion varies, of course, with each kind of acid, thus:-

For anhydrous sulphuric acid it is - - 16.80						
",	Oil of vitriol	- -	-		20.58	
Anhydrous nitric acid - - - $22 \cdot 67$						
" hydrochloric acid - - 15.33						
, acetic acid - - - 21.42						
,	Crystallised	citric acid		-	$80 \cdot 64$	"
tartaric acid - - 63.00						

Therefore by taking, of any sample of acid to be examined, the exact number of grains corresponding to each of the above-mentioned acids, we shall obtain a volume of carbonic acid gas proportioned to the strength and purity of the sample of each of them respectively. The modus operandi is as follows:-Charge the glass cylinder A with water, and pour upon the surface of the latter a layer of olive oil, about 1 inch in thickness, so that the level corresponds exactly to the 0 (zero) of the graduated scale etched on the glass cylinder. Through the cork in the mouth of the cylinder, push the taper tail of the flask, c , air-tight; introduce into this flask c about 50 grains of bicarbonate of soda, in powder, and pour upon them a little more water than is sufficient to cover the powder; and if, for example, the object is to determine the amount of pure oil of vitriol contained in a given sample of that acid, weigh now accurately 20.58 grains of that sample, dilute it with water, and suck it up into the taper dropping-glass tnbe, D; shut the stopeock, introduce the dropping-tube, pushing it air-tight through the perforated cork until its extremity plunges into the inixture of bicarbonate of soda and water in the flask, c. On opening now slightly the stopcoek of the dropping-tube, the acid
 contained therein coming in contact with the bicarbonate will cause the evolution of a volume of carbonic acid proportioned to its strength. Supposing the same sample of sulphuric acid which was found by the acidimetrical process first described to contain 29.89 of oil of vitriol, or 24.4 of anhydrous sulphuric acid, per cent., to be now examined by the present method, it will be found that the 20.58 grains of that acid taken for the experiment have disengaged a volume of carbonic acid gas corresponding nearly to the number 30 of the graduated scale of the glass cylinder, thereby indicating ncarly 30 per cent. of pure oil of vitriol in the sample under eonsideratiou.
In the same manner the sample of hydrochloric acid, which by the former process was found to contain 32.85 per cent. of purc hydrochloric acid, would now disengage a volume of carbonic acid gas which would depress the level of the water in the glass cylinder nearly to the point marked 33, and therefore the operator would at once know that the quantity of purc hydrochloric acid gas contained in the sample was a little less than 33 per cent, a degrec of accuracy quite sufficient for all commercial purposes, and which might besides be reudered still more accurate by lengthening the glass cylinder and diminishing its bore, so that the divisions may be sufficiently distant as to admit of being subdivided into fractions.

The principal objectiou to this form of acidimeter, however, is its expense, and also the difficulty or trouble of introducing into it the whole of the accurately weighed quantity of acid, a circumstance which renders it less applicable to acidinetry than to alkalimetry. By suppressing, however, the top flask, c , and using instead of it a
common Florence flask, connected with the cylinder, the cost is considerably reduced, and the operator is at once enabled to secure the eomplete reaction of the whole of the accuratcly weighed acid npon the bicarbonate of soda. The arrangement las, besides, several other advantages, which the simple inspection of the annexed figure renders apparent. It consists of a 10,000 water-grains'-measurc glass cylinder, A, graduated in the same manner, and provided with a discharge tube, B, as before; but the mouth of the cylinder need not be larger than that of an ordinary wine bottle, which allows of its being corked air-tight with greater ease and certainty. This cork is perforated, and provided with a tube passing air-tight through it, and connected - by a length of vulcaniscd india-rubber, c - with the disengagement tube of an ordinary Florence flask, into which the bicarbonate of soda and a certain quantity of water has been previously introduced, and likewise a small test-tube, E , containing the exactly weighed quantity of acid to be examined. All the joints bcing

10
 perfectly air-tight, if the Florence flask be now carefully tilted on one side, a portion of the acid in the test-tube will, of course, flow down upon the bicarbonate of soda, and a corresponding quantity of carbonic acid gas being evolved will depress the water in the glass cylinder, causing an overflow from the tube B, which should be held over a basin, and progressively lowered so as to keep the discharging aperture on a levcl with the descending water in the cylinder. The operation is terminated when, all the acid in the test-tube having been completely upset and all effervescence being entirely at an end, the level of the water in the cylinder a remains stationary; the number of divisions of the scale corresponding to that level are then read off; they indicate the per-centage strength of the samplc.

The bicarbonate of soda of commerce frequently contains some neutral carbonate of soda, which should be removed before using it for that and for the following process; this is easily done by washing it with a moderate quantity of cold water, which dissolves the neutral carbonate, but leaves the greater portion of tbe bicarbonate in an

11
 undissolved state; it should then be dried spontaneously by spreading it in the air, and then kept in stoppered bottles; for though bicarbonate of soda does not undergo decomposition by exposure to dry air, a moist atmosphere converts a portion of it into a neutral carbonate, with 5 cquivalents of water $\left(\mathrm{NaO}, \mathrm{CO}^{2}\right.$ 5 HO).

Acidimetrical operations may likewise be performed by determining the weight instead of the volumes of the carbonic acid cxpelled from bicarbonate of potash, or of soda, by a given quantity of acid. For this purposc cither of the apparatus contrived by Dr. Ure, and represented in the inargin, may be used. Tlic details of their construction are given in Alka. limetra, to which the reader is referred.

Since 1 equivalent of any acid will disengage 2 equivalents ($=44$) of carbonic acid from 1 equivalent $(=75)$ of bicarbonate of soda, it is evident that by determiming what quantity of any pure acid is capable of disengugiug or expelling 10 grains of carbonic acid gas, then taking that quantity of the acid to be
cxamined, and causing it to react upon a mass of bicarbonate of soda more than sufficient to saturate or neutralise it (in order to make sure that the acid has produced all its effect), the loss sustained after the operation from the carbonic gas expelled, multiplied by ten, will at once indicate the exact per-centage of real acid contained in the sample examined. Of course the weight of acid capable of disengaging exactly 10 grains of carbonic acid gas varies with each kind of acid; and that weight is found by dividing 10 times the atomic weight of the acid, whatever it may be, by 44 ; that is to say, by the atomic weight of the two equivalents of carbonic acid gas contained in the bicarbonate of soda.

For sulphuric acid, for example, the proportion would be as follows : -

$$
\begin{array}{ll}
2 \mathrm{CO}^{2} & \mathrm{SO}^{3} \\
44 & : \\
& 40 \\
x=9 \cdot 09 & : \quad 10
\end{array} \quad: \quad x
$$

Applying this rule, the weights to be taken are as follows, in reference to -

Dry sulphuric acid	-	-	-	$9 \cdot 1$
"nitric acid	-	-	-	-
nydrochloric acid	-	-	-	8.29
" acetic (dry)	-	-	-	11.59
Crystallised tartaric acid	-	-	-	34.09
" citric acid	-	-	-	43.64

Each of these quantities of real acid, with 25 or 26 grains of bicarbonate of soda, will give off 10 grains of carbonic acid gas; and hence, by adding a cypher, that is, multiplying by ten, whatever weight the apparatus loses denotes the per-centage of acid in the sample under trial, without the necessity of any arithmetical reduction. Let us suppose, for example, that the apparatus, being charged with $9 \cdot 1$ grains of a sample of sulphuric acid, is found, after the experiment, to have lost 7.5 grains; this multiplied by $10=75 \cdot 0$; therefore the sample contained 75 per cent. of dry sulphuric acid. If the apparatus had lost 2.44 grains thus, it would have indicated $24^{\circ} 4$ per cent. of dry or anhydrous acid. Persons accustomed to the French metrical system may use dccigrammes instead of grains, and they will arrive at the same per-centage results.

Another apparatus for ascertaining the weight of carbonic expelled for the purposes of either acidimetry or alkalimetry, and which the operator himself may readily construct, is represented in fig. 13.
A is a small matrass, with a somewhat wide mouth, capable, however, of being hermetically closed by a cork perforated with two holes, through one of which a bulbous tube, B , passes filled with fragments of chloride of calcium; through the other hole a tubc, c, is introduced, sufficiently long to reach the bottom of the matrass A .

A certain quantity (say 25 grains) of bicarbonate of soda, greater than is required for saturation, is then introduced into the matrass A, and likewise enough water to cover it. A small glass test-tube is next charged with the proper quantity of the acid to be examined, namely, $9 \cdot 1$ if fur sulphuric acid, $12 \cdot 27$ if for nitric acid, \&c. \&c., as before-mentioned, and it is carefully introduced into the matrass A, taking care that the acid does not come in contact with the bicarbonate of soda, which is easily avoided by lowering the tube containing the acid into the matrass with a thread, or by carefully sliding it down, and keeping it nearly in an upright position, leaning against the sides of the matrass, as shown by the letter b. The matrass is then to be closed with the cork provided with its tubes, as above directed, and the whole is accurately weighed. This done, the apparatus is gently jerked, or tilted, on one side, so as to cause a portion of the acid in the tube b to flow among the bicarbonate of soda on which it is resting. A disengagement of carbonic acid gas immediately takes place from the decomposition of the carbonate of soda by the acid. When the violent effervescence has subsided, a fresh quantity of acid is again jerked, or spilled, out of the tube, until the whole of the acid is emptied, the tube occupying now a horizontal position, as represented
 by letter A. The water, which is mechanically carried off arrested by the chloride of calcium of the bulbous tube \boldsymbol{B}. Whe carbonic acid, is of carbonic aeid gas has ceased, even after shaking the apparatus, the residuary

ACIDIMETRY.

gas is sucked up through the bulbous tube B , whine the atmospheric air enters at the orifiec, d, of the bent tube, c, to replace it. If the apparatus lias becone warm during the reaction, it should be allowed to cool completely, and it is then weighed again accuratcly. The difference hetween the first and sccond weighing, the loss represents, of course, the weight of the carbonic acid gas expelled, and consequently the per-centage of real acid contained in the sample.
Instcad of the prcceding arrangement, the apparatus contrived hy Drs. Frescnius and Will may be used. The figure in the margin at onec renders the construction
 of that apparatus intelligible, and as a full description of it is given in the article on Alkalmatry, the reader is accordingly referred thercto. When that contrivance is used for acidimetrical purposes, proceed as follows:-Fill bottle a with ordinary oil of vitriol to about one-half of its capacity, and pour. into bottle $\begin{gathered}\text { the accurately weighed quantity of acid }\end{gathered}$ to be examined, namely, $9 \cdot 1$ grains for sulphuric acid, $12 \cdot 27$ for nitric acid, \&c. \&c., according to the rule and table given (page 29), and dilute it with water, so that bottle i may be onc-third full. Put now into a test-tube a quantity of bicarbonate of soda sufficient to saturate the weight of acid contained in bottle b, and suspend it into that bottle by means of a thread, kept tight by the pressurc of the cork. Weigh now the whole apparatus accurately; this donc, carefully loosen the thread, so that the test-tube eharged with bicarbonate of soda may fall into the acid, and the cork being instantly adjusted air-tight, the whole of the carbonic acid gas disengaged is led by tube c into the concentrated sulphuric acid of bottle A, which absorbs all its moisture before it finally escapes through the tube a. When all effervescence has ceased, the operator, by applying his lips to that tube a, sucks out all the residuary carbonie acid gas contained in the apparatus, and replaces it by atmospheric air, which enters at d. The apparatus, if it have become warm, should be allowed to cool completely, and on weighing it again the loss indieates the per-centage of real acid present in the sample.

The balance used in these methods should, of course, be sufficiently delicate to indicate small weights when heavily laden.

We shall terminate this article by a description of Liebig's acidimetrical method of determining the amount of prussic acid contained in solutions; for example, in incdicinal prussic acid, iu laurel and bitter-almond water, essence of bitter almonds, and cyanide of potassium. The process is bascd upon the following reaction :- When an excess of caustic potash is poured in a solution which contains prussic acid, cyanide of potassium is, of course, formed; and if nitrate of silver be then poured in such a liquor, a precipitate of cyanide of silver is produced, but it is immediatcly redissolved by shaking, because a double cyanide of silver and of potassium ($\mathrm{AgCy}+$ KCy) is formed, which dissolves, without alteration, in the excess of potash employed. The addition of a fresh quantity of nitrate of silver produces again a precipitate which agitation causes to disappear as before; and this reaction goes on mntil half the amount of prussic acid present in the liquor has been taken up to produce cyanide of silver, the other half being engaged with the potassium in the formation of a double cyanide of silver and of potassium, as just said. As soon, however, as this point is reaehed, any new quantity of nitrate of silver poured in the liquor causes the cyanide of potassium to react upon the silver of the nitrate, to produce a permanent precipitate of eyanide of silver, which indieates that the reaction is complete, and that the assay is terminated. The presence of cllorides, far from interfering, is desirable, and a certain quantity of common salt is accordingly added, the reaction of ehloride of silver being analogous to that of the cyanide of the same metal.
To deternine the strength of prussic acid according to the ahove process, a test or normal solution should be first prepared, which is as follows:-
Since 1 equivalent of nitrate of silver $(=170)$ represents, as we have seen, 2 equivalents of prussic acid $(=54)$, dissolve, therefore, 170 grains of pure fused nitrate of silver in 10,000 water-grains' measure of pure water; 1000 watcr-grains' measure (1 acidimeter full) of such solution will therefore contain 17 grains of nitrate of silver, and will thercfore represent $5 \cdot 4$ grains of prussic acid; and cousequently cach acidimetrical division 0.054 grain of pure prussic acid.

Take now a given weight or measurc of the sample of prussic acid, or cyanide of potassium, or laurel, or bitter-almond water, or essence of bitter almonds ; dilute it with threc or four times its volume of water, add caustic potash until the whole is rendered alkaline, and carefully pour into it a ccrtain quantity of the normal silver solution from the acidimeter until a slight precipitate begins to appear which cannot be redissolved by agitation; observe the number of acidimetrical divisions of the test silver solution employed, and that number multiplied by 0.054 will, of course, indicate the proportion of prussic acid present in the quantity of the sample operated upon.
For such liquids which, like laurel-water, contain very little prussic acid, it is advisable to dilute the test silver liquor with nine times its bulk of water; a decimal solution is thus obtained, cach acidimetrical division of which will only represent 0.0054 of prussic acid, by whicb figure the number of divisions employcd should then be multiplied.
As the essence of bitter almonds mixed with water is turbid, it is absolutely necessary to add and shake it with a sufficient quantity of water to dissolve the particles of oil to which the milkiness is due, and render it quite clear.

Instead of an acidimeter, an ordinary balance nay be used as follows :- Take 63 grains of fused nitrate of silver, and dissolve them in 5937 grains weight of pure distilled water, making altogether 6000 grains weight of test silver solutiou. Weigh off now in a beaker any quantity, say 100 , or, if very weak, 1000 grains' weight of the sample of prussic acid to be examined, dilute it with three or four times its bulk of water, mix with it a certain quantity of a solution of common salt, and a few drops of caustic potash over and above the quantity necessary to make it alkaline. Pour now carefully into the liquor so prepared a portion of the test solution of silver alluded to, until a turbidness or milkiness begins to be formed which docs not disappear by agitation, and which indicatcs that the reaction is complete. Every 300 grains of tbe test silver solution employed represents 1 grain weight of pure anhydrous prussic acid.

The rationale of these numbers is evident : since 1 equiv. $=170$ of nitrate of silver correspond to 2 equiv. $=54$ of prussic acid; 63 of nitrate of silver correspond to 20 of prussic acid, and consequently 300 of a solution containing 63 of nitrate of silver in 6000 correspond to 1 of prussic acid thus: -

$$
\begin{aligned}
& 170 \text { : } 54 \text { :. } 63 \text { : } 20 \\
& 6000: 20:: 300 \text { : } 1
\end{aligned}
$$

Lastly, the strength of prussic acid may also be determined with an ordinary balance by a method proposed by Dr. Ure, which method, however, is much less convenient than that of Liebig; it consists in adding peroxide of mercury, in finc powder, to the liquor wbich contains prussic acid, until it ceases to be dissolved. As tbe equivalent of peroxide of mercury $=108$, is exactly four times that of prussic acid $=27$, the weight of peroxide of mercury employed divided by four will give the quantity of prussic acid present.*-A. N.

ACIPENSER. A genus of cartilaginous fishes, to which the Sturgeon belongs, and from which isinglass is obtained. See Isinglass.

ACONITINE. $\mathrm{C}^{60} \mathrm{H}^{47} \mathrm{NO}^{14}$, A poisonous alkaloid constituting the active priuciple of tbe Aconite, Aconilum \dot{N} apellus.-C. G. W.

ACORNS. The seed of the oak (quercus). These possess some of the properties of the bark; but in a very diluted degree. Acorns are now rarely used. Pigs arc somctimes fed upon them. 308 bushcls were imported in 1855.

ACORUS CALAMUS. The common sweet flag. This plant is a native of England, growing abundantly in the rivers of Norfolk; from which county the London market is chiefly supplicd. The radix calami aromatici of the shops occurs in flattened pieces about ore inch wide and four or five inches long. It is employed medicinally as an aromatic, and it is said to be used by some distillers to flavour gin. The essential oil (oleum acori calami) of the sweet flag is used by snuff-makers for scenting snuff, and it sometimes cntcrs as one of the aromatic ingredients of aromatic vinegar. - Pereira.

ACROSPIRE. (Plumule, Fr.; Blatthcim, Germ.) The sprout at the end of seeds when they begin to gerninate. The name is derived from two Greck words, signifying highicst and spire, and has been adopted on account of its spiral form. It is the plune or plumule of modern botanists. Malsters use the name to express the growing of the barley. "The first leaves that appear when corn sprouts."-Lindlcy.

ACRYLAMINE, or MLLYLAMINE. ($\mathrm{C}^{6} \mathrm{H}^{7} \mathrm{~N}$.) A new alkaloid obtained by

[^8]Hofmann and Cahorns, by boiling eyanate of allyle with a strong solution of potash. It boils at about 365°.-C. G. W.

ACTINISM. (From ákriv, a ray; signifying mercly the power of a ray, without defining what character of ray is intended.)

As carly as 1812 , M. Berard (in a communication to the Acadcmy of Scicnces, on some observations made by him of the pbenomena of solar action) drew attention to the fact, that threc very distinct sets of physical powers were manifested. Luminous power, Heat-producing power, and Chemical power. Chaptal, Bertbollct, and Biot reported on tbis paper by M. Berard; and, as showing tbe cxtent to which this very important inquiry had proceeded in the bands of this philosoper, tbe following quotation is given from their report.
"M. Berard found that the chemical intensity was greatest at tbe violet cnd of the spectrum, and that it cxtended, as Ritter and Wollaston had obscrved, a little beyond that extremity. When he left substances exposed for a certain time to the action of eacb ray, he observed sensible effects, though with an intensity continually decreasing, in tbe indigo and blue rays. Hence we must consider it as extremely probable, tbat if he had been able to employ reactions still more sensible, he would have observed analogous effects, but still more feeblc, even in the other rays. To sbow clearly the great disproportion wbicb exists in tbis respect between the energies of different rays, M. Berard concentrated, by means of a lens, all that part of the spectrum which extends from the green to the extreme violet, and he concentrated, by anotber lens, all tbat portion wbicb extends from the green to the extremity of the red ray. This last pencil formed a wbite point, so brilliant that the eyes were scarcely able to endure it, yet the muriate of silver remained exposed more than two hours to tbis brilliant point of ligbt, without undergoing any sensible alteration. On the otber hand, when exposed to the otber pencil, wbich was mucb less brigbt and less hot, it was blackened in less tban six minutes. * * * * * If we wisb to consider solar light as composed of tbree distinct substances, one wbich occasions light, anotber heat, and the third chemical combinations, it will follow that each of tbose substances is separable by the prism into an infinity of different modifications, like Light itself; since we find, by experiment, tbat each of the tbrce properties, chemical, calorific, and colourific, is spread, tbough unequally, over a certain extent of tbe spectrum. Hence we must suppose, on that hypothesis, tbat there exists three spectrums one above anotber; namely, a calorific, a colourific, and a cbemical spectrum."

This was the earliest indication of the probable existence of a pbysical force, in the solar rays, distinct from Ligbt and Heat. A large number of philosophers still bold to the idea that tbe chemical cbanges produced by the sunbeam are due to light, and this idea is confirmed in the public mind by the universal adoption of the term photography (light-drawings) to indicate tbe production of pictures by tbe agency of the sunbeam. See Photography.

The actual conditions of tbe sunbeam will be understood by refcrence to tbe annexed

15
 woodeut, and attention to the following description, fig. 15 : a b represents the prismatic spectrum-as obtained by the decomposition of white ligbt by tbe prism-or New tonian luminous spectrum, consisting of certain bands of colour. Newton determined tbose rays to be seven in number; red, orange, yellow, green, blue, indigo, and violet ; recent researches, by Sir Johu Herschel and others, have proved the existence of two other rays ; one, tbe extreme red or crimson ray c, found at the least refrangible end of the spectrum, the other occurring at the most frangible end, or beyond the violet rays, which is a lavender or grey ray. Beyond tbis point up to f, Professor Stokes has discovered a new set of rays, wbich are only brought into view when the light is reccived upou the surfaces of bodies wbich possess the property of altering the refiangibility of the rays. Those rays have been called the fluorcscent rays, from the circumstance that some of the varieties of Flnor Spar exhibit this phenomeuon in a remarkable manner. (See Fluorescence.) The curved line lam a to c indicates the full extent of the luminous spectrum, the point warked x showing the maximum of illuminating power, which exists in the yellow ray.

Sir Willian Merschel and Sir Henry Englefield determiued, in the first instance, the maxinum poiut for the calorific rays, and Sir John IIerschel subsequently confirmed their results, proving that the greatest heat was found below the red ray, and that it gradually dininislied in power with the increase of refraugibility iu the

ADIPOCIRE.

rays, ceasing entirely in the violet ray. Heat rays have becn detected down to the point d, and the curved line u indicates the extent of their action.
Now, if any substance capable of undergoing chemical change be exposed to this spectrum, the result will be found to be such as is represented in the accompanying figure and fig. 16. Over the space upon which the greatest amount of light falls, i.e. the region of the yellow and orange rays \mathbf{L}, no chemical change is effected: hy prolonged action a slight change is brought about where the red ray falls, r, but from the mean green ray G up to the point f, a certain amount of chemical action is maintained; the maximum of action being in the blue and violet rays A. Thus the curve linc (fig. 15) from e to f represents the extent and degree of chemical power as manifested in the solar spectrum. Two maxima are marked a A, differing widely however in thcir degrec.
Herc, as in Berard's experiments, we sce that where the light is the strongest, there is no chemical action, and that as the luminous power diminishes the chemical force is more decidedly manifested.

Again, we find that if we take a piece of yellow glass, stained with oxide of silver, we have a medium which entirely prevents the permeation of the chemical rays, though it obstructs no Light. But, if a very dark blie glass is taken, we find that ninety per cent. of the luminous rays are obstructed, while the chemical rays permeate it most freely. Numerous experiments of an analogous character appear to prove that the chemical and luminous powers of the sunbeam are balanced against each other (see Hunt's "Researches on Light"), that they are indeed antagonistic principles or powers. That there are three very distinct sets of phenomena, every one admits.

Liget (luminous power), to which belongs the phenomena of vision and the production of colour.

Heat (calorific power), the functiou of which appears to be the determining the physical condition of all matter, as regards its solid, fluid, or gaseous condition.

Actinism (chemical power), to which all the phenomena of photography are due, and many of the more remarkable changes observed in the vegctable kingdom.

ACTINOGRAPH. A name given to an instrument for recording the variations in the chemical (actinic) power of the solar beams. The name signifies ray writer.

ACTINOMETER. (Ray measurer.) The name of various forms of instruments, the objects of which are to measure the direct heat radiations from the sun. The term has also been applied to instruments employed to measure the varying intensities of Light.

ADDITIONS. Such articles as are added to the fermenting wash of

L
 the distiller, were of old distinguished by this trivial name.

ADHESION (sticking together). The union of two surfaces. With the phenomena which are dependent upon bringing two surfaces so closely together that the influence of cohesion is exerted, we have not to deal. In arts and manufactures, adhcsion is effected hy interposing between the surfaces to be united, some borly possessing peculiar properties, such as gum, plaster, resin, marine or ordinary glue, and various kinds of cement. (See those articles.) In many treatises, there has bcen a sad confusion between the tcrms adhesion and cohesion. It is to be regretted that our literature shows a growing carelessness in this respect. Adhesion should be restricted to mean, sticking together by means of some interposed substance; cohesion, the state of union effected by natural attraction.

Not only is adhesion exhibited in works of art or manufacture, we find it very strikingly exhibited in nature. Fragments of rocks which have been slattered by convulsion are found to be cemented together by silica, lime, oxide of iron, and the like. We sometimes find portions of stone cemented together by the ores of the metals; and, again, broken parts of mincral lodes are frequently rcunited by the carthy ininerals.

ADIPOCIRE. From adeps, fat; cera, wax. (Adipocirc, Fr.; Fethwachs, Germ.) The fatty matter supposed to be generated in dead bodies buried under peculiar circumstances. It is chicfly margarate of anmonia. In 1786 and 1787 , when the chnrehyard of the Innocents, at Paris, was cleaned out, and the boucs transported to the Catacombs, it was discovered that not a few of the cadcures were converted into a saponaceous white suhstance, more especially many of those which had becn interred for fifteen years in one pit, to the amount of 1500 , in coffius closely packed together. Thesc bodics were flattened in consequence of their mulual pressure; and, though they generally retained their shape, there was deposited round the bones of scveral a

[^9]greyish white, somewhat soft, flexible substance. Foureroy presented to the Academy of Seienees, in 1789, a memoir which appeared to prove that the fatty body was an ammoniaeal soap eontaining phosphate of lime; that the fat was similar to spermaeeti. as it assumed, on slow eooling, a foliated erystalline structure; as also to wax, as, when rapidly cooled, it beeame granular; hence he called it adipocire. Its melting point was $52.5^{\circ} \mathrm{C}$. $\left(126.5^{\circ} \mathrm{F}\right.$.)

This substance was again examined by Chevreul, in 1812, and was found by him to contain margaric aeid, oleic acid, combined with a yellow colouring odorous matter, besides ammonia, a little lime, potash, oxide of iron, salts of lactic acid, an azotised substanee: and was therefore considered as a eombination of margaric and oleic acids, in variable proportions. These fat aeids are obviously generated by the reaction of the ammonia upon the margarine and olëine, though they eventually lose the greater part of that volatile alkali. It is sometimes confounded with chlorestine. See Fat and Fatry Bodies.

Bog butter is said to be a similar substance; and Adrpocire is a synonyme of Hatchettine, or roek fat.

ADIPOSE SUBSTANCE or ADIPOSE TISSUE. (Tissu graisseux, Fr.) An animal oil, resembling in its essential properties the vegetable oils. During life, it appears to exist in a fluid or semi-fluid state; but, in the dead animal, it is frequently found in a solid form, constituting suet, which, when divested of the membrane in which it is contained, is called tallow. See Tallow, Ohls, \&c.
ADIT, or ADIT LEVEL. The horizontal entrauce to a mine; a passage or level driven into the hill-side. The aceompanying seetion gives, for the purpose of distinctness, an exaggerated seetion of a portion of the subterranean workings of a metalliferous mine. It should be understood that d represents a minerallode, upon which the shaft, a, has been sunk. At a ecrtaim depth from the surface of the hill the miners would be inconvenienced by water, consequently a level is driven in from the side of the hill, b, through which the water flows off, and through which also the miner ean bring out the broken rock, or any ores which he may obtain. Proceeding still deeper, supposing the workings to have commeneed, as is commonly the ease, at a certain elevation above the sea-level, similar conditions to those described again arising, another level is driven so as to intersect the shaft or shafts, as shown at c. In this case, b would be ealled the shallow, and c the deep adit. The eeonomy of such works as these is great, saving the cost of expensive pumping machinery, and, in many cases, saving also considerable labour in the remoral of ores or other matter from the mine.

The great Gwennap Adit, in Cornwall, with its branches, was cut through the solid rock for nearly 30 miles; through it numerous mines are drained to a certain depth, and the water pumped from greater depths discharged. The Nentforee Level, or Adit, in Alston Moor, has been wrought under the eourse of the river Nent, and it extends about $3 \frac{1}{4}$ miles into that important mining district.

ADULTERATION. The praetice of debasing any product of manufaeture by the introduction of cheap and often injurious materials.
The extent to which the adulteration of almost every useful article is carried, is at onee a disgrace to the trading commuuity, and a standing refleetion on an age which boasts of its high moral charaeter.
ADZE. A eutting instrument; differing from the axe by the edge beiug placed at nearly right angles to the handle, and being slightly curved up or inflect ed towards it. The instrument is held in both hands, whilst the operator stauds upon his work in a stooping position; the handle heing from twenty-four to thirty incles long, and the wcight of the blade from two to four pounds. The adze is swung in a circular path almost of the same eurvature as the blade, the slooulder joint being the centre of motion, and the entire arm and tool forming, as it were, one inflexible radius : the tool, therefore, makes a sueeession of small ares, and in cach blow the arm of the workman is bronght in contaet with the thigh, whieh serves as a stop to prevent aecident. In coarse preparatory works, the workman directs lis adze throngh the spaee between his two feet; he thus surprises us by the quantity of wood removed; in fine works he frequently places his toes over the spot to be wrouglit, and the adze penetrates two or three inehes beneath the sole of the sloe; and he thus surprises us
by the apparent danger, yet perfect working of the instrument, which, in the hands of a shipwright in particular, almost rivals the joiner's plane; it is with him the nearly universal paring instrument, and is used upon works in all positions. - Holtzapffcl.
AOLIAN HARP. A musical instrument ; the invention of Kircher; although it was probably indicated by Hero of Alcxandria. The musical sounds are produced by the action of a current of air upon strings placed above a long box of thin deal. The wires of the electric telegraph on the sides of our railroads are frequently set in such a state of vibration by the wind, that they becone gigantic Æolian harps.

AËRATED WATER. The common commercial name of watcr artificially impregnated with carbonic acid.
AEROLITES. Meteoric stones. It cannot be denied that masses of solid matter have fallen from the atmosphere upon this earth. Various hypotheses have been proposed to account for them; amongst others the following may be named :-

1. That they are aggregations of solid matter which take place in the higher regions of the air. When we remember that hydrogen gass will dissolve, and carry off in an invisible state many of our metals, and that all known metals are volatile under certain conditions of heat, it will be evident that such comhinations might take place.
2. That they are projected from volcanoes in the moon. The researches of Nasmyth, Smyth, and others appear to prove that our satellite, whatever may have been her condition at one period, is now in a state of repose; nothing like an active volcano has been discovered on the moon's surface.
3. That a helt or belts of.fragments of matter circulate in a certain orbit or orbits around the sun, and that these fragments, sometimes entering our atmosphere. are involved in the earth's influences, and fall in obedience to the law of gravitation. The flights of "shooting stars" which are obserred at peculiar periods appear to favour this view.

It is evident that meteoric stones are of cosmical origin; and the composition, therefore, of such as have been examined, shows us the composition of masses of matter existing beyond the earth. A few analyses of meteoric stones will exhibit the chemical character of these extraordinary masses.

A meteorite fell at Dharwar, in the East Indies, on the 15th February, 1848, which gave 58.3 per cent. of silicates insoluble in aqua regia; 2.5 of sulphur, 6.76 of nickel, and 22.18 of iron. Another stone from Singhur, near Ponna, in the Deccan, gave earthy silicate, $19 \cdot 5$; iron, $69 \cdot 16$; and nickel, $4 \cdot 24$. Ehrenbery cxamined a hlack inky rain-water which fell in Ireland on the 15th of April, 1849, and found the hlack colour to consist of minute particles of decayed plants, which had probably becn brought by the trade winds, and, floating in clouds of aqueous vapour, had decayed.

AEROSTATION ; AEERONAUTICS. The ascent into the atmosphere by means of balloons.
The Montgolfier balloon is a bag filled with air which is rarefied by the action of fire; and thus the whole mass is rendered specifically lighter than the surrounding medium.
The investigations of Cavendish led to the use of hydrogen gas, the lightest of known bodies, to inflate silken bags; and since his time our balloons have been inflated with either purc hydrogen, or with common coal gas - carburetted hydrogen.

Notwithstanding the numerous attempts which have been made to navigate the air, nothing has been done to enable the ac̈ronaut to steer his balloon. In whatever current of air he may be, with that current he moves; until this difficulty is overcome, we cannot expect any satisfactory results from aëronautics. Some interesting and useful experiments have been made by using captive balloons, by which we have arrived at some facts conneeted with the upper regions of the air, which could not be obtained by any other means. See Balloons.

IERUGO. (Verdigris; carbonate of copper, which sec.) The name formerly given to the hright green rust, produced by the oxygen of the air and carbonic acid, upon copper, and its alloys brunze and brass. The Ronans gave this name; they considered that the mrigo added much to the beauty of their statues; and
adjusted the composition of their alloys with the view of producing the finest green colour. This was frequently effected artificially; and to distinguish the real from the artficial they used the term cerugo nobilis. This is the patina of the Italians; it is the same as verdigris.

ETHER. Sce Ether.
AFFINITY. The term used hy chemists to denote the peculiar attractive Force which produces the combination of dissimilar suhstances,- as an acid with an alkali, or of sulphur with a metal. Sce Ure's "Dictionary of Chemistry."
AGARIC of the oak; called also surgeon's agaric, spunk, touchwood. A fungus found growing on the oak, birch, willow, and other trees. Sec Amidou.

AGATE. An instrument used hy gold-wire drawers, so called from the agate fixed in the middle of i it.

AGA'TE. (Agate, Fr.; Achat, Gr.; Achates, Lat.) A siliceous mineral ; a varicgated variety of chalecdony.
This stone is the 'Axá ${ }^{\prime}$ ทs of the Grecks, hy whom it was so called after the river in Sicily of that namc, whence, according to Theophrastus, agates were first procured. Bochart, with much probability, deduces the name from the Punic and Hebrew, nakad, spotted.

The colours of agate are either arranged in parallel or concentric hands, or assume the form of clouds or spots, or arborescent and moss-like stains. These colours are due to the presence of metallic oxides, and when indistinct, they are frequently artificially developed or produced. By boiling the colourless stone in oil, and afterwards in sulphuric acid, the oil is absorbed by the more porous layers of the stone; it suhsequently becomes carbonised, and thus the contrast of the various colours is heighteued. The red varieties, also, are artificially produced by hoiling them in a solution of proto-sulphate of iron; after which, upon exposing the stones to hcat, peroxide of iron is formed, and thus red bands, or rings, of varying intensities, are produced. Cornelians are thus very commonly formod; the colouring matter of the true stone heing a peroxide of iron.

Agates never occur in a crystalline form, but in the form of rounded pebbles; they are translucent by transmitted light, hut are not transparent, have a wax-like fracture, and they are susceptihle of a brilliant polish.

Agates are used in the arts for inlaying, and for hurnishing gold and silver: they are also made into mortars for chemical purposes ; and when cut aud polished, they are converted, in considerahle quantities, into bronches, bracelets, and other ornamental articles.

Agates are brought to this country from Arabia, India, and Oherstein, in Saxony : they arc also found in Perthshire, and other parts of Scotland. The Scotch Pehble is a variety of the agate, known hy its zigzag pattern as the Fortification Agate.

Agates are found frequently in the amygdaloid rocks of Galgenburg, near Oberstcin. They are usually ground into form, cut, and polished, at water-mills in the neighhourhood, wherc a considerahle trade in them is carried on.

Moss Agate, or Mocha Stone, is a chalcedony, containing within it dendritic or moss-like delineations, of an opaque brownish-yellow colour, which are due to oxyde of manganese, or of iron. -H . W. B.

Agates are found in the Canton markets, as articles of commerce, in ahundance, and of the following varieties:
The white-vcined agate, called also Mocha Stone, varies from 1 to 8 inches in diameter.

The dull, milky agate, not so valuable, occurs in sizes of 1 to 10 inches.
Lead-coloured agate, somctimes uniform, and sometimes spotted, occurs of large size, and is used for cups and hoxes.
Flesh-coloured.
Blood-colourer. This is sometimes variegated with palc blue and hrown; the blue always surrounds the red; the brown has the tint of horn.

Clouded and spotted flesh-coloured agate is found subject to many flaws.
Red agate, with yellow, is of 1 to 4 inches in diameter.
The yellow has various tints. Sometimes the pebbles are 7 iuches in length. The yellow agate is used for knife handles.

The pale yellow agate is very scarce ; it is called also Lconina, being varicgated witll white, black, and grecn, and bearing some resemblance to a lion's skin.

Blackisll-veined brown agate, in pieces from 2 to 7 inches in diameter, is very hard, and is cut into scals, huttons, and heads of canes, \&c. with natural veins, or fictitious colours, sunk into the stonc. It appears to be of much value.
-Oricntal Commerce.
Agate is found sufficiently large to be formed into mortars for cliemical purposes.
"The royal collection at Dresden contains a table-scrvice of Gcrman agate ; and at Vienna, in the Imperial cabinet, there is an oval dish, twenty-two inches in length, formed of a single stone." - Dana.

Agates may be stained artificially by soaking in a solution of nitrate of silver, and afterwards exposing them to the sun. These artificial colours disappear on laying the stone for a night in aquafortis. A knowledge of the practicability of thus staining agates naturally leads to the suspicion of many of the colours being the work, not of nature, but of art.

Imports.

Agates or Cornelians.				1855.	1856.
Set	-	-	value	£536	£336
Not set, cut, or manufactured -	-	-	"	4,486	6,698
Not set, not cut, or manufactured	-	-	O	171	500

AIR. The gaseous envelope which surrounds this Earth is emphatically so called; it consists of the gases nitrogen and oxygen.

About 79 mcasures of nitrogen, or azotc, and 21 of oxygen, with $\frac{1}{100}$ th of carbonic acid, constitute the air we breathe. The term air is applied to any permanently gaseous hody. And we express different conditions of the air, as good air, bad air, foul air, \&c.

AIR, COMPRESSED. For its employment in some mining operations, sec Mining.

AIR-ENGINE. The considerable expansibility of air by heat naturally suggested its use as a motive power long before theoretical investigation demonstrated its actual value. The great advance made during the last few ycars in our knowledge of the mechanical action of heat, has enabled us to determine with certainty the practical result whieh may be obtained by the use of any contrivance for employing heat as a prime mover of machinery. We are indebted to Professor Wm. Thomson for the fundamental theorem which decides the economy of any thermo-dynamic cngine. It is -that in any perfectly constructed engine the fraction of heat converted into work is equal to the range of temperature from the highest to the lowest point, divided by the highest temperature reckoned from the zero of absolute temperature. Thus, if we have a perfect engine in which the highest temperature is 280° and the lowest 80° F., the fraction of heat converted into force will be $\frac{280-80 \text {, }}{280+460 \text {, rather more than }}$ one quartcr. So that, if we use a coal of which onc pound in combustion gives out heat cquivalent to $10,380,000$ foot pounds, such an engine as we have just described would produce work equal to $28,05,405$ foot pounds for each pound of coal consumed in the furnace. From the ahove formula of Professor Thomson, it will appear that the economy of any perfect thermo-dynanic engine depends upon the rangc of temperature we can obtain in it. And as the lowest temperature is generally nearly constant, being ruled by the temperature of the surface of the earth, it follows that the higher we can raise the highest temperature, the more economical will be the cngine. The question is thus reduced to this:- In what class of engine can we practically use the highest temperature? In the steam-engine worked with saturated vapour, the limit is obviously determined by the amount of pressure which can be safely employed. In the steam-engine worked with super-heated vapour-i.e. in which the vapour, after passing from the boiler, receives an additional charge of heat without being allowed to take up more water-and also in the air-engine, the limit will depend upon the temperature at which steam or air acts chemically upon the metals employed, as well as upon the power of the metals themselves to resist the destructive action of heat. It thus appears that the steam-engine worked with superheated steam possesses most of the ccouomical advantages of the air-cngine. But when we consider that an air-engine may be made available where a plentiful supply of water cannot be readily obtained, the importance of this kind of thermo-dynamic engine is incontestable. The merit of first constructing a practical air-engine belongs to Mr. Stirling. Mr. Ericsson has subsequently introduced various refincments, such as the respirator-a reticulated mass of metal, which, by its extensive conductiug surface, is able, almost instantancously, to give its own temperature to the air which passes through it. But various practical difficultics attend these refinements, which, at best, only apply to engines worked between particular temperatures. The least complex engine, and that which would probably prove most effectual in practice, is that described in the "Philosophical Transactions," 1852, Part I. It
consists of a pump, which compresses air into a receiver, in which it receives an additional charge of heat; and a cylinder, the piston of which is worked by the heated air as it escapes. The difference between the work produced by the cylinder and that absorbed by the pump constitutes the forec of the engine; which, being compared with the heat communicated to the recciver, gives results exactly conformable with the law of Professor Thomson above described.-J. P. J.

Dr. Joule has proposed various engines to be worked at temperatures below redness, which, if no loss occurred by friction or radiation, would realise about onelalf the work due to the heat of combustion; or about four times the economical duty which has, as yct, been attained by the most perfect steam-engine.

A dctailed account of Ericsson's Calorific Enginc may be useful, cspecially as a certain amount of success has attended his efforts in applying the expansive power of heat to move machinery. It is stated in Hunt's " Merchant's Magazine" that Eriesson's cngines are at work in the foundry of Messrs. Hogg and Delamater, in New York; onc engine being of five and another of sixty horse power. The latter has four cylinders. Two, of seventy-two inches diameter, stand side by sidc. Over each of thesc is placed one much smaller. Within these arc pistons exactly fitting their respective cylinders, and so conuected, that those within the lower and upper cylinders move together. Under the bottom of cach of the lower cylinders a fire is applied, no other furnaces being employed. Neither boilers nor water are used. The lower is called the working cylinder; the upper, the supply cylinder. As the piston in the supply cyliuder moves down, valves placed in its top, open, and it becomes filled with cold air. As the piston rises within it, these valves closc, and the air within, unable to escape as it came, passes through another set of valves into a receiver, from whence it has to pass into the working cylinder to force up the working piston within it. As it leaves the receiver to perform this duty, it passes through what is called the regenerator, where it becomes heated to about 450°; and upon entering the working cylinder, it is further heated by the supply underneath. For the sake of illustration, mercly, let us suppose that the working cylinder contains double the area of the supply cylinder: the cold air which entered the upper cylinder will, therefore, but only half fill the lower one. In the course of its passage to the latter, however, it passes through the regenerator; and as it enters the working cylinder, we will suppose that it has become heated to about 480°, by which it is expanded to double its volume, and with this increased capacity it enters the working cylinder. We will further suppose the area of the piston within this cylinder to contain 1000 square inches, and the area of the piston in the supply cylinder above to contain but 500 . The air presses upon this with a mean force, we will suppose, of about eleven pounds to each square inch; or, in other words, with a weight of 5500 pounds. Upon the surface of the lower piston the heated air is, however, pressing upwards with a like force upon each of its 1000 square inches; or, in other words, with a force which, after overcoming the weight above, leaves a surplus of 5500 pounds, if we make no allowance for friction. This surplus furnishes the working power of the engine. It will be seen that after one stroke of its pistons is made, it will continue to work with this force so long as sufficient heat is supplied to expand the air in the working cylinder to the extent stated; for, so long as the area of the lower piston is greater than that of the upper, and a like pressure is upon every square inch of each, so long will the greater pistou push forward the smaller, as a two-pound weight upon one end of a balanee will be sure to bear down a one pound weight placed upon the other. We need hardly say, tbat after the air in the working cylinder has forced up the piston within it, a valve opens; and as it passes out, the pistons, by the force of gravity, descend, and cold air again rushes into and fills the supply cylinder. In this manner the two cylinders are alternately supplied and discharged, causing the pistons in each to play up and down substantially as they do in the steam-engine.
The regenerator must now be described. It has been stated that atmospheric air is first drawn into the supply cylinder, and that it passes through the regeucrator into the working cylinder. The regenerator is coupposed of wire net, like that used in the manufacturc of sieves, placed side by side, until the scrics attains a thickness of about 12 inches. Through the almost innumerable cells formed by the intersections of the wire, the air must pass on its way to the working cylinder. In passing through thesc it is so minutely divided that all parts are brought into contact with the wires. Supposing the side of the regenerator nearest the working eylinder is heated to a high temperature, the air, in passing through it, takes up. as we have said, about 450° of the 480° of heat requircd to double the volume of the air ; the additional 30° arc communicated by the fire beneatl the cylinder.

The air has thus become expanded, it forces the piston upwards; it has done its work - valves open, and the imprisoned air, heated to 480°, passes fron the cyliuder

ALABASTER.

and again enters the regenerator, through which it must pass before leaving the machine. It has been said that the side of this instrument nearest the cylinder is kept hot ; the other side is kept eool by the action upon it of the air entering in the opposite direction at each up-stroke of the pistous; consequently, as the air from the working eylinder passes out, the wires absorb the heat so cffectually, that when it leaves the regenerator it has been robbed of it all, except about $30^{\text {? }}$.
The regenerator iu the 60 -horse engine measures 26 inches in height and width, internally. Each disc of wire composing it contains 676 superficial inches, and the net has 10 meshes to the iuch. Each supcrficial inch, therefore, contains 100 meshes, whieh, multiplied by 676 , gives 67,600 meshes in each disc ; and, as 200 discs are employed, it follows that the regenerator contains $13,520,000$ meshes; and consequently, as there are as many spaces between the discs as there are meshes, we find that the air within it is distributed in about $27,000,000$ minute cells. Thence every partiele of air, in passing tbrough the regenerator, is brought into very close contact with a surface of metal which heats and cools it alternately. Upon this action of the regenerator, Eriesson's Calorific Enginc depends. In its application on the large seale, contemplated in the great Atlantic steamer called "The Ericsson," the result was not satisfactory. We may, however, notwithstanding this result, safely predicate, from tbe investigation of Messrs. Thomson and Joule, that the expansion of air by heat will eventually, in some conditions, take the place of steam as a motive power.

AIR-GUN. This is a weapon in wbich the elastic force of air is made use of to project the ball. It is so arranged, that in a cavity in the stock of the gun, air can be, by means of a piston, powerfully condensed. Here is a reserved force, which, upon its being relieved from pressure, is at once cxerted. When air has been condensed to about $\frac{1}{70}$ th of its bulk, it exerts a force whicb is still very inferior to that of gunpowder. In many other respects the air-gun is but an imperfect weapon, consequently it is rarely employed.

AIR-PUMP. A machine by which the air can be exhausted from any vessel containing it. It is employed in scientific investigations for exhibiting many very interesting phenomena in connection with the pressure of air, and its presencc or absence; aud it is connected with, and forms an important part of, the improved modern steam-engine. Similar machines are also used for condensing atmospheric air ; tbese have been employed on a large scale in some civil engineering purposes.

AIRO-HYDROGEN BLOWPIPE. A blowpipe in which air is used in the place of oxygen, to combine with and give intensity of heat to a hydrogen flame for the purposes of soldering. See Autogenous Soldering.

Alabaster, Gypsum, Plaster of Puris (Albâtre, Fr.; Alabaster, Germ.), a sulphate of lime. (See Alabaster, Oriental.) When massive, it is called indifferently alabaster or gypsum; and when in distinct and separate crystals, it is termed selenite. Massive alabaster occurs in Britain in the now red or keuper marl : in Glamorganshire, on the Bristol Channel ; in Leicestershire, at Syston ; at Tutbury and near Burton-ou-Trent, in Staffordshire; at Chellaston, in Derbyshire; near Droitwieh it is associated in the marl witb rock salt, in strata respectively 40 and 75 feet in thickness; and at Northwich and elsewhere the red marl is intersected with frequent veins of gypsum. At Tutbury it is quarried in the open air, and at Chellaston in caverns, where it is blasted by gunpowder : at both places it is burned in kilns, and otherwise prepared for the market. It lies in irregular beds in the marl, that at Chellaston being about 30 feet thick. There is, however, reason to suppose that it was not orignally deposited along witb the marl as sulphate of lime, but ratber that calcareous strata, by the access of sulphuric acid and water, have been converted into sulphate of lime - a circumstance quite consistent with the bulging of the beds of marl with which tbe gypsum is associated, the lime, as a sulphate, oceupying more space than it did in its original state as a carbonate. At Tutbury, and elsewhere, though it lies on a given general horizon, yet it can scarcely be said to be truly bedded, but ramifies among the beds and joints of the marl in numerous films, vcins, and layers of fibrous gypsum.

A snow-white alabaster occurs at Volterra, iu Tuseany, mueh used in works of art in Florence and Leghorn. In the Paris basin it occurs as a granular crystalline roek, in the Lower Tertiary rocks, known to geologists as the upper part of the Middle Coeene freshwater strata. It is associated with beds of white and green marls; but in the Thuringewald there is a great mass of sulphate of lime in the Perminn strata. It bas been sunk through to a depth of 70 feet, and is believed to be metamorphosed magnesian limestone or Zechstein. In the United States this calcareous salt oecurs in numerous lenticular masses in marly and sand strata of that part of the Upper Silurian strata known as the Onondaga salt group. It is ex avated for agricultural purposes. For mineralogical charactri, \&c., see Gxpsum.-A. C. R.

The fincness of the grain of alabaster, the uniformity of its texture, the bcauty of its polished surfuce, and its semi-transparency, are the qualities which render it valuable to the sculptor and to the manufacturer of ornamental toys.

The alabaster is worked with the same tools as marble; and as it is many degrees softer, it is so much the more casily cut; but it is more diffieult to polish, from its little solidity. After it has hecn fashioned into the desired form, and snoothed down with punice stone, it is polishcd with a pap-like mixture of chalk, soap, and milk; and, last of all, finished by friction with flannel. It is apt to acquire a yellowish tinge.

Besides the harder kinds, employed for the sculpture of largc figures, there is a softer alabaster, purc white and semi-transparent, from which small ornamental objects are made, such as hoxes, vases, lamps, stands of time-picces, \&cc. This branch of business is much prosecuted in Florence, Leghorn, Milan, \&cc., and employs a great many turning-lathes. Of all the alabasters, the Florentine merits the prefercnce, on account of its heauty and uniformity, so that it may be fashioned into figures of considerahle size ; for which purpose there arc large workshops where it is cut with steel saws into blocks and masses of various shapes. Other sorts of gypsum, such as that of Salzburg and Austria, contain sand veins, aud hard nodules, and requirc to be quarried by cleaving and hlasting operations, which are apt to crack it and render it unfit for all delicate ohjects of sculpture. It is, besides, of a grey shade, and often stained with darker colours.

The alabaster best adapted for the fine arts is pretty white when newly broken, and bccomes whiter on the surface by drying. It may be easily cut with the knife or chisel, and formed into many pleasing shapes by suitable steel tools. It is worked either hy the hand alone, or with the aid of a turning-lathe. The turning tools should not be too thin or sharp-edged; but such as are employed for ivory and brass are most suitable for alahaster, and are chiefly used to shave and to scratch the surface. The objects which cannot be turned may be fashioned by the rasping tools, or with minute files, such as variegated foliage. Finc chisels and graving tools are also used for the better pieces of statuary.

For polishing such works, a peculiar process is required: pumice stone, in fine powder, serves to smooth down the surfaces very well, hut it soils the whiteness of the alabaster. To take away the unevenness and roughness, dried shave-grass (equisetum) answers best. Frictions with this plant and water polish down the aspcrities left by the chisel: the fine streaks left by the grass may be removed by ruhbing the pieces with slaked lime, finely pulverised, sifted, and made into a paste; or with putty-powder (oxide of tin) and water. The polish and satin-lustre of the surface are communicated by friction, first with soap water and lime, and finally with powdered and elutriated talc or French chalk.

Such articles as consist of several pieces are joined by a cement composed of quieklime and white of cgg, or of well-ealcined and well-sifted Paris plaster, mixed with the least possible quantity of water.

Alabaster objects are liablc to become yellow by keeping, and are especially injured by smoke, dust, \&c. They may be in some measure restored by washing with soap and water, then with clear water, and again polished with shave-grass. Grease-spots may be removed either by rubbing with talc powder, or with oil of turpentine.

The surface of alabaster may be etched by covering over the parts that are not to be touched with a solution of wax in oil of turpentine, thickened with whitc lead, and immersing the articles in pure water after the varnish has set. The action of the water is continued from 20 to 50 hours, more or less, according to the depth to which the etching is to be cut. After removing the varnish with oil of turpentine, the ctehed places, which arc nccessarily deprived of their polish, sbould be rubbed with a brush dipped in finely-powdered gypsum, which gives a kind of opacity, constarting well with the rest of the surface.

Alahaster may be stained either with metallic solutions, with spiritous tinctures of dyeing plants, or with colourcd oils, in the same way as marbles.
The gypsum of our own country is found, in apparently incxhaustible quantitics, in the Red Marl formation in the neighbourhood of Derby, and has heen worked for many centuries. The great hulk of it is used for makiug plaster of Paris, and as a manure; and it is the basis of many kinds of cements, patcuted-as Kecuc's, Martiu's, and others.
'To get it for thesc purposes, it is worked by mining underground, and the stone is blasted by gunpowder; but this shakes it so much as to be unfit for working into ornaments, \&c.; to procure blocks for which it is ncecssary to have au open quarry. By removing the superincumbent unarl, and laying bare a large surface of the rock, the alahaster being very irregular in furm, and jutting out in several parts, allows of its being sawn out in bloeks of considerable size, and comparatively sound (as is illus-
trated by the large tazza in the Museum of Practical Gcology). This stone, when protected from the action of water, is extremely durable, as may be scen in churches all over the country, where monumental effigies, many centuries old, are now as perfect as the day thcy were made, excepting of course wilful injuries; but exposure to rain soon decomposes the stone, and it must be borne in mind that it is perfectly unsuited for garden vases or other out-door work in this country.
In working, it can be sawn up into slabs with toothed saws, and for working mouldings and sculptures, fine chisels, rasps, and files are the implements used; the polishing is performed by rubbing it with pieces of sandstone, of various degrees of fineness, and water until it is quite free from scratches, and then giving a gloss by means of polishing powder (oxide of tin) applied on a piece of cloth, and rubbed with a considerable degree of friction on the stone. This material gives cmployment in Derby to a good many hands in forming it into useful and ornamental articles, and is commonly called Derbyshire Spar ; most of the articles are turned in the lathe, and it works something like very hard wood.
Another kind of gypsum also found in Derbyshire is the fibrous or silky kind; it occurs in thin beds, from one to six inches in depth, and is crysiallised in long needlelike fibres; being easily worked, susceptiblc of a high polish, and quite lustrous, it is used for making necklaces, bracelets, brooches, and suchlike small articles.-S. H.
ALABASTER, ORIENTAL. Orieutal alabaster is a form of stalagmitic or stalactitic carbonate of lime, an Egyptian variety of which is highly esteemed. It is also procured from the Pyrenees, from Chili, and from parts of the United States of America. Ancient quarries are still in existence in the province of Oran, in Algeria.

ALBANI STONE. (Lapis albanus.) The Peperino of modern geologists. A dark volcanic tufa found in Italy, much used at Rome before building with marble became common. The Italian name peperino is derived from pepe, pepper, which it somewhat resembles.

ALBATA PLATE, a name given to one of the varieties of white metal now so commonly employed. See Copper, and Alloxs.

ALBUM GR ECUM. The white fæces of dogs. After the hair has been removed from skins, this is used to preserve the softness of them, and prepare them for the tan-pit. Fowls' dung is considered by practical tanners as superior to the dung of dogs, and this is obtained as largely as possible. These excreta may be said to be cssentially phosphate of lime and mucus. We are informed that various artificial compounds which represent, chemically, the conditions of those natural ones, have been tried without producing the same good results. It is a reflection on our science, if this is really the case.

ALBUMEN. (Album Ovi.) Albumen is a substance which forms a constituent part of the animal fluids and solids, and which is also found in the vegetable kingdom. It exists nearly pure in the white of egg. Albumen consists of :-

Cabron	-	-	-	-	-	-	-	53.32
Hydrogen	-	-	-	-	-	-	-	79
Nitrogen	-	-	-	-	-	-	-	15.7
Sulphur	-	-	-	-	-	-	-	1.3
Oxygen	-	-	-	-	-	-	-2239	

its Formula being $S^{2} \mathbb{N}^{27} \mathrm{C}^{216} \mathrm{H}^{169} \mathrm{O}^{68}$. Albumen coagulates by heat, as is illustrated in the boiling of an egg. The salts of tin, bismuth, lead, silver, and mercury form with albumen white insoluble precipitates ; therefore, in cases of poisoning by corrosive sublimate, nitrate of silver, or sugar of lead, the white of egg is the best antidote which can be administered.
Albumen is employed in Photography, which see.
We imported the following quantities of albumen - in 1855, 275 cwts ; in 1856, 382 cwts.

AIBUMENISED PAPER. A paper preparcd with the white of egg for photograpt:ic purposes. See Puotograpiy.

ALCARAZZAS. Porous carthenware vessels made in Spain from a sandy marl, and but slightly fired. They arc used for cooling liquors. Those vesscls are made in France under the name of hygroceramen; similar kinds of carthenware are also manufactured in Staffordshire and Derhyshire.

ALCOHOL. (Alcool, Fr.; Alkohol, or Weingeist, Germ.) The word alcohol is derived from the Hebrew word "kohol," כמל to paint. The oricntal females were and arc still in the habit of painting the cyebrows with varions pigments; the onc gencrally employed was a preparation of antimony, and to this the term was generally applied. It became, how cycr, gradually extended to all substances used for the purpose, and ultimately to

ALCOHOL.

strong spirits, which were employed, probably, as solvents for certain colouring principles. The term was subsequently exclusively used to designate ardent spirits, and ultimately the radical or principle upon which their strength depends.
As chemistry advanced, alcohol was found to be a member only of a class of bodies agreeing with it in general characters; and hence the term is now generic, and we speak of the various alcohols. Of these, common or vinous alcohol is the best known; and, in common life, by " alcoholic liquors," we invariably mean those containing the original or vinous alcoliol.
When the characters of ordinary alcohol have been stated, allusion will be made to the class of bodics of which this is the type.

Fermented liquors were knowu in the most remote ages of antiquity. We read (Genesis ix.) that after the flood "Noah planted a vineyard, and he drank of the wine and was drunken." Homer, who certainly lived 900 years before the Christian cra, also frequently mentions wine, and notices its effects on the body and mind (Odyssey IX. and XXI.) ; and Herodotus tells us that the Egyptians drank a liquor feruented from barley. The period when fermented liquors were submitted to distillation, so as to obtain "ardent spirits," is shrouded in much obscurity. Raymond Lully* was acquainted with "spirits of wine," which he called aqua ardens. The separation of absolute alcohol would appear to have been first effected about this period (1300), by Arnauld de Villeneuve, a celebrated physician residing in Montpellier (Gerhardt), aud its analysis was first performed by Th. de Saussure. \dagger

The preparation of alcohol may be divided into three stages :-

1. The production of a fermented vinous liquor - the Fermentation.
2. The preparation from this of an ardent spirit - the Distillation.
3. The separation from this ardent spirit of the last traces of water - the Rectification.
4. Fermentation. The term "fermentation" is now applied to those mysterious changes which vegetable (and animal) substances uudergo when exposed, at a certain temperature, to contact with organic or even organised bodies in a state of change.
Therc are several bodies which suffer these metamorphoses, and under the influence of a great number of different exciting substances, which are termed the "ferments;" moreover, the resulting products depend greatly upon the temperature at which the change takes place.
The earliest known and best studied of these processes is the one commonly recognised as the vinous or alcoholic fermentation.

In this process solutions containing sugar-either the juice of the grape (see Wine) or an infusion of germinated barley, malt, (see Beer) - are mixed with a suitable quantity of a ferment; beer or wine ycast is usually employed (sec Yeast), and the whole maintained at a temperature of between 70° and 80° F. (21° to $26^{\circ} \mathrm{C}$.)

Other bodies in a state of putrefactive decomposition will effect the same result as the yeast, such as putrid blood, white of egg, \&c.

The liquid swells up, a considerable quantity of froth collects on the surface, and an abundance of gas is disengaged, which is ordinary carbonic acid (CO^{2}). The composition of (pure) alcohol is expressed by the formula $\mathrm{C}^{4} \mathrm{H}^{6} \mathrm{O}^{2}$, and it is produced in this process by the breaking up of an equivalent of grape sugar, $\mathrm{C}^{21} \mathrm{H}^{23} \mathrm{O}^{33}$, into 4 equivalents of alcohol, 8 of carbonic acid, and 4 of water -

$$
\begin{aligned}
& \mathrm{C}^{24} \mathrm{H}^{28} \mathrm{O}^{28} \\
& \frac{\mathrm{C}^{16} \mathrm{H}^{24} \mathrm{O}^{8}}{\mathrm{C}^{8} \mathrm{H}^{4} \mathrm{O}^{20}}=4\left(\mathrm{C}^{4} \mathrm{H}^{6} \mathrm{O}^{2}\right) \\
& \frac{\mathrm{H}^{4} \mathrm{O}^{4}}{}=4 \mathrm{HO} \\
& \overline{\mathrm{C}^{8}} \mathrm{O}^{16}=8 \mathrm{CO}^{26}
\end{aligned}
$$

It is invariably the grape sugar which undergoes this change; if the solution contains cane sugar, the cane sugar is first converted into grape sugar under the influence of the ferment. Sec Sugar.

Much diversity of opinion exists with respect to the office which the fermeut performs in this process, since it does not itself yield any of the products. Sec Fermentation.

The liquid obtained by the vinous fermentation has received different names, according to the source whence the saccharine solution was derived. When procured from the expressed juice of fruits-such as grapes, currants, gooseberries, \&c.-the product is denominated wine; from a decoction of malt, ale or beer; froul a misture of honcy and water, neead; from apples, cider; from the leaves and small branches of
the sprucc-fir (abics excelsa, \&c.), together with sugar or treacle, spruce; from rice, rice beer (which yields the spirit arrach); fronı cocoa-nut juice, paln wine.
It is an interesting fact that alcohol is produced in very considerablc quantities (in the aggregate) during the raising of bread. The carbonic acid which is generated in the dough, and which during its expulsion raises the bread, is one of the products of the fermentation of the sugar in the Hour, under the influence of the yeast added; and of course at the same time the complementary product, alcohol, is generated. As Messrs. Ronalds and Richardson remark*: "The enormous amount of bread that is baked in large towns - in London, for instance, 8.8 millions of cwts. yearly would render the small amount of alcohol contained in it of sufficient importance to be worth collecting, provided this could be done sufficiently cheaply." In London it has been estimated that in this way about 300,000 gallons of spirit are annually lost ; but the cost of collecting it would far exceed its value.
2. Distillation. By the process of distillation, ardent spirits are obtained, which have likewise received different names according to the sources whence the fermented liquor has been derived : viz. that produced by the distillation of wine being called brandy, and in France cognac, or eau de vie; that produced by the distillation of the fermented liquor from sugar and molasses, rum. There are several varieties of spirits made from the fermented liquor procured from the cereals (and especially barley), known according to their peculiar methods of manufacture, flavour, \&cc. - as whishy, gin, Hollunds - the various compounds and liqueurs. In India, the spirit obtaived from a fermented infusion of rice is called arrack.
3. Rectification; preparation of absolute alcohol. It is impossible by distillation alone to deprive spirit of the whole of the water and other impurities - to obtain, in fact, pure or absolute alcohol.

This is effected by mixing with the liquid obtained after one or two distillations, certain bodies which have a powerful attraction for water. The agents commonly employed for this purpose are quicklime, carbonate of potash, anhydrous sulphate of copper, or chloride of calcium. Perhaps the best adapted for the purpose, especially where large quantities are required, is quicklime; it is powdered, mixcd in the retort with the spirit (previously twice distilled), and the neck of the retort being securely closed, the whole left for 24 hours, occasionally shaking ; during this period the lime combines with the water, and then on carefully distilling, avoiding to continue the proeess until the last portions come over, an alcohol is obtained which is free from water. If not quite free, thc same process may be again repeated.
In experiments on a small scale, an ordinary glass retort may be employcd, hcated by a water-bath, and fitted to a Liebig's condenser cooled by ice-water, which passes lastly into a glass receiver, similarly cooled.

Although alcohol of sufficient purity for most practical purposes can be readily obtained, yet the task of procuring absolute alcohol entirely free from a trace of water, is by no means an casy one.

Mr. Drinkwater \dagger effected this by digesting ordinary alcohol of specific gravity 8.80 at $60^{\circ} \mathrm{F}$. for 24 hours with carbonate of potash previously exposed to a red heat ; the alcohol was then carefully poured off and mixed in a retort with as much fresh-burnt quicklime as was sufficient to absorb the whole of the alcohol; after digesting for 48 hours, it was slowly distilled in a water-bath at a temperature of about $180^{\circ} \mathrm{F}$. This alcohol was carefully redistilled, and its specific gravity at $60^{\circ} \mathrm{F}$. found to bc -7947 , which closely agrees with that given by Gay-Lussac as the specific gravity of absolute alcohol. He found, moreover, that reccntly ignited anhydrous sulphate of copper was a less efficient dehydrating agent than quicklime.

Graham recommends that the quantity of lime employed should never cxceed three times the wcight of the alcohol.

Chloride of calcium is not so well adapted for the purification of alcohol, since the alcohol forms a compound with this salt.

Many other processes have been suggested for depriving alcohol of its water.
A curious process was proposed many years ago by Soëmmcring \ddagger, which is dependent upon the peculiar fact, that whilst water moistens animal tissucs, alcohol does not, but tends rather to abstract water from them. If a mixture of alcohol and water be enclosed in an ox bladder, the water gradually traverses the membrane and evaporates, whilst the alcohol does not, and consequently by the loss of water the spirituous solution becomes concentrated.

This process, though an interesting illustration of cxosmose, is not practically applicable to the production of anhydrons alcohol ; it is, however, an economical method,

[^10]
ALCOIIOL.

and well suited for obtaining alcohol for the preparation of varnishes. Smugglers, who bring spirits into France in bladders hid about their persons, have long known, that although the liquor decreased in bulk, yet it increased in strength; hence the people prcferred the article conveycd clandestinely. Professor Grahau has ingeniously proposed to concentrate alcohol as follows :-
"A large shallow basin is covered, to a small depth, with recently burnt quicklime, in coarse powder, and a smaller basin, containing threc or four ounces of conmercial alcohol, is made to rest upon the lime; the whole is placed under the low receiver of an air-pump, and the exhaustion continued till the aleohol cvinces signs of ebullition. Of the mingled vapours of alcohol and water which now fill the receiver, the quicklime is capable of uniting with the aqueous only, whieh is therefore rapidly withdrawn, while the alcohol vapour is unaffected; and as water cannot remain in the alcohol as long as the superineumbent atmosphere is devoid of moisture, more aquenus vapour rises, which is likewise abstracted by the lime, and thus the process goes on till the whole of the water in the alcohol is removed. Several days are always required for this purpose.

Properties of Alcohol. - Absolute.

In the state of purity, alcohol is a colourless liquid, highly inflammable, burning with a pale blue flame, very volatile, and having a density of 0.792 at $15.5^{\circ} \mathrm{C}$. (60° F.) (Drinkwater.) It boils at $78.4^{\circ} \mathrm{C}$. $\left(173^{\circ} \mathrm{F}\right.$.) It has never yet been solidified, and the density of its vapour is 1.6133 .

Anhydrous alcolool is composed by weight of $52 \cdot 18$ carbon, 13.04 hydrogen, and 34.78 of oxygen. It has for its symbol $\mathrm{C}^{4} \mathrm{H}^{6} \mathrm{O}^{2}=\mathrm{C}^{4} \mathrm{H}^{5} \mathrm{O}+\mathrm{HO}$, or hydrated oxide of ethyle. It has a powerful affinity for water, removing the water from moist substances with which it is brought in contact. In consequence of this property, it attracts water from the air, and rapidly becomes weaker, unless kept in very wellstopped vessels. In virtue of its attraction for water, alcohol is very valuable for the preservation of organic substances, and especially of anatomical preparations, in consequence of its eausing the coagulation of albuminous substances; and for the same reason it causes death when injected into the veins.

When mixed with water a considerable amount of heat is evolved, and a remarkable contraction of volume is observed. These effects being greatest with 54 per cent. of aleohol and 46 of water, and thence decreasing with a greater proportion of water. For alcohol whieh contains 90 per ecnt. of water, this condensation amounts to 1.94 per cent. of the volume ; for 80 per cent., $2 \cdot 87$; for 70 per cent., 3.44 ; for 60 per eent., $3 \cdot 73$; for 40 per cent., 3.44 ; for 30 per cent., $2 \cdot 72$; for 20 per eent., $1 \cdot 72$; for 10 per cent., 0.72 .

Alcohol is prepared absolute for certain purposes, but the mixtures of aleohol and water commonly met with in commerce are of au inferior strength. Those commonly sold are "Rectified Spirit," and "Proof Spirit."
"Proof Spirit" is defined by Aet of Parliament, 58 Gco. III. c. 28, to be "sueh as shall, at the temperature of fifty-one degrees of Fahrenheit's thermometer, weigh exactly twelve-thirteenth parts of an equal measure of distilled water." And by very careful experiment, Mr. Drinkwater has determined that this proof spirit has the following composition :-

Alcohol and Water.		Speific Gravity at 600 F.	Bulk of the mixture of 100 measures of Alohol and 81.82 of Water.
By weight.	By measure.		
Alcohol. Water. $100+103.09$ $49 \cdot 100+50.76$	Alcohol. $100+81.82$.019	175.25

Spirit which is weaker is called "under proof;" and that stronger, "above proof." The origin of these terms is as follows:-Formerly a very rude mode of ascertaining the strength of spirits was practised, called the proof; the spirit was poured upon gunpowder and inflamed. If, at the end of the combustion, the gunpowder took fire, the spirit was said to be above or over proof. But if the spirit contaiued mueh water, the powder was rendered so moist that it did not take firc: in which case the spirit was said to be under or below proof.

Rectificd spirit eontains from 54 to 64 per cent. of ahsolute aleohol ; and its speeific gravity is fixed by the London and Edinburgh Colleges of Physicians at 0.838 , whilst the Dublin College fixes it at 0.840 .

In eommeree the strength of mixtures of aleohol and water are stated at so many

ALCOHOL.
degrees, according to Sykes's hydrometer, above or below proof. This instrument will be explained under the head of Alcoholometry.

As will have been understood by the preeeding remarks, the specifie gravity or density of mixtures of alcohol and water rises with the diminution of the quantity of alcohol present; or, in other words, with the amount of water. And sinee the strength of spirits is determined by aseertaining their density, it bccomes bighly important to determine the precise ratio of this inerease. This increase in density with the amount of water, or diminution with the quantity of alcohol, is, however, not directly proportional, in consequence of the contraction of volume which mixtures of alcohol and water suffer.
It therefore became necessary to determine the density of mixtures of known composition, prepared artifieially. This has been done reeently with great eare by Mr. Drinkwater*; and the following Table by him is recommended as one of the most aceurate.

Table of the Quantity of Alcohol, BY Weigrit, contained in Mixtures of Alcohol and Water of the following Specific Gravities:-

Specific Gravity at $60^{\circ} \mathrm{F}$.	Alcohol per cent. weight.	$\begin{aligned} & \text { Specific } \\ & \text { Gravity } \\ & \text { at } 60^{\circ} \mathrm{F} . \end{aligned}$	Alcohol per cent weight.	Specific Gravity, at 60° \%. \square		Specific Gravity at 60° F. $\text { at } 60^{\circ} \mathrm{F}$	Alcohol per cent. by weight.	$\begin{gathered} \text { Specific } \\ \text { Gravity } \\ \text { at } 60^{\circ} \mathrm{F} . \end{gathered}$	Alcohel per ceot. by weight.
1.0000	$0 \cdot 00$	-9967	1.78	. 9934	3.67	9901	$5 \cdot 70$	-9869	$7 \cdot 85$
-9999	$0 \cdot 05$	-9966	1.83	. 9933	$3 \cdot 73$	-9900	$5 \cdot 77$	-9868	$7 \cdot 92$
-9998	$0 \cdot 11$	-9965	$1 \cdot 89$. 9932	$3 \cdot 78$	-9899	$5 \cdot 83$	-9867	$7 \cdot 99$
-9997	$0 \cdot 16$	-9964	$1 \cdot 94$. 9931	$3 \cdot 84$	-9898	$5 \cdot 89$	-9866	$8 \cdot 06$
. 9996	0.21	-9963	1.99	. 9930	$3 \cdot 90$	-9897	$5 \cdot 96$	-9865	$8 \cdot 13$
-9995	$0 \cdot 26$	-9962	$2 \cdot 05$. 9929	$3 \cdot 96$	-9896	6.02	-9864	8:20
-9994	$0 \cdot 32$	-9961	$2 \cdot 11$. 9928	402	-9895	6.09	-9863	$8 \cdot 27$
-9993	$0 \cdot 37$	-9960	$2 \cdot 17$. 9927	4.08	-9894	$6 \cdot 15$	-9862	$8 \cdot 34$
-9992	$0 \cdot 42$	-9959	$2 \cdot 22$	-9926	$4 \cdot 14$	-9893	$6 \cdot 22$	-9861	$8 \cdot 41$
-9991	0.47	$\cdot 9958$	2.28	. 9025	$4 \cdot 20$	$\cdot 9892$	$6 \cdot 29$	-9860	$8 \cdot 48$
-9990	0.53	-9957	$2 \cdot 34$	-9924	$4 \cdot 27$	-9891	6.35	-9859	$8 \cdot 55$
-9989	$0 \cdot 58$	-9956	$2 \cdot 39$	- 9923	$4 \cdot 33$	-9890	6.42	-9858	$8 \cdot 62$
-9988	$0 \cdot 64$	$\cdot 9955$	$2 \cdot 45$	-9922	4:39	-9889	$6 \cdot 49$	$\cdot 9857$	$8 \cdot 70$
-9987	$0 \cdot 69$	-9954	$2 \cdot 51$	-9921	$4 \cdot 45$	-9888	$6 \cdot 55$	-9856	$8 \cdot 77$
$\cdot 9986$	$0 \cdot 74$	-9953	$2 \cdot 57$	-9920	4.51	-9887	6.62	-9855	$8 \cdot 84$
-9985	$0 \cdot 80$	-9952	$2 \cdot 62$	-9919	$4 \cdot 57$	-9886	6.69	$\cdot 9854$	$8 \cdot 91$
-9984	$0 \cdot 85$	-9951	$2 \cdot 68$	-9918	$4 \cdot 64$	-9885	6.75	-9853	8.98
-9983	0.91	-9950	$2 \cdot 74$	$\cdot 9917$	$4 \cdot 70$	-9884	6.82	-9852	$9 \cdot 05$
-9982	0.96	-9949	$2 \cdot 79$	-9916	4.76	-9883	6.89	-9851	$9 \cdot 12$
-9951	$1 \cdot 02$	- 9948	$2 \cdot 85$	-9915	$4 \cdot 82$	-9882	6.95	-9850	$9 \cdot 20$
. 9980	$1 \cdot 07$	$\cdot 9947$	2.91	-9914	$4 \cdot 88$	-9881	7.02	-9849	927
-9979	$1 \cdot 12$	-9946	$2 \cdot 97$	$\cdot 9913$	$4 \cdot 94$	-9880	$7 \cdot 09$	-9848	$9 \cdot 34$
. 9978	$1 \cdot 18$	-9945	3.02	-9912	$5 \cdot 01$	-9879	$7 \cdot 16$	$\cdot 9847$	9.41
-9977	$1 \cdot 23$	-9944	3.08	$\cdot 9911$	$5 \cdot 07$	-9878	7-23	-9846	$9 \cdot 49$
. 9976	$1 \cdot 29$	-9943	$3 \cdot 14$	-9910	$5 \cdot 13$	-9877	$7 \cdot 30$	- 9845	$9 \cdot 56$
. 9975	1.34	-9942	$3 \cdot 20$	-9909	5.20	-9876	$7 \cdot 37$	-9844	$9 \cdot 63$
-9974	$1 \cdot 40$	-9941	$3 \cdot 26$	-9908	$5 \cdot 26$. 9875	$7 \cdot 43$	$\cdot 9843$	$9 \cdot 70$
-9973	1.45	-9940	$3 \cdot 32$	-9907	$5 \cdot 32$	-9874	$7 \cdot 50$	- 9842	$9 \cdot 78$
-9972	1.51	-9939	$3 \cdot 37$	-9906	5.39	-9873	$7 \cdot 57$	-9841	$9 \cdot 85$
. 9971	1.56	-9938	$3 \cdot 43$	-9905	$5 \cdot 45$	-9872	$7 \cdot 64$	-9840	$9 \cdot 92$
. 9970	$1 \cdot 61$	-9937	$3 \cdot 49$	$\cdot 9904$	$5 \cdot 51$	-9871	$7 \cdot 71$	-9839	$9 \cdot 99$
-9969	1.67	-9936	$3 \cdot 55$	-9903	$5 \cdot 58$. 9870	7\%8	. 9838	10.07
$\cdot 9968$	1.73	$\cdot 9935$	3.61	$\cdot 9902$	$5 \cdot 64$				

The preceding Table, though very aeeurate so far as it goes, is not sufficiently extensive for practical purposes, only going, in fact, from 6 to 10 per eent. of alcohol; the Table of Tralle's (page 49) extends to 50 per cent. of absolute alcohol.
Moreover, Drinkwater's Table has the (practical) disadvantage (though seientifi cally more correet and useful) of stating the per-centage by wcight; whereas in Tralle's Table it is given by volume. And since liquors are vended by measure, and not by weight, the eentesimal amount by volume is usually preferred. But as the bulk of

[^11]liquids generally, and partieularly that of aleohol, is inereased by heat, it is necessary that the statement of the density in a certain volume should have refcrenee to some normal temperature. In the eonstruction of Tralle's Table the temperature of the liquids was $60^{\circ} \mathrm{F}$.; and of eourse, in using it, it is necessary that the density should be observed at that temperature.

In order to eonvert the statement of the eomposition by volume into the content by weight, it is only neeessary to multiply the per-eentage of aleohol by volume by the speeifie gravity of absolute alcohol, and then divide by the speeifie gravity of the
liquid.

It has been thought desirable to retain the following remarks by Dr. Uree, and to gire Mr. Gilpin's tables in addition to the others.

The importance of extreme aecuraey in determining the density of alcoholie mixtures in the Uuited Kingdom, on aeeount of the great revenue derived from them to the State, and their eonsequent high price in commeree, induced the Lords of the Treasury a few years ago to request the Royal Society to examine the construetion and mode of applying the instrument now in use for ascertaining and charging the duty on spirits. This instrument, which is known and described in the law as Sikes's hydrometer, possesses, in many respeets, decided advantages over those formerly in use. The eommittee of the Royal Soeiety state, that a definite mixture of aleohol and water is as invariable in its value as absolute alcohol ean be; and can be more readily, and with equal aeeuracy, indentified by that only quality or condition to which recourse can be had in practice, namely, specific gravity. The eommittec further proposed, that the standard spirit be that which, consisting of aleohol and water alone, shall have a specific gravity of 0.92 at the temperature of $62^{\circ} \mathrm{F}$., water being unity at the same temperature; or, in other words, that it shall at 62° weigh $\frac{92}{106}$ ths or $\frac{23}{25}$ ths of an equal bulk of water at the same temperature.
This standard is rather stronger than the old proof, whieh was $\frac{12}{3}$ ths or 0.923 ; or in the proportion of nearly $1 \cdot 1$ gallon of the present proof spirit per eent. The proposed standard will eontain nearly one-half by weight of absolute alcohol. The hydrometer ought to be so graduated as to give the indieation of strength; not upon an arbitrary scale, but in terms of specifie gravity at the temperature of 62°.

The eommittee reeommend the eonstruction of an equation table, whieh shall indieate the same strength of spirit at every temperature. Thus in standard spirit at 62° the hydrometer would indicate 920 , which in this table wonld give proof spirit. If that same spirit were cooled to 40°, the hydrometer would indicate some higher number; but whieh, being eombined in the table with the temperature as indicated by the thermometer, should still give proof or standard spirit as the result.

It is considered advisable, in this and the other tables, not to express the quality of the spirit by any number over or uuder proof, but to indieate at once the number of gallons of standard spirit eontained in, or equivalent to, 100 gallons of the spirit under examination. Thus, instead of saying 23 over proof, it is proposed to insert 123 ; and in place of $35 \cdot 4$ under proof, to insert its differenee to 100 , or $64 \cdot 6$.

It has been eonsidered expedient to reeommend a second table to be constructed, so as to show the bulk of spirit of any strength at any temperature, relative to a standard bulk of 100 gallons at 62°. In this table, a spirit whieh had diminished in volume, at any given temperature, 0.7 per eent., for example, would be expressed by $99 \cdot 3$; and a spirit whieh had increased at any given temperature 0.7 per eent., by 100%.

When a sample of spirit, therefore, has been examined by the hydrometer and thermometer, these tables will give first the proportion of standard spirit at the observed temperature, and next the change of bulk of such spirit from what it would be at the standard temperature. Thus, at the temperature of 51°, and with an indieatiou (speeifie gravity) of 8240,100 gallons of the spirit under examintion would be shown by the first table to be equal to $164 \cdot 8$ gallons of standard spirit of that temperature ; and by the second table it would appear that 99.3 gallons of the same spirit would become 100 at 62°, or in reality contain the 164.8 gallons of spirit in that state only in whieh it is to be taxed.

But as it is considered that neither of these tables ean alone be used for eharging the duty (for neither can express the actual quantity of spirit of a speeific gravity of 0.92 at 62° in 100 gallons of stronger or weaker spirit at temperatures above or below 62°), it is considered essential to have a third table, combining the two former, and expressing this relation direetly, so that upon mere inspection it shall indicate the proportion of standard spirit in 100 gallons of that under examination iu its then preseut state. In this table the quautities slould be set down in the aetual number of gallons of standard spirit at 62°, equivalent to 100 of the spirit under examinatiou; and the eolumn of quantities may be expressed by the term calue, as it in reality expresses the proportion of the only valuable substance present.

The following specimen Table has been given by the committee:-

Temperature 450.			Temperature 750.		
Indlcation.*	Strength.	Value.	Iudication.	Strength.	Valuc.
9074	114.5		8941	114.5	
7	114.3		4	114.3	
9	114.2		5	114.2	
81	114.0		8	114.0	
3	113.9		9	113.9	
5	113.7		52	1137	
6	113.6		3	113.6	
9	113.4		6	113.4	
90	113.3		7	113.3	
3	113.1		9	113.1	

The mixture of alcohol and water, taken as spirit in Mr. Gilpin's tables, is that of which the specific gravity is 0.825 at $60^{\circ} \mathrm{F}$., water being unity at the same temperature. The specific gravity of water at 60° being 1000 , at 62° it is 99,981 . Hence, in order to compare the specific gravities given by Mr. Gilpin with those which would result when the specific gravity of water at 62° is taken at unity, all the former numbers must be divided by 99,981 .

Table of the Spccific Gravities of different Mirtures, by weight, of Alcohol and Water, at different Temperatures; constructcd by Mr. Gilpin, for the use of the British Revenue on Spirits.

	Pure Alcohol.	$\left\|\begin{array}{c} 100 \\ \text { Alcohol } \\ 5 \\ \text { Water. } \end{array}\right\|$	100 Alcohol 10 Water.	100 Alcohol Water.	100 Alcohol Water.	100 Alcohol 25 Water.	100 Alcohol 30 Water	100 Alcohol 35 Water	100 Alcoliol 40 Water.	100 Alcohol 45 Water	$\begin{gathered} 100 \\ \text { Alcohol } \\ 50 \\ \text { Watcr. } \end{gathered}$
35	${ }^{0.838772}$	-84769	-85729	-895887	. 87357	-88059	-88701	- 89294	-898839	${ }_{-90345}$	-.90811
40	-33445	$\cdot 84539$	-85507	-86361	-87184	-87838	-88481	-89073	-89617	-90127	-90596
45	83214	-84310	-85277	-86131	-86905	-87613	-8825.5	-88849	-89396	-89909	-90380
50	-82977	-84076	-85042	-85902	-89676	- 87984	-88030	-88626	-89174	-84684	-90160
55	-82736	-83834	-84802	-85664	-86441	-87150	-87796	-88393	-88945	-89158	-89933
60	-82500	-83599	- 84563	-85430	-86208	- 86918	-87569	-88169	-88720	89232	-89707
6.5	-82262	-83362	-84334	-85193	- 8.5976	-8668C	-87337	87938	-88490	89006	-89:179
70	. 82023	-83124	-84092	-849.31	-85736	-86451	-87105	-87705	-88254	-88773	-89252
75	-81780	82878	-83851	. 84710	. 85496	- 86212	-80664	-87406	-88018	- 88538	89018
80	. 81530	-82631	-83503	. 84467	. 85248	-85966	-86623	87228	-87776	- 88301	-89781
85	-81291	-82396	. 83371	-84243	-85036	-85557	-86411	-87021	-87590	. 88120	-88609
90	-81044	-82150	. 83126	- 84001	-84797	-85518	-86172	-86787	-8736n	-87889	. 88376
95	-80794	-81900	. 82877	-83753	-84550	-85272	85928	-86542	-87114	-87654	-89146
100	-80518	$\cdot 81657$	82639	-83513	-84038	-85031	85688	-86302	-86879	-87421	. 87915
Temperature, Fahr.		100	100	100	100	100	100	100			
		Alcohol	Alcohol	Alconol	Alcohol	Alcchol	Alcohol	Alcohol	Alcohol	Alcohol	Alcohol
		Water.	Water.	6.	rer			85	10	95	100
					ater	Water.	Water.	Water.	Water.	Watcr.	ater.
		0.91449	0.91847	0.02217	0.92 .563	0.92889	0.93191	093474	0.93741	0.93,991	
$\begin{aligned} & 30 \\ & 35 \end{aligned}$		-91241	-91640	- 92009	-92355	-92680	-92986	-93274	-93541	-93790	-9.4025
40		-91026	-91428	. 91799	-92151	- 92.176	-92783	-93072	-93341	-93592	-93827
45		-90812	. 91211	-91584	-91937	- 22204	-92570	- 02859	-93131	-93382	-93621
50		-90596	-40997	-91370	-91723	-92051	-92358	-92647	.92919	-93177	-93419
55		-90367	-90768	-91144	-91.02	-91837	. 92145	- 22436	-22707	-92963	-93208
60		$\because 10144$	-90549	90927	-91287	-91622	- 91933	-92225	-92499	- 22758	-93002
		-89920	-90328	-90707	-91066	-91400	-91715	-92010	-92283	- 225.16	-9279.1
7075		- 89.164	. 89887	-90484	-90817	-91181	-91493	-91793	- 021069	- 22333	-92580
80		-89225	-896:39	-90021	-90385	- 00723	91046	. 91340	-91819	.92111	$\bigcirc 92364$
85		-89043	-89460	-89843	-0209	-90558	-90×82	91186	. 91465	-917\%9	-.92142
90		-89817	-89230	-89617	-89988	- 00342	-90688	-90917	-91248	-91511	
95100		-88588	-89003	-89390	-89763	.90119	-90443	-90747	-91029	-91290	-91751
		883571	888769	-89158	89536	-89889	'90215	-90522	-90805	$\cdot 91066$	-91310

[^12]Table of the Spccific Gravities of differcnt Mixturcs, \&c. (continued.)

	95 Alcohol 100 Water.	$\left.\begin{gathered} 90 \\ \text { Alcohol } \\ 100 \\ \text { Water. } \end{gathered} \right\rvert\,$	$\begin{gathered} 85 \\ \text { Alcohol } \\ 100 \\ \text { Water. } \end{gathered}$	80 Alcohol 100 Water	75 Alcohol 100 Water	70 Alcohol 100 Water	65 Alcohol 100 Water	60 Alcoliol 100 Water	$\begin{gathered} 55 \\ \text { Alcolol } \\ 100 \\ \text { Water. } \end{gathered}$	$\left\lvert\, \begin{gathered} 50 \\ \text { Alcoliol } \\ 100 \\ \text { Water. } \end{gathered}\right.$
25	-94249	\bigcirc	-94734	-94!1R8	- 9.95246	- 0.95681	-0.95941	0.96209	0.96470	0.96719
40	-94058	-94295	$\cdot 94547$	-94802	-95060	-95328	-95602	-95879		
45	-93860	-9.1096	-91348	-94605	-94871	-95143	. 95423	-95703	-05993	-96280
50	-93668	-93897	-94149	-94414	-94683	-94958	'95243	-95534	-958.31	-96126
55	-93452	-93696	-93948	-94213	-94486	-94767	-95057	-95357	-95662	- 95969
60	-93217	-93493	-93749	-94018	-94296	-94579	94876	-95181	-95193	-95804
65 70	-93040	-93285	${ }^{-93516}$. 938822	-94099	- 944888	. 944689	. 95000	-95318	-95635
75	-92613	- 92865	-93132	-93616	-93898	-94193	- 944500	-94813	-95139	-95469
80	-92393	-92646	-92917	-93201	-93488	-93785	94102	$\cdot 94623$ $\cdot 9441$	$\begin{array}{r} 94957 \\ \cdot 94768 \end{array}$	$\stackrel{.95292}{ } \cdot 95111$
Temperature,Fahr.		45	40	35	30	25	20	15	10	
		Alcohol	Alcohol	Alcohol	Alcohol	Aleohol	Alcohol	Alcohol	Alcohol	
		100	100	100	100	100	100	${ }^{\text {Alcohor }}$	${ }^{\text {A }} 100$	Alenhol
		Water.								
Deg.										
30^{3}		0.96967	0.97200	0.97418	0.97635	0.97860	0.98108	0.98412	$0 \cdot 98804$	0.99334
		-96840	-97186	-97319	-97556	-97801	-98076	-98397	-98804	-99344
		-96706	- 46967	-97220	-97472	-97737	-98033	-98373	.98795	-99345
40		-96563	-96840	-97110	-97384	-97666	-97980	-98338	'98774	-99338
50		-96420	-967CX	-96995	-97284	. 47589	-97920	-98293	-98745	99316
55		-96272	-96575	-96877	-97181	-97500	-97847	-98239	-98702	-99284
		-96122	-96437	-96752	-97074	-97410	-97771	-98176	-98654	-99244
60		-95962	-96288	-96620	-96959	-97309	97688	-98106	98494	-99194
7075		-95802	-96143	-96484	-96836	. 97203	-97596	-98028	-98527	-99134
		-95638	-95987	-96344	- 46708	-97086	- 97495	-97943	-98454	-99066
7580		-95467	-95826	-96192	-96568	-96963	-97385	-97845	-98367	-98991

Experiments were made, by direction of the committee, to verify Gilpin's tablcs. whieh showed that the error introduced in aseertaining the strength of spirits by tables founded on Gilpin's numbers must be quite insensible in the practice of the Revenue. The discrepancies thus detected, on a mixturc of a given strength, did not amount in any onc instance to unity in the fourth place of decimals. From a carcful inspection of such doeuments the committee are of opinion that Gilpin's tables posscss a degree of aeeuraey far surpassing what could be expeeted, and suffieiently perfect for all praetieal or seientifie purposes.

The following Table is given by Mr. Lubboek, for converting the apparent speeific gravity, or indication, into true specifie gravity : -

	-				Temperature.				$+$				
	30°	32°	370	42°	47°	52°	57°	620	67°	72°	77°	80°	
-82	-00083	- 00078	-00065	-00052	-00039	-00025	-00012		-00011	-0002.4	-00035	-00042	-82
-83	-00084	-00079	-00066	-00052	-00039	-00026	-00012		-00012	-00024	-00036	-00042	-83
- 84	-00085	-00080	-00016f	. 00053	-00039	-00026	-00013		-00012	-0002. 1	-00036	- 00043	. 8.1
-85	-00086	-00081	-00067	-001054	-009 10	-00026	-00013		-00012	-00025	-00037	-000.43	-85
-86	-00087	-000R2	-00068	-00054	-00040	-00027	-00013		-00012	00025	-00037	-0004.4	-86
-87	-00088	-00083	-00059	-00055	-00041	-00027	-00013		-00012	-00025	-00037	-0004.1	. 87
-88	-00089	-00081	-00070	-00055	-00041	-00027	-00013		-00012	-0c026	-00038	-000.45	-88
-89	-00090	$\cdot 00085$	-00070	-00055	- 0 (1)42	-00028	-00013		-00012	-00026	-00038	-000.45	- 89
-90	-00091	-00085	. 00071	-00056	-00042	-00028	-00014		-00013	-00026	-00039	-00046	$\cdot 90$
$\cdot 91$	-00092	-00086	-00072	-00057	-000-13	-00028	-00014		00013	-00026	-00039	-00046	-91
$\cdot 92$	-00093	-00087	-00073	-00058	-00043	-00029	-00014		- 00013	-00027	-00040	-0009	-923
$\cdot 93$	-00094	-00088	-00073	-00059	-0r04.	-010:9	-00014		-00013	-00027	-00040	-00047	93
$\cdot 94$	00 95	-00049	-00074	'00059	-0004	-00029	-00014		-00013	-00027	-00040	-00n48	\bigcirc
.95	-00096	- oroso	-00075	-00060	-0004 ${ }^{5}$. 00029	-00014		-00013	-0002d	-00041	-00044	. 95
-96	- 01097	-00091	-00076	-00060	-00045	-00030	-00014		-00013	-00128	-000041	-00049	-96\%
$\cdot 97$	-0009R	-00092	-00077	-00061	-0004 ${ }^{\text {a }}$	-00030	-00015		-0001.1	-00028	-00042	-00049	.97
-98	-00029	-00093	$\cdot 00077$	-00062	-0004 ${ }^{\prime}$	-00030	-00015		-00014	- 60128	-000.12	-000io	-08
-99	-00100	-00094	-00078	-00062	-00047	-00031	.00015		$\cdot 00014$	OC029	-000 13	-000:0	$\cdot 99$ $\cdot 100$
-100	-00101	-00095	-00079	-00063	-00047	$\cdot 00031$	-00015						-100

Tralle's Table of the Composition BY volume of Mixtures of Alcohol and Water of different Densities.

	Specific Gravity at $60^{\circ} \mathrm{F}$.	Difference of the specific gravities.		Specific Gravity at $60^{\circ} \mathrm{F}$.	Difference of the specific gravities.		Specific Gravity at $60^{\circ} \mathrm{F}$.	Difference of the specific gravities.
0	0.9991		34	0.9596	13	68	$0 \cdot 8941$	24
1	0.9976	15	35	$0 \cdot 9583$	13	69	$0 \cdot 8917$	24
2	0.9961	15	36	$0 \cdot 9570$	13	70	0.8892	25
3	$0 \cdot 9947$	14	37	0.9556	14	71	$0 \cdot 8867$	25
4	$0 \cdot 9933$	14	38	0.9541	15	72	$0 \cdot 8842$	25
5	$0 \cdot 9919$	14	39	0.9526	15	73	$0 \cdot 8817$	25
6	$0 \cdot 9906$	13	40	0.9510	16	7.4	0.8791	26
7	$0 \cdot 9893$	13	41	$0 \cdot 9494$	16	75	0.8765	26
8	0.9881	12	42	0.9478	16	76	$0 \cdot 8739$	26
9	$0 \cdot 9869$	12	43	$0 \cdot 9461$	17	77	0.8712	27
10	0.9857	12	44	$0 \cdot 9444$	17	78	$0 \cdot 8685$	27
11	0.9845	12	45	0.9427	17	79	0.8658	27
12	$0 \cdot 9834$	11	46	$0 \cdot 9409$	18	80	$0 \cdot 8631$	27
13	0.9823	11	47	0.9391	18	81	0.8603	28
14	$0 \cdot 9812$	11	48	0.9373	18	82	$0 \cdot 8575$	28
15	0.9802	10	49	$0 \cdot 9354$	19	83	08547	28
16	0.9791	- 11	50	0.9335	19	84	0.8518	29
17	0.9781	10	51	0.9315	20	85	0.8488	30
18	0.9771	10	52	0.9295	20	86	$0 \cdot 8458$	30
19	$0 \cdot 9761$	10	53	0.9275	20	87	$0 \cdot 8428$	30
20	0.9751	10	54	$0 \cdot 9254$	21	88	0.8397	31
21	0.9741	10	55	0.9234	20	89	0.8365	32
22	0.9731	10	56	0.9213	21	90	0.8332	33
23	0.9720	11	57	0.9192	21	91	0.8299	33
24	0.9710	10	58	0.9170	22	92	0.8265	34
25	0.9700	10	59	0.9148	22	93	$0 \cdot 8230$	35
26	0.9689	11	60	0.9126	22	94	0.8194	36
27	0.9679	10	61	0.9104	22	95	0.8157	36 37
28	$0 \cdot 9668$	11	62	0.9082	22	96	0.8118	39
29	0.9657	11	63	0.9059	23	97	0.8118 0.8077	39 41
30	0.9646	11	64	0.9036	23	98	0.8077 0.8034	41 43
31	0.9634	12	65	0.9013	23	98	0.8077 0.7988	43
32	0.9622	12	66		24	99 100	0.7988 0.7939	46 49
33	$0 \cdot 9609$	13	67	0.8965	24	100	$0 \cdot 7939$	49

In order, however, to employ this Table for aseertaining the strength of mixtures of alcohol and water of different densities (which is the practical use of such Tables), it is absolutely necessary that the determination of the density should be performed at an invariable temperature, - viz. $60^{\circ} \mathrm{F}$. The methods of determining the density will be hereafter described; but it is obvious that practically the experiment eannot be conveniently made at any fixed temperature, but must be performed at that of the atmosphere.
M. Gay-Lussae has constructed a most valuable Table, of which the following is an abstract, which is supplicd with his "Alcoomètre." (See Arconolonetry.) It enables one to aseertain, from the obscrved density at any given teniperature, the density at the normal temperature $15.5^{\circ} \mathrm{C}$. ($60^{\circ} \mathrm{F}$.), and hence the strength; or, vice versî, from the observed density at $60^{\circ} \mathrm{F}$. to find the density at any other temperature.

The first vertical column of this Table contains the temperatures, from 0° to $30^{\circ} \mathrm{C}$.; and the first horizontal line the indications of the alcoomètre. In the same Table he has most ingeniously inserted a correction of the volume of the spirits when the temperature differs from $15 \cdot 5^{\circ} \mathrm{C}$. $60^{\circ} \mathrm{F}$.). All the numbers printed in small characters, under each real strength, i.e. per-centage of absolute aleohol, indiente the volume which 1000 litres (the litre being $1 / 760773$ pints) of a spiritous liquor would have when measured at the temperature at whieh its apparent strength is given.

Vol. I.

Alcciometrical Table of real Strength, by M. Gay-Lussac.

Temp.	31 c	32 C	33 c	34 c	35 c	36c	37 c	38c	39c	400
$\begin{gathered} \text { Deg. } \\ 10 \end{gathered}$	$\begin{aligned} & 33.0 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{gathered} 3 t \\ 10!2 \\ \hline \end{gathered}$	$\begin{array}{r} 35 \\ \\ \hline 1003 \\ \hline \end{array}$	$\begin{gathered} 36 \\ 1003 \\ \hline \end{gathered}$	$\begin{gathered} 37 \\ 1003 \\ \hline \end{gathered}$	$\begin{gathered} 38 \\ 1003 \\ \hline \end{gathered}$	$\begin{gathered} 39 \\ 1003 \\ \hline \end{gathered}$	$\begin{aligned} & 40 \\ & 1003 \\ & \hline \end{aligned}$	$\begin{aligned} & 41 \\ & 1003 \end{aligned}$	$\begin{gathered} 42 \\ 1003 \\ \hline \end{gathered}$
11	$\begin{aligned} & 32 \cdot 6 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{array}{r} 33.6 \\ -1002 \\ \hline \end{array}$	$\begin{aligned} & 34 \cdot 6 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{array}{r} 35.6 \\ 1002 \\ \hline \end{array}$	$\begin{aligned} & 36.6 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{aligned} & 37 \cdot 6 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{array}{r} 38 \cdot 6 \\ 1002 \\ \hline \end{array}$	$\begin{array}{r} 39 \cdot 6 \\ 1002 \\ \hline \end{array}$	$\begin{aligned} & 40 \cdot 6 \\ & 10.03 \\ & \hline \end{aligned}$	$\begin{array}{r} 41 \cdot 6 \\ 1003 \\ \hline \end{array}$
12	$\begin{aligned} & 32 \cdot 2 \\ & 1001 \\ & \hline \end{aligned}$	$\begin{aligned} & 33 \cdot 2 \\ & 1001 \\ & \hline \end{aligned}$	$\begin{gathered} 34 \cdot 2 \\ 1002 \\ \hline \end{gathered}$	$\begin{aligned} & 35 \cdot 2 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{aligned} & 36.2 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 37 \cdot 2 \\ 1002 \\ \hline \end{gathered}$	$\begin{array}{r} 38 \cdot 2 \\ 1002 \\ \hline \end{array}$	$\begin{array}{r} 39 \cdot 2 \\ 1 n 02 \\ \hline \end{array}$	$\begin{aligned} & 40 \cdot 2 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{aligned} & 41.2 \\ & 1002 \\ & \hline \end{aligned}$
13	$\begin{aligned} & 31.8 \\ & 1001 \\ & \hline \end{aligned}$	$\begin{array}{r} 32.8 \\ 1001 \\ \hline \end{array}$	$\begin{aligned} & 33 \cdot 8 \\ & 1001 \\ & \hline \end{aligned}$	$\begin{array}{r} 34.8 \\ 1001 \\ \hline \end{array}$	$\begin{gathered} 35 \cdot 8 \\ 1001 \\ \hline \end{gathered}$	$\begin{array}{r} 36.8 \\ 1001 \\ \hline \end{array}$	$\begin{aligned} & 37 \cdot 8 \\ & 1001 \\ & \hline \end{aligned}$	$\begin{array}{r} 38 \cdot 8 \\ 1001 \\ \hline \end{array}$	$\begin{aligned} & 39 \cdot 8 \\ & 1001 \end{aligned}$	$\begin{aligned} & 40.8 \\ & 1001 \end{aligned}$
14	$\begin{aligned} & \hline 31 \cdot 4 \\ & 1001 \end{aligned}$	$\begin{gathered} 32 \cdot 4 \\ 1001 \\ \hline \end{gathered}$	$\begin{gathered} 33 \cdot 4 \\ 1(101) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 34 \cdot 4 \\ & 1001 \\ & \hline \end{aligned}$	$\begin{gathered} 35 \cdot 4 \\ 1001 \\ \hline \end{gathered}$	$\begin{array}{r} 36.4 \\ 10 n 1 \\ \hline \end{array}$	$\begin{aligned} & 37 \cdot 4 \\ & 1001 \\ & \hline \end{aligned}$	$\begin{aligned} & 88.4 \\ & 1001 \\ & \hline \end{aligned}$	$\begin{aligned} & 39 \cdot 4 \\ & 1001 \end{aligned}$	$40 \cdot 4$
15	$\begin{aligned} & \hline 31 \\ & 1000 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 32 \\ 1000 \\ \hline \end{gathered}$	$\begin{gathered} \hline 33 \\ 1000 \\ \hline \end{gathered}$	$\begin{gathered} 34 \\ 1000 \\ \hline \end{gathered}$	$\begin{gathered} 35 \\ 1000 \\ \hline \end{gathered}$	$\begin{gathered} 36 \\ 1000 \\ \hline \end{gathered}$	$\begin{aligned} & 37 \\ & 1000 \\ & \hline \end{aligned}$	$\begin{gathered} 38 \\ 1000 \\ \hline \end{gathered}$	$\begin{gathered} 39 \\ 1000 \\ \hline \end{gathered}$	$\begin{gathered} 40 \\ 1000 \\ \hline \end{gathered}$
16	$\begin{aligned} & 30 \cdot 6 \\ & 1000 \\ & \hline \end{aligned}$	$\begin{aligned} & 31 \cdot 6 \\ & 1000 \\ & \hline \end{aligned}$	$\begin{array}{r} 32 \cdot 5 \\ 999 \\ \hline \end{array}$	$\begin{gathered} 33.5 \\ \hline 949 \\ \hline \end{gathered}$	$\begin{gathered} 34 \cdot 5 \\ 999 \end{gathered}$	$\begin{gathered} 35 \cdot 5 \\ 999 \\ \hline \end{gathered}$	$\begin{gathered} 36 \cdot 5 \\ 999 \\ \hline \end{gathered}$	$\begin{gathered} \hline 37 \cdot 5 \\ 999 \\ \hline \end{gathered}$	$\begin{gathered} 38 \cdot 5 \\ 999 \end{gathered}$	$\begin{gathered} 39 \cdot 5 \\ 999 \end{gathered}$
17	$\begin{aligned} & \hline 30 \cdot 2 \\ & 999 \\ & \hline \end{aligned}$	$\begin{gathered} 31 \cdot 2 \\ \hline 999 \\ \hline \end{gathered}$	$\begin{gathered} \hline 32 \cdot 1 \\ 999 \\ \hline \end{gathered}$	$\begin{array}{r} 33 \cdot 1 \\ 999 \\ \hline \end{array}$	$\begin{gathered} \hline 34 \cdot 1 \\ 999 \\ \hline \end{gathered}$	$\begin{gathered} \hline 35 \cdot 1 \\ 999 \\ \hline \end{gathered}$	$\begin{gathered} 36 \cdot 1 \\ 999 \\ \hline \end{gathered}$	$\begin{gathered} 37 \cdot 1 \\ 999 \end{gathered}$	$\begin{gathered} 38 \cdot 1 \\ 999 \\ \hline \end{gathered}$	$\begin{gathered} 39 \cdot 1 \\ 999 \\ \hline \end{gathered}$
18	$\begin{gathered} 29.8 \\ 999 \\ \hline \end{gathered}$	$\begin{aligned} & 30 \cdot 8 \\ & \hline \end{aligned}$	$\begin{gathered} 31 \cdot 7 \\ 998 \\ \hline \end{gathered}$	$\begin{gathered} 32 \cdot 7 \\ 998 \\ \hline \end{gathered}$	$\begin{gathered} 33 \cdot 7 \\ 998 \\ \hline \end{gathered}$	$\begin{gathered} 34 \cdot 7 \\ 998 \end{gathered}$	$\begin{array}{r} 35 \cdot 7 \\ 998 \\ \hline \end{array}$	$\begin{array}{r} 36 \cdot 7 \\ 998 \\ \hline \end{array}$	$\begin{gathered} 37 \cdot 7 \\ 998 \\ \hline \end{gathered}$	$\begin{array}{r} 38 \cdot 7 \\ \\ \hline \end{array}$
19	$\begin{gathered} 29 \cdot 4 \\ 998 \end{gathered}$	$\begin{gathered} 30 \cdot 4 \\ 998 \\ \hline \end{gathered}$	$\begin{gathered} \hline 31 \cdot 3 \\ 998 \\ \hline \end{gathered}$	$\begin{gathered} \hline 32 \cdot 3 \\ 998 \\ \hline \end{gathered}$	$\begin{gathered} 33 \cdot 3 \\ 998 \\ \hline \end{gathered}$	$\begin{gathered} \hline 34 \cdot 3 \\ 998 \end{gathered}$	$\begin{gathered} 35 \cdot 3 \\ 098 \end{gathered}$	$\begin{gathered} 36.3 \\ 998 \\ \hline \end{gathered}$	$\begin{gathered} \hline 37 \cdot 3 \\ 997 \end{gathered}$	$\begin{gathered} 38 \cdot 3 \\ 997 \end{gathered}$
20	$\begin{aligned} & 29 \\ & 998 \\ & \hline \end{aligned}$	$\begin{array}{r} 30 \\ 998 \\ \hline \end{array}$	$\begin{gathered} 30 \cdot 9 \\ 997 \\ \hline \end{gathered}$	$\begin{gathered} 31.9 \\ \quad 997 \\ \hline \end{gathered}$	$\begin{array}{r} 32 \cdot 9 \\ 997 \\ \hline \end{array}$	$\begin{gathered} 33.9 \\ 997 \\ \hline \end{gathered}$	$\begin{array}{r} 34 \cdot 9 \\ 997 \\ \hline \end{array}$	$\begin{gathered} 35 \cdot 9 \\ 997 \\ \hline \end{gathered}$	$\begin{gathered} 36 \cdot 9 \\ 997 \\ \hline \end{gathered}$	$\begin{gathered} 37.9 \\ 997 \\ \hline \end{gathered}$
21	$\begin{gathered} 28.6 \\ 997 \\ \hline \end{gathered}$	$\begin{gathered} 29 \cdot 6 \\ 997 \\ \hline \end{gathered}$	$\begin{gathered} 30 \cdot 5 \\ 997 \\ \hline \end{gathered}$	$\begin{gathered} 31 \cdot 5 \\ 997 \\ \hline \end{gathered}$	$\begin{array}{r} 32.5 \\ \hline 997 \\ \hline \end{array}$	$\begin{array}{r} 33.5 \\ 997 \\ \hline \end{array}$	$\begin{aligned} & 34 \cdot 5 \\ & 997 \\ & \hline \end{aligned}$	$\begin{gathered} 35 \cdot 5 \\ 996 \\ \hline \end{gathered}$	$\begin{gathered} 36 \cdot 5 \\ 996 \\ \hline \end{gathered}$	$\begin{gathered} 37 \cdot 5 \\ 996 \\ \hline \end{gathered}$
22	$\begin{gathered} 28 \cdot 2 \\ 997 \\ \hline \end{gathered}$	$\begin{gathered} 29 \cdot 2 \\ 997 \\ \hline \end{gathered}$	$\begin{array}{r} 30 \cdot 1 \\ \hline 996 \\ \hline \end{array}$	$\begin{gathered} 31 \cdot 1 \\ 996 \\ \hline \end{gathered}$	$\begin{array}{r} 32 \cdot 1 \\ 996 \\ \hline \end{array}$	$\begin{array}{r} 33 \cdot 1 \\ 995 \\ \hline \end{array}$	$\begin{gathered} 34 \cdot 1 \\ 996 \\ \hline \end{gathered}$	$\begin{gathered} 35 \cdot 1 \\ 996 \\ \hline \end{gathered}$	$\begin{array}{r} 36 \cdot 1 \\ 996 \\ \hline \end{array}$	$\begin{array}{r} 37.1 \\ 996 \\ \hline \end{array}$
23	$\begin{gathered} 27 \cdot 8 \\ 996 \\ \hline \end{gathered}$	$\begin{array}{r} 28.8 \\ 996 \\ \hline \end{array}$	$\begin{array}{r} 29 \cdot 7 \\ 996 \\ \hline \end{array}$	$\begin{gathered} 30 \cdot 7 \\ 996 \\ \hline \end{gathered}$	$\begin{gathered} 31 \cdot 7 \\ 996 \\ \hline \end{gathered}$	$\begin{array}{r} 32 \cdot 7 \\ 996 \\ \hline \end{array}$	$\begin{array}{r} 33 \cdot 7 \\ 996 \\ \hline \end{array}$	$\begin{array}{r} 34 \cdot 7 \\ 995 \\ \hline \end{array}$	$\begin{gathered} 35 \cdot 7 \\ 995 \\ \hline \end{gathered}$	$\begin{gathered} 36 \cdot 7 \\ 995 \\ \hline \end{gathered}$
24	$\begin{gathered} 27 \cdot 4 \\ 996 \\ \hline \end{gathered}$	$\begin{gathered} 28.4 \\ 996 \\ \hline \end{gathered}$	$\begin{gathered} 29 \cdot 3 \\ 995 \\ \hline \end{gathered}$	$\begin{gathered} 30 \cdot 3 \\ 995 \\ \hline \end{gathered}$	$\begin{gathered} 313 \\ 495 \\ \hline \end{gathered}$	$\begin{gathered} 32 \cdot 3 \\ 995 \\ \hline \end{gathered}$	$\begin{gathered} 33.3 \\ 995 \\ \hline \end{gathered}$	$\begin{gathered} 34 \cdot 3 \\ 99.5 \\ \hline \end{gathered}$	$\begin{gathered} 35 \cdot 3 \\ 99.5 \\ \hline \end{gathered}$	$\begin{gathered} 36 \cdot 3 \\ 994 \\ \hline \end{gathered}$
25	$\begin{aligned} & 27 \\ & 995 \end{aligned}$	$\begin{aligned} & \hline 28 \\ & 995 \end{aligned}$	$\begin{gathered} 28 \cdot 9 \\ 995 \end{gathered}$	$\begin{gathered} 29 \cdot 9 \\ 995 \end{gathered}$	$\begin{gathered} 30 \cdot 9 \\ 995 \end{gathered}$	$\begin{gathered} 31 \cdot 9 \\ 994 \end{gathered}$	$\begin{gathered} 32 \cdot 9 \\ 994 \end{gathered}$	$\begin{gathered} 33 \cdot 9 \\ 994 \end{gathered}$	$\begin{gathered} 34 \cdot 9 \\ 994 \end{gathered}$	$\begin{gathered} 35 \cdot 9 \\ 994 \end{gathered}$
$\begin{gathered} \text { Temp. } \\ \mathrm{C} . \end{gathered}$	41 c	42c	43c	44c	45c	46 c	47c	48 C	49c	$50{ }^{\circ}$
$\begin{gathered} D c g . \\ 10 \end{gathered}$	$\begin{gathered} 43 \\ 1003 \\ \hline \end{gathered}$	$\begin{gathered} 44 \\ 1004 \\ \hline \end{gathered}$	$\begin{gathered} 45 \\ 1004 \\ \hline \end{gathered}$	$\begin{gathered} 46 \\ 1004 \\ \hline \end{gathered}$	$\begin{gathered} 46.9 \\ 1004 \\ \hline \end{gathered}$	$\begin{array}{r} 47.9 \\ 1 \quad 04 \\ \hline \end{array}$	$\begin{array}{r} 48 \cdot 9 \\ 1004 \\ \hline \end{array}$	$\begin{array}{r} 49 \cdot 9 \\ 1004 \\ \hline \end{array}$	$\begin{array}{r} 50 \cdot 9 \\ 1004 \\ \hline \end{array}$	$\begin{aligned} & 51.8 \\ & 1004 \\ & \hline \end{aligned}$
11	$\begin{gathered} 42 \cdot 6 \\ 1003 \\ \hline \end{gathered}$	$\begin{aligned} & 43 \cdot 6 \\ & 1003 \\ & \hline \end{aligned}$	$\begin{aligned} & 44 \cdot 6 \\ & 1003 \\ & \hline \end{aligned}$	$\begin{array}{r} 45 \cdot 6 \\ 1003 \\ \hline \end{array}$	$\begin{aligned} & 46 \cdot 6 \\ & 1003 \\ & \hline \end{aligned}$	$\begin{array}{r} 47 \cdot 6 \\ -1003 \\ \hline \end{array}$	$\begin{aligned} & 48.6 \\ & 1003 \\ & \hline \end{aligned}$	$\begin{array}{r} 49 \cdot 5 \\ 1003 \\ \hline \end{array}$	$\begin{aligned} & 50.5 \\ & 1003 \\ & \hline \end{aligned}$	$\begin{array}{r} 51 \cdot 5 \\ 1003 \\ \hline \end{array}$
12	$\begin{aligned} & 42 \cdot 2 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{aligned} & 43 \cdot 2 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{aligned} & 44 \cdot 2 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{aligned} & 45 \cdot 2 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{aligned} & 46 \cdot 2 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{array}{r} 47 \cdot 2 \\ 1002 \\ \hline \end{array}$	$\begin{aligned} & 48.2 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{gathered} 49 \cdot 2 \\ 1002 \\ \hline \end{gathered}$	$\begin{aligned} & 50.2 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 51 \cdot 1 \\ & 1002 \\ & \hline \end{aligned}$
13	$\begin{aligned} & 41 \cdot 8 \\ & 1001 \end{aligned}$	$\begin{aligned} & 42 \cdot 8 \\ & 1001 \end{aligned}$	$\begin{aligned} & \hline 43 \cdot 8 \\ & 1001 \\ & \hline \end{aligned}$	$\begin{aligned} & 44 \cdot 8 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{aligned} & 45 \cdot 8 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{aligned} & 46.8 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{array}{r} 47 \cdot 8 \\ 1002 \\ \hline \end{array}$	$\begin{array}{r} 48 \cdot 8 \\ 1002 \\ \hline \end{array}$	$\begin{aligned} & 49 \cdot 8 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{array}{r} 50.8 \\ 1002 \\ \hline \end{array}$
14	$\begin{gathered} 41.4 \\ 1001 \\ \hline \end{gathered}$	$\begin{aligned} & 42 \cdot 4 \\ & 1001 \\ & \hline \end{aligned}$	$\begin{aligned} & 43 \cdot 4 \\ & 1001 \\ & \hline \end{aligned}$	$\begin{aligned} & 44 \cdot 4 \\ & 1001 \\ & \hline \end{aligned}$	$\begin{array}{r} 45 \cdot 4 \\ 1001 \\ \hline \end{array}$	$\begin{aligned} & 46.4 \\ & 1000 \\ & \hline \end{aligned}$	$\begin{gathered} 47 \cdot 4 \\ 1001 \\ \hline \end{gathered}$	$\begin{array}{r} 48.4 \\ 1001 \\ \hline \end{array}$	$\begin{aligned} & 49 \cdot 4 \\ & 1001 \\ & \hline \end{aligned}$	$\begin{array}{r} 504 \\ -1000 \\ \hline \end{array}$
15	$\begin{gathered} 41 \\ 1007 \end{gathered}$	$\begin{gathered} 42 \\ 1000 \end{gathered}$	$\begin{gathered} \hline 43 \\ 1000 \\ \hline \end{gathered}$	$\begin{gathered} 44 \\ 1000 \end{gathered}$	$\begin{gathered} \hline 45 \\ 1000 \\ \hline \end{gathered}$	$\begin{gathered} 46 \\ 1000 \\ \hline \end{gathered}$	$\begin{gathered} 47 \\ 1000 \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ 1000 \\ \hline \end{gathered}$	$\begin{gathered} 49 \\ -\quad 1000 \\ \hline \end{gathered}$	$\begin{gathered} 50 \\ 1000 \\ \hline \end{gathered}$
16	$\begin{gathered} 406 \\ 999 \\ \hline \end{gathered}$	$\begin{aligned} & 41 \cdot 6 \\ & 999 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 42 \cdot 6 \\ & 999 \\ & \hline \end{aligned}$	$\begin{gathered} 43 \cdot 6 \\ 999 \\ \hline \end{gathered}$	$\begin{gathered} \hline 44 \cdot 6 \\ 999 \\ \hline \end{gathered}$	$\begin{gathered} 45 \cdot 6 \\ \hline 999 \\ \hline \end{gathered}$	$\begin{gathered} 46.6 \\ -999 \\ \hline \end{gathered}$	$\begin{gathered} 47 \cdot 6 \\ -999 \\ \hline \end{gathered}$	$\begin{aligned} & 48 \cdot 6 \\ & 999 \\ & \hline \end{aligned}$	$\begin{array}{r} 49 \cdot 6 \\ \hline 999 \\ \hline \end{array}$
17	$\begin{gathered} 40 \cdot 2 \\ 999 \\ \hline \end{gathered}$	$\begin{gathered} 41 \cdot 2 \\ 999 \\ \hline \end{gathered}$	$\begin{gathered} 42 \cdot 2 \\ 999 \\ \hline \end{gathered}$	$\begin{gathered} 43 \cdot 2 \\ 998 \\ \hline \end{gathered}$	$\begin{gathered} 44 \cdot 2 \\ 998 \\ \hline \end{gathered}$	$\begin{gathered} 45 \cdot 2 \\ 998 \\ \hline \end{gathered}$	$\begin{gathered} 46 \cdot 2 \\ 998 \\ \hline \end{gathered}$	$\begin{gathered} 47 \cdot 2 \\ 998 \\ \hline \end{gathered}$	$\begin{array}{r} 48 \cdot 2 \\ 998 \\ \hline \end{array}$	$\begin{array}{r} 49 \cdot 2 \\ 998 \\ \hline \end{array}$
18	$\begin{gathered} 39 \cdot 8 \\ 998 \end{gathered}$	$\begin{gathered} 48 \cdot 8 \\ 998 \\ \hline \end{gathered}$	$\begin{gathered} 41 \cdot 8 \\ 998 \\ \hline \end{gathered}$	$\begin{array}{r} 42 \cdot 8 \\ 998 \\ \hline \end{array}$	$\begin{gathered} 43 \cdot 8 \\ 998 \\ \hline \end{gathered}$	$\begin{gathered} 44 \cdot 9 \\ .999 \\ \hline \end{gathered}$	$\begin{array}{r} 45 \cdot 9 \\ \hline 998 \\ \hline \end{array}$	$\begin{array}{r} \hline 46.9 \\ 998 \\ \hline \end{array}$	$\begin{aligned} & 47 \cdot 9 \\ & 998 \\ & \hline \end{aligned}$	$\begin{array}{r} 48.9 \\ 998 \\ \hline \end{array}$
19	$\begin{array}{r} 39 \cdot 4 \\ 997^{\circ} \\ \hline \end{array}$	$\begin{aligned} & 40 \cdot 4 \\ & 997 \\ & \hline \end{aligned}$	$\begin{gathered} 41 \cdot 4 \\ 997 \\ \hline \end{gathered}$	$\begin{gathered} 42 \cdot 5 \\ 997 \\ \hline \end{gathered}$	$\begin{gathered} 43 \cdot 5 \\ \hline 997 \\ \hline \end{gathered}$	$\begin{aligned} & 44 \cdot 5 \\ & \hline 9!7 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 45 \cdot 5 \\ 9.97 \\ \hline \end{gathered}$	$\begin{aligned} & 46.5 \\ & 997 \\ & \hline \end{aligned}$	$\begin{aligned} & 47 \cdot 5 \\ & 997 \\ & \hline \end{aligned}$	$\begin{array}{r} 48 \cdot 5 \\ \hline 997 \\ \hline \end{array}$
20	$\begin{array}{r} 39 \\ 997 \\ \hline \end{array}$	$\begin{array}{r} 40 \\ 997 \\ \hline \end{array}$	$\begin{aligned} & 41 \\ & 997 \\ & \hline \end{aligned}$	$\begin{array}{r} 42 \cdot 1 \\ \hline 997 \\ \hline \end{array}$	$\begin{array}{r} 43 \cdot 1 \\ 996 \\ \hline \end{array}$	$\begin{aligned} & 44 \cdot 1 \\ & 996 \end{aligned}$	$\begin{gathered} 45 \cdot 1 \\ 995 \\ \hline \end{gathered}$	$\begin{gathered} 46 \cdot 1 \\ 996 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 47 \cdot 2 \\ & 996 \\ & \hline \end{aligned}$	$\begin{array}{r} 48^{2} 2 \\ 996 \\ \hline \end{array}$
21	$\begin{gathered} 38 \cdot 6 \\ 996 \end{gathered}$	$\begin{gathered} 39 \cdot 6 \\ 996 \end{gathered}$	$\begin{gathered} 40 \cdot 6 \\ 996 \end{gathered}$	$\begin{gathered} 41 \cdot 7 \\ 996 \end{gathered}$	$\begin{aligned} & 42 \cdot 7 \\ & 996 \end{aligned}$	$\begin{gathered} 43 \cdot 7 \\ 996 \end{gathered}$	$\begin{gathered} 44 \cdot 8 \\ 996 \end{gathered}$	$\begin{gathered} 45.8 \\ 996 \end{gathered}$	$\begin{aligned} & 46 \cdot 8 \\ & 995 \end{aligned}$	$\begin{gathered} 47.8 \\ 995 \end{gathered}$

Alcoümetrical Table of real Strength, by M. Gay-Lussac (continued).

Temp.	410	42c	43c	44 c	45 c	46 c	47c	48 c	49c	50c
$\begin{gathered} D_{c g} . \\ 22 . \end{gathered}$	$\begin{array}{r} 38 \cdot 2 \\ 996 \\ \hline \end{array}$	$\begin{aligned} & 39 \cdot 2 \\ & 995 \\ & \hline \end{aligned}$	$\begin{gathered} 40 \cdot 2 \\ 995 \\ \hline \end{gathered}$	$\begin{gathered} 41 \cdot 3 \\ 995 \\ \hline \end{gathered}$	$\begin{gathered} 42 \cdot 3 \\ 995 \\ \hline \end{gathered}$	$\begin{array}{r} 43.3 \\ \quad 995 \\ \hline \end{array}$	$\begin{array}{r} 44 \cdot 3 \\ 99.5 \\ \hline \end{array}$	$\begin{gathered} 45 \cdot 3 \\ 995 \\ \hline \end{gathered}$	$\begin{gathered} 46.4 \\ 995 \\ \hline \end{gathered}$	$\begin{gathered} 47 \cdot 4 \\ 99.5 \\ \hline \end{gathered}$
23	$\begin{gathered} 37 \cdot 8 \\ 995 \end{gathered}$	$\begin{gathered} 38 \cdot 8 \\ 995 \end{gathered}$	$\begin{gathered} 39 \cdot 8 \\ 995 \\ \hline \end{gathered}$	$\begin{aligned} & 40 \cdot 9 \\ & \hline 994 \\ & \hline \end{aligned}$	$\begin{gathered} 41 \cdot 9 \\ 994 \\ \hline \end{gathered}$	$\begin{gathered} 42 \cdot 9 \\ 994 \end{gathered}$	$\begin{gathered} 43 \cdot 9 \\ 994 \\ \hline \end{gathered}$	$\begin{gathered} 44 \cdot 9 \\ 994 \\ \hline \end{gathered}$	$\begin{gathered} 46 \\ 994 \\ \hline \end{gathered}$	$\begin{aligned} & 47 \\ & 994 \end{aligned}$
24	$\begin{aligned} & \hline 37 \cdot 4 \\ & 994 \\ & \hline \end{aligned}$	$\begin{array}{r} 38 \cdot 4 \\ 994 \\ \hline \end{array}$	$\begin{gathered} 39 \cdot 4 \\ 994 \\ \hline \end{gathered}$	$\begin{aligned} & 40 \cdot 5 \\ & 994 \\ & \hline \end{aligned}$	$\begin{aligned} & 41 \cdot 5 \\ & 994 \end{aligned}$	$\begin{gathered} 42 \cdot 5 \\ 994 \end{gathered}$	$\begin{gathered} 43 \cdot 6 \\ 994 \\ \hline \end{gathered}$	$\begin{gathered} 44 \cdot 6 \\ 994 \end{gathered}$	$\begin{gathered} 45 \cdot 6 \\ 993 \\ \hline \end{gathered}$	$\begin{aligned} & 46.6 \\ & 393 \\ & \hline \end{aligned}$
25	$\begin{aligned} & 37 \\ & 994 \end{aligned}$	$\begin{aligned} & 38 \\ & 994 \end{aligned}$	$\begin{gathered} 39 \\ 993 \end{gathered}$	$\begin{gathered} 40 \cdot 1 \\ 993 \end{gathered}$	$\begin{gathered} 42 \cdot 1 \\ 993 \end{gathered}$	$\begin{gathered} 42 \cdot 2 \\ 993 \end{gathered}$	$\begin{gathered} 43 \cdot 2 \\ 993 \end{gathered}$	$\begin{aligned} & 44 \cdot 2 \\ & 993 \end{aligned}$	$\begin{gathered} 45.2 \\ 993 \end{gathered}$	$\begin{gathered} 46 \cdot 3 \\ 993 \end{gathered}$
Temp. C.	51 c	52c	53 c	54c	55 c	56 c	57c	58c	59c	60c
$\begin{gathered} \text { Deg. } \\ 10 \end{gathered}$	$\begin{aligned} & 52 \cdot 9 \\ & 1004 \\ & \hline \end{aligned}$	$\begin{aligned} & 53.8 \\ & 1004 \\ & \hline \end{aligned}$	$\begin{aligned} & 54 \cdot 8 \\ & 1004 \\ & \hline \end{aligned}$	$\begin{aligned} & 55 \cdot 8 \\ & 1004 \\ & \hline \end{aligned}$	$\begin{aligned} & 56.8 \\ & 1004 \\ & \hline \end{aligned}$	$\begin{array}{r} 57 \cdot 8 \\ 1004 \\ \hline \end{array}$	$\begin{array}{r} 58 \cdot 8 \\ 1004 \\ \hline \end{array}$	$\begin{array}{r} 59 \cdot 7 \\ 1004 \\ \hline \end{array}$	$\begin{aligned} & 60 \cdot 7 \\ & 1004 \\ & \hline \end{aligned}$	$\begin{aligned} & 61 \cdot 7 \\ & 1004 \\ & \hline \end{aligned}$
11	$\begin{aligned} & 52 \cdot 5 \\ & 1003 \end{aligned}$	$\begin{aligned} & 53 \cdot 5 \\ & 1003 \\ & \hline \end{aligned}$	$\begin{aligned} & 54 \cdot 4 \\ & 1003 \\ & \hline \end{aligned}$	$\begin{gathered} 55 \cdot 4 \\ 1003 \end{gathered}$	$\begin{aligned} & 56.4 \\ & 1003 \end{aligned}$	$\begin{aligned} & 57.4 \\ & 1003 \end{aligned}$	$\begin{aligned} & 58.4 \\ & 1003 \end{aligned}$	$\begin{aligned} & 59 \cdot 4 \\ & 1003 \end{aligned}$	$\begin{aligned} & 60 \cdot 4 \\ & 1003 \\ & \hline \end{aligned}$	$\begin{aligned} & 61 \cdot 4 \\ & 1003 \\ & \hline \end{aligned}$
12	$\begin{aligned} & 52 \cdot 1 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{aligned} & 53 \cdot 1 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{aligned} & 54 \cdot 1 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 55 \\ 1002 \\ \hline \end{gathered}$	$\begin{gathered} \hline 56 \\ 1002 \\ \hline \end{gathered}$	$\begin{gathered} \hline 57 \\ 1002 \\ \hline \end{gathered}$	$\begin{gathered} \hline 58 \\ 1002 \\ \hline \end{gathered}$	$\begin{gathered} \hline 59 \\ 1002 \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ 1002 \\ \hline \end{gathered}$	$\begin{gathered} \hline 61 \\ 1002 \\ \hline \end{gathered}$
13	$\begin{aligned} & 51 \cdot 8 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 52 \cdot 7 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{aligned} & 53 \cdot 7 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{aligned} & 54 \cdot 7 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{aligned} & 55 \cdot 7 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{aligned} & 56 \cdot 7 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{aligned} & 57 \cdot 7 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 58 \cdot 7 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{aligned} & 59 \cdot 7 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 60 \cdot 7 \\ & 1002 \\ & \hline \end{aligned}$
14	$\begin{array}{r} 51 \cdot 4 \\ 1001 \\ \hline \end{array}$	$\begin{aligned} & 52 \cdot 3 \\ & 1001 \end{aligned}$	$\begin{aligned} & 53 \cdot 3 \\ & 1001 \end{aligned}$	$\begin{aligned} & 54 \cdot 3 \\ & 1001 \end{aligned}$	$\begin{array}{r} 55 \cdot 3 \\ -1001 \\ \hline \end{array}$	$\begin{aligned} & 56.3 \\ & 1001 \end{aligned}$	$\begin{aligned} & 57 \cdot 3 \\ & 1001 \end{aligned}$	$\begin{aligned} & \hline 58 \cdot 3 \\ & 1001 \end{aligned}$	$\begin{aligned} & 59 \cdot 3 \\ & 1001 \\ & \hline \end{aligned}$	$60 \cdot 3$
15	$\begin{gathered} \hline 51 \\ 1000 \\ \hline \end{gathered}$	$\begin{gathered} 52 \\ 1000 \\ \hline \end{gathered}$	$\begin{gathered} \hline 53 \\ 1000 \\ \hline \end{gathered}$	$\begin{gathered} \hline 54 \\ 1000 \end{gathered}$	$\begin{gathered} \hline 55 \\ 1000 \\ \hline \end{gathered}$	$\begin{gathered} \hline 56 \\ 1000 \\ \hline \end{gathered}$	$\begin{array}{r} 57 \\ 1000 \\ \hline \end{array}$	$\begin{gathered} \hline 58 \\ 1000 \\ \hline \end{gathered}$	$\begin{gathered} \hline 59 \\ 1000 \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ 1000 \end{gathered}$
16	$\begin{gathered} 50 \cdot 6 \\ 999 \end{gathered}$	$\begin{gathered} 51 \cdot 6 \\ 999 \end{gathered}$	$\begin{gathered} 52 \cdot 6 \\ 999 \end{gathered}$	$\begin{gathered} \hline 53 \cdot 6 \\ 999 \end{gathered}$	$\begin{aligned} & \hline 54 \cdot 6 \\ & 999 \end{aligned}$	$\begin{gathered} 55 \cdot 6 \\ 999 \\ \hline \end{gathered}$	$\begin{gathered} 56 \cdot 6 \\ 999 \\ \hline \end{gathered}$	$\begin{aligned} & 57 \cdot 6 \\ & 999 \\ & \hline \end{aligned}$	$\begin{aligned} & 58.6 \\ & 929 \\ & \hline \end{aligned}$	$\begin{gathered} 59 \cdot 6 \\ 999 \\ \hline \end{gathered}$
17	$\begin{array}{r} 50 \cdot 3 \\ 998 \\ \hline \end{array}$	$\begin{gathered} 51 \cdot 3 \\ 998 \\ \hline \end{gathered}$	$\begin{array}{r} 52 \cdot 3 \\ 9998 \\ \hline \end{array}$	$\begin{gathered} 53 \cdot 3 \\ 9.8 \\ \hline \end{gathered}$	$\begin{gathered} 54.3 \\ 998 \\ \hline \end{gathered}$	$\begin{gathered} 55 \cdot 3 \\ 998 \\ \hline \end{gathered}$	$\begin{gathered} \hline 56 \cdot 3 \\ 998 \\ \hline \end{gathered}$	$\begin{gathered} 57 \cdot 3 \\ 998 \end{gathered}$	$\begin{gathered} \hline 58 \cdot 3 \\ 998 \end{gathered}$	$\begin{gathered} 59 \cdot 3 \\ 998 \end{gathered}$
18	$\begin{array}{r} 49 \cdot 9 \\ 998 \\ \hline \end{array}$	$\begin{gathered} 50 \cdot 9 \\ 998 \\ \hline \end{gathered}$	$\begin{array}{r} 51 \cdot 9 \\ 998 \\ \hline \end{array}$	$\begin{gathered} 52 \cdot 9 \\ 998 \\ \hline \end{gathered}$	$\begin{gathered} 53 \cdot 9 \\ 998 \\ \hline \end{gathered}$	$\begin{gathered} 54 \cdot 9 \\ 998 \\ \hline \end{gathered}$	$\begin{gathered} 55 \cdot 9 \\ 998 \\ \hline \end{gathered}$	$\begin{gathered} 56 \cdot 9 \\ 997 \\ \hline \end{gathered}$	$\begin{aligned} & 57 \cdot 9 \\ & 997 \\ & \hline \end{aligned}$	$\begin{array}{r} 58.9 \\ 997 \\ \hline \end{array}$
19	$\begin{aligned} & 49.5 \\ & 997 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \cdot 6 \\ & 997 \\ & \hline \end{aligned}$	$\begin{aligned} & 51 \cdot 6 \\ & 997 \\ & \hline \end{aligned}$	$\begin{aligned} & 52 \cdot 6 \\ & 997 \end{aligned}$	$\begin{gathered} 53.6 \\ 997 \\ \hline \end{gathered}$	$\begin{gathered} 54 \cdot 6 \\ 997 \end{gathered}$	$\begin{gathered} 55 \cdot 6 \\ 997 \\ \hline \end{gathered}$	$\begin{gathered} 56.6 \\ 997 \\ \hline \end{gathered}$	$\begin{aligned} & 57 \cdot 6 \\ & 997 \end{aligned}$	$58 \cdot 6$
20	$\begin{array}{r} 49 \cdot 2 \\ 996 \\ \hline \end{array}$	$\begin{gathered} 50 \cdot 2 \\ 996 \\ \hline \end{gathered}$	$\begin{array}{r} 51 \cdot 2 \\ 996 \\ \hline \end{array}$	$\begin{aligned} & 52 \cdot 2 \\ & 996 \\ & \hline \end{aligned}$	$\begin{gathered} 53 \cdot 2 \\ 996 \\ \hline \end{gathered}$	$\begin{gathered} 54 \cdot 2 \\ 996 \\ \hline \end{gathered}$	$\begin{gathered} 55 \cdot 2 \\ 996 \\ \hline \end{gathered}$	$\begin{gathered} 56 \cdot 2 \\ 996 \\ \hline \end{gathered}$	$\begin{array}{r} 57.2 \\ 996 \\ \hline \end{array}$	$\begin{aligned} & 58 \cdot 2 \\ & \hline 996 \\ & \hline \end{aligned}$
21	$\begin{array}{r} 48.8 \\ \quad 995 \\ \hline \end{array}$	$\begin{array}{r} 49 \cdot 8 \\ 995 \\ \hline \end{array}$	$\begin{gathered} \hline 50 \cdot 8 \\ 995 \\ \hline \end{gathered}$	$\begin{array}{r} 51 \cdot 8 \\ 99 . \\ \hline \end{array}$	$\begin{array}{r} 52 \cdot 9 \\ 995 \\ \hline \end{array}$	$\begin{gathered} 53 \cdot 9 \\ 995 \\ \hline \end{gathered}$	$\begin{gathered} 54 \cdot 9 \\ 995 \\ \hline \end{gathered}$	$\begin{gathered} 55 \cdot 9 \\ 995 \\ \hline \end{gathered}$	$\begin{gathered} 56.9 \\ 99.5 \\ \hline \end{gathered}$	$\begin{gathered} 57 \cdot 9 \\ 995 \end{gathered}$
22	$\begin{gathered} 48.4 \\ 995 \\ \hline \end{gathered}$	$\begin{gathered} 49 \cdot 4 \\ 995 \\ \hline \end{gathered}$	$\begin{gathered} 50 \cdot 4 \\ 995 \\ \hline \end{gathered}$	$\begin{gathered} 51 \cdot 4 \\ 994 \\ \hline \end{gathered}$	$\begin{aligned} & 52 \cdot 5 \\ & 994 \\ & \hline \end{aligned}$	$\begin{gathered} 53.5 \\ 994 \\ \hline \end{gathered}$	$\begin{array}{r} 54.5 \\ 994 \\ \hline \end{array}$	$\begin{gathered} 55 \cdot 5 \\ 994 \\ \hline \end{gathered}$	$\begin{array}{r} 56.5 \\ 994 \\ \hline \end{array}$	$\begin{gathered} 57 \cdot 5 \\ 994 \\ \hline \end{gathered}$
23	$\begin{array}{r} 48 \\ -994 \\ \hline \end{array}$	$\begin{array}{r} 49 \cdot 1 \\ 994 \\ \hline \end{array}$	$\begin{gathered} 50 \cdot 1 \\ 994 \\ \hline \end{gathered}$	$\begin{gathered} 51 \cdot 1 \\ \hline 9.94 \\ \hline \end{gathered}$	$\begin{array}{r} 52 \cdot 1 \\ 994 \\ \hline \end{array}$	$\begin{gathered} 53 \cdot 1 \\ 994 \\ \hline \end{gathered}$	$\begin{gathered} 54 \cdot 1 \\ \hline 994 \\ \hline \end{gathered}$	$\begin{gathered} 55 \cdot 1 \\ 993 \\ \hline \end{gathered}$	$\begin{array}{r} 56 \cdot 1 \\ 993 \\ \hline \end{array}$	$\begin{gathered} 57 \cdot 1 \\ 993 \\ \hline \end{gathered}$
24	$\begin{gathered} 47 \cdot 6 \\ 99.3 \\ \hline \end{gathered}$	$\begin{array}{r} 48 \cdot 7 \\ \hline 993 \\ \hline \end{array}$	$\begin{aligned} & 49 \cdot 7 \\ & 993 \\ & \hline \end{aligned}$	$\begin{gathered} 50 \cdot 7 \\ 993 \\ \hline \end{gathered}$	$\begin{array}{r} 51.8 \\ 993 \\ \hline \end{array}$	$\begin{gathered} 52.8 \\ 993 \\ \hline \end{gathered}$	$\begin{gathered} 53.8 \\ 993 \\ \hline \end{gathered}$	$\begin{gathered} 54.8 \\ 993 \\ \hline \end{gathered}$	$\begin{array}{r} 55 \cdot 8 \\ \hline 993 \\ \hline \end{array}$	$\begin{gathered} 56.8 \\ 992 \\ \hline \end{gathered}$
25	$\begin{gathered} 47 \cdot 3 \\ 993 \end{gathered}$	$\begin{gathered} 48 \cdot 3 \\ 993 \end{gathered}$	$\begin{gathered} 49 \cdot 3 \\ 993 \end{gathered}$	$\begin{gathered} 50 \cdot 3 \\ 992 \end{gathered}$	$\begin{gathered} 51 \cdot 4 \\ 992 \end{gathered}$	$\begin{gathered} 52 \cdot 4 \\ 992 \end{gathered}$	$\begin{gathered} 53 \cdot 4 \\ 992 \end{gathered}$	$\begin{gathered} 54 \cdot 4 \\ 992 \end{gathered}$	$\begin{gathered} 55 \cdot 5 \\ 992 \end{gathered}$	$\begin{gathered} 56 \cdot 6 \\ 992 \end{gathered}$
$\begin{gathered} \text { Temp. } \\ \text { C. } \end{gathered}$	61 c	62c	63 c	64 c	65 c	66 c	67 c	68 c	69c	70c
$\begin{aligned} & \text { Deg. } \\ & 10 \end{aligned}$	$\begin{array}{r} 62 \cdot 7 \\ 1004 \\ \hline \end{array}$	$\begin{array}{r} 63 \cdot 7 \\ 1004 \\ \hline \end{array}$	$\begin{array}{r} 6 \pm 7 \\ 1004 \\ \hline \end{array}$	$\begin{array}{r} 65 \cdot 7 \\ 1004 \\ \hline \end{array}$	$\begin{array}{r} 66.7 \\ 1004 \\ \hline \end{array}$	$\begin{array}{r} 67.6 \\ 1004 \\ \hline \end{array}$	$\begin{array}{r} 68.6 \\ 1004 \\ \hline \end{array}$	$\begin{array}{r} 69 \cdot 6 \\ 1004 \\ \hline \end{array}$	$\begin{array}{r} 70 \cdot 6 \\ 1004 \\ \hline \end{array}$	$\begin{array}{r} 71 \cdot 6 \\ 1004 \\ \hline \end{array}$
11	$\begin{array}{r} \hline 62 \cdot 4 \\ 1003 \\ \hline \end{array}$	$\begin{aligned} & \hline 63 \cdot 4 \\ & 1003 \\ & \hline \end{aligned}$	$\begin{array}{r} 64 \cdot 4 \\ 1003 \\ \hline \end{array}$	$\begin{array}{r} 65 \cdot 4 \\ 1003 \\ \hline \end{array}$	$\begin{aligned} & 66.4 \\ & 1003 \end{aligned}$	$\begin{array}{r} 67 \cdot 3 \\ 1003 \\ \hline \end{array}$	$\begin{array}{r} 68 \cdot 3 \\ 1003 \\ \hline \end{array}$	$\begin{aligned} & 69 \cdot 3 \\ & 1004 \\ & \hline \end{aligned}$	$\begin{array}{r} 70 \cdot 3 \\ 1004 \\ \hline \end{array}$	$\begin{array}{r} 71 \cdot 3 \\ 1004 \\ \hline \end{array}$
12	$\begin{gathered} 62 \\ 1002 \\ \hline \end{gathered}$	$\begin{gathered} 63 \\ 1002 \\ \hline \end{gathered}$	$\begin{gathered} 64 \\ 1002 \\ \hline \end{gathered}$	$\begin{gathered} \hline 65 \\ 1002 \\ \hline \end{gathered}$	$\begin{gathered} 66 \\ 1002 \\ \hline \end{gathered}$	$\begin{gathered} \hline 67 \\ 1002 \\ \hline \end{gathered}$	$\begin{gathered} 68 \\ 1003 \\ \hline \end{gathered}$	$\begin{gathered} 69 \\ 1003 \\ \hline \end{gathered}$	$\begin{gathered} 70 \\ 1003 \\ \hline \end{gathered}$	$\begin{gathered} 71 \\ 1003 \\ \hline \end{gathered}$
13	$\begin{array}{r} 61 \cdot 7 \\ 1002 \\ \hline \end{array}$	$\begin{array}{r} 62.7 \\ 1002 \\ \hline \end{array}$	$\begin{array}{r} 63 \cdot 7 \\ 1002 \\ \hline \end{array}$	$\begin{aligned} & 64 \cdot 7 \\ & 10002 \\ & \hline \end{aligned}$	$\begin{array}{r} 65 \cdot 7 \\ 1002 \\ \hline \end{array}$	$\begin{aligned} & 66 \cdot 7 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{array}{r} 67.7 \\ 1002 \\ \hline \end{array}$	$\begin{gathered} 68 \cdot 7 \\ 1002 \\ \hline \end{gathered}$	$\begin{gathered} 69 \cdot 6 \\ 1002 \\ \hline \end{gathered}$	$\begin{aligned} & 70 \cdot 6 \\ & 1002 \end{aligned}$
14	$\begin{aligned} & 61 \cdot 3 \\ & 1001 \\ & \hline \end{aligned}$	$\begin{array}{r} 62 \cdot 3 \\ 1001 \\ \hline \end{array}$	$\begin{array}{r} 63 \cdot 3 \\ 1001 \\ \hline \end{array}$	$\begin{array}{r} 64 \cdot 3 \\ 1001 \\ \hline \end{array}$	$\begin{array}{r} 65 \cdot 3 \\ 1001 \\ \hline \end{array}$	$\begin{aligned} & \hline 66 \cdot 3 \\ & 1001 \\ & \hline \end{aligned}$	$\begin{array}{r} 67 \cdot 3 \\ 1001 \\ \hline \end{array}$	$\begin{aligned} & 68 \cdot 3 \\ & 1001 \end{aligned}$	$\begin{aligned} & 69 \cdot 3 \\ & 1001 \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \cdot 3 \\ & 1001 \\ & \hline \end{aligned}$
15	$\begin{gathered} 61 \\ 1000 \end{gathered}$	$\begin{gathered} 62 \\ 1000 \end{gathered}$	$\begin{gathered} 63 \\ 1000 \end{gathered}$	$\begin{gathered} \hline 64 \\ 1000 \end{gathered}$	$\begin{gathered} 65 \\ 1000 \end{gathered}$	$\begin{gathered} \hline 66 \\ 1000 \end{gathered}$	$\begin{gathered} 67 \\ 1000 \end{gathered}$	$\begin{aligned} & 68 \\ & 1000 \end{aligned}$	$\begin{gathered} 69 \\ 1000 \end{gathered}$	$\begin{gathered} 70 \\ 1000 \end{gathered}$

Alcoümetrical Table of real Strength, by M. Gay-Lussac (continued).

Temp. C.	610	62c	63 c	6.1 c	65 c	66 c	67 c	G30	69 c	70c
$\begin{gathered} \text { Deg. } \\ 16 \end{gathered}$	$\begin{array}{r} 60.6 \\ 999 \\ \hline \end{array}$	$\begin{array}{r} 61 \cdot 7 \\ 999 \\ \hline \end{array}$	$\begin{array}{r} 62 \cdot 7 \\ 999 \\ \hline \end{array}$	$\begin{array}{r} 63.7 \\ 999 \\ \hline \end{array}$	$\begin{array}{r} 64 \cdot 7 \\ 999 \\ \hline \end{array}$	$\begin{gathered} 65 \cdot 7 \\ 999 \\ \hline \end{gathered}$	$\begin{gathered} 66 \cdot 7 \\ 999 \\ \hline \end{gathered}$	$\begin{gathered} 67 \cdot 7 \\ 999 \\ \hline \end{gathered}$	$\begin{gathered} 68 \cdot 7 \\ 999 \\ \hline \end{gathered}$	$\begin{gathered} 69 \cdot 7 \\ 999 \\ \hline \end{gathered}$
17	$\begin{gathered} 60 \cdot 3 \\ 999 \\ \hline \end{gathered}$	$\begin{array}{r} 61 \cdot 3 \\ 998 \\ \hline \end{array}$	$\begin{gathered} \hline 62 \cdot 3 \\ 998 \\ \hline \end{gathered}$	$\begin{gathered} 63 \cdot 3 \\ 998 \\ \hline \end{gathered}$	$\begin{gathered} 64 \cdot 3 \\ 998 \\ \hline \end{gathered}$	$\begin{gathered} 65 \cdot 3 \\ 998 \\ \hline \end{gathered}$	$\begin{array}{r} 66.3 \\ 998 \\ \hline \end{array}$	$\begin{array}{r} 67 \cdot 3 \\ \hline \end{array}$	$\begin{gathered} 68 \cdot 3 \\ 4.98 \\ \hline \end{gathered}$	$\begin{gathered} 69 \cdot 3 \\ 998 \end{gathered}$
18	$\begin{array}{r} 59.9 \\ 997 \\ \hline \end{array}$	$\begin{array}{r} 61 \\ 997 \\ \hline \end{array}$	$\begin{array}{r} 62 \\ \hline 997 \\ \hline \end{array}$	$\begin{array}{r} 63 \\ 997 \\ \hline \end{array}$	$\begin{array}{r} 64 \\ 997 \\ \hline \end{array}$	$\begin{array}{r} 65 \\ 997 \\ \hline \end{array}$	$\begin{gathered} 66 \\ 997 \\ \hline \end{gathered}$	$\begin{array}{r} 67 \\ 997 \\ \hline \end{array}$	$\begin{aligned} & 68 \\ & 997 \\ & \hline \end{aligned}$	$\begin{array}{r} 69 \\ 5: 97 \\ \hline \end{array}$
19	$\begin{gathered} 59 \cdot 6 \\ 997 \\ \hline \end{gathered}$	$\begin{array}{r} 60 \cdot 6 \\ 997 \\ \hline \end{array}$	$\begin{gathered} 61 \cdot 6 \\ 997 \\ \hline \end{gathered}$	$\begin{aligned} & 62 \cdot 7 \\ & 997 \\ & \hline \end{aligned}$	$\begin{gathered} 63.7 \\ 997 \end{gathered}$	$\begin{aligned} & 64 \cdot 7 \\ & 897 \\ & \hline \end{aligned}$	$\begin{gathered} 65 \cdot 7 \\ 997 \\ \hline \end{gathered}$	$\begin{gathered} 66 \cdot 7 \\ 997 \end{gathered}$	$\begin{gathered} 67 \cdot 7 \\ 996 \end{gathered}$	$68 \cdot 7$
20	$\begin{gathered} 59 \cdot 2 \\ 996 \\ \hline \end{gathered}$	$\begin{gathered} \hline 60 \cdot 3 \\ 996 \\ \hline \end{gathered}$	$\begin{gathered} \hline 61 \cdot 3 \\ 996 \\ \hline \end{gathered}$	$\begin{gathered} 62 \cdot 3 \\ 996 \\ \hline \end{gathered}$	$\begin{gathered} 63 \cdot 3 \\ 996 \\ \hline \end{gathered}$	$\begin{gathered} 64 \cdot 3 \\ 996 \\ \hline \end{gathered}$	$\begin{gathered} 65 \cdot 4 \\ 996 \\ \hline \end{gathered}$	$\begin{gathered} 66 \cdot 4 \\ 996 \\ \hline \end{gathered}$	$\begin{gathered} 67 \cdot 4 \\ 996 \\ \hline \end{gathered}$	$\begin{array}{r} 68 \cdot 4 \\ 99 \mathrm{f} \\ \hline \end{array}$
21	$\begin{gathered} 58 \cdot 9 \\ 995 \\ \hline \end{gathered}$	$\begin{array}{r} 59 \cdot 9 \\ 995 \\ \hline \end{array}$	$\begin{array}{r} 61 \\ 995 \\ \hline \end{array}$	$\begin{array}{r} 62 \\ 995 \\ \hline \end{array}$	$\begin{array}{r} 63 \\ 995 \\ \hline \end{array}$	$\begin{array}{r} 64 \\ 995 \\ \hline \end{array}$	$\begin{array}{r} 65 \\ 995 \\ \hline \end{array}$	$\begin{array}{r} 66 \\ 995 \\ \hline \end{array}$	$\begin{array}{r} 67 \\ 995 \\ \hline \end{array}$	$\begin{gathered} 68 \cdot 1 \\ 995 \\ \hline \end{gathered}$
22	$\begin{gathered} 58 \cdot 5 \\ 994 \\ \hline \end{gathered}$	$\begin{gathered} 59 \cdot 5 \\ 994 \\ \hline \end{gathered}$	$\begin{gathered} 60 \cdot 6 \\ 9.44 \\ \hline \end{gathered}$	$\begin{array}{r} \hline 61.6 \\ \hline 994 \\ \hline \end{array}$	$\begin{array}{r} 62 \cdot 7 \\ 9 \wedge 4 \\ \hline \end{array}$	$\begin{gathered} 63 \cdot 7 \\ 994 \\ \hline \end{gathered}$	$\begin{array}{r} 64 \cdot 7 \\ 994 \\ \hline \end{array}$	$\begin{gathered} 65 \cdot 7 \\ 994 \\ \hline \end{gathered}$	$\begin{gathered} 66 \cdot 7 \\ 994 \\ \hline \end{gathered}$	$\begin{gathered} 67.8 \\ 998 \\ \hline \end{gathered}$
23	$\begin{gathered} 58 \cdot 1 \\ 993 \\ \hline \end{gathered}$	$\begin{gathered} 59 \cdot 2 \\ 993 \end{gathered}$	$\begin{gathered} 60 \cdot 2 \\ 993 \\ \hline \end{gathered}$	$\begin{gathered} \hline 61 \cdot 3 \\ 993 \\ \hline \end{gathered}$	$\begin{gathered} 62 \cdot 3 \\ 993 \\ \hline \end{gathered}$	$\begin{gathered} 63 \cdot 3 \\ 993 \end{gathered}$	$\begin{gathered} 64 \cdot 3 \\ 993 \end{gathered}$	$\begin{array}{r} 65 \cdot 4 \\ \hline \\ \hline \end{array}$	$\begin{gathered} 66 \cdot 4 \\ 993 \\ \hline \end{gathered}$	$\begin{aligned} & 67 \cdot 4 \\ & 9993 \end{aligned}$
24	$\begin{gathered} 57.8 \\ 992 \\ \hline \end{gathered}$	$\begin{gathered} 58 \cdot 9 \\ 992 \\ \hline \end{gathered}$	$\begin{gathered} 59 \cdot 9 \\ 992 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 61 \\ & 992 \\ & \hline \end{aligned}$	$\begin{array}{r} 62 \\ 992 \\ \hline \end{array}$	$\begin{array}{r} 63 \\ 992 \\ \hline \end{array}$	$\begin{array}{r} 64 \\ 992 \\ \hline \end{array}$	$\begin{array}{r} 65 \\ 992 \\ \hline \end{array}$	$\begin{array}{r} 66 \\ 992 \\ \hline \end{array}$	$\begin{gathered} 67 \cdot 1 \\ 942 \\ \hline \end{gathered}$
25	$\begin{gathered} 57 \cdot 5 \\ 992 \end{gathered}$	$\begin{aligned} & 58.5 \\ & 992 \end{aligned}$	$\begin{gathered} 59 \cdot 5 \\ 992 \end{gathered}$	$\begin{gathered} 60 \cdot 6 \\ 991 \end{gathered}$	$\begin{gathered} 61 \cdot 6 \\ 991 \end{gathered}$	$\begin{gathered} 62 \cdot 6 \\ 991 \end{gathered}$	$\begin{gathered} 63 \cdot 7 \\ 991 \end{gathered}$	$\begin{aligned} & \hline 64 \cdot 7 \\ & 991 \end{aligned}$	$\begin{gathered} 65 \cdot 7 \\ 991 \end{gathered}$	$\begin{gathered} 66 \cdot 7 \\ 991 \end{gathered}$
Temp. C.	710	72c	73c	74 c	75c	76 c	77c	78 c	79c	80c
$\begin{gathered} \text { Deg. } \\ 10 \end{gathered}$	$\begin{array}{r} 72.6 \\ 1004 \\ \hline \end{array}$	$\begin{array}{r} 73.5 \\ 1004 \\ \hline \end{array}$	$\begin{array}{r} 74.5 \\ 1005 \\ \hline \end{array}$	$\begin{array}{r} 75.5 \\ 100.5 \\ \hline \end{array}$	$\begin{aligned} & 76.5 \\ & 1005 \\ & \hline \end{aligned}$	$\begin{aligned} & 77 \cdot 5 \\ & 1005 \\ & \hline \end{aligned}$	$\begin{array}{r} 78.5 \\ 1005 \\ \hline \end{array}$	$\begin{array}{r} 79.5 \\ 1005 \\ \hline \end{array}$	$\begin{aligned} & 80 \cdot 5 \\ & 1005 \\ & \hline \end{aligned}$	$\begin{aligned} & 81 \cdot 5 \\ & 10 \cap 5 \\ & \hline \end{aligned}$
11	$\begin{array}{r} 72 \cdot 3 \\ 1004 \\ \hline \end{array}$	$\begin{aligned} & 73 \cdot 2 \\ & 1004 \end{aligned}$	$\begin{array}{r} 74 \cdot 2 \\ 1004 \\ \hline \end{array}$	$\begin{aligned} & 75 \cdot 2 \\ & 1004 \end{aligned}$	$\begin{aligned} & 76.2 \\ & 1004 \\ & \hline \end{aligned}$	$\begin{aligned} & 77.2 \\ & 1004 \\ & \hline \end{aligned}$	$\begin{aligned} & 78.2 \\ & 1004 \\ & \hline \end{aligned}$	$\begin{gathered} 79 \cdot 2 \\ 1004 \\ \hline \end{gathered}$	$\begin{aligned} & 80 \cdot 2 \\ & 1004 \end{aligned}$	$\begin{aligned} & 81.2 \\ & 1004 \end{aligned}$
12	$\begin{gathered} 72 \\ 1003 \end{gathered}$	$\begin{aligned} & 72.9 \\ & 1003 \\ & \hline \end{aligned}$	$\begin{aligned} & 73.9 \\ & 1003 \\ & \hline \end{aligned}$	$\begin{aligned} & 74 \cdot 9 \\ & 1003 \end{aligned}$	$\begin{aligned} & 75 \cdot 9 \\ & 1003 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 76.9 \\ & 1003 \\ & \hline \end{aligned}$	$\begin{aligned} & 77.9 \\ & 1003 \\ & \hline \end{aligned}$	$\begin{aligned} & 78 \cdot 9 \\ & 1003 \end{aligned}$	$\begin{aligned} & 79 \cdot 9 \\ & 1003 \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \cdot 9 \\ & 1003 \\ & \hline \end{aligned}$
13	$\begin{array}{r} 71.6 \\ 1002 \\ \hline \end{array}$	$\begin{aligned} & \hline 72.6 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{array}{r} 73.6 \\ 1002 \\ \hline \end{array}$	$\begin{gathered} 74 \cdot 6 \\ 1002 \end{gathered}$	$\begin{array}{r} \hline 75 \cdot 6 \\ 1002 \\ \hline \end{array}$	$\begin{aligned} & 76.6 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{array}{r} 77 \cdot 6 \\ 1002 \\ \hline \end{array}$	$\begin{array}{r} 78 \cdot 6 \\ 1002 \\ \hline \end{array}$	$\begin{aligned} & 79 \cdot 6 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \cdot 6 \\ & 1002 \\ & \hline \end{aligned}$
14	$\begin{gathered} 71 \cdot 3 \\ 1001 \end{gathered}$	$\begin{aligned} & 72 \cdot 3 \\ & 1001 \end{aligned}$	$\begin{gathered} 73 \cdot 3 \\ 1001 \end{gathered}$	$\begin{gathered} 74 \cdot 3 \\ 1001 \end{gathered}$	$\begin{aligned} & 75 \cdot 3 \\ & 1001 \end{aligned}$	$\begin{aligned} & 76.3 \\ & 1001 \\ & \hline \end{aligned}$	$\begin{aligned} & 77.3 \\ & 1001 \\ & \hline \end{aligned}$	$\begin{gathered} 78 \cdot 3 \\ 1001 \\ \hline \end{gathered}$	$\begin{aligned} & 79 \cdot 3 \\ & 1001 \\ & \hline \end{aligned}$	$\begin{aligned} & 80.3 \\ & 1001 \\ & \hline \end{aligned}$
15	$\begin{gathered} 71 \\ 1000 \\ \hline \end{gathered}$	$\begin{gathered} 72 \\ 1000 \end{gathered}$	$\begin{gathered} \hline 73 \\ 1000 \\ \hline \end{gathered}$	$\begin{gathered} \hline 74 \\ 1000 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 75 \\ & 1000 \\ & \hline \end{aligned}$	$\begin{gathered} 76 \\ -1000 \\ \hline \end{gathered}$	$\begin{gathered} 77 \\ 1000 \\ \hline \end{gathered}$	$\begin{gathered} 78 \\ 1000 \\ \hline \end{gathered}$	$\begin{gathered} 79 \\ 1000 \\ \hline \end{gathered}$	$\begin{gathered} \hline 80 \\ 1000 \\ \hline \end{gathered}$
16	$\begin{gathered} 70 \cdot 7 \\ 999 \end{gathered}$	$\begin{gathered} \hline 71 \cdot 7 \\ 999 \\ \hline \end{gathered}$	$\begin{gathered} 72 \cdot 7 \\ 999 \end{gathered}$	$\begin{gathered} 73 \cdot 7 \\ 999 \end{gathered}$	$\begin{gathered} 74 \cdot 7 \\ 999 \\ \hline \end{gathered}$	$\begin{aligned} & 75 \cdot 7 \\ & 999 \\ & \hline \end{aligned}$	$\begin{array}{r} 76.7 \\ 999 \\ \hline \end{array}$	$\begin{gathered} 77 \cdot 7 \\ 999 \\ \hline \end{gathered}$	$\begin{gathered} 78 \cdot 7 \\ 999 \\ \hline \end{gathered}$	$\begin{gathered} 79 \cdot 7 \\ 999 \\ \hline \end{gathered}$
17	$\begin{gathered} 70 \cdot 3 \\ 998 \\ \hline \end{gathered}$	$\begin{gathered} 71 \cdot 3 \\ 998 \\ \hline \end{gathered}$	$\begin{gathered} 72 \cdot 3 \\ 999 \\ \hline \end{gathered}$	$\begin{gathered} 73 \cdot 3 \\ 998 \end{gathered}$	$\begin{gathered} 74 \cdot 3 \\ 998 \end{gathered}$	$\begin{gathered} \hline 75 \cdot 4 \\ 998 \\ \hline \end{gathered}$	$\begin{gathered} 76.4 \\ 999 \\ \hline \end{gathered}$	$\begin{gathered} 77 \cdot 4 \\ 998 \\ \hline \end{gathered}$	$\begin{gathered} 78 \cdot 4 \\ \hline 998 \\ \hline \end{gathered}$	$\begin{gathered} 79 \cdot 4 \\ 998 \\ \hline \end{gathered}$
18	$\begin{array}{r} 70 \\ 997 \\ \hline \end{array}$	$\begin{aligned} & \hline 71 \\ & 997 \end{aligned}$	$\begin{array}{r} 72 \\ 997 \\ \hline \end{array}$	$\begin{array}{r} 73 \\ 997 \\ \hline \end{array}$	$\begin{gathered} 74 \\ 997 \\ \hline \end{gathered}$	$\begin{gathered} 75 \cdot 1 \\ 997 \\ \hline \end{gathered}$	$\begin{gathered} 76 \cdot 1 \\ -997 \\ \hline \end{gathered}$	$\begin{gathered} \hline 77 \cdot 1 \\ 997 \\ \hline \end{gathered}$	$\begin{aligned} & 78 \cdot 1 \\ & 997 \\ & \hline \end{aligned}$	$\begin{gathered} 79 \cdot 1 \\ 997 \\ \hline \end{gathered}$
19	$\begin{gathered} 69 \cdot 7 \\ 996 \\ \hline \end{gathered}$	$\begin{gathered} 70 \cdot 7 \\ 996 \\ \hline \end{gathered}$	$\begin{array}{r} 71 \cdot 7 \\ 996 \\ \hline \end{array}$	$\begin{array}{r} 72 \cdot 7 \\ \hline 996 \\ \hline \end{array}$	$\begin{array}{r} 73.7 \\ \hline 996 \\ \hline \end{array}$	$\begin{gathered} 74 \cdot 7 \\ 996 \\ \hline \end{gathered}$	$\begin{array}{r} 75 \cdot 8 \\ -996 \\ \hline \end{array}$	$\begin{gathered} 76 \cdot 8 \\ 996 \\ \hline \end{gathered}$	$\begin{gathered} 77 \cdot 8 \\ 996 \\ \hline \end{gathered}$	$\begin{gathered} 78 \cdot 8 \\ 996 \\ \hline \end{gathered}$
20	$\begin{gathered} 69 \cdot 4 \\ 996 \\ \hline \end{gathered}$	$\begin{gathered} 70 \cdot 4 \\ 996 \end{gathered}$	$\begin{gathered} 71 \cdot 4 \\ 995 \\ \hline \end{gathered}$	$\begin{gathered} 72 \cdot 4 \\ 995 \\ \hline \end{gathered}$	$\begin{gathered} 73.4 \\ \hline 995 \\ \hline \end{gathered}$	$\begin{gathered} 744 \\ 995 \\ \hline \end{gathered}$	$\begin{array}{r} 75.5 \\ 995 \\ \hline \end{array}$	$\begin{gathered} 76.5 \\ 995 \\ \hline \end{gathered}$	$\begin{gathered} 77 \cdot 5 \\ 995 \\ \hline \end{gathered}$	$\begin{gathered} 78 \cdot 5 \\ 995 \\ \hline \end{gathered}$
21	$\begin{gathered} 69 \cdot 1 \\ 995 \\ \hline \end{gathered}$	$\begin{gathered} 70 \cdot 1 \\ 995 \\ \hline \end{gathered}$	$\begin{gathered} 71 \cdot 1 \\ 995 \\ \hline \end{gathered}$	$\begin{gathered} \hline 72 \cdot 1 \\ 994 \\ \hline \end{gathered}$	$\begin{array}{r} 73 \cdot 1 \\ 994 \\ \hline \end{array}$	$\begin{gathered} 74 \cdot 1 \\ 994 \\ \hline \end{gathered}$	$\begin{gathered} 75 \cdot 2 \\ -994 \\ \hline \end{gathered}$	$\begin{gathered} 76.2 \\ 994 \\ \hline \end{gathered}$	$\begin{gathered} 77 \cdot 2 \\ 994 \\ \hline \end{gathered}$	$\begin{array}{r} 78 \cdot 2 \\ 994 \\ \hline \end{array}$
22	$\begin{gathered} 68.8 \\ 994 \\ \hline \end{gathered}$	$\begin{gathered} 69.8 \\ 994 \\ \hline \end{gathered}$	$\begin{gathered} 70 \cdot 8 \\ 994 \\ \hline \end{gathered}$	$\begin{gathered} 71 \cdot 8 \\ 994 \\ \hline \end{gathered}$	$\begin{gathered} 72 \cdot 8 \\ 993 \\ \hline \end{gathered}$	$\begin{gathered} 73 \cdot 8 \\ 99!3 \\ \hline \end{gathered}$	$\begin{gathered} 74 \cdot 8 \\ 993 \\ \hline \end{gathered}$	$\begin{gathered} 75 \cdot 9 \\ 993 \\ \hline \end{gathered}$	$\begin{gathered} 76 \cdot 9 \\ 993 \\ \hline \end{gathered}$	$\begin{gathered} 77 \cdot 9 \\ 993 \\ \hline \end{gathered}$
23	$68 \cdot 4$ 993	$\begin{gathered} 69 \cdot 4 \\ 993 \\ \hline \end{gathered}$	$\begin{gathered} 70.5 \\ 993 \\ \hline \end{gathered}$	$\begin{gathered} 71 \cdot 5 \\ 993 \\ \hline \end{gathered}$	$\begin{gathered} 72.5 \\ \hline 992 \\ \hline \end{gathered}$	$\begin{gathered} 73.5 \\ 9.92 \\ \hline \end{gathered}$	$\begin{gathered} 745 \\ 992 \\ \hline \end{gathered}$	$\begin{gathered} 75 \cdot 5 \\ 992 \end{gathered}$	$\begin{gathered} 76 \cdot 6 \\ 992 \\ \hline \end{gathered}$	$\begin{gathered} 776 \\ 992 \\ \hline \end{gathered}$
24	$\begin{gathered} 68 \cdot 1 \\ 992 \\ \hline \end{gathered}$	$\begin{array}{r} 69 \cdot 1 \\ \hline 992 \\ \hline \end{array}$	$\begin{array}{r} 70.1 \\ \hline 992 \\ \hline \end{array}$	$\begin{array}{r} 71 \cdot 2 \\ 992 \\ \hline \end{array}$	$\begin{array}{r} 72 \cdot 2 \\ 992 \\ \hline \end{array}$	$\begin{gathered} \hline 73 \cdot 2 \\ 992 \\ \hline \end{gathered}$	$\begin{gathered} 74 \cdot 2 \\ 992 \end{gathered}$	$\begin{gathered} 75 \cdot 2 \\ 991 \\ \hline \end{gathered}$	$\begin{gathered} 76 \cdot 3 \\ \times 991 \\ \hline \end{gathered}$	$\begin{gathered} 773 \\ 991 \\ \hline \end{gathered}$
25	$\begin{gathered} 67 \cdot 8 \\ 991 \end{gathered}$	$\begin{gathered} 68 \cdot 8 \\ 9.91 \end{gathered}$	$\begin{gathered} 69 \cdot 8 \\ 991 \end{gathered}$	$\begin{gathered} 70 \cdot 8 \\ 991 \end{gathered}$	$\begin{gathered} 71 \cdot 8 \\ 991 \end{gathered}$	$\begin{gathered} 72 \cdot 8 \\ 991 \end{gathered}$	$\begin{gathered} 73 \cdot 9 \\ !91 \end{gathered}$	$\begin{gathered} 74 \cdot 9 \\ 991 \end{gathered}$	$\begin{aligned} & 76 \\ & 991 \end{aligned}$	$\begin{aligned} & 75 \\ & 9.91 \end{aligned}$

Alcoömetrical Table of real Strength, by M. Gay-Lussac (continued).

Temp.	81c	82c	83c	84c	85c	86c	$87{ }^{\circ}$	88 c	89 c	90:
$\begin{gathered} \text { Deg. } \\ 10 \end{gathered}$	$\begin{array}{r} 82.4 \\ 1005 \\ \hline \end{array}$	$\begin{array}{r} 83.4 \\ 1005 \\ \hline \end{array}$	$\begin{aligned} & 84 \cdot 4 \\ & 1005 \\ & \hline \end{aligned}$	$\begin{array}{r} 85.4 \\ 1005 \\ \hline \end{array}$	$\begin{array}{r} 86.4 \\ 100.5 \\ \hline \end{array}$	$\begin{aligned} & 87 \cdot 4 \\ & 1005 \\ & \hline \end{aligned}$	$\begin{array}{r} 88.3 \\ 1005 \\ \hline \end{array}$	$\begin{array}{r} 89 \cdot 3 \\ 1005 \\ \hline \end{array}$	$\begin{array}{r} 90.2 \\ 1005 \\ \hline \end{array}$	$\begin{aligned} & 91 \cdot 2 \\ & 100 \vdots \end{aligned}$
11	$\begin{aligned} & 82 \cdot 2 \\ & 1004 \end{aligned}$	$\begin{array}{r} 83 \cdot 1 \\ 1004 \\ \hline \end{array}$	$84 \cdot 1$	$\begin{aligned} & 85 \cdot 1 \\ & 1004 \end{aligned}$	$\begin{gathered} 86 \cdot 1 \\ 1004 \\ \hline \end{gathered}$	$\begin{aligned} & 87 \cdot 1 \\ & 1004 \\ & \hline \end{aligned}$	$\begin{gathered} 88 \\ 1004 \\ \hline \end{gathered}$	$\begin{gathered} \hline 89 \\ 1004 \\ \hline \end{gathered}$	$\begin{aligned} & 90 \\ & 1004 \\ & \hline \end{aligned}$	$\begin{gathered} 91 \\ 1004 \\ \hline \end{gathered}$
12	$\begin{aligned} & 81 \cdot 9 \\ & 1003 \end{aligned}$	$\begin{aligned} & 82 \cdot 9 \\ & 1003 \\ & \hline \end{aligned}$	$\begin{aligned} & 83 \cdot 9 \\ & 1003 \\ & \hline \end{aligned}$	$\begin{aligned} & 84 \cdot 8 \\ & 1003 \end{aligned}$	$\begin{aligned} & 85 \cdot 8 \\ & 1003 \end{aligned}$	$\begin{aligned} & 86.8 \\ & 1003 \end{aligned}$	$\begin{aligned} & 87.8 \\ & 1003 \\ & \hline \end{aligned}$	$\begin{array}{r} 88 \cdot 7 \\ 1003 \\ \hline \end{array}$	$\begin{array}{r} 89 \cdot 7 \\ 1003 \\ \hline \end{array}$	$\begin{aligned} & 90 \cdot 7 \\ & 100: ; \end{aligned}$
13	$\begin{aligned} & 81 \cdot 6 \\ & 1002 \end{aligned}$	$\begin{aligned} & 82 \cdot 6 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{aligned} & 83.6 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{aligned} & 846 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{aligned} & 85.5 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{aligned} & 86.5 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 87 \cdot 5 \\ 1002 \\ \hline \end{gathered}$	$\begin{aligned} & 88 \cdot 5 \\ & 1002 \end{aligned}$	$\begin{aligned} & 89 \cdot 5 \\ & 1002 \\ & \hline \end{aligned}$	$\begin{aligned} & 90 \cdot 5 \\ & 1002 \\ & \hline \end{aligned}$
14	$\begin{aligned} & 81 \cdot 3 \\ & 1001 \end{aligned}$	$\begin{aligned} & 82 \cdot 3 \\ & 1001 \end{aligned}$	$\begin{aligned} & \hline 83 \cdot 3 \\ & 1001 \end{aligned}$	$\begin{gathered} \hline 84 \cdot 3 \\ 1001 \end{gathered}$	$\begin{aligned} & 85 \cdot 3 \\ & 1401 \end{aligned}$	$\begin{aligned} & 86 \cdot 3 \\ & 1001 \end{aligned}$	$\begin{aligned} & \hline 87 \cdot 3 \\ & 1001 \end{aligned}$	$\begin{aligned} & \hline 88 \cdot 2 \\ & 1001 \end{aligned}$	$\begin{aligned} & 89^{\circ} 2 \\ & 1001 \end{aligned}$	$\begin{aligned} & 90 \cdot 2 \\ & 1001 \\ & \hline \end{aligned}$
15	$\begin{gathered} \hline 81 \\ 1000 \\ \hline \end{gathered}$	$\begin{gathered} 82 \\ 1000 \\ \hline \end{gathered}$	$\begin{gathered} \hline 83 \\ 1000 \\ \hline \end{gathered}$	$\begin{aligned} & 84 \\ & 1000 \end{aligned}$	$\begin{gathered} 85 \\ 1000 \\ \hline \end{gathered}$	$\begin{gathered} 86 \\ 1000 \\ \hline \end{gathered}$	$\begin{gathered} 87 \\ 1000 \\ \hline \end{gathered}$	$\begin{gathered} \hline 88 \\ 1000 \\ \hline \end{gathered}$	$\begin{gathered} 89 \\ 1000 \\ \hline \end{gathered}$	$\begin{gathered} 90 \\ 1000 \\ \hline \end{gathered}$
16	$\begin{array}{r} 80 \cdot 7 \\ 999 \\ \hline \end{array}$	$\begin{array}{r} 81 \cdot 7 \\ 999 \\ \hline \end{array}$	$\begin{gathered} \hline 82 \cdot 7 \\ 999 \end{gathered}$	$\begin{array}{r} 83 \cdot 7 \\ 999 \\ \hline \end{array}$	$\begin{gathered} 84 \cdot 7 \\ 999 \end{gathered}$	$\begin{gathered} 85 \cdot 7 \\ 999 \end{gathered}$	$\begin{array}{r} 86 \cdot 7 \\ -999 \\ \hline \end{array}$	$\begin{gathered} 87 \cdot 7 \\ 999 \end{gathered}$	$\begin{gathered} 88 \cdot 7 \\ 999 \\ \hline \end{gathered}$	$\begin{gathered} 89 \cdot 7 \\ 999 \\ \hline \end{gathered}$
17	$\begin{gathered} 80 \cdot 4 \\ 998 \\ \hline \end{gathered}$	$\begin{gathered} \hline 81 \cdot 4 \\ 998 \\ \hline \end{gathered}$	$\begin{gathered} 82 \cdot 4 \\ 998 \end{gathered}$	$\begin{gathered} 83 \cdot 4 \\ 098 \end{gathered}$	$\begin{gathered} 84 \cdot 4 \\ 099 \end{gathered}$	$\begin{gathered} 85 \cdot 4 \\ 998 \end{gathered}$	$\begin{gathered} 86 \cdot 4 \\ 998 \end{gathered}$	$\begin{gathered} 874 \\ 998 \\ \hline \end{gathered}$	$\begin{gathered} 88 \cdot 4 \\ 998 \end{gathered}$	$\begin{gathered} 89 \cdot 5 \\ 998 \\ \hline \end{gathered}$
18	$\begin{array}{r} 80 \cdot 1 \\ 9.7 \\ \hline \end{array}$	$\begin{gathered} \hline 81 \cdot 1 \\ 997 \\ \hline \end{gathered}$	$\begin{gathered} 82 \cdot 1 \\ \hline 997 \\ \hline \end{gathered}$	$\begin{array}{r} \hline 83 \cdot 1 \\ 997 \\ \hline \end{array}$	$\begin{gathered} \hline 84 \cdot 1 \\ 997 \\ \hline \end{gathered}$	$\begin{gathered} 85 \cdot 2 \\ 997 \\ \hline \end{gathered}$	$\begin{gathered} 86 \cdot 2 \\ 997 \\ \hline \end{gathered}$	$\begin{gathered} 87 \cdot 2 \\ 997 \\ \hline \end{gathered}$	$\begin{gathered} 88 \cdot 2 \\ 997 \\ \hline \end{gathered}$	$\begin{gathered} \hline 89 \cdot 2 \\ 9.97 \\ \hline \end{gathered}$
19	$\begin{array}{r} 79 \cdot 8 \\ 996 \\ \hline \end{array}$	$\begin{gathered} 80 \cdot 8 \\ 996 \\ \hline \end{gathered}$	$\begin{gathered} 81 \cdot 9 \\ 996 \\ \hline \end{gathered}$	$\begin{gathered} \hline 82 \cdot 9 \\ 996 \\ \hline \end{gathered}$	$\begin{array}{r} 83 \cdot 9 \\ -996 \\ \hline \end{array}$	$\begin{gathered} \hline 849 \\ 996 \\ \hline \end{gathered}$	$\begin{gathered} 85 \cdot 9 \\ 99 f \\ \hline \end{gathered}$	$\begin{gathered} 86 \cdot 9 \\ 896 \\ \hline \end{gathered}$	$\begin{gathered} 87.9 \\ 996 \\ \hline \end{gathered}$	$\begin{gathered} \hline 88 \cdot 9 \\ 996 \\ \hline \end{gathered}$
20	$\begin{gathered} 79.5 \\ 095 \end{gathered}$	$\begin{gathered} 80 \cdot 5 \\ 995 \end{gathered}$	$\begin{aligned} & 81 \cdot 6 \\ & 495 \end{aligned}$	$\begin{gathered} \hline 82 \cdot 6 \\ 905 \end{gathered}$	$\begin{gathered} 83.6 \\ 99.5 \end{gathered}$	$\begin{gathered} 84 \cdot 6 \\ 095 \\ \hline \end{gathered}$	$\begin{gathered} 856 \\ 9,95 \\ \hline \end{gathered}$	$\begin{gathered} 86.6 \\ 995 \\ \hline \end{gathered}$	$\begin{array}{r} 87 \cdot 7 \\ 995 \\ \hline \end{array}$	$\begin{gathered} 88.7 \\ 995 \end{gathered}$
21	$\begin{gathered} 79 \cdot 2 \\ 994 \end{gathered}$	$\begin{gathered} 80 \cdot 2 \\ 994 \end{gathered}$	$\begin{aligned} & \hline 81 \cdot 3 \\ & 994 \end{aligned}$	$\begin{gathered} 82 \cdot 3 \\ 994 \end{gathered}$	$\begin{gathered} 83 \cdot 3 \\ 994 \\ \hline \end{gathered}$	$\begin{gathered} 84 \cdot 3 \\ 994 \end{gathered}$	$\begin{gathered} \hline 85 \cdot 3 \\ 994 \\ \hline \end{gathered}$	$\begin{gathered} 86.4 \\ 9994 \\ \hline \end{gathered}$	$\begin{gathered} 87 \cdot 4 \\ \hline 994 \\ \hline \end{gathered}$	$\begin{gathered} 88.4 \\ 994 \\ \hline \end{gathered}$
22	$\begin{gathered} 78 \cdot 9 \\ 993 \end{gathered}$	$\begin{gathered} 79 \cdot 9 \\ 993 \\ \hline \end{gathered}$	$\begin{aligned} & 81 \\ & 993 \\ & \hline \end{aligned}$	$\begin{aligned} & 82 \\ & 993 \end{aligned}$	$\begin{aligned} & \hline 83 \\ & 993 \\ & \hline \end{aligned}$	$\begin{aligned} & 84 \\ & 093 \end{aligned}$	$\begin{array}{r} 85 \\ 893 \\ \hline \end{array}$	$\begin{gathered} 86 \cdot 1 \\ \hline 993 \\ \hline \end{gathered}$	$\begin{gathered} 87 \cdot 1 \\ 993 \\ \hline \end{gathered}$	$\begin{aligned} & 88 \cdot 2 \\ & 993 \\ & \hline \end{aligned}$
23	$\begin{array}{r} 78.6 \\ 992 \\ \hline \end{array}$	$\begin{gathered} 79.6 \\ 892 \\ \hline \end{gathered}$	$\begin{gathered} 80 \cdot 7 \\ 9.2 \\ \hline \end{gathered}$	$\begin{gathered} 81 \cdot 7 \\ 992 \\ \hline \end{gathered}$	$\begin{gathered} 82 \cdot 7 \\ \hline 992 \\ \hline \end{gathered}$	$\begin{gathered} 83.8 \\ 9.92 \\ \hline \end{gathered}$	$\begin{gathered} \hline 84 \cdot 8 \\ 992 \\ \hline \end{gathered}$	$\begin{gathered} 85 \cdot 8 \\ 992 \end{gathered}$	$\begin{gathered} \hline 86.8 \\ 992 \\ \hline \end{gathered}$	$\begin{gathered} 87 \cdot 9 \\ 992 \\ \hline \end{gathered}$
24	$\begin{gathered} 78.3 \\ 991 \\ \hline \end{gathered}$	$\begin{gathered} 79 \cdot 3 \\ 991 \\ \hline \end{gathered}$	$\begin{gathered} 80 \cdot 4 \\ 991 \\ \hline \end{gathered}$	$\begin{gathered} 81 \cdot 4 \\ 991 \\ \hline \end{gathered}$	$\begin{gathered} 82 \cdot 4 \\ 991 \\ \hline \end{gathered}$	$\begin{gathered} 83.5 \\ 991 \\ \hline \end{gathered}$	$\begin{gathered} 84 \cdot 5 \\ 991 \end{gathered}$	$\begin{gathered} 85 \cdot 5 \\ 991 \\ \hline \end{gathered}$	$\begin{gathered} 86.5 \\ 991 \end{gathered}$	$\begin{gathered} 87 \cdot 6 \\ 991 \end{gathered}$
25	$\begin{aligned} & \hline 78 \\ & 991 \end{aligned}$	$\begin{aligned} & 79 \\ & 991 \end{aligned}$	$\begin{gathered} 80 \cdot 1 \\ 990 \end{gathered}$	$\begin{gathered} 81 \cdot 1 \\ 990 \end{gathered}$	$\begin{gathered} 82 \cdot 1 \\ 990 \end{gathered}$	$\begin{gathered} 83 \cdot 2 \\ 990 \end{gathered}$	$\begin{gathered} 84 \cdot 2 \\ 990 \end{gathered}$	$\begin{gathered} 85 \cdot 2 \\ 990 \end{gathered}$	$\begin{gathered} 86 \cdot 3 \\ 990 \end{gathered}$	$\begin{aligned} & 87 \cdot 4 \\ & 990 \end{aligned}$

The boiling point of mixtures of alcohol and water likewise differs with the strength of such mixtures.

According to Gay-Lussac, absolute alcohol boils at $78.4^{\circ} \mathrm{C} .\left(173^{\circ} \mathrm{F}\right.$.) under a pressure of 760 millimetres (the millimetre being 0.03937 English inches). When mixed with water, of course its boiling point rises in proportion to the quantity of water present, as is the case in general with mixtures of two fluids of greater and less volatility. A mixture of alcohol and water, however, presents this anomaly, according to Socmmering: when the mixture coutains less than six per cent. of alcohol, those portions which first pass off are saturated with water, and the alcoholie solution in the retort becomes richer, till absolute alcohol passes over; but when the mixture contains more than six per cent. of water the boiling point rises, and the quantity of alcohol in the distillate steadily diminishes as the distillation proceeds.

According to Gröning's lesearehes, the following temperatures of the alcoholic vapours correspond to the accompauying contents of alcohol in per-centage of volume which are disengaged in the boiling of the spirituous liquid.

Temperature.	Alcoholic con- tent of the vapour.	Alcoholic con- tent of the boll- ing liquid.	Temperature.	Alcoholic con- tent of the vapour.	Alcoholic con- tent of the boll- ing liquid.
Fahr. $170 \cdot 0$	93	92	Fahr. $189 \cdot 8$	71	20
$171 \cdot 8$	92	90	$192 \cdot 0$	68	18
172	91	85	164	66	15
$172 \cdot 8$	$90 \frac{1}{2}$	80	$196 \cdot 4$	61	12
174	90	70	$198 \cdot 6$	55	10
$174 \cdot 6$	89	70	201	50	7
176	87	65	203	42	6
$178 \cdot 3$	85	50	$205 \cdot 4$	36	5
180.8	82	40	$207 \cdot 7$	28	3
183	80	35	210	13	2
185	78	30	212	0	1
$187 \cdot 4$	76	25		0	

E 3

Gröning undertook this investigation in order to employ the thermometer as an alcoholometer in the distillation of spirits; for which purpose he thrust the bulb of the thermometer through a cork inserted into a tube fixed in the capital of the still. The state of the barometer ought also to be considered in making comparative experiments of this kind. Since, by this method, the alcoholic content may he compared with the temperature of the vapour that passes over at any time, so, also, the contents of the whole distillation may be found approximately ; and the method serves as a convenient means of making continual observations on the progress of the distillation.

From the mean of a great many experiments, Dr. Ure drew up the following Table, which shows the boiling point of alcohol of various specific gravities:-

Boiling Point.	Specific Gravity.	Boiling Point.	Specific Gravity.
178.5 F .	0.9200	185.6 F .	0.9665
$179 \cdot 75$ "	0.9321	189.0 "	$0 \cdot 9729$
$180 \cdot 4$ "	$0 \cdot 9420$	191.8 "	0.9786
$182.01 "$	0.9516	196.4 "	$0 \cdot 9850$
$183 \cdot 40$ "	$0 \cdot 960$	202.0 "	0.992

Density of the Vapour. - Onc volume of alcohol yields 488.3 volumes of vapour at $212^{\circ} \mathrm{F}$. The specific gravity of the vapour, taking air as unity, was found by Gay-Lussac to be $1 \cdot 6133$. [Its vapour-density, referred to hydrogen as unity, is 13•3605?]

Spirituous vapour passed through an ignited tube of glass or porcelain is converted into carbonic oxide, water, hydrogen, carburetted hydrogen, olefiant gas, naphthaline, empyreumatic oil, and carbon; according to the degree of heat and nature of the tube, these products vary. Auhydrous alcohol is a non-conductor of electricity, but is decomposed by a powerful voltaic battery. Alcohol burns in the air with a blue flame into carbonic acid and water; the water being heavier than the spirit, because 46 parts of alcohol contain 6 of hydrogen, which form 54 of water. In oxygen the combustion is accompanied with great heat, and this flame, directed through a small tube, powerfully ignites bodies exposed to it.

Platinum in a finely divided state has the property of determining the combination of alcohol with the oxygen of the air in a remarkable manner. A ball of spongy platinum, placed slightly above the wick of a lamp fed by spirit and communicating with the wick by a platinum wire, when once heated, keeps at a red heat, gradually burning the spirit. This has been applied in the construction of the socalled "philosophical pastilles;" eau-de-cologne or other perfumed spirit being thus made to diffuse itself in a room.

Mr. Gill has also practically applied this in the construction of an alcohol lamp without flame.

A coil of platinum wire, of about the one-hundredth part of an inch in thickness, is coiled partly round the cotton wick of a spirit lamp, and partly above it, and the lamp lighted to heat the wire to redness; on the flame being extinguished, the alcohol vapour keeps the wire red hot for any length of time, so as to be in constant readiness to ignite a match, for example. This lamp affords sufficient light to show the hour by a watch in the night, with a very small consumption of spirit.

This property of condensing oxygen, and thus causing the union of it with combustible bodies, is not confined to platinum, but is possessed, though in a less degree, by other porous bodies. If we moisten sand in a capsule with absolute alcohol, and cover it with previously heated nickel powder, protoxide of nickel, cobalt powder, protoxide of cobalt, protoxide of uranium, or oxide of tin (these six bodics bcing procured by ignition of their oxalates in a crucible), or finely powdered peroxide of manganese, combustion takes place, and continues so long as the spirituous vapour lasts.

Solvent Power.-Onc of the properties of alcohol most valuable in the arts is its solvent power.

It dissolves gases to a very considerable extent, which gases, if they do not enter into combinations with the alcohol, or act chemically upon it, are expelled again on boiling the alcohol.

Several salts, especially the deliquescent, are dissolved by it, and some of them give a colour to its flame; thus the solutions of the salts of strontia in alcohol burn with a crimson flame, those of copper and borax with a green one, lime a reddish, and baryta with a yellow flame.

This solvent power is, however, most remarkable in its actiou upou resins, ctlecrs essential oils, fatty bodies, alkaloids, as well as many orgauic acids. In a similar
way it dissolves iodine, bromine, and in small quantitics sulphur and phosphorus. In general it may be said to be au excellent solvent for most hydrogenised organic substances.

In consequence of this property it is most extensively used in the chemical arts: e.g. for the solution of gum-resins, \&e., in the manufaeture of varnishes; in pharmaey, for the separating of the active principles of plants, in the preparation of tinctures. It is also employed in the formation of ehloroform, ether, spirits of nitrc, \&c.

Methylated Spirit.-It was, therefore, for a long time a great desideratum for the manufaeturer to obtain spirit free from duty. The Government, feeling the necessity for this, have sanctioned the sale of spirit which has becn flavoured with methyl-aleohol, so as to render it unpalatable, free of duty, under the name of " methylated spirit." This methylated spirit ean now be obtained, in large quantities only, and by giving suitable security to the Board of Inland Revenue of its employment for manufaeturing purposes only, and must prove of great value to those manufacturers who are large eonsumers.

Professors Graham, Hofmann, and Redwood, in their "Report on the Supply of Spirit of Wine, free of duty, for use in the Arts and Manufactures," addressed to the Chairman of the Board of Inland Revenue, came to the following conclusions :-
"From the results of this inquiry it has appeared that means exist by which spirit of wine, produeed in the usual way, may be rendered unfit for human consumption, as a beverage, without materially impairing it for the greater number of the morc valuable purposes in the arts to whieh spirit is usually applied. To spirit of winc, of not less strength than corresponds to density 0.830 , it is proposed to make an addition of 10 per cent. of purified wood naphtha (wood or nethylic spirit), and to issue this mixed spirit for consumption, duty free, under the name of Methylated Spirit. It has been shown that methylated spirit resists any process for its purifieation; the removal of the substanee added to the spirit of wine being not only diffieult, but, to all appearance, impossible; and further, that no danger is to be apprehended of the methylated spirit being ever compounded so as to make it palatable. may be found safe to reduce eventually the proportion of the mixing ingredient to 5 per cent., or even a smaller proportion, although it has been reeommended to begin with the larger proportion of 10 per cent."

And further, the authors justly remark :-"The command of aleohol at a low price is sure to suggest a multitude of improved processes, and of novel applications, which can seareely be anticipated at the present moment. It will be felt far beyond the limited range of the trades now more immediately coneerned in the consumption of spirits; like the repeal of the duty on salt, it will at once most vitally affect the chemical arts, and cannot fail, ultimately, to exert a beneficial influence upon mauy branches of industry."

And in additional observations, added subsequently to their original Report, the chemists above named reeommend the following restriction upon the sale of the methylated spirit :- " That the methylated spirit should be issued, by agents duly authorised by the Board of Inland Revenuc, to nonc.but manufacturers, who should themselves consume it ; and that application should always be made for it according to a recognised form, in which, bcsides the quantity wanted, the applicant should statc the use to which it is to be applied, and undertake that it should be applied for that purpose only. The manufaeturer might be permitted to retail varnishes and other products containing the nethylated spirit, but not the methylated spirit itself in an unaltered state." They recommend that the methylated spirit should not be made with the ordinary erude, very impure wood naphtha, sinee this could not be advantageously used as a solvent for resins by hatters and varnish makers, as the less volatile parts of the naphtha would be retained by the resins after the spirit had evaporated, and the quality of the resin would be thus impaired. If, however, the methylated spitit be originally prepared with the crude wood naphtha, it may be purified by a simple distillation from 10 per cent. of potash.

It appears that the boon thus afforded to the manufacturing conmmunity of obtaining spirit duty free has been acknowledged and appreeiated; and uow for most purposes, where the small quantity of wood-spirit docs not interfere, the methylated spirit is generally used.

It appears that cven ether and ehloroform, whieh one would expect to derive au uupleasant flavour from the wood spirit, are now made of a quality quite unobjectionable from the methylated spirit ; but eare should be taken, cspecially in the preparation of medicinal compounds, not to extend the employment of the methylated spirit beyond its justifiable limits, lest so useful an artiele slould get into disrepute.* Methylated spirit can be procured also in small quantities from the wholesale dealers, containing in solution loz. to the gallon of shcllac, under the name of "finish."

[^13]
ALCOHOLOMETRY.

Alcoholates.-Grahan has shown that alcohol forms crystallisable compounds witt several salts. These bodies, which he calls "Alcoholates," arc in general rather unstable combinations, and almost alway's decomposed by water. Among the best known are the following:-

ALCOHOLOMETRY, or ALCOÖMETRY. Determination of the Strength of Mixtures of Alcohol and Water. Since the commercial value of the alcoholic liquors, commonly called "spirits," is determined by the amount of purc or absolute alcohol present in them, it is evident that a ready and accurate means of determining this point is of the highest importance to all persons engaged in trade in such articles.

If the mixture contain nothing but aleohol and water, it is only necessary to determine the density or specific gruvity of such a mixture; if, however, it contain saccharine matters, colouring principles, \&c., as is the case with wine, beer, \&c., othcr processes become necessary, which will be fully discussed hereafter.

The determination of the specific gravity of spirit, as of most other liquids, may be effected, with perhaps greater accuracy than by any other proeess, by means of a stoppered specific-gravity bottle. If the bottle be of such a size as exactly to hold 1000 grains of distilled water at $60^{\circ} \mathrm{F}$., it is only necessary to weigh it full of the spirit at the same temperature, when (the weight of the bottle being known) the specific gravity is obtained by a very simple calculation. See Speoific Gravity.
This process, though very accuratc, is somewhat troublesome, especially to pcrsons unaccustonted to accurate chemical experiments, and it involves the possession of a delicate balance. The necessity for this is however obviated by the employment of one of the many modifications of the common liydrometer. This is a floating instrument, the use of which depends upon the principle, that a solid body immersed into a fluid is buoyed upwards with a force equal to the weight of the fluid which it displaces, i.e. to its own bulk of the fluid; consequently, the denser the spirituous mixture, or the less alcohol it contains, the higher' will the instrument stand in the liqnid; and the less densc, or the more spirit it contains, the lower will the apparatus sink into it.
There are two classes of hydrometers. 1st. Those which are always inmersed in the fluid to the same depth, and to which weights are added to adjust the instrument to the density of any particular fiuid. Of this kind are Falrenbeit's, Nicholson's,
 and Guyton de Morveau's hydrometers. .

2 nd. Those which are always used with the same weight, but which sink into the liquids to be tried, to different depths, according to the density of the fluid. Of this class are most of the common glass hydrometers, such as Beaumé's, Curteis's, Gay-Lussac's, Twaddle's, \&c.

Sykes's and Dicas's combine both principles. See Hydrometers.
Sykes's hydrometer, or alcoholometer, is the one employed by the Board of Excise, and therefore the one most extensively used in this country.

This instrument does not immediately indicate the density or the per-centage of absolute alcohol, but the degree above or below proof 一the meaning of which has been bcfore detailcd. (p.44.)

It consists of a spherical ball or float, a, with an upper and lower stem of brass, b and c. The upper stem is graduated into ten principal divisions, which arc each subdivided into fivc parts. The lower stem, c, is made conical, and has a loaded bulb at its extremity. There are nine movable weights, numbered respectively by teus from 10 to 90. Each of these circular weights las a slit in it, so that it can be placed on the conical stem, c. The instrument is adjusted so that it floats with the snrface of the fluid coincident with zero on the scale, iu a spirit of specific gravity 825 at $60^{\circ} \mathrm{F}$., this being accounted by the Excisc as "standurd alcohol." In weaker spirit, which has therefore a greater density, the hydrometer will not sink so low; and if the density be much greater, it will be neccssary to
 add one of the weights to cause the entire immersion of the bulb of the instrument. Each weight represents so many principal divisions of the stem, as its number indicates; thus, the heaviest weight, marked 90 , is equivalent to 90 divisions of the stem, and the instrument, with the weirht added, floats at 0 in distilled water. As each principal division on the stem is
divided into five subdivisions, the instrument has a range of 500 degrees between the standard alcobol (specific gravity 825) and water. Tbere is a linc on one of the side faces of the stem, b, near division 1 of the drawing, at which line the instrument with the weight 60 attached to it lloats in spirit exactly of the strengtb of proof, at a temperature of $51^{\circ} \mathrm{F}$.

In using this instrument, it is immersed in the spirit, and pressed down by the hand until tbe whole of tbe graduated portion of the upper stem is wet. The force of the hand required to sink it will be a guide to the selection of the proper weight. Having taken one of the circular weigbts necessary for the purpose, it is slipped on to the lower conical stem. The instrument is again immersed, and ${ }^{\prime}$ pressed down as before to 0 , and then allowed to rise and settle at any point. Tbe eye is then brought to the level of the surface of the spirit, and tbe part of the stem cut by the surface, as seen from below, is marked. Tbe number thus indicated by the stem is added to tbe number of the weigbt, and the sum of these, together witb the temperature of tbe spirit, observed at the same time by means of a thermometer, enables the operator, by reference to a Table which is sold to accompany the instrument, to find the strengtb of the spirit tested.

These Tables are far too voluminous to be quoted here; and this is unneccssary, since tbe instrument is never sold witbout them.

A modification of Sykes's hydrometer has been recently adopted for tcsting alcoholic liquors which is perhaps more convenient, as the necessity for the loading weigbts is done away with, the stem being sufficiently long not to requirc them. It is constructed of glass, and is in the shape of a common hydrometer, the stem being divided into degrees; it carries a small spirit thermometer in the bulb, to which a scale is fixed, ranging from 30° to $82^{\circ} \mathrm{F}$. (0 to $12^{\circ} \mathrm{C}$.) There arc Tables supplied with the hydrometer, which are headed by tbe degrees and half degrees of the thermometric scale; and the corresponding content of spirit, over or under proof at the respective degree of the Table, is placed opposite each degree of the hydrometer.
By means of either of these instruments, and by the use of tbe Tables accompanying them, we learn tbe strength, in degrees, above or below proof; and the following Table by Dr. Ure will be found most useful in converting tbese numbers into specific gravities.

	Specific Gravity		Specific Gravity.	$\begin{gathered} \text { Per } \\ \text { cent. } \\ \text { over } \\ \text { Proof. } \end{gathered}$	Specific Gravity.	Per cent. Proof.	Specific Gravity.		Specific Gravity.
$67 \cdot 0$	0.8156	52.1	0.8448	$37 \cdot 1$	$0 \cdot 8692$	21.9	$0 \cdot 8912$	$7 \cdot 1$	0.9111
$66 \cdot 5$	0.8166	51'5	0.8459	$36 \cdot 4$	$0 \cdot 8702$	$21 \cdot 4$	0.8919	$6 \cdot 5$	$0 \cdot 9118$
$66 \cdot 1$	$0 \cdot 8174$	51.1	0.8465	$35 \cdot 9$	$0 \cdot 8709$	$20 \cdot 9$	0.8926	$5 \cdot 9$	$0 \cdot 9126$
$65 \cdot 5$	0.8188	$50 \cdot 5$	0.8476	$35 \cdot 5$	$0 \cdot 8716$	$20 \cdot 1$	0.8933	$5 \cdot 6$	$0 \cdot 9130$
65.0	0.8199	$50 \cdot 1$	0.8482	$35^{\circ} 0$	$0 \cdot 8723$	$19 \cdot 9$	0.8940	5.0	$0 \cdot 9137$
$64 \cdot 5$	$0 \cdot 8210$	$49 \cdot 5$	0.8493	$34 \cdot 5$	0.8730	$19 \cdot 3$	$0 \cdot 8948$	$4 \cdot 5$	$0 \cdot 9145$
$64 \cdot 0$	$0 \cdot 8221$	$49 \cdot 1$	0.8499	$34 \cdot 1$	0.8737	$19 \cdot 1$	$0 \cdot 8951$	$3 \cdot 9$	$0 \cdot 9152$
$63 \cdot 6$	$0 \cdot 8227$	$48 \cdot 5$	0.8510	$33 \cdot 6$	0.8744	$18 \cdot 6$	0.8959	$3 \cdot 3$	$0 \cdot 9159$
$63 \cdot 1$	0.8238	48.0	0.8516	$32 \cdot 9$	0.8755	18.0	0.8966	$3 \cdot 0$	$0 \cdot 9163$
$62 \cdot 5$	0.8249	$47 \cdot 6$	0.8523	$32 \cdot 4$	0.8762	$17 \cdot 5$	0.8974	$2 \cdot 4$	0.9170
$62 \cdot 0$	$0 \cdot 8259$	47.0	0.8533	32.0	08769	$16 \cdot 9$	$0 \cdot 8981$	1.9	$0 \cdot 9178$
61.6	$0 \cdot 8266$	$46^{\circ} 6$	$0 \cdot 8540$	31:5	$0 \cdot 8776$	16.4	0.8989	$1 \cdot 6$	$0 \cdot 9182$
$61 \cdot 1$	0.8277	$46^{\circ} 0$	$0 \cdot 8550$	31.0	$0 \cdot 8783$	$15 \cdot 9$	$0 \cdot 8996$	1.0	$0 \cdot 9189$
60.5	$0 \cdot 8287$	$45^{\circ} 6$	0.8556	$30 \cdot 5$	$0 \cdot 8790$	$15 \cdot 6$	$0 \cdot 9000$	$0 \cdot 3$	$0 \cdot 9196$
$60 \cdot 0$	0.8298	$45 \cdot 0$	$0 \cdot 8566$	$30 \cdot 0$	0.8797	$15 \cdot 0$	$0 \cdot 9008$	proof	$0 \cdot 9200$
$59 \cdot 5$	0.8308	$44 \cdot 6$	0.8573	$29 \cdot 5$	0.8804	14.5	0.9015	under	proof
$59 \cdot 1$	0.8315	$43 \cdot 9$	0.8583	$29 \cdot 0$	0.8811	$13 \cdot 9$	$0 \cdot 9023$	13	0.9214
$58 \cdot 6$	$0 \cdot 8326$	$43 \cdot 5$	0.8590	28.5	0.8818	$13 \cdot 4$	0.9030	$2 \cdot 2$	$0 \cdot 9226$
$58 \cdot 0$	$0 \cdot 8336$	$43 \cdot 1$	0.8597	28.0	0.8825	$13 \cdot 1$	0.9034	$3 \cdot 1$	$0 \cdot 9237$
$57 \cdot 5$	$0 \cdot 8347$	$42 \cdot 6$	$0 \cdot 8604$	$27 \cdot 5$	0.8832	12.5	$0 \cdot 9041$	$4 \cdot 0$	$0 \cdot 9248$
$57 \cdot 1$	$0 \cdot 8354$	$42 \cdot 0$	$0 \cdot 8615$	27.0	$0 \cdot 8840$	12.0	0.9049	$5 \cdot 0$	$0 \cdot 9259$
56.6	$0 \cdot 8365$	41.5	0.8622	26.5	08847	11.4	0.9056	6.0	$0 \cdot 9270$
$56 \cdot 0$	0.8376	$41 \cdot 1$	$0 \cdot 8629$	26.0	$0 \cdot 8854$	$11 \cdot 1$	$0 \cdot 9060$	$7 \cdot 0$	0.9282
55.5	$0 \cdot 8386$	$40 \cdot 6$	0.8636	$25 \cdot 5$	0.8861	10.6	0.9067	$8 \cdot 0$	$0 \cdot 9295$
55.0	$0 \cdot 8366$	$40^{\circ} 0$	$0 \cdot 8646$	$25 \cdot 0$	0.8869	$10 \cdot 0$	$0 \cdot 9075$	$9 \cdot 0$	$0 \cdot 9306$
$54 \cdot 6$	0.8043	$39 \cdot 6$	0.8653	$24 \cdot 5$	0.8876	$9 \cdot 4$	$0 \cdot 9082$	$10 \cdot 0$	$0 \cdot 9318$
$54 \cdot 1$	0.8413	$39 \cdot 1$	$0 \cdot 8660$	$24 \cdot 0$	08883	$8 \cdot 9$	$0 \cdot 9089$	11.0	$0 \cdot 9329$
53.5	$0 \cdot 8424$	$38 \cdot 4$	$0 \cdot 8671$	$23 \cdot 5$	0.8890	$8 \cdot 3$	$0 \cdot 9097$	$12 \cdot 1$	0.9341
$53 \cdot 1$	$0 \cdot 8431$	38.0	$0 \cdot 8678$	$23 \cdot 0$	0.8897	$8 \cdot 0$	0.9100	$13 \cdot 1$	$0 \cdot 9353$
52%	0.8441	$37 \cdot 6$	0.8685	22:5	$0 \cdot 8904$	$7 \cdot 4$	0.9107	$14 \cdot 2$	0.9364

ALCOHOLOMETRY.

Yer cent. over Proof.	Specific Gravity.	Per cent. over Proof.	Specific Gravity.	Per cent. over Proof.	Specific Gravity.		Speelfic Gravity.	Per cent. Proof	Specifie Gravity.
$15 \cdot 3$	0.9376	$32 \cdot 3$	$0 \cdot 9542$	49•1	$0 \cdot 9665$	$67 \cdot 4$	$0 \cdot 9774$	84.0	
$16 \cdot 0$	$0 \cdot 8384$	$33 \cdot 2$	$0 \cdot 9550$	$50 \cdot 3$	$0 \cdot 9674$	$68 \cdot 0$	0.9778	$85^{\circ} 2$	0.9878
$17 \cdot 1$	0.9396	$34 \cdot 2$	$0 \cdot 9557$	51.0	0.9677	69.4	$0 \cdot 9786$	$85 \cdot 2$ 86.3	0.9886 0.9894
$18 \cdot 2$	$0 \cdot 9407$	$35 \cdot 1$	0.9565	$52 \cdot 2$	0.9685	$70^{\circ} 1$	0.9790	$86 \cdot 4$	0.9894 0.9902
$19 \cdot 3$	$0 \cdot 9419$	$36 \cdot 1$	0.9573	$53 \cdot 3$	0.9693	71.4	0.9798	$87 \cdot 4$ 88.0	0.9902 0.9906
20.0	0.9426	$37 \cdot 1$	0.9580	$54 \cdot 8$	0.9701	72.1	0.9802	$89^{\circ} 1$	0.9914
21.2	$0 \cdot 9437$	$38 \cdot 1$	$0 \cdot 9588$	$56 \cdot 2$	0.9709	$73 \cdot 5$	0.9810	90.2	0.9914
$22 \cdot 2$	0.9448	$39 \cdot 1$	0.9596	$57 \cdot 6$	0.9718	$74 \cdot 1$	0.9814	$91 \cdot 2$	0.9930
$23 \cdot 1$	0.9456	$40^{\circ} 1$	0.9603	58.3	0.9722	$75 \cdot 4$	0.9822	$92 \cdot 3$	0.9930 0.9938
$23 \cdot 9$	$0 \cdot 9464$	$41 \cdot 1$	$0 \cdot 9611$	59.0	0.9726	$76 \cdot 1$	$0 \cdot 9826$	$93 \cdot 3$	0.9946
24.3	$0 \cdot 9468$	$42 \cdot 2$	$0 \cdot 9619$	$60 \cdot 4$	0.9734	$77 \cdot 3$	0.9834	$94 \cdot 3$	$0 \cdot 9954$
$25 \cdot 1$	$0 \cdot 9476$	$43 \cdot 3$	$0 \cdot 9627$	$61 \cdot 1$	0.9738	78.0	0.9838	$95 \cdot 4$	$0 \cdot 9962$
$26 \cdot 3$	0.9488	$44 \cdot 4$	$0 \cdot 9635$	61.8	$0 \cdot 9742$	$79 \cdot 2$	0.9846	96.4	0.9970
$27 \cdot 1$	0.9496	$45 \cdot 0$	$0 \cdot 9638$	$63 \cdot 2$	0.9750	80.4	$0 \cdot 9854$	$97 \cdot 3$	0.9978
28.0	0.9503	46.1	$0 \cdot 9646$	63.9	0.9754	$81 \cdot 1$	0.9858	98.2	0.9986
$29 \cdot 2$	0.9515	$47 \cdot 3$	$0 \cdot 9654$	$65 \cdot 3$	0.9762	$82 \cdot 3$	0.9866	$99 \cdot 1$	0.9993
$30 \cdot 1$	0.9522	$47 \cdot 9$	$0 \cdot 9657$	$66^{\circ} 0$	0.9766	83.5	098.74	$100 \cdot 0$	1.0000
31.0	0.9530								

And now, by reference either to Drinkwater's, Tralle's, or Gay-Lussac's Tables, the operator will be enabled to find, by the knowledge of the density or specific gravity, at the temperature at which the operation was performed, the per-centage of real alcohol, either by weight or by volume.
In France, Gay-Lussac's ulcoolomètre is usually employed. It is a common glass hydrometer, with the scale on the stem divided into 100 parts or degrces. The lowest division, marked 0 , denotes the specific gravity of pure water; and 100 , that of absolute alcohol, both at $15^{\circ} \mathrm{C}$. ($59^{\circ} \mathrm{F}$.) The intermediate degrees, of coursc, show the per-centage of absolute alcohol by volume at $15^{\circ} \mathrm{C}$.; and the instrument is accompanied by the Tables already given for ascertaining the per-centage at any other temperaturc.

Alcoholometry of Liquids containing besides Alcohol, Saccharine Mutters, Colouring Principles, \&c., such as Wines, Beer, Liqueurs, \&c.

In order to determine the proportion of absolute alcohol contained in wines, or other mixtures of alcohol and water with saccharine and other non-volatile substances, the most accurate method consists in submitting a known volume of the liquid to distillation (in a glass retort, for instance); then, by determining the specific gravity of the distilled product, to ascertain the per-centage of alcohol in this distillate, which may be regarded as essentially. a mixture of pure alcohol and water. The distillation is earried on until the last portions have the gravity of distilled water; by then ascertaining the total volume of the distillate, and with the knowledge of its per-centage of alcohol and the volume of the original liquor used, the method of calculating the quantity of alcohol present in the wine, or other liquor, is sufficiently obvious.

In carrying out these distillations care must be taken to prevent the evaporatiou of the spirit from the distillate, by keeping the condenser cool. And Professor Mulder recommends the use of a refrigerator, consisting of a glass tube fixed in the centre of a jar, so that it may be kept filled with cold water. 'The tube must be bent at a right angle, and terminatc in a cylindrical graduated mcasure-glass, shaped like a bottle.*

It is well to continue the distillation until about two-thirds of the liquid has passed over.

This process, though the most accurate for the estimation of the strength of alcoholic liquors, is still liable to crror. The volatilc acids and ethers pass over with the alcohol into the distillate, and, to a slight extent, affect the speeific gravity. This error may be, to a great extent, overcome by mixing a little chalk with the wine, or other liquor, previous to distillation.

By this method Professor Brande made, some years ago, determinations of the strength of the following wines, and other liquors \dagger :-

[^14]
Proportion of Spirit per Cent. by Measure.

Jissa	-	-	average	25.41	Orange		-		avera.ge	11.26 8.70
Raisin -	-	-	"	$25 \cdot 12$	Elder -	-	-	-		$8 \cdot 79$
Marsala	-	-	"	25.09						
Port (of 7 s	sam)	",	$22 \cdot 96$	Cider	- -		average	5.21 to	- 9.87
Madeira	-	-	"	$22 \cdot 27$	Perry	-		"		- 26
Sherry (of 4	4 sa	es)	"	$19 \cdot 17$	Mead	-	-	"		7.32
Teneriffe	-	-	-	19.79	Ale, Bu	urton				8.88
Lisbon -	-	-	-	18:94	Ale, Ed	dinburgh		ayerage	e 6.87	6.20
Malaga	-	-	-	$18 \cdot 94$	Ale, Do	orchester				[5.55
Bucellas	-	-	-	$18 \cdot 49$	Brown	Stout	-	-		$6 \cdot 80$
Cape Madei		-	average	$20 \cdot 51$	London	Porter	-	-	averag	e $4 \cdot 20$
Roussillon	-	-	"	19.00	London	Small		-	"	$1 \cdot 28$
Claret -	-	-	"	$15 \cdot 10$						
Sauterne	-	-	"	14.22	Brandy	-		-	"	53.39
Burgundy	-	-	"	14.57	Rum	- -		-	,	$53 \cdot 68$
Hock -	-	-	"	12.08	Gin	- ${ }^{\text {- }}$	-	-	"	$57 \cdot 60$
Tent	-	-	"	1330	Scotch	Whisky		-	"	$54 \cdot 32$
Champagne	e	-	"	12.61	Irish W	Wisky	-	-	"	$53 \cdot 90$

The following results were obtained by the writer more recently by this process (1854).

Per-centage of Alcohol by Volume.

Port (1834)	-	-	$22 \cdot 46$	Port (best)	-	-	-	-	20.2
Sherry (Montilla)	-	-	19.95	Marcobrun	er	-	-	-	$8 \cdot 3$
Madeira	-	-	$22 \cdot 40$	Champagne	(lst)		-	-	$12 \cdot 12$
Claret (Haut Brion)	-	-	$10 \cdot 0$	Champagne	(2nd		-	-	10.85
Chambertin - -	-	-	11.7	Home Ale	(-	-	-	$6 \cdot 4$
Sherry (low quality)	-	-	$20 \cdot 7$	Export Ale	-	-	-	-	64
Sherry (brown)	-	-	$23 \cdot 1$	Strong Ale	-	-	-	-	$9 \cdot 0$
Amontillado	-	-	$20 \cdot 5$	Stout -	-	-	-	-	$5 \cdot 7$
Mansanilla -	-	-	14.4	Porter -	-	-			$4 \cdot 18$

M. l'Abbé Brossard-Vidal, of Toulon*, has proposed to estimate the strength of alcoholic liquors by determining their boiling point. Since water boils at $100^{\circ} \mathrm{C}$. ($212^{\circ} \mathrm{F}$.) , and absolute alcohol at $78.4^{\circ}\left(173^{\circ} \mathrm{F}\right.$.), it is evident that a mixture of water and alcohol will have a higher boiling point the larger the quantity of water present in it. This method is even applicable to mixtures containing other bodies in solution besides spirit and water, since it has been shown that sugar and salts, when present (in moderate quantitics), have only a very trifling effect in raising the boiling point; and the process has the great advantage of facility and rapidity of execution, though of course not comparable to the method by distillation, for accuracy.

Mr. Field's patent (1847) alcoholometer is likewise founded upon the same principle. The instrument was subsequently improved by Dr. Ure.
The apparatus consists simply of a spirit-lamp placed under a little boiler contaiuing the alcoholic liquor, into which fits a thermometer of very fine bore.

When the liquor is stronger than proof spirit, the variation in the boiling point is so small that an accurate result cannot possibly be obtained; and, in fact, spirit approaching this strength should be diluted with an equal volume of water before submitting it to ebullition, and then the result doubled.
Another source of error is the elevation of the boiling point, when the liquor is kept heated for any length of time ; it is, however, nearly obviated by the addition of common salt to the solution in the boiler of the apparatus, in the proportion of 35 or 40 grains. In order to correct the difference arising from higher or lower pressure of the atmosphere, the scalc on which the thermometric and other divisions are marked is made movable up and down the thermometer tube; and every time, before commencing a sct of experiments, a preliminary experiment is made of boiling some purc distilled water in the apparatus, and the zero point on the scale (which indicates the boiling point of water) is adjusted at the level of the surface of the mercury. On p. 54 will be fouud a Table showing the boiling point of alcohol of different specific gravities.

But cven when performed with the utmost care, this process is still liable to very

ALCOHOLOMEPRY.

considerable errors, for it is cxtremely difficult to observe the boiling point to within a degree ; and after all, the fixed ingredients present undoubtedly do seriously raise the boiling point of the mixture-in fact, to the extent of from half to a whole degree, aecording to the amount present.

Silbernann's Method.-M. Silbermann* has proposed another method of estimating the strength of alcoholie liquors, based upon their expansion by heat. It is well known that, between zero and $100^{\circ} \mathrm{C} .\left(212^{\circ} \mathrm{F}\right.$.), the dilatation of aleohol is triple that of water, and this differenee of expansion is even grcater between $25^{\circ} \mathrm{C}$. ($77^{\circ} \mathrm{F}$.) and $50^{\circ} \mathrm{C}$. ($122^{\circ} \mathrm{F}$.) ; it is cvident, therefore, that the expansion between
 pres two temperatures becomes a measure of the amount of alcohol present in any mixture. The presence of salts and organic substanees, such as sugar, colouring, and extractive matters, in solution or suspension in the liquid, is said not materially to affect the accuraey of the result ; and M. Silbermann has devised an apparatus for applying this principle, in a ready and expeditious manner, to the estimation of the strength of aleoholie liquors. The instrument may bc obtained of the philosophical instrument makers of London and of Liverpool.

It consists of a brass plate, on which are fixed-1st. An ordinary \imath mereurial thermometer graduated from 22° to $50^{\circ} \mathrm{C}$. $\left(77^{\circ}\right.$ to $122^{\circ} \mathrm{F}$.), these being the working temperatures of the dilatatometer; and 2ndly, the dilatatometer itself, whieh consists of a glass pipette, open at both ends, and of the shape shown in the figure. A valve of cork or india-rubber closes the tapering end A, whieh valve is attached to a rod, $b b$, fastened to the supporting plate, and connected with a spring, n, by which the lower orifice of the pipette can be opened or elosed at will. The pipette is filled, exactly up to the zero point, with the mixture to be examined-this being aecomplished by the aid of a piston working tightly in the long and wide limb of the pipette; the aetion of which serves also auother valuable purpose-viz., that of drawing any hubbles of air out of the liquid. By now observing the dilatation of the column of liquid when the temperature of the whole apparatus is raised, by inmersion in a water-bath, from 25° to 50°, the co-effieient of expansion of the liquid is obtained, and hence the proportion of alcohol-the instrument being, in fact, so graduated, by experiments previously made upon mixtures of known composition, as to give at once the per-centage of alcohol.

Another aleoholometer, which, like the former, is more remarkable for the great faeility and expedition with which approximative rcsults can be obtained than for a high degree of accuraey, was invented by M. Geisler, of Bonn, and depends upon the measurement of the tension of the vapour of the liquid, as indieated by the height to which it raises a column of mercury. Geisler's Alcoholometer. - It consists of a closed vessel in which the alcoholic mixture is raised to the boiling point, and the tension of the vapour observed by the depression of a column of mercury in one limb of a tuhe, the indication being rendered more manifest by the elevation of the other eud of the column.

The wine or other liquor of whieh it is desired to aseertain the strength, is put into the little flask, F , which, when completcly filled, is serewed on to the glass which contains mercury, and is closed by a stopeoek at s . The entire apparatus, whieh at present is an inverted position, is now stood erect, the flask and lower extremity of the tube being immersed in a waterbath. The vinous liquid is thus heated to the boiling point, and its vapour forces the mercury up into the long limb of the tube. The instrument having been graduated, once for all, by aetual experiment, the per-centage of alcohol is read off at onee on the stem hy the lieight to whieh the uercurial eolumn rises.

To show how ncarly the results obtained by this instrument agree with those obtained by the distillation process, comparative experiments were made on the same wines by Dr. Bence Jones. \dagger

[^15]

Tabarie's Method. - Tbere is another method of determining the alcoholic coutents of mixtures, which especially recommends itself on account of its simplicity. The specific gravity of the liquor is first determined, half its volume is next evaporated in the open air, sufficient water is then added to the remainder to restore its original volume, and tbe specific gravity again ascertained. By deducting the specific gravity before the expulsion of the alcobol from that obtained afterwards, the difference gives a specific gravity indicating the per-centage of alcohol, which may be found by referring to Gay-Lussac's or one of the other Tables. Tabarié has constructed a peculiar instrument for determining these specific gravities, which he calls an onometer; but they may be performed either by a specific-gravity bottle or by a hydrometer in the usual way.
Of course this method cannot be absolutely accurate; nevertheless, Prof. Mulder's experience with it has led him to prefer it to any of the methods before described, especially where a large number of samples have to be cxamined. He states that the results are almost as accurate as those obtained by distillation. The evaporation of the solution may be accelerated by conducting hot steam through it.

Adulterations. - Absolute alcohol should be entirely free from water. This may be recognised by digesting the spirit with pure anhydrous sulphate of copper. If the spirit contain any water, tbe white salt becomes tinged bluc, from the formation of the blue bydrated sulpbate of copper.
Rectified spirit, proof spirit, and the other mixtures of pure alcobol and water, should be colourless, free from odour and taste. If containing methylic or amylic alcohols, they are immediately recognised by one or other of these simple tests.

Dr. Ure states that if wood spirit be containcd in alcohol, it may be detected to the greatest minuteness by the test of caustic potash, a littlc of which, in powder, causing wood spirit to become speedily ycllow and brown, while it gives no tint to alcohol. Thus 1 per cent. of wood spirit may be discovered in any sample of spirits of wine.
The admixture with a larger proportion tban the due amount of water is of coursc deternined by estimating the per-centage of absolute alcohol by one or other of the several methods just described in detail.
The adulterations and sophistications to which the various spirits known as rum, brandy, whisky, gin, \&c., are subjected, will be best described under these respective heads, since these liquors are themselves mixtures of alcohol and water with sugar, colouring matters, flavouring ethers, \&c.

Uses.- The great use of alcohol, in its various states of mixture, is, and bas been from time immemorial, as a beverage. There cannot be a doubt that alcoholic liquors
are benefieial to most healthy persons, when moderately enjoyed; and the man who advoeates their rational use eannot be held answerable for their abuse.

Absolute aleohol (or strong spirits) aets loeally as an irritant, contraeting the tissues; but its effeets on the organism, when taken internally, arises from its aetion, by the nerves, on the brain. Dr. Pereira has graphieally deseribed three stages of their effects:-

> 1. First or mildest degree - Exeitement.
> 2. Seeond degree - - \quad Intoxieation, or drunkenness.
> 3. Third degree - - \quad Coma, or true apoplexy.

These effeets are tolerably familiar, and for a more minute deseription of them we must refer to Dr. Pereira* and other medical authors.

The important applieations of alcohol in the arts, as a solvent for resins, \&e., have been before alluded to. To the ehemist it is a most valuable agent of separation. By its means he is enabled, in complieated organie mixtures, to separate those substanees whieh are soluble from those which are insoluble in this menstruum. It may likewise be employed for separating eertain salts-e.g. the chloride of strontium from that of barium, \&e. \&e.

From it are also manufaetured ether, ehloroform, and, indireetly, acetic aeid; and in pharmaey, sweet spirits of nitre, the various tinetures, \&c. \&e.

Real Value of the Spirituous Liquors imported, exported, and retained for Home Consumption during each of the Year's 1854, 1855, and 1856.

[^16]ALCOHOLOMETRY.
Quantities of Alcoholic Liquors imported, exported, and retained for Home Consumption during each of the following Years*:

These numbers show, in a striking manucr, the spirit-trading and spirit-drinking tendencies of the licople of these realms, spirituous liquors heing imported in 1856 to the value of $5,979,3711$., of which $2,217,219 l$. worth were again exported; but the inhahitants of Great Britain themselves spent in that year no less a sum than $3,752,1581$. in alcoholic liquors, exclusive of hecr, which is the staple heverage of a very large portion of the community; and the revenue derived by the Government from home-made spirits alone amounted to no less a sum (in 1853) than 6,255,708l.
The following are the quantities of spirits charged with dutics of excise in each of the followiug ycars :-

	-	Gallons.				Gallons.
1842	-	- 18,841,890	1850	-	-	23,919,432
1843	-	- 18,864,332	1851	-		24,030,933
1844	-	- 20,608,525	1852	-	-	25,2,0,262
1845	-	- 23,122,588	1853	-	-	25,423,444
1846	-	- 24,106,697	1854	-		26,148,511
1847	-	- 20,639,797	1855	-		22,186,077
1848	-	- 22,234,379	1856	-	-	23,922,453
1849	-	- 23,010,808				

Every English distiller has now to pay a licence duty of ten guineas hefore he can lawfully conduct operations, and afterwards a duty of seven sbillings and tenpence per imperial gallon of spirits, proof strength, which he produces.

The Scotch and Irish distillers had to pay the same licence-fee as tbe English; and in addition to this, the Scotch distiller paid a duty of four shillings and cightpence per imperial gallon of proof strength, and the Irish a duty of three shillings and fourpence; hut tbe duties are now equalised.

ALDEHYDE. By this word is understood the fluid ohtained from alcohol by the removal of two equivalents of hydrogen. Thus, alcohol heing represented by the formula $\mathrm{C}^{4} \mathrm{H}^{6} \mathrm{O}^{2}$, aldehyde becomes $\mathrm{C}^{4} \mathrm{H}^{4} \mathrm{O}^{2}$.
Preparation. - Aldehyde is prepared hy various processes of oxidation. Liebig has puhlished several methods, of which the following is perbaps the best. Three parts of peroxide of manganese, three of sulphuric acid, two of water, and two of alcohol of 80 per cent., are well mixed and carefully distilled in a spacious retort. The extreme volatility of aldehyde renders good condensation ahsolutely necessary. The contents of the retort are to be distilled over a gentle and manageahle fire until frothing commences, or the distillate hecomes acid. This generally takes place when about one-third has passed over. The fluid in the receiver is to have about its own weight of chloride of calcium added, and, after slight digestion, is to be carefully distilled on the water-hath. The distillate is again to be treated in the same way. By these processes a fluid will be obtained entirely free from water, but containing scveral impurities. To obtain the aldehyde in a state of purity it is, necessary, in the furst place, to obtain aldehyde-ammonia; this may be accomplished in the the following manner:- The last distillate is to be mixed in a flask with twice its volume of ether, and, the flask heing placed in a vessel surrounded hy a ficezing mixture, dry ammoniacal gas is passed in until the fluid is saturated. In a short time crystals of the compound sought separate in considerable quantity. The aldehyde-ammonia, being collected on a filter, or in the neck of a funnel, is to he washed with ether, and dried by pressure between folds of filtering paper, followed by exposure to the air. It now becomes neeessary to obtain the purc aldcbyde from the compound with ammonia. For this purpose two parts are to be dissolved in an equal quantity of water, and three parts of sulphuric acid, mixed with four of water, are to he added. The wholc is to be distilled on the water-bath, the temperature, at first, bcing very low, and tbe operation being stopped as soon as the water boils. The distillate is to he placed in a retort connected with a good condensing apparatus, and, as soon as all the joints are known to be tight, chloride of calcium, in fragments, is to he added. The heat arising from the hydration of the chloride causes the distillation to commence, but it is carried on hy a water-hath. The distillate, after one more rectification over chloride of calcium, at a temperature not exceeding $80^{\circ} \mathrm{F}$, will consist of pure aldebyde. Aldeliyde is a colourless, very volatile, and mohile fluid, having the density 0.800 at 32°. It boils, uuder ordinary atmospheric pressure, at $70^{\circ} \mathrm{F}$. Its vapour density is $i \cdot 532$. Its formula corresponds to four volumes of vapour; we consequently ohtain the theoretical vapour density by multiplying its atomic weight $=44$ by half the density of hydrogen, or -03.46. The number thus found is 1.5224 , corresponding as nearly as could be desired to the experimental result.

Aldehyde is produced in a great number of processes, particularly during the destruetive distillation of various organic matters, and in processes of oxidation. From
aleohol aldelyde may be procured by oxidation witl platinum black, nitric acid, chromic aeid, chlorinc (in presence of water), or, as we lave seen, a mixture of peroxide of manganese and sulphuric acid. Certain oils, hy destructive distillation, yield it. Wood vinegar in the crude state contains aldelyde as well as wood spirit. Lactic acid. when in a combination with weals bases, yields it on destructive distillation. Various animal and vegetable products afford aldelhyde by distillation with oxydising agents, such as sulphuric acid and peroxide of manganese, or bichromate of potasb.
Tbe word aldehyde, like that of alcobol, is gradually becoming used in a much more extended sense than it was formerly. By the term is now understood any organic substance wbich, by assimilating two equivalents of hydrogen, yields a substance having the properties of an alcohol, or, by taking up two equivalents of oxygen, yields an acid. It is this latter property which has induced certain chemists to say that there is the same relation between an aldehyde and its acid as hetween inorganic acids ending in ous and ic. Several very interesting and important substances are now known to belong to the class of aldchydes. The essential oils are, in several instances, composed principally of bodies having the propertics of aldehydes. Among the most prominent may be mentioned the oils of bitter almonds, cumin, cinnamon, rue, \&cc. An exceedingly important cbaracter of the adelhydes is their stroug tendency to combine with the bisulphites of ammonia, potash, and soda. By availing oursel ves of this property, it becomes casy to separate bodies of tbis class from complex mixtures, and, consequently, enable a proximate analysis to be madc. Now that the character of the aldehydes is beeoming better understood, the chances of articially producing the essential oils above alluded to in the commercial scale become greatly increased. Several have already been formed, and, although in very small quantities, the success has been sufficient to warrant sanguine bopes of success. A substitute for one of tbem has been for some years known under the very incorrect name of artificial oil of bitter almonds. See Nitrobenzole. - C. G. W

ALANINE. ($\mathrm{C}^{8} \mathrm{H}^{7} \mathrm{NO}^{4}$.) A peculiar substance, produced when aldelydeammonia is acted on by bydrocyanic and hydrochloric acids. It is a highly remarkable body, not merely from its mode of production and the singular decompositions of whicb it is susceptible, but also from the fact of its possessing acid, basic, and neutral characters. It is homologous with gly cocine and leucine.-C. G. W.

ALDER. (Aune, Fr. ; Erle, Germ.; Alrus glutinosa, Lin.) A tree, different species of which are indigenous to Europe, Asia, and Aruerica. Tbe common alder seldonn grows to a heigbt of more than 40 feet. The wood is stated to be very durable under water. Tbe piles at Venice, and those of Old London bridge, are stated to have been of alder; and it is much used for pipes, pumps, and sluices. The clarcoal of this wood is used for gunpowder.

ALE. The fermented infusion of pale malted barley, combined with infusion of bops. See Beer.

ALEMBIC, a still (which sce). Tbe teria is, however, applied to a still of peculiar construction, in which the head, or capital, is a separate piece, fitted and ground to the neck of the boiler, or cucurbit, or otherwise carcfully united with a lute. The alembic has this advantage over the common retort, tbat the residue of distillation may be easily cleared out of the body. It is likewise capable, wher skiifully managed, of distilling a mueb larger quantity of liquor in a given time than a retort of equal capacity. In France tbe term alembic, or rather alambic, is used to designate a glass
still.

ALEMBROTH, SALT OF. The salt of wishom of the alchemists; a compound of bichloride of mercury and
 sal ammoniac. If two atoms of bichloride of mercury are mixed with one atom of sal amoniac and cight atoms of water, at 140° this mixture is fluid, but the salt of alembroth (sal alembroth) erystallises on cooling. It is composed of chloride of mercury and chloride of ammonium ($\mathrm{NH}^{4} \mathrm{CL} \mathrm{H}^{8} \mathrm{CL}, \mathrm{HO}$).
ALGAROTH, POWDER OF. Powder of Algarolli,-English Powder. 'This salt was discovered by Algarotti, a physician of Verona. Chloride of antimony is formed by boiling black sulphide of antimony with hydrochloric acid: on pouring the solution into water, a white flocky precipitate falls, which is an oxichloride of antimony. If the water be hot, the precipitate is distinctly crystalline; this is the powder of algarotlo. This oxichloride is used to furnish oxide of antinony in the preparation of tartar emetic.
ALGAROVILLA. This substance is called by the Spaniards Algaroba, from the rescmblance it bears to the fruit of the Carob (Ceratoni a siliqua), which is a native Yol. I.
of Europe, in the southern countrics of Spain and Portugal. It is the fruit of a tree which grows in Chili, of which the botanieal name is Prosopis pallida, according to Captain Bagnald, R. N., who first brought a sample of it to this country in the year 1832. It consists of pods bruised and agglutinated more or less with the extractive exudation of the seeds and husks. Aecording to a more recent determination, algarovilla is said to be the produet of the tree Juga Marthæ of Santa Martha, a province of New Carthagena.

It is an astringent substance replete with tannin, eapable, by its infusion in watcr, of tanning lcather, for which purpose it possesses more than four times the power of good oak bark. Its active matter is very soluble in water at a boiling temperaturc. The seeds are merely nutritive and demulcent, but contain no astringent property. This resides in the husks. The sceds in the entire pod constitute about one-fifth of the weight, and they are three or four in number in each oblong pod. Alcolol of 60 per eent. over proof dissolves 64 parts in 100 of this substance. The solution consists ehiefly of tannin, with a very little resinous matter. Water dissolves somewhat more of it, and affords a very styptic-tasted solution, which precipitates solution of isinglass very copiously, like infusion of galls and eatechu. Its solution forms with sulphate of iron a black preeipitate whieh is kept floating by means of the gum present, and thereby constitutes good ink. Notwithstanding the recommendation of Dr. Ure, this substance does not appear to have, as yet, become an article of eommeree.

ALGE. (Varech, Fr.; Seegras, or Alge, Germ.) A tribe of subaqueous plants, including the scaweeds (fucus) and the lavers (ulva) growing in salt water, and the freshwater eonfervas. We have only to dcal with those seaweeds whieh are of any commereial value. These belong to the great division of the jointless alga, of whieh 160 speeies are known as natives of the British Isles. In the manufacture of Kelp (See Kelp), all the varieties of this division may be uscd. The ediblc sorts, such as the birds' nests of the Eastcrn Archipelago, those whieh we consume in this country, as lavers, carrageen, or Irish moss, \&e., belong to the same group, as do also those which the agriculturalists employ for manure.

Dr. Pereira gives the following list of esculent seaweeds.

> | > Rhodomenia palmata (or Dulse). | Iridæa edulis. |
| :--- | :--- |
| > Rhodomerna ciliata. | |
| > Laminaria saccharina. | Alaria esculenta |
| > Ulva latissima. > | |

Rhodomenia palmata passes under a variety of names, dulse, dylish, or dellish, and amongst the Highlanders it is ealled dulling, or waterleaf. It is employed as food by the poor of many nations; when well washed, it is chewed by the peasantry of Ireland without being dressed. It is nutritious, but sudorifie, has the smell of violets, imparts a mucilaginous feel to the mouth, leaving a slightly aerid taste. In Ieeland the dulsc is thoroughly washed in fresh water and dried in the air. When thus treated it becomes covered with a white powdery substance, which is sweet and palatable; this is mannite (see Manna), which Dr. Stenhouse proposes to obtain from seaweeds. "In the dried state it is used in Iceland with fish and butter, or else, by the higher classes: boiled in milk with the addition of rye flour. It is preserved packed in close casks, a fermented liquor is produced in Kamschatka from this seaweed, and in the North of Europe and in the Grecian Archipclago eattle are fed upon it.", Stenhouse.

Laminaria saccharina yields $12 \cdot 15$ per cent. of mannite, while the Rhodomenia palmatu contains not more than 2 or 3 per cent.

Iridaa edulis. - The fronds of this weed are of a dull purple colour, flat, and succulent. It is employed as food by fishermen, either raw or pinehed between hot irons, and its taste is then said to resemble roasted oysters.

Alaria esculcnta. - Mr. Drummond informs us that, on the coast of Antrim, "it is often gathered for eating, but the part used is the leaflets, and not the midrib, as is commonly stated. Thesc have a very pleasant taste and flavour, but soon cover the mouth with a tenacious grecnish crust, which causes a scnsation somewhat like that of the fat of a heart or kidney."

Ulva latissima (Broad green laver). -This is rarely used, being considered iuferior to the Porphyra laciniata (I Laciniatcd purple laver). This alga is aburdant on all our shores. It is pickled with salt, and sold in England as laver, in Ireland as sloke, and in Seotland as slaak. The London shops are mostly supplied with laver from the eoasts of Devonshire. When stewed, it is brought to the table and eaten with pepper, butter or oil, and lemon-juiee or vinegar. Sonie persons stew it with leeks and onions. The pepper dulsc (Laurencia pinnutifida), distinguished for its pungent taste, is often used as a eondiment wheu other seaweeds are eaten. "Taugle" (Laminaria digitata), so called in Seotland, is termed "red-ware" in the Orkneys, "sca-wand" in the Highlands, and "sea-girdles" in England. The flat leathery fronds of this weed, when young, are

ALGA.

cmployed as food. Mr. Simmonds tells us, "There was a time when the cry of ' Buy dulse and tangle' was as common in the streets of Edinburgh and Glasgow, as is that of 'water-cresses' now in our metropolis."-Society of Arts' Journal.

Laminaria potatorum. - The large sea tangle is used abundantly by the inhabitants of the straits of Magellan and by the Fuegians. Under the name of "Bull Kclp" it is used as food in New Zealand and Van Diemen's Land. It is stated to be excecdingly nutritive and fattening.
Chondrus crispus (chondrus, from $\chi^{\delta} \boldsymbol{\nu} \delta \rho o s$, cartilage).-Carrageen, Irish, or pearl moss. For purposes of diet and for medicinal uses, this alga is collected on the west coast of Ireland, washcd, bleached by exposure to the sun, and dried. It is not unfrequently used in Ireland by painters and plasterers as a substitute for size. It has also been successfully applied, instcad of isinglass, in making of blanc-mange and jellies; and in addition to its use in medicine, for whieh purpose it was introduced by Dr. Todhunter, of Dublin, about 1831, a thick mucilage of carrageen, scented with some prepared spirit, is sold as bandoline, fixature, or clysphitique, and it is employed for stiffening silks. According to Dr. Davy, carrageen consists of

Gummy matter -	-	-	-	28.5
Gelatinous matter	-	-	-	49.0
Insoluble matter	-	-	22.5	
			100.0	

The following results, obtained by Dr. Apjohn and Dr. Davy, show, in a satisfactory manner, the value of the alge. The anount of water is less than that which belongs to the algæ when fresh from the sca, all these having undergone a partial drying in the progress of carriage from the coast :-

$$
\begin{aligned}
& \text { Specimens supplied by Dr. Davy, and dried at } 212^{\circ} \text { - } \\
& \begin{array}{llllll}
\text { Chondrus crispus, bleached } & - & - & - & - & - \\
\text { Nitrogen per cent. } \\
\text { Fucus vesiculosus } & - & - & - & - & - \\
\text { Rhodomenia palmata (Dylisk) } & - & - & - & 2.397 \\
\text { R }
\end{array}
\end{aligned}
$$

Kinds of Algæ,	Water.	$\begin{gathered} \text { Dry } \\ \text { Matter. } \end{gathered}$	Per Cent. of Nitroger Matter.	$\begin{gathered} \text { Protein } \\ \text { contained } \\ \text { on in } 1 \text { ry } \\ \text { Mateter } \end{gathered}$
Chondrus crispus, bleached, from Bewly and Evans	17.92	82.08	1.534	9.587
Chondrus crispus, unbleached, Ballycastlc	$21 \cdot 47$	$78 \cdot 53$	2.142	13.387
Gigartina mammillosa, Ballycastle - -	21.55	$78 \cdot 45$	2-198	$13 \cdot 737$
Chondrus crispus, blcached, Bewly and Evans (2nd experiment)	19.79	$80 \cdot 21$		9.281
Chondrus crispus, unbleached, Ballycastle (2nd experiment)	19.96	80.21 80.04	1.485 2.510	9.281 15.687
Laminaria digitata, or Dulse tangle, Ballycastle	21.38	78.62	1.588	15.687
Laminaria digitata, or Black tangle, Ballycastle	21.38 31.05	$78 \cdot 62$ 68.95	1.588 1.396	9.925 8.705
Rhodomcniu palmata, or Dylisk, Ballycastle	16.56	$83 \cdot 44$	$3 \cdot 465$	8.725 21.656
Porphyra laciniata, Ballycastle - -	$17 \cdot 41$	$82 \cdot 59$	4.650	29.062
Iridea edulis, Bally castlc - -	$19 \cdot 61$	80.39	$3 \cdot 088$	$19 \cdot 300$
Alaria csculenta, or Murlins, Ballycastle	$17 \cdot 91$	82.09	$2 \cdot 424$	$15 \cdot 150$
Means	$20 \cdot 42$	79.58	$2 \cdot 407$	15.045

The quantity of nitrogen contained in these plants is remarkably large, and will, of course, aceount for the high nutritive valuc aseribed to them.

Plocaria candida. - Ceylon moss; edible moss. This moss is cxported from the islands of the Indian Archipelago, forming a portion of the cargoes of nearly all the junks. It is stated by Mr. Crawford, in his " History of the Indian Archipclago," that on the spots where it is collected, the prices scldom exceed from 5 s .8 d . to 7 s .6 d . per cwt. The Chinesc use it in the form of a jelly with sugar, as a swectmeat, and apply it in the arts as an excellent paste. The gummy matter which they cmploy for covering lanterns, varnishing paper, \&cc., is made chicfly from this moss.

This moss, as ordinarily sold, appears to consist of several varieties of marine productions, with the Plocaria intermixed.

The Agar-Agar of Malacca belongs to this variety; and probably seawceds of this character are used by the Salangana or esculent swallow in constructing their nests, whicl are esteemed so great a delicacy by the Chincse. The plant is found on the rocks of Pulo Ticons and on the shores of the neighloouring islands. It is blanched in the sun for two days, or until it is quite whitc. It is obtained on submerged banks in the neighbourhood of Macassar, Celebes, by the Bajow-laut, or sea-gipsies, who send it to China. It is also collected on the reefs and rocky submerged ledges in the neighbourhood of Singapore. Mr. Montgomery Martin informs us that this wreed is the chief staple of Singapore, and that it produces in China from six to eight dollars per pecul in its dry and bulky state. The harvest of this seaweed is from 6000 to 12,000 peculs annually, the pecul being cqual to 100 catties of 1.333 lbs . each.

Similar to this, perhaps the same in character, is the Agal-Agal, a species of scaweed. It dissolves into a glutinous substance. Its principal use is for gumming silks and paper, as nothing equals it for paste, and it is not liable to be eaten by insects. The Chinese make a beautiful kind of lantern, formed of netted thread washed over with this gum, and which is extremely light and transparent. It is brought by coasting vessels to Prinee of Wales Island, and calculated for the Chinese market. Oriental Commerce.

Dr. Macgowan, of Ningpo, forwarded, through Sir John Bowring, the following algre, which he thus names and describes:-

Tan-shwin grass, so named from the place, on the coast of Formosa, whence it is procured. It is used for making yang-tsai (ocean-vegetable).

Nin-mau (ox-hair) grass. Made into an iced jelly, and sold in the streets, in hot weather, sugared.

Hâi-tâi (sea-tape). Sent into the interior, wherever fossil coal is used. It is considered corrective of the deleterious exhalations of that fuel. It is usually boiled with pork. This kind comes from Shantung province.
$T s z$-tsai (purple vegetable). Often eaten as it is, to give a rclish to rice, or cooked.
Fah-tsai (hair vegetable). Boiled, either with animal or vegetable articles, forms a broth. Also the gills caten with sugar.

Ki-tsai (hen-foot vegetable). Cooked with soy or vinegar. Uscd by women to make the hair glossy, and to strengthen it.
Sea-tape, from Japan. It is preferred to the former. - Society of Arts' Journal.
ALIMENT. (Alimentum, from alo, to feed.) The food necessary for the human body, and capable of maintaining it in a state of health.

1. Nitrogenous substances are required to deposit, from the blood, the organised tissue and solid muscle ;
2. And carbonaceous, non-nitrogenous bodies, to aid in the processes of respiration, and in the supply of carbonaceous elements, as fat, \&\&., for the due support of animal heat.

For information on these substances, consult Liebig's "Animal Chemistry," the investigations of Dr. Lyon Playfair, and Dr. Robert Dundas Thompson's "Experimental Researches on Food," 1846. See Food.

ALizarine. See Madder.
ALKALI. A term derived from the Arabians, and introduced into Europe when the Mahometan conquerors pushed their conquests westward. Al, el, or ul, as an Arabic noun, denotes "God, Heaven, Divine." As an Arabic particle, it is prefixed to words to give them a more emphatic signification, much the same as our particle the; as in Alcoran, the Koran, alchymist, the chemist.

Kali was the old name for the plant producing potash (the glasswort, so called from its use in the manufacture of glass), and alkali signified no more than the kali plant. Potash and soda were for some time confounded together, and werc hence called alkalis. Ammonia, which much resembles them when dissolved in water, was also called an alkali. Ammonia was subsequently distinguished as the volatile calkali, potash and soda being fixed alkalis. Ammonia was also called the animal alkali. Soda was the mineral alkali, bcing derived from rock-salt, or from the ocean; and potash received the name of vegetable alkali, from its source being the ashes of plants growing upon the land. Alkalis are characterised by being very soluble in water, by neutralising the strongest acids, by turning brown vegetable yellows, and to green the vegetable reds and blues.

Some chemists classify all salifiable bases under this name.
In commercial lauguage, the term is applied to an impure sodn, the imports of which were-

Imports.

Our Exports during the same periods being as follows :-

ALKALIS, ORGANIC. During the last few years the number of organic alkaloids has so greatly increased, that a considerable volume might be devoted to their history. There are, however, only a few which have become articles of commerce. The modes of preparation will be given under the heads of the alkalis themselves. The principal sources from whence they are obtained are the following: -1. The animal kingdom. 2. The vegetable kingdom. 3. Destructive distillation. 4. The action of potash on the cyanic and cyanuric ethers. 5. The action of ammonia on the iodides, \&c., of the alcohol radicals. 6. The action of reducing agcnts on nitro-compounds. The principal bases existing in the animal kingdom are creatine and sarcosine. The vegetable kingdom is much richer in them, and yields a grcat number of organic alkalis, of which scveral are of cxtreme value in medicine. Modern chemists regard all organic alkalis as derived from the types ammonia or oxide of ammonium. Their study has led to results of the most startling character. It has been found that not only may the hydrogen in ammonia and oxide of ammonium be replaced by metals and compound radicals without destruction of the alkaline character, but even the nitrogen may be replaced by phosphorus or arsenic, and yet the resulting compounds remain powerfully basic. In studying the organic bases, chemists have constantly had in view the artificial production of the bascs of cinchona bark. It is truc that this result has not as yct been attained; but, on the other hand,
bodies have been formed having ties, with the substances sought, that it cannot be doubted the question is merely

ALKALIMETRY.

of time. The part performed by the bases existing in the juiee of flesh has not been ascertained, and no special remedial virtues have been detected in them ; but this is not the ease with those found in vegetables; it is, in fact, among then that the most potent of all medicines are found - such, for example, as quininc and morphia. It is, morcover, among vegctable alkaloids that we find the substances most inimical to life, for aconitine, atropine, brucine, coniine, curarinc, nicotinc, solaninc, strychnine, \&e. \&c., are among their number. It must not be forgotten, however, that, used with proper precaution, even the most virulent are valuable medicines. The fcarfully poisouous nature of some of the organic bases, together with an idca that they are difficult to detect, has unhappily led to their use by the poisoner; stryehnine, especially, has aequired a painful notoriety, in consequenee of its employment by a medieal man to destroy persons whose lives he had insured. Fortunatcly for society, the skill of the analyst has more than kept pace with that of the poisoner ; and without regarding the extravagant assertions made by some chemists as to the minute quantities of vegetable poisons they are able to detect, it may safely be asserted that it would be very difficult to administer a fatal dose of any ordinary vegetable poison without its bcing diseovered. Another cheek upon the poisoner is found in the faet that those most difficult of isolation from complex mixtures are those which cause such distinct symptoms of poisoning in the vietim, that the medical attendant, if moderately observant, can searcely fail to have his suspicions aroused.
Under the heads of the various alkaloids will be fouud (where deemed of suffeient importance), not merely the mode of preparation, but also the easiest method of detection.-C. G. W.

ALKALIMETER. There are various kinds of alkalimeters, but it will be more convenient to explain their construction and use in the article on Alkalimetray, to which the reader is referred.
ALKALIMETRY. 1. The object of alkalimetry is to determine the quantity of caustic alkali or of carbonate of alkali contained in the potash or soda of commeree. The prineiple of the method is, as in acidimetry, based upon Dalton's law of chemieal combining ratios - that is, on the fact that in order to produce a complete reaction a cortain definite weight of reagent is required, or, in other words, in order to saturate or completely neutralise, for example, one equivalent of a base, exaetly one equivalent of acid must be employed, and vice versâ. This having been thoroughly explained in the artiele on Acidmetry, the reader is referred thereto.
2. The composition of the potash and of the soda met with in commerce presents very great variations; and the value of these substances being, of course, in proportion to the quantity of real alkali which they contain, an easy and rapid method attained, though originally contrived exclusively for the determination of the intrinsic value of these two alkalies (whence its name, Alkalimetry) has since been extended to that of ammonia and of earthy bases and their carbonates, as will be shown presently.
3. Before, howevcr, enteriug into a dcscription of the process itself, we will give that of the instrument employed in this method of analysis, which instrument is called an alkalimeter.
4. The common alkalimeter is a tube elosed at onc end (see figure in margin), of about $\frac{3}{4}$ ths of an inch internal diameter, about $9 \frac{1}{2}$ inches long, and is thus capable of containing 1000 grains of pure distilled ratcr. The space occupied by the water is divided accurately into 100 divisions, numbering from above downwards, each of which, therefore, represents 10 grains of distilled watcr.
5. When this alkalimeter is used, the operator must carcfully pour the acid from it by elosing the tube with his thumb, so as to allow the acid to trickle in drops as occasion may require ; and it is well also to smear the edge of the tube with tallow, in order to prevent any portiou of the test acid from being wasted by running over the outside after pouring, which accident would, of course, render the analysis altogether inaccurate and worthless; and, for the same reason, after having once begun to pour the acid from the alkalimeter by allowing it to triekle betweeu the thumb and the edge of the tube, as above mentioncd, the thumb must not be removed from the tube till the end of the experiment, for otherwise the portion of aeid which adheres to it would, of eourse, be wasted and vitiate the result. This uncomfortable precaution is obviated in the other forms of alkalimeter now to be described.
6. That represented in fig. 23 is Gay-Lussae's alkalimetcr ; it is a glass tube about 14 inches ligh, and $\frac{1}{2}$ an inch in diameter, capable of holding more than 1000 grains of distilled water; it is accurately graduated from the top downwards into 100
divisions, in sueh a way that each division may eontain exactly 10 grains of water. It has a small tube, b, eommunicating with a larger onc, which small tube is bent and bevelled at the top, c. This very ingenious instrument, known also under the names of "burette" and "pouret," was contrived by Gay-Lussac, and is by far more convenient than the common alkalimeter, as by it the test acid ean be unerringly poured, drop by drop, as wanted. The only drawbaek is the fragility of the small side-tube, b, on which aeeount the common alkalimeter, represented in fig. 22, is now generally used, especially by workmen, because as it has no side-tube it is less liable to be broken; but it gives less aecurate results, a portion of the aeid being wasted in various ways, and it is besides less manageable. Gay-Lussac's "burette" is therefore preferable; and if melted wax be run between the space of the large and of the small tube, the instrument is rendered much less liable to injury; it is generally sold with a separate wooden foot or socket, in which it may stand vertically.
7. The following form of alkalimeter (fig. 24), which I contrived several years ago, will, I think, be found equally delicate but more convenient still than that of Gay-Lussae. It consists of a glass tube, A, of the same dimensions and graduated in the same manner as that of Gay-Lussae ; but it is provided with a glass foot, and the upper part, B, is

23

24
 shaped like the neek of an ordinary glass bottle ; \mathbf{c} is a bulb blown from a glass tube, one end of which is ground to fit the neck, \mathbf{B}, of the alkalimeter, like an ordinary glass stopper. This bulb is drawn to a eapillary point at D , and has a somewhat large opening at E . With this instrument the acid is perfectly under the control of the operator, for the globular joint at the top enables him to sce the liquor before it actually begins to drop out, and he ean then regulate the pouring to the greatest nicety, whilst its more substantial form renders it mueh less liable to aecidents than that of Gay-Lussac ; the glass foot is extremely eonvenient, and is at the same time a great additional security. The manner of using it will be described further on.
8. Another alkalimeter of the same form as that whieh I have just described, except that it is all in one pieee, and has no globular enlargement, is represented in fig. 25. Its construction is otherwise the same, and the results obtained are equally delicate ; but it is less under perfect control, and the test acid is very liable to rundown the tube outside : this defect might be easily remedied by drawing the tube into a finer and more delicate point, instead of in a thiek blunted projection, from which the last drop cannot be detached, or only with difficulty and imperfeetly. A glass foot would moreover be an improvement.
9. With Schüster's alkalimeter (represented in fig. 26), the strength of alkalis is determined by the weight, not by the measure, of the acid employed to neutralise the alkali: it is, as may be seen, a small bottle of thin glass having the form of the head of the alkalimeter represented in fig. 24. We shall deseribe further on the process of analysis with this alkalimeter.
10. There are several other forms of alkalimeter, but those whieh have been alluded to are almost exelusively used, and whichever of them is employed the proeess is the same - namely, pouring earcfully an aeid of a known strength into a known weight of the alkali under examination, until the neutralising point is obtained, as will be fully explained presently.
11. Blue litmus-paper being immediately reddened by acids is the reagent used for ascertaining the exact point of the neutralisation of the alkali to be tested. It is prepared by pulverising one part of commercial litmus, and digesting it in six parts of eold water, filtering, and dividing the blue liquid into two equal
 portions, adding earefully to one of the portions, and one drop at a time, as much very dilute sulphurie acid as is suffieient to impart to it a slight red eolour, and pouring the portion so treated into the second portion, which is intensely blue, and stirring the whole together. The mixture so obtained is neutral,
and by immersing slips of white blotting-paper into it, and carcfully drying them by hanging them on a stretched piece of thread, an exceedingly sensitive test paper of a light bline colour is obtained, which should be kept in a wide-mouth glass-stoppered bottle, and sheltered from the air and light.
12. Since the principle on which alkalimetry is based consists in determining the amount of acid which a known weight of alkali can satmrate or neutralise, it is clear that any acid having this power can be employed.
13. The test acid, however, generally preferred for the purpose is sulphuric acid, because the normal solution of that acid is more easily prepared, is less liable to change its strength by keeping, and has a stronger reaction on litmus-paper than any other acid. It is true that other acids - tartaric acid, for example - can be procured of greater purity, and that as it is dry and not caustic, the quantities required can be more comfortably and accurately weighed off; and on this account some chemists, after Buchncr, recommended its use, but the facility with which its aqueous solution becomes mouldy is so serious a drawback, that it is hardly ever resorted to for that
object.
14. When sulphuric acid is employed, the pure acid in the maximum state of concentration, or, as it is called by chemists, the pure hydrate of sulphuric acid, specific gravity $1 \cdot 8485$, is preferable. Such an acid, however, is never met with in eommerce, for the ordinary English oil of vitriol is seldom pure, and never to the maximum state of concentration; the operator, however, may prepare it by distilling ordinary oil of vitriol, but as the specific caloric of the vapour of sulphuric acid is very small, the distillation is a somewhat hazardous operation, unless peculiar precaution be taken. The following apparatus, however, allows of the acid being distilled in a perfectly safe and convenient manner ; it consists of a plain glass retort, charged with oil of vitriol, a little protosulphate of iron is added, for the purpose of destroying any nitrous products which the acid may evolve, and it is then placed into a cylinder of iron, the bottom of which is perforated with holes about three quarters of an inch in diameter, except in the middle, where a large hole is cut of a suitable size for the retort to rest upon; the sides of the cylinder are likewise perforated, as represented in fig. 27. Ignited charcoal is then placed all ronnd the retort, the bottom of which protruding out of the influence of the heat, allows the ebullition to proceed from the sides only. It is

27
 well to put into the retort a few fragments of quartz or a few lengths of platinum wire, the effect of which is to render the ebullition morc regular
15. In order to prevent the acid fumes from condensing iu the neck of the retort, it should be covered with a cover of shect iron, as represented in fig. 27.
16. The first fourth part which distils over should be rejected, because it is too weak; the next two fourths are kept, and the operation is then stopped, leaving the last fourth part of the acid in the retort. The neck of the retort should be about four feet long and about onc and a half inches in the bore, and be connected with a large receiver; and as the necks of retorts are generally much too short for the purpose, an adapter tube should be adjusted to it and to the receiver, but very loosely ; this precaution is absolutely necessary, for otherwise the hot acid falling on the sides of the receiver would crack it; things, in fact, should be so arranged that the hot drops of the distilling acid may fall into the acid which has already distilled over. Do not surround the receiver with cold watcr, for the hot acid dropping on the refrigerated surface would also certainly crack it. The acid so obtained is pure oil of vitriol, or monohydrated sulphurie acid, $\mathrm{SO}^{3}, \mathrm{HO}$, and it should be kept in a well stoppered and dry flask.
17. For commercial assays, however, and, indeed, for every purpose, the ordinary concentrated sulphuric acid answers very well : when used for the determination of the value of potashes, it is made of such a strength that each division (or 10 watergrains' measure) of the alkalimeter saturates exactly onc graiu of pure potash : an acid of that particular strength is prepared as follows: -
18. Take $112 \cdot 76$ grains of pure neutral and anhydrous carbonatc of soda, and dissolve them in about 5 fluid ounces of hot water.* This quantity, namely, 112.76

[^17]grains, of neutral carbonate of soda will exactly saturate the same quautity of pure sulphuric acid $\left(\mathrm{SO}^{3}\right)$ that 100 grains of pure potash would. It is advisable, however, to prepare at once a larger quantity of test solution of carbonate of soda, which is of course easily donc, as will be shown presently.
19. Nix, now, 1 part, by measurc, of concentrated sulphuric acid with 10 parts of watcr, or rather-as it is advisable, where alkalimetrical assays have frequently to he made, to keep a stock of test acid-mix 1000 water-grains' measure of concentrated sulphuric acid with 10,000 grains of water, or any other larger proportions of concentrated sulphuric acid and water, in the above respective proportions; stir the whole well, and allow it to cool. The mixture of the acid with the water should be made by first putting a certain quantity of the water into a glass beaker or matrass of a suitable size, then pouriug the concentrated acid slowly therein, while a gyratory motion is imparted to the liquid. The vessel containing the acid is then rinsed with the water, and both the rinsing and the rest of the water are then added to the whole mass. When quite cold, fill the graduated alkalimeter with a portion of it up to the point marked 0°, taking the under line of the liquid as the true level; and, whilst stirring briskly with a glass rod the aqueous solution of the 112.76 grains of ncutral carbonate of soda above alluded to, drop the test acid from the alkalimeter into the vortex produced by stirring, until, by testing the alkaline solution with a strip of reddened litmus-paper after every addition of acid, it is found that it no longer shows an alkaline reaction (which is known by the slip of reddened litmus-paper not being rendered blue), but, on the contrary, indicates tlat a very slight excess of acid is present (which is knowu by testing with a slip of blue litmus-paper, which will then turn slightly red).
20. If, after having exhausted the whole of the 100 divisions (1000 water-grains' measure) of the diluted acid in the alkalimeter, the ncutralisation is found to be e.ructly attained, it is a proof that the test acid is right.
21. But suppose, on the contrary (and this is a much more probable case), suppose that only 80 divisious of the acid in the alkalimeter have been required to neutralise the alkaline solution, it is then a proof that the test acid is too strong, and accordingly it must be further diluted with water, to bring it to the standard strength ; aud this may at once be done, in the present instance, by adding 20 measures of water to every 80 measures of the acid. This is best accomplished by ponring the whole of the acid into a large glass cylinder, divided into 100 equal parts, until it reaches the mark or scratch corresponding to 80 measures ; the rest of the glass, up to 100 , is then filled up with water, so that the same quantity of real acid will now be in the 100 measures as was contained before in 80 measures.
22. The acid adjusted as just mentioned should be labelled "Test Sulphurric Acid for Potash," and kept in well-stoppered bottles, otherwise evaporation taking place would render the remaining bulk more concentrated, consequently richer in acid than it should be, and it would thus, of course, become valueless as a test acid until readjusted. Each degree or division of the alkalimeter of such an acid represents 1 grain of pure potash.
23. The alkalimetrical assay of sodu is also made with sulphuric acid, in preference to other acids, but it must be so adjusted that 100 alkalimetrical divisions (1000 water grains' measure) of acid will exactly neutrulise 170.98 of pure anhydrous carbonate of soda, that quantity containing 100 grains of pure soda.
24. Dissolve, therefore, 171 grains of pure anhydrous neutral carbonate of soda, obtained as indicated before, in five or six ounces of hot water, and prepare in the meantine the test sulphuric acid, by mixing 1 part, by measure, of ordinary concentrated sulphuric acid, with about 9 parts by measure of water cxactly as described before; stir the whole thoroughly, let the mixture stand until it has become quite cold, then pour 1000 water-grains' measure of the dilute acid so prepared into an alkalimeter-that is to say, fill that instrument up to 0°, taking the under line as the true level, and then, whilst stirring briskly the aqucons solution of the 171 graius of carbonate of soda with a glass rod, pour the acid, with increased precaution as the saturating point is approaching, into the vortcx produced, until by testing the liquor alternately with reddened and with blue litmus-paper, or with grey litmus-paper, as before mentioncd, the exactly neutralised point is lit.
25. If the whole of the 100 alkalimetrical divisions (1000 water-grains' measure) have been required to effect the neutralisation, it is a proof that the acid is of the right strength, but if this be not the case, it must be adjusted as described before that is to say:-
26. Suppose, for example, that only 75 alkalimetrical divisions or measures of the acid in the alkalinetcr have becu required to neutralise the 171 grains of neutral carbonate of soda operated upon, then 75 measures of the acid should be poured at once into a glass cylinder accurately divided into 100 parts ; the remaining 25 divisions
should then be filled with water, and the whole being now stirred up, 100 parts of the liquor will of eourse contain as much real acid as 75 parts contained before, and accordingly the acid may now be used as a test acid for the alkalimetrical assay of soda, each degree or division of the alkalineter representing onc grain of pure soda.
27. The stoek of test aeid should be kept in well-stoppered flasks, that it may not vary in strength by evaporation, and be labelled "Test Sulphuric Acid for Soda."
28. Instead however of keeping two kinds of "test sulphurie acid," of different saturating powers as deseribed, the one for potash, the other for soda, one kind only may be preparcd so as to scrve for both alkalis, by eonstrueting, as is very often done, an alkalimeter adjusted so as to indicate the quantities of the acid of a given strength required for the saturation or neutralisation of both potash or soda, or of their respective carbonates; and this, in fact, is the alkalimeter most in use in the factory.

It should be in shape similar to that of Gay. Lussae's (see fig. 23), or that deseribed in figs. 24 and 25 ; but, like that represcnted by fig. 22, it gencrally eonsists of a tube eloscd at one end, about three-fourths of an ineh internal diametcr and about $9 \frac{1}{2}$ inches in length ; it is graduated into 100 equal parts, and every division is numbered from above downwards (see fig. 28).

The following directions for their construetion are given by Professor Faraday, "Let
28
 in tibe represented in the margin have 100° grains of water weighed into it ; then let the space it occupies be graduated into 100 equal parts, and every ten divisions numbered from above downwards. At $22 \cdot 1$ parts, or 77.99 parts from the bottom, make an extra line, a little on one side or even on the opposite side of the graduation, and write at it with a seratching diamond, soda; lower down, at 48.62 parts, make another line, and write potash; still lower, at $54 \cdot 43$ parts, a third line marked carb. soda, and at 65 parts a fourth, marked carb. potash. It will be observed that portions are measured off beneath these marks in the inverse order of the equivalent number of these substanees, and consequently direetly proportionate to the quantities of any particular acid which will neutralise equal weights of the alkalis and their earbonates. As these points are of great importance, it will be proper to vcrify them by weighing into the tubes first 350 , then $513 \cdot 8$, and lastly 779.9 grains of water, which will correspond with the marks if they are correct, or the graduation may be laid down from the surface of the four portions of fluid when weighed in, without reiercnce to where they fall upon the general seale. The tube is now completed, except that it should be obscrved whether the aperture can be perfeetly and securely covered by the thumb of the left hand, and if not, or if there be reason to think it not ultimately secure, then it should be heated and contracted until sufficiently small."
29. The test aeid for this alkalimeter should have a specific gravity of $1 \cdot 1268$; and such an aeid may be prepared by mixing onc part, by weight, of sulphuric acid, specific gravity $1 \cdot 82$, with four parts of water, and allowing the mixture to cool. In the mcantime, 100 grains of pure anhydrous earbonate of soda, obtained as indicated before, should bc dissolved in water, and the test sulphuric acid, of specific gravity $1 \cdot 1268$, prepared as abovesaid, having become quite cold, is poured into the alkalimeter up to the point marked carbonate of soda, the remaining divisions are filled up with watcr, and the whole should be well mixed by shaking.
30. If the whole of the sulphuric acid, adjnsted as was said, bcing poured carefully in to the solution of the 100 grains of the neutral carbonate of soda, neutralise them exactly - which is aseertained, as usual, by testing the solution with lituus-paper, which should not be either reddened or rendered bluer by it - it is of eourse a sign that the test is as it should bc-that is to say, is of the proper strength; in the contrary ease it must be finally adjusted in the manner already indieated, and which need not be repeated. See $\$ \S 20,21$.
31. The best and most eonvenicnt proeess for the analyst, howercr, consists in preparing a test acid of such a strength that it may serve not only for all alkalis, but indeed for every hase; that is to say, by adjusting the test acid so that 100 alkalimetrical divisions of it (1000 water-grains' measure) may exaetly saturate or nentralisc one equivalent of every base. This method, which was first proposed by Dr. Ure, is excecdingly eonvenient, and the possession of two reciprocal test liquids, namely the ammonia test liquor of a standard strength, of which we gave a description in the article on Acidemetry, and the standard test acid of which we are now speaking, affords, as Dr. Urc observes, ready and rigid means of rerification. For mieroscopic aualysis of alkaline and of aeid matter, a graduated tube of a small bore, mounted in a frame, with a valve apparatus at top, so as to let fall drops of any size
and at any interval, is desirable; and sueh an instrument Dr. Ure employed for many years; but instead of a tube with a valve apparatus at top, the operator may use a graduated tube of a small bore, terminated by a small length of vuleanised india-rubber tube pinched in a clamp, which may be relaxed in such a way as to permit also the eseape of drops of any size at any interval of time, the little apparatus being under perfect command.
32. The test sulphuric acid, of such a strength that 100 alkalimetrical divisions of it ean saturate one equivalent of every base, should have a specifie gravity of $1^{\circ} 032$, and is prepared as follows :-
Take 53 grains (one equivalent) of pure anhydrous neutral earbonate of soda, obtained in the manuer indicated beforc (see § 18), and dissolve them in about one fluid ounce of water. Prepare, in the meantime, the test sulphurie acid by mixing one part, by measure, of concentrated sulphuric acid with about 11 or 12 parts of water, and stir the whole well. The mixture having become quite cold, fill the alkalimeter with the cold dilnted acid up to the point marked 0°, taking the under line of the liquid as the true level, and, whilst stirring briskly the aqueous solution of the 53 grains of carhonate of soda above alluded to, pour the acid earefully from the alkalimeter into the vortex produeed by stirring, until, by testing the liquor alternately with reddened and with blue litmus-paper, or, more conveniently still, with grey litmus-paper, the neutralising point is exactly hit.
33. If the whole of the 100 divisions of the alkalimeter had been required to neutralise exactly the 53 graius of pure anhydrous carbonate of soda, it would be a proof that the acid is of the right strength ; but if this is not the ease, it must be adjusted in the manner described before, that is to say :-
34. Let us suppose, for example, that only 50 measures in the alkalimeter have been required to saturate or neutralise the 53 grains of earbonate of soda, then 50 measures should be poured at once into a glass cylinder accurately divided into 100 parts, the remaining 50 divisions should be filled up with water, and the whole being well stirred, 100 parts of the acid liquor will now contain as much real aeid as was contained before in the 50 parts.
35. The acid may now be labelled simply, "Test or Normal Sulphuric Acid." Each one hundred alkalimetrical divisions, or 1000 'water-grains' measure of it, contain one equivalent, or 40 grains of real sulphuric aeid; and, consequently, each 100 alkalimetrical divisions of it will neutralise one equivalent, or 31 grains of soda, 47 of potash, 17 of ammonia, 28 of lime, and so forth, with respeet to any other base.
36. The stoek of test or normal sulphuric acid should, as usual, be kept in wellstoppered bottles, in order to prevent coneentration by evaporation. By keeping in the flask containing it a glass bead, exactly adjusted to the specific gravity of 1.032 , the operator may always ascertain, at a glanee, whether the aeid requires readjusting.
37. With a Sehüster's alkalimeter, it is convenient to prepare the test aeid of such a strength that, aecording as it has been adjusted for potash or for soda, 10 grains of it will exactly saturate one grain of one or the other of these bases in a pure state. It is considered that the alkalimeter may be charged with a known weight of any of the other sulphuric test acids of a known strength. Suppose, for example, that the test sulphuric acid taken have a specific gravity of 1.032 , we know, as we have just shown, that 1.032 grains weight of that acid contains exactly one equivalent of pure sulphuric acid $=40$, and is capable, therefore, of neutralising one equivalent of any base; and, consequently, by taking a eertain weight of this aeid before beginning the assay, and weighing what is left of it after the assay, it is very easy to ealculate, from the quantity of acid consumed in the experiment, what quantity of base has been neutralised. Thus a loss of $21 \cdot 96-60 \cdot 70-33 \cdot 29$ grains weight of this test aeid represents one grain of potash, of anmonia, of soda respectively, and so on with the other bases.
38. The operator being thus provided with an appropriate test acid, we shall now describe how he should proceed with eaeh of them in making an alkalimetrical assay with potash.

In order to obtain a reliable result, a fair average sample must be operated upon. To secure this the sample should be taken from various parts of the mass aud at onee put in a wide-month bottle, and well corked up until wanted; when the assay has to be made, the contents of the bottle must be reduced to powder, so as to obtain a fair mixture of the whole; of this weigh out 1000 grains exactly-or less, if that quantity eannot be sparedand dissolve them in a poreelain capsule in about 8 fluid ounees of distilled hot water, or in that proportion; and if there be left
 anything like an insoluble residue, filter, in order to separate it, and wash it on the

ALKALIMETVY.

filter with sinall quantitics of distilled water, and pour the whole solution, with the washings and rinsings, into a measure divided into 10,000 water-grains' measure. It the water used for washing the insoluble residue on the filter las increased the bulk of the solution beyond 10,000 water-graius' measure, it must be reduecd by evaporation to that quantity; if, on the eontrary, the solution poured in the measure stands below the mark 10,000 water-grains' measure, then as much water must be added thereto as will bring the whole mass exactly to that point. In order to do this correetly, the eylindrieal measure should stand well on a tahle, and the under or lower line formed by the liquid, as it reaches the serateh 10,000 , is taken as the true level.
39. This being done, 1000 grains' measure of the filtrate, that is to say, one-tenth part of the whole solution, is transferred to a glass heaker, in which the saturation or neutralisation is to be cffeeted, which is hest done hy means of a pipette capable of containing exaetly that quantity when filled up to the scrateh, a. In order to fill sueh a pipette it is sufficient to dip it into the alkaline solution and to suck up the liquor a little ahove the scrateh, a; the upper orifice should then be stopped with the first finger, and by momentarily lifting it up, the liquor is allowed slowly to fall from the pipette back again into the 10,000 grains' measurc until its level reaches exactly the scratch, u. The last drop whieh remains hanging from the point of the pipette may he readily detaehed by touching the sides of the glass measure with it. The 1000 grains heing thus rigorously measured in the pipette should then he transferred to the glass beaker, in which the ncutralisation is to take place, hy removing the finger altogether, blowing into it to detach the last drop, and rinsing it with a little water.
40. Or, instead of the pipette just deseribed, the operator may measure 1000 grains hy taking an alkalimeter full of the alkaline solution, and emptying it into the glass heaker in whieh the neutralisation is to take place, rinsing it with a little water, and of course adding the rinsing to the mass in the said glass heaker.
41. Whichever way is adopted, a slight hlue eolour should be imparted to the 1000 grains' measure of the alkaline solution, by pouring into it a small quantity of tineture of litmus. The glass heaker should then be plaeed upon a sheet of white paper, or a slab of white porcelain, in order that the ehange of eolour produced hy the gradual addition of the test acid may he hetter observed.
42. This heing done, if the operator have decided upon using the test sulphuric for potash ($\$ \S 17-22$), he should take one of the alkalimeters, represented in figs. 22, 23, 24 , or 25 , and fill it up to 0° (taking the under line of the liquid as the true level); then taking the alkalimeter thus charged in his right hand, and in his left the glass beaker containing the alkaline solution eoloured hlue hy tineture of litmus, he should gradually and carefully pour the acid liquor into the alkaline solution in the glass beaker, to which a circular motion should be given whilst pouring the aeid, or which should he briskly stirred, in order to insure the rapid and thorough mixing of the two liquors, and therefore their complete reaction ; moreover, in order at once to detect any change of colour from blue to red, the glass beaker should he kept over the white sheet of paper or the white porcelain slah, as before stated.
43. At first no effervescence is produced, hecause the carbonic aeid expelled, instead of escaping, combines with the portion of the alkaline carbonate as yet undeeomposed, whieh it eonverts into hiearbonate of potash, and aeeordingly no sensible change of eolour is perceived; but as soon as a little more than half the quantity of the potash present is saturated, the liquor hegins to effervesce, and the blue eolour of the solution is ehanged into one of a vinous, that is, of a purple or bluish-red hue, which is due to the action of the carbonie aeid upon the blue colour of the litmus. More acid should be still added, hut from this moment with very great care and with inereased caution, gradually as the point of neatralisation is approached, whieh is ascertained by drawing the glass rod used for stirring the liquor aeross a slip of blue litmus-paper. If the paper remains blue, or if a red or reddish streak is thereby produced which disappears on drying the paper and leaves the latter hlue, it is a proof that the ncutralisation is not yet complete, aud that the reddish streak was due only to the action of the earhonie aeid; more acid must aecordingly be poured from the alkalimeter, hut one drop only at a time, stirring after cach addition, until at last the liquor assumes a distinet red or pink eolour, which happens as soon as it eoutains an cxtremely slight cxeess of acid; the streaks made now upou the litmus-paper will remain permanently red, cven after drying, and this indieates that the reaetion is eomplete and that the assay is finished.
44. If the potash under examination werc perfeetly eaustic, the solution would suddenly ehange from blue to pink, because there would be no evolutiou of carbonie aeid at all, and eonsequently no viuous or purple colour produced; if, ou the other hand, the potash was altogether iu the state of bicarbouate, the first drops of test
acid would at once dccompose part of it aud liberate earbonic acid, and impart a vinous colour to the solution at the very outset, which vinous colour would persist as long as any portion of the hicarbonate would remain undecomposed.
45. The neutralising point being attained, the operator allows the sides of the alkalimeter to drain, and he then reads off the number of divisions which have becn employed. If, for cxample, 50 divisions have been used, then the potash examined contained 50 pcr cent. of real potash. See observ., § 48-49.
46. Yct it is advisable to repeat the assay a second time, and to look upon this first determination only as an approximation which enables the operator, now that he knows about where the point of ncutralisation lies, to arrive, if need be, by increased caution as he reaches that point, at a much greater degree of precision. He should accordingly take again an alkalimeter full (1000 water-grains' measure) - that is to say, another tenth part of the liquor left in the 10,000 grains' measure - and add thereto at once 48 or 49 alkalimetrical divisions of the test acid, and after having thoroughly agitated the mixture, proceed to pour the acid carefully, two drops only at a time, stirring after such addition, and touching a strip of litmus-paper with the end of the glass rod used for stirring; and so he should go on adding two drops, stirring, and making a streak on the litmus-paper, until the liquor assumes suddenly a pink or onion-red colour, and the streak made on the litmus-paper is red also. The alkalimeter is then allowed to drain as before, and the operator reads off the number of divisions employed, from which number 2 drops (or $\frac{2}{10}$ ths of a division) should be deducted; Gay-Lussac having shown that, in alkalimetrical assays, the sulphatcs of alkalis produced retard the manifcstation of the red colour in that proportion. One alkalimetrical division generally consists of 10 drops, but as this is not always the case, the operator should determine for himself how many drops are necessary to make up one division, and take account of them in the assay according to the ratio thus found. In the example given before, and supposing 10 drops to form one alkalimetrical division, then the per-centage value of the sample of potash under examination would probably be as follows : -

Number of divisions of acid employed			$0 \cdot 0$
- 2 drops acid in excess	-	-	$0 \cdot 2$
Real per-centage of potash	-	-	49.8

47. When the alkalimeter described in $f i g .24$ is employed, the test acid may, at the beginning of the expcriment, be poured from the larger opening, e; but towards the end - that is, when the neutralising point is approaching - the acid should be carefully poured from the point, D , in single drops, or only two drops at a time, until the saturating point is bit, as we have just said. If the operator wishes to pour only one drop, he should close the larger opening, E , of the bulb with the thumb, and then fill the bulb with the test acid by inclining the alkalimeter; putting now the alkalinetcr in an upright position, and removing the thumb, a certain quantity of acid will be retained in the capillary point, D ; and if the thumb be now pressed somewhat forcibly against the opening, E , the acid contained in the capillary point will be forced out and form one drop, which will then fall into the alkaline solution if it be held over it. If the saturation be complete, the operator, without removing the bulb stopper, may, by applying his lips to the large opening, E, suck the acid engaged in the capillary point back into the alkalimeter.
48. If there should be iu the mind of the operator any doubt as to what is meant by the onion-red colour which the liquor tinged blue with tincture of litmus acquires when slightly supersaturated, he may pour into a glass beaker a quantity of pure water equal to, or even larger than, the alkaline solution operated upon, and tinge it bluc with a little tincture of litmus, to about the same degree of intensity as the alkaline liquor under examination. If he now pour into the pure water coloured blue with litmus, one single drop of the test acid, it will acquire at once, by stirring, the onionred colour alluded to, and which he may now use as a standard of comparison.
49. Considering the rapidity with which these alkalimetrical operations can be performed, the operator, unless he have acquired sufficient practice, or unless a great degree of accuracy be not required, should repeat the assay two or threc times, looking upon the first determination only as an approximation, and as a sort of guide as to the quantity of acid which will be required in the subsequent experimeuts, whereby he will now be cnabled to proceed with increased caution as he approaches the point of saturation; but, at any rate, if he will not take the little extra trouble of a repetition, he should, before he begins to pour the acid, take a little of the filtered alkaline solution out of the glass beaker, as a corps de reserve, which he adds to the rest after the saturating point has been approximated, and from that moment he may proceed, but witl great care, to complcte the neutralisation of the whole.

ALKALIMESRY.

50. Do not forget that as the test sulphuric aeid must always be added in slight exeess to obtain a distinet red streak on the litmus-paper, a correction is absolutely necessary; that is to say, the excess of sulphuric acid employed must be dedueted if a strictly accurate result is sought.
51. If, instead of the speeial alkalimeter for potash ahove described, the operator prefers using that prepared of such a strength that 100 divisions of the alkalimeter (100 water.grains' measure) contain exactly one cquivalent of eaeh alkali or hase, which test sulphurie aeid, as we have seen, has a specific gravity of 1.032 (see $\S \S 31-36$), he should proeeed cxactly as indicated in § 38, and following; and the alkalimeter being filled with that test acid, of specific gravity 1.032 up to 0°, it (the acid) should be poured carefully into the aqueous solution of the alkali tinged hlue with litmus, until exact neutralisation is attained, preeisely in the same manner as in § 38 , and following.
52. The neutralising point heing hit, let us suppose that the whole of the contents of the alkalimeter havc been employed, that the aqueous solution tinged hlue with litmus, is not yet saturated, and that, after having refilled the alkalimeter, the 4 divisions more (altogether 104 divisions) have heen required to neutralise the alkali in the aqueous solution; then, since 100 divisions (1000 water-grains' measure) of the test acid now employed saturate exactly one equivalent, that is, 47 of potash, the question is now, What quantity of potash will have heen saturated by the 104 divisions of acid employed ? The answer is found, hy a simple rulc of proportion, to he nearly 49 .

$$
100: 47:: 104: x=48.88
$$

The sample of potash cxamined contained, therefore, nearly 49 per cent. of purc potash.
53. If instead of the special test sulphurie aeid for potash ($\S 17$), or of the test sulphuric acid for potash, soda, and other hases (§ 28), the operator uses the potash and soda alkalimeter ($\S(31-36$), the method to he followed is exactly similar to that deseribed in $\S 42$ and following. Some of the test sulphurie acid, of speeifie gravity $1 \cdot 1268$, is to be poured into the alkalimeter until it reaches the point marked "potash" (that is to say, 48.62 divisions of the alkalimeter), taking the under line of the liquid as the true level, and the remaining divisions up to 0° are earefully filled with watcr. The operator then closes the aperture of the alkalimeter with the thumb of his left hand, and the whole is violently shaken so as to ohtain a perfeet mixture.
54. The acid so mixed must now he carefully poured from the alkalimeter into the alkaline solution of the potash under examination until neutralisation is attained, precisely as deserihed $\S 42$ and following.
55. The neutralising point heing hit, the operator allows the sides of the alkalimeter to drain, and he then reads off the numher of divisions employed in the experiment. which number indicates the per-centage of real potash contained in the sample.
56. Had the operator wished to estimate the quantity of potash as earbonate of potash, he should have poured the test acid into the alkalimeter up to the point marked "carbonate of potash," filled the remaiuing divisions of the alkalimeter up to 0° with watcr, and proceeding exactly as just mentioned, the number of divisions of acid employed would indicate the per-centage of potash eontained in the sample as earhonate of potash.
57. If a Schüster's alkalimeter (fig. 26) be used, and supposing, for example, tlat the aeid to be employed therewith is so adjusted that 10 grains weight of it neutralise exaetly 1 grain in weight of potash, proeeed as follows:-Take 100 grains in weight of a fair average of the sample, previously redueed to powder, dissolve them in water, filter with the precautions whieh have already heen described hefore (§ 38 and following), and pour this solution into a glass cyliuder graduated iuto 100 parts, and capable of containing 10,000 water grains; fill it up with watcr exaetly as deseribed before; of this take now 100 alkalimetrical divisions, that is to say, $\frac{1}{10}$ th of the whole solution, and pour it in a glass heaker. On the other haud, charge the Schüster's alkaliueter with a certain quantity of the test acid, and weigh it, along with the alkaliueter itself, in a good halance. This done, proeeed with the neutralisation of the solution in the glass beaker, hy pouring the acid from the alkalimeter iu the usual way, and with the usual precautions, until the saturation is completed. Replace the alkalimeter, with the quantity of uneonsumed acid, in the scale of the balanee, weigh accurately, and sinee every grain of acid represents $\frac{1}{10}$ th of a grain of potash, the number of grains of aeid used in the experiment indicates at once the per-eentage of real potash present in the sample.
58. When, however, potash is mixed with soda, as is frequently the case with the potash of eommerce, either accidcutally or for frauduleut purposes, the determination of the amount of the cheaper a!kali could not, until a eomparatively reeent period, be estimated, exeept by the expeusive and tedious proecss of a regular cleunical analysis.

In 1844, however, M. Edunund Pesier, professor of Chemistry at Valencienncs, published an easy and commercial method for the estimation of the quantity of soda which potash may contain, by means of an arcometer of a peculiar construction, to which the name of "Natrometer" has been given by the talented professor.
59. The rationale of the method is grounded upon the increase of specific gravity which sulphate of soda produces in a solution saturated with pure sulphate of potash, and is deduced from the fact that a solution saturated with neutral sulphate of potash possesses a uniform and constant density when the saturation is made at the same temperature, and that the density of such a solution increases progressively in proportion to the quantity of sulphate of soda present; an increase of density so much the more readily observable, that the solubility of the sulphate of potash is greatly augmented by the preseuce of sulphate of soda. It had at first been thought that, in order to obtain anything like accuracy, it would be necessary to combine all the potash with one same acid, preferably sulphuric acid; and, consequently, that as the potash of commerce always contains a little, and sometimes a rather considerable quantity, of chloride of potassium, the latter salt should first be decomposed. Further experiments, however, established the fact, that in dissolving chloride of potassium in a saturated solution of sulphate of potash, the specific gravity of the liquor is not materially increased, since the introduction of as much as 50 per cent. of chloride of potassium does not increase that density more than 3 per cent. of soda would do when examined by the natrometer -a degrec of accuracy quitc sufficient for commercial purposes. When soda is added to a saturated solution of sulphate of potash, the further addition of chloride of potassium thereto renders the specific gravity of the liquor less than it would have been without that addition -an apparent anomaly due to the fact that chlorine, in presence of sulphuric acid, of potash, and of soda, combines with the latter base to form chloride of sodium; and it is this salt which increases the solubility of sulphatc of potash, though in a somewhat less degree than sulphate of soda. Thus, if to a saturated solution of sulphate of potash 0.14 of soda be added along with 0.20 of chloride of potassium, the natrometer indicates only 0.125 of soda Seeing, therefore, that in such an exceptional case the error does not amount to more than 0.015 of error, it will probably be found unnccessary in most cases to decompose the chloride contained in the potashes of commerce, that quantity being too small to materially affect the result. Yet, as the accurate determination of soda in potash was a grcat desideratum, M. Pesier contrived two processes, one of which, in the hands of the practised chemist, is as perfect as, but much more rapid than, those ordinarily resorted to; the other, which is a simplification of the first, yields results of sufficient accuracy for all comnercial purposes.
60. First process. - Take 500 grains of a fair average sample of the potash to be examined, dissolve them in as little water as possible, filter, and wash the filter until the washings are no longer alkaline. This filtering, however, may be dispensed with when the potash is of good quality and leaves but a small residue, or when an extreme degree of accuracy is not required.
61. The potash being thus dissolved, a slight excess of sulphuric acid is added thercto; the excess is necessary to decompose the chlorides and expel the muriatic acid. The liquor so treated is then evaporated in a porcelain capsule, about six inclies in diameter; and when it begins to thicken, it should be stirred with a glass rod, in order to avoid projections. When dry, the fire must be urged until the residuc fuses, aod it is then kept in a state of tranquil fusion for a few minutes. The capsule should then be placed upon, and surrounded with, hotsand, and allowed to cool down slowly, to prevent its cracking, which would happen without this precaution.
62. The fused mass in the capsulc having become quite cold should now be treated with as little hot water as possible, that is to say, with less than 3000 grains of hot water; and this is best done by treating it with successive portions of fresh water. All the liquors thus successively obtaincd should then be poured into a flask capable of holding about 10,000 grains of water, and the excess of sulphuric acid must be accurately neutralised by a concentrated solution of pure carbonate of potash-that is to say, until the colour of litmus-paper is no longer affceted by the liquor, just as in ordinary alkalimetrical or acidimetrical assays. During this operation, a pretty considerable prccipitate of sulphate of potash is, of course, produced.
63. The neutralising point bcing exactly hit, a saturated solution of sulphate of potash is prepared, and brought to the atmospheric temperature; a condition which is expedited by plunging the vessel which contains the solution into a basin full of cold water, and stirring it until the thermometer plunged in the liquor indicates that the temperature of the lattcr is about the same as, and preferably less than, that of the air, becanse in the lattcr case it may be quite correctly adjusted by grasping the vessel with a warm hand. In order, however, to sccure cxactly the proper temperaturc, the whole should be left at rest for a few minutes after having withdrawn the

ALKALIMETRY.

vessel from the basin of cold water used for refrigerating it, taking care sinply to stir it from time to time, aud to aseertain that the thermometer remains at the same
 degree of temperature. This done, the liquor is filtered into a glass cylinder, c, on which a seratch, II-I, has been made, corresponding to 3000 watergrains' measure. If the directions given have been exaetly followed, it will be found that the filtrate is not suflicient to fill it up to that mark; the necessary volume, however, should be completed by washing the deposit of sulphate of potash in the filter, B, with a saturated solution of the same salt (sulphate of potasli) previously prepured. It B is advisable to use a saturated solution of sulphate of potashi which has been lsept for some time, and not one immediatcly prepared for the purpose, beeause sulphate of potash in dissolving produces a certain amount of eold, which would ereate delay, since it would be necessary to wait until the temperature of the mass had become the same as that of the air.
64. The liquor occupying 3000 water-grains' measure in the eylinder shonld be next rendered homogeneous by stirring it well, after which the natrometer may be immersed in it. The natrometer is simply an areometer of a peculiar construction, provided with two seales: the one of a pink colour shows the degrees of temperature, and indicates, for each degree of the centigrade thermometer, the level at which a solution saturated with pure sulphate of potash would stand; on the other seale, each degree represents 1 per cent. of soda (oxide of sodium), as represented in fig. 32.
65. The 0° of the two seales coincide with each other. If the experiment take place at the temperature of 0°, the quantity of soda will be direetly determined by obscrving the number of degrees on the soda scale; but if the experiment be performed at 25°, for example, it will be seen that the point at which the instrument would sink in a liquor saturated with pure sulphate of potash corresponds to $\frac{9}{100}$ th of soda, and, in this case, it is from this point that the 0° of the soda scale should be supposed to begin, which is easily accomplished by a simple subtraction, as will be seen presently.
66. Experimeut having shown that the degrees of soda cannot be equidistant, but that, on the contrary, they become smaller and smaller as the quantity of soda inereases, the number of degrees of soda are obtained as follows : -From the number of degrees of temperature now indicated on the pink seale of the natrometer, subtract the number of degrees of temperature indicated by an ordinary thermometer at starting; then look at the soda scale for the number of soda degrees which correspond to the number of degrees of temperature left after subtraction, and each of the soda degrees, beginning from the 0° of the natrometer, represents 1 per ceut.
67. For example : - Suppose the experiment to have been made at starting, and as indieated by an ordnary thermometer, at $+20^{\circ}$ centigrades, and that the level of the solution is now found to stand at 59° on the pink seale of temperature of the natrometcr, then by deducting 20 (the original temperature) from 59 (number of degrees indicated by the floating point on the pink seale of temperaturcs of the natrometer) there remains, of course, 39. Draw the instrument out, and looking now on the said pink seale for 39°, there will be found exactly opposite, on the soda seale, the uumber 13, which number signifies that the potash under examination coutains 13 per cent. of soda (oxide of sodium).
68. As the deposit of sulphate of potash separated by filtering might retain some sulphate of soda, it is advisable, in order to avoid all chance of error, to wash it with a saturated solution of sulphate of potash, adding as much of it as is necessary to bring the whole mass of the liquor up to the mark 3000 water-grains' measures, in which the natrometer being again immersed, the miuute quautity of soda indicated shonld be added to the per-centage found by the first operation.
69. If a great degree of aceuracy is required, the fractions of degree of the instrument must be taken account of ; otherwise they may be neglected without the result being matcrially affected, sinee 3 degrees of the seale of temperature correspond only to about 1 per cent. of soda.
70. For commereial purposes, the process may be slightly varicd, as follows:Take 500 grains of a fair average sample of the potash to be examined, previously rednced to powder, and throw them into a llask, a (fig. 33), capable of containing about 6000 grains of water ; pour upon them about 2000 grains of water, and shake until dissolved. Add now sulphuric aeid thereto ; this will produce a smart
effervescence, and in all probability a deposit of sulphate of potash. We say in all probability, because it is clear that if the potash in question is largely adulterated with soda, or was altogether nothing else than carbonate of soda, as has occasionally happened, it is cvident that no deposit of sulphate of potash would take place; and yet as it is necessary to the success of the operation that the liquor should contain an excess of this latter salt, a certain quantity of it previously reduced to fine powder must in that case be purposely added to the solution.
71. After the disengagement of gas has ceased, it is necessary to pour the dilute acid cantiously, and only drop by drop, until the neutralising point is correctly hit, which will be known as usual by testing with litmus-paper. But if, by accident, too much acid have been used, which is known by the reddening of the litmus-paper, the slight overdose may be neutralised by adding a small quantity of weak solution of potash.
72. As this reaction produces heat, it is neccesary to lower the liquor down to the temperature of the atmosphere, decant in a filter placed over the glass cylinder, and fill it up to the scratch 3000 , by washing the residue on the filter with a saturated solution of sulphate of potash, exactly as described in $\S 63$.
73. The glass cylinder being properly filled up to the scratch, remove the funnel, close the orifice of the glass cylinder with the palm of the hand, and shake the whole violently; holding the natrometer, which should be perfectly clean, by its upper extremity, slowly immerse it in the solution. If the potash under examination be pure, the pink scale will indicate the degree of temperature at which the experiment has been made, taking the under line as the true level of the liquid ; but if, on
 the contrary, it contains soda, the pink scale of temperatures will indicate a few degrees more than the real temperature, and this surplus number of degrees, being compared with those of the soda scale contiguous to i t, on the opposite side, will express the per-centage of soda present in the sample.
74. For example :-Suppose the experiment to have been made at $+12^{\circ}$ Centigrade and to have given a solution marking 25° on the pink scale of temperatures of the natrometer, that is 13° more than the real temperaturc; -looking therefore at number 13 on the pink scale of temperature, it will be seen that the number exactly opposite on the soda scale, and corresponding to it, is 4, which indicates that the sample of potash examined contains 4 per cent. of soda.
It is important to bear in mind that all commercial potashes contain naturally a small quantity of soda, which quantity, in certain varieties, may even be considerable : it is only when the proportion of soda is more considerable than that which is naturally contained in the species of potash submitted to analysis, that it should be considered as fradulently added. The following Table, published by M. Pesier, shows the average composition of the principal varieties of potash found in commerce, when in an unadulterated state.

> Average Composition of Potashes.

[^18]
ALKALIMETRY.

75. The alkalimetrical assay of soda is performed exactly in the same manner as that of potash-that is to say: From a fair average sample of the soda to be examined, take 1000 grains' weight, (or less if that quantity eannot be spared,) and boil it five or six miuutes in about eight fluid ounces of water, filter in order to separate the insoluble portion, and wasli the residue on the filter with boiling water until it no longer drops from the filter with an alkaline reaction, and the bulk of the filtered liquid and the washings received in a graduated glass eylinder form 10,000 grains measure. Should the water which may have been required to wash the residue have inereased the bulk of the solution beyond that quantity, it should be cvaporated to reduee it to the bulk mentioned.
76. This bcing done, 1000 water-grains' measure - that is to say, $\frac{1}{10}$ th part of the aqueous solution of the soda ash above mentioned ($\S 75$)-are transferred to the glass beaker or vessel in which the saturation is intended to take place, it is tinged distinctly blue with tincture of litmus, and the operation is performed in the same mauner and with the same precautions as for potash, the glass beaker containing the blue alkaline solution being placed upon a sheet of white paper, or a slab of white porcelain, the better to observe the change of colour which takes place when the saturating point is approaehing.
77. Having put into a glass beaker the 1000 grains' measure of the aqueous solution of soda ash to be examined ($\S 75$), and if the test sulphuric acid for soda, described before ($\$ \S 23-27$) the alkalimeter, fig. 23,24 , or 25 , should be filled with that test acid up to the point marked 0° (taking the under line of the liquid as the true level), and pourcd thercfrom with the prccaution already indicated, stirring briskly, at the same time, the liquid in the beaker. As is the case with the alkalimetrical assay of potash, the earbonic acid expelled by the test acid reacting upon the as yet undecomposed portion of the soda ash, converts it iuto bicarbonate of soda, so that at first no effervescence is produced ; but as soon as half the quantity of the soda in the solution is saturated, a brisk effervescence takes place. At first, therefore, the operator may pour at onee, without fear, a pretty large quantity of the test acid into the alkalixe solution, but as soon as this efferveseence makes its appearance he should proceed with increased preeaution gradually as the saturating point is approached. The modus operandi is, in faet, precisely as already detailed for the assay of potash, precisely the same kind and amount of care is requisite, and the assay is known to be terminated when the streaks made upon the litmus-paper with the stirring rod remain distinctly and permanently of a pink colour.
78. After saturation, and after having allowed the sides of the alkalimeter to drain, the number of divisions at which the test acid stands in the alkalimeter indicate at once the per-eentage of the soda assayed, sinee, as we said, each division of this particular test aeid represents one grain of pure soda. If, therefore, the test acid stands at 52 in the alkalimeter, then the soda assayed contained 52 per cent. of real soda. See, besides, the observations of $\S 48$ and following, and also § 81 .
79. If, instead of the special test acid for soda just alluded to, the operator employs that which has a speeifie gravity of $1 \cdot 032$, and 100 alkalimetrieal divisions of which saturate one equivalent of each base, the modus operandi is the same-that is to say, the alkalimeter is filled with it up to 0°, and it is poured therefrom carcfully into the alkaline solution; but as the equivalent of soda is 31, and 100 alkalimetrical divisions of the test sulphuric acid now employed are capable of saturating only that quantity of soda, it is clear that with the soda ash taken as an cxample in the preceding ease, and containing 52 per cent. of real soda, the operator will have to refil his alkalimeter with the same test acid, and that a certaiu number of divisions of this seeond filling will lave to be employed to perfect the saturation. In this instance the operator will find that nearly 68 divisions more, altogether 168 divisions (eorreetly, $167^{\circ} .74$) have been required to effeet the saturation.
80. If, instead of the special test sulphurie acid for soda ($\$ \S 23-27$), or the test sulphurie aeid for potash, soda, and other bases ($\S \S 31-34$), the operator uses the potash and soda alkalimeter ($\$ \S 28-35$), the method is always the same ($\$ \$ 74,75$) that is to say, the aqueous solution of the soda ash is poured into the glass beaker, the difference being merely, that instcad of the alkalimeter being quitc filled up with the test sulphurie aeid, whiel, in the present instanee, has a specific gravity of $1 \cdot 268$ (§ 29), the said test acid is pourcd into the alkalimeter ouly up to the point marked "soda" (taking the under-linc of the liquid as the true level), and the remaining divisions of the alkalimeter arc carcfully filled up with water. The mouth of the tube should then be thoroughly closed with the thumb of the left laand, and the whole violently shaken until perfectly mised, taking great carc, of course, not to squirt any of the acid out of the tube, which evidently would cause an amount of error proportionate to the quantity of the test aeid which would have thus been lost. The acid should then be poured frou the allkalimeter with the nsual preeaution
($\$ 76$) into the glass beaker containing the aqueous solution of the soda ash under examiuation, until complete neutralisation is attained, stirring briskly all the time, or after each addition of the test acid. The neutralisation point being hit, the sides of the alkalimeter are allowed to drain, and the operator then reads off the number of divisious employed, which number indicates the per-centage of real soda contained in the sample assayed. Thus, if the sample operated upon be the same as that alluded to before, the number of divisions employed being 52 would indicate 52 per cent. of real soda.
81. If the operator wishes to estimate the amount of soda in the sample as carbonate of sodu, he should fill the alkalimeter with the test acid in question (specific gravity 1.268) up to the point marked carbonate of soda, and fill the remaining divisions with water, shake the whole well, and proceed with the neutralisation of the aqueous solution of the sample in the glass beaker as just described. Supposing, as before, that the sample in question contains 52 per cent. of real soda, it will now be found that the number of divisions employed altogether to saturate the sample completely are very nearly 89 , for 52 of caustic soda correspond to 88.90 of the carbonate of that alkali.
82. If the soda ash is very poor, instead of operating upon 1000 water-grains' measurc, or one-tenth part of the whole solution ($=100$ grains' weight of the soda ash, $\S \$ 76-77$), it is advisable to take three or four thousand water-grains' measure of the alkaline solution, and to divide, by three or four, the result obtained by saturation. Suppose, for example, that the quantity of real soda found is 46 ; this, if only 1000 grains' measure had beeu taken, would, of course, indicate 46 per cent. ; but as 4000 water-grains' measure of solution have been taken instead, that number 46 must, accordingly, be divided by 4 , which gives $11 \frac{1}{2}$ per cent. only of real soda contained in the sample under examination.
83. The soda ash of commerce contains generally a per-centage of insoluble substances, which are removed by filtering, as we said, and a greater or less quantity of chloride of sodium (common salt) and of sulphate of soda, which, however, do not in the slightest degree iuterfere with the accuracy of the result. But there is a source of error resulting from the presence iu the soda ash of sulphuret of calcium, of sulphite, and sometimes also, though morc rarely, of hyposulphite, of soda. When sulphuret of calcium is present in the ash, on heating the latter by hot water, a double decomposition takes place, the sulphuret of calcium, reacting upon the carbonate of soda, forms sulphuret of sodium and carbonate of lime. Now sulphuret of sodium saturates the test acid just as carbonate of soda; but as it has no commercial value, it is clear that if the ash contains a quantity of the useless sulphuret at all considerable, a very serious damage may be sustained by the purchaser if the per-centage of that substance present in the ash be taken account of as being soda. Sulphite of soda is produced from the oxidisation of this sulphuret of sodium, and is objectionable inasunuch that when the test acid is added slowly to the aqueous solution of the ash, the effect is to convert the sulphite into bisulphite of soda, before any evolution of sulphurous acid, and consequently before the pink reaction on litmus-paper is produced.
84. In order to obviate the inaccuracies resulting from the neutralisation of a portion of the test acid by these substances, it is necessary to convert them into sulphates of soda, which is easily done by calcining a quantity of the sample with five or six per cent. of chlorate of potash, as recommended by Gay-Lussac and Welter. The operator, therefore, should intimately mix 50 or 60 grains' weight of pulverised chlorate of potash with 1000 grains of the pulverised sample, and fuse the mixture in a platinum crucible, for which purpose a blowpipe gas-furnace will be found exceedingly convenient. The fused mass should be washed, and the filtrate being received into a 10,000 water-grains' measure, and made up with water to occupy that bulk, may then be assayed in every respect as described before with one or other of the test acids mentioned.
85. When, however, the soda ash contains some hyposulphite of soda - which fortunately is seldom the case, for this salt is very difficultly produced in presence of a very large excess of alkali-it should not be calcined with chlorate of potash, because in that case one equivalent of hyposulphite becomes transformed not into onc equivalent of sulphate, but, reacting upon one equivalent of carbonate of soda, expels its carbouic acid, and forms with the soda of the decomposed carbonate a second equivalent of sulphate of soda, each equivaleut of hyposulphite becoming thus converted into two equivalents of sulphate, and therefore creating an error proportionate to the quantity of the hyposulphite prescut, cach equivalent of which would thus destroy one equivalent of real and available alkali, and thus render the estimation of the sample inaccurate, and possibly to a very considerable extent.
86. When this is the case, it is therefore advisable, aecording to Messrs. Fordos and Gelis, to change the eondition of the sulphurets, sulphites, and hyposulphites, by add-

ALKALIMETRY.

ing a little neutral chromate of potash to the alkaline solution, whence results sulphate of chrominm, water, and a separation of sulphur, which will not affect the accuracy of the alkalimetrieal process.
s7. Whether the sample to he analysed contains any sulphuret, sulphite, or hyposulphite, is easily ascertained as follows:-lf, on pouring sulphurie acid upon a portion of the sample of soda ash under cxamination, an odour of sulphuretted hydrogen -that is, an of odour rotten eggs-is evolved, or if a portion of the soda ash, being dissolved in water, and then filtered, produces a black precipitate (sulphuret of lead) when solution of acetate of lead is poured into it, then the sample contains a sulphuret.
88. And if, after adding to some dilute sulphurie acid as much bichromate of potash as is necessary to impart to it a distinet reddish-yellow tinge, and a certain quantity of the solution of the soda ash under examination being poured into it, but not in sufficient quantity to neutralise the acid, the reddish-yellow colour becomes green, it is a proof that the sample contains either sulphite or hyposulphite of soda, the green tinge being due to the transformation of the chromic acid into sesquioxyde of chromium.
89. And if, muriatic aeid being poured into the clear solution of the soda ash, a turbidness supervenes after some time if left at rest, or at onee if heat is applied, it is due to a deposit of sulphur, an odour of sulphurous acid being evolved, and hyposulphite of soda is probably present. We say probably, because if sulphurets and suiphites are present, the action of muriatic acid would decompose both, and liberate sulphuretted hydrogen and sulphurous acid; but as these two gases decompose each other, a turbidness due to a separation of sulphur is also formed ; thus $2 \mathrm{HS}+\mathrm{SO}^{2}$ $=2 H O+2 S$.
90. As we have already had oceasion to remark, the soda ash of commerce frequently contains some, and oceasionally a large quantity of caustic soda, the proportion of which it is at times important to determine. This may be done, aecording to Mr. Barreswill, by adding a solution of chloride of barium to the aqueous solution of the soda ash, hy which the carbonate of soda is converted into carbonate of barytes, whilst the caustic soda, reacting upon the chloride of barium, liberates a quantity of
 caustic barytes proportionate to that of the caustic soda in the soda ash. A fter this addition of chloride of barium, the liquor is filtered in order to separate the precipitated carbonate of barytes produced, and which remains on the filter, on which it should be washed with pure water. A few lumps of chalk are then put into a Florence flask, a, and some muriatic acid being poured upon it, an effervescence due to a disengagement of carbonic acid is produced, the flask is then closed with a good cork, provided with a bent tube, b, reaching to the bottom of the vessel c, and the stream of earbonic acid produced is then passed through the liquor c, filtered from the carbonate of barytes above mentioned. The stream of carbonic acid produces a preeipitate of carbonate of barytes, which should be also collected on a separate filter, washed, dried, and weighed.
Each grain of this second precipitate of carbonate of barytes corresponds to 0.3157 of caustic soda.
91. As the soda ash of commerce almost invariably contains earthy carbonates, the sample operated upon should always be dissolved in hot water, and filtered in order to separate the carbonate of lime which otherwise would saturate a proportionate quantity of the test acid, and thus render the analysis worthless.
92. The quantity of water contained in either potash or soda ash is ascertained by heating a weighed quantity of the sample to redness in a covered platinum capsule or crueible. The loss after ignition indicates the proportion of water. If any canstie alkali is present, 1 equivalent, $=9$ of water, is retained, which cannot be thus eliminated, hut which may, of course, be determined by ealeulation after the proportiou of caustic soda has been found, as shown before, each 31 grains of caustie soda coutaiuing 9 grains of water.
93. Besides the alkalimetrieal proeesses which have been explained in the preeeding pages, the proportion of available alkali contained in the sample may be estimated from the amount of carbonic acid which can he expelled by supersatinrating the alkali with an acid. The determination of the value of alkalis from the quantity of carbonic acid thus evolved by the supersaturation of the carbonate acted upon las Inng heen known. Dr. Ure, in the "Annals of Philosoplyy," for nctober, 1817, and then in his "Dictionary of Chemistry," 1821, and more reeently in lis pamphlet "Clicmistry Simplified," described several instruments for analysing carthy and alkaline
carbonates, and for a description of which the reader is referred to the article on Acidimetry. The ingenious little apparatus of Drs. Fresenius and Will for the same purpose, and to which we have already alluded in the same article, gives accurate results; but it should be observed that when the potash or soda of commerce contains any eaustic alkali, or bicarbonate, or earthy carbonates, or sulphuret of alkali-which, as we have seen, is frequently, and, indeed, almost invariably, the case, the process is no longer applieable withont first submitting the sample to several operations-which render this proeess troublesome and unsuited to unpractised hands. Thus, if caustic potash is present, the sample must be first mixed and triturated with its own weight of pure quartzose sand and about one-third of its weight of carbonate of ammonia. The mass is then moistened with aqueous ammonia, and then put into a small iron capsule and evaporated to dryness, so as to expel completely the ammonia and carbonate of ammonia. The mass is then treated by water, filtered, washed, and concentrated to a proper bulk by evaporation, transferred to the apparatus, and treated as will he seen presently. If the sample contains caustic soda, instead of one-third, at least half of its weight of carbonate of ammonia should be employed. But for the estimation of pure carbonates, Drs. Fresenius and Will's method is hoth accurate and easy. The apparatus consists of two flasks, Δ and B; the first should have a capacity of from two to two ounces and a half; the second, or flask b, should be of a somewhat smaller size, and hold about onc and a half or two ounces. Both should be provided with perfectly sound corks, each perforated with two holes, through which the tubes a, c, d are passing. The lower extremity of the tube a must be adjusted so as to reach nearly to the hottom of the flask A, and its upper extremity is closed by means of a small pellet of wax $b ; c$ is a tube bent twice at right angles, one end of which merely protrudes through the cork into the flask A, but the other end reaches nearly to the bottom of the flask B. The tube d of the flask B merely protrudes through the cork into the flask.
95. The apparatus being so constructed, a certain quantity - 100 grains, for example - of the potash or soda ash under examination (and which may have been previously dried) is wcighed and introduced into the
 flask A, and water is next poured into this flask to about one-third of its capacity Into the other flask, or flask B, conceutrated ordinary sulphuric acid is poured, and the corks are firmly put in the flasks, which thus become connected, so as to form a twin-apparatus, which is then carried to a delicate balance, and accurately weighed. This done, the operator removes the apparatus from the balance, and applying his lips to the extremity of the tube d, sucks out a few air-bnbbles, which, as the other tube, a, is closed by the wax pellet, rarefies the air in the flask A, and consequently causes the sulphuric acid of flask в to aseend a certain height (after the suction) into the tube c; and if, after a short time, the column of sulphuric acid maintains its height in the tube c, it is a proof that the apparatus is air-tight, and therefore as it should be. This heing ascertained, suction is again applied to the extremity of the tube d, so that a portion of the sulphuric acid of the flask B ascends into the tube c, and presently falls into the flask A, the quantity which thus passes over being, of course, proportionate to the vacunm produced by the suction. As soon as the acid thus falls in the water containing the alkaline carbonate in the flask A, an effervescence is immcdiately produced, and as the carhonic acid disengaged must, in order to cscape, pass, by the tube c, through the concentrated sulphuric acid of the flask B , it is therehy completely dried before it can finally make its exit through the tube d. The effervescence having suhsided, suction is again applied to the tuhe d, in order to cause a fresl quantity of sulphuric acid to flow over into the flask a, as before; and so on, till the last portion of sulphnric acid sucked over produces no effervescence, which indicates, of conrse, that all the carbonate is decomposed, and that, consequently, the operation is at an end. A powerful suction is now applied to the tube d, in order to cause a tolerably large quantity of sulphuric acid, but not all, to flow into the flask A, which thus becomes very hot, from the combination of the concentrated acid with the water, so that the carbonic acid is thereby thoroughly expelled from the solution, The little wax pellet which served as a stopper is now removed from the tuhe d, and suction applied for some timc, in order to sweep the flasks with atmospheric air, and thus displace all the carbonic acid in the apparatus, which is allowed to hecome quite cold, and weighed again, together with the wax pellet, the difference between the first and the second weighing-that is to say, the loss-indicating the quantity of earbonic acied which was contained in the carhonate, which has cscaped, and froou whieh, of
eourse, the quantity of the carbonated alkali acted upon may be ealculated. Suppose, in effect, that the loss is 19 grains : taking the

it is clear that the 19 grains of carbonic acid which have been expelled represent 45.77 grains of earbonate of soda, or, in other words, 100 grains of soda ash operated upon contained 45.77 of real carbonate of soda, thus:-

$$
\begin{array}{ccccccc}
\mathrm{CO}^{2} & \mathrm{NaO}^{1} \mathrm{CO}^{2} & \mathrm{CO}^{2} & & \mathrm{NaO}^{1} \mathrm{CO}^{2} \\
22 & : & 53 & :: & 19 & : & x=45.77
\end{array}
$$

96. As the soda ash of commerce always contains earthy carbonates, and very frcquently sulphurets, sulphites, and occasionally hyposulphites, instead of putting the 100 grains to be operated upon directly into the flask A, it is absolutcly necessary first to dissolve them in boiling water, to filter the solution, and to wash the precipitate which may be left on the filter with boiling water. The solution and the washings being mixed together, should then be reduced by evaporation to a proper volume for introduction into the flask A, and the process is then carried on as described. If sulphuret, sulphites, or hyposulphites are prescnt, the ash should be treated exactly as mentioned in §§ 83-91, previous to pouring the solution into the flask Δ, since otherwise the sulphuretted hydrogen and sulphurous acid, which would be disengaged along with the carbonic acid, would apparently augment the proportion of the latter, and render the result quite crroneous.
97. The balance used for this mode of analysis should be capable of indicating small weights when heavily laden.-A. N.
alkaline earthi - Barytes, Lime, and Strontia. These earths are so called to distinguish them from the carths Magnesia and Alumina. They are soluble in water, but to a much less extent than the alkalies. Their solutions impart a brown colour to turmeric paper, and neutralise acids. They are, however, distinguished from the alkalies by their combination with carbonic acid, being nearly insoluble in water.
ALKANET, the Root of, (Orcanette, Er.; Orkanet, Germ.), Anchusa tinctoria. A species of bugloss, or borage worts, cultivated in the neighbourhood of Montpellier and in the Levant. It is sometimes called the bugloss of Languedoc, or the dyer's bugloss. The anchusa is a rough plant, with downy and spear-shaped leaves, and clusters of small purplc, or reddish flowers, the stamens of which are shorter than the corolla. It affords a fine red colour to alcohol and oils, but a dirty red to water. Its principal use is for colouring ointments, oils, and pommades. The spirituous tincture gives to white marble a beautiful deep stain; but, usually, wax is coloured with the anchusa, and it is applied to the surface of warm marble. It stains it flesh-colour, and the stain sinks deep into the stone.

Alkanet root was analysed by Dr. John, whofound the constituents to be a peculiar colouring matter (pseudo-alkanium), 5.50 ; extractive, 1.00 ; gum, 6.25 ; matters cxtracted by caustic potash, $65 \cdot 00$; woody fibre, $18 \cdot 00$.

The colouring matter resides in the cortical part of the root, and was regarded by Pellctier as a kind of fatty acid (anchusic acid); but it is now usually considered to be a resinoid (anchusine), whose composition is $\mathrm{C}^{35} \mathrm{H}^{20} \mathrm{O}^{8}$.

$$
\begin{array}{lll}
& 1855 . & 1856 . \\
\text { Our Imports of alkanet root were } & -\quad 63 \mathrm{cwts} . \quad 194 \mathrm{cwt} .
\end{array}
$$

AL-KENNA, or AL-HENNA, is the name of the root and leaves of Lawsonia inermis, which have been long employed in the East to dye the nails, teeth, hair, garments, \&c. The leaves, ground and mixed with a little limewater, serve for dyeing the tails of horses in Persia and Turkey.

It is the same as the herb Henna frequently referred to by the Oriental poets. Jhe powder of the leaves, being wet, forms a paste, which is bound on the nails for a night, and the colour thus given will last for several wecks.

This plant is sometimes called the true alkanct root, the alkanct of the shops being termed the spurious alkanet root (radix alkannce spurice).

ALLIGATION. An arithmetical formula, useful on many oceasions for ascertaining the proportion of constituents in a mixture, when they have undergone no ehange of volume by chemical action, or for finding the price or valuc of compounds consisting of ingredients of different values. Thus, it a quantity of sugar worth $8 d$. the pound, and another quantity worth $10 d$, are mixed, the question to be solved by alligation is, what is the value of the misture by the pound. Alligation is of twe
kinds_medial and alternate; medial, when the rate of mixture is songht from the rates and quantities of the simples; alternate, when the quantities of the/simples are sought from the rates of the simples and the rate of the mixture. Webster. TC TO HOUSE,

Al.LIOLE. One of the hydrocarbons which can be obtalise filling crude naphtha, and collecting all that leaves the still in the first distillation before the boiling temperature reaches $194^{\circ} \mathrm{F}$.; and on the second distillation, all below $176^{\circ} \mathrm{F}$. This substance combines with, or is altcred by, oil of vitriol, and hence it is better obtained from the crude naphtha, and afterwards purified by agitation with dilute sulphuric or hydrochloric acid, and redistillation. It boils, when nearly free from benzole, at a temperature of from 140° to $158^{\circ} \mathrm{F}$., and possesses an alliaceous odour somewhat resembling sulphide of carbon.-Richardson.

ALLOTROPY. Allotropic Condition. A name introduced by Berzelius to signify another form of the same substance, derived from $\alpha \lambda \lambda o s$, another, and $\tau \rho \delta \pi \pi o s$, habit. Carbon, for example, exists as the diamond, a brilliant gem, with difficulty combustiblc; as graphitc, a dark, heary, opaque mass, often crystallinc, also of great infusibility; and as charcoal, a dark porous body, which burns with facility.

Sulphur, when melted, is at $230^{\circ} \mathrm{F}$. perfcetly liquid. Being heated to $430^{\circ} \mathrm{F}$., it becomes thick and so tenacious that it can scarccly be poured out of the vessel in which it is melted. When heated to 480° it again becomes liquid, and continues so until it boils. These examples are sufficient to explain the meaning of this term. An extensive series of bodics appears to assume similar allotropic modifications. The probability is that, with the advance of physical and chemical science, many of the substances now supposed to be elementary will be proved to be but allotropic states of some one form of matter. Deville has already shown that silicon and boron exist, like the diamond, in threc allotropic states-one of the conditions of boron being much harder than the diamond.

ALLOY. (Alliage, Fr. ; Legivung, Germ.) From the French allier, to unite or mix ; or the Latin alligo, to bind. This term formerly significd mixing some baser metal with gold and silver, and this meaning is still preserved in reference to coinage ; bnt, in chemistry, it now means any compound of any two or more metals whatever. Thus, bronze is an alloy of copper and tin; brass, an alloy of copper and zinc; and type metal, an alloy of lead and antimony. All the alloys possess metallic lustre, even when cut or broken to pieces; they are opaque; are excellent conductors of heat and electricity; are frequently suseeptible of crystallising; are more or less ductile, malleable, elastic, and sonorous. An alloy which consists of metals differently fusible is usually mallcable when cold, and brittle when hot, as is exemplified with brass and gong metal.

Many alloys consist of definite or equivalent proportions of the simple component metals, though some alloys seem to form in any proportion, like combinations of salt or sugar with water. It is probable that peculiar properties belong to the cquivalent or atomic ratio, as is exemplified in the supcrior quality of brass made in that proportion.

The experiments of Crookewitt upon amalgams appear to prove that the combination of metals in alloys obcys some laws of a similar character to those which prevail between combining bodies in solution ; i.e. that a true combining proportion existed.

By amalgamation and straining through chamois leather, he obtained crystalline metallic compounds of gold, bismuth, lead, and cadmium, with mercury, which appeared to exist in true definite proportions. With potassium he obtained two amalgams, KHg^{20} and $\mathrm{KHg}^{* 5}$. With silver, by bringing mercury in contact with a solution of nitrate of silver, according to the quantity of mercury employed, he obtained such amalgarns as $\mathrm{Ag}^{5} \mathrm{Hg}^{10}, \mathrm{Ag} \mathrm{Hg}^{2}, \mathrm{Ag} \mathrm{Hg}^{3}, \mathrm{Ag} \mathrm{Hg}{ }^{4}$.

Beyond those there are many experiments which appear to prove that alloys are true chemical compounds; but, at the same time, it is highly probable that the truc chemical alloy is very often dissolved (mechanically disseminated) in that metal which is largely in excess.

Some years since, the editor carried out an extensive series of experiments in the laboratory of the Museum of Practical Geology, with the view of obtaining a good alloy for soldicrs' modals, and the results confirmed his views respecting the laws of definite, proportional combination among the metals. Many of those alloys were struck at the Mint, and yiclded beautiful impressions; but therc were many objections urged against the usc of any alloy for a medal of honour.

One metal does not alloy indifferently with cvery other metal, but it is governed in this respect by peculiar affinitics; thas, silver will hardly unite with iron, but it combines readily with gold, copper, and lead. In comparing the alloys with their constituent metals, the following differences may be noted. In general, the ductility of the alloy is less than that of the separate metals, and sometimes in a very remark-
able degree ; on the contrary, the alloy is usually harder than the mean hardness of its eonstituents. The mereurial alloys or analgams are, perhaps, exceptions to this rule.

The speeifie gravity is rarely the mean between that of each of its eonstituents, but is sometimes greater and sometimes less; indicating, in the former ease, a closer eohesion; and, in the latter, a recedure, of the partieles from each other in the act of their union. The alloys of the following metals have been cxanined by Crookewitt, and he has given their specific gravities as in the following Table; the specifie gravity of the unalloyed metals being-

Copper	-	8.794	Zine	-	-
Tin	-	860			
	7.305	Lead	-	- 11.354	

That of the alloys was-

$\mathrm{Cu}^{2} \mathrm{Sn}^{5}$	-	$7 \cdot 652$	Cu Pb	-		10.375
Cu Sn	-	- 8.072	Sn Zn ${ }^{2}$	-		7.096
$\mathrm{Cu}^{2} \mathrm{Sn}$	-	- 8.512	Sn Zn	-		$7 \cdot 115$
$\mathrm{Cu}^{3} \mathrm{Zn}^{5}$	-	- 7.939	$\mathrm{Sn}^{3} \mathrm{Zn}$	-	-	$7 \cdot 23$
$\mathrm{Cu}^{3} \mathrm{Zn}^{2}$	-	- 8.224	$\mathrm{Sn} \mathrm{Pb}{ }^{2}$	-	-	9.965
$\mathrm{Cu}^{2} \mathrm{Zn}$	-	- 8.392	$\mathrm{Sn} \mathrm{Pb}^{\text {P }}$			$9 \cdot 394$
$\mathrm{Cu}^{2} \mathrm{~Pb}^{3}$	-	- 10753	$\mathrm{Sn}^{3} \mathrm{~Pb}$			$9 \cdot 025$

The following Tables of binary alloys exhibit this eircumstance in experimental detail :-
Alloys having a density greater than the mean
of their constituents.
Gold and zine
Gold and tin
Gold and bismuth
Gold and antimony
Gold and eobalt
Silver and zine
Silver and lead
Silver and tiu
Silver and bismuth
Silver and antimony
Copper and zine
Copper and tin
Copper and palladium
Copper and bismuth
Lead and antimony
Platinum and molybdenum
Palladium and bismuth

Alloys having a density less than the mean of their constituents.
Gold and silver
Gold and iron
Gold and lead
Gold and copper
Gold and iridium
Gold and nickel
Silver and eopper
Iron and bismuth
Iron and antimony
Iron and lead
Tin and lead
Tin and palladium
Tin and antimony
Nickel and arsenic
Zine and antimony

There are many points of great physical as well as chemieal interest in connection with alloys, which require a closer study than they have yet received. There are some striking facts, brought forward by M. Wertheim, deduced from experiments carricd on upon fifty-four binary alloys and nine ternary alloys of simple and known composition, which will be found in the "Journal of the French Institute," to which we would refer the reader.

It is hardly possible to infer the melting point of an alloy from that of each of its constituent metals; but, in general, the fusibility is increased by mutual affinity in their state of combination. Of this a remarkable instance is afforded in the fusible metal consisting of 8 parts of bismuth, 5 of lead, and 3 of tin, whieh melts at the heat of boiling water, or $212^{\circ} \mathrm{F}$., though the melting point deduced from the mean of its eoniponents should be $514^{\circ} \mathrm{F}$. This alloy may be rendered still more fusible by adding a little mereury to it, when it forms an exeellent material for anatomieal injeetions. See Fusible Metal.

On the Melting Point of Certain Alloys.

Centrigrade Thermometer.

Tin, 2 atoms; lead, 1 atom -196°	$"$	1	$"$	1	$"-241^{\circ}$
$"$	1	$"$			
$"$	2	3	$"$	-289°	
$"$					

In these experiments of M. Kupffer, the temperatures werc determined with thermometers of great delicacy, and the weighings were earefully carried out.-Ann. de Chimie, xl. 285-302 ; Brewstrr's Edin. Jour. Sci. i. N.S. p. 299.

The colours of alloys do not depend in any considerable degree upon those of the separate metals ; thus, the colour of copper, instead of being rendered paler by a large addition of zinc, is thereby converted into a rich-looking metal, brass.
By means of alloys, we multiply, as it were, the numbers of useful metals, and sometimes give usefulness to such as are separately of little value. Since these compounds ean be formed only by fusion, and that many metals are apt to oxidise readily at their melting temperature, proper precautions must be taken in making alloys to of which surface of the melting metals, the carbon produced by the decomposition to combine tin with iron, as in the tinning of cast-iron tea kettles, we rub sal ammoniac upon the surfaees of the hot metals in contact with each other, and thus exclude the atmospheric oxygen by means of its fumes. When there is a notable difference in the specific gravities of the metals which we wish to combine, we often find great difficulties in obtaining homogeneous alloys; for each metal may tend to assume the level due to its density, as is remarkably exemplified in alloys of gold and silver made without adequate stirring of the melting metals. If the mass be large and slow of cooling, after it is cast in an upright cylindrical form, the metals sometimes separate, to a certain degree, in the order of their densities. Thus, in casting large bells and cannon with copper alloys, the bottom of the casting is apt to contain too much copper and the top too much tin, unless very dexterous manipulation in mixing the fused materials has been employed immediately before the pouring out of the melted mass. When such inequalities are observed, the objects are broken and re-melted, after which they form a much more homogeneous alloy. This artifice of a double melting is often had recourse to, and especially in casting the alloys for the specula of telescopes.

When we wish to alloy three or more metals, we often experience difficulties, either beeause one of the metals is more oxidable, or denser, or more fusible, than the others, or beeause there is no direct affinity between two of the metals. In the latter predieament, we shall succeed better by combining the three metals first in pairs, for example, and then melting the two pairs together. Thus, it is difficult to unite irou with bronze directly; but if, instead of iron, we use tin plate, we shall immediately suceeed, and the bronze, in this manner, aequires valuable qualities from the iron. Thus, also, to render brass better adapted for some purposes, a small quantity of lead is sometimes added to it, but this cannot be done directly with advantage; it is better to melt the lead first along with the zinc, and then to add this alloy to the melting eopper, or the copper to that alloy, and fuse them together.

One of the alloys most useful to the arts is brass; it is more ductile and less easily oxidised than even its copper constituent, notwithstanding the opposite nature of the zine. (See Brass.) This alloy may exist in many different proportions, under which it has different names, as tombac, similor, pinchbeck, \&cc. Copper and tin form compounds of remarkable utility, known under the name of hard brass, for the bushes, steps, and bearings of the axles, arbours, and spindles in machinery; and of bronze, bell-metal, \&c. (See Bronze, \&c.) Gold and silver, in their pure state, are too soft and flexible to form either vessels or coins of sufficient strength and durability; but when alloyed with a little copper, they acquire the requisite hardness and stiffness for these and other purposes. Aluminium has been found by Dr. Percy to possess the same hardening property.

When we have occasion to unite several pieces of the same or of different metals, we employ the proeess called soldering, which consists in fixing together the surfaces by means of an interposed alloy, which must be necessarily more fusible than the metal or metals to be joined. That alloy must also consist of metals which possess a strong affinity for the substances to be soldered together. Hence each metal would scem to require a particular kind of solder, which is, to a certain extent, true. Thus, the solder for gold trinkets and plate is an alloy of gold and silver, or gold and copper ; that for silver trinkets is an alloy of silver and copper ; that for copper is either fine tin, for pieces that must not be exposed to the fire, or a brass alloy called hard solder, of which the zinc forms a considerable proportion. The solder of lead and tinplate is an alloy of lead and tin, and that of tin is the same alloy with a little bismuth. Tinning, gilding, and silvering may also be reckoned a species of alloys, since the tin, gold, and silver are superficially united in these cases to other metals.

Metallic alloys possess usually more tenacity than could be inferred from their constitucnts; thus, an alloy of 12 parts of lead with 1 of zinc has a tenacity double that of zinc.

The colesive force of alloys is well slown in the following Table, in which the results are mostly those obtained by Muschenbroek.*

[^19]ALLOY.

Metallic alloys are much more easily oxidised than the separate metals, a phenomenon which may be ascribed to the increased affinity for oxygen which results from the tendency of the one of the oxides to combinc with the other. An alloy of tin and lead heated to redness takes fire, and continues to burn for some time like a piece of bad turf.

Every alloy is, in reference to the arts and manufactures, a new metal, on account of its chemical and physical properties. A vast field here remains to be explored. Not above 60 alloys have been studied by the chemists out of many hundred which may be made; and of these but few have yet been practically employed. Very slight modifications often constitute valuable improvements upon metallic bodies. Thus, the brass most esteemed by turners at the lathe contains from 2 to 3 per cent. of lead; but such brass does not work well under the hammer; and, reciproeally, the brass which is best under the hammer is too tougl for turning.
M. Chaudet has made some experiments on the means of detecting the metals of alloys by the cupelling furnace, and they promise useful applications. The testing depends upon the appearance exlibited by the metals and their alloys when heated on a cupel. The following were Chaudet's results:-

Metals.-l'ure tin, when heated this way, fuses, becomes of a greyislı-black colour, fumes a little, exhibits incandeseent points on its surface, and leaves au oxide which,
when withdrawn from the fire, is at first lemon-yellow, but, when eold, whitc. Antimony melts, preserves its brilliancy, fumcs, and leaves the vessel eoloured lemonyellow when hot, but colourless when cold, exeept a few spots of a rose tint. Zinc burns brilliantly, forming a cone of oxide; and the oxide, much increased in volume, is, when hot, greenish, but, when eold, perfectly white. Bismuth fumcs, becomes eovered with a eoat of melted oxide, part of whieh sublimes, and the rest enters the pores of the cupel ; when cold, the cupel is of a fine yellow eolour, with spots of a greenish hue. Lead resembles bismuth very much; the eold cupel is of a lemonyellow eolour. Copper melts, and becomes eovered with a coat of blaek oxide; sometimes spots of a rose tint remain on the cupel.
Alcoys. - Tin 75, antimony 25 , melt, beeome eovered with a eoat of black oxide, have very few ineandescent points; when cold, the oxide is nearly blaek, in eonsequence of the action of the antimony ; a $\frac{1}{90}$ th part of antimony may be aseertained, in this way, in the alloy. An alloy of antimony containing tin leaves oxide of tin iu the eupel: a $\frac{1}{10}$ th part of tin may be thus deteeted. An alloy of tin and zinc gives an oxide which, whilst hot, is of a green tint, and resembles philosophers' wool in appearance. An alloy containing 99 tin 1 zinc did not present the incandeseent points of pure tin, and gave an oxide of greenish tint when eold. Tin 95 , bismuth 5 parts, gave an oxide of a grey eolour. Tin and lead give an oxide of a rusty brown colour. An alloy of lead and tin, containing only 1 per eent. of the latter metal, when heated, does not expose a clean surfaee, like lead, but is covered at times with oxide of tin. Tin 75 and copper 25 gave a black oxide: if the heat be much elevated, the under part of the oxide is white, whieh is oxide of tin; the upper part is black, being the oxide of copper, and the eupel beeomes of a rose colour. If the tin be impure from iron, the oxide produced by it is marked with spots of a rust colour.

The degree of affinity between metals may be in some measure estimated by the greater or less facility with which, when of different degrees of fusibility or volatility, they unite, or with which they can, after union, be separated by heat. The greater or less tendeney to separate into differently proportioned alloys, by long-eontinued fusion, may also give some information upon this subject. Mr. Hatchett remarked, in his elaborate researches on metallic alloys, that gold made standard with the usual precautions, by silver, copper, lead, antimony, \&ee., and then cast, after long fusion, into vertical bars, was by no means an uniform eompound; but that the top of the bar, corresponding to the metal at the bottom of the crucible, enntained the larger proportion of gold. Henee, for a more thorough combination, two red-hot erucibles should be employed, and the liquefied metals should be alternately poured from the one into the other. To prevent unneeessary oxidisation from the air, the erueibles should contain, besides the metal, a mixture of eommon salt and pounded charcoal. The metallie alloy should also be oeeasionally stirred up with a rod of earthenware.

When there is a strong affinity between the two metals, their alloy is generally denser than the mean, and vice versâ. This is exemplified, as previously shown, in the alloys of copper with zinc and tin, on the one hand, and with copper and lead on the other. When one of the metals, however, is added in excess, there result an atomic eompound and an indefinite eombination, as would appear from Muschenbroek's experiments. Thus,

l of lead with	4	of silver give a density of	10.480
1	do	2	do
1	do	3	do

The proportion of the eonstituents is on this prineiple estimated in France by the test of the ball applied to pewter ; in which the weight of the alloyed ball is compared with that of a ball of pure tin or standard pervter cast in the same mould. Alloys possess the elasticity belonging to the mean of their constituents, and also the speeifie ealoric.

Aecording to M. Rudberg, while lead solidifies at $325^{\circ} \mathrm{C}$., and tin at 228°, their atomic alloy solidifies at 187°, which he ealls the fixed point, for a eompound $\mathrm{PbSu}{ }^{3}$.

An alloy too slowly cooled is often apt to favour the crystallisation of one or more of its components, and thus to render it brittle; and hence an iron mould is preferable to one of sand when there is danger of sueh a result.

It is not a matter of indifference in what order the metals are melted together in making an alloy. Thus, if we eombinc 90 parts of tin and 10 of copper, and to this alloy add 10 of antimony ; or if we eombine 10 parts of antimony with 10 of eopper, and add to that alloy 90 parts of tin, we shall have two alloys ehemieally the same; and still it will be easy to discover that, in other respeets - fusibility, tenacity, \&e. - they totally differ. Whence this result? Obviously from the nature of their combination, dependent upon the order pursued in the preparation, and whieh eontinues after the mixturc. In the alloys of lead and antimony also, if the heat be raised in eombining
the two metals together much above their fusing points, the alloy beeomes harsh and brittle; probably beeause some alloy formed at that high temperature is not soluble in the mass.

In common eases the specifie gravity affords a good criterion whereby to judge of the proportion of two metals in an alloy. But a very fallaeious rule has been given in some respectable works for eomputing the specific gravity that sloould result from the alloying of given quantities of two metals of known densities, supposing no ehemieal condensation or expansion of volume to take plaee. Thus, it has been taught, that if gold and copper be united in equal weights, the eomputed specific gravity is merely the arithnetical mean between the numbers denoting the two speeific gravities. Whereas, the specific gravity of any alloy must be computed by dividing the sum of the two weights by the sum of the two volumes, compared, for convenieney sake, to water reekoned unity. Or, in another form, the rule may be stated thus:-Multiply the sum of the weights into the products of the two speeific-gravity numbers for a numerator ; and multiply each specifie-gravity number into the weight of the other body, and add the two produets together for a denominator. The quotient obtained by dividing the said numerator by the denominator, is the truly computed mean specific gravity of the alloy. On comparing with that density the density found by experiment, we shall see whether expansion or condensation of volume has attended the metallic combination. Gold having a specific gravity of $19 \cdot 36$, and copper of $8 \cdot 87$, when they are alloyed in equal weights, give, by the fallacious rule of the arithmetieal mean of the densities $\frac{19.36+8.87}{2}=14.11$; whereas the rightly computed density is only 12.16 . It is evident that, on comparing the first result with experiment, we should be led to infer that there had been a prodigious condensation of volume, though expansion has aetually taken place. Let W, we the two weights; P, p the two specifie gravities, then M, the mean specific gravity, is given by the formula

$$
M=\frac{(W+w) P p}{P_{W}+p W} \therefore 2 \Delta=-\frac{(P-p)^{2}}{P+p}=\text { twiee }
$$

the error of the arithmetieal mean; which is thercfore always in excess.
Alloys of a somewhat complex character are made by Mr. Alexander Parkes, of Birmingham, of a white or pale eolour, by melting together $33 \frac{1}{2}$ lbs. of foreign zinc, 64 of tin, $1 \frac{1}{4}$ of iron, and 3 of eopper; or 50 zine, 48 tin, 1 iron, and 3 copper; or any intermediate proportion of zinc and copper may be used. The iron and copper are first melted together in a erueible, the tin is next introduced, in such quantities at a time as uot to solidify the iron and eopper; the zinc is added lastly, and the whole mixed by stirring. The flux reeommended for this alloy is, 1 part of lime, 1 part of Cumberland iron ore, and 3 parts of sal ammoniac.

Another of his alloys is composed of 66 lbs . of foreign zinc, $33 \frac{1}{2}$ tin, $3 \frac{1}{4}$ antimony ; or 70^{3} zine, $19 \frac{1}{2}$ tin, and 2_{4}^{3} antimony; or any intermediate proportions, and with or without arsenic. He uses black flux. When to be applied to the sheathing of ships, from 8 to 16 oz . of metallic arsenic are added to every 100 lbs . of alloy. A third class of alloys consists of equal parts of iron and nickel ; the copper is next added, and lastly the zine, or the copper and zinc, may be added as an alloy. 100 lbs . may consist of $45 \frac{1}{2} \mathrm{lbs}$. of iron and nickel (partes aquales), and $10 \frac{1}{2}$ lbs. of foreign zinc ; or $30{ }^{3} \mathrm{lbs}$. of alloy of iron and niekel ($p . a$.), 46 copper, and $26 \frac{1}{2}$ zine; or any intermediate proportions of zinc and copper. He uscs also an alloy of 60 lbs . of copper, 20 of zinc, and 20 of silver; or 60 copper, 10 nickel, 10 silver, and 20 zinc ; the copper and niekel being first fused together. His fifth alloy is called by him a non-conduetor of heat! It is made of 25 uickel, 25 iron, and 50 copper; or 15 niekcl, 25 iron, and 60 eopper; the last being added after the fusion of the others.

It may prove eonvenient to give a general statement of the more striking peeuliarities of the important alloys. More detailed information will be fouud under the heads of the respeetive metals.

Gold and Silver Alloys. - The British stamdard for gold coin is 22 parts pure gold and 2 parts alloy, and for silver, 222 parts pure silver to 18 parts of alloy.

Ithe alloy for the geld is an indefinite proportion of silver and eopper: some coin has a dark red eolour from the alloy being ehiefly copper; the lighter the colour a larger portion of silver is indieated, sometimes even (when no copper is present) it approaches to a greenish tinge, but the proportion of pure gold is the same in cither case.

The alloy for silver coinage is always eopper; and a very pure quality of this metal is used for alloying, both for the gold and silver coinage, as almost any other
metal being present, even in very small quantities, would make the metals unfit for eoinage, from rendering the gold, silver, and eopper brittle, or not suffieiently malleahle.

The standard for plate (silver) is the same as the coin, and requires the same quantity of copper, and earefully melting with two or three hits of eharcoal on the surfiee whilc in fusion, to prevent the oxidation of the copper by heat and exposure to the atmosphere.

The gold standard for plate and jewellery varies, by a late aet of Parliament, from the 22 earats pure, to 18,12 , and 9 : the alloys are gold and silver, in various proportions aeeording to the taste of the workmen; the colour of the artieles manufaetured depending, as with the coin, on the proportions; if no eopper is used in qualities under 22 earats fine gold, the eolour varies from a soft green to a greenish white, hut a proportion of copper may he used so as to bring the colour to nearly that of 22 fine, 1 silver, and 1 eopper.

Wire of either gold or silver may be drawn of any quality, but the ordinary wire for fine purposes, sueh as lace, eontains from 5 to 9 pennyweights of copper in the pound of 240 pennyweights, to render it not so soft as it would be with pure silver.

Gold, silver, and copper may be mixed in any proportions without injury to the ductility, but no reliahle scale of tenaeity appears to have heen constructed, although gold and silver in almost any proportions may he drawn to the very finest wire.

The alloys of silver and palladium may he made in any proportions; it has been found that even 3 per eent. of palladium prevents silver tarnishing so soon as without it; 10 per cent. very eonsiderahly proteets the silver, and 30 per eent. of palladium will prevent the silver being affeeted hy fumes of sulphuretted hydrogen unless very long exposed: the latter alloy has heen found useful for dental purposes, and the alloy with less proportions-say 10 to 15 per cent.-has been used for graduated seales of mathematieal instruments.
The alloy of platinum and silver is made for the same purposes as those of palladium, and, by proper eare in fusion, are ncarly equally useful, but the platinum does not seem to so perfeetly eomhine with the silver as the palladium. Any proportion of palladium with gold injures the colour, and cven 1 per cent. may be deteeted hy sight, and 5 per eent. renders it a silver eolour, while about 10 per cent. destroys it ; hut the duetility of the alloy is not mueh injured.

Gold leaf for gilding contains from 3 to 12 grains of alloy to the ounce. The gold used hy respeetahle dentists is nearly pure, hut neeessarily contains about 6 grains of eopper to the ounce troy, or $\frac{1}{80}$ th part.

Antimony in the proportion of $\frac{1}{\mathrm{~T} 2 \mathrm{z}=}$ quite destroys the duetility of gold.
Gold and platinum alloy forms a somewhat elastie metal. Hermstadt's imitation of gold eonsists of 16 parts of platinum, 7 parts of eopper, and 1 of zine, put in a erucible, eovered with eharcoal powder, and melted into a mass.-P. J.

Dentists' amalgam is prepared by rubhing together, in a mortar, or even in the hollow of the hand, finely divided silver and mereury, and then pressing out all the uneomhined mereury. This alloy, when put into the hollow of a deeayed tooth, very soon hecomes exeeedingly hard. Dentists use 16 earat gold, which is $\frac{2}{3}$ fine gold, and $\frac{1}{3}$ alloy, the alloy being always nearly equal portions of silver and copper, whieh is not, for these purposes, in the slightest degree injurious.

Copper Alloys.- Copper alloyed with zine forms Brass, and with tin, we have Bronze. (See those artieles.) The alloys of the ancients were usually either hrasses or hronzes. The following analyses of ancient eoins, \&c., by Mr. John Arthur Phillips, are of great value.
It is not a little eurious to find that some of the eoins of high antiquity contain zine, whieh does not appear to have heen known as a metal hefore 1280 A.D., when Alhertus Magnus speaks of zine as a semi-metal, and ealls the alloy of copper and zine golden marcasite; or rather, perhaps, he means to apply that name to zine, from its power of imparting a golden eolour to eopper. The prohability is that ealamine was known from the earliest times as a peeuliar earth, although it was not thought to be an ore of zine or of any other mctal.-See Watson's Chemical Essays.

		ate．									
	H． 0.	A．${ }^{\text {n }}$	Co	Tin．	La	1ron．	Zinc．	Silver．	Sulph．	Nlekel．	Cobalt．
Es－	500	－	69.69	716	21．82						
Semis－－－	500	－	62．04	$7 \cdot 16$	29.32	．17	二	－	trace	trace	－ 57
Quadrans－	500	－	$72 \cdot 22$	$7 \cdot 17$	19.56	－18	－	－	trace	－19	$\cdot 23$
Hiero l．－	470	－	$9+15$	5•49	1950	$\cdot 32$	－	－	trace	－20	－28
Alexander the Great	335	－	86.77	$12 \cdot 99$	－						
Philippus 111.	323	－	$90 \cdot 27$	9.43			－	－	06		
Philippus V．－－	200	－	$85 \cdot 15$	$11 \cdot 12$	$2 \cdot 8.5$	$\cdot 42$	－	－			
Coppicr coin of Athens	？	－	$88 \cdot 34$	$9 \cdot 95$	－63	－ 26			trace		
Egyptian，Ptolcmy 1X．	70	－	$84 \cdot 21$	$15^{\circ} \mathrm{G4}$	－		－	\sim	$\overline{\text { trace }}$	trace	trace
Pompcy，First Brass－	53	－	74．17	$8 \cdot 47$	16．15	$\begin{array}{r}\text { trace } \\ \hline 29\end{array}$	－	－	trace		trace
Coin of the Atilia Family	45	－	68.69	$4 \cdot 86$	$25 \cdot 43$	11	－	－		trace	
Julius and Augustus－ Augustus and Agrippa	42	－－	$79 \cdot 13$	8.00	12.81	trace	－	－	trace		trace
Augustus and Agrippa ${ }^{-}$	30	－	78.45	$12 \cdot 96$	8.62	trace	－	－	trace		
Family－－－$\}$	20	－	82． 26	－	－	－35	$17 \cdot 31$	－	trace		
Sword－blade－－－	－	－	$89 \cdot 69$	$9 \cdot 58$	－	33	－	－	trac		
Broken sword－blade－	－	－	$85 \cdot 62$	10.02	二	－ 44	－	－	trac		
Fraginent of a sword－blade－	－	－	$91 \cdot 79$	$8 \cdot 17$	－	trace	－	－	trace		
Croken spear－head－	－	二	99.71 90.68	－	－	－	－	－	－ 28		
Celt－－－	－	－	$90 \cdot 68$ $90 \cdot 18$	7.43 9.81	1－28	trace	－	－	trace		
Celt－－－	－	－	$89 \cdot 33$	9.81 9.19	－	trace					
Celt－－－	二	－	83.61	1079	$3 \cdot 20$	－ 38	－	－	－ 24		
Large Brass of Nero	－	60	81.07	1.05	－	－	17．81	－	－	trace	$\cdot 34$
Titus－－	－	79	83.04	－	－	－ 50	$15 \cdot 84$				
Hadrian－－	－	120	85.67	$1 \cdot 14$	1－73	． 74	10.85				
Faustina，Jun．－	－	165	$79 \cdot 14$	$4 \cdot 97$	9•18	－ 23	$6 \cdot 27$				
Greek Imperial Samosata	－	212	70.91	6.75	21.96	trace					
Victorinus，Sen．（No．1）	－	262	95.37	－ 99	trace	trace	－	$1 \cdot 60$			
Vietorinus，Sen．（No．2）	－	262	$97 \cdot 13$	－10	trace	$1 \cdot 01$	－	$1 \cdot 76$			
Tetrius，Sen．（No．1）－	－	267	98．50	－ 37	trace	－ 46	－	－76			
Tetrius，Sen．（No．2）－$=$	－	268	98.00	$\cdot 51$	－	．05	－	$1 \cdot 15$			
Claudius Gothicus（No．1）－	－	］ 268	81.60	$7 \cdot 41$	8.11	－		1.86			
Claudius Gothicus（No．2）－ Tacitus（No．1）－	－	$\}^{268}$	84.70	3.01	$2 \cdot 67$	． 31	trace	$7 \cdot 93$			
Tacitus（No．1）－	－		86.08	$3 \cdot 63$	$4 \cdot 87$		－	$4 \cdot 42$			
Tacitus（No．2）－	－	$\}^{275}$	91.46	－	－	231	－	$5 \cdot 92$			
Probus（No．1）－－	－	\} 275	90.68	200	2.33	－61	$1 \cdot 39$	$2 \cdot 24$			
Probus（No．2）－－	－	\} 275	$94 \cdot 65$	$\cdot 45$	45	－ 80	，	$3 \cdot 22$			

Copper，when united with balf its weight of lead，forms an inferior alloy，rescm－ hling gun－metal in colour，hut is softer and cheaper．This alloy is called pot－metal and cock－metal，hecause it is used for large measures and in the manufacture of taps cocks of all descriptions．

Sometimes a small quantity of zinc is added to pot－metal ；hut when this is consi－ derable the copper seizes the zinc to form hrass，and leaves the lead at liherty，a large portion of which scparates on cooling．Zinc and lead are not disposed to unite； but a little arsenic occasions them to comhine．

Of the alloys of copper and lead，Mr．Holtzapffel gives the following description：－
Lead Alloys．－Two ounces lead to one pound copper produces a red－coloured and ductile alloy．

Four ounces lead to one pound copper gives an alloy less red and ductile．Neither of these is so much used as the following，as the object is to employ as much lead as possible．

Six ounces lead to one pound copper is the ordinary pot－metal，called dry pot－metal， as this quantity of lead will be taken up without separating on cooling；this alloy is hrittle when warmed．

Seven ounces lead to one pound copper forms an alloy which is rather short，or disposed to break．

Eight ounces lead to one pound copper is an inferior pot－metal，called wet pot－ metal，as the lead partly oozes out in cooling，especially when the new metals are mixed ；it is therefore always usual to fill the crucible in part with old metal，and to add new for the remainder．This alloy is very brittle when slightly warmed．More lead can scarccly be used，as it scparates on cooling．

Antimony twenty parts and lead eighty parts form the printing－type of France； and lead and antimony arc united in various proportions to form the type－metal of our printers．Scc Type－Metal．

Mr．James Nasmyth，in a letter to the＂Athenæum＂（No．1176，p．511），directed attention to the employment of lead，and its fitness as a substitute for all works of art hitherto executed in bronze or marble．He says the addition of about 5 per cent． of antimony to the lead will give it，not only great hardncss，but cnhanco its capa－ hility to run into the most delicate details of the work．

Baron Wetterstedt＇s patent sheathing for ships consists of lead，with 2 to 8 per cent． of antimony；ahout 3 per cent．is the usual quantity．The alloy is rolled out into shects．－－IIolizap．ffcl．We are not aware that this alloy has ever been employed．

ALLOY.

Emery wheels and grinding tools for the lapidary are formed of an alloy of antimony and lead.

Organ pipes are sometimes made of lead and tin, the latter metal being employed to harden the lead. The pipes, however, of the great organ in the Town Hall at Birmingham are principally made of sheet zinc.

Lead and arsenic form shot-metal. The usual proportions are said to be 40 lbs . of metallic arsenic to one ton of lead.
Tabular Statement of the Physical Peculiarities of the Principal Alloys, adopted, with some alterations, from the "Encyclopédie Technologique."

brittle metals.		
arsentc.	Antimony.	Bismuth.
With Zinc, rendering it brittle.	This alloy is very brittle.	Unknown.
With Iron and Steel,	30 of iron and 70 of anti-	Doubtful.
hardening, whitening, and rendering those metals susceptible of a fine polish : much used for steel chains and other ornaments.	mony are fusible; very hard, and white. An alloy of two of iron and onc of antimony is very hard and brilliant.	
With Gowd, a grey metal, very brittle.	Forms readily a pale-yellow alloy, breaking with a fracture like porcelain.	Similar to antimony; of a yellow-green colour.
With Copper. Composed of 62 parts of copper and 32 arsenic, a grey, brilliant, brittle metal. Incrcasing the quantity of copper, the alloy becomes white and slightly ductile: used in the manufacture of buttons under the name of white copper, or Tombac.	Alloys readily: the alloys are brittle. Those formed with equal parts of the two metals are of a finc violet colour.	Palc-red brittle metal.
With Silver. 23 of silver and 14 arsenic form a greyish - white brittle metal.	Thesc have a strong affinity; their alloys are always brittle.	Alloys brittle and lamcllated.
With Lead. Arsenic renders lead brittle. The combination is very intimate; not decomposed by heat.	Antimony gives hardness to lead. 24 parts of antimony and 76 of lead, corresponding to $\mathrm{Pb}^{2} \mathrm{Sb}$, appear the point of saturation of the two metals.	The alloys of bismuth and lead are less brittle and morc ductile than those with antimony ; but the alloy of 3 parts of lead and 2 of bismuth is harder than lead. These alloys are very fusible.
With Tin. Brittle, grey, lamellated; less fusiblc than tin.	The alloys of antimony and tin are very white. They become brittle When the arsenic is in large quantity.	Tin and bismuth unite in all proportions by fusion. All the alloys are more fusible than tin.
With Mercury. Without interest.	A gritty white alloy.	Mercury dissolves a large quantity of bismuth without losing its fluidity; but drops of the alloy clongate, and form a tail.

DUCTILE METALS.

Inon. With Zxnc. See Galvanised Iron.	Gold. A greenish-yellow alloy, which will take a fine polish.	Coprer. See Brass.	Silver. Silver and zine eombine easily, forming a somewhat
With Iron or Steel. With Gold -	Gold and iron alloy with ease, and form yellowish alloys, varying in colour with the proportions of the metals. Three or four parts of iron united with one of gold is very hard, and is used in the manufacture of eutting instruments.	Iron and eopper do not form true alloys. When fused together, the iron, however, retains a little copper.-Several methods for coating iron with copper and brass will be deseribed.	brittle alloy. When 1 of silver and 500 of stcel are fused, a very perfeet button is formed. - Stodart and Faraday.
With Gold -		Copper and gold alloy in all proportions, the eopper giving hardncess to the gold. This alloy is much used in coin and in the metal employed in the manufaeture of jewellery.	Gold and silver mix easily together; but they do not appear to form a true combination. Jewellers often employ lor vert, which is composed of 70 parts of gold and 30 of silver, whichcorresponds very nearly to the alloy possessing the maximum hardness.
With Copper	--- - -	- - - -	Silver and copper alloyinall proportions. These alloys are mueh used in the arts. The maximum hardness appears to be produced when the alloy contains a fifth of copper.
With Lead, does not appear to form any alloy.	A very brittle alloy. A thousandth pt. of lead is sufficient to alter the duetility of gold.	Do not appear to form a truc alloy.	Unite in all proportions; but a very small quantity of lead will greatly diminish the duetility of silver.
With Tin. A very little iron diminishes the malleability of tin, and gives it hardness.	The alloys of gold and tin are brittle; they preserve, however, some duetility when the proportion of tin does not execed $\frac{1}{12}$.	Of greatimportanee. See Bronze.	Alloys readily. A very small quantity of tin destroys the ductility of silver.
With Mercurx. Mereury has no aetion on iron.	Mereury has a most powerfulaetion on gold. See AmalGAM.	An amalgam which is fornied with difficulty, and without intercst.	The amalgamation of these two metals is a little less energetie than bctween mercury and gold. See Amalgamation.

In addition to these, the alloys of iron appear of sufficient importance to require some further notice.

Iron and Manganese. Mr. Mushet concludes, from his experiments, that the maximum combinations of manganese and iron is 40 of the former to 100 of the latter. The alloy $71 \cdot 4$ of tin and $28 \cdot 6$ of manganese is indiffcrent to the magnet.
Iron and Silver; Steel and Silver.-Various experiments have been made upon alloys of iron and steel with other metals. The only alloys to which sufficient importance has been given are those of iron and silver and steel and silver. M. Guyton states, in the "Annales de Chimie," that he found iron to alloy with silver in greater quantity than the silver with the iron. "Iron can," he says, "therefore no longer be said to refuse to mix with silver; it must, on the contrary, be acknowledged that those two metals, brought into perfect fusion, contract an actual chemical union; that, whilst cooling, the heaviest metal separates for the greatest part; that notwithstanding each of the two metals retains a portion of the other, as is the case in every liquation, that the part that remains is not simply mixed or interlaid, but chemically united; lastly, that the alloy in these proportions possesses peculiar properties, particularly a degree of hardness that may render it extremely useful for various purposes."
The experiments of Faraday and Stodart on the alloys of iron and steel are of great value ; the most intcresting being the alloy with silver. The words of these experimentalists are quoted:-
"In making the silver alloys, the proportion first tried was 1 silver to 160 steel; the resulting buttons were uniformly steel and silver in fibres, the silver being likewise given out in globules during solidifying, and adhering to the surface of the fused button; some of these, when forged, gave out more globules of silver. In this statc of mechanical mixture the little bars, when exposed to a damp atmosphere, evidently produced voltaic action; and to this we are disposed to attribute the rapid destruction of the metal by oxidation, no such destructive action taking place when the two metals are chemically combined. These results indicated the nccessity of diminishing the quantity of silver, and 1 silver to 200 steel was tried. Here, again, were fibres and globules in abundance ; with 1 to 300 the fibres diminishcd, but still were present; they were detected even when 1 to 400 was used. The successful cxperiment remains to be named. When 1 of silver to 500 steel were properly fused, a very perfect button was produced ; no silver appeared on its surface ; when forged and dissected by an acid, no fibres were seen, although examined by a high magnifying powcr: The specimen forged remarkably well, although very hard; it had in every respect the most favourable appearance. By a delicate test cvery part of the bar gave silver. This alloy is decidedly superior to the very best steel ; and this excelleuce is unquestionably owing to a combination with a minute quantity of silver. It has been repeatedly made, and always with equal success. Various cutting tools have been made from it of the best quality. This alloy is, perhaps, only inferior to that of steel and rhodium, and it may be procured at small expense; the value of silver, where the proportion is so small, is not worth naming ; it will probably be applied to many important purposes in the arts."
Messrs. Faraday and Stodart show from their researches that not only silver, but platinum, rhodium, gold, nickel, copper, and even tin, have an affinity for steel sufficiently strong to make them combine chemieally.
Iron and Nickel unite in all proportions, producing soft and tenacious alloys. Some few years since, Mr. Nasmyth drew attention to the combination of silicon with steel. Fresh interest has been excited in this direction by the investigations of a French chemist, M. St. Claire Deville, who has examined many of the alloys of silicon.
Suicon and Iron combine to form an alloy which is a sort of fusible steel in which carbon is replaced by silicon. The siliciurets are all of them quite homogeneous, and are not capable of being separated by liquation.

Copper and Stlicon unite in various proportions, according to the same chemist. A very hard, brittlc, and white alloy, containing 12 per cent. of silicon, is obtained by melting together three parts silico-fluoride of potassium, one part sodium, and onc part of copper, at such a temperature that the fused mass remains covered with a very liquid scoria. The copper takes up the whole of the silieon, and remains as a white substance less fusible than silicon, which may serve as a base for other alloys. An alloy with 5 per cent. silicon has a beautiful bronze colour, and will probably receive important applieations.
Mr. Oxland and Mr. Truran have given, in "Metals and their Alloys," the following useful tabular view of the composition of the alloys of copper.

The principal alloys of copper with other metals are as follows :-

	Copper.	$Z \mathrm{inc}$.	Tin.	Nickel.	Antimony.	Lead.
Antique bronze sword springs	$\begin{array}{\|l\|l\|l\|} 87.000 \\ 97.000 \end{array}$		13.000 3.000			
Bronze for statues -	91.400	${ }_{5} 5330$	1.700	- -	- -	1.370
" for medals	90.000		10.000			1370
" for cannon	$90^{\circ} 000$		10.000			
" for cymbals	78.000	- -	22.000			
" for gilding	82.257	$17 \cdot 481$	0.238		- -	0.024
Speculum metal	81.000 66.000	$16 \cdot 500$	$2 \cdot 500$ $33 \cdot 000$			1.000
Brass for sheet -	84:700	15:300				
Gilding metal -	73.730	27.270				
Pinchheck	80.200	20.000				
Prince's metal -	75.000	25.000				
Dutch metal	50.000 84.700	$50 \cdot 000$ $15 \cdot 300$				
English wire -	70.290	29.260	$0 \cdot 17$	- -		0.28
Mosaic gold - - -	$66 \cdot 000$	33.000				028
Gun metal for bearings, stocks, \&c.	90:300	9.670	0.03			
Muntz's metal - -	60.000	$40 \cdot 000$				
Good yellow brass -	66.000	33.000				
Babbitt's metal for bushing	$8 \cdot 300$		83.00	- -	$8 \cdot 3$	
Bell metal for large bells	80.000	- -	20.00			
Britannia metal - -	1.000	$2 \cdot 00$	81.00		16.00	
Nickel silver, English	60.000	$17 \cdot 8$	- -	$22 \cdot 2$		
German silver - Parisian -	50.000 50.000	13.6 25.0		193 25.0		

Alloy, Native. Osmidis and Iridym, in the proportions of 72.9 of the former and $24: 5$ of the latter. See Osmiun, Iridiumr.

A LLSPICE. Pimento, or Jamaica pepper, so called because its flavour is thought to comprehend the flavour of cinnamon, cloves, and nutmegs. The tree producing this spice (Eugenia pimenta) is cultivated in Jamaica in what are called Pimento walks. It is imported in bags, almost entirely from Jamaica. Mr. Montgomery Martin informs us that pimento was exported in one year (1837) from the different districts of Jamaica as follows:-

Kingston and Old Harbour -	-	-	-	-	6027	bags.
Morant Bay and Port Morant	-	-	-	-	141	$"$
Port Antonio	-	-	-	-	-	-
1259	$"$					
Port Marva and Annotto Bay	-	-	-	3194	$"$	
Falmouth, Rio Bucno, and St. Ann's Bay	-	-	28188	$"$		
Montego Bay and Lucca	-	-	-	-	-	3106

ALLUVIUM. (Alluo, to wash upon; or alluvio, an inundation.) Earth, sand, gravel, stones, and other transported matter which has been washed away, and thrown down-by rivers, floods, or other canses-upon land not permanently submerged bencath the waters of lakes or seas.-Lyell.

allylamine. See Acrylamine.

ALMANDINE, or iron-garnet, is a silicate of alumina and iron, combined in the following proportions: silica 36.3 , alumina 20.56 , protoxide of iron $43 \cdot 2$.

It occurs in Greenland, Ceylon and the Brazils; when cut and polished, it forms a beautiful gem.
The name is probably derived from the Alabandic carbuncles of Pliny, which were cut and polished at Alabande. See Garnet.

ALMOND. (Amande, Fr. ; Mundelus, Germ.; Amygdal communis.) De Candolle admits five varieties of this species. Aumara, bitter almond; A. dulcis, sweet almond; A. fragilis, tender-shelled almond; A.macrocarpa, large-fruited almond; A. persicoides, peach almond. There are two kinds of almond usually employed, which do not differ in chemical composition, only that the bitter, by a curions chemical reaction of its constituents, generates in the act of distillation a quantity of volatile oil which contains hydrocyanic acid. Vogel obtained from bitter almonds $8: 5$ per cent. of
lusks. After pounding the kernels, and heating them to coagulate the albumen, he procured, by expression, 28 parts of an unctuous oil, which did not contain the suallest particle of hydrocyanic acid. The whole of the oil could not be extracted in this way. The exprcssed mass, treated with boiling water, afforded sugar and gum, and, in consequence of the heat, some of that acid. The sugar constitutes 6.5 per cent. and the gum 3. The vegetable albumen extracted, by means of caustic potash, amounted to 30 parts : the vegetable fibre to only 5 . The poisonous aromatic oil, according to Robiquet and Boutron-Charlard, does not exist ready-formed in the bitter almond, but seems to be produced under the influence of ebullition with water. These chemists have shown -

1st. That neither bitter almonds nor their residuary cake yield any volatile oil by pressire.

2nd. They yield no oil when digested in alcohol or in ether, though the volatile oil is soluble in both these liquids.
3rd. Alcohol extracts from bitter-almond cake, sugar, resin, and amygdalin; when the latter substance has been removed, the cake is no longer capable of furnishing the volatile oil by distillation.

4th. Ether extracts no amygdalin, and the cake left, after digestion in ether, yields the volatile oil by distillation with water; but alcohol dissolves out a peculiar white crystalline body, without smell, of a sweetish taste at first, and afterwards bitter, to which they gave the naue of amygdaline. This substance does not seem convertible into volatile oil. - Pereira. See Ure's "Dictionary of Chemistry"
Sweet almonds, by the analysis of Boullay, consist of 54 parts of the bland almond oil, 6 of uncrystallisable sugar, 3 of gum, 24 of vegetable albumen, 24 of woody fibre. 5 of husks, 3.5 of water, 0.5 of acetic acid, including loss. We thus see that sweet almouds contain nearly twice as much oil as bitter almonds do.
Three varieties are known in commerce.

1. Jordan Almonds which are the finest, come from Malaga. Of these there arc two kinds; the one above an inch in length, flat, with a clear brown cuticle, sweet, mucilaginous, and rather tough; the other more plump and pointed at one end, brittle, but equally sweet with the former.
2. Valentia almonds are about three-eighths of an inch broad, not quite an inch long, round at one end, and obtusely pointed at the other, flat, of a dingy brown colour and dusty cuticle.
3. Barbary and Italian alnonds resemble the latter, but are generally smaller and less flattened.-Brande, Dictionary of Pharmacy.

Our Importation of Almionds in 1856 was as follows :-
Sweet Alnonds, on which a Duty of 10s. per Cwt. was paid.

Bitter Almonds - Free of Duty since March 19th, 1845.

Morocco -						$\begin{gathered} \text { Cwts. } \\ 8,834 \end{gathered}$	-		£26,501
Gibraltar	-	-	-	-		240	-	-	720
Other parts	-	-	-	-	-	120	-	-	360
						9,194			£27,581

ALMOND OIL. A bland fixed oil, obtained by expression from either bitter or sweet almonds; usually from the former, on account of their cheapness as well as the greater value of the residual cake. The average producc is from 48 to 52 lbs . from 1 cwt. of almonds. - Percira.

ALMOND POWDER (farina amygdala) is the ground almond cake, and is employed as a cake for washing the hands, and as a lute.

ALOE. (Aloës, Fr; Glauindes aloe, Germ.) In botany a genus of the class Hexandria monogynia. There are many species, all natives of warm climates.
In Africa the leaves of the Guinea aloe are made into durable ropes. Of one species are made lines, bow-strings, stockings, and hammocks; the leaves of another

ALUM.

species are used to hold rain water. A series of trials has been made, within a few years, in Paris, to ascertain the comparative strength of cables made of hemp and of the aloe fron Algiers; and they are said to have all turned to the advantage of the aloe. Of cables of equal size, that made of aloc raised a weight of 2000 kilogrammes (2 tons, nearly); that made of hemp, a weight of only 400 kilogrammes. - Ure.

A patent has been taken (January 27th, 1847) for certain applications of aloes to dyeing. Although it has not been employed, the colouring matter so obtained promising to be very permanent and intense, it is thought advisable to describe the process by which it is proposed to prepare the dye. It is as follows: -

Into a boiler or vessel capable of holding about 100 gallons, the patentec puts 10 gallons of water, and 132 lbs . of aloes, and heats the same until the aloes are dissolved; he then adds 80 lbs . of nitric or nitrous acid in small proportions at a time, to prevent the disengagement of such a quantity of nitrous gas as would throw part of the contents out of the boiler. When the whole of the acid has been introduced, and the disengagement of gas has ceased, 10 lbs . of liquid caustic soda, or potash of commerce, of about 30°, are added to neutralise any undecomposed acid remaining in the mixture, and to facilitate the use of the mixture in dyeing and printing. If the colouring matter is required to be in a dry state, the mixture may be incorporated with 100 lbs . of china clay and dried in stones, or by means of a current of air. The colouring matter is used in dyeing by dissolving a sufficient quantity in water, according to the shade required, and adding as much hydrochloric acid or tartar of commerce as will neutralise the alkali contained in the mixture, and leave the dye bath slightly acidulated. The articles to be dyed are introduced into the bath, which is keut boiling until the desired shade is obtained.

When the colouring matter is to be used in printing, a sufficient quantity is to be dissolved in water, according to the shade required to be produced; this solution is to be thickened with gum, or other common thickening agent, and hydrochloric acid, or tartar of commercc, or any other suitable supersalt, is to be added thereto. After the fabrics have been printed with the colouring mattcr, they should be subjected to the ordinary process of steaming, to fix the colour.-Napier.

Aloetic acid, on which the colouring matter of the aloes depends, has been examined by Schunck and Mulder. Aloetic acid is deposited, from nitric acid which has been heated with aloes, as a yellow powder : it dissolves in ammonia with a violet colour ; when treated with protochloride of tin, it forms a dark-violet heavy powder; and this, again, when treated with potash, evolves ammonia, and assumes a violet-blue colour. The solution of aloetic acid in ammonia is violet.

Importation of Aloes.

ALPACA. (Alpaga, Fr.) An animal of Peru, of the Llama species; also the name given to a woollen fabric woven from the wool of this animal. Sec Llama.

ALUDEL. The aludels of the earlier chemists were a series of pear-shaped pots, generally made of earthenware, but sometimes of glass, open at both ends. Each aludel had a short neek at top and bottom, so that a series of them could be fitted together, by means of the neck, in succession.

ALUM. (Alun, Fr. ; Alaun, Germ.) A salinc body or salt, consisting of alımiua, or the peculiar carth of clay, united with sulphuric acid, and thesc again united with sulphate of potash or ammonia. In other words, it is a double salt, consisting of sulphate of alumiua and sulphate of potash, or sulphate of alumina and sulphate of ammonia. The common alum erystallises in octahedrons, but there is a kind which takes the form of cubes. It has a sour or rather subacid taste, and is peculiarly astringent. It reddens the blue colour of litmus or red cabbage, aud acts like an
acid on many substanees. Other alkalis may take the plaee of the ammonia or potash, and other metals that of the aluminium.

Alum was known to the ancients, who used it in medicine, as it is now used, and also as a mordant in dyeing and calico printing, as at the present day. Old historians do not describe correctly, either the mode of obtaining it or its exact characteristics, so that it is confounded with sulphate of iron, with which it seems generally to have been mixed. But that some qualities were made with very little iron in it, is clear from the fact that it was employed when white for dyeing bright colours. (Pliny, xxxv. 15.) It is said by Pliny that the purchasers tested it with tannin (pomegranate juice), in order to see if it blackened. He says that the white kind blackened as well as the black; but in all probability this was a test applied by the dyers to see whieh blackened least, so as to obtain a good mordant for reds. Pliny's description, although confused, leaves this fact perfectly clear-that there were men in whose minds the knowledge was much clearer than in his, or a manufaeture of such magnitude could not have existed. Tbere is mention of some being made from stonc, and crystallising in fine hairs, but the characteristics given do not enable us to decide that tbis was either alum or the peculiar sulphate of alumina which takes that form. The alum was sometimes boiled down to dryness, and heated till it was spongy or like pumice-stone. It was used as burnt alum.
They used it also for preventing the combustibility of wood and wooden buildiugs. But altbough the knowledge of it was very accurate, their writers always imagine that sulphate of iron was a kind of alum, because it is said that the black alum was used for dyeing dark colours. They used iron as a mordant, and found its character by galls or by pomegranate juice, which eontains tannin. Tbeir alum was chiefly a natural production, and they removed the fine efflorescing crystals which first appeared, or which gradually are raised above the rest, as the finest kind. "It was produced in Spain, Egypt, Armenia, Macedonia, Pontus, and Africa; the islands Sardinia, Melos, Lipari and Stromboli. The best was got in Egypt, the next in Melos." The word is probably Egyptian, as it was best and most abundantly obtained in Egypt. It is not probable that it was the double salt in all cases, but simply a sulp bate of alumina. Pliny, indeed, says that a substance called in Greek 'r γ pà, or watery, probably from its very soluhle nature, and which was milk-white, was ised for dyeing wool of bright colours. This may have been the mountain butter of the German mineralogists, which is a native sulphate of alumina, of a soft texture, waxy lustre, and unctuous to the touch. The stypteria of Dinscorides and the alumen of Pliny eomprehended, no doubt, a variety of saline substances besides sulpbate of iron and alum.
It seems to have eome to Europe in later times as alum of Rocca, the name of Edessa, or that place where the Italians first learnt the art; but it is not impossible that this name was an Italian prefix, which has remained to tbis day under the form of Rock alum, Rotzaluun and Alun de Roche. Tbe East has always had some manufactures of it, and Pbocis, Lesbos, and otber places, were able to supply the Turks with alum for their magnificent Turkey red. It was also made at Foya Nova, near Smyrna, and at Constantinople. The Genoese and other tradiug people of Italy imported alum into Western Europe for the use of the dyers of red eloth.

A Genoese merchant, Bartholomew Perdix, who had been in Syria, observed a stone suitable for alum in the island lschia; he burnt it, and obtained a good result, being the first who introduced the manufaeture into Europe. Tbis was in the year 1459 ; about the same time John di Castro learnt the method at Constantinople, and manufactured alum at Tolfa. This discovery of the mineral near Civita Vecc bia was considered so important by John di Castro, that he announced it to the Pope as a great victory over tbe Turks, who annually took from the Christians 300,000 pieccs of gold for their dyed wool. A statue was erected to the "Discoverer of Alum." Beckman.
The manufacture of alun was then made a monopoly of the Papal Powers, and instead of buying it as before from the East, it was considered Christian to obtain it only from the States of the Church, and, as such, was made compulsory in the West. The manufacture then went to Spain, to a spot near Carthagena. Germany began so early as 1554 to make alum, although Basil Valentine seems to have known of its existence there somewbat sooner. The first establishment known was at Ohcrkaufungen in Hesse-Cassel, wherc it still exists. It was not introduced as a manufacture into England until the year 1600, when Sir Thomas Chaloner, the son of queen Elizabeth's minister of that name, found that his own estate of Guisborough, in Yorkshire, contained alum. This he is said first to have observed from the vegetation, whieh had a very weak green. Di Castro had first been led to it by the appearance of the holly, but neither ean be said to be decisive tests of its presence, nor are the geological features of Tolfa and Guisborough at all like. The violent denunciations of thic Pope
did not prevent the manufacture from growing to unexpected magnitude in England. The mines of the same district have cver since sent out alum, which is now known as Whitby alum, and cven those at Guisborough itself are now at worls, although for seventy ycars of the period sinee their diseovery they were disused. The manufaeture was begun at Hurlet, in Seotland, by Nieholson and Lightbody, in 1766, abandoned, and resumed by Maeintosh and Wilson in 1797.

The composition of alum is expressed by chemists in the following manner. $\mathrm{Al}^{9} \mathrm{O}^{3} 3 \mathrm{SO}^{3} \mathrm{KOSO}^{3} 24 \mathrm{HO}$. This peculiar eombination is that of the original substanec as far as it appeared to the ehemists of last century, and the form is now held as a type, after which many other alums are composed. Ammonia-alum was oecasionally made, even as early as Agrieola's time, 16 th century. Its eomposition is $\mathrm{Al}^{2} \mathrm{O}^{3}$ $3 \mathrm{SO}^{3} \mathrm{NH}^{4} \mathrm{OSO}^{3}+24 \mathrm{HO}$. The same thing oecurs with soda; soda-alum is $\mathrm{Al}^{2} \mathrm{O}^{3} 3 \mathrm{SO}^{3} \mathrm{NaOSO}^{3}+24 \mathrm{HO}$. Every salt having this form is ealled an alum. Sometimes, instead of the alkali being changed, the earth is ehanged. Thus we have chrome-alum, $\mathrm{Cr}^{2} \mathrm{O}^{3} 3 \mathrm{SO}^{3} \mathrm{KOSO}^{3}+24 \mathrm{HO}$; or we have an iron-alum, $\mathrm{Fe}^{2} \mathrm{O}^{3}$ $3 \mathrm{SO}^{3} \mathrm{KOSO}^{3}+24 \mathrm{HO}$. These may be varied to a great extent, but all have a charaeteristic of alum. The twenty-four atoms of water are one of the peculiar characteristics.

Composition of pure Potash Alum.

Potash - $\quad-\quad \begin{aligned} & \text { Per Cent. } \\ & 9.89 \\ & \text { or } \\ & 1\end{aligned}$ atom 47

Its specifie gravity is $\mathbf{1 . 7 2 4}$.
100 parts of water dissolve, at 32 degrees Fahrenheit, $3 \cdot 29$ alum.

3	9	50	9	9	9.52	99
39	99	86	9	9	$22 \cdot 01$,
39	9	122	99	"	$30 \cdot 92$,
9	9%	158	39	9	$90 \cdot 67$	9
9	9	212	9	,	$357 \cdot 48$	"

Thicse Tables of Poggiale should be re-examined, and gradations made more useful for this country.

Solubility.-1 part of crystallised potash alum is soluble -
At 54 degrees Fahrenheit in 13.3 water.

99				8.2	9
	70	9	99		
95	77	99	9	4.5	"
88	100	39	"	$2 \cdot 2$,
93	122	99	9,	$2 \cdot 0$,
93	145	9	9	$0 \cdot 4$	9
99	167	97	9	$0 \cdot 1$	9
\%	$189 \cdot 5$	9	9	$0 \cdot 06$	\%

A solution saturated at 46° is 1.045 speeific gravity. This difference in the rate of solubility in hot and cold water renders it easily separated from many other salts. The erystals are permanent in the air, or nearly so, unless the air be very dry; if kept at 180° they lose 18 atoms of water, but alum deprived of its water and exposed to the air of summer took up 18 atoms in 47 days. It melts at a low temperature in its water of erystallisation. At 356° it loses $43 \cdot 5$ per cent. of water, or 23 atoms; the last atom is only lost when approaching red heat. At a red heat the sulphate of alumina loses its aeid, and the alumina seems then able to remove some aeid from the potash, losing it again by heat. Alum, when heated with common salt, acts like sulphuric acid, and gives off muriatie aeid; the same with chlorides of potassium and ammonium. If boiled with a saturated solution of chloride of potassium, hydroehlorie acid is formed and a subsulphate of alumina falls down; this occurs only to a small extent with chloride of sodium, and still less with sal-ammoniac.

Applications of Alum. - Alum is an astringent. Its immediate effeet on man is to eorrugate the fibres and contract the small vesscls. It preeipitates albuminous liquids and combines with gelatine. It causes dryness of the mouth and throat, and cheeks tbe seerctions of the alimentary canal, producing constipation; in large quantities, nausea, vomiting, purging. It is given in lead eolie, to eonvert the lead into sulphate of lead, and used externally. Its prineipal use is in dyeing; ealico printers print it as a mordant, the cloth is then put into the dye, and the printed parts absorb the colour. Paper-makers use it in their size and bookbinders in their paste. It is used in tanning leather, and sometimes, both in Asia and Europe, it is used for precipitating rapidly the impurities of watcr. This is a dangerous process, unless there be a great amount
of alkaline salts, such as earhonate of lime or soda to neutralise the acid. It is extensively used in correcting the haking qualities of bad flour, for which the expcrience of many has decided that it is a valuable remedy; unfortunately, it is also used to make exccllent flour whiter, when there is no need of its presence. Liehig says that lime is equally good, and of course nuch safer. From time immemorial it has heen used to prevent the comhustihility of wood and cloth.

Alum leated with charcoal or carbonaceous suhstances forms Homberg's phosphorus, which inflames spontaneously. It is composed of alumina, sulphide of potassium, and charcoal.

Burnt Alum, or dried alum, is made hy gently heating alum till the water is driven off. The alum first melts in its watcr of crystallisation and is then dried. It has a stronger action than the hydrated crystals, and is a mild escharotic. It reabsorhs water.

Ammonia-alum readily loses all its ammonia when heated, and the sulphuric acid may he driven off the remaining sulphate of alumina, so that the pure carth-alumina will remain.
Romun Alum crystallises, partly in octahedrons, like other alums, partly in cubes. If these cubes are dissolved in water of ahout $110^{\circ} \mathrm{F}$., the evaporated liquid gives crystals of common or octahedral alum. It was said that on heating it deposited subsulphate of alumina ; but Loewel says that such crystals were impure, and he finds no real difference of composition. All that seems to be known with certainty is, that it is formed when there is a salt of alumina in solution with the alum containing more alumina than the neutral or common alum. This can very readily occur in the Roman alum, where there is a great excess of alumina in the alum stonc. The Roman alum is prized for its great freedom from iron; it was said by MM. Thenard aud Roard to contain only $\frac{1}{2200}$ th of sulphate of iron, whilst the ordiuary alum contained roboth.

In commerce, ammonia- and potash-alums are sometimes found mixed.
Neutral Alum is a name sometimes given erroncously to alum which has had some of its acid neutralised by an alkali. It is in fact a basic salt of alumina, which may also be made by dissolving alumina in ordinary alum. It deposits a hasic salt more readily than ordinary alum, and may he of service in some cascs of printiug. Properly speaking, the common alum is the neutral salt.

Testing of Alum. - Alum heing generally in large crystals, any impurity is more readily seen; this is said to he the reason for lecping up the practice of making this suhstance instead of the sulphate of alumina alone, which is less hulky and fitted for nearly every purpose for which alum is uscd. But probahly the ancient accidental discovery of the potash form has determined its use to the present day. Iron is readily found in it, hy adding to a dilute solution ferrocyanide of potassium or prussiate of potash, which throws down Prussian hlue. A very delicate test is sulphurct of ammonium, which throws down hoth the alumina and iron; hut the hlacking of the precipitate depends on the amount of iron. The total amount of iron is got by adding purc caustic potash or soda till the solutiou is strongly alkaline, washing and filtering off the oxide. To look for lime, precipitate the alumina and iron by ammonia, boil and filter, the lime and magnesia are in the solution, add oxalate of ammonia; add tartaric acid to keep up the iron and alumina, make alkaline by ammonia, then precipitate the lime hy oxalate of ammonia, filter, and precipitate the magnesia hy a phosphate. Silica and insoluhle basic sulphates are obtained by simply dissolving the alum in water and filtering. If silica, it is insoluhle in acids; if a hasic sulphate, it will dissolve in sulphuric acid, and the addition of sulphate of potash or ammonia will convert it into potash-or ammonia-alum.

Pure alum gives a white precipitate with ammonia, no precipitate with sulphuretted hydrogen gas, and no precipitate with oxalate of ammonia and ammonia, if tartaric aeid he previously added.

In a saturated solution of tersulphate of alumina, the crystals of alum are almost insoluhle.

Ammonia Alum contains:-

Ammonia	-	-	-	-	3.75	
Alumina	-	-	-	-	$11 \cdot 34$	
Sulphuric acid	-	-	-	-	$35 \cdot 29$	
Watcr - -	-	-	-	-	$49 \cdot 62$	

$100 \cdot 00$
This salt also oecurs in oetaliedrons, and can only be known from potash-alum by trial. The addition of caustic lime, soda, or potash. gives out the ammonia, easily distinguished by the smell. Soda-alum is not an article of commerce, nor is it used in the arts. The addition of ammonia to a solution of alum, or the addition of any other alkali, in insufficient quantity, causes a precipitate, not of purc alumina, as one might suppose, but of a subsulphate of alumina. Even an cxcess of alkali will not

ALUM．

remove all the sulphuric acid without heat being applied；an excess，on the other hand，is apt to dissolve some of the alumina，especially if few salts are present，and the solution not mueh boiled．Sulphide of ammonium preeipitates it thoroughly．

If we dissolve alum in 20 parts of water，and drop this solution slowly into water of caustie ammonia till this be nearly，but not entirely，saturated，a bulky whitc precipitate will fall down，which，when properly washed with watcr，is pure aluminous carth or clay；and，dried，forms 10.94 per cent．of the weight of the alum．If this earth，while still moist，be dissolved in dilute sulphuric acid，it will eonstitute，when as ncutral as possible，simple sulphate of alumina，which requires only two parts of cold water for its solution．If we now decompose this solution，by pouring into it water of ammonia， there appears an insoluble white powder，which is subsulphatc of alumina，or basie alum， and contains three times as much carth as exists in the neutral sulphate．If，however， we pour into the solution of the ncutral sulphate of alumina a solution of sulphate of potash，a white powder will fall if the solutions be concentrated，which is true ulum ；if the solutions be dilute，by cvaporating their mixture，and cooling it，crystals of alum will be obtained．

When newly precipitated alumina is boiled in a solution of alum，a portion of the earth enters into combination with the salt，constituting an insoluble compound which fulls in the form of a white powder．The same combination takes place，if we deeom－ pose a boiling hot solution of alum with a solution of potash，till the mixture appears nearly ncutral by litmus－paper．This insoluble or basic alum exists native in the alum stone of Tolfa，near Civita Vecchia，and it eonsists，in 100 parts，of $19 \cdot 72$ parts of sulphate of potash， 61.99 basie sulphate of alumina，and 18.29 water．When this mineral is treated with a due quantity of sulphuric acid，it dissolves，and is converted into the erystallisable alum of eommerce．
Its formula，according to Graham，is a basic alum， $\mathrm{HO} \mathrm{SO}^{3}+3\left(\mathrm{Al}^{2} \mathrm{O}^{3} \mathrm{SO}^{3}\right)+9 \mathrm{HO}$ ． By losing alumina it becomes the neutral salt．

Sulphate of Alumina．－The first step towards the production of alum is the sulphate of alumina．This is found in various proportions in alum stone．The pure mineral has the following composition：－
1 atom of alumina－-15.42 per cent．
3 atoms of sulphuric acid $-35.99 \quad "$
18 atoms of water $-\frac{48.59}{100^{\circ}}$

There are many analyses of natural speeimens closely approaching this．It is found erystallised in a closc mass of fine，white，flexible necdles，of a feather or hair form， and has been，like a few other substances，ealled hair－salt．It is also found with various degrees of impurity，sometimes with a smaller amount of water．Knapp has eollected the following list of analyses ：－

Analyses of Natural Sulphate of Alumina or Feather Alum．

	noussingault．		Hart well	Mill．			H．Rose			Gübel．	Ber－	Th．T	homson．	Hera－
	$\begin{aligned} & \text { Saldurho } \\ & \text { Pasto. } \end{aligned}$									$\begin{aligned} & \text { 邑 } \\ & \text { Hy } \\ & \text { K } \end{aligned}$	部品	毞	\％	
Sulphuric acid． Alumina－	$35 \cdot 68$	$36 \cdot 400$	40.31	29.00	36.97	35．82	37－380	$35 \cdot 710$	$35 \cdot 637$	58.58	$12 \cdot 9$	$35 \cdot 872$	$40 \cdot 425$	$35 \cdot 63$
	14.98 16．000		14.98	15＊0	1463	15．57	14.867	12.778	$11 \cdot 227$	38.75	$41 \cdot 5$	$14 \cdot 645$	10．485	17．09
Peroxide of iroll．	．．．	0004	．．．	1.2	$2 \cdot 58$	．．．	\ldots	\ldots	．．．	．．．	．．．	0.500		0.04 $0 \times-$
Protoxide of iron．	\ldots	．${ }^{\circ}$	\ldots	．．．	\ldots	．．．	$2 \cdot 463$	$0 \cdot 667$	0.718	$+\mathrm{So}^{3} 2 \cdot 78$	．．．	．		Cop－
Protoxide manga－ nesc．	．．．	．．．	\cdots	\ldots	．．．	．．	．．．	1.018	$0 \cdot 307$					
Potash－	．．．	．．．	$0 \cdot 26$	．．．	\cdots	．．．	0.215	$0 \cdot 324$	0.430	．．．	\cdots		$1 \cdot 172$	
Soda－－	．．．	0.0	$1 \cdot 13$	\ldots	．．．	\ldots				．．．	．．．	$2 \cdot 262$		
Itme－－	．．．	0.002	\cdots	．．．	\cdots	\ldots	$0 \cdot 149$	$0 \cdot 640$	$0 \cdot 449$					
Magnesia	．．．	0.004	0.85	．．．	$0 \cdot 14$	．．．	－••	$0 \cdot 273$	$1 \cdot 912$					
Muriatic acid．	．．．	．．．	$0 \cdot 40$											
Silica－－			$1 \cdot 13$	3.0	$1 \cdot 37$				$0 \cdot 430$	．．．	$3 \cdot 5$	$0 \cdot 100$		050
Water－	$49 \cdot 34$	$46 \cdot 600$	$40 \cdot 94$	51.8	44．64	48．61	45．16．	47．022	48.8 .47	．．．	42•1．	46.385	36． 295	4670
$100 \cdot 0099 \cdot 010$			$100 \cdot 00$	100.0	$100 \cdot 33$	$100 \cdot 00$	$100 \cdot 238$	98．432	$100 \cdot 000$	$100 \cdot 11$	100.0	$99 \cdot 754$	96．908	$93 \cdot 96$

The manufacture of alum involves the making of sulphate of alumina in the first instance in all cases where potash is not present in the ore; for this reason the description of both is included in one article.

Ores or Raw Material.-The ehicf difficulty in manufaeturing alum has been the solution of the alumina. This substance is generally combined with siliea in such a strong combination, that even powerful acids cannot remove it without assistauec. The older methods, however, took no notice of these diffieulties, and obtaincd the alum more or less dircetly from naturc. The method now praetised at the Solfatara di Pozzuoli and the island Vulcano is simply to take the effloreseence and the earth containing it, wash it with water, and concentrate. But it very seldom contains a sufficient amount of potash to form alum. A salt of potash is then added, chiefly a carbonate. To transform this into a sulphate, a portion of the sulphate of alumina is decomposed. The use of a earbonate is a wasteful method of modern times ; the ancients would have felt no difficulty, but boiled all down, and so obtained the whole alumina there. Their product, therefore, would have been basic sulphate of alumina, which it evidently was when this practiee was resorted to. When they merely concentrated and then crystallised, they got pure alum; but they lost a great deal of their alumina.

At Tolfa the alum is obtained from a compact crystalline substance ealled alunitc. The analysis of Cordier makes it a combination of alum with alumina. If treated with water only, it will not give out alum ; but if moderately calcined, it breaks up, gives out a large amount of alum, and the liquid is then boiled down for crystallisation.

Here are specimens of the ore, two of which contain a considerable amount of potash. As there is seldom enough of potash found, it must be added in the form of sulphate of potash or chloride of potassium.

These formations of alum are generally found where sulphurous gases are exhaled: the roek is gradually decomposed.

It is not, however, found so rich in the great majority of cases. The following are analyses of some alum stones:-

				Klaproth.	Klaproth.	Descotil.	Cordier.
				$\begin{aligned} & \text { Tolfa } \\ & \text { Alum Stone. } \end{aligned}$	Beregszaz Alum Stone	Montione.	Mont d'Or.
Silica - -	-	-	-	56.5	$62 \cdot 3$		28.4
Alumina -	-	-	-	19.0	$17 \cdot 5$	40.0	31.8
Sulphuric acid	-	-		16.5	12.5	$35 \cdot 6$	$27 \cdot 0$
Potash - -	-	-	-	$4 \cdot 0$	$1 \cdot 0$	$13 \cdot 8$	$5 \cdot 8$
Water -	-	-	-	3.0	$5 \cdot 0$	10.0	3.7
Oxide of iron	-	-	-	- -	- -	- -	$1 \cdot 4$

When there is no silica, but only sulphurie aeid, alumina, and potash, we have a natural alum, and in that case there is nothing to be done towards the manufacture. But it rarely happens that the constituents exist in a proportion to form the crystalline salt. There may be sulphate of alumina, hydrate of alumina, and some true alum, or sulphate of alumina and potash. This excess of hydrate of alumina forms, when united with the sulphate, a basic or insoluble sulphate of alumina, and nothing but the sulphate of potash becomes soluble. When the hydratc is heated the watcr escapes; the sulphate of alumina and potash are then capable of being washed out together, and alum is obtained. At Tolfa it is obtained in crystals, covered over with a light red powder of peroxide of iron. 'This reddish eovering always aeeompanics the Roman or partly cubical alum, and it has been sometimes added in order to give eommon alum the appearanee of the Roman.
As the principal difficulty in the manufacture of alum is the solution of the alumina, it is unfortunate that so mueh of the hydrate is destroyed, as in the process mentioned, when sulphuric aeid would readily dissolve it and greatly increase the produce. By the method described to us the measurc of alum is simply the amount of the potash. All that cannot find potasb to unite with is lost.
M. Cordier gives the following as a speeimen of one of the alum stones from which the alum is made at Tolfa:-

Sulphate of potash -	-	-	-	- 18.53
Sulphate of alumina	-	-	-	-
Hydrate of alumina	-	-580		
-	-	-	-12.97	

To transform this compound into alum, it is neeessary merely to remove the alumina. The ordinary aluminous stone, however, is rarely so purc as the above analysis
would show.

Oceasionally ammonia-alum is found in nature. Analyses have bcen made of speeimens from Tschermig, in Bohemia, by Stromeyer :-

Alumina	- 11.602	Sulphate of alumina	38.688
Ammonia	- 3721	Sulphate of ammonia	12.478
Magnesia	- 0.115	Sulphate of magnesia	0.337
Sulphurie acid	- 36.065	Water - -	48.390
Water -	- 48.390		48 -
	$\underline{99.893}$		99.893

Soda-alum is also found naturally.
Alum from Peru, by T. Thomson.

Sulphate of soda	-	-	-	-	-	-	-	6.50	
Alumina	-	-	-	-	-	-	-	-	22.55
Sulphurie acid	-	-	-	-	-	-	-	-	$32 \cdot 95$
Water	-	-	-	-	-	-	-	-	$39 \cdot 20$

From the Andes.

Sulphurie aeid	-	-	-	-	-	-	-	-	36.199
Alumina	-	-	-	-	-	-	-	-	11.511
Soda -	-	-	-	-	-	-	-	-	-
7.259									
Water -	-	-	-	-	-	-	-	-	43.819
Silica -	-	-	-	-	-	-	-	-	0.180
Lime -	-	-	-	-	-	-	-	-	0.255
Peroxide of iron -	-	-	-	-	-	-	-	0.199	
Protoxide of iron -	-	-	-	-	-	-	-		
0.760									

Alum oceurs ready formed in nature in the alum stones of Italy, \&e., as an efflorescence on stones, and in certain mineral waters in the East lndies. The alum of European eommerce is manufactured artificially, either from the alum sehists or stones, or from clay. The mode of manufacture differs aecording to the nature of these earthy compounds. Some of them, sueh as the alum stone, contain all the elements of the salt, but mixed with other matters, from which it must be freed. The schists contain only the elements of two of the constituents, namely, clay and sulphur, which are convertible into sulphate of alumina, and this may be then made into alum by adding the alkaline ingredient. To this class belong the alum slates, and other analogous sehists, containing brown coal.

1. Mamufacture of Alum from the Alum Stone. - The alum stone is a rare mineral, being found in moderate quantity at Tolfa, and in larger in Hungary, at Beregszaz, and Muszag, where it forms entire beds in a hard substanee, partly charaeterised by numerous eavities, containing drusy crystallisations of alum stone or basie alum. The larger lumps contain more or fewer flints disseminated through them, and arc, aecording to their quality, either pieked out to make alum, or thrown away. The sorted pieees are roasted or caleined, by which operation apparently the hydrate of alumina, associated with the sulphate of alumina, loses its water and its affinity for alum. It beeomes, therefore, free; and during the subsequent exposure to thic weather the stone gets disintegrated, and the alum becomes soluble in water.

The caleination is performed in eommon lime kilns in the ordinary may. In the regulation of the fire it is requisite, here, as with gypsum, to prevent any fusion or running together of the stones, or even any disengagement of sulphuric or sulphurous acids, which would eause a corresponding diminution in the prodnec of alum. For this reason the eontaet of the ignited stones with earbonaecons matter ought to be avoided.

The calcined alum stones, piled in heaps from 2 to 3 feet high, are to be cxposed to the reather, and meanwhile they must be continually kept moist by sprinkling
them with water. As the water combines with the alum the stones erumble down, and fall, eventually, into a pasty mass, which must be lixiviated with warm water, and allowed to settle in a large cistern. The clear superiatant liquor, being drawn off', is to be evaporated, and then crystallised. A second erystallisation finishes the process, and furnishes a marketable alum. Thus the Roman alum is made, which is covered with a fine red film of peroxide of iron.
Sulphate of alumina occurs sometimes in union with sulphate of iron. In tho Hurlet and Campsie coal beds a salt has been found with a variable composition, of which four specimens are here given.

Sulphuric acid Protoxide of iron	-	-	-		Berthier. 34.4 $12 \cdot 0$	Phillips. $30 \cdot 9$	R. D. Thomson.	
				-			$35 \cdot 60$	28.635
				-		$20 \cdot 7$	$13 \cdot 56$	19.935
Alumina -	-	-	-	-	$8 \cdot 8$	$5 \cdot 2$	$7 \cdot 127$	$2 \cdot 850$
Maguesia -	-	-	-	-	8.8 4.0	$43 \cdot 2$	$43 \cdot 713$	$48 \cdot 580$
Water - -	-	-	-	-	440	432		
					$100 \cdot 0$	$100 \cdot 0$	$100 \cdot 000$	$100 \cdot 000$

This was a kind of feather alum or hair salt.
2. Alum Manufacture from Alum Schist.-The greater portion of the alum found in British commerce is made from alum slate and analogous ininerals. This slate eontains more or less iron pyrites, mixed with coaly or bituminous matter, whieh is occasionally so abundant as to render the schist somewhat eombustible. In the strata of brown coal and bituminous wood, where the upper layers lie immediately uuder clay beds, they consist of the coaly substance rendered impure with clay and pyrites. This triple mixture constitutes the essence of all good alum schists, and it operates spontaneously towards the production of sulphate of alumina. The coal, besides burning, serves to make the texture open, and to allow the air and moisture to penetrate freely, so as to ehange the sulphur and iron present into acid and oxide. When these sehists are exposed to a high temperature in contaet with air, the pyrites loses one half of its sulphur, in the form of sublimed sulphur or sulphurous acid, and becomes a black sulphuret of irou, which speedily attraets oxygen, and changes to sulphate of iron, or green vitriol. The brown coal sehists contain, eommonly, some green vitriol crystals spontaneously formed in them. The sulphate of iron transfers its acid to the elay, progressively, as the iron, by the action of the air with a little elevation of temperature, becomes peroxidised; whereby sulphate of alumina is produced. A portion of the green vitriol remains, however, undeeomposed, and so mueh the more as there may happen to be less of other salifiable bases present in the clay slate. Should a little magnesia or lime be present, the vitriol gets more eompletely decomposed, and a portion of Epsom salt and gypsum is produced.

The production of alum from alum stoue, in which the whole ingredients have been found, has been far from enough for the supply of the world, and reeourse has been liad to substances very different in composition,-alum shale, or schist, and elay. Until within a few years the only supply of alum in Britain has been from the lias shales of Whitby, and the lower coal measures of Campsic and Hurlet, near Glasgow, and they are still the only plaees where it is manufactured from the ore, as it is ealled.

The manufaeture of alum from alum schists may be described under the six following heads:- The preparation of the alum shale. 2. The lixiviation of the shale. 3. The evaporation of the lixivium. 4. The addition of the saline ingredients, or the precipitation of the alum. 5. The washing of the aluminous salts; and, 6 . The crystallisation.

1. Preparation of the Alum Shale. - Some alum shales are of such a nature that, being piled in heaps in the open air, and moistened from time to time, they get spontaneously hot, and by degrees fall into a pulverulent mass, ready to be lixiviated. The greater part, however, require the process of ustulation, from which they derive many advantages. The cohesion of the dense shale is thereby so much impaired that its decomposition becomes more rapid; the decomposition of the pyrites is quickened by the expulsion of a portion of the sulphur; and the ready-formed green vitriol is partly deeomposed by the heat, with a transference of its sulphurie aed to the elay, and the produetion of sulphate of alumina.
Sueh alum shales as eontain too little bitumen or eoal for the roasting proeess must be interstratificd with layers of small coal or brushwood over an extensive surface. At Whitby the alum-rock, broken into small pieees, is laid upon a horizontal bed of
fuel, eomposed of brushwood; hut at Hurlet small coal is chiefly used for the lower parts ; and whenever the mass is fairly kindled, more roek is plaeed over the top. At Whithy this piling process is continued till the ealcining heap is raised to the height of 90 or 100 feet. The horizontal area is also augmented at the same time till it forms a great hed nearly 200 feet square, having therefore ahout 100,000 yards of solid measurement. The rapidity of the eomhustion is tempered hy plastcring up the ereviees with small schist moistened. When such an immense mass is inflamed, the heat is sure to rise too high, and au immense waste of sulphur and sulphuric acid must ensue. This evil has hcen noticed at the Whitby works. At Hurlet the heiglit to whieh the heap is piled is only a few feet, while the horizontal area is expanded : which is a mueh more judieious arrangement. At Whitby 130 tons of caleined sehist produces on an average 1 ton of alum. In this humid elimate it would be advisahle to pile up on the top of the horizontal strata of brnshwood or coal and schist, a pyramidal mass of sehist, whieh, having its surface plastered smooth, with only a few air-holes, will proteet the mass from the rains, and at the same time prevent the comhustion from beeoming too vehcment. Should heavy rains superrene, a gutter must he scooped out round the pile for reeeiving the aluminous lixivium, and conducting it into the reservoir.

It may be observed, that certain alum sehists contain ahundance of eomhustihle matter, to keep up a suitahle ealcining heat after the fire is once kindled; and thercfore nothing is needed hut the first layer of hrushwood, whieh, in this case, may be laid over the first hed of the hituminous schist.

A continual but very slow heat, with a smothered fire, is most hencficial for the ustulation of alum-slate. When the fire is too hrisk, the sulphuret of iron may run with the earthy matters into a species of slag, or the sulphur will he dissipated in vapour, by both of which aecidents the produet of alum will he impaired. Those bituminous alum sehists whieh have heen used as fuel under steam hoilers have suffered sueh a violent eombustion that their ashes yield almost no alum. Even the best regulated caleining pipes are apt to burn too hriskly in high winds, and should have their draught-holes earefully stopped under sueh eircumstances. It may be laid down as a general rule, that the slower the combustion the richer the roasted ore will he in sulphate of alumina. When the calcination is eomplete, the heap diminishes to one-half its original bulk; it is eovered with a light reddish ash, and is open and porous in the interior, so that the air can cireulate freely throughout the mass. To favour this aeeess of air, the masses should not be too lofty; and in dry weather a little water should he oeeasionally sprinkled on them, which, by dissolving away some of the saline matter, will make the interior more open to the atmosphere.

Messrs. Richardson and Ronalds have given some very minute analyses of the Whithy and Campsie shales.

As the Top one contains a larger excess of iron pyrites than the Bottom, they are mixcd so as to diffuse the sulphuric acid equally.
Erdmann has thus analysed his German specimens:-

Other shales will be found of interest ; the following are by G. Kersten : -

					Hermannschachte.	Glückaufgung.	Blücherschachte.
Carbonaceous matter -	-	-	-	-	$41 \cdot 10$	27.92	34*20
Silica -	-	-	-	-	44.02	$51 \cdot 32$	$50 \cdot 21$
Peroxide of iron	-	-	-	-	$6 \cdot 23$	$8 \cdot 40$	$0 \cdot 42$
Alumina -	-	-	-	-	$5 \cdot 60$	$7 \cdot 62$	$5 \cdot 21$
Magnesia -	-	-	-	-	$0 \cdot 32$	$0 \cdot 26$	0.53
Sulphur - -	-	-	-	-	$1 \cdot 25$	$2 \cdot 89$	$1 \cdot 72$
Oxide of manganese	-	-	-	-	$0 \cdot 12$	traces	traces
Sulphate of lime	-	-	-	-	traces	traces	traces
					98.64	$98 \cdot 41$	$98 \cdot 39$

Shales from Freienwalde, by Klaproth.							Shale by	$\begin{aligned} & \text { from } P i \\ & \text { Sergem } \end{aligned}$
Alumina	- .		16.000			-		$10 \cdot 80$
Silica -	- -	-	$40 \cdot 00$	-		-	-	$45 \cdot 30$
Magnesia	- -	-	$0 \cdot 25$	-	-	-	-	
Sulphur	- -	-	$2 \cdot 85$	-	-	-	-	3.94
Carbon	- -	-	19.65	-	-	-	-	$5 \cdot 95$
Protoxide of iron Oxide of manganese		-	$6 \cdot 40$	-	-	-	-	$5 \cdot 50$
				-	-	-	-	$0 \cdot 60$
Sulphate of protoxide of iron -			1•80	-		-	-	$5 \cdot 73$
" "	alumina			-		-	-	$1 \cdot 20$
" "	lime	-	$1 \cdot 50$	-		-	-	1.71
Chloride of	potash	-	1.50	-		-	-	1.75
	f potassium	-	$0 \cdot 50$	-		-	-	0.35
Sulphuric	acid			-		-	-	$0 \cdot 47$
Water	- -	-	10.75	-		-	-	16.50
			101-20					99.70

Here the sulphur has evidently existed in combination with iron, which has been united to oxygen by the analysts. The amount of sulphate shows a partial disintegration and other changes.
Lampadius gives another with much more sulphur :-

Alam Shale from Siehda.

Sulphate of alumina	-	-	-	-	-	-	-	2.68
Potash								
Sulum	-	-	-	-	-	-	-	-
0.47								
Sulphate of iron	-	-	-	-	-	-	-	-
Silica -	0.95							
Alumina	-	-	-	-	-	-	-	-

When alum is made of such shale, the object is first of all to oxidise the sulphur, forming sulphuric aeid. This acid theu dissolves the alumina. The result may be accomplished by allowing the shale to disintegrate spontaneously in the air, the sulphur oxidising and dissolving the alumina. But in gencral, as at Whitby and Campsie, combustion must be resorted to. This can be accomplished without the use of coal, further than is needful simply to set firc to that portion which exists in the shale itself. Indeed, the Campsie one, having more coal than is desirable for slow combustion, is mixed with some spent material, in order to diminish the force of the heat.

The sulphur is united with the iron, forming a bisulphuret, each atom of which must thercfore take up seven atoms of oxygen, $\mathrm{FeS}^{2}+7 \mathrm{O}=\mathrm{FeO} \mathrm{SO}+\mathrm{SO}^{3}$. When combustion takes place, the sulphur oxidises: if rapid combustion is used, then sulphurous acid gas escapes; if slow combustion, the sulphurous acid penetrates the mass slowly, receives another atom of oxygen, unites to a base, and a sulphate is the consequence. Sulphate of iron is formed and pure sulphuric acid. In the process it is probable that the oxidation is completed by means of the iron. Protoxide of iron readily becomes peroxide; the sulphurous acid readily decomposes peroxide, forming sulphuric acid and protoxide of iron. This protoxide of iron is again converted into peroxide, and if not dissolved is rendered, to a great extent, difficult to dissolve, by reason of the heat of the mass. For this reason partly, there is less sulphate of iron in the alum than might be expected. To effect these changes it is desirable to bura very slowly, so as to allow no loss of sulphurous acid, and, in washing, to allow the water to stand a long time on the burnt ore. Another method, by which the sulphurie acid is transferred to the alumina, is the peroxidation of the protoxide in the sulphate of iron; acid is by this means set free and begins to act on the alumina.

The protosulphate of iron being formed, it is removed by boiling down the liquor until the protosulphate of iron crystallises out, at the same time the solution bccoming saturated with the aluminous salt. The sulphate of iron is soluble in 0.3 of hot water, the alum in 0.06 . The liquid around the crystals on the remaining mother liquor contains iron also; this is washed off by adding pure liquors.

The presence of lime or magnesia in the ores is, of course, a means of abstract. ing acid, preventing the alumina being dissolved, and even preeipitating it when dissolved.

Knapp says that at Salzweiler, near Duttweiler, in Rhenish Prussia, the roasting of the ore takes place in the pit or mine. The stratum of brown coal which lies under it, having been accidentally set firc to in 1660 , has smouldered till the present time without intermission.

When the ores are roasted, one half of the sulphur is freed and sent into the mass or escapes as sulphurous acid; and the remaining, protosulpluret of iron, is afterwards converted into green vitriol.

When the calcined mincral becomes thoroughly cold, we may proeeed to the lixiviation. But as, from the first construction of the piles or beds till their complete calcinatiou, many weeks, or cven months, may clapse, care ought to be taken to provide a sufficient number or extent of them, so as to hare an adequate supply of matcrial for carrying on the lixiviating and crystallising processes during the course of the year, or at least during the severity of the winter season, when the calcination may be suspended, and the lixiviation becomes unsatisfactory. The beds are known to be sufficiently decomposed by the efflorescence of the salt which appears upon the stones, from the strong aluminous taste of the ashes, and from the appropriate chemieal test of lixiviating an aliquot avernge portion of the mass, and sccing how much alum it will yicld with solution sulphate of potash or chloride of potassium.
2. The Lixiviation. - The lixiviation is hest performed in stone-huilt cisterns; those of wood, however strong at first, are soon decomposed, and need repairs. They ought to he erected in the neighhourhood of the calcining heaps, to save the lahour of transport, and so arranged that the solutions from the higher cisterns may spontanenusly flow iuto the lower. In this point of view, a sloping terrace is the best situation for au alum work. In the lowest part of this terrace, and in the neighbourhood of the boiling-house, there ought to he two or more large tanks, for holding the crude lixivium, and they should be protected from the rain hy a proper shed. Upon a somewhat higher level the cisterns of the clear lixivium may be placed. lnto the highest range of cisterns the calcined mineral is to he put, taking care to lay the largest lumps at the hottom, and to cover them with lighter ashes. A sufficient quantity of water is now to he run over it, and allowed to rest for some time. The lixivium may then be drawn off, by a stopcock connected with a pipe at the hottom of the cistern, and run into another cistern at a somewhat lower level. Fresh water must now he poured on the partly exhausted schist, and allowed to remain for a sufficient time. This lixivium, heing weak, should he run off into a separate tank. In some cases a third addition of fresh water may be requisite, and the weak lixivium which is drawn off may he reserved for a fresh portion of calcined mineral. In order to save evaporation, it is always requisite to strengthen weak leys by employing them instead of water for fresh portions of calcined schist. Upon the ingenious disposition and form of these lixiviating cisterns, much of the economy and suecess of an alum work depends. The hydrometer should he always used to determine the degree of concentration which the solutions acquire.

The lixiviated stone, heing thus exhausted of its soluhle ingredients, is to be removed from the cisterns, and piled up in a heap in any convenient place, where it may he left, either spontaneously to decompose, or, after drying, suhjected to another calcination.

After calcining and washing the Campsie ores, the residue had the following composition :-

It is, therefore, very far from heing a complete process; but it is not considered profitahle to remove the whole of the alumina. In some places the exhausted ore is burnt a second time with fresh ore, as at Campsie, but we are not told the estimated exhaustion.

The density of the solution may he brought, upon an average, up to the specific gravity of from $1 \cdot 09$ to $1 \cdot 15$. The latter density may always he ohtained hy pumping up the weaker solutions upon fresh calcined mine. This strong liquor is then drawn off, when the sulphate of lime, the oxide of iron, and the earths are deposited. It is of advantage to leave the liquor exposed to air for some time, wherehy the green vitriol may pass into a persulphate of iron with the deposition of some oxide, when the acid will act hetter on the clay present, so as to increase the quantity of sulphate of alumina. The manufacture of alum is the more imperfect, as the quantity of sulphate of iron left undecomposed is greater, and therefore every expedient ought to he tried to convert the sulphate of iron into sulphate of alumina.
3. The Evuporation of the Schist Lixivium. - As the aluminous liquors, howeverwcll scttled at first, are apt, on the great scale, to deposit earthy matters iu the course of their concentration by heat, they are hest evaporated hy a surface fire, such as that employed at Hurlet and Campsie. A water-tight stone-cistern must he built, haviug a layer of well-rammed clay hehind the flags or tiles which line its bottom aud sides. The cistern may be 4 or 6 feet wide, 2 or 3 feet deep, and 30 or 40 feet long, and it is covered in by an arch of stone or brickwork. At onc extremity of this tunnel, or covered canal, a fire-grate is set, and at the other a lofty chinncy is erceted. The cistern heing filled to the hrim with the alum ley, a strong fire is kindled in the reverberatory grate, and the flame and hot air are forced to sweep along the surface of the liquor, so as to keep it in constant ehullition, and to carry off the aqueous parts in vapour. The soot which is condensed in the process falls to the bottom, and leaves
the body of the liquor elear. As the coneentration gocs on, more of the rough lixivium is run in from the settling eistern, plaeed on a somewhat higher level, till the whole gets charged with a elcar liquor of a specifie gravity sufficiently high for transferring into the proper lead boilers.

At Whitby, the lead pans are 10 feet long, 4 feet 9 inches wide, 2 feet 2 inches decp at the one end, and 2 feet 8 inehes decp at the other. This increase of depth and eorresponding slope facilitates the deeantation of the concentrated lixivium by mears of a syplion applicd at the lower end. The bottom of the pan is supported by a series of parallel iron bars placed very ncar each other. In these lead pans the liquor is coneentrated, at a brisk boiling heat, by means of the flame of a flue beneath them. Every morning the pans are emptied into a settling eistern of stone or lead. The specifie gravity of the liquor should be about $1 \cdot 4$ or $1 \cdot 5$, being a saturated solution of the saline matters present. The proper degree of density must vary, however, with different kinds of lixivia, and according to the different views of the manufacturcr. For a liquor which consists of two parts of sulphate of alumina, and one part of sulphate of iron, a specific gravity of 1.25 may be sufficient ; but for a solution whieh contains two parts of sulphate of iron to one of sulphate of alumina, so that the green vitriol must be withdrawn first of all by crystallisation, a specific gravity of $1 \cdot 4$ may be requisite.

The construction of an evaporating furnace well adapted to the eoneentration of aluminous and other erude lixivia is deseribed under Soda. The liquor basin may be made of tiles or flags puddled in elay, and seeured at the seams with a good hydraulic cement. A mortar made of quieklime mixed with the exhausted sehist in powder, and iron turnings, is said to answer well for this purpose. Sometimes over the reverberatory furnace a flat pan is laid, instead of the arched top, into which the crude liquor is put for neutralisation and partial concentration. In Germany, sueh a pan is made of copper, because iron would waste too fast, and lead would be apt to melt. From this preparation-basin the under evaporating trough is gradually supplied with hot liquor: At one side of this lower trough, there is sometimes a door, through which the sediment may be raked out as it aceumulates upon the bottom. Such a contrivance is convenient for this mode of evaporation, and it permits, also, any repairs to be readily made ; but, indeed, an apparatus of this kind, well mounted at first, will serve for many years.

In the course of the final concentration of the liquors, it is customary to add some of the mother waters of a former proeess, the quantity of which must be regulated by a proper analysis and knowledge of their contents. If these mother waters contain much free sulpburic acid, they may prove uscful in dissolving a portion of the alumina of the sediment which is always present in greater or less quantity.
4. The Precipitation of the Alum by adding Alkaline Salts.-As a general rule, it is most advantageous to scparate, first of all, from the coneentrated elear liquors, the alum in the state of powder or small erystals, by addition of the proper alkaline matters, and to leave the mingled foreign salts, such as the sulphate of iron or magnesia, in solution, instead of trying to abstract those salts by a previous crystallisation. In this way we not only simplify and aecelerate the manufacture of alum, and lcave the mother waters to be worked up at any convenient season, but we also avoid the risk of withdrawing any of the sulphate of alumina with the sulphate of iron or magnesia. On this account, the concentration of the liquor ought not to be pushed so far as that, when it gets cold, it should throw out crystals, but merely to the verge of this point. This density may be determined by suitable experimeuts. The powder of alum is also called flour.

The clear liquor should now be run off into the precipitation eistern, and have the sulphate of potash or ehloride of potassium, or impure sulpbate or earbonate of ammonia, added to it. The sulphate of potash, whieh is the most dircet, forms 18.34 parts out of 100 of crystallised alum; and therefore that quantity, or an equivalent in chloride of potassium, or other potash, or ammoniacal salts, must be introduced into the aluminous liquor. Since sulphate of potash takes 10 parts of cold water to dissolve it, but is mueh more soluble in boiling water, and since the preeipitation of alum is more abundant the more concentrated the mingled solutions are it would be prudent to add the sulphate solution as hot as may be convenient : but, as chloride of potassium is fully three times more soluble in cold water, it is to be preferred as a precipitant, when it can be procured at a eheap rate. It has, also, the advantage of decomposing the sulphate of iron present into a chloride, a salt very difficult of crystallisation, and, thereforc, less apt to contaminate the erystals of alum. The quantity of alkaline salts requisite to precipitate the alum, in a granular powder, from the lixivium, depends on their ricliness in potash or ammonia, on the one liaud, and on the riehness of the liquors in sulphate of alumina ou the other; and this must be ascertained, for each large quantity of produet, by a prelimiuary experiment in a
precipitation glass. Herc, an aliquot measure of the aluminous liquor being taken, the liquid precipitant must be added in successive portions, as long as it causes any cloud, when the quantity added will be indicated by the graduation of the vessel. A very exact approximation is not practicable upon the great scale; but, as the mother waters are afterwards mixed together in one cistern, any excess of the precipitant at one time is corrected by excess of aluminous sulphate at another, and the resulting alum meal is collected at the bottom. When the precipitated saline powder is thoroughly settled and cooled, the supcrnatant mother watcr must be drawn off by a pump, or rather a syphon or stopcock, into a lower cistern. The more completely this drainage is effected, the more casily and completely will the alum be purified.

100 parts of alum are formed from the sulphate of alumina liquor,
by 18.32 of sulphate of potash,
, 13.86 of sulphate of ammonia,
or $15 \cdot 69$ of chloride of potassium.
Sulphate of ammonia is soluble in 1 of hot and 2 of cold water; sulphate of potash in ncarly 10 , and chloride of potassium in 3 , of water of ordinary temperature; alum, in 13 parts of water. A portion of the alum formed will remain in solution; this will depend on the quantity of liquid; the rest falls as a powder.

This mother liquor has generally a specific gravity of $1 \cdot 4$ at a medium temperature of the atmosphere, and consists of a saturated solution of sulphate or muriate of black and red oxide of iron, with sulphate of magnesia, in certain localities, and chloride of sodium, when kelp salts have been used as a precipitant, as also a saturated solution of sulphate of alumina. By adding some of it, from time to time, to the fresh lixivia, a portion of that sulphate is converted into alum; but, eventually, the mother water must be evaporated, so as to obtain from it a crop of ferruginous crystals; after which it becomes capable, once more, of giving up its alum to the alkalinc precipitants.
When the aluminous lixivia contain a great deal of sulphate of iron, it may be good policy to withdraw a portion of it by crystallisation before precipitating the alum. With this view, the liquors must be evaporated to the density of $1 \cdot 4$, and then ruu off into crystallising stone cisterns. After the grcen vitriol has crystallised, the liquor should be pumped back into the evaporating pan, and again brought to the density of 14. On adding to it, now, the alkalino-saliue precipitants, the alum will fall down from this concentrated solution, in a very minute crystalline powder, casy to wash and purify. But this method requircs more vessels and manipulation than the preceding, and should only be bad recourse to from necessity; since it compels us to carry on the manufacture of both the valuable alum and the lower priced salts at the same time ; moreover, the copperas extracted at first from the schist liquors carries with it , as we have said, a portion of the sulphate of alumina, and acquires thereby a dull aspect; whereas the copperas obtaincd after the separation of the alum is of a brilliant appearance.
5. The Washing, or Edulcoration, of the Alum Powder. - This crystalline pulverulent matter has a brownish colour, from the admixture of the ferruginous liquors; but it may be freed from it by washing with very cold water, which dissolves not more than one-eighteenth of its wcight of alum. After stirring the powder and the water well together, the former must be allowed to settle, and then the washing must be drawn off. A second washing will render the alum nearly pure. The less water is employed and the more effectually it is drained off, the morc complete is the process. The second water may be used in the first washing of another portion of alum powder, iu the place of pure water. These washings may be added to the schist lixivia. This powder is now exterisively sold without further manipulation.
6. The Crystallisation. - The washed alum is put into a lead pan, with just cnough water to dissolve it at a boiling heat ; fire is applied, and the solution is promoted by stirring. Whenever it is dissolved in a saturated state, it is run off into the crystallising vesscls, which are called roching casks. These casks arc about five feet high, three feet wide at the top, and somewhat wider at the bottom; they are made of very strong staves, nicely fitted to each other, and held together by strong iron hoops, which are driven on pro tempore, so that they may be casily kuocked off again, in order to take the staves asunder. The concentrated solution, during its slow cooling in these close vessels, forms large regular erystals, which hang down from the top, and project from the sides, whilc a thick layer or cake lines the whole interior of the cask. Δt the end of cight or ten days, more or less according to the weather, the hoops and staves are removed, when a cask of apparently solid alum is disclosed to view. The workman now pierces this mass with a pickaxe at the side near the bottom, and allows 'he mother water of the interior to run off on the sloping

Vol. I.
stone floor into a proper cistern, whence it is taken and added to another quantity of washed powder to be crystallised with it. The alum is next broken into lunps, exposed in a proper place to dry, and is then put into the fiuished bing for market. There is sometimes a little insoluble basic alum (subsulphate) left at the bottom of the cask. This, being mixed with the former mother liquors, gets sulphuric acid from them; or, being mixed with a little sulphuric acid, it is equally converted into alum.

Alum Liquors. - In the alum works on the Yorkshire coast, eight different liquors arc met with.

1st. "Raw Liquor." The calcined alum shale is stecped in water till the liquor has acquired a specific gravity of 9 or 10 pennywcights, according to the language of the alum-maker.
2nd. "Clarified Liquor." The raw liquor is brought to the boiling point in lead pans, and suffered to stand in a cistern till it has cleared; it is then called clarified liquor. Its gravity is raised to 10 or 11 pennyweights.
3 rd. "Concentrated Liquor." Clarified liquor is boiled down to about 20 pennyweights. This is kept merely as a test of the comparative value of the potash salts used by the alum-maker.
4th. "Alum Mother Liquor." The alum pans are fed with clarified liquor, which is boiled down to about 25 or 30 pennyweights, when a proper quantity of potash salt in solution is mixed with it, and the whole run into coolers to crystallise. The liquor pumped from these rough crystals is called "alum mothers."
5th. "Salts Mothers." The alum mothers are boiled down to a crystallising point, and afford a crop of "Rough Epsom," which is a sulphate of magnesia and protoxide of iron.
6 th and 7 th. "Alum Washings." The rough crystals of alum (No. 4) are washed twice in water, the first washing being about 4 pennyweights, the second about $2 \frac{1}{2}$, the difference in gravity being due to mother liquor clinging to the crystals.
8th. "Tun Liquor." The washed crystals are now dissolved in boiling water, and run into the "roching tuus" (wood vessels lined with lead) to crystallise. The mother liquor of the "roch alum" is called "tun liquor: " it is, of course, not quite so pure as a solution of roch alum in water.
The alum-maker's specific-gravity bottle holds 80 pennyweights of water, and by 10 pennyweights he means 10 more than water, or 90 .

The numbers on Twaddle's hydrometer, divided by $2 \cdot 5$, give alum-makers' pennyweights.

The alum-maker tests his samples of potash salts comparatively by dissolving equal weights of the different samples in equal measures of alum liquor at 20 pennyweights, heated up to the boiling-point, and weighing the quantity of alum crystals produced on cooling.

For the above information I am indebted to my friend Mr. Maurice Scanlan, who superintended for some time the Mulgrave Alum Works.

He informs me that $6 \frac{1}{2}$ tons of the alum rock at the Mulgrave Works, to the north of Whitby, yield, after calcination, \&cc., one ton of alum.
The price varies with the price of labour and of sulphur. Sulphate of alumina is from $7 l$. to $8 l$. per ton; potash and ammonia alum, $9 l$. per ton; and alum cake, $7 l .10 \mathrm{~s}$. to $8 l$. Their true value consists in the anount of soluble alumina which they contain, and for calico printing also in their frecdom from iron.

The alum shales uot being very generally found over the conntry, and nature having interposed certain limits to the amount manufactured and the speed of the process, many attempts have been made to obtain alum and sulphate of alumina.
In 1743, Ambrose Newton wished to economise the manufacture by boiling the scum of the alum works, the muddy deposit in Yorkshire, and adding to the concentrated solution of 45 pennyweights, stale urine, whieh is ammouia, until the solution became 27 penny weiglts. (An old method of hydrometry among aluw makers.) The liquor stands "for four days, and strikes out into small allom, and afterwards melted and roached into casks, which stand 14 days, and are taken down and the allom is finished."
Another patent in 1765 , by Hohnc, Cropper, and two Nicholsons, uses stale urinc and kelp liquor. They scem to use, by a mistake in names, iron pyrites only for their alun, but no doubt it contained both iron and alumina. They took advantage of the potash, and perhaps also of the soda, of the kelp.
In 1780, Natthew Sanderson patented a plan for making alum by burning the metallic sulphurets, obtaining the sulphuric acid, and uniting it with aliminous carth, -a far-seeing plan, not till long after adopted.

In 1794 Lord Dundouald pateuted a process for "washing aluminous, vitriolic, or pyritous schist or materials with sea water or solutions of salts containing muriate of soda," or mixing muriate of soda with aluminous or vitriolated salts or pyritous substances. He also proposed the use of muriatie acid. It is probahle, then, that hoth a soda- and an ammonia-alum have been manufaetured when the whole method was not very clearly understood.

Macquer, Foureroy, and Vauquelin having discovered the component parts of alum, Chaptal made it from its elements, using clay. He says, "Pure clay upon which the sulphuric acid is digested is dissolved with difficulty." He then says, "I calcine my clays, and reduce them into small pieces, which I spread on the floor of my leaden chambers. The sulphuric acid, which is formed by combustion of a mixture of sulphur and saltpetre, expands itself in the cavity of these ehambers, aud exists for a certain time in the vaporous form. In this form it has a stronger aetion than when it has heen wcakened by the mixture of a quantity of water more or less eonsideralle, so that it seizes the earths, eombines with them, causes them to inercase in bulk by the efferveseence whieh takes place, and at the end of several days the whole surface exposed to the vapour is converted into alum. Care is taken to stir these earths from time to time, that they may successively present all their surfaees to the action of the aeid." "But whatever process may be used to comhine the aeid with clay, it is necessary to expose the aluminised earths to the air during a greater or less space of time, in order that the comhination may he more accurate, and the saturation more complete." This is, in fact, the mode of making the sulphate of alumina. It was then dissolved in water, drawn off clear, to free it from the silica and undissolved matter, mixed with sulphate of potash, evaporated, and erystallised.

The manufacture of the alum from clay seems to have been a good deal used in France. Their method at present, aecording to Regnault, is as follows: -. "They choose clays, such as kaolins, which contain little iron. The clays are then calcined at a low red heat in a furnace; they are ground to powder in a mill, and mixed with half their weight of sulphuric acid of 1.45 specific gravity. The mixture is then heated in another furnace until the sulphuric acid begins to evaporatc. It is then taken out, and left to stand for several days." After some time the combination beeomes intimate, and the usual method of removing the sulphate of alumina from the insoluble matter is resorted to, and the potash, or ammonia-salt, is added, to convert it into alum.

The most usual method has been to allow it to stand some weeks, or months, until the comhination has heen effeeted. This has partially arisen from a supposition of the neeessity of giving it as mueh time as is needful with the shales, as it was not known until lately how completely the aeid may decompose the elays.

A patent was ohtaincd in November, 1839, by Mr. William Wiesmann, of Duesburg, for improvements in the manufacture of alum. He subjeets pottcrs' clay to a moderate red heat, grinds it, and subjects the powder, in leadeu pans, to the action of concentrated sulphuric aeid ($66^{\circ} \mathrm{B}$.), taking eare to use excess of clay and a moderate heat. The mixture is to he stirred till it is dry, then treated with hoiling water, in order to dissolve the sulphate of alumina formed. So far the process is old and well known. The novelty consists in frecing the saline solution from iron by ferroeyanure of potassium (prussiate of potash). When the iron has heen all thrown down in the form of Prussian blue, the liquor is allowed to settle, the supernatant pure sulphate is drawn off, and evaporated till it forms, on eooling, a eonerete mass, which may be moulded into the shape of brieks, \&e., for the eonvenienee of paeking.

This was manufaetured at Lee-Moor, near Plympton. Dr. Muspratt's analysis makes it a basic sulphate $=2 \mathrm{Al}^{2} \mathrm{O}^{3} 5 \mathrm{SO}^{3}+33 \mathrm{Aq}$; ; and he adds that mauufacturers objected to it because it was impossible to judge of its purity by its merely physieal appearance. Mohr's analysis gave-

Alumina	-	-	-	13.91
Sulphuric acid	-	-	-	36.24
Water				
Sulphate of potash	-	-	49.60	
		1.50		

His mode of removing iron hy prussiate of soda is very sueeessful.
By having an excess of elay, Wiesmann intended to have all his acid saturated, He found that he could uot dissolve all the alumina by using only its equivalent of aeid; he preferred, therefore, to lose the alumina, as in the other proeesses, from shale and alum-stone.

Hervey's patent of 1839. Clay is dried, ground, and sieved; it is then mixed with sulphurie acid of from 10° to $80 \mathrm{Twad}$. , and from $\frac{1}{2}$ to an equal quantity of elay, used according to its quality. The mix ture is then well stirred; a great ebullitiou
ensucs, and after ebullition it is again stirred. This is the formation of the sulphate of alumina, which is washed out, and made into alum in the ordinary way.

In 1842 Mr . 'Turner patented a method, said to be originally Sprengel's proposal, of extracting the alumina and potash from felspar to make alum. The felspar is heated with sulphate of potash to melting, then carbonate of potash is added. This gives a soluble glass, which, in boiling watcr, takes up two-thirds of the silica and as much potash as was added to the felspar. This being heated with carbonic acid, gives a gclatinous mass of silica. When dricd, the carbonate of potash may be washed out. The insoluble portion of the glass contains the original felspar, minus two-thirds of its silica - a light, porous substance, similar in composition to elaolite. This is boiled with sulphuric acid of 1.2 specific gravity. The intense heat needed has prevented the success of this process.

In 1842 Kagenbusch proposed to cover the schist over with a plastering of clay, or mud, for several months, and wash with water ; then to have it burnt in kilns fitted with air holes. In this process turf is used, on which the schist rests. The air holes regulate the combustion, which lasts three days. He uses kelp to obtain the alkali.

In 1850 J . T. Wilson proposed a method of collecting the ammonia from smoke, and using it in making ammonia-alum. What is wanting, he supplements by potash salts, causing a mixed potash- and amınonia-alum to be manufactured.

In 1854 Richardson adds iron pyrites, to increase the amount of sulphur, and, consequently, of sulphuric acid, in the shale; but it does not seem to have been used.

In 1855 Dr. Frankland precipitated the subsulphate of alumina, and added sulphuric acid, thus obtaining the base by a small expenditure of precipitant.

In 1856 J . Metcalf makes a cake similar to the alum-cake deseribed at p. 118 ; but he uses coarse clay.

In 1856 Henry Pease and Thomas Richardson mix clay with chloride of potassium, or with common salt; they convert both into sulphates ; the muriate set free dissolves the alumina, and the chloride of aluminum formed is used as alum.

In 1856 Spilsburg's patent purposed to make alum from kryolite.
The Boghead Cannel-coal ash contains about 30 per cent. of alumina, which it has been proposed to dissolve for making alum; but it has not hitherto been found a conveuient material.

Alum Manufacture simplified.-The alum shale, or schist, is the material whence the alumina is obtained: this shale is roasted in heaps in the open air, in order to render it porous and more absorbent of the sulphuric acid. To the roasted shale, sulphuric acid of specific gravity 1.75 is added, by which means sulphate of alumina is formed. In order to wash out from the almost dry mass this sulphate of alumina, and at the same time to supply the equivalent of the sulphate of ammonia necessary to constitute the formation of the double salt of alumina and ammonia, the boiling hot mother liquor of a previous operation is employed; and, as this mother liquor, when removed from the alum crystallisers, contains free sulphuric acid, the ammonia from a still, containing the ammoniacal liquor of the gas works, is distilled into it, and the boiling hot solution of sulphate of ammonia thus formed dissolves out the sulphate of alumina from the shalc. The alum liquor thus obtained is of such a specific gravity, that it crystallises without the necessity of having recourse to eraporation, and thus a considerable saving in fuel is effected. In order to obtain ammoniacal salts, such as sulphate and chloride, with the greatest possible economy, a series of two or more-say, for instance, four-cylindrical boilcrs are employed, each of which is placed at such a distance above the other that the contents of the upper boiler may be drawn off into the one next below it . The uppermost boiler is provided with au exit pipe, and has also a supply pipe, connecting the boilcr with a reservoir of ammoniacal gas liquor. Into the lowermost vessel of the series passes a pipe conveying high pressure steam, by means of which the liquor in the boiler soon becomes heated to the hoiling point. The vapour of ammonia and watcr passes off through an exit pipe into the boiler placed next above it in the series, the liquor in which also quickly boils, and vapour of ammonia and water pass off in the same way as beforc to the next vesscl above it, and so throughout the series. By the time the vapour of ammonia passes off from the uppermost boilcr, it has been so conecutrated that, on passing it into sulphuric or muriatic acid, a concentrated solution of either alkaline salt is obtained, of sufficient specific gravity to crystallise without evaporation, and thus a considerable saving in fuel and time is effected, and the annoniacal liquor most thoroughly cxhausted. Fresh supplies of ammoniacal liquor arc constantly furnished to the uppermost vessel from the reservoir; the partially exhausted liquors are run from the higher to the lower vesscls in succession, and the exhausted liquors run off to waste, from time to time, from the lowermost vessel of the scries.

Alum is made extensively in England and France from an artificial sulphate of
alumina. For this purposc elays are chosen as free as possible from carbonate of lime and oxide of iron. They are calcined in a reverberatory furnace, in order to expel the water, to peroxidise the iron, and to render the alumina more casily acted on by the acid. The expulsion of the water renders tbe clay porous and capable of renders it less soluble in the sulphuric acid; and the silica of the clay, by reabe iron the alumina, impairs its aggregation, and makes it more readily attracted by ting on The clay should therefore be moderately calcined; but not so as to indurate it acid. pottery ware, for it would then suffer a species of siliceous combination wbich wouid make it resist the action of acids. The clay is usually calcined in a reverberatory furnace, the flame of which serves afterwards to heat two evaporatiug pans and a basin for containing a mixture of the calcined clay and sulphuric acid. As soou as tbe clay has become friable in the furnace it is taken out, reduced to powder, and passed through a fine sieve. With 100 parts of the pulverised clay, 45 parts of sulphuric acid, of specific gravity $1 \cdot 45$, are well mixed, in a stone basin, arcbed over with brickwork. The flame and hot air of a reverberatory furnace are made to play along the mixture, in the same way as described for evaporating alum-sehist liquors. (See Soda.) Tbe mixture, being stirred from time to time, is, at the end of a few days, to be raked out, and to be set aside in a warm place, for the acid to work on the clay, during six or eight weeks. At the end of this time it must be wasbed, to extract the sulphate of alumina. With this view, it may be treated like the roasted alum ores above described. If potash-alum is to be formed, this sulphate of alumina is evaporated to tbe specific gravity of 1.38 ; but if ammonia-alum, to the specific gravity of only $1 \cdot 24$; because the sulphate of ammonia, being soluble in twice its weight of water, will cause a precipitation of pulverulent alum from a weaker solution of sulpbate of alumina than the less soluble sulphate of potash could do.

In preparing alum from clay or shale, it is of infinite importance that so much and no more heat be applied to the clay or shale, in the first instance, as will just expel the water of combination witbout inducing contraction. A temperature of $600^{\circ} \mathrm{F}$. is well adapted to effect tbis object, provided it be maintained for a sufficient period. Wben this has been carefully done, the silicate of alumina remaining is easily enough acted upon by sulphuric acid, either sligbtly diluted or of the ordinary commercial strength. The best form of apparatus is a leaden boiler, divided into two parts by a perforated septum or partition, also in lead; though on a very large scale, brickwork set in clay migbt be employed. Into one of the compartments the roasted clay or sbale should be put, and diluted sulphuric acid being added, the bottom of the other compartment may be exposed to the action of a well-regulated fire, or, what is better, heated by means of steam through the agency of a coil of leaden pipe. In tbis way a circulation of the fluid talses place throughout tbe mass of shale; and, as the alumina dissolves, the dense fluid it produces, falling continually towards the bottom of the boiler, is replaced by dilute acid, which, becoming in its turn saturated, falls like the first; and so on in succession, until either the whole of the alumina is taken up, or the acid in great part neutralised. The solution of sulphate of alumina thus obtained is sometimes evaporated to dryness, and sold under the name "coucentrated alum ;" but more generally it is boiled down until of the specific gravity of about $1 \cdot 35$; then one or other of tbe carbonates or sulpbates of potash or ammonia, or chloride of either base, or a mixture of these, is added to the boiling fluid, and as soon as the solution is complete, the whole is run out into a cooler to crystallise. The rougb alum tbus made is sometimes purified by a subsequent recrystallisation, after whicb it is "roched" for the market - a process intended merely to give it the ordinary commercial aspect, but of no real value in a chemical point of view.

The manufacture of alum is now taking au entirely new shape, and the two processes of Mr. Spence and Mr. Pochin threaten to absorb the whole of the manufacture in tbe north-west.
Mr. Spence, who has a manufactory of ammonia-alım at Manchester, called the Pendleton Alum Works, and another at Goole, in Yorkshire, has now become the largest maker of this substance in the world, as his regular production amounts to upwards of 100 tons per week. In this process, which he has patented, he uses for the production of his sulphate-of-alumina solution the carbonaceous shale of the coal measure. This substance contains from 5 to 10 per cent. of carbonaceous matter, and, when ignited by a small quantity of burning coal, the combustion continues of itself. To insure this the shale is spread into long heaps not exeeeding 18 inches in height, and having a brick drain running along each to supply air ; in this manner it slowly calcines: this process must be so conducted as not to vitrify the shale. After calcination it is boiled and digested in large leaden pans, heated by firc, with sulphuric acid of 1.4 specific gravity. After 30 to 40 hours of digestion the sulpbate of alumina formed is run into another leaden pan, and the boiling vapour from the
anmonia liquor of the gas works is passed into it, until so much alumina is combined with the solution as to form ammonia-alum. The solution is then run into shallow leaden coolers and the alum crystallises. It is then purified and washed much in the usual way, only that the proeess is conducted so as to cause much less labour than at older alum works.

Alum Cake.-This substanee owes its valuc to the amount of sulphate of alumina it contains, and is in fact another means of making soluble alumina accessible. We have already seen the many attempts to obtain alumina from clay, and the tedious nature of the operation of solution in acid, as well as the long after-processes of lixiviation and conversion into sulphate of alumina, or into alum, by reboiling or erystallising. Mr. Poehin, of Manehester, has found a method of removing all the difficulties, both of the first and after processes. He uses very fine ehina elay, free from iron, heats it in a furnace, mixes it thoroughly with acid, and finds that, when the process is managed earefully, the combination of the alumina and sulphuric acid is not only complete, but so violent that he is obliged to dilute his acid considerably, in order to ealm the action. When mixed, it is passed into eisterns with movable sides, where, in a few minutes, it heats violently and boils. The thick liquid gradually becomes thieker, until it is converted into a solid porous mass - the pores being made by the bubbles of steam which rise in the mass, which is not fluid enough to contract to its original volume. The porous mass is perfeetly dry, although retaining a large amount of combined water. It retains, of course, all the silica of the original elay, but this is in such fine division that every particle appears homogeneous. The silica gives it a dryness to the touch not easily gained by the sulphate only.

When pure sulphate of alumina is wanted in solution, the siliea is allowed to preeipitate before using it, but, in many cases, the fine silica is no hindrance; then the solution is made use of at once.

Our Imports of Alumi werc : -

	1855.	
Rock	1856.	
Not Rock	-895 cwts.	401 cwts.

Our Exports from 1853 to 1856 being as follows :-

Russia (southern ports)	-		$\begin{gathered} 1853 . \\ \hline \text { cwts. } \\ 3,313 \end{gathered}$	$1854 .$ cwts.	$1855 .$ cwts.	$1856 .$ cwts.
		-				
Hanse Towns --	-	-	14,251	2,312		
Holland -	-	-	6,583	3,889	4,452	4,548
Portugal (and the Azores)	-	-	3,053	3,345	2,116	2,294
Sardinia - - -	-	-	2,486	2,976	7,978	6,004
Austrian territories	-	-	5,804	9,885	9,860	9,989
Turkey	-	-	2,709	1,278	7,249	6,290
British North America	-	-	2,719	3,127	8,583	2,009
United States -	-	-	- -	2,096	991	14,870
Prussia -	-	-	- -	- -	1,545	
Tuseany -	-	-	- -	- -	2,827	
Gibraltar - -	-	-	- -	- -	2,265	
Norway -	-	-	- -	- -	- -	1,981
Syria and Palestine	-	-	- -	- -	- -	2,498
Moroceo - -	-	-	- -	- -	- -	1,237
Other countries -	-	-	15,158	9,181	9,832	13,252
			56,076	38,089	57,698	64,972

About 1100 tons of alum have been exported from China, ehiefly to India, withiu a short period. The Chinese use alum very largely in their cements.

The atum inines are in the neighbourhood of Peh-kwan larbour, $2^{\circ} 9^{\prime} 10^{\prime \prime} \mathrm{N}$. ., $12^{\circ} 32^{\prime} 6^{\prime \prime} \mathrm{E}$. Ten alum-making establishments appear to exist there, and the proeess, as described in the North China Mail, is similar to that employed where, iu this country, the alum-shale is nsed.-R. A. S.

ILUMINA. $\left(\mathrm{Al}^{8} \mathrm{O}^{3}, 51^{-4}\right)$ This is the only oxide which the metal aluminum forms, and it is assumed to be a sesquioxide on aecount of its isomorphisnı with sesquioxide of iron.

The occurrenee of alnmina in the native state has been before mentioned, and the several minerals will be found deseribed elsewhere.

It is obtained in the state of hydrate from eommon alum ($\mathrm{KO}, \mathrm{SO}^{3} ; \mathrm{Al}^{2} \mathrm{O}^{3}, 3 \mathrm{SO}^{3}+$ 24 HO) by adding a solution of ammonia (or better, earbonate of ammonia) to the latter salt and boiling. The precipitate is white, and gelatinous in a high degrec, aud retains the salts, in the presence of which it has been formed, with remarkable pertinaeity, so that it is very difficult to wash.

By drying and igniting this hydrate, the anhydrous alumina is produced; but it may be obtained more readily by heating ammonia-alun ($\mathrm{NH}^{4} \mathrm{O}, \mathrm{SO}^{3} ; \mathrm{Al}^{2} \mathrm{O}^{3} 3 \mathrm{SO}^{3}+$ 24 HO). All the eonstituents of this salt are volatile, with the exception of the alumina. It is insoluble in water, but soluble both in aeids and alkalis. Towards the former it plays the part of a base, producing the ordinary alumina salts; whilst, with the latter, it also enters into combination, but in this ease it is an acid, forming a series of eompounds which may be called aluminates.

The important application of alumina and its compounds in the arts of dyeing and ealieo printing depends upon a peeuliar attraetion whieh it possesses for organic bodies. This affinity is so strong, that when digested in solutions of vegetable colouring matters the alumina combines with and earries down the eolouring matter, removing it entirely from the solution. Pigments thus obtained, whieh are combinations of alumina with the vegetable colouring matters, are ealled "lakes."

Alumina has not only an aftinity for the colouring matters, but at the same time also for the vegetable fibres, cotton, silk, wool, \&e.; and henec, if alumina be preeipitated upon cloth in the presenee of a colouring matter, a most intimate union is effeeted between the cloth and the eolour. Alumina, when employed in this way, is ealled a " mordant."

Other bodies have a similar attraction for eolouring matters, e.g. binoxide of tin and sesquioxide of irou : eaeh of these gives its peculiar sliade to the colour or combination, alumina ehanging it least.

Soluble Modification of Alumina.-Mr. Walter Crum* has diseovered a peeuliar soluble modification of alumina. The biaectate of alumina has been found by Mr. Crum to possess the very curious property of parting with its acetie aeid until the whole is expelled, by the long-continued applieation of heat to a solution of this salt; the alumina remains in the solutiou in a soluble allotropie eondition. Its coagulum with dyewoods is translueent, and entirely different from the opaque cakes formed by ordinary alumina; hence this solution cannot aet as a mordant. But this solution of alumina, whieh is perfectly eolourless and transparent, has the alımina separated from it by the slightest eauses. A minute quantity of eitler an acid, an alkali, even of a neutral salt, or of a vegetable colouring matter, effects the ehange. The prceipitated alumina is insoluble in aeids, even boiling sulphurie; this shows another allotropie condition. But it is dissolved by caustic alkalis, by which it is restored to its common state.-H. M. W.

ALUMINA, ACETATE OF. The acetates of alumina are extensively used in the arts on aecount of the property which they possess of being readily deeomposed with deposition of their alumina on the fibre of cloth; hence they are used as mordants, in the manner deseribed under Calico Printing; and sometimes in dyeing they arc mixed with the solution of a colouring matter; in this the textile fabrie is immersed, whilst, on heating, the alumina is preeipitated upon the fabrie, which, in eonsequenec of its affinities before alluded to, carries down the colouring matter with it, and fixes it on the eloth.

The aeetate of alumina thus employed is obtained by treating sulphate of alumina with neutral acetate of lead, and filtering off the solution from the preeipitate of sulphate of lead. Acetate of lime is also used ; but the sulphate in this ease does not leave the solution so clear or so rapidly.

According to Mr. Walter Crum*, the solution resulting from the decomposition of sulphate of alumina ($\mathrm{Al}^{2} \mathrm{O}^{3}, 3 \mathrm{SO}^{3}$) by monobasic aectate of lead eontains the salt $\mathrm{Al}^{2} \mathrm{O}^{3}, 2 \mathrm{C}^{4} \mathrm{H}^{3} \mathrm{O}^{3}$ (biaectate of alumina), together with one equivalent of free aeetie acid, the compound $\mathrm{Al}^{2} \mathrm{O}^{3}, 3 \mathrm{C}^{4} \mathrm{H}^{3} \mathrm{O}^{3}$ not appearing to exist. By evaporating this solution at low temperatures, e.g. in a very thin layer of fluid below $38^{\circ} \mathrm{C}$. ($100^{\circ} \mathrm{F}$.), Crum obtained a fixed residue completely soluble in water, the eomposition of which, in the dry state, approaehed $\mathrm{Al}^{2} \mathrm{O}^{3}, 2 \mathrm{C}^{1} \mathrm{H}^{3} \mathrm{O}^{3}+4 \mathrm{HO}$.-H. M. W.

ALUMINA, NITRA'TE OF. Aecording to Ordway ("Siliman's Journal," iv. 30), a eoneentrated acid solution of alumina in nitric aeid deposits rhombic crystals eontaining $\mathrm{Al}^{2} \mathrm{O}^{3}, 3 \mathrm{NO}^{5}+18 \mathrm{HO}$. By the aetion of this salt on hydrate of alumina basic salts are also formed.-H. M. W.

ALUMINA, SILICATES OF. Silicate of alumina is the chief constituent of common clay (which see); it occurs also associated with the silicates of iron, mag-

[^20]nesia, lime, and the alkalis in a great varicty of minerals, which will be found described elsewhere. The most interesting of these are the felspars and the zeolites. See Clay.

Of course, being present in clay, silicate of alumina is the essential constituent of porcelain and earthenware. See Earthenware and Porcelain.-H. M. W.

ALUMINA, SULPHATE OF. The neutral sulphate of alumina, $\mathrm{Al}^{2} \mathrm{O}^{3}, 3 \mathrm{SO}^{3}+$ 18HO, whieh is obtained by dissolving alumina in sulphuric acid, crystallises in needles and plates; but sulphuric acid and alumina combine iu other proportions, e.g. a salt of the formula $\mathrm{Al}^{2} \mathrm{O}^{3}, 3 \mathrm{SO}^{3}+\mathrm{Al}^{2} \mathrm{O}^{3}$ was obtained by Mons, and the solution of this salt, when largely diluted with water, splits into the neutral sulphate and an insoluble powder containing $\mathrm{Al}^{2} 0^{3}, 3 \mathrm{SO}^{3}+2 \mathrm{Al}^{2} \mathrm{O}^{3}+9 \mathrm{HO}$. This subsalt forms the mineral aluminite, found near Newhaven, and was found by Humboldt in the schists of the Andes.

The sulphate of alumina is now extensively nsed in the arts instead of alum, under the name of "concentrated alum." For most of the purposes for which alum is employed, the sulphate of potash is an unnecessary constituent, being only added in order to facilitate the purification of the compouud from iron; for in consequence of the ready crystallisability of alum, this salt is casily purified. Nevertheless, Wiesmann has succecded in removiug the iron from the crude solution of sulphate of alumina obtained by treating clay with sulphuric acid, by adding ferrocyanide of potassium, which throws down the iron as Prussian blue; the solution, when evaporated to dryness, is found to consist of sulphate of alumina, containing about 7 per cent. of potash alum. 1500 tons of this article were produced at Newcastle-on-Tyne alone in the year 1854. See also Alun.-H. M. W.

ALUMINIUM. (Sym. Al., equiv. 13.7.) The name Aluminium is dcrived from the Latin alumen, for alum, of which salt this metal is the notable constituent.

Aluminium, though never found in the free state, occurs extensively diffused in mature in alumina and certain of its salts, especially the silicates.
The native varieties of unhydrous alumina are, the sapphire, ruby, and corundum (which see), whilst the hydrate occurs in nature in the minerals, diaspore and gibbsite. But the chief quantity of aluminium is found in the endless varieties of the mineral silicates of alumina with other bases, such as the felspars, micas, many kinds of clay, the zeolites, \&c.

Alumina was first decomposed by Davy, who discorered the metal soon after decomposing the other earths and alkalis; but he never seems to have obtaincd it without some nixture of potassium. It is evident, however, that the carth was completely reduced to the metallic state by him.

Wöhler obtained aluminium pure in 1827^{*} by the reduction of the chloride of aluminum in the form of a grey powder. Later (1845) \dagger, he succeeded by the same process in obtaining it in globules, which he describes as tin white, tolerably malleable and ductile, not materially oxidised by exposure to the air, of a specific gravity of $2 \cdot 5$, but, when hammered, of $2 \cdot 67$; unacted upon by water at the common temperature, but slowly disengaging hydrogen from water at the boiling point.

In $1854 \ddagger$ Dcville's first experiments on the preparation and properties of aluminium were published. The method he adopted for the liberation of the metal was essentially the same as that originally employed by Wöhler. But, by dint of intprovements in the details of the process, he succeeded in procuring the metal in larger globules, which were silver white, having a fusing point nearly approaching that of silver, which werc unoxidised when exposed to the air, even in a fused state, and remaining bright even in boiling water, unattacked by cither dilute or concentrated nitric or sulphuric acid in the cold ; but dissolved by hydrochloric acid with crolution of hydrogen.

Ersted was undoubtedly the first to prepare the chloride of aluminium \S, and it is even stated that he also procured the metal by the following metlod: "Prre alumina intimately mixed with powdered charcoal was introduced into a porcelaiu tube ; through this, when strongly heated, a stream of chlorine was directed, and the chloride of aluminium formed was collected in a separate vessel. By mixing this compound with an amalgam of potassium, containing a large proportion of the latter body, and immediately heating the mixture, chloride of potassinm was found, aud the aluminium combined with the mercury. This, on being distilled out of contact with the air, gave off the mercury, whilst aluminium remained in the form of a metallic button, closely resembling tin." ||

Deville's researches raised the hope that the metal might be obtained in sufficient quantity to become of ligh technical importauce, since it was probable that the

[^21]ehloride of aluminium might be deeomposed by cheaper metals at a higher temperature; and he obtained a grant from the Emperor of the French for the purpose of prosecuting his investigations on a sufficient seale.
Bunsen also showed in 1854^{*} that aluminium could be obtained in reguline masses by subnittiug the double ehloride of aluminium and sodium or potassium to clectrolysis in a fused state.
By fusing the chloride of aluminium (obtained by the proeess which will be found described under the head of the ehloride) with an equal equivalent of common salt, he obtained a double chloride, which fused below $200^{\circ} \mathrm{C}$. $\left(360^{\circ} \mathrm{F}\right.$.), and from whieh the metal is readily redueed by the same eleetrolytic proeess previously employed by Bunsen in the ease of magnesium (which see).
Bunsen pointed out that the diserepancy existing in the properties of the metal in the two states, as obtained respeetively by Wöhler and Deville, arose from its physieal eondition ; for Bunsen found that it was only the massive metal whieh possessed the properties aseribed to it by Deville, that in fact the pulverulent modification does decompose water at $100^{\circ} \mathrm{C}$., as stated by Wöhler.
Almost at the same time Deville published the results of his experiments upon the production of aluminium on a larger seale. \dagger He quite gave up the hope of sueceeding iu effeeting the reduetion of the ehlorides by any of the common metals. He adhered to Wöhler's and Bunsen's methods, earrying them out on a larger seale, with modifieations and improvements in the details, whieh enabled him to obtain the metal in sueh quantities, and thus to study its properties with so mueh sueeess, as to suggest numerous applieations, the probability of which never entered the minds of the original diseoverers. Very great credit is therefore due to M. Deville, although it is the practice amongst the German ehemists to detraet from, or even deny, his merit.
The following is the method deseribed by M. Deville for the preparation of this interesting metal.
Having obtained the ehloride of aluminium, he introduces into a wide glass (or porcelain) tube 200 or 300 grammes of this salt between two plugs of asbestos (or in a boat of poreelain or even copper), allows a eurrent of hydrogen to pass from the generator through a desieeating bottle containing sulphuric aeid and tubes containing ehloride of caleium, and finally through the tube containing the chloride; at the same timc applying a gentle heat to the ehloride, to drive off any free hydrochlorie aeid whieh might be formed by the action of the air upon it. He now introduces at the other extremity of the tube a poreelain boat containing sodium ; and when the sodium is fused the ehloride of aluminium is heated, until its vapour comes in contaet with the fused sodium. A powerful reaetion ensues, considerable heat is evolved, and by continuing to pass the vapour of the chloride over the sodium until the latter is all consumed, a mass is obtained in the boat of the double chloride of alıminium and sodium ($\mathrm{NaCl}, \mathrm{Al}^{2} \mathrm{Cl}^{3}$), in which globules of the newly redueed metal are suspended. It is allowed to cool in the hydrogen, and then the mass is treated with water, in whieh the double chloride is soluble, the globules of metal being unacted upon.
These snall globules are finally fused together in a poreelain crucible, by heating them strongly under the fused double chloride of aluminium and sodium, or even under common salt.
This proeess, whieh sueceeds without much difficulty on a small seale, is performed far more sueeessfully as a manufaeturing operation. Two east-iron cylinders are now employed instead of the glass or porcelain tube, the antcrior one of which contains the ehloride of aluminium, whilst in the posterior one is placed the sodium in a tray, about 10 lbs . being employed in a single operation. A smaller iron cylinder intermediate betwcen the two former is filled with seraps of iron, which serve to separate iron from the vapour of chloride of aluminium, by converting the perehloride of iron into the nueh less volatile protochloride. They also separate free hydroelloric aeid and ehloride of sulphur.

During the progress of the operation the connecting tube is kept at a temperature of about 400° to $600^{\circ} \mathrm{F}$. ; but both the cylinders are but very gently heated, since the chloride of aluminium is volatile at a comparatively low temperature, and the reaction between it and the sodium when onee commenced generates so mueh heat that frequently no external aid is required.
Preparation of Aluminium by Electrolysis. - Mr. Gore has succceded in obtaining plates of eopper coated with aluminium by the electrolysis of solutions of ehloride of aluminiun, aectate of alunina, and cven eommon aluin \ddagger; but the unalloyed metal eannot be obtained by the eleetrolysis of solutions. Deville, however, produeed it in eonsiderable quantities by the method originally suggested by Bunsen, viz, hy the

[^22]eleetrolysis of the fused double clloride of aluminium and sodium ($\mathrm{NaF}, \mathrm{Al}^{2} \mathrm{~F}^{3}$); but sinee this proeess is far more troublesome and expensive than its reduetion by sodium, it has been altogether superseded.

Preparation of Aluminium from Kryolite.-So early as Mareh 30, 1855, a specimen of aluminium was exhibited at one of the Friday evening meetings of the Royal Institution, which had been obtained in Dr. Perey's laboratory by Mr. Allan Diek, by a proeess entirely different from that of Deville, whieh promised, on aeeount of its great simplieity, to supersede all others.* It eonsisted in heating small pieees of sodiam, placed in alternate layers with powdered kryolite, a mineral now found in considerable abundance in Greenland, which is a double fluoride of aluminium and sodium, a nalogous to the double chloride of aluminium and sodium, its formula being Na F , $\mathrm{Al}^{2} \mathrm{~F}^{3}$. The proeess has the advantage that one of the materials is furnished ready formed by nature.

The experiment was only performed on a small seale by Mr. Diek in a platinum erueible lined with magnesia; the small globules of metal, whieh were obtained at the bottom of the mass of fused salt, being subsequently fused together under ebloride of potassium or common salt.

Before the deseription of these experiments was published, M. Rose, of Berlin, published a paper in September, 1855, on the same subject. \dagger In Rose's experiments he employed east-iron crueibles, in which was heated ten parts of a mixture of equal weights of kryolite and ehloride of potassium with 2 parts of sodium. The aluminium was obtained in small globules, which were fused together under chloride of potassium, as in Mr. Dieks' experiments.

Rose experienced a slight loss of aluminium by fusion under ehloride of potassium, and found it more advantageous to perform this fusion under a stratum of the double chloride of aluminium and sodium, as Deville had done.

He never sueeeeded in extraeting the whole quantity of aluminium present in the kryolite (13 per eent.), chiefly on aecount of the ready oxidisability of the metal when existing in a very finely divided state, as some of it invariably does.

It does not appear that any attempt has sinee been made to obtain aluminium on the large scale from liryolite, probably from the supply of the mineral not proving so abundant as was at one time anticipated.

In all the processes whieh have been found practicable on any considerable seale, for the manufaeture of aluminium, the powerful affinities of sodium are employed for the purpose of eliminating it from its compounds. The problem of the diminution of the priee of aluminium therefore resolves itself into the improvement of the methods for procuring sodium, so as to diminish the eost of the latter metal. M. Deville's attention was therefore direeted, in the early steps of the inquiry, to this point; and very considerable improvements have been made by him, whieh will be found fully deseribed under the head of Sonitm.

Deville \ddagger has sinee suggested the employment at once of the double salt of chloride of aluminium and ehloride of sodium ($\mathrm{NaCl}, \mathrm{Al}^{2} \mathrm{Cl}^{3}$), instead of the simple ehloride of aluminium, so as to obtain the metal by means of sodium. He uses 400 parts of this double salt, 200 of common salt, 200 of fluor spar, and 75 to 80 of sodium. The above-mentioned salts are dried, powdered, and mixed together; then with these the sodium, in small pieces, is mixed, and the whole heated in a crucible under a layer of eommon salt. After the reaction is eomplete, the heat is raised so as to promote the separation of the aluminium in the form of a button. It was found, however, that kryolite was, with advantage, substituted for tbe fluor spar.
C. Brunner § employs artificially prepared fluoride of aluminium; but this method cannot offer any advantage over the employment of the chloride, which is eheaper, or the kryolite, whieh nature affords.

Properties.-The metal is white, but with a bluish tinge; and even when pure has a lustre far inferior to silver.

Speeific gravity, $2 \cdot 56$, and, when hammered, $2 \cdot 67$.
Conduets eleetricity eight times better than iron, and is feebly magnetie.
Its fusing point is between the melting points of zine and silver.
By eleetrolysis it is obtained in forms whieh Deville believes to be regular oetahedra ; but Rose, who has also oecasionally obtained aluminium in a erystalline state (from kryolite), denies that they belong to the regular system.

When pure, it is unoxidised even in moist air; but most of the eommercial speeimens (probably from impurities present in the metal) beeome eovered with a bluisl-grey tarnish. It is unaffeeted by eold or boiling water; even steam at a red heat is but slowly decomposed by it.

It is not acted upou by eold nitrie aeid, and ouly very slowly dissolved even by the

Phil. Mag. x. 364.
\ddagger Ann. de Chim. et Phys, xlvi. 415 .

+ Poggendorf, Annalen, and Phil, Mag. x. 233.
§ Chemical Gazette, 18:56, 338.
boiling acid; scarcely attacked by dilute sulphuric acid, but readily dissolved by hydrochloric acid, with evolution of hydrogen.
Sulphuretted hydrogen and sulphides have no action upon it ; and it is not even attacked by fused hydrated alkalis. Professor Wheatstone* has shown that in the voltaic series, aluminium, although having so small an atomic number, and so low a specific gravity, is more e ectro-negative than zine ; but it is positive to cadmium, tin, lead, iron, copper, and platinum.
Impurities in Aluminzum. - Many of the discrepancies in the properties of aluminium, as obtained by different experimenters, are due to the impurities which are present in it.
If the naphtha be not carefully removed from the sodium, the aluminium is liable to contain carbon.
Frequently, in preparing aluminium, by the action of the chloride on sodium, by Deville's original process, copper boats have been used for holding the sodium ; in this case the metal becomes contaminated, not only with copper, but also with any other metals which may be present in the copper-e.g. Salm-Horstmar \dagger found copper in the aluminium sold in Paris, and Erdmann detected zinc \ddagger; and in every case the metal is very liable to become mixed with silicon, cither from the eartheuware tubes, boats, or crucibles, hence Salvetat found, even in the aluminium prepared by Deville himself, 2.87 per cent. of silicon, 2.40 of iron, 6.38 of copper, and traces of lead.

The following analysis of commercial aluminium was communicated to the British Association, at its meeting in 1857, by Professor Mallet.

Alloys of Aluminium.-Very small quantities of other metals suffice to destroy the malleability and ductility of aluminium. An alloy containing only $\frac{1}{20}$ th of iron or copper cannot be worked, and the presence of $\frac{1}{10}$ th copper renders it as brittle as glass. Silver and gold produce brittlencss in a less degree. An alloy of 5 parts of silver with 100 of aluminium, is capable of being worked like the pure metal, but it is harder, and therefore susceptible of a finer polish; whilst the alloy, containing 10 per cent. of gold, is softer, but, nevertheless, not so malleable as the pure metal. The presence of even $\frac{1}{1000}$ th part of bismuth renders aluminium brittle in a high degree.

These statements by Tissier§, however, require confirmation; for Debray states that aluminium remains malleable and tough when containing as much as 8 per cent. of iron, or 10 per cent. of copper, but that a larger quantity of either of these metals renders it brittle.

It is curious that only 3 per cent. of silver are sufficient to give aluminium the brilliance and colour of pure silver, over which the alloy has the great advantage of not being blackened by sulphuretted hydrogen.

On the other hand, small quantities of aluminium combined with other metals change their properties in a remarkable manner. Thus copper alloyed with only $\frac{1}{10}$ th of its weight of aluminium has the colour and brilliance of gold, and is still very malleable (Tissier); and when the aluminium amounts only to $\frac{1}{5}$ th (i.e. 20 per cent.), the alloy is quite white ($D c b r a y$).

An alloy of 90 parts of copper and 10 of aluminium is harder than common bronze, and is capable of being worked at high temperatures easier than the best varietics of iron. Larger quantities of aluminium render the metal harder and brittlc.-Debruy. \||

An alloy of 100 parts of silver with 5 of aluminium is as hard as the alloy employed in the silver coinage, although the other properties of the silver remain unchanged (Tissier). Similar alloys have likewise been prepared by Dr. Percy.

Messrs. Calvert and Johnson describe** an alloy of 25 parts aluminium to 75 of iron, which has the valuable property of not oxidising by exposure to moist air.

Uses of Aluminium. - No very important application of aluminium has yet been made, although, at the time M. Dcville's experiments were commenced, sanguine hopes were entertained that aluminium might be produced at a price sufficiently low to admit of its practical application on a large scale, these anticipations have

[^23][^24]not been realised; and as yct, on account chicfly of its higl price*, the applications which have been made of this intercsting metal are but few.

Its low specific gravity, combincd with sufficient tenacity, recommends it for many interesting uses. The fractional weights used by chemists, which arc made of platinum, are so extremcly small that they arc constantly being lost ; their much greater volume in aluminium renders this metal peculiarly suitable. In the construction of the beams of balances, strength combined with lightness arc desiderata; and M. Deville has had very beautiful balance beams made of this metal; but at present its higl price has prevented their extensive adoption.

These samc qualities render this mctal suitable for the construction of helmcts and other armour ; but at present thesc are but curiosities, and are likely to remain so, unless some chcaper method of eliminating the metal than by the agency of sodium be discovered.

Its quality of being unacted upon by oxygen, sulphuretted hydrogen, and many acids, would suggest numerons applications, if it were sufficiently chcap; $e g$. it might be uscd for coating other metals, as iron, lead, \&ce., to protect them from rust, instead of paint. \dagger. It would be particularly useful for covering the pipes and cisterns employed in water supply, and thus preventing the accidents which are constantly resulting from the action of water on lead.

This metal has been proposed for making spoons, \&c., instead of silver. It certainly has the advantage of not being blackened by sulphuretted hydrogen ; but those which the writer has seen have a dull leaden hue-far inferior, cven, to somewhat tarnishce silver in brilliance, - and would certainly not be held in high esteem by the public.

It has been suggested to employ aluminium, on account of its sonorousness and ductility, for making piano-forte wires. It was also imagined that it might be used in making bells; but Mr. Denison has quite set this question at rest. No one who heard the sound of his alnminium bell will again think of such an application.

Probably one of the most iutercsting of the applications of aluminium (at least, in a scientific point of view) that has been made, is the recent one by Deville and Wöhler, of employing it in the production of crystalline allotropic modifications of certain other elements hitherto unknown in that state; e.g. boron, silicon, and titauium (which see). It depends upon the fact that these elements, in the amorphous state, dissolve in fused alumiuium, and, on cooling the molten solution, they slowly separate from the aluminium in the crystalline state.

Our first importation of aluminium was in 1856, to the value of $35 l .-H$. M. W.
ALUMINIUM, CHLORIDE OF ($\mathrm{Al}^{2} \mathrm{Cl}^{3}-133.9$). Preparation.-Chloride of aluminium cannot be prepared by treating alumina with hydrochloric acid, as in the case of most chlorides; for on evaporating the solution to dryness, hydrochloric acid is evolved and alumina alone remains.

The method at prescnt used is, in principle, the same as that originally suggested by Cersted, which has since found numerous other applications. It is impossible to convert alumiua into the cbloride by the direct action of chlorinc alone; at any temperature the chlorine is as iucapable of displacing the oxygen from the alumina as it would from lime. But if the attraction of the chlorine for the metal be supported by the affinity of carbon for the oxygen, then the compound is, as it were, torn asunder, carbonic acid or carbonic oxide resulting on the one hand, and the chloride of aluminum on the other.
On the large scale the chlorine is passed over a previously ignited mixture of clay and coal tar, contained in retorts like those used in the manufacture of coal gas, which arc heated in a furnace; the chloride, which on account of its volatility is carried off, being coudensed in a chamber lined with plates of carthenware, wherc it is deposited in a crystalline mass.
Properties.-It is a yellowish crystalline solid, readily decomposed by the moisture of the air into lydrochloric acid and alumina, volatile at a dull red heat. It is very soluble in water, but cannot be recovered by evaporating the solution.-H. M. W.

ALUMINIUM, FLUORIDE OF. ($\mathrm{Al}^{2} \mathrm{~F}^{3}$) The existence of the fluoride of aluminium in nature, the form of the double fluoride of sodium and aluminium, namely, $\mathrm{Na} \mathrm{F}, \mathrm{Al}^{2} \mathrm{~F}^{3}$, as kryolite, and the use of this mincral in the manufacturc of aluminium, has been already alluded to. The fluoride of alnuinium likewise exists in two other mincrals, namcly, the topaz $\left[3\left(\mathrm{Al}^{2} \mathrm{O}^{3}, \mathrm{Si} \mathrm{O}^{9}\right)+\left(\mathrm{Al}^{2} \mathrm{O}^{3}+\mathrm{Al}^{2} \mathrm{~F}^{3}\right)\right]$ and pyenite, $3\left(\mathrm{Al}^{2} \mathrm{O}^{3}, \mathrm{Si} \mathrm{O}^{4}\right)+\mathrm{Al}^{2} \mathrm{~F}^{3}$. \ddagger

The pure fluoride can only be obtained artificially by dissolviug pure aluminum

[^25]in hydrofluoric acid. It has a great tendency to form double salts with the fluorides of potassium and sodium. - H. M. W.
ALUM, NATIVE. This tern includes several compounds of sulphate of alumina with the sulphate of some other base, as magnesia, potash, soda, the protoxides of iron, manganese, \&cc. They occur generally as efflorescences, or in fibrous masses; when erystallised they assumc octahcdral forns.

Native alum is solnble in water, and has an astringent taste, like that of the alum of comnerce. -H. W. B.
ALUM SHALE. The chief natural source from which the alum of commerce is derived in this country. It occurs in a remarkable manner near Whitby, in Yorkshire, and at Hurlet and Campsie, near Glasgow. A full description of the alum shale, and of the processes by which the crystallisable alum is separated, will be found under Alom.
ALUMSTONE, or ALUNITE (Alun, Fr.; Alaunstein, Germ.). This mincral is composed of alumina $37 \cdot 13$, sulphuric acid $38 \cdot 53$, potash $11 \cdot 34$, water $13 \cdot 00$. Silica is also frequently present as an impurity, sometimes to the extent of 60 per cent. It is a white. greyish, or reddish mineral, affording a white streak, and an uneven, flat, conehoidal fracture, which is splintery in the massive varieties. It is transparent or subtranslucent.

Alumstone is one of the sources of the alum of eommerce, which is obtained from it in crystals after frequent roasting, and lixiviation in water.

Alumstone is found at Tolfa, near Civita Vecchia, in the Roman States (sometimes in crystals); at Elizabethpol, in Georgia; at Pic de Saucy, in France, and in the Grecian Archipelago. The compact varieties from Hungary are so hard as to be used for millstones.-Dana.

AMADOU. (Amadou, Fr.; Zunderschwamm, Gr.) The name of a spongy combustible substance, prepared from a species of agaric, the boletus igniarius, which grows on the trunks of cherry trees, ashes, beeches, \&ec.; it is sometimes known as spunk, and as touchwood, but commonly in this country it is called German tinder. It must be plucked in the months of Angust and September. This plant grows horizontally on the several trees on which it is indigenous : when it makes its first appearance it is a little round wart-like body, not larger than a pea; it gradually increases in size and hardness till it becomes of a darkish brown, and is as large as an apple. It afterwards takes a horizontal direction, forms a border, and bccomes covered with numerous closely packed tubes on its under surface. When the plant is full grown the tubes are of a reddish-brown colour and of a hard woody texture, and the upper surface is of various colours, disposed in grey, brown, or clouded rings. It is prepared hy removing the outer bark with a knife, and separating carefully the spongy substance, of a yellow brown colour, which lies within it, from the ligneous matter below. This substance is cut into thin slices, and beat with a mallet to soften it, till it can be easily pulled asunder between the fingers. In this state the boletus is a valuable substance for stopping oozing hæmorrhages, and some other surgical purposes. To convert it into tinder it must receive a finishing preparation, which consists in boiling it in a strong solution of nitre ; drying it, beating it anew, and putting it a second time into the solution. Sometimes, indeed, to render it very inflammable, it is imbued with gunpowder, whence the distinction of black and brown amadou.

All the puff-balls of the lycopodium genus of plants, which have a fleshy or filamentous structure, yield a tinder by soaking in gunpowder water. The Hindoos employ a leguminous plant, which they call solu, for the same purpose. Its thick spongy stem, being reduced to charcoal, takes fire like amadou.

AMAI.GAM. Wheu mercury is alloyed with any metal, the compound is called an amalgam of that metal; as, for example, an amalgam of tin, hismuth, \&c.

Some amalgams are solids and others fluids; the former are often crystalline, and the latter may be probably regarded as the solid amalgam dissolved in mercury.

Silver Amalgam may be formed by mixing finely-divided silver with mercury. The best process is to precipitate silver from its solution by copper, when we obtain it in a state of fine powder, and then to mix it with the mercury.

A native amalgam of mercury and silver occurs in finc crystals in the mines of the Palatinate of Moschellandsberg: it is said to be found where the veins of copper and silver intersect each other. Dana reports its existence in Hungary and Sweden, at Allemont, in Dauphiné; Almaden, in Spain, and in Chili ; and he quotes the following analyses : -

If six parts of a saturated solution of nitrate of silver with two parts of a saturated
solntion of the protonitrate of mereury are mixed with an amalgam of silver one part and mercury seven, the solution is speedily filled with beautiful arborescent crystals -the Arbor Diance, the tree of Diaur,- or the silver tree.

Gold Amalyam is made by licating together mercury with grains of gold, or gold-foil; when the amalgam of gold is heated, the mercury is volatilised and the gold left. This amalgam is employed in the process known as that of fire gilding, although, since clectro-gilding has been introduced, it is not so frequently employed. A. gold amalgam is obtained from the platinum region of Columbia; and it has been reported from California, especially from near Mariposa. Schneider gives its composition, mercury, $57 \cdot 40$; gold, $38 \cdot 89$; silver, $5 \cdot 0$.

Tin Amalgam. - By bringing tinfoil and mercury together, this amalgam is formed, and is used for silvering looking-glasses. (See Sulvering Glass.) If melted tin and mereury are brought together in the proportion of three parts mereury and onc part tin, the tin amalgam is obtained in cubie crystals.

Electric Machine Amalgam. - Melt equal parts of tin and zine together, and combine these with three parts of mercury : the mass must be shaken until it is cold ; the whole is then rubbed down with a small quantity of lard, to give it the proper cousistence.

Amalgam Copper, for stopping teeth. The Freneh dentists have long made usc of this for stopping teeth. It is sold in small rolls of about a draehm and a half in weight ; it is covered with a greyish tarnish, has a hardness much greater than that of bone, and its cohesion and solidity are considerable. When heated nearly to the point of boiling water this amalgam swells up, drops of mereury exuding, whieh disappear again on the cooling of the substance. If a piece, thus heated, be rubbed up in a mortar, a plastic mouldable mass, like poor clay, is obtained, the eonsistence of which may, by continued kneading, be inereased to that of fat elay. If the moulded mass be left for teu or twelve hours, it hardens, acquiring again its former properties, without altering its speeific gravity. Hence the stopping, after it has hardened, remains tightly fixed in the hollow of the tooth. The softening and hardening may be repeated many times with the same sample. Pettenkofer ascribes these phenomena to a state of amorphism, with which the amalgam passes from the erystalline condition in the process of softening. All copper amalgams containing between 0.25 to 0.30 of copper exhibit the same behaviour. The above chemist recommends, as the best mode of preparing this amalgam, that a erystalline paste of sulphate of suboxide of mercury (prepared by dissolving mereury in hydrated sulphuric aeid at a gentle heat) be saturated under water at a temperature of from 60° to 70°, with finely divided reguline eopper (prepared by precipitation from sulphate of copper with iron). One portion of the copper precipitates the mercury, with formation of sulphate of copper; the other portion yields with mereury au amalgam: 100 parts of dissolved mereury require the copper preeipitated, by iron, from 232.5 parts of sulphate of copper. As in dissolving the mereury the protoxide is easily formed instead of the suboxide, particularly if too high a temperature be maintained, it is advisable, in order to avoid an excess of mercury in the amalgam, to take 223 parts of sulphate of eopper, and to add to the washed amalgam, whieh is kept stirred, a quantity of mercury iu minute portions, corresponding to the amount of suboxide contained in the mereury salt, until the whole has become sufficiently plastic. This amalgam may be obtained by moistening finely-divided eopper with a few drops of a solution of nitrate of suboxide of mereury, and then triturating the metal with mereury in a warmed mortar. The rubbing may be continued for some time, and may be carried on under hot water, mereury being added until the required eonsistenee is attained.

A remarkable depression of temperature during the combination of amalgams has been observed by several ehemists.

Dobereiner states that when 816 grains of amalgam of lead (404 mercury and 412 lead) were mixed, at a temperature of 68°, with 688 grains of the amalgam of bismutll (404 mercury and 284 bismuth) the temperature suddenly fell to 30°, aud by the addition of 808 grains of mercury (also at 68°) it became as low as 17°; the total depression amounting to 51°.

In certain proportions of mixture of the constituents of fusible metal (tin, lead, and bismuth) with mercury, Dobereiuce forned surprisiug depressions of temperature; the temperature, he reeords of onc experiment, sank instantly from 65° to 14°.

AMAI.GAMATION. See Mercury and Silven.
AMARINE. $\left(\mathrm{C}^{18} \mathrm{H}^{18} \mathrm{~N}^{2}\right)$ An organic base produced from bitter almond oil. The oil is first treated with ammonia, by whiell means lydrobenzamide is formed: the latter, on boiling with potash, undergocs a eurious elange resulting in the formation of amarine. Amarine and hydrobenzamide are isomeric or polymerie, the percentage eomposition being the same in both.-C. G. W.

AMBAR,LIQUID. (Ambre, Luquide, F'r.) In former editions of this Dictionary, the
liquid-ambar, as it was called, was confounded with liquid storax or styrax. It is obtained from the liquid-ambar styraciflua of Linnæus, growing in Louisiana and Mexico, whereas the storax is procured chiefly-it is now entircly-from Trieste; and it is extracted from the styrax officinulis, which grows in various parts of Grcece. Percira, quoting Buchner's "Repcrtorium," informs us that the storax is known in the East as buchuri-jag. Liquid-ambar is rarely used in any art or manufaeture. It is brownish ash-grey, of the consistence of turpentine, dries up readily, smells agreeably, like benzoin, has a bitterish, sharp, burning taste; is soluble in 4 parts of alcohol, and contains only 1.4 per cent. of beuzoic acid.
AMBER. (Succin, Fr. ; Bernstein, Germ.) The Electron of the Greeks, to whom this substance appears to have been well known. From its peculiar property of manifesting electrical phenomena, we have derived our word, electricity. It appcars to have been known to the Romans under the names of lyncurium, and, beeausc of its supposed vegetable origin, succinum. The ancients also gave the name electrum to a yellow metal containing gold and silver.

Amber is a mineral solid, of a yellow colour of various shades, which burns quite away with flame, and consists of carbon, hydrogen, and oxygen, in nearly the same proportions, and in the same state of combination, as vegetable resin. The chemical composition, aceording to Schrötter, is:-

Carbon	-	-	-	-	-	-	-	-
Hydrogen	-	-	-	-	-	-	-	-12
Oxygen	-	-	-	-	-	-	-10.9	

Its specific gravity varies, by Dr. Ure's trials, from 1.080 to 1.085 . It becomes negatively and powerfully electrical by friction. When applied to a lighted candle it takes fire, swells considerably, and exhales a white smoke of a pungent odour ; but does not run into drops. Copal, which resembles it iu several respects, differs in bcing softer, and in melting into drops at the flame; and mcllite, or honey-stone, which is a mineral of a similar colour, becomes white when laid on a red-hot coal.
The texture of amber is resino-vitreous, its fracture conchoidal, and lustre glassy. It is perfectly homogeneous; sufficiently hard to scratch gypsum, and to take a fine polish. It is, however, scratched by calcareous spar. When amber is distilled in a retort, crystalline needles of succinic acid sublime into the dome, and oil of amber drops from the beak into the receiver. Fossil resins, such as that of Highgate, found in the London clay formation, do not afford succinic acid by heat; nor does copal. Amber is occasionally found of a whitish and brownish colour. The Rev. F. W. Hope, F.R.S., in his paper on the "Succinic Insects," states them to be altogether extra-European. "Amber is occasionally met with in the gravel-pits ncar London, and I have seen specimens which were found in Hyde Park. At Aldborough after a raking tide, it is thrown on the beach in considerable quantities, along with masses of jet-Rev. F. W. Hope, Trans. Ent. Soc.
The most intcresting fact rclative to this vegeto-mineral is its gcological position, which is very characteristic and well determined. It is found almost uniformly in separate nodules, disseminated in the sand, elay, or fragments of lignite of the plastic clay formation, situated between the calcaire grossier (crag limestone) of the tertiary strata above, and the white chalk bclow. The size of these nodules varies from a nut to a man's head; but this magnitude is very rare in true amber. It does not occur either in continuous beds, like the chalk flints, or in veins; but it lies at one time in the carthy or friable strata which accompany or include the lignites; at another entangled in the lignites themselves. The pieces of amber found in the sands. and other formations evidently alluvial, those met with on the sea-coasts of certain countries, and especially Pomerania, come undoubtedly from the above geological formation; for the organic matters found still adhering to the amber leave no doubt as to its primitive place. Amber docs uot, therefore, belong to any postdiluvian or modern soil, since its native bed is covered by threc or four serics of strata, often of considerable thickness, and well characterised, procecding upwards from the plastic clay which includcs the amber : tbesc are, the crag limestone, the bone gypsum, with its marls, the marly limestone, the uppcr marl sandstone, which covers it, and, lastly, the freshwater or lacustrine formation, often so thick, and composed of calcareous and siliceous rocks.

The amber bed is not, however, always covered with all these strata; and it is cven rarc to sec a great mass of one of them above the ground which contains it: because, were it buried under sueh strata, it would be difficult to meet with such cireumstanees as would lay it spontaneously open to the day. The truc yellow amber belongs thercforc to the plastic clay formatiou intermediate in England between the clalk and the London clay. The vegetahle origin of amber is satisfactorily determined by its chemical composition,-its optical properties, as shown by Sir David Brewstcr,--and by the eondition iu which insects and the remains of insects
are found in this resin, along with fragınents of leaves and stalks. Ccrtain families of inseets occur more abundantly thau others. Thus the hymienoptera, or insects with four marked membranaceous wings, as the bee and wasp, are not abundant. The diptera, or inseets with two wings, as gnats and flies, are more numerous. Then eome the spider tribe, some coleoptera (inseets with erustaeeous shells or elytra, which sbut together and form a longitudinal suture down the baek), or beetlesprineipally those which live on trees, as the eluterides, or leapers, and the chrysomelida. The insects appear evidently to have struggled after being entangled in the then viseous fluid, and oceasionally a leg or a wing is found at some distance from the body, which had bcen detached in the efforts of the inseet to eseape from the resin. Göppert has named the tree supposed to have yiclded the amber, Pinites succinifer.

Germar and Schweiger state that the inseets enveloped in amber are in general such as sit on the trunks of trees, or live in the fissures of their bark. These naturalists have not been able to refer them to any living species; but it has been observed that they resemble more the insects of hot climates tban those of the temperate zones. D. T. Tessler sent to the Exhibition in 1851, a piece of amber containing the leg of a toad. Amber is fouud abundantly on the Prussian coast of the Baltic, oceuring from Dantzie to Memel, especially between Pillau and Dorfe Gross-Hubnicken. It oceurs also on the coast of Denmark and Sweden; in Gallieia, near Lemberg, and at Missan, in Poland ; in Mnravia, at Boskowitz ; in the Uralian Mountains, Russia; near Christiania, Norway; in Switzerland, near Basle, and other placcs. Small quantities are occasionally found in the clay of the Paris and the London basins. On the Siciliau coast amber is sometimes fonnd having a peeuliar blue tinge.
Amber is colleeted on the coast of Prussia in several ways. It is found in the beds of streams; in the sand-banks of rivers; in pieces thrown up by the sea and rounded by the waves; it is sought for in the cliffs, and in some places mining operations for it are earried on.

The amber fishers, clothed in leather dresses, wade into the sea, and seek to diseover the amber floating on its surface, which they secure with bag nets hung at the ends of long poles. They conclude that much amber has been detached from its bed, when they discover many pieces of lignite floating about. Mining is carried on by sinking through the sand and superficial strata to the beds containing the amber and lignite; many of these pits are sunk to the depth of 130 feet. The faces of the preeipitous eliffs are explored in boats, and masses of loose earth or rock supposed to contain the object of search are detached with long poles having iron hooks at their ends.

The most extensive use of amber is for the construction of mouth-pieees to pipes; these form an essential constituent of the genuine meerschaum and the Turkish pipe. There is a eurrent belief in Turkey that amber is incapable of transmitting infection, and as it is a great mark of politeness to offer the pipe to a stranger, this supposed negative property of amber accounts in some measure for the estimation in which it is held. Amber necklaces are not uncommon: the Russian peasant girls adorn themselves with double and treble rows of amber beads, but it not unfrequently happens that copal is substituted for the genuine article.
The Prussian government is said to draw an annual revenue of 17,000 dollars from amber. A good piece of a pound weight fetches 50 dollars. A mass weighing 13 pounds has been found, the value of which at Constautinople was said to be not less than 30,000 dollars.
When amber is to be worked into trinkets, it is first split on a leaden plate at a lathe, and then smouthed into shape on a Swedish whetstone. It is polished on the lathe with chalk and water, or vegetable oil, and finished by frietion with flannel.

Amber, after having been filed, may be polished with Trent sand, or seraped Flanders briek, on flannel with water, or with rottenstone with oil on flannel, or the same material dry on the hand. Turned works are, however, generally polished first with glass-paper and then with rottenstone and oil. Neeklaees aud other ornaments in amber are frequently cut into facets by the gold eutters, those artisans who eut and polish facetted works.-Holtzap.ffel.
From the electrical eharacter of amber, it frequently during the process of polishing beeomes so excited as to erack and fly to pieces. The workmen therefore take several pieces, and work them eael for a short time and in regular order. These men are said to be seized with nerrous tremors in their wrists and arms from the electrieity thus developed.
Pieces of amber may be neatly joined by smearing their edges with linseed oil aud pressing them strongly together while they are held over a chareoul fire.

AMBER, ACID OF. See Succinic Acid.
AMBER, OIL OF. (Oleum succinum.) This is obtained by distilling amber, for which purposc clippings of amber and inferior pieces are uscd. When it is distilled with charcoal, the first product is the rectified oil of amber. The oil of amber has a composition $\mathrm{C}^{20} \mathrm{H}^{10}$. When 1 part of rectified oil of amber is dissolved in 24 parts of alcohol of 830 and 96 of caustic ammonia of 916 , cau de luce is formed. Eau de luce was a celebrated old perfume, but it is now rarely made.

If nitric acid is poured into eau de luce a viscid resinous mass is formed, which has the smell of musk, and is known as artificial musk. Formerly this preparation, dis. solved in alcohol, was considered as a specific in whooping-cough, and it was frequently administered in spasmodic diseases.

AMBER VARNISH. A strong and durable varnish is made by dissolving amber in drying linseed oil. The amber is, however, previously heated in an iron pot, over a clear red fire, till it softens and assumes a semi-fluid form. The oil, which has been previously heated, is to be poured on the melted amber, and the mixture diligently stirred.

The following proportions are stated to be the best:- 16 ounces of amher and 10 ounces of linsced oil. When these are, by the above method, thoroughly incorporated, and the liquid is somewhat cooled, a pound of oil of turpentine must be added.

Blach coachmakers' varnish is prepared by melting 16 ounces of amber and adding thereto about half a pint of boiling hot drying linseed oil, 3 ounces of asphaltum, and the same quantity of resin. After these have been thoroughly mixed over the firc, the vessel containing the varnish is removed, and, after cooling, a pint of warm oil of turpentine is added.

Amber is composed of a mixture of two resins, which are solnble in alcohol and ether, and in some of the recently discovered hydro-carbon compounds. Varnishes are therefore prepared with them, and sold under the name of amber spirit varnsies; but these are frequently composed of cither copal or mastic. They have been much used for varnishing collodion pictures.

AMBERGRIS. (Ambregris, Fr. ; Ambra, Germ.) A morbid secretion from the liver of the spermaceti whale (Physeter macrocephalus); it is found usually swimming upon the sea. It occurs upon the coasts of Coromandel, Japan, the Moluceas, and Madagascar, and has sometimes been extracted from the rectum of whales in the South Sea fishery

It is found on various parts of the east coast of Africa, as well as in the eastern seas.
The best is ash-coloured, with yellow or blackish veins or spots, scarcely any taste, and very little smell unless heated or much handled, when it yields an agreeable odour. Exposed in a silver spoon it melts without bubble or scum, and on the heated point of a knife it vaporises completely away.

The Chinese try its genuineness by scraping it fine upon boiling tea. It should dissolve and diffuse itself generally. Black or white is bad. The smooth and uniform is gencrally factitious.

Capt. Alex. Hamilton, in his "Thirty Years' Experience," says, "Sometimes, in the south-west monsoons, they find ambergrease floating on the sea. I saw a picce in Adda Rajah's posscssion as big as a bushel ; and he valued it at 10,000 rupecs, or 1250l. sterling." This was at the Lacea Diva Islands, forty miles from the Malabar coast.-New Account of the East Indies, 1688 to 1730.

It has a grey-white colour, often with a black streak, or is marbled yellow and black; has a strong but rather agreeable smell, a fatty taste, is lighter than water, melts at $60^{\circ} \mathrm{C} .\left(140^{\circ} \mathrm{F}\right.$.), dissolves readily in absolute alcohol, in ether, and in both fat and volatile oils. It contains $85 \frac{3}{8}$ of the fragrant substance called ambreine. This is extracted from ambergris by digestion with alcohol of 0.827 , filtering the solution, and leaving it to spontaneous evaporation. It is thus obtained in the form of delicate white tufts, which arc convertible into ambreic acid by the action of nitric acid, Ambergris is used in perfumery.

The chemical composition of ambergris is represented by the following formula, $\mathrm{C}^{33} \mathrm{H}^{32} \mathrm{O}$. Truc ambergris is very rarely met with, by far the largest proportion of that which is sold as ambergris being a preparation scented with civet or musk.

In France the duty upon ambergris is 62 francs per killogramme when imported in French vessels, and 67 francs when imported in foreign vessels.
Ambergris is at this time (1858) worth $16 s$. an ounce in England. Mr. Temple, of Belize, British Houduras, spcaks of an odorous substance thrown off by the alligator, which appears to resemble ambergris.

AMBREINE. The fragrant substancc of ambergris, which may be obtained by digesting ambergris in hot alcohol, from which, on cooling, it is deposited in a crystalline form. It is composed of C $88.37, \mathrm{H} 13 \cdot 32, \mathrm{O} 3 \cdot 31$.
AME'IHYST. (Améthyste occidentale, Fr.; Eisenkeisel, Gcrın.) One of the vitreous varietics of quartz, composed of purc silica in the insoluble state - that is, it
Vol. I .
will not dissolve iu a potash solution. It belongs to the rhombohedral system, and is found either in groups of crystals or lining the interior of geodes and pebtles. It is iufusible before the blowpipe, and is not affected by aeids. It is of a elear purple or bluish-violet tint; but the colour is frequently irregularly diffused, and gradually fades into white. The eolour is supposed to be due to the presence of a small percentage of manganese, but Heintz attributes it to a compound of iron and soda. The amethyst, from the beanty of its colour, has always been estcemed and used in jewellery. It was one of the stones ealled by the aneients $\dot{\alpha} \mu \dot{\epsilon} \theta u \sigma t o s$, a name which they eonferred on it from its supposed power of preserving the wearer from intoxieation. The most beautiful speeimens are procured from India, Ceylon, and Persia, where they oceur in geodes and pebbles: it is also found at Oberstein, in Saxony; in the Palatinate ; in Transylvania; near Cork, and in the Island of May, in Ireland.-H. W.B.

AMETHYST, ORIENTAL. (Améthyste orientale, Fr.; Demanthspath, Germ.) This term is applied to those varieties of eorundum whieh are of a violet colour. Sce Corondum.-H. W.B.

AMIANTHUS is the name given to the whiter and more delieate varieties of asbestos, whieh possess a satin-like lustre, in consequence of the greater separation of the fibres of whieh they are composed. A variety of amianthus (the amianthoide of Haüy) is found at Oisans, in Franee, the fibres of whieh are in some degree elastic. The rord amianthus (from $\dot{\alpha} \mu$ ía 1 tos, undefiled) is expressive of the casy manner by whieh, when soiled, it may be eleansed and restored to its original purity, by being heated to redness in a fire. See Asbestos.-H. W.B.

AMIDE. This term and amidogen are applied to a class of substanees whieh eontain ammonia deprived of an atom of hydrogen.

AMIDINE. A name given to the soluble portion of stareh. See Ure's "Dietionary of Chemistry."

AMIDON. The name for stareh on the Continent.
AMMONIA. NH ${ }^{3}$, eqv. 17. (Anmoniaque, Fr.; Ammoniak, Germ.) The name given to the alkalinc gas whieh is the volatile alkali of the early chemists. The real origin of this word is not known. Some suppose it to be from Ammon, a title of Jupiter, near whose temple in Upper Egypt it was generated. Others suppose it to be from Ammonia, a Cyrenaic territory; whilst others again have dedueed it from ${ }_{x} \mu \mu \mu o s$, sand, as it was found in sandy ground.
It is propable that Pliny was aequainted with the pungent smell of ammonia. Dr. Blaek, in 1756, first isolated it, proving the distinetion between it and its earbonate, with whieh it had been confounded up to that time; and it was soon afterwards more fully investigated by Priestley.
Ammonia being a produet, not only of the destruetive distillation of organie bodies enntaining nitrogen, but also of their deeay, it exists in the atmosphere, in a large amount, if considered in the aggregate, although, by examining any partieular speeimen of air, the quantity appears small. Nevertheless, this small quantity of ammonia would seem to be exeeedingly important in developing the nitrogenised eonstituents of plants. Liebig believes that the nitrogen of plants is exelusively derived from the ammonia present in the air; but the opinions of ehemists are divided on tbis point. Boussingault* supports Liebig's view, but it is opposed by Mulder and Villc.
From the air, ammonia and its salts are carried down by the rain. This fact has been placed beyond all doubt by Liebig; and even the variations in the quantity have becn determined by Boussingault, and more recently by Mr. Way. By the rain water it is carried into rivers, and ultimately into the sea, in which ehoride of ammonium has been detected by Dr. Marcet. It has likewise been detected in mineral springs, especially brine springs, and even in common salt.-Vogel.

Ammonia is present in the exhalations from volcanoes. During the eruption of Vesuvius in 1794, the quantity of sal ammoniac diseharged by the mountain was so great, that the peasants colleeted it by hundredweights (Bischof); and in the last eruption of Hecla, in Sept., 1845, a similar phenomenon was observed; and, according to Ferrara, it is sometimes found in sueh quantity at Etna, that a very profitable trade has been earried on in it. Dr. Daubeny thinks that the voleanie ammonia is produeed by the aetion of water upon mineral nitrides (perlaps the nitrides of silieon), similar in properties to the nitrides of Titanium and Boron, which lave been recently more earefully examined M. St. Claire Deville. Ammoniaeal salts hare likewise been found as a sublimate arising from thc combustion of eoal strata.

The great supply of ammonia and its salts is derived from the destructive distillation of organie bodies, animal and vegetable, containing nitrogen; but its salts exist in plants, and to a much larger extent in the liquid and solid exerements of animals. As a urate, it forms the ehicf eonstituent of the exerencut of the boa, as well as that of many birds, henee the large quantity of ammoniaeal salts in guano. See Guano.

Formation of Ammonia.-No process has yet been devised for inducing the direct combination of nitrogen and hydrogen to produce ammonia; but under the disposing influence of the production of other compounds, in the presence of thesc elements, as well as when these gases are presented to each other in the nascent state, their union is effected.
Thus, when elcctric sparks are passed through a mixture of nitrogen and oxygen iu the presence of hydrogen and aqueous vapour, nitrate of ammonia is generated. If, while zinc is being dissolved in sulphuric acid, nitric acid be added, much ammonia is formed (Nesbit); so again, if hydrogen and binoxide of nitrogen be passed over spongy platinum, torrents of ammonia are produced, the hydrogen converting the oxygen of the binoxide into water, when the nitrogen, at the moment of its liberation, combines with the hydrogen to form ammonia.
It has even been proposed to carry out this last method on a manufacturing scale.
Messrs. Crane and Jullien, in their patent of January 18, 1848, describe a method of manufacturing ammonia in the state of carbonate, hydrocyanate, or free ammonia. by passing any of the oxygen compounds of nitrogen, together with any eompound of hydrogen and carbon, or any mixture of hydrogen with a compound of carbon or even free hydrogen, through a tube or pipe containing any catalytic or contact substance, as follows:- Oxides of nitrogen (such for instance as the gases liberated in the manufacture of oxalic acid), however procured, are to be mixed in such proportion with any compound of carbon and hydrogen, or such mixture of hydrogen and carbonic oxide or acid as results from the contact of the vapour of water with ignited carbonaceous matters, and the hydrogen compound or mixture containing hydrogen may be in slight excess, so as to ensure the conversion of the whole of the nitrogen contained in the oxide so employed into either ammonia or hydrocyanic acid, which may be known by the absence of the characteristic red fumes on allowing some of the gaseous matter to come in contact with atmospheric air. The catalytic substauce which Messrs. Crane and Jullien prefer is platinum, which may be in the state of sponge, or it may be asbestos coated with platinum. This catalytic substance is to be placed in a tube, and heated to about $600^{\circ} \mathrm{F}$., so as to increase the temperature of the product, and at the same time prevent the deposition of carbonate of ammonia, which passes onwards into a vessel of the description well known and employed for the purpose of condensing carbonate of ammonia. The condenser for this purpose must be furnished with a safety pipe, to allow of the escape of uncondensed matter, and made to dip into a solution of any substance capable of combining with hydrocyanic acid or ammonia where they would be condensed. A solution of salt of iron is preferable for this purpose.*

Chemical Characters.-The gaseous ammonia libcrated from its salts by lime (in a manner to be afterwards described) is a colourless gas of a peculiar pungent odourIt is composed, by weight, of 1 equivalent of nitrogen and 3 of hydrogen; or, by volume, of 2 measures of nitrogen and 6 of hydrogen, condensed to four; and may be resolved into these constituent gases by passing over spongy platinum heated to redness. By a pressure of 6.5 atmospheres at 50° F., it is condensed into a colourless liquid. It is combustible, but less so than hydrogen on account of the incombustible nitrogen which it contains; but its inflammability may be readily seen by passing it into an argand gas flame reduced to a minimum.

Ammonia is very soluble in water, cold water absorbing no less than 500 times its volume of this gas; and the solution has a less density and a lower boiling point than pure water. The following Table of the density of solutions of ammonia in water, of different strengths, is by Dr. Ure :-

Ammonla in 100.	Water in 100.	Specific Gravity by Experiment.	Ammonia in 100.	Water in 100.	Specific Gravity by Experiment.
26.500	73.500	0.9000	13.250	86.750	0.9455
25.175	74.825	0.9045	11.925	88.075	0.9510
23.850	76.150	0.9090	10.600	19.400	0.9564
22.525	77.475	0.9133	9.275	90.725	0.9614
21.200	78.800	0.9177	7.950	92.050	0.9662
19.875	80.125	0.9227	6.625	93.375	0.9716
18.550	81.450	0.9275	5.300	94.700	0.9768
17.225	82.775	0.9320	3.975	96.025	0.9828
15.900	84.100	0.9363	2.650	97.350	0.8887
14.575	85.425	0.9410	1.325	98.67 .5	0.9945

[^26]Upon this variation in density of solutions of ammonia in proportion to their strcugth, Mr. J. J. Griffin has constructed a usefulinstrument called an Ammonia-meter. It is founded upon the following facts:-That mixtures of liquid ammonia with water possess a specific gravity which is the mean of the specific gravities of their components; that in all solutions of ammonia, a quantity of anhydrous ammonia, weighing $212 \frac{1}{2}$ grains, which he calls a test-atom, displaces 300 grains of water, and reduces the specific gravity of the solution to extent of 00125 ; and, finally, that the strongest solution of ammonia which it is possible to prcparc at the temperature of $62^{\circ} \mathrm{F}$. contains in an imperial gallon of solution 100 test-atoms of ammonia.

We extract the following paragraph from Mr. Griffin's paper in the Transactions of the Chemical Socicty, explanatory of the accompanying Table.
"The first column shows the specific gravity of the solutions; the second column the weight of an imperial gallon in pounds and ounces; the third column the per-centage of ammonia by weight; the fourth column the degree of the solution, as indicated by the instrument, corresponding with the number of test-atoms of ammouia present in a gallon of the liquor ; the fifth column shows the number of grains of ammonia contained in a gallon; and the sixth column the atomic volume of the solution, or that measure of it which contains onc test-atom of ammonia. For instance, one gallon of liquid ammonia, specific gravity 880 , weighs 8 lbs .128 oz . avoirdupois; its percentage of ammonia, by weight, is 33.117 ; it contains 96 test-atoms of ammonia in one gallon, and 20400.0 grains of ammonia in one gallon; and, lastly, $104 \cdot 16$ septems containing one test-atom of ammonia. Although no hydrometer, however accurately constructed, is at all equal to the Centigrade mode of chemical testing, yet the Ammo-nia-meter, and the Table accompanying it, will be found very useful to the manufacturer, enabling him not only to determine the actual strength of any given liquor; but the precise amount of dilution necessary to convert it into a liquor of any other desired strength, whilst the direct quotation of the number of grains of real ammonia contained in a gallon of solution of any specific gravity will enable him to judge af a glance of the money-value of any given sample of ammonia.

Table of Liquid Ammonia (Griffin).

One Test-Atom of Anhydrous Ammonia $=\mathrm{NH}^{3}$ weighs 212.5 grains Specific Gravity of Water $=1 \cdot 00000$. One Gallon of Water weighs 10 lbs . and contains 10,000 Septems. Temperature $62^{\circ} \mathrm{F}$.

Specific Gravity of the Liquid Ammonia.	Weight of an Imperial Gallon in Avoirdupois lbs. and ozs.		Per-centage of Ammouia by Weight.	Test-atoms of Ammonia in one Gallon.	Grains of Ammonia in one Gallon.	Septems containing one Test-atom of Ammonia.
	lb.	$12 \cdot$		100	$21250 \cdot 9$	$100 \cdot 00$
. 87500	8	12.0	34.694		21037.5	101.01
-87625	8	12.2	34•298	98	20825.0	$102 \cdot 04$
-87750	8	$12 \cdot 4$	33.903	98	$20612 \cdot 5$	103.09
. 87875	8	$12 \cdot 6$	$33 \cdot 509$	97	$20400 \cdot 0$	104•16
- 888000	8	12.8	33.117	96	$20187 \cdot 5$	$105 \cdot 26$
-88125	8	13.0	$32 \cdot 725$ $32 \cdot 335$	94	19975.0	106.38
. 88250	8	$13 \cdot 2$	$32 \cdot 335$	93	19762.5	$107 \cdot 53$
-88375	8	$13 \cdot 4$	$31 \cdot 946$ 31.558	92	19550.0	$108 \cdot 70$
-88560	8	$13 \cdot 6$	31.558 31.172	91	$19337 \cdot 5$	109.89
-88625	8	$13 \cdot 8$	$31 \cdot 172$ $30 \cdot 785$	90	19125°	$111 \cdot 11$
-88750	8	14.0	$30 \cdot 785$ $30 \cdot 400$	89	18912.5	$112 \cdot 36$
-88875	8	$14 \cdot 2$	30.016	88	$18700 \cdot 0$	113.64
-89000	8	$14 \cdot 4$	29.633	87	$18487 \cdot 5$	114.94
-89125	8	14.6	29.635 29.252	86	$18275{ }^{\circ} 0$	116.28
-89250	8	$14 \cdot 8$	29.252 28.871	85	18062.5	11765
-89375	8	$15 \cdot 0$ $15 \cdot 2$	28.871 28.492	84	17850.0	119.05
-89500	8	$15 \cdot 2$	28.113	83	$17637 \cdot 5$	$120 \cdot 48$
-89625	8	$15 \cdot 4$ $15 \cdot 6$	28.113 27.736	82	$17425^{\circ} 0$	121.95
-89750	8	$15 \cdot 6$	$27 \cdot 359$	81	17212.5	$123 \cdot 46$
-89875	8	15.8 0.0	26.984	80	$17000 \cdot 0$	125.00
$1 \cdot 90000$	9	0.0 0.2	26.610	79	167875	126.58
-90125	9		$26 \cdot 237$	78	16575.0	$128 \cdot 21$
-90250	9	0.4 0.6	25.865	77	16362.5	129.87
-.00375	9	$\begin{aligned} & 0.6 \\ & 0.8 \end{aligned}$	$25 \cdot 493$	76	16150.0	131.58
-90500	9	0.8 10	$25 \cdot 123$	75	$15937 \cdot 5$	$133 \cdot 33$

Table of Liquid Ammonia (continued).

Speclic Gravity of the Liquid Ammonia.		Gallon in apois lbs. ozs.	Per-centage of Ammonia by Weight.	$\begin{gathered} \text { Test-atoms } \\ \text { ofAmmonia } \\ \text { in one } \\ \text { Gallon. } \end{gathered}$	Grains of Ammonia in one Gallon.	Septems containing one Test-atom of Ammonia.
-90750			24•754	74	$15725^{\circ} 0$	135.13
-90875	9		$24 \cdot 386$	73	15512.5	$136 \cdot 98$
-91000	9		24.019	72	$15300 \cdot 0$	$138 \cdot 99$
-91125	9	$1 \cdot 8$	$23 \cdot 653$	71	15087.5	$140 \cdot 85$
-91250	9	$2 \cdot 0$	$23 \cdot 288$	70	$14875^{\circ} 0$	$142 \cdot 86$
-91375	9	$2 \cdot 2$	$22 \cdot 924$	69	14662.5	144.93
-91500	9	2.4	22.561	68	$14450 \cdot 0$	$147 \cdot 06$
. 91625	9	$2 \cdot 6$	22.198	67	$14237 \cdot 5$	$149 \cdot 25$
-91750	9	$2 \cdot 8$	21-837	66	14025.0	151.51
-91875	9	$3 \cdot 0$	21.477	65	13812.5	$153 \cdot 85$
-92000	9	$3 \cdot 2$	21.118	64	$13600 \cdot 0$	156.25
-92125	9	$3 \cdot 4$	20.760	63	$13387 \cdot 5$	$158 \cdot 73$
$\cdot 92250$	9	$3 \cdot 6$	$20 \cdot 403$	62	$13175{ }^{\circ}$	$161 \cdot 29$
-92375	9	$3 \cdot 8$	20.046	61	12962.5	163.93
-92500	9	4.0	19.691	60	$12750 \cdot 0$	$166 \cdot 67$
-92625	9	$4 \cdot 2$	$19 \cdot 337$	59	$12537 \cdot 5$	$169 \cdot 49$
$\cdot 92750$	9	$4 \cdot 4$	18.983	58	12325.0	172.41
-92875	9	$4 \cdot 6$	18.631	57	12112.5	$175 \cdot 44$
-93000	9	$4 \cdot 8$	$18 \cdot 280$	56	$11900{ }^{\circ}$	178.57
-93125	9	$5 \cdot 0$	17.929	55	11687.5	$181 \cdot 82$
-93250	9	$5 \cdot 2$	17.579	54	11475.0	$185 \cdot 18$
-93375	9	$5 \cdot 4$	$17 \cdot 231$	53	11262.5	188.68
-93500	9	$5 \cdot 6$	16.883	52	$11050 \cdot 0$	$192 \cdot 31$
-93625	9	$5 \cdot 8$	16.536	51	$10837 \cdot 5$	196.08
-93750	9	$6 \cdot 0$	$16 \cdot 190$	50	10625.0	$200 \cdot 00$
-93875	9	6.2	$15 \cdot 846$	49	$10412 \cdot 5$	204.08
-94000	9	6.4	$15 \cdot 502$	48	$10200{ }^{\circ}$	208.33
$\cdot 94125$	9	$6 \cdot 6$	$15 \cdot 158$	47	$9987 \cdot 5$	212.77
$\cdot 94250$	9	6.8	14.816	46	9775.0	$217 \cdot 39$
-94375	9	$7 \cdot 0$	14.475	45	$9562 \cdot 5$	222.22
-94500	9	$7 \cdot 2$	$14 \cdot 135$	44	$9350 \cdot 0$	$227 \cdot 27$
-94625	9	$7 \cdot 4$	$13 \cdot 795$	43	$9137 \cdot 5$	$232 \cdot 56$
-94750	9	$7 \cdot 6$	$13 \cdot 456$	42	$8925{ }^{\circ}$	238.09
-94875	9	$7 \cdot 8$	$13 \cdot 119$	41	8712.5	$243 \cdot 90$
-95000	9	8.0	12.782	40	$8500 \cdot 0$	$250 \cdot 00$
-95125	9	$8 \cdot 2$	$12 \cdot 446$	39	$3287 \cdot 5$	256.41
-95250	9	$8 \cdot 4$	$12 \cdot 111$	38	8075.0	$263 \cdot 16$
-94375	9	$8 \cdot 6$	$11 \cdot 777$	37	7862.5	$270 \cdot 27$
-95500	9	$8 \cdot 8$	$11 \cdot 444$	36	7650.0	$277 \cdot 78$
-95625	9	$9 \cdot 0$	$11 \cdot 111$	35	$7437 \cdot 5$	285.71
-95750	9	$9 \cdot 2$	$10 \cdot 780$	34	7225.0	294.12
-95875	9	$9 \cdot 4$	10.4490	33	$7012 \cdot 5$	303.03
-96000	9	$9 \cdot 6$	10.1190	32	$6800 \cdot 0$	312.50
-96125	9	$9 \cdot 8$	$9 \cdot 7901$	31	$6587 \cdot 5$	322.58
-96250	9	$10 \cdot 0$	$9 \cdot 4620$	30	$6375 \cdot 0$	$333 \cdot 33$
-96375	9	10.2	$9 \cdot 1347$	29	$6162 \cdot 5$	$344 \cdot 83$
-96500	9	$10 \cdot 4$	8.8083	28	$5950{ }^{\circ}$	357-14
-96625	9	$10 \cdot 6$	$8 \cdot 4827$	27	$5737 \cdot 5$	$070 \cdot 37$
-96750	9	10.8	$8 \cdot 1580$	26	$5525 \cdot 0$	$384 \cdot 62$
-96875	9	11.0	$7 \cdot 8341$	25	5312.5	$400 \cdot 00$
-97000	9	11.2	$7 \cdot 5111$	24	$5100 \cdot 0$	416.67
-97125	9	$11 \cdot 4$	7-1888	23	4887.5	$434 \cdot 78$
-97250	9	$11 \cdot 6$	6.8674	22	4675.0	454.54
$\cdot 97375$.97500	9	11.8	$6 \cdot 5469$	21	4462.5	$476 \cdot 19$
-97500	9	$12 \cdot 0$	6.2271	20	$4250 \cdot 0$	$500 \cdot 00$
-97625			$5 \cdot 9082$	19	$4037 \cdot 5$	$526 \cdot 32$
-97875	9	12.4 12.6	$5 \cdot 5901$ $5 \cdot 2728$	18	$3825 \cdot 0$ $3612 \cdot 5$	$555 \cdot 56$
-98000	9		4.9563	16	$3400 \cdot 0$	$588 \cdot 24$
$\cdot 98125$	9	$13 \cdot 0$	$4 \cdot 6406$	15	$3187 \cdot 5$	625.00 6667

Table of Liquid Ammonia (continued).

Specific Gravity of the Liquid Ammonia.	Weight of an Imperial Gallon in Avoirdupois lbs. and ozs.		Por-eentage of Ammonla by Weight.	Test-atoms of Ammonia in one Gallon.	Grains of Ammonia in one Gallon.	Septems containing one Test-atom of Ammonia.
-98250			$4 \cdot 3255$	14		
				14	$2975{ }^{\circ} 0$	$714 \cdot 29$
-98375		$13 \cdot 4$	4.0111	13	$2762 \cdot 5$	$769 \cdot 23$
-98500		$13 \cdot 6$	$3 \cdot 6983$	12	$2550 \cdot 0$	$833 \cdot 33$
$\cdot 98625$		$13 \cdot 8$	$3 \cdot 3858$	11	$2337 \cdot 5$	909.09
-98750		$14^{\circ} 0$	$3 \cdot 0741$	10	$2125^{\circ} 0$	$1000 \cdot 00$
-98875		$14 * 2$	$2 \cdot 7632$	9	$1912 \cdot 5$	$1111 \cdot 10$
-99000		14.4	2.4531	8	1700°	$1250 \cdot 00$
-99125		14.6	2.1438	7	1487.5	$1428 \cdot 60$
-99250		14.8	1-8352	6	$1275 \cdot 0$	$1666 \cdot 70$
-99375		15.0	1-3274	5	$1062 \cdot 5$	$2000 \cdot 00$
-99500		$15 \cdot 2$	1-2204	4	$850 \cdot 0$	$2500 \cdot 00$
-99625		$15 \cdot 4$	0.9141	3	$637 \cdot 5$	$3333 \cdot 30$
-99750		$15 \cdot 6$	$0 \cdot 6087$	2	$425 \cdot 0$	$5000 \cdot 00$
-99875		$15 \cdot 8$	$0 \cdot 3040$	1	212.5	$10000 \cdot 0$
$1 \cdot 0000$	10 lbs .	Water.		0		

Ammoniacal gas combines directly with hydrated acids, forming a series of salts, the constitution of which is peculiar, and must be here briefly discussed, that the formula hereafter employed in describing them may be understood.

These compounds may be viewed as direct combinations of the ammonia with the hydrated acids; thus, the compound with

Hydrochloric	as the		H
Hydrosulphuric acid	"		Hydrosulphate (NH^{3}, HS).
Sulphuric acid	,"		Hydrated sulphate (NH^{3}; $\mathrm{HO}, \mathrm{SO}^{3}$).
Nitric acid	"		Hydrated nitrate (NH^{3}; HO ,
Carbonic acid			Hydrated carbonate (NH^{3}; HO ,

But the close analogy of thesc compounds, in all their properties, to the corresponding salts of potash and soda has led chemists to the assumption of the existeuce of a group of elements possessing the characters of a metal, of a basyl or hypothetical metallic radical, called ammonium (NH^{4}), in these salts; which theory of their constitution brings out the resemblance to the potash and soda salts more clearly, thas :-

The chloride

And the chloride
of ammonium contains - $\mathrm{NH}^{4} \mathrm{Cl}$.

- sulphide
" - NH'S.
- sulphate of ammonia
- $\mathrm{NH}^{\circ} \mathrm{O}, \mathrm{SO}^{3}$
- carbonate " \quad " \quad - $\mathrm{KO}, \mathrm{CO}^{2}$ - carbonate \quad nitrate $-\mathrm{NH}^{4} \mathrm{O}, \mathrm{NO}^{5}$

Although it may be objected to this view that the metal ammonium is not known, yet a curious metallic compound of this metal with mercury has been obtaincd ; and, after all, it is by no means necessary that the metal should be isolated, for already the existence of numcrous basic radicals has becn assumed in organic chemistry which have never been isolated.

It is true, also, that the oxide of ammonium is unknown, but substitution-products of it have been produccd, which are solid bodies, soluble in water, exhibiting all the characters of potash solution, being as powerfully caustic and alkalinc. In fact, ammonia is in reality but the type of a vast number of compounds. It is capable of having its hydrogen replaced by metals (as copper, mercury, calcium, \&c.), as well as by metallic or basic compound radicals, producing the cndless number of artificial organic bases, which are primary, sceondary, or tertiary nitrides, according as one, two, or threc equivalents of the ammonia is replaced. When the substitution of the hydrogen in ammonia is effected by acid radicals, the compounds are called amides.

Preparation of Ammonia. - Ammonia is obtained by the decomposition of one of

AMMONLA, CARBONATE OF.

the salts of ammonia, either the chloride of ammonium, $\mathrm{NH}^{\cdot} \mathrm{Cl}$ (sal ammoniac), cr the sulphate, by a metallic oxide, e.g. lime.

$$
\mathrm{NH}^{4} \mathrm{Cl}+\mathrm{CaO}, \mathrm{HO}=\mathrm{CaCl}+\mathrm{NH}^{3}+2 \mathrm{HO}
$$

On the small scale in the laboratory the powdered ammoniacal salt is mixed with slaked lime, in a Florence flask or a small iron retort, and gently heated; the ammoniacal gas being dried by passing it through a bottle containing lime. Chloride of calcium must not be employed in the desiccation of ammonia, since the ammonia is absorbed by this salt, producing a curious compound, the chloride of caliammonium, $N\left\{\begin{array}{l}\mathrm{H}^{3} \\ \mathrm{Ca}\end{array}\right\} \mathrm{Cl}$, being, in fact, one of those substitution-compounds before alluded to.

The gaseous ammonia must be collected over mercury, on account of its solubility in water.
This operation is carried out on the large scale for the purpose of making the aqueous solution of ammonia (liquor ammonia, or spirits of hartshorn).

Solution of Ammonia.

Preparation.-In preparing the aqueous solution, the gas is passed into water contained in Woolfe's bottles, which on the small scale are of glass, whilst on the large scale they are made of earthenware.

A sufficiently capacious retort of iron or lead should be employed, which is provided with a movable neck; and it is desirable to pass the gas through a worm, to cool it, before it enters the first Woolfe's bottle. Each of the series of Woolfe's bottles should be furnished with a safety-funnel in the third neck, to avoid accidents by absorption. The whole of the condensing arrangements should be kept cool hy iee or cold water.

Properties.-In the London and in the Edinburgh "Pharmacopceia" two solutions of ammonia are directed to be prepared, the stronger having the specific gravity 0.882 , and containing about 30 per cent. of ammonia ; the weaker of specific gravity 0.960 , containing, therefore, about 10 per cent. of the gas.

Sometimes the commercial solution of ammonia is made by treating impure ammoniacal salts with lime, and it then contains empyreumatic oils; in fact, the various volatile products of the distillation of coal which are soluble in or miscible with water.

Pyrrol may be detected in ammonia by the purple colour which it strikes with au excess of nitric or sulphuric acid. If the residue of its distillation be mixed with potash, Picoline is detected by its peculiar odour. Naphthaline is discovered not only by its odour, but may also be separated by sublimation or heating, after converting the ammonia in the solution into a salt by sulphuric or hydrochloric acid. Di: Maclogan.

We imported into England of sulphate and liquor of ammonia as follows :-

Ammonia, sulphate of	-		1856	-		lbs. 23.904
Ammonia, liquor					-	343,609

Since, for the purpose of purification on the large scale, ammonia is invariably converted into chloride or sulphate, the details of the manufacture of the ammoniacal salts will be given under those heads. For the determination of ammonia, see Nitrogen.-H. M. W.

AMMONIA, CARBONATE OF. (The sesquicarbonate of commerce, $2 \mathrm{NH}^{3}$, $3 \mathrm{CO}^{3}, 2 \mathrm{HO}=\mathrm{NH}^{4} \mathrm{O}, \mathrm{CO}^{2} ; \mathrm{HO}, \mathrm{CO}^{2}+\mathrm{NH}^{3} \mathrm{CO}^{2}$, eqv. 118.) This salt was probably

K
known to Raymond Lully and Basil Valentine, as the chief constitucnt of putrid urine. The real distinction betwecn ammonia and its carbonate was pointed out by Dr. Black.

Carbonate of ammonia is formed during the putrefaction of animal substances, and by their destructive distillation. Its presence in rain water has been beforc alluded to

The carbonate of ammonia of commerce is obtained by submitting to sublimation a mixture either of sal ammoniac or sulphate of ammonia with chalk.

This is gencrally carried out in cast-iron retorts, similar in size and shape to those used in the manufacture of coal gas. The retorts are charged through a door at one end, and at the other they communicate with large squarc leaden chambers, supported by a wooden frame, in which the sublimed salt is condensed. Fig. 36, p. 135.

The product of this first process is impure, being especially discoloured by the presence of carbonaceous matter, and has to be submitted to resublimation. This is carricd out in iron pots surmounted by movable leaden caps. Thesc pots are either set 37

in brickwork, and heated by the flue of the retort furnace, or are placed in a waterbath, as shown in fig. 37. In fact, a temperature not exceeding $150^{\circ} \mathrm{F}$. is found sufficient.

The charge of a retort consists usually of about 65 lbs . of sulphate of ammonia (or an equivalent quantity of the chloride) to 100 lbs . of chalk, which yield about 40 lhs . of crude carbonate of ammonia.

Modifications of the Process.-Mr. Laming has suggested to bring ammonia and carbonic acid gases into mutual contact in a leaden chamber having at the lower part a layer of water, and then to crystallise the salt by evaporating this aqueous solution.

He also proposes to prepare carbonate of ammonia from the sulphide of ammonium of gas liquors, by passing carbonic acid gas into the liquor, which carbonic gas is generated by heating a mixture of oxide of copper and charcoal, in the proportion of twelve parts of the former to one of the latter.

Mr. Hill has described his mode of obtaining sesquicarbonate of ammonia from guano. To effect this, the guano is first mixed with charcoal or powdered coke; the mixturc is then heated, and the sesquicarbonate of ammonia obtained by sublimation. The process does not appear to be much employed.

Manufacture of Ammonia from Peat and Shale. - Mr. Hills, in his patent of August 11th, 1846, specified the following method of obtaining ammonia from peat. The peat is placed in an upright furnace and ignited; the air passes through the bars as usual, and the ammonia is collected by passing the products of combustion through a suitable arrangement of apparatus to effect its condensation. This plan of obtaining ammonia from peat appears to be precisely similar to that patented by Mr. Rees Reece (January 23rd, 1849), and made to form an important feature in the opcrations of the British and Irish Pcat Company. The first part of Mr. Reecc's patent is for an invention for causing peat to be burncd in a furnace by the aid of a blast, so as to obtain inflammable gases and tarry and other products from peat. For this purpose, a blast furnace with suitable condensing apparatus is used. The gases, on their cxit from the condensing apparatus, may be collected for use as fuel or otherwise ; and the tarry aud other products pass into a suitable receiver. The tarry products may be cmployed to obtain paraffine and oils for lubricating machinery, \&c.; and the other products may be inade available for evolving anmonia, wood spirit, and other matters by any of the cxisting processes. Dr. Hodges, of Belfast, states that in his experiments lic obtained nearly 2231 lbs . of sulphate of ammonia from a ton of peat. Sir Robert Kanc, who
was employed by Government to institute a series of experimental rescarches on the products obtainable from peat, states that he obtaincd sulphate of ammonia at the rate of $24_{10}^{\text {月 }} \mathrm{lbs}$. pcr tou of peat. Messrs. Drew and Stocken patented, in 1846, the obtaining ammonia from peat by distillation in close vessels, as practiscd in the carbonisation of wood. It will thus be seen that the peat is a source of ammonia, but that this source is a profitable or economical onc, in a commercial point of view, is a problem in process of solution.

Ammonia from Schist. - Another source of ammonia is bituminous schist, which, when submitted to destructive distillation, gives off an ammoniacal liquor which may be employed in the manufacture of ammoniacal salts by any of the usual proccsses. The obtaining of ammonia from schist forms part of a patent granted to Count de Hompesch, September 4, 1841.

Chemical Composition and Constitution.-The true neutral carbonate of ammonia ($\mathrm{NH}^{4} \mathrm{O}, \mathrm{CO}^{2}$) does not appear to exist. The sesquicarbonate of ammonia of the shops was found by Rose to have the composition assigned to it by Mr. Philips, i.e. it coutains $2 \mathrm{NH}^{3}, 3 \mathrm{CO}^{2}, 2 \mathrm{HO}$; and it may therefore be viewed as a compound of the true bicarbonate (i.e. the double carbonate of ammonia and water), $\mathrm{NH}^{4} \mathrm{O}, \mathrm{CO}^{2}$; $\mathrm{HO}, \mathrm{CO}^{2}$, with a peculiar compound of anhydrous carbonic acid with ammonia itself ($\mathrm{NH}^{3}, \mathrm{CO}^{2}$).

The equation representing its method of preparation will then be,

$$
\begin{aligned}
& 3 \mathrm{NH}^{4} \mathrm{O}, \mathrm{SO}^{3}+3 \mathrm{CaO}, \mathrm{CO}^{2}=\left(\mathrm{NH}^{4}, \mathrm{CO}^{2} ; \mathrm{HO}, \mathrm{CO}^{2}+\mathrm{NH}^{3}, \mathrm{CO}^{2}\right)+\mathrm{NH}^{4} \mathrm{O}+3 \mathrm{CaO}, \mathrm{SO}^{3} \\
& \text { or } 3 \mathrm{NH}^{4} \mathrm{Cl}+3 \mathrm{CaO}, \mathrm{CO}^{2}=\left(\mathrm{NH}^{4} \mathrm{O}, \mathrm{CO}^{2}, \mathrm{HO}, \mathrm{CO}^{2}+\mathrm{NH}^{3}, \mathrm{CO}^{2}+\mathrm{NH}^{4} \mathrm{O}\right)+3 \mathrm{CaCl},
\end{aligned}
$$

for it is invariably found that a certain quantity of water and ammonia arc libcrated during the distillation, and hence the anomalous character of the compound. In fact, in operating upon 3 equivalents of the sulphate or chloride of the 3 equivalents of the true carbonate of ammonia ($\mathrm{NH}^{4} \mathrm{O}, \mathrm{CO}^{2}$) which may be supposed to be generated, two are decomposed, one losing an equivalent of ammonia, the other an cquivalent of water ; of course, the ammonia thus liberated is not lost ; it is passed into water to be saturated with acid, and thus again converted into sulphate or chloride.

Properties.-Sesquicarbonate of ammonia (as it is commonly called) is met with in commerce in the form of fibrous white translucent cakes, about two inches thick.

When exposed to the air the constituents of the less stable compound $\mathrm{NH}^{3}, \mathrm{CO}^{2}$ are volatiliscd, and a white opaque mass of the true bicarbonate remains. Hence the odour of ammonia always emitted by the commercial carbonate. Mr. Scanlan has also shown that by treatment with a small quantity of water, the carbonate is dissolved, leaving the bicarbonate. It is soluble in four times its weight of cold water, but boiling water decomposes it.

Impurities.-The commercial salt is sometimes contaminated with empyreumatie oil, which is recognised by its yielding a brownish coloured solution on treatment with water.

It may contain sulphate and chloride of ammonium. For the recognition of the prescnce of these acids, see Sulphuric and Hydrochloric Acids.

Sulphide and hyposulphite of ammonia are sometimes present, and likewise lead, from the chambers into which the salt has been sublimed.

Other Carbonates of Ammonia.-Besides the neutral or monocarbonate of ammonia before alluded to, the true bicarbonate $\left(\mathrm{NH}^{4} \mathrm{O}, \mathrm{CO}^{2} ; \mathrm{HO}, \mathrm{CO}^{2}\right)$ and the sesquicarbonate of the shops, Rose has described about a dozen other definite compounds; but, for their description, we must refer to Ure's "Dictionary of Chemistry."

AMMONIACUM, GUM. Gum-resin. (Gomme Ammoniaque, Fr.; Ammoniak, Germ.) This is the inspissated juice of an umbelliferous plant (the dorema armeniacum), the gum-bearing hcracleum, which grows in Persia, the East Indies, and Africa. In the French colony of Algiers this plant grows naturally, and it appears likely to become an object of cultivation. It comes to us either in small white tears clustered together, or in brownish lumps, containing many impurities. It possesses a peculiar smell, somewhat like that of assafcetida, and a bitterish taste. It is employed in medicine. Its only use in the arts is for forming a cement to join broken pieces of china and glass, which may be prepared as follows: Take isinglass 1 ounce, distilled water 6 ounces, boil togetber down to 3 ounces, and add $1 \frac{1}{2}$ ounce of strong spirit of wine;-boil this mixture for a minute or two ; strain it ; add, while hot, first, lalf an ounce of milky emulsion of gum ammoniac, and then 5 drachms of an alcoholic solution of resin mastic.

AMMONIA, NITRATE OF.-This salt is not made on an extensive scale; but as it has a certain consumption for making the protoxide of uitrogen (laughing gas), a few remarks respecting it may not be out of place here.

It is obtained by saturating solution of ammonia, or the carbonate, with nitric acid, and then evaporating the solution till crystallisation takes place.

This salt crystallises in six-sided prisms, being isomorphous with nitrate of potash.
Its composition is $\mathrm{NH}^{4} \mathrm{O}, \mathrm{NO}^{3}$. It is incapablc of existing without the presenee of an equivalent of watcr, in addition to NH^{3} and NO^{3}. If lieat be applied, the salt is entirely decomposed into protoxide of nitrogen and water ; thus-

$$
\mathrm{NH}^{4} \mathrm{O}, \mathrm{NO}^{5}=2 \mathrm{NO}+4 \mathrm{HO}
$$

Besides its usc in the labatory for making protoxide of nitrogen, it is a constituent of frigorific mixtures, on account of the cold which it, produces on dissolving in watcr.

Lastly, it is very convenient for promoting the deflagration of organic bodics, both its constituents being volatile on heating.

AMMONIA, SULPHATE OF. ($\mathrm{NH}^{4} \mathrm{O}, \mathrm{SO}^{3}$) This salt is found native in fissures near volcanoes, under the namc of mossagnine, associated with sal arnmoniac. It also forms in ignited coal -beds-as at Bradley, in Staffordshire-with chloride of ammonium.

This salt is prepared by saturating the solution of ammonia, obtained by any of the processes before described (either from animal refuse, from coal, in the manufacture of coal-gas, from guano, or from any other source), with sulphuric acid, and then evaporating the solution till the salt crystallises out.

Frequently, instead of adding the acid to the ammoniacal liquor, the crude ammoniacal liquor is distilled in a boiler, cither alone or with lime, and the evolved ammonia is passed into the sulphuric acid, contained in a large tun or in a series of Woolfe's bottles; or a modification of Coffey's still may be used with advantage, as in the case of the saturation of hydrochloric acid by ammonia.

If Coffey's still be employed, a considerable concentration of the liquor is effected during the process of saturation, which is subsequently completed generally in iron pans; but great care has to be taken not to carry the cvaporation ton far, to avoid decomposition of the sulphate by the organic matter invariably present, which reduces it to the state of sulphite, hyposulphite, and even to sulphide, of ammonium.

The salt obtained by this first crystallisation is much purer than the chloride produced under similar circumstances, and one or two re-crystallisations effect its purification sufficiently for all commercial purposes.

It is on account of the greater facility of purification which the sulphate affords by crystallisation than the chloride of ammonium, that the former is often produced as a preliminary stage in the manufacture of the latter compound, the purified sulphate being then converted into sal ammoniac by sublimation with common salt. The acid mother-liquor left in the first crystallisation is returned to be again treated, together with some additional acid, with a fresh quantity of ammonia.

Preparation. Modifications in details and patents. - Since it is in the production of the sulphate of ammonia that the modification of Coffey's still, called the ammonia still, is generally employed, it may be well to introduced here a detailcd account of its arrangement.

This apparatus is an upright vessel, divided by horizontal diaphragms or partitions into a number of chambers. It is proposed to construct the vessel of wood, lined with lead, and the diaphragms of sheet iron. Each diaphragm is perforated with many small holes, so regulated, buth with regard to number and size, as to afford, under some pressure, passage for the elastic vapours which ascend, during the usc of the apparatus, to make thcir exit by a pipe opening from the upper chamber. Fitted to each diaphragm are several small valves, so weighted as to rise whenever elastic vapours accumulate under them in such quantity as to exert more than a certain amount of pressurc on tbe diaphragm. A pipe also is attached to each diaphragn, passing from about an inch above its upper surface to near the bottom of a cup or small reservoir, fixed to the upper surface of the diaphragms next underncath. This pipe is sufficiently large to transmit frcely downwards the whole of the liquid which enters for distillation at the upper part of the upright vessel and the cup or rescrvoir; into which the pipe dips forms, when full of liquid, a trap by which the upward passage of elastic vapours by the pipe is prevented. The vesscl may rest on a close cistern, contrived to receive the descending liquid as it leaves the lowest chamber, and from this cistcrn it may be run off, by a valve or cock, whenever expedient. The cistern, or in its absence the lowest chamber, contains the orifice of a pipe whieh supplies the steam for working the apparatus. The exact number of chambers iuto which the upright vessel is divided is not of essential inıportance ; but the quantity of liquid and the surface of cach diaphragm being given, the distillation, within certain limits, will be more complete the greater the number of chambers used in the process. The liquid undergoing distillation in this apparatus necessarily covers the upper surface of each diaphragm to the deptl of about an inch, being prevented from passing downward through the small perforations by the upward pressure of the rising steam and other elastic vapours; and, on the other hand, the steam being
prevented, by the traps, from passing upwards by the pipes, is forced to ascend by the perforations in tbe diaphragms ; so that the liquid lying on them becomes heated, and in consequence gives off its volatile matters. When the ammoniacal liquid accumulates on one of tbe diaphragms to the depth of an inch, it flows over one of the short pipes into the trap below, and overflows into the next diaphragm, and so on. See Distillation.
The management of the apparatus varies in some measure with the form in which it is desirahle to obtain the ammonia. When the ammonia is required to leave the upper chamher in the form of gas, either pure or impure, it is necessary that the steam wbich asecnds and the current of ammoniacal liquid which descends, should be in such relative proportions that tbe latter remain at or near the atmospheric temperature during its passage through some of the upper chambers, becoming progressively hotter as it descends, until it reaches the hoiling temperature; in which state it passes through the lower chambers, .either to makc its escape, or to enter a cistern provided to receive it, and in which it may for some time be maintained at a boiling heat. On the contrary, if the ammonia, cither pure or impure, be required to leave the upper chamber in combination with the vapour of water, the supply of stean entering helow must bear such proportion to that of the ammoniacal liquid supplied ahove, that the latter may be at a boiling temperature in the upper part of the apparatus.*
Tbe use of this apparatus has been patented in the name of Mr. W. E. Newton, Nov. 9, 1841.
Mr. Hill's process, patented Oct. 19, 1848, for concentrating ammoniacal solutions by causing them to descend through a tower of coke through which stcam is ascending, is, in fact, nothing more thau a rough mode of carrying out the same principle which is more effectually and elegantly performed by the modification of Coffey's still ahove described. Tbe concentrated ammonia liquor is then treated with acid and evaporated in tbe usual way.
Mr. Wilson has patented, Dec. 7, 1850, another method of saturating the ammonia with the acid by passing the crude ammonia vapour, obtained by heating the ammoniacal liquor of the gas-works, in at tbe bottom of a high tower filled with cokc, whilst the sulphuric acid descends in a continuous current from the top; in this manner the acid and ammonia are exposed to each other over a grcatly extended surface.
Dr. Richardson (patent, Jan. 26, 1850) mixes the crude ammonia liquors with sulphate of magnesia, then evaporates the solution, and submits the double sulphate of magnesia and ammonia, which separates, to sublimation ; but it would not appear that any great advantage is derived from proceeding in this way, either pecuniary or otherwise.

Mr. Laming passes sulphurous acid through the gas liquor, and finally oxidises the sulphite thus obtained to the state of sulphate, by exposure to the air. (Patent, Aug. 12, 1852.)

Michiel's mode of obtaing sulphate of ammonia, patented April 30, 1850, is as follows:-The ammoniacal liquors of the gas-works are combined with sulphate and oxide of lead, which is obtained and prepared in the following way :-Sulphuret of lead in its natural state is taken and reduced to small fragments by any convenient crusbing apparatus. It is then submitted to a roasting process, in a suitably arranged - reverberatory furnace of the following construction :- The furnace is formed of two sbelves, or rather the bottom of the furnace and one shelf, and there is a communication from the lower to the upper. The galena or sulphuret of lead, previously ground, is then spread over the surface of the upper shelf, to a thickness of about 2 or $2 \frac{1}{2}$ inches, and there it is submitted to the heat of the furnace. It remains thus for about two hours, at which time it is drawn off the upper shelf and spread over the lower sbelf or bottom of the furnace, where it is exposed to a greater heat for a certaiu time, during which it is well stirred, for the purpose of exposing all the parts equally to the action of the heat, and at the same time the fusion of any portion of it is prevented. By this process the sulphurct of lead becomes converted partly into sulphate and partly into oxide of lead. This product of sulphate and oxide of lead is to be crushed by any ordinary means, and reduced to about tbe same degrec of fineness as coarse sand. It is now to be combiucd with the ammoniacal liquors, when sulphate of ammonia and sulphuret and carbonate of lead will he produced.

The sulphate of ammonia is separated by treatment with watcr, and the residuary mixturc of sulphide and carhonate of lead is used for the manufacture of lend compounds.

Propertics.-The sulphate of ammonia obtained by cither of the methods above

[^27]described is a colourless salt, containing, according to Mitscherlich, one equivalent of water of crystallisation. It is isomorphous with sulphate of potash.

It deliquesces by exposure to the air ; 1 part dissolves in 2 parts of cold water, and 1 of boiling water. It fuses at $140^{\circ} \mathrm{C}$. $\left(284^{\circ} \mathrm{F}\right.$.), but at $280^{\circ} \mathrm{C}$. $\left(536^{\circ} \mathrm{F}\right.$.) it is decomposed, being volatilised in the form of frce ammonia, sulphite, water, and nitrogen.

For the other sulphates-the sulphites and those salts which arc but little used in the arts and manufactures-we refer to the "Dictionary of Chemistry."

Uses.-The chief consumption of ammoniaeal salts in the arts is in the form of sal aminoniac, the sulphate of ammonia being principally used as a material for the manufacture of the chloride of ammonium. It may, however, be employed directly in making ammonia-alum, or in the production of free ammonia by treatment with lime.

AMMONIUM. (NH^{4}) The radical supposed to exist in the varinus salts of ammonia. Thus $\mathrm{NH}^{4} \mathrm{O}$ is the oxide, $\mathrm{NH}^{4} \mathrm{Cl}$ the chloride, of ammonium. Ammonium constitutes one of the best established chemical types. See Formule, Chemical.C. G. W.

AMMONIUM, CHLORIDE OF. Commonly called Sal Ammoniac. (Sal ammoniac, Fr. ; Salmiak, Germ.) The early history of this salt is involved in much uncertainty. It would appear that the sal ammoniacus ($\hat{\lambda} \lambda s$ a $\mu \mu \omega \omega \nu \alpha \kappa o ́ s$) of the ancients was, in fact, rock-salt. The earliest knowledge of the compound has been claimed both for the Arabians and the Egyptians; but the late Dr. Royle remarked, that "the salt must have been familiar to the Hindoos ever since they have burnt bricks, as they now do, with the manure of animals, for some may usually be found crystallised at the unburnt extremity of the kiln."
This salt is formed in the solid state by bringing in contact its two gaseous constituents, hydrochloric aeid and ammonia. The gases combine with such force as to generate, not only heat, but sometimes even light. It may also be prepared by mixing the aqueous solutions of these gases, and evaporating till crystallisation takes place.

When ammoniacal gas is brought into contact with dry chlorine, a violent reaction ensues, attended by the evolution of heat and even light. The chlorine combines with the hydrogen to produce hydrochloric acid, which unites with the remainder of the ammonia, forming chloride of ammonium, the nitrogen being liberated. The same reaction takes place on passing chlorine gas into the saturated aqueous solution of ammonia.
Manufacture of Chloride of Ammonium from Camels' Dung. -In Egypt-whieh undoubtedly was the great seat of the manufacture of this salt from the beginning of the thirteenth to the middle of the seventeenth century, and whence all the European markets were supplied -the following is the process by which it is obtained:-
The original source was the urine and dung of the camel, which are dried by plastering them upon the walls, and burning, other fuel being very scarce in that country. A fire of this material evolves a thick smoke, charged with chloride of ammonium, part of which is condensed with the soot.
In every part of Egypt, but especially in the Delta, peasants are seen driving asses loaded with bags of that soot, on their way to the sal-ammoniac works.

Here it is extracted in the following manner:-Glass globes, coated with loam, are filled with the soot, pressed down by wooden rammers, a space of only two or three inches being left vacant, near their mouths. These globes are set in round orifices formed in the ridge of a long vault or large horizontal furnace flue. Heat is gradually applied by a fire of dry camels' dung, and it is eventually increased till the globes become obscurely red." As the chloride of ammonium is volatile at a temperature ruch below ignition, it rises out of the soot in vapour, and gets condensed into a cake upon the inner surface of the top of the globe. A considerable portion, however, escapes into the air; and another portion concretes in the mouth, which must be cleared from time to time by an iron rod. Towards the end, the obstruction becomes very troublesome and must be most carefully attended to and obviated, otherwise the globes would explode by the uncondensed vapours. In all cases when the subliming process approaches to a conclusion, the globes crack or split; and when they come to be removed, after the heat las subsided, they usually fall to pieces. The upper portion of the mass is separated, because to it the white salt adheres; and, ou detaching the pieces of glass with a hatchet, it is ready for the market. At the bottom of each balloon a nucleus of salt remains, surrounded with fixed pulvcrulent matter. This is reserved, and, after being bruised, is put in along with the charge of soot in a fresh operation.
The sal ammoniac obtained by this process is dull, spongy, and of a greyislı hue; but notling better was for a long period known in commerce. Fifty years ago, it

AMMONIUM, CHLORIDE OF.

fetehed $2 s .6 d$. a pound; whereas now, perfectly pure sal ammoniac may he had at one-fifth of that price.

Manufacture of Sal Anmoniac from Bones and other Animal Matter - Various animal offals develope, during their spontaneous putrefactive fermentation, or their deeomposition by heat, a large quantity of free or earhonated ammonia amoug their volatile produets. Upon this prineiple many sal ammoniac works have heen esta. hlished.-Ure.

The first attempts madc in France to ohtain sal ammoniac profitahly in this manner failed. A very extensive faetory of the kind, which experienced the same fate, was under the superintendence of the celebrated Baumé. It was estahlished at Gravelle, near Charenton, and eaused a loss to the shareholders in the speculation of upwards of 400,000 francs, which result elosed the eoncern in 1787. For 10 years after that event, all the sal ammoniae consumed in Franee was imported from foreign countries. Since then the two works of MM. Payen and Pluvinet were mounted, and seem to have heen tolerahly suceessful. Coal soot was, prior to the introduction of the gas works, a good deal used in Great Britain for ohtaining sal ammoniae.

In Franee, bones and other animal matters are distilled in large iron retorts for the manufaeture of both animal ehareoal and sal ammoniae.
"The annexed numbers show the produee of a French manufaetory of ammonia and its salts, from the distillation of bones and other matters.
"The materials were-

$$
\begin{aligned}
& \text { 46,754 tons of bones cf various kinds. } \\
& 30 \\
& 11 \frac{1}{2} " \\
& 80 \text { sulk waste and old leather } \\
& 80 \text { sulphrie acid. } \\
& 2 \frac{3}{4} \% \\
& \text { chloride of sodium. } \\
& \text { sulphate of lime. }
\end{aligned}
$$

and the produce was -
2,400 tons of animal eharcoal.
44 ehloride of ammonium.
100 " sulphate of soda.
4 ", liquor ammonia.
and 25 " sulphate of ammonia."
-Muspratt.
These retorts are iron cylinders, two or three in diameter and six feet long. Figs.

38 and 39 show the form of the furnace, and the manner in whieh the cylinders are arranged, the first being a longitudinal, the seeond a transverse section of it. a, the ashpits under the grates; B, the fire-places, arehed over at top; \mathbf{c}, the vault or heneh of fire-hrieks, perforated inside with eight flues for distributing the flame; D , a great areh, with a triple voissoir $\mathbf{d}, d^{\prime \prime}, d^{\prime \prime \prime}$, under whieh the retorts are set. The first areh, D , is perforated with twenty vent-holes, the seeond with four vent-holes, through which the flame passes to the third arch, and thenee to the eommon chimney-stalks. The retorts are shat hy the door e^{\prime} (fig. 39), luted, and made fast with screw-holts. Their other ends, e^{\prime}, terminate in tubes, f, f, f, whieh all enter the main pipe, h. The eondensing pipe proeeeds slantingly downwards from the further end of h, and dips into large sloping iron eylinder immersed in eold water.

The filters used in the large sal ammoniae works in France are represented in fig. 40. The apparatus eonsists - 1 , of a wooden ehest, a, lined with lead, and whieh is turned over at the edges; a soeket of lead, b, soldered into the lowest part of the hottom serves to diseharge the liquid ; 2, of a wooden crib or grating, formed of rounded rods, as shown in the section c, c, and the plan d; this grating is supported
one inch at least above the bottom, and set truly horizontal, by a series of wedges; 3, of an open fabric of eanvas or strong calico, laid on the grating, and secured over

the edges so as to keep it tense. A large wooden reservoir, f, lined with lead, fintnished with a cover, is placed under each of the filters; a pump throws back once or twice upon the filters what has already passed through. A common reservoir, g, below the others, may be made to communicate at pleasure with one of then by means of intermediate stopcocks.

The two boilers for cvaporating and decomposing are made of lead, about one quarter of an inch thick, sct upon a fire-brick vault, to protect tbem from the direet action of the flame. Through the whole extent of their bottoms above tbe vault, horizontal cast-iron plates, supported by ledges and brick compartments, compel the flame and burned air, as they issue from the arch, to take a sinuous course before they pass up the chimney. This floor of cast iron is intended to support the bottom of the boiler, and to diffuse the heat more equably. The leaden boilers are surrounded with briekwork, and supported at their edges with a wooden frame. 'They may be emptied at pleasure into lower receivers, called erystallisers, by means of leaden syphons and long-necked funnels.

The crystallisers are wooden chests lined with lead, 15 inches deep, 3 or 4 fect broad, and from 6 to 8 feet long, and may be inclined to one side at pleasure. A round eistern receives the drainings of the mother-waters. The pump is made of lead bardened with antimony and tin.

The subliming furnace is shown in figs 41 and 42, by a transverse and longi-

tudinal scction; a is the ashpit; b, the grate and fireplace; c, the arch above them. This arel, destined to protect the bottles from the direct action of the firc, is perforated with vent-holes, to give a passage to the products of combustion betweeu the sublining vessels; d, d, arc bars of iron, upon which the bottom of the bottles rest ; e, stoneware bottles, protected by a coating of loam from the flaunc.
Fig. 43 shows the east-iron plates, a, b, c, which, placed above the vaults, reecive each two bottles in a double circular opening.

At the extremity of the above furnaec, a second one, called the drier, fiy. f4, receives the products of the combustion of the first at Λ, under horizontal east-iron plates, and upon which the bottom of a rather shallow boiler, b, rests. After passing twice under these plates, round a longitudinal brick partition, $b, b^{\prime}, b^{\prime \prime}$, the produets of combustion enter the smoke chimney, c. Sec plan, fig. 45.

The boiler set orer this furnace slould have no soldered joints. It may be $3 \frac{1}{2}$ feet
broad, 9 or 10 feet long, and 1 foot deep. The concrete sal ammoniac may be crushed under a pair of edge millstones, when it is to be sold in powder.
Bones, blood, flesh, horns, hoofs, woollen rags, sills, hair, scrapings of hides and leathcr, \&c., may be distilled for procuring ammonia. When bones are uscd, the residuum in the retort is bone black. The charcoal from the other substances will serve for the manufacture of prussian blue. The bones should undergo a degree of calcination beyond what the ammoniacal process requires, in order to convert them into the best bone black; but the other animal matters should not be calcined up to that point, otherwise they are of little use in the Prussian bluc works. If the bones be calcined, however, so highly as to become glazed, their decolorising power on syrups is nearly destroyed. The other substances should not be charred beyond a red-brown heat.

The condensed vapours from the cylinder retorts afford a compound liquor holding carbonate of ammonia in solution, mixed with a large quantity of empyreumatic oil, which floats at top. Lest incrustations of salt shonld at any time tend to obstruct the tubes, a pipe should be inserted within them and connected with a steam boiler, so as to blow steam through them oecasionally.

The whole liquors mixed have usually a density of 8° or 9° Baumé (1.060). The simplest process for converting their carbonate of ammonia into the chloride of ammonium is to saturate them with hydrochloric acid, to evaporate the solution in a lcaden boiler till a pellicle appears, to run it off into crystallisers, and to drain the crystals. Another process is, to decompose the carbonate of ammonia, by passing its erude liquor through a layer of sulphate of lime, 3 or four inches thick, spread upon the filters, fig. 40. The liquor may be laid on with a pump; it should never stand higher than 1 or 2 inches above the surface of the bruised gypsum, and it should be elosely covered with boards, to prevent the dissipation of the volatile alkali in the air. When the liquor has passed through the first filter, it must be pumped up on the second; or the filters being placed in a terrace form, the liquor from the first may flow down upon the second, and thus in succession. The last filter should be formed of nearly fresh gypsum, so as to insure the thorough conversion of the carbonate into sulphate. The resulting layers of carbonate of linie should be washed with a little water, to extract the sulphate of ammunia interposed among its particles. The ammoniacal liquor thus obtained must be completely saturated, by adding the requisite quantity of sulphurie acid ; even a slight excess of acid can do no harm. It is then to be evaporated, and the oil must be skimmed off in the course of the concentration. When the liquid sulphate has acquired the density of about $1 \cdot 160$, sea salt should be added, with constant stirring, till the whole quantity equivalent to the double deeomposition is introduced into the lead boiler.
The fluid part must now be drawn off by a syphon into a somewhat deep reservoir, where the impurities are allowed to subside ; it is then evaporated by boiling till the sulphate of soda falls down in granular crystals, as the result of the mutual reaction of the sulphate of ammonia and chloride of ammonium ; while the more soluble chloride of sodium remains in the liquor. During this precipitation, the whole must be oceasionally agitated with wooden paddles ; the precipitate being in the intervals removed to the cocler portion of the pan, in order to be taken out by copper rakes and shovels, and thrown into draining-hoppers, placed near the edges of the pan. The drained sulphate of soda must be afterwards washed with cold water, to extract all the adhering sal ammoniac.
The liquor thus freed from the greater part of the sulphate, when sufficiently concentrated, is to be drawn off by a lead syphon into the crystallisers, where, at the end of 20 or 30 hours, it affords an abundant crop of crystals of sal ammoniac. The motherwater may then be run off, the crystallisers set aslope to drain the salt, and the salt itself must be washed, first by a weak solution of sal ammoniac, and lastly witl water. It must be next desiecated, by the apparatus fig. 44, into a perfectly dry powder, then put into the subliming stoneware balloons, by means of a funnel, and well rammed down. The mouth of the bottle is to be closed with a plate or inverted pot of any kind. The fire must be niccly regulated, so as to effect the sublimation of the purc salt from the under part of the bottle, with due regularity, into a white cake in the upper part. The neck of the bottle should be cleared from time to time with a long steel skewer, to prevent the risk of choking, and consequent bursting; but in spite of every precaution, several of the bottles crack almost in every operation.- Ure.

The pots are of variable dimensions, but those most frequently employed are about 18 inches in height in the body, and the cups about 10 or 12 inches, with a breadth of 16 inches at the widest part.

In Scotland a process somewhat similar is pursued, the salt being sublimed in castiron pots lincl with fire-proof tiles ; the condensation being effected in globular heads of green glass, with which each of the iron pots is capped.

Manufacture of Sal Ammoniac from Gas Liquor:-By far the largest quantity of the ammoniacal salts now met with in commerce is prepared from "gas liquor," the quantity of which annually produced in the metropolis alone is quite extraordinary one of the London gas works producing in one year 224,800 gallons of gas liquor, by the distillation of 51,100 tons of coal ; and the total comsumption of coal in London for gas making is cstimated at about 840,000 tons.

The principle of the conversion of the nitrogen of coal into ammonia by destructive distillation, as in the manufacture of coal gas, will be found described in connection with the processes of gas manufacture and the products produced by the destructive distillation of coal.

In the purification of the coal gas, the bodies soluble in water are all contained in the "gas liquor " (see Coal GAs), together with a certain quantity of tarry matter. The ammonia is chiefly preseut in the form of carbonate, together with certain quantities of chloride, sulphide, cyanide, and sulphocyanide of ammonium, as well as the salts of the compound ammonias.

For the purpose of preparing the chloride, if hydrochloric acid be not too costly, the liquor is saturated with hydrochloric acid - the solution evaporated to cause the salt to crystallise, and then, finally, the crude sal ammoniac is purified by sublimation.

Before treatment with the acid, the liquor is frequently distilled.
This is generally effected in a wrought-iron boiler, the liquors passing into a modification of the Coffey's still, by which the solution of ammonia is obtained freer from tar and more concentrated.

The Saturation of the Ammoniacal Liquor with the acid is generally effected by allowing the acid to flow, from a large leaden vessel in which it is held, into an under-

ground tank ($f i g$. 46) containing the liquor, which is furnished with an exit tube passing into a chimney, to carry off the sulphuretted liydrogeu and other offensive gases which are disengaged.

Or in other works the gas liquor is put into large tuns, and the acid lifted in gutta percha carboys by cranes, thrown into the liquor and stirred with it by means of an agitator; the offensive gases being in this case made to traverse the fire of the steam-engine.

Sometimes the vapours produced in the distillation of the crude gas liquor are passed in at the lower extremity of a column filled with coke, down which the acid trickles.

The Evaporation of the crude Saline Solution is generally performed in square or rectangular cast-iron vats, capable of holding from 800 to 1500 gallons. They are cncased in brickwork, the heat being applied by a fire, the flue of which takes a sinuous course bencath the lining of brickwork on which the pan rests, as shown in fig. 47.

When the liquor is evaporated to a specific gravity of $1 \cdot 25$, it is transferred to the crystallising pans; but during the process of concentration a considerable quantity of tar separates on the surface, which must be removed, from time to time, by skinuing, since it scriously impedes evaporation.

The crystallisution, which takes place on cooling, is performed in circular tubs.
trom 7 to 8 feet wide, and 2 to 3 deep, which are generally embedded entirely or partially in the ground. To prevent the formation of large erystals, which would be

ineonvenient in the subsequent process of sublimation, the liquor is agitated from time to time. The erude mass obtained, which is contaminated with tarry matter, free acid, and water, is next dried, by gently heating it on a east-iron plate under a dome. The greyish-white mass remaining is now ready to be transferred to the sublimers.
4. The method of sublimation generally adopted in this country consists in beating down into the metal pots, shown in fig. 48, the charge of dry coarscly crystallised

sal ammoniac. These pots are heated from below and by flues round the sides. The body of the subliming vessel is of east iron, and the lid usually of lead, or, less frequently, iron. There is a small hole at the top, to permit the eseape of stean; and great attention is requisite in the management of the heat, for if it he applied too rapidly a large quantity of sal ammoniae is earried off with the steam, or even the whole ap)paratus may be blown up; whilst, if the temperature be too low, the cake of sal ammoniae is apt to be soft and yellow.

The sublimation is never continued until the whole of the salt has been volatilised, since the heat required would decompose the earbonaceous impurities, and they, emitting volatile oily liydroearbons, diminish the purity of the product. In consequence

Vol. I.
of this incomplete sublimation, a conical mass (shown in the fig. 48) is left hehind, called the "yolk." After eooling, the dome of the pot is taken off and the attaehed eake earefully removed. This cake, which is from 3 to 5 inches tbiek, is nearly pure, only requiring a little scraping, where it was in contaet with the dome, to fit it for the market.

Modifications of the Process. - If, as is often the ease, sulphurie acid is eheaper or more aceessible than hydrochlorie, the gas liquor is neutralised with sulphuric acid, and then the sulphate of ammonia thus obtained is sublimed with common salt (chloride of sodium), and thus eonverted into sal ammoniac.

$$
\mathrm{NH}^{2} \mathrm{O} \mathrm{SO}+\mathrm{NaCl}=\mathrm{NH}^{4} \mathrm{Cl}+\mathrm{NaOSO}^{3}
$$

Mr. Croll has taked out a patent for converting crude ammonia into the ehloride, hy passing the vapours cvolved in the first distillation through the crude ehloride of manganese, ohtained, as a bye product in the preparation of chlorine, for the manufacture of chloride of lime : erude chloride of iron may be used in the same way.

Mr. Laning patented in July, 1843, the suhstitution of a solution of chloride of caleium for treating the erude gas liquor, instead of the mineral acids. Mr. Hills, August, 1846, proposed ehloride of magnesium for use in the same way; and several other patents have been taken out hy both these gentlemen, for the use of various salts in this way.

Manufacture of Sal Ammoniac from Guano.-Mr. Young took out a patent, Novemher 11 tb, 1841 , in whieh he deseribes his method of ohtaining ammonia and its salts from guano. He fills a retort, placed vertieally, with a mixture of two parts hy weight of guano, and one part hy weight of hydrate of lime. These substances are thoroughly mixed hy giving a reciprocating motion to the agitator placed in the retort; a moderate degree of heat is then applied, whicb is gradually inereased until the bottom of the retort beeomes red-hot. The ammoniacal gas thus given off is absorbed by water in a condenser, whilst other gases, whieh are given off at the same time, heing insoluble in water, pass off. Solutions of carhonate, hicarbonate, or sesquicarhonate of ammonia are produced, hy filling the condenser with a solution of ammonia, and passing carbonic acid through it. A solution of chloride of ammonium or sulphate of ammonia is ohtained by filling the condenser with diluted hydroehloric or sulphurie acid, and passing the ammonia through it as it issues from the retort.
Dr. Wilton Turner obtained a patent, March 11th, 1844, for obtaining salts of ammonia from guano. The following is his method of obtaining chloride of ammonium in conjunction with cyanogen compounds:- The guano is subjected to destrnctive distillation in close vessels, at a low red heat during the greater part of the operation; hut this temperature is increased towards the end. The products of distillation are colleeted in a series of Woolfe's hottles, hy means of which the gases evolved during the operation may he made'to pass two or three times tbrough water, hefore escaping into the air. These produets consist of earhonate of ammonia, hydrocyanic aeid, and carburetted hydrogeu, the first two of which are rapidly absorhed hy the water, with the formation of a strong solution of cyanide of ammonium and carhonate of ammonia. After tbe ammoniaeal solution has been removed from the Woolfe's apparatus, a solution of protocbloride of iron is added to it, in such quantities as will yield sufficient iron to convert the latter into Prussian blue, which is formed on the addition of hydroeblorie acid in sufficient quantity to neutralise the free ammonia; the precipitate thus formed is now allowed to subside, and is carefully separated from the solution, and by heing boiled witb a solution of potash or soda, will yicld the ferrocyanide of the alkali, which is obtained by crystallising in the usual way. The solution (after the removal of the precipitate) should be freed from any excess of iron it may contain, by the eareful addition of a fresh portion of the ammoniacal liquor, hy which means the oxide of iron will he precipitated, and a neutral solution of ammonia obtained. When the preeipitated oxide and eyanide of iron have subsided, the solution of ehloride of ammonium is drawn off hy a syphon, and the sal-ammoniac ohtained from it by the usual processes; the oxide of iron is added to the ammoniacal solution next operated upon.
If sulphate of iron and sulphuric acid are used, sulphate of ammonia is the ammoniaeal salt produced, the ehemical changes and operations being similar to the ahove.
Since the greater part of the nitrogen present in guano exists in tbe state of ammoniacal salts which are deeomposed at a red heat, nearly the wbole of the ammonia which it is eapable of yielding is obtained by this method; still there eannot be a doubt that the eonversion of the urea, urie acid, and other nitrogenised organie bodies into ammonia, is greatly facilitated by mixing the guano with lime heforc heating it, as in Mr. Young's process.
Manufacture of Sal Ammoniac from Urine. - The urea in the urine of man and other animals is extremely liable to undergo a fermentative deeomposition iu the
presence of the putrefiable nitrogenous matters always present in this cxcrement, by which it is eonverted into carbonate of ammonia

By treating stale urine with hydrochloric acid, sal ammoniac separates on evaporation.

Properties. - Chloride of ammonium (or sal ammoniac) usually occurs in commerce, in fibrous masses of the form of large hemispherical cakes with a round hole iu the centre, having, in faet, the shape of the domes in whieh it has been sublimed. By slowly cyaporating its aqueous solution, the salt may occasionally be obtained in cakes nearly an inch in height ; but it generally forms feathery crystals, which are eomposed of rows of minute octahedra, attached by their extremities. Its speeific gravity is $1 \cdot 45$, and by heating it sublimes without undergoing fusion. It has a sharp and acrid taste, and one part dissolves in 2.72 parts of hot, or in an cqual weight of cold water.

It is rccognised by its being completely volatile on heating, giving a white curdy preeipitate of chloride of silver on the addition of nitrate of silver to its aqueous solution, and by the copions evolution of ammonia on mixing it with lime, as well as the production of the yellow precipitate of the double chloride of ammonium and patinum ($\mathrm{NH}^{4} \mathrm{C} ., \mathrm{Pa} \mathrm{Cl}{ }^{2}$) on the addition of biehloride of platinum.

Impurities. - In the manufacture of chloride of ammouium, if the purification of the liquor be not effected before crystallising the salt, some traees of protochloride of iron are generally present, and frequently a considerable proportion. Even when the salt is sublimed, the chloride of iron is volatilised together with the chloride of ammonium, and appears to exist in the salt in the form of a double coupound (probably of $\mathrm{Fe}, \mathrm{Cl} \mathrm{N} \mathrm{H}{ }^{4} \mathrm{Cl}$, analogous to the compounds which chloride of ammonium forms with zinc and tin) 140 ; and this not only in the brown seams of the cake, but likewise in the colourless portion. This accounts for the observation so often made in the laboratory, that a solution of sal ammoniac, which, when reeently prepared, was perfectly transparent and colourless, beeomes gradually red from the peroxidation of the iron and its precipitation in the form of sesquioxide.

It is in consequence of the existence of the iron in the state of this double salt, that Wurtz found that chloride of ammonium containing iron in this form gave no indications of its presence by the usual reagents until after the addition of nitric acid; and it is curious that there likewise exists a red compound of this class iu which the iron exists in the state of perchloride similarly marked, in fact as $\mathrm{NH}^{t} \mathrm{Cl} \mathrm{Fe}^{2} \mathrm{Cl}^{3}$.

A very simple method of removing the iron, suggested by Mr. Brewer, consists in passing a few bubbles of chlorine gas through the hot concentrated solution of the salt, by which the protochloride of iron is converted into the perchloride.

$$
2 \mathrm{FeCl}+\mathrm{Cl}=\mathrm{Fe}^{2} \mathrm{Cl}^{3}
$$

The free ammonia always present in the solution dccomposes this perchloride with precipitation of sesquioxide, and formation of an additional quantity of sal ammoniac.

$$
\mathrm{Fe}^{2} \mathrm{Cl}^{3}+3 \mathrm{NH}^{4} \mathrm{O}=\mathrm{Fe}^{2} \mathrm{O}^{3}+3 \mathrm{NH}^{4} \mathrm{Cl} .
$$

The sesquioxide of iron, which is of course present in the form of a brown hydrate, is filtered off or separated by deeantation, and a perfectly pure solution is obtained.

The only precaution necessary is to avoid passing more chlorine than is requisite to peroxidise the irou, since the ammonia salt itself will be decomposed with evolution of nitrogen, and the dangerously explosive body, chloride of nitrogen, may result from the union of the liberated nitrogen with chlorine.

Uses.-The most important use of sal ammoniac in the arts is in joining iron and other metals, in tinning, \&cc. It is also extensively used in the manufacture of am-monia-alum, which is now largely employed in the manufacturc of mordants instead of potash-alum. A considerable quantity is also consumed in pharmacy.

Sal ammoniac is one of those salts which possesses, in a high degree, the property of producing cold whilst dissolving in water; it is, therefore, a common constituent of frigorific mixtures. See Freezing Mixtures.

AMMONIUM, SULPHIDES OF. When sulphuretted hydrogen gas is passed into a solution of ammonia in excess, it is converted into the double sulphide of ammonium and hydrogen - or, as it is frequently called, the hydrosulphate of sulphide of ammonium - $\mathrm{NH}^{4} \mathrm{~S}$, HS.

This solution is extensively cmployed as a re-agent in the chemical laboratory, for the separation of those metals the sulphides of which are soluble in acids-viz., nickel, cobalt, manganese, zinc, and iron, whieh arc precipitated by this re-agent in alkaline solutions.

By exposure to the air, the hydrosulphuric acid which it contains is decomposed, the hydrogen being oxidised and converted into water, whilst the liberated sulphur
is dissolved by the sulphide of ammonium, forming the bismlphide, or even higher sulphide.

This solution of the polysulphide of ammonium is a valuable re-agent for dissolving the sulphides of certain metals, such as tin, antimony, and arscnic, the sulphides of which play the part of acids and form salts with the sulphide of ammonium.

By this deportment with sulphide of ammonium, these metals are separated, both on the small scale in the laboratory and also on the large scale, from the sulphides of those metals-such as lead, copper, mercury, \&c.-the sulphides of which are insoluble in sulphide of ammonium.

The higher sulphides, viz., the tersulphide, $\mathrm{NH}^{4} \mathrm{~S}^{3}$, and the pentasulphide, N1I ${ }^{4}$ S^{5},- are bodies of purely scientific interest. They are obtained by distilling the corresponding sulphides of potassium with sal ammoniac.

All the sulphides of ammonium are soluble in water without decomposition.
Ammouia combiucs with all the other inorganic and organic acids, the name of which is "legion;" but for an account of these bodies we must refer to the "Dictionary of Chemistry," as they have but few applications in the arts and manufactures.

A MORPHOUS. (Privative, $\dot{\alpha}$, destitute of ; $\mu о \rho \phi \grave{\eta}$, shape : without shape.) Said of mineral and other substances which occur in forms not easy to be defined. This term may be regarded as the opposite of crystalline. Some elements cxist in both the crystalline and the amorphous states, as carbon, which is amorphous in charcoal, but crystalline in the diamond.

The peculiarities which give rise to these conditions - evidently depending upon molecular forces which have not yet been defined - present one of the most fertile fields for study in the range of modern science.

AMYGDALINE. ($\mathrm{C}^{40} \mathrm{H}^{27} \mathrm{NO}^{22}+6 \mathrm{HO}$.) A peculiar substance, existing ready formed in bitter almonds, the leaves of the cherry laurel, the kernels of the plum, cherry, peach, and the leaves and bark of Prunus padus, and in the young sprouts of the P. domestica. It is also found in the sprouts of scveral species of Sorbus, such as S. aucuparia, S. torminalis, and others of the same order. To prepare it, the bitter almonds are subjected to strong pressure between hot plates of metal. 'This has the effect of removing the bland oil known in commerce as almond oil. The residue, when powdered, forms almond meal. To obtain amygdaline from the meal, the latter is extracted with boiling arcohol of 90 or 95 per cent. The tincture is to be passed through a cloth, and the residue pressed, to obtain the fluid mechanically adherent to it. The liquids will be milky, owing to the presence of some of the oil. On keeping the fluid for a few hours, it may be separated by pouring off, or by means of a funnel, and so obtained clear. The alcohol is now to be remored by distillation, the latter being continued until five-sixths have come over. The fluid in the retort, when cold, is to have the amygdaline precipitated from it by the addition of half its volume of ether. The crystals are to be pressed between folds of filtering paper, and recrystallised from concentrated boiling alcohol. As thus pre. pared, it forms pearly scales, very soluble in hot alcohol, but sparingly when cold; it is insoluble in ether, but water dissolves it readily and in large quantity. The crystals contain six atoms of water of crystallisation. Most persons engaged in chemical operations have noticed, when using almond meal for the purpose of luting, that, before being moistened with water, it has little odour, and what it has is of an oily kind; but, after moistening, it soon acquires the powerful and pleasant perfume of bitter-almond oil. This arises from a singular reaction taking place between the amygdaline and the vegetable albumen or emulsine. The latter merely acts as a ferment, and its elements in no way enter into the products formed. 'The decomposition, in fact, takes place between one equivalent of amygdaline and four equivalents of water, the product being one eqnivalent of bitter-almond oil, two equivalents of grape sugar, and one of prussic acid. Or, represented in symbols: -

$$
\underbrace{\mathrm{C}^{40} \mathrm{H}^{27} \mathrm{NO}^{22}}_{\text {Amygdaline. }}+4 \mathrm{HO}=\underbrace{\mathrm{C}^{14} \mathrm{H}^{6} \mathrm{O}^{2}}_{\begin{array}{c}
\text { Bitter-almond } \\
\text { oil. }
\end{array}}+\underbrace{\mathrm{C}^{2} \mathrm{HN}}_{\begin{array}{c}
\text { Prussic } \\
\text { acid. }
\end{array}}+\underbrace{2 \mathrm{C}^{12} \mathrm{H}^{18} \mathrm{O}^{12}}_{\text {Grape sugar. }} \text {. }
$$

In preparing amygdaline, some chemists add water to the residue of the distillation of the tincture, and then yeast, in order to remove the sugar present, by fermentation, previous to precipitating with ether: the process thus becomes much more complex, becanse it is necessary to filter the fermented liquid, and concentrate it again by evaporation, before precipitating out the anyydaline.

The proof that the decomposition which is experienced by the bitter almond eake, when digested with water, is owiug to the presence of the two principles meutioned, rests upon the following eonsiderations. If the marc, or pressed residue of the bitter almond, be treated with boiling water, the emulsine - or vegetable albuneu - will
bccome eoagulated, and ineapable of indueing the dceomposition of the amygdaline. Moreover, if the latter be removed from the mare with hot aleohol previous to operating in the usual manner for the extraetion of the essential oil, not a traee will be obtained. It is only the bitter almond whieh eontains amygdaline; the sweet variety is, therefore, ineapable of yielding the essence by fermentation. But swcet almonds rescmble the bitter in containing emulsine ; and it is exeeedingly interesting -as illustrating the truth of the explanation given above - that if a little amygdaline be added to an emulsion of sweet almonds, the bitter-almond essenee is immedi-
ately formed. The largest digested, previous to distillationortion of essential oil is obtained when the marc is a night. A temperatustillation, with twenty times its weight of watcr, for a day and

AMYLAMINE. ($\mathrm{C}^{10} \mathrm{H}^{13}$) is the most favourable for the digestion.-C. G. W.
It is, in faet, ammonia in which one equivalent of hydrogen is replaced by the radieal amyl, $\mathrm{C}^{10} \mathrm{H}^{11}$. It may be produced artifieially by several proeesses. 1. By boiling eyanat of amyl with potash. 2. By the aetion of potash on amylie urea. 3. By the aetion of iodide of amyl on ammonia. It is eontained among the organic bases of bone oil, and is said to be obtained in a state of purity from horn and leueine by destruetive distillation. It was discovered by Wurtz, to whom we are indebted for the first and seeond modes of preparation. The third proeess was discovered by Hofmann. I have recently found that when flannel is distilled with potash, amylamine eomes over with butylamine.

Amylamine, in a state of purity, is a colourless mobile fluid of an extremely burning taste. Its density is 0.750 at 64°. It boils at 203° F.-C. G. W.
a Myloxide-hydrate. See Fusel Oil.
amylum Mandiocer. Mandioca or Cassava starch.
ANALYSIS. The art of resolving a eompound substance or machine into its eonstituent parts. Every manufaeturer should so study this art, in the proper treatises and sehools of ehemistry or meehanies, as to enable him properly to understand and regulate his business.

ANCHOR. (Ancre, Fr. ; Anker, Germ.) An iron hook, of peeuliar eonstruetion and of eonsiderable weight and strength, for enabling a ship to lay hold of the ground, and fix itself in a certain situation by means of a rope called the cable. The neeessity for securing boats, eanoes, or ships in a certain position, has led to the adoption of anehors, of some deseription, amongst every nation dwelling upon the shores of seas, lakes, or rivers. They were often of the rudest deseription. We are informed that the Greeks at first used stone ancbors, but that they subsequently employed instruments of iron, having one two and three teeth, which were not apparently very different from those we now employ. The anchors whieh are used by many of the races inhabiting the shores of the Indian oeean are made of the so-ealled "iron-wood," whieh is so dense that it sinks in sca-water. The anehor is an instrument of the greatest importance to the navigator, sinee upon its taking and keeping hold depends his safety upon many oceasions, especially near a lee shore, where he might be other-

wise stranded or shipwreeked. Anchors are generally made of wrought iron, except among nations who eannot work this metal well, and who therefore use copper. The mode in which an anchor operates will be understood from inspection of fig. 49, where, from the direction of the strain, it is obvious that the anehor eannot move without ploughing up the ground in whieh its hook or fluke is sunk. When this, however, unluekily takes place, from the nature of the ground, from the mode of insertion of
the anehor, or from the violence of the winds or currents, it is called dragging the anchor. When the hold is good, the cable or the buried arm will sooner break than the ship will drive. Anchors are of different sizes, and have different nanes, aecording to the purposes they serve; thus there are bower, stream, and kedge auchors. Ships of the first elass have seven anehors, and smaller vessels, such as brigs and sehooners, three.

The metal employed for anehors of wrought iron is known as "scrap iron," and for the best anehors, suel as Lenox's, they also use good "Welsh mine iron."

It is not practieal, without oecupying more spaee than can be afforded, to deseribe in detail the manufaeture of an anchor. It does not, indeed, appear desirable that we should do so, sinee it is so speeial a form of mechanieal industry, that few will consult this volume for the sake of learning to make anehors. The following will thereforc suffice. The anchor smith's forge eonsists of a hearth of brickwork, raised about 9 inches above the ground, and generally about 7 feet square. In the eentre of this is a eavity for containing the fire. A vertieal brick wall is built on one side of the hearth, whieh supports the dome, and a low chimney to earry off the smoke. Behind this wall are placed the bellows, with whieh the fire it urged ; the bellows being so placed that they blow to the centre of the fire. The anvil and the erane by which the heavy masses of metal are moved from and to the fire are adjusted near the hearth. The Hercules, a kind of stamping machine, or the steam hammer, need not be deseribed in this place.

To make the anchor, bars of good iron are brought together to be faggoted; the number varying with the size of the anehor. The faggot is leept together by hoops of iron, and the whole is placed upon the properly arranged hearth, and covered up by small coals, whieh are thrown upon a kind of oven made of cinders. Great care and good management is required to keep this temporary oven sound during the combustion;-a smith strietly attends to this. When all is arranged, the bellows are set to work, and a blast urged on the fire ; this is eontinued for about an hour, when a good welding heat is obtained. The mass is now brought from the fire to the anvil, and the iron welded by the hammers. One portion having been welded, the iron is returned to fire, and the operation is repeated until the whole is welded into one mass.

This will be understood by referring to the annexed figures (fig. 50), in which the bars for the slanks, $A \mathrm{~A}$, and the arms, Bi, are shown, in plan and sections, as bound together, and their shapes after being welded before union; and c c represeuts the palm.
The different parts of the anchor being made, the arms are united to the end of the shank. This must be done with great eare, as the grodness of the anchor depends entirely upon this process being effectively performed. The arms being welded on, the ring has to be formed and welded. The ring consists of several bars welded together, drawn out into a round rod, passed through a hole in the shauk, bent into a circle, and the ends welded together. When all the parts are adjusted, the whole anchor is brought to a red heat, and hammered with lighter hammers than those nsed for welding, the object being to give a finish and evenness to the surfaee.

The toughest iron which ean be proeured should be used in the mannfacture of an anehor, upon the strength of which both the security of valuable lives and much property depends.

The manufacture of anchors requires great knowledge of the structure of iron, and skill in the art of working it. The various parts of an anchor are thus named: - In fig. 51, A is the shank; B, the arm or fluke; \mathbf{c}, the palm; D , the blade; E , the square ; F , the nut ; G , the ring; H , the crown,-the proportional weights of the scveral parts being as follows:-

The shank	-	-	-	$\frac{5}{10}$ ths	
Each arm -	-	-	-	${ }_{10}^{10}$ ths	"
Two palms	-	-	-	$\frac{1}{10}$ th	"
Stock	-	-	-	$\frac{1}{5}$ th	
Shackle	-	-		$\frac{1}{15}$ th	

The following drawings (fig. 52) show an anchor on the old plan and the dissected parts of which it is composed:-

and the annexed (fig. 53), the patent anchor as invented by Mr. Perring, with its several parts dissected as bcfore:-

Perring's improvel anchor was a very ingenious one. 'The bars and half the breadth of the anchor are first welded separately, and then placed side by side, when the upper half is worked into one mass, while the lower part is left disunited, but it has carrier iron bars, or porters, as these prolongation rods (3, 3, fig. 53) are commonly ealled, welded to the extremity of each portion. The lower part is now heated and placed in the clamping machine, which is mercly an iron plate firmly bolted to a mass of timber, and bearing upon its surface four iron pins. Onc end of the crown is placed between the first of these pins, and passed under an iron strap ; the other end is brought between the other pins, and is bent by the leverage power of the clongated rods or porters.

Thus a part of the arm being formed out of the crown gives much greater security when a truc union of fibres is effected, than when the junction was made merely by a short scarf.

The angular opening upon the side opposite is filled with the chock, formed of short iron bars placed upright. When this has been firmly welded, the truss-piece is brought over it. This picce is made of plates similar to the abovc, except that their edges are here horizontal. The truss-picec is half the breadth of the arm; so that, when united to the crown, it constitutes, with the other parts, the total breadth of the arms at those places.

The shank is now shut upon the crown; the square is formed, and the nuts welded to it ; the hole is punched out for the ring, and the shank is then fashioned.

The blade is made much in the way above described. In making the palm, an iron rod is first bent into the approximate form, notching it so that it may more readily take the desired shape. To one end a porter rod is fastened, by which the palm is carried and turned round in the fire duriug the progress of the fabrication. Iron plates are next laid side by side upon the rod, and the joint at the middle is broken by another plate laid over it. When the mass is worked, its under side is filled up by similar plates, and the whole is completely welded; picces being added to the sides, if necessary, to form the angles of the palm. The blade is then shut on to the paln, after which the part of the arm attached to the blade is united to that which constitutes the crown. The smith-work of the anchor is now finished.

The junction-or shutting on, as the workmen call it-of the several members of an anchor is effected by an instrument called a Hercules, which is merely a mass of irou raised to a certain height, between parallel uprights, as in the pile-engine or vertical ram, and let fall upon the metal previously brought to a welding heat.

The end of the shank is squared to reccive and hold the stock steadily and keep it from turning. To prevent it shifting along, there are two knobs or tenon-like projections. The point of the angle \boldsymbol{H}, between the arms and the shank, is sometimes called the throat. The arm, B c, generally makes an angle of 56° with the shank A; it is cither ronnd or polygonal, and abuut half the length of the shank.
The stock of the auchor (fig. 49) is made of oak. It consists of two beams which embrace the square, and are firmly united by iron bolts and hoops, as shown in the figure. The stock is usually somewhat longer than the shank, has in the middle a thickness about one-twelfth of its length, but tapers at its under side to nearly onehalf this thickness at the extremities.

An ingenious form of anchor was made the subject of a patent, by Lieutenant Rodger, of the Royal Navy, in 1828, and was afterwards modified by him in a second patent, obtained in August, 1829. The whole of the parts of the anchor are to be bound together by means of iron bands or hoops, in place of bolts or pins.

Fig. 54 is a side view of a completc anchor, formed upon his improved construction, and fig. 55 a plan of the same; fiy. 56 , an end view of the crown and flukes, or arms ; fig. 57 represents the two principal iron plates, a a, of which the shank is construeted, but so as to form parts of the stump-arms to which the flukes are to be connected.

The crown piecc is to be welded to the stump-piece, c c, fig. 57 , as well as to the end, l, of the centre-piece, $h h$, and the scarfs, $m m$, are to bc cut to receive the arms or flukes. Previnusly, however, to uniting the arms or flukes to the stumparms, the crown and throat of the anchor are to be strengthencd, by the applieatiou of the crown slabs, $n n$, fig. 57 , which are to be welded upon cach side of the crown, overlapping the end of the pillar, h, and the throat or knccs of the stump-arins and the crown-piece. The stump-arms are then to be strengthened in a similar manner, by the thin flat picces, $p p$, which are to be welded upon cach sidc. The palms are united to the flukes in the usual way, and the flukes are also united to the stumparms by means of the long searfs, $n \mathrm{~m}$. When the shank of the auchor has been thus formed, and united with the flukes, the anchor-smith's work may be said to be completc.

Another of the improvements in the constrinction of anchors, clamed under this
patent, eonsists in a new method of affixing the stoek upon the shank of the anchor, which is etreeted in the following manner : in fig. 54 the stoek is slown affixed to the anehor; in fig. 57 it is shown detaehed. It may be made either of one or two pieees of timber, as shall be found most convenient. It is, however, to be ohserved that the stoek is to be completed before fitting on to the shank. After the stoek is shaped, a hole is to be made through the middle of it, to fit that part of the shank to whieh it is to he affixed. Two stoek plates are then to he let in, one on each side of the stoek, and made fast by eounter-sunk nails and straps, or hoops; other straps or hoops of iron are also to he placed round the stoek, as usual.

In plaee of nuts, formed upon the shank of the anehor, it is proposed to seeure the stock hy means of a hoop and a key, shown above and below J, in fig. 55. By this eontrivance, the stoek is prevented from going nearer to the erown of the anehor than it ought to do, and the key prevents its from sliding towards the shaekle.

Since fitting the stoek to the shank of an anehor by this method prevents the use of a ring, as in the ordinary manner, the patentee says that he in all eases suhstitutes a shaekle for the ring, and whieh is all that is required for a cbain eable; hut when a hempen eable is to he used, he conneets a ring to the usual shaekle, hy means of a joining shaekle, as in figs. 54
 and 55. The stoek is shown in fig. 58.

Mr. Rodger proposes, under another patent, dated July, 1833, to alter the size and form of the palns; having found from experienee that anehors with small palms will not only hold better than with large ones, but that the arms of the anehor, even without any palms, have been found to take more secure hold of the ground than anehors of the old eonstruetion of similar weight and length. He has aecordingly fixed upon one-fifth of the length of the arm, as a suitahle proportion for the length or depth of the palm. He makes the palms, also, broader than they are long or deep.

Previously to the introduetion of Lieutenant Rodger's small-palmed anehor, ships were supplied with heavy, eumhersome eontrivanees with long shanks and hroad palms extending half-way up the flukes. So badly were they proportioned, that it was no uneommon thing for them to hreak in falling on the bottom, partieularly if the ground was roeky. But, if onee firmly imhedded in stiff holding ground, there was eonsiderable diffieulty in hreaking them out. The introduetion of the small palm, therefore, forms an important era in the history of anehors.

The next important introduetion was Porter's anehor, with movable flukes or arms. One grand objeet sought to he attained here, was the prevention of fouling by the eable. It was eonsidered, also, that as great injury was frequently oeeasioned by a ship grounding on her anehor, the elosed upper arm would remedy the evil. It was found, however, that the anehor would not talse the ground properly as at first eonstrueted, and bence the "shark's fin" upon the outside of each fluke.

Rodger's invention was for some time viewed with distrust; but, from time to time, improvements were introduced, until the patent, which gained the Exhibition prize, was brought out. On this the jurors reported as follows:-
"Many remarkahle inprovements have heen reeently made by Lieutenant Rodger, R.N., insuring a hetter distribution of the metal in the direetion of the greatest strains. The palm of the anehor, instead of heing flat, presents two inelined planes, ealeulated for cutting the sand or mud instead of resisting perpendieularly; and the eonsequenee is, that these new anehors hold mueh hetter in the ground. The committee of Lloyd's-so eompetent to judge of every eontrivance likely to preserve ships-have resolved to allow for the anehors of the ships they insure a sixth less weight if made aeeording to the plan of Lieutenant Rodger:"
The original Porter's anchor has also undergone eonsiderable modifieation ; and, under the name of "Trotinan's anehor," has now a eonspieuons place.

Another invention is that of Mitcheson's, which, in form and proportions, strougly resembles lodger's; but the palm is that adopted in Trotman's, or Porter's anchor, It is a trifle longer in the slank than Rodger's, and has a peeuliar stoek, which although original in its form-lacks originality in its design, sinee Rodger had previously introdueed a plan for an iron stoek to obviate the wealiness eaused by making a hole for the stock to pass through. Mr. Lenox was the inventor of an anchor whieh differed somewhat from the Admiralty's anchor-a modifieation of Rodgers-in being shorter in the sliank and thieker in the flukes, the palms being spade-sliaped. Mr. J. Aylen, the Master-Attendant of Sheerness Dockyard, modified the Admiralty's anehor. Instead of the inner part of the fluke, from the erown to the pea, being rounded, as in the Admiralty plan, or squared as in Rodger's and Miteheson's, it is hollowed. An American anchor, known as Isaan's, has a flat bar of iron from palm to palm, passing the shank elliptically on both sides; and from the end of the stoek to the eentre of the shank two other bars are fixed to prevent its fouling.

With the anehors thus briefly deseribed the Admiralty ordered trials to be made at Woolwich, and at the Nore. The results of those trials-the partieulars of which need not be given here-were, that Miteheson's, Trotman's, Lenox's, and Rodger's were seleeted as the best.

A competent authority, writing in the United Service Gazette, says:-" The general opinion dedueed from the series of experiments is, that although Mitcheson's has beeu so successful, the stoek is not at present seaworthy. Trotman's has come out of the trial very sueeessfully, but the eonstruction is too complieated to render it a good working anehor. When onee in the ground, its holding properties are very superior ; in faet, a glance at its grasp will slow that it has the eapabilities of an anehor of another construetion one-fifth larger. There are, however, drawbacks not easily to be overcome. Its taking the ground is more precarious than with other anehors; and if a ship should part her eable, it would scareely be possible to sweep the anchor. It is also an awkward anchor to fish and to stow. Yet there are other merits whieh render it, upon the whole, a most valuable invention, and no ship should go to sea without one. Of Lenox's, it is sufficient to say that it has been found equal to, and that it has gained an advantage over, Rodger's; but so strong is the professional feeling in favour of the latter, that it will ever remain a favourite. Our reeommendation would be thus:-Lenox and Rodger for bower anehors, Miteheson for a sheet, and Trotman for a spare anehor."
The following Table gives at one view the results of the experiments made by the Admiralty upon breaking the trial anehors, and the time occupied upon each cxperiment:-

The history of the introduction of Lenox's anchors to the British navy was as follows:-

After sundry attempts to induce the Admiralty to give up entirely the use of hempen cable anehors, in eonsequenee of their breaking when applied to elain cables, Mr. Lenox, in 1832, was permitted to alter some of the old anchors to sueh proportions and shape as would enable them to stand a proof-strain upon the maehine in Woolwich Doekyard. It was found, as previously apprehended and asserted, that from the inequality of material in the old anehors, not above one in three was suceessfully altered, and Mr. Lenox was ordered to supply new anehors, which were proved, and then approved of. This state of things continued until 1838, when Mr. Lenox was requested to reeonsider and eomplete the sliape and proportions of anchors for the navy, with a view to a eontraet being given out for the supply of suel anchors to the service. Then was eonstructed the slape ealled the "Admiralty," or "Sir William Parker's Anehor" (Sir. William being then Store Lord). Mr. Lenox suggested to Sir William the doing away with every sharp edge and line in an anchor, and adopting the smootl long-oval (in the section) for the general shape of

ANCHOR.

shank and arm. This was approved of by Sir William, and he brought it out as his anchor. An entire Table of proportions was furnished; but that it might meet with no opposition from the influence of dockyard authority, it was sent to the offieers of Portsmouth Yard for their approval. They returned it, after a few montbs, with some slight alterations in the proportions of some of the sizes, and reeommended the construction to be on "Perring's principle" of the cushioncd, or made-up, erown. It was so adopted, and continucd to be made by Brown and Lenox for about a year or two, when the great and unnecessary cxpense incurred by the plan was pointed out. It was contended it was without any good; because, if the erown of the anchor, or any shut or weld, was made sound and perfect, the amalgamation of the grain of the iron would be complete, and assume its full power or strength, whatever way it might be put together; and the strongest form was that which exposed the least surface of iron to the welding heat, and eonsequently to injury. About the latter end of 1839, the subject was again opened. Mr. Lenox renewed his objections, by letter to Sir William Parker, to "Perring's plan" of shatting-up, and the consequence was - a contract, with speeification, \&e. \&e., appeared, and an improved or modified plan of shutting-up (as it is called) was proposed by Mr. Tyler, master-smith of Portsmouth Yard, whieh was adopted; and Mr. Lenox's shape and proportions (slightly altered, as before said) came out as "Sir William Parker's," or the "Admiralty Anchor," and eoutinued, until after the trials in 1852, with every success in actual service that a good anchor could maintain, and they were made and sold in quantities to all the world.

In the navy of England, and in nearly all foreign navies, this anchor, of whieh fig. 50 represents the form, was adopted, They are also largely employed in the mer-
ehant serviee; but these are not so niccly proportioned as the anehors made for the Government, nor are they so highly finished. Many merehant eaptains, however, take Rodger's anehor, and our steamers almost invariably take Porter's or Trotman's anchor.

Trotman's Anchor is represented in fig. 60, under its various positions. Although for conveniencc Trotman's anehor is, as we have already stated, largely used by the merchant steamers, we cannot but feel that the separation of the fluke from the shaft, although it may be in many eases unobjectionable, is attended with the risk that when, in an emergency, the anchor is required, the means of eonnexion may be at fault.

Captain Hall's anchor is a very valuable one, from the circumstance that it is eapable of division, as shown in fig. 61, so that it ean be taken out in boats.

There are various other shapes of anehors ; but attention has been eonfined to those generally employed.

We are not in a position to offer any opinion upon the value of the scveral auchors
which have been named. Having deseribed their peeuliaritics, there remains but little to be said. The solidity of Lenox's anchors - as shown in fig. 62, and again in their more recent modifications, in plan and section, with the new form of iron stock, fig. 63 - has recommended them strongly, and hence their general use.

The weight of anchors for different vessels is proportioned to the tonnage. The following Tables show the number of Anchors now carried, and the weights of each anchor, by the ships of the Navy under the Admiralty regulations, and by merehant vessels by the regulation of Lloyd's.

Admiralty Regulations for Sailing Vessels.

Name of Ship.			Tonnage.	Number.			Weight.		
				Bower.	Stream.	Kedge.	Bower.	Stream	Ǩedge.
Queen -	-	-	Tons. 3099	4	1	2	$\begin{gathered} \text { Cwt. } \\ 99 \end{gathered}$	$\begin{gathered} \text { Cwt. } \\ 25 \end{gathered}$	$\begin{gathered} \text { Cwt. } \\ 12 \end{gathered}$
Camperdown	-	-	2404	4	1	2	94	23	12
Albion -	-	-	3082	4	1	2	92	23	12
Vanguard	-	-	2609	4	1	2	85	21	10
Cambridge -	-	-	2139	4	1	2	81	20	10
Revenge -	-	-	1954	4	1	2	77	19	9
Edinburgh -	-	-	1772	4	1	2	73	18	9
Southampton	-	-	1476	4	1	2	61	15	8
Endymion -	-	-	1277	4	1	2	53	14	7
Stag - -	.	-	1218	4	1	2	50	13	6
Thalia -	-	-	1082	4	1	2	47	12	6
Vestal	-	-	913	4	1	2	38	10	5
Dido -	-	-	731	4	1	2	31	9	5
Volage -	-	-	516	4	1	2	27	8	4
Columbine -	-	-	492	4	1	2	23	7	4
Cygnct -	-	-	350	4	1	2	18	6	3
Nautilus -	-	-	233	4	1	2	13	5	3
Small brigs	-	-	...	3		1	11	4	2
Cutters -	-	-	...	2	1	1	9	3	2

Steam Frigates.

Name of Ship.			Tonnage.	Number.			Weight.		
				Bower.	Stream.	Kedge.	Bower.	Streain.	Kedge.
Terrible -	-	-	$\begin{aligned} & \text { Tons. } \\ & 1847 \end{aligned}$	4	1	3	Cwt.	Cwt. 14	Cwt. 7
Retribution	-	-	1641	4	1	3	52	13	6
Penelope -	-	-	1616	4	1	3	52	13	6
Avenger -	-	-	1444	4	1	3	35	11	6
Sampson -	-	-	1297	4	1	3	35	11	6
Cyclops -	-	-	1195	4	1	. 3	33	10	5
Steam Sloops.									
Inflexible -	-	-	1124	4	1	3	32	10	5
Virago	-	-	1059	4	1	3	30	10	5
Medea	-	-	835	3	1	3	28	9	5
Hecla	-	-	817	3	1	3	26	8	5
Ardent	-	-	801	3	1	3	23	7	4
Voleano	-	-	720	3	1	3	21	7	4
Steam Gun-Vessels.									
Sydenham -	-	-	536	3	1	3			4
Spitfire -	-	-	430	3	1	3	16	6	4
Poreupine -	-	-	382	3	1	3	13	5	$2 \frac{1}{2}$
Harp - -	-	-	345	3	1	3	11	+1 $\frac{1}{2}$	22

Lloyd's Regulation for the Number and Weights of Anchors for Merchant Vessels.

Ship's Tonnage.	Bower.	Stream.	Kedge.	Bower, Wood Stock.	Bower, Iron Stock.	Stream.	Kedge.	Second Kedge.
Tons.	2	1	1	Cwt. 3	Cwt.	Cwit.	Cwt.	Cwt.
75	2	1	1	4	5	$1{ }^{1}$		
100	2	1	1	5	7	21	$1 \frac{1}{1}$	
150	2	1	1	8	10	$3 \frac{1}{2}$	$1 \frac{1}{4}$	
200	3	1	1	10	12	$4 \frac{1}{2}$	$2 \frac{1}{4}$	
250	3	1	2	13	15	5	21	
300	3	1	2	15	17	6	3	
350	3	1	2	17	20	61	3.1	
400	3	1	2	19	22	$7 \frac{1}{2}$	$3 \frac{3}{4}$	
500	3	1	2	23	26	9	$4 \frac{1}{2}$	
600	3	1	2	26	30	10	5	$2 \frac{1}{2}$
700	3	1	2	29	34	11	$5 \frac{1}{2}$	$2 \frac{3}{4}$
800	3	1	2	31	36	12	6	3
900	3	1	2	33	39	12	$6 \frac{1}{2}$	$3{ }^{1}$
1000	3	1	2	35	41	12	$6 \frac{3}{4}$	$3 \frac{1}{4}$
1100	3	1	2	37	44	12	7	$3 \frac{1}{2}$
1200	3	1	2	39	46	12	$7 \frac{1}{2}$	$3 \frac{3}{4}$
1400	3	1	2	41	48	12	$7 \frac{3}{4}$	4
1600	3	1	2	43	50	14	$8 \frac{1}{4}$	4
1800	3	1	2	45	52	14	$8 \frac{1}{2}$	$4 \frac{1}{2}$
2000	4	1	2	47	54	14	9	$4 \frac{1}{2}$

ANCHOVY. (Anchois, Fr.; Acciughe, It.; Anschove, Germ.) The Clupea encrasicolus of Linnæus, a small fish, common in the Meditcrranean Sea, employed in the manufaeture of anehovy sauee. The Gorgona anchovy is eonsidered the best. Sardines are sometimes substituted for anehovies.

ANDIRONS, or HAND-IRONS, also ealled Firedogs. Before the introduetion of raised and elose fireplaees these artieles were in general use. Strutt, in 1775, says, "These awndirons are used at this day, and are ealled 'col-irons'; they stand on the bearth, where they burn wood, to lay it upon ; their fronts are usually earved, with a round knob at the top; some of them are kept polished and bright: anciently many of them were embellished with a variety of ornaments."

ANEMOMETER (${ }^{2} \nu \in \mu \circ$, wind ; $\mu \in \tau \rho \in \epsilon \omega$, to measure). An instrument or maehine to measure the wind, its direction and force. Three deseriptions of anemometers are now usually employed - 1, Dr. Whewell's ; 2, Mr. Follett Osler's ; 3, Dr. Robinson's. This is not the place to dcseribe either of those most ingenious instruments, a full aeeount of which will be found in the "Transaetions of the British Assoeiatiou" and of the "Royal Irish Aeademy."

ANEROID BAROMETER. This instrument was invented by M. Vidi, of Paris. In its latest form it eonsists of a eylindrieal ease, about 4 or 6 inehes in diameter, and $2 \frac{1}{2}$ inehes deep, in whieh lies a thin metal box, near to, and parallel with, the eurved boundary of the ease, its two ends bcing distant about half an inch from each other. From this box the air has heen partially cxhausted, and the pressure of the external atmosphere on it eauses it
 to alter its form. The aceompanying figure (64) shows a scetion of this box. It is made of thin eorrugated plates of metal, so that its elastieity is great. By means of the tube F , the air is partially exhausted, when the box takes the form slown by the dotted lines. A small quantity of gas is introdueed after exhaustion, the objeet of whiel is to eompensate for the varying elastieity of the metal at different temperatures. The pressure of the air on the box in ordinary instruments is between 40 and 50 lbs ., and it will be easily understood that any variation in this pressure will oceasion the distanees betwcen the two plates to vary, and eonsequently the stalk will have a free motion in or out. This is, by an ingenious contrivanee, elianged from a vertieal motion to a motiou parallel to the face of the dial, and this is eonverted into a rotatory one lyy the applieation of a watch-ehain to a small eylinder or drum. 'The original very slight
motion is augmented by the aid of levers. This is so effeetually donc, that when the eorrugated surfaces move through ouly the 250th part of an inch, the index hand on the face turns over a space of three inches. The extreme portability of this little iustrument, and its comparative freedom from risk of injury, renders it excecdingly useful to the traveller. Its accuraey is proved by the experiments of Professor Lloyd, who placed one under the receiver of an air-pump, and found that its indications corresponded with those of the mercurial guage to less than 0.01 of an inch; and within ordinary variations of atmospherie pressure the eoineidences are very remarkable. - Lloyd, Nichol, Drew.
ANGELICA. (Angêlique, Fr. ; Angelika, Germ.) The archangelica officinalis. The dried angelica root is imported from Hamburg in easks. The tender stems, stalks, and the midribs of the leaves, are made, with sugar, into a sweetmeat (candied angelica). The augelica root and seeds are used by rectifiers and compounders in the preparation of gin, and as an aromatic flavouring for " bitters." It is cultivated iu some moist plaees in this country. In 1856 we imported 231 tons of angeliea root.

ANGORA WOOL. (Poil de chevron d'Angora, Fr.) Called also angola and angona. The wool of the Angora goat (Capra Angorensis), employed in the manufacture of the shawls of Cashmere, \&cc. This is obtained from the long-haired goat of Angora, to which province this animal is peculiar. Lieutenant Conolly has given an acconnt of this goat and some other varieties :-
"The country where it is found was thus described to us - "Take Angora as a eentre, then Kizzil Ermak (or Haly's) Chomgere, and from 8 to 10 hours' march (say tbirty miles) beyond; Beybazar, and the same distance beyond, to near Nalaban; Sevree, Hissar, Yoorrook, Tosiah, Costambool, Geredeh, and Cherkesh, from the whole of which tract the common bristly goat is excluded, and the white-haired goat alone is found.' The fleece of the white Angora goat is called tiftik (the Turkish for goats' hair), in distinction to yun, or yapak, sheep's wool. After the goats have completed their first year, they are clipped annnally, in April or May, and yield progressively, until they attain full growth, from 150 drachms to $1 \frac{1}{2}$ ole of tiftik (from 1 lb . to 4 lbs . English)." The hair of the tiftik goat is exported from its native districts raw, in yarn, and woven in the dclicate stuffs for which Angora has been long celebrated. The last are chiefly consumed in Turkey, while the yarn and raw material are sent to France and England. It appears that the first pareels of Angora wool were shipped from Constantinople for England in 1820, and was so little appreciated that it fetched only $10 d$. the pound. The exports from Constantinople then inereased as follows:-

1836	-	-	-	-	-	-	-	-	3841	bales
1837	-	-	-	-	-	-	-	-	2261	$\prime \prime$

" Within the last two or three years, a new texture made of goats' wool has, however, been introduced both into France and this country, which calls for particular attention. This texture consists of stripes and checks expressly manufactured for ladies' dresses, and having a soft feel and silky appearance. The wool of which this article is made is chiefly the wool of the Angora goat. This wool reaches us through the Mediterranean, and is chiefly shipped at Smyrna and Constantinople. In colour it is the whitest known in the trade, and now more generally used in the manufacture of fine goods than any other. There are, however, other parts of Asiatic Turkey from which limited supplies are received; but in quality not so good as that produced in Angora. After the manufacture of shawls with goats' wool declined in Franec, this raw material remained neglected for a long while. About two or three ycars aso (1852), however, the French made another attempt, and brought out a texture for ladies' dresses in checks and stripes, which they call 'poil de chevre.' The warp is a fine spun silk, coloured, and the weft Angora or Syrian white wool, whieh was thus thrown on the surface. This article has a soft feel, and looks pretty, but in wearing is apt to cut. The price of a dress of French manufacture has been from 2l. 10s. to 3 l.; but by adopting a cotton warp, the same artiele is now made in England and sold for 15 s . ; and it is found that the cotton warp, as a mixture, suits the goats' hair best."-Southey on Colonial Sheep and Wools, London, 1852.
The prineipal manufactures of "poil de chevre" in France are at Paris, Cronyen, Thelle (Oise), Ecrus (Oise), Montataire (Oise), and Ledau. In England, the wool is ehiefly spun at Bradford, and partly manufactured there; at Norwich, and also in Seotland ; part of the yarn is exported. Mr. Southey informs us, that the quantity of goats' wool imported into the United Kingdom in 1848, was $896,865 \mathrm{lbs} . ;$ in 1849 the quantity rose to $2,536,039 \mathrm{lbs}$. The following returns show the progress of this
industry. industry.

$$
\begin{array}{lllllll}
& 1846 . & 1847 . & 1848 . & 1849 . & 1850 . \\
\text { Goats' wool, bales } & - & 5,23 I & 7,023 & 5,468 & 13,254 & 12,884
\end{array}
$$

In 1850 wc imported from Turkey 2,574,724 lbs., the computed real value of which was 278,9287 . This wool has been imported duty free since 6th June, 1844. Angora goats' wool is used for the manufacture of plush, and for eoaeh and deeorative laees. It is also used extensively for huttons, button-holes, and the braidings of gentlemen's coats.

It is equally made up into a light and fashionahle clotb, suited for paletôts and overcoats, possessing the advantage of repelling wet.

In France this article is now applied to the manufacture of a new kind of lace, which in a great measure supersedes the costly fahrics of Valenciennes and Chantilly. Tbe Angora wool lace is more brilliaut than that made from silk, and costing only half the price, it has come into very general wear among the middle classes. The same material is also manufaetured into shawls, which sell from 4l. to $16 l$. caeh. There is much difficulty in ascertaining the quantity of Angora wool used in France. as in the returns it is mixed up with the wool of goats of Tbibet, all being entered as poil de Cachemire. See Mohair.

ANILINE. (${ }^{12} \mathrm{H}^{7}$ N. Syn. Phenylamine, Cyanol, Benzidam, Crystalline.) This organic base having recently met with an important applieation in tbe arts, in the production of a beautiful dye-colour, hy Mr. William H. Perkin, a short description of the methods of preparing it, and of some of its characters, beeomes necessary; though for details of its most interesting relations in scientific chemistry, we must refer to the "Dietionary of Chemistry."

Preparation.-There are few bodies which admit of being prepared in a greater variety of ways-all of them interesting in tracing the ehemieal history of tbis most curious body; hut we will only here describe that one wbich might he most advantageously earried out on a manufaeturing seale. Probably the most abundant source of aniline is tbe basic oil of coal tar.

Tbe oil is agitated with hydrocblorie aeid, which seizes upon the basie oils; after decanting the elear liquor, which contains the hydrochlorates of these oils, it is evaporated over an open fire until it begins to disengage aerid fumes, whieh indicate a commencement of decomposition, and then filtered, to separate any adhering neutral eompounds. The elear liquor is then decomposed with potash or milk of lime, whieh liberates the hases themselves in the form of a hrown oil, consisting ehiefly of a mixture of aniline ($\mathrm{C}^{12} \mathrm{H}^{7} \mathrm{~N}$), and leueol or quinoleine ($\mathrm{C}^{18} \mathrm{H}^{8} \mathrm{~N}$). This mixture is submitted to distillation, and tbe aniline is ehiefly found in that portion which passes over at or about $360^{\circ} \mathrm{F}$. ($182^{\circ} \mathrm{C}$.) : repeated rectifieation and collection of the produet distilling at this temperature purifies tbe aniline; but to eomplete the purifieation, it is well to treat the partially purified aniline once more with hydrocbloric aeid, to separate the bases again by an alkali, and then to reetify carefully.

The violet reaction of aniline with solution of hleaching powder enables the operator to test the distillate from time to time, to ascertain when aniline ceases to pass over, since leucol does not possess this property.-Hofmann.

Aniline may also be obtained in quantity from indigo.
When indigo-blue (see Indigo) is dissolved by the aid of heat in a strong solution of potash, and the mass, after evaporation to dryness, submitted to destructive distillation, it intumesees cousiderably, and aniline is liberated, which condenses in the receiver in the form of a hrown oil, together with a little water and ammonia disengaged with it. The aniline is purified by rectifieation, as in the metbod hefore deseribed. By tbis process, the quantity of aniline obtained is about 18 to 20 per cent. of the indigo used.-Fritzche.

By treatment with potash, the indigo-blue ($\mathrm{C}^{16} \mathrm{H}^{5} \mathrm{NO}^{2}$) is converted into clirysanilic acid and antbranilic acid ($\mathrm{C}^{11} \mathrm{H}^{7} \mathrm{NO}^{1}$), and it is this latter body whieh, hy destructive distillation, yields carbonic acid and aniline.

$$
\mathrm{C}^{14} \mathrm{H}^{7} \mathrm{NO}^{4}=\mathrm{C}^{18} \mathrm{H}^{7} \mathrm{~N}+2 \mathrm{CO}^{2}
$$

Nitrobenzole (which see) may be converted into aniline, either by the action of sulphurctted hydrogen-

$$
\underbrace{\mathrm{C}^{22} \mathrm{H}^{5} \mathrm{NO}^{1}}_{\text {Nitrohenzol. }}+6 \mathrm{HS}=\underbrace{\mathrm{C}^{12} \mathrm{H}^{2} \mathrm{~N}}_{\text {Aniline. }}+4 \mathrm{HO}+6 \mathrm{~S},
$$

or, more conveniently, as has been recently shown by M. Béchamp, by the action of a hasic acetate of iron.
For this purpose, the following proportions have been found convenient by the writer : mix in a retort $\frac{1}{1}$ b. of iron filings, with about 2 ounees of neetic acid, then add ahout an equal volume of nitrobenzolc. After a few minutes a brisk efferrescenee
sets in, and the aniline distils over together with watcr. The reaction may require to be aided by the application of a very gentle heat; but it takes place with the greatest ease, and a very tolerably sufficient condensing arrangement should he employed. The aniline having so nearly the density of water, does not readily separate on the surface, but the addition of a few drops of ether, which dissolves in the anime, brings it to the surface. It may then be decanted off, dried by standing for a short time over chloride of calcium, and then purificd by rectification, as before described.

Properties.-Aniline is one of the organic basic derivatives of ammonia. In fact, it may be be viewed as ammonia in which one equivalent of hydrogen is replaced by the compound radical Phenyl $\left(\mathrm{C}^{12} \mathrm{H}^{5}\right)$, thus :-

$$
\mathrm{N}\left\{\begin{array}{l}
\mathrm{C}^{12} \mathrm{H}^{5} \\
\mathrm{H} \\
\mathrm{H}
\end{array}\right.
$$

Just as phenyl is one of a series of homologous radicals, so aniline is the first of a series of homologous bases, in which the one cquivalent of hydrogen is replaced by these radicals respectively, thus :

When pure, it is a colourless liquid of a high refractive power, density $1 \cdot 028$, and of an aromatic odour. It is slightly soluble in water, and mixes in all proportions with alcohol and ether. It boils at 360° F. ($182^{\circ} \mathrm{C}$.) It dissolves sulphur and phosphorus when cold and coagulates albumen. It has no action on litmus-paper, hut turns delicate vegetable colours, such as dahlia-petal infusion, blue.
Its basic characters are well developed thus:-it preeipitates the oxides from the salts of iron, zinc, and alumina, just like ammonia, and yields, with bichloride of platinum, a double salt similar to ammonia, the platino-chloride of aniline ($\mathrm{C}^{12} \mathbf{H}^{7}$ $\mathrm{N}, \mathrm{HCl}, \mathrm{PtCl}^{2}$), which on ignition is entirely deconiposed, leaving only a residue of platinum. These characters, together with the beautiful blue colour which it strikes with solution of bleaching powder, or the alkaline hypochlorites generally, are sufficient for the recognition and distinction of this body.
Salts of Aniline.-Aniline combines with acids forming a long series of salts which are in every respect aualogous to the corresponding salts of ammonia. They are nearly all soluble and crystallisable, and are decomposed by the mineral alkalis with liberation of aniline. They arc generally colourless, but become red by exposure to the air.
Sulphate of Aniline. ($\mathrm{C}^{12} \mathrm{H}^{7} \mathrm{~N} ; \mathrm{HO}, \mathrm{SO}^{3}$)-This salt is employed in the manufacture of Mr. Perkin's aniline colours. It is prepared by treating aniline with dilute sulphuric acid, and evaporating gently till the salt separates. It crystallises from boiling alcohol in the form of beautiful colourless plates of a silvery lustre, for the salt is scarcely at all soluble in cold alcohol. It is very soluble in water, but insoluble in ether.

The crystals redden by exposure to the air ; they can be heated to the boiling point of water without change, but when ignited they are charred with disengagement of aniline and sulphurous acid.

Oxulate of Aniline. ($\mathrm{C}^{12} \mathrm{H}^{7} \mathrm{~N} ; \mathrm{HO}, \mathrm{C}^{2} \mathrm{O}^{3}$) - This is one of the best defined salts of aniline: it separates as a crystalline mass on treating an alcoholic solution of oxalic acid with aniline. It is very soluble in lot watcr, much less so in cold, only slightly soluble in alcohol, and insoluble in cther.

A large number of other salts are known. The hydrochlorate, hydrobromatc, hydriodate, nitrate, scveral phosphates, citrate, tartrate, \&c. \&c.; but they arc of purely scicntific intcrest. The same remark applics to the various products of the decomposition of aniline, which have been so ably investigated by Fritzche, Zinin, Hofmann, Gerhardt, and other chemists.

Application. - Several most beautiful colours for dycing silk have been prepared hy Mr. William II. Perkin, of Greenford Green, near Harrow, from eertain salts of

Vox. I.
aniline, which are of different shades of violet, some more approaching purple, others more pink. They are now being extensively cmployed in dyeing silk, and are found to be far finer in tint, and more permanent, than any other known dyes of a similar colour. The processes for their manufacture have been patented by Mr. Perkin. For the following short description of the method of preparing them, we are indebted to that gentleman :-
" Take equivalent proportions of sulphate of aniline and bichromate of potasl, dissolve them in water, mix, and allow the mixture to stand for several hours. The whole is then thrown upon a filter, and the black precipitate which has formed is waslied and dried. It is then digested with coal-tar naphtha, to cxtract a brown resinous substance, and finally digested with alcohol to dissolve out the colouring matter, which is left behind on distilling off the spirit, as a coppery friable mass."H. M. W.

ANLMÉ. A resin of a pale brown ycllow colour, transparent and brittle. It exudes from a large American trec, called by Piso, jetaiba; and by the Indians, cour baril. It appears to be a species of hymenca. It occurs in picces of various sizes, and it often contains so many insects belonging to living species, as to have merited its name, as being animated. It contains about a fifth of 1 per cent. of a volatile oil, which gives it an agreeable odour. Alcohol does not dissolve the genuine animé, as I lave ascertained by careful experiments, nor docs caoutchoucine; but a mixture of the two, in equal parts, softens it into a tremulous jelly, though it will not produce a liquid solution. When reduced to this state, the insects ean be easily picked out, without injury to their most delicate parts. (Ure.) On the contrary, Dr. R. D. Thomson says, animé resin is distinguished from copal by its ready solubility in alcohol; and that when digested in cold alcohol a portion remains undissolved, which may be dissolved in hot aleohol, from which it crystallises on cooling. Sir R. Kane gives $\mathrm{C}^{40} \mathrm{H}^{33} \mathrm{O}$ as the composition of this gum-resin.

The specific gravity of the different specimens of animé varies from 1.054 to 1.057. When exposed to leat, in a glass retort over a spirit flame, it softens, and, by careful mauagement, it may be brought into liquid fusion without discoloration. It then exhalcs a white vapour of an ambrosial odour, which being condensed in water, and the liquid being tested, is found to be succinic acid.

It is extensively used by the varnish makers, who fuse it at a pretty high heat, and in this state combine it with their oils or other varnishes. It is also employed, on aecount of its agreeable smell when burning, in the manufacture of pastilles.

ANISEED. (Anis, Fr.; Anis, Germ.) The fruit or seed of the pimpinella anisum, largely cultivated in Malta, Spain, and Germany; used in the preparation of the oil of anise (oleum anisi), the spirit of anise (spiritus anisi), and anise water (aqua anisi). It is also used in cordials. In 1855, 963 cwts . were imported. The oleum badiani, or the oil of star anise (illicium anisatum), has the colour and taste of the oil of anise ; but it preserves its fluidity at $35.6^{\circ} \mathrm{F}$. It is sometimes fraudulently substituted for oleum anisi.-Pereira.

ANISIDINE. ($\mathrm{C}^{4} \mathrm{H}^{9} \mathrm{NO}^{2}$) An alkaloid produced by the action of reducing agents (such as hydrosulphuric acid or protacetate of iron) on nitranisole.-C. G. W.

ANKER. A liquid measure of Amsterdam, which contains 32 gallons English. During the war, when communication with Holland was constant, and sailors and soldicis were constantly passing from one country to the other, the anker was as commonly used as a measure in our scaports as in those of Holland. The anker of brandy was frequently smuggled into this country,

ANNEALING or NEALING. (Le recuit, Fr.; das Anlassen, Germ.) A process by which glass is rendered less frangible; and metals which have become brittle, either in consequence of fusion or long-continued hammering, are again rendercd malleable. When a glass vessel is allowed to cool immediately after being made, it will, if a small splinter of flint, or an angular fragment of quartz, is dropped gently into it, make it sometimes immediately, sometimes after a few minutes, fly to pieces with great violence. This extreme fragility is prevented by annealing, or plaeing the vessels in a hot oven, where they take several hours, or even some days, to cool.

Similar phenomena are exhibited in a ligher degrec by glass-tears, or Prince Rupert's drops, procured by letting drops of melted glass fall into cold water. Their form rescmbles that of a pear, rounded at one extremity, and tapcring to a very slender tail at the other. If a part of the tail be broken off, the whole drop flies to pieces with a loud explosion; and yct the tail of a drop may be cut away by a glasscutter's wheel, or the thick end may be struek smartly with a hammer, without the fear of sustaining any injury. When heated to redness, and permitted to cool gradually in the opeu air, they lose these peculiaritics, and do not differ sensibly from common glass.

The peculiar brittleness of unannealed glass is, by many manufncturers, referred to
the following conditions. The exterior surface of the glass cooling quicker than the layers of glass beneath, the two portions of glass arc supposed to be in different degrees of tension; as they technically express it, a stretcficd skin of glass is formed; and as the arrangement of the particles is different in this film from their disposition in those parts which have cooled more slowly, there is a constant tendency to fracture, the slightest scratch upon this "skin" disturbing the entire molecular arrangement.
If any mass of glass or of metal cools rapidly, there will be, according to the thickness of the mass, a greater or less difference between the arrangement of the constitucnt particles on the outer and inner sections. The process of annealing secures an equal arrangement throughout the mass.
When metals have been cxtended to a certain degree under the hammer, they become brittle, and incapable of bcing further extended without cracking. In this case the workman restores their malleability, sometimes by annealing, or, in other cases, by heating them red-hot and allowing them to cool slowly. The rationale of this process seems to be, that the hammering and extension of the metal destroys the kind of arrangement which the particles of the metal had previous to the hammering; and that the annealing, by softening the metal, enables it to recover its original structure.
Of latc years a mode has becn discovered of rendering cast iron malleable, withont subjecting it to the action of puddling. The process is somewhat similar to that employed in annealing glass. The metal is kept imbedded in ground charcoal, or in powdered hæmatite, for several hours at a high temperature, and then allowed to cool slowly. In this manner vessels are made of cast iron which can sustain considerable violence without being broken. See Iron, Malleable.
ANTHRACITE. (ă $\nu \theta \rho a \xi$, coal.) A variety of coal containing a larger proportion of carbon and less bituminous matter thau common coall.-De la Beche.
"We see the same series of coal beds becoming so altered in their horizontal range, that a set of beds bituminous in one locality is observed gradually to change into anthracitic in another. Taking the coal measures of South Wales and Monmouthshire, we have a series of accumulations in which the coal beds become not only morc anthracitic towards the west, but also exhibit this change in a plane which may be considered as dipping S.S. E. at a moderate angle, the amount of which is not yet clearly ascertained, so that in the natural sections afforded we have bituminous coals in the high grounds and anthracitic coals beneath. This fact is readily obscrved either in the Neath or Swansea valleys, where we have bituminous coals on the south and anthracite on the north; and more bituminous coal beds on the heights thau beneath, some distance up these valleys-those of the Nedd and Tawe. Though the terms bituminous coal and authracite have been applied to marked differences, the changes are so gradual that there is no sudden modification to be seen. To some of the intermediate kinds the term 'free burning' has bcen given, and thus three chicf differences have been recognised."-Memoirs of the Geological Survey.
The term culm is applied both to an inferior kind of anthracite and to the small pieces of good anthracite obtaiued in working the true anthracite beds, the larger pieces of the saue coal bcing termed anthracite. Some beds of inferior anthracite are only worked for making lime, or for mixing with clay; it is then usually termed culm.

Anthracitc coal is obtained in this couutry, at Bideford, in Devonshire, in the Western divisions of the South Wales coal-field, and in Ireland. It is found abundantly in America. Professor H. D. Roger's "Transactions of American Geologists" states that in the great Apalachian coal-field, extending 720 miles, with a chief breadth of 180 miles, the coal is bituminous towards the western limit, where it is level and unbroken, becoming authracitic towards the south-west, where it is disturbed. Anthracitic coal is also found in the coal-fields of France, cspecially in the departments of Isère, the High Alps, Gard, Mayenne, and of Sarth; about 42,271,000 kilogrammes (of $2 \cdot 20 \pm 6$ avoirdupois pounds each) are produced annually. Anthracite is also raised in Belgium.

Anthracite is not an original variety of coal, but a modification of the same beds which remain bituminous in other parts of the region. Anthracite beds, thereforc, are not separate deposits in another sea, nor coal measures in another area, nor interpolations among bituminous coals, but the bituminous beds themselves, altered into a natural coke, from which the volatile bituminous oils and gases have been driven off.-J. P. Lesley, on Coal.

Anthracite - now extensively used for iron-making, steam-engincs, and for domestic purposes, in the United States - was, some 50 years since, regarded as incombustible refusc, and thrown away.

The analyses of bituminous coals show the following composition :-

	Carbon.	Bitumen, Volatilie Matter, and Water.	Ashen.
Birtley Works, Newcastle-on-Tyne	60.50	$35 \cdot 50$	4.00
Alfreton, Derbyshire - -	-	52.46	42.50

The following analyses of anthracite will sufficiently show the chemica, differences:-

Analyses of Anthracite.

Locality.		Name of Coal.	Carbon.	Volatile	Ashes.
Neath Abbey		Pwlferon Vein, 5th bed	91.08	8.00	$0 \cdot 92$
Swansea -	-	Peacock Coal	89.00	$7 \cdot 50$	$3 \cdot 50$
Ystalyfera -	-	Brass Vein -	$92 \cdot 46$	6.04	1.50
Cwm Neath -	-	Nine-feet Vein	$93 \cdot 12$	$5 \cdot 22$	1.50
France	-	Anthracite, common	$79 \cdot 15$	$7 \cdot 37$	$13 \cdot 25$
"	-	Côte-d'or	$82 \cdot 60$	$8 \cdot 60$	$8 \cdot 80$
"	-	Mais Saize -	$83 \cdot 80$	7.50	$9 \cdot 50$
Pennsylvania	-	Beaver Meadow	$92 \cdot 30$	6.42	1.28
" -	-	Shenoweth Vein -	$94 \cdot 10$	140	$4 \cdot 50$
" -		Black Spring Gap	$80 \cdot 57$	$7 \cdot 15$	$3 \cdot 28$
		Nealey's Tunnel -	89.20	$5 \cdot 40$	$5 \cdot 40$
Massachusetts	-	Mansfield Mine -	97.00 85.84		3.00
Westphalia -		Schafberg, Alexander seam	82.02	10.50 8.69	3.66

This peculiar and valuable fossil fuel is found in various parts of the old and new continent, as shown by the following lists, for which we are mainly indebted to the American publication, Statistics of Coal, by Taylor.

Localities of Anthracite and Anthracitous Coal.

ANTHRACITE．

The calorific valuc of anthracite coal is well shown by the following results from Dr．Fyfe＇s experiments to compare Scotch and English bituminous coals with anthracite，in regard to their evaporative power，in a high－pressure boiler of a 4 －horse engine having a grate with $8 \cdot 15$ square feet of surface；also in a waggon－shaped copper boiler，open to the air，surface 18 feet，grate 1．55．

IKind of Fuel employed．					菂し采家 \％ च言铬				Remarks．
Middlerig Scotch coal．	$81 \cdot 33$	9	45°	$6 \cdot 66$	$7 \cdot 74$	10.00	44．27	－	Pressure 17 lbs ． per sq．inch．
Scotch coal，dif－ ferent variety from preceding．	108 47.94	5 81	170 45	$6 \cdot 62$ 8.73	6.89 10.10	$13 \cdot 25$ $5 \cdot 88$	33.33 75.09	－－	Ditto．
Anthracite－－ Scotch coal，from near Edinburgh．	47994 8.24	8 83	45 50	$8 \cdot 73$ 5.38	$10 \cdot 10$ 6.90	$\begin{array}{r}5 \cdot 88 \\ \hline 5.31\end{array}$	$\begin{array}{r} 75.09 \\ 436.89 \end{array}$	－ 3.15	Low pressure， open copper boiler．
English bitumi－ nous coal．	6.07	$8 \cdot 4$	50	$7 \cdot 84$	9.07	3.91	503．08	$3 \cdot 06$	Ditto．

Space will not admit of our entering fully into the question of the evaporative power of anthracite；but its advantages under certain conditions are fully established． In this country anthracite coal is used in the manufacture of iron in the following furnaces：－

Blast Furnaces making Iron from Anthracite．

No．	Names of Works．	Owners．	Furnaces built．	Furnaces in blast．	Furnaces in blast in District．
	Glamorganshire．				
1	Aberdare，A bernant， and Llwydcoed．	Aberdare Iron Com－ pany．	3	3	
2	Banwen－－	Out of blast－	2	0	
3	Onllwyn or Brin－	L．Llewellyn－－	2	1	
4	Venalt－－	Aberdare Iron Com－ pany．	2	0	
5	Ystalyfera－	Ystalyfera Iron Co．－	10	7	11
	Brecenocishire．				
，	Abercrave－－	T．Walters－	1	1	
2	Yniscedwin－－	Yniscedwin Iron Co．－	7	4	5
	Caermartuenshire．				
1	Bryn Ammon－－	L．Llewellyn－	2	2	
2	Gwendraeth－－	T．Watney and Co．	2	1	
3	Trim Saren－－	E．H．Thomas－	2	0	3
	Pembrokeshire．				
1	Sandersfoot－－	Pembroke Iron and Coal Company．		0	0
	Total furnaces in blast in anthracite districts in 1857			－－	19

Professor W．R．Johnson，of Pennsylvania College，informs us that fourtcen furnaces using anthracite for the production of iron were in use in the United States．

In the anthracite districts of South Wales the produce was，in－

1855	-	-	-	997,500
1856	-	-	-	965,500
1857	-	-	$-1,485,000$	$"$

The following Table shows the progress of production in America of anthracite from 1840 to 1857，inclusive，from Schuylkill，Lchigh，and Wyoming ：－

AN'HRACI'E.

Year.	Tons.	Increase per Ycar. Tons.
1840	864,384	45,982
1841	950,973	86,589
1842	$1,108,418$	157,445
1843	$1,263,598$	155,180
1844	$1,630,850$	367,252
1845	$2,013,013$	382,163
1846	$2,344,005$	330,992
1847	$2,882,300$	538,595
1848	$3,089,238$	206,938
1849	$3,217,641$	128,403
1850	$3,321,136$	103,495
1851	$4,329,530$	$1,008,394$
1852	$4,899,975$	570,445
1853	$5,097,144$	197,169
1854	$5,831,834$	734,690
1855	$6,486,097$	654,263
1856	$6,751,542$	265,445
1857	$6,431,379$	320,163 decrease.

Pottsville Miners' Journal.
A steady increase is thus shown in the production of American anthracite, excepting during the last year. This dccrease may be readily accounted for by the general depression of the iron and other manufactures.

The annual consumption of anthracite in the United States was thus stated in the Science of New York Exhibition:-

1820	-	-	-	-	-	-	about	330 tons.	
1825	-	-	-	-	-	-	$"$	35,000	
1830	-	-	-	-	-	-	$"$	176,000	
1835	-	-	-	-	-	-	$"$	561,000	
1840	-	-	-	-	-	-	$"$	865,000	
1845	-	-	-	-	-	-	$"$	$2,023,000$	
1850	-	-	-	-	-	-	$"$	$3,357,000$	
1853	-	-	-	-	-	-	$"$	$5,195,000$	

The quantity consumed in 1856 is stated to have been $7,900,000$ tons.
ANTELOPE HORN is used occasionally for ornamental knife handles. See Horn.

ANTICHLORE. A term employed by bleachers to the means of obviating the pernicious after-effects of chlorine upon the pulp of paper, or stuffs, which have been bleached therewith. Manufacturers have been in the habit of using sulphite of soda, whose action upon the adhering bleaching salt, which cannot be removed by washing, gives rise to the formation of sulphate and hydrosulphate of soda and chloride of sodium. Chloride of tin has becn recommended by some chemists for this purpose.

ANTI-GUGGLER. A small syphon of metal, which is inserted into the mouths of casks, or large bottles called carboys, to admit air over the liquor contained in them, and thus to facilitate thcir being emptied without agitation or a guggling noise.

ANTI-ATTRITION, or, ANTI-FRICTION COMPOSITION. Various preparations have been, from time to time, introduced for the purpose of removing, as much as possible, the friction of machinery. Black lead, or plumbago, mixed with a tenacious grease, has been much employed. Peroxide of iron, finely divided hæmatite, \&c., have also been used.

A composition employed at Munich is reported to have been used with success and economy to diminish friction of machincry. It consists of ten and half parts of pure hogs' lard fused with two parts of fincly pulverised and sifted plumbago. Thic lard is first to be melted over a moderate firc, then a handful of the plumbago thrown in, and the materials stirred with a wooden spoon until the mixture is perfeet; the rest of the plumbago is then to be added, and again to be stirred until the substance is of uniform composition; the vessel is then to be removed from the fire, the motion being continued until the mixture is quitc cold. The composition, in its cold state, was applied to the pivots, the teeth of wlieels, $\mathbb{\text { w }}$., by a brusli, and seldom more than once in 24 hours.*

It was found that this composition replaced the oil, tallow, and tar, in certain iron works with economy, saving about $\frac{4}{t}$ ths of the cost of these articles.

ANTI-FRICTION METAL. Tin and pewter are commonly employed as antifriction metals for the bearings of locomotive engines.

Babbct's metal is prepared by taking about fifty parts of tin, five of antimony, and one of copper.

Tin, or pewter, used alone, owing to its softness, spreads out and escapes under the superincumbent weight of the locomotive, or other heavy machinery. It is usual, therefore, to add antimony, for the purpose of giving these metals hardness.

Fenton's Anti-friction metal, which is much employed, is a mixture of tin, copper, and spelter. Its advantages are stated to be cheapness in first cost, low specific gravity, being 20 per cent. lighter than gun metal; and being of a more unctuous or soapy character than gun metal, less grease or oil is required.

The softer metal is often supported by brasses cast of the required form, the tin alloy being cast upou them. The brasses, or bearings, being properly tinned, and an exact model of the axlc having been turned, the parts are heated, put together in their relatire positions, luted with plastic clay, and the fluid anti-friction metal poured in, which then becomes of the required form, and cffectually solders the brass.

The following compositions are recommended to railway engineers as having been employed for several years in Belgium. In those cases where the objects are much exposed to friction, 20 parts of copper, 4 of tin, 0.5 of antimony, and 0.25 of lead. For objects which arc intended to resist violent shocks, 20 parts of copper, 6 of zinc, and 1 of tin. For those which are exposed to heat, 17 parts of copper, 1 of zinc, 0.5 of tin, and 0.25 of lead. The copper is added to the fused mass containing the otber metals.

A NTIMONY. (Antimoine, Fr.; Spieglanz, or Spiesglas, Gcrm.) The only ore of this metal found in sufficient abundance to be smelted is the sulphide or sulphuret, formerly called crude antimony.

Antimony occurs with numerous ores of lead and silver, of nickel, \&c., but the most important ore of antimony is the sulphuret (Stibnite, or Grey Antimony), which forms the chief and most common source of the antimony of commerce, and of the greater number of the pharmaceutical preparations of that metal. Antimony is not at present produced in this country, but in the last century it was mined extensively.
Antimony. - " Pendant quelque temps, l'antimoine a ćté exploité très-activement cn Angletcrre, dans les comtés de Cornouailles et de Devon, où la mine de Huel Boys produisait annuellement, vers 1775,400 quintaux métriques de métal. Pendant quelquc temps aussi, de riches mines d'antimoine ont été exploitées en Espagne, dans la province de la Manche : aujourd'hui elles nc donnent plus de produits." ${ }^{*}$
Stibnite, or Grey Antimony Ore, sometimes occurs compact, but usually in very long prismatic or acicular crystals, or in a fibrous form. It is of a lead or steel-grey colour, sometimes with an iridescent lustre, sectile and flexible when in thin lamine. It may be distinguished from a similar ore of manganese by its perfect diagonal cleavage and easy fusibility. Grey antimony is composed of antimony 74, sulphur 26. It fuses readily in the flame of a candle, to which it imparts a greenish tint. Oi charcoal, in the flame of a blowpipe, it gives out a strong smell of sulphur, with white fumes, and yields a white slag. When pure, it is perfectly soluble in muriatic acid. Its specific gravity is $4 \cdot 5$.

The most celebrated localities of this ore are Falsobanya, Schemnitz, and Kremnitz, in Hungary, where it occurs in diverging prisms several inches long. It is also found in the Hartz, at Andreasberg, in Hungary, in Cornwall, at the old Trewetha mine, and abundantly in Borneo.

This ore was called by the ancients $\pi \lambda a \tau v \dot{\phi} \phi \theta \alpha \lambda \mu \sigma v-\pi \lambda a \tau \grave{v}$, broad, ó $\phi \theta a \lambda \mu \partial s$, eye - from the use to which it was applied in increasing the apparent size of the cyc, as is still practised among oriental nations, by staining the upper and under edges of the eyelids. It was also used as a hair dye and to colour the eyebrows.

It was the Lupus Metallorum of the alchemists. Crude antimony is obtained from it hy simple fusion, and from this product the pure metal is extracted.

The other principal ores of antimony are the following:-
Native Antimony is a mineral of a tin-white colour and strcale and a metallic lustre, and sometimes contains silver, iron, and arsenic, with which last it is commonly associated. It is brittle, and possesses a specific gravity of 6.62 to 6.72 . It is generally lamellar, sometimes botryoidal, or reniform. Beforc the blowpipe it soon melts, and continues to burn after the heat is removed; but if the heat be continued, it evaporates in white fumes, and is redeposited round the globule.

Native antimony occurs at Sahlburg in Sweden, Andreasberg in the Hartz, Allemont in Dauphiny, in Mexico, \&c.

* Encyclopédie Nouvelle. Paris, 1839.

M 4

Arsenical Antimony also occurs at Allemont, in the Hartz, and elscwhere, in reniform and amorphous masses, with a fincly granular or a curved lamellar structure. It is composed of arsenic $62 \cdot 15$, antimony 57.85 . It possesses a metallic lustre, and it reddish-grey or tin-white lustre. Its specific gravity is 6.2.

Oxide of Antimomy (Cervantite) occurs, associated with grey antimony (of which it is an altered form), at Cervantes, in Spain, in Hungary, and the Auvergnc. It is found in octahedral crystals, and in radiating fibrous crystals in the province of Constantina, in Algeria (Senarmontite), also at Perneck, in Hungary. It occurs as a crust or powder, or in acicular crystals, with a greasy or earthy lustre, and of a pale yellow or nearly white colour. Specific gravity $=40 \cdot 8$. It is composed of antinony $80 \cdot 1$, oxygen 19.9 ; but frequently it contains an admixture of iron, carbonatc of lime, \&cc. It is soluble in muriatic acid.

White Antimony (Valentinite) is the result of the alteration of grey antimony, native antimony, and other ores of that metal. It possesscs a shining pearly lustre and a snow-white colour, but is sometimes pinkish, or ash-grcy, or brownish. It affords a white streak. It is composed of antimony 84.32 , oxygen 15.68 Specitic gravity $=5.56$. It is found in tabular crystals in veins traversing the primary rocks at Przibram in Bohemia, near Freyberg in Saxony, Allemont in Dauphiny, \&c.

Red Antimony (Kermesite) is a componnd of oxide of antimony $30^{\circ} 2$, and sulphide of antimony $69 \cdot 8$, or antimony $74 \cdot 45$, oxygen $5 \cdot 29$, and sulphur $20 \cdot 49$.

It occurs generally in capillary six-sided prismatic crystals of a cherry-red colour, affording a brownish-red streak. It has a specific gravity of from $4 \cdot 5$ to $4 \cdot 6$.

It is feebly translucent, and possesses an adamantine lustre. It occurs at Walaczka in Hungary, Braunsdorf in Saxony, and at Allemont in Dauphiny.

In treating the ores to obtain the metal, the first object is to separate the gangue, which was formerly done by filling crucibles with the mixed materials, placing them on the hearth of an oven, and exposing them to a moderate heat. As the sulphide easily melts, it ran out through a holc in the bottom of the crucible into a pot placed beneath, and out of the reach of the fire. But the great loss from the breakage of the crucibles has caused another method to be adopted. In this the broken ore, being sorted, is laid on the bottom of a concave reverberatory hearth, where it is reduced.
Figs. 65 and 66 represent a wind or flame furnace, for the reduction of antimony.

The hearth is formed of sand and clay solidly beat together, and slopes from all sides towards the middle, wherc it is connected with the orifice u, which is closed with dense coal-ashes; b is the air channcl up through the bridgc; c, the door for introducing the prepared ore, and running off the slags; d, the bridge ; e, the grate; f, the fire or fuel-door ; g, the chimney. With 2 or 3 cwts . of ore, the smelting process is completed in from 8 to 10 hours. The metal thus obtained is not pure enough, but must be fuscd under coal dust, in portions of 20 or 30 pounds, in crucibles placed upon a reverberatory hearth.

To obtain antimony free from iron, it should be fused with some antimonic oxide in a crucible, whercby the iron is oxidised aud separated. The presence of arsenic in antimony is detected by the garlic smell, emitted by such an alloy when heated at the blowpipe; or, better, by igniting it with nitre in a crucible; in which case insoluble antimonite and antimoniate of potash will be formed along with soluble arseniate. Water digested upon the mixture, filtered, and theu tested with nitrate of silver, will afford the brown-red precipitate characteristic of arsenic acid.

Aceording to Berthier, the following materials afford, in smelting, an excellent product of antimony. From 100 parts of sulphide, 60 of protoxide of iron from the shingling or rolling mills (hammerschlag), 45 to 50 of carbonatc of soda, and 10 of charcoal powder, from 65 to 70 parts of metallic antimony or regulus should be obtained. Glauber salts may be used advantagcously instead of soda. Another formula is, 100 parts of sulphide of antimony, 42 of metallic iron, and 10 of dry sulphate of soda. The product thence is said to be from 60 to 64 parts of metal.

In the works where antimonial ores are smelted, by means of tartar (argol, bitartrate of potash), the alkaliuc scorix which cover the metallic ingots are not rejected as useless, for they hold a certain quautity of antinonial oxide in combination -a property of the potasli flux which is propitious to the purity of the metal. These
scorix, consisting of sulphide of potassium and antimoniate of potash, being treated with water, undergo a reciprocal decomposition; the elements of the water act on those of the sulphide, and the resulting alkaline hydro-sulphide reacts on the antimonial solution so as to form a species of kermes mineral, which precipitates. This is dried, and sold at a low price as a veterinary medicine under the name of kermes, by the dry way.

At Malboac, in the department of Ardeche, in France, the separation of the sulphide of antimony from its associated gangue is effected by means of a peculiar apparatus (see fiy. 67). The mineral is placed in large retorts, R R, of which four are set in each furnace. An aperture is left at the bottom of cach of these cylinders, which corresponds with a similar opening hy which they are supported. Beneath these, in the chambers cc, are placed earthen pots, PP, in which is received the melted sulphide as it descends through the openings in the cylinders. The fuel consumed on the grate consists of fir wood; and the sulphide obtained is converted intometallic antimony by roasting in a reverberatory furnace, and subsequent reduction by a
 mixture of 20 per cent. of powdered charcoal which has been saturated with a strong solution of the carbonate of soda.

Metallic antimony, as ohtained by the preceding process, is the antimony of commerce, but is not ahsolutely pure ; containing frequently minute portions of iron, lead, and cven arsenic, the detection and separation of which helong to the sciences of chemistry and pharmaey; but considerable purity may he secured by fusing the metal, mixed with a little of its sulphide and some carhonate of soda, repeatedly in a crueible. From 100 parts of the impurc metal in this way 94 of pure antimony are obtained. The addition of sulphide serves the purpose, making fluid compounds of the sulphides of iron, arsenic, and copper, with the soda. Wöhler purifies antimony completely from arsenic (not from iron and copper) by deflagrating 10 parts of the crude ore with 12 of nitre and 15 of carhongte of soda ; washes away the arsenic salt, and then smelts the residuary antimoniate of potash with black flux. Lead can be separated only hy the humid analysis.

Antimony is a brittle metal, of a silvery white colour, with a tinge of hlue, a lamellar texture, and crystalline fracture. When heated at the blowpipe, it melts with great readiness, and diffuses white vapours, possessing somewhat of a garlic smell. If thrown in this melted state on a flat sheet of paper, the globule sparkles and bursts into a multitude of small spheroids, which retain their incandescence for a long time, and run about on the paper, leaving traces of the white oxide produced during the comhustion. When this oxide is fused with horax, or other vitrifying matter, it imparts a yellow colour to it. Metallic antinony, treated with hot nitric acid in a concentrated state, is converted into a powder, called antimonious acid, which is altogether iusoluhle in the ordinary acid menstrua-a property hy which the chemist can separate that metal from lead, iron, copper, bismuth, and silver. According to Bergmann, the specific gravity of antimony is 6.86 ; but that of the purest is 6.715 . The alchemists had conceived the most brilliant hopes of this metal; the facility with which it is alloyed with gold, since its fumes alone render this most ductile metal immediately brittle, led them to assign to it a royal lineage, and distinguished it hy the title of regulus, or the little king.

Its chief cmployment is in making the alloys called type metal, stereotype metal, music plates, and Britannia metal ; the first consisting of 6 of lead and 2 of antimony; the second of 6 of lead and 1 of antimony ; the third of lead, tin, and antimony; and the fourth also of lead, tin, and antimony, with occasionally a little copper, hismuth, and nickel. Antimony is much used in alloys with tin, tin and lead, and in some eases copper, in various proportions, for machincry bearings, instead of gun metal. In cases of rapid and continuous revolution, as the shafts of sercw-steamers, these are found much hetter than gun metal. It is also used hy the Ordnance in hardening hullets and shot.-Ure.

Melted with tin, antimony has of late heen used as an antifriction alloy for railway axles, and other bearings; in mctallic rings, or collars, for machinery. As this alloy is not so much heated by frietion as the harder metals, less grease is consumed.

French Mines in 1849 producing Antimony.

Departments.						Mines Worked.	$\begin{aligned} & \text { Mines } \\ & \text { Not } \\ & \text { Worked. } \end{aligned}$	Value of Products of Regulus of Antimony, Sulphuret of Antimony, Glass of Antimony (Crocus).
Ardèche	-	-	-	-	-	2	-	Francs. 6,400
Cantal	-	-	-	-	-	- -	1	
Gard -	-	-	-	-	-	3	2	12,240
Haute-Loire	-	-	-	-	-	4	-	1,495
Lozère -	-	-	-	-	-	2	2	12,648
Puy-de-Dome	-	-	-	-	-		4	

Sulphide of antimony imported into France in French ships pays a duty of 11 francs for each 100 kilogrammes; but, if in foreign vessels, 12 francs. Metallic antimony pays a duty of 26 and 28 francs for 60 centimètres.

Antimony has been found in Victoria, the antimony ore existing near Heathcote. Of this, Westgarth says :-"The antimony ore appears to be unlimited in quantity; but the value in the home market, of from $9 l$. to $10 l$. per ton, will not admit of its being touched as yet by the eager fingers of commerce, nor probably for some years to come. This resource, like many others, remains for the railway cra."-Westgarth's Victoria, 1857, p. 114.

Professor Henry Rose, of Berlin, in a memoir on the natural, not oxidised, combinations of antimony and arsenic, gives the following analyses*:-

			1.	2.	3.	4.	5.	6.	7.	8.
Sulphur -	-		22.58	21.95	22.15	22.53	19.72	16.42	$20 \cdot 31$	17.04
Antimony	-		44.39	$39 \cdot 14$	34.40	$34 \cdot 9$	31.04	14.68	$26 \cdot 28$	$5 \cdot 09$
Lead -	-		31.84	-	$40 \cdot 75$	$36 \cdot 71$	46.87	-	$40 \cdot 84$	
Silver	-		-	$36 \cdot 40$	- -	-	- -	68.54	- -	64:29
Copper	-		0.42	1.06	0.13	$0 \cdot 19$	- -	$0 \cdot 64$	12.65	9.23
Iron	-			0.62	$2 \cdot 30$	$2 \cdot 65$	$1 \cdot 30$			$0 \cdot 06$
Lime	-			- -	- -	- -	0.08	- -	- -	3.74
			99.23	99•17	99.73	96.17	93.01	$100 \cdot 28$	$100 \cdot 08$	$100 \cdot 15$

1. Zinkenite, from the Wolfsberg, in the Eastern Hartz.
2. Miargyrite, from Bräunsdorff, in Saxony.

3, 4. Jamesonite, from Cornwall.
5. Plumose Grey Antimony, from the Wolfsberg, in the Eastern Hartz.
6. Brittle Silver Glance, from Schemnitz, Hungary.
7. Bournonite, from the Pfuffenburg mine, Eastern Hartz.
8. Polybasite, from Mexico.

Tartar Emetic (Antimonii Tartarizatum) and James's Powder (Pulvis Antimonialis) are preparations of this mineral. Fthiop's Mineral is the black oxide of antimony.

Our Importations of Antimony have been:-
1855.
1856.
Ores -
Crude

Regulus - - - 11 " - 1004 "
ANTIMONY, GLASS OF. This substancc, according to M. Soubciran, contains-

Protoxide of antimony	-	-	-	-	-	$91 \cdot 5$
Silica	-	-	-	-	-	-

ANTISEPTICS. (From à $\nu \tau i$, against; $\sigma \eta \pi \tau \partial s$, putrid.) Substances which prevent the spontaneous decomposition of animal and vegetable substances. These are chiefly the mineral acids - charcoal, chloride of lime, chlorine, culinary salt, nitre, spices, sugar, creosote, and yeast - which operate partly by inducing a change in the animal or vegetable fibres, and partly by combining with and rendering the aqueous constituent unsusceptible of decomposition. See Food; Provisions, curing of; and Preserved Meats.
ANVIL. A mass of iron, having a smooth and nearly flat top-surface of steel, upon which blacksmiths, and various other artificers, forge metals with the hammer. The common anvil is usually made of seven pieces: 1 , the core, or body; $2,3,4,5$, the four corner-pieces, which serve to enlarge its base ; 6 , the projecting end, which has a square hole for the reception of the tail, or shank of a chisel, on which iron bars may be cut through ; and 7, the beak, or horizontal cone, round which rods or slips of metal may be turned into a circular form, as in making rings. These six pieces are welded separately to the first, or core, and then hammered into a uniform body. In manufacturing large anvils, two hearths are needed, in order to bring each of the two pieces to be welded to a proper heat by itself; and several men are employed in working them together briskly in the welding state, by heavy swing hammers. The steel facing is applied by welding in the same manner. The anvil is then hardened by heating it to a cherry red, and plunging it into cold water-a running stream being preferable to a pool or cistern. The facing should not be too thick a plate; for, when such, it is apt to crack in the hardening. The face of the anvil is now smoothed upon a grindstone, and finally polished with emery and crocus, for all delicate purposes of art.
The blacksmith, in general, sets his anvil loosely upon a wooden block, and, in preference, on the root of an oak tree. The cutlers and file makers fasten their anvils to a large block of stone, their peculiar work rendering it an advantage to have the anvil fixed as firmly and solidly as possible.

The whilesmith, or brightsmith, when working at the anvil, unless the piece under the hammer should be very light, is assisted by a striker, who wields a sledge-hammer. In forging round articles, such as bolts, axles, \&e., the smith makes use of swages pieces of steel formed somewhat like hammer-heads - with a groove in one corresponding with a hollow in the other. In forging small spindles, the boss, or lower piece, is permanently fixed upon the anvil. For convenience in managing heavy articles, a crane is so fixed in the workshops, that the arm traverses between the fire and the anvil.

APPLE-TREE. (Pyrus malus.) The wood of the apple-tree is much used in the Tunbridge turnery manufacture, and the millwright employs the wood of the crabtree for the teeth of mortise wheels.

APPLES. The fruit of the Pyrus malus (apple-tree). Employed in the manufacture of cider (wlich see).

Apples (raw) imported in 1856:-

Duty payable: $2 d$. per bushel when of British possessions; $3 d$. per bushel when not of British posscssions.

1s. pcr bushel duty from 4th Junc, 1853.
APPLE WlNE. Cider. Winckler finds that the wine from apples is distinguished from the winc from grapes by the absence of bitartrate of potash and of ænanthic acid, by its containing a smaller amount of alcohol and more tannin, but
especially by the presence of a characteristic acid, which he regards as lactic acid, notwithstanding that this opinion is not confirmed by the degree of solubility of its salts with oxide of zinc, lime, and magnesia. Sce Cider.

AQUAFOR'TIS. Nitric acid, somewhat dilute, was so named by the alchymists on account of its strong solvent and corrosive operation upon many mineral, vegetable, and animal substances. It is still cmployed as the commercial name of nitric acid. See Nitric Acid.

Tbis acid has usually been obtaincd by mixing common nitre with green vitriol or sulphate of iron, and distilling, or by mixing nitre and clay or siliceous matter, and distilling over the nitric acid, leaving the alkali to unite with the eartby basc.

It may, however, bc usefully borne in mind, that this term of aquafortis, or strong water of the old chemist, was also applied to solutions which answered their special purposes. Thus Salmon, in 1685, gives the composition of aquafortis from certain mixtures of acids, not nitric, and salts, and distinctly refers to the Pharmacopeia for the other kind. This may be of service when applying old recipes for processes in the arts. Aquafortis did not always mean nitric acid.

AQUAMARINE is the name given to those varieties of beryl which are of clear shades of sky-bluc or greenish-blue, like the sky. It occurs in longitudinally-striated hexagonal crystals, sometimes a foot long, and is found in the Brazils, Hindostan, and Siberia. See Beryl.

AQUA REGIA. Royal water. The name given by the alchymists to that mixture of nitric and muriatic acids which was best fitted to dissolve gold ; it is now called nitro-muriatic acid, or nitro-chlorohydric acid, or hypochloro-nitric acid.
Aqua regia, prepared under different conditions, appears to give different results. Gay-Lussac observed that aqua regia, when heated in a water-bath, evolves a gaseous body which, dried and cxposed to a frigorific mixturc, separates into chlorine and a dark lemon-ycllow liquid, boiling at $70^{\circ} \mathrm{F}$. Tbis yellow liquid was found to contain 69.4 per cent. of chlorine, the calculated quantity for the formula, $\mathrm{NO}^{2} \mathrm{Cl}^{2}$, being 70.2 . Gay-Lussac refutes the assertion of E. Davy and Baudrimont, that tbe properties of aqua regia arc due to its containing a compound of chlorine, nitrogen, and oxygen, and confirms the gencrally received vicw, that its action depends upon free chlorine. From the vapour evolved in the action of aqua regia upon gold, a liquid may be condensed which is nearly of the composition $\mathrm{NO}^{2} \mathrm{Cl}^{2}$, containing, however, no free chlorine.

AQUA VI'TÆ. The name given to alcohol when used as an intoxicating beverage. It has been the aqua mortis to myriads of the human race; and will, probably, ere long destroy all the native tribes of North America and Australia.

Dr. Ure's definition of the term is in every respect strictly correct ; but it appears necessary to add to it the explanation, that it is derived from the alchymists who, having obtained-iu all probability from the Arabian physicians, since Avicenna uses the term - tbe product by distillation of saccharine fermentation, al-kohol (alcohol), gave, upon the same principle as guided them in calling tbe nitro-muriatic acid aqua regia, the name of aqua vitee to several ardent spirits; and it has been retained especially with reference to whisky and brandy.

ARABIC, GUM. Chemists have been disposed to divide gums into three varieties, to which they have given the names of Arabine, cerasine, and dextrine.

Arabine, or gum Arabic, exudes from sevcral species of acacia and prunus; it is also found in the roots of the mallow, comfrey, and some other plants. Gum Arabic never crystallises, is transparent, and has a vitreous fracturc. It dissolves in water in all proportions, forming mucilage. Its chemical composition is expressed by the formula, $\mathrm{C}^{12} \mathrm{H}^{11} \mathrm{O}^{11}$.

ARAGONITE. So called from Aragon, in Spain, where it was first discovered. A carbonate of lime, crystallised in rhombic prisms, or in forms derived from the same. See Lime.

ARANGOES. A species of beads made of rough carnelian, which were formerly imported from Bombay for re-cxportation to Africa.

ARBOR DIANE. The tree of Diana, or the silver-trec. Sec Amalgan.
ARBOR VITA. Several species of thuja, found in America and Cbina, are called arbor vitce. It is a light, soft, and fine-grained rood, wbich is uscd in several kinds of carpentry.

ARCH. As this dictionary is not intended to include articles connceted with engincering or witb architccture, it would be out of place to describe the conditions required to cnsure the stability of the arch, which is manifestly onc of great importance to the practical builder. (For the tbcory of the cquilibrium of the arcb, Gwilt's treatise on the subject should be consulted, or the article Arch, "Encyclopædia Britannica.") It simply remains to define the arch as a structure of stonc or brick, supported by its own curve; or of wood or iron, supported by the mechanical arrangements of the work.

The curvature of an arch may vary very considerably. Where the arch is low, the circle it belongs to becomes very large : and the strength of arches varics greatly with their forms; they may be either segments of a eirele, a parabola, an ellipse, an hyperbola, or a catenary.
The arch in architecture is the means of passing from one pillar to another; and we have the circular form, which was succeeded by the pointed areh, and all its modified forms of foliation, \&c.

ARCHERY BOW. These are divided into the "single-piece bow" and the "back or union bow."
The single-piece bow is made of one rod of hickory, lance-wood, or yew-tree, whieh last, if perfectly free from knots, is considered the most suitable wood.
The union how is made of two or sometimes three pieces glued together. The "back" piece, or that furthest from the string, is of reetangular section, and always of lanee-wood or hiekory; the "belly," which is nearly of semicircular section,-is made of any hard wood that can be obtained straight and clean, as ruby-wood, rosewood, green-heart, king-wood, snake-wood, \&c. Sometimes the union bow is imitated by one solid piece of straight cocoa-wood of the West Indies (not that of the cocoa-nut palm), in which case the tough fibrous sap is used for the baek. The Palmyrea is also used for bows. - Holtzapffel.

ARCHIL. (Orseille, Fr.; Orseille, Germ.; Oricello, Ital.) The name of arcliil is given to a colouring matter obtained, by the simultaneous action of the air, moisture, and an ammoniacal liquor, from many of the lichens, the most esteemed being the lichen roccella.
It appears in commeree in three forms: 1, As a pasty matter called archit; 2, as a mass of a drier character, named persis; and 3 , as a reddish powder called cudbear.

The lichen from which archil is prepared is known also as the canary weed or orchilla weed. It grows in great abundance on some of the islands near the A frican coast, particularly in the Canaries and several of the Islands of the Archipelago. Its colour is sometimes a light and sometimes a dark grey.

There appears to be good evidence for supposing that archil was known to the Romans, and Beekmann is disposed to believe that the aneient Greeks were familiar with this dye. This ingenious and industrious author gives the following account of the modern introduction of the archil.
"Among the oldest and principal Florentine families is that known under the name of Oricellarii or Rucellarii, Ruscellai or Rucellai, several of whom have distinguished themselves as statesmen and men of letters. This family is descended from a German nobleman, named Ferro or Frederigo, who lived in the beginning of the 12th century. One of his deseendants, in the year 1300, carried on a great trade in the Levant, by which he acquired considerable riches, and returning at length to Florence with his fortune, first made known in Europe the art of dyeing with arehil. It is said that a little before his return from the Levant, happening to make water on a roek covered with this lichen, he observed that the plant, which was there called respio or respo, and in Spain orciglia, acquired by the urine a purple colour, or, as others say, a red colour. He, therefore, tried several experiments, and when he had brought to perfection the art of dyeing wool with this plant, he made it known at Florence, wherc he alone practised it for a considerable time, to the great benefit of the state. From this useful invention the family received the name of Oricellarii, from which at last was formed Rucellai." - History of Inventions.

For more than a century Italy possessed the exelusive art of making archil, obtaining the lichens from the islands of the Mediterranean. Teneriffe furnished annually 500 quintals (of 110 lbs each) of lichen; the Canary Isles, 400; Fuerta Ventura, 300 ; Lancerot, 300 ; Gomera, 300; Isle of Ferro, 800. This business, in the islands of Teneriffe and Canary, belonged to the Crown of Spain, and in 1730 brought in a revenue of 1500 piastres. The farmers paid from 15 to 20 reals for the right to gather each quintal.

Since 1402 the largest quantity of the lichens for the preparation of arehil has been obtained in the Canary Islands; a smaller quantity has, however, been procured from the Cape de Verde Islands. It is stated that the archil from the lichens of the latter place dyc wool of a deeper colour than the arehil from the Canaries, but that the dye is not so rich. The labour of eollecting these lichens is very great, and men are exposed to the greatest risks, being suspended by cords over the faee off stupendous cliffs. Upon the eoasts of Spain, Scotland, and Ireland, the peasantry have for a very long period used lichens for the purpose of dyeing red.

The ehemieal constitution of arehil was first investigated by M. Cocq, "Annales de Chimie," vol. lxxxi.; and subsequently, yet more extensively, by Robiquet, "Annales de Chimie," vol. xlii. 2nd series.

From the Variolaria, Robiquet obtained Orcine, by digesting the liehen in aleohol,
evaporating to dryness, dissolving the extract in water, concentrating the solution to the thickness of a syrup, and setting it aside to crystallisc. It forms, when quite pure, colourless prisms, of a nauscous sweet taste, which fuse casily, and may be sublined unaltered. Its formula is $\mathrm{C}^{10} \mathrm{H}^{9} \mathrm{O}^{4}+3 \mathrm{Aq}$. when sublimed; when erystallised from its aqueous solution it contains 5 Aq .

If orcine be exposed to the combined action of air and ammonia, it is converted into a crimson powder orcëine, which is the most important ingredicut in the archil of commerce. Orcüne may be obtained by digesting dricd archil in strong alcohol, evaporating the solution in a water-bath to dryncss, and treating it with ether as long as anything is dissolved; it remains as a dark blood-red powder, being sparingly soluble in water or ether, but abundantly in alcohol. Its formula is $\mathrm{C}^{16} \mathrm{H}^{9} \mathrm{NO}^{7}$.

Orcëine dissolves in alkaline liquors with a magnificent purple colour; with metallic oxides it forms lakes, also of rich purple of various shades. In contact witl deoxidising agents, it combines with hydrogen, as indigo does, and forms leac-orcëinc, $\mathrm{C}^{16} \mathrm{H}^{9} \mathrm{NO}^{7}+\mathrm{H}$. When bleached by chlorine, a yellow substance is formed, chlororcëine, the formula of which is $\mathrm{C}^{18} \mathrm{H}^{9} \mathrm{NO}^{7}+\mathrm{Cl}$ analogous to the othcr. - Kane.

Dr. Schunk, by an examination of several species of Lecanora, has proved that, although under the influence of ammonia and of air, they ultimately produce orcëine, these lichens do not contain orcine ready formed, but another body, Lecanorine, which, under the influence of bases, acts as an acid, and is decomposed into orcine and carbonic acid. If lecanoric acid be dissolved in boiling alcohol, it unites with ether, forming lecanoric cther, which crystallises beautifully in pearly scales. In the roccella tinctoria and the evernia prunastri erytheric acid is found. By the oxidation of this acid amarythrine or erythrine bitter is formed. These substances have been carefully cxamined by Schunk, Stenhouse, and Kane. The chemical history of these and some other compounds is of great interest; but as they do not bear directly upon the manufacture of archil, or its use in dyeing, further space cannot be devoted to their consideration.

Kane found archil and litmus of commerce to contain two classes of colouring matters, as already stated, orcine and orcë̈ne, derived from it. Beyond these there were two bodics, one containing nitrogen, azoerythrine, and the other destitute of nitrogen, erythroleic acid. This latter acid is separated from the other bodies present in archil by means of ether, in which it dissolves abundantly, forming a rich crimson solution. It gives with alkalis purple liquors, and with carthy and metallic salts coloured lakes.

Beyond those already named there are several other species of lichen which might be employed in producing an analogous dye, were they prepared, like the preceding; into the substance called archil. Hellot gives the following method for discovering if they possess this property. A little of the plant is to be put into a glass vessel ; it is to be moistened with ammonia and lime-water in equal parts ; a little muriate of ammonia (sal ammoniac) is added, and the small vessel is corked. If the plant be of a naturc to afford a red dye, after three or four days the small portion of liquid which will run off on inclining the vessel, now opened, will be tinged of a crimson red, and the plant itself will have assumed this colour. If the liquor or the plant does not take this colour, nothing need be hoped for; and it is useless to attempt its preparation on the great scale. Lewis says, however, that he has tested in this way a great many mosses, and that most of them afforded him a ycllow or reddish-brown colour ; but that he obtained from only a small number a liquor of a deep red, which communicated to cloth merely a yellowish-red colour.

Prepared archil gives out its colour very readily to water, ammonia, and alcohol. Its solution in alcohol is used for filling spirit-of-wine thermometers; and when these thermometers are well freed from air, the liquor loses its colour in some years, as Abbé Nollet observed; but the contact of air restores the colour, which is destroyed anew, in vacuo, in process of time; but the watery infusion loses its colour, by the privation of air, in a few days; a singular phenomeuon, which merits ncw rescareles.

The infusion of archil is of a crimson bordering on violet. As it contains amnoonia, which has already modificd its natural colour, the fixed alkalis can produce little change on it, only decpening the colour a little, and making it more violct. Alun forms in it a precipitate of a brown red; and the supernatant liquid retains a yellow-ish-red colour. The solutiou of tin affords a reddish precipitate, which falls down slowly ; the supernatant liquid retains a fecble red colour.
The rescarches on the lichens, as objects of mauufacture, by Westring, of Stockholm, are worthy of attention. He examincd 150 species, among which he found several which might be rendered useful. He recommends that the colonring matter should be extracted in the places where they grow, which would save a vast expense in curing, package, carriage, and waste. He styles the colouring substance itself cudbear, persio, or turnsole ; and distributes the lichens as follows:-1st. 'Those which,
left to themselves, exposed to moderate heat and moisturc, may be fixed without a mordant upon wool or silk; such are the L. cinercus, amatonta, ventosus, corallinus, Wcstringii, saxatilis, conspassus, barbatus, plicatus, vulpinus, \& c.
2. Those which develope a colouring matter fixable likewise without mordant, but whicif requirc boiling and a complicated preparation; such are the lichens subcarneus, dillenii,, farinaceus, jubatus, furfuraccus, pulnonareus, cornigatus, cocciferus, digitatus, ancialis, aduncus, \&c. Saltpetre or sea-salt is requisite to improve the lustre and fastness of the dye given by this group to silk.
3. Those which requirc a peculiar process to develope their colour, such as those which become purple through the agency of stale urine or ammonia. Westring employed tbe following mode of testing:- He put 3 or 4 dracbms of the dried and powdered lichen into a flask, moistened it with 3 or 4 measures of cold spring water, put the stuff to be dyed into the mixture, and left the flask in a cool place. Sometimes he added a little salt, saltpetre, quicklime, or sulphate of copper. If no colour appeared, he then moistened the lichen with water containing $\frac{1}{20}$ th of sal ammoniac and $\frac{1}{10}$ th of quicklime, and set the mixture aside in a cool place from 8 to 14 days. There appeared in most cases a reddish or violet coloured tint. Thus the lichen cinereus dyed silk a deep carmelite and wool a light carmelite; the L. physodes gave a yellowish-grey; the pustulatus, a rose red; sanguinarius, grey; tartareus, found on tbe rocks of Norway, Scotland, and England, dyes a crimson-red. Cudbear is made from it in Jutland by grinding the dry lichen, sifting it, tben setting it to ferment in a close vessel witb ammonia. The lichen must be of the tbird year's growth to yield an abundant dye; and that which grows near the sea is the best. It loses half its weight by drying. A single person may gather from 20 to 30 pounds a day in situations where it abounds. No less than $2,239,685$ pounds were manufactured at Christiansand, Flekkefiort, and Fakrsund, in Norway, in the course of the six years prior to 1812. Siuce more solid dyes of the same shade have becn invented, the archil has gone much into disuse.
To prepare archil, the lichens employed are ground up with water to a uniform pulp, and tbis is tben mixed with as much water as will make the whole fluid; ammoniacal liquors from gas or from ivory-black works, or stalc urine, are from time to time added, and the mass frequently stirred so as to promote the action of the air. Tbe orcine or erythrine whicb exists in the lichen absorbs oxygen and nitrogen, and forms orcëine. The roccelline absorbs oxygen and forms erythroleic acid; these being kept in solution by tbe ammonia, the whole liquid becomes of an intense purple, and constitutes ordinary archil.-Kane.

Archil alone is not used for dyeing silk, unless for lilacs; but silk is frequently passed tbrough a bath of arcbil, either before dyeing it in other baths or after it has been dyed, in order to modify different colours or to give them lustre. It is sufficient here to point out low white silks are passed througb the archil bath. The same process is performed with a bath more or less charged with this colour, for silks already dyed.
Arcbil, in a quantity proportioned to the colour desired, is to be boiled in a copper: Tbe clear liquid is to be run off quite hot from the archil bath, leaving the sediment at the bottom, into a tub of proper size, in which the silks, newly scoured with soap, are to be turned round on the skein-sticks with much exactness, till they have attaincd the wished-for shade. After this they must receive one beetling at the river.
Arcbil is, in general, a very useful ingredient in dyeing; but as it is rich in colour, and communicates an alluring bloom, dyers are often tempted to abuse it, and to exceed the proportions that can add to the beauty without at the same time injuring, in a dangerous manner, the permanence of the colours. Neverthcless, the colour obtained when solution of tin is employed, is less fugitive than without tbis addition: it is red, approacbing to scarlet. Tin appears to be the only ingredient which can increase its durability. The solution of tin may be employed, not only in the dyeing batb, but for the preparation of the silk. In this case, by mixing the archil with other colouring substances, dyes may be obtained which have lustre with sufficient durability.
To dye wool with archil, the quantity of this substance decmed necessary according to the quantity of wool or stuff to be dyed, and according to the shade to which they are to be brought, is to be diffused in a bath of water as soon as it begins to grow warm. The batb is then heated till it be ready to boil, and the wool or stuff is passed through it without any other preparation except keeping that longest in wlich is to have the deepest shade. A fine gridclin, bordering upon violet, is thereby obtained; but this colour has no permanence. Hence archil is rarcly employed with any other view than to modify, heighten, and give lustre to the other colours. Hellot says, that having cmployed archil on wool boiled with tartar and alum, the colour resisted the air no more than what had reccived no preparation. But he obtained from
herb archil (l'orscille d'herbc) a much more durabte colour, by putting in the bath some solution of tin. The archil thercby loses its natural colour, and assumes one approaching more or less to scarlet, according to the quantity of solution of tin employed. This process must be executed in ncarly the same manner as that of searlet, except that the dyeing may be performed in a single bath.

Archil is frequently lad recourse to for varying the different shades and giving then lustre ; hence it is used for violets, lilacs, mallows, and rosemary flowers. To obtain a deeper tone, as for the deep soupcs au vin, sometimes a little alkali or milk of lime is mixed with it. The suites of this browning may also afford agates, rosemary flowers, and other delicate colours, which cannot be obtained so beautiful by other processes.

The herb archil, just named, called especially orcëlle de terre, is found upon the volcanic rocks of the Auvergne, on the Alps, and the Pyrenees.

These lichens are gathered by men whose whole time is thus occupied ; they scrape them from the rocks with a peculiarly shaped knife. They prefer collecting the orceille in rainy weather, when they are more easily detached from the rocks. They gather about 2 kilogrammes a day, or about $4 \frac{1}{2}$ pounds. When they take their lichens to the makers of archil or litmus for the purpose of selling them, they submit a sample to a test, for the purpose of estimating their quality. To this end they put a little in a glass containing some urine, with a small quantity of lime. As the lichens very rapidly pass into fermentation if kept in a damp state, and thus lose much of their tinctorial power, great care is taken in drying them; when dry they may be preserved without injury for some time.

Archil is perhaps too much used in some cloth factories of England, to the discredit of our dyes. It is said, that by its aid $\frac{1}{3}$ rd of the indigo may be saved in the blue vat; but the colour is so much the more perishable. The fine soft tint induced upon much of the black cloth by means of archil is also deceptive. One half pound of cudbear will dye one pound of woollen cloth. A crimson red is obtained by adding to the decoction of archil a little salt of tin (muriate), and passing the cloth through the bath after it has been prepared by a mordant of tin and tartar. It must be afterwards passed through hot water.

Dyeing with archil with the aid of oil has been patented by Mr. Lightfoot, on the same principle as has been so long used in the Turkey red cotton dye, who also has recourse to metallic and earthy bases. See Cudbear and Litiuus.

ARCHITECTURE. The art of constructing buildings, which involves the consideration of very dissimilar points.

1. Utility, - as it regards any specified object, as -
a. Domestic accommodation in a dwelling house.
b. Acoustic arrangements in all buildings intended for public purposes. This consideration is entirely lost sight of by modern architects.
c. Ventilation, which is a matter upon which a very large amount of empiricism has been expended with exccedingly small results.
2. Durability.- If we examine the walls of our ruined abbeys and castles, we shall find that the stones employed still retain the marks of the workman's tool ; and that in numerous cases the ornamental work is as sharp as if it had been executed but yesterday. This should prove to us that the selection of stone was of far more importance than we have been disposed to believe. - Under Stones, this subjeet will be dealt with.

The British Houses of Parliament, not yet completed, are in a state of disintegration in many parts; and several of the finest stone buildings of the metropolis are being disguised by paint, under the absurd idea of preserving the stone. See Srone, Artificial and Indurated.

ARECA. A genus of palms, containing two species - 1. The Areca catechu, producing the betel nut, which is so universally chewed in the Cast Indies. The astringent cutcchu is not the product of this tree (see Acacia Catechu). 2. The Areca oleracea, or cabbage palm ; the cabbage is eaten in the West Indies, both raw and boiled; and the trunk, which is often 100 feet long, is used in Jamaica for water pipes, which are said to become, when buried, almost as hard as iron.

AREOMETER. An instrument to measure the densities of liquids. (See Alcoholonetry.) The principle will be well understood by remembering that any solid body will siok further in a light liquid than in a heary one. The arcometer is usually a glass tube, having a small glass bulb loaded with eitlice shot or quicksilver, so as to set the tube upright in any fluid in whieh it will swim. Within the tube is placed a graduated scale: we will suppose the tube placed in distilled water, and the line cut by the surface of the fluid to be marked; that it is then removed and placed in strong alcohol - the tube will sink much lower in this, and consequently we slall liare two extremitics of an arbitrary scalc, on which we can mark any interrucdiate degrees.

The areometcr of Baumé is used in Frauce, and the following scalc is adopted by the French chemists:-

Specific Gravity Numbers corresponding with Baume's Areometric Degrees.

Liquids denser than Water.						Less dense than Water.			
$\begin{aligned} & \text { De- } \\ & \text { grees. } \end{aligned}$	Specific Gravity.	$\begin{array}{\|c} \text { De- } \\ \text { grees. } \end{array}$	Specific Gravity.	$\begin{gathered} \text { De- } \\ \text { grees. } \end{gathered}$	Specific Gravity.	$\begin{aligned} & \text { Dc- } \\ & \text { grees. } \end{aligned}$	Specific Gravity.	$\begin{aligned} & \text { De- } \\ & \text { grees. } \end{aligned}$	Specific Gravity.
0	$1 \cdot 0000$	26	1-2063	52	$1 \cdot 5200$	10	1.0000	36	$0 \cdot 8488$
1	$1 \cdot 0066$	27	$1 \cdot 2160$	53	$1 \cdot 5353$	11	$0 \cdot 9932$	37	$0 \cdot 8439$
2	$1 \cdot 0133$	28	$1 \cdot 2258$	54	$1 \cdot 5510$	12	$0 \cdot 9865$	38	08391
3	1.0201	29	1.2358	55	$1 \cdot 5671$	13	$0 \cdot 9799$	39	08343
4	1.0270	30	1.2459	56	1.5833	14	0.9733	40	$0 \cdot 8295$
5	1.0340	31	$1 \cdot 2562$	57	1.6000	15	$0 \cdot 9669$	41	0.8249
6	1.0411	32	$1 \cdot 2667$	58	$1 \cdot 6170$	16	$0 \cdot 9605$	42	$0 \cdot 8202$
7	1.0483	33	$1 \cdot 2773$	59	$1 \cdot 6344$	17	0.9542	43	$0 \cdot 8156$
8	$1 \cdot 0556$	34	$1 \cdot 2881$	60	$1 \cdot 6522$	18	$0 \cdot 9480$	44	0.8111
9	$1 \cdot 0630$	35	$1 \cdot 2992$	61	$1 \cdot 6705$	19	$0 \cdot 9420$	45	$0 \cdot 8066$
10	1-0704	36	$1 \cdot 3103$	62	$1 \cdot 6889$	20	0.9359	46	$0 \cdot 8022$
11	1.0780	37	$1 \cdot 3217$	63	1.7079	21	$0 \cdot 9300$	47	0.7978
12	1.0857	38	$1 \cdot 3333$	64	$1 \cdot 7273$	22	$0 \cdot 9241$	48	$0 \cdot 7935$
13	1.0935	39	1.3451	65	$1 \cdot 7471$	23	$0 \cdot 9183$	49	0.7892
14	1•1014	40	1-3571	66	1.7674	24	0.9125	50	0.7849
15	1•1095	41	$1 \cdot 3694$	67	$1 \cdot 7882$	25	$0 \cdot 9068$	51	9.7807
16	$1 \cdot 1176$	42	$1 \cdot 3818$	68	1.8095	26	0.9012	53	0.7766
17	1•1259	43	1-3945	69	$1 \cdot 8313$	27	$0 \cdot 8957$	5.3	0.7725
18	1•1343	44	$1 \cdot 4074$	70	$1 \cdot 8537$	28	$0 \cdot 8902$	54	0.7684
19	1-1428	45	$1 \cdot 4206$	71	1.8765	29	$0 \cdot 8848$	55	0.7643
20	1.1515	46	$1 \cdot 4339$	72	$1 \cdot 9000$	30	0.8795	56	0.7604
21	1-1603	47	1.4476	73	1.9241	31	0.8742	57	0.7656
22	$1 \cdot 1692$	48	$1 \cdot 4615$	74	1.9487	32	$0 \cdot 8690$	58	$0 \cdot 7526$
23	1-1783	49	$1 \cdot 4758$	75	$1 \cdot 9740$	33	$0 \cdot 8639$	59	0.7487
24	$1 \cdot 1875$	50	$1 \cdot 4902$	76	$2 \cdot 0000$	34	0.8588	60	$0 \cdot 7449$
25	$1 \cdot 1968$	51	$1 \cdot 4951$			35	$0 \cdot 8538$	61	0.7411

ARENACEOUS. Arena, sand. Sandy.
ARGILLACEOUS. Composed of clay, or clayey.
ARGILLACEOUS EARTH. (Argilla, clay, Lat.) The earth of clay, called in chemistry, alumina, because it is obtained in greatest purity from alum. Sec Alumina, China Clay, Clay, Kalin.
ARGOL, or ARGAL. (Tartre, Fr.; Weinstein, Germ.) This tartrate of potash is known in commerce as the white and red argol; the white being the crust let fall by white wines, which is of a palc pinkish colour, and the red the crust deposited from red wines, and of a dark red colour. See Tartar, Cream of Tartar, \&ce.

ARICINE. $\left({ }^{16} \mathrm{H}^{2 n} \mathrm{~N}^{2} \mathrm{O}^{8}\right)$ An alkaloid diseovered by Pelletier and Corriol in a eineliona bark from Arica in Peru. It is separated by the same proeesses as quinine. In many respeets it resembles einehonine, but its solubility in ether is suffieient to distinguish it from that substance. The einehovatine of Manzini has been shown by Winckler to be identieal with arieine.- C. G. W.

ARNATTO, ARNOTTO, or ANNOTTO. (Rocou or roucou, Fr.; Orleans, Germ.) A somewhat dry and hard paste, brown without and red within. It is usually imported in cakes of two or three pounds weight, wrapped up in leaves of large reeds, paeked in easks, from Ameriea, where it is prepared from the seeds of a eertain tree, ealled the arnatto tree; it is the Bixa orellana of Linnæus.

The shrub producing the arnatto is originally a native of South Ameriea; it is now eultivated in Guiana, St. Domingo, and in the East Indies. In the "Annales de Chimie" we have the following deseription of the arnatto tree :-" The tree produees oblong bristled pods, somewhat resembling those of a ehesnut. These are at first of a beautiful rose colour, but, as they ripen, change to a dark brown; and bursting open, display a splendid erimson farina or pulp, in whieh are contained from thirty to forty seeds, somewhat resembling raisin stones. As soon as they arrive at maturity, these pods are gathered, divested of their husks, and bruised. Their pulpy substanee, whieh seems to be the only part whieh eonstitutes the dye, is then put into a eistern, with just enough water to eover it, and in this situation it remains for seven or eight days, or until the liquor begins to ferment, whieh, however, may require as many weeks, aceording to eireumstances. It is then strongly agitated with wooden paddles or beaters, to promote the separation of the pulp from the seeds. This operation is eontinued until these have no longer auy of the eolouring matter adhering to them; it is then passed through a sieve, and afterwards boiled, the eolouring matter being thrown to the surfaee in the form of seum, or, otherwise, allowed to subside : in either ease, it is boiled in eoppers till redueed to a paste, when it is made into eakes and dried."

Instead of this loug and painful labour, which oeeasions diseases by the putrefaetion indueed, and whieh affords a spoiled produet, Leblond proposes simply to wash the seeds of the bixa till they are entirely deprived of their eolour, whieh lies wholly on their surface; to preeipitate the colour by means of vinegar or lemon juiee, and to boil it up in the ordinary manner, or to drain it in bags, as is praetised with indigo.

The experiments whieh Vauquelin made on the seeds of the bixa, imported by Leblond, eonfirmed the effieaey of the proeess whieh he proposed; and the dyers ascertained that the arnatto obtained in this manner was worth at least four times more than that of commeree; that, moreover, it was more easily employed; that it required less solvent; that it gave less trouble in the eopper, and furnished a purer eolour.

Arnatto dissolves better and more readily in aleohol than in water, when it is introdueed into the yellow varnishes for communieating an orange tint.

The deenetion of arnatto in water has a strong peeuliar odour, and a disagreeable taste. Its eolour is yellowish-red, and it remains a little turbid. An alkaline solution renders its orange-yellow elearer and more agreeable, while a small quantity of a whitish substanee is separated from it, which remains suspended in the liquid. If arnatto be boiled in water along with an alkali, it dissolves mueh better than when alone, and the liquid has an orange hue.

The aeids form with this liquor an orange-eolonred preeipitate, soluble in alkalis, which eommunieate to it a deep orange eolour. The supernatant liquer retains only a pale yellow hue.

When aruatto is used as a dye, it is always mixed with alkali, whieh facilitates its solution, and gives it a colour inelining less to red. The arnatto is eut in pieces, and boiled for some instants in a eopper with its own weight of erude pearl ashes, provided the shade wanted do not require less alkali. The eloths may be afterwards dyed iu this bath, either by these ingredients alone, or by adding others to modify the eolour; but arnatto is seldom used for woollen, bceause the eolours which it gives are too fugitive, and may be obtained by more permanent dyes. Hellot employed it to dye a stuff prepared with alum and tartar ; but the eolour aequired had little permanenee. It is almost solely used for silks.
For silks intended to become aurora aud orange, it is suffieient to seour them at the rate of 20 per eent. of soap. When they have been well eleaused, they are immersed in a batl prepared with water, to whieh is added a quantity of alkaline solution of arnatto more or less considerable, aecording to the shade that may be wanted. This bath should have a nean temperature between that of tepid and hoiling water.
When the silk has beeome uniform, one of the hanks is taken out, washed, and wrung, to see if the eolour be suffieiently full; if it be not so, more solution of
arnatto is added, and the silk is turned again round the sticks: tbe solution keeps without alteration.

When tbe desired shade is obtained, nothing remains but to wash the silk, and give it two beetlings at the river, in order to free it from the redundant arnatto, wbich would injure the lustre of the eolour.

When raw silks are to be dyed, those naturally white are chosen, and dyed in the arnatto batb, which should not be more than tepid, or even cold, in order that the alkali may not attack tbe gum of the silk, and deprive it of the elasticity which it is desirable for it to preserve.

What bas now been said regards the silks to which the aurora shades are to be given : but to make an orange hue, which contains more red than the aurora, it is requisite, after dyeing with arnatto, to redden the silks with vinegar, alum, or lemon juice. The acid, by saturating the alkali employed for dissolving the arnatto, destroys the shade of yellow that the alkali had given, and restores it to its natural colour, which inclines a good deal to red.
For the deep sbades, the practice at Paris, as Macquer informs us, is to pass the silks through alum ; and if tbe colour be not red enough, they are passed throngh a faint bath of brazil wood. At Lyons, the dyers who use carthamus sometimes employ old baths of arnatto for dipping the deep oranges.

When the orange hues have been reddened by alum, they must be washed at the river; but it is not necessary to beetle them, unless the colour turns ont too red.
Shades may be obtained also by a single operation, which retain a reddish tint, employiug for the arnatto bath a less proportion of alkali than has been pointed out.

Gubliche recommends to avoid heat in the preparation of arnatto. He directs it to be placed in a glass vessel, or in a glazed earthen oue; to cover it with a solution of pure alkali; to leave the mixture at rest for 24 hours; to decant the liquor, filter it, and add water repeatedly to the residuum, leaving the mixture each time at rest for two or tbree days, till the water is no longer colonred; to mix all these liquors, and preserve tbe whole for use in a well-stopped vessel.

He macerates the silk for 12 hours in a solution of alum, at the rate of an eighth of this salt for one part of silk, or in a water reudered acidulous by the aceto citric acid above described; and he wrings it well on its coming out of this bath.
Silk thus prepared is put into the arnatto bath quite cold. It is kept in agitation there till it has taken the shade sought for; or the liquor may be maintained at a heat far below ebullition. On being taken out of the bath, the silk is to be washed and dried in the shade.

For lighter hues, a liquor less charged with colour is taken; and a little of the acid liquor which has served for the mordant may be added, or the dyed silk may be passed through the acidulous water.

We have seen the following preparation employed for cotton velvet:-1 part of quicklime, 1 of potash, 2 of soda.

Of these a ley is formed, in which 1 part of arnatto is dissolved; aud the mixture is boiled for an hour and a half. This bath affords the liveliest and most brilliant auroras. The buff (chamois) fugitive dye is also obtained with this solution. For this purpose only a little is wanted; but we must never forget that the colours arising from arnatto are all fugitive.

Dr. John found in the pulp surrounding the unfermented fresh seeds, which are about the size of little peas, 28 parts of colouring resinous matter, 26.5 of vegetable gluten, 20 of ligneous fibre, 20 of colouring extractive matter, 4 formed of matters analogous to vegetable gluten and extractive, and a trace of spicy and acid matters.

The Gloucestershire chcese is coloured with arnatto, in the proportion of one cwt. to an ounce of the dye: butter is sometimes coloured with it.

When used in calico printing, it is usually mixed with potash or ammonia and starch.

Arnatto was considered to contain two distinct colouring matters, a yellow and red, till it was shown by M. Prcisser that one is the oxide of the other, and that they may be obtained by adding a salt of lad to a solution of arnatto, which precipitates the colouring matter. Tbe lead is separated by sulphuretted hydrogen; and the substance being filtered and evaporated, the colouring matter is deposited in small crystals of a yellow-white colour. These crystals consist of bixine; they become yellow by exposure to the air, but if they are dissolved in water they undergo no cbauge. When ammonia is added to bixine, with free contact of air, there is formed a fine deep red colour, like arnatto, and a new substance, called bixeine, is produced, which does not erystallise, but may be obtained as a red powder; this is coloured blue by sulphuric acid, and combines with alkalis, and is bixine with addition of oxygen. When arnatto, in the form of pastc, is mixed from time to time with stale urine, it

ARROW ROOT.

appears probable that the improvement consists in the formation of bixeine from the bixine by the ammonia of the urine. It has hence been suggested that, to improve the colour of arnatto, it might be mixed with a little anmonia, and subsequently exposed to the air, previously to its being used for dycing.
A solution of arnatto and potash in water is sold under the name of Seott's Nankeen Dye.

The following statement gives an account of the quantitics imported and exported, with the nett revenue, during the following ycars :-

Quantities imported		-	-	-	cwt .	1841.		1842.	1843.	1844.	
		-					2319	3271	3494		
Quantities ex			-	-	-	,	-		513	229	307
Retained for	um		-					3197	3347	2689	
Nett revenuc	-	-	-	-	£		154	185	175	144	

Flag arnatto paid a duty of $18 s .8 d$. per cwt ., and the other sorts $5 l .12 \mathrm{~s}$., previously to 1832 . The duty was subsequently reduced to $1 s$. per cwt. on the former and $4 s$. on the latter. It was repealed in 1845 . The Imports of roll and flag arnatto during recent years were as follows:-

						1853.	1854.	1855.	1856.
France -	-	-	-	-	-	Cwts. 1825	$\begin{aligned} & \text { Cwts. } \\ & 1705 \end{aligned}$	Cwts.	$\begin{aligned} & \text { Cwts. } \\ & 2549 \end{aligned}$
Portugal	-	-	-	-	-	138	21	121	
French Guiana	-	-	-	-	-	- -	- -	141	
British Guiana	-	-	-	-	-	313	935	145	118
United States -	-	-	-	-	-	- -	866	-	966
Brazil -	-	-	-	-	-	1949	805	981	1306
Other parts	-	-	-	-	-	367	39	1	51
						4592	4371	2966	4990

AROMATIC VINEGAR. (Acetum aromatieum.) This is a compound of strong acetic acid with certain powerful essential oils or aromatic herbs. The "Edinburgh Pharmacopœeia" orders it to be made with, concentrated acetic acid, $1 \frac{1}{2}$ pints; rosemary and thyme dried, of each 1 oz . ; lavender, also dried, $\frac{1}{2}$ oz.; cloves, bruised, $\frac{1}{2}$ drachm. Macerate for seven days, strain, and express strongly, and filter the liquor. Henry's aroniatic vinegar is prepared by dissolving oils of cloves, lavender, rosemary, and the like, in concentrated acetic acid. Camphorated acetic acid is sometimes substituted for the acetum aromatieum. These preparations have beeu in great repute as prophylactics in contagious fevers. The name of "Le vinaigre des quatre voleurs" has been given to aromatic vinegar in France, it is said, from the confessions of four thieves who, during the plague at Marseilles, plundered the dead bodies with perfect impunity after protecting themselves with aromatic vinegar.

ARQUERITE. A silver amalgam from the miues of Arquerous, near Coquimbo. It occurs crystalline. Domeyko finds it to consist of silver $86 \cdot 49$, mercury $13 \cdot 51$.

ARRACK. A spirituous liquor from the East Indies. This term, or its corruption, raek, is applied to any spirituous liquor in the East. The true arrack is said to distilled from toddy-the fermented juice of the cocoa-nut tree. It is, however, frequently distilled from rice and sugar fermented with the cocoa-nut juice.

ARROBA (of wine). A Spanish mcasure, cqual to 3.5517 gallons.
ARROW ROO'T. (Racine féehiere, Fr:; Pfeiluurz, Germ.) 'The root of the maranta arundinucea, a plant which grows in the West Indies, and furuisles, by pounding in mortars and elutriation through sieves, a peculiar species of starel, commonly, but improperly, called arrow root. It is reckoned more nourishing than the starch of wheat or potatoes, and is generally also freer from peculiar taste or flavour. The fresh root consists, according to Benzon, of 0.07 of volatile oil; 26 of starch (23 of which are obtained in the form of powder, while the other 3 must be extracted from the parenchyma in a paste by koiling water); 1.58 of vegetable albumen; 0.6 of a gurmmy extract ; 0.25 of chloride of calcium ; 6 of insoluble fibrinc ; aud 65.5 of water. This plant was brought from the Island of Dominica, by Coloncl James

Walker, to Barbadoes, and there planted. From tbence it was sent to Jamaica. The root appears to bave been used by the Indians to yield a poison with which to smear their arrows, and hence its name.
This plant has been lately cultivated with great suceess, and its root manufactured in a superior manner, upon the Hopewell estate, in the Island of St. Vincent. It grows there to the height of about 3 feet, and it sends down jts tap roots from 12 to 18 inches into the ground. Its maturity is known by the flagging and falling down of the leaves, which takes place when the plant is from 10 to 12 months old. The roots being dug up with the hoe are transported to the washing-house, where they are thoroughly freed from all adhering earth, and next taken individually in the hand, and deprived by a knife of cvery portion of their skins, while every unsound part is cut away. This process must be performed with great nicety, for the cuticle contains a resinous matter which imparts colour and a disagreeable flavour to the fecula which no subsequent treatment can remove. The skinned roots are thrown into a large cistern, with a perforated bottom, and there exposed to the action of a copious cascade of pure water till this runs off quite unaltered. The cleansed roots are next put into the hopper of the mill, and are subjected to the powerful pressure of two pairs of polished rollers of hard brass, the lower pair of rollers being set much closer together than the upper. (See fig. 67.) The starchy matter is thus ground into a pulp, which falls into the receiver placed beneath, and is thence transferred to large fixed copper cylinders, tinned inside, and perforated at the botton with numerous minute orifices, like a kitehen drainer. Within these eylinders, wooden paddles are made to revolve with great velocity, by the power of a waterwheel, at the same time that a stream of pure water is adnitted from above. The paddle arms beat out the fecula from the fibres and parenchyma of the pulp, and discharge it in the form of a milk through the perforated bottom of a cylinder. This starchy water runs along pipes, and then through strainers of fine muslin, into large reservoirs, where, after the fecula has subsided, the supernatant liquid is drawn off, and fresh water being let on, the whole is agitated and left again to repose. When the water ceases to remove anything from the arrow root, all the deposits of fccula are collected into one cistern, covered, and agitated with a fresh charge of water, and left until the following morning. The water being allowed to run off, the surface of the deposit is earefully seraped with German silver palette knives, to remove any impure or coloured parts, and the lower portions only are dried and prepared for the market. The greatest eare is taken in drying; and when dry, the fecula is packed in tin cases for exportation.
Fig. 68 (p. 182), plan of arrow root grinding mill, and two sets of eopper eylinder washing machincs, with the conneeting machinery for driving them, the washing agitator being driven from the connecting shaft with leathern belts. Fig. 69, end eleration of copper washing cylinder, with press framing, \&c. The washing cylinders are $6 \frac{1}{2}$ feet long and $3 \frac{1}{2}$ in diamcter. The mill rollers are 3 feet long and 1 foot in diameter. Fig. 70, end elevation of alrow-root mill, with wheels and pinions, disengaging lever, scc.

Arrow root is usually distinguished by the name of the island or place producing it, as Bermuda arrow root, St. Vincent's arrow root, Jamaica arrow root, African or Sierra Leone arrow root, \&e.

The uses of arrow root are too well known and acknowledged to require reeounting here. It is the most elegant and the riehest of all the feenlas. Liebig places the powers of arrow root, as a nutriment to man, in a very remarkable point of view. when he states that 15 pounds of flesh eontain no more carbon for supplying animal heat by its combustion into earbonic aeid in the system than 4 pounds of starch; and that if a savage, with one animal and an equal weight of stareh, eould maintain life and health for a certain number of days, he would be compelled, if eonfined to flesh alone, in order to procure the carbon necessary for respiration during the same time, to eonsume five sueh animals.

In eomineree, the term arrow root is frequently used generically to indieate a starch or fecula, as Portland arrow ront, a white amylaceous powder, prepared in the lsle of Portland, from the Arum vulgare, the common Cuckoo-pint, ealled also Hakc-robin and Lords and Ladies.

ARROW ROOT.

East India arrow root, prepared from the Curcuma angustifolia.
Brazilian arrow root, the fecula of Jatropha manihot.
English arrow rool, the starch of the potato.
Tuhiti arrow root, the fecule of Tacca oceanica, which is imported into London and sold as "arrow root prepared by the native converts at the missionary stations in the South Sea Islands."
The presence of potato starch in arrow root, with which it is often adulterated, may be discovered by the microscope. Arrow root consists of regular ovoid particles of nearly equal size, whereas putato starch consists of particles of an irregular nvoid or truncated form, exceedingly irregular in their dimensions, some bcing so large as $\frac{1}{300}$ th of an inch, and others only $\frac{1}{2000}$ th. Their surfaces in the arrow root are smooth, and free from the streaks and furrows to be seen in the potato particles hy a good microscope. The arrow root, moreover, is destitute of that fetid unwholesome oil extractahle by alcohol from potato starch. But the most convenient test is dilute nitric acid of $1 \cdot 10$ (about the strength of single aquafortis), which, when triturated in a mortar with the starch, forms immediately a transparent very viscid paste or jelly. Flour starch exhibits a like appearauce. Arrow root, howevcr, forms an opaque paste, and takes a much longer time to hecome viscid.

The Imports, as given in former editions, arc retained for comparison with the more recent.

In 1834 the quantity of arrow root imported from Jamaica was $170,078 \mathrm{lhs}$., value 74831.

St. Vincent produced as follows:-

In 1828	-	-	-	-	-	-	-	2,000 lhs.
1829	-	-	-	-	-	-	-	21,250 "
1830	-	-	-	-	-	-		16,850 "
1831	-	-	-	-	-	-	-	3,763 "
1832	-	-	-	-	-	-	-	250 "
1833	-	-	-	-	-	-	-	5,552 ,"
1834	-	-	-	-	-	-	-	25,626 ",
1835	-	-	-	-	-	-	-	41.397"
1836	-	-	-	-	-	-	- -	49,369

The produce of the island of Bermuda was, in 1836, according to the same authority :-

St. George pa	arish					27,800
Hamilton	do.	-	-			16,310
Smith	do.	-	-			8,000
Devonshire	do.	-	-	-	-	1,599
Pembroke	-	-		-		885
Paget -		-	-	-		3,530
Warwick	-	-	-		-	32,000
Southampton	-	-			-	40,000
Sandys -	-					119,310

Total produce of arrow root in this colony in 1836 - $216,663 \mathrm{lhs}$.
Its exports of arrow root were:-

1830	-	-	-	-	-	-	*	18,174	
1831	-	-	-	-	-	-	-	77,153	,
1832	-	-	-	-	-	-	-	34.833	"
1833	-	-	-	-	-	-	-	44,651	
1834	-	-	-	-	-	-	-	54,471	
1835	-	-	-	-	-	-	-	67,573	
1836	-	-	-	-	-	-	-	76,699	

The recent Imports into Great Britain have been as follows:-

Countries from which 1mported.	1853.	1854.	1855	1856.
Sierra Leone -	Cwts. 577	Cwts. 276	C.sts. 402	Cwis. 369
British possessions in South Afriea	-	-	192	371
British West Indies - - -	14,399	13,540	11,401	12,830
South Sea Islauds -	-	- -	185	12,830
British Guiana - -	165			
British East Indies	-	515	- -	583
Brazil - -	32.4	- -	301	583
Plilippine Islands	- -	-	170	283
Turkey Proper -	- -	- -		784
Other parts - -	330	574	224	426
	15,795	14,905	12,873	15,646

Of arrow root prepared iu the United Kingdom, we exported, in 1856, $21,243 \mathrm{lbs}$. the deelared value of which was 7141 .

ARSENIC, derived from the Greek $\dot{a} \rho \sigma \epsilon \nu i c \delta \nu$, masculine, applied to orpiments on account of its potent powers. This metal oceurs native, in veins, in erystalline roeks, and the older sehists ; it is found in the state of oxide, and also combined with sulphur under the improper name of ycllow and red arsenic, or orpiment and realgar. Arsenic is associated with a great many metallie ores; but it is chiefly extracted in this country from those of tin, by roasting, in whieh case the white oxide of arsenie, or, more eorreetly, the arsenious acid, is obtained. On the Continent, arsenical cobalt is the ehief souree of arsenic.

The following are the principal ores of arsenie: -
Native Arsenic.-The most common form of native arsenie is reniform and stalaetitie masses, often mammillated, and splitting off in thin suceessive layers like those of a shell. It possesses a somewhat metallie lustre, and a tin-white colour and streak, which soon tarnishes to a dark grey. Its speeifie gravity is 5.93 . Before the blowpipe it gives out an alliaeeous odour, and volatilises in white fumes. It is found in the Hartz, in Andreasberg, at the silver mines of Freiberg, in Chili, the Asturias, \&e.

White Arsenic, or Arsenious Acid (Arsenolite), is often formed by the decomposition of other arsenieal ores, and is composed of arsenic $65 \cdot 76$, and oxygen $24 \cdot 24$. It oeeurs either in minute radiating eapillary erystals and erusts investing other substanees, or in a stalaetitie or botryoidal form. Before the blowpipe it volatilises in white fumes: in the inner flame it blaekens and gives out an alliaeeous odour; its speeifie gravity is 3.69 . It is white, sometimes with a yellowish or reddish tinge, and has a silky or vitreons lustre. It possesses an astringent, sweetish taste.-H. W. B.

Rcalgar (aneiently ealled Sundaraea), red orpiment, or ruby sulphur, is a sulphide of arsenic, having a eomposition, sulphur 29.91, arsenic 70.09. It oceurs in Hungary, Saxony, and Switzerland.

Orpiment (a corruption of its Latin name, aurigmentum-golden paint), yellow sulphide of arsenie : its composition is, sulphur 39, arsenie 61 . Burns with a blue flame on chareoal, and emits fumes of sulphur and arsenic. Dissolves in nitromuriatic acid and ammonia.

Both realgar and orpiment are artificially prepared and used as pigments. See those articles.

Ansenic is a brittle metal, of an iron-grey eolour, with a good deal of brilliancy. It may be prepared by triturating arsenious aeid, or the white arsenie of commeree, with blaek flux (ehareoal and earbonate of potash), and subliming in a tube. If arsenieal pyrites are ignited in elose tubes, metallic arsenie sublimes, and sulphuret of iron remains. This metal, when exposed in the air, gradually absorbs oxygen, and falls into a grey powder (suboxide). This is sold on the Continent as $f y$ pouder.

To prepare arsenic on a larger scale, mispichel, or the other ores employed, are pounded; some pieces of old iron are mixed with the ore, to retain the combined sulphur, and the mixture placed in retorts between four and five feet iu length, to whiel reeeivers are adapted. The retorts are moderately heated by a fire placed beneath them; the ores are decomposed, and metallie arsenic is sublimed and eondensed in the reeeivers. The arsenie obtained in this way is purified by a seeond distillation with a little eharcoal.

Arsenie is used in small quantities in the preparation of several alloys ; it is employed in the manufaeture of opal glass; also is much used iu the manufacture of
shot, to which it imparts a certain degree of hardness ; and, by preventing the distortion of the falling drops of metal, and thus seeuring regular globules, the manufacture is greatily facilitated.

ARSENIO US ACID, White Arsenic, Flowers of Arsenic.-This is the white arsenie of commercc, usually called, Arsenic. It is obtained in this country from the arscnical ores of iron, tin, \&c., and on the Continent from those of cobalt and nickel. It is nace, through which a ores containing arsenic on the solc of a reverbcratory furplay. The following ores are the more remarkable of this elass,- the quantity of arsenic in 100 grains is given in cach case.

ispickel, or arsenical iron						$42 \cdot 88$
Lölingite, arsenical pyrites						65.88
Kupfernickel, arsenical nick						
Ranmelsbergite, white arsen		ck				
Smaltine, tin-white cobalt		-			-	$74 \cdot 22$
Sufflorite, arsenical cobalt		-				

In the roasting of tin ores, a considerable quantity of arscnious acid is eollcetcd in the flues leading from the furnaces in whieh this process is effected.

The extraction of white arsenic from the cobalt ores is performed at Altenberg and Reichenstcin, in: Silesia, with an apparatus excellently contrived to protect the health of the smelters from the vapours of this metallic sublimate.

Figs. 71 to 74 represent the arsenieal furnaces at Altenberg. Fig. 71 is a vertical

section of the poison tower; fig. 72 a longitudinal section of the subliming furnace A, with the adjoining vault B , and the poison tower in part at $n ;$ fig. 73, the transverse section of the furnace A, of fig. 72 ; fig. 74 ground plan of the furnace A, where the left half shows the part above, and the right the part below the muffle or oblong rctorts ; B^{\prime} is the upper view, $\mathrm{B}^{\prime \prime}$ the ground plan of the vault B , of fig. $72 ; m, n$, the base of the poison tower. In the several figures the same letters denote the same objects : a is the mufle; b is its mouth for turning over the arsenical sehlieh, or ground orc ; c c c, fire draughts or flues; d, an aperture for eharging the muffe with fresh schlich ; e, the smoke ehimney ; f, two channels or flues for the aseent of the arsenious funes, which procced to other two flues y, and then terminate both in h, which eonducts the fumes into the vault x . They issue, by the door i, into the conduit k, thenee
by l into the spaces m, n, o, p, q, r, of the tower. The ineondensable gases eseape by the ehimney, s. 'The cover ℓ is removed after completion of the process, in order to push down the precipitate into the lower compartinents.

The arseniousschlichs, to the amount of 9 or 10 ewt. for one operation (1 roast-post, or roasting round), are spread 2 or 3 inehes thick upon the bottom of the muffle, heated with a brisk fire to redness, then with a gentler heat, in order to oxidise completely, before subliming, the arsenical ore. With this view the air must have free entrance, and the front aperture of the muffle muist be left quite open. After 11 or 12 hours, the caleined materials are raked out by the mouth of the muffle, and fresh ones are introduced by the openings indicated above, whiel are closed during the sublimatior.

The arsenious acid found in these passages is not marketable till it be re-sublimed in large iron pots, surmounted with a series of sheet-iron drums or east-iron cylinders, upon the sides of which the arsenic is condensed in its compact glassy form. The top cylinder is furnished with a pipe which terminates in a condensing eliamber.
Figs. 75, 76, represent the arsenic refining furnaces at Reiehenstein. Fig. 75 shows at A , a vertical section of the furnace, the kettle, and the surmounting drums or eylinders; over B it is seen in ele. vation; fig. 76 is a ground plan of the four fireplaces. a is the grate ; b, the ash-pit; c, the openings for firing; d, the fire-plaee ; e, iron pots or kettles which are charged with the arsenious powder; f, the fire flues proceeding to the common chimney g; h, iron eylinders; i, eaps; k, pipes leading to the poison-vent $l ; m$, openings in the pipes for introducing the probing wires.

The conduct of the process is as follows : - The pot is filled nearly to

its brim with $3 \frac{1}{2}$ ewt. of the arsenic meal; the eyliuders are fitted on by means of their handles, and luted together with a mixture of loam, blood, and hair ; theu is applied first a gentle, and after half an hour, a strong fire, whereby the arsenic is raised partly in the form of a white dust, and partly in erystals; which, by the continuance of the heat, fuse together into a homogeneous mass. If the fire be too feeble, nuly a sublimate is obtained ; but if too violent, much of the arsenic is volatilised into the pipes. The workmen judge by the heat of the cylinders whether the operation be going on well or not. After 12 hours the furnace is allowed to cool, provided the probe wires show that the sublimation is over. The eylinders are then lifted off, and the arsenious glass is detached from their inner surface. According to the quality of the poison-flour, it yields from ${ }_{3}$ ths to $\frac{7}{8}$ ths of its weight of the glass or enamel. Should any dark particles of metallie arsenic be intermixed with the glass, a fresh sublimation must be had recourse to.
In these operatious, if any sulphur is present it is ennverted into sulphurous aeid, which eseapes through the chimney, while the arsenious aeid is condensed in proper chambers, placed in the flues to reeeive it. Freshly prepared arsenious acid is a perfectly transparent solid mass; but by exposure it becomes transformed into an opaque body resembling poreelain.

White arsenic is extensively used in the preparatiou of various pignents, as the bisulphide, or realgar, the tersulphide, or orpiment, and also in the mineral greens used by paper-stainers. It is employed in glass and poreclain manufaeturc. Considerable discussion has arisen from a statement made by Mr. A. S. Taylor, that the arsenic employed in paper-hangings was removable from the surface by friction,

ARSENIOUS ACID.

and that many injurious effects had resulted from the use of such paper. Although, under some circumstances, it is possible that portions of the arsenic may escape as dust from the wall of a room, we are disposed to doubt its exerting any injurious effects. Even the men employed in burning-houses, wherc they are necessarily exposed to the escaping oxide, do not appear to suffer in health. The following letter published by Mr. Alfred E. Fletcher is much to the point: -
"The colour principally referred to is the aceto-arscnite of coppcr, commercially known as emerald green. The chief advantage which this colour possesses over other of a similar tint is that, besides having greater brilliancy, it is quite permanent. The colour, when exposed to the air for any length of time, does not fadc in tint nor lessen in intensity, which would necessarily be the case did any evaporation of its constituent parts take plaee, though in the smallest degree, especially as the layer of colour exposed is often extremely thin. Were it true that such evaporation or dissemination went on, it would indeed afford just cause of alarm, when we reflect that on the walls of houses in this country are displayed some hundred millions of square yards of paper, most of which carries on its surface a portion of arsenical colouring matter ; our books are bound with paper and cloth so eoloured, cottons and silks, woollen fabries and leather, are alike loaded with it. Now, it is stated that in a medical work an instance is noted in which injury has been received by those living in rooms decorated with these colours: surely, were the proximity of such materials injurious, it would not be necessary to search in recondite books for the registry of isolated cases. The fact of the large extent to which such materials have always been employed is a sufficient proof that there is no danger attending their use ; moreover, workmen who have been daily employed for many years in manufacturing large quantities of these colours, under the necessity of constantly handling them, are in the regular enjoyment of perfect health, though exposed also to the general influences of a chemical factory. Let blame be laid at the right door, and let the public be assured that it is not the looking at cheerful walls, the fingering of brightly ornamented books, nor the wearing of tastefully coloured clothing, that will hurt them, but the dwelling in ill-ventilated rooms."
Arsenite of Copper.-Scheele's green is a combination of arsenious acid with oxide of copper, or an arsenite of copper, and is described under that metal.

Arseniate of Potash is prepared, in the small way, by exposing to a moderate heat, in a crucible, a mixture of equal parts of white arsenic and nitre in powder. After fusion the crucible is to be cooled ; the contents being dissolved in hot water, and the solution filtered, will afford regular crystals on conling. According to M. Berzelius, they are composed of arsenic acid, $63 \cdot 87$; potash, $26 \cdot 16$; and water, $9 \cdot 97$. It is an acidulous salt, and is hence usually called the binarseniate, to denote that its composition is 2 atoms of arsenic acid and 1 of potash. 'This article is prepared upon the great scale, in Saxony, by melting nitre and arsenious acid together in a cylinder of cast iron. A neutral arseniate also is readily formed by saturating the excess of acid in the above salt with potash; it does not crystallise. The acid arseniate is occasionally used in calico printing, for preventing certain points of the cotton cloth from taking on the mordant ; with which view it is mixed up with gum water and pipe clay into a paste, which is applied to such places with a block.
Arsenic, Poisoning by. - This poison is so commonly the cause of death, by accident and by design, that it is important to name an antidote which has been employed with very great success.
This is the hydrated peroxide of iron. This preparation has no action on the system, and it may therefore be administered as largely and as quickly as possible. The following statement will render the action of this hydrated salt intelligible. When hydrated peroxide of iron is mixed in a thin paste with the solution of arsenious aeid, this disappears, being changed into arsenic acid (a far less active oxide), and the iron into protoxide $2 \mathrm{Fe}^{2} \mathrm{O}^{2}$ and $\mathrm{As} \mathrm{O}^{3}$, producing $4 \mathrm{Fe} \mathrm{O}+\mathrm{A}^{3} \mathrm{O}^{5}$. The hydrated peroxide of iron may be made in a few minutes by adding carbonate of soda to any salt of the red oxide of iron (permuriate, muriate, acctate, \&c.). It need not be washed, as the liquor contains only a salt of soda, which would be, if not beneficial, certainly not injurious. - Kane.

Detection of Arsenic in Cascs of Poisoning.

Arsenious acid, which is almost always the form in which the arsenic has cntered the system, possesses the power of preventing the putrefaction of animal substances; and henec the bodies of persons that have been poisoncd by it do not readily putrefy. The arscnious acid combines with the fatty and albuminous tissues to form solid compounds, which are not susceptible of alteratiou under ordinary cireumstanees. It hence las frequently oecurred that the bodies of persons poisoned by arsenic lave beeu found, long after death, scareely at all deeomposed; and even where the
general mass of the body had eompletely disappeared, the stomach and intestines had remained preserved by the arsenious aeid whieh had eombined with them, and by its deteetion the erimes committed many years before have been brought to light and punished. - Kane.

The presenee of arsenie may be determined by one of the following methods : -

1. Portions of the contents of the stomach or bowels being gently heated in a glass tube, open at both ends, the arsenie, if in any quantity, will be sublimed, and eolleeted as minute brilliant oetahedrons.
2. Or by the presence of organic matter; if the ignition is effeeted in a tube elosed at one end, metallie arsenie sublimes, forming a steel-grey eoat, aud emitting a strong smell of garlie.
3. Ammonia Nitrate of Silver produees a eanary-yellow preeipitate from a solution of arsenious aeid (arsenite of silver). The phosphate of soda produces a yellow preeipitate of tribasie phosphate of silver, whieh exaetly resembles the arsenite. The phosphate is, however, the more soluble in ammonia, and when heated gives no volatile produet; while the arsenite is deeomposed with white arsenic and oxygen, leaving metallie silver behind.
4. Ammonic Sulphate of Copper produces a fine apple-green preeipitate, which is dissolved in an exeess of either aeid or ammonia. It is, however, uneertain, unless the preeipitate be dried and redueed.
5. The Reduction Test.-Any portion of the suspeeted matter, being dried, is mixed with equal parts of eyanide of potassium and earbonate of potash, both dry. This mixture is to be introduced into a tube terminating in a bulb, to whieh heat is applied, when metallie arsenie sublimes.
6. Mursh's Test.-This is one of the most delieate and useful of tests for this poison, and when performed with due eare there is little liability to error. The liquid eontents of the stomach, or any solution obtained by boiling the contents, is freed as
 much as possible from animal matter by any of the well known methods for doing so. This fluid is then rendered moderately aeid by sulphurie acid, and introdueed into a bottle properly arranged.

Fig. 77 is the best form for Marsh's apparatus :- a is a bottle eapable of holding half, or, at most, a pint. Both neeks are fitted with new perforated eorks, whieh must be perfeetly tight. Through one of these the funnel tube, b, is passed air-tight, and through the other the bent tube, c, whiel is expanded at e into a bulb about an ineh in diameter. This bulb serves to eolleet the particles of liquid whieh are thrown up from the eontents of the bottle, and whieh drop again into the latter from the end of the tube. The other end of the tube is connected, by means of a eork, with tube d, about six inehes long, whieh is filled with fused ehloride of ealcium, free from powder, destined to retain the moisture. In the opposite end of the tube d is fixed, air-tight, another tube, e, made of glass free from lead, 12 inehes long, and, at most, $\frac{1}{2}$ th of an inch in internal diameter. It must be observed that the funnel tube d is indispensably neeessary to introduce the fluid to the pieees of perfeetly pure metallie zine already plaeed in the bottle. Hydrogen gas is at onee formed, and if arsenie is present, in even the smallest quantity, it combines with the liydrogen, and (gascous urseniuretted hydrogen) eseapes. If the gas as it issues fron the jet is set on fire, no produet but water is generated if the hydrogen is pure; and by holding against the flame a cold white poreelain basin, or pieee of glass, or of miea, no steam is produeed, and a dew is formed upon the eold surface. If arsenie be present, a deposit is obtained, whieh, aceording to the part of the flame in which the substanee to reeeive it is plaeed, will be either a brown stain of metallie arsenie, or a white one of arsenious aeid. If the quantity of arsenie is too small to be deteeted in this way, it will be well to ignite the horizontal part of the tube. All the arseniuretted hydrogen will, in passing that point, beeome decomposed, and deposit its arsenie. The heat will drive this forward, and a little beyond the heated portion metallie arsenie will be eondensed. Several preeautions are neeessary to be observed; but for the details of those we must refer to works espeeially direeted to the eonsideration of this subjeet. One souree of error must, however, be alluded to. A eompound of antimony and hydrogen is formed under similar eireumstanees; and this
gas in many respects resembles the compound of arsenic and hydrogen. If the stain formed by the flame is arsenic, it will dissolve, wben heated, in a drop or two of sulpho-lhydride of ammonia, and a lemon-yellow spot is left ; if antimony is present, it leaves a yellow stain.-Wöhler.

If a drop of bromine is placed on a saucer, and a capsule containing arsenical spots inverted over it, the spots take a very bright lemon-yellow tinge in a sbort time. Antimonial spots, under the same circumstances, are acted on much more rapidly (in about five seconds at a temperature of $52^{\circ} \mathrm{F}$.), and assume an orange shade. Botb become colourless if exposed to the air, and are again restored if treated witb a strong solution of sulphuretted hydrogen. The secondary yellow of the arsenical spots, as observed by Lassaigne, disappears on the addition of ammonia, whilst that of antimonial spots remains untouched. A concentrated solution of iodate of potash turns arsenical spots of a cinnamon-red and dissolves them almost immediately. On antimonial spots it bas no visible action within three or four hours. Solutions of the hypochlorites (eblorides) of soda and lime and cblorine water dissolve arsenical spots instantaneously, leaving those of antimony. A concentrated solution of the chlorate of potash gradually acts upon arsenical spots, but not upon those of antimony. The nitroprusside of potassium, on the other hand, slowly dissolves antimony, producing no perceptible effect upon arsenic. The statement of Biscboff, that arsenical spots were soluhle, antimonial insoluble, in a solution of the chloride of sodium, conld not be verified, as, after repeated trials, it was found to leave both not perceptibly affected. Tbe cblorine of barium, tbe hypochlorate and the sulpbite of ammonia, afforded likewise no distinguishing action. The nitrate of ammonia dissolves arsenical more rapidly than antimonial stains. Of these reactions the most decisive are tbose of iodate of potasb, bypochlorites of soda and lime, and fresh chlorine water.
It is well known tbat fluids mixed with glutinous matter are very liable to froth up when hydrogen is disengaged in tbem, from the mutual action of zinc and a dilute acid; and that the frotb ohstructs the due performance of the experiment of Marsh. A committee appointed hy the Prussian Government contrived an ingenious modification of Marsb's apparatus, the annexed form (fig. 78) representing an ingenions simplification of it by Dr. Ure :- Λ, is a narrow glass cylinder, open at top, about 10 inches high, and $1 \frac{1}{4}$ or $1 \frac{1}{2}$ inch diameter inside; \mathbf{B} is a glass tube, about 1 inch diameter outside, drawn to a point at bottom, and shut with a cork at top. Tbrough the centre of tbis cork the small tube c passes down air-tight, and is furnished at top with a stopeock, into wbich the bent small tube of glass (without lead) E is cemented. The bent tuhe F is joined to the end of E with a collar of caoutcbouc, or a perforated cork, which will be found more convenient.

The manner of using tbis apparatus is as follows: - Introduce a few oblong slips of zinc, free from arsenic, into B , and tben insert its air-tight cork with tbe attached tubes. Having opened the stopeock, pour into A as much of the suspected liquid, acidulated with dilute hydrochloric or sulphuric acid (eacb pure) as will rise to tbe top of the cork, after \boldsymbol{B} is full, and immediately shut the stopeock. Tbe generated hydrogen will force down the liquid out of the lower orifice of B into A , and raise the level of it above tbe cork. Tbe extremity of the tube \mathbf{F} being dipped heneath tbe surface of a weak solution of nitrate of silver, and a spirit-flame heing placed a little to the left of the letter E , the stopeock is then to he slightly opened, so that the gas which now fills the tube B may escape so slowly as to pass off in separate small bubbles through the silver solution. By this means the whole of the arsenic contained in the arseniuretted hy-
 drogen will be deposited cither in the metallic state upon the inside of the tube es, or with the silver into the characteristic black powder. The first charge of gas in B being expended, the stopcock is to be sbut till the liquid be again expelled from it by a fresh disengagement of lyydrogen.

The ring of metallic arsenic deposited beyond e may be chased onwards by placing a second flame uuder it, and thereby formed into an oblong brilliant steel-like nirror. It is evident that by the patient use of this apparatus the whole arscnic iu any poisonous liquid may be collected, weighed, and subjected to every kind of chemical verifieation. If F be joined to E by means of a perforated cork, it may readily be turned about, and its taper point raised into a position such as when the hydrogen issuing from it is kindled, the flame may be made to play upon a surface of glass or porcelain, in order to produce the arsenical mirror.
7. Reinscl's Test. - Professor Reinsch has proposed oan entircly new method of detecting arsenic, which consists in acidulating any suspected fluid with hydrochloric acid, heating in it a thin plate of bright copper, upon which the arsenic is deposited in the form of a thin metallic crust, and then separating the arsenic from the copper in the state of oxide by subjecting the copper to a low red heat in a glass tubc. Organic fluids and solids suspected to contain arsenic, may be prepared for this purpose by boiling them for half an hour with a little hydrochloric acid; solid matters being cut into small shreds, water being added in sufficient quantity to let the cbullition go on quietly, and care being taken to contiuue the boiling until the solids are either dissolved, as generally happens, or are reduced to a state of minute division.

The method of Reiusch is exceedingly delicate, for it is adequate to detect a 250,000 th part of arsenic in a fluid. It is also perfeet in another respect: it does not leave any arsenic in the subject of analysis; none, at least, which can be detected by any other means, even by the most delicate process yet proposed, that of Mr. Marsh.
Cut the copper on which the arsenic is deposited into small chips, so that they may be easily packed in the bottom of a small glass tube, and apply a low red heat. A white crystalline powder sublimes; and if this be examined in the sunshine, or with a candle near it, a magnifier of four or five powers will enable the observer to distinguish the equilateral triangles composing the facets of the octahedral crystals, which arc formed by arsenious acid when it sublimes. Sometimes the three equal angles, composing a corner of the octahedron, may be seen by turning the glass in various directions. If triangular faccts cannot be distinguished, owing to the minuteness of the crystals, then shake out the copper chips, close the open end of the tube with the finger, and heat the sublimed powder over a very minute spirit-lamp flamc, chasing it up and down the tube till crystals of adequate size are formcd. Next boil a little distilled water in the tube over the part where the crystalline powder is collected; and when the solution is cold, divide it into three parts, to be tested with ammoniacal nitratc of silver, ammoniacal sulphate of copper, and sulphuretted hydrogen, either in the state of gas or dissolved in water.
8. Fleitmann's Test. - If a solution containing arsenic be mixed with a large excess of concentrated solution of potassa, and boiled with fragments of granulated zinc, arseniuretted hydrogen is evolved, and may be easily reorganised by allowing it to pass on to a piece of filter paper spotted over with solution of nitrate of silver. These spots assume a purplish-black colour, even when a small quantity of arsenic is present. This experiment may be performed in a small flask, furnished with a perforated cork carrying a piece of glass tube of about $\frac{1}{4}$ inch diameter. It will be observed that this test serves to distinguish arsenic from antimony.

The following remarks on the Toxicological Discovery of Arsenic deserve attention :-

This active and easily administered poison is fortunately one of those most casily and cortainly discovered ; but the processes require great precaution to prevent mistaken inferences : if duc care is taken, arsenic can be found after any lapse of time, as well as after the most complete putrefaction of the animal remains. The longest time after which it has been discovered by myself is eight years, which was the case of an infant; nothing but the bones of the skeleton remained, the coffin was full of earth, and large roots of a tree had grown through it. The metal was obtained from the bones, and in the earth immediately below where the stomach had existed. Many cascs have nccurred in my experience, where one, two, threc, four, and five years have elapsed; in one casc, after fourtcen months, where the body of a boy had been floating in a coffin full of water. "The poison is given in one of three states, white arsenious acid, ycllow sulphuret ("orpiment"), or "realgar," red sulphuret of arsenic; and it is worthy of notice that putrefaction will turn either white or red into yellow, but will never turn yellow into either white or red; this is owing to the hydrosulphuret of ammonia disengaged during decomposition.

Modern toxieologists liave abandoned all the old processes for the detection of this poison, and have adopted one of two, which have becn found more expeditions, as well as more certain. The first was proposed by Marsh, of Woolwich : it is founded upon the principle that nasecnt lyydrogen will absorb and carry off auly arscnic which may
be present, as arseniuretted hydrogen ; but as I prefer the principle first proposed by Reiusch, and have always acted upon it, I shall confine my description to the processes founded upon it. The priuciple is this : arsenic mixed or combined with any organic matter will, if boiled with pure hydrochloric acid and metallic eopper, be deposited upon the copper; but as this depositing property is also possessed by mercury, antimony, bismuth, lead, and tellurium, subsequent operations are required to discriminate between the deposits. I take pieces of copper wire, about No. 13 size, and $2 \frac{1}{2}$ inches long; thesc 1 hammer on a polished plane with a polished hammer, for half their length (fig. 79), and having brought the suspected matters to a state of dryness, and boiled the copper blade in the pure hy-
 drochloric acid, to prove that it contains no metal capable of depositing, I introduce a portion of the suspeeted matter and continue the boiling ; if the copper becomes now either steel-grey, blue, or black, I remove it, and wash it free of grease in another vessel in whieh there is hot diluted hydroehloric aeid ; I now dry it, and, with a scraper with a fine edge, take off the deposit with some of the adhering copper, and repeat the boiling, washing, and scraping, so as to have four or five specimens on copper; one of these is sealed up hermetically in a tube for future production. I now take a piece of glass tube, and having heated it in the middle, draw it out, as in fig. 80, dividing it at Δ, each 80 section being about 2 inches long, the wide orifices being about $\frac{3}{10}$ ths of an inch in diameter, and $\frac{1}{2}$ an inch long, the capillary part $\frac{1}{8}$ th of an inch in diameter and $1 \frac{1}{2}$ inch long; now, by putting one portion of the scrapings into one of the tubes at
 ${ }_{B}$, and holding it upwards over a very small flame, so that the volatile products may slowly ascend into the narrow portion of the tube, we prove the nature of the deposit: if mercury, it condenses in minute white shining globules; if lead or bismuth, it does uot rise but melts into a yellowish glass, which adheres to the copper; if tellurium, it would fall as a white amorphous powder; if antimony, it would not rise at that low temperature; but arsenious acid condenses as minute oetahedral crystals, looking with the microscope like very transparent grains of sand. I make three sueh sublimates, one of which is sealed up like the arsenie for future production. I now eut the eapillary part of another of the tubes in pieces, and boil it in a few drops (say 10) of distilled water, and when cold drop three or four drops on a plate of white porcelain, and with a glass rod drop one drop of ammoniacal sulphate of copper in it: and now to make the colours from this and the next test more conspicuous, I keep a chalk stone, planed and elcaned, in readiness, and placing on it a bit of elean white filtering paper, I couduct the drops of copper test upon the paper, which permits the excess of copper solution to pass through into the chalk, but retains the smallest proportion of Scheele's green; the other few drops of the solution are treated the same way with the ammoniacal nitrate of silver. When I get the yellow precipitate of arsenite of silver, the papers, with these two spots, are now dried and sealed up in al tube as beforc, and that with the silver must be kept in the dark, or it will become black. I have still one of the tubes with the arseuical sublimate remaining; through this I dircet a stream of hydrosulphurie acid gas for a few seeonds, which converts the sublimate into yellow orpinent. I have now all five tests: the metal, the acid, arscnite of copper, arsenite of silver, and yellow sulphuret; and the foovort th of a grain of arsenic is suffieient in adroit hands to produce the whole; but all five must be present, or there is no positive proof, for many matters will cause a darkness of the copper in the absenec of arsenic,-sulphurets even from putrefaction;-but there is no sublimate in the second operation, because the sulphur burns into sulphurous acid and passes off upwards. Corn, grasses, and earth slightly darken it from some unknown cause, but produce no sublimate; so, if the solution of suspected arsenious acid is tested with the copper test while hot, it will produce a greenish deposit of oxide of eopper, through the heat dissipating a little ammonia, or if the copper blade has not been deprived of grease by the diluted hydrochloric acid, the sublimed acid from the grease will precipitate copper from that test; but as much of the sulphuric acid of commerce, and nearly all such hydrochloric acid and some eommereial zinc contains arsenie, nothing can excuse a toxicologist who attempts to try for arsenic if he has not previously experimented with all his reagents before he introduces the suspected matters. I should also mention that this metal is to be found in all parts of the body, but longest, and in greatest quantity, in the liver, where it is frequently found many days after it has disappeared from the intestines. - W. Merapath.

Arseninus acid of eommerce is frequently adulterated with chalk or plaster of Paris. These impurities are very easily detected, and their proportions estimated. Arsenious aeid is entirely volatilised by heat, consequently it is sufficient to expose a weighed quantity of the substance to a temperature of about $400^{\circ} \mathrm{F}$. in a eapsule or
erucible. The whole of the arsenic will pass off in fumes, while the impuritics will be left behind as a fixed residuum, which can, upon eooling, be weiglied.

It is seareely neeessary to state that, the fumes of arscnic being very poisonous, the volatilisation should be carried on under a chimney having a good draught.

Our Imports of Arsenic were as follows:-
$1855-\quad-\quad-\quad-\quad-\quad 73$ ewts.

ARTESIAN WELLS. Under this name is designated a eylindrical perforation, bored vertically down through one or more of the strata of the earth, till it passes into a porous gravel bed containing water, placed under such ineumbent pressure as to make the fluid rise through the perforation, either to the surface or to a height convenient for the operation of a pump. In the first ease, these wells arc ealled spouting or overflowing. Thesc wells derive their name from Artois, one of the provinces of France, in the département du pas de Calais, where the practiee of employing them was revived. Thicy have been used for a long period in the East and in Italy.
M. Lefebvre, "Comptes Rendus de l'Acad. des Scicnces, 1838," deseribes several very aneient Artesian wells, which were discovered by M. Ayme in the Oasis of Thebes. These appear to have been sunk through 80 feet of clay and marls, and then through 300 feet of limestone. M. Ayme states that in the Lybian desert, where there are no rivers or springs, and upon which rain never falls, formerly a large population was supplied with water by Artesian wells, several of which have been eleared out and restored by this French engineer with perfect suceess. The "Wells of Solomon" in the plains of Tyre are supposed to be of this description. There are now many such wells in London and its neighbourhood, perforated through the immensely thiek bed of the London elay, and even through some portions of the subjacent chalk.

The formation of Artesian wells depends on two things, essentially distinct from each other : $1, \mathrm{On}$ an acquaintance with the physical eonstitution of the rocks forming the district of any country and their relative situations, in the locality where the water supply is required, and in those distant spots from which the water is expected to be derived; and, 2 , On the skilful direction of the proeesses by which we can reach the water level, and of those by whieh we ean promote its aseent in the tube.

The operations employed for penetrating the soil are entirely similar to those daily practised by the miner; but the well excavator must resort to peculiar expedients to prevent the purer water, which comes from deep strata, mingling with the eruder waters of the alluvial beds near the surface of the ground, as also to preveut the small perforation getting eventually filled with rubbish.

The eause of overflowing wells has been aseribed to a variety of circumstances. But, as it is now generally admitted that the numerous springs whieh issue from the ground proceed from the infiltration of the waters progressively condensed in rain, dew, snow, \&e. upon the surface of our globe, the theory of thesc intcrior streamlets becomes by no means intricate; being analogous to that of syphons and water jets, as expounded in treatises of physics. The watcrs are diffused, after eondensatiou, upon tine surfaee of the soil, and percolate downwards, through the various pores and fissures of the geological strata, to be again united subterraneously in veins, rills, streamlets, or expanded films, of greater or less magnitude or regularity. The beds traversed by numerous disjunctions will give oecasion to numerous interior enrrents in all direetions, which cannot be recovered and bronght to the day; but wheu the ground is eomposed of strata of sand, or gravel very permeable to water, separated by other strata nearly inn pervious to it, reservoirs are formed to our hand, from which an abundant supply of water may be spontaneously raised. In this casc, as soon as the upper stratum is perforated, the waters may risc, in consequcnce of the hydrostatic pressure upon the lower strata, and even overflow the surface in a eonstant stream, provided the level from whieh they proeeed be proportionally higher.
The sheets of water oceur prineipally at the separation of two contiguons formations; and, if the suceession of the geologieal strata be considered, this distribution of the water will be seen to be its neecssary consequenee. In fact, the lower beds are frequently eomposed of eompaet sandstone or lincstone, and the upper beds of elay. In level countries, the formations being almost always in horizontal beds, the waters which feed the Artcsian wells must come from distriets somewhat remotc, where the strata are morc clevated, as towards the second and transition rocks. The copions streams condensed upon the sides of these colder lands may be therefore regarded as the proper reservoirs of our wells.

Fig. 81 represents the manner in which the eondensed water of the licarens may be supposed to distribute itself upon a portion of the surface of our globe. Here we liave a geologieal section, showing the sucecssion of the sevcral formations.

The figure is supposed to represent two beds, A, B, more porous and consequently more absorbent than the rocks with which they are interstratified. The dews condensed and rains falling upon the distant hills pass rapidly by the outerops of these strata to the lower levels, until the whole mass becomes thoroughly saturated with water. Supposing two sueh beds as are represented in the section to exist fully eharged with water, it is evident that if we sank "bore-holes" through the roeks down
 at C, D, the water would rise through those welis, and jet out to sueh a height alove the surfaee as is due to the height of the hills from whieh the water has been obtained. The fountain derived from B would necessarily flow as mueh higher than that derived from the bed A, as is the height of \boldsymbol{B} above A.

The annexed seetion (fig. 82) is an aetual one of the eountry from Sussex to Bedfordshire, as given by Mr. Prestwich. In this drawing the lower stratum is the Kimnueridge and Weald clay, \mathbf{G}, whieh is impermeable; upon this rests the lower greensand, F , whieh is permeable, and probably highly eharged with water; the gault, E , above, whieh is impermeable; then we have the upper greensand, D , chall, C , sands and motlled clay, B , London clay and Bagshot sands, A, all of which are more or less permeable, exeept the London clay.

The line of Trinity high-water mark erosses the section, and it will be understood, eonfining our attention to the lower greensand only, that if a well is sunk from London through the upper strata to the greensand, that the water will rise through that open-

ing, and spout out above the surfaee, so long as the water in the greensand basin is supported at a height above the Trinity mark.
For exact information of the details of construeting Artesian wells, the reader is referred to "Traité sur les Puits Artésiens," by M. Garnier, and to "Considérations Géologiques et Physiques sur la Théorie des Puits forés, ou Fontaines Artésiennes," by M. le Vieomte Herieart de Thury, and to " Rudimentary Treatise on Well-Digging, Boring," \&c., by Mr. J. G. Swindell. The following description given by the late Dr. Ure is valuable, and is eonsequently preserved, with very slight alterations, although we eonsider it seareely in plaee in a dictionary which does not profess to deal with praetical engineering.
The sitration of the intended well being determined upon, a eireular hole is generally dug in the ground, about 6 or 8 feet deep, and 5 or 6 feet wide. In the eentre of this hole the boring is earried on by two workmen below, assisted by a labourer above, as shown in fig. 83.
The handle (fig. 84) having a female screw in the bottom of its iron shank, with a wooden bar or rail passiug through the socket of the shank, and a ring at top, is the general agent to whieh all the boring implements are to be attaehed. A chisel (fig. 85) is first employed, and eonneeted to this handle by its serew at top. If the ground is tolerably soft, the weight of the two workmen bearing upon the erossbar, and oeeasionally foreing it round, will soon eause the chisel to penetrate; but if the ground is hard or strong, the workmen strike the ehisel down with repeated blows, so as to peek their way, often changing their situation by walking round, whielz breaks the stones, or other hard substanees, that may happen to obstruet its progress.
The labour is very eonsiderably redueed by means of an clastie wooden pole, placed horizontally over the well, from whieh a chain is brought down, and attaehed to the ring of the handlc. This pole is usually made fast at one end, as a fulcrum, by being set into a heap of heavy loose stones; at the other end the labourcr above gives it a
Vol. I.
slight up and down vibrating motion, corresponding to the beating motion of the workmen below, by which means the elasticity of the pole in rising lifts the handle

90 and peeker, and thereby very considerably
 diminishes the labour of the workmen. See fig. 83.

When the holc has been thus opened by a chisel, as far as its length will permit, the chisel is withdrawn, and a sort of a eylindrical auger (fig. 86) attached to the handle (fig. 84), for the purpose of drawing up the dirt or broken stones which have been disturbed by the chisel. A section of this auger is shown in fig. 87, by which the internal valve will be seen. The auger being introduced into the hole and turned round by the workman, the dirt or broken stones will pass through the aperture at bottom (shown at fig. 88), and fill the cylinder, which is then drawn up and discharged at the top of the auger, the valve preventing its eseape at bottom.
In order to penetrate deeper into the ground, an iron rod, as a (fig. 89) is now to be attached to the chisel (fig. 85) by serewing on to its upper end, and the rod is also fastened to the handle (fig. 84) by screwing into its socket. The chisel, having thus become lengthened by the addition of the rod, is again introduced into the hole; and the operation of pecking, or forcing it down, is carried on by the workmen as bcfore. When the ground has been thus perforated as far as the chisel and its rod will reach, they must be withdrawn in order again to introduce the auger (fig. 86) to collect and bring up the rubbish; which is done by attaching it to the iron rod in place of the chisel. Thus as the hole becomes deepened, other lengths of iron rods are added, by connecting them together, as $a b$ are in fig. 90 . The necessity of frequently with-
drawing the rods the great friction produced by the rubbing of the tools against its sides, as well as the lengths of rods augmenting in the progress of the operation, sometimes to the extent of several hundred feet, render it extremely ineonvenient, if not impossible, to raise them by hand. A tripedal standard is therefore generally constructed by three seaffolding poles ticd together over the hole (as shown fig. 83), from the centre of which a wheel and axle, or a pair of pulley-blocks, is suspended for the purpose of hauliug up the rods, and from which hangs the fork (fig. 91.) This fork is to be brought down under the shoulder, near the top of each rod, and made fast to it by passing a pin through two little holes in the elaws. The rods are thus drawn up, about seven feet at a time, which is the usual distance between each joint, and at every hatul a fork (fig. 92) is laid horizontally over the hole, with the shoulders of the lower rod resting between its elaws, by which means the rods are prevented fron sinking down into the hole again, while the upper length is unserewed and removed. In attaching and detaching these lengths
of rod, a wrench (fig. 93) is employed by which tbey are turned round, and the screws forced up to their firm bearing.

The boring is sometimes performed for the first sixty or a hundred feet by a chisel of $2 \frac{1}{2}$ inches wide, and cleared out by a gouge of $2 \frac{1}{4}$ diamctcr, and then the hole is widened by a tool such as is shown at fig. 94 . Tbis is merely a chisel (as fig. 85) four inches wide, but witb a guide, a, put on at its lower part, for the purpose of keeping it in a perpendicular direction; the lower part is not intended to peck, but to pass down the hole previously made, while the sides of the chisel operate in cnlarging the hole to four inches. The process, however, is generally performed at one operation, by a cbisel of four inches wide (as fig. 85), and a gouge of three inches aud three-quarters (as fig. 86).

It is obvious, that placing and displacing the lengtbs of rod, which is done every time tbat the auger is required to be introduced or withdrawn, must of itself be extremely troublesome, independent of the labour of boring, but yet the operation proceeds, wben no unpropitious circumstances attend it, with a facility almost incredible. Sometimes, however, rocks which require great labour to penetrate interccpt tbe way; but tbis is always affected by pecking, which slowly pulverises the stone. The most unpleasant circumstance attendant upon this business is the occasional breaking of a rod in the hole, which sometimes creates a delay of many days, and an incalculable labour in drawing up the lower portion.

When the water is obtained in such quantities and of such quality as may be required, the bole is dressed or finisbed by passing down it a diamond chisel, funnel-mouthed, with a triangular bit in its centre ; this makes the sides smonth previous to putting in the pipe. This chisel is attached to rods and to the handle, as before described ; and, in its descent the workmen continually walk round, by which the hole is made smooth and celindrical.
In order to kcep the water which we desire to obtain pure, and uncontaminated witb mineral springs, or by surface drainage contaminated with organic matter, which would pass into the hole througb the permeable strata near the surface, the hole is cased, for a considerable deptl1, with a metallic pipe, about a quarter of an incb smaller than the borc. This is generally made of tin (though sometimes of copper or lead), in convenient lengths; and, as cacb length is let down, it is held by a sboulder resting in a fork, while another length is soldered to it; by which means a continuous pipe is carried througb the bore, as far as may be found necessarr, to exclude land springs, and to prevent loose earth or sand from falling in and choking the aperture.
It sometimes happens, in sinking Artesian wells, that one or more lines of water may be tapped which it is desirable to avoid. To prevent the mixture of good and bad water, the diameter of the boring is increased from the surface to the bed, or the instertices between the strata, and a hollow cylinder is passed down through its centre to the continuation of the boring beneath the line of bad water, in such a manner that it cannot mix with the good water coming from below. Thus the bad water, rising, asceads on the outside of the cylinder, while tbe good water rises within it.
Mr. John Good, of Tottenham, who has been extensively employed in boring the earth for water, obtained a patent, in August, 1823, for certain improved implements contrived by him to facilitate his useful labours; a description of which cannot fail to be interesting.

The figures annexed cxhibit these ingenions tools; fig. 95 is an auger, to be counected by tbe screw-head to the length of rods by which the boring is carried on. This auger is for boring in soft clay or sand ; it is cylindrical, and has a slit or opening from end to end, and a bit or cutting-piece at bottom. When the earth is loosc or wet, an auger of the same form is to be employed, hut the slit or opening reduced in width, or even without a slit or opening. A similar auger is used for cutting through chalk; but the point or bit at bottom should then project lower, and, for that purpose, some of these cylindrical augers are made with movable bits, to be attacbed by screws, which is extremely desirable in grinding them to cutting edges. Fig. 96 is a hollow conical auger, for boring loose sandy soils; it has a spiral cutting edge coiled round it, which, as it turns, causes the loose soil to ascend the inclined plane, and deposit itself in the hollow within. Fig. 97 is a hollow cylinder or tube, shown in section, with a foot-valve, and a bucket to be raised by a rod and cord attached at the top; this is a pumping tool for the purpose of getting up water and sand that would not rise by the auger. When this cylinder is
 lowered to the bottom of the bore, the bucket is lifted up by the
deseends again by its own gravity, having a valve in the bueket, opening upwards, like other lift-pumps, which, at every stroke, raises a quantity of water and sand in the eylinder equal to the stroke; the ascent and descent of the bueket being limited by a guide-picee at the top of the cylinder, and two small knobs upon the rod, which stop against the eross-guide. Fig. 98 is a tool for getting up broken rods. It eonsists of a small cylindrical piece at bottom, which the broken rod slips through when it is lowered, and a small eatch with a knife-cdge, aeted upon by a baek-spring. In rising, the tool takes hold of the broken rod, and thercby cnables the workmen at top to draw it up. Another tool for the same purpose is shown at fig. 99, whieh is like a pair of tongs; it is intended to be slidden down the bore, and for the broken rod to pass between the two eatehcs, whieh, pressed by baek-springs, will, when drawn up, take fast liold of the broken rod.
lig. 100 is a tool for widening the hole, to be connected, like all the others, to the end of the length of rods passed down the borc ; this tool has two cutting-pieees extending on the sides at bottom, by which, as the tool is turned round in the bore, the carth is peeled away. Fig. 101 is a chisel, or punch, with a projecting piece to be used for penetrating through stone; this chisel is, by rising and falling, made to peck the stone, and pulverise it ; the small middle part breaking it away first, and afterwards the broad part coming into aetion. Fig. 102 is another ehisel, or punching tool, twisted on its cutting edge, which breaks away the 104 greater portion of the stone as it beats against it.
The manner of forcing down lengths of east-iron pipc, after the hore is formed, is shown at $f i g, 103$; the pipe is seen below in the soeket, at the end of which a block is inserted; and from this block a rod extends upwards, upon whieh a weight at top slides. To this weight eords are shown to be attached, reaching to the top of the bore; where the workmen alternately raise the weight and let it fall, whieh, by striking upon the block in its middle, beats down the pipe by a suceession of strokes; and when one length of pipe has, by these means, been forced down, another length is introduced into the socket of the former. Another tool for the same purpose is shown at fig. 104, whieh is formed like au acorn; the raised part of the acorn strikes against the edge of the pipe, and by that means it is forced down the bore. When it happens that an auger breaks in the hole, a tool similar to that shown at fig. 105 is introdueed; on oue side of this tool a eurved piece is attached, for the purpose of a guide, to conduct it past the cylindrical auger; and at the end of the other side is a hook, which, taking hold of the bottom edge of the auger, emables it to be drawn up.
Wrought iron, eopper, tin, and lead pipes are oecasionally used for lining the bore; and as these are subject to bends and bruises, it is necessary to introduce tools for the purpose of straightening their sides. One of these tools is shown at fig. 106, whieh is a bow, and is to be passed down the inside of the pipe, in order to press out any dents. Another tool for the same purpose is shown at fig. 107, which is a double bow, and may be turned round in the pipe for the purpose of straightening it all the way down; at fiy. 108 is a pair of clamps, for turning the pipe round in the hole while driving.

When loose stones lie at the bottom of the hole whieh are too large to be brought up by the cylindrical auger, and eannot be eonveniently broken, theu it is proposed to introduee a triangular claw, as fig. 109, the internal notches of which take hold of the stone, and, as the tool rises, bring it up. For raising hroken rods, a tool like fig. 110 , is sometimes employed, whieh has an angular claw that slips under the shoulder of the rod, and holds it fast while drawing up.
In raising pipes, it is neeessary to introduce \mathfrak{a} tool into the iuside of the pipe, by which it will be held fast. Fig. 111 is a pine-apple tool for this purpose; its surfaec is cut like a rasp, which passes easily down into the pipe, but catehes it as it is drawn up; and by that meaus brings the pipe with it. Fig. 112 is a spear for the same pur-
pose, which easily enters the pipe by springing; at the ends of its prongs there are turks, which stick into the metal as it is drawn up, and thereby raise it.

These are the new implements for which the patent was granted. In the process of the boring, there does not appear to be anything new proposed; but that thesc several tools are to be employed for boring, pecking, and otherwise penetrating, raising the earth, and extracting broken or injured tools. There arc also suggestions for employing long buckets, with valves opening upward in their bottoms, for the purpose of drawing water from these wells when the water will not flow over the surface; also lift pumps with a succession of buckets for the same purpose. But as these suggestions possess little if any novelty, it cannot be intended to claim them as parts of the patent.

The so-called primary formations are seldom favourable to the construction of Artesian wells, on account of the compact massiveness of their rocks, and of the rarity of filtering strata overlying retentive ones. It is therefore vain to attempt the formation of an overflowing spring, upon the above principles, in territories of granite, gneiss, mountain limestone, and basalt. The hot springs which burst out of the ground in primary districts come undoubtedly from a great depth under the surface, and derive their heat, and also probably their waters, from an exalted subterranean temperature; but it would not be practical to bore to such extreme depths as would be necessary in these rocks. A miniature representation of such springs is exhibited in the intermitting fountains of freslu water on the shoulder of Vesuvius.

The most remarkable example of an Artesian well is that at the abattoir of Grenelic, a suburb of the south-west of Paris, where therc was a great want of water. It cost eight years of difficult labour to perforate. The geological strata round the French capital are all of the tertiary class, aud constitute a basin similar, in most respects, to that upon which London stands. The surface at Grenelle consists of gravel, pebbles, and fragments of rock, which have been dcposited by the waters at some period anterior to any historical record. Below this layer of detritus, it was kuown to the engineer that marl and clay would be fonnd. Underneath the marl and the clay, the boring rods had to perforate pure gravel, plastic clay, and finally chalk. No calculation from geological data could determine the thickness of this stratum of chalk, which, from its powers of resistance, might present an almost insuperable obstacle. The experience acquired in boring the wells of Elbeuf, Rouen, and Tours was in this respect but a very imperfect guide. But supposing this obstacle to be overcome, was the engineer sure of finding a supply of water below this mass of chalk? In the first place, the strata below the chalk possessed all the necessary conditions for producing Artesian springs, namely successive layers of clay and gravel, or of pervious and impervious beds. M. Mulot, however, rclied on his former experience of the boriugs of the wells at Rouen, Elbeuf, and Tours, where abundant supplies of water had been found below the chalk, between similar strata of clay and gravel, and he was not disappointed.
M. Arago had shown that the water of the spring here would necessarily rise to the surface, because in the well at Elbeuf, which is nearly 9 yards above the level of the sea, the water rises from 27 to 29 yards above the surface of the earth, and cousequently, from 36 to 38 yards above the ocean level. Now, as the orifice of the bore at Grenelle is orly 34 yards above the same level, it followed that, if the identical water-bed was met with, the water would rise above the earth's surface at Grenelle.
The necessary works were commenced with boring rods ahout 9 yards long, attached to each other, and which could be raised or lowered by mechanical power, while an ingenious method was adopted for giving them a rotary motion. The diameter of the tube at the top of the bore is 11 inches and at the bottom $6 \cdot 63$ inches, according to M. Rey. The instrument affixed to the end of the lowest boring rod was changed according to the different strata which were successively attacked: the form suited for passing through the softer materials near the surface being unsuitable for boring through the chalk and flint, a hollow tube was used for the former, while a chisel-shaped tool was employed to penetrate the latter. The size of the rods was lessened as the depth increased; and, since the subterranean water was not reached so soon as was expected, it became requisite to enlarge five several times the diameter of the bore, in order to permit the work to be successfully prosecuted. Accidents occurred which tried the patience of the projectors. In May, 1837, when the boring had extended to a depth of 418 yards, the hollow tube, with nearly 90 yards of the long rods attached to it, broke and fell to the bottom of the hole, whence it became nccessary to extract the broken parts before any further progress could be madc. The difficulty of accomplishing this task may be conceived; for the differcut fragments were not all extracted until after the constant labour of 15 months. Again, in April 1840 , in passing through the chalk, the chiscl attached to the boring rod got detached.
und before it could be recovered, several months were spent in digging round ahout it. A similar oecurrence again ercated an ohstaele whieh impeded the work for 3 months, but instead of withdrawing the detached part, it was foreihly driven down anong the stratum of gravel. At length, in Fchriary, 1841, after 8 years' lahour, the rods suddenly descended several yards, having pierced into the vault of the subterrancan waters so long sought after by the indefatigahle engineer. A few hours afterwards, he was rewarded for all his anxious toils; for lo! the water rose to the surface, and discharged itself at the rate of 881,884 gallons in every 24 hours; the temperature of the water being nearly $82^{\circ} \mathrm{F}$. At first it hrought up so great a quantity of sand that the tube was several times choked up hy it, and even now it is not free from oeeasional, though rare interruptions, but the force of the eolumn of water has always proved sufficient to elear its way after a short interval. The water flows in a clear eontinuous stream, and is carried hy pipes to a reservoir ncar the Panthcon, whenee it is distributed over the adjaeent parts of the eity, as well as along the line of the Boulevards from the abattoir to the Obscrvatory. By means of small pipes, also the Éeole Militaire, the Invalides, and two or three orher public establishments, are supplied with this water.

The strata traversed in forming this celebrated well were as follows :-

Drift-sand and gravel	-	-			feet.	
Lower tertiary strata	-	-	-		115	
Chalk with flints			-		1394	"
Ditto, lower			-			
Calcareous sandstone, clays, and sands ending					256	"

The surface of the ground at the well is 102 feet above the level of the sea, and the water is capahle of heing carried ahove this to a height of 120 feet.

The French geologists consider that the sands from whieh the supply is ohtained are either suhordinate beds of the gault, or as helonging to the lower greensand. They crop out in a zone of eountry about 100 miles eastward of Paris, and range along the segment of a cirele, of which Paris is the eentre, from hetween Sancerre and Auxerre, passing near to Troyes, thence hy St. Dizier to St. Ménéhould. The outcrop of this formation is eontinued some distanee further north ; it is also prolonged beyond Sancerre, south-westward towards Bourges, Chatellerault, and then northwest to Saumur, Le Mans, and Alençon. But the superfieial area which it oeeupies in in these latter distriets does not appear to eontrihute to the water supply of Paris, for the axis of elevation of Mellerault must intereept the suhterranean passage of the water from the district south of that line, whilst, on the north of Paris, the anticlinal line of the "Pays de Bray" and some smaller faults in the Aisne, produce probably a similar stoppage with respect to the northern districts. The superfieial area, therefore, from which the strata at the well of Grenelle draw their supplies of water, forms on the east of Paris a belt stretching fron near Auxerre to St. Ménéhould.

The exposed surface of the water-bearing beds whieh supply the well of Grenelle is about 117 square miles; the subterranean area in connection with these lines of outcrop may possihly be ahout 20,000 square miles, and the average thiekness of the sands of the grès verts, serving in their underground range as a reservoir for the water, does not probahly exeeed 30 or 40 feet.-Prestwich on the Water-bearing Strata of London.

The opportunity of ascertaining the temperature of the earth at different depths was not negleeted during the progress of the works at Grenelle. Thermoneters placed at a depth of 30 yards in the wells of the Paris Observatory invariahly stand at $53^{\circ} \mathrm{F}$. The temperature of the Artcsian well at Grenelle at 1657 feet is $79^{\circ} 5^{\prime}$, at 1800 , the depth finally arrived at, the temperature of the water which rose to the surface was 81°, corroborating previous calculations on the subject. For a descent of 572 yards there is an increase of temperature equal to $28^{\circ} \mathrm{F}$., which is 20.4 yards, or $61 \cdot 2$ feet, for each degree of that scale. Now that the skilful labour of so many years is terminated, the Parisians regret that the subterranean sheet of water had not lain 1000 yards beneath the surfaee, that they might have had an overflowing stream of water at 104°, to furnish a eheap supply to their numerous hot-hath establishments. In. Westphalia, at 2000 feet, $90^{\circ} 95^{\prime} \mathrm{F}$. was the temperature of the water.
In horing Artesian wells through stratified formations, several shects of water are met with at suecessive heights; as at Saint Ouen there are 5, each capable of rising: one of these is at 36 metres of depth ; a sccond at $45 \frac{1}{2} \mathrm{~m}$., a third at $51 \frac{1}{2} \mathrm{~m}$., a fourth at 59.30 m ., and a fifth at $66 \frac{1}{2} \mathrm{~m}$. (the metre being 3.280 Enylish feet.) At 'Tours there are 3 sheets suseeptihle of rising above the surface, at 95,102 , and 125 metres respectively
bencath it. Seven large shects of fresh water were in like manner obscrved in boring for coal near Dieppc. The deepest sheet, having the greatest superincumbent pressure, in general gives the highest hydrostatic level. The quantity of water furnished by such wells seems to be nearly constant: thus the well of Bages, near Pcrpignan, delivers nearly 3000 pints per minute, and that at Tours ahout 2000 pints at $6 \frac{1}{2}$ feet above the level of the ground.
As the cost of these wells is au important consideration, the following statement from the "Water-bearing Strata of London" is of much value.
"M. Dégoussée has recently informed me of his having contracted to bore an Artesian well at Rouen to the depth of 1080 feet (through the lower cretaceous and nolitic series) for $1600 l$., expenses of every kind to be defrayed by him. M. Dégoussée has constructed three Artesian wells in different parts of Francc, of about 820 to 830 fcet each, at an expense, including tuhes and all expenses, of from 600l. to 1000l. The Calais well offers a very near counterpart of the deposits which occur heneath London, hut the difficulties of the first 240 feet much exceeded those which would he met with herc, and the chalk is prohahly 100 to 200 feet thicker. Here and at Paris the first 1000 feet cost less than 3000 ., and at Doncherry apparently not much more than 2000l."

The following Table shows the cost of several of the Artesian wells of France :-

It appears that, in England, the cost of horing is about $5 s$. for the first 10 feet, 2l. 10 s. for forty feet, $5 l .5 s$. for 60 feet, $13 l .15 s$. for 100 feet, and so on in proportion.

Mr. Landall of Edinhurgh informs us, that in Scotland they reckon 100 or 110 fathoms a very deep hore; and it is all done with the old screwed rods and chisels. "I have," he says, "once or twice worked the lever with a steam-engine, and cleaned the hore with a wire rope fixed to the sluger, and a few lengths of rod to make it sink quickly, which is a very great economy, as it saves the screwing and unscrewing and much handling. When the hore is approaching 100 fathoms, it is a great econony to erect a small engine, and clean with a wire rope."
The following particulars relative to the conditions of some Artesian wells in this country are derived from Sir Charles Lyell's "Principles of Geology," wherc the geological question is fully treated.

At Sheerness, at the mouth of the Thames, a well was bored through 300 feet of London elay, when, on cntering a hed of sand, water hurst up impetuously. Another horing at the same place passed through 328 feet of clay, and water ascended cight feet above the level of the ground.

At Fulham, after penetrating to the depth of 317 feet, 67 feet of which werc in chalk, water was discharged at the rate of 60 gallons a minute.

At Chiswick the horings passed through 19 feet of gravel, $242 \frac{1}{2}$ feet of clay and loam, and $67 \frac{1}{2}$ feet of chalk, when water rose to the surface.

At the Duke of Northumberland's, at Chiswick, the horings were carried 620 feet into the chalk, when water rose four feet above the surface.

The decp wells of London are all in the chalk. The depths of some of the most important are given in Mylnc's "Section of the London Strata," as follows : -

Comhe and Co.		-	-		Depth.	
Excise Office, City	-			-	499	
Plummer, Old Street -	-	-			475	
Meux and Co.'s Brewery	-	-		-	42	
Hampstead Water Works		-	-		45	
North Western Railway	Station				400	
Truman and Co.	-	-			40	
Elliot and Co. -	-	-			39	
Kensington Union	-	-			37	
Model Prison, Holloway		-			37	

ARTESIAN WELLS.

The Artesian wells in Essex, which overflow, are of the following deptls, aceording to Dr. Mitehell : -

The question of water supply to the metropolis depends upon the situation of the most advantageous water-bearing deposit, or, as Mr. Prestwieh states it, the extent of the superficial area oeeupied by the water-bearing deposit.

The lithological charaeter and thiekness of the water-bearing deposit, and the extent of its underground range.

The position of the outerop of the deposit, whether in valleys or in hills; and whether its outerop is denuded, or eovered with any deseription of drift.

The general elevation of the country oceupied by this nuterop above the levels of the distriet in which it is proposed to sink Artesian wells.
The quantity of rain which falls in the distriet under consideration, and whether, in addition, it reeeives any portion of the drainage from adjacent traets, where the strata are impermeable.

The disturbances whieh may affeet tbe water-bearing strata and break their eontinuity, whereby the subterranean flow of water would be impeded or prevented.

It is proposed, by the eminent authority we have already quoted, to bore through the chalk of the London basin, and penetrate the lower greensand formation.

Referring to the former seetion aeross London (fig. 82), and then examining fig. 113, the importanee of this suggestion will be evident. B is the lower tertiary strata, C is the chalk, D the upper greensand, e the gault, and f tbe lower greeusand, g the upper part of the wealden formation, $\mathrm{Y} i$ line of the lowest valley of the distriet, and $s s^{\prime} s^{\prime \prime}$ line of water-level and springs. The edges of this formation are bounded on the north by the gault at s, and on the south by the wealden at $s^{\prime \prime}$. They are both impermeable strata, and present water-tight surfaces to the sand between them, so that any water which might find its way below the margins of these deposits could not eseape again, but would follow the subterranean course of the intermediate strata.
After computing with great eare the quantity of rain falling over the distriet, Mr. Prestwich gives the following Table, the result of his investigations : -

"These ealeulations, although offered as only very general approximations, give results suffieiently marked and decided, that even admitting the neeessity of not ineousiderable corrections, I think they establish strong prima facie evidence in favour of the upper and lower greensands beneath London containing unusually large quautities of water, which may be rendered available for the supply of the metropolis by means of Artesian wells. What their yield might be could only be determined exactly by aetual experiment; but, judging from analogy, if the lower tertiary sands, with dimensions comparatively so limited, ean nevertheless furnish not less than $3,000,000$ to
$4,000,000$ gallons daily (and if, as is probable, they supply much of the water found in the upper beds of the chalk beneath London, their yield may amount to $8,000,000$ or $10,000,000$), then I submit that there is a reasonable probability, after allowing for the present over-drainage of the tertiaries of the upper greensand, with an effective area and a thickness three times greater than those of the lower tertiaries, yiclding daily, and without diminution, from $6,000,000$ to $10,000,000$, and of the lower greensands, which exceeds by ten times the lower tertiaries in both these respects, of their yielding daily and without diminution from $30,000,000$ to $40,000,000$ gallons of water in the $2+4$ hours, taken at about surface level."*

Since tbe beds of the lower greensand are 200 feet thick, and they occupy an arca above and below ground of 4600 square miles, and since a mass of 1 mile squarc and 1 foot thick will hold more than $60,000,000$ gallons of water, it is evident that a year's consumption of water, by tbe population of London, would not occasion a fall of 1 foot in the water-level over the entire area; that is, supposing no rain had fallen during the year. Such wells, too, would have the advantage of adding to the adornment of the metropolis; as, if the water of the lower greensand was liberated by means of Artesian wells, fountains would be at once formcd projecting their water from 100 to 150 feet above the level of Triuity high water mark.
See Boring for details of process, \&c.
See Water for analyses of waters, \&c.
ARTESIAN WELLS, Negative. Borings into the earth, which are intended to carry off the waters from the surface. They have been proposed for the purpose of draining large tracts of swampy country. The principles upon which this is founded will be sufficiently evident to all. Especial information on this subject will be found in the "Society of Arts' Journal " for 1856, and Ansted's " Geology."

ARTILLERY. Having only to deal with the manufacture of ordnance, we have to consider such points alone in the history as will illustrate this. The earliest European artillery of large size consisted of "serpentines" and "bombards," both being formed of longitudinal bars of wrought iron, arranged like the staves of a cask, and hooped all over, or nearly so, witb wrought-iron rings, shrunk on hot upon the bars. The serpentine was of small calibre, but of enormous length. A gun of this character taken by the Swiss from Cbarles le Téméraire, at the battle of Granson, in 1476, is described and figured in the Emperor Napoleon's work, "Passé et l'Avenir d'Artillerie." This example is preserved in tbe collection of the Arsenal of Neuville, canton of Berne ; it is only about two inches calibre, but about ten feet in length of chase, formed of wrought-iron, with rings shrunk on at some inches apart. It is embedded to its horizontal diamcter, and for its whole length, in a timber bed.
Tbe bombard was usually a much sborter piece, often of immense calibre. The great gun of Ghent, known as Dulle Griette, or the Raging Meg, is of this cbaracter. Voisin thus describes it:-"This enormous cannon, or ancient bombard, is one of the most curious pieces of artillery known, both in dimensions and construction, which is a chef dcouvre of the art of forging. It is 18 feet in length, by 10 fect 6 inches in circumference, the mouth is $2 \frac{23}{7}$ feet in circumference; it is forged from bars of iron, and weighs $33,606 \mathrm{lbs}$., and throws a stone ball of 600 lbs . weight. Its construction appears to date from the early years of the invention of artillery ; in all probability it was forged while Philippe Van Artevelde, Riswaert of Flanders, was besieging Oudenarde, in 1382. It is certain that the people of Gbent, at war with their duke, Philippe, used it in 1411, and at the attack of Oudenarde, in 1452 ."

In tbe arscnal of St. Petersburg is a bombard which is 21 fcet long ; but it only weighs $17,435 \mathrm{lbs}$., and its calibre is only 68 lbs .

The Mons Meg of Scotland, which now quietly reposes on the King's Bastion, Edinburgh, is formed of longitudinal stave bars, in one ply only, and of superimposed rings, driven and shrunk on upon the taper. This will be understood from the accompanying figures (114, 115). This gun was made by one M'Kin, to whom the people of Kirkcudbright contributed the bars of iron. Mons Meg was used at the siege of Dumbarton, in 1489; at Norham, in 1497; it was used to fire a salute in 1548; and in 1682, when fring a salute in honour of the Duke of York, the iron rings, which are now partly wanting near the breach, were blown away without much disturbing the longitudinal bars. The gun actually discharged balls of Galloway granite against Threave Castle. The weight of a granite ball of $19 \frac{1}{2}$ inchcs diameter is about 330 lbs .

Colonel Symes, in his "Embassy to Ava in 1795," informs us that he found that cannon formed of prismatic bars of wrought hoop-iron hooped together were known

[^28]in India from a remote antiquity. In Meyer's "Historical Manual" will be found a curious history of the progress of wrought-iron cannon, from 1494-when Charles VIII. suppressed wrought-iron bombards, and had no other artillery than that of bronze-to

114

115

the present day. In 1856, Daniel Treadwell published a memoir "On the Practicability of constructing Cannon of great Calibre capable of enduring long-continued Use under full Charges." In this he proposes a very large wrought-iron gun, which should be capable of projecting a shot or shell of a ton weight through the space of six miles. He says, in a note to this paper, "Between the years 1841 and 1845, I made upwards of twenty cannon of this material (wrought iron). They were all made up of rings, or short hollow cylinders, welded together endwise. Each ring was made of bars wound upon an arbour spirally, like winding a ribbon upon a block, and, being welded and shaped in dies, were joined endwise when in the furnace and at a welding heat, and afterwards pressed together in a mould by a hydrostatic press of 1000 tons force." Finding in the early stage of the manufacture that the softness of the wrought iron was a serious defeet, he formed those made afterwards with a lining of steel, the wrought-iron bars being wound upon a previously formed steel ring.

Mr. Nasmyth undertook, iu 1854, an enormous wrought-iron gun of 13 inches calibre; but there was some failure in the forging.

In 1856, Messrs. Horsfall, of Liverpool, completed, and proved with a solid shot of 300 lbs. and 45 lbs . of powder, a wrought-iron gun, 13 inches calibre, and $13 \frac{1}{2}$ feet length of chase, perhaps the largest and most remarkable forging ever made. Two wrought-iron mortars, of 36 inches calibre, built up of separate pieces, were constructed about the same time for the Government, from the designs of Mr. Mallet. A detailed aecount of this monster mortar is given at page 208.

Cast-Iron Guns. - The date of the introduction of cast-iron guns is very uncertain. Blast furnaces for smelting replaced the old Catalan methods about the commencement of the fifteenth century, were known in the Hartz, in Westphalia, in Flanders, and seem to have come to us thence, and were not uncommon about the middle of the century. There is in the repository at Woolwich an 18 -inch Pierriere, captured at Corfu, with the date 1684 upon it, an early example of cast iron.
In the sixtecnth and seventeenth centuries the average sizes of guns in Eugland were as follows:-

The smaller sizes were called minion, falcon, falconet, rabinet, and base, the last of which only carried a 5 -ounce ball of lead.

Cannon of Bronze.-'The carliest bronze guns appear to have been cast in Europe about 1370. Between that and 1400, bombards were cast (after the more aucient models of iron) in bronze with scparate and with attached chambers (canons à boite), the ancestors of all modern breceh-loading guns ; and culverius, which replaced the
iron serpentines, and were of enormous length, 35 to 60 calibres, and great strength towards the breech, but of small calibre. Many examples remain of a later date: one at Dover Castle, another in the Dial Square, Woolwich Arsenal, and the celebrated one of Nancy (1598), above 21 feet in length, carrying about an 18 -pound iron ball. In England, the earliest bronze guns are said to have been cast by one John Owen, in 1535 .

Few examples are met with of guns formed of metal in strictly atomic proportions; but alloys are found therein prescnting every formulæ, from $7 \mathrm{Cu}+\mathrm{Sn}$ up to $83 \mathrm{Cu}+4 \mathrm{Sn}$. The proportions most approved of in the arsenals of Europe appear to vibrate between 100 by weight of copper to 9 of tin, up to 100 of copper and 12 of tin. In France, 100 copper +11 tin by weight is the proportion fixed by law, and invariably aimed at. In the United States, 100 copper +12.5 tin is adopted for certain species of guns.
The proportions of tin and copper used in making bronze guns in the United States:-

Tin, 1		$\begin{array}{r} \quad \text { Density. } \\ -\quad 7.297 \end{array}$		$\begin{aligned} & \text { Tenacity. } \\ & 2122 \end{aligned}$
Copper, 8 parts		$8 \cdot 672$	-	24252
Mean proportional	-	$8 \cdot 519$		2179
Mean of 83 guns		8.751		
Mean of 83 gun-heads		$8 \cdot 523$		29655

Bronze guns are liable to drop at the muzzle; this is due to the unequal temperature of the inside and of the outside of the gun.

Brass orduance are made of what is called GUN METAL, composed of about 10 parts of copper and 1 of tin.

One of the first inquiries of importance in connection with the coustruction of pieces of artillery is that of the liability to fracture in the metal. Upon this point the researches of Mr. Mallet furnish much important matter. He tells us, as the result of his investigation, that it is a law of the nolecular aggregation of crystalline solids, that when their particles consolidate under the influence of heat in motion, their crystats arrange and group themselves with their principal axes in lines perpendicular to the cooling or heating surfaces of the solid: that is, in the lines of the direction of the heat-wave in motion, which is the direction of least pressure within the nass. And this is true, whether in the case of heat passing from a previously fused solid in the act of cooling and crystallising in consolidation, or of a solid not having a crystalline structure, but capable of assuming one upon its temperature being sufficiently raised, by heat applied to its external surfaces, and so passing into it.

Cast-iron is one of those crystallising bodies which, in consolidating, obeys, more or less perfectly according to conditions, the above law. In castings of iron the planes of crystallisation group themselves perpendicularly to the surfaces of external contour. Mr. Mallet, after examining the experiments of Mr. Fairbairn - who states ("Trans. Brit. Ass." 1853) that the grain of the metal and the physical qualitics of the casting improve by some function of the number of meltings ; and he fixes on the thirteenth melting as that of greatest strength - shows that the size of crystals, or coarseness of grain in castings of iron, depends, for any given "make" of iron and given mass of casting, upou the high temperature of the fuid iron above that just necessary to its fusion, which influences the time that the molten mass takes to cool down and assume again the solid statc.
The very lowest temperature at which iron remains liquid enough fully to fill every cavity of the mould without risk of defect, is that at which a large casting, such as a heavy gun, ought to be "pourcd." Since the cooling of any mass depends upon the thickness of the casting, it is important that sudden changes of form or of dimensions in the parts of cast-iron guns should be avoided. In the sea and land service 13 -inch mortars, where, at the chamber, the thickness of metal suddenly approaches twice that of the chase, is a malconstruction full of evils.
The following statements of experiments made to determine the cffcet produced on the quality of the iron in guns, by slow or rapid cooling of the casting, are from the report of Major W. Wade, of the South Boston Foundry, to Colonel George Bomford, of the Ordnance Department of the United States. Three six-pounder cannon were cast at the same time from the same melting of iron. The moulds were similar, and prepared in the usual manner. That in which No. 1 was cast was heated before casting, and kept heated afterwards by a fire which surrounded it, so that the flask and mould were nearly red hot at the time of casting; and it was kept up for threc days. Nos. 2 and 3 were cast and cooled in the usual way.
At the end of the fourth day, the gun No, 1 and flask were withdrawn from the
heating eylinder while all parts were yet hot. Nos. 1 and 2 were bored for 6 pounders in the usual way; No. 3 for a 12 -pounder howitzer, with a 6 -pounder chamber. The firing of the guns was in every respeet the same. Nos. 1 and 2 were fired the same number of times with sinilar eharges. No. 1 burst at the 27 th fire, and No. 2 at the 25 th. It appears, from these results, that no material effeet is produced on the quality of the iron by these different modes of eooling the eastings.

A very extensive series of experiments was made, by the order of the United States Government, on the strength of guns east solid or hollow. In these it was eonfirmed that the guns cast hollow endured a mueh more severe strain than those cast solid. Considerable differences were also observed, whether the easting was cooled from within or without; and Lieutenant Rodman's method of cooling from the interior is regarded as tending to prevent injurious strains in eooling.

Major Wade informs us that time and repose has a surprising effeet in removing strains eaused by the unequal eoolings of iron eastings.

Great improvements have been made in improving the quality of iron guns. Guns cast prior to 1841 had a density of $7 \cdot 148$, with a tenaeity of 23,638 . Guns east in 1851 had a density of $7 \cdot 289$, with a tenaeity of 37,774 .

The following Table gives the results of all the trials made for the United States Government, showing the various qualities of different metals.

Metals.	Density.	Tenacity.	TransverseStrength.	Torsion.		$\begin{gathered} \text { Com- } \\ \text { pressive } \\ \text { Strength. } \end{gathered}$	Hard-ness.
				$\begin{array}{\|c\|} \text { At Half } \\ \text { Degree. } \end{array}$	$\begin{aligned} & \text { Ulti- } \\ & \text { mate. } \end{aligned}$		
Cast iron: -							
Least	6.900	9,000	5,000	3861	5,605	84,592	4.57
Greatest -	$7 \cdot 400$	45,970	11,500	7812	10,467	174,120	$33 \cdot 51$
Wrought iron: -							
Least -	$7 \cdot 704$	38,027	6,500	3197		40,000	$10 \cdot 45$
Greatest -	7.858	74,592		4298	7,700	127,720	$12 \cdot 14$
Bronze : -							
Least -	7.978	17,698	- -	2021	5,511	- -	$4 \cdot 57$
Greatest -	8.953	56,786	- -	- -	- -	- -	$5 \cdot 9.4$
Cast steel : -							
Least -	$7 \cdot 729$			- -		198,944	
Greatest -	$7 \cdot 862$	128,000	23,000	- -	- -	391,985	

The following analyses of the metal of iron guns of three qualities are important.
Influence of Single Ingredients.

Classes.	Mechanical Tests.		Chemical Constituents.						
	Specific Gravity	$\begin{aligned} & \text { Tensile } \\ & \text { Strength. } \end{aligned}$	Combined Carbon.	Graphite.	Silicium.	Slag.	Phosphorus	Sulphur.	Earthy Metas.
1	$7 \cdot 204$	28,865	-0977	. 0507	. 0417	-0215	-0239	. 0017	-0117
2	$7 \cdot 140$	24,767	.0819	-0576	-0538	-0200	-0300	-0021	-0094
3	$7 \cdot 088$	20,176	-0726	-0560	-0531	.0219	.0321	-0021	-0144

Influence of Two or nore Ingredients.

Classes.	Mechanical Tests.		Chemical Constituents.					
	Spccific Gravity.	Tensile Strength	$\begin{aligned} & \text { Silicium } \\ & \text { and } \\ & \text { Carbon. } \end{aligned}$	Silicium and Slag.	Graphite and Stag.	Graphilte, Sihicium, and Slag.	Griphite, Slag. Sllicium and Phosphorus.	Total
1	7-204	28,865	-1394	-0632	. 0722	-1139	-1378	-1484
2	$7 \cdot 140$	24,767	-1357	-0738	-0776	-1314	-1614	-1395
3	7.088	20,176	-1257	-0750	80	-1311	-1632	-1286

An inspection of the first of the foregoing tables，representing the average amount of each foreign ingredient in gun metal deduced from all the analyses，shows a con－ siderable difference in the proportions of those ingredients in each of the three classes into which guns are divided．It will be observed，that while the proportion of combined carbon diminishes from the 1st to the 3rd class，that of silicium similarly increases，so that their united amounts are nearly the same．In other words，it appears that silicium can replace the carbon to a certain extent；but that the quality of the metal is injured where the amount of the silicium approaches that of the car－ bon．Karsten made a similar observation in determining the limits between cast iron and steel，but did not notice the influence of that substitution．
But the differences become more striking by combining the ingredients variously together，as in the second of those tables；and especially by comparing the extremes， which are each derived from a larger number of observations than the mean．
After showing the total amount of carbon（both combined and uncombined），sili－ cium and combined carbon are thrown together，which indicates the replacement by silicium of that portion of carbon set free in the form of graphite．The column＂sili－ cium and slag＂shows the general depreciation of the metal as the silicious metal increases．－From the Report of Campbell Morfit and James C．Booth to the Ordnance Office，United States Army．
The following analyses（rejecting those substances of which only a mere trace has been diseovered），from the same chemists，are selected as showing striking peculiarities．

Class．	E．	哏品	断号	豆	－				砏	号	宕慁
1．32－pounder，which endured the extreme proof－	． 93520										
2．32－pounder，which endured the extreme proof．Hot	－93520	－ 02000	． 02200	00770	－00250	－00036	． 02100			－00106	
blast iron 24－pounder which endured	－ 88480	$\cdot 02800$	－00200	－ 02000	－00400	－00666	． 05212	－00072	00043	．－	－00034
the extreme proof．Hot blast iron	． 92400	－03000			－00200						
3．42－pounder－－	－ 9215	－03200	－ 00700	． 01130	－00100	－00800	－01448	－00074	$\left[\begin{array}{l} \cdot 00028 \\ -00086 \end{array}\right.$	$\begin{aligned} & \cdot 00234 \\ & \cdot 00316 \end{aligned}$	
32－pounder－－	－ 92540	02800	－00150	－00730	－00200	－00738	－02317	－00061	$\mid \cdot 00086$	$\cdot 00316$	－00220
32 －pounder－－	－93450	． 02900	－00900	－00900	－00200	－ 01290	－01810	－	？	－00158	． 00026

Comparison of Weight，Strength，Extensibility，and Stiffness；Cast Iron being unity within praetical limits to statie forces only．

Material．		$\begin{aligned} & \text { Weight for } \\ & =\text { Volume. } \end{aligned}$	Strength．	Extensibility．	Stionness．	Torsion．
Cast iron	－	$1 \cdot 0$	$1 \cdot 00$	1.00	1.00	1.00
Gun metal	－	$1 \cdot 18$	$0 \cdot 65$	$1 \cdot 27$	0.53	$0 \cdot 55$
Wrought iron	－	1.07	$3 \cdot 00$	$0 \cdot 45$	$2 \cdot 20$	$1 \cdot 11$
Steel	－	1.07	$4 \cdot 75$	0.32	$3 \cdot 15$	$2 \cdot 11$

We find that wrought－iron guns are more than five－fold as durable as those of gun metal，and twenty－two times as durable as those of cast iron．And taking first cost and durability together，gun－metal cannon are about seventy－seven times，and cast－iron guns about thirty times，as dear as wrought－iron artillery．Again：the cost of horse－labour，or other means of transport for equal strength（and，of course， therefore，for equal effective artillery power），is about five times as great for gun metal，and nearly three times as great for cast－iron as for wrought－iron guns．In every respect in which we have submitted them to a comparison，searching and rigid， and that seems to have omittted no important point of inquiry，wrought iron stands pre－eminently superior to every other material for the fabrication of ordnance．－ United States Report．

The advantages possessed by rolled bars for the construction of artillery are thus summed up by Mr．Mallet，in his＂Memoir on Artillery＂：－

1．The iron constituting the integrant parts is all in moderate－sized，straight，pris－ matic pieces，formed of rolled bars only；hence，with its fibre all longitudinal，per－ fectly nuiform，and its extensibility the greatest possible，and in the same direction in
which it is to be strained; it is, thercfore, a better material than any forged iron can, by possibility, be made.

2 The limitation of manufacture of the iron, thus, to rolling, and the dispensing with all massive forgings, insures absolute soundness and uniforinity of properties in the material.
3. The limited size of each integrant part, and the mode of preparation and combination, afford unavoidable tests of soundness and of perfect workmanship, step by step, for cvery portion of the whole: unknown or wilfully conccaled defects are impossible.
4. Facility of execution by ordinary tools, and under casily obtained conditions, and without the ncecssity of either for peculiarly skilled labour on the part of "heavy forgemen," or for steam or other hammers, \&c., of unusual power, and vel'y doubtful utility; and hence very considerable reduction in cost as compared with wrought-iron artillery forged in mass.
5. Facility of transport by reduction of weight, as compared with solid guns of the same or of any other known material.
6. A better material than massive forged iron, rolled bars are much more scientifically and adrantagcously applied; the same section of iron doing much more resisting work, as applied in the gun built-up in compressed and extended plies, than in any solid gun.
7. The introduction thus into cannon of a principle of elasticity, or rather of elastic range (as in a carriage-spring divided into a number of superimposed leaves), greater than that due to the modulus of elasticity of the material itself; and so acting, by distribution of the maximum effort of the explosion, upon the rings successively recipient of the strain during the time of the ball's traject through the chase, as materially to relieve its effects upon the gun.

Considerable attention has been given, of late years, to the construction of very powerful pieces of ordnance. Cast-iron cannon are usually employed, but these very soon become useless when exposed to the sudden shocks of rapid firing. Cast iron is, comparatively speaking, a weak substance for resisting extension, or for withstanding the explosive energy of gunpowder, compared with that of wrought iron, the proportion being as 1 is to 5 ; consequently, many attcmpts have been made to substitute wrought-iron cannon for cast.

A gun, exhibited in 1851 by the Belgian Government, made of cast iron "prepared with coke and wood," was said to have stood 2116 rounds, and another, 3647 rounds, without much injury to the touch-hole or vent. Another is said to have been twice "rebouched," and has stood 6002 rounds without injury. As few guns of cast iron will stand more than 800 rounds without becoming unserviccable, this mode of preparing the iron appears to be a great improvement. At St. Sebastian 2700 rounds were fired from the English batteries, but, as was observed by an eye-witness, "you could put your fist into the touch-holes."-Colonel James, R. E.

In Prussia they have for some time madc cannon of "forged cast steel." To get over the difficulty of forging the gun with the trunnions on, the gun has been made without them, and a hollow casting with trunnions afterwards slipped over the breech, and secured in its proper position by screening in the cascable. The tenacity of this metal must be very great.

Casting of Guns. - Guns have long been cast in a vertical position, and with a certain amount of "head of metal" above the topmost part of the gun itself. One object gained by this (of great value) is to afford a gathering-place for all scoria, or other foreign matter ; an end that might be much more cffectually accomplished were the metal always run into the cavity of the mould by "gaits" lcading to the bottom, or lowest point, in place of the metal being thrown in at the top, with a fall, at first, of several feet, as is now the common practice, by which much air and scoria arc carried down and mixed with the metal, some of which never rises up again, or escapes as "air-bubbles."
The value of the "head of metal" in casting of guns is shomn by the following Table, by Mr. Mallet, from the "Transactions of the British Association, 1840."

General Classification of the principal Makes of British Cast Irons as applicable to Artillery. (All deduced from equal Picces cast One Inch thick and Five Inches square.)

Mallet on the Physical Conditions involved in the Construction of Artillery.

Table showing the Increase of Density in Castings of large Size, due to their Solidification under a Head of Metal, varying from two to fourteen Feet :-

	Calder Cast Iron, No. 1. Hot Blast.			Blaenavon, No. 1. Cold Blast.			A perale, No. 2. Hot Blast.			
			皆			坒				
1	0	6.9551		0	7.0479		0	$7 \cdot 0328$		0
2	24	6.9633	-0082	24	$7 \cdot 0576$	-0097	24	$7 \cdot 0417$	-0089	$6 \cdot 4$
3	48	7.0145	-0512	48	$7 \cdot 0777$	-0201	48	$7 \cdot 0558$	-0141	12.8
4	72	$7 \cdot 0506$	-0361	72	$7 \cdot 0890$	-0113	72	$7 \cdot 0669$	-0111	$19 \cdot 2$
5	96	$7 \cdot 0642$	-0136	96	7-1012	. 0122	96	7.0789	-0120	$25 \cdot 6$
6	120	$7 \cdot 0776$	-0134	120	$7 \cdot 1148$	-0136	120	$7 \cdot 0915$	-0126	32.0
7	144	$7 \cdot 0907$	-0131	144	7-1288	-0140	144	7•1046	-0131	$38 \cdot 4$
8	168	7•1035	-0128	168	$7 \cdot 1430$	-0142	168	7•1183	-0137	44.8

The experiments were made upon cylindrical shafts of cast iron, cast vertically in dry sand-mould, under heads gradually increasing up to fourteen feet in depth, and all poured from "gaits" at the bottom.

These experiments show an increase of density due to fourtcen feet head, about equal to a pressure of 44.8 lbs . per square inch on the casting; from 6.9551 to $7 \cdot 1035$ for Scotch cast iron.

In the foregoing paper frequent reference has been made to the investigations of Mr . Mallet. His monster mortar promises such results that an especial account of it appears to be required.

About the latter end of 1854 , the attention of Mr. Robert Mallet, C.E., was directed to the mathematical consideration of the relative powers of shells in proportion to their increase of size or of diameter. His inquiries resulted in a memoir presented by him to Government, in which he investigated the incrcase of power in shells with increase of diameter, under the heads of :-1, Their penctrative power ; 2, Thcir increascd range and greater accuracy of fire; 3, Their explosive power; 4, Their power of demolition, or of levelling earthworks, buildings, \&c.; 5, Their fragmentary missile power ; 6 , and lastly, their moral effect,--in every case viewing the shell, not as a weapon against troops, but as an iustrument of destruction to an enemy's works. The result so convinced Mr. Mallet of the rapid rate at which the destructive powers of a shell increase with increase of size, that he was induced to propose to Government the employment of shells of a magnitude never before imagined by anyonc, namely, of a yard in diameter, and weighing, when in flight, about a ton and a quarter each; and to prepare designs, in several respects novel and peculiar, for the construction of mortars capable of projecting these enormous globes. Such a mortar was made, and on the 19th of October, 1857, the first of those colossal mortars constructed from Mr. Mallet's design was fired on Woolwich Marshes, with charges (of projection) gradually increasing up to 70 lb .; and with the latter charge a shell weighing 2550 lbs . was thrown a horizontal range of upwards of a mile and a half to a height of probably three quarters of a mile, and falling, penetrated the compact and then hard dry earth of the Woolwich range to a depth of more than 18 feet, throwing about cartloads of earth and stones by the mere splash of the fall of the empty shell. What would have been the crater blown out, if the bursting charge of 400 lbs . of powder had been within!
It would be out of place herc to attempt to follow Mr. Mallet's mathematical results as to the relative powers of small and large shells; some popular notion, however, of the subject may be given in a few words.
Say we have a 13 -inch shell and a 36 -inch slell, and. for simplicity, that each has the same proportion of iron and powder in relation to their bulks, or the same density. Roughly, the large slell may be said to be threc times the diameter of the small one. Then, a ring or circle through which the larger one will just pass will weight of times the arca of that through which the smaller one will just pass, and the If the two she shell will be 27 times that of the small one.
velocity, the larger shell we thrown at the same augle of elcration and at the same relative resistances in the air arc about as 1 to 9 , while their relative energy of motion or inomentum is as 1 to 27 .

A 13 -inch shell, weighiug ahout 180 lbs ., is thrown, hy a charge of 30 lbs of powder, barely 4700 yards. While, with not much more than double this amount of powder, the 36 -inch shell, of inore than 14 times its weight, can be throwu 2650 yards, or much more than half the distance.

The explosive power, it is obvious, is approximately proportionate to the weight of powder ; but, by calculations, of which the result only can here he given, Mr. Mallet has shown that the total power of demolition - that is to say, the absolute amount of damage done in throwing down buildings, walls, \&cc. \&cc. -hy one 39 -inch shell is 1600 times that possible to he done by one 13 -inch shell; and that an object which a 13 -inch shell could just overturn at one yard from its centre, will he overthrown by the 36 -inch shell at 40 yards' distance.

A 13 -inch shell penetrates, on falling upon compact earth, about $2 \frac{1}{2}$ feet. The Antwerp shell penetrated 7 feet. The 36 -inch shell penetrated 16 to 18 feet. The funnel shaped cavity, or "crater," of earth hlown out hy the explosion of a huried shell, is always a similar figure, called a "paraboloid;" its diameter at the surface, produced by the 13 -inch shell, is about 7 feet, and by the 36 -inch shell ahout 40 feet.

Shells.-The hollow explosive projectiles that we call shells or homhs are a very old invention. Under the name of "coiniuges," they consisted of rudely formed globes of plate iron soldercd together, filled with gunpowder and all sorts of miscellaneous "mitraille." These were thrown to short distances both from "pierriers" (a sort of mortar) and from catapulto, as early as 1495 at Naples, 1590 at Padua, 1520 at Heilsherg, 1522 at Rhodes, and 1542 at Boulogne, Lièges. About the middle of the $15 \mathrm{th}_{1}$ century homhs of cast iron seem to have come into use; an Englishman, named Malthus, learned the art of throwing them from the Dutch, and perfected the system for the French armies - heing the first to throw shells in France, at the siege of La Mothe, in 1643. The diameter of the homb seems at that time to have become fixed at 13 inches - the old Paris foot; and at this it remains (with very few exceptional cases) down to the present day.

A few attempts to increase the size and power of these projectiles have heen made at different periods, but never with the practical skill neeessary to success; for example, 18 -inch shells were thrown by the French, at the sicge of Tournay, in 1745; whereas, just a century hefore, the Swedes threw shells of 462 lhs . weight, and holding 40 lhs. of powder. The French, when they occupied Algiers in 1830, found numbers of old shells of nearly 900 lhs . in weight; and in alınost every arsenal and fortress in Europe one or two old 16 -inch and 18 -inch shells are to be found. No attempt was made in modern days to realise the vast accession of power that such large shells confer, until the ycar 1832, when the "monster mortar," as it was then called, of 24 inches calihre, designed hy Coloncl Paixhans (the author of the Paixhans gun), was constructed by order of Baron Evain, the Belgian minister of war, and attempted to he used hy the French at the siege of the citadel at Antwerp, hut with the worst possible success. The mortar, a crude cylindrical mass of cast iron, sunk in a hed of timher weighing about 8 tons, and provided ncither with adequate means for "laying" it, nor for charging it - the heavy shells weighing, when filled with 99 lhs. of powder, 1015 lbs . each - could with difficulty be fired three rounds in two hours, while the shells themselves were very badly proportioned.

One of these shells fell nearly close to the powder magazine, hut did not explode; had it fallen upon the presumed homb-proof arch of the magazine, containing 300,000 lhs. of powder, it would have pierced it, according to the opinion of all the military engineers present at the siege ; and so closed the enterprise at a blow. The ill success of this mortar prevented for several years any attempt to develope hombs into their legitimate office - as the mcans of suddenly transferring mines into the body of fortified places - of a power adequate to act with decisive effect upon their works ; although some years afterwards a 20 -inch mortar was made in England for the Pacha of Egypt and proved at Woolwich.

But another circumstance still more tended to the neglect of large shells thrown hy vertical firc. After repeated trials and many failures, it was found practicahle to throw 10 -inch (and since that even 13 -inch) shells from cannon, or "shell guns," by projecting them nearly horizontally, or at such low angles that they should "ricochet" and roll along the ground hefore they hurst; and, thus fired, it was soon seen that their destructive power as against troops was greater than if fired at angles approaching 45° of elevation from mortars. Paixhans and his school had pushed a good and uscful invention beyond its proper limits, and had lost sight wholly of the all-important fact, that horizontal shcll fire, powerful as it is against troops or shipping, is all hut 11scless as an instrument of destruction to the works (the carthwork and masonry, \&c.) of fortified places; for this end, weight and the penetrative power due to the velocity of descent in falling from a great leight are indispensable.

Vol. I.

No bomb-proof areh (so called) now exists in Europec eapable of resisting the tremendous fall of such masses, aud the terrible puwers of thcir explosion when 480 lbs , of powder, fired to the very best advantage, puts in motion the fragments of more than a ton of iron. No precautions are possible in a fortress; no splinter proof, no ordinary vaulting, perhaps no ensemate, exists eapable of resisting their fall and explosion. Such a shell would sink the largest ship or floating battery.

A single 36 -ineh shell in flight costs 257 ., and a single 13 -ineh $21.2 s$., yet the former is the cheaper projectile; for, aecording to Mr. Mallet's ealeulations, to transficr to the point of effect the same weight of bursting powder, we must give -

55 shells of 13 inches, at 22.2 s .	- - -			£115	0	0
Against 1 shell of 36 inches	- - -	-	-	25	0	0
Showing a saving in favour	arge sholl of				10	

And this assumes that 55 small shells, or any number of them, eould do the work of the single great one.

We must briefly notice the mortars from which these projectiles are proposed to be shot, and of which fig. 116 gives an elevation, with seetion of bore and chanbers and lines of separation in dotted lines.

These mortars are, with the exception of one part (the base), and the elm tiniber

ends, formed wholly of wrought iron, in concentric rings, and eaeh entire mortar is separable at pleasure into thirteen separate pieces, the heaviest of which weighs about 11 tons, so that the immense weight when all put together (about 52 tons) is susceptible of casy transport, on ordinary artillery carriages, over rough enuntry, or ean be couvenently shipped, stowed, or landed. Special nortar rafts for the usc of these mortars at sea have been designed by their inveutor, and novel and more preeise methods of pointing, especially at night, than hitherto practised.
It has been for some time the practiee in Turkey to make field pieces like the twisted barrel of a riffc. One of the greatest improvements in modern artillery is the manufaeture, by Mr. W. G. Armstrong of Neweastle-on-Tyue, of field pieces of this eharacter, wheh are breach-loading, and have several peeuliarities which give them deeided advantages over any other pieee of artillery. For a further description, see Rifles.

Exportation of arms and ammunition :-

ARTIFlClAL, STONE, Sec Stune, Artificial.

ARUM VULGARE. The Wake-robin; Lords and Ladies. Iu the island of Portland a kind of arrow root is prepared from this plant. Sec Arrow Root: ASBESTUS, from $\not \approx \sigma 6 \in \sigma \tau 0 s$, unconsumable. (Asbeste, Fr.; Asbest, Gernı.) When the fibres of the fibrous varieties of amphibole are so slender as to be flexible, it is called asbestus, or amianthus. It is found in Piedmont, Savoy, Salzburg, the Tyrol, Dauphiné, Hungary, Silesia; also in Corsica so abundantly as to have been made use of by Dolomieu for packing minerals; in the United States, St. Kevern in Cornwall, in Aberdeenshire, in some of the islands north of Seotland, and Greenland. Asbestus was manufactured into clotl by the ancients, who werc well aequainted with its ineombustibility. This eloth was used for napkins, which could be cleansed by throwing them into the fire; it was also used as the wick for lamps in the ancient temples; and it is now used for the same purpose by the natives of Greenland. It has becn proposed to make laper of this fibrous substance, for the preservation of inportant matters. An Italian, Chevalier Aldini, constructed pieces of dress which are ineombustible. Those for the body, arms, and legs were formed out of strong cloth steeped in a solution of alum; while those for the head, hands, and fect were made of cloth of asbestus. A pieee of ancient asbestus cloth, preserved in the Vatiean, appears to have been formed by mixing asbestus with other fibrous substances; but M. Aldini has executed a piece of nearly the same size, which is superior to it, as it contains no foreign substance The fibres were prevented from breaking by the action of steam. 'The cloth is n ade loose in its fabric, and the threads are about the fifticth of an inch in diameter. The Society of Encouragement, of Paris, has proposed a prize for the improvement of asbestus cloth. The use of it is now (1858) being exhibited in London.
ASH. (Fraxinus excelsa.) Ash is superior to any other British wond for its toughness and elastieity. It is therefore used for the frames of machines, for agricultural implements, and the felloes of wheels. This wood is split into pieces for the springs of bleachers' rubbing boards. Handspikes, hammer handles, rails for chairs, \&c., are made from the asb. All these and similar works are much stronger when they follow the natural fibre of the wood. Hoops are also frequently made of the young branches of the ash. Rankine gives its tenacity as 17,000 , and its modulus of elasticity, or resistance to stretching, as $1,600,000$.

ASHES. In commerce, the word ashes is applied to the ashes of regetable substances from which the alkalis are obtained, as Kelp, Barilla, \&ce. (which see.)

It is the popular name of the vegetable alkali, potash, in an impure state, as procured from the ashes of plants by lixiviation and evaporation. The plauts which yield the greatest quantity of potash are wormwood aud furmitory. Sec Potash, Pearlash, and, for the mode of determining the value of ashes, Alealimetry

Our Inportations of the various kinds of Aspes were-

Unenumerated ditto, value £5302 £ $£ 131$;
and of pearl and pot ashes as follows :-

ASHES OF PLANTS. The ashes of all species of woods and weeds are found to contain some alkali, hence it is that the residuary matter, after the combustion of any vegetable matter, is found to act as a stimulant to vegetable growth.

The following analyscs of the ashes of plants lave bcen sclected from the tables which have been published, by Messrs. 'Thonas Way and G. Ogston, in the "Journal of the Agricultural Soeiety":

	Peas.	Beanso	Hed Clover	$\begin{aligned} & \text { Srin- } \\ & \text { foin. } \end{aligned}$	Wheat Grain.	Straw.	Barley.	Ores.	$\left.\begin{gathered} \text { Turnlp } \\ \text { Root. } \end{gathered} \right\rvert\,$	Tumip Leaves.	Beet Hirots	Carros luot.
Potassat -	42.13	36.72	18.14	31.90	29.76	$10 \cdot 51$	20.07	$17 \cdot 70$	23.70	11.56	$21 \cdot 18$	37.5.5
Sisia	$3 \cdot 27$	0.14	279		$5 \cdot 26$	$1 \cdot 0.3$	$1 \cdot 56$	$3 \cdot 84$	14.76	$12 \cdot 43$	3.13	$12 \cdot 63$
Lime.	$5 \cdot 73$	12.06	35.02	$24 \cdot 30$	$2 \cdot 88$	$5 \cdot 91$	$1 \cdot 48$	$3 \cdot 5.1$	11.82	28.49	1.90	$9 \cdot 76$
Magnesia -	$5 \cdot 12$	$6 \cdot 00$	11.91	503	11.06	1.25	$7 \cdot 45$	$7 \cdot 33$	$3 \cdot 28$	$2 \cdot 60$	$1 \cdot 7.9$	3.78
Sesquioxide of iron	$0 \cdot 44$	$0 \cdot 65$	0.98	061	023	$0 \cdot 07$	0.51	$0 \cdot 49$	047	3.02	$0 \cdot 52$	${ }^{6} 74$
Sulphuric acid -	$6 \cdot 23$	4.28	3.91	3.28	011	2.14	0.79	1.10	$16 \cdot 13$	$10 \cdot 36$	$3 \cdot 14$	6, 34
Silica - -	$1 \cdot 7.4$	1.52	$4 \cdot 113$ 10.02	3.22	$2 \cdot 23$	73.57	$32 \cdot 73$	$38 \cdot 18$	2.69	8.06	$1 \cdot 40$	10.76
Carbonic acid	$4 \cdot 34$	1.63	$12 \cdot 92$	$15 \cdot 20$	0.22	- 5.51			10.47	6.18	15.23	15.15
Phonphuric acid -	29.92	$33 \cdot 74$	5.82	$9 \cdot 35$	$48 \cdot 21$	5.51	31×69	$26 \cdot 16$	$9 \cdot 31$	$4 \cdot 85$	$1 \cdot 65$	$8 \cdot 37$
Chloricle ol potassium - Chloride of sodium				6.24 0.78	-		-	0.92 $-\quad$.				
Chloride of sodium		3.26	$4 \cdot 13$	0.78		- -			$7 \cdot 05$	$12 \cdot 41$	$49 \cdot 51$	$4 \cdot 91$
Total amount -	$99 \cdot 96$	100.00	99.95	99.96	99-96	99.99	$99^{\circ} 98$	99.96	99.93	99.96	99.96	98.99
Per-centage of ash in the dry substance -	$2 \cdot 60$	$2 \cdot 90$	$7 \cdot 87$	$6 \cdot 37$	$2 \cdot 05$	- -	$2 \cdot 50$	2.50	6.00	16.40	$11 \cdot 32$	512
Per-centage of ash in the fresil substance -	$2 \cdot 24$	$2 \cdot 54$	6.77	$5 \cdot 65$	1.81		$2 \cdot 25$	$2 \cdot 27$	0.75	1.97	1.02	0.77

A few additional analyses, by Prof. Way and other ehemists, are given for the purpose of showing the variations whieh exist in the eonstituents of plants as determined by the analysis of their ashes.

	Potatoes.*	$\begin{gathered} \text { Lettuce } \\ \text { Leaves and } \\ \text { Stalk. } \dagger \end{gathered}$	$\begin{aligned} & \text { Olive-tree } \\ & \text { Wood. } \ddagger \end{aligned}$	Hops. $\%$	Hay. .\|	Sprouts: Sprotus
Potassa -	$25 \cdot 41$	$22 \cdot 37$	$20 \cdot 60$	24.88	11.93	17.23
Soda		18.50	-	-	$1 \cdot 07$	119
Line	$2 \cdot 34$	10.43	$63 \cdot 02$	21.59	$14 \cdot 76$	23.57
Magnesia -	4-17	$5 \cdot 63$	$2 \cdot 31$	4.69	5.30	3.01 0.98
Sesquioxide of Iton-	$0 \cdot 50$	2.82	3.09	$1 \cdot 75$	$2 \cdot 75$ 0.20	$0 \cdot 28$
Sulphurie Aeid -	4.71	3.85	3.09 3.82	17.27 19.71	- 53.43	
Silica - -	$3 \cdot 64$	11.86	3.82	19.71 2.17	53.43	
Carbonic Aeid	-10.38	9.38	4.77	14.47	6.34	$43 \cdot 52$
Phosphorie Aeid - Chloride of Potassium	12.40	-	1.09	1817		
Chloride of Sodium -	traee.	15.09		$3 \cdot 42$	$2 \cdot 27$	$11 \cdot 19$
Total Amount	100.00	99.99	$100 \cdot 00$	99.95	$100 \cdot 00$	$100 \cdot 00$
Per-eentage of Ash in the dry substanee	$4 \cdot 86$		$0 \cdot 58$	5.95	6.97	
Per-eentage of Ash in the fresh substanee			- -	- -	$6 \cdot 15$	

The large amount of siliea found in the grasses, eonstituting, as it does, their outer eoating, eannot fail to be notieed. The variations in the quantities of phusphorie aeid are instruetive.

ASPARAGINE. ($\mathrm{C}^{5} \mathrm{H}^{8} \mathrm{~N}^{2} \mathrm{O}^{6}+2 \mathrm{Aq}$. Sym. Asparamide, malamide. altbeine.) A beautifully erystallised substanee, first found in asparagus juiee, by Vauquelin and Robiquet, in 1805 . It not only exists in a great number of regetables, but some whieh do not eontain it naturally may be made to afford it by being grown in dark damp eellars. Many plants normally eontaining only small quantities of it may be made to yield more by being allowed to germinate in that manner. Among the vegetables from whieh it ean be direetly obtained may be mentioned the following:Alhicea officinalis, Asparayus ucutifolius, A. off., Atropa belladomna, Convallaria majalis, C mulliflora, Cynodon dactylon, Glycyrrhiza glabra, Latuca sutiva. Ornithogalum ctudatum, Paris quadrifolia, Robinia pseudacucia, Solanum tuberosum, and Symphytum off. The following list eontains the names of some plants normally eontaining no asparagine, but yielding it when allowed to germinate in darkness in damp eellars:Colutea arborescons, C'ytisus laburnum, Ervum lens, Genista juncea, Ilcdysarum

[^29]onnhrychis, Lathyrus odoratus, L. latifolius, Phaseolus vulyaris, Pisum sativum, Trifolium pratense, Vicia Faba, and V. sativa.

Preparation. - Perhaps the most convenient and economical mode of procuring asparagine is from the etiolated (blanched) shoots of vetchcs. When they lave acquired a length of two inches - which, under favourable circumstances, will be in about three weeks - they are to be crushed, and the juice pressed out. The quantity yielded will be rather less tban three-fourths of the weight of the plant. It is then to be boiled for a short time, to coagulate the vegetable albumen, and strained. This clarified fluid is to be evaporated until almost syrupy, and put aside to crystallise. The product is at first brown, but by washing with cold water, afierwards dissolving in boiling water, and subsequent crystallisation, it may be obtained pure. If, previous to putting the hot fluid aside to crystallise, a little pure animal charcoal be added, and the whole be digested a short time, and then filtered, the crystals will be obtained brilliantly white at one operation. Some chemists advise the germination to be allowed to go much further than was mentioned above, so that the shoots may be as long as 15 inches. The crystals obtained by the process given lave the formula $\mathrm{C}^{8} \mathrm{H}^{9} \mathrm{~N}^{2} \mathrm{O}^{6}+2 \mathrm{Aq}$., but the water is expelled at 212°. Dry asparagine was for some time regarded as the amide of malic acid;-that is to say, neutral malate of ammonia minus four equivalents of water; but recent researches have demonstrated that this identity does not exist. It is remarkable that, nevertheless, malic acid is forned when a nitric solution of asparagine is treated with ritric oxide gas. Asparagine possesses the peculiarity of behaving like a base towards strong oxides and like an acid towards bases. The crystals obtained by the method given contain, in the 100 parts, carbon $32 \cdot 00$, hydrogen $6 \cdot 67$, nitrogen $18 \cdot 67$, oxygen $42 \cdot 66$. Dried at 212°, it has the following composition: carbon 36.36 , hydrogen 6.06 , nitrogen 21.21 , oxygen $36 \cdot 37$.-C. G. W.

ASPHALTIC MASTIC, used in Paris for large works, is brought down the Rhone from Pyrimont, near Lyssell. It is composed of nearly pure carbonate of lime, and about 9 or 10 per cent of bitumen.

When in a state of powder it is mixed with about 7 per cent of bitumen or mineral pitch, found near the same spot. The powdered asphalt is mixed with the bitun:en in a melted state along with clean gravel, and consistency is given to pour it into moulds. Sulphur added to about 1 per cent. makes it very brittle. The asphalt is ductile, and has elasticity to enable it, with the small stones sifted upon it, to resist ordinary wear. Walls having cracked, and parts having fallen, the asphalte has been seen to stretch and not crack. It has been rcgardcd as a sort of mineral leather. The sun and rain do not appear to affect it; and it answers for abuttoirs and barracks, keeps vermin down, and is uninjured by the kicking of horses.

A large roof has been formed in Paris, for a store for the Government food, entirely of earthenware tiles, and without timber, the tiles being 9 inches long and 5 wide. The arch is covered with a concrete of lime, sand, and gravel; then with a thin coat of hydraulic mortar; nver this, when dry, canvas was tightly stretched; asphaltic mastic was poured in a scmi-fluid state, and this formed the finished surface of the roof. The strength of the roof has been purposely tested to bear six tons withnut yielding, and has borne the accidental fall of a stack of chimners, with the only effect of bruising the mastic, readily repaircd.

ASPHALTUM. (Bitume or Asphalte, Fr.; Asphalt, Germ.) Mineral Pitch; so called from the lake Asph iltites; a variety of bitumen, arising from one of the many peculiar changes of vegetable mattcr. Asplaltum, in common with other varieties of bitumen, is a form of liydrocarbon produced in the interior of the carth by the trausformation of carbonaceous matter, like all combustible bodics of the same class. Compusition, $\mathrm{C}^{6} \mathrm{H}^{5}$. It is a solid black or brownish-hlack substance, possessing a bright conchoidal fracturc. It fuses at $212^{\circ} \mathrm{F}$., burning with a brilliant flame and enitting a bituminous odour. Specific gravity $=1$ to $1 \cdot 2$. Asphaltum is insoluble in alcohol, but soluble in about five times its weight of naphtha. See Brtumen of Judiea and Jews' Pitcir.

This solid shining bitumen, of a deep black colour when broken, is found in many parts of Egypt. A thin piece appcars of a reddish colour when held to the light ; when cold, it has no odour; by a moderate heat or by friction, the odour is slight ; fully heated, it liquefies, swells, and burns with a thick smoke; the odour given is acrid, strong, and disagrecable.

Spirits of wine dissolves pitch, but ouly takes a palc colour with asphaltum. It is readily procured at Mocha.

In the arts, asplaaltum is used as a component of japan varuish. It is likewise cmployed as a cement for lining cisterns, and for pavements, as a substitute for thag-
stones - I. W. B.

The following quantities of Asphaltum, or Bitumen Judaicum, were imported into Great Britain - in 1855, 167+ tons; in 1856, 2707 tons, of which 2573 tons were from France.

ASSAY and ASSAYING. (Coupellation, Fr.; Abtreiben auf der capelle, Germ.) This is the process by which the quality of gold and silver bullion, coin, plate: or trinkets is aseertained with preeision.

The art of assiying gold and silver by the cupel is founded upon the feeble affinity whieh these metals have for oxygen, in comparison with copper, tin, and the other eheaper metals ; and on the tendeney whieh the latter metals have to oxidise rapidly in eontaet with lead at a high temperature, and sink with it into any porous earthy vessel in a thin glassy or vitriform state. The porous vessel may be made either of wood-ashes, freed from their soluble matter by washing with water ; or, preferably, of burned bones reduced to a fine powder.

Quantity of Lead to be employed for Alloys (M. D'A reet).

Alloy.		Lead for 1 of Alling.	Ratio of the Copper to the Lead.
Silver.	Copper.		
1000	- 0	$\frac{3}{10}$	0
950	50	3	1:60
900	100	7	1:70
800	200	10	$1: 50$
700	300	12	1:40
600	400	14	1:35
500	500	16 or 17	1:32
400	600	16-17	$1: 26.7$
300	700	16-17	1: $22 \cdot 9$
200	800	$16-17$	1: 20
100	900	$16-17$	1:17:8
0	1000	$16-17$	1:16

Bismuth may be used as a substitute for lead in eupellation; two parts of it being nearly equivalent to three of lead. But its higher priee will prevent its general introduction among assay masters.

We begin this assay process by weighing, in a delieate balance, a eertain weight of the metallie alloy ; a gramme ($=15.432$ gr.) is usually taken in France, and 12 grains in this country. This weight is wrapped up in a slip of lead foil or paper, should it eonsist of several fragments. This small parcel, thus enveloped, is then laid in a watch glass or a eapsule of copper, and there is added to it the proportion of lead suited to the quality of alloy to be assayed; there being less lead, the finer the silver is presumed to be. Those who are much in the habit of eupellation ean make good guesses in this way; though it is still guess-work, and often leads to eonsiderahle error, for if too much lead be used for the proportion of baser metal present, a portion of the silver is wasted; but if too little, then the whole of the copper, \&e. is not earried off, and the button of fine silver remains more or less impure. The most expert and experienced assayer by the cupel produces merely a series of approximate eonjectural results, which fall short of ehemical demonstration and certainty in every instanee. The lead must be, in all cases, entirely free from silver, being sueh as has been revived from pure litharge; otherwise errors of the most serious kind would be oceasioned in the assuys.
The best eupels weigh $12 \frac{1}{2}$ grammes, or 193 grains. The cupels allow the fused oxides to flow through them as through a fine sieve, but are impermeable to the partieles of metals; and thus the former pass readily down into their substance, while the latter remain upon their surface; a phenomenon owing to the eireunstance of the glassy oxides moistening, as it were, the bone-ash powder, whereas the metals ean eontraet no adherence with it. Hence also the liquid metals preserve a hemispherieal shape in the eupels, as quicksilver does in a eup of glass, while the fused oxide spreads over, and penetrates their substance, like water. A cupel may be regarded, in some measure, as a filter permeable only to eertain liquids.

If we put into a eupel, therefore, two metals, of whieh the one is unalterable in the air, the other suseeptible of oxidisement, and of produeing a very fusible oxide. it is obvious that, by exposing both to a proper degree of heat, we slall sueceed iu separating them. We should also sueeced, though the oxide were infusible, by plueing it in contaet with another one, whiel may render it fusible. In both eases, however,
the metal from which we wish to part the oxides must not he volatile; it should also melt, and form a button at the heat of cupellation; for othcrwise it would continue disseminated, attached to the portion of oxide spread over the cupel, and incapable of being collected.

The furnace and implements used for assaying in the Royal Mint and Goldsmiths' Hall, in the city of London, are the following :-

A A \& A (fig. 117) is a front clevation of an assay furnace; a a, a view of one of the two iron rollers on which the furnace rests, and by means of which it is moved forward or hackward; b, the ash-pit ; $c c$ are the ash-pit dampers, which are moved in a horizontal dircetion towards each other for regulating the draught of the furnace; d, the door, or opening, hy which the cupels
 and assays arc introduced into the mufflc ; e, a movable funnel or chimney by which the draught of the furnace is increased.

B B B B (fig. 118) is a perpendicular' section of fig. 117; a a, end view of the rollers; b, the ash-pit; c, onc of the ash-pit dampers; $c l$, the grate, over which is the plate upon which the muffle rests, and which is covered with loam nearly one inch thick ; f, the muffle in section, representing the situation of the cupels ; g, the mouth-plate, and upou it are laid pieces of charcoal, which, during the process, are iguited, and heat the air that is allowed to pass over the cupels, as will he more fully explained in the sequel ; h, the interior of the furnace, exhibiting the fuel.

The total height of the furnacc is 2 feet $6 \frac{1}{2}$ inches ; frour the hottom to the grate, 6 inches; the grate, muffe, plate, and bed of loam, with which it is covered, 3 inches; from the upper surface of the grate to the commencement of the funncl e, fig. 117, $21 \frac{1}{2}$ inchcs; the funnel $c, 6$ inches. The square
 of the furnace which receives the mufflc and fuel is 11^{3} inches hy 15 inches. The cxternal sides of the furnace are made of plates of wrought iron, and are lined with a 2 -inch fire-brick.
$\operatorname{cecc}(f i g .119)$ is a horizontal section of the furnace over the grate, showing the width of the mouth-piece, or plate of wrought irou, which is 6 inches, and the opening which receives the muffle plate.

Fig. 120 represents the muffle or pot, which is 12 inches long, 6 inches hroad inside; in the clear $6 \frac{3}{4}$: in height $4 \frac{1}{2}$ inside measure, and nearly $5 \frac{1}{2}$ in
 the clear.

Fig. 121, the muffle-platc, which is of the same size as the bottom of the muffle.
Fig. 122 is a representation of the sliding-door of the mouth-plate, as shown at d, in fig. 117.

Fig. 123, a front view of the montli-plate or piece, d, fiy. 117.
Fig. 124, a rcpresentation of the mode of the making, or shutting up with picces of charcoal, the mouth of the furnace.

Fiy 125, the teaser for eleaning the grate.
Fig. 126, a larger teaser, which is introduced at the top of the furnace, for keeping a eomplete supply of charcoal around the muffe.

Fig. 127, the tongs used for charging the assays into the cups.
Fig 128 represents a bourd of wood used as a register, and is divided into 45 equal compartments, upon which the assays are placed previously to their being introdueed into the furnace. When the operation is performed, the cupels are plaeed in the furnace in situations corresponding to these assays on the board. By this means all eonfusion is avoided, and without this regularity it would be impossible to preserve the accuracy which the delicate operations of the assayer require.

We now proceed to a deseription of a snuall assay furnace invented by Messrs. Anfrye and D'Arcet, of Paris. . They terın it, le petit Fourneau à Coupelle. Fïg. 129 represents this furnaee, and it is composed of a chimney or pipe or wrought iron, a, and of the furnace, B. It is $17 \frac{1}{2}$ inches high, and $7 \frac{1}{4}$ inches wide. The furnace is formed of three pieees; of a dome, A; the body of the furnace, B; and the ash pit, c, which is used as the base of the furnace, figs. 129 and 130. The principal piece, or body of the furnace, B, has the form of a hollow tower, or of a hollow cylinder, flattened equally at the two opposite sides parallel to the axis. in such a manner that the

horizontal section is elliptical. The foot whieh supports it is a hollow truncated cone, flattened in like manmer upon the two opposite sides, and haring consequently for its basis two cllipses of different diameters: the smallest ought to be equal to that of the furnace, so that the bottom of the latter may exactly fit it. The dome, which forms an arch above the furnace, has also its base elliptical, whilst that of the superior orifice, by which the smoke goes out, preserves the eylindrical form. The tube of wrought irou is 18 inches long, and $2 \frac{1}{2}$ inches in diamcter, having oue of its ends a little enlarged, and slightly conical, that it may be exactly fitted or jointed upon the upper part of the furnace dome, d (fig.129). At the union of the coniealand cy lindrical parts the tube, there is placed a small gallery of iron, e, fiqs. 129, 130. (See also a plan of it, fiy. 131.) This gallery is both ingenious and useful. Upou it are plaeed the eupels, whieh are thus annealed during the ordinary work of the furuace, that they may be introduced into the muffle when it is brought into its proper degree of heat. A little above this gallery is a door, f, by which, if thought proper, the charcoal could be introduced into the furuace; above that there is placed at g a throttle valve, whieh is used for regulating the draught of the furnace at pleasure. Miessrs. Anfrye and D'Arect say, that, to give the firnace the ueeessary degree of heat so as to work the assays of gold, the tube must be about 18 inches above the gallery for annealing or heating the cupels. The eireular opening in the dome, h (fig. 129, aud as seen in section fig. 130), is used to iutroduce the charcoal into the furnace: it is also used to inspect the interior of the furnaee, and to arrange the chareoal round the muftle. This opening is kept shut during the working of the furnace, with the mouth-pieee, of which the face is seen at n, fig. 130.

The section of the furnace, fig. 130, presents several openings, the principal of which is that of the mufte ; it is placed at i; it is shut witl the semieircular door m, fig. 129, and seen in the section m, fig. 130. In front of this opening, is the table or shelf upon which the door of the muffe is made to advanee or reeedc. The letter q, fig. 130, shows the face, side, and cross section of the shelf, which makes part of the furnace. Immediately under the shelf is a horizontal slit, l, whieh is pierced at the level of the upper part of the grate, and used for the introduction of a slender rod of iron, that the grate may he easily kept clean. This opening is shut at pleasure, by the wedge represented at k, figs. 129 and 130.

Upon the hack of the furance is a horizontal slit, p, fig. 130, which supports the fire brick, s, and upon which the end of the muflc, if necessary, may rest ; u, fig. 130, is the opening in the furnace where the muffle is placed.

The plan of the grate of the furnace is au ellipse : fig. 132 is a horizontal vicw of it. The dimensions of that ellipsis determine the general form of the furnaee, and thiekness of the grate. To gire strength and solidity to the grate, it is encircled hy a bar or hoop of iron. There is a groove in thich the hoop of iron is fixed. The holes of the grate are truncated cones, having the greater hase below, that the ashes may more easily fall into the ash-pit. The letter v, fig. 130, shows the form of these holes. The grate is supported by a small bank or shelf, making part of the furnace, as seen at a, fig. 130.

The ash-pit, c, has an opening, y, in front, fig. 130; and is shut when neeessary by the mouth-piece, r, figs. 129 and 130.

To give strength and solidity to the furnaee, it is bound with hoops of iron, at bl 6 b, fig. 129.

Figs. 133, 134, 135, are riews of the muffle.
Fig. 136 is a view of a crucible for annealing gold.
Figs. 137, 138, 139, are cupels of various sizes, to be used in the furnace. They are the same as those used hy assayers in their ordinary furnaces.
Figs. 140 and 141 are views of the hand-shovels, used for filling the furnace with charcoal ; they should be made of such size and form as to fit the opening h, in figs. 129 and 130.

The smaller pincers or tongs, by which the assays are charged into the cupels, and hy which the latter are withdrawn from the furnaee, as well as the teaser for eleansing the grate of the furnace, are similar to those used at the British Mint.

In the furnace of the Mint ahove described, the number of assays that ean be made at one time is 45 . The same number of cupels is put into the muffle. The furnace is then filled with charcoal to the top, and upon this are laid a few pieces already ignited. In the course of three hours, a little more or less according to circumstances, the whole is ignited; during which period the muffe, which is made of fireclay, is gradually heated to redness, and is prevented from eracking, whieh a less regular or more sudden increase of temperature would not fail doing : the cupels, also, become properly annealed. All moisture being dispelled, they are in a fit state to reccive the piece of silver or gold to be assayed.

The greater care that is exercised in this operation, the less liable is the assayer to accidents from the breaking of the muffle; which it is both expensive and troublesome to fit properly into the furnace.

The cupels used in the assay process are made of the ashes of hurnt hones (phosphate of lime). In the Royal Mint, the cores of ox-horn are selected for this purpose; and the ashes produced are about four times the expense of the bone-ash used in the process of eupellation on a large scale. So much depends upon the accuraey of an assay of gold or silver, where a mass of 15 lbs . troy in the first, and 60 lbs . troy in the second instance, is determined by the analysis of a portion not exceeding 20 troy grains, that every precaution which the longest experience has suggested is used to obtain an accurate result. Hence the attention paid to the selection of the most proper matcrials for making the cupels.

The cupels are formed in a circular mould made of cast steel, very nicely turned, hy whieh means they are easily frced fiom the mould when struck. The bone-ash is used moistened with a quantity of water, sufficient to make the particles adhere firmly together. The circular noould is filled, and pressed level with its surface; after which, a pestle or rammer, having its cnd niccly turned, of a globular or convex shape, and of a size equal to the degree of concavity wished to be made in the cupel for the reception of the assay, is placed upon the ashes in the nould, and struek with a bammer until the cupel is properly formed. These cupels are allowed to dry in the air for some time before they are used. If the weather is fine, a fortnight will be sufficient.

An assay may prove defeetive for several reasons. Sometimes the button or bead
sends forth erystalline vegetations on its surface with such foree as to make one sup. pose a portion of the silver may be thrown out of the cupel, teehnically called "spitting." When the surface of the bead is dull and flat, the assay is considered to have been too hot, and it indicates a loss of silver in fumes. When the tint of the bead is not uniform, when its-inferior surface is bubbly, when yellow seales of oxide of lead remain on the bottom of the cupel, and the bead adheres strongly to it,-by these signs it is judged that the assay has been too cold, and that the silver retains some lead.

Lastly, the assay is thought to be good if the bead is of a round form, if its upper surface is brilliant, if its lower surface is granular and of a dead white, and if it separates readily from the cupel.

After the lead is put into the cupel, it gets immediately covered with a coat of oxide, which resists the admission of the silver to be assayed into the melted metal ; so that the alloy eannot form. When a bit of silver is laid on a lead bath in this predicamant, we see it swim about for a long time without dissolving. In order to a void this result, the silver is wrapped up in a bit of paper; and the carburetted hydrogen generated by its combustion reduces the film of the lead oxide, gives the bath immediatcly a bright metallic lustre, and enables the two metals readily to combine.

As the heat rises, the oxide of lead flows round about over the surface, till it is absorbed by the cupel. When the lead is wasted to a certain degree, a very thin film of it only remains on the silver, which eauses the iridescent appearance like the colours of soap-bubbles - a phenomenon called, by the old chemists, fulguration.

When the cupel cools in the progress of the assay, the oxygenation of the lead ceases; and, instead of a very liquid vitreous oxide, an inperfectly melted oxide is formed, which the cupel eannot absorb. To correct a cold assay, the temperature of the furnace ought to be raised, and pieces of paper put into the cupel, till the oxide of lead which adheres to it be reduced. On keeping up the heat, the assay will resume its ordinary train.

Pure silver almost always vegetates. Some traces of copper destrny this property, whieh is obviously due to the oxygen which the silver can absorb while it is in fusion, and which is disengaged the moment it solidifies. An excess of lead, by removing all the copper at an early stage, tends to cause the vegetation.

The brightening is eaused by the heat evolved when the button passes from the liquid to the solid state. Many other substances present the same phenomenon.

In the above operation it is necessary to employ lead which is very pure, or at least free from silver. This is called poor lead. I have found the lead reduced from Pattison's "oxyehloride" to be more free from silver than any that I could obtain by any other means; the lead reduced from the litharge of commeree usually contains from 10 to 15 dwts . of silver per ton.

It has been observed at all times, that the oxide of lead earries off with it, into the eupel, a little silver in the state of an oxide. This effect beenmes less, or even disappears, when there is some copper remaining; and the more copper, the less chance there is of any silver being lost. The loss of silver increases, on the other hand, with the dose of lead. Hence the reason why it is so important to proportion the lead with a precision which, at first sight, would appear to be superfluous. Hence, also, the reason of the attempts which have, of late years, been made to change the whole system of silver assays, and to have recourse to a method exempt from the above eauses of error.
M. D'Areet, charged by the Commission of the Mint in Paris to examine into the justice of the reclamations made by the French silversmiths against the public assays, aseertained that they were well founded; and that the results of cupellation gave for the alloys between 897 and 903 thousandths (the limits of their standard coin) an inferior standard, by from 4 to 5 thousandth parts, from the standard or title which should result from the absolute or aetual alloy.
The mode of assay shows, in fact, that an ingot experimentally composed of 900 thousandths of fine silver and 100 thousandths of copper, appears, by cupellation, to be only, at the utmost, 896 or 897 thousandths; whereas fine silver of 1000 thousandths comes out nearly of its real standard. Consequently, a director of the Mint who should compound his alloy with fine silver would be obliged to employ 903 or 904 thousandths, in order that, by the assay in the laboratory of the Mint, it should appear to have the standard of 900 thousandths. These 3 or 4 thousandths would be lost to him, since they would be disguised by the mode of assay, the definitive eriterion of the quantity of silver, of whieh the Governument kecps count from the coiner of the money.
From experiments subsequently made by M. D'Areet, it appears that silver assays
always suffer a loss of the precious metal, which varies with the standard of the alloy. It is 1 thousandtli for fine silver,
4.3 thousandths for silver of 900 thousandths,

$4 \cdot 9$	s	"	800	"
$4 \cdot 2$	m	"	500	"

and diminishes thereafter, progressively, till the alloy coutains only 100 thousandths of silver, at whieh point the loss is only $0 \cdot 4$.

Assays requested by the Commission of the Paris Mint, from the assayers of the principal Royal Mints in Europe, to which the same alloys, synthetically compounded, were sent, afforded the results inscribed in the following Table : -

Names of the Assayers.	Cities where they reside.	Standards found for the Mathematical Alloys.		
		950 Mill.	900 Mill.	800 Mill .
F. de Castenhole, Mint Assayer	Vienna	$946 \cdot 20$	898.40	$795 \cdot 10$
A. R. Vervaëz, ditto -	Madrid -	$944 \cdot 40$	893.70	789-20
D. M. Cabrera, Assayer in				
Spain	Ditto -	$944 \cdot 40$	\$93.70	$788 \cdot 60$
Assaycr -	Amsterdam	947.00	$895 \cdot 00$	795.00
Mr. Bingley, Assay Master	London -	$946 \cdot 25$	896.25	$794 \cdot 25$
Mr. Johnson, Assayer	Ditto -	$933 \cdot 33$	883.50	783.33
Inspector of the Mint -	Utrecht -	$945 \cdot 00$	896.50	799.00
Assayer of the Mint	Naples -	$945 \cdot 00$	891.00	787.00
Assayer of Trade	Ditto -	945.00	$891 \cdot 0$	787.00
Assayer of the Mint -	Hamburg	$946 \cdot 1 \frac{13}{1}$	$897 \cdot \frac{11}{12}$	$798 \cdot \frac{44}{12}$
Ditto	Altona -	$942 \cdot \frac{1}{4}$	894.00	790

These results, as well as those in still greater numbers, obtained from the ablest Parisian assayers, upon identical alloys of silver and copper, prove that the mode of assay applied to them brings out the standard too low; and further, that the quantity of silver masked or disguised, is not uniform for these different eminent assay masters. An alloy, for example, at the standard of 900 thousandths is judged

The fact thus so clearly made out, of a loss in the standard of silver bullion and coin, merits the most serious attention; and it will appear astonishing, perhaps, that a thing recurring cvery day should have remained for so long a time in the dark. In reality, howcyer, the fact is not new; as the very numerous and well-made experiments of Tillet from 1760 to 1763, which are related in the memoirs of the Academy of Sciences, show, in the silver assays, a loss still greater than that which was experienced in the laloratory of the Commission of the French Mint. But he thought that, as the error was common to the nations in general, it was not worth while or prudent to introduce any innovation.
A mode of assaying to give with certainty the standard of silver bullion, should be entirely independent of the variable circumstances of temperature, and the unknown proportions of copper, so diffieult to regulate by the mere judgment of the senses. The proces: by the humid way, recommended to the Royal Mint in 1829, and exhibited as to its principles before the Right Honourable John Herries, then Master, in 1830, has all the precision and ecrtainty we could wish. It is founded on the wellknown property whieh silver has, when dissolved in uitric acid, to be preeipitated in a ehloride of silver quite insoluble by a solution of sea salt or by muriatic acid; but, instead of determining the weight of the chloride of silver, which would be somewhat uncertain and rather tedious on account of the difficulty of drying it, we take the quantity of the solution of sea salt which has been necessary for the precipitation of the silver. To put the process iu execution, a liquor is prepared composed of water and sea salt in such proportions that 1000 measures of this liquor may precipitate completely 12 grains of silver, perfectly pure or of the standard 1000 , previously dissolved in nitric acid. The liquor thus prepared gives, immediately, the truc standard of any alloy whatever, of silver and copper, by the quantity of which it may be necessary to precipitate 12 grains of this alloy. If, for cxample, 905 measures
have been required to precipitate the 12 grains of alloy, its staudard would be 905 thousandths.

The proeess by the humid way is, so to speak, independent of the operator, the manipulations are so easy; and the term of the operation is very distinctly announced by the absenee of any sensible nebulosities on the affusion of sea salt into the silver solution, while there remains in it one quarter of a thousandth of metal. The proeess is not tedious, and in experieuced hands it may rival the cupel in rapidity : it has the advantage over the cupel as being more within the reath of ordinary operators, and of not requiring a long apprenticeship. It is partieularly useful to such assayers as have only a few assays to make daily, as it will eost them very little time and expense.

By agitating briskly, during two minutes, the liquid rendered milky by the preeipitation of the ehloride of silver, it may be sufficiently clarified to enable us to appreciate, after a few moments of repose, the disturbance that ean be produced in it by the addition of 1000th of a grain of silver. Filtration is more effieaeious than agitation, especially when it is employed afterwards : it may be sometimes used; but agitation, whieh is much more prompt, is generally sufficient. The presence of lead and copper, or any other metal, exeept mereury, has no pereeptible inflnence on the quantity of sea salt necessary to precipitate the silver; that is to say, the same quantitity of silver, pure or alloyed, requires for its precipitation a constant quantity of the solution of sea salt.

Supposing that we operate upon a gramme of pure silver, the solution of sea salt ought to be such that 100 eentimetres cube may precipitate exaetly the whole of the silver. The staudard of an alloy is given by the number of thousandths of solution of sea salt necessary to preeipitate the silver eontained in a gramme of alloy.

When any mereury is aecidentally present, which is, however, a rare occurrence, it is made obvious by the preeipitated ehloride remaining white when exposed to daylight; whereas, when there is no mercury present, it becomes speedily first grey and then purple. Silver so eontaminated must be strongly ignited in fusion before being assayed, and its loss of weight noted. In this ease, a cupel assay must be had recourse to.

Preparution of the Normal Solution of Sea Salt, when it is measured by Weight.Supposing the sea salt pure as well as the water, we have only to take these two bodies in the proportion of 0.5427 k . of salt to 99.4573 k . of water, to have 100 k . of solution, of whieh 100 grammes will precipitate exactly one gramme of silver. But instead of pure salt, which is to be procured with difficulty, and which besides may be altered readily by absorbing the humidity of the air, a concentrated solution of the sea salt of commeree is to be preferred, of which a large quantity may be prepared at a time, to be kept in reserve for use, as it is wanted.-Instruction de Gay-Lussac.

Preparation of the Normal Solution of Sea Salt, when measured by Volume. - The measure by weight has the advantage of being independent of temperature, of having the same degree of preeision as the balance, and of not standing in need of correction. The measure by volume has not all these advantages; but, by giving it suffieient preeision, it is more rapid, and is quite sufficient for the numerous daily assays of the Mint. This normal solution is so made, that a volunie equal to that of 100 grammes of water, or 100 centimetres cube, at a determinate temperature, may precipitate exaetly one gramme of silver. The solution may be kept at a constaut temperature, and in this case the assay stands in no want of correction; or if its temperature be variable, the assay must be corrected according to its influence. These two circumstanees make no change in the prineiple of the proeess, but they are sufficicntly important to oecasion some modifications in the apparatus. Experience has decided the preference in favour of applying a correction to a variable temperature.
We readily obtain a volume of 100 cubie centimetres by means of a pipetle, fig. 142, so ganged, that when filled with water up to the mark a, b, and well dried at its point, it will run ont, at a eontinuous efflux, 100 gramnes of water at the temperature of $15^{\circ} \mathrm{C}$. $\left(59^{\circ} \mathrm{F}\right.$.) We say purposely at one efflux, becausc after the cessation of the jet, the pipette may still furnish two or three drops of liquid, which nust not be eounted or reckoned upon. The weight of the volume of the norinal solution, taken in this manner with suitable preeautions, will be uniform from one extreme to another, npon two ceutimetres and a half, at most, or to a quarter of a thonsandth, and the difference from the mean will be obviously twice less, or one lalf. Let us indicate the most simple manner of taking a measure of the normal solution of sea salt.

After having immersed the beak, c, of the pipette in the solution, we apply suction, by the mouth, to the upper orifice, and thereby raise the liquid to d, above the circular line $a b$. We next apply neatly the forefinger of one hand to this orifice, remove the pipette from the liquid, and seize it as represented in fig. 143. The mark a b being plaeed at the level of the eye, we make the surface of the solution become exactly a
tangent to the plane $a b$. At the instant it becomes a tangent, we leave the beak, c, of pipette open, by taking away the finger that had been applied to it, and without changing anything else in the position of the hauds, we empty it into the bottle which should receive the solution, taking care to remove it whenever the efflux has run out.

If, after filling the pipette by suetion, anyoue should find a difficulty in applying the forefinger fast enough to the upper orifice, without letting the liquid run down below the mark $a b$, he should remove the pipette from the solution with its top still elosed with his tongue, then apply the middle finger of one of his hands to the lower orifice; after which he may withdraw his tongue, and apply the forefinger of the other hand to the orifice previously wiped. This method of obtaining a measure of normal solution of sea salt is very simple, and requires no complex apparatus; but we shall indieate another manipulation still easier, and much more exact.
In this new process the pipette is filled from the top like a bottle, instead of being filled by suction, and it is moreover fixed. Fig. 144 represents the apparatus. D and D^{\prime} are two soekets separated by a stopeock, r. The upper one, tapped interiorly, receives, by means of a cork
 stopper, L , the tube, $\mathbf{~ T}$, which admits the solution of sea salt. The lower socket is cemented on to the pipette ; it bears a small air-coek, n^{\prime}, and a serew plug, v , which regulates a minute opening intended to let the air enter very slowly into the pipette. Below the stopcock, r^{\prime}, a silver tube, N , of narrow diameter, soldered to the socket, leads the solution into the pipette, by allowing the air, which it displaces, to eseape by the stopeock, r^{\prime}. The serew plug, with the milled head, v , replaces the ordinary serew by which the key of the stopeock may he made to press, with more or less foree, upon its conical seat.

Fig. 145 represents a side view of the apparatus just deseribed. We here remark an air-cook n , and an opening m. At the extremity Q of the same figure, the conieal pipe T enters with frietion. It is by this pipe that the air is sucked into the pipette, when it is to be filled from its beak.
The pipette is supported by two horizontal arms H K (fig. 146) movable about a common axis, a A, and capable of being drawu out or shortened by the aid of two longitudinal slits. They are fixed steadily by two serew nuts, $e \dot{e}$, and their distance may be varied by means of round bits of wood or cork interposed, or even by opposite serew nuts, o σ. The upper arm H is piereed with a hole, in which is fixed, by the pressure of a wooden serew v, the socket of the pipette. The corresponding hole of the lower arm is larger ; and the beals of the pipette is supported in it by a cork stopper, L. The apparatus is fixed by its tail-pieee P , by means of a screw to the corner of a wall, or ariy other prop.

The manner of filling the pipette is very simple. We begin by applying the fore finger of the left hand to the lower aperture, c; we then open the two stopcocks r and r^{\prime}. Whenever the liquor approaches the neck of the pipette, we must temper its influx, and when it has arrived at some millimetres above the mark $a b$, we elose the two stopeocks, and remove our forefinger. We have now nothing more to do than to regulate the pipette; for which purpose the liquid must touch the line $a b$, and must simply adhere externally to the beak of the pipette.

This last eireumstance is easily adjusted.

148
 After taking away the finger which elosed the aperture c of the pipettc, we apply to
this orifice a moist sponge m, fig. 147 to absorb the superfluous liquor as it drops out.
 This sponge is called the handkerchicf (mouchoir), by M. GayLussac. The pipette is said to be wiped when there is 110 liquor adhering to its point exteriorly.
For the convenience of operating, the handkerclief is fixed by friction in a tube of tin plate, terminated by a cup, open at bottom to let the droppings flow off into the cistern \mathbf{c}, to whieh the tube is soldered. It may be casily removed for the purpose of washing it ; and, if necessar'y, a little wedge of wood, o, can raise it towards the pipette.
To complete the adjustnient of the pipette, the liquid must be made merely to descend to the mark a, b. With this view, and whilst the handkerchief is applied to the beak of the pipette, the air must be allowed to enter very slowly, by unscrewing the plug v, fig. 144 ; and at the moment of the contact the handkerchief must be removed, and the bottle F, destined to receive the solution, must be placed below the orifice of the pipette, fiy. 147. As the motion must be made rapidly, and withont hesitation, the bottle is placed iu a cylinder of tin-plate, of a dianeter of somewhat greater, and forming one body with the cistern and the handkerchief. The whole of this apparatus has for a basis a plate of tinned iron, movable between the woodeu rulers R R, one of which bears a groove, under which the edge of the plate slips. Its traverses are fixed by two abutments, $b b$, placed so that when it is stoppcd by one of them, the beak of the pipette, corresponds to the centre of the neek of the botile, or is a tangent to the handkcrchief. 'This arrangement, very convenient for wiping the pipette and emptying it, gives the apparatus sufficient solidity, and allows of its being taken away, and replaced without deranging anything. It is obvious that it is of advantage, when once the entry of the air into the pipette has beeu regulated by the screw v , to leave it constantly open because the motion from the handkerchief to the bottle is performed with suffieicnt rapidity to prevent a drop of the solution from collecting and falling down.

Temperature of the Solution.-After having described the manncr of measuring by volume the normal solution of the sea salt, we shall indicate the most convenient means of taking the temperature. The thermometer is placed in a tube of glass, x, fig. 148, which the solution traverses to arrive at the pipette. It is suspended in it by a piece of cork, grooved on the four sides to afford passage to the liquid. The scale is engraved upon the tube itself, and is repeated at the opposite side, to fix the eye by the coincidence of this double division at the level of the thermometric column. The tube is joined below to another narrower one, through which it is attached by means of a cork stopper B, in the,socket of the stopcock of the pipette. At its upper part it is cemented into a brass socket, screw-tapped in the inside, which is connected in its turn by a cock, with the extremity, also tapped, of the tube above T, belonging to the reservoir of the normal solution. The corlss employed here as connecting links between the parts of the apparatus, give them a certain flexibility, and allow of their being dismounted and remounted in a very short time; but it is indispensable to make them be traversed by a hollow tube of glass or metal, which will hinder them from being crushed by the pressure they are exposed to. If the preeaution be taken to grease them with a little suet and to fill their pores, they will suffer no lcakage.

Preservation of the Normal Solution of Sea Salt in metallic Vessels.-M. Gay-Lussac uses for this purpose a cylindrical vessel or drum of copper, of a capacity of about 110 litres, having its inside covered with a resin and wax cement.

Preparation of the Nornal Solution of Sea Salt, measuring it by Volume. - If the drum contains 110 litres, we should only put 10.5 into it, in order that sufficient space may be left for agitating the liquor without throwing it out. According to the principle that 100 centimetres cube, or $\frac{1}{10}$ th of a litre of the solution slould contain cnouglh of sca salt to precipitate a gramme of purc silver ; and, admitting morcover, 13.516 for the equivalent of silvcr, and 7.335 for that of sea salt, we shall find the quantity of pure salt that should be dissolved in the 105 litres of water, and which corrcsponds to $105 \times 10=1050$ granmes of silver, to be by the following proportion :-

$$
13 \cdot 516: 7 \cdot 335:: 1050 \text { gramm. }: x=569 \cdot 83 \mathrm{gr} .
$$

And as the solution of the sea salt of commerce formerly mentioned contains approximatively 250 grammes per kilogramme, we 1ust make $2279 \cdot 3$ granmes of this
solution to have 569.83 gram. of salt. The mixture being perfectly made, the tubes and the pipette must be several times washed by running the solution through them, and putting it iuto the drum. The standard of the solution must he determined after it has been well agitated, supposing the temperature to remain uniform.

To arrive more eonveniently at this result, we begin hy preparing two decimes solutions ; one of silver, and another of sea salt.

The decime solution of silver is obtained by dissolving 1 gramme of silver in nitric acid, and diluting the solution with water till its volume becomes a litre.

The decime solution of sea salt may be ohtained by dissolving 0.543 grammes of pure sea salt in water, so that the solution shall occupy a litre; but we shall prepare it even with the normal solution which we wish to test, by mixing a measure of it with 9 measures of water; it being understood that this solution is not rigorously equivalent to that of silver, and that it will become so only when the normal solution employed for its preparation shall be finally of the true standard. Lastly, we prepare beforehand several stoppered phials, in each of which we dissolve 1 gramme of silver in 8 or 10 grammes of nitric acid. For brevity's sake, we shall call these " tests."

Now to investigate the standard of the normal solution, we must transfer a pipette of it into one of these test phials; and we must agitate the liquors briskly to clarify them. After some instants of repose, we pour in 2 thousandths of the decime solution of sea salt, which we snppose will produce a precipitate. The normal liquor is conscquently too feeble; and we should expect this, since the salt employed was not perfeetly pure. We agitate and add 2 fresh thousandths, which will also produce a precipitate. We continue thus, by successive additions of 2 thousandths, till the last produces no precipitation. Suppose that we have added 16 thousandths: the last two should not be reckoned, as they produced no precipitate; the preceding two were necessary, but only in part ; that is to say, the useful thousandths added are above 12 and below 14, or otherwise they are on an average equal to 13.

Thus, in the condition of the normal solution, we require 1013 parts of it to precipitate one gramme of silver, while we should require only 1000 . We shall find the quantity of concentrated solution of sea salt that we should add, by noting that the quantity of solution of sea salt, at first employed, viz. $2279 \cdot 3$ grammes, produced a standard of only 987 thousandths $=1000-13$; and by using the following proportion:

$$
987: 2279 \cdot 3:: 13: x=30 \cdot 02 \text { grammes. }
$$

This quantity of the strong solution of salt, mixed with the normal solution in the drum, will correct its standard, and we shall see now by how much.
After having washed the tubes and the pipette with the new solution, we must repeat the experiment upon a fresh gramme of silver. We shall find, for example, in proceeding only by a thousandth at a time, that the first causes a precipitate, but not the second. The standard of the solution is still too weak, and is comprised between 1000 and 1001 ; that is to say, it may be equal to $1000 \frac{1}{2}$, hut we must make a closer approximation.

We pour into the test bottle 2 thousandths of the decime solution of silver, which will destroy 2 thousandths of sea salt, and the operation will have retrograded by 2 thousandths; that is to say, it will be brought back to the point at which it was first of all. If, after having cleared up the liquor, we add half a thousandth of the decime solution, there will necessarily be a precipitate, as we knew beforehard, but a second will canse no turbidity. The standard of the normal liquor will be consequently comprehended between 1000 and $1000 \frac{1}{2}$, or equal to $1000 \frac{1}{4}$.

We should rest content with this standard, but if we wish to correct it, we may remark that the two quantities of solutiou of salt added, viz. $2279 \cdot 3 \mathrm{gr} .+30.02 \mathrm{gr} .=$ $2309 \cdot 32$ gr., have produced only $999 \cdot 75$ thousandths, and that we must add a new quantity of it corresponding to $\frac{1}{4}$ of a thousandth. We make, therefore, the proportion

$$
999 \cdot 75: 2309 \cdot 32:: 0.25: x
$$

But sinee the first term differs very little from 1000 , we may content ourselves to have x by taking the $\frac{0,35}{1000}$ of $2309 \cdot 32$, and we shall find 0.577 gr . for the quantity of solution of sea salt to be added to the normal solution.

It is not convenient to take exactly so small a quantity of solution of sea salt by the balance, but we shall succeed easily by the following process. We weigh 50 grammes of this solution, and we dilute it with water, so that it occupies exactly half a litre, or 500 centimetres cube. A pipetle of this solution, one centimetre cube in volume, will give a decigramme of the primitive solution, and as such a small pipette is divided into twenty drops, each drop, for example, will present 5 milligrammes of

ASSAY.

the solution. We should arrive at quantities smaller still by diluting the solution with a proper quantity of water; but greater precision would be entirely necaless.

The testing of the normal liquor just described is, in reality, less tedious than might be supposed. It deserves also to be remarked, that liquor has been prepared for more than 1000 assays; and that, in preparing a fresh quantity, we shall obtain direetly its true standard, or nearly so, if we bear in mind the quantities of water and solution of salt which have been employed.

Correction of the Standard of the Normal Solution of Sea Salt, when the Temperature changes. - We have supposed, in determining the standard of the normal solution of sea salt, that the temperature remained uniform. The assays made in suel eircumstances have no need of correetion; but if the temperature slould change, the same measure of the solution will not contain the same quantity of sea salt. Supposing that we have tested the solution of the salt at the temperature of $15^{\circ} \mathrm{C}$. ; if, at the time of making the experiment, the temperature is $18^{\circ} \mathrm{C}$., for cxample, the solution will be too weak on account of its expansion, and the pipette will contain less of it by weight; if, on the contrary, the temperature has fallen to 12°, the solution will be thereby concentrated, and will prove too strong. It is therefore proper to determine the correction neeessary to be made for any variation of temperature.

To ascertain this point, the temperature of the solution of sea salt was made suceessively, to be $0,5^{\circ}, 10^{\circ}, 15^{\circ}, 20^{\circ}, 25^{\circ}$, and $30^{\circ} \mathrm{C}$.; and three pipettes of the solution were weighed exactly at each of these temperatures. The third of these weighings gave the mean weight of a pipette. The corresponding weights of a pipette of the solution were afterwards graphically interpolated from degrce to degree. These weights form the seeond column of the following Table. They enable us to correct any temperature between 0° and $30^{\circ} \mathrm{C}$. $\left(32^{\circ}\right.$ and $86^{\circ} \mathrm{F}$.) when the solution of sea salt has been prepared in the same limits.

Table of Correction for the Variations in the Tomperature of the Normal Solution of the Sea Salt.

Temperature.	Weight.	50	10°	15°	20°	25°	30°
Degrees.	Gram.	Mill.	Mill.	Mill. +0.1	$\begin{aligned} & \text { Mill. } \\ & +0.7 \end{aligned}$	$\begin{aligned} & \text { Mill. } \\ & +1.7 \end{aligned}$	$\begin{aligned} & \text { Mill. } \\ & +2.7 \end{aligned}$
4	100,109	$0 \cdot 0$	-0.1	$+0 \cdot 1$	$+0.7$	$+1 \cdot 7$	$+2 \cdot 7$
5	100,113	$0 \cdot 0$	-0.1	$+0 \cdot 1$	$+0.7$	$+1.7$	+28
6	100,115	$0 \cdot 0$	0.0	$+0 \cdot 2$	$+0.8$	$+1 \cdot 7$	+2.8
7	100,118	$+0.1$	0.0	$+0.2$	$+0.8$	$+1 \cdot 7$	$+2 \cdot 8$
8	100,120	$+0.1$	0.0	$+0.2$	+0.8	$+1.8$	+2.8
9	100,120	$+0 \cdot 1$	0.0	+0.2	+ 0.8	$+1.8$	+ $2 \cdot 8$
10	100,118	$+0 \cdot 1$	0.0	$+0 \cdot 2$	+0.8	$+1 \cdot 7$	$+2.8$
11	100,116	$0 \cdot 0$	0.0	$+0.2$	$+0.8$	$+1 \cdot 7$	$+2 \cdot 8$
12	100,114	0.0	0.0	$+0.2$	$+0.8$	$+1.7$	$+2.8$
. 13	100,110	$0 \cdot 0$	-0.1	$+0.1$	$+0.7$	$+1.7$	$+2.7$
14	100,106	$-0 \cdot 1$	-0.1	$+0 \cdot 1$	$+0.7$	$+1 \cdot 6$	$+2 \cdot 7$
15	100,099	-0.1	-0.2	-0.0	$+0.6$	$+1 \cdot 6$	$+2 \cdot 6$
16	100090	-0.2	-0.3	-0.1	+0.5	$+15$	$+2 \cdot 5$
17	100,078	-0.4	-0.4	-0.2	$+0.4$	$+1 \cdot 3$	$+2.4$
18	100,065	-0.5	-0.5	-0.3	$+0 \cdot 3$	$+1 \cdot 2$	$+2 \cdot 3$
19	100,053	-0.6	-0.7	-0.5	$+0 \cdot 1$	$+1 \cdot 1$	$+2 \cdot 2$
20	100,039	-0.7	-0.8	-0.6	$0 \cdot 0$	$+1 \cdot 0$	+2.0
21	100,021	-0.9	-1.0	-0.8	-0.2	$+0.8$	$+1.9$
22	100,001	$-1 \cdot 1$	-1.2	-1.0	-0.4	$+0.6$	+1.7
23	99,983	-1.3	-1.4	$-1 \cdot 2$	-0.6	$+0.4$	$+1.5$
24	99,964	-1.5	-1.5	-1.4	-0.8	$+0.2$	+1.3
25	99,944	-1.7	-1.7	-1.6	-1.0	0.0	$+1 \cdot 1$
26	99,924	-1.9	-1.9	-1.8	-1.2	-0.2	+0.9
27	99,902	$-2 \cdot 1$	$-2 \cdot 2$	-2.0	-1.4	-0.4	+0.7
28	99,879	$-2 \cdot 3$	-2.4	-2.2	-1.6 -1.8	-0.7 -0.9	+0.4 +0.2
29	99,858	-2.6	-2.6 -2.8	-2.4 -2.6	-1.8 -2.0	-0.9 -1.1	+0.2 0.0
30	99,836	-2.8	-2.8	-2.6	-2.0	$-1 \cdot 1$	0

Let us suppose, for example, that the solution lias been made standard at 15°, and that at the time of using it, the temperature has heenme 18°. We sec by the second column of the Table, that the weight of a measure of the solution is 100.099 gr . at 15°, and 100.065 at 18°; the differenee, 0.034 gr ., is the quantity of solution less which
has been really taken; and of eonrse we must add it to the normal measure, in order to make it equal to one thousand milliemes. If the temperature of the solution had fallen to 10° the differenee of the weight of a measure from 10° to 15° would be 0.019 gr ., which we must on the contrary deduet from the measure, since it had been takeu too large. These differences of weight of a measure of solution at 15°, from that of a measure at any other temperature, form the column 15° of the table, where they are expressed in thousandths; they are inscrihed on the sause horizontal lines as the temperatures to whieh each of them relates with the sign + plus, when they must he added, and with the sign - minus, when they must he subtracted. The columns $5^{\circ}, 10^{\circ}, 20^{\circ}, 25^{\circ}, 35^{\circ}$, have heen ealeulated in the same manner for the cases in whieh the normal solution may have heen graduated to eaeh of these tellperatures. Thus, to caleulate the column 10°, the number $100 \cdot 118$ has been taken in the eolumn of weights for a term of departure, and its difference from all the numbers of the same column has heen sought.
Several expedients have heen employed to faeilitate and abridge the manipulations. In the first plaee, the phials for testing or assaying the speeimens of silver should all be of the same height and of the same diameter. They should he numhered at their top, as well as on their stoppers, in the order $1,2,3, \&$. They may be ranged sueeessively in tens; the stoppers of the same series being placed on a support iu their proper order. Eaeh two phials should, in their turn, he plaeed in a japanned tin case (fig. 149) with ten compartments, duly numbered. These compartments are eut out anteriorly to about half their height, to allow the bottoms of the bottles to be seen. When caek phial has reecived its portion of alloy, through a wide-heaked funuel, there must be poured into it ahout 10 grammes of nitric acid, of speeific gravity $1 \cdot 28$, with a pipette, containing that quantity; it is then exposed to the heat of a water bath, in order to facilitate the solution of the alloy. The water bath is an oblong vessel made of tin plate, intended to receive the phials. It has a movahle double hottom, pierced with small holes, for the purpose of preventing the phials being hroken, as it insulates them from the bottom, to whieh the heat is applied. The solution is rapid; and, since it emits nitrous vapours in ahundanee, it ought to he earried on under a ehimney.

The Agitator.-Fig. 150 gives a suffieiently exact idea of it, and may dispense with a lengthened deseription. It has ten cylindrieal compartments, numhered from 1 to 10 . The phials, after the solution of the alloy, are arranged in it in the order of their numbers. The agitator is then placed within reach of the pipette intended to measure out the normal solution of sea salt, and a pipetie full of this solution is put into each phial. Each is then elosed with its glass stopper, previously dipped in pure water. They are fixed in the cells of the agitator by springs. The agitator is then suspended to a spring re, and, seizing it with hoth hands, the operator gives an alternating rapid movement, which agitates the solution, and makes it, in less than a minute, as limpid as water. 'This movement is sometimes promoted ly a spiral spring, \quad, fixed to the agitator and the ground; hut this is seldom made use of, because it is convenient to be able to transport
 the agitator from one place to another. When the agitation is finislied, the catches are released, and the phials are plaeed in order upon a table furnished with rouud eells destined to receive them, and to sereen them.
When we plaee the phials upon this table, we must give them a brisk circular motion to eollect the chloride of silver seattered round their sides; we must lift out their
VoL. I.
stoppers, and suspend them in wire rings, or pincers. We next pour a thousandth of the decime solution into cach phial ; and beforc this operation is terminated, there is formed in the first phials, when there should be a precipitate, a ncbulous stratum, very well marked, of about a centimetre in thickncss.

At the back of the table there is a black hoard divided into compartments, numbered from 1 to 10 , upon each of which wc mark, with chalk, the thousandths of the decime liquor put into the corresponding phial. The thousandths of sea salt, which indicate an auginentation of staudard, are preceded by the sign + , and the thousandths of nitrate of silver by the sign -.

When the assays are finished, the liquor of each phial is to he poured into a large vcssel in which a slight excess of sea salt is kept; and when it is full, the supernatant clear liquid must be run off with a siphon.
The chloride of silver may be reduced without any perceptible loss. A fter having washed it well, we inmerse pieces of zinc in it, and add sulphuric acid in sufficient quantity to kcep up a feeble disengagement of hydrogen gas. The mass must not be touched. In a few days the silver is completely reduced. This is easily recognised by the colour and nature of the product; or by treating a small quantity of it with water of ammonia, we shall see whether there be any chloride unreduced; for it will be dissolved by the ammonia, and will again appear upon saturating the ammonia with an acid. The chlorine remains associated with the zinc in a state of solution. The first washings of the reduced silver must be made with an acidnlous water, to dissolve the oxides which may have been formed, and the other washings with common water. After decanting the water of the last washing, we dry the mass, and add to it a little powdered borax. It must now be fused. The silver being in a bulky powder is to be put in successive portions into a crucible as it sinks down. The heat should be at first moderate; but towards the cnd of the operation, it must be pretty strong, to bring into complete fusion the silver and the scorix, and to effect their complete scparation. In case it should be supposed that the whole of the silver had not been reduced by the zinc, a little carbonate of potash should be added to the borax. The silver may also be reduced by exposing the chloride to a strong heat, in contact with chalk and charcoal.

The following remarks by M. Gay-Lussac, the author of the above method, upon the effect of a little mercury in the humid assay, are important:-

It is well known that chloride of silver blackens the more readily when it is exposed to an iutense light, and that even in the diffused light of a room it becomes soon sensibly coloured. If it contains four to five thousandths of mercury, it does not blaeken; it remains of a dead white : with three thousandths of mercury, there is no marked discolouring in diffused light; with two thousandths it is slight; with one it is much more marked, but still it is much less intense than with pure chloride. With half a thousandth of mercury the difference of colour is not remarkable, and is perceived only in a very moderate light.
But when the quantity of mercury is so small that it cannot be detected by the difference of colour in the chloride of silver, it may be rendered quite evident by a very simple process of eoncentration. Dissolve one gramme of the silver supposed to contain $\frac{1}{4}$ of a thousandth of mercury, and let only $\frac{1}{4}$ of it be precipitated, by adding $\frac{1}{4}$ of the common salt necessary to precipitate it entirely. In thus operating, the $\frac{1}{4}$ thousandth of mercury is concentrated in a quantity of chloride of silver four times smaller : it is as if the silver having been entircly precipitated, four times as much mercury, equal to two thousandths, had been precipitated with it.
On taking two grammes of silver, and precipitating only $\frac{x}{4}$ by common salt, the precipitate would be, with respect to the chloride of silver, as if it amounted to four thousandths. By this process, which occupies only five minutes becanse exact weighing is not necessary, $\frac{1}{\pi}$ th of a thousandth of mercury may be detected in silver.

It is not useless to observe that, in making those cxperiments, the most cxact manner of introducing small quantitics of mercury into a solution of silver, is to weigh a minitc globule of mercury, and to dissolve it in nitric acid, diluting the solution so that it may contain as many cubic centimetres as the globule weighs of centigrammes. Each cubic centimctre, taken by means of a pipette, will contain one milligramme of mercury.

If the ingot of silver to be assaycd be found to contain a greater quantity of mercury -one thousandth, for example-the bumid process ought, in this casc, either to be given up or to be compared with cupellation.

When the silver contains mercury, the solution from which the nixed chlorides arc precipitated does not really become clear.
Silver containing mercury, put into a suall crucihle, and mixed with lamp black, to prevent the volatilisation of the silver, was heated for three quarters of an hour in a muffle, but the silver increased sensibly in weight. This process for separating the
mercury, therefore, failed. It is to be ohserved, that mercury is the only metal which has thus the power of disturhing analysis by the humid way:

The error caused hy the presence of mercury may be avoided by the addition of a small quantity of acetate of soda to the solution of the silver in nitric acid, previous to addition of the chloride of sodium, as this salt prevents the precipitation of the mercury.-Levol, Gay-Lussac.

The process employed in assaying gold bullion, by the present assayers to the Mint and Bank of England, is similar to that practised at the Paris Mint. The quantity operated on is half a gramme. 'This quantity, having heen accurately weighed, is wrapped in paper with a portion of pure silver, ahout equal to three times that of the gold the alloy is supposed to contain, and submitted to cupellation with lead in the manner ahove descrihed. The hutton is then hammered into a flattened dish, ahont the size of a sixpence, and afterwards annealed and passed through laminatiug rolls until it is reduced to a riband from $2 \frac{1}{2}$ to 3 inches in length; after which it is again annealed, and coiled into a spiral by rolling between the finger and thumb. The cornet is next placed in a small flask containing ahout an ounce of pure nitric acid of 22 B. ($=1 \cdot 180$ specific gravity), and hoiled for 10 minutes. The acid is carefully poured off, and the cornet again hoiled with nitric acid of 32 B . ($1 \cdot 280$ specific gravity) for 20 minutes; and this second hoiling with the stronger acid is repeated and continued ahout 10 minutes. In the second and third boilings a small piece of charcoal should be introduced into the flask, as recommended hy Gay-Lussac, in order to prevent the ebullition taking place irregularly and with sudden harsts, which would be liahle to hreak the cornet, and eject a portion of the liquid from the flask. The cornet is then washed and annealed as above. The return is made to the Mint in decimals or thousandths, and the assayer's weights arc so suhdivided as to give him the value in thousandths of the original $\frac{1}{2}$ gramme taken.
To the Bank the return is made to the $\frac{1}{8}$ th of a carat grain better or worse than standard. The late Master of. the Mint caused Tables to he prepared for the conversion of the reports of assays expressed in carats into decimals, and conversely, which are in general use for this purpose. In order to ascertain the amount of error due to the surcharge, a numher of proofs are passed through the process simultaneously with the alloys. These proofs consist of weighed portions of ahsolutely pure gold, to which are added a proportion of copper equal to that estimated to exist in the alloy to be assayed. The excess of weight in these proofs gives the amount to hc deducted. It generally varies from 0.2 to 0.5 parts in 1000 .

The last traces of silver may be removed from the cornet by treating it hefore the final annealing with fusing bisulphate of potash in a porcelain crucible. When sufficiently cool, the whole is heated with hot water containing a little sulphuric acid, and the cornet dried and ignited. By this means gold may be ohtained of almost ahsolute purity, or $\frac{1000}{1000}$, as it is termed.

The following cxamples will show the difference in the results, and the degree of accuracy attainable, hy the various methods described.

Ten grains of pure gold, alloyed with three times its weight of silver, cupelled and hoiled with acid at $22^{\circ} \mathrm{B}$., and $32^{\circ} \mathrm{B}$., once weighed 10.016 .

Ten grains of a half-sovereign, with silver, \&c., and acid at 22°, and twice at $32^{\circ} \mathrm{B}$.,
gave $915 \cdot 4$
again, $915 \cdot 6$
With acid, as before, and bisulphate of potash, 915.2
again, $915 \cdot 2$
Pure gold alloyed with copper, to bring it to standard, cupelled with silver and lead, and treated with acids and hisulphate, gave in one case precisely the same as was taken origiually, or $\frac{1000}{1000}$, and in another 999.98 .

In accurate assaying of gold bullion, it is of course absolutely necessary that the acids should be pure, and that the silver used should he most carefully freed from the traces of gold which it usually contains.

Instead of charcoal or coke, which are generally used for cupellation, much advantage has been found in employing the hest antlracite: reduced to the proper size, it contains very little ash, is free from slag or clinker, and allows the heat to be maintained at one steady temperature for many hours, which is a matter of great importance to the assayer.*

Assaying of Gold.-In estimating or expressing the fineness of gold, the whole mass spoken of is supposed to weigh 24 carats of 12 grains each, either real, or merely

[^30]proportional, like the assayer's weights; and the pure gold is called finc. Thus, if gold be said to be 23 earats finc, it is to be understood that, in a mass weighing 24 carats, the quantity of pure gold amounts to 23 carats.

In such small work as cannot be assayed by scraping off a portion and cupelling it, the assayer endervours to ascertaiu its finencss or quality by the touch. This is a method of comparing the colour and other propertics of a minute portion of the metal with those of small bars, the composition of which is known. These bars arc called touch-ncedles, and arc rubbed upon a smooth piece of black basalt or pottery, which, for this reason, is called the touchstone. Black fint slate will serve the same purpose. Sets of gold needles may consist of pure gold; of gold, $23 \frac{1}{2}$ carats with $\frac{1}{2}$ carat of silver ; 23 carats of gold with one carat of silver ; $22 \frac{2}{2}$ carats of gold with $1 \frac{1}{2}$ carat of silver; and so on, till the silver amounts to four carats; after which the additions may proceed by whole carats. Other needles may be made in the same manner, with copper instead of silver; and other sets may have the addition, consisting either of equal parts of silver and copper, or of such proportions as the occasions of business require. The examination by the touch may be advantagcously employed previous to quartation, to indicate the quantity of silver nccessary to be added.

In foreign countries, where trinkets and small work are required to be submitted to the assay of the touch, a variety of needles is necessary, but they are not much used in England. They afford, however, a degrec of information which is more considerable than might at first be expected. The attentive assayer compares not only the colour of the stroke made upon the touchstone by the metal under examination with that produced by his needle, but will likewise attend to the sensation of roughness, dryness, smoothness, or greasiness, which the texture of the rubbed metal excites when abraded by the stone. When two strokes perfectly alike in colour are made upon the stone, he may then wet them with aquafortis, which will affcet them very differently if they be not of similar compositions; or the stone itself may be made red-hot by the fire, or by the blowpipe, if thin black pottery be used; in which casc the phenomena of oxidation will differ according to the nature and quantity of the alloy. Six principal circumstances appear to affect the operation of parting; namely, the quantity of acid used in parting, or in the first boiling; the concentration of this acid; the time cmployed in its application; the quantity of acid made use of in the reprise, or second operation ; its concentration; and the time during which it is applied. From experiment, it has been shown that each of these unfavourable circumstances might easily necasion a loss of from the half of a thirty-second part of a carat, to two thirty-second parts. The assayers explain their technical language by observing that, in the whole mass consisting of twenty-four carats, this thirty-second part denotes 1-768th part of the mass. It may easily be conceived, therefore, that if the whole six circumstances were to exist, and be each productive of crrors falling the same way, the loss would be very considerable.
It is therefore indispensably necessary that onc uniform process should be followed in the assays of gold; and it is a matter of astonishment that such an accurate process should not have been prescribed by Governmeut for assayers, in an operation of such great commercial importance, instead of everyone being left to follow his own judgment. The process recommended in the old French official report is as follows : Twelve grains of the gold intended to be assayed must be mixed with thirty grains of fine silver, and cupelled with 108 grains of lead. The cupellation must be carefully attended to, and all the imperfect buttons rejected. When the cupellation is ended, the button must be reduced, by lamination, into a plate of $1 \frac{1}{2}$ inches, or rather more, in length, and four or five lines in breadth. This must be rolled up upon a quill, and placed in a matrass capable of holding about thrce ounces of liquid, when filled up to its narrow part. Two ounces and a half of very pure aquafortis, of the strength of 20 degrecs of Baume's arcomcter, must then be pourcd upon it; and the matrass being placed upon hot ashes, or sand, the acid mnst be kept gently boiling for a quarter of an hour : the acid must then be cautiously decanted, and an additional quantity of $1 \frac{1}{2}$ ounces must be poured upon the metnl, and slightly boiled for twelve miuutes. This lecing likewise carcfully decanted, the small spiral pieces of metal must be washed with filtered river watcr, or distilled water, by filling the matrass with this fluid. The vessel is then to be reversed, by applying the extremity of its neck against the botton of a crucible of fine earth, the internal surface of which is very smooth. The annealing must now be madc, after having separated the portion of water which hàd fallen into the crucible; and lastly, the annealed gold must be weighed. For the certainty of this operation, two assays must be made in the same manner, together with a tliird assay upon gold of twenty-four carats, or upon gold the fincuess of which is perfectly and generally known.

No conclusion must be drawn from this assay, muless the later gold should prove to
be of the fineness of twenty-four carats exactly, or of its known degree of fineness; for, if there be cither loss or surplus, it may be infcrred that the other two assays, having undergone the same operation, must be subject to the same error. The operation being made according to this process by several assayers, in circumstances of importance, such as those which relate to large fabrications, the fineness of the gold mnst not be depended upon, nor considered as accurately known, unless all the assayers have obtained an uniform result without communication with each other. This identity must be considered as referring to the accuracy of half the thirty-second part of a carat. For, notwithstanding every possible precaution or uniformity, it very seldom happens that an absolute agreement is obtained between the different assays of one and the same ingot; because the ingot itself may differ in its fineness in different parts of its mass.

The phenomena of the cupellation of gold are the same as of silver, only the operation is less delicate, for no gold is lost by evaporation or penetration into the bone-ash, and therefore it bears safely the bighest heat of the assay furnace. The button of gold never vegetates or spits, and nced not therefore be drawn out to the frout of the muffle, but may be left at the further end till the assay is complete. Copper is retained morc strongly by gold than it is by silver; so that with it 16 parts of lead arc requisite to sweat out 1 of copper; or, in general, twice as much lead must be taken for the copper alloys of gold as for those of silver. When the copper is alloyed with very small quantities of gold, cupellation would afford very uncertain results; we must then have recourse to liquid analysis.
M. Vanquelin recommends to boil 60 parts of nitric acid at 22° Baumé, on the spiral slip, or cornet of gold and silver alloy, for twenty-five minutes, and replace the liquid afterwards by acid of 32°, which must be boiled on it for eight minutes. This process is free from uncertainty, when the assay is performed upon an alloy containing a considerable quantity of copper. But this is not the case in assaying fincr gold; for then a little silver always remains in the gold. The surcharge which occurs here is 2 or 3 thousandths; this is too much, and it is an intolerable error when it becomes grcater, which often happens. This evil may be completely avoided by employing the following process of M . Cbaudct. He takes 0.500 of the finc gold to be assayed ; cupels it with 1.500 of silver and 1.000 of lead; forms, with the button from the cupel, a riband or strip three inches long, which he rolls into a cornet. He puts this into a matrass with acid at $22^{\circ} \mathrm{B}$., which he boils for 3 or 4 minutes. He replaces this by acid of $32^{\circ} \mathrm{B}$., and boils for ten minutes; then decants off, and boils again with acid of 32°, which must be finally boiled for 8 or 10 minutes.

Gold thus treated is very pure. He washes the cornet, and puts it entire into a small crucible permeable to water; heats the crucible to dull redness under the muffle, when the gold assumes the metallic lustre and the cornet becomes solid. It is now taken out of the crucible and weighed.

When the alloy contains platinum, the assay presents greater difficulties. In gencral, to separate with accuracy the platinum from the gold, we must avail ourselves of a peculiar property of platinum; when alloyed with silver, it becomes soluble in nitric acid. Therefore, by a proper quartation of the alloy by cupellation, and boiling the button with nitric acid, we may get a residuum of pure gold. If we were to treat the button with sulphuric acid, however, we should dissolve nothing but the silver. The copper is easily removed by cupellation. Hence supposing that we have a quarternary compound of copper, silver, platinum, and gold, we first cupel it, aud weigh the button obtained; the loss denotes the copper. This button, treated by sulphuric acid, will suffer a loss of weight equal to the amount of silver present. The residuum, by quartation with silver and boiling with nitric acid, will part with its platinum, and the gold will remain pure. For more detailed explanations, sec Platinum. For the analysis of ores, sec the individual metals.-T. H. H.

ASTRAGAL. An ornamental moulding, generally used to conceal a junction in either wood or stone.

ASTRAGAL PLANES. Planes fitted with cutters for forming astragal mouldings. They arc commonly known as moulding planes.

ASTRAGAL TOOL, for turning. By using a tool shaped as in fig. 151, the process of forming a moulding or ring is greatly facilitated, as one member of the moulding is completed at one sweep, and we are enabled to repeat it auy number of times with exact uniformity.
ATMOMETER (à $\boldsymbol{\mu} \mu \mathrm{\delta}$, vapour ; $\mu \in ́ T \rho o \nu$, a measure). An instrument to mensure the quantity of water evaporated in a given time under ordinary atnospheric conditions. Leslie, Anderson, and others, have devised instruments for this purpose; but the local circumstances affect the result so largely, that small reliance can be placed on the instrument.

ATOMIC TIEORY.

ATOM. (à, not; $\tau \epsilon \mu \nu \omega_{1} I$ cut.) An indivisible particle. This dictionary is not the place for any close examination of the questions connecting themselves with the constitution of natter. At the same time, since many of the articles which are given on manufacturing chemistry require, in the explanation of the processes, some reference to the theory of atomic constitution, it may be advantageous to give briefly the views entertained by our modern philosophers.

With few exceptions, the views promulgated by D_{1}. Dalton are reccived by chemists. They may be thus expressed: All elementary bodies are formed of individual atoms, the different species of which unite, generally by twos, in a small number of groups, constituting counpound atoms of the first order, always mechanieally indivisible, but chemically divisible, and, in their turn, constituting all the other orders of composition by a series of analogous combinations.

We are not enabled by direct experiment to determinc the condition of any ultimate atom of matter; but the results furnished by ehemical science clearly point to the existence of elementary units, from which all the infinite varieties of matter are formed. Sir lsaac Newton thus expresses himself:-" All things considered, it seems probable that God, in the beginning, formed matter in solid, massy, hard, impenetrable, movable particles, of such sizes, figures, and with such other properties, and in such proportions to space, as most conduced to the end for which He formed them; and that these primitive particles, being solids, are incomparably harder than any porous bodies compounded of them; even so hard as never to wear or break to pieces; no ordinary power being able to divide what God Himself made one in the first creation. While the particles continue entire, they may compose bodies of one and the same nature and texture in all ages; but should they wear away, or break in pieces, the nature of things depending on them would be chauged. Water and earth composed of old worn particles would not be of the same nature and texture now with water and earth composed of entire particles at the beginning. And therefore, that nature may be lasting, the changes of corporeal things are to be placed only in various separations, and new associations, and motions of these permanent particles; compound bodies being apt to break, not in the midst of solid particles, but where those particles are laid together and touch in a few points." - Horsley's Newton.

With the metaphysical theories, which would lead us to regard all matter as mere accumulations of force, it would not be proper at present to deal.

Experimental philosophy has proved to us that the conditions of matter are determined by certain polar-attractive forces; and that these are opposed or balanced by heat, electricity, and the force which regulates chemical combination. Consequently every ultimate atom of matter must be regarded as the centre of such a set of physical forces surrounding it as an atmosphere.

ATOMIC THEORY. The question as to whether matter be or be not infinitely divisible, has been debated from the earliest times, and is probably as far from a settlement as ever; we can, however, scarcely conceive of the existence of matter at all, if there be no limit to its divisibility. It is easy to demonstrate that a mathematical line is infinitely divisible, but a mathematical line is only an ideal thing; having only one dimension, it can have no physical existence. We have, therefore, no hesitation in admitting the existence of atoms of matter - of particles infinitely small, it is true, as regards our perceptions, far exceeding in minuteness the finest subdivision to which we can submit a body, but yet incapable of further subdivision. To such insectible molecules the term atom has been applied.

If we take any substance chemically complex, we may suppose the existence of atoms in this body, held together by the force of cohesion, which are themselves heterogeneous, being made up, in fact, of atoms of the elementary chemical constituents.

Dr. Dalton suggested the happy idea, which has been most fruitful in its results, of aceounting for the constancy of chemical combinations by assuming that they were composed of one or more atoms of the several elements, the weight of which atoms is represented by the combining proportions; that carbonie oxide, for instance, contains single atoms of carbon and oxygen, whilst carbonic acid is composed of onc atom of carbon and two of oxygen.

It must alway's be remembered that the combining proportions arc purely the results of experiment, and, therefore, incontestable, whatever may be the fate of this theory, which, howevcr, has now stood its ground for many ycars, and doue excellent service to sciencc.

This theory offers a most satisfactory explanation of the different laws of chemical combination.

The fact of bodies uniting only in certain proportions, or multiples of those proportions, is a necessary consequence of the assumption that the weight of the elementary atoms is represented by the combining proportions; for, if they united iu
any other ratio, it would involve the splitiing up of these atoms, which are assumed to be indivisible.

And, of course, the combining proportion of a compound must be the sum of the comhining proportions of the eonstituents, since it contains within itself one or more atoms of the several constituents.

The term atom is, thercfore, very often used instead of combining proportion or equivalent, a body heing said to contain so many atoms of its elements.

All that is assumed in this theory is, that the atoms are of constant value by weight; the same atoms may be arranged in a different way, and hence, although any particular compound contains always the same elcments in the atomic ratios, yet the same atoms may, by difference in arrangement, give rise to bodies agreeing in composition hy weight, hut differing essentially in properties. See Isomerism.
M. Dumas has suggested the subdivision of the combining numbers of certain elements, hut this idea is quite subversive of the atomic theory, as it is at present understood.

The atomic theory is further confirmed by the ohservation, that if the specific heat of the elements he compared, it is found that in a large number of cases the speeific heat of quantities of the bodies represented by the atomic weights coincides with each other in a remarkable manner.

The Atomic Theory of Dalton is thus set forth hy the author:-
" When any hody exists in the clastic state, its ultimate particles are separated from each other to a much greater distance than in any other state; each particle occupies the centre of a comparatively large sphere, and supports its dignity by keeping all the rest-which, by their gravity, or otherwise, are disposed to encroach on it - at a respectful distance. When we attempt to conceive the number of particles in an atmosphere, it is somewhat like attempting to conceive the numher of stars in the universe-we are confounded with the thought. But if we limit the suhject, hy taking a given volume of any gas, we seem persuaded that, be the divisions ever so minute, the number of particles must he finite ; just as in a given space of the universe, the number of stars and planets cannot he infinite.
"Chemical analysis and synthesis go no further than to the separation of particles one from another, and to their reunion. No new creation or destruction of matter is within the reach of chemical agency. We might as well attempt to introduce a new planet into the solar system, or to annihilate one already in existence, as to create or destroy a particle of hydrogen. All the changes we can produce consist in separating particles that are in a state of cohesion or combination, and joining those that were previously at a distance.
"In all chemical investigations it has justly been considered an important object to ascertain the relative weights of the simples which constitute a compound. But, unfortunately, the inquiry has terminated there; whereas, from the relative weights in the mass, the relative weights of the ultimate particles or atoms of the hodies might have heen inferred, from which their number and weights in various other compounds would appear, in order to assist and to guide future investigations, and to correct their results. Now it is one great ohject of this work ('A new System of Chemical Philosophy') to show the importance and adrantage of ascertaining the relative wcights of the ultimate particles, both of simple and compound bodies, the number of simple elementary particles which constitute one compound particle, and the number of less compound purticles which enter into the formation of each more compound particle.
"If there are two bodies, \triangle and B, which are disposed to combine, the following is the order in which comhination may take place, beginning with the most simple, namely:

> 1 atom of $A+1$ atom of $B=1$ atom of C, binary.
> 1 atom of $A+2$ atoms of $B=1$ atom of D, ternary.
> 2 atoms of $A+1$ atom of $B=1$ atom of E, ternary.
> 1 atom of $A+3$ atoms of $B=1$ atom of F quaternary.
> 3 atoms of $A+1$ atom of $B=1$ atom of G quaternary.
> \&cc. \&c.
"The following general rules may be adopted as guides in all our investigations respecting chemical synthesis:-
" 1 . When only one combination of two bodies can he obtaincd, it must be presumed to be a binary one, unless some cause appears to the contrary.
" 2. When two combinations are obscrved, they must he presumed to be binary or ternary.
"3. When three combinations arc obtained, we may expect onc to be binary and the other two ternary.
"4. When four combinations are observed, we should expect one binary, two ternary, and one quaternary.
"5. A binary eompound should always be speeifieally heavict than the mere mixture of its two ingredients.
" 6 . A ternary compound should be speeifically heavier than the mixture of a binary and a simple, whieh would, if combined, eonstitute it, \&e.
"7. The above rules and observations equally apply when two bodies, streh as c and D, D and E, \&c., are combincd."*

For a full examination of this subject, consult "An Introduetion to the Atomic 'Theory" by Charles Daubeny, M.D.; and "Memoirs of Johu Dalton and History of the Atomic Theory," by Robert Angus Smith, Ph. D.

The following exemplifieation of the use of this theory is given by the former of those authors :-
" Let us suppose that we have obtained from a given quantity of the substanee under examination 100 grains of a salt eonsisting of sulphurie aeid, with unknown proportions of soda and potass, but with no other ingredient. Let us set down the quantity of aeid at 50 grains, from whieh it will follow that the weight of the two bascs will together make up the remaining moiety. Now had the whole of this latter eonsisted of soda, the quantity of aeid should have been only forty grains, beeause the ntomic weight of sulphurie aeid is 40 , whilst that of soda is 32 , and
as $40: 32:: 50: 40$
On the eoutrary, if the whole had been potass, then as the atomie weight of this latter is 48 , the amount required to neutralise the acid would have been 60 grains ; for

$$
\text { as } 40: 48:: 50: 60
$$

But, if wc suppose half the aeid to be combined with the one alkali, and half with the other, then, and only then, will the weight of the salt eorrespond exaetly with that obtained in the experiments before us ; for
as $40: 48:: 25: 30 ;$ and
as $40: 32:: \overline{25}: \overline{50}=100$

It is easy to apply this to the case of salts containing bromine together with ehlorine, assuming that we are sufficiently aequainted with the respeetive atomie weights of both these prineiples.
"The bromide and chloride of sodium are alike preeipitated by nitrate of silver in the form of an insoluble bromide and chloride of that metal: now the atomic weight
Of silver is stated to be -
" chlorine
" bromine
"
-

Suppose, therefore, we have found the preeipitate to weigh 151 grains; and that, of these, 100 grains have been aseertained by other experiments to eonsist of silver : then

If, therefore, half the silver were eombined with bromine and the other half with ehlorine, the compound produced would amount to cxactly 151 grains, which is fould to eorrespond with the quantity aetually obtained."
'The following Table will show the quantity of preeipitate that may be expeeted to result from the addition of nitrate of silver to 100 grains of a salt of sodium, aceording to the proportion of ehloride and of bromide present :-

* Dr. Angus Smitlı, in his "Memoirs of Dalton," thus sums up the labours of this decp thinker :This Datton did. He gave the first idea of atomic weights. Under this head came Richter and Fischer's numbers. Richter, grappling with those numbers, never could obtain a rational theory from the phenomena Dalton's plan explains these numbers with the greatest ease, and looks on such as a neeessity of the fundamental law, instead of the beginning of the infulry, as it was to them. It secms to me, then, that what happened historjeally happened also intelleetually. Daiton had ineluded his predecessors in his more extenslve system. He had gone to the summit of the hill, and when coming down found proofs that they had been making good progress upwards. Iliggins had gone at onec to the top, as it appears to me, but took no lieed to make the ncedful observations whell he was up, or he found the prospect entirely olsseured. We are compelled to put reelproeal proportlons in a scconciary position. as it scems to me it cannot be called a law, but one of the consequences of alaw and the evidence brought to support it, otherwise than empirteally, presupposes some of the principles oll which the general laws dupend. It was by a carcful inechanieal juxtaposition of parts that Dalton arrived at the dea; it is cminently mechancal, and it is remarkable that all progressive views on the subject haro been so. He ineroduced proportional weights into the theory, and found to to agrec with facts. IIjs is, therefore, the quantitative atomic theory."

Quantity of Salt.	Quantity of Precipitate.	Quantity of Salt.	Quantity of Precipitate.	Amount of Pre- cipitate from the two Salts.
Br. Sodium.	Br. Silver.	Ch. Sodium.	Ch. Silver.	
100	184.5	0	0	184.5
90	166.0	10	24.3	190.3
80	148.0	20	48.3	196.3
70	129.5	30	73.0	202.0
60	111.0	40	95.5	208.5
50	92.5	50	121.5	214.0
40	74.0	60	146.0	220.0
30	56.0	70	170.0	226.0
20	37.0	80	195.0	232.0
10	18.5	90	219.0	237.5
0	00.0	100	243.0	243.0

ATOMIC WEIGHTS, EQUIVALENT, CHEMICAL EQUIVALENT, COMBINING WEIGHT, or PROPORTION, are the primal quantities in which the different objects of chemistry, simple or compound, combine with each other, referred to a common body taken as unity. Oxygen is assumed by some philosophers, and hydrogen by others, as the standard of comparison. Every chemical manufacturer should be thoroughly acquainted with the combining ratios which are, for the same two substances, uot only definite, but often multiple; two great truths, upon which are founded, not merely the rationale of his operations, but also the means of modifying them to useful purposes. The discussion of the doctrine of atomic weights, or prime equivalents, belongs to pure chemistry ; but several of its happiest applications are to bc found in the processes of art, as pursued upon the largest scale.
The following propositions may be regarded as the laws regulating atomic com-bination:-

1. The equivalents of clementary bodies represent the smallest proportions in whieh they enter into combination with each other.
2. The equivalent of a compound body is the sum of the equivalents of its elements.
3. Combination takes place, whether between elements or compounds, either in the proportions of their equivalents, or in nualtiples of these proportions, and never in submultiples.
4. The law of definite ana multiple proportion is, individual compounds always contain exaetly the same propurtions of their elements. See Equivalents, Chemical.

ATOMIC VOLUMES. Recently it has been assumed that the clements unite invariably in equal volumes-when in the gaseous state;-or, in other words, that the atoms of bodies have always the same volume. If this doctrine be maintained, it becomes nccessary to alter the atomic weights or combining numbers of certain elements. For example, water coutains two volumes of hydrogen to one of oxygen; but, according to the generally received idea, it consists of single atoms of cach clement ; it is clear, therefore, that if we are to assume that the atoms of hydrogen and oxygen have the same volume, we must either halve the atomic weight of hydrogen or double that of oxygen.
Berzelius suggested that all the atomic wcights should remain the same, except those of hydrogen, nitrogen, phosphorus, chlorine, bromine, and iodine, which should halve their present valuc. Gerhardt, on the other hand, adopts the more convenicnt practice of allowing lyydrogen and its congeners to retain their present atomic wcights, doubling those of oxygen, sulphur, tellurium, and carbon.

ATROPINE. ($\mathrm{C}^{31} \mathrm{H}^{23} \mathrm{NO}^{6}$) An exceedingly poisonous alkaloid, found in deadly nightshade (Atropa Belladona) and in stramonium (Datura Stramonium). The alkali in stramonium was long thought to be distinct from all others, and was consequently known as daturine; but the identity of the product from the two sources has been recently shown by Von Planta. Many processes have bcen devised for the preparation of atropine, but the following simple method is, perhaps, prcferable to any other. To the freshly prepared extract of belladonna add a strong solution of caustic potash, and well mix in a mortar. Digest the resulting mass at a temperature of 80° with benzole; separate the latter, and distil off the hydrocarbon in a retort on the water bath. The residue in the retort is to be treated with water acidulated with sulphuric acid; the acid solution is to be precipitated by carbonate of soda, and the resulting atropine inay then be obtained pure by crystallisation from alcohol. Atropine is used in medicinc for producing dilatation of the pupil of the cyc. The smallest portion of a very dilute solution rubbed on the cyelid suffices to produce the result. The effect lasts for several hours. Wheu pure, atropine crystallises in white silky prisms.-C.G.W.

ATTAR OF ROSES, more commonly, OTTO OF ROSES. An essential oil, obtnined in India. Turkey, and Persia, from some of the finest varieties of roses. It is proeured by distilling rose leaves with water, at as low a temperature as possible. It is said that this perfime is prepared also by exposing the rose leaves in water to the sun; but, from the faet that under the eircumstanees fermentation would be speedily established, it is not probable that this is a method often resorted to. By dry distillation from salt-water baths, no doubt the finest attar is obtained. This essential oil is only used as a perfume. Attar of roses is adulterated with spermaceti and with castor oil dissolved in strong aleohol.

This adultcration may be detected by putling a small drop of the otto of roses on a piece of clean writing paper; by agitation in the air, the volatile oil soon evaporates, leaving no stain if pure; if any fixed oil is present, a greasy spot is left on the paper.

ATTENUATION. Brewers and distillers employ this term to signify the weakening of saccharine worts during fermentation, by the conversion of the sugar into alcolol and earbonie aeid.

AUGER. The auger is a tool for boring either wood or stone. The single-lip auger is forged as a half-round bar; it is then coiled into an open spiral, with the flat side outwards. The ordinary screw auger is forged as a parallelled blade of steel; it is twisted red-hot; the end terminates in a worm, by which the auger is gradually drawn into the work as in the gimlet; and the two angles, or lips, are sharpened to eut at the extreme ends, and a little up the sides also. The American screw auger has a cylindrieal shaft, around which is brazed a single fin or rib; the end is filed into a worm, as usual, and immediately behind the worm a small diametrieal mortise is formed for the reception of a detached cutter, which exactly resembles the chisel edge of the centre-bit. - Holtzapffel.

AURUM MUSIVUM or MOSAICUM. Mosatc Gold. - For the preparation of Mosaic gold the following process is recommended by Woulfe. An amalgam of 2 parts of tin and 1 part of mercury is prepared in a hot erucible, and triturated with 1 part of sal ammoniac, and 1 part of flower of sulphur; the mixture is sublimed in a glass flask upon the sand bath. In breaking the flask after the operation, the sublimate is found to consist, superficially, of sal-ammoniae, then of a layer of cinnabar, and then of a layer of Mosaic gold.

There are several other processes given for the preparation of this bisulphide of tin, but the above probably gives the best results.
Bergman mentions a native aurum nusivum from Siberia, containing tin, sulphur, and a small proportion of copper. Dr. John Davy gave the composition as -

$$
\text { Tin - - }-100 \text { | Sulphur - }-\quad .56 .25
$$

Berzelius as -
Tin - - - $100 \mid$ Sulphur - - $52 \cdot 3$
Mosaie gold is employed as a bronzing powder for plaster figures, and it is said to anter sometimes into the composition of aventurine.

AUTOGENOUS SOLDERING. A proeess of soldering by which metals arc united, either by the ordinary solders
 or by lead, under the influence of a flame of hydrogen or of a mixture of hydrogen and common air.

The process of using air and hydrogen was invented in France, by the Count de Riehemont. Hydrogen gas is contained in a gasometer, to which a fiexible tube is connected, and air is urged, from a bellows worked by the foot, throngh anotlier tube, and on to the blowpipe, where the hydrogen is ignited. By means of the flexible tuhes the flame ean be moved up and down the line of any joint, and the eonnecting medinm melted. Fig. 152.
This process has been a good deal employed for plumbers' work, especially in our naval arsenals. In Devonport doekyard, the autogenie process has been largely used.

AUTOMATIC. A term employed to designate such ceonomic arts as are carried on by self-acting maehinery. The word is employed by the pliysiologist to express involuntary motions.

The term automatic is nuw applied to self-acting machinery, or such as has within itself the power of regulating entirely its own movements, although the moving force is derived from without; and to what pertains to such machinery ; as automatic cperations or improvements.-Webster.
The word "manufacture," in its etymological sense, means any system or objects of industry executed by the hands; but, in the vicissitude of language, it has now come to signify every extensive product of art which is made by machinery, with little or no aid of the human hand, so that the most perfect manufacture is that which dispenses entirely with manual labour. It is our modern cotton and flax mills that automatic operations are displayed to most advantage; for there the elemental power Heat has been made to animate complex organs, imparting to forms of wood, iron, and brass, an agency of seeming intelligence. And as the philosophy of the fine arts, poetry, painting, and music, may be best studied in their individual master-pieces, so may the philosophy of manufactures in these its noblest creations.
The constant aim and effect of these automatic improvements in the arts are philanthropic, as they tend to relieve the workmen either from niceties of adjustment, which exhaust his mind and fatigue his eyes, or from painful repetition of effort, which distort and wear out his frame. A well arranged power-mill combines the operation of many work-people, adult and young, in tending with assiduous skill a system of productive machines continuously impelled by a central force. How vastly conducive to the commercial greatness of a nation, and the comforts of mankind, humau industry can become when no longer proportioned in its results to muscular effort, which is by its nature fitful and capricions, but when made to consist in the task of guiding the work of mechanical fingers and arms regularly impelled, with equal precision and velocity, by some indefatigable physical agent, is apparent to every visitor of our cotton, flax, silk, wool, and machine factories. This great era in the useful arts is mainly due to the genius of Arkwright. Prior to the introduction of his system, manufactures where everywhere feeble and fluctuating in their development; shooting forth luxuriantly for a season, and again withering almost to the roots like annual plants. Their perennial growth then began, and attracted capital, in copious streams, to irrigate the rich domains of industry. When this new career commenced, about the year 1770, the annual consumption of cotton in British manufactures was under four millions of pounds weight, and that of the whole of Christendom was probably not more than ten millions. In 1850 the consumption in Great Britain and Ircland was about five hundred and eighty-eight millions of pounds, and that of Europe and the United States together, one thousand and ninety-two millions. In our spacious factory apartments the benignant power of Stcam summons around him his myriads of willing menials, and assigns to each the regulated task, substituting, for painful muscular effort upon their part, the energies of his own gigantic arm, and demanding, in return, only attention and dexterity to correct such little aberrations as casually occur in his workmanship. Under his auspices, and in obedience to Arkwright's policy, magnificent edifices, surpassing far in number value, usefulness, and ingenuity of construction, the boasted monuments of Asiatic, Egyptian, and Roman despotism, have, within a short period, risen up in this kingdom, to show to what extent capital, industry, and science may augment the resources of a State while they ameliorate the condition of its citizens. Such is the automatic system, replete with prodigies in mechanics and political economy, which promises, in its future growth, to become the great minister of civilisation to the terraqueous globe, enabling this country, as its heart, to diffuse, along with its commerce, the life-blood of knowledge to myriads of peoplc. Of these truths, the present work affords decisive evidence in almost every page--Ure.

AU'TOMATIC ARTS. Such arts or manufactures as are carried on by selfacting machinery.

AU'TOMATON. (aưtóцăтos-automatos-self.moving.) In the etymological sense, this word (self-working) signifies every mechanical construction which, by virtue of a latent intrinsic force, not obvious to common eyes, can carry on, for some time, certain movements more or less resembling the results of animal exertion, without the aid of external impulse. But the term automaton is, in common language, appropriated to those mechanical artifices in which the purposcly concealed power is made to imitate the arbitrary or voluntary motions of living beings. Human figures, of this kind, are sometimes styled Androides, from the Greek term, like a man.
Although, from what has been said, clockwork is not properly placed under the head Automaton, it cannot be doubted that the art of making clocks, in its progressive improvement and extension, has given rise to the production of automata. The most of these, in their interior structure, as well as in the mode of applying the moving power, have a distinct aualogy with clocks ; and these automata are frequently mounted in connection with watcliwork. Towards the end of the 13th century, several
tower clocks, such as those at Strasburg, Lubeck, Prague, Olmutz, had curious mechanisms attaclied to them. The most careful historical inquiry proves that automata, properly speaking, are not older than wheel-clocks; and that the more perfect structures of this kind are subsequent to the gencral introduction of spring-clocks. Many accounts of ancient automata, such as the flying pigeon of Archytas of Tarentum, appear to have been but poor mechanical contrivances. "The Pneumatics of Hero of Alexandria" have been rendered accessible to the English reader by the translation of Mr. Benuet Woodcroft. In this work will be found descriptions and drawings of several curious contrivances which must be included amongst autonata. The following, amongst others, may be quoted: -
"An automaton which drinks at certain times only, on a liquid being presented to it.
"An automaton which may be made to drink at any time on a liquid being presented to it.
"An automaton which will drink any quantity which may be presented to it.
"An automaton, the head of which eontinues attached to the body after a knifc has cntered the head at one side, passed completely through it, and out at the other ; which animal will drink immediately after the operation."

Beckmann informs us, quoting from Plato, that Dædalus made statutes which could not only walk, but which it was necessary to tie, in order that they might not move; and, on the authority of Aristotle, he speaks of a wooden Venus, and remarks that the secret of its motion consisted in quicksilver having been poured iuto it.

John Muller's iron flies (or, as he is sometimes called, Regiomontanus) and his eagle which flow towards the emperor Maximilian, in Nuremberg, in the year 1740, were probably exaggerated statements; for such master-pieces of art would form now, with every aid of our improved mechanisms, the most difficult of problems. The imitation of flying creatures is extremely difficult, for several reasons. There is very little space for the moving power, and the only material possessed of requisite strength being metal must have considerable weight. Two automata of the celebrated French mechanician, Vaucauson, first cxhibited in the year 1736, have been greatly admired; namely a flute-player, five and a half feet high with its cubical pedestal, which played several airs upon the German flute; and that not by any interior tubework, but through the actual blowing of air into the flute, the motion of the tongue, and the skilful stopping of the holes with the fingers; and a duck which imitated mauy motions of a natural kind in the most extraordinary manncr. In 1738 M . Vaucauson published a memoir, approved of by the Academy of Sciences, in which he gave a full description of the machinery employed and of the principles of its construction. See Brewster's "Letters on Natural Magic." This artist has had many imitators, of whom the brothers Droz of Chaux de Fonds were the most distinguished. Several very beautiful clock mechanisms of theirs are known. One of them with a figure which draws; another playing on the piano ; a third which writes, besides numerous other comhined automata. Frederick Von Knauss completed a writing machine at Vienna, in the year 1760. It is now in the model cabinet of the Polytechnic Institute, and consists of a globe two feet in diameter, containing the mechanism upon which a figure seven incles high sits, and writes upon a sheet of paper fixed to a frame, whatever has bcen placed beforehand upon a regulating cylinder. At the end of every line, it raises its hand and moves it sideways, in order begin a new line.
Very complete automata have not been made of late years, because they arc very expensive; and by soon satisfying curiosity, they cease to interest. Ingenious mechanicians find themselves better rewarded by directing their talents to the self-acting machinery of modern manufactures. We may notice here, however, the mechanical trumpeter of Mälzl, at Vienna, and a similar work of Kauffimann, at Dresden. In French Switzerland sonie artists continue to make minnte automata which excite no little wonder; such as singing canary birds, with various movements of a natural kind; also little birds, sometimes hardly three quarters of an inch long, in snuff-boxes and watches of enamelled gold. Certain artificial figures which have been denominated automata, hardly deserve the name; since trick and confederacy are more or less concerned in their operation. It is likely, also, that the chess player of Vou Kempelen, which excited so much wonder in the last century, had a conccaled confederate. The very ingenious little figures of Tendler, father and son, which imitated Englislı horsemen and rope dancers, constructed at Eiscnerz, in Styria, are probably no more true automata than the funtoccini, or figures of puppets, which arc exhibited in great perfcetion in many town of Italy, especially at Rome.

The moving power of almost all automata is a wound-up steel spring; becanse, in comparison with other means of giving motion, it takes up the smallest room, is casiest concealed and set a-going. Weights are seldom cmployed, aud only in a par-
tial way. The employment of other moving powers is more limited; sometimes fine sand is made to fall ou the circumference of a wheel, by which the rest of the mechanism is moved. For the same purpose water has been employed; and, when it is made to fall into an air-ehamber, it causes suffieient wind to cxcite musical sounds in pipes. In particular eases quicksilver has been used, as, for example, in the Chinese tumblers, which is only a physieal apparatus to illustrate the doctrine of the centre of gravity.
Figures are frequently eonstrueted for playthings, which move by wheels hardly visible. An example of this simplest kind of automaton, which may he introduced here as illustrating the self-acting prineiples of manufaetures, is shown in the figurc.
Fig. 153 exhibits the outlines of an automaton, representing a swan, with suitably combined movements. The meehanism may be deseribed, for the sake of elearness of explanation, under distinet beads. The first relates to the motion of the whole figure. By means of this part it swims upon the water, in directions ehanged from time to time without exterior ageney. Another eonstruetion gives to the figure the faculty of bending its neek on scveral oceasions, and, to such an. extent, that it ean plunge the bill and a portion of the head under water. Lastly, it is made to move its head and neek slowly from side to side.

On the barrel of the spring exteriol to the usual ratchet
 wheel, there is a main-wheel, marked 1 , whieh works into the pinion of the wheel 2. The wheel 2 moves a smaller one, shown merely in dotted lines, and on the long axis of the latter, at cither end there is a rudder, or water-whecl, the paddles of whieh are denoted by the letter a. Both of these rudder-wheels extend through an oblong opening in the bottom of the figure down into the water. They turn in the direction of the arrow, and impart a straight-forward movement to the swan. The chamber in which these wheels revolve is made water tight, to prevent moisture being thrown upon the rest of the maehinery. By the wheel 4 , motion is conveyed to the fly-pinion 5 ; the fly itself, 6 , serves to regulate the working of the whole apparatus, and it is provided with a stop bar, not shown in the engraving, to bring it to rest, or set it a-going at pleasure. Here, as we may imagine, the path pursucd is rectilinear, when the rudder-wheels are made to work in a square direetion. An oblique bar, seen only in seetion at b, movable about its middle point, carrics at each end a web foot c, so that the direction of the bar b, and of hoth feet towards the rudder-wheels, determines the form of the path which the figure will deseribe. The ehange of direction of that oblique bar is effected without other agency. For this purpose the wheel 1 takes into the pinion 7 , and this earries round the erown-wheel 8 , whieh is fixed, with an eeeentric dise 9 , upon a common axis. While the crown-wheel moves in the direction of the arrow, it turns the smaller eceentric portion of the elliptic dise towards the lever m, which, pressed upon incessantly by its spring, assumes, by degrees, the position eorresponding with the middle linc of the figure, and afterwards an oblique position; then it goes back again, and reaches its first situation; consequently, through the reeiprocal turning of the bar h and the swim-foot, is determined and varied the path which the swan must pursue. This construction is available with all automata whieh work by wheels; and it is obvious, that we may, by different forms of the dise 9 , modify, at pleasure, the direction and the velocity of the turnings. If the disc is a circle, for instance, then the changes will take place less suddenly; if the disc is an outward and inward curvature, upon whose edge the end of the lever presses with a roller, the movement will take plaec in a serpentıne line.

The neek is the part which requires the most eareful workmanship. Its outward ease must be flexible, and the neek itself should therefore be made of a tube of spiral wirc, eovered with leather, or with a fcathered bird-skin. The double line in the interior, where we see the triangles $e c e$, denotes a steel spring made fast to the plate 10 , whieh forms the bottom of the neck; it stands loose, and needs to be merely so strong as to keep the neek straight, or to bend it a little baekwards. It should not
be equally thick in all points, but it should be weaker where the first graceful bend is to be made ; and, in general, its stiffness ouglit to correspond to the curvature of the neck of this bird. The triangles e are made fast at their base to the front surface of the spring; in the points of each there is a slit, in the middle of which a movable roller is set, formed of a smoothly turned steel rod. A thin catgut string f, runs from the upper end of the spring, where it is fixed over all these rollers, and passes, through an aperture pierced in the middle of 10 , into the inside of the rump. If the catgut be drawn straight back towards f, the spring, and consequently the ncek, must obviously be bent, and so much the more, the more tightly f is pulled and is shortened in the hollow of the neck. How this is accomplished by the wheel-work will presently be shown. The wheel 11 receives its motion from the pinion s, connected with the main wheel 1. Upon 11 there is, moreover, the dise 12 , to whose circumference a slender chain is fastened. When the wheel 11 turns in the direction of the arrow, the chain will be so much pulled onwards through the corresponding advance at the point at 12 , till this point has come to the place opposite to its present situation, and, consequently, 11 must have performed half a revolution. The other end of the chain is hung in the groove of a very movable roller 14; and this will be turned immediately by the unwinding of the chain upon its axis. There turns, in connection with it, however, the large roller 13 , in which the catgut f is fastened; and as this is pulled in the direction of the arrow, the neck will be bent until the wheel 11 has made a half revolution. Then the drag ceases again to act upon the chain and the catgut; the spring in the neck comes into play: it becomes straight, erects the neck of the animal, and turns the rollers 13 and 14 back into their first position.

The roller 13 is of considerable size, in order that through the slight motion of the roller 14, a sufficient length of the catgut way be wound off, and the requisite shortening of the neck may be effeeted; which results from the proportion of the diameters of the rollers $11,13,14$. This part of the mechanism is attached as near to the side of the hollow body as possible, to make room for the interior parts, but particularly for the paddle-whecls. Since the catgut f must pass downwards on the middle from 10 , it is necessary to incline it sideways and outwards towards 13 , by means of some small rollers.

The head, constituting one piece with the neck, will be depressed by the complete flexure of this; and the bill, being turned downwards in front of tbe breast, will touch the surface of the water. The head will not be motionless ; but it is joined on both sides, by a very movable hinge, with the light ring which forms the upper part of the clothing of the neck. A weak spring, g, also fastened to the end of the neck, tends to turn the head backwards ; but in the present position it cannot do so, because a chain at g, whose other end is attached to the plate 10 , keeps it on the stretch. On the bending of the neck, this chain becomes slack; the spring h comes into operation, and throws the head so far back that, in its natural position, it will reach the water.
Finally, to render the turning of the head and neck practicable, the latter is not closely conuected with the rump, while the plate 10 can turn in a cylindrical manner upon its axis, but cannot become loose outwardly. Moreover, there is upon the axis of the wheel 1 , and behind it (shown merely as a circle in the engraving) a bevel wheel, which works into a second similar wheel, 15 , so as to turn it in a horizontal direction. The pin, 16, of the last wheel works upon a two-armed lever, 19, movable round the point h, and this lever moves the neck by means of the pin 17 . The shorter arm of the lever 19 has an oval aperture in which the pin 16 stands. As soou as this, in consequence of the movenuent of the bevel-wheel 15 , comes into the dotted position, it pushes the oval ring outwards on its smaller diameter, and thereby turns the lever upon the point h, into the oblique direction shown by the dotted lines. The pin 16, having come on its way right opposite to its present position, sets the lever again straight. Then the lever, by the further progress of the piu in its cireular path, is directed outwards to the opposite side; and, at last, when 15 has made an entire revolutiou, it is quite straight. The longer arm of the lever follows, of course, these alternating movements, so that it turns the neek upon its plate 10, by It may be remarked, in conclusion, that the drawing of fig 153 the dotted position. the size of which the automatou may be constructed, and that the body may be formed of thin shect copper or brass.

Figs. 154, 155, 156, show the plan of a third automaton : a horse whieh moves its feet in a natural way, and draws a carriage with two figures sitting in it. The man appears to drive the horse with a whip; the woman bends forward from hin in front. The four wheels of the carriage have no conucetion with the moving mechanism. In fig. 156 , some parts are represented upon a larger scale. The wheel 1, in fig. 154, operates through the two carrier-whecls nipon the wheels marked 4 and 5 . Thy means of the axes of these two wheels, the feet are set in motion. - The left fore-foot, π, then
the right hinder foot, move themselves baekwards, and take hold of the ground with small tacks in their hoofs, while the two other legs are bent and raised, hut no motion

of the body takes place. The carriage, however, with which the horse is conneeted, advanees upon its wheels. By studying the meehanism of the foot, a, and the parts connected with it, we ean readily understand the principles of the movement. The axis of wheel 4 is crank-shaped, on hoth sides, where it has to operate direetly on the fore-feet; but for each foot it is hent in an opposite direction, as is obvious iu the front view fig. 156. This erank, or, properly, its part furthest from the axis, serves instead of the pin 16 in the swan, and moves like it in an oval spot, $p, f y .154$, a two-armed lever, which gives motion through tooth-work, but not as in the swan, hy means of a second pin. This wheel-work renders the motion smoother. The above lever has its fulerum at n, fig. 156, about whieh it turns alternately, to the one and the other side, hy virtue of the rotation of the wheel 4. The toothed areh, or the half-wheel on the under side, lays hold of a shorter lever, in a similar arch, upon the upper joint of the foot, whieh is moved forwards and backwards upon the pivot m. In virtue of the motions in the direetion of the arrow, the foot a will move itself first obliquely backwards, without bending, and the body will therehy bend itself forwards. When the right hand foot makes the same motion, both the other feet are raised and bent. The joints of the foot at d and e are formed of hinges, whieh are so constructed that they ean yield no farther than is necessary at every oblique position of the foot. With the continued rotation of the wheel 4, the lever turns itself about n, in an inverted direetion inwards, and impels the uppermost foot-joint forwards, so that it forms an aeute angle with the body in front. The foot is now twice bent upon its joints. This takes plaee hy the traetion of the ehain t, whieh is led over rollers (as the drawing slows) to the foot, and is there fastened. As its upper end has its fixed point in the interior of the body, it is therefore drawn by the eceentric pin r standing in the vicinity of m, and thus bends the foot at the hinges. If there wcre spaee for it, a roller would answer hetter than a pin. By the recedure of the uppermost joint into the first position, the tension of the chain t ceases again of itself, while the pin r removes from it, and the foot is again extended in a straight line by the small springs operating upon its two under parts, whiel were previously bent stiflly by the chain. By the aid of the figures with this explanation, it will he apparcnt that all the forefeet have a similar construetion, that the proper suceession of motions will be effeeted through the toothed arcs, and the position of the cranks on the axis of the wheels 4 and 5 , and hence the advance of the figure must follow. The wheel 6 puts the fly 7 in mintion, hy means of the small wheel marked 1; on the fxed points of the 4 chains, by means of a ratehet-wheel and a eateh, the nceessary tension will again he produced when the elains have been drawn out a little. There is sufficient room for a mechanism which eould give motion to the head and ears, were it thought nceessary.

The proper eause of the motions may now be explained. In fig. $155, a$ is a wheel conneeted with the wound-up spriug, by which the motion of the two human figures, and also, if desired, that of the horse, may be effected. The axis of the wheel b earries a disc with pins, which operate upon the two-armed lever with its fulcrum c, and thus cause the bending of the upper part of one of the figures, which has a linge at f. On the axis of that wheel there is a secund disc, c, for giving motion to
the other figure, which, for the sake of elearness, is shown separate, although it should sit alongside of its fcllow. On the upper end of the double-armed lever d, there is a eord whose other end is conneeted with the moving arm, in the situation i, and raises it whenever a pin in the disc presses the under part of the lever. A spring, h, brings the arm baek into the original position, when a pin has passed from the lever, and has left it behind. The pins at c and d may be set at different distances from the middle of the disc, whereby the motions of the figures, by every eontaet of another pin, are varicd, and are therefore not so uniform, and consequently more natural.

For the eonnection of both mechanisms, namely, the carriage with the horse, various arrangements may be adopted. Two separate traction springs should be employed; one at a, fig. 155, in the coaeh-seat; the other in the body of the horse. In the coaeh-seat at b, the fly with its pinion, as well as a ratehet-wheel, is neeessary. By means of the shaft, the horse is placed in eonnection with the waggon. It may, however, receive its motion from the spring in the carriage, in whieh case one spring will be sufficient. Upon the latter plan the following construction may be adopted.To the axis of b, fig. 155, a bevel wheel is to be attaehed, and from this the motion is to be transmitted to the bottom of the carriage with the help of a second bevel wheel s, conneeted with a third bevel wheel t. This again turns the wheel u, whose long axis, v, goes to the middle of the horse's body, in an oblique direction, through the hollow shaft. This axis carries an endless screw, 9, fig. 154, with very oblique threads, which works into the little wheel 8 , corresponding to the wheel 1 , through an opening in the side of the horse, and in this way sets the mechanism of the horse a-going. With this construction of fig. 155, a spring of considerable streugth is necessary, or if the height of the carriage-seat does not afford suffieient room, its breadth will answer for plaeing two weaker springs alongside of each other upon a common barrel.

AVENTURINE. (Aventuriné, Fr.) A variety of quartz, which is minutely spangled throughout with yellow scales of mica; is known as Aventurine quartz. It is usually translucent, and of a grcy, brown, or reddish-brown eolour. There is also an Aventurine felspar (Feldspath aventurine, Fr.). Commereially, in France and some other parts of Europe, the name of Pierre de soliel is given to the finest varieties of the felspar aventurine, some lapidaries, however, calling this stone by the name of Aventurine orientale. This aventurine occurs at Capa de Gata, in Spain; it has reddish and yellow internal refleetions.

An artificial aventurine has been manufactured on a large scale, for a long period, at the glass-works of Murano, near Veniee. According to Wöhler's examination, aventurine glass owes its golden iridescence to a crystalline separation of metallic copper from the mass coloured brown by the peroxide of iron.
C. Karsten analysed the artificial aventurine from the glass manufactory of Bigaglia, in Venice, and found it to contain -

Silieic acid	-	-	-	-	-	-	-	$67 \cdot 3$
Lime	-	-	-	-	-	-	-	$9 \cdot 0$
Protoxide of iron	-	-	-	-	-	-	$3 \cdot 4$	
Binoxide of tin	-	-	-	-	-	-	$2 \cdot 3$	
Protoxide of lead	-	-	-	-	-	-	$1 \cdot 0$	
Metallic copper	-	-	-	-	-	-	-	$4 \cdot 0$
Potash	-	-	-	-	-	-	-	$5 \cdot 3$
Soda -	-	-	-	-	-	-	-	$7 \cdot 0$

These numbers agree in a remarkable manner with the results formerly obtained by Péligot, and may therefore be regarded as truly representing the composition of the glass.

In the aventurine glaze for porcelain, a crystalline separation of green oxide of chromium from the brown ferruginous mass of the glaze produces a similar effeet. This glaze is prepared as follows, aecording to A. Waichter : -

31 parts of fine lixiviated dry porcelain earth from Halle,

43	$"$	$"$	dry quartz sand,
14	$"$	$"$	gJpsum,
12	$"$	$"$	fragments of poreelain,

are stirred up with 300 parts of water, and by repeated straining througlı a linen sieve uniformly suspended in it, and intinately mixed. 'To this paste is added, under eoustant agitation, and one after the other, aqueous solutions of

19 parts biehromate of potash,
and then so much solution of ammonia that the iron is completely scparated. The salts of potash and amnionia are removed by frequent decantation with spring water.
The baked porcelain vessels are dipped into the pasty mixture obtained as above described, in the same manner as with other glazes, and then fired in the porcelain furnace. After this they are covered with a brown glaze, which in reflected light appears to be filled with a countless number of light gold spangles.

A thiu fragment of the glaze appears, under the microscope, by transmitted light, as a clear brownish glass, in which numerous transparent green six-sided prisms of oxide of chromium, and some brownish crystals, probably of oxide of chromium and peroxide of iron, are suspended. The oxide of chromium, therefore, separates, on the slow cooling of the glaze in the porcelain furnace, from the substance of the glaze a silicate of potash, lime, and alumina, saturated with the peroxide of iron - and shines through the brownish mass with a golden colour. When the aventurine glaze is mixed with an equal amount of colourless porcelain glaze, the glassy mass no longer has a brown colour after the burning, but a light greenish-grey, and the eliminated crystalline spangles likewise exhibit in reflected light their natural green colour.

AVENA SATIVA. The common oat (which see).

AVERRUNCATOR. A pair of pruning shears, which, on being mounted on a pole some ten feet long, and actuated by a string of catgut, can be used for pruning at a considerable distance above the head.
A VOCADO PEAR OIL. An oil obtained from the oleaginous fruit the Avocado pear-tree (Laurus Persea), a native of Trinidad. A portion of this oil having been submitted to Dr. Hofmann by the Governor of Trinidad, he reported on its character and composition. The following is an extract from his report :-
"According to my present experience, the oil of the Avocado pear is less valuable as a lubricating material. To make it fit for the higher classes of machinery, its mucilaginous constituents must be removed by the same refining process requisite for its adaptation in illuminating purposes. This will slightly increase its price. Even when purified it retains an attraction for oxygen, by which it becomes rapidly coloured, viscid, and actually acid. It cannot, either in price or in applicability, compete with that remarkable substance 'Paraffine oil,' which has been discovered within the last year by Mr. James Young, and which is now manufactured by him on a large scale, by the distillation, at a low temperature, of several varicties of coal.
"On the other hand, the oil of the Avocado pear is very applicable for the production of good soap. I have the honour of transmitting to your Excellency specimens prepared with the oil : the smaller one, which possesses a yellow colour, is prepared with the oil in its original condition; the larger one is made with a portion of oil which had previously been bleached by chlorine. From this specimen it is obvious that the oil, although poor in stearine, nevertheless furnishes a soap which is tolerably hard and solid. It ought to be remembered that it is difficult to obtain a hard soap by working on the small scale prescribed by the limited amount of material at my disposal. For the perfect elaboration of tbis investigation also, a large supply of material will be of great advantage; but I have even now no hesitation in stating, that, for the purposes of the soap-maker, the oil of the Avocado pear will have, at least, the same value as palm oil."

AXE. A tool much used by carpenters for cleaving and roughly fashioning blocks of wood. It is a thin iron wedge with an oblong steel edge, parallel to which, in the short base, is a hole for receiving and holding fast the end of a strong wooden handle.
a XLES, of carriages. See Wheel Carriages.
AXUNGE. Hog's lard. See Fat and Oils.
AZIMUTH COMPASS. The azimuth compass is used chiefly to note the actual magnetic azimuth, or that arch of the horizon intercepted between the azimuth, or vertical circle passing through the centre of any heavenly body and the magnetio meridian.
The card of the azimuth compass is subdivided into exact degrees, minutes, and seconds. To the box is fixed two "sights," through which the sun or a star may be viewed. The position into which the index of the sights mnst be turned to see it, will indicate on the card the azimuth of the star. When the observations are intended to be exact, telcscopes take the place of the sights. By this instrument we note the actual magnetic azimuth; and, as we know the azimuth calculated from the N. and S . line, the variation of the ncedle is readily found.
AYR STONE, called also Scotch stone and snake stone, is much in request as a polishing stonc for marble and for copper plates. These stones are always kept damp, or even wet, to prevent their becoming hard.
The harder varieties of Ayr stone are now employed as whetstones. VoL. I.

AZOBENZIDE. ($\mathrm{C}^{24} \mathrm{H}^{10} \mathrm{~N}^{2}$) A peculiar substance formed by acting with an alcoholic solution of potash upon nitrobenzole, or, as it is somctimes called, artificial oil of bitter almonds. (Sec Nitrobenzoles.) If nitrobenzole, dissolved in alcohol, with the addition of solid potash, be distilled, a complex and by no means well understood reaction occurs. The azobenzide distils over mixed with anilinc. The fluid treated with hydrochloric acid, to dissolve the aniline, is passed through a wet filter; the auiline salt passes through, leaving the azobenzide as a red oil, which in a few moments solidifies into a mass of rich golden-brown crystals of considerable size, even when working on a very small quantity. The alcohol enters into the reaction, and oxalic acid is formed, which unites with the potash. Four equivalents of nitrobenzole and two cquivalents of alcohol appear to yield one cquivalent of azobenzide, two equivalents of aniline, four equivalents of oxalic acid, and cight equivalents of water; or, in symbols -

$$
\underbrace{4 \mathrm{C}^{12} \mathrm{H}^{5} \mathrm{NO}^{4}}_{\text {Nitrobenzole. }}+\underbrace{2 \mathrm{C}^{4} \mathrm{H}^{6} \mathrm{O}^{2}}_{\text {Alcohol. }}=\underbrace{\mathrm{C}^{2} \mathrm{H}^{10} \mathrm{~N}^{2}}_{\text {Azobenzide. }}+\underbrace{2 \mathrm{C}^{12} \mathrm{H}^{2} \mathrm{~N}}_{\text {Aniline. }}+\underbrace{4 \mathrm{C}^{2} \mathrm{O}^{3}}_{\text {Oxalic acid. }}+\underbrace{8 \mathrm{HO}}
$$

Azobenzide yields numerous derivations. With fuming nitric acid it gives two nitro compounds; viz., nitroazobenzide and binitroazobenzide. Azobenzide, treated with sulphide of ammonium, yiclds an alkaloid called benzidine, $\mathrm{C}^{24} \mathrm{H}^{12} \mathrm{~N}^{2}$.-C. G. W.

AZOBENZOIDE. When bitter almonds are distilled, per descensum, an oil is obtained; if the latter be treated with ammonia, and the substance thus formed be treated with ether, a white powder remains, which is probably impure hydroben-zamidc.-C. G. W. Sec Ure's Chemical Dictionary.

AZOBENZOYLE. A substance formed simultaneously with hydrobenzamide and benzydramide, when oil of bitter almonds is treated with ammonia.-C. G. W.

AZote. See Nitrogen.
AZOTIZED, said of certain vegetable substances, which, as containing azotc, were supposed at one time to partake, in some measure, of the animal nature. The vegetable products, indigo, cafeiue, gluten, and many others, contain abundance of azote.
AZURE. This term was applied by Pliny to the blues of the ancients. "Cæruleum, or azure, is of three kinds : the Egyptian (artificial); the Scythian (natural), which is inferior; the Cyprian, the best." -(Theophrastus, also Pliny.) Girardin, writing of the ancient colours, says, "This azure, which has thus endured above 1700 years, may be cheaply and easily made thus: 15 parts, by weight, of carbonate of soda, 20 parts of opaque flints, and 3 parts of copper filings, are strongly heated for two hours, and the mixture will result in a fine deep sky-blue." The Egyptian blue, or Alexandrian frit, is a pulverised blue glass; it was once thought to contain cobalt, but all analyses prove it to be a silicate of copper.

The term Azure has been applied to smalts. See Cobalt, Smalt, and Ultramarine.

AZURITE. This term has been applied to several blue minerals, which have little in common. Beudant and Dana use it to signify the blue carbonate of copper - now termed Chessylite by Brook and Miller, from its occurring in fine crystalline forms at Chessy, near Lyons ; hence commonly called Chessy copper.

Azurite is also applied to the Lazulite of Dana; which is again called Azure stone and blue spar by others.

The same term is also given to the Lapis lazuli, from which ultramarine is obtained.
This want of agreement between mincralogists - leading them to adopt names independent one of the other (names frequently taken from somc locality in which the writer knows the mineral to be found) - produces great confusion, and retards the progress of knowledge.

B

BABLAH. The rind or shcll which surrounds the fruit of the Mimosa cineraria; it comes from the East Indics, and also from Senegal, under the name of Neb-neb. It contains gallic acid, tannin, a red colouring mattcr, and an azotized substance; but the proportion of tannin is smaller than in sumach and galls, in reference to that of gallic acid, which is considerable in the bablah. It has been used in dyciug cotton, for producing various shades of drab, as a substitute for the more expensive astringeut dye-stuffs.

BACK. A mining term. The back of a mineral lode is that part which is nearest the surface. The back of a level is the ground between it and the level above it.

BACK. A brewer's utensil.
BAGASSE. The sugar-cane, in its dry crushed state, as delivered from the sugar-mill. It is much employed for fuel in the colonial sugar-houses.
BAIN-MARIE. A vessel of water in which saucepans, \&c., arc placed to warm food.
BAIZE. A coarse woollen stuff with a long nap, sometimes frized on one side.
BAKERS' SALT. The sesquicarbonate of ammonia, so called because it is often used as a substitute for yeast in bread and pastry.
BAKING. (Cuire, Fr.; Backen, Germ.) The exposure of any body to such a heat as will dry and consolidate its parts without wasting them. Thus wood, pottery, and porcelain, are baked, as well as bread. See Biscuit ; Bread.
BAL. An ancient Cornish miner's term for a miue. Bal-maidens is a name given to girls working at a mine.

BALACHONG. An article of food much used in the Eastern Archipelago, consisting of fish and shrimps pounded together.

BALANCE. To conduct arts, manufactures, and mines, with judgment and success, recourse must be had, at almost cvery step, to a balance. Experience proves tbat all material bodies existing upon the surface of the earth are constantly solicited by a force which tends to bring then to its centre, and that they actually fall towards it when they are frec to move. This force is called gravity. Though the bodics be not free, the effort of gravity is still sensible, aud the resultant of all the actions which it exercises upon their material points constitutes what is popularly called their weight. These wcights are, therefore, forces which may be compared together, and by means of machines may be made to correspond or be counterpoised.
To discover whether two weights be equal, we must oppose them to each other in a machine where they act in a similar manner, and then see if they maintain an equilibrium ; for example, we fulfil this condition if we suspend them at the two extremities of a lever supported at its centre, and whose arms are equal. Such is the general idea of a balance. The beam of a good balance ought to be a bar or double cone of metal, of such strength as to secure perfect inflexibility under any load which may be fitly applice to its extremities. Its arms should be quite equal in weight and length upon each side of its point of suspension; and this point should be placed in a vertical line over the centre of gravity; and the less distant it is from it, the more delicate will be the balance. Were it placed exactly in that centre, the beam would not spontaneously recover the horizontal position when it was once removed from it. To render its indications more readily commensurable, a slender rod or ncedle is fixed to it, at right angles, in the line passing through its centres of gravity and suspension. The point, or rather edge, of suspension, is made of perfectly hard steel, and turns upon a bed of the same. For common uscs the arms of a balance can be made sufficiently equal to givc satisfactory results; but, for the more refined purposes of science, that equality should never be presumcd nor trusted to ; and, fortunately, exact weighing is quite independent of that equality. To weigh a body is to determine how many times the weight of that body contains another species of known weight, as of grains or pounds, for example. In order to find it out, let us place the substance, suppose a piece of gold, in the left hand scale of the balance; counterpoise it with sand or shot in the other, till the index needle be truly vertical, or stand in the middle of its scale, proving the beam to be horizontal. Now remove gently the piece of gold, and substitute in its place standard multiple weights of any graduation, English or French, until the needle again resumes the vertical position, or until its oscillations upon either side of the zero point are equal. These weights will represent precisely the weight of the gold, since they are placed in the same circumstances with it, and make the same equilibrium with the weight laid in the other scale.
This method of weighing is obviously independent of the unequal length as well as the unequal weight of the arms of the beam. For its perfection two requisites only are indispensable. The first is that the points of suspension should be rigorously the same in the two operations; for the power of a given weight to turn the beam being unequal, accordingly as we place it at different distances from the centre of suspension, did that point vary in the two consecutive weighings, we should require to employ, in the second, a different weight from that of the piece of gold, in order to form an cquilibrium with the sand or shot originally put in the opposite scale; and as there is nothing to indicate such inequality in the states of the beam, great crrors would result from it. The best mode of securing against such inequality is to suspend the cords of the scales from sharp-edged rings, upon knife edges, at the ends of the beam, both made of stccl so bard tempered as to be incapable of indentation. The sccond condition is, that the balance should be very sensible-that is, when in equilibrium and loaded, it may be scales. This sensibility depends solely by the smallest weight put into either of the scales. This sensibility depends solely upon the centre of suspension; and it will

BALANCE FOR WEIGHING COIN.

be the more perfect the less friction there is between that knife-edge surface and the plane which supports it. Both should therefore be as hard and highly polished as possible; and should not be suffered to press against each other, except at the time of weighing. Every delicate balance of moderate size, moreover, sbould be suspended within a glass case, to protect it from the agitations of the air, and the corroding influence of the weathcr. In some balances a ball is placed upon the index or needle, (rhetber that index stand above or below the beam,) which may be made to approach or reccde from the beam by a fine-thrcaded screw, with the effect of varying the centre of gravity relatively to the point of suspension, and thereby increasing, at will, either the sensibility or the stability of the balance. The greater the length of tbe arms, the less distant the centre of gravity is beneath the centre of suspension, the better polished its central knife-edge of 30°, the lighter the whole balance, and the less it is loaded, the greater will be its sensibility. In all cases the arms must be quite inflexible. A balance made by Ramsden for the Royal Society is capable of weighing ten pounds, and turns with one hundredth of a grain, which is the seven-milliontli part of the weight. In pointing out this balance, Dr. Wollaston remarked it was so delicate, that Mr. Pond, then Astronomer-Royal, when making some observations with it, found its indications affected by bis relative position before it, although it was inclosed in a glass case. Wben he stood opposite the right arm, tbat end of the beam preponderated, in consequence of its becoming expanded by tbe radiation of heat from his body ; and when be stood opposite the left arm, he made this preponderate in its turn. It is probable that Mr. Pond had previously adjusted tbe centres of gravity and suspension so near to each other as to give the balance its maximum sensibility consistent with stability. Were these centres made to coincide, the beam, when the weights are equal, would rest in any position, and tbe addition of tbe smallest wcight would overset the balance, and place the bcam in a vertical position, from which it would have no tendency to return. The sensibility in this case would be the greatest possible; hut the other two requisites of level and stability would be cntirely lost. The case would be even worse if the centre of gravity werc higber than the centre of suspension, as tbe balance when deranged, if free, would make a revolution of no less than a semi-circle. A balance may be made by a fraudulent dealer to weigh falsely though its arms be equal, provided the suspension be lower than the centre of gravity, for he has only to toss his tea, for instance, forcibly into one scale to cause 15 ounces of it, or thereabout, to counterpoise a pound wcight in the other. hnspectors of weights, \&c., are not au fait to this fruitful source of fraud among

Witbout entering into the construction of balances, which is not the purpose of this dictionary, it does not appear practical to enter further than Dr. Ure has done into the subject.

BALANCE FOR WEIGHING COIN introduced at the Bank of England in the year 1841.

Mr. William Cotton, then Deputy-Governor, and during the two succeeding years Governor of the Bank, had long regarded the mode of weighing by common handbalances with dissatisfaction, on account of its injurious effect upon the "teller," or weigher, owing to the straining of the optic nerve by constant watching of the beam indicator, and the necessity of reducing the functions of the mind to the narrow office of influencing a few constantly repeated actions. Sucb monotonous labour could not be endured for hours together without moments of forgetfulness resulting in errors. Errors more constant, althougb less in amount, were found to be due to the rapid wearing of the knife-edges of tbe beam ; currents of air also acting upon the pans produced undesired results ; and even the breath of the "teller" sometimes turned tbe scale ; so that in hand-weigbing, the errors not unfrequently amounted to $\frac{1}{3}$ rd, and even $\frac{1}{2}$ grain. At the very best, the band-scale working at the rate of 3000 per six hours could not indicate nearer than $\frac{1}{25}$ th grain.

Upon taking into consideration the inconveniences and defects of the handweigbing system, Mr. Cotton conceived the idea that it might be superseded by a macbine defended from external influences, and contrived so as to weigh coins as fast as by hand, and within the fourth of a grain. He subsequently communicated his plan to Mr. David Napier, of York Road, Lambeth, enginecr, wbo undertook the construction of an experimental machine. Its capabilitics were tested and reported upou by Mr. William Miller, of the Bank. The result was most satisfactory; more "automaton balances" were ordercd; and from time to time further additions have heen made, so that at present there are ten in daily operation at the Bank of England. But it was not without a struggle that the time-hallowed institution of tellers passed away. There were intercsts opposed to the introductiou of improved, more reads, and less expensive methods; and it required all Mr. Cotton's energy of character, the influence of his intelligence in mechanies, as well as that arisiug from his position in
the Direction, to obtain the adoption of an invention by whieh a very large annual saving has been effected.

The meehanieal adaptation of the prineiples involved in the Automaton Balance, as contrived by Mr. Napier, may be shortly explained : - The weighing beam, of steel, is forked at the ends, each extremity forming a knife-edge; and in the eentre the fulcrum knife-edge extends on each side of the plate of the beam, and rests in hollows cut in a bowed cross-bar fixed to the uuder side of a rectangular brass plate, about 12 inches square, which is supported at the corners by columns fixed to a castiron table raised a convenient height on a stand of the same metal. To form a complete enclosing case, plates of metal or glass are slid into grooves down the columns. When the beam is resting with its centre knife-edge in the hollows of the cross-bar just referred to, its upper part is nearly on a level with the under-side of the brass plate, in which a long slot is made, so that the beam can be taken out when the feeding slide-box, and its plate, which covers this slot, are removed. On the top of the covering plate of the feeding slide a tubc hopper is placed, and a hole in the plate communicates with the slide ; another hole is pierced in the same plate exactly over one end of the beam, upon the knife-edges of which a long rod is suspended by hollows formed in a cross-bar elose to its upper end, where the weigling platform is fitted. A rod is also suspended at the other end of the beam in a similar manner'; but instead of a weighing plate, it has a knob at top, whieh, when the beam is horizontal, comes into contact with an adjustable agate point. The lower end of this pendant rod is stirrup-shaped, for holding the counterpoise. Two displacing slides are provided, one on each side of the feeding slide, and at right angles to each other ; and a gripping apparatus is fixed to the under side of the brass top plate, arranged so as to hold the pendant on which the scale-plate is fitted during the ehange of the coin. A dipping finger is also attaehed to the frame of the gripping apparatus, its end passing into a small slot in the pendant rod, and acting upon a knife-edge at the lower end of the slot. There are four shafts crossing the machine ; the one through which the power is applied is placed low and at the centre, and carries a pinion which gears with a wheel of twice its diameter on a shaft above ; this wheel gears with two similar wheels fixed to shafts on each side of the centre. Cams for acting upon the feeding slide, through the medium of a roeking frame, are earried by the shaft placed at the end of the machine where the counterpoise hangs, and the other two shafts on the same level bear eams for working the gripping apparatus, the dipping finger, and the displaeing slides.
Having described, as elearly and as popularly as we ean, the general features of the mechanism, we will proceed to indicate its manner of action. Suppose, then, the hopper filled, and a hollow inelined plane about two feet long, whieh has been added to the bopper by the inventive genius of one of the gentlemen in the weighing-room, also loaded its whole length with the pieces to be weighed, the machine is set in motion, and the feeding slide pushes the lowest piece forward on to the weighing plate, the grippers meantime holding fast by the neck of the pendant, so as to kecp the plate perfectly steady; the dipping-finger is also at its lowest position, and resting upon the knife-edge at the bottom of the slot in the pendant rod, thus keeping the beam horizontal, and the knob on the counterpoise pendant, in eontact with the agate point already mentioned. When tbe eoin is fairly placed on the weighing-plate, the grippers let go their hold of the pendant rod, and the dippingfinger is raised by its eam ; if then the coin is too light, the coin end of the beam will rise along with the dipping-finger, and the counterpoise end will deseend; if heavy, the beam will remain without motion, the agate point preventing it. As soon as the dipping-finger attains the proper height, and thus has allowed sufficient time for the weight of the eoin to be deeided, the grippers close and hold the pendant, and consequently the seale or weighing-plate, at the high level, if the coin has proved light, and been raised by the exeess of weight in the counterpoise; and at the low or original and passes under has proved heavy. One of the displacing slides now comes forward and passes under the coin, if it is light, and therefore raised to the high level ; but placing slide then remaining on the low level, into the "heavy" box. The other dislight piece whieh the vances. This strikes higher than the first, and removes tbe these operations the feeding-slide bas brouto the receptacle for the light coin. During just deseribed is repeated. The attendant is forward another coin, and the process plane at intervals, and remove the assorted coin from thed to replenish the inclined the workmanship, and the harmouy of the various from the boxes. The perfection of appreeiated from the faet, that 25 pieees are weighed per minute to the fineness thath of a grain. This eombination of great speed and accuracy would rot fineness of possible with a beam made in the ordinary speed and accuracy would not have been the centre of aetion ; and it was pronounced to be so by the late of gravity below
construetor of Mr. Babbage's Calculating Machine. But Mr. Napicr overcame the difficulty by raising the centre of gravity so as to coincide with the centre of action, which gave it much greater sensibility ; and he provided the dipping-finger, to bring the bean to a horizontal position after each weighing, instead of an influeneing weight in the beam itself.

The wear aud tear of these machincs is found to be very small indeed; those supplied in 1842 and 1843, and in daily use ever since, weigh with the same accuracy as at first, althougl they nay be said to have cost nothing for repairs. The principal cause of this long-continued perfection is that the beam does not oscillate, unless the coin is light, and even then the space passed through does not exceed the thickness of the coin.

In 1851, when the Moneyers were no longer masters of the Royal Mint, and the new anthorities began to regard the process of weighing the coin in detail by hand as a laborious, expensive, and inaccurate method, the firm of Napier and Son, at an interview with Sir John Herschel, the Master, and Captain Harness, the Deputy-Master, received an order for five machines, to be designed to -suit the requirements of the Mint, which involved a complete change in the mechanical arrangement of the machine as used at the Bank, it being necessary to divide the "blanks," or pieces before they are struck, into three classes: "too light," "too heavy," and "medium," or those varying between certain given limits. It would occupy too much space to attempt a description of the mechanical disposition of this machine, and it could not be satisfactorily accomplished without the aid of drawings ; let it suffice, then, to say that the displacing-slides are removed, and a long vibrating conducting-tube receives the blanks as they are in turn pushed off the weighingplate by the on-coming blanks; but, according to the weight of the blank, so the lower end of the tube is found to be opposite to one of three openings leading into three boxes. The tube is sustained in its proper position, during the descent of the blank last weighed through it, by a stop-finger, the height of which is regulated by a dipping-finger, which comes down upon a knife-edge at the lower end of a slot in the pendant-rod just when the grippers have laid hold of the rod after the weighing is as it brings downer thus ascertains the level which the knife-edge has attained, and three rests, as steps in a stair, vibrates against the stop-finghich is furnished with coming in contact with it, according to the level of the stop-finger; and the enter steps guide-tube takes its place opposite the channel leading to the box in which the the should be found. The counterpoise employed is less than the true standard weight by the quantity which may be allowed as the limit in that direction; and in weight, blank is too heavy, not only is the counterpoise raised, but a small weight, equal to the range allowed between the "too light" and "too heavy," is raiscd also; this small weight comes to rest on supports provided for it when the beam is horizontal, and is only disturbed by a too heavy blank.
These machines have proved even more accurate and rapid than those made for the Bank; and Professor Graham, the present master, amongst the improvements introdnced by him into the system of the Mint, has added to the number, and dispensed entirely with the hand weighing. It is snid that the saving accruing from this change alone amounts to nearly 2000l. per annum.
baLAS RUBY. The name applied to rose-red varieties of spinel. See Ruby,
BALE. A package of silk, liuen, or woollen, is so called.
BALLISTIC PENDULUM. An instrument for measuring the force of cannonballs. The ballista was an instrument used by the ancients to throw darts, \&e. The ballistic pendulum derives its name from this : it consists of an iron cylinder, closed at one end, suspeuded as a pendulum. A ball being fired into the open cnd, deflects the pendulum according to the force of the blow received from the ball, thus ueasuring its power.
BALLOON. In France, a quantity of glass. Of white glass, 25 bundles of six plates each; of coloured glass, $12 \frac{1}{2}$ bundles of three plates each are ealled balloons.

BALLOON, AIR. A varnished silk or other bag filled with gas, or warm air, which, being specifically lighter than the atmosphere, ascends in it. Numerous attempts have been made to bring air balloons under the control of the aëronaut, so as to guide them across the currents of the atmosphere; but all of these have proved unsuccessful, the balloon and its voyagers having always moved with the aërial current, in spite of the meehanical appliances whicli have been adopted.

BALSAM. (Bazme, Fr.; Balsame, Germ.) A native compound of ethereal or essential oils, with resin, and frequently benzoic acid. Most balsams have the consistence of honcy; but a few are solid, or become so by kecping. They flow either spontaneously, or by incisions made from trees aud slurubs in tropical climates. They have peculiar and sometines powerful smells, aromatic hot tastes, but lose their odori-
ferous propertics by long exposure to the air. They are insoluble in water; soluble, to a considerable degree, in ether; and completely in alcohol. When distilled with water, ethereal oil comes over, and resin remains in the retort.

Of the various kinds of Baxsams we imported, in 1856, the following quantities:-

Canada	-	-	-	-	-	-	$-17,177 \mathrm{lbs}$	
Capivi	-	-	-	-	-	-	-	927 cwts.
Riga	-	-	-	-	-	-	-	328 lbs.
Tolu	-	-	-	-	-	-	-	$1,452 \mathrm{lbs}$.

BALSAM OF COPAIVA. (Baume de Copahu, Fr.; Kopaiva Balsam, Gcrm.) Copaiva balsam, balsam of copahu, or capivi, is obtained from ineisions made iu the trunk of the Copaifera officinalis, a tree which grows in Brazil and Cayenne. It is also very frequently obtained from the C. Multijuga, C. Langodorf, and C. Coriucect. Dr. Pereira has figured these and several other species of copaifera. It is pale yellow, semi-liquid, clear and transparent, has a bitter, sharp, hot taste; a penetrating disagreeable smell; a specific gravity of from 0.950 to 0.996 . It dissolves in absolute alcohol, partially in spirits of wine, forms with alkalis crystalline compounds. it consists of 45.59 ethereous oil, 52.75 of a yellow brittle resin, and 1.66 of a brown viscid resin. The oil contains no oxygen, has a compositiou like oil of turpentine, dissolves caoutchouc (according to Durand), but becomes oxidised, in the air, into a peculiar species of resin.

This substance is extensively used in medicine. It was formerly often adulterated; some unctuous oil being mixed with it, but as this is easily discovered by its insolubility in alcohol, castor oil has since been used. The presence of this cheaper oil may be detected, -1, by agitating the balsam with a solution of caustic soda, and setting the mixture aside to repose, when the balsam will come to float clear on the top, and leave a soapy thick magma of the oil below; 2, when the balsam is boiled with water, in a thin film, for some hours, it will become a brittle resin on cooling, but it will remain viscid if mixed with castor oil ; 3, if a drop of the oil on white paper be held over a lamp, at a proper distance, its volatile oil will evaporate and leave the brittle resin, without causing any stain around, which the presence of oil will produce ; 4, when three drops of the balsam are poured into a watch-glass, alongside of one drop of sulphuric acid, it becomes yellow at the point of eontact, and altogether of a saffron hue when stirred about with a glass rod; but if sophisticated with castor oil, the mixture soon becomes nearly colourless, like white honey, though after some time the acid blackens the whole in either case; 5 , if 3 parts in bulk of the balsam be mixed with 1 of good water of ammonia (of 0.970 spccific gravity) in a glass tube, it will form a transparent solution if it be pure, but will fornu a white liniment if it contains castor oil; 6 , if the the balsam be triturated with a little of the common magncsia alba, it will form a clcar solution, from which acids dissolve out the magnesia, and leave the oil transparent if it be pure, but opaque if it be adulterated. When turpentine is employed to falsify the balsam, the fraud is deteeted by the smell on heating the compound.

This balsam is used in the manufacture of some varieties of tracing paper; and many lacquers and varnishes have the balsam of copaiva as one of their constitucnts. A peculiar variety of copaiva has been examined by Posselt, but it does not appear to have become an article of commerce.
BALSAM, MECCA. (Baume de la Mecque, Baume du Judée, Fr.) Mecca balsam, or opobalsam, is obtained both by incisions of, and by boiling, the branches and leaves of the Anuyris opobalsamum, a shrub which grows in Arabia Felix and Egypt. When fresh it is turbid and whitish, becomes by degrees transparent, ycllow, thickish, and eventually solid. Its smell is peculiar, but agreeable; it tastes bitter and spicy; does not dissolve completely in hot spirit of wine, and contains 10 per cent. of ethereal oil of the specifie gravity 0.876 . This is sometimes used as a varnish.
BALSAM OF PERU. (Baume du Perou, Fr.; Peruvianischer Balsam, Germ.) Balsam of Peru is extracted from the Myroxylon Pcruiferum, a tree which, grows in Peru, Mexico, \&c.; sometimes by incision, and sometimes by evaporating the decoction of the bark and branches of the tree. The former kind is very rare, and is imported in the husk of the cocoa-nut, whence it is called balsam en coque. It is brown, transparcut only in thin layers of the consistence of thick turpentinc, an agreeable smell, an aerid and bitter taste ; formed of two matters, the one liquid, the other granular, and somewhat crystalline. In 100 parts, it contains 12 of benzoie acid, 88 of resin, with traces of a volatile nil.
The second sort, the black balsam of Peru, is much more common than the preceding; translucent, of the consistence of well-boiled syrup, very deep red-brown colour, an almost intolerably acrid and bitter taste, and a stronger smell than the other
balsam. Stoltze regards it as formed of 69 parts of a peculiar oil, 20.7 of a resin little soluble in alcohol, of 6.4 of benzoic acid, of 0.6 of extractive matter, and 0.9 of water.

The celcbrated Pomade Divine, which was a few years since very celebrated, contained a considerable quantity of the balsam of Peru. One of the best recipes for its preparation was the following:-

Fine olive oil	-	-	-	-	-	18 ozs.
Balsam of Peru	-	-	-	-	-	-1 oz.
Oris root	-	-	-	drachms.		
Strained storax	-	-	-	-	-	-
1 drachm.						

This, with some bruised nutmegs and cinnamon, was macerated in a water-bath for three hours, and then filtcred. This aromatic oil was mixed with 6 ozs. of white wax, 1 oz . of spermaceti; these were melted together, and a few drops of the essential oils of nutmegs, cinnamon, and clores added.

A French authority states that, dissolved in four times its weight of alcohol, and spread upon sarsenet already covered with a layer of isinglass, it formed the taffetas d'Angleterre.

One thousand parts of good balsam should, by its benzoic acid, saturate 75 parts of crystallised carbonate of soda. It is employed as a perfume for pomatums, tinctures, lozenges, sealing-wax, and for chocolate and liqueurs, instead of vanilla, when this happens to be very dear.
M. Victor le Nouvel, who has been engaged in collecting this balsam since 1836, gives the following as the process used by the Indians to obtain it. An incision is made into the tree of about two or three inches broad, and three to four inches long. They raise the bark from the wood and apply cotton rags to it; a fire being lighted round the tree to liquefy the balsam. Fresh incisions are made higher and higher up the tree, till the cotton rags are quite saturated. It takes from ten to twelve days to effect this. The rags are next boiled, and when the liquor is cold, the balsam collects below.-Pereira's Materia Medica.

Balsam of Peru has been for some years exported from the state of Salvador (in $1855,22,804 \mathrm{lbs}$., valued at 19,827 dollars). On the coast of Chiquimulilla (Guatemala) there are many trees of the description that yield the balsam, but hitherto it has not attracted the attention of the people to collect it. - Consul's Report.

The Balsam of Peru of Salvador is procured within the department of Sonsonate. The British Consul thus describes its production :-

In the district of Cuisnagua there are 3574 trees, which yield altogether only 600 lbs . of the gum annually. With proper care in the extraction, each tree would yield 2 lbs . to 3 lbs ., making the total quantity capable of being produced in the before-mentioned district about $10,000 \mathrm{lbs}$. When the season has been more rainy than usual, the product is much lower; but in order to meet this difficulty, the Indians heat the body of the tree by fire, by this means causing the gum to exude more freely, but this operation invariably causes the decay of the tree.

The Indians employed in collecting the gum say that such trees as arc well shaded yield a greater quantity; but that those which have been planted by hand yield the most. This has been proved by experience, particularly in Calcutta, where a considerable quantity is yearly collected from trees which have been so planted. During the months of December and January the gum ouzes away spontaneously. This class of gum is called "calcawzate." It is orange-coloured, weighs less than the other, and emits a strong odour; is volatile and pungent.

BALSAM OF TOIU. (Baume de Tolu, Fr.; Tolutanischer Balsam, Gcrm.) Balsam of Tolu flows from the trunk of the Myrospernum Toluiferum, a trec which grows in South America, on the mountains of Tolu, Timbaceo, \&c. It is, when fresh, of the consistence of turpentine; is brownish-red, dries into a yellowish or reddish brittle resinous mass, of a smell like benzoin; is soluble in alcohol and ether; affords, with water, benzoic acid. It appears probable that both the balsams of Peru and of Tolu are obtaincd from one tree. Bulsam of Tolu is used to manufacture Tolu lozenges, and the Syrup of Tolu for irritating coughs. It is sometimes cmployed by confectioners to flavour sweetmeats, by perfumers, and in the formation of fumigating pastiles.

BAMBOO. (Bambon, Fr. ; Indianischer Rohr, Germ.) A specics of cane, the

Bambos arundinacea of botanists. A most important vegetable product in the East, where it is used in the construction of houses, boats, bridges, \&c. Its grain is used for bread; its fibre is manufactured into paper.

Walking sticks are frequently said to be of bamboo; they are the ratan, a different plant.

BANDANNA. A style of calico printing, in which white or brightly-coloured spots are produced upon a red or dark ground. It seems to have been practised from time immemorial in India, by binding up firmly with thread those points of the cloth which were to remain white or yellow, while the rest of the surface was freely subjected to the dyeing operations.

The European imitations have now far surpassed, in the beauty and precision of the design, the oriental patterns, having called into action the refined resources of mcchanical and chemical science. In "Brande's Journal" for July, 1823, Dr. Ure described the bandanna gallery of Messrs. Monteith at Glasgow, which, when in full action some years ago, might be reckoned the most magnificent and profitable printing establishment in the world. The white spots were produced by a solution of chlorine, made to percolate down through the Tukrey red cotton cloth, in certain points defined and circumscribed by the pressure of hollow lead types in plates, in a hydraulic press. Fig. 155 is an elevation of one press: A, the tob of the cntablature; B B, the cheeks

or pillars; c , the upper block for fastening the upper lead perforated pattern to ; D , the lower block to which the fellow pattern is affixed, and which moves up and down with the piston of the press ; E, the piston or ram ; F, the sole or base; G, the watcrtrough for the discharged or spotted calico to fall into ; \mathbf{H}, the small cistern for the aqueous chlorine or liquor-metre, with glass tubes for indicating the height of liquol inside the cistern ; e e, glass stopcocks, for admitting the liquor into that cistern from the general rescrvoir; $f f$, stopcocks for admitting water to wash out the chlorine ; $g g$, the pattern lead-plates, with screws for settiug the patterns parallel to each other;
$m m$, projeeting angular pieees at each eorner, perforated with a half-ineh hole to reeeive the four guide-pins rising from the lower plate, whieh serve to secure aeeuracy of adjustment between the two faces of the lead pattern plates; $h h$, two rollers, which seize and pull through the diseharged pieees, and deliver them into the water trough. To the left of D there is a stopeoek for filling the trough with water; l is the waste tub for ehlorine liquor and water of washing. The eontrivanee for blowing a stream of air aeross the eloth through the pattern holes is not represented in the figure.

Sixteen engines, similar to the above, eaeh possessing the power of pressing with several hundred tons, are arranged in one line, in subdivisions of four, the spaees between each subdivision serving as passages to allow the workmen to go readily fromı the front to the baek of the presses. Each oecupies 25 feet, so that the total length of the apartment is 100 feet.

To eaeh press is attached a pair of patterns in lead (or plates as they are ealled), the manner of forming whieh will be deseribed in the sequel. One of these plates is fixed to the upper bloek of the press. This bloek is so eontrived that it rests upon a kind of universal joint, whieh enables this plate to be applied exaetly to the under fellowplate. The latter sits on the movable part of the press, eommonly ealled the sill. When this is foreed up, the two patterns elose on each other very nieely by means of the guide-pins at the corners, whieh are fitted with the utmost eare.
The power whieh impels this great hydrostatie range is plaeed in a separate apartment, called the maehinery room. This maehinery consists of two press eylinders of a peeuliar construetion, having solid rams aeeurately fitted to them. To eaeh of these eylinders three little foree-pumps, worked by a steam-engine, are eonneeted.

The piston of a large eylinder is eight inehes in diameter, and is loaded with a top weight of five tons. This piston ean be made to rise about two feet through a leather stuffing or eollar. The other cylinder has a piston of only one ineh in diameter, whiel is also loaded with a top weight of five tons. It is eapable, like the other, of being raised two feet through its eollar.

Supposing the pistons to be at their lowest point, four of the six small foree-pumps are put in aetion by the steam-engine, two of them to raise the large piston, and two the little one. In a short time so mueh water is injeeted into the eylinders that the loaded pistons have arrived at their highest points. They are now ready for working the hydrostatie diseharge presses, the water pressure being eonveyed from the one apartment to the other, under ground, through strong eopper tubes of small ealibre.

Two valves are attaehed to eaeh press, one opening a communieation between the large driving eylinder and the eylinder of the press, the other between the small driving eylinder and the press. The function of the first is simply to lift the under bloek of the press into eontaet with the upper bloek; that of the seeond is to give the requisite eompression to the eloth. A third valve is attaehed to the press for the purpose of diseharging the water from its eylinder, when the press is to be relaxed in order to remove or draw through the eloth.

From 12 to 14 pieees of eloth previously dyed Turkey red, are stretehed over eaeh other as parallel as possible, by a partieular maehine. These parallel layers are then rolled round a wooden eylinder, ealled by the workmen a drum. This eylinder is now plaeed in its proper situation at the baek of the press. A portion of the 14 layers of eloth, equal to the area of the plates, is next drawn through between them by hooks attached to the two corners of the webs. Ou opening the valve eonneeted with the eight-inch driving eylinder, the water enters the eylinder of the press, and instantly lifts its lower bloek so as to apply the under plate with its eloth elose to the upper one. This valve is then shut and the other is opened. The pressure of five tons in the oneineh prime eylinder is now bronght to bear on the piston of the press, whieh is eight inches in diameter. The cffeetive foree here will therefore be 5 tons $\times 8^{2}=320$ tons, the areas of eylinders being to eaeh other as the squares of their respeetive diameters. The eloth is thus eondensed between the leaden pattern plates with a pressure of 320 tons in a couple of seeonds.

The next step is to admit the bleaehing or diseharging liquor (aqueous ehlorine, obtained by adding sulphurie aeid to solution of elloride of lime) to the eloth. This liquor is contained in a large eistern in an adjoining house, from whieh it is run at pleasure into small lead eisterns, H, attaehed to the presses, whieh eisterns have graduated index tubes for regulating the quantity of liquor aeeording to the pattern of diseharge. The stopeoeks on the pipes and eisterns eontaining this liquor are all made of glass.

Froin the measure-eistern, Ir, the liquor is allowed to flow into the hollows in the upper lead plate, whenee it deseends on the eloth, and pereolates through it, extraeting in its passage the 'Turkey-red dye. The liquor is finally couveyed into the waste pipe fron a groove in the under bloek. As soon as the ehlorine liquor has passed through, water is adnitted in a similar manner to wash away the ellorine, otherwise
upon relaxing the pressure, the outline of the figure discharged would become ragged. The passage of the discharge liquor, as well as of the watcr through the eloth, is oceasionally aided by a pneumatic apparatus, or blowing machine, consisting of a large gasometer from which the air, subjeeted to a moderate pressure, may be allowed to issue and act, in the direction of the liquid, upon the folds of the cloth. By an occasional twist of the air stopcoek, the workman also can ensure the equal distributiou of the discharging liquor over the whole excavations in the upper plate. When the demand for goods is very brisk, the air apparatus is much employed, as it enables the workman to double his product.

The time requisite for completing the discharging proecss in the first press is sufficient to enable the other thrce workmen to put the remaining 15 presses in play. The discharger proceeds now from press to press, admits the liquor, the air, and the water; and is followed at a proper interval by the assistants, who relax the press, move for. wards another square of the cloth, and then restore the pressure. Whenever the sixteenth press has been liquored, \&c., it is time to open the first press. In this routine about ten minutes are employed; that is, 224 handkerehiefs (16×14) are disebarged every ten minutes. The whole cloth is drawn successively forward, to be sueccssively treated aecording to the above method.
When the cloth is removed from the press it is passed between the two rollers in frunt, from whieh it falls into a trough of water plaeed below. It is finally carried off to the washing aud bleaching department, where the lustre of both the white and the red is considerably brightened.

By the above arrangement of presses, 1600 pieees, consisting of 12 yards eaeh $=$ 19,200 yards, are eouverted into bandannas in the space of ten hours, by the labour of four workmen.

The patterns, or plates, which are put into the presses to determine the white figures on the cloth, are made of lead in the following way:-A trellis frame of east iron, one ineh thick, with turned-up edges, forming a trough rather larger than the intended lead pattern, is used as the solid groundwork. Into this trough a lead plate, about one half-inch thick, is firmly fixed by screw-nails passing up from below. To the edges of this lead plate the borders of the piece of sheet lead are soldered, which covers the whole outer surface of the iron frame. Thus a strong trough is formed, one inch decp. The upright border gives at once great strength to the plate and serves to confinc the liquor. A thin sheet of lead is now laid on the thick lead plate, in the manner of a veneer on toilette tables, and is soldered to it round the cdges. Both sheets must be made very smooth beforehand, by hammering them on a smooth stone table, and then finishing with a plane; the surface of the thin shect (now attached) is to be covered with drawing paper, pasted on, and upon this the pattern is drawn. It is now ready for the cutter. The first thing which he does is to fix down with brass pins all the parts of the pattern which are to be left solid. He now procceds with the little tools generally used by bloek-cutters, which are fitted to the different curvatures of the pattern, and he cuts perpendicularly quite through the thin sheet. The pieces thus detached are easily lifted out, and thus the ehannels are formed whieh design the white figures on the red eloth. At the bottom of the ehannels a suffieient number of small perforations are madc through the thicker sheet lead, so that the discharging liquor may have free ingress and egress. Thus one plate is finished, from whieh an impression is taken in the hydrostatic press, by means of printers' ink, on paper pasted upon another plate. Each pair of plates constitutes a set which may be put into presses and removed at pleasure.
BANDOLINE, called also clysphitique and fixature, a mucilage of Carrageen moss; used for stiffening the hair and keeping it in order.

BARBARY GUM. Sometimes ealled Morocco gum. The product of the Acacia gummifera. Imported from Tripoli, Barbary, and Morocco. Sce Arabic, Gum.

BARBERRY. (Berberris, Lat.; E'pine-vinette, Fr.) It is probable that this name has been given to this plant from its spines, or barbs. The name Oxycanthus, also given to it, indicates a like origin.

The barberry is a shrubby plant, common in hedges in England; sometimes ealled the pipperidge bush. The berries are used in housewifery. The root of this plant eontains a yellow eolouring matter which is soluble in water and alcohol, and is rendered brown by alkalis. The solution is employed in the manufacture of moroeco leather.

BARILLA. (Soude, Barille, Fr.; Barilla, Gcrm.) A crude soda, procured by the incineration of the salsola soda, a plant cultivated for this purpose in Spain, Sicily, Sardinia, and the Canary Islands. In Alicante the plants are raised from seed, which is sown at the elose of the ycar, and they are usually fit to be gathered in September following. In October the plants are usually burucd. For this purpose holes are made in the carth, capahle of containing a ton or a ton and a half of soda. Iron bars

BARLEY.

are laid across these cavitics, and the dried plants, sfratificd with dry seeds, are placed upon them. The whole is set on fire. The alkali contained in the plants is fused, and it flows into the cavity beneatle, a red-hot fluid. By constantly heaping on plants, the burning is continucd until the pits are full of barilla; they are then eovered up with earth, and allowed to cool gradually. The spongy mass of alkali, when suffieiently cold, is broken out, and, without any further preparation, it is ready for shipment. Good barilla usually eontains, aceording to Dr. Ure's analysis, 20 per eent. of real alkali, associated with muriates and sulphates, chiefly of soda, some lime, and alumina, with very little sulphur. Caustie leys made from it were formerly used in the finishing proeess of the hard soap manufacture.
The manufacturc of barilla has greatly deelined since the introduction of Le Blane's proeess for artifieially manufacturing soda from eommon salt.

The quantity of barilla and alkali imported in 1850 amounted to $34,880 \mathrm{cwts}$., and in 1851 to 45,740 ewts.; in 1856 the Importation was 54,608 cwts.
BARIUM. (From Băpùs, heavy.) The metallic basis of the earth baryta was obtained by Davy, in 1808, by the voltaic decomposition of the moistened carbonate of baryta in eontaet with mercury. It may likewise be procured by passing potassium in vapour over baryta heated to redness in an iron tube, and afterwards withdrawing the redueed barium whieh the residuum contains, by means of mereury. The latter metal is separated by distillation in a glass retort, care being taken not to raise the temperature to redness, for the barium then decomposes glass.
Barium is a white metal, like silver, fusible under a red heat, denser than oil of vitriol, in whieh it sinks. - Graham.
BARK. The outer rind of plants. Many varieties of barks are known to commeree, but the term is especially used to express either Peruvian or Jesuits' bark, a pharmaeeutieal remedy, or Oak bark, which is very extensively used by tanners and dyers.

The varieties known in commeree are:-
Cork Bark. (Fr. Liége; Kork, Germ.)
Oak Bark. (Tan brut, Fr.; Eichenrinde, Germ.)
Peruvian Bark. (Quinquina, Fr.; Chinarinde, Germ.)
Quercitron Bark.
Wattle Bark.
See these articles respeetively.
The following were our Importations for 1856 of bark for tanners' or dyers' use :-

								Computed
					$\begin{gathered} \text { Cwts. } \\ 2,719 \end{gathered}$			$\begin{aligned} & \text { Real Value } \\ & £ 680 \end{aligned}$
From	Norway	-	-		3,209	-	-	802
"	Hanse Towns	-	-	-	74,988	-		18,747
"	Holland	-	-	-	147,711			36,928
"	Belgium	-	-	-	4,593			1,148
"	France	-	-	-	21,169			6,880
"	Two Sicany -	-	-	-	2,250		-	731
"	Moroceo -	-	-	-	24,373			8,835
"	United States	-	-	-	57,593			35,996
	Australia -	-	-		14,844			$\begin{array}{r}7,792 \\ \hline 224\end{array}$
	Other parts			-	719			
					354,168			£118,763

The quantity imported in 1857 being 381,243 ewts.; and of Peruvian bark, we imported, in 1856 :-

					Cwts.			1165 . per Cwt.
	Hanse Towns				1,370		-	15,48+
From	Hanse Towns				5,220		-	58,988
,	United States	-			14,808		-	167,335
"	New Granada	-	-	-	5,230	-	-	59,099
"	Peru -	-	-	-	970		-	10,955
					27,598			311,861

BARLEY (Orge, Fr.; Gerstengraupe, Germ.; Hordeum, Linn.) This term is supposed to be derived from hordus, heavy, because the bread made from it is very heavy. Barley belongs to the elass Endoyens, or Monocotyledons; Glumel Alliance, of Linley : natural order, Graminacea.

There are four species of barley cultivated in this country : -

1. Hordeum liexastichon. Six-rowed barley.
2. Hordeun vulgare. The Scotch bere or bigg ; the four-rowed barley.
3. Hordeum zeocriton. Putney, fan, sprat, or battledore barley.
4. Hordeum distichon. . Two-rowed or long-eared barley.

Barley and oats are the cereals whose cultivation extends farthest north in Europe.
The specific gravity of English barley varies from $1 \cdot 25$ to $1 \cdot 33$; of bigg from $1 \cdot 227$ to $1 \cdot 265$; the weight of the husk of barley is $\frac{1}{6}$, that of bigg $\frac{2}{9}$. Specific gravity of barley is $1 \cdot 235$, by Dr. Ure's trials. 1000 parts of barley flour contain, according to Einhof, 720 of starch, 56 sugar, 50 mucilage, 36.6 gluten, 12.3 vegetable albumen, 100 water, $2 \cdot 5$ phosphate of lime, 68 fibrous or ligneous matter.

From the examination instituted by the Royal Agricultural Society of England, and carried out under the directions of Messrs. Way and Ogston, the following results have been arrived at : -

The analyses of several varieties gave as the composition of the ashes of the grains of barley:-

				Unknown.	Chevalier Barley.	From Moldavia.	Chevalier Barley.
Potash -	-	-	-	-	$21 \cdot 14$	20.77	37.55
Soda	-	-	-	-	-	-	4.56

In the "Synopsis of the Vegetable Products of Scotland," by Peter Lawson and Son, will be found the best description of all the different varieties of barley; and, since the Lawsonian collection is in the museum of the Royal Botanic Gardens at Kew, the grains can be examined readily by all who take any interest in the subject. A few only of the varieties will be noticed.

The true six-rowed Barley, known also as Pomeranian and as six-rowed white winter barley.-This is a coarse barley, but hardy and prolific. It is occasionally sown in France, and also in this country, sometimes as a winter and sometimes as a spring barley, and is found to answer pretty well as either.
Naked two-rowed.-Ear long, containing twenty-eight or thirty very large grains, which separate from the palex, or chaff, in the manner of wheat. This variety has been introduced to the notice of agriculturalists at various times, and under different names, but its cultivation has never been carried to any great extent.

Common Bere, Bigg, or rough Barley. - This variety is chiefly cultivated in the Highlands of Scotland, and in the Lowlands on exposed inferior soils.
Victoria.-A superior variety of the old bigg, compared with which it produces longer straw, and is long-eared, often containing 70 or 100 grains in each. Instances have been known of its yielding 13 quarters per acre, and weighing as much as 96 lbs per bushel.
Beyond these there are, the winter black; the winter white; old Scottish four-rowed; naked, yoldcn, or Italian; Suffolh or Norfolk, and Short-nccked; cultivated in various districts, and with varying qualities.

The Quantities of Barley sold in the English Markets.

		1851.	1852.	1853.	1854.	1855.	1856.
January -	-	369,786	596,926	475,257	392,100	385,364	443,963
February	-	335,549	323,329	324,142	306,035	347,303	361,853
March -	-	281,587	221,027	259,161	223,865	325,077	352,007
April -	-	139,700	124,804	157,232	159,798	165,463	192,528
May	-	-	66,154	73,053	50,872	62,657	94,501
92,232							
Junc -	-	15,914	16,886	14,783	17,713	49,406	18,842
July -	-	8,879	7,988	9,667	15,308	23,266	7,865
August -	-	10,193	7,009	7,285	8,027	22,529	13,537
September	-	26,562	30,317	19,805	28,546	33,313	73,408
October -	-	175,914	243,134	282,568	165,520	191,196	252,644
November	-	434,683	391,129	373,579	323,435	349,934	460,691
December	-	468,789	453,885	499,855	564,993	621,510	409,366
The year	-	$2,333,710$	$2,389,489$	$2,474,246$	$2,267,997$	$2,608,862$	$2,678,936$

BARM. (Derived from the Saxon beorm; or from beer-ralm, beer-cream.) The yeasty top of fermenting beer. It is used as leaven in bread, and to establish fermentation in liquors. Sce Beer, Fermentation.

BARREGE. A woollen fabric, in both warp and woof, which takes its name from the district in which it was first manufactured - the especial locality being a little village named Arosons, in the beautiful valley of Barrèges. It was first employed as an ornament for the head, especially for sacred ceremonies, as baptism and marriage. Paris subsequently became celebrated for its barrèges, but these were generally woven with a warp of silk. Enormous quantities of cheap barrèges are now made with a warp of cotton.
BARREL. (Baril, Fr.) A round vessel, or cask, of greater length than breadtb, made of staves, and hooped.
The English barrel - wine measure contains $31 \frac{1}{2}$ gallons.

"	(old) beer ", (old) ale	",	36 32	",
",	beer vinegar	,	34	
"	contains 126			

The ale and beer barrels were equalised to 34 gallons by a statute of William and Mary. The wine gallon, by a statute of Anne, was declared to be 231 cubic inches; the beer gallon being usually reckoned as 282 cubic inches.

The imperial gallon is 277.274 cubic inches.
The old barrels now in use are as follows :-

The baril de Florence is equivalent to 20 bottles.
The Connectieut barrel for liquors is $31 \frac{1}{2}$ gallons, each gallon to contain 231 cubic iuches.

The satute barrel of America must be from 28 to 31 gallons.
The barrel of flour, New York, must contain cither 195 lbs or 228 lbs, nett π cight.
The barrel of beef or pork in New York and Connecticut is 200 lbs .
A barrel of Essex butter is 106 lbs .
A barrcl of Suffolk butter is 256 lbs .
A barrel of herrings should hold 1000 fish.
A barrel of salmon should mensure 42 gallons.
BAROMETER. A name given to one of the most important instruments of meteorology. This name signifies a measurer of weight - the column of nercury in the tube of the barometer being exactly balanced against the weight of a colunn of air of the same diamcter, reaching from the surface of the earth to the extreme limits of the atmospherc. The length of this column of mercury is never more than thirtyone inches; below that point it may vary, according to conditions, through several inches.

There have been many uscful applications of the barometer, but the only one with which this dictionary has to deal appears to be the following:-

Barometer, Mackworth's Underground. - In the goafs, or old workings, of some mines hollows exist, in which explosive or noxious gases tend to accumulate in considerable quartity. When the barometer falls, these gases expand and approach or enter the working places of the mine, producing disastrous results to life or health. To enable the manager of a mine to foresee thesc contingencies, he has but to construct a small model of such a cavity, and let the expansion or contraction of the gas measure itself. In fig. 156Δ, is a brass vessel, 12 inches long and $1 \frac{1}{2}$ inches in diameter,

closed at each end. In one end is inserted a copper tube, $\frac{1}{8}$ th inch in diameter and 12 feet long, B. A hole, 2 inches in diameter, being bored 12 feet deep into the solid coal or rock, the brass vessel is pushed to the bottom of it, and the small tube is closely packed round with coal or clay. c is a glass tube, 4 feet long and $\frac{1}{4}$ th inch in diameter, in which is placed water or oil. As the external atmosphere presses, the surface of the liquid rises or falls, and the scale is graduated by comparison with a standard barometer. The air contained in the brass vessel Δ, and copper tube \mathbf{B}, is unaffected, or nearly so, by temperature, and no correction has to be made for the latter as in the sympiesometer. A and \mathbf{B} may be conveniently filled with nitrogen, to prevent the oxidation of the metal ; and the surface of the liquid in the glass tube may be made self-rcgistering, either giving maxima and minima, or, by the addition of clockwork, taking diagrams on paper.

BARWOOD. Although distinctions are made between sandal or saunders wood, camwood, and barwood, they appear to be very nearly allied to each other - at least, the colouring matter is of the same composition. They come, however, from different places. See Camwood and Sandal Wood.
MM. Girardin and Prcisser thus describe this wood :-

This wood, in the state of a coarse powder, is of a bright red colour, without any odour or smell. It imparts scarcely any colour to the saliva.

Cold water, in contact with this powder, only acquires a fawn tint after five days' maceration. 100 parts of water only dissolve $2 \cdot 21$ of substances consisting of 0.85 colouring matter and of 1.36 saline compounds. Boiling water becomes more strongly coloured of a reddish yellow; but, on cooling, it deposits a part of the colouring principle in the form of a red powder. 100 parts of water at 212° dissolve 8.86 of substances consisting of $\tau \cdot 24$ colouring principle, and 1.62 salts, espeeially sulphates and chlorides. On maccrating the powder in strong alcohol, the liquid almost immediately acquires a very dark vinous red colour. 'To remove the whole of the colour from fifteen grains of this powder, it was necessary to trcat it several times with boiling alcohol. The alcoholic liquid contained 0.23 of colouring principle and 0.004 of salt. Barwood contains, thercfore, 23 per cent of red colouring matter ; whilst saunders wood, according to Pclletier, only contains $16 \cdot 75$.
The alcoholic solution behaves in the following manner towards re-agents :-
Distilled water added in great quantity - Produces a considerable yellow opalescence. The prccipitate is re-dissolved by the fixed alkalis, and the liquor acquires a dark vinous colour.
Fixed alkalis
Turn it dark crimson, or dark violct.
Lime water
Ditto.
Sulphuric acid -
Sulphuretted hydrogen
Salt of tin - -
Darkens the colour to a cochineal red.
Chloride of tin - - - Blood-red precipitate.
Brick-red precipitate.

Acetate of lead
Salts of the protoxide of iron Copper salts
Chloride of mercury

Nitrate of bismuth

Sulphate of zinc -
Tartar emetic
Neutral salts of potash Water of barytes Gelatine - - -

- Dark violet gelatinous precipitate.
- Very abundant violet precipitates.
- Violet-brown gelatinous precipitates.
- An abundant precipitate of a brick-red colour.
- Gives a light and brilliant crimson red.
- Bright red flocculent precipitate.
- An abundant precipitate of a dark cherry colour.
- Acts like pure water.

Dark violet-brown precipitate.
Brownish-yellow ochrous precipitate.
Brings back the liquor to a light yellow, with a slight yellowish-brown precipitate, resembling hydrated peroxide of iron.

Pyroxylic spirit acts on barwood like alcohol, and the strongly coloured solution behaves similarly towards re-agents. Hydrated ether almost immediately acquires an orange-red tint, rather paler than that with alcohol. It dissoves $19 \cdot 47$ per cent. colouring principle. Ammonia, potash, and soda, in contact with powdered barwood, assume an extremely dark violet-red colour. These solutions, neutralised with hydrochloric acid, deposit the colouring matter in the form of a dark reddish-brown powder. A cetic acid becomes of a dark-red colour, as with saunders wood.

Barwood is but slightly soluble ; but the difficulty arising from its slight solubility is, according to Mr. Napier, overcome by the following very ingenious arrangement : - The colouring matter while hot combines easily with the proto-compounds of tin, forming an insoluble rich red colour. The goods to be dyed are impregnated with proto-chloride of tin combined with sumach. The proper proportion of barwood for the colour wanted is put into a boiler with water, and brought to boil. The goods
thus impregnated are put into this boiling water containing the rasped wood the small portion of colouring matter dissolved in the water is by the goods. The water, thus exhausted, dissolves a new portion of colouring matter, which is again taken up by the goods, and so on till the tin upon the eloth has become (if we may so term it) saturated. The colour is then at its brightest and richest phase.

In 1855 , the quantity of barwood imported, duty free, was 2710 tons.
Of the barwood imported, 227 tons were re-exported; the computed real valuc of which was $1,241 l$.

BARYTA, or BARYTES. (Baryte, Fr.) One of the simple earths. It may be obtained most easily by dissolving the native carbonate of barytes (Witherite, after Withering, who described it, "Phil. Transactions," 1784) in nitric acid, evaporating the neutral nitrate till crystals be formed, draining and then calcining these, by successive portions, in a covered platina crueible, at a bright red heat. A less pure baryta may be obtained by igniting strongly a mixture of the carbonate and charcoal, both in fine powder and moistened. It is a greyish-white earthy-looking substance, fusible only at the jet of the oxy-hydrogen blowpipe, has a sharp caustic taste, corrodes the tongue and all animal matter, is poisonous even in small quantities, has a very powerful alkaline reaction; a specific gravity of 4.0 ; becomes hot, and slakes violently when sprinkled with water, falling into a fine white powder, called the hydrate of baryta, which contains $10 \frac{1}{2}$ per cent. of water, and dissolves in 10 parts of boiling water. This solution lets fall abundant columnar crystals of hydrate of baryta as it cools; but it still retains one-twentieth its weight of baryta, and is called baryta water. The above crystals contain 61 per cent. of water, of which, by drying, they lose 50 parts. This hydrate may be fused at a red heat without losing any more water. Of all the bases, baryta has the strongest affinity for sulphuric acid, and is hence employed - either in the state of the above water, or in that of one of its neutral salts, as the nitrate of muriate - to detect the presence and determine the quantity of that acid present in any soluble compound. Its prime equivalent is $7 \cdot 66$, hydrogeu being 1000 .

BARYTA, CARBONATE OF. The composition of the native carbonate of barya may be regarded as baryta 77.59 and carbonic acid 22.41 . It is found in Shropshire, Cumberland, Westmorcland, and Northumberlaud. The carbonatc of baryta is employed in our colour manufactorics as a base for some of the more delieate colours ; it is also used in the manufacturc of plate-glass ; and, in France, it is much used in the preparation of beet-root sugar.

Tons.	Cwts.
443	16

Alston Moor produced, in 1856 - \quad - \quad - $\quad 1043$

BARYTA, SULPHATE OF. The baryte of Brooke and Miller, barytes of Daia and Phillips, Bolognian spar, called also "cawk" and "heavy spar." It is composed of baryta $65 \cdot 63$, sulphuric acid $34 \cdot 37$, with sometimes a littlc iron, lime, or silica.

This salt of baryta is very extensively spread over various parts of the islands. It is worked largely in Derbyshire, Yorkshire, Shropshire, and the Isle of Arran. In 1856 the production was as follows. From

Derbyshire	-	-	-	-	-	-	-	-
Tons.								
Shropshire	-	-	-	-	-	-	-	1200
Bantry (Ireland)	-	-	-	-	-	-	-	700
Isle of Arran	-	-	-	-	-	-	-	550
Kirkcudbright	-	-	-	-	-	-	-	70

It might be obtained in very large quantities in Devonshire, Cornwall, and other places, if the demand for it sufficiently increased the price so as to render the working of it profitable. A large quantity of the ground sulphate of baryta is employed in the adulteration of white lead. Paint containing much barytes very soon washes off the surface upon which it is spread. Lead combines with the oil, and forms, indeed, a plaster. No such combination takes place between the oil and the baryta, hence they soon separate by the action of water. Baryta is employed to some extent in the pyrotechnic art, in the production of flames of a greenish character.
In 1856, we imported -

BASALT. One of the most common varieties of trap rock, It is a dark green or black stone, composed of augite and felspar; very compact in texture, and of considerable hardness, often found in regular pillars of three or more sides, called "basaltic columns." Remarkable examples of this kind are seen at the Giant's Causeway, in Ireland, and at Fingal's Cave, in Staffa, one of the Hebrides. The term is used by Pliny, and is said to come from basal, an Ethiopian word signifying iron. The rock sometimes contains much iron.-Lycll's Principles of Geology. Experiments have been made on a large scale to apply basaltic rock, after it has undergone fusion, to decorative and ornamental purposes. Messrs. Chance (brothers) of Birmingham, have adopted the process of melting the Rowley rag, a basaltic rock forming the plateau of the Rowley hills, near Dudley, South Staffordshire, and then casting it into moulds for architectural ornaments, tiles for pavements, \&c. Not only the Rowley rag, but basalt, greenstone, whinstone, or any similar mineral, may be used. The material is melted in a reverberatory furnace, and when in a sufficieutly fluid state is poured into moulds of sand encased in iron boxes, these moulds having been previously raised to a red heat in ovens suitable for the purpose. The object to be attained by heating the moulds previous to their reception of the liquid material is to retard the rate of cooling; as the result of slow cooling is a hard, strong, and stony substance, closely resembling the natural stone, while the result of rapid cooling is a dark brittle glass.

BASILICON. The name given by the old apothecaries to a mixture of oil, wax, and resin, which is represented by the Cerat. resine of the present day

BASSORA GUM. A gum obtained from the Acacia leucophlaa, brought fiom Bassora. It has a specific gravity of $1 \cdot 3591$, and is yellowish white in colour.
BASSORINE. A constituent part of gum Bassora, as also of gum tragacanth. It is semi-transparent, difficult to pulverise, swells considerably in cold or boiling water, and forms a thick mucilage without dissolving. Treated with ten times its weight of nitric acid, it affords nearly 23 per cent. of its weight of mucic acid, being much more than is obtainable from gum arabic or cherry-tree gum. Bassorine is very soluble in water slightly acidulated with nitric or muriatic acid. This principle is procured by soaking gum Bassora in a great quantity of cold water, and in form.
BASKETS. Weaving of rods iuto baskets is one of the most ancient of the arts amongst men; and it is practised in almost every part of the globe, whether inhabited
by civilised or savage races. by civilised or savage races.
Basket-making requires no description here.
Importations:-

13ATH METAL consists of 3 oz . of zine to 1 lb . of copper. - See Brass.
B3ATHS. (Bains, Fr.; Baden, Germ.) The importanee attached by the Greeks aud Romans to bathing is suffieiently attested by the remains of magnificent structures which still excite the admiration of the bcholder, and by the beautiful specimens of fresco-painting and sculpture discovered in their baths.

It is computed that in the baths of Caracalla, as many as threc thousand pcople could bathe at the same time, in water at various degrces of temperature, to suit their inclinations. The warm and hot baths were, however, almost exclusively in use under the Emperors.

Duriug the Republic the baths werc cold. Mccænas was the first to crect warm and hot ones for public use; they werc called Thermæ, and werc placed under the dircction of ediles, who regulated the temperature, cnforced cleanliness in the establishment, and order and decorun among the visitors. Agrippa, during the time he was edile, increased the number of therme to 170 , and in the course of two centuries, therc were no less than eight hundred in imperial Rome. The inhabitants resorted to the baths at particular hours, indicated by striking a bell or gong. Adrian forbadc their being open before eight in the morning, except in cases of sickness; whercas Alexander Severus not only permitted them to be open during the whole day, but also to be used through the night in the great heats of summer.

It was a common practice with the Rumans to bathe towards evening, and particularly before supper : some of the more luxurious madc use of the bath even after tbis meal. We are told of many citizens of distinetion who were in the halit of bathing four, or five, and even eight times a day. Bathing constituted a part of public rejoicings, equally with the other speetacles, and, like them, was prohibited when the country suffered under any calamity. All classes resorted to the baths; the emperors themselves, such as Titus, Adrian, and Alexander Severus, were occasionally secn among the bathers. The price of admission was very small, amounting to no more than a farthing. - E. Lee, on Mineral Waters and Baths.

Wurm batbs have come into very general nse in England, and they are now considered as indispensably necessary in all modern honses of any magnitude, as also in elub-houses, hotels, and hospitals; and the mode of constructing baths, and of obtaining the necessary supplies of hot and cold watcr, has undergone much improvement with the extension of their employment.

The several points in regard to warm baths are,

1. The materials of which they are constructed.
2. Their situation.
3. The supply of eold water.
4. The supply of hot water.
5. Minor comforts and convenicnces.
6. As to the materials of which they are constructed. - Of these the bcst are slabs of polished marble, properly bedded with good water-tight cement, in a seasoned wooden case, and neatly and carefully united at tbeir respective edges. These, when origiaally well constructed, form a durable, pleasant, and agreeable-looking bath, bnt tbe expense is often objectionable, and, in upper chambers, the weight may prove inconvenient. If of white or veined marble, they are also apt to get yellow or discoloured by frequent use, and canuot easily be eleansed; so that large Dutch tiles, as they are called, or square pieces of white earthenware, are sometimes substituted. Welsh slate has now superseded marble to a great extent; and very supcrior baths are now manufaetured of Stomrbridge clay, at Stourbridge. Che outfit, but far marc vanised iron, are also employed; the first is most expensive in the outfit, but far more durable than the latter.
7. As to the situation of the bath, or the part of the house in which it is to be placed.-In hotels and club-houses, this is a question easily determined; several baths are usually here required, and each should have annexed to it a propcrly warmed dressing-rrom. Whether they are upstairs or downstairs is a question of convenience, but the basement story, iu which they are sometimes placcd, shonld always be avoided : there is a coldness and dampness belonging to it, in almost all weathers, which is neither agreeable nor salubrious.

In hospitals, there arc usually several baths on cach side of the house (the men's and women's), and the supply of hot water is ready at a moment's noticc. (the In private houscs, the fittest places for warm baths ane cannot be obtaincd, a separate the principal bed-roons; or, where such con, and always upon tbe bed-room floor. bath-roum connceted with the dressing-room, ant point, as connected with the present
3. The supply of water is a very impor and purc; and as free as possible from all subject. The water sher
substances mechanieally suspended in it.

4, and 5.-In puhlic hathing estahlishments, where numerous and constant haths are required, the most effective means of obtaining hot water for their supply are now cmployed. It is drawn directly into the baths from a large boiler, placed somewhere above their level. The hot water enters the bath hy a pipe at least an inch and a half in diameter, and the cold water by one of the same dimension. The relative proportions of the hot aud cold water are, of course, to be adjusted by a thermometer; and every bath has a two-inch waste pipe, opening about two inches from the top of the bath, and suffering the excess of water freely to run off; so that when a person is immersed in the bath, or wheu the supplies of water are accidently left open, therc may be no danger of an overflow.
A contrivance of some ingenuity consists in suffering the water for the supply of the bath to flow from a cistern above it, through a leaden pipe of about one inch diameter, which is conducted into the kitchen or other convenient place, where a large boiler for the supply of hot water is already fixed. The bath-pipe is immersed in this boiler, in which it makes many convolutions, and, again emerging, ascends to the bath. The operation is simply this:- the cold water passing through the convolutions of that part of the pipe which is immersed in the boiling watcr, receives therc sufficient heat for the purpose required, and ascending, in obedience to the law of fluid pressure, it is delivered in that state by the ascending pipe into the bath, which is also supplied with cold water and waste-pipes as usual. The pipe may he of lead, as far as the descending and ascending parts are concerned, but the portion forming the worm or convolutions immersed in the boiler, should he copper, in order that the water within it may receive heat without impediment.
The facilities which are now afforded for the construction of haths in private houses, and for the use of them at a very cheap rate in public establishments, render it quite unnecessary to retain the remarks made by Dr. Ure.
Public baths and wash-houses have now become common amongst us, and with them an increased cleanliness is apparent, and improved health throughout the popution.
The following is a return of the bathing and washing at the public baths and washhouses in London, conducted under or in accordance with the Aets 9 and 10 Vict., cap. 74, and 10 and 11 Vict., cap. 61 , and of a few out of the similar establishments in
the country :-

The return does not include the Gcorge Strect (Hampstead Road), and Lambeth estahlishments, which are not regulated by the public acts.
The steady increase of the revenue derived from the haths and wash-houses in London, from the commencement of the undertaking in 1846, shows the practical
utility of these institutions, and their effect on the physical and social condition of the industrious classes ; viz.:-

The aggregate receipts of nine establishments, inclusive

The aggregate receip						$£^{1}$	s.	d.
of the George Str				-		18,213	5	
ansount to		-	-	-		15,629	5	8
1852. Eight establishments	-	-	-	-	-	12,906	12	5
1851. Six establishments -	-	-	-	-	-	9,823	10	6
1850. Four establishments	-	-	-	-	-	6,379	17	2
1849. Three establishments	-	-	-	-	-	2,896	5	1
1848. Two establishments	-							
1847. $\}$ Ditto -	-	-	-		-	3,222		5
1846. $\}$ Dito -								

Showing an increase, in 1853 over 1846, of $£ 15,317$ 0s. 7 d.
Those conveniences - now, indeed, bccome absolute necessities - are extending in every part of the country.
Baths, as curative

Baths, as curative agents, are of very different kinds. Vapour Baths are stimulant and sudorifie; they may be either to be breathed, or not to be breathed. Dr. Pereira has given the following Table, as a comparative view of the heating powers of vapour and of water : -

Kind of bath.					Water.		Vapour.	
							Not breathed.	Breathed.
		-	-	-	85° to	92°	96° to 106°	90° to 100°
Tepid bath Warm bath	-	-	-	-	92 "		106 " 120	$\begin{array}{lll} 100 & " 110 \\ 110 \end{array}$
Hot bath	-	-	-	-	98 "		120 "160	

Local vapour baths are applied in affections of the joints, and the like.
Vapour douche is a jet of aqueous vapour direeted on some part of the body.
Medicatcd vapour baths are prepared by impregnating vapour with the odours of medicinal plants.

Sulphur, chlorine, sulphurous acid, iodine, and camphor, are occasionally employed in eonjunetion with aqueous vapour.

Warm, tepid, and hot baths are sufficiently described above.
BAY SALT. The larger crystalline salt of eommerce. See SALT.
BAY, THE SWEET. (Laurus nobilis.) Bay leaves have a bitter aromatic taste. and an aromatic odour, which leads to their use in cookery.

BAYS, OIL OF. This oil is imported in barrels from Trieste. It is obtained from the fresh and ripe berries of the bay tree by bruising them in a mortar, boiling them for three hours in water, and then pressing them. When cold, the expressed oil is found floating on the top of the decoction. Its principal use is in the preparation of veterinary embroeations.

BDELLIUM. Two gum resins pass in commerce by this name. One is the false myrrlı (the Bdellium of Seripture), the produce of the Amyris commiphora. The other is the African Bdellium, obtained from Heudolatia Africana. Pelletier gives the composition of the African bdellium as-resin, $59^{\circ} 0$; soluble gum, $9 \cdot 2 ;$ bassorin, 30.6 ; volatile oil and loss, $1 \cdot 2$.

BEADS. (Grain, Fr.; Bethe, Germ.) Perforated balls of glass, poreelain, or gems, strung and worn for ornaments; or, amongst some of the uncivilised races, employed instead of money. highest antiquity. They are found in the tombs of

The use of beads is of the higo Assyria. They are discovered buried with the Thebes and in the ruined temples oman lady had them placed with her in her grave; mighty dead of Greece. The Romancient Britons we find beads, and these, too, of and even in the burial-places of the ancevery reason to believe are as old as Moses. a similar pattern to such as we have evattern of the most ancient beads has been Indeed, the peculiar ornamented zigzag pact, and found over the entire continent of always, and still is manufactured at V enice, and found Africa.

Glass beads have long been made in very large quantities in the glass-liouses of Murano, at Venice.

Glass tubes, previously ornamented by colour and retieulation, are drawn out in proper sizes, from 100 to 200 feet in length, and of all possible colours. Not less than 200 shades are manufactured at Venice. These tubes are eut iuto lengths of an 200 shades are manufactured at Venice.
about two feet, and then, with a knife, they are cut into fragments, having about the same length as their diameter. The cdges of these beads are, of course, sharp; and they are subjected to a process for removing this. Sand and wood-ashes are stirred with the beads, so that the perforations may be filled by the sand; this prevents the pieces of glass from adhering in the subsequent process, which consists in putting them into a revolving cylinder and heating them. The finished beads are sifted, sorted in various sizes, and strung by women for the market.
In the Jurors' Report of the Great Exhibition of 1851 are the following remarks on this manufacture :-
"The old Yenetian manufactures of glass and glass wares fully sustain their importance ; and those of paper, jewellery, wax-lights, velvets, and laces, rather exceeded their ordinary production. The one article of beads emplovs upwards of 5000 people at the principal fabric on the island of Murano; and the annual value is at least $£ 200,000$. They are exported to London, Marseilles, Hamburg, and thence to Africa and Asia, and the great Eastern Archipelago."

The perles à la lune are a finer, and, consequently, more expensive bead, which are prepared by twisting a small rod of glass, softened by a blowpipe, about an iron wire.

The preparation and cutting of gems into beads belong especially to the lapidary. The production of beads of PASTE, and of artificial PEARLS, will be noticed under those heads respectively.

In India beads of roek crystal are often very beautifully cut.
Dr. Gilchrist states:- Coral beads are in high estimation throughout Hindostan for necklaces and bracelets for women. These beads are manufactured from the red coral fished up in various parts of Asia; they are very costly, esperially when they run to any size; and they are generally sold by their weight of silver.
Coral beads were always favourite articles for ornament even in this country; and in the "Illustrations of Manners and Expences of antient Times in England," by Nicholls, 1798, we find the following entries from "the churchwardens' accompts of St. Mary Hill, London," containing "the inventory of John Port, layt the king's servant, as after followeth :"-
"Item of other old gear found in the house :-
"Item one oz. and $\frac{1}{2}$ of corall, -
"Jewels for her body.
"Jewels for her body.
"Item, a pair of coral beds, gaudyed with gaudys of silver and gilt, 10 oz. at 3s. 4 d .
(.John Port died in 1524.) - - - - - 134 "

We imported, in 1856, of coral beads, 2279 lbs ., and of jet beads, 9 lbs ; while of other kinds unenumerated, $14,281 \mathrm{lbs}$. were brought into the United Kingdom.

In addition to those, the following were our Imports of glass beads and bugles :-

Denmark					lbs.		Computed real value.
Hanse Towns	-	-	-	-	8,889	-	- 1,111
Holland -	-	-			541,580	-	- 67,697
Belgium	-	-	-		37,446	-	4,681
France	-	-	-		25,704	-	3,213
Sardinia	-	-	-		6,835		854
Tuscany	-				10,432		947
Austrian Italy	-	-	-		10,432		522 $-\quad 74,673$
Other parts	-	-			14,306		
					,157,593		£155,26

We exported, in 1856, ornamental beads to the valuc of $£ 21,504$.
BEAVER, THE. (Castor Fiber.) This animal is captured fo
the castor (castoreum), which is employed medicinally. See Furs its skin, and for BEBIRINE, or BEBEERINE. ($\left.\mathrm{C}^{38} \mathrm{H}^{21} \mathrm{NO}^{8}\right)$ St
Rodie, of Demerara, in the bark of the bebeern tree alkali discovered by Dr. minutcly by Madagan and Tilley, and still more recently by won examined more determined its true formula. It is very bitter, and highly febrifuge Planta, who has BEECH. (Hêtrc commun, Fr.; Gcmeine Buche, Gerni) Tire. Fagus silvatica of Linnæus) is one of the most magnificent of the Englise (the attaining, in about sixty or seventy years, in favourabnificent of the English trees, 70 to 100 feet, and its trunk a diameter of five feet. hardest of British timbers, and its durability is increased by steening ingeen, is the
chiefly used by eabinet makers, coopers, coach builders, and turners. A substitute for olive oil has been extracted from leech nuts.
BEER. (Bière, Fr.; Bier, Germ.) The fermented infusion of malted barley, flavoured with hops, eonstitutes the best species of becr; known also as ale, bitter ale, porter, or brown stout, aecording to its varied flavour, colour, and strength. But there arc many beverages of inferior quality to whieh the name of becr is given, suelr as spruee beer, ginger beer, \&c., all of which eonsist of a saccharine liquor partially advaneed into the vinous fermentation, and flavoured with peeuliar substanees.
The ancients werc acquainted with beer, and the Romans gave it the appropriate nanue of Cerevisia (quasi Ceresia), as being the produet of eorn, the gift of Ceres. The most celebrated liquor of this kind in the old time was the Pelusian potation, so ealled from the town where it was prepared, at the mouth of the Nile. Aristotlc spcaks of the intoxication eaused by beer, aud Theophrastus justly denominated it the wine of barley. We may indeed infer, from the notices found in historians, that
drinks analogous to bey beverage in every land where the vine is no zone; and they, are still the universal

The manufaeture of beer may be conveniently considered under

1. An examination of the natural productions whieh enter into its eomposition : barley and hops.
2. The preparation which one of those materials, barley, must undergo in the proeess of malting.
3. The formation of a saceharine liquor, or wort, and imparting to it the peeuliar flavour and properties of the hop, with the fermentation, fining, ripening, and preservation of the beer.

1. The Materials.

3. Barlex (Hordeum).-Barley, wheat, maize, and several other kinds of grain, are capable of undergoing those ehanges whieh develope the saecharine prineiple from whieh beer can be made; but the first-named is by far the most fit, and in this eountry is almost exelusively used. There are two species of barley, the Hordeum vulgare, or eommon barley, having its corns arranged in two rows on its spikes; and the Hordeum hexastichon, in whieh three seeds spring from one point, so that its double row has apparently six corns. The former is the proper barley, and is mueh the larger sized grain. The latter is little knorrn in England, but is mueh cultivated in Scotland under the name of berc, or big, being a hardy plant, adapted to a colder elimate. Big is a less compact grain than barley; the weight of an imperial bushel ($2218 \cdot 192$ ins.) of the former being only about 48 lbs , while that of the latter will be from 52 to 56 lbs. Their constiuents are, however, very similar.
The quality of barley is mueh influeneed by the soil on whieh it is grown; the best being from a light ealeareous soil, or that known by farmers as good turnip land; and erops of excellent quality are also grown on a rieh loam. Mueh also depends on the seed, the climate, and the eare of the husbandman in the harvesting, stacking, and thrashing at the proper season. The barley should have a thin, bright, clean, wrinkled husk, elosely adhering to a plump well-fed kerncl, whieh, when broken, appears white and ehalky, with a full uninjured germ of a pale yellow colour.

If it breaks hard and flinty, it should be avoided; and although not in a proper condition for malting until it has sweated or seasoned in the stack or mow, eare must bc taken that it has not heated so as to destroy the vitality of the germ. Mixed or uneven samples should also be avoided, as it is important that all should grow simultaneously or evenly on the floors.

By chemical analysis, 100 parts of barley-meal appear to consist of :-

Hermstadt gives the mean of several analyses of barley to be :-

Gluten	-	-	-	-	$4 \cdot 92$	Oils	-	-	-	-
Starch	-	-	-	-	$60 \cdot 50$	Plosphates	-	-	-	-
0.36										
Sugar	-	-	-	-	4.66	Husk	-	-	-	-
Gum	-	-	-	1.56						
Albumen	-	-	-	-	4.51	Water	-	-	-	-
	0.35	Loss	-	-	-	-	-	2.38		

Proust thought he had discovered in barley a peculiar principle, to which he gave the name of Hordeine, which he separated from the starch by the action of both cold and boiling watcr. He found that, by treating barley-meal successively with water, he obtained from 89 to 90 parts of a farinaceous substance, composed of from 32 to 33 of starch, and from 57 to 58 of hordein; his analysis also gives, gluten, 3.0 ; sugar, 5.0 ; gum. 4.0 ; and resinous extract, $1 \cdot 0$.
Dr. T. Thomson gives no hordeine, but the starch as 88 per cent., sugar 4.
Einhof gives the constituents of barley as 70.05 flour, 18.75 husk, and 11.20 water.
The hordeine of Proust is a yellowish powder, contains no azote, and is, therefore, dissimilar to gluten. In the process of malting the proportion of hordeine is greatly diminished by its conversion into starch and sugar, so that many chemists vicw hordeine as ouly an allotropic condition of starch: but the subject will evidently bear yet more extended and careful research.
2. Hops (Humulus lupulus). -The female flowers, or catkins, of a dioecious plant belonging to the natural order Urticacea; which grows wild in many English hedgerows, but requires the most careful cultivation to produce the highly odoriferous and cordial properties so valued by the brewer. The plant springs up annually from the old roots in April, flowers the latter end of June, and ripens towards the end of August and in Scptcmber, when they arc gathcred, dried, and packed very tightly in pockets, or bags, for preservation and usc. Hops are grown to the greatest cxteut in the counties of Kent and Sussex; but a strong hop is also grown in the north clay district of the county of Nottingham, and a very grateful mild hop in the Worcestershire district.

The flavour of the Goldiug, or Farnham hop, a district in Surrey, is rich, and in high estimation; but the plant is one of the most tender cultivated, the flower small, but leavy with the farina, and the crop very uncertain.

The Canterbury grapc-hop is much cultivated in the districts of Kent and Sussex, and deservedly esteemed as a good useful hop.

The Flemish plant produces a large flower, but of light weight and of inferior flarour ; it is considered a hardy kind, and very productive.

Hops require a rich soil, well manured and cleaned, a sunny aspect, and to be sheltered from the east winds, which not only check the growth of the plauts, but canse them to be infested with vermin, which are sometimes so numerous as to destroy nearly the entire crop. The flower, during the ripening season, is also sometimes attacked by the red or blue mould, which often consumes a considerable portion of the farina, and may be discovered by the strig of the flower being bare of leaf.

The catkins or strobils of the hop consist of the scales, or large and persistent bracts, which, in the early period of their growth, are of a light greeu colour (afterwards changing to a pale yellow), at the bottom of which are small, round secds, that, when ripe, have a hard shell of a brown or reddish colour. They are imbedded in the farina, or yellow powder, which is the most valuable part of the hop,.
No hop should be gathered till the seed is matured; not for the salke of the seed itself, but the nectarium, or farina, will be in larger particles, and its essential aromatic and bitter qualities more perfectly developed when ripe. Good hops, when rubbed in the hand, leave an oily, or resinous, and rather clanımy fecling, with a pungent and gratifying odour; the scales should also be even in colour, and without any green speeks, or any appearance of mould on the strig, or small stem of the flower. care; it is performed in kilns, in Sussert part of its management, and requires great moderate and regular, in no case sussex, termed oast-honses. The heat should be injure the flavour, aud if not sufficiently The general practice is to try the strig or stalk of the flower e to become mouldy. brittleness is sufficiently dried, but if it bends without brealinch if it snaps from nccessary.
The packing lis alo volatile aroma. Thic much influence in the preservation of the valuable but finc canvas, called pockets, which weigh palc hops arc well rainmed into sacks of coloured hops into sacks of a coarscr texture, 1 calle cach; the stronger and dark$2 \frac{1}{2} \mathrm{cwts}$. to 3 cwts . each.

If intended for export, the bags are sometimes subjeeted to the aetion of the hydraulie press; and if not required for immediate use, the simple screw press may be used with great advantage.

Dr. Ives first directed attention to the yellow pulverulent substance that has been alluded to as the farina, or pollen, and is teehnically known as the "condition" of the hop, whiel in good samples will amount to one-sixth of their weight. This powder bears some resemblanee to lyeopodium; and its analysis by Dr. Ives gives, talniu, $4 \cdot 16$; extractive, $8 \cdot 33$; bitter prineiple, $9 \cdot 16$; wax, $10 \cdot 00$; resin, $30 \cdot 00$; lignin, 38.33 ; and loss, 0.02 . About 65 per eent. of the farina is soluble in alcohol, and the solution, distilled with water, leaves a resin amounting to 52.5 per eent., which has no bitter taste, and is soluble in aleohol or ether. The distillate from which the resin has thus been separated contains the bitter prineiple, whieh has been called "lupuline" (by Payen and Chevallier), mixed with a little tannin and malie acid.
To obtain this in a statc of purity, the free aeid must be saturated with lime, the solution evaporated to dryness, and the residuum treated with ether, which removes a little resin; after whieh the lupuline is dissolved out by aleohol, leaving the malate of lime. On evaporating the alcohol, the lupuline remains, weighing from $8 \cdot 3$ to $12 \cdot 5$ per cent. It is sometimes white, or slightly yellowish, and opaque, sometimes orangeyellow and transparent.

At ordinary temperatures it is inodorous, but when heated emits the peeuliar smell and possesses the charaeteristie taste and bitterness of the hop. Water dissolves it in the proportion of about 1 part to 20 , or 5 per cent., and aequires a yellow colour. It is quite soluble in alcohol and slightly so in ether.

Lupuline is ncither aeid nor alkaline, nor is it acted upon by solutions of the metallic salts ; it contains apparently no azote, but only an empyreumatic oil.

The analysis of Payen and Chevallier gives the following:- Volatile oil, 2.00; lupuline, 10.30 ; resin, 55.00 ; lignin, 32.00 ; loss, 0.70 . There are also traces of fatty, astringent, and gummy matters, malic and carbonic aeids, and various salts.

The volatile oil was procured by Dr. Wagner by distilling fresh hops with water. It constituted about 8 per cent. of the air-dried flowers, it possessed a clear brownishyellow colour, had an acrid taste and a strong odour of tbe hop. Its specific gravity is about 0.910 ; it is partially solnble in water, but more so in alcohol and ether, and beeomes resinified by keeping. The tannin of the hop is also important in brewing, as it serves to precipitate the nitrogenised or albuminous matter of the barley, and assist the clearing of the liquor. Ives thought the scales of the hop, when freed from the yellow powder, contained no prineiples analogous to it; but it is almost impossible to free them entirely from the lupulinic grains; and Payen and Chevallier found the same principles in the different parts of the hop, but in different proportions.
2. The Preparation of the Barley by the Process of Malting.

In this process (for the eonduct of whieh we refer to the article Malting) the raw grain is steeped in eisterns of water until it has imbibed sufficient to eause it to germinate; it is then spread on the floor of the malt-house, and frequently turned, until the germination has advaneed to the stage when the plumula is about to make its appearanee, and its further germination is stopped by being rapidly dried on the malt-kiln.
During germination a remarkable ehange has taken place in the substanee of the grain. The glutinous constituent has almost entirely disappeared, and is supposed to have passed into the matter of the radicles, or roots, wlich during the process will have grown rapidly to nearly one and a half the lengtb of the grain, while a portion of the starch is converted into sugar and mucilage.

The change is similar to that which starch undergoes when dissolved in water and digested in a heat of about $160^{\circ} \mathrm{F}$. along with a little gluten. The thick paste becomes gradually liquid, transparent and sweet tasted, and the solution eontains now same time, and beeomes unaltered stareb. be eonverted by a quantity of gluten.

By the artificial growth upon the malt-floo one-half of the starch is converted into barley are not decomposed, and only about ould exhaust the grain, and the valuable sugar, as a contivuariee of the germination wo the roots and stems of the plant. It is, products would be taken up by thaltster to regulate the germination and stop it at the therefore, the ehief art of the malsor is attained with the least loss. This is gencrally point when the utmost when the plumula, teehnieally known as the aerospirc, has considered to be done when the pho the grain, starting from the germ and proadvanced two-thirds the entire lengthor end of the grain, beyond which it must never eeeding under the skin toward the of of the hordeine into starclı and sugar kecping be suffered to protrude ; the conversion of the hordeine into starcli and sige
paee with the growth of the acrospire, and being thus prepared for its nearly complete conversion in the subsequent operations of the brewer.

Malt is generally distinguished by its colour - as pale, amber, brown, or black malt -arising from the different degrees of heat and management in the process of drying. The first is produced when the highest heat to which it has been subjected is from 90° to $100^{\circ} \mathrm{F}$., the amber-coloured when the heat has been raised to 120° or 125°, and the brown at a heat of from 150° to 170°. The black malt, eommonly ealled patent malt, is prepared by roasting in cylinders, like coffee, at a heat of from 360° to 400°, and is the only legal colouring matter that may be used in the brewing of porter.

The action of the kiln in drying is not confined to the mere expulsion of the moisture from the germinated seeds, but it serves to convert into sugar a portion of the stareh which remained unchanged, not only by the action of the gluten upon the fecula at an elevated temperature, but also by the species of roasting which the starch undergoes, whieh renders it of a gummy nature. We have a proof of this, if we dry one portion of the malt iu a naturally dry atmosphere, and another portion in a moderately warm kiln; we shall find the former yield a less saceharine extract than the latter. Moreover, kiln-dried malt has a peculiar, agreeable, and faintly-burned taste, probably from a small portion of empyreumatic oil formed in the husk, which not only imparts its flavour to the beer, but also contributes to its preservation.
As the quality of the malt depends much on that of the barley, so its skilful preparation has the greatest influence both on the quantity and quality of the worts made from it. If the germination has been imperfect or irregular, a portion of the malt will be raw, and too much of its substance remain unchanged and flinty; if it has been pushed too far, a part of the extractible matter is wasted.
If not thoroughly dried, the malt will not keep, but becomes soft and liable to mildew; and if too highly kiln-dried, a portion of its sugar will be earamelised and become bitter.
Good malt possesses the following characteristies:- The grain is round and full, breaks freely between the teeth, and has a sweetish taste, an agreeable smell, and is full of a soft flour from end to end. It affords no unpleasant flavour on being chewed; is not hard, so that when drawn along an oaken board across the fibres it leaves a white streak like chalk. It swims upon water, while unmalted barley sinks in it.

The bulk of good malt exeeeds that of the barley from which it is made by from 5 to 8 per cent., but at the same time it becomes lighter in weight, 100 lbs . of good barley, judiciously malted, weighing, after being dried and screened, no more than about 8 Cl Ibs., the loss being about 12 per cent. of water, 5 per cent. waste, and about 3 per cent. by the growth of the roots, which, in drying, have been rendered brittle, and are removed by passing the malt over a wire screen.
The change which the barlcy has undergone by malting will be readily seen in the following comparative analysis by Proust:-

Gluten	-	-	-	-	-		Barle			Malt.
Hordein	-	-	-	-				-	-	,
Stareh	-	-	-	-	-	-	55	-		12
Sugar	-	-	-	-	-	-	32	-		56
Mucilage	.	-	-	-	-	-	4	-		15
Resin	-	-	-	-	-	-	1	-	-	15
							100			100

We thus see the amount of the convertible stareh and sugar has been nearly doubled at the expense of the hordein, a portion of whieh has also passed into the condition of mucilage, or a soluble gum, while the gluten is much diminished.
The researches of Payen and Persoz show there is also a new proximate principle formed during the malting, which may be considered as a residuum of the gluten, or vegetable albumen, in the germinating grain.
If we moisten the malt flour for a few minutes with eold water, press it out strongly, filter the solution, and heat the clear liquid in a water-bath to the temperature of 158°, the greater part of the albuminous azotised substance will be coagulated, and slould be scparated by a fresh filtration; after whieh the clear liquid is to be treated with alcohol, when a flocky precipitate appears, to which has been given the name of diastase. To purify it still further, especially from the azotised matter, we should dissolve it in water, and preeipitate again with alcolol. When dried at a low tennperature it appears as a solid white substance, which contains no azote, is insoluble in alcohol, but dissolves in water and proof spirit. Its solution is neutral and tasteless; it changes with greater or less rapidity according to the temperature, and becomes
sour at a temperature from 149° to 167°. It has the property of eonverting starch into gum, or dextrinc (so called by the French ehemists, from its polarising light to the right hand, whereas common gum does it to the left) and sugar; and, indeed, when sufficiently purc, the diastase operates with such cnergy that one part of it disposes 2000 parts of dry starch to that ehange, but it operates the quieker the greater its quantity.

Whenever tbe solution of diastase with starch is heated to the boiling point, it loses the eonverting property.
One hundred parts of the stareh solution from good malt appear to eontain about one part of this substanee, which is of the greatest importanee in effeeting the further ehanges which take plaee in the process of brewing.

3. The Formation of a Saccharine Liquid, or Wort,

from the malt and hops, and production of the finished beer, is the province of the brewer ; and the proeess will be found at length under the artiele Brewing.

The peeuliar properties contained in wort do not exist ready formed in malt, but are the result of the joint aetion of water and heat which is employed in the initiatory process of the brewer on that substance, and is termed the mashing.

The Mashing. - This operation requires the greatest eare, as on it, almost as mueh as on the malt employed, depends the eharacter of the liquor.

Payen and Persoz, already alluded to, show that the mucilage formed by the reaction of malt upon stareh may be either converted into sugar or be made into a permanent gum, aceording to the temperature of the water in which the materials are digested. We take of pale barley malt, ground fine, from 6 to 10 parts, and 100 parts of starch ; we heat, by means of a water-bath, 400 parts of water in a copper to about $80^{\circ} \mathrm{F}$; we then stir in the malt, and increase tbe heat to $140^{\circ} \mathrm{F}$., when we add the starch, and stir well together. We next raise the temperature to 158°, and endeavour to maintain it constantly at that point, or, at least, to keep it within the limits of 167° on the one side and 158° on the other. At the end of twenty or thirty minutes the original milky and pasty solution becomes thinner, and soon after as fluid nearly as water. This is the moment when the stareh is eonverted into gum or dextrine. If this mercly mueilaginous solution, which seems to be a solution of gum with a little liquid starch and sugar, be suitably evaporated, it may serve for various purposes in the arts to which gum is applied; but, with this view, it must be quickly raised to the boiling point, to prevent further ehange. If we wisb, on the contrary, to produce a saceharine fluid, such as the wort for beer, we must maintain the temperature at between 158° and 167° for three or four hours, when the greatest part of the starch
will have passer will have passed into sugar, and by evaporation of the liquid at the same temperature, upon starch.

In the operation of mashing, the finished and mellowed malt, having been well cleansed from all extraneous matters by screening, is eoarsely ground, or better if only erushed between iron rollers, as is now generally praetised. It is then gradually mixed with water in the mash-tun, at the proper heat, and intimately blended by stirring with the mashing-rakes, so that it may be uniformly moistened and no lumps remain. After being allowed some time to stand and settle, the liquor is drawn off, and more water at a higher temperature is added, again intimatcly blended with the malt,-now termed the goods,-again allowed to rest, and drawn off; the operation being repeated until the eompletc exhaustion of the saccharine and amylaceous substances of the malt is effeeted.

We can now see, from Payen and Persoz's expcriment just given, tbe tempcrature at which the liquor ought to be maintained in this operation; namely, the range between 158° and 167°; and it has been aseertained, as a principle in mashing, that the best and soundest extract of the malt is to be obtained, first, by beginning to work with water at the lowest of these heats, and to conclude with water at the highest; secondly, not to operate the extraetion at once with the wholc of the water that is to be employed, but with separate portions and by degrees.

The first portion has the task of penetrating equally the ernshed malt, extracting the more soluble ingredients and subjecting the dissolved starch to the aetion of the diastase and frec sugar; the second and further portions are for the purpose of converting the remaining stareh and completing the extraetion of all the available products. By this means also the starch is not allowed to run into a eohesive paste, or, as it is termed, "lock up the goods," and the extraet is more easily draincd from the mass, and comes off a nearly limpid wort. The thieker, moreover, or the less diluted the mash is, so mueh the easier is the wort fined in the boiler or copper of conducting lation of the albuminous matter. These primeiples indicate the truc treatment; pale and the mashing process, but differcnt kinds of malt require a different treatment ; palc aud
slightly kilned malt requires a somewhat lower heat than malt highly kilned, because the former is more ready to become pasty, and, for tbe same reason, necds a more leisurely infusion tban the latter; and this is still more applicable to the case of a mixture of raw grain with malt, for it requires still gentler heats and more cautious treatment.

It is quite practicable to obtain from 1 part of malt and 8 parts of barley, a wort precisely similar to that procured from 9 parts of pure malt alone. But, of course, this could not be done witbout modifying considerably the process of mashing; and it happens, unfortunately, that the practice of the present day, amongst brewers, is to maintain, as closcly as possible, one uniform system of mashing, whatever may be the nature or quality of the malt employed. Thus a difference in the malt is made to produce a difference in the wort, and all tbe energy and skill of the practical brewer are sometimes insufficient to compensate for the alterations which this difference induces in the subsequent working of the beer. With a regular and certain composition, as to the constituents of his wort, the operations of the brewer would assume a fixed and definite character, which, at present, they are very far indeed from possessing; and by which he not unfrequently suffers the most severe pecuniary loss and mental anxiety. With the exception of a trifling quantity of vegetable albumen, the ouly solid ingredients of beer-wort are dextrine and sugar; the latter of which ferments with great ease and rapidity, whilst the dextrine, though capable of fermentation, enters into tbe process only with difficulty, and requires, for its successful termination, not only much more yeast, but also a much higher temperature in the fermenting vat. At the same time, it is this very sluggishness in the fermentative quality of dextrine which is essential to the production of good beer; for, with sugar alone, the fermentation cannot be checked at ordinary temperatures, until the full measure of its decomposition has taken place, and it has become either a vapid admixture of alcohol and water, or, by the absorption of oxygen, is resolved into vinegar. It is indeed a ootorious fact, that beer made witb sugar will not kecp so well as that made from malt; tbough, for rapid consumption, tbe use of sugar is, under some circumstances, to be commended, more cspecially on the small scale and in cold weather. The peculiarity of dextrine is, however, as we bave stated, to undergo fermentation only with difficulty and by slow degrecs; hence-its decomposition spreads over a long space of time, and, in very cold weatber, amounts to nothing; so that for months, or even years, after all the sugar of the wort has been destroyed, the evolution of carbonic acid gas from the still fermenting dextrinc, keeps up a briskncss and vitality in the beer; and, by excluding oxygen, all chance of acidification is shut off. A perfect beer-wort should therefore have reference to the period of its consumption: if tbis be speedy and pressing, tbe proportion of sugar ought to be large; if remote, the dextrine sbould greatly predominate. Under the first condition, tbe attenuation would proceed quickly, and, provided the temperature of the fermenting vat was not allowed to exceed 78°, the beer would soon clcanse and become ripe and bright; under the second, the attenuation in tbe vat would be slow and trifling, and require, perhaps, several years for its completion in the cask. Nevcrtheless, if the attenuation in the rat had gone on to the complete destruction of all the sugar, this kind of beer would prove in the end both the better and more bcaltby beverage of the two; for by the mode of its formation the presence of xanthic ether or fusel oil is avoided. Tbe importance therefore of placing in the hands of the brewer a means of determining the relative amounts of sugar and dextrine in bis wort is sufficiently obvious. Now, tbis may be done in two ways; either by ascertaining, in wort of a determinate strength, tbe proportion of the one or the other of tbese substances. The dextrine is easier of calculation than the sugar, in a rough or approximate way; but the sugar can be detcrmined with much more minute accuracy tban the dextrine. Yet, in practice, the former plan is preferable, from its simplicity, as we shall proceed to show. If, to a certain volume of strong wort (say of 30 lbs. per barrel), we add an equal amount of alcohol or spirits of wine, the wbole of the dextrine will precipitate as a dense coagulum; and by examining the bulk of this deposit in the tube, its weight may be inferred pretty ncarly if the tube bas been previously graduated, so as to indicate, from actual experiment, the weigbt of the different measures of the coagulated dextrine. With weaker wort, more alcohol must be used, and with a denser wort, less alcohol, - the relations of which to eaeh other may casily be kept recorded on a small card or scale affixed to the tube. This iustrument is very easy of application, and has been found extremely uscful to more than one practical brewer of the present day; and the accompanying record of brewing operations has reference to this mode of analysing wort. Tbe determination of sugar in wort is best cffected by boiling 100 grains of it with about half a pint of the following solution, and collecting and weigbing the red-coloured precipitate which ensues, - every three grains of which indicate one grain of grape-sugar
in the wort.

Grape-sugar Test Solution.

Sulphate of copper in erystals	-	-	-	-	-	100
grains.						
Bitartrate of potash crysals	-	-	-	-	-800	$"$
Carbonate of soda in crystals	-	-	-	-	-800	$"$
Boiling water, one pint, or	-	-	-	-	-8750	

First dissolve the sulphate of copper, then the bitartrate of potash, after which add the carbonate of soda, and filter if necessary. This solution is not affected when boiled with canc-sugar, dextrine, gum, or starch.

We have retained from Dr. Ure's original article the result of two brewings, taken from one mash at two different periods, and analysed to determine their relative contents of dextrine and sugar, according to the tube or alcohol process :-Marelı 28tb, 1851, proceeded to mash for experimental brewings; weather elear and open ; thermometer outside at 51°, -in fermenting room 58°; difference between wet and dry bulb, $5 \cdot 750^{\circ}$; barometer, $39 \cdot 4$ inches. Composition of the malt :-Moisture, $6 \cdot 1$; insoluble matter, 27 ; extract, 66.9 . Quantity of malt employed, 70 bushels; of water at $180^{\circ} \mathrm{F}$., 700 gallons; made the mixture with a common mashing-oar, and finished in 15 minutes. One hour afterwards, drew off 200 gallons of wort; and three hours from commencing to mash, drew off 200 gallons more, - continuing the mash for table-beer wort. The first-drawn wort contained 7.5 parts of dextrine to 1 of sugar; the second, 6.3 parts of dextrine, $2 \cdot 2$ of sugar ; - their densities were, respectively, 30 and 36.5 lbs . per barrel. They were each boiled separately, with relative amount of hop, 一 the first having 30 and the second $36 \frac{1}{2}$ lbs. added; and the boiling in each case was kept up for three hours. At the end of this time both were cooled and diluted with water to a gravity of $27 \frac{1}{2}$ lbs. per barrel, and 250 gallons of each let down into separate fermenting-vats placed side by side; after whieh, they both received three quarts of good yeast, - the temperature being at $68^{\circ} \mathrm{F}$. Two hours afterwards, the following observations commenced:-No. 1 being the wort containing 7.5 parts of dextrine to 1 of sugar, and No. 2 the wort having 6.3 of dextrine to $2 \cdot 2$ of sugar.

The temperature of both had now fallen to $69^{\circ} \mathrm{F}$., though eaeh had been ronsed repeatedly ; the yeast was therefore again skimmed off, and the beer run into barrels, and filled up with rescryed wort thrce times a day as it worked over. On April the 18th the barrels were elosed, having then lost, by attenuation-No. $1,16.2$ lbs., and No. $2,19.6 \mathrm{lbs}$. Six weeks afterwards these ales were examined; - No. 1 was found muddy and unpleasant; whilst No. 2 had a fine fragrant aroma, a brisk, tively appearanee, and was perfectly bright. On January 2 nd, 1852, the easks were again examincd ; - No. 1 had now lost 17.9 lbs ., and was bright, rich, and fine flavoured;
whilst No. 2, though hright and pleasant, had contracted a little acidity, and was hecoming flat : it had lost, in all, $21 \frac{1}{2} \mathrm{lbs}$.

Two similar experiments, made about the same time in another quarter, gave almost exactly the same results; and, consequently, there can he little douht that, where a quick sale and rapid consumption of beer can he ensured, the great object of the brewer should be to convert as much of the dextrine of his wort into sugar as is proportioual to the rapidity of that consumption ; whereas, for heer intended to keep, the opposite practice should he followed.

The conversion of any given amount of the dextrine wort into sugar may he effected either by keeping up the temperature of the mash-tun, and prolonging the operation of mashing; or, which is better and simpler, by merely prescrving the wort for a few hours at a heat of $165^{\circ} \mathrm{F}$., either in the underhack or any other convenient vessel. We have found from experiment that a wort which when run out from the mash-tun had only 3 parts of sugar to 16 of dextrine, hecame by 10 hours' exposure to a heat of 165° converted almost altogether into sugar, - the proportions then heing 17.8 of sugar to $1 \cdot 2$ of dextrine.
A very important part of the duty of a hrewer should therefore he, first, the determination of the relative amounts of dextrine and sugar required to suit the taste of his customers, or the circumstances of the market, and next, the continued careful examination of his wort, so as to ensure that these proportions are regularly maintained; for hy no other plan is it possihle to ensure that certainty of result and uuiformity of quality which are essential to the proper conducting of an expensive husiness like hrewing. Far too little attention has hitherto heen given to the fluctuating qualities of heer-wort; in warm weather, this wort should prohahly contain at least twice as much dextrine as in winter; yet this is the very period when, from the increased temperature of the air and materials, the largest quantity of sugar must he formed hy those who mash upon a fixed and unvarying principlc. Hence the proneness of the wort to ferment violently in summer is still further increased hy the presence of an extra proportion of sugar ;-whereas prudence would suggest, under such circumstances, a predominance of dextrine, and seck to effect this purpose hy a low temperature in the mash-tun, and hy shortening the period of mashing. As a general rule, in the management of wort, more sugar is requisite where small quantities are hrewed at a time, than where large operations are conducted, for the loss of heat is relatively larger in small masses than in large ones; and, from what has heen stated, it must be apparent, that, as the fermentation of dextrine is more easily checked hy cold than that of.sugar, the heer hrewed in trifling quantities could not preserve a fermentative temperaturc, hut would hecome chilled and dead from the excessive radiation of caloric, unless a principle existed in it capahle of fermentation at the most ordinary tempcratures of this country. If, therefore, heer wort consisting chiefly of dextrine he fermented in very cold weather, or with an insuffieiency of yeast, or if the temperature happen to rise too high, so as to destroy or impair the fermentative power of the yeast, then a dull languid action will ensue, accompanied hy what has bcen called the viscous fermentation, and the beer hecomes permanently ropy, and is
spoiled. spoiled.

Although, clearly, it would he impossihle to lay down any specific rule for the proper proportion of dextrine and sugar in heer wort, yet there could he no difficulty in cach brewer determining for himself, and for the conditions of quantity, time of sale, time of year, and other contingencies, the requisitc ratio to he established in his own case; and, as we have shown, nothing can he simpler than the means proposed for ascertaining the composition of wort.
The quantity of extract, per harrel weight, which a quarter of malt yields to wort, amounts to ahout 84 lbs . The wort of the first extract is the strongest; the second contains, commonly, one-half the extract of the first; and the third, one-half of the second; according to circumstances.
To measure the degrecs of concentration of the worts drawn off from the tun, a particular form of hydrometer, called a saccharometer, is employed, which indicates the number of pounds weight of liquid contained in a barrel of 36 gallons imperial measure. Now, as the harrel of water weighs 3601 hs., the iudication of the instrument, when placed in any wort, shows hy how many pounds a barrel of that wort is heavier than a barrel of water; thus, if the instrument sinks with its poise till the mark 10 is upon a line with the surface of the liquid, it indicates that a harrel of that wort weighs ten pounds more than a harrel of water. See Saccharometer.
Or, supposing the harrel of wort weighs 396 lbs., to convert that numher into specific
gravity, we have the following simple rule:-

$$
360: 396:: 100: 1 \cdot 100
$$

at which density the wort contains ahout 25 per cent. of solid extract.

By the mashing operations before deseribed, the malt is so much exhausted that it can yield no further extract useful for strong beer or porter. A weaker wort might no doubt still be drawn off for small becr, or for coutributing a little to the strength of the next mashing of fresh malt. But this I belicve is seldom practised by respectable brewers, as it impoverishes the grains which they dispose of for feeding cattlc.
The wort should be transferred into the copper, and made to boil as soon as possible, for if it remains long in the under-back it is apt to become accscent. The stean moreover raised from it in the act of boiling serves to screcn it from the oxygenating or acidifying influcnce of the atmospbere. Until it begins to boil, the air should be excluded by some kind of cover.

Sometimes the first wort is brewed by itself into strong ale, the sccond by itself into an intermediate quality, and the third into small hecr; but this practice is not much followed in this country.

The Boiling.-Tbe wort drawn from the mash-tun, whenever it is pumped into the copper, sbould reccive its allowance of hops. Besides evaporating off a portion of the water, and thereby concentrating the wort, boiling has a twofold ohject. In tbe first place, it coagulates the albuminous matter, partly by the heat, and partly by the principles in. the bops, and thereby causes a general clarification of the whole mass, with the effect of separating the muddy matters in a flocculent form. Secondly, during the cbullition, the residuary stareh and hordeine of the malt are converted into a limpid sweetish mucilage, the dextrine above described, while some of the glutinous stringy matter is rendered insoluble by the tannin principle of the hops, which favours still further the clearing of the wort. By both opcrations the keeping quality of the beer is improved. This boil must be continued some time; a longer time for the stronger, and a shorter for the weaker beers. There is usually one-seventh or one-sixth part of the water dissipated in the boiling copper. This process is known to have continued a sufficient time, if the separation of the albuminous flocks is distinct, and if these are found, by means of a proof gauge suddenly dipped to the bottom, to be collected tbere, while the supernatant liquor bas become limpid. From one to three hours' boil is deemed long enough in many well-conducted breweries; but in some of those in Belgium, the boiling is continued from 10 to 15 hours, a period certainly detrimental to the aroma derived from the hop.

Many prefer adding the hops when the wort has just come to the boiling point. Their cffect is to repress the passage into the acetous stage, which would otherwise inevitably ensue in a few days. In this respect, no other vegetable production hitherto discovered can be a substitute for the hop. The odorant principle is not so readily volatilised as would at first be imagined; for when hop is mixed with strong becr wort, and boiled for many hours, it can still impart a very considerable degree of its flavour to weaker beer. By merc infusion in hot beer or water, without boiling, the bop loses very little of its soluble principles. The tannin of the hop combines, as we have said, witb tbe vegetable albumen of the barley, and helps to clarify the liquor. Should there be a deficiency of albumen and gluten, in consequence of the mashing having been done at such a heat as to bave coagulated them beforehand, the defect may be remedied by the addition of a little gelatine to the wort copper, either in the form of calf's foot, or of a little isinglass. If the hops be boiled in the wort for a longer period than 5 or 6 hours, they lose a portion of their fine flavour; but if their natural flavour be rank, a little extra boiling improves it. Many brewers throw the hops in upon the surface of the boiling wort, and allow them to swin there for some time, that the steam may penetrate them, and open their pores for a complete solutiou of their principles when they arc pushed down into the liquor.
The quantity of hop to be added to the wort varies according to the strength of the

The quantity of hop it to be kept, or the leat of the climate where it is intended beer, the length of time it is to be kept, or the hed to a quarter of malt; but when it is to be sent. For beer $4 \frac{1}{2}$ lbs. of hops ably clear, and for the stronger kinds of ale and to be higbly aromatic and rem to take a pound of hops for every bushel of malt, or porter, the rule, in England, is to 8 lbs to a quarter.
to the bushel of malt. It has form an extract of hops by boiling in covered vessels, so as not to lose the oil, and to add this instead of the hop itself to the beer. "On the great scale this method has no practical advantage, because the extraction of the hop is perfectly accomplished during the necessary boiling of the wort, aud the hop operates very bencficially, as we have explaincd, in clarifying the becr. Such an extract, morcover, could be casily adultcrated.

The Cooling.- The contents of the copper are run into what is called the hop-back, on the upper part of which is fixed a drainer, to keep back the hops. In some arrangenents a pump is placed in the hop-back, for the purpose of raising the wort to the eoolcrs, usually placed iu an airy situation upon the top of the brewery. Two coolers are
iudispensable when we make two kinds of becr from the same brewing, and even in single brewings, called gyles, if small beer is to be made. One of these coolers ought to be placed above the level of the other. As it is of great consequence to cool the worts down to the fermenting pitch as fast as possible, various contricances liave been made for effecting this purpose. The common cooler is a square wooden cistern, about 6 inches deep, aud of such an extent of surface that the whole of one boil may ouly occupy 2 iuches, or thereabouts of depth in it. For a quantity of wort equal to about 1500 gallons, its arca should be at least 54 feet long aud 20 feet wide. The scams of the cooler must be made perfectly water-tight and smooth, so that no liquor may lodye in them when they are empticd. The utmost cleanliness is required, and an occasional swectening with lime-water.

The hot wort reaches the cooler at a temperature of from 200° to 208°, according to the power of the pump. Here it should be cooled to the proper tempcrature for the fernienting tuu, which nay vary from 54° to 64°, according to circumstances. The refrigeration is accomplished by the evaporation of a portion of the liquor; it is more rapid iu proportion to the extent of the surface, to the low temperature and the dryness of the atmosphere surrounding the cooler. The renewal of a body of cool dry air, by the ageucy of a fan, may be employed with great advantage. The cooler itself must be so placed that its surface shall be freely exposed to the prevailing wind of the district, and be as frec as possiblc from the eddy of surrounding buildings. It is thought by many, that the agitation of the wort during its cooling is hurtful. Were the roof madc movable, so that the wort could be readily exposed, in a clear night, to the aspect of the sky, it would cool rapidly by radiation, on the principles explained by Dr. Wells, in his "Essay on Dew," and more recently by M. Melloni.

When the cooling is effected by evaporation alone, the temperature falls very slowly, even in cold air, if it be loaded with moisture. But when the air is dry, the evaporation is vigorous, and the moisture exhaled does not remain incumbent on the liquor, as in damp weather, but is diffused widely in space. Here we can understand how wort cools so rapidly in the spring aud autumn, when the air is generally dry, and even more quickly than in winter, when the air is cooler, but loaded with moisture. In fact, the cooling process goes on better when the atmosphere is from 50° to 55°, than when it falls to the freezing point, because in this case, if the air be still, the vapours generated remain on the surface of the liquor, and prcvent further evaporation. In summer the cooling can take place only during the night.
In consequence of the evaporation during this cooling process, the bulk of the wort is considerably reduced; thus, if the temperature at the beginning was 208°, and if it be at the end 64°, the quantity of water necessary to be evaporated to produce this refrigeration, would be nearly $\frac{1}{8}$ th of the whole, putting radiation and conduction of heat out of the question. The effect of this will be a proportional concentration of the beer.
The period of refrigeration, in a well-constructed cooler, amounts to 6 or 7 hours in favourable weather, but to 12 or 15 in other circumstances. The quality of the beer is much inproved by shortening this period; because, in consequence of the great surface which the wort exposes to the air, it readily absorbs oxygren, and passes into the acetous fermentation with the production of various mouldy spots-an evil to which ill-hopped beer is particularly liable. Various schemes have been contrived to cool wort, by transmitting it through the convolutions of a pipe immersed in cold water. The best plan is to expose the hot wort for some hours freely to the atmospherc and the conler, when the loss of heat is most rapid by evaporation and other means, and when pipe laid almore falls to 100°, or thereabout, to transmit the liquor through a zig-zag scribed under R horizontally in a trough of cold water. The various methods desituations with considerable advantage complex, but they may be practised in many

Whilst the wort reposes in thage. partly of fine flocks of which had been dissolved at the highmen combined with tannin, and partly of starch, wort should be perfectly limpid, for a muddy lature, and separates at the lower. The Such beer contains, besides mucilaginous sugar and never produces transparent beer. even remains after the fermentation to sour. The wort contains more and hinders its clarifying, and gives it a tendency have been added, and the shorter time it the hottcr it has been mashed, the less hops the wort may be made made manifest by has been boiled. The presence of starch in to it, when it will become iminediately bluc. We a little solution of iodine in alcohol wort in a proper vessel has an advantage over cooling it rapidly by a refrigerg of apparatus.
When the wort is sufficiently cool, it is let down into the fermenting tun, transfer, the cooling might be carricd scveral degrees lower, were the wort In this pass down through a tube inclosed in another tube along which a tream wort made to
is flowing in the opposite direction. These fermenting tuns are commonly called gyle-tuns, or working tuns, and are either square or circular. In the great London breweries their size is such that they contain from 1200 to 1500 barrels. The quantity of wort introduced at a time must, however, be considerably less than the capacity of the vessel, to allow room for the head of yeast which rises during the process of fermentation; if the vessel be cylindrical, this head is proportional to the depth of the worts. In certain kinds of fermentation, it may rise to a third of that depth. In general, the fermentation proceeds morc uniformly and constantly in large masses, because they are little influenced by vicissitudes of temperature; smaller vessels, on the other hand, are more easily handled.

The Fermentation.-The general view of fermentation will be found under that title. A few remarks on the fermentation peculiar to beer will alone be noticed in this place. During the fermentation of wort, a portion of its saccharine matter is converted into alcohol, and the wort thus clanged is beer. It is necessary that this conversion of the sugar be only partial, for beer which contains no undecomposed sugar would soon turn
sour, and even The amount of this excess of sugar is greater in proportion to the strength of the wort, since a certain quantity of alcohol, already formed, prevents the operation of the ferment on the remaining wort. Temperature has the greatest influence upon the fermentation of wort. A temperature of from 55° to 60° of the liquor, when that of the atmosphere is 55°, is most advantageous for the commencement. The warmth of the wort as it comes into the gyle-tun must be modified by that of the air in the apartment. In winter, when this apartment is cold, the wort should not be cooled under 64° or 60°, as in that case the fermentation would be tedious or interrupted, and the wort liable to spoil or become sour. In summer, when the temperature of the place rises to above 75°, the wort should be cooled, if possible, down to 55°, for which purpose it should be let in by the system of double pipes above mentioned. The higher the temperature of the wort, the sooner will the fermentation begin and end, and the less is it in our power to regulate its progress. The expert brewer must steer a middle course between these two extremes, which threaten to destroy his labours. In some breweries a convoluted pipe is made to traverse or go round the sides of the gyle-tun, through which warm water is allowed to flow in winter, and cold in summer, so as to modify the temperature of the mass to the proper fermenting pitch. If there
be be no contrivance of this kind, the apartment may be cooled by suspending wet canvas opposite the windows in warm weather, or warmed by kindling a fire in a small stove within it in cold weather.

When the wort is discharged into the gyle-tun, it must receive its dose of yeast, which has been previously mixed with a quantity of the wort, and left in a warm place till it has begun to ferment. This mixture, called lobb, is then to be put into the tun, and stirred well through the mass. The yeast should be taken from similar beer. Its quantity inust depend upon the temperature, strength, and quantity of the wort. In general, one gallon of yeast is sufficient to set 100 gallons of wort in complete fermentation. An excess of yeast is to be avoided, lest the fermentation should be too violent, and be finished in less thau the proper period of 6 or 8 days. More yeast is required in winter than summer; for, at a temperature of 50°, a double quantity may be used to that at 68°.
Six or eight hours after adding the yeast, the tun being meanwhile covered, the fermentation becomes active: a white milky-looking froth appears, first on the middle, and spreads gradually over the whole surface; but continues highest in the middle, forming a frothy elevation, the height of which increases with the progress of the fermentation, and whose colour gradually changes to a bright brown, the result, covering screens the wort from the contact of atmospheric air. Dich is proportiong there is a perpetual disengagement of carbonic acid gas, which of the ferverutial to the quantity of sugar converted into alcohol. The when the fermentatiou ling liquid increases at the same time, and is at a maximature amounts to from 9° to 14° come to its highest point. This increase of teniperementation. But iu general, the or upwards, and is the greater the more rapid in the gyle-tun, for after it has advanced fermentation is not allowed to proceed so drawn off into other vessels, which are large a little way, the beer is cleansed-that is, in their top, furnished with a sloping tray barrels set on end, with large opente the wooden trough, iu which the stillions stand. for discharging an excess of yeast inmuncation with a store-tub, which keeps them These stillions are placed in comse, so that the head of yeast may spontancously flow over, and kcep the body of liquor in the cask clcall. This apparatus will be explained in describing the brewery plant. See the figures, infrà.

It must be observed, that the quantity of yeast, and the heat of fermentation, differ
for every different quality of beer. For mild alc, when the fermentatiou has reached 75°, its first flavour begins; at 80° the flavour increases; at 85° it approaches the tigh flavour ; at 90° it is high ; but it may be carried to 100° and upwards, for particular purposes. A wort of 30 lbs . per barrel (sp. gr. 1.088), ought to increase about 15°, so that in order to arrive at 80°, it should be set at 65°. The quantity of yeast for such an ale should be from 2 to 3 lbs. per barrel. The higher the heat, the less yeast is necessary. If the heat of the fermentation should at any time fall, it must be raised by a supply of fresh yeast, well stirred in ; but this practice is not advisable in general, because rousing the worts in the gyle-tun is apt to communicate a rank flavour of yeast to the ale. It is the practice of many experienced brewers to look evcry 2 hours into the gyle-tun, chiefly with the view of observing the progress of the heat, which is low at first, but afterwards often increases half a degree per hour, and subsequently declines, as the fermentation approaches its conclusion, till at length the heat becomes uniform, or sometimes decreases, before the fermentatiou is finished, especially where the quantity operated upon is small.
Some brewers recommend, when the fermentation is carried to its utmost period, to add about 7 lbs . of wheat or bean flour to a gyle-tun of 25 or 30 barrels at the time of cleansing, so as to quicken the discharge of the yeast by disengagement of more carbonic acid. The flour should be whisked up in a pail, with some of the beer, till the lumps are broken, and then poured in. By carly clcansing, the yeast is preserved longer in a state proper for a perfect fermentation, than by a contrary practicc.
For old ale, which is to be long kept, the heat of the fermentation should not exceed 75°, but a longer time is required to complete the fermentation and ensure the future good flavour of the ale.
For porter, the general practice is, to use from 4 to $4 \frac{1}{2}$ lbs of hops per barrel for keeping; though what is termed mild or mixing porter, has not more than 3 or $3 \frac{1}{2} \mathrm{lbs}$. The heat of fermentation must not exceed 70^{2}, and begin about 60°. If the heat tend to increase much above that pitch in the gyle-tun, the porter should be cleansed by means of the stillions. At this period of the fcrmentation, care should be taken that the sweetness of the malt be removed, for whieh purpose more yeast may be used than with any other beer of the same strength. The quantity is from 3 to 4 lbs. per barrel, rousing the wort in the gyle-tun cvery 2 hours in the day-time.

When the plan of cleansing casks is not employed, the yeast is removed from the surface of the fermenting tun by a skimmer, and the clear beer bencath is then drawn off into the ripening tuns, called store-vats, in which it is mixed up with different brewings, to suit the taste of the customers. This transfer must take place whenever the extrication of carbonic acid has nearly ceased ; lest the alcohol formed should partially into the acetous state yeast, acquire thereby a disagreeable tastc, and pass In this process, during the. the albumen and gluten diffused thation of vinous spirit at the expense of the sugar, become insoluble; one portion of them is the beer, being acted upon by the alcohol, gas, to form the frothy yeast, and anothbuoyed to the top with the carbonic acid The former consists of the same another portion falls to form the bottom balm. gluten, which forms its active constituent; the the wort, with a large proportion of of the same gluten, mixed with the various the latter is a peculiar dcposit, consisting also used as a ferment, but is cruder than dense impurities of the wort, and may bc proportional to the activity of the fermentationting yeast. The amount of yeast is as also to the heat of the mashing process and or extrication of carbonic acid gas, altered by germination. Pale ming process, and the quantity of stareh or flour unkilned. When the reast becomes excessive, from too violent ferment than malt highly be skimmed off from time to time, which will tend to violent fermentation, it should the intestine changes. After the beer is let tation goes on for a considerto the close store-tuns in the cellar, an obscure fermenstrength, and keeps up in it a constant impregody, which incrcases its spirituous render it lively and agreeable to the taste, when it is of carbonic acid gas, so as to appear that beer is never stationary in quality while it is con of for sale. It would the moment when it ceases to improve by the decome it is contained in the tuns; for begins to degenerate into vinegar. The result may be produced either by thar, it haustion of the saccharinc or by the fermentative matter. The either by thc exthercfore be under ground, free from alternations of temperature vibrations sliould riages, and as cool as possible. In the grcat London breweries, the fermentation is rendered very complete in the cleansing butts; so that a slow and steady ripening is ensured in the great store tuns. Tlie gyle-tuns are too capacious steady ripening is mentation to be finished, with cither safety or sufficient capacious to permit the ferBeer, in its perfcet condition, is an excellent and healthfutch in thein. Vol. I.
some measure, the virtues of water, of wine, and of food, as it quenches thirst, stimulates, cheers, and strengthens. The vinous portion of it is the alcohol, proceeding from the fermentation of the malt sugar. Its amount, in common strong alc or beer, is about 4 per cent., or fuur measures of spirits, specific gravity 0.825 , in 100 measures of the liquor. The best brown stout porter contains 6 per cent., the strongest ale even 8 per cent., but common beer ouly one. The nutritive part of the beer is the undecomposed gum-sugar, and the starch-gum not changed into sugar. Its quantity is very variable, according to the original starch of the wort, the length of the fermentation, and the age of the beer.
The main feature of good beer is fine colour and transparency; the production of which is an object of great interest to the brewer. Attempts to clarify it in the cask seldom fail to do it harm. The only thing that can be used with advantage for fining foul or muddy beer, is isinglass. For porter, as commonly brewed, it is frequently had recourse to. A pound of good isinglass will make about 12 gallons of finings. It is cut into slender shreds, and put into a tub with as much vinegar or hard beer as will cover it, in order that it may swell and dissolve. In proportion as the solution procecds, more beer must be poured upon it, but it need not be so acidulous as the first, because, when once well softened by the vinegar, it readily dissolves. The mixture should be frequently agitated with a bundle of rods, till it acquires the uniform cunsistence of thin treacle, when it must be equalised still more by passing through a tammy cloth, or a sieve. It may now be made up with beer to the proper measure of dilutiou. The quantity generally used is from a pint to a quart per barrel, more or less, according to the foulness of the beer. But before putting it into the butt, it should be diffused through a considerable volume of the beer with a whisk, till a firothy head be raised upon it. It is in this state to be poured into the cask, briskly stirred about; after which the cask must be bunged down for at least 24 hours, when the liqour should be limpid. Sometimes the beer will not be improved by this treatment; but this should be ascertained beforehand, by drawing off some of the beer iuto a cylindric jar or phial, and adding to it a little of the finings. After shaking and setting down the glass, we shall observe whether the feculencies begin to collect in flocky parcels, whieh slowly subside; or whether the isinglass falls to the bottom without making any impression upon the beer. This is always the case when the fermentation is incomplete, or a secondary decomposition has begun. Mr. Jackson has accounted for this clarifying effect of isinglass in the following way.

The isinglass, he thinks, is first of all rather diffused mechanically, than chemically dissolved, in the sour beer or vinegar, so that when the finings are put into the foul beer, the gelatinous fibres, being set free in the liqour, attract and unite with the floating feculencies, which before this union were of the same specific gravity with the beer, and therefore could not subside alone; but having now acquired additional weight by the coating of fish-glue, precipitate as a flocculent magma. This is Mr. Jackson's explanation ; to which we might add, that if there be the slightest disengagement of carbonic acid gas, it will keep up an obscure locomotion in the particles, which will prevent the said light impurities, either alone or when coated with singlass, from subsiding. The beer is then properly enough calle the tannin of the hops comThe true theory probably of the action of isinglass is, mass which envelopes the muddy bines with the fluid gelatine, and forms a the bottom as it falls, and forms a sediment. particles of the beer, and carries them to thoper precipitate ensues, it may be made to When, after the finings are poured in,
Mr. Richardson, the author of the well-known brewer's saccharometer, gives the following as the densities of different kinds of beer:-

When small beer is brewed after ale or porter, only one after-mash is to bc made; but where this is not done, there may be two mashes, in order to economisc malt to the utmost. We may let on the water at 160° or 165°, in any convenient quantity, infuse for an hour or thereabouts, then run it off, and pump into the copper, putting some hops into it, and causing it to boil for an instant, when it may be trausferred to the cooler. A second mash or return may be made in the same manner, but at a heat 5° lower; and then disposed of in the boiler with some hops, which may remain in the copper during the night at a scalding heat, and may be discharged into the cooler in the morning. These two returns are to be let down into the under-back immediately before the next brewing, and thence heated in the copper for the next mashing of fresh malt, instead of hot water, commonly called liquor in the brewerics. But allowance must be made, in the calculation of the worts, for the quantity of fermentable matter in these two returns. The nett aggregate saving is estimated from the gravity of the return taken when cold in the cooler. A slight economy is also made in the extra boiling of the used hops.

It may be remarked that Mr. Richardson somewhat underrates the gravity of porter, which is now seldom under 20 lbs. per barrel. The criterion for transferring from the gylc-tun to the cleansing butts is the attenuation caused by the production of alcohol in the beer: when that has fallen to 10 lbs. or 11 lbs., which it usually does in 48 hours, the cleansing process is commenced. The heat is at this time gencrally 75°, if it was pitched at 65°; for the heat and the attenuation go hand in hand.

About forty years ago, it was customary for the London brewers of porter to kcep imnonse stocks of it for eightcen months or two years, with the view of improving its quality. The beer was pumped from the cleansing butts into store-vats holding from twenty to twenty-five gyles or brewings of several hundred barrels each. The storcvats had commonly a capacity of 5000 or 6000 barrels; and a few were double, and one was treble, this size. The porter, during its long repose in these vats, became fine, and by obscure fermentation its saccharine mucilage was nearly all converted into vinous liquor, and partly dissipated in carbonic acid. Its hop-bitter was also in a grcat degree decomposcd. Good hard beer was the boast of the day. This was sometimes softened by the publican, by the addition of some mild new-brewed beer. Of late years, the taste of the metropolis has undergoxe such a complete revolution in this respect, that nothing but the mildest porter will now go down. Hence, six wecks is a long period for beer to be kept in London; and much of it is drunk when only a fortnight old. Ale is for the same reason come greatly into vogue; and the two greatest porter houses, Messrs. Barclay, Perkins, and Co., and Truman, Hanbury, and Co., have become extensive and successful brewers of mild ale, to please the changed palate of their customers.

We shall add a few observations upon the brewing of Scotch ale. This beverage is characterised by its pale amber colour and its mild balsamic flavour. The bitterness of the hop is so mellowed with the malt as not to predominate. The ale of Preston l'ans is, in fact, the best substitute for wine which barley has hitherto produced. The low temperature at which the Scotch brewer pitches his fermenting tun restricts his labours to the colder months of the year. He does nothing during four of the summer months. He is extremcly nice in selecting his malt and hops; the former being inade from the best English barley, and the latter being the growth of Farnham or East Kent. The yeast is carefully looked after, and measured into the fermenting tun in the proportion of one gallon to 240 gallons of wort.
Only onc mash is made by the Scotch ale brewer, and that pretty strong; but the malt is exhausted by eight or ten successive sprinklings of liquor (hot water) over the goods (malt), which are termed, in the vernacular tongue, sparges. These waterings percolate through the malt on the mash-tun bottom, and cxtract as much of the saccharine matter as may be sufficient for the brewing. By this simple method much higher specific gravities may be obtained than would be practicable by a second mash. With malt, the infusion or saccharine fermentation of the diastase is finished
with the first mash; which that process ; and nothing remains but to wash away from the goods the matter wort drawn from a has rendered soluble. It will be found on trial that 20 barrels of so rich in fermentable matter as 20 of malt, by two successive mashings, will not be barrels each. The grains always rcmain extracted by ten successive sparges of two and the total residual quantity is threc-fourths of a barrel for that just drawn off, The gravity of this residual wort will on the first plan be for evercry quarter of malt. mash; but, on the second plan, it will be equal only to that of the tenth sparge, and will be more attenuated in a very high geometrical ratio. The only serious objection to the sparging systcm is the loss of time by the successive drainages. A mash-tun with a steam jacket, promises to suit the sparging system well, as it would keep up
an uniform temperature in the goods, without requiring them to be sparged with very hot liquor.

The first part of the Seoteh process seems of doubtful eeonomy; for the mash liquor is heated so high as 180°. After mashing for about half an hour, or till every particle of the malt is thoroughly drenehed, the tun is eovered, and the mixture left to infuse about three hours; it is then drained off into the under-baek, or preferably into the wort copper.

After this wort is run off, a quantity of liquor (water), at 180° of heat, is sprinkled uniformly over the surface of the malt; being first dashed on a perforated eireular board, suspended horizontally over the mash-tun, wherefrom it deseends like a shower upon the whole of the goods. The pereolating wort is allowed to flow off by three or more small stopeocks round the eircumferenee of the mash-tun, to insure the equal diffusion of the liquor.

The first sparge being run off in the course of twenty minutes, another similar one is affused; and thus in suceession till the whole of the drainage, when mixed with the first mash-wort, constitutes the density adapted to the quality of the ale. Thus, the strong worts are prepared, and the malt is exhausted either for table beer, or for a relurn, as pointed out above. The last sparges are made 5° or 6° eooler than the first.

The quantity of hops seldom exceeds four pounds to the quarter of malt. The manner of boiling the worts is the same as that above deseribed; but the conduet of the fermentation is peculiar. The heat is pitched at 50°, and the fermentation continues from a fortnight to three weeks. Were three brewings made in the week, seven or eight working tuns would thus be in constant action; and, as they are usually in one room, and some of them at an elevation of temperature of 15°, the apartment must be propitious to fermentation, however low its heat may be at the commencement. No more yeast is used than is indispensable: if a little more be needed, it is made effeetive by rousing up the tuns twice a day from the bottom.

When the progress of the attenuation becomes so slack as not to exeeed half a pound in the day, it is prudent to eleanse, otherwise the top barm might re-enter the body of the beer, and it would beeome yeast-bitten. When the ale is cleansed, the head, which has not been disturbed for some days, is allowed to float on the surface till the whole of the then pure ale is drawn off into the easks. This top is regarded as a sufficient preservative against the contact of the atmosphere. The Seoteh do not skim their tuns, as the London ale brewers commonly do. The Scoteh ale, when so eleansed, does not require to be set upon close stillions. It throws off little or no yeast, beeause the fermentation was nearly finished in the tun. The strength of the best Scoteh ale ranges betwcen 32 and 44 pounds to the barrel; or it has a speeifie gravity of from 1.088 to $1 \cdot 122$, aceording to the price at which it is sold. In a good fermentation, seldom more than a fourth of the original gravity of the wort remains at the period of the eleansing. Between one-third and one-fourth is the usual degree of attenuation. Seoteh ale soon becomes fine, and is seldom racked for the home market. The following 'Table will show the progress of fermentation in a brewing of good Scotch ale:-

20 barrels of mash-worts of $42 \frac{1}{2}$ pounds gravity $=860.6$

Fermentation:- March 24, pitehed the tun at 51° : yeast 4 gallons.

[^31]Dr. Ure was employed to make experiments on the density of worts, and the fermentative changes whieh they undergo, for the information of a eommittee of the House of Commous, whieh sat in July and Angust, 1830: the following is a short abstraet of that part of his evidenee whieh bears upon the present subjeet:
"My first objeet was to elear up the diffieulties whieh, to common apprelension, hung over the matter, from the difference in the seales of the saeeharometers in use among the brewers and distillers of England and Seotland. I found that one quarter of good malt would yield to the porter brewer a bariel Imperial measure of wort, at the coneentrated speeific gravity of $1 \cdot 234$. Now, if the deeimal part of this number be multiplied by 360 , being the number of pounds weigbt of water in the barrel, the produet will denote the exeess, in pounds, of the weight of a barrel of sueh eoneentrated wort over tbat of a barrel of water, and that produet is, in the present ease, 84.24 pounds.
"Mr. Martineau, jun., of the house of Messrs. Whitbread and Company, and a gentleman eonneeted with another great London brewery, had the kindness to inform me tbat their average produet from a quarter of malt was a barrel of 84 lbs . gravity. It is obvious, therefore, that by taking the mean operation of two such great establisbments, I must have arrived very nearly at the trutb.
"It ought to be remarked that sueh a high density of wort as 1.234 is not the result of any direet experiment in the brewery, for infusion of malt is never drawn off so strong; that density is deduced by computation from the quantity and quality of several sueeessive infusions; thus, supposing a first infusion of the quarter of malt to yield a barrel of speeifie gravity $1 \cdot 112$, a seeond to yield a barrel at $1 \cdot 0.01$, and a third a barrel at 1.031 , we shall have threc barrels at the mean of these three numbers, or one barrel at their sum, equal to 1.234 .
"I may here observe that the arithmetieal mean or sum is not the true mean or sum of the two speeifie gravities; but this differcnec is either not known or disregarded by it wrewlders. At low densities this differenee is inconsiderable, but at high densities one-half of its weight errors. At specifie gravity 1-231, wort or syrup eontains of its weight; but the brewer's rule, when here applied, gives for the mean speeific gravity $1 \cdot 1155=\frac{1 \cdot 231+1 \cdot 000}{2}$. The eontents in solid saeeharine matter at that density are however $27 \frac{1}{2}$ per eont., showing the rule to be $2 \ddagger \mathrm{lbs}$. wrong in exeess on 100 lbs ., or 9 lbs. per barrel.
"The speeifie gravity of the solid dry extraet of malt-wort is 1.264 ; it was taken in oil of turpentine, and the result reduced to distilled water as unity. Its specific volume is 0.7911 , that is, 10 lbs . of it will oeeupy the volume of 7.911 lbs . of water. The mean speeifie gravity, by computation of a solution of that extract in its own weight of water, is $1 \cdot 1166$; but, by experiment, the speeifie gravity of that solution is water. showing eonsiderable eondeusation of volume in the aet of eombination with
"The following Table shows the relation between the specifie gravities of solutions of malt extraet and the per-eentage of solid extraet they eontain: -

Extract of Malt.		Water.	Malt Extract in 100.	Sugar in 100	Specific gravity.
600	+	600	$50 \cdot 00$	$47 \cdot 0$	1.2160
600	+	900	40.0	37.00	$1 \cdot 1670$
600	+	1200	33.3	31.50	$1 \cdot 1350$
600	+	1500	$28 \cdot 57$	26.75	$1 \cdot 1130$
600	+	1800	$25 \cdot 00$	24.00	$1 \cdot 1000$

" The extraet of malt was evaporated to dryness, at a temperature of about $250^{\circ} \mathrm{F}$., without the slightest injnry to its quality or any empyreumatie smell. Bate's table, have been constructed on solutions of sugar, and not with solutions of extract of malt, as they agree suffieiently well with the former, but differ materially from the latter. Allen's tables give the aceonnt of a eertain form of solid saeeharine matter extraeted from malt, and dried at $175^{\circ} \mathrm{F}$., in eorrespondenee to the speeifie gravity of the
solution; but I hat exeept at mueh higher temperpossible to make a solid extraet from iufusions of malt, saeebarometer seale elearly show that his $175^{\circ} \mathrm{F}$. Indeed, the numbers on Allen's of gravity he assigns $29 \cdot 669$ per eent. of solid seet was by no means dry : thus, at $1 \cdot 100$ that density of solid extraet only 25 per eeut. per eent. of solid extraet, whereas there are only $33 \frac{1}{3}$ present.") Allen gives 40 parts

BEER.

The following Table shows the origin and cffect of fermentation in the reduction of gravity, in a number of practical experiments :-

Original Gravity of the Worts.	1bs. per Barrel of Saccharine Matter.	Specific Gravity of the Ale.	16s. per Barrel of Saccharine Matter.	Attenuation, or Saccharumdecomposed.
			$40 \cdot 25$	0.478
	$88 \cdot 75$	1.0500	38.42	0.552
1.0950	$85 \cdot 62$	1.0420	16.87	0.787
$1 \cdot 0918$	78.125	1.0205	$20^{\circ} 00$	0.757
$1 \cdot 0829$	80.625	1.0236	24.25	0.698
1.0862	73.75	1.0280	25.00	0.615
1.0780	65.00	1.0285	36.25	0613
1.0700	93.75	$1 \cdot 0400$	38.42	0.600
$1 \cdot 1002$	95.93	$1 \cdot 0420$	27.00	0.705
$1 \cdot 1025$	91.56	1.0307	$32 \cdot 19$	$0 \cdot 640$
1.0978	$89 \cdot 37$	1.0358	31.87	0.661
$1 \cdot 0956$	$105 \cdot 82$	1.0352	26.75	0.605
$1 \cdot 1130$	$102 \cdot 187$	1.0302	36.25	0.669
$1 \cdot 1092$	$110 \cdot 00$	1.0400	23.42	0.757
$1 \cdot 1171$ 1.1030	+96.40	1.0271 1.0214	$17 \cdot 80$	0.709
1.1030 1.0660	$61 \cdot 25$	1.0214		

The second column here does not represent the solid extract, but the pasty extract obtained as the basis of Mr. Allen's saccharometer, and therefore easure erroneous, on is somewhat too high. The last column, also, muring the proccss of fermentation. account of the quantity of alcohol dissipatensity duc to the saccharine matter will be It must be likewise incorrect, because the denol present in the fermented liquor. In partly counteracted by the effect of the a the strength of the wort; being greatest fact, the attenuation does not correspond forst. The quantity of yeast for the above in the third brewing and smallest in the an average, one gallon for 108 gallons; but it ale brewings in the Table was, upon state of the weather, which, when warm, permits varied with its quality, and with the state of much lcss to be used with propriety. the right management of the mashing, may be

The good quality of the malt, and the righer contained in the successively drawn worts. tested by the quantity of saccharine mach of them should be evaporated by a safetyWith this view, an aliquot portion of eace, and then mixed with twice its volume of bath heat to a nearly concrete consiscecharine substance will be dissolved, while the strong spirit of wine. The truly sacchat ; after which the proportions of each may starch and other matters will be separated, Or an equally correct, and much more lic determined by filtration and evapo same result would be, after agitating the viscid cxpeditious, method of arriving at class cylinder, to allow the insoluble fecula to subside, extract with the alcohol in a tall glass gravity of the supernatant liquid by a hydrometcr. and then to determine the specific galcohol has acquired will indicate the quantity of The additional density which the The following Table, constructed by Dr. Ure, at malt sugar which it has receiven. Esq., M.P., chairman of the Molasses Comis imthe request of Henry Wans in 1830, will show the brewer the principequisite to raise of the House of Comerbibits the quantity in grains' weight of to the gravity of water the specific gravity of a gallon of spirit of different dens Sugar in the

the specific gravity of a		Grains' Weight of Sugar in
$=1.000$.	Specific Gravity of Spirit.	Gallon Imperial. 980
	$\begin{gathered} \text { Spirit. } \\ 0.995 \end{gathered}$	1.890
	0.990	$2 \cdot 800$
	0.985	$3 \cdot 710$
	0.980	$4 \cdot 690$
	0.975	$5 \cdot 600$
	0.970	6.650
	0.965	$7 \cdot 070$
	0.960	$8 \cdot 400$
	0.955	$9 \cdot 310$
	0.950	ffect

parpose of this Table was to show the effect of saccharine matter in He immediate purpose amount of alcohol in the weak feints of the distiller. But disguising the prescncc orsily be constructed, in which, taking rorteextract would be alcohol of 0.825 , for exauple, thic quantity of sugar in any rrort-ext
shown hy the increase of specific gravity which the alcohol received from agitation with a certain weight of the wort, inspissated to a nearly solid consistence by a safetypan made on the principle of Dr. Ure's patent sugar-pan. (See Sugar.) Thus, the normal quantities being 1000 grains'-measure of alcohol, and 100 grains by weight of inspissated mash-extract, the hydrometer would at once indicate, by help of the Table, first, the quantity per cent. of truly saccharine matter, and next, by subtraction, that of farinaceous matter present in it.

The advance of the arts is gradually assuming a character which will no longer permit any manufacturer to neglect the assistance of sciencc; and those who first take advantage of the power of knowledge will assuredly leave their fellow-lahourcrs behind. From being an uncertain and hazardous operation, brewing must ere long beeome a fixed and definite principle based upon facts well understood, and capahle of perpetual repetition and reproduction at will. To sum up briefly the general details of ale brewing, we may state, that, for most kinds of ale, the attcnuation in the first instance should he finished in from 6 to 21 days, according to the strength of the wort; that this attenuation should approach to two-thirds of the whole weight; and that after tunning and cleansing, the ale itself should weigh about one-fourth of the original gravity of the wort. Thus, if the fermenting tun be set with wort of 27 lbs ., then the attenuation should hring it down to 9 or 10 lhs., and the suhsequent operations produce an ale wcighing from 6 to 7 lhs . When these conditions are fulfilled, without much extra trouhle or attention, the ale is pretty certain to turn out well, though, in in some localities, ale is never attenuated to more than one-half its original gravity: this kind of ale is, however, very apt to become sour in hot weather and ropy in cold.

Some additional remarks on the hrewing of porter, which differs from that of ale both in the nature of the materials used and in the mode of finishing the fermentation, are required. Porter owes its peculiar colour and flavour to burnt saccharinc or starchy matter; and this was formerly obtained by burning sugar until it exhaled the odour called by French writers caramel. At present, however, nothing hut highly-torrefied malt is used ; and of this there are several kinds, as brown malt, imperial malt, and black malt; all of which are used by some brewers, whilst others employ only the brown aud black, and a few the black alone, for giving colour and flavour. The fermentative quality or saccharine, is, however, the same as that of ale, and is derived from pale or amher malt. As a general rule, the ratio of the colouring and flavouring malts are to the saccharine as ahout 1 to 5 or 1 to 4 ; hut where black malt only is used, the proportion does not exceed 1 to 10 .
The employment of these burnt malts pernits a singular act of injustice on the part of the Excise, as regards the drawback on exportation. By the Excise regulatious, it is assumed that a quarter of malt will produce four barrels of ale hrewed from wort of the sp. gr. $1 \cdot 054$, or $19 \cdot 4 \mathrm{lbs}$. per harrel; but, although this is hopeless even with pale malt, yet with an admixtnre of brown and black malt the assumption hecomes absurd in the extreme. Admitting that, hy good management, on the average, four harrels of wort, weighing 20lbs., can be ohtained from one quarter of fine pale malt, yet, in the operations of cooling, fermenting, tunning, skimming, and clcansing, a loss of fully 10 per cent. occurs under the most vigilant superintendence; and, taking the great bulk of our metropolitan hreweries, it would he nearer the truth to estimate this loss al 12 per cent. In plain words, 100 gallons of wort will not, by any management, produce more than about 88 gallons of salcahle heer, though no allowance is made for this hy the Excise; and the brewer who has paid duty upon 100 gallons gets a drawback upon but 88 . This, however, is the most favourable view of the case; aud we solicit attention to the force with which the argument returns in the instance of porter. If a quarter of pale malt he assumed at 84 lhs . of saccharine strength, then such an admixture of hrown and black malt as is usually employed hy hrewers of porter will not give more than ahout 24 lhs .; and as this constitutes at least one-fifth of the whole bulk used in porter brewing, we see that a quarter of such mixed malt can never give more than 701 bs .; that is to say, 80 parts of pale malt, mixed with 20 of brown and black, instead of giving at the rate of 841 hs ., as pale malt alone does, would give but 7olhs., or produce a difference between the actual return and that taken for granted previously mentionedies, of no less than 16.6 per cent. ; to which, if we add the loss called 12 per cent., a total difference ensues of 28.6 , yeast, \&c., and which we have by the brewer and the drawhack allowed hy act of per cent. betwcen the duty paid does not stop here; for the only return allowed hy arliament. But the grievance malt duty, and nothing whatever is said of the duty of parliament is based upon the the rate of 19 s .7 d . per cwt.; and since hops yield on hops. This, however, is at weight of soluble matter, it would require 168 lbs . of only ahout 35 per cent. of their or wort weighing 19.4 lbs , or having the requisite hops to produce a harrel of fluid
of 1.054 . Upon this barrel, when exported, the drawback is 58. ; but, as may easily be scen on ealculation, the duty paid by the brewer has been 29 s .3 d . In faet, upon every 168 lbs. of hops consumed by the export brewer, he suffers a dead loss of 24.s. 3d. independently of the waste incidental to his various processes. These things will gather that the profits of brewing are not by any means so large as a cursory glance at the subjeet might warrant: and we say this rather as having refercnee to schemes now in progress for reducing the price of beer tban from its connection with our geueral arrangements. No doubt the brewing business is at times very remuncrative ; but a continued high price of the raw materials sometimes proves ruinous to the large brewer, as it must not be forgotten that the capital required is large, and invested in very perishable materials, sueh as casks and other wooden utensils, tbe wear and tear upon which is a very large item; nor, again, as we have shown, must a speeulator begin by assuming, with the Excise authorities, that a quarter of malt will produce four barrels of beer, for he will be much nearer tbe truth if he estimates his saleablc produce at three barrels. As, however, it forms no part of our present task to enter into the financial statistics of brewing, we return to the object more immediately in view, merely throwing out, en passant, the above bints for the benefit of those whom they may concern.

If the analyses of malt and malt-wort are requisite to enable the brewer to perform his operations with safety and success, the analysis of beer is not less indispensable to qualify him for the harassing labour of competition with his neighbours, and for the protection of his interest against Excise confiscation. Although beer may have been brewed of the requisite gravity for justifying a drawback on exportation, yet tbis is very far indeed from ensuring a return of the malt duty, even to the limited extent awarded by law. Tbe question is, How are tbe Excise offieials to know tbe real weight of the wort from which the beer was brewed? This may be ascertained by the following method, which should take the place of the present indefinite system:Having agitated a portion of the ale or beer so as to dissipate its carbonie acid gas, moasure out exactly 3600 grains'-measure of it, and pour these into a retort ; then distil with great care into a receiver surrounded by ice-cold water about one-third of the whole fluid, or rather more than this if the ale or beer is known to be higbly alcoholie. Next weigh the distilled fluid, and then aseertain its specific gravity, from whence, by any of the proper tables of alcohol (which see), the total quantity of absolnte aleohol in the distilled fluid may be known. Tbis aleohol is to be converted by caleulation into its equivalent of sugar, at the rate of 171 parts of sugar for every 92 of alcohol found; after which the sugar must be brought into pounds per barrel by the rule before given, which is $52 \frac{1}{2}$ lbs. of sugar for every 20 lbs. of gravity. The amount of vinegar is next to be determined by any of the known forms of acidimetry. (See Acetimetry.) This vinegar, or acetic acid, must, like the aleohol, be also converted into its re presentative of sugar, by assigning 171 of sugar to every 102 of anhydrous acetic acid present in the beer, this sugar being, as before, converted into pounds per barrel. To the beer remaining in the retort, sufficient distilled water is then to be added, that the entire bulk of fluid may once more be equal to 3600 grains'-measure; and the temperature of the mixture having fallen to $60^{\circ} \mathrm{F}$., its speeifie gravity must be determined in the usual way, and this reduced to pounds per barrel, by multiplying the excess above 1000 by 360 , and dividing the product by 1000 . Tbe whole of these weights, added together, gives the original weight of the wort. Thus, for example, we will suppose that 3600 grains of a particular beer have given dilute alcohol, of speeific gravity 0.9731 , and eonsequently eon becr, when tested by eent. by weight of alcohol; again, that the 3 grains of acetic acid; and lastly, that the spent wash, when ammonia, has indicated 30 grains its primary bulk, has, at 60°, a speeific gravity of filled $u p$ with
1.016 ; then the total alcohol would be in 360 grains, or the representative of a barrel, $22 \frac{3}{7}$ grains, and the acetic acid in the same quantity, 3 grains: lience wc bave the following results:-

-	Grs. of sugar. $-\quad 42 \cdot 2$	Or	$\begin{aligned} & \text { Brewers' lbs. } \\ & 16^{\circ} \end{aligned}$
-	- 5°		$1 \cdot 9$
$1 \cdot 016$	-	"	$5 \cdot 76$
Tota	weiglit $=$		- $23 \cdot 66$

It might be thought that the proper kind of sugar to select in this iustance as the representative of alcohol and acetic acid should be grape-sugar, whose atomie weigbt is 180 ; but it has been shown by Dr. Ure that the kind of sugar actually employed
in the eonstruction of our saecharometer tables must have been eane-sugar, the atom of which is 171; ard henee the reason wby it must be employed in tbis calculation.

Ale, Pale or Bitter; brewed chiefly for the Indian market and for other tropical countries.-It is a light beverage, with unch aroma, and, in consequence of the regulations regarding the malt duty, is commonly brewed from a wort of specific gravity 1.055 or upwards; for no drawback is allowed by the Excise on the exportation of oeer brewed from worts of a lower gravity than $1 \cdot 054$. This impolitic interference with the operations of trade compels the manufacturer of bitter beer to employ wort of a much greatcr density than lie otherwise would do ; for beer made from wort of the specific gravity 1042 is not only better calculated to resist secondary fermentation and the other effects of a hot climate, but is also more pleasant and salubrious to the consumer. Under present circumstances tbe law expects tbe brewer of bitter beer to obtain four barrels of marketable beer from erery quarter of malt he uses, which is just barely possible when the best malt of a good barley year is employed. With every quarter of such malt 16 lbs . of the best hops are used; so that, if we assume the cost of malt at 60 s. per quarter, and the best hops at $2 s$. per lb., we sball have, for the prime cost of eacb barrel of bitter beer-in malt, $15 s$. ; in hops, $8 s$. ; together, $23 s$.; from which, on exportation, we must deduct the drawback of 5 s . per barrel allowed by the Excise, whicb brings the prime cost down to 18s. per barrel, exclusive of the expense of manufacture, wear and tear of apparatus, capital invested in barrels, cooperage, \&c., whicb constitute altogetber a very formidable outlay. As, however, this ale is sold as higb as from 50 s . to 65 s . per barrel, tbere can be no doubt that the bitter ale trade has long beeu, and still continues, an exceedingly profitable speculation, though somewhat hazardous, from the liability of the article to undergo deeomposition cre it finds a market.
The East Indian pale ale, or bitter beer, is now brewed in large quantities for the home market at Burton-on-Trent, London, Glasgow, and Leeds, but differs slightly from that cxported, as being less bitter and more spirituous. It is brewed solely from the best and palest malts and the finest and most delicate hop, and much of its suceess depends on the care taken in seleeting the best materials for its composition. It also requires tbe utmost care and attention at every stage of its progress to preserve the colour, taste, and other properties of this ale in tbeir fulness and purity.
For furtber deseription of the brewhouse and its applianees, with the various modes of operations, see the article Brewing.
The English ale-bibbers were a few years since startled by a public report, apparently well authenticated, that the French cbemists were largely engaged in preparing immense quantities of that most deadly poison strychnine for the purpose of drugging tbe pale bitter ale, in such great vogue at present in Great Britain and its colonies. The following are a few amongst many reasons whieh might be quoted. to show the absurdity of this report:-1, Strychnine is an exceedingly costly article; 2, It has a most unpleasant metallic bitter taste; 3, It is a notorious poison, and by its use in any brewery would ruin the reputation of the brewer; 4, It cannot be introduced into ordinary beer brewed with hops, because it is entirely precipitated by iufusions of that wholesome fragrant herb. In fact, the quercitannic acid of hops is incompatible witb strychnia and all its kindred alkaloids. Hence hopped beer becomes in this respect a sanitary beverage, refusing to take up a particle of stryehnia and other noxions drugs of like character. Were the nux vomica powder, from which strychnia is extraeted, even stealthily thrown into the mash tun, its dangerous principle would be all infallibly thrown down with the grounds in the subsequent boiling with the hops.
The varieties of beer depend either upon the difference of their materials, or from a different management of the brewing processes. With regard to the materials, beers differ in the proportion of their malt, hops, and water, and in the different kinds of malt or other grain. To the class of table or small beers, all those sorts may be referred whose specific gravity does not exceed 1.025 , which contain about 5 per cent. of mait extract, or nearly 18 lhs. per barrcl. Beers of middling strength may be reckoned those between the density of 1.025 and 1.040 , which contain, at the avcrage, 7 licr cent., or 25 lbs. per barrel. The latter may be made with 400 quarters 1.050 to 1.080 , and take from beer: stronger beers have a specific gravity of from The strongest beer found in the market quarters of malt to the same quantity of beer. wbieh from 18 to 27 quarters of malt are taken for Englsh and Seotch ales, for porter requires fiom 16 to 18 quarters for that quantity. Beers are sometimer: good with the addition of other farinaceous matter to the malt; but whe sometimes made stitutes tbe main portion of the grain, the malting of the other kinds of the latter conunnecessary, for the diastase of the barley-malt changes the starch into sugar deomes the mashing operation. Even with entirely raw grain, beer is made in sugar during the Continent, the brewers trusting the eonversion of the stareh into sume parts of
action of the gluten alone, at a low mashing temperature, on the principle of Saussurc's and Kirchoff's researches.

The colour of the beer depends upon the colour of the malt and the duration of the boil in the copper. The pale ale is made, as we have stated, from steam- or sun-dricd malt and the young shoots of the hop; the deep-yellow ale from a mixture of palcyellow and brown malt; and the dark-brown beer from well-kilued and partly-carbonised malt, mixed with a good deal of the pale to give body. The longer and more strongly heated the malt has been in the kiln, the less weigbt of extract, coteris paribus, docs it afford. In making the fine mild ales, high temperatures ought to be avoided, and the yeast ought to bc skimmed off, or allowed to flow very readily from its top, by means of the cleansing-butt system, so that little ferment being left in it to decompose the rest of the sugar, the sweetness may remain unimpaired. With regard to porter, in certain breweries each of the three kinds of malt employed for it is separately mashed, after which the first and the half of the second wort is boiled along with the whole of the hops, and thence cooled, and set to ferment in the gyle.tun. the same hops, saved by with the remaining half of the second, is then boiled with gyle-tun, when the two must be well rou, after cooling, added to the former in the

It is obvious from the preceding development of principles, that all amylaceous and saceharine materials, such as potatoes, beans, turnips, as well as cane and starcl1 syrup, molasses, \&c., may be used in brewing beer. When, however, a supcrior quality of brown beer is desired, malted barley is indispensable, and even with these substitutes a mixture of it is most advantageous. The washed roots of the common car:ot, of the red and yellow beet, or of the potato, must be first boiled in water, and then mashed into a pulp. This pulp must be mixed with water in the copper along with wheaten or oatmeal and the proper quantity of hops, then boiled during eight or nine hours. This wort is to be cooled in the usual way, and fermented with the addition of yeast. A much better process is that now practised on a considerable scalc at Strasbourg, in making the ale for which that city is celebrated. The mashcd potatoes are mixed with from a twentieth to a tenth of their weight of finely-ground barley-malt and some water. The mixture is exposed in a water-bath to a heat of $160^{\circ} \mathrm{F}$. for four hours, whereby it passes into a saccbarine state, and may tben be boiled with hops, cooled, and properly fermented into good beer.

Maize, or Indian corn, has also been employed to make beer; but its malting is somewhat difficult, on account of the rapidity and vigour with which its radicles and plumula sprout forth. The proper mode of causing it to germinate is to cover it a few inches deep with common soil, in a garden or field, and to leave it there till the bed is covered with green shoots of the plant. The corn must be then lifted, wasbed, and exposed to the kiln.

The Board of Excise, or Inland Revenue, having, a few years ago, with delusive liberality, been permitted by the Legislature to grant leave to use sugar in the place of barley-malt in breweries, an extensive sugar merchant in London hoping, under turs pretended boon, to acquire a ncw and wealthy class of customers, employed Dr. Ure to ascertain by experiment the relative values of malt and sugar for the manufacture of beer. Ten samples of Muscovado sugar, of several qualities, were examined, and were found to vary very slightly in the proportions of alcohol they could furnish by fermentation in a brewer's tun, the average being 12 gallons of proof spirit for 112 lbs . of the sugar; whereas an equal quantity of proof spirit could be obtained from $4 \frac{8}{10}$ bushels of malt. One pound of malt yields $\frac{3}{4} \mathrm{lb}$. of extract capable of sugar and malt, we shall see how ruinous a business it would be to use sugar instead of malt in a brewery, and hence the delusiveness of the Excise generosity towards the beer trade.

Although the object of the brewer is not the formation of a mere saccharine wort, as we have already shown (and malt contains other substances necessary to the formation of a sound beer), the amount of proof spirit producible from various substances will be some index to their relative value; and it has been found that, with proper management, a quarter of good malt, weighing 42 lbs . per bushel, or 336 lbs . per quarter, will yield 18 gallons of proof spirit; a quarter of barley, weighing 55 lbs . per bushel, or 440 lbs. per quarter, will yield from 18 to 20 gallons. An equal quantity of spirit, say 18 gallons at proof, can be obtained from 175 lbs . of best West India sugar ; from 234 lbs. of inferior Janaica raw sugar; from 275 lbs . of West India molasses; or from 295 lbs of refined or sugar-house molasses. Bauerstock gave the average of sugar 200 lbs ., and of honey 226 lbs. , as cquivalent to a quarter of malt.

Ropincss is a morbid state of beer, which is best remedied, according to Mr. Black, by putting the beer into a vat with a false bottom, and adding, per barrel, 4 or 5
pounds of hops, taken away after the first boilings of the worts; and to them may be added about half a pound per barrel of mustard-seed. Rouse the beer as the hops are gradually introduced, and, in some months, the ropiness will be perfectly cured. The beer should be drawn off from below the false bottom.

For theoretical views, see Fermentation; and for wort-cooling apparatus, see Refrigerator.

Beer, Bavarian. The Germans from time immemorial have been habitually beer drinkers, and have exercised much of their technical and scientific skill in the production of beer of many different kinds, some of which are little known to our nation, while one at least, called Bavarian, possesses excellent qualities, entitling it to the attention of all brewers and consumers of this beverage. The peculiarities in the manufacture of Bavarian beer have recently attracted the attention of the most cminent chemists in Germany, especially of Professor Liebig, and mucb new light has thereby been thrown upon tbis curious portion of vegetable chemistry.
Tbe following is a list of the principal beers at present brewed in Germany :-

1. Brown beer of Merseburg ; of pure barlcy malt.
2. " barley malt, potatoes, and "beet-root syrup.
3. " \quad and bcet-root sugar.
4. ", refined beet-root syrup alone.
5. Covent, or thin beer.
6. Berlin white beer, or the Champagne of the north.
7. Broyhan, a famous Hanoverian becr.
8. Double becr of Grünthal.
9. Bavarian beer: 1 . Summer beer; 2. Winter becr.
10. Bock-beer.
11. Wheat Lager-beer (slowly fermented).
12. White bitter beer of Erlangen.

Considerable interest among meu of science, in favour of the Bavarian beer process, lias been excited ever since the appearance of "Liebig's Organic Chemistry." In the introduction to this admirable work, he says, "The beers of England and France, and for the most part those of Gerinany, become gradually sour by contact of air. This defect does not belong to the beers of Bavaria, which may be preserved at pleasure in half-full casks, as well as full ones, without alteration in the air. This precious quality must be ascribed to a peculiar process employed for fermenting the wort, called in German Untergährung, or fermentation from below; which has solved one of the fincst theoretical problems.
"Wort is proportionally richer in soluble gluten than in sugar. When it is set to ferment by the ordinary process, it evolves a large quantity of yeast, in the state of a thick froth, with bubbles of carbonic acid gas attached to it, whereby it is floated to the surface of the liquid. The phenomenon is easily explained. In the body of the wort, alonyside of particles of sugar decomposing, there are particles of gluten being oxidised at the same time, and envcloping, as it were, the former particles, whence the carbonic acid of the sugar aud the insoluble ferment from the gluten being simultaneously produced, should mutually adbere. When the metamorphosis of the sugar is completed, therc remains still a large quantity of gluten dissolved in the fermented liquor, which gluten, in virtue of its tendency to appropriate oxygen, and to get decomposed, induces also the transformation of the alcohol into acetic acid (vincegar). But were all the matters susceptible of oxidisement as well as this vinegar ferment removed, the beer would thereby lose its faculty of becoming sour. These conditions are duly fulfilled in tbe process followed in Bavaria.
" ln tbat country the malt-wort is set to ferment in open backs, with an extensive surface, and placed in cool cellars, having an atmospheric temperature not exceeding 8° or $10^{\circ} \mathrm{C}$. (46120 or $50^{\circ} \mathrm{F}$.) The operation lasts from 3 to 4 weeks; the carbonic acid is disengaged, not in large bubbles that burst on the surface of the liquid, but in very small vesicles, like those of a mineral water, or of a liquor saturated with carbonic acid, when the pressure is removed. The surface of the fermenting wort is always in contact witb tbc oxygen of the atmospherc, as it is hardly covered with frotb, and as all the yeast is deposited at the bottom of the back under the form of a very viscid sediment, called in German Unterhefe.
"In order to form an exact idea of the difference between the two processes of fermentation, it must be borne in mind tbat the metamorphosis of gluten, and of azotiscd bodies in general, is accomplisbed successively in two principal periods, and that it is in the first that the gluten is transformed in the interior of the liquid into an insoluble fcrment, and that it scparates alongside of the carbonic acid proceeding from the
sugar. This separation is the eonsequence of an absorption of oxygen. It is, however, hardly possible to decide if this oxygen comes from the sugar, from the water, or even from an intestinc change of the gluten itself; or, in other words, whether the oxygen combiucs directly with the gluten, to give it a higher degree of oxidation, or whether it lays hold of its hydrogen to form water.
"This oxidatiou of the gluten, from whichever cause, and the transformation of the sugar into carbonic acid and alcohol, are two actions so correlated, that by an exclusion of the one, the other is immediately stopped."

The supcrficial ferment (Oberhefe in German) which covers the surface of the fermenting works, is gluten oxidised in a state of putrefaction; and the ferment of deposit is the gluten oxidised in a state of érémacausis.

The surface yeast, or barm, exceites in liquids containing sugar and gluten the same alteration which itself is undergoing, whereby the sugar and the gluten suffer a rapid and tumultuous metamorphosis. We may form an cxact idea of the different states of these two kinds of yeast by comparing the superficial tn vegetable matters putrefying at the bottom of a marsh, and the bottom yeast to the rotting of wond in a state of erémacausis, that is, of slow combustion. The peculiar condition of the elements of the sediment ferment causes them to act upon the elements of the sugar in an extremely the dissolved gluten.

If to wort at a temperature of from $46 \frac{1}{2}^{\circ}$ to $50^{\circ} \mathrm{F}$. the top yeast be added, a quiet slow fermentation is produced, but one accompanied with a rising up of the mass, while yeast collects both at the surface and bottom of the backs. If this deposit be removed to make use of it in other operations, it acquires by little and little the characters of the Unterhefe, and becomes incapable of excitiug the phenomena of the first fermenting period, causing only, at $59^{\circ} \mathrm{F}$., those of the second, namely, sedimentary fermentation. It must be carefully observed that the right Unterhefe is not the precipitate which falls to the bottom of backs in the ordinary fermentation of beer, but is a matter entirely differeut. Peculiar pains must be taken to get it genuine, and in a proper condition at the commencement. Hence the brewers of Hesse and Irussia, who wished to make Bavarian beer, found it more to their interest to send for the article to Wurtzburg, or Bamberg, in Bavaria, than to prepare it themselves. When once the due primary fermentation has been established and well regulated in a brewery, abundance of the true Unterhefe may be obtained for all future operations.

In a wort made to ferment at a low temperature with deposit only, the presence of the Untcrhefe is the first condition essential to the metamorphosis of the saccharum,
but it is but it is not competent to bring about the oxidation of the gluten dissolved in the plished at the cost of the atmospherical insoluble state. This change must be accom-

In the tendeney of soluble gluten to absorb oxygen, and in the free access of the air, all the conditions necessary for its éremacausis are to be found. It is known that the presence of oxygen and soluble gluten are also the conditions of acetification (vinegar making), but they are not the only ones; for this process requires a temperature of a certain elevation for the alcohol to experience this slow combustion. Hence, by excluding that temperature, the combustion (oxidation) of alcohol is obstructed, while the gluten alone combines with the oxygen of the air. This property does not belong to alcohol at a low temperature, so that during the oxidation in this case of the gluten, the alcohol exists alongside of it, in the same condition as the gluten alongside of sulphurous aeid in the mutcd wines. In wines not impregnated with the fumes of burning sulphur, the oxygen which would have combined at the same time with the gluten and the alcohol does not seize either of them in wincs which have been subjected to mutism, but it unites itself to the sulphurous acid to convert it into the sulphuric. The action called sedimentary fermentation is therefore merely a simultaneous metamorphosis of putrefaction and slow combustion; the sugar and the Unterhefe putrefy, and the soluble gluten gets oxidised, not at the expense of the
oxygen oxygen of the water and the sugar, but of the oxygen of the air, and of provisions is founded upon the same principle as the Bavarian process of fermentation, in which all the putreseible matters are separated by the intervention of the air at a temperature too low for the aleohol to become oxidised. By removiug them in this way, the tendency of the beer to grow sour, or to suffer a further change, is prevented. Appert's method ennsists in placing, in presence of vegetables or meat which we wish to preserve, the oxygen at a high temperature, so as to produce slow combustiou, but without putrefactiou or even fermentatiou. By removiug the residuary oxygen after the combustion is finished, all the causes of an ulterior ehauge are remored. In the sedimentary fermentation of beer, we remove the matter whieh experiences the cons-
bustion; whereas, on the contrary, in the method of Appert, we remove that which produces it.

The temperature at which fermentation is carried on has a very marked influence upon the quantity of alcohol produced. It is known that the juice of beets set to ferment between 86° and $95^{\circ} \mathrm{F}$. does not yield alcohol, and its sugar is replaced by a less oxygenated substance, mannite, and lactic acid, resulting frons the mucilage. In proportion as the temperature is lowered the mannite fermentation diminishes. As to azotised juices, however, it is hardly possible to define the conditions under which the trausformation of the sugar will take place, without being accompanied with another decomposition which modifies its products. The fermentation of beer by deposit demonstrates that by the simultaneous action of the oxygen of the air and a low temperature, the metamorphosis of sugar is effected in a complete manuer; for the ressels iu which the operation is carried on are so disposed that the oxygen of the air may act upon a surface great enough to transform all the gluten into insoluble yeast, aud thus to present to the sugar a matter constantly undergoing decomposition. The oxidisement of the dissolved gluten goes on, but that of the alcoliol requires a higher temperature, whence it cannot suffer acetification, or conversion into vinegar.
In several states of the German confederation, the favourable influence of a rational process of fermentation upon the quality of the becrs has been fully recognised. In beer and Duchy of Hesse considerable premiums were proposed for the brewing of who were able to prove ths pursued in Bavaria, which were decreed to those brewers kept six months in the casks witho product (neither strong nor highly hopped) had were being made, several thousand bat becoming at all sour. When the first trials ence led to the discovery of the true parrels were being spoiled, till eventually experiand prescribed.
Neither the richness in alcohol, nor in hops, nor both combined, can hinder ordinary beer from getting tart. In England, says Liebig, an immense capital is sacrificed to preserve the better sorts of ale and porter from souring, by leaving them for several years in enormous tuns quite full, and very well closed, while their tops are covered with sand. This treatment is identical with that applied to wines to make through the pores of thene. A slight trauspiration of air goes on in this case beer is so great, relatively to the the quantity of azotised matter contained in the cannot act upon the alcohol. And portion of oxygen admitted, that this element more than two months in smaller casket the beer thus managed will not keep sweet the Munich brewers is to conduct the farme which air has access. The grand secret of ture to permit of the acetification of the alcentan of the wort at too low a temperato be completely separated by the intervention, and to cause all the azotised matters the sacrifice of the sugar. It is ouly in March of the oxygen of the air, and not by is hegun to be made in Bavaria.
The following Table exhibits the results of the chemical examination of the undermentioned kinds of Beer :-

Name of the Beer.	Quantity in 100 parts hy weight.				A nalyst.
	Water.	Malt extr.	Alcohol.	Carb, acid	
Augustine double beer - Munich	88.36	8.0			
Salvator beer - do.	87.62	8.0	3.6 4.2	0.14 0.18	
ery - do.	88.64	$7 \cdot 2$	4.0	${ }_{0} 0 \cdot 16$	
Shenck (pot) beer, from a Bavarian country brewery; a kind small beer.	$92 \cdot 94$	4.0	$2 \cdot 9$	$0 \cdot 16$	Do.
Bock beer, of Brunswick, of the Bavarian kind.	88.50	6.50	$5 \cdot 0$		Balhorn
Lager (store) beer, of Brunswick, of the Bavarian kind.	91.0	$5 \cdot 4$	$3 \cdot 50$	- -	Balhorn. Otto.
Brunswick sweet small beer - Brunswick					Otto.
Brunswick mum - -	$59 \cdot 2$	$\begin{aligned} & 14.0 \\ & 39.0 \end{aligned}$	$\begin{aligned} & 130 \\ & 1 \cdot 80 \end{aligned}$	- $0 \cdot$	Do.

ecms to be quickened, a circurley is steeped till the acrospire, cmbryo, or seed-germ, which was attached to the foot-stalk, as also why a swelling at that end of the grain fingers against the thumb nail, a slight projection of on pressing a pile between two
long, however, as the sced-germ sticks too firm to the husk, it has not been steeped enough for exposurc on the under-ground malt-floor. Nor can deficient steeping be safely made up for afterwards by sprinkling the malt-couch with a watering-ean, which is apt to render the malting irregular. The steep-water should be changed repeatedly, according to the degree of foulncss and hardness of the barley; first, six hours after immersion, having previously stirred the whole mass several times; afterwards, in winter cvery 24 hours, but in summer cvery 12 hours. It loses none of its substance in this way, whatever vulgar prejudice may think to the contrary. After letting off the last water from the stone cistern, the Bavarians leave the barlcy to drain in it during four or six hours. It is now taken out, and laid on the eouch floor in a square heap, eight or ten inches high, and it is turned over, morning and evening, with dexterity, so as to throw the middle portion upon the top and bottom of the newmade conch. When the acrospire has become as long as the grain itself, the malt is carried to the withering (Welkboden) or drying floor, in the open air, where it is exposed (in dry weather) during from eight to fourteen days, being daily turned over three times with a winnowing shovel. It is next dried on a well-constructed cylinder or flue-heated malt-kiln, at a gentle clear heat, without being hrowncd in the slightest degree, while it turns friable into a finc white meal. Smoked malt is entirely rcjected by the best Bavarian brewers. Their malt is dried on a series of wove wire horizontal shelves, placed over each other, up through whose interstices, or perforations, streams of air, heated to only $122^{\circ} \mathrm{F}$., rise, from the surfaces of rows of hot sheetiron pipe-flues, arranged a little way below the shelves. Into thesc pipes the smoke and burned air of a little furnace on the ground are admitted. The whole is enclosed in a vaulted chamber, from whose top a large wooden pipe issues for conveying away the steam from the drying malt. Each charge of malt may be completely dried on this kiln in the space of from 18 to 24 hours, by a gentle uniform heat, whieh does not injure the diastase or discolour the farina.

The malt for store beer should be kept three months at least before using it, and be freed by rubbing and sifting from the acrospires before being sent to the mill, where it should be crushed pretty fine. The barley employed is the best distichon or common kind, styled Hordeum vulgare.

The hops are of the hest and freshest growth of Bavaria, called the fine spalter, or saatser Bohemian townhops, and are twice as dear as the best ordinary hops of the rest of Germany. They are in such esteem as to be exported even into France.
In Munich the malt is moistened slightly 12 or 16 hours before crushing it, with several months old. The mash-tun into which the malt is immediately eonvcyed is, in middle-sized breweries, a round oaken tub, about $4 \frac{1}{2}$ feet decp, 10 6000 Berlin quarts. Into this hottom and 9 at top, outside measure, containing about 6000 Bern of 25 quarts for each tun cold water is admitted late in the evening, to thound malt, which are then shot in scheffel, or 600 quarts for the 26 scheffels of with the oars and rakes, till a uniform paste and stirred about, and worked well abou for three or four hours; 3000 quarts of water is formed without lumps. It is left thus foil ; and 1800 quarts arc gradually run down being put into the copper and made to in it, producing a mean temperature of 142.5 F . into the mash-tun and worked about in it, pcopper has been kept full, 1800 additional After an hour's interval, during which the copptable mashing. The copper being now quarts of water are run into the tun, wrom the tun is transferred to $i t$, and brought emptied of water, the mash-mixture from stirring to prevent its settling on the bottom quickly to the boiling point, with carefur temperature for half an hour. When the and getting burned, and it is kept at no more stirring. This process is called, in $\mathrm{Ba}-$ mash rises by the ebullition, it eermaisch Kuchen. The mash is next returued to the varia, boiling the thick mash, diek A few barrels of a thin mash-wort are kept ready tun, and well worked about in it. A it is cmpticd of the thick mash. After a quarter to be put into the copper the moment of liquid filtered through the sieve part of the botton of an hour's repose the portion of put into the copper, thrown back boiling hot into of the tun into the wort-cistern is pore worked thoroughly. the mash in the tun, which is once fore workith water, which is made to boil for the

The copper is next cleared out, filled up wis' settling in the open tun, the worts are after, or small-beer, brewing. drawn off clear.

Into the copper, filled up one foot high with the wort, the hops are introduced, and the mixture is made to boil during a quarter of an hour. hops. The rest of the wort is now put into the copper, and bour a half. The mixture is laded out through during at least an hour or an hour and, wherc it stands three or four inches deep, and the hop-filter into the cooling cisterd, Wharts English measure.
is exposed upon an extensive surface to natural or artificial currents of cold air, so as to be quickly cooled. For every 20 barrels of Lagerbier there are allowed 10 of small becr ; so that 30 barrels of wort are made in all.

For the winter or pot beer the worts are brought down to about $59^{\circ} \mathrm{F}$. in the cooler, and the beer is to be transferred to the fermenting tuns at from 54.5° to $59^{\circ} \mathrm{F}$.; for the summer or Layerbier, the worts must be brought down in the cooler to from 43° to $45 \frac{1}{2}^{\circ}$, and put into the fermenting tuns at from 41° to $43^{\circ} \mathrm{F}$.
A few hours beforehaud, while the wort is still at the temperature of $63 \frac{1}{2}^{\circ} \mathrm{F}$., a quantity of lobb must be made, called Vorstellen (fore-setting) in German, by mixing the proportion of Unterhefe (yeast) intended for the whole brewing with a barrel or a barrel and a half of the worts, in a small tub called the Gühr-tiene, stirring them well together, so that they may immediately run into fermentation. This lobb is in this state to be added to the worts. The lobb is known to be ready when it is covered with a white froth from one quarter to one half an inch thick, during which it must he well covered up. The large fermenting tun must in like manner be kept covered, even in the vault. The colder the worts, the more yeast must be used. For the above quantity, at

From 57° to $59^{\circ} \mathrm{F}$.	-	-	-	-	6	Maas of Unterkefe.	
$"$	53° to 55°	-	-	-	-	8	$"$
$" 48^{\circ}$ to 50°	-	-	-	-	10	$"$	$"$
$"$	41° to 43°	-	-	-	-	12	$"$

Some recommend that wort for this kind of fermentation (the Untergährung) should be set with the ycast at from 48° to 57°; but the general practice at Munich is to set the summer or Lagerbier at from 41° to $43^{\circ} \mathrm{F}$.

By following the preceding directions, the wort in the tun should, in the course of froui 12 to 24 hours, exhibit a white froth round the rim, and even a slight whiteness in the middle. After another 12 to 24 hours, the froth should appear in curls; and, mass. In from 24 to 48 hours more the changed into a still higher frothy brownisli through the beer. so as to allow it to be sarm should have fallen down in portions turned over into the smaller ripening tuns in the points. In this casc it may be But when the worts have been set to ferment at from course of other five or six days. eight to nine days. The beer is transferred, after bein to $43^{\circ} \mathrm{F}$., they require from skimmer, by means of the stopcock near the botering freed from the top yeast by a Srst ruu into an intermediate vessel, in order thattom of the large tun. It is either well mixed, or into each of the Lager casks, in a nume top and bottom portions may be top and bottom portions are introduced. In the numbered series, like quantities of the be too low. The best keeping beer can never be bening cellars the temperature cannot worts at setting, and of course the fermenting brewed unless the temperature of the where this manufacture is carried on unting vault, be as low as $50^{\circ} \mathrm{F}$. In Bavaria, is preseribed by law, which is, for the under fermernment inspectors, a brewing period (29th September) to St. George (23rd April). From the lattcr to the Michaelunas the ordinary top-barm beer alone is to be madem the latter to the former period quite full, and they are to be closed merely with a loose ripening casks must not be working over of the ferment. But should the farme bung, in order to allow of the six or eight days, a little briskly fermenting fermentation appear too languid, after Lagerbier tuns are not to be quite filled, so as to prever may be introduced. The store heing discharged in the ripening fermen, so as to prevent all the yeasty particles from quite full, as this beverage is intended for speedy sale pot Lagerbier tuns must be made made.

As soon as the summer-beer vaults are ice-cold air, they are closed air-tight with charged with their ripening casks and with so that one may be entered and shut again before the having small intervals between, are somctimes made in ranges radiating from a centre next is opened. These vaults at right angles to a main gallery, so that in eithertre, and at others in rooms set off well secured with triple air-tight doors, it may be case, when the external opening is spect the interior without the admission of warm entered at any time, in order to inbungs for loosely stopping them must be coated with the beer-barrels. The wooden possibility of their imparting any acctous ferment.

Their government has taken great pins ferment. couraging the growth of the best qualities of hops ane this national beverage, by enthe beer is fermented, ripened, and kept, are holl and barley. The vaults in which excavations called Felsenkeller, or rock-cellars. called summer and winter. The latter is liglit, and, being inter divided into two sorts, in tankards, is termed Schankbier. The other, or the \boldsymbol{L} a intended for immediate retail
in vinous strength in proportion as it decreases in sweetness, by the judicious management of the Nachgälrung, or fermentation in the casks. In several parts of Germany a keeping quality is communicated to beers by burning sulphur in the casks before filling then, or by the introduction of sulphite of lime; but the flavour thus inparted is disliked in Munich, Bayrenth, Regensburg, Nürnberg, Hof, and the other chief towns of Bavaria, instcad of which a preservative virtue is sought for in an aromatic mineral, or Tyrol pitch, with which the inside of the casks are carefully coated, and in which the ripe becr is kept and exported. In December and January, after the casks are charged with the summer or store beer, the double doors of the cellars arc closed, and lumps of ice are piled up against them, to prevent all access of warm air. The cellar is not opened till next August, in order to take out the becr for consumption. In these circumstances the beer becomes transparent like champagne wine; and, since but little carbonic acid gas has been disengaged, little or none of the additionally generated alcohol is lost by evaporation.

The winter or shank (pot) beer is brewed in the months of October, November, March, and April; but the summer or store-becr in December, January, and February, or the period of the coldest weather. For the former beer, the hopped worts are cooled down only to from 51° to 55°, but for the latter to from 41° to $42 \frac{1}{2}^{\circ} \mathrm{F}$. The winter beer is also a little weaker than the summer beer, being intended to be sonner consumed ; since four bushels* (Berlin measure) of fine, dry, sifted malt, of large heavy Hordeum vulgare distiehon, affords seven Eimers of winter beer, but not more than from five and a half to six of summer beer. \dagger At the second infusion of the worts small beer is obtaived to the amount of 20 quarts for the above quantity of malt. For the above quantity of winter beer; 6 lbs . of middling hops are reckoncd sufficient; hut for the summer beer, from 7 to 8 lbs . of the finest hops. The winter beer may be sent out to the publicans in barrels five days after the fermentation has been completed in the tuns, and, though not quite clcar, it will become so in the course of six days; yet they generally do not serve it out in pots for two or three weeks; but the summer beer must be perfectly bright and still beforc it is racked off into casks for sale.

Bock Beer of Bavaria. - This is a favourite donble-strong heverage of tbe best lager description, which is so named from causing its consumers to prance and tumble about like a buck or a goat;-for the German word Bock has both these meanings. It is merely a beer having a specific gravity one-third greater, and is thcrefore made with a third greater proportion of malt, but with the same proportion of hops, and flavoured with a few coriander seeds. It has a somewhat darker colour than the general Lagerbier, occasionally brownish, tastes less bitter on intoxicating bevcrage. dominating malt, and is somewhat aromatic. It is an eminently to ferment and ripen; It is brewed in December and January, and takconged saccbarine matter and dextrinc but still it contains too large a quantity of unchitual topers, and is drunk only from for its hops, so that it tastes too luscious for when the fashion and appetitc for it are the beginning of May till the end of Juy, over for the year.

Zimmermann assumes the merit of having introduced Cas sufficient for 25 gallons of into the beer manufacture. He says that l ounce beer; and that it operates, not only in the act e the fermentation has begun. Whencooling, as also in the squares and backs before thmixture throws up the gluten and ever this change, however, takes place, the scum, which is to be skimmed off, so that moss to the surface of the liquid in a bich it. It oecasions the separation of much of the proper jeast may not be soiled with it. German brewers Pech (pitch).
the regetable slime, or mucilage, called by Clarifiers act either chemically,-by being
On the Clurifying or Clearing of Beers. soluble in the beer, and by forming aelatine and albumen, under one shape or other, and other viscid vegetable extracts; ge beer, the latter, as white of egg, for winc, - or have been most used; the former for bearticles through the turbid liquor, and, in their mechanically, by being diffused in fine parc floating vegetable matters. To this class precipitation earrying down with them the beasure, but not entirely), and other sucls articles. belong sand, bone-black (in some measurc, can takc down only such matters as exist The latter means arc very imperfect, ander class, milk, blood, glue, calves'-fect jelly, already in an insoluble state; of the forme chiefly recommended. Calves'-feet jelly hartshorn shavings, and isinglass, have beey, where veal forms so common a kind of is much used in many parts of Germany, wacquirc a putrid taint, and to impart the butcher-meat; but in summer it is apt to swollen and partly dissolved in vincgar,

* An English quarter of grain is equal to 5 bushels (sche.flumin schcofel is equal to 4 Berlin scheticls s
+1 Kimer Prusslan $=15 \frac{1}{4}$ English 1 mperial 1 h . Berlin $=1.031 \mathrm{l6s}$. Avvird.
1 Lib. Munich $=1 \cdot 235$ Eng. lbs. Avoird.;
or sour beer, is almost the sole clarifier, called finings, employed. It is costly, when the best article is used; but an inferior kind of isinglass is imported for the brewers.

The solvent or medium through or with which it is administered is eminently injudicious, as it never fails to infect the beer with an acetous ferment. In Germany their tart wine has been used hitherto for dissolving the isinglass; and this has also the same bad property. Mr. Zimmermann professes to have discovered an unexceptionable solvent in tartaric acid, one pound of which dissolved in 24 quarts of water is capable of dissolving two pounds of ordinary isinglass; forming finings which may be afterwards diluted with pure water at pleasurc. Such isinglass imported from Petersburg into Berlin costs there only $3 s$. per 1 lb . These finings are best added, as already mentioned, to the worts prior to fermeutation, as soon as they are let into the setting-back, or tun, immediately after adding the yeast to it. They arc best administered by mixing them in a small tub with thrice their volume of wort, raising the mixture into a froth with a whisk (twig-besom in German), and then stirring it into the worts. The clarification becomes manifest in the course of a few hours, and when the fermentation is completed, the beer will be as brilliant as can be wished ; the test of which with the German topers is when they can read a newspaper while a tall glass beaker of beer is placed between the paper and the candle. One quart of finings of the above strength will be generally found-adequate to the clearing of 100 gallons of well-brewed lager-beer, though it will be surer to use double that proportion of finings. The Carrageen moss, as finings, is to be cut in fine shreds, thrown into the boiling thin wort, when the flocks begin to separate, and before adding the hops; after which the boiling is continued for an honr and a half or two hours, as need be. The clarifying with this kind of finings takes place in the cooler, so that a limpid wort may be drawn off into the fermenting back.
Berlin White or Pale Beer (Weiss-bier).-This is the truly national beverage of Prussia Proper. It is brewed from 1 part of barley malt and 5 parts of wheat malt, mingled, moistened, and coarscly crushed between rollcrs. This mixture. is worked up first with water at $95^{\circ} \mathrm{F}$., in the proportion of 30 quarts per scheffel of the malt, to which pasty mixture 70 quarts of boiling water are forthwith added, and the whole is mashed in the tun. After it has been left here a little to scttle, a portion of the thin liquor is drawn off by the tap, transferred to the copper, and then for each bushel of malt there bopped wo it a decoction of half a pound of Altmark hops separately prepared. This tun, of which the temperature shoiling, is turned back with the lops into the mashthe wort is to be drawn off from the now be $162 \frac{10}{2}$ F., but not more. In half an hour are afterwards mashed with from 40 to 50 quarts of boiling water per scheffe grains and this infusion is drawn off and added to the former worts. The whole mixture is set at $66^{\circ} \mathrm{F}$., with a due proportion of top yeast or ordinary barm, and very noderately fermented.

Potuto Beer.-The potatocs being well washed are to be rubhed down to a pulp by such a grating eylinder machine as is represented in fig. 157 (p. 290), where a is the hopper for receiving the roots (whether potato or beet, as in the French sugar factories); b is the crushing and grinding drum ; c, the handle for turning the spur-whecl d, which drives the pinion e, and the fly-wheel $f ; g, h$, is the framc. The dotted lines above c are the colander through which the pulp passes. For every scheffel of potatoes 80 quarts of water are to be put with them into the copper, and made to boil.
Crushed malt, to the amount of 12 scheffels, is to be well worked about in the mashtun with 360 quarts, or 90 gallons (English), of cold water, to a thick pap, and then 840 additional quarts, or about 6 barrels (English), of cold water are to be successively introduced with constant stirring, and left to stand an hour at rest.
mash, thin and thick, is to meanwhile boiled to a fine starcli paste, the whole maltto be well stirred for an hour speedily laded into the copper, and the mixture in it is $156^{\circ} \mathrm{F}$. all the time, in order, taking care to keep the temperature at from 144° to present in the two substances into the diastase of the malt may convert the starch manifest by the white pasty liquid sugar and dextriue. This transformation is made happens the fire is to be raised, to becoming transparent aud thin. Whenever this 10 minutes. The fire is then withdrawn, mash boil, and to keep it at this heat for ferred into the mash, worked well there, ane contents of the copper are to be transwhich time the copper is to be washed and left to settle for half an hour ; during boiling water.

The clear wort is to be drawn off from the tun, as usual, and boiled as sonn as possible with the due proportion of hops; and the boiling water may be added iu any desired quantity to the drained mash, for the second mashing. Wort made in this "ray is said to have no flavour whatever of the potato, and to clarify morc casily
Vol.
than malt-wort, from its containing a smaller proportion of gluten relatively to that of saccharum.

A scheffel of good mealy potatoes affords from 26 to $27 \frac{1}{2}$ lhs. of thick well-boiled syrup, of the density of 36° Baumé (see Areometer); and 26 lbs of such syrup are equivalent to a scheffel of malt in saccharine strength. if not superior, to pure malt beer, both in brewed from potatoes quit
appearance and quality.

Fig. 158 is the stopeock used in 158

The following analyses of German becrs are by Leo:-

Alcohol Albumen Extract - Water	-		Lichtenhain.	Upper Weimar.	Ilmenau.	Jena.	Double Jena.
		-	$3 \cdot 168$	$2 \cdot 567$	3.096	3.018	2.080
			$0 \cdot 048$	$0 \cdot 020$	0.079	0.045	0.028
			$4 \cdot 485$	7.316	7.072	6.144	$7 \cdot 153$
			92.299	90.097	89.753	$90 \cdot 793$	90.739
			100.000	100.000	$100 \cdot 000$	$100 \cdot 000$	$100 \cdot 000$

Under the term extract, in these analyses, is meant a mixture of starch, sugar, dextrine, lactic acid, various salts, certain extractive and aromatic parts of the hop, gluten, and fatty matter.
The quantity of beer and ale exported from the United Kingdom amounted in 18.50 to 182,480 barrels, and in 1851 to 191,639; the declared ralue being respectively $558,794 l$., and 577,8741 .
In 1856 we Imported, according to the Board of Trade returns,

Of Mum -					Gallons.	
"Spruce	-	-	-	-	-	-
160						
"Ale	-	-	-	-	-	-
"	63,486					

While the Exports in 1856 from the United Kingdom were as follows :-

Countries to which sent.					Barrels.	Declared real
To Russia, Northern ports - Crimea Prussia the Hanse Towns France Turkey Java China (exclusive of Hong Kong) Cuha - United States Brazil Uruguay (Monté Video) Buenos Ayres Chili - Pera - Channel Islands - Malta - British Possessions in South Africa Mauritius Aden -• British East Indies Hong Kong- Australia British North Amcrica- British West India Islands, including British Guiana - other countries						
					3,256	
					2, 224 2,	$12,738$
					2,624 3,633	8,658
					4,601	15,739
					11,829	
					689	2,975
					987	4,024
					4,814	18,443
					31,765	140,067
					7,424	31,145
					1,705	3,150
					1,70.)	7.074
					2,448	10,182
					1,836	7,567
					3,533	10,088
					1,979	8,020
					7,298	30,340
					3,368	9,768
					2,176	3,927
					99,997	283,604
					2,131	8.596
					169,811	629,965
					7,951	31,694
					19,194	$\begin{aligned} & 62,9.54 \\ & 51.040 \end{aligned}$
					12,405	
					410,412	$\mathfrak{£} 1,474,844$

Our Exportation of Ale and Porter of all kinds, in 1857, being as follows :-

BEES' WAX. The solid matter forming the eells of the honey-eomb, secreted, aecording to Huber, by an organ situated in the abdomen of the bee. See Wax.

BEET ROOT. (Betterave, Fr.; rothe Rübe, Germ.) The large fleshy root of the beet, a plant of the genus Beta. There are two distinet species eultivated, each containing several varieties. One ealled Hortensis, producing succulentleaves only; the other, the Vulgaris, distinguished by its long fleshy root. The variety of the Vulgaris, known as the red bett, is mueh eultivated in our gardens, and uscd as a vegetable. The white beet is in mueh repute in Bclgium and France for the manufacture of sugar. Sec Sugar.

The common field beet, for eattle, whieh has been long known in Germany, was introduced into England at the latter end of the last century; and its introduction is generally attributed to the late Dr. Lettsom, a physician of great repute, and one of the Society of Friends. The German name is mangold wurzel, or mangold root, but is commonly pronounced mangel wurzel, which means searcity root; and, by a strange translation, it is ealled in French racine d'abondance, or root of plenty, as well as racine de disette, or root of scarcity. The name field beet is mueh more appropriate. -Penny Cycloprdia.
The analyses of Way and Ogston give the following Composition for two Varieties of the Beet Root, and the Analysis of Griepenkerl for another.

Substances contained.	Yellow Globe Mangold Wurzel.		Long Red Mangold Wurzel.		Red Beet.
	Root.	Leaves.	Root.	Leaves.	Root.
	25.54	$8 \cdot 34$	21.68	27.90	$51 \cdot 10$
Potassa -	25.54 19.08	12.21	$3 \cdot 13$	3.01	5
Soda -	1.78	$8 \cdot 72$	1'90	$8 \cdot 17$	$2 \cdot 45$
Lime -	1.75	$9 \cdot 84$	179	7.03	2.94 0.35
Magnesia	$0 \cdot 74$	$1 \cdot 46$	$0 \cdot 52$	0.96 4.60	$3 \cdot 31$
Sesquioxide of Iron	$3 \cdot 68$	$6 \cdot 54$	3.14 1.40	$2 \cdot 26$	$0 \cdot 19$
Sulphuric Acid -	$2 \cdot 22$	$2 \cdot 35$	1.40 15.93	6.45	
Silica - -	18.14	$6 \cdot 92$	15.23 1.65	$5 \cdot 19$	10.77
Carbonic Acid -	$4 \cdot 49$	$5 \cdot 89$ $37 \cdot 66$	1.65 49.51	34.39	$17 \cdot 04$
Phosphorie Acid -	24:54	37•66	49.51	34	
Chloride of Sodium -	$99 \cdot 96$	99.95	99.95	99•96	$99 \cdot 99$
Total amount Per-centage of ash in the dry	99.96	14.00		17.90	7. 8
Per-centage of ash substance	11.32	14.00	$7 \cdot 10$ 0.64	1790 1.79	
Per-centage of ash in the fresh	1.02	$1 \cdot 40$	$0 \cdot 64$	179	

The quantity of beet root used in the Zollverein States of Germany in the manufac-
ture of sugar was as follows:-
For the year $1849-50$ - $-\quad$ - $\quad 11,525,678$
For the year $1849-50$ - - - $16,000,000$
" $\begin{aligned} & 1850-51 \\ & 1851-52\end{aligned}$ - - - - 20,000,000
" 1851-52 - $"$ in different localities, from 100 to 112 avoirdupois pounds.
The centner varies, in different loealities, from 100 to 112 avoirdupois pounds.

Centners.

BELLADONA. (Belledame, Fr.) The Atropa Belladona, or deadly nightshade. BELL METAL, an alloy of copper and tin. See Copper.
BELLL-METAL ORE. Sulphide of Tin. (Etain sulphuré, Haüy; Zinnkies, Hausmann.)
The composition of the ordinary variety of this ore is,

Copper	-	-	-	-	-
Iron	-	-	-	-	-
Tin	-	-	-	-	-
Sulpbur	-	-	-	-	-
30.5					
99.0					

It is found in many of the Cornish mines, and especially at those of Carn Brea.
BELLOWS. See Metallurgy
BELLS. Churcb bells are said to have been originated in Italy; but bells were certainly cast at a very early period in the East. They were evidently used by the ancient Egyptians, and at a very early date amongst the Cbinese. All tbe more celebrated bells are manufactured of bronze, or bell-metal (these alloys are described under tbeir
respective heads) respective heads).

The following are the weights of a few of the largest bells:-

			lbs
The great bell of Moscow	-		443,772
Another bell in tbe			127,836
Ditto ditto, cast in			39,827
The bell in the cathedral, Paris			112,000
Ditto ditto Vienna			38,800
The bell in the church at Erfurt			39,648
Great Tom of Oxford			
Ditto Lincoln			
The bell of St. Paul's, London	-		

The Big Ben of the New Houses of Parliament having proved a failure, evidently from defective casting, tbe broken fragments of the metal presenting great inequalitics, and exhibiting a very porous structure, requires no special notice: of tbe bell which is to succeed it, we know as yet notbing. Mr. Dennison, to whom Government intrusted tbe construction of the bell, makes the following remarks on the form of bells in his lecture at the Royal Institution :-
"Now, from tbese and other experiments, I bave come to the conclusion that bells of tbe common and well-known sbape, with a thick lip or sound bow, are the most effective known instruments for producing a loud and musical sound, such as you confess, also, tbat after trging public clock, or put up a peal of church bells. And I bells of the usual general form, but with satisfied tbat there is notbing to be gained by deviation in the details, I am equally lisbed proportions of the best old bells. An deviating materially from the estabviews to tell you that Professor Wbeatstone, havinink it is some confirmation of my of Works witb Sir C. Barry, on his own sumgestion been commissioned by the Board Paris Exbibition respecting tbe most esteemed chime to collect information at the late whether there are in those countries makers or wbo have applied the discoveries of scienceainted with the traditions of the art, effcient substitutes for them, has come back science to the improvement of bells, or to substitutes have been discovered; nor is there tbe conclusion that no such efficient lished mode and materials for easting tbem. Sir C . wn improvement on the cstabbave been rather impressed with the merits. Sir C. Barry and he, indeed, secm to seen noticed in the newspapers. I have not heard th-stcel bells, whicb you have such condemnation of their harsbncss of sound from them myself, but I have heard experience in such matters, that I do not the from other persons, of probably more generally as an efficient (though they may be a believe in their being received expensive compound of coppcr and tin; and be a chcap) substitute for the more fessor Wheatstonc's opinion also." ; and, on the whole, that seems to be Pro. In 1856, we exported of Bells and Bell Metal:-

Cwts.
315 -
Declared Value,

BENGAL STRIPES. Ginghams; a kind of cotton cloth woven with coloured stripes, so called from the coloured cottons which we formerly imported from Bengal.

BEN NUTS. (Ben noix, Fr.; Salbnusse, Gcrm.) The tree which furnishes these nuts is the Guitundina morinya of Linnæus, a native of India, Ceylon, Arabia, and Egypt.

BEN OIL. The oil of ben, which may be obtained from the decorticated nuts, is said to be far less liable than other oils to become raucid, and hence it is much used by watchmakers. At a low temperatnee, the oil of ben separates into two paris-one solid and one fluid; the latter only is used for watch-work. On account of its freedon from rancidity, oil of ben is used by Parisian perfumers to form the
basis of the huiles BENZIDINE, (${ }^{244} H^{12}$ Na 2) An
agents on arzobenzide and azoxibenzel, C. G. W.
BENZOIN, or BENJAMIN. (Benjoin, Fr.; Benzöe, Germ.) A species of resin, used chicfly in perfumery; improperly called a gum, since it is quite insoluble in water. It is cxtracted by incision from the trunk and branches of the Styrax benzoin, or Lithocarpus benzoin, which grows in Java, Sumatra, Santa Fé, and in the kingdom of Siam. The plant belongs to the Decandria monogynia of Linnæus and the natural family of the Elcnacecr. The benzoin flows in small quantities spontaneously from the trees; but it is collected by making incisions in the stem, just below where the branches are given off, as soon as the tree has attained an age of five or six years. These incisions are repeated each year for about twelve years, when the tree becomes exhausted. The resin flows out as a white fluid. It hardens readily in the air, and comes to us in brittle masses, whose fracture presents a mixture or red, brown, and white grains of various sizes, which, when white, and of a certain shape, have been called umpgdaloid, from their resemblance to almonds. The benzoe in sortis is very impure, containing portions of wood and bark.

The fracture of benzoin is conchoidal, and its lustre greasy; its specific gravity varies from 1.063 to 1.092 . It has an agreeable smell, somewhat like vanilla, which is most manifest when it is ground. It enters into fusion at a gentle heat, and then exhales a white smoke, which may be condensed into the acicular crystals of benzoic acid, of which it contains 18 parts in the hundred. Ether does not dissolve benzoin completely. The fat and volatile oils dissolve very little of it.

Unverdorben has found in benzoin, besides benzoic acid and a little volatile oil, no less than three diffcrent kinds of resin, none of which has, however, been turned, as yet, to any use in the arts.

Benzoin is principally used in perfumery; it enters into a number of preparations, among which may be mentioned fumigating pastilles, fumigating cloves (called also nails), poulre à la muréchule, \&cc. The alcoholic tincture, mixed with 20 parts of rose-water, forms the cosmetic virginal milk. Benzoin enters also into the composition of eertain varnishes employed for snuff-boxes and walking-sticks, in order to give these objects an agreeable smell when they berome heated in the hand. It is likewise added to the spirituous solution of isinglass, with which the best court-plaster is made.

BENZOIO ACID. ($\mathrm{C}^{14} \mathrm{H}^{5} \mathrm{O}^{3}$) This acid may be obtained by placing benzoin powdered with sand in an evaporating basin, and above it a paper cap; on applying heat carefully to the sand, acid vapours arise from the resin, and they are deposited in the form of fine light crystals with the paper cap. Stolze recommends the following process for extracting the acid:-The resin is to be dissolved in three parts of soda disthe solution is to be introduced into a retort, and a solution of carbonate of soutralised; solved in dilute alcohol is to be gradually ade the weight of the benzoin is to be poured and then a bulk of water equal to distillation, the remaining liquor contains the in. The alculhol being drawn of by be skimmed off and washed, when its weight acid, and the resin floating upout 80 per cent. of the raw material. The benzoin contains traces of a volatile oil, and a substance soluble in water, at least throngh the ngency of carbonate of potash. There are several other methods for obtaining benzoic acid, deseribed in Ure's "Dictionary of Chenistry." Benzoic acid has no special use in the arts. BENZOLE. Syn. Benzine, benzene, been shown by Mansfield to consist chiefly more volatile portion of coan naph in a great number of reactions in which organic of this substance. It is prodiced aneraturcs. It may at once be obtained in a state bodies are exposed to high tempid with excess of quicklime. The lime acts by of purity by distilling benzoic acid wid from the benzoic acid. The method of removing two equivalents of carbtha will be found fully described under the head of
obtaining benzole from coal naphth obtaining benzole from coal naphtha will be

Naphtha Coal. Benzole is also contained in eonsiderable quantity in bone oil; but it is accompanied by peculiar nitrogenised volatile fluids, which are difficult of removal. The latter, owing to their powerful and fetid odour, greatly injure the quality of the hone-oil benzole. Benzole is an exceedingly volatile fluid, boiling at ordinary pressures at $187^{\circ} \mathrm{F}$. Its density is 0.850 . Owing to the levity of benzole being regarded by manufacturers as a proof of its purity, it is not uncommon to find it adulterated with the naphtha from the Torbanehill mineral, or Boghead coal, which has a density as low as 0.750 . Any benzole having a lower density than 0.850 is impure. Benzole is excessively inflammable, and its vapour mixed with air is explosive. Numerous lives have been lost owing to these properties, among them that of Mr. Mansfield, to whom we are indebted for an excellent investigation on eoal naphtha. Benzole is greatly used in commerce, owing to its valuable solvent properties. It dissolves caoutchouc and gutta percha readily, and, on evaporation, leaves them in a state well adapted for waterproofing and many other purposes. Its power of dissolving fatty, oily, and other greasy matters, has caused it to become an article of commerce under the name of benzoline. It readily extracts grease even from the most delicate fabrics, and, as it soou, on exposure to the air, evaporates totally away, no odour remains to betray the fact of its having been used. It dissolves readily in very strong nitric acid, and, on the addition of water, it is precipitated as a heavy oil, having the composition $\mathrm{C}^{12} \mathrm{H}^{5} \mathrm{NO}^{4}$. The latter compound is nitrobenzole; it is regarded as benzole in which one equivalent of hydrogen is replaced by hyponitric acid. Nitrohenzole, in a state of tolerable purity, is a pale-yellow oil, having a sweetish taste. and an odour greatly rescmbling bitter almonds. Owing to its comparative cheapness, it is employed iu perfumery. Nitrobenzole can be prepared with nitric acid of moderate strength, such as is ordinarily obtained in commerce; but it then become necessary to distil the acid and the hydrocarbon together several times. The product so obtaiued is darker in colour, and in other respects inferior to that obtained with highly concentrated aeid. By treatment with acetate of protoxide of iron, nitrobenzole becomes transformed into aniline. This change may be effected, but far less conveniently, by means of sulphide of ammonium. Benzole is extremely valuable in many operations of manufacturing chemistry. It dissolves several alkaloids, and, on evaporation, leaves them in a state of purity. It dissolves quinine, but not cinchonine, and may therefore he employed as a means of separation. Morphia and strychniue are also dissolved by it, but not in great quantity. To obtan many natural alkaloids existing in plants, it is merely neeessary to digest the dry extrace with caustic potash and then with benzole. The latter is to be decanted, and then distilled off on a waterbath. The alkaloid will be left behind in a state well adapted for crystallisation or other means of purification. Benzole is becoming much used as a solvent in researches in organic chemistry. Many substances, such as chrysene and biehloride of naphthaline, crystallise better from benzole than from any otlier solvent.
Benzole may be employed in many ways for illuminatiug purposes. It is so easily inflamed that great care is necessary in using it. It docs not require a wick to enable fire like a train poured, even on an uninflammable surfaee and a light be applied, it takes of smoke, which, soon condensing burns with a brilliant flame, emitting deuse clouds on the surface of water it burns as freely as anywhere else. If a drachm or twen poured on water eontained in a pan, and a pellet of potassium be drachm or two be zole inflames, and rises in a column of flame of considerable height. A method of destroying enemies' shipping has been founded on this principle. In consequence of the smoky nature of the flame of benzole (caused by the comparatively larger percentage of carbon), it is often convenient to burn a mixture of one volume of benzole and two volumes of alcohol. A stream of air driven through benzole becomes so inflammable as to serve for the purposes of illumination. For this mode A machine hy trocarbon, it should be kept slightly warm to assist its vaporisation. houses. The air is driven through the benzole by has been employed to illuminate motive power being a descending weight. When quite pure, benzole freezes aght. hling camphor. The raass retains the solid a beautiful snow white substance, resemreaehed. This property of solidifying under the influence of cold of 40° or 41° is use of to produce pure benzole from the more volatile portion of cold may be made obtain it perfectly pure, it should be frozeu at least portion of coal naplitha. To solidifying being removed by filtration through calieo. The times, the portion not tains hydrocarbons, homologous with olefiant gas. Benzole dissolves free iodine and bromine, gas. separate them from kelp and other substances containine them used in analysis to be set free before aeting with the hydroearbon. The prem. They must of course
may casily be demonstrated, cven when present in very small quautity, by converting it into aniline, and obtaining the characteristic reaction with chloride of linc. For this purpose the mixture is to be dissolved in couceutrated nitric acid and the nitrobenzole precipitated by water. The fluid is then agitated with ether, which dissolves the nitrocompound. The cthercal solution is mixed with an cqual bulk of alcohol and hydrochloric acid: a little granulated zinc being added, hydrogen is cvolved, and, by acting in a nasecnt state on the nitro-compound, reduces it to the state of aniline. The base is then to be separated hy an excess of potash, and the alkaline fluid is shaken with ether to dissolve the basc. The ethereal fluid being evaporated, leaves the anilinc. Ou adding water and then a few drops of solution of chloride of line, the purple colonr indicative of aniline is immediately produced. (Hofmann.) The writer of this article has by this process detected minute traces of benzole in mixtures consisting alnost entirely of homologues of olefiant gas.-C. G. W.
BERBERINE. ($\mathrm{C}^{49} \mathrm{H}^{19} \mathrm{NU}^{10}$) A vegetable alkaloid, which appears to he the colouring principle of the harherry (Berberis vulgaris); it is also found in Colombo root (Cocculus palmatus).-C. G. W.
BERGAMOT. (Beryamote, Fr.) The Citrus bergamia, a citron cultivated in the centre and south of Europe. By distillation from the rind of the fruit is obtained the well-known essence of bergamot. This essential oil and the fruit are principally obtained from Florence and Portugal. See Oils, Essential.

BERGAMOT. A coarse tapestry, said to have been invented at Bergamo, in Italy, made of ox and goats' hair, with cotton or hemp.

BERLIN BLUE. A fine variety of the Prussian hlue (which see).
BERRY. The term is commonly applied, not only to small fruit, hut in some cases to seeds. The following is Professor Lindley's definition of a herry :-"A succulent or pulpy fruit containing naked seeds, or, in more technical language, a succulent or pulpy pericarp, or sced-vessel without valves, containing several seeds, which are naked, that is, which have no covering hut the pulp and rind. It is commonly round or oval. But in popular language, berry extends only to smaller fruits, as strawberry, gooseberry, \&c., containing seeas or granules. An indehiscent pulpy pericarp, many celled and many seeded; the attachment of the seeds lost at maturity, and the seeds remaining seattered in the pulp."

Berries are used in some of the processes of manufacture, but they are not of much importance.

Bay Berries. - The fruit of the Laurus nobilis, or the sweet hay. Both the leaves and the fruit are employed as flavourings. A volatile oil, the oil of sueet bay, is obtained by distillation with water; and a fixed oil, hy bruising the berries, and boiling them for some hours in water; this oil, called also Laurel fut, is imported from Italy.

Turkey Yellow Berries. - The unripe fruit of the Rhamnus infectorius. They are used in calico printing, producing a lively but fugitive yellow colour.
Persian Yellow Berries. - These are said to he produced hy the same specics of plant; but the colour is considered more permanent, and they fetch higher prices.

Berrics of Avignon. - Another name given to the Turkey and Persian berries.
Juniper Berries. - The fruit of the Juniperus communis. They are chiefly used for flavouring gin and some spirituous cordials, and in the preparation of some pharmacentical articles, as the oil of juniper and the compound spirits of juniper.

Bear Berry. - The fruit of the Uva ursi. The leaves only are used medicinally.
Myrobolans.- The fruit of a tree which grows in India. It has a pale-yellow colour When new, hut hecomes darker hy age, and then resembles dried plums. It contains tanuin, and has hence been used in dyeing.

In 1856 we imported:-

			Cwts.	
Berries	Bay -	Computed		
Real Value.				

BERTHOLLETIA. A plant of the natural order Lecythidea, the Bertholletia excelsa. It is a tree of large dimensions, forming cxtensive forests on the banks of the Orinoco. The Portngucse of Para have for a long time driven a great trade with the nuts of this tree, which the natives call Iuvia, and the Spa for Euglaud and Lisbon. send cargocs to French Guiana, whence they are shipped for Eughad aud

The kernels yield a large quantity of oil well suited for lamps.-Humboldt and Bonpland.
BERYL. (Béril, Fr.; Beryl, Germ. ; Smaragd, Ital.) A beautiful mineral or gem, usually of a grcen colour of various shades, passing into honey yellow and sky blue.
Beryl and emerald are varieties of the same species, the latter including the rich green transparent specimens which owe their colour to oxide of chrome; the former those of otber colours produced by oxide of iron. Gmelin gives the composition of beryl as:-

Silica	-	-	-	-	-	-	-	-	6970
Alumina	-	-	-	-	-	-	-	-	1760
Glucine	-	-	-	-	-	-	-	-	1339
Red oxide of iron	-	-	-	-	-	-	-	0.24	

"Beryls of gigantic size have been found in the United States, at Acworth and Grafton, New Hampshire, and Royalston, Mass. One beryl from Grafton weighs 2900 lbs.; it is 32 inches through in one direction, and 22 in another transverse, and is 4 feet 3 inches long. Auother crystal from this locality, according to Professor Hubbard, measurcs 45 inches by 24 in its diameters, and a single foot in length; by calculation, weighs 1076 lbs., making it, in all, nearly $2 \frac{1}{2}$ tons. At Royalston, one crystal exceeded a foot in length." - Dana.
False Beryls of Commerce. - Some of the natural crystals of phosphate of lime are introduced as beryls. The Apatite is sometimes called the Saxony beryl. The Chrysolite, known by the Gcrmans as the Pierre d'Asperge, is also sold as the beryl.
Fluor spars of different colours are sold as false beryls, false emeralds, false ametlysts, and false topazes. These are fluate of lime.
BETEL. A compound, in universal use in the East, consisting of the leaf of the betel-pepper, with the betel-nut, a little catechn, and some chunam (lime obtained by calcining shells). This is almost universally used throughout central and tropical Asia; the people are unceasingly masticating the betel.
BETEL-LEAF. The leaf of the pepper vine (P iper betel). This plant is extensively cultivated throughout tropical Asia, and forms a large and important article of Eastern traffic.

BETEL-NUT, or ARECA. The fruit of the Areca catechu, which is caten both in its ripe and its unripe state.

BEUHEYL. A mining term, signifying a living stream. It is applied by the tin miners to any portion of a lode or of the rock which is impregated with tin. -
BEZOAR. (The most probable etymology of the word is from the Persian Pâd$z a h r$, i. e. expelling poison. - Penny Cyclopedia.) A concretion found in the stomach of animals of the goat kind; it is said to be especially produced by the Capra gazella. The finest bezoar is brought to India from Borneo and the shores of the Persian Gulf. The Capra Egagrus, or wild goat of Persia producing this concretion, which, by way of eminence, was called the Lapis bezoar orientalis. The bezoars, which were supposed to cure all diseases, have been found, by the analyses of Fourcroy and Vauquelin and of Proust, to be nothing more than some portions of the food of the animal agglutinated into a ball with phosphate of lime.
Fossil bezoar is found in Sicily, in sand and clay pits. They are concretions of a purple colour around some, usually organic, body, and the size of a walnut. Fossil bezoar is sometimes called Sicilian earth; and it appears to be of a similar character to Armenian bole.

Bezour Mineral. - An old preparation of the oxide of antimony.

BICARBONATES. The ordinary carbonates of potash and soda have a strong alkaline reaetion and caustic taste, making them unfit for many purposes where a soluble carbonate is required. Moreover, there are many uses to whicl they are applied, rendering it desirable that as large an amount of gas as possible should be given off on the addition of a stronger acid.

Bicurbonate of Potash. - There are several modes of converting the carbonate into bicarbonate. The most economical is by exposing the salt to a current of carbonic acid. For this purpose some manufacturers place it, slightly moistencd, on stoneware trays, and allow the vapours of burning coke to travel slowly over it. The sources of the gas used in this manufacture will vary according to the locality in which it is undertaken. It is not unusual to produce it by the action of sulphuric acid on limestonc. The gas generated in fermentation has been employed, and even that which in some places issues from the earth. The bicarbonate of potash is far less soluble than the carbonate, as it requires four parts of cold water for solution, whereas the carbonate dissolves in 0.9 of its weight of water at $54^{\circ} \mathrm{F}$. Consequently, if a strong
solution is saturated with carbonie aeid, the biearbonate erystallises out. When common pearl ashes arc dissolved in water, and the gas is passed in, a large quantity of a white preeipitate is often thrown down; it eonsists chiefly of siliea, but often contains alumina and other matters. Considerable heat is developed when moistened carbonate of potash is exposed to a current of carbonie aeid gas. When earbonate of potash is dissolved in water, and gradually treated with acctic aeid, so as to form aeetate of potash, by no means the whole of the carbonie aeid is expelled, and a point very pure biearbonate of a Biearbonate of potash is usually tolcrably pure manner erystallizcd, all the large. purities remain in the mother-liquor, and on theoretieal amount of residue is left, viz. 69.05 per cent. Crystallised biearbonate of potash always contains one equivalent of water, its formula being $\mathrm{KO}, 2 \mathrm{CO}^{2}$ +HO .

Bicarbonate of Soda. - This salt is obtained by the same methods as the salt of potash. The erystals have a corresponding formula to the potash salt; namcly, $\mathrm{NaO}, 2 \mathrm{CO}^{2}+\mathrm{HO}$. It requires about 13 parts of water at 60° to dissolve it. When pure, 100 parts leave $63 \cdot 18$ of $\mathrm{NaO}, \mathrm{CO}^{2}$ on ignition.

The bicarbonates of potash and soda lose earbonie aeid by the boiling of an aquens solution.

Modern theoretieal chemists regard earbonic acid as being bibasic, the true formula being $\mathrm{C}^{2} \mathrm{O}^{4}$, instead of CO^{2}. There ean be little doubt that this view is the eorreet oue, and it has the advantage of explaining why the biearbonates are neutral instead of aeid salts. Moreover, $\mathrm{C}^{2} \mathrm{O}^{4}$ corresponds to 4 volumes, like organie substanees generally; whereas, if we assume CO^{2} as one atom of the gas, we are compelled to admit a 2 -volume formula . - C. G. W.

BIDERY. An Indian alloy of eonsidcrable interest, named Bidery from Bider, a city N.E. of Hyderabad. Many articles are made, remarkable for eleganee of form and for gracefully-engraved pattcrns. Although the groundwork of this eomposition appears of a blaekish colour, its natural tint is that of pewter or zine.

Dr. Heyne says it is composed of, copper, $16 ;$ lead, $4 ; \operatorname{tin}, 2$; and to every 3 ounees of alloy 16 ounees of spelter (that is, of zine) are added, when the alloy is melted for use. To give the esteemed blaek colour and to bring ont the pattern, it is dipped in a solution of sal ammoniae, saltpetre, common salt, and blue vitriol. Dr. Hamilton saw, zinc, 12,360 grains; eopper, 400 ; and lead, 414 ; melted ent ealcinatior a mixture of resin and bees' wax introdueed into the erueible to preven alcination; it was then poured into moulds of baked elay, and the articles handed over to be turned in a lathe.

Though called bidery, and sometimes vidry, it is manufaetured in other places. In some parts of the Nizam's dominions, specimens were obtained, for the Exhibition of 1851, of great beauty.
Bidery docs not rust, yields little to the hammer, and breaks only when violently beaten. According to Dr. Hamilton, bidery is not nearly so fusible as zine or tin, but melts more easily than eopper. - Dr. Royle, Lecture on the Great Exhibition.

BIJOUTRY. (Bijouterie, Fr.) Jewellery;-the manufaeture of and dcaling in jewellery. This work is not the plaee in. whieh to deseribe the almost endless variety of artieles whieh come under this denomination. The prineipal places for the manufaeture, in England, are Birmingham and London. The trade in jewellery forms one of the most important branehes of Freneh commerec ; on whieh a Freneh writer says: "La bijouterie est une des branehes les plus importantes du eommeree français, et c'est elle qui constate, de la manière la plus évidente, notre superiorité dans les arts du dessjn et les progrès toujours eroissans de l'industrie Parisienne. Dans cette partie essentielle, elle n'a pas de rivaux, et elle rend tributaire de notre pays presque toute l'Europe, et une grande partie de l'Asie et de l'Amérique."

The ordiuary practice has been to divide articles of this eharaeter into two prineipal kinds - fine jewellery, and false jewcllery (bijoutier on fin and bijoutier en funx). Another division, among the Freneh jewellers espceially, has been to adopt four classes: 1, fine jewellery, whieh is all gold; 2 , silver jewellery; 3 , false jewellery; and, 4 , jewellery of steel or iron.

In the article Alloys will be found the quantity of the baser metal whieh is permitted to be combined with gold; aud also the proportions of the alloys forming the brasses whieh are employed in the fulse jewellery.

Under their respeetive heads the true gems will be deseribed (sec Diaronn, Emerald, \&e.) ; and under Gems, Artificial, the initations of them; many of the false, so nieely representing the pceuliarities of the true gems as to deeeive even the praetised eye. The hardness is, however, an unfailing test; if, therefore, any gem is
found to be scratehed with a steel file, we may depend on its being artificial. See also Pearls. Artificial; Lapidary Work; Glass, \&c.

BILE. (Bile, Fr.; Galle, Germ.) The seereted liquor of the liver in animals.
Bilc (ox's) is composed, according to Berzelius, of :-

Thenard's analysis gives:-

Streeker and Mulder have published two treatises on ox-gall. The two views advocated by these chemists will be found in the "Annual Report of the Progress of Chemistry of Liebig and Kopp," translated by Hofmann and De la Rue.

The analyses of Benach ("Ann. Ch. Phar.") give the following as the composition of the gall of several animals:-

Dr. Ure says a substance may be tested for bile by dropping into it two-thirds of its bulk of oil of vitriol very slowly, so that the heat does not exceed 122° F., adding a few drops of syrup, and shaking the mixture, when it should assume a deep violet hue.

Heintz remarks (Poggendorff's "Annalen "), that the change of colour sometimes produeed - for it does not appear always - by nitric acid in liquids containing bile (first green, then blue, violet, red, and lastly, yellow), is occasioned only by the colouring matter, which Berzelius has named cholepyrrhin, and not by the essential constituents of the bile, and ean therefore be regarded only as a test for the presence of this substance.
For the chemical examination of bile, see "Dictionary of Chemistry;" for its uses in the arts, see Gall.

BIRDLIME. (Glu, Fr.; Vogelleim, Germ.) The best birdlime may be made from the middle bark of the holly boiled seven or eight hours in water till it is soft and tender. then laid by heaps in pits under ground, and covered with stones after the water is drained from it. There it must be left during two or three weeks, to ferment in the summer season, and watered, if neeessary, till it passes into a mucilaginous state. It is then to be pounded in a mortar to a paste, washed in running water, and kneaded till it be free from extraneous matters. It is next left for four or five days in earthen vessels to ferment and purify itself, when it is fit for use. Birdlime may be made by the same proeess from the inistletoe (Viburnum Lantana), young shoots of elder, and the barks of other vegetables, as well as from most parasitical plants.
Good birdlime is of a grecnish eolour and sour flavour, somewhat resembling that of linseed oil-gluey, stringy, and tenacious. By drying in the air it beconics brittle, and may be powdered; but its viscosity may be restored by moistening it. It contains resin, mucilage, a little free acid, colouring and extractive matter. The resin has been called viseine.

Macaire lias examined a substance which exudes from the receptacle and involucre
of the Alractylis gummifera, and describes it as the pure matter of birdlime, whieh he calls viscine. Common birdlime may be regarded as a mixture of viscine, vegetable mucilage, and vinegar.

The mistletoe yields a peculiar viscid gluey substance, consisting of a green wax and birdlime.

BISCUITS. Biscuit baking constitutes two separate branches of manufacture, namely, that of ordinary biscuit, or, so to speak, biscuit "proper," for maritime purposes, and that of fancy biscuits. Ordinary, or sailors', biscuit consists of only flour and water kneaded into a paste, cut in the proper shapc, docked, and baked in an oven ; fancy biscuits consist also of flour and water, but with an addition of butter, sugar, eggs, spices, or "flavourings," all or eitber of them according to the kind.

Sbips' biscuits are now made by macbinery, and one of the reasons for this has been that the manual preparation of them was too slow and too costly during the Frencb war. A landsman knows very little of the true value of a biscuit: with a seaman, biscuit is the only bread tbat he cats for months togetber. There are many reasons wby common loaves of bread could not be used during a long voyage : because, containing a fermenting principle, they would soon become musty and unfit for food if made previous to the voyage, while the prcparation of them on board ship is subject to insuperable objections. Biscuits contain no leaven, and, when well baked throughout, they suffer little change during a long voyage.

Tbe allowance of biscuit to each seaman on board a queen's ship is a pouud per day (averaging six biscuits to the pound). The supply of a man-of war for several months is, consequently, very large ; and it often happened during the long war that the difficulty of making biscuits fast enough was so great, that at Portsmouth waggon loads were unpacked iu the streets and conveyed to the ships.

We shall now describe the mode of making biscuits by hand, and afterwards speak of the improved method. The bakehouse at Gosport contained nine ovens, and to each was attached a gang of five men, - the "turner," the "mate," the "driver," the "breakman," and the "idleman." The requisite proportions of flour and water were put into a large trough, and tbe "driver," with his naked arms, mixed the whole up together into the form of dough - a very laborious operation. Tbe dough was then taken from the trough, and put on a wooden platform called the break: on this platform worked a lever called tbe break-staff, five or six inches in diameter, and seven feet long; one end of this was loosely attached by a kind of staple to the wall, and the breakman, riding or sitting on the otber end, worked tbis lever to and fro over the dough by an uncouth jumping or shuffling movement. When the dough had become kneaded by this barbarous method into a tbin sheet, it was removed to the moulding board and cut into slips by means of an enormous knifc; these slips were then broken into pieces, each large enough for one biscuit, and then worked into a circular form by the hand. As each biscuit was shaped it was handed to a second workman, who stamped the king's mark, the number of the oven, \&cc., on the biscuit. The biscuit was then docked, that is, pierced with holes by an instrument adapted to
the purpose. The finishing part of the process was one in which remarkable dexterity was displayed. A man stood before the open door of the oven, having in his hand the handle of a long shovel called a peel, the other end of which was lying flat in the oven. A nother man took the biscuits as fast as they were formed and stamped, and jerked or threw them into the oven with such undeviating accuracy that they should always fall on the peel. The man with tbe peel then arranged the biscuits side by side over the whole floor of the oven. Nothing could exceed (in manual labour alone) the regularity with which this was all done. Seventy biscuits were thrown into the oven and regularly arranged in one minute, the attention of each man beiug vigorously directed to his own department; for a delay of a single second ou the part of any one man would have disturbed tbe whole gang. The biscuits do not rcquirc many minutes' baking; and as the oven is kept open during the time that it is being filled, the biscuits first thrown in would be overbaked were not some precaution taken to prevent it. The moulder tberefore made those which were to be first thrown into the oven larger thau the subsequent ones, and diminished the size by a nice gradation.

The mode in which, since about the year 1831, ships' biscuits have been made by machinery invented by T. T. Grant, Esq., of the Royal Clarence Yard, is this:- The meal or flour is conveyed into a hollow cylinder four or five feet long and about three feet in diamcter, and the water, the quantity of which is regulated by a gauge, admitted to it; a shaft, armed with long knives, works rapidly round in the cylinder, with such astonishing effect that in the short space of six minutes, 450 lbs . of dough are produced, infinitely better made than that mixed by the naked arms of a man. The dough is removed from the cylinder and placed under the breaking rollers; these latter, which perform the office of kneading, are two in number, and weigh 15 cwts , each;
they are rolled to and fro over the surface of the dough by means of machinery, and in five minntes the dough is perfectly kneaded. The sheet of dough, whicb is about two inches thick, is then cut into pieces balf a yard square, wbicb pass under a second set of rollers, by which each piece is extended to the size of six feet by tbree, and reduced to the proper thickness for biscuits. Tbe sheet of dough is now to be cut up into biscuits; and no part of the operation is more beautiful tban the mode by wbich tbis is accomplished. The dough is brought under a stamping or cutting-out press, similar in effect, but not in detail, to tbat by which circular pieces for coins are cut out of a sheet of metal. A series of sharp knives are so arranged that, by one movement, they cut out of a piece of dough a yard square about sixty hexagonal biscuits. The reason for a hexagonal (six-sided) shape is, that not a particle of waste is thereby occasioned, as the sides of tbe hexagonals accurately fit into tbose of the adjoining biscuits, whereas circular pieces cut out of a large surface always leave vaeant spaces between. Tbat a flat sheet can be divided into hexagonal pieces without any waste of material is obvious.

Eaeh biscuit is stamped with the queen's mark, as well as punctured with holes, by the same movement which cuts it out of tbe piece of dough. The hexagonal cutters do not sever the biscuits completely asunder, so that a wbole sheet of tbem can be put into tbe oven at once on a large peel, or shovel, adapted for the purpose. About 15 minutes are sufficient to bake them ; they are then withdrawn and broken asuuder by tbe hand.
Tbe corn for the biscuits is purchased at the markets, and cleaned, ground, and dressed at the Government mills; in quality it is a mixture of fine flour and middlings, the bran and pollard being removed. The oveus for baking are formed of fire-brick and tile, with an area of about 160 feet. About 112 lbs . weight of biscuits are put into the ovens at once. Tbis is called a suit, and is reduced to about 110 lbs . by the baking. From 12 to 16 suits can be baked in each oven every day, or after the rate of 224 lbs . per bour. The men engaged are dressed in clean check shirts and white linen trousers, apron, and cap, and cvery endeavour is made to observe the most scrupulous cleanliness.
We may now make a few remarks on the comparative merits of the hand and the machine processes. If the meal and tbe water with which the biseuits are made be not thoroughly mixed up, tbere will be some parts moister than others. Now, it was formerly found tbat the dough was not well mixed by tbe arms of the workman; the consequence of which was, that the dry parts became burnt up, or else tbat the moist parts acquired a peculiar kind of hardness which the sailors called "flint:" these defects are now removed by the thorough mixing aud kneading which the ingredients reccive by the macbine.

We have seen that 450 lbs . of dough may be mixed by the macbine in three minutes and kneaded in six minutes; we need hardly say how much quicker this is than men's hands could effeet it. The biscuits are cut out and stamped 60 at a time, instead of singly: besides the time thus saved, the biscuits become more equally baked, by the oven being more speedily filled. The nine ovens at Gosport used to employ 45 men to produce about 1500 lbs . of biscuit per hour ; 16 men and boys will now produce, by the same number of ovens, 2240 lbs . of biscuits (one ton) per hour.
Tbe comparative expense is thus stated:-Under the old system, wages and wear and tear of utensils cost about $1 s .6 d$. per cwt . of biscuit; under the new system, the
The bakehouses at Deptford, Gosport, and Plymouth could produce 7000 or 8000 tons of biscuits annually, at a saving of $12,000 l$. per annum from the cost under the old system. Tbe advantages of machine-made over hand-made biscuits, tberefore, are many -quality, cleanliness, expcdition, cheapness, and independence of Government contractors.
Fig. 159 represents the biscuit machinery as executed beautifully by Messrs. Rennie, engineers. a is the breaker roller, table, and toller; b, the finishing roller, table, and roller ; $c c$, docking machines for stamping out the biscuits; d, mixing bevel mitre wheels to dough; e, spur pinion to engine shaft ; f, spur-wheel; $g g$, mixing machine ; i i i, ditto for upright motion; $h h$, bevel wheels for working the h, the crank shaft; $l l$, connecting rods; $n n$, clutcbes for connecting either balf of the pendulums for giving motion to rollers;

The manufacture of fancy biscuits, which in former to the other. pastry-cook and confectioner, has of late years assumed times was confined to the several firms are now exclusively engaged in this branch considerable importance, and which are sold under an extraording "plain biscuit, arrow-root, captain, brown meal names. Some of these, namely, the \&c., are intelligible enough; but, if we except "A bernethy bisay, vanilla biscuits,"
cracknels," with the names of which the publie, from long usage, are familiar, the rest of the products of the modern biscuit baker, "Africans, Jamaiea, Queen's routs,

ratafias, Bath and other sorts of olivers, exhibition, rings and fingers, pie-nics, cuddy," \&c., \&cc., forms a list of upwards of eighty fanciful names, all expressive of artieles of different form, appearance, and taste, made of nearly the same materials, with but little variation in the proportion in which they are used,- the prineipal ingredients in all being flour and watcr, butter, milk, eggs, and caraway, nutmeg, cinnamon, or mace, or ginger, or essence of lemon, neroli, or orange-flower water, ealled, in tech. nical language, "flavourings." The kneading of these materials is always performed by a kneading or mixing machine. The dough or paste produced is passed several times between two revolving cylinders adjusted at a proper distance, so as to obtain a flat, perfectly homogeneous mass, slab, or sheet. This is transferred to a stamping or cutting machine, consisting of two eylinders, through which the sheet of homogeneous paste has to pass, and by which it is laminated to the proper thickuess, and at the same time pushed under a stamping and doeking frame, whieh cuts it into discs, or into oval or otherwise shaped pieces, as oceasion may require. The stamps or cutters in the frame being internally provided with prongs, push the cut pieees of dough, or raw cakes, out of the cutting frame, and at the same time dock the cakes, or cut pieces, with a series of holes, for the subsequcnt escape which, but for these vents, would distort and spoil to so regulated as to be perfeetly the oven. The temperature of the oven just at such a heat as is sufficient to give uniform, neither too high nor too For such a purpose the hot water ovelı of Mr. the biscuits a light brown colour. The best that can possibly be uscd. (See Bread.) Perkins, or that of Mr. Roland, is the Roland's oven ofage that, by turning the serew, the sole of the oven can be brought nearer to the top, and a temperature is thus obtained suitable for baking thoroughly, without burning, the thinncst cakes.

One of the most eurious branches of the baker's craft is the manufacture of gingerbread, whieh contains sueh a proportion of molasses trcacle, butter, common potashes, means of yeast. Its ingredients arc flour, molasses or trcacle, butter, common potashes,
and alum. After the butter is melted, and the potashes and alum are dissolved in a little hot water, tbese three ingredients, along with the treaele, are poured among the flour wbieb is to form the body of the bread. The whole is then incorporated by mixture, and kneading into a stiff dough. Of these five constituents the alum is the least essential, althougb it makes the bread lighter and erisper, and renders the proeess more rapid; for gingerbread, dough requires to stand over for several days, some 8 or 10, before it aequires tbe state of porosity whieh qualifies it for the oven; tbe action of the treaele and alum on the potashes, in evolving earbonie aeid, seems to be the gassifying prineiple of gingerbread; for if earbonate of potash is withheld from the mixture, the bread, when baked, resembles, in hardness, a pieee of wood.

Treacle is always acidulous. Carbonate of magnesia and soda may be used as substitutes for the potashes. Dr. Colquhoun has found that earbonate of magnesia and tartarie aeid may replace the potashes and the alum witb great advautage, affording a gingerbread fully more agreeable to tbe taste, and mueh inore wholesome than the coramou kind, whieh contains a notable quantity of potashes. His proportions are 1 lb . of flour, $\frac{1}{4}$ of an ounee of earbonate of magnesia, and $\frac{1}{8}$ of an ounee of tartarie aeid, in addition to the treaele, butter, and aromaties, as at present used. Tbe aeid and alkaline earth must be well diffused tbrough the whole dough ; the magnesia sbould, in faet, be first of all mixed with the flour. The melted butter, the treaele, and the aeid dissolved in a little water, are poured all at onee amongst the flour, and kneaded into a eonsistent dough, whieh being set aside for half an hour or an hour, will be ready for the oven, and should never be kept unbaked for more than 2 or 3 hours. The following more eomplete reeipe is given by Dr. Colquhoun for making thin gingerbread cakes :- Flour 1 lb., treaele $\frac{1}{2}$ lb., raw sugar, $\frac{1}{4} \mathrm{lb}$., butter 2 ounces, earbonate of magnesia $\frac{1}{4}$ ounce, tartarie aeid $\frac{1}{8}$ ounee, ginger $\frac{1}{8}$ ounee, cinnamon $\frac{1}{8}$ ounee, nutmeg 1 ounee. This eompound has rather more butter tban common thin gingerbread. In addition to these, yellow ochre is frequeutly added by eheap gingerbread makers, and altogether this preparation, more generally consumed by ehildren, is very objeetionable.
"Puff-paste" is a preparation of flour and butter, which is in great demand not only at the pastry-cooks', but in almost every private family. Take a eertain quantity of flour, say half a pound, put it upon a wooden board, make a hole or depression in the eentre, and mix it witb somewhat less than half a pint of eold water, so as to make a softisb paste; dry it off from the board by shaking a little flour over and under, as is well lsnown, but do not "work it" more than you ean help. Take now a quarter of a pound of fresh butter, whieh should be as hard as possible (and therefore it sbould be kept in as cold a plaee as praetieable, the iee eloset, if proeurable, being the best plaee), and squeeze out all tbe water, or butter-milk wbieh it eontains, by kneading it with one hand on the board. This operation is ealled in French " manier le beurre." Roll now the paste prepared as above into a flat, thiek, square slab, extending about 6 or 7 inehes; lay the pat of butter, treated as abore, in the middle of tbe slab of paste, and so wrap the butter up into it by folding the sides of the paste all round over it; roll tbe whole mass gently with the rolling-pin, so as to form a tbiek sbeet, put it upon a tin plate, or tray, eover it with a linen eloth wetted witb water as eold as possible, and leave the whole at rest for about a quarter of an hour in a cold place. At the end of that time, roll the mass with the rolling-pin into a sheet about 15 or 16 inehes long, and fold it into three, one over the other; roll it before, and ro a sheet as before, and again fold it into three, one over the other, as square mass, witb a we operation onee more, making three times in all. Put the as before, and at tbe end of that time in a eold plaee for another quarter of an hour, three, one over the other, af tbat time roll it out with the rolling-pin, and fold it into whieb the paste is ready for use. Care must be taken, during the rollines in all, after to dust the board and the paste with a little flour, to prevent stieking. The paste may now be placed in the dish, or tins, in whieh it is to be baked, taking The paste the protruding edges witb a pointed and sharp knife, so as to leave the paste are to eut witb a clean eut edge, for otherwise it will not puiff up or swell. The tbiek edges of pies and tarts arc made by cutting strips of the paste with the lnife tiek edges of laying tbem on all round, taking care to leave the edges quite sharp, and earefully artieles are then put in an oven, previously brought tos quite sharp. The prepared vapour disengaged from the butter and water will at one good heat, and the elastic into parallel layers of great tenaeity, water will at onee eause the paste to swell since eaeh of these thin lumine is eompaet apparently light, but really very heavy, It is essential to the sueeess of the operation, and distinet. Puff-paste is indigestible. -A . N .

BISMUTH. (Bismuth, Fr.; Bismuth, Germ.) The following are the pit ores of bismuth ; the first is the source of the metal nsed in the arts :

Bismuth, Native, is whitish, with a faint reddish tingc, and a metallic lustre which is liable to tarnish. Streak, silver-white. Hardness, 2 to 2.5 ; specific gravity, 9.727 It is brittle when cold, but slightly malleable when heated. It gencrally occurs in a dendritic form. It fuses readily at $476^{\circ} \mathrm{F}$. Beautiful crystals can be formed artificially by fusion and subsequent slow cooling.

Native bismuth has been found associated with other minerals: in Cornwall, at Huel Sparnon, near Redruth, when that mine was worked; at Trugoe Minc, near St. Colomb (Greg), and at the Consolidated Mines, St. Ives, Caldbeck Fells, in Cumberland, with ores of cobalt.

Bismuthine, or sulphuret of bismuth, occurs either in acicular crystals, or with a foliated, fibrous structure. It is isomorphous with stibnite. Hardncss, 2 to 2.5; specific gravity, 6.4 to 6.9 . It is composed of bismuth, 81.6 ; sulphur, 18.4 . It fuses in the flame of a candle.

Bismuthine occurs in Cornwall, at Botallack, and associated with tin at St. Just, and with copper at the mines near Redruth and Camborne.

Bismuth Ochre.-A dull earthy mineral, found in the Royal Restormel Iron Mine, and in small quantities in the parish of Roach, in Cornwall. Its composition is stated by Lampadius to be:-

to be :-							
Oxide of bismuth	-	-	-	-	-	-	86.4
Xide of iron	-	-	-	-	-	-	-
4.1							
Carbonic acid	-	-	-	-	-	-	-
3.1							

Telluric Bismuth.-Tetradymite,-occurs in Cumberland, at Brandy Gill, Carrock Fells (Greg). Its composition is :-

Its composition is :							
Bismuth	-	-	-	-	-	-	-
Tellurium	-	-	-	-	-	-	-
Sulphur	-	-	-	-	-	-	-
Selenium -	-	-	-	-	-	-	-
Sen							

Selenium -
Acicular Bismuth.-Aikinite - called also Needle Ore, and the plumbo-cupriferous sulphide of bismuth - is composed of sulphur, 16 ; bismuth, 34.62 ; lead, 35.69 ; copper, 11.79.

Carbonate of Bismuth. - Bismutite. This ore is composed of a mechanical mixture of the carbonates of bismuth, of iron, and of copper.

Cupreous Bismuth. - Tannenite, is sulphur, $18 \cdot 83$; bismuth, $62 \cdot 16$; copper, $18 \cdot 72$. This metal is also found associated with selenium and tellurium.
Bismuth, which was known as Marcasite and as tin glance, was shown to be a metal "somewhat different from lead" by G. Agricola, in 1546. It was studied by Stahl and Dufay; and still more minutely by Pott and Geoffroy, about the middle of the last century.

This metal, the demand for which is limited, is chiefly procured in Saxony, from the mines of Schneeberg; where it occurs mixed with cobalt speiss, in the proportion of about 7 per cent. In the metallurgical works at Schneeberg the metal is obtained by means of a peculiar furnace of liquation. This furnace is represented in figs. 160 and 161 , of which the first is a view from above, the second 160 ; a, is the ash-pit; fig. 162 is a transverse section on the dotted the grate, of masonry or brickwork, upon b, the fire-place; c, the eliquation pipes; dire-door, e e. The anterior deeper-lying which the fuel is thrown through 161

orifice of the eliquation pipes is elosed with the clay plate, f, which has beneath a small eircular groove, through which the liquefied metal flows off; g is a wall extend ing from the beartb-sole nearly to the anterior orifiees of the liquation-pipes, int whieb wall tbere are as many fire-holes, h, as there are pipes in the furnace; i are iron pans which receive the fluid metal; h, a wooden water-trough, in wbich the bismuth is granulated and cooled; l, the posterior and bigher lying apertures of the eliquation pipes, sbut merely with a sbeet-iron cover. The granulations of bismuth drained from the posterior openings fall upon tbe flat surfaces m, and then into the water-trougb. n, n are draught-holes in tbe vault between the two pipes, which serve for increasing or diminisbing the heat at pleasure:
The orcs to be eliquated (sweated) are sorted by hand from the gangue, broken into pieces about the size of a hazel nut, and introduced into the ignited pipes; one charge consisting of about $\frac{1}{2} \mathrm{cwt}$.; so tbat the pipes are filled to balf their diameter, and threcfourtbs of their length. The shcet-iron door is shut, and tbe fire strongly urged, whereby the bismuth begins to flow in ten minutes, and falls tbrough the holes in the elay-plates into hot pans containing some coal-dust. Whenever it runs slowly, the ore is stirred round in the pipes, at intervals during half an hour, in wbich time the liquation is usually finisbed. The residuum, ealled bismuth barley (Graupen), is scooped out with iron rakes into a water trough; the pipes are eharged afresh; the pans, when full, have their contents east into moulds, forming bars of from 25 to 50 lbs. weight. About 20 cwt . of ore are smelted in 8 hours, with a consumption of 9300 lbs lic cubic feet of wood. Tbe total production of Schneeberg, in 1830, was 9800 lbs. The bismuth tbus proeured by liquation upon the great scale contains freed by solutixture of arsenic, iron, and some other metals, from whicb it may be nitrated oxide by black flux aeid, preeipitation by water, and reduction of the subred heat, under cbarcoal, arsenic is expelled.
Bismutb is white, and resembles antimony, but has a reddish tint; whereas the latter metal has a bluish cast. It is brilliant, crystallises readily in small cubieal facets, is very brittle, and may be easily reduced to powder. Its specific gravity is melts at $480^{\circ} \mathrm{F}$., and may be with eare, the density may be increased to 9.8827 . It moment it begins to solidify, the temperature below this point witbout fixing; but the till the whole mass is congealed. When beated from 32° to continucs stationary length. When pure it affords a very valuable means of a to 212°, it expands $\frac{1}{}$ in ranged thermometers. At strong heats bismutheans of adjusting the scale of bighvessels, and is thus obtained in crystalline laminæ.

The alloy of bismuth and lead in equal parts has tban the mean of tbe constituents; it bas a foliated a density of 10.709 , being greater colour as bismutb. Bismuth, with tin, forms a texture, is brittle, and of the same than the tin itself, aud is tberefore forms a componnd more elastic and sonorous 1 of bismuth and 24 of tin, the alloy is soently added to it by the pewterers. With brittle. Whan much bisnutb is present, it may malleable; with more bismuth it is acid, which dissolves the tin, and leaves the may be easily parted by strong muriatic said that an alloy of tin, bismuth, niekel, and silver hindeck powder. It has heen Erdmann's Journal. Tbe alloy of bismuth with tin and lead was first examined by Sir I. Newton, and has been called ever since fusible metal. Tbe French give to this alloy the name of metal fusible de D'Arcet, and thus claim for him the merit of the discovery of it. $202^{\circ} \mathrm{F}$. ; but 2 of bismule and 3 of tin, melted at the moderate temperature of Rose. A small addition of meread, and 1 of tin, melt at $200.75^{\circ} \mathrm{F}$., aecording to casts of anatomical preparations. An alloy of 1 bismutb pewterers; and tbe same has tin, aud 1 lead, is employed as a soft solder by the Cake-noulds for tbe manufacture of toiled as a bath for tempering steel instruments. excellent cliches for stcreotype, of 3 lcad, 2 tin, and made of the same metal; as also at $199^{\circ} \mathrm{F}$. Tbis compound should be allo tin, and 5 bismuth -an alloy which melts it becomes of a doughy consistence, before it is a cool upon a piece of pasteboard till impress of tbe stamp.
The employment of plates of fusite tops of stcam boilers has been proposed in as safety rondelles, to apertures in the give way at elcvations of temperature under those whe, because they would melt arid of the vessel, the fusibility of the alloy heing proportiould endanger the bursting required for the cngine. It bas been found, howeroportioned to the quality of steam in this way, burst, while the safety dises remained, entire ; boilers, apparently seeured VoL. I.
the stean causing explosion so suddenly, that the fusible alloy had not time to melt or give way.

There are two, perhaps three, oxides of bismuth ; the first and the third, or the sub-oxide and super-oxide, are merely objects of chemical curiosity. The oxide proper occurs native, and may be readily formed by exposing the metal to a redwhite heat in a muffe, when it takes firc, burns with a faint blue flame, and sends off fumes which condense into a yellow pulverulent oxide. But an casicr process than that now mentioned is to dissolve the bismuth in nitric acid, precipitate with water, and expose the precipitate to a red heat. The oxide thus obtained has a straw-ycllow colour, and fuses at a ligh heat into an opaque glass of a dark-brown or black colour ; but which becomes less opaque and yellow after it has cooled. Its specific gravity is as high as 8.211 . It consists of 89.87 of metal and 10.13 of oxygen in 100 parts. The above precipitate, which is a sub-nitrate of bismuth, is called pearlwhite, and is employed as a flux for certain enamels, as it augments their fusibility, imparting any colour to them. Hence it is used sometimes as a vehicle of the colours of other metallic oxides. When well washed, it is employed in gilding porcelain; being added in the proportion of one-fifteenth to the gold. But pearl-white is most used by ladies, as a cosmetic for giving a brilliant tint to a faded complexiou. It is called blanc de furd by the French. If it contains, as bismuth often does, a little silver, it becomes grey or dingy coloured on exposure to light. When the oxide is prepared, by dropping the nitric solution into an alkaline lye in excess, if this precipitate is well washed and dried, it forms an excellent medicine; and is given, mixed with gum tragacanth, for the relief of cardialgia, or burning and spasmodic pains of the stomach.

A nother sort of pearl-powder is prepared by adding a very dilute solution of common salt to the above nitric solution of bismuth, whereby a pulverulent sub-chloride of the metal is obtained in a light flocculent form. A similar powder of a mother-of pearl aspect may be formed by dropping dilute muriatic acid into the solution of nitrate of bismuth. The arsenic always present in the bismuth of commerce is converted by nitric acid into arsenic acid, which, forming an insoluble arseniate of bismuth, separates from the solution unless there be such an excess of nitric acid as to re-dissolve it. Hence the mcdicinal oxide, prepared from a rightly-made nitrate, can contain no arsenic. If we write with a pen dipped in that solution, the dry invisible traces will become legible on plunging the paper in water.

It has been proposed to substitute bismuth for lead in assaying silver, as a smaller quantity of it answers the purpose, and, as its oxide is more fluent, can therefore penetrate the cupel more readily, and give a more rapid result. But, independently of the objection from its high price, hismuth has the disadvantage of boiling up, as well as of rocking or vegetating, with the silver, when the cupellation requires a high heat. In extracting the silver from the galcna found in the copper-mine of Fahlun, it has happened sometimes that the silver concreted towards the end of the operation, and produced a cauliflower excrescence, which had to be cupelled again with a fresh dose of lead. It was observed that, in this case, a portion of the silver had passed iuto the cupel. Berzelius detected in a sample of silver thus concreted the presence of bismuth.

The nitrate of bismuth, mixed with a solution of tin and tartar, has been employed as a mordant for dyeing lilac and violet in calico printing.

Through the investigations which have been made by Dr. Faraday into the magnetic conditions of bodies, several new and remarkable conditions have been discovered. These may be familiarly explained, by stating that one class of bodies is influenced by magnets, as iron is, being magnetic. That is, if a bar of iron was hung up between the poles of a horse-shoe magnet, it would arrange itself along the line which unites the two poles; which line has been called the axial line. But if another class of bodies be selected, bismuth being at the head of this class, and suspended in the same way between the poles of the magnet, they arrange themselves across the axial line, or, as Faraday has termed it, equatorially, these bodies bcing called in distinction dia-magnetic bodies. See Magnetism, for a further account of these phenomena.

Bisinuth may be regarded as the most remarkable of the dia-magnetic bodies, standing, indced, at the head of the class, in the same way as iron does at the head of the magnetic ordcr of substanccs.*

In Ure's "Dictionary of Chemistry" will be found various methods for the determination of bismuth. The following processes, however, appear so uscful as to warrant their insertion in this place:- To detect small quantities of lead in bismuth, or in bismuth compounds, Chapman brings the somewhat flattened bead, reduced

- Consult De la Rlve's Treatisc on Electricity, translated by Charles V. W゚alker, E.R.S.
bcfore the blowpipe, in contact with some moist basic nitrate of teroxide of bismuth, when, in a short time, in consequence of the reduetion of the bismuth by the lead, arborescent sprigs of bismuth are formed around the test specimen. Since zinc and iron interfere with this reaction, they must be previously removed, the former by fusion with soda, the latter with soda and borax, in the redueing flame.

Lead and bismuth can easily be quantitatively separated from each other by the following method, proposed by Uligren:- The solution of the two metals is precipitated by carbonate of ammonia, and the earbonates are then dissolved by acetic acid, and a blade of pure lead, the weight of which is aseertaiued beforeband, is plunged in the solution. This blade must be eompletely immersed in the liquor. The vessel is then corked up, and the experiment is left for several hours at rest. The Iead preeipitates the bismuth in the metallic form. When the whole of it is precipitated the blade of lead is withdrawn, washed, dried, and weighed. The bismuth is collected on a filter, washed with distilled water which has been previously boiled, and cooled out of contaet of the air ; this metal is then treated with carbonate ammonia, and the preeipitate which is left, after washing and ignition, is then weighed. The total loss of the metallic lead employed indieates how much oxide of lead must be subtracted from the total weight of the protoxide of lead obtained.-E. Peligot's Edition of Rose.
Oxide of bismuth can be separated, by means of sulphohydric aeid, from all the oxides which cannot be precipitated from an acid solution by this reagent. Yet, when the precipitate of sulphide of bismuth is intended to be made by means of sulphohydric acid, it is necessary to take care to dilute with water the solution of the oxide of bismuth. But as the solutions of bismuth are rendered milky by water, acetic acid should first be added to the liquor, whieh prevents its beeoming turbid when water is poured into it. - Rose.

The mines of Schneeberg produce annually about 4000 kilogrammes; those of Johann-Georgenstadt and the cobalt mines of Saxony, about 600 kilogrammes-equal to about 10,500 a voirdupois pounds.

In 1856, we exported of BisMuter, 5 cwts ; declared value, $62 l$.
BISTRE. (Bistre, Fr.; Bister, Germ.) A brown colour whieh is used in watercolours, in the same way as China ink. It is prepared from wood-soot, that of beech being preferred. The most compact and best burned parcels of soot are collected from the chimney, pulverised, and passed through a silk sieve. This powder is infused in pure water, and stirred frequently with a glass rod, then allowed to settle, and the water decanted. If the salts are not all wasbed away, the process may be repeated with warm water. The paste is now to be poured into a long narrow vessel filled with water, stirred well, and left to settle for a few minutes, in order to let the grosser parts subside. The supernatant part is then to be poured off into a similar vessel. This process may he repeated twice or thriee, to obtain a very good bistre. At last the settled deposit is sufficiently fine, and, when freed from its supernatant water, it is mixed with gum-water, moulded into proper eakes and dried. It is not used in oil painting, but has the same effect in water-eolours as browu pink has
in oil.
Dr. MacCulloeh objects to soot as a source of bistre, both from the carelessness used in collecting it, and the uncertainty of tone and colour. If the liquids resems bling tar, obtained from the distillation of wood, be again earefully distilled, water, aeetic aeid, and hydro-earbonous substances, as naphtha, pass over, and leave a residuum - brown or blaek, pitch-like, or brittle-according to the time and temperature employed; by prolonging the heat with care, tbe brittle substance becomes a powder.

By the use of alkalis it is rendered soluble. If the oils and acids have not been removed, it is apt to colleet in little flocks, which, being suspended by gum, does not allow of the fine uniform tint desired in water-colours. Dr. MacCulloeh states that, hy care, bistre from wood tar may be obtained, having the fine properties of sepia
with great deptb of colour.
The remarkable bronze-like varnish, with almost a metallic lustre, seen upon the interior of highland cottages, arc bistre deposits from the smoke of peat. consist of bodies which may (Amer, Fr.; Bitterstoff, Gcrm.) The "bittcr principles" of watcr, alcohol, or ether. These are not of much importanee in the arts, with agency exceptions.

Lupulin. - For example, the bitter principle of the hop is used for preserving beer. It is a reddish-yellow powder, obtained from hops by digestion in alcohol, which is evaporated; then the extraet is dissolved in water, and the fluid saturated with lime. This is cvaporated, and the residuary mass trcated with alcohol or etber: Gcntianin, that of gentian, \&e.

For particulars of these, and numerous other bitter principles, see Ure's "Dictionary of Chemistry."
The following list contains the principal bitter substances, most of which have been used in the arts and in medicine :-

Name.	Part employed.	Country.	Observations.
Quassia -	Wood	Surinam, E. Indies Great Britain	Powerfully bitter Ditto
Wormwood	Herb	South Africa	Ditto
Aloe -	Bark -	South America	Ditto
Angustura	Unripe fruit -	South of Europe	Aromatic bitter
Orange -	Peel -	Ditto - -	Ditto
Acorus	Root	Ditto - - -	Ditt
Carduus benedictus	Herb	Greek Archipelago	Ditto
Casearilla	Bark - -	Jamaica ${ }^{\text {Great }}$ Britain	
Centaury	Herb	Ditto -	Ditto
Camomile	Flowers	Levant	Intolerably bitter
Colocynth	Fruit	East Africa -	Very bitter
Colombo -	Herb	Great Britain	Ditto
Fumitory		Switzerland -	Ditto
Gentiana lntea-	Root	Great Britain	Nauseous
Ground ivy	Peel	Ditto	With tannin
Walnut -	Peel	Ditto	With starch
Iceland moss Hops -	Scales of the female flowers.	Ditto -	Aromatic
Milfoil	Herb flowers -	Ditto - -	
Large-leaved satyrion	Herb -		Disagreeable odr.
Rhubarb - -	Root -	Great Britain	Bitter and sharp
Rue	Herb flowers	Ditto - -	Bitter \& offensive
Tansy -	Herb flowers	Ditto	
Bitter trefoil Simarouba	Bark	Guiana -	
Simarouba Bryony -	Root	Great Britain	seous.
Coffee -	Seeds	Arabia	Agreeable

BITTER SPAR. A carbonate of lime and a carbonate of magnesia. See Dolomite.

BITUMEN, or ASPHALTUM. (Bitume, Fr.; Erdpech, Germ.) A black substance found in the earth, externally not dissimilar to coal. It is composed of carbon, hydrogen, and oxygen, like organic bodies; but its origin is uncertain. It has seldom been observed among the primitive or older strata, but abundantly in the secondary and alluvial formations.

Bitumen comprises several distinct varieties, of which the two most important are asphaltum and naphtha. Asphaltum of a black, or brownish-black, colour, with a conchoidal brilliant fracture.

Naphtha.-Liquid and colourless when pure, with a bituminous odour. There are also the earthy, or slaggy mineral pitch-paral tar. variety, containing much naphtha, known to the ancients. It was used by them, com-

Bitumen in all its varieties was ko. Not only do we find the ruined walls of temples bined with lime, in their buildings stones cemented with this material, but some of the and palaces, in the East, with the sore found to hold bitumen in the cement by which old Roman castles in this country rigentum it was burnt in lamps, and called "Sicilian their stoncs arc secured. At Agr embalming.- Dana.
oil." The Egyptins used it for ember
Springs of which the waters contain a mixture of petrolcum, and the various minerals allied to it-as bitumen, asphaltum, and pitch-are very numerous, and are, in many cases, undonbtedly connected with subterranean lieat, which sublime the more subtle parts of the bituminous matters contained in rocks. Many springs in the territory of Modena and Parma, in Italy, produce petrolean the Burman empire the most powerful perhaps yet known are those of Irawadi, in the Burman empire

In one locality there are said to be 520 wells, which yield annually 400,000 logsheads of petroleum.

Fluid bitumen is seen to ooze from the bottom of the sea on both sides of the island of 'Trinidad, and to risc up to the surfaee of the water. It is stated that, about seventy years ago, a spot of land on the western side of Trinadad, nearly half-way between the capital and au Indian village, sank suddenly, and was immediately replaced by a small lake of piteh. In this way, probably, was formed the celcbrated Great Pitch Lake. Sir Charlcs Lyell remarks:-"The Orinoeo has for ages been rolling down great quantities of woody and vegetable bodies into the surrounding sca, where, by the influence of currents and eddies, they may be arrested and accumulated in particular places. The frequent occurrenee of earthquakes, and other indications of volcanic action in those parts, lend countenance to the opinion tbat these vegetable substances may have undergone, by the agency of subterranean fire, those transformations or chemical ebanges which produce petroleum ; and this may, by the same causes, be foreed up to the surface, where, by exposure to the air, it becomes inspissated, and forms the different varieties of pure and earthy pitch, or asphaltum, so abundant in the island."
The Pitch Lake is one and a half miles in eircumference; the bitumen is solid and cold near the shores, but gradually increases in temperature and softness towards the centre, where it is boiling. The solidified bitumen appears as if it had cooled, as the surface boiled, in large bubbles. The aseent to the lake from the sea, a distance of threequarters of a mile, is covered with a hardened pitch, on which trees and vegetables flourish; and about Point la Braye, the masses of piteh look like blaek rocks among the foliage: the lake is underlaid by a bed of mineral coal.-Manross, quoted by Dana.
The Earl of Dundonald remarks, that vegetation contiguous to the lake of Trinidad is most luxuriant. The best pine-apples in the West Indies (called black pines) grow wild amid the piteh.

Asphaltum is abundant on the shores of the Dead Sea. It oecurs in some of the mines of Derbyshire, and has been found in granite, with quartz and fluor spar, at Poldice, in Cornwall. There is a remarkable bituminous lime and sandstone of the region of Bechelbronn and Lobsann, in Alsace. From the observations of Daubrée, we learn that probably tbis bitumen has had its origin as an emanation from the interior of the earth; and indeed, in Alsace, with the great elevated fissure of the sandstone of the Vosges, a fissure which was certainly open before tbe deposit of the moreover, an opportunity for the the tertiary epoch, affording during tbis latter, heavy spar.-Annales des Mines. deposition of spathic iron ore, iron pyrites, and Elastic Bitumen, called also mi
Derbyshire, in the forsaken leneral caoutchoue and elaterite, was first observed in a subterranean fungus. It was afterw of Odin, by Dr. Lister, in 1673, who ealled it this variety, by Johnston, gave the following as its

$$
\text { Carbon } 85.47
$$

Two descriptions of elastie bitumen we
Mines "). He states the English to have analysed by M. Henry, fils ("Ann. des a greenish colour, soft, elastic, burning with in brown masses, sligbtly translucid, of odour, and of specific gravity 0.9 to $1 \cdot 23$, and white flame, and giving off a bituminous
The French elastic bitumen generally resemblained from Derbyshire. opaque, and floated on water. It generally resembled the English, exeepting that it was

			English.		French.		
Carbon -	-	-	-	-	0.5225	-	-
0.5826							
Hydrogen	-	-	-	-0.0749	-	-	0.0489
Nitrogen	-	-	-	-0.0015	-	-	0.0010
Oxygen	-	-	-4011	-	-	0.3675	
				$\frac{1.0000}{1.0000}$			

obtained his sample from the Auvergne ; and twe specimens; one by Ehelmen, who a Peruvian spccimen :- \quad Auvergne ; and tbe other by Boussingault, which was

On the cmployment of bitumen for pavements, Dr. Ure has the following remarks:It is a very remarkable fact, in the history of the useful arts, tbat asphalt, whieh was so generally employed as a solid and durable cement in the earliest construetions npon reeord, as in the walls of Babylon, should for so many thousand years have fallen well nigh into disuse among eivilised nations. For there is ecrtainly no class of mineral substanees so well fitted as the bituminous, by their plasticity, fusibility, terraeity, adhesiveness to surfaees, impenetrability by water, and unchangeableness in the atmosphere, to enter into the eomposition of terraces, foot-pavements, roofs, and every kind of hydraulic work. Bitumen, combined with caleareous earth, forms a compact semi-elastic solid which is not liable to suffer injury by the greatest alternations of frost and thaw, which often disintegrate in a few years tbe hardest stone, nor can it be ground to dust and worn away by the attrition of the feet of men and animals, as sandstone, flags, and even bloeks of granite are. An asphalt pavement, rightly tempered in tenaeity, solidity, and elastieity, seems to be incapable of suffering abrasion in the most crowded thoroughfares; a faet exemplificd of late in a few places in London, but mieh more extensively, and for a mueh longer time, in Paris.

The great Place de la Coneorde (formerly Place Louis Quinze) is eovered with a beautiful mosaic pavement of asphalt; many of the promenndes on the Boulevards, formerly so filthy in wet weather, are now eovered with a thin bed of bituminous mastie, free alike from dust and mud; the foot-paths of the Pont Royal and Pont Carousel, and tbe areas of the great public slaughter-houses, have been for several years paved in a similar manner with perfeet suecess. It is mueh to be regretted that the asphalt companies of London, made the ill-judged, and nearly abortive, attempt to pave the carriage-way near the east end of Oxford Street, and espceially at a moist scason, most unpropitious to the laying of bituminous mastie. Being formed of blocks not more than three or four inches thiek, many of whieh contained mueh silieeous sand, sueh a pavement could not possibly resist the erasb and vibration of many thousand heavy drays, waggons, and omnibuses daily rolling over it. This failure ean afford, however, no argument against rightly-eonstructed foot pavements and terraees of asphalt. Numerous experiments and observations have led me to conelude tbat fossil bitumen possesses far more valuable properties for making a durable mastic than the solid piteh obtained by boiling wood or eoal tar. The latter, when inspissated to a proper degree of hardness, becomes brittle, and may be readily erushed into powder ; while the former, in like circumstances, retains suffieient tenacity to resist abrasion. Factitious tar and piteh being generated by the force of fire, scem to have a propensity to decompose by the joint agency of water and air, whereas mineral pitch has been known to remain for ages without alteration.

Bitumen alone is not so well adapted for making a substantial mastic as the native compound of bitumen and ealcareous earth, which has been properly ealled asphaltie roek, of which the richest and most extensive mine is unquestionably that of the Val de Travers, in the canton of Neufchâtel. This interesting mineral deposit oceurs in the Jurassie limestone formation, the equivalent of the English oolite. The mine is very accessible, and may be readily exeavated by blasting witb gunpowder. The stonc is massive, of irregular fracture, of a liver-brown colour, and is interspersed with a few ninute spangles of caleareous spar. Though it may be seratched with the nail, it is difficult to break by the hammer. When exposed to a very moderate, heat it exhales a fragrant ambrosial smell, a property which at onee distinguishes it from all compounds of factitious bitumen. Its specifie gravity is $2 \cdot 114$, water being 1000 , being nearly the density of bricks. It may be most conveniently analysed by digesting it in successive portions of hot oil of turpentine, whereby it affords \mathbf{x} parts of a white pulverulent carbonate of lime, and 20 parts of bitumen in 100 . Primont, which of Val de Travers seems therefore to be far richer than that of Novenber aecording to the statement in the specifieation of Claridge's paterion of 90 parts of earcontains "carbonate of lime and bitumen in about the proportion of 90 pars of earbonate of lime to about 10 parts of bitumen."

The calcarcous matter is so intimately combined and penetrated with the bitumen as to resist the aetion not only of air and water for auy length of time, but eren of muriatie acid; a circumstance partly duc to the total absenec of moisture in the mincral, but ehicfly to the vast incumbent pressure under which the two materials have been incorporated in the bowcls of the eartb. It would indced be n diffieult matter to combinc, by artificial methods, ealcarcous earth are found to be much more men, and for this reason the mastics made cements contain a eousiderable quantity perisbable. Many of the factitious asp, the property of cracking and erumbling down of silieeous sand, from which they derive the propery dittle attraetion between silieeous when trodden upon.
matter and bitnmen, that their parts separate from each other by a very small disrnptive force.

Since the asphalt rock of Val de Travers is naturally rich enough in concrete hitumen, it may he converted into a plastic workable mastic of excellent quality for foot pavements and hydraulic works at very little expense, merely hy the addition of a very small quantity of mineral or coal tar, amounting to not more than 6 or 8 per cent. The union between these materials may he effected in an iron cauldron, hy the application of a very moderate heat, as the asphalt hitumen readily coalesces with the tar into a tenacious solid.
The mode adopted for making the asphalt pavement at the Place de la Concorde in Paris was as follows: - The gronnd was made uniformly smooth, either in a horizontal plane or with a gentle slope to carry off the water; the curb-stones were then laid round the margin hy the mason, more than 4 inches above the level of the ground. This hollow space was filled to a depth of 3 inches with concrete, containing about a sixth part of hydraulic lime, well pressed upon its hed. The surface was next smoothed with a thin coat of mortar. When the whole mass had become perfectly dry, the mosaic pattern was set out on the surface, the moulds being formed of flat iron bars, rings, \&c., about half an inch thick, into which the fluid mastic was poured hy ladles from a cauldron, and spread evenly over.

The mastic was made in the following way:-The asphalt rock was first of all roasted in an oven, about 10 feet long and 3 broad, in order to render it friahle. The bottom of the oven was shect iron, heated helow by a hrisk fire. A volatile matter exhaled, prohably of the nature of naphtha, to the amount of one-fortieth the weight of asphalt; after roasting, the asphalt became so friahle as to be easily reduced to powder, and passed through a sieve having meshes of ahout one-fourth of an inch square.

The hitumen destined to render the asphalt fusihle and plastic was melted, in small quantities at a time, in an iron cauldron, and then the asphalt in powder was gradually stirred in to the amount of 12 or 13 times the weight of bitumen. When the mixture became fluid, nearly a hucketful of very small, clean gravel, previously heated apart, was stirred into it; and, as soon as the whole hegan to simmer with a treacly consistence it was fit for usc. It was transported in buckets, and poured into the moulds.
For the reasons above assigned, I cousider this addition of rounded, polished, siliceous stones to be very injudicious. If anything of the kind be wanted to give solidity to the pavement, it should be a granitic or hard calcareous sand, whose angular form will secure the cohesion of the mass. I conceive also, that liquid bitumen in moderate quantity should he used to give toughness to the asphaltic combination, and prevent its heing pulverised and abraded hy friction.
In the ahle report of the Bastenne and Gaujac Bitumen Company, drawn up hy Messrs. Goldsmid and Russel, these gentlemen have made an interesting comparison hetween the properties of mineral tar and vegetahle tar : the hitumen composed of the latter suhstance, including various modifications extracted from coal and gas, have, so ties and defects ahle to ascertain, entirely failed. This hitumen, owing to the qualihrittle at the freezing point; tar, hecomes soft at 115° of Fahrenheit's scale, and is 170° of heat without injury. In the hitumen into which mineral enters will sustain was at $14 \frac{1}{3}{ }^{\circ}$ helow zero C., the bitumen of Bastenne winter, 1837-38, when the cold of the Pont Neuf at Paris is pared of Bastenne and Gaujac, with which one side have resisted any degree of cold; while that in all impaired, and would, apparently, composed of vegetahle tar, cracked and opened in part of the Boulevard, which was vernment, instructed hy these experiments hitumens are laid, that the pavement should be required, when any of the vegetable where the bitumen composed of mineral tar is an inch and a quarter thick; whereas, an inch is deemed sufficient. The peral tar is used, a thickness of three-quarters of has been laid upwards of 15 years hy the Bastene honding warehouses at Bordeaux as perfect as when first formed. The reservenne Company, and is now in a condtion the Seine, at Batignolles, near Paris the intense cold of the winter of aris, have heen mounted 6 years, and notwithstanding solid mass, and the perpetual water pressure to which they are exposed, they into one betrayed the slightest imperfection in any point. which they are exposed, they lhave not tifications at Bayonne, have answered so well, that the repairs done to the aucient forentcred into a very large contract with the company for additiont many years ago whole of the arches of St. Germain and St. Clouny for additional works, while the floorings necessary for these works, have heen loud railways, and the pavements and The mineral tar in the mines of Bastenne and Bastenne bitumen. carthy matter with which it is naturaslly transported in barrels to Paris or London, heing by the process of boiling, and is then
company at $17 l$. per ton, in virtue of a monopoly of the article purcbased by the connpany at a sum, it is said, of 8000 l.
Mr. Harvey, the superintendent of the Bastenne Company, was good enough to supply me with various samples of mincral tar, bitumen, and aspbaltic rock for analysis. The tar of Bastennc is an exceedingly viscid mass, without any carthy impurity. It has the consistence of bakers' dough at 60° of Fabrenheit ; at 80° it yields to the slightest pressure of the finger; at 150° it resembles a soft extract; and at 212° it has the fluidity of molasses. It is admirably adapted to give plasticity to the calcareous asphalts.

A specimen of Egyptian asphalt which he brought me, gave, by analysis, the very same composition as the Val de Travers, namely, 80 per cent. of pure carbonate of lime, and 20 of bitumen. A specimen of mastic prepared in France was found to consist, in 100 parts, of 29 of bitunen, 52 of carbonate of lime, and 19 of siliecous sand. A portion of stone called the natural Bastennc rock afforded me 80 parts of gritty siliceous matter and 20 of thick tar. The Trinidad bitumen contains a considerable portion of forcign earthy matter; one specimen yielded mc 25 per cent. of siliceous sand; a second, 28 ; a third, 20 ; and a fourtb, 30 : the remainder was pure pitch. One specimen of Egyptian bitumen, specific gravity I ${ }^{2}$, was found to be perfectly pure, for it dissolved in oil of turpentine without leaving any apprcciable residuum.

Robinson's Parisian Bitumen Company use a mastic made with tbe pitch obtained from boiling coal tar mixed with chalk. Portions laid down by this company at Knightsbridge and at Brighton are said to have gone to pieces. The pavement laid down by them in Oxford Street, next Charles Strcet, has been taken up. Claridge's Company have laid down their mastic under the archway of tbe Horse-Guards, and in the carriage entrance at the Ordnance Office: tbe latter has cracked at the junction with the old pavement of Yorkshire curb-stone. The foot pavement laid down by Claridge's Company at Whitehall has stood well. Tbe Bastenne Company bas exhibited the best specimen of asphalt pavement in Oxford Street; they bave laid down an excellent piecc of foot-pavement near Nortbumberland House; a piece 40 feet by 7, on Blackfriars' Bridge; they have made a snbstantial job in paving 830 superficial feet in front of tbe guard-room at Woolwich, which, though much traversed by foot-passengers, and heat by the guard in grounding arms, remains sound; lastly, the floor of the stalls belonging to the cavalry barracks of the Blues at Knightsbridge is probably the best example of asphaltic parement laid down in this country, as it has received no injury from the beating of the horses' feet.

As the specific gravity of properly made mastic is nearly double tbat of water, a cubic foot of it will weigh from 125 to 130 lbs ; and a square foot, three quarters of an inch thick, will weigh very nearly 8 pounds. A ton of it therefore will cover 280 square feet. The prices at which the Bastenne Bitumen Company sell their products are as follows:-

Pure Mineral tar, 24l. per ton, or $28 s$. per cwt.
Mastic, 8l. 8s. per ton, or 10 s . per cwt.

Where the work exceeds 5000 feet, contracts may be entered into. For filling up joints of brickwork, \&cc. $1 d$. to $1 \frac{1}{4} d$. per foot run, according to quantity.

These prices are calculated for half an inch thickness, at which rate a ton will cover 420 square fect.

As the Val de Travers Company engage to lay down their rich asphaltic rock in London at $5 l$. per ton, and as a mineral tar equal to that of Seissel may probably be had in England at onc fourth of the price of that foreign article, they may afford to lay their mastic threc quarters of an inch thick per the thousaud feet, iucludiug a substratum of concrete, at a rate of fivepence a square foot instead of fifteenpence, beiug the rate charged under that condition by the Bastenue Company.-Ure.

It bas been thought advisable to prescrve these remarks on bitumen, although most of the trials which have been made in this country can only be regarded as failures. Under the combined influenees of sumshine, frost, and rain, it undergoes a rapid disintegration. It may be that the proper proportions of the respective
ingredients may not lave been mantained, aud that further trials are advisable. At present, although bitumen is employed, and with seeming advantage as a cement between paving stoues, there is no extension of its application in the formation of foot pavement as recommended.

BIXINE and BIXEINE. Two conditions of the colouring matter of Arnotto, according to Preisser. See Arnotto.

BLACK BAND. A variety of the carbonates of iron, to which attention was first called by Mr. Mushet, at the commencement of the present century. The iron manufacture of Scotland owes its present important position to the discovery of the value of the black band iron stone. This ore of iron is also found in several parts of the coal basin of South Walcs, and in the north of Ireland. See Iron.
Chemical examination of the black band, from the neighbourhood of Airdric, about ten miles cast of Glasgow, gives the following composition : -

BLACK DYE. (Teinte noire, Fr.; Schwartze Farbe, Germ.) Textile fabrics are dyed by various processes, according to the quality of the black requircd, and the kind of stuff on which the dye is to be produced.

The following processes for dying woollen stuff will be found to producc excellent results. For 1 cwt. of cloth previously dyed bluc:- There is put into a boiler of middle size, 18 lbs. of logwood, with the same quantity of Aleppo galls, the whole being enclosed in a bag; this is boiled in a sufficient quantity of water for 12 hours: one-third of this decoction is transferred into another boiler with 2 pounds of verdigris; and the stuff is passed through this solution, stirring it continually during two hours, taking care to lseep the bath very hot without boiling. The stuff is then lifted out, another third of the bath is added to the boiler, along with 8 pounds of sulphate of iron or green vitriol. The fire is to be lowered while the sulphate dissolves, and the bath is allowed to cool for half an hour, after which the stuff is introduced, and well moved about for an hour, and then it is taken out to air. Lastly, the renaining third of the bath is added to the other two, taking care to squeeze the bag well. 18 or 221 bs. of sumach are thrown in; the whole is just brought to a boil, and then refreshed with a little cold water; 2 pounds more of sulphate of iron are added, after which the stuff is turned through for an hour. It is next washed, aircd, and put again into the bath, stirring it continually for an hour. After this, it is carricd to the river, washed well, and then fulled. Whenever the water runs off clear, a bath is prepared with weld, which is made to boil for an instant; and after refreshing the bath, the stuff is turned in to soften, and to render the black more fast. In this manner, a very beautiful black is obtained, without rendering the cloth too harsh.
Commonly, more simple processes are employed. Thus the blue cloth is simply turned through a bath of gall-nuts, where it is boiled for two hours. It is next passed through a bath of logwood and sulphate of iron for two hours, without boiling, after which it is washed and fulled. But in all cases the cloth, after passing through the blue vat, should be thoroughly washed, because the least remains of its alkalinity would injure the tone to be given in the black copper.

Hellot found that the dyeing might be performed in the following manner : For 20 yards of dark blue cloth a bath is made of 2 lbs. of fustic (Morus tinctoria), $4 \frac{1}{4}$ lbs. of logwood, and 11 lbs. sumach. After boiling the cloth in it for three hour's it is lifted out, 11 libs. of sulphate of iron are thrown into the boilcr, and the cloth is for an hour. It is it during two hours. It is uow aired, and put again in the bath by the preceding process. washed and scourcd. The black is less velvcty than that in the ancient regulations only finer and more velvety without gives a reddish cast to the black, which is obtained
Accordiug to Lewis, the proportions.
arc, for 112 lbs . of woolleu cloth, previously dyed of a dars dyers most gencrally adopt phate of iron, as much gall-nuts, and 30 lbs. of lof of a dark bluc, abont 5 lbs . of sul-
eloth; they then pass it through the deeoction of logwood to which the sulphate of iron has been added.

When the cloth is completely dyed, it is washed in the river, and passed through the fulling-mill till the water rans off clear and eolourless. Some persons recominend, for fine eloths, to full them with soap water. This operation requires an expert workman, who can free the eloth thoroughly from the soap. Several reeommend, at its coming from the fulling, to pass the eloth through a hath of weld, with the view of giving softness and solidity to the black. Lewis says, that passing the cloth through weld, after it has been treated with soap, is ahsolutcly useless, although it may he bencficial when this operation has heen neglected.

The following Gerinan process is chcap and good. 100 lbs of cloth or wool are put into the copper with sufficient water and 15 lbs . of Salzburgh vitriol (potash-sulphate of iron) and 5 lhs. of argol, heating the bath gradually to boiling, while the goods are well worked about for two hours, taking them out, and laying them in a cool place for twenty-four hours. They are then to he put in a lukewarm bath of from 25 to 30 lbs . of \log wood, and 10 lbs . of fustic, and to be worked therein while it is made to boil during two hours. The goods are now removed, and there is put into the copper $1 \frac{1}{4}$ lbs. of verdigris dissolved in vinegar; the goods are restored into the improved bath, and turned in it for half an hour, after which they are rinsed and dried.

The proeess for dyeing merinos black is, for 100 lbs. of them to put 10 lbs . of eopperas into the hath of pure water, aud to work thercin for a quarter of an hour, as soon as it is tepid, one-third of the goods; then to replace that portion by the sccond, and after another quarter of an hour, to put in the last third. Each portion is to be laid aside to air in the cold. The bath being next heated to $140^{\circ} \mathrm{F}$., the merinos are to be treated as ahove piecemeal; but the third time it is to be passed through the bath at a boiling heat. Being now well mordanted, the goods arc laid aside to air till the following day. The copper being charged with water, 50 lhs . of ground logwoocl, and 2 lbs of argol, and heated, the goods are to he passed through, while boiling, for half an hour. They are then rinsed.
Different operations may he distinguished in dying silk hlack; the hoiling of the silk, -its galling, -the preparation of the hath, - the operation of dyeing, -the softening of the black.

Silk naturally eontains a suhstauce called gum, which gives it the stiffness and elas. ticity peeuliar to it in its native state; but this adds nothing to the strength of the silk, which is then styled raw ; it rather renders it, indeed, more apt to wear out by the stiffness whieh it communicates; and although raw silk more readily takes a black colour, yet the black is not so perfeet in intensity, nor does it so well resist the reagents capable of dissolving the colouring particles, as silk which is scoured or deprived of its gum.

To eleanse silk intended for hlack, it is usually hoiled four or five hours with onefifth of its weight of white soap, after whieh it is earefully beetled and washed.

For the galling, nut-galls equal nearly to three-fourths of the weight of the silk are boiled during three or four hours; but on aecount of the price of Aleppo galls, nore or less of the white gall-nuts, or of even an inferior kind ealled galon, berry or apple galls, are used. The proportion commonly employed at Paris is two parts of Aleppo galls to from eight to ten parts of galon. After the boiling, the galls are allowed to settle for ahont two hours. The silk is then plunged into the bath, and left in it from twelve to thirty-six hours, after which it is taken out and washed in the river.

Silk is eapable of combining with quantities, more or less considerable, of the astringent principle; whenee results a considerable incrcase of weight, not only from the weight of the astringent prineiple, hut also from that of the eolouring particles, which subsequently fix themselves in proportion to the quantity of the astringent prineiple whieh had entered into combination. Consequently, the processes are varied according to the degree of weight whieh it is wished to communieate to the silk; a eircumstanee requiring some illustration.

The commeree of silk goods is earried on in two ways: they are sold either by the weight, or hy the surface, that is, hy measure. Thus the trade of Tours was formerly distinguished from that of Lyons; the silks of the former being sold by weight, those of the latter hy measure. It was therefore their interest to surcharge the weight at Tours, and, on the contrary, to be sparing of the dying ingredients at Lyons; whence eame the distinction of light black and heavy blaek. At present, both methods of dyeing are praetised at Lyons, the two modes of sale having been adopted there.
Silk loses nearly a fourth of its weight by a thorough boiling, and it resulues, iu the light blaek dye, one half of this loss; but in the heavy black dye, it takes sometimes upwards of a fifth more than its primitive weight-a surcharge injurious to the beauty of the black and the durahility of the stuff. The surcharged kind is denominated English black, beeause it is pretended that it was practised in England. Since silk
dyed with a great sureharge has not a beautiful blaek, it is usually destined for weft, and is blended with a warp dyed of a fine blaek.

The peculirity of the process for obtaining the heavy blaek consists in leaving the silk longer in the gall liquor, in repeating the galling, in passing the silk a greater number of times through the dye, and cven letting it lie in it for some time. The first galling is usually made with galls which have served for a preceding operation, aud fresh gall-nuts are employed for the second. But these methods would not be sufticient for giving a great surcharge, such as is found in what is ealled the English black. To give it this weight, the silk is galled without being ungummed; and, on coming out of the galls, it is rendered supple by being worked on the jaek and pin.
The silk dyers keep a blaek vat, and its very complex composition varics in different dye-houses. These vats are commonly cstablished for many years; and when their black dye is exhausted it is renovated by what is called in France a brevet. When the deposit which has accumulated in it is too great, it is talsen out, so that at the end of a certain time nothing remains of the several ingredients which composed the primitive bath, but which are not employed in the brevet.
For the dyeing of raw silk hlack, it is "galled" cold, with the bath of galls which has already served for the black of boiled silk. For this purpose, silk, in its native yellow colour, is made choice of. It should be remarked, that when it is desired to preserve a portion of the gum of the silk, which is afterwards made flexible, the galling is given with the hot bath of gall-nuts in the ordinary manner. But here, where the whole gum of the silk, and its concomitant elasticity, are to he preserved, the galling is made cold. If the infusion of galls be weak, the silk is left in it for several days.

Silk thus prepared and washed takes very easily the black dye, and the rinsing in a little watcr, to which sulphate of iron may be added, is sufficient. The dye is made cold; but, according to the greater or less strength of the rinsings, it requires more or less time. Occasionally three or four days are necessary; after which it is washed, it is heetled once or twiee, and it is then dried withont wringing, to avoid softening.

Any of these processes will produce a hlaek without the goods heing previously dyed blue, but generally when such common blacks, as they are technically termed, are dyed, more of the dye drugs are required, and also a little modifieation in the operations. Sometimes they are "bottomed" or "rooted," by first working them in a decoetion of walnut-husks, and then dyed as above;-or, a good blaek may he dyed without any previous rooting, by working 1 cwt . of the stuff, for an hour, at a heat of 190°, in 6 lhs . of camwood: 6 lhs . of copperas are then added, and the stuff worked for another hour; the fire is then withdrawn from the hoiler, and the stuff allowed to remain in the liquor for 10 or 12 hours. It is washed from this, and worked in a sceond bath with 60 lbs . of logwood for an hour and a half, then add 3 lbs . of copperas, and after another hour's working, it is washed.

Bichromate of potash is also used for dying blacks upon wool. A very good colour may be dyed direct by working, for 2 hours, 1 cwt . of the stuff in a solution of 5 lbs . of bichromate, 4 lbs . of alum, and 3 lbs . of fustie, then exposing it for an hour and washing well. It is again wrought for 2 hours in a second bath, made up with 45 lbs. of log. wood, 3 lbs . of barwood or camwood, and 3 lhs . of fustic ; then adding 3 lbs . of copperas, and after half an hour's longer working, the dye is finished. A much cheaper hluc black than that produced by previously dyeing the stuff in the indigo vat, is ohtained by using a Prussian blue, then proceeding as directed ahove.
Raw silk may be more quickly dyed by shaking it round the rods in the cold hath after the galling, airing it, and repcating these manipulations several times, after which it is washed and dried.
Maequer describes a more simple proeess for the black hy which velvet is dyed at Genon : and he says that this proccss, rendered still simpler, has had complete suecess at Tours. The following is his description.
For 1 cwt . (50 kilogrammes) silk, 22 lhs. (11 kilogrammes) of Aleppo galls, in powder, are boiled for an hour in a suffieient quantity of water. The bath is allowed to settle till the galls have fallen to the bottom of the boiler, from which they are withdrawn; after which 32 lhs . of eopperas are introduced, and 22 lhs . of eountry gum, put into a kind of two-handled colander, pierced everywhere with holes. This kettle is suspended hy two rods in the hoiler, so as not to reach the hottom. The gum is left to dissolve for about an hour, stirring it from time to time. If, after this time, some gum remains in the kettle, it is a proof that the bath, which contains two hogsheads, has taken as muelı of it as is necessary. If, on the eontrary, the whole glum is dissolved, from 1 to 4 lhs. more may be added. This colander is left constantly suspended in the boiler, from which it is removed only when the dyeing is going on;
and afterwards it is replaced. During all these operations the boiler must be kept hot, but without boiling. The galling of the silk is performed with one-third of Aleppo galls. The silk is left in it for six hours the first time, then for twelve hours. The rest, secundum artem.

Lewis states that he has repeated this process in the small way; and that, by adding sulphatc of iron progressively, and repeating the immersion of the silk a great number of times, he eventually obtained a fine black.

Astringents differ from one another as to the quantity of the principle which enters into combination with the oxide of iron. Hence, the proportion of the sulphate, or of any other salt of iron, and that of the astringents, should vary according to the astringents made use of, and according to their respective quantities. Gall-nut is the substance which contains most of the astringent principle; sumach, which seems second to it in this respect, throws down (decomposes), however, only half as much sulphate of iron.

The most suitable proportion of sulphate of iron appears to be that which corresponds to the quantity of the astringent matter, so that the whole iron precipitable by the astringent may be thrown down, and the whole astringent principle may be taken up in combination with the iron. As it is not possible, however, to arrive at such precision, it is better that the sulphate of iron should predominate, because the astringent, when in excess, counteracts the precipitation of the black colouring particles, and has the property of even dissolving them.
This action of the astringent is such that, if a pattern of black cloth be boiled with gall-nuts, it is reducible to grey. An observation of Lewis may thence be explained. If cloth be turned several times through the colouring bath, after it has taken a good black colour, instead of obtaining more body, it is weakened, and becomes brownish. Too considerable a quantity of the ingredients produces the same effect; to which the sulphuric acid, set at liberty by the precipitation of the oxide of iron, contributes.
It is merely the highly oxidised sulphate which is decomposed by the astringent; whence it appears that the sulphate will produce a different effect according to its state of oxidisement, and call for other proportions. Some advise, therefore, to follow the method of Proust, employing it in the oxidised state; but in this case it is only partially decomposed, and another part is brought, by the action of the astringent, into the lower degree of oxidisement.

The particles precipitated by the mixture of an astringent and sulphate of iron have not at first a deep colour ; but they pass to a black by contact of air whilc they are moist.

Black dye is only a very condensed colour, and it assumes more intensity from the mixture of different colours likewise deep. It is for this reason advantageous to unite several astringents, each combination of which produces a different shade. But blue appears the colour most conducive to this effect, and it corrects the tendency to dun, which is remarked in the black produced on stuffs by the other astringents.

On this property is founded the practice of giving a blue ground to black cloths, which acquire more beauty and solidity the deeper the blue. Another advantage of this practice is to diminish the quantity of sulphuric acid which is necessarily disengaged by the precipitation of the black particles, and which would not only connteract their fixation, but would further weaken the stuff, and give it harshness. For common stuffs, a portion of the effect of the blue ground is produced by the rooting.
The mixture of logwood with astringents contributes to the beauty of the black in a twofold way. It produces molecules of a hue different from what the astringents do, and particularly blue molecules, with the acetate of copper, commonly employed in the black dyes; which appears to be more useful the more acetate the verdigris made use of contains.

The boil of weld by which the dye of black cloth is frequently finished, may also contribute to its beauty, by the shade peculiar to its combination. It has, moreover, the advantage of giving softness to the stuffs.

The processes that are employed for wool yield, according to the observation of Lewis, only a rusty black to silk; and cotton is hardly dyed by the processes proper for wool and silk. Let us endeavour to ascertain the conditions which these three varicties of dyeing demand.

Wool has a great tendency to combinc with colouring substances; but its physical nature requires its combinations to be made in general at a high temperature. The combination of the black molecules may therefore be directly effected in a bath, in proportion as they form; and, if the operation be prolonged by subdividing it, it is only with the view of changing the necessary oxidisement of the sulphatc aud augmenting that of the colouring particles themselves.

Silk has not the same disposition to unite with the black particles. It seems to be
assisted by the ageney of the tannin, with whieh it is previously impregnated, especially after it has been seoured. Nevertheless, the tannin is not essential to the production of good blaek upon silk, where weight is not required. A very deep black may be obtained upon 100 lbs. of silk, by working it for two hours in a solution of 20 lbs. of copperas and 3 pints of nitrate of iron. Wash from this thoroughly, and then wash for two hours more in a decoction of 100 lbs . of logwood and 20 lbs . of fustic. Lift up, aud add to the bath a solution of 3 lbs. of eopperas, and work half an hour longer, and wash. A beautiful rich blue black is produced by dyeing the silk a deep royal blue, then working for an hour in a solution of copperas (2 ounees to the pound of silk), washing from this, and working in a bath of logwood, using half a pound to each pound of silk, and adding, after an hour's working, a few ounces of copperas; working half an hour longer, and finishing.
Cotton has no affinity for the black dye, and has always to be impregnated or combined with astringent substances, in order to produce the dye. A good deep black will be imparted to 100 lbs . of cotton by steeping it in a decoction of 30 lbs . of sumach, at a boiling heat, and allowing it to stand till perfectly cold; then passing it through lime water, aud, immediately after this, working for an hour in a solution of 20 lbs. of copperas. After this, expose for an hour to the air; then pass through lime water again, and wash and work for an hour in a bath of 30 lbs . of logwood and 10 lbs . of fustic ; lift, and add 2 lbs. of copperas, and work 30 minutes longer, and finish.
Blue black is dyed in the same way, the eotton being prcviously dyed blue by the vat.
If the blue is deep, one-third less of the dye stuff here given will be suffieient.-J. N. BLACK FLUX. An intimate mixture of charcoal and earbonate of potash, obtained by calcining bitartrate of potash. Generally, the erude tartar of commeree is used for this purpose.
BLACKING FOR SHOES. (Cirage des bottes, Fr.; Schuhschwärze, Germ.) The following method for making liquid and paste blacking is given by William Bryant and Edward James, under a patent, dated December, 1836. Their improvement consists in the introduction of caoutchouc, with the view, possibly, of making the blacking waterproof:-

18 ounces of caoutchouc are to be dissolved in about 9 lbs . of hot rape oii. To this solution 60 lbs. of fine ivory black and 45 lbs . of molasses are to be added, along with strength No. 24 . ground gum arabic, previously dissolved in 20 gallons of vinegar of till the mixture becomes perfed ingredients are to be finely triturated in a paint mill are to be now added in small sty smooth. To this varnish 12 lbs. of sulphuric aeid hour. The blacking thus compoundive quantities, with powerful stirring for half an half an hour daily; at the end of whed is allowed to stand for 14 days, it being stirred added; after which the stirring is repeated half an hour every day for 14 darabic are when the liquid blaeking is ready for use.

In making the paste blacking, the paten
rubber oil, ivory black, molasses, and gumtees preseribe the above quantity of india12 lbs of vinegar. These ingredients gum arabic, the latter being dissolved in only in a mill till they form a perfectly smooth be well mixed and then ground together acid are to be added in small quantities at a time, with this paste 12 lbs of sulphuric be continued for half an hour after the last portion of powerful stirring, which is to This paste will be found fit for ase the last portion of the acid has been introduced. Aceording to the "Scientific Ameriean" scven days. ivory black, 3 lbs. of molasses, 9 oz . of ," a good paste blacking is made of 4 lbs . of of vincgar, mixed together, and stire of hot sperm oil, 1 oz . of gum arabic, and 12 oz .

Blaeking eonsists of a black eolouring matter for six days; it is then fit for use. that aequire a gloss by friction, such as sugar and oil the bone black with sperm oil: surar sugar and oil. The usual method is to mix stirred in, and strong sulphuric acid is added gradually with a little vinegar, is then well lime and acid phosphate of lime, which is sadually. The acid produces sulphate of these ingredients, which can be smoothly spreaduble : a tenacious paste is formed by pliable. This forms a liquid blacking. Paste the oil serving to render the leather Germany, according to Liebig, blacking is Paste blacking eontains less vinegar. In weight of molasses, and one-eighth of its is made by mixing bone black with half its of its weight of strong sulphurie aeid, mixing with hydrochloric aeid, and one-fourth -Report of the Progress of Science and Mechanism, New York The Bracking exported in 1856 was of the declared value of $23,082 \%$.
BLACK JACK. The miner's name for blende, or the sulphide (sulphuret) of

black- Lead. pencil.s. See Pencil Manufacture.

Black Tin. The miner's name of Plumbago or Grapirite (which see).

BL,ADDER. (Vessie, Fr.; Blase, Gcrm.) A bag or sack, in animals, which serves as the receptacle of some secreted fluid. Bladders are cbiefly cmployed for seeuring jars, bottles, \&cc. In addition to the very large quantities whicb are obtained in this country, we imported, in 1856, 649,891 Bladders.

BLAS'T HOLES. A mining tern. Tbe holes through which the water enters the bottom of a pump in the mines.

BLEACHING (Blanchement, Fr.; Bleichen, Germ.) is the process by which tbe textile filaments, cotton, flax, hemp, wool, silk, and the cloths made of then, as well as various vegetable and animal substances, are deprived of their natural colour, and rendered nearly or altogether white. The term bleaching comes from the Frencb verb blanchir, to whiten. The word blancl, which bas the same origin, is applied to the whitening of living plants by causing them to grow in the dark, as when the stems of celery are covered over with mould.

In ancient times bleaching, washing, and fulling were not distinctly separated; they were all practised, and there can be no douht that the greatest perfection was attained. We read in the Scriptures of "fine linen, white and clean," and in Greck authors, of "raw linen," translated "unbleached," of which towels were made, as well as of "shining fine linen," or muslin, for the same purpose, thus at once making the distinction.* The pure white was apparently not so common as with us, nor could it possibly be, as it was not so common amongst ourselves till the rapid modern process of bleaching was discovered. A pure surface was, however, needful, in order to produce good colours, for which we are bound to give the ancicnts credit, as we know they were acquainted with them as pigments, and are not, therefore, to be suspectcd of being unable to distinguish good from bad when transferred totextile fabrics. As their words for white and for colour are plain enough in general, we must conclude that they had the power of obtaining both fine whites and finely-dyed cloth ; handkerchiefs were tied about the head in various ways, as now in Lancashire, white and coloured. Tbe Babylonians wore white cloaks. \dagger By their method of washing, the discovery of bleaching was inevitable, the cloth being washed several times and dried in the sun. But it was not left in the state of an accident only; the word insolation shows that the effects of the sun had been observed and classified, and this is stated to have been the chief mcthod, as it is now, of bleaching wax. Egypt and the East seem to bavc been the teachers in bleaching. From Egypt were obtained alkalis, and soda mixed with lime. Both lime and alkalis were used in the process. Potash, or the ashes of plants, was also used, and soap-plants, in all probability of various kinds, as it is not easy to decide on one. Tbe Saponaric officinalis, soap-wort, is still used, and tbe wake-robin or cuckowpint, Arum maculatum; the Gypsoplita Struthium was considered by Linnæus to be the ancient one, and is still called Lanaria in Italy. Nor do we require to suppose that this plant was first incinerated, as has been supposed, in the case of Borith, the fullers' sonp of the Bible. Vegetable decoetions are still used in China to bleach silk, and in France even now; some have been patented within a few years in England, although little used. The Latin method of obtaining white cloth is very well preserved, and as they got their caustic soda from Egypt, it is probable that they got also their process ; nor is it at all likely that Nicias of Megara invented fulling, as it was evidently well known before the existence of any well-founded Greek tradition. Pictures exist in Pompeii of men dancing the fullers dance, or stamping cloth with their feet, as women now practise in Scotland. Moderate sized tubs were used: the clothes seem occasionally to have becn taken up by the hand, in order that they might be well turned. Tbey were then treated with ammoniacal liquors and soda. Urine was highly esteented for the purpose. The fullers obtained it by placing vessels at the corners of the streets, which were removed wben of earefully practice acting at the same time as a sanitary preeaution. The same woollen districts of collecting this fluid, or "old lant," as it is called, exists Lancashire and Yorkshire. A tax was laid on was then sulphured, if it was intended to not receive it without payment. The uuder a conical frame like a small tent, the cloth be white : this process was perform a vcssel of sulphur burncd under it. \ddagger Potters' carth was then used according to circumstances. The fuller seems to have been a blcacher as well as domestic laundryman. He liad, thcrefore, white as well as coloured dresses to deal with. For the first he uscd Sardinian potters' earth, which could not he entployed for prints or such colours as easily clanged (versicolores). For colourcd clotb, sulphur was not used by the potters, but fine Cimolian earth. The potters' carth seenis to have been used both before and after sulphuring, aecording to circumstances. This second process is allied partly to our mode of chalking white dresses, still some what in use ; but more strongly allicd to what is called dressing, stiffening, and finishing Pliny says that the Umbrian earth was only used for polishiug resturents, also that it
\#Phloxenus in Athenaus, ix. 77.
\ddagger Pompeil drawings, sec Sinith's Dict., Lardner's Cyclopedia.
softened fine eolours and gave lustre to those that were faded in sulphuring. This shows that they used sulphur in washing, and not merely in prepariug for the bleaebing process.* They then gave a finish of very finc elay, gypsum being used instead of clay in Greece, as amongst ourselves. If a nap was wanted, it was raised after sulphuring, by brushing, by carding, by the skin of a hedgehog, or by thistles and teascls. They seem to have got a fine nap on their woollen cloth, as garments of this kind once washed were considered less valuable, as would be the ease with our broadcloth for outer dresses. Wool for under dresses could not have been injured by one washing, especially as the fullones seem in old Italy to have been more attentive than our washerwomen, and to have formed a college, or at least a guild. The washing was seldom done at home, except in large establishments, especially in the country. Whiteness was very much esteemed, and great pains taken to obtain it. Coloured cloth seems a later invention. This love of whiteness was so great, that those who were too poor to have their cloths fulled, rubbed them with a white fullers' earth, so as on holidays to appear clean and bright.

Clothes in ancient times required a good deal of washing, so much oil being used; alkalis alone could remove this, and people tbat used soft feather-beds, and pillows that sank under the weight of the head, would not be behind in having them also whitened. In India the mode was differeut from that used in the western world. The preparation for printing was a scries of washings, beatings, and exposure to the sun, as well as wearing next the skin, and steeping in goats' and shcep's dung. Wearing next the skin was probably instead of the oiling process in Turkey red. Bleaching with boiled rice water was practised in India. In Jamaica the aloe was used, and in China a bean is employed: this is smaller than the Turkey bean; five parts are used to five of salt, six of flour, and twenty-five of water: this is for raw silk. The exaet action of the vegetable method on the colouring matter is not well known ; but it must not be ignored. The decompositions of fermentation and putrefaction have a great power of propagating themselves; we can, in fact, readily couceive the decomposition of gums by such means, provided they are not resinous matters, consisting chiefly of carbon and hydrogen. Mucilaginous plants are cveu now in some places used, and bave been reeommended also in the most modern times. \dagger It is, therefore, not easy to see why so much difficulty has been raised amongst chemical listorians as to the use of plants in washing and bleaching. Vegetable pro. ducts, such as oatmeal, \&c., have powerful detergent qualities, and leave the skin exeeedingly soft. In general we may eonclude that these vegetable infusions and alkalis were tbe means of bleaehing in aneient tines, the influence of thre sun being also employed. At present, alkalis are more generally used. Washing. with alkalis is really the most important part of the proeess. The soaps of the aneients were also vegetable or alkaline, or both; they were a $\sigma \mu \hat{\eta} \gamma \mu \alpha$, but not a true soap, in general at least.-Paulus FIgineta, Notes by Adams.

Until modern times no improvements of great importanee took plaee affeeting the principles of bleaching; and even now the only modern changes consist in the introduction of chlorine and machincry, to which may be added the greater abundance of soap. In the last century, Holland obtained the best name for bleaehing. The process passed then to Ireland and Scotland, and thenee into England. It was even customary to send goods from this eountry to be bleached in Holland. The first attempt to vie with Holland was made in Seotland in 1749.

We find in the patent lists many crude efforts made to improve the art. Alkalis and acids are reeommended in various forms, and sueh a variety of substances as tartar, saltpetre, sal ammoniae, marl, loam, clay, mud, chalk, fullers' eartb, oyster shells, soot, turf, and ashes, with a great variety of wasbing machines.
The value of tbe plan in Holland was ascribed to the ashes of Muscovy (Russian potash) and the sea water; but it is evident, from the description, that it was not sea, " When very pure fresh watcr which was used. The Dutch process is thus deseribed:"When a piece of linen is to be bleached, it is in the first place steeped in a lixivium, or lye, where other cloth has been trod; afterwards it is trod in a new lye of ashes poured upon the cloth till it is as clear as wine large eopper caldrons, and is never lye, after which it is washed and pressed in tbis manner: linen is left eight days in this of butter-milk into wooden vesscls fixed in the ground :-They empty some buckets of linen, whicb three men tread with tbeir feet as muell as possible. Afterwaee tbey pour in more butter-milk, and then fect as muel as possible. Afterwards altcrnately till the vessels are nearly filled, when tbey lay planks over the linen thus which they raise a large round pieee of wood, or great stake, touching tbe lower, upon of a beam, between which and the stake thicy drive wedges to press the cloth. side or seven days after they take the elotb out of these wessels, and if it be not white

[^32]enough, they steep it as we have deseribed above. Afterwards it is washed and spread out upou the ground to bleach. It must be remarked that after every dipping the cloth is washed first with blaek soap, then with elear water, and after each of these operations it is wrung by means of a machine that turns by means of a wheel. The whitening grouuds arc eut with canals in some places, that there may be no trouble of fetehiug water from a distance. The eloth is watered with long narrow shovels made in shape of a seythe. The water of these canals comes from the dams, and it is that which contributes most to the lustre of the Dutch cloth. To prevent the water from beeoming thick and muddy, they are extremcly careful in cleauing these eanals. The washing tubs are built with bricks, with two trap-doors or sluices for admitting or excluding the water according as it is neeessary." - Select Essays, quoted by Parke.
The ehief advantage here consists in the faeility of obtaining soap, whieh in ancient times was either searce or badly made. This improvement began to be more and more used from the time of its earliest introduction. Modern times have begun to cxclude it to a great extent again, finding it so much cheaper to work with the alkali alone without combining it with fatty matter.
The process of bleaching then beeame a series of operations, consisting of, Ist, steeping in water for about three or four days, or in weak alkali for forty-eight hours. 2nd, boiling in an alkaline lyc, or, in other words, bucking or bowking : in this operation the hot lye was poured on the eloth; it then ran through it, was drawn off by a tap below, and then pumped up again. 3rd, crofting, or exposure to sun aud air on the grass. 4th, souring : this was done by the butter-milk; it lasted several weeks. These operations were repeated four or five times, or until the goods were pure. The whole lasted from March to September. The best months for erofting were found to be March, April, and May. It was not known that it was the aeid of the butter-milk which aeted; but when sulphurie aeid became eheaper, Dr. Home applied it instead of butter-milk, and caused a great revolution in bleaehing, as the souring could now be done in a day whieh before had oeeupicd weeks, exposing the cloth to mueh danger of decay by deeomposition or putrefaetion. Great fear was expressed in the country lest the vitriol should burn the cloth, when Dr. Home slated that he had kept linen in acid of the required dilution for some months without having it injured. Berthollet also said that the acid made a better white.

But in 1784 Berthollet made known some investigations on eblorine, and in 1787 eommunieated them to the French Aeademy. By these investigations it was found that ehlorine had the power of destroying eolouring matters. The use of chlorine was brought to this eountry by the Duke of Gordon and Professor Copeland of Aberdeen, who then gave the process to be carried out by Messrs. Milnes, of the firm Gordon, Barron, and Co., of that plaee. In this discovery the theoretieal portion is due, first, to Scheele, who discovered the ehlorine; and, secondly, to Berthollet, who discovered the peeuliar property. The practical mode of effeeting the object is the part which we elaim; but it consists of such a long series of expensive trials and ingenious eontrivanees, that it will take a much longer time to deseribe them than to give the first idea only. As the invention was at first applied only to eotton, whieh at that period was rising into importance, we shall begin the deseription of modern bleaching with the mode adopted for that material.

James Watt at the date given was in intimate communieation with Berthollct, and did not rest until he had made the process suecessful at the bleaeh-field of Maegregor, near Glasgow, requesting the results to be eommunieated to a mecting of manufaeturers to be called together at Manchester;-so quiek was Watt to see what would be for the permanent interest of a country, and so ready to aet on it! Dr. Henry did much to make it known to the manufacturers about Manehester. This is one of the carly instanees of scientifie men being direetly applied to by manufaeturers for assistance - an application seldom made unless undcr great diffienlties.

The principal bleaching agents, besides alkalis and other matters mentioned, are ehlorine, sulphurous acid, and the combined action of air and light. Thesc are destroycrs of colour. The chief agents for removing colours which do not require to be proviously decomposed, are alkalis. The prineipal amount of the eolouring uaterials are removed from the cloth by washing with alkalis: the last tint of whiteness is not removable by this neans, and it is to this last tint that the word bleaehing has been more definitcly applied.

In 1798, Charles Tennant, of Glasgow, introduccl chloride of lime, whielı is preferred above all other compounds to the present day as a means of applying ehlorine.

The true theory of bleaehing has not been entirely agreed npon, but there ean be little doubt of the principal operations. It is knowu that oxygon deprives substanees of colour ; this may be performed by many high oxides; by nitric aeid, manganic and ehromic aeids, ehlorous aeid, and even lower oxides which hold by chlorine, lightly, as hypoehlorons acid. The sanic effect may be produced by chlorine,
bromine, and iodine. It has heen said that chlorine unites with the hydrogen of the water which is present, gives off oxygen, and so aets just as nxygen wonld. Davy found that it would not act in dry air, so that water was needful : but Dr. Wilson found that it would act, although slowly, in dry air, if exposed to the rays of the sun This might show that water is not necessary in order to supply oxygen, but only to allow the chlorine to be brought into thorough contaet with the colouring matter. It has also been supposed that the chlorine removes the hydrogen, or, rather, simply takes its place by an act of substitution. Now, whether the chlorine or the liberated oxygen removes the hydrogen, the result will be the same - the destruction of the compound. Chlorine so readily performs these changes, that we should at once decide on calling it the active agent, were it not for the fact that oxygen aets so readily, even when chlorine is not present : for example, peroxide of hydrogen, as well as the oxides just mentioned, and ozone also, which has no chlorine to help it. It is, then, certain that oxidation bleaches; and it is certain that dehydration bleaches, if performed by chlorine, and that the sun aids it by its active rays. We know also that water aids it : water aids bleaching or oxidation by air, partly because it contains air in solution. It aids also the bleaching performed by solutions in contaet with porous bodies, because these bodies have a power of eondensing gases in their pores and of compelling combinations. The next question is, Does it aid the bleaching by chlorine in the same way, by assisting the union mechanieally, or by decomposing water? Chlorine aets slowly, unless water he present. The theory, therefore, does not demand the deeomposition of water, and the known powerful affinities of chlorine do not require to be supplemented by oxygen. But, in order to see exactly the state of the case, let us look at the action of chlorine in hypochlorites or in chloride of lime, and we find that it is a direct oxidation. We obtain by it peroxides of metals, and not chlorides. Here we seem to be taught directly by experiment, that bleaehiug by hypochlorites is an oxidation of the colouring matter. Bleaching by moist chlorine may therefore be looked on as the same; indeed, we oxidise by it; but in such cases we may obtain the base at the same time united to chlorine, giving another turn to the question, as Kane showed. The oxidation theory, therefore, seems to be sufficient when water is present. We are, however, finally to deal with dry chlorine in the sun; and in that case it is fair to conclude that it acts by direct combination with hydrogen or the colouring matter or both. We have, then, two modes of bleaehing; but the usual mode in the air becomes by that explanation an oxidation, and the direct action of ehlorine obtainahle only witl difficulty. When sulphurous aeid is used, another phenomenon may be looked for, as we find a substanee whose chief quality is that of deoxidising. The removal of oxygen also decomposes hodies, and sulphuretted hydrogen can scarcely be supposed to act in any other way. Sulphurous aeid, when it deeomposes sulphuretted hydrogen, really acts as an oxidising agent, and we can therefore imagine it as such in the bleaching process. Investigation has not told us if it enters into combination as SO^{2}, aud, like oxygen, destroys colour, altering the componnd by inserting itself.

We may fairly cunclude that the processes by chlorine and sulphurous aeid are performed in a manner as different as the mode in which a salt of ammonia acts on chlorine or an oxacid, or, in Dr. Wilson's general terms, "Specifie differences may be expected to occur with all the gases named, as to their action on any one colouring matter, and with different colouring matters, as to their deportment with any one of the gases." - Truns. R. S. E., 1848.
It has heen attempted to introduce manganates, chromates, ehlorates, ehlorochromio aeid, and sulphites, but without success, as bleaching agents,

Bleaching of Cotton.

Substances dealt with in Bleuching. -The object of hleaching is to separate from the textile fibre all the substances which may mask its intrinsic whiteness, or which, in the course of dyeing or printing, may produce injurious effeets on the colours. The substances present in cotton goods, and to be treated in bleaching, are as follows :-
a. The resinous matter natural to the filaments.
b. The colouring matter of the plant.
c. The paste of the weaver.
d. A fatty matter.
e. A eupreous soap.
f. A calearcous soap.
g. The filth of the hands.
h. Iron rust, eartliy matters, and dust.
i. The eotton fibre itself.
j. The carbonacenus inatter caused by singeing.
h. The seed-vessels.

Vol. I.
a. Cotton is covered with a resinous matter, which obstructs its absorption of moisture. This alone would prevent it receiving colour, and it is known that if this could be removed, some of the darker colours could be dyed without any bleacbing, providing also the impurities arising from manipulation were absent, although the finest colours could not be produced in this manner on cotton in general. M. Bolly, however, has proposed tbe use of acetic acid, or of a sour bran liquor, as substances which are absorbed by the cotton and render it capable of absorbing colour or solutions. The matter which prevents the moistening has not been thoroughly examined. It is found to be soluble in alcohol and etber, and some of it in turpentine : it is therefore called a resinous, waxy, or fatty body. It is dissolved by alkalis, and thrown dowu by acids in strong solutions. The alcohol solution leaves thin yellowish scales, which may be dissolved in acid or eveu in much water. But information concerning it is indistinct. For a long time the process commenced by removing this resin by means of alkali. It is called scouring.
b. The whole colouring matter is not soluble in alkalis, but it becomes so after being altered by the action of chlorine, or by insolation or croft bleachiug. It is not even capable of being bleached, or at least but slowly, unless it be previously acted on by alkalis. Tbe amount of colour is much less with cotton than linen. The former is often so white naturally, that washing and bleaching might be dispensed with, were it not for the substances which, during its manufacture, come in contact with it, if the gum were removed which prevents the moistening. The alkaline solution from the raw linen, when precipitated by acids, throws down a nearly black resinous mass, and the total loss of weight is very great.
c. The weaver's dressing is composed chiefly of farinaceous, glutinous, or gelatinous substances, starch, flour, or size. They are usually allowed to become sour before using. They are all dissolved by water or alkaline solutions, including lime. When the dressing gets dry, the hand-weaver oceasionally renders his warp-threads more pliant by rubbing some cheap kind of grease upon them. Hence it happens that the cloth which has not been completely freed from this fatty matter will not readily imbibe water in the different bleacbing operations; and hence, in the subsequent processes, these greasy spots, under peculiar circumstauces - somewhat like lithographic stones - strongly attract the aluminous and iron mordants, as well as the dyestuffs, and occasion stains which it is almost impossible to discharge. Tbe acids act differently upon the fatty matters, and thence remarkable anomalies in bleacbing take place. When oil is treated with the acetic or muriatic acid, or with aqueous cllorine, it evolves no gas, as it does with the sulphuric and nitric acids; but it puts tbese substances into a condition in which tbey cannot be dissolved by a strong boiling lye of caustic soda. Carbonic acid is said to have a similar action with oil.
d. Both cotton and linen contain a little fatty matter, which is removed in the same manner as the resinous. Some of it comes from the mode of treating the warp, which is occasionally greased for weaving. This prevents, like resinous matter, the thorough saturation by solutions which are not alkaline, and soap, soda, or potash must be used to remove it by solution. Lime nakes an insoluble soap, and is therefore not suited to the operation. If, however, lime has been used, the insoluble soap may be removed by treating with carbonate of soda, which forms a carbonate of lime, and leaves the fat in combination with the alkali. The carbonate of lime is then removed by an acid. This is, however, an indirect method; and the mode universally used is to decompose the lime soap by an acid, and remove the lime, leaving the fat in the cloth; then to wash out the fat by an alkali, or by soap and alkali mixed, as is the custom almost everywhere. The soap used is in great measure a resinous one, for cheapness, and it is mixed with carbonate of soda.
e. When the hand-weavers' grease continues in contact for a night with the copper dents of his rced, a kiud of cupreous soap is formed, whicb is sometimes very difficult to remove from the web. Lime-water does not dissolve it ; but dinte sulpburic acid carries off tbe metallic oxide, and liberates the margaric acid, in a state ready to be acted on by alkalis.
f. When cloth is boiled with milk of lime, the grease which is uucombined unites with that alkalinc earth, and forms a calcarcous soap, pretty soluble in a great cxcess of lime-water, and still more so in caustic soda. But all fats and oils, as wcll as the snaps of copper and lime, cease to be soluble in alkaline lyes whe with acetic, carbonic a considerable time upon the goods, and have beca in contact oxperiment muriatic acids, or chlorinc. These results have been verified by experment.
g. Cotton goods are sometimes much soiled, from being sewed or tamboured with dirty hands; but they may easily be cleansed from this filth by he goods in the coursc
h. Any ferruginous or carthy matters not allowed thoroughly to penctrate the eloth; of bleaching are readily removable, if not acssion in water is very difficult to wash off, but the fine ferruginous clay found in suspersion in water is rery
and it probahly eannot, by any means, be removed from printed goods without spoiling the colours.
i. In all these operations it is needful to eonsider the most important substance of all-the fibre. Each of the operations may weaken or destroy it, if managed unwisely. Caustie line nay be allowed to act for a long timc on cloth without any injury, but if allowed to act on it with free aeeess of air, it destroys it in a few hours. Neither can cloth stand the action of alkalis of any kind very long: if very strong, they rapidly destroy it. The same thing may, in a still stronger sense, be said of aeids; and chloride of lime or hleaching powder acts in the same direction. Linen, although mechanically much stronger than cotton, has not an equal chemical resistanee to decomposition. It has not, therefore, heen possihle to nse chloride of lime so as entirely to complete the process of bleaehing linen, but only to hasten it, the completion heing still nearly in all cases made by crofting. The hleacher has found out these things by expensive experience, and every day shows the importance of guarding against the excessive aetion of any one of the hleaching agents. Goods are continually suffering from the desire of speed on the part of the trade, and especially of the huyer; nor is it easy to find them ahsolutely uninjured by the process of hleaching, although it seems possihle to conduet the proeess so that no weakening will ensue. The precautions taken are such as cause the processes to appear very long and tedious. The boiling with lime is continued as long as it is safe; the cloth is then at once washed and scoured, so as to remore all the eaustic earth from the fibre. The acid is not allowed to remain long, but is, within from two to four hours, washed out hy machines which cause the eloth to be frequently and rapidly saturated with water; and when one of these processes is not enougl, it is found better to return to it again than eompletely to finish it at once, to the danger of the fibre ; in the same way as workmen, if they find it needful to put their hands into hot water, do it rapidly and for a short time, but bring them out to cool hefore they return to the charge. To dry the goods with even a very small amount of aeid would infallihy render them rotten. When the chlorine has oxidised or otherwise acted on the colouring matter, so as to render it soluhle, it is washed out with alkalis; hut the whole may not he acted on hy the first process, and a seeond may be needful. Again, as to crofting : one exposure may not he found enough; another washing and another crofting are then needed, and a third, and so on, aceording to the method employed and the nature of the material used.
The souring hy vegetable substances or hy fermentation may also injure the cloth, not hy the amount of acid existing in the solution, but the decomposition which hecomes eommunicated from the vegetable matter to the cloth, and so renders it weak and rotten. The same is peculiarly the case when putrefactive aetiou is allowed to commence. This was often the case when the gluteu of the paste was removed by fermentation. It has hecn said that the action of carhonie and acetic aeid on the fats is a great ohjection to the fermentation proeess, as they are thought to render the fat insoluhle, and produce an indclible mark.
Experiments undertaken for the purpose have shown that the strength of the fibre is not impaired by being boiled in milk of lime for two hours, at the ordinary pressure, provided it is not exposed at the same time to air; but bleachers eonsider that, practically, the goods are not injured hy hoiling with lime for sixteen hours at the strength of 40 lbs. to 100 gallons. It has also heen proved that eaustic soda of the speeific gravity of $1030 \cdot$ does not hurt them, even boiled under the pressure of 140 lbs .
to the square inch, or immersion for eighthours in 3 lbs. to 100 gallons, and afterwards eight hours in chloride of lime solution containing or eighteen hours at the specific gravity of 1035 :
j. The earhon left hy the singeing is entirely removed, hut it is not clear what hecomes of it. It disappears in the alkaline solution, as no traces seem to exist after hut by eompounds sly the blackness or darkness is not caused hy any pure carbon, away almost entirely, no douht, by mechanieal neeans. k. The same method gets rid of mechanieal means.
and after the first washing seem to stand out very prominently, swelling up intoltarg, dark spots. The alkali probably renders them soft, and allows them to into large with liquids, if not altogether actually dissolved. General Process of Bleaching. - The proceas. resolves itself into treatment with alkalis and of bleaching, from what we liave seen, descrihing the operations, they seem to be very numerous ; but, as or of light. Iu require to he repeated gently, instcad of heing finished by one deeisive operatione so as not to injure the fibrc; and some are iutermediate one deeisive operation, so quent washings needed in passing from one process to the other. The alkaline friction in whiel the goods are boiled does not eontain above other. The alkaline soluto 600 gallons, hut nearly always less. Lime is, however, used much more fyate of soda
than soda, which it will be seen is only employed in the second process, and the third, if there he onc. It is less hurtful to the cloth, and is much chcaper than the alkalis.
The chloride of lime is used at $\frac{1}{2}$ Twaddle, or $1002 \cdot 5$. It is not considered so inportant now as formerly, and where 300 lbs . werc formerly employcd, 30 to 40 are now used. The goods are made nearly white by the alkalis. The chloriue gives only the last finish, and is sometimes used to whiten the ground on coloured goods. The whole process nay be expressed thus:-Wash out the soluble matter ; boil with lime to dissolve still more, and to make a fatty compound with the oily matter; wash out the lime by acids; wash out the fat with a soda soap; clear the white hy chloride of lime.

The impurities in the cloth have a certain power of retaining colour upon them. Mud and dirt, as well as grease, gluten, and albuminous matters, have this property, and fatty soaps, such as lime compounds of fatty acids. The pure fihre, however, has no power of taking up solutions of such colouring matter as madder. When, therefore, it is desired to try the extent to which cloth has been hleached, it is dyed or boiled up with madder exactly as in the process of dyeing. It is then treated with soap, as the madder-dyed goods are treated, and if it comes out without a stain, or nearly pure white, the goods are ready. Dyers or calico-printers who dye printed goods are exceedingly particular as to the bleaching, the dyeing and printing having now approached to such exactness, that shades invisible to any eye not very nuch experienced are sufficient to diminish in a material degree the value of the cloth. Any inequality from irregularity of bleaching, which causes a similar irregularity of dyeing, is destructive to the character of the goods. Many patterns, too, have white grounds; these grounds it is the pride of a printer to have as white as snow. If delicate colours are to be printed, they will he deteriorated if the ground on which they are to be printed is not perfectly white.

The stains which come out upon maddered goods in consequence of defective hleaching are sometimes called spangs. Their origin is such as I have described above, as the following statements of facts will show. The weaver of calicoes receives frequently a fine warp so tender, from bad spinning, or had staple in the cotton, that it will not bear the ordinary strain of the heddles, or friction of the shuttle and reed, and he is obliged to throw in as much weft as will compensate for the weakness or thinness of the warp, and make a good marketahle cloth. He of course tries to gain his cnd at the least expense of time and labour. Hence, when his paste dressing becomes dry and stiff, he has recourse to such greasy lubricants as he can most cheaply procure, which are commonly either tallow, or butter in a rancid state, but the former, heing the lowest priced, is preferred. Accordiugly, the weaver, having heated a lump of iron, applies it to a picce of tallow hcld over the warp in the loom, and causes the melted fat to drop in patches upon the yarns, which he afterwards spreads more evenly by his brush. It is obvious, however, that the grease must be very irregularly applied in this way, and he particularly thick on certain spots. This irregularity seldom fails to appear when the goods are bleached or dyed by the common routine of work. Printed calicoes, examined hy a skilful eye, will be often seen to be stained with large blotches, cridently occasioned by this vile practice of the weaver. The ordinary workmen call these copper stains, helieving them to be communicated in the dyeing copper. Such stains on the cloth are extremely injurious in dyeing with the indigo vat.

Old Methods still in use. - As a specimen of the older processes, we shall give the following, adding afterwards a minute account of some of the plans adopted by the most successful bleachers. When grease stains do not exist, as happens with the better kind of muslins, or when goods were not required to be finely finished, the following has been adopted:-After singeing. 1. Boiling in water. 2. Scouring hy the stocks or dash-wheel. 3. Bucking with lime. 4. The hleaching properly so called, viz., passing through chlorine or crofting. 5. Bucking or bowking with nilk of lime. Those two latter processes employed altcrnately several times, till the whole of the colouring matter is removed. 6. Souring. 7. Washing.

Another routine has been, 1. Cleansing out the weavers' dressing, by steeping the cloth for twelve hours in cold water, and then washing it at the stocks or dash-wheel. 2. Boiling in milk of lime, of a strength suited to the quality of the goods, but for a shorter time than with the soda lye; two short operations with the lime, with intermediate washing, heing prefcrable to one of greater duration. 3 aud 4 . Two consccutive lyes of ten or twelve hour's' boiling, with ahout 2 lbs . of soda crystals for 1 cwt . of cloth. 5. Exposure to the air for six or eight days, or the application of chloride of lime and then sulphuric acid. 6. A lye of caustic soda. 7. Exposure to the air for six or eight days, or chlorinc and acid as ahovc. 8. Caustic-soda lyc as before. 9. Chlorine and the sour. 10. Rinsing in hot water, or scouring by the dash-wheel.

The Processes used in Bleaching. Singeing. -The singeing is performed by passing tbe cloth over a red-hot plate of iron o rcopper. The figure 163 shows this apparatus

as improved by Mr. Thom. At a tbere is a cylinder, with the cloth wound round it to be singed; it passes over the red-hot plate at b, becomes singed, passes over a small roller at c, whicb is partly immersed in water, and by tbis means has all the sparks extinguished; then is wound on to the roller d, when the process is finished. As the products of combustion from the singeing are sometimes very unpleasant, they are carried by this apparatus into the fire-plaec, where they are consumed. The arrows show tbe passage of tbese vapours from the surface of the clotb downwards iato tbe bearth, and thence into the fire.
For goods to be finely printed both sides are singed ; for market bleaching, one side. Sometimes, bowever, singeing is not at all desired.
The use of a line of gas jets instead of a red-hot plate, was introduced by Mr. Samuel Hall. It has not, however, found its way generally into bleach works : the plate is preferred. Gas jets are used necessarily in singeing threads. See Singenc.

Shearing.-For fine printing, it is by some considered needful to shear the nap of tbe cloth instead of singeing it. The method is more expensive than singeing. Messrs. Mather and Platt have made a machine which will shear 60 to 80 yards per Bucking or Bowking. - This is the process of boiling goods. It is performed in alkaline liquids, generally lime, or soda, or both. The kier for bowking is a cylindrical iron vessel, the chief peculiarity of which is a method of preventing the clotb from being burnt on the bottom of the vessel, or allowed to dry on the vessel, or so to be pressed on the bottom as to prevent tbe boiling of the liquid in a uniform manner. This is done by simply having a false bottom to tbe kier, or a wooden perforated bottom, about cight or ten inches above the actual bottom.
The boiler, such as A, fiy. 164 , has a stopcock, H \boldsymbol{G}, at bottom, for running off the wastc lyc. Kiers arc commonly made of cast iron, and are capable of containing from 300 to 600 gallons of water, according to the extent of the business
 dunc. In order that the capacity of the boilers m as to admit of a crib of wood, strongly hooped, or, whe enlarged, they arc formed so
be fixed to the upper rim or edge of it. 'To kecp the goods from the bottom, where the heat acts most foreibly, a strong iron ring, covered with ncting made of stout rope, c, is allowed to rest six or eight inches above the bottom of the boilcr. Four double ropes are attached to the ring, E , for withdrawing the goods when suffieiently boiled, which have caeh an eyc for admitting looks from the running taekle of a crane. Where morc boilers than onc are employed, the cranc is so placed that, in the range of its swecp, it may withdraw the goods from any of them. For this purpose, the crane turns on pivots at top and bottom; and the goods are raised or lowered at plensure, with double pulleys and sheaves, by means of a eylinder moved by cast-iron wheels. The lid is sccured by the screw bolts D D, and rings B B. F is a safety-valve.

To avoid the cxcessive heating ncedful to drive the liquid through the goods, Mr. John Laurie invented the keir at fig. 165.
 e, or kier, containing the cloth; CEFD pump; g the east-iron boiler; $\mathbf{G} \mathrm{G}$, the between the kier and the boiler. This pipe has a valve on each of its extremities: that on the upper extremity, when shut, prevents the lye from running into the boiler, and is regulated by the attendant by means of the rod and handle g b. The valve at k admits the lye; but, opening inwards, it prevents the steam from escaping through the pipe g к. The boiler has a steam-tight iron eover, $g \mathrm{~L}$; and at CD in the kier is a wooden grating, a small distance above the cover of the boiler.

At $m O$ is a broad plate of metal, in order to spread the lye over the cloth. It is hardly necessary to say that the boiler has a furnace: as usual, for similar purposes.

While the lye is at a low temperature, the pump is worked by the mill or steamengine. When it is sufficiently heated, the elasticity of the steam forces it up through the valves of the pump, in which case it is disjoined from the moving power.

N P is a copper spout, which is removed at the time of taking the cloth out of the kier.

In order still further to avoid labour, the pumping has been entirely done away with.

A simple modification of the bowking apparatus is shown in figs. 166, 167, 168; the first being a vertical section, the second a horizontal

section in the line x of the first. It consists of two parts : the upper wide part, $a a$, serves for the reception of the goods, and the lower or pot, b, for holding the lye ; cc is an iron grating, shown apart in fig. 168. The grating has numerous square apertures in the middle of the disc, to which the rising pipe d is screwed fast. The upper cylinder is formed of cast iron, or of sheet iron well rivcted at the edges; or sometimes of wood, this being secured at its under edge into a groove in the top edge of the lye-pot. The mouth of the cylinder is constructed usually of sheet iron. $e e$ is the fire-grate, whose upper surface is shown in fig. 166 : it is made of cast iron in three picces. The flame is parted at f, and passes through the two apertures $g g$, into the flues $h h$, so as to play round the pot, as is visible in fig. 167, and escapes by two outlets into the chimney. The apcrtures i i serve for occasionally cleaning out the flues $h h$, and are, at othcr times, shut with an iron plate. In the partition f, which separates the two openings $g g$, and the flues $h h$, running round the pot, there is a circular space at the point marked with k, fig. 167, in which the large pipe for discharging the waste lye is lodged. The upper large cylinder should be encased in wood, with an intermediate space filled with sawdust, to confine the heat. The action of this apparatus is exactly the same as that already explained.
Besides the boiling, bucking, and other apparatus above described, the machinery and utensils used in bleaching arc various, according to the business donc by the bleacher.
The kier of Messrs. Mather and Platt is very complete. The first figure (169) is the kier when shat or screwed down. The second ($170, \mathrm{p} .328$) is the section of the kier, which is very like that before given; but in this case it is steam tight, and heated by steam which issues from a steam pipe communicating beneath the false bottom. The dangers attending the kier before mentioned are by this means entirely averted, and all the inventions which give the washing liquid a separate and distinct place for heating are at once done away with.

169

An exact description of these kiers is required. a, b, c, d, represent the body of the kier, which is a cylindrical vessel, generally made of cast iron, but sometimes of wood,
or wrought iron. h represents false bottom; a east-iron grating, sometimes eovered with boulder stones, and sometimes with wood; g, cylindrical disc, of wrought iron,

170

placed on the top of "puffer-pipe" q, to spread the liquor over the eloth. q, "pufferpipe," standing on false bottom, h. s, eylindrical casting for supporting false bottom and "puffer-pipe," whose periphery is "slotted," to admit of the liquor passing through. r, cover for kier; the flanch on which this cover rests is grooved a little, to admit of "gasking" being inserted, so as to form a "joint." k, k, swivel bolts, holding down the cover. i, a small aperture, covered with a lid capable of being removed easily, to enable the attendant to see that the cloth does not rise too high in the kier to endanger its working; if such happens, he checks the steam until the eloth settles, after which it does not again attempt to rise. n, steam valve; l, water valve; both communicate with pipe w, leading to kier. p, pipe communicating with kier for supplying steam and water-also serves as escape-pipe; f, eseape-valve for letting off kiel; e, wheel for opening ditto; m, steam pipe from boiler. o, p, foundation for kier.
The process of cleansing is very various. Some use lime for the first process ; some use soda alone; some use them mixed. Of course when carbonate of soda and lime are used, eaustic soda is at once formed, and the carbonate of lime is left idle. The practices and fancies of bleachers are numerous; and we have only to say that the principle consists in the use of alkaline lyes. Some use lime to the amount of 3 per cent.; others go as high as 10 . The lime is slaked first and a portion thrown in; a portion of cloth is laid upon it, and a portion of lime again covers that; but on no account must the goods be allowed to lie in contact with the atmosphere and the lime.

When removed from the kiers the goods must be washed. Now if they are to be washed in dash-wbeels, it is needful that they be in separate pieces, and in this state they are sometimes boiled in the kiers; but if they are to be washed in the washing machines, they are lifted out of the kier in the same manner as a piecc of string is drawn out of the eanister in which the coil is kept.
M. Metz, of Heidelberg, has attempted to perform the work of boiliug by merely extracting the air from the cloth. For this purpose the cloth is simply put into a strong upright cylinder, the top screwed down, and the air taken out by an air-pump. We have no knowledge as to the advantages gained by this process, or whether it has been found actually capable of putting eloth in a condition to be bleached for a very fastidious market.

Stecping. - Instead of boiling in the kicr at first, the goods are sometimes, though now rarcly, stceped from one to two days in water, from 100° to $150^{\circ} \mathrm{F}$., for the purpose of loosening the gummy, glutinous, and pasty matcrials attached to the eloth. Fermentation ensues, and this process is dangerous, as the aetion of the ferment sometimes extends to the goods, cspecially if they are pilcd up in a great heap without bcing previously washed. The spots of grease on the insoluble soaps become thereby capable of resisting the eaustic alkalis, and are rendered in some measure iudelible ;
an effect due, it is believed, to the acetic and carhonic acids generated during fermentation. Some persons throw spent lyes into the fermenting vats to counteract the acids. The spots of grease are chiefly to he found in hand-1 oom goods, and the difficulty concerning the fats is not therefore commonly felt where power-loom goods are chiefly used, as in Lancashire.

Washing. - If the cloth is to be washed without having the pieces strung together, the following methods may he adopted. The stocks are still used, but not in any large estahlishments in Lancashire.

Figs. 171, 172, represent a pair of wash-stocks. A A are called the stocks, or feet. They are suspended on iron pivots at B , and receive their motion from wipers on the revolving-shaft c. The cloth is laid in at \mathbf{D}, and, hy the alternate strokes of the feet, and the curved form of the turnhead E , the cloth is washed and gradually turned. At the same time, an abundant stream of water rushes on the cloth throughout holes in the upper part of the turnhead. Wash-stocks are much used in Scotland and in Ireland. In the latter country, they are often made with douhle feet, suspended above and helow two turnheads, and wrought with cranks instead of wipers. Wash-stocks, properly constructed, make fiom 24 to 30 strokes per minute.

This mode of washing is now entirely given up in Lancashire, where a preference is given to dash-wheels and washing machines with squeezers. The dash are small waterwheels, the inside of which is divided into four compartments, and closed up, leaving only a hole in each compartment for putting in the cloth. There are, besides, small openings for the free admission and egress of the water employed in cleansing. The cloth, by the motion of the wheel, is raised up in one part of the revolution of the wheel; while, hy its own weight, it falls in another. This kind of motion is very effectual in washing the cloth, while, at the same time, it does not injure its strength. The plan, however, where economy of water is of any importance, is very ohjectionable; hecause the wheel must move at by far too great a velocity to act to advantage as a water-wheel.

The wash or dash-wheel, now driven hy steam power in all good bleach and printworks, is represented in fig. 173, upon the left side in a back vierr, and upon the right side iu a front view (the sketch heing halved). Fig. 174 is a ground plan.
$a a$ is the washing-wheel; $b b$ its shaft-ends; $c c$ their hrass hearings or plummerblocks, supported upon the iron pillars $d d$. The frame is made of strong heams of wood, $e e$, bound together hy crosshars with mortises. $f f$, two of the circular apertures, each lcading to a quadrantal compartment within the dash-wheel. In

the hack view (the left-hand half of the figure) the brass grating, $g g$, of a curvilinear form, is seen, through which the jets of water are admitted into the cavity of the
 wheel ; $h h$ are the round orifices, through which the foul water runs off, as each quadrant passes the lower part of its revolution; i, a water-pipe, with a stopcock for regulating the washing-jets; $k h$, the lever for throwing the drivingcrah l, or coupling-box, into or out of gear with the shaft of the wheel. This machinc is so constructed, that the watercock is opened or shut by the same leverage which throws the whecl into or out of gear. m, a wheel, fixed upon the round extremity of the shaft of the dash-wheel which works into the toothed pinion connected with the prime mover. When the end of the lever k, whose fork emhraces the coupling-box upon the square part of the shaft, is pushed forwards or hackwards, it shifts the clutch into or out of gear with the toothed wheel m. In the latter case, this wheel turns with its pinion without affecting the dash-wheel. $n n$, holdfasts fixed upon the wooden frame, to which the boards oo are attached, for preventing the water from heing thrown ahout by the centrifugal force.

The dash-wheel is generally from 6 to 7 feet in diameter, about 30 inches wide, and requires the power of ahout two horses to drive it.

A dash-wheel has one piece of cloth in each of the four compartments; these are washed in eight minutes, heing 30 pieces an hour, or 300 pieces a day; sometimes two pieces are put in, when double the time is given. It generally requires 60 gallons of water per minute to feed it, 36,000 gallons a day, or 120 to a piece. Always after washing, the squeezers are applied, as they remove at once the superfluous water.

The machine made hy Mr. Mather (figs. 175 and 176) washes 800 pieces per hour, or 8000 pieces per day of ten hours, using 400 gallons per minutc, or 120,000 gallons per day, or 20 gallons to a piece. This class of machine is now in its turn superseding the dash-wheel.

This washing machine will be understnod hy the general plan (fig.176, and corresponding section, fig. 175). a and b represent the squeezing-bowls. a, is 18 inches diameter and 8 feet three inches long; it is made of deal timher. (The lapping of strong canvas at $a^{\prime \prime}$ is for the purpose of giving the "out-coming" pieces an extra squeeze, in order to prepare them for the kiers.) b is 24 inches diameter and of the same length as a, making 100 revolutions per minute; it is generally made of deal, sycamore, however, hcing better. c, d, a strong wooden rail, in which pegs are placed in order to guide the cloth in its spiral form from the edge to the centre of the machine. h, h, the water-trough, through which the piece passes round the roller r. p, (fig. 175), water-pipe. t, water-tap. m, m, pot-eyes, which may be adjusted to any angle, to guide and regulate the tension of the piece on entering the machine. l, side frame, for carrying howls, \&c. g, engine (with cylinder, 8 inches diameter) and gearing for driving machine. w, weight and lever for regulating pressure on the bo wl.

This machine washes 800 pieces per hour, and requires 400 gallons of watcr per minute. It will serve also to represent the chemich and souring machine, the only difference heing that the bowls are 3 feet 6 inches, instead of 8 feet 3 inches, in length.

The chemick and sour are hrought hy turns into the trough, or into similar separate troughs, hy a lcaden pipe from the mixing cisterns, and are run in to 6 or 8 inches deep.

The washing machine of Mr. Bridson (fig. 177, p. 332) is worth attention. In its action the course of the cloth in the water is easily seen; it is chicfly horizontal. This motion had hecn given by Hellewell and Fearn in 1856; but they had a very conplicated machine, and they did not attain the flapping motion which is given to the cloth when it becomes suddenly loose, and is driven violently against the hoard $a a$ as often as $b c$ and $e d$ are in one line. It is not shown hy the drawing that the cloth passes eight times round these wheels. There is a constant stream of water from the pipe f, which is flattence at the mouth about one and a half inch in one diameter, and aboit ten inches in the other. This machine can wash 900 pieces in an hour. It requires

about twice as much water as a dash-whecl, but washes seven and a half times more pieces. Its length is nine feet.

Souring. - After boiling in the first kier and washing, the goods are soured in muriatic acid of 1010° specific gravity, or $6 \frac{1}{2}$ gallons of the usual acid, which contains 33 per cent. of real acid, mixed with 100 gallons of water. This is equal to $2^{\circ} \mathrm{Tw}$. Muriatic acid may be replaced by sulphuric acid of $1024 \cdot$ specific gravity, i. e. $3 \frac{1}{2}$ gallons liquid acid to 100 of water; - or the amount of the acid may be doubled in either case, and a shorter time allowed for the souring. The souring is performed in wooden or stone cisterns, where the cloth is laid regularly as it falls over one of the rollers of the calender;-or it is passed through the acid solution by the movement of the calender in the same manner as described in the process of washing. If this method is used, it is allowed to lie on the stillages from two to three hours to allow the acid to act. The acid decomposes any lime soap formed, and washes out the lime. Hydrochloric or muriatic acid has bcen preferred in the process described, as the chloride of calcium is so much more soluble than the sulphate. After scuring, of course the goods must be thoroughly washed as before.

The sixth operation with soda removes the remaining fatty materials. If lime be used, it may be allowed to settle; and it is better to allow it to do so, and thus to use pure caustic soda, which will with the resin remove the impurities in a more soluble form. If, instead of adding 170 lbs . of soda crystals to 600 gallons of water, 4.6 lbs . of liquid caustic soda of specific gravity 1320 were added, the effect would be the same.

The solution of resin and carbonate of soda is a half-formed soap, which is considered to act beneficially in removing the soluble matter. It would not appear, from theory, to be capable of doing so well as the soda which has its carbonic acid removed; but tender goods will not allow the action of caustic soda, and the carbonate is therefore safer.

Powder-bleaching. - Chloride of lime is added in stone vessels where the goods are allowed to lie. It is universally called chemick in the manufactories. The strength used at Brickacre is half a degree Twaddle, or $1002 \cdot 5$. This is somctimes very much increased, so as to be even 5° in some establisbments, according to the goods bleached; but it is not safe to allow the cloth to lie long in such strong solutions. In such cases it is needful to pass them rapidly through with the calender, so as to soak them thoroughly, and then to pass them on to the acid, and forward to be washed. It may be remarked tbat the use of the calender for these operations renders it possible to use strong solutions, even for tender goods, as there is no time given for injurious action on the fibre.
Great care is to be taken to make the solution of the chloride of lime perfectly clear. The powder does not readily wet with water, and it must therefore be pressed or agitated. This may be done by putting it in a revolving barrel with water, until complete saturation of the powder with moisture ; the amount required is then throwu into the cistern, and the insoluble matter allowed to sink. This insoluble matter must not be allowed to come into contact with the cloth, as it will be equal of coursc to a concentrated solution of the liquor, and will produce rottenness, or burn the cloth so as to leave holes. When removing from the trough, the cloth is drawn throngh squeezing rollers, which press out any excess of chloride of lime.

Squeezing.-The squeezing rollers or squeezers, fnr discharging the greater part of the water or any liquid from the yarns and goods in the process of bleaching, are represented in figs. 178,179 , the former being a side view, to show how the roller gudgeons lie

in the slots of the frame, and how the shaft of the upper roller is pressed downward by a weighted lever, through a vertical junction road, jointed at the bottom to a nearly horizontal bar, on whose end the proper weight is hung. In fig. 179, these rollers, of birch-wood, are shown in face; the under one receiving motion through the toothed wheel on its shaft from any suitable power of water or steam. Upon the shaft of the latter, between the toothed wheel and the roller, the lever and pulley for putting the machine into and out of gear is visible. The under roller makes about 25 revolutions in the minute, by which time three pieces of goods, stitched endwise, measuring 28 yards each, may be run through the machine, from a water trough on one side to a wooden grating upon the other.

A squeezing machine, with a small engine attached, is shown in fig. 180, for the drawiug of which we are again indebted to the makers, Messrs. Mather and Platt.

d, f, represent the squeczing-bowls. They are as large in diameter as possible, and are generally made of sycamore; but the bottom ane is better made of highly compressed cotton. a, b ure the cogine and frame for driving; g, frame for carrying bowls; l, l, compound levers for regulating the press use ; s is a screw for the same purpose, and c is the cloth passing through the bowls.

The white-squeezers, or those uscd before drying, should have a box, supplied with hot water, fixed so that the piece may pass through it before going to the nip of the bowl.

When the goods are run through, they are carried off upon a grated wheelbarrow in a nearly dry state, and transferred to the spreading machine, called at Manchester a candroy. In many bleach works, however, the creased picces are pulled straight by the hands of women, and are then strongly beat against a wooden stock to smooth out the edges. This being done, a number of pieces are stitched endwise together, preparatory to being mangled.

This squeezing machine is small, but, as will be seen, the rollcrs are introduced so as to act as long and as rapidly as cloth of whatever length is drawn through them.

The following figure (181) represents a pair of squeezers, for squeezing the cloth after several of the processes named, and are shown as being driven by a small high pressure engine. a is the fly wheel of engine; b, crank of ditto; c, frame of engine; d, spur wheels connecting the engine and squeezers; e and f, sycamore squeezing bowls.

The eloth when passed over the steamed rollers is now dry; but it is not smooth and ready for the market. If the cloth is wanted for printing, no further operation is needed; but if to be sold as white calico, it is finished by being starched aud calendered.

The starch at large works is prepared by the bleachers themselves. At Messrs. Bridson's it is made with the very greatest care from flour. Of course it would be more expensive for them to buy it, as the manufacturer would dry it, and they would require to dissolve it. They are able also, in this manner, to obtain the purest starch. This is mixed with blue, according to the finish of the goods. A roller, which dips into the starch, lays it regularly and cvenly on the cloth in the same manner as
mordants are communicated in calico printing, whilst other rollers expel the excess of the starch. The cloth is then dried over warm cylinders, or by passing into a heated apartment. It receives the final finish gencrally by the calender ; but muslins receive a peculiar treatment.

Calender.-Fig. 182 is a cross section of this machine, and figs. 183, 184 are front views broken off. The goods are first rolled upon the wooden cylinder; a, near the

ground; by the tension roller, b, upon the same cylinder, the goods receive a proper degree of stretching in the winding off. They then pass over the spreading bars, $c c c$, by which they are still more distended ; next round the hollow iron cylinder, d, 16 inches diameter, and the paper cylinder, e, of like dimensions; thence they proceed under the second massive iron cylinder, f, of 8 inches' diamcter, to be finally wound about the projecting wooden roller, g. This is set in motion by the pulleys h, (fig. 184), and i (fig. 182), and receives its proper tension from the hanging roller, $k ; l$ is a pressing cylinder of 14 inches' diameter, made of plane-trce wood. By its means we can at all times secure an equal degree of pressure, which would be hardly possible did the weighted lever press immediately upon two points of the calender rollers. The compression exercised by the cylinders may be increased at pleasure by the bent lever, n, weights being applied to it at n. The upper branch of the lever, o, is made fast, by screws and bolts at p, to the upper press cylinder. The junction leg, q, is attached to the intermediate piece, r, by left and right-handed screws, so that, according as that picce is turned round to the right or the left, the pressure of the weighted roller will be either increased or diminished. By turning it still more, the piece will get detached, the whole pressure will be removed, and the press roller may be taken off, which is the main object of this mechanism.
The uuequable movement of the cylinders is produced by the whecls s, t, u, of which the undermost has 69 , the uppermost 20 , and the carrier-wheel, t, either 33,32 , or 20 teeth, according to the difference of speed required. The carrier-wheel is bolted on at v, and adjusted in its proper place by means of a slot. To the uudermost iron cylinder, the first motion is communicated by any power, for which purpose either a to operate with a lieated applied to its shaft at u, or a crauk motion. If it be desired hot stcam, admitted through a stuffundermost hollow cylinder may be filled with stuffing box at the other, or by a red-hot iron roller end, and discharged through a
Before passing through the press, they are slightly of brushes, which dips into the water, and thrightly damped; this is done by a roller then subjected to the powerful pressure of the regularly on the cloth. They are picces, by the powerful pressure of the rollers, arender rollers. The calendered There can be no doubt that cloth in this statc looks to smooth and somewhat shining. must, however, be put into a compact form. This is the best advantage. The pieces which are pressed by hydraulic power into firm and solidy folding them into parcels,
the mark of the manufacturer, or any deviee that he may choose to have, stamped upon it or bound round it.

Finishing.-Pure starel is not always used for the purpose of finishing. Fine elay, gypsum, or Spanish white, is mixed with the eloth; and if weight is desired to he given, sulphate of haryta is employed. Mr. John Leigh, of Manchester, las lately patented for this purpose the use of silicate of soda, which, for sueh goods as are not injured by alkalis, seems to answer the purpose at a very cheap rate. There can, however, be no doubt that too much attention is given to this finish for home goods, or for all purposes which require the goods to be washed : they assume a solidity of appearance which they do not possess when the finishing material is removed from the pores, and the eloth appears without disguise. In some instances, however, this finish is a peculiarity of the goods, and is alnost as important as the eloth itself. For example: in the case of muslins, when they are dried at perfeet rest, they have a rigid inelastic feeling, somewhat allied to that of thin laths of wood, and feel very rough to the touch. They are therefore dried hy stretching the eloth, and moving the lines of selvage haekward and forward, so as to cause the threads of weft to rub against each other and so as to prevent them hecoming united as one piece. Goods dried in this manner have a peculiar spring, and such thick muslins are for a time possessed of great elasticity. Several pieces folded up in a pareel spring up from pressure like eaoutchouc.
Mr. Ridgeway Bridson invented an apparatus for giving this peculiar finish to muslins. Formerly it was done entirely by the hand, and in Scotland only. Since the invention of this machine, this trade has become a very important one in the Manchester district.
Sometimes goods are finished by the heetle, which aets hy repeated hammering. This peeuliar action has heen transferred to a roller hy T. R. Bridson, and ealled the "Rotatory Beetle." It consists of a cylinder having alternately raised and depressed surfaces, and two other eylinders which press upon it, and alternately press the cloth and give a freedom as it passes hetween the rollers. This is similar to the rise and fall of the hammers or mallets in the heetling process.

Sometimes a stiff finish is wanted; then muslins are dried in the usual way.
Drying.-Figs. 185 and 186 represent a drying machine, with eleven eylinders, each 22 inches in diameter, eapable of drying 1000 pieces of bleached calico in a day. a, represents cylinders heated with steam ; v, vacuum-valves in ditto; f, frame for earrying eylinders; c, folding apparatus ; s steam-pipc ; g, gearing.

When goods are dried having a raised pattern, such as broeades, or any other, such as striped white shirting, only one side of the eloth is to be exposed; the pattern rises up from the heated surface on which the eloth is dried. For this reason, eylinders such as those just described eannot he used. Large wheels of east iron are employed, consisting of two concentrie eylinders, between whieh is a closed space heated by steam. The eloth is by this means heated on one side only, not passing from eylinder to cylinder, in which ease the side next to the heating surface rould te clanged every time. The larger the eylinder or wheel, the more rapid is the drying, as there is more surface of cloth exposed to it at a time; it ean, for the same reason, be turned more rapidly round. Well-finished goods will not rise when heated, except on the pattern. Messrs. Bridson lave a large husiness in jaceonets for artificial flowers on aecount of this peculiar finish. They are formed of a plain cotton eloth, hut stand the pressure of hot irons without eurling.

No essential difference is made in bleaching muslins, except that sometimes weaker solutions are employed for very tender goods. Mr. Barlow makes no difference as a rule in the strength given in describing his process; with very strong goods, he sometimes uses the liquids stronger.

It is desired occasionally to bleach goods which have coloured threads woven into them, or colours printed on them. In these cases great caution must be used. It is needful to use weak solutions, but more especially not to allow any one process to he continued very long, but rather to repeat it often than to lengthen it. This may be stated as a general rule in the bleaching of goods. It would indeed be possible to do the whole bleaching in one operation, but the cloth would be rotten. This arises from the fact that, at a certain strength, bleaching liquor or soda is able to destroy the fibre; but another and less strength does not act on the fibre, but only on such substances as colouring matters. This care is needed when printed goods which have a white ground are treated. The white ground takes up colour cnough to destroy its brilliancy, and soaping does not always remove it. The bleaching then is cffected by using bleaching liquor at $\frac{1}{2}$ Twad. Some persons put a Turkey red thread into the ends of the pieces. The original use of this secms to be scarcely known among the manufacturers. It was used as a test of the mode of bleaching employed. If strong solutions be used, which are apt to spoil the cloth, the colour of the dyed threads will be discharged. When the separate system is cmployed, tbis is evaded easily; it is the practice to keep the ends containing the red threads out of the liquid, allowing them to rest on the side of the vessel.

Sometimes cblorate of potash is used for the same purpose, souring as with the bleaching powder. The colours may, in this manner, be made much more brilliant than before, although a little excess will discharge them. A good deal of the effect may be owing to the better white given to the ground. Besides these processes for bleaching, another was at one time introduced, which consisted of immersing the cloth in a solution of caustic alkali, and afterwards steaming in a close vessel. It is not now in use. Alkali of 1020° specific gravity was used.
The new or continuous process. This method owes its introduction to David Bentley, of Pendlcton, who patented it in 1828. It consists in drawing the goods in one continuous line through every solution with which it is desired to saturate them. This is done by connecting tbe ends of all the pieces. The motion of rollers draws the chain of cloth thus formed in any desired dircetion, and through any number of solutions any given number of times. We shall allow him to use his own words
Fig. 187 (p. 338) is an end view of two such calenders, cach having two larger rollers E and B 1, a smaller driving roller C , two racks D and D 1 1, placed upon two cisterns G and G l, inside of whicb cisterns are two rollers E and E I, which rollers have four square ribs upon each, to shake the goods as they pass through the cisterns. At \mathbf{F} is a frame where they the batches of goods are placed upon rollers shown in fig. 188 (p. 338), the middle, and to the top of the building calender cheeks are made fast at the fect, at to the calcnder bowls.

Near the end walls of the building are two rollers, one of which is shown at A; upon each of thesc is a soft cord used as a guide for conducting the goods through Vol. I.

188

of the cord through the rollers B and c, down to cistern g , under roller F , through the furthermost division of rack D, and again through calender rollers at B and C, repeating the same, hut observing to kecp the cord tight, and to approach one division nearer in rack D each revolution until each division is oceupied, when the end must pass over c, under and round $B 1$, down tn and over the guide roller I 3 , through the nearest division of rack $D 1$ into cistern $G 1$, under roller E I, orer guide rollcr I 2, and again over roller c, under and round B 1. This coursc must be repeated, observing as before to keep the cord tight, and to reccive one division of rack $D l$ every revolution, until each division of rack D 1 is occupied, when the end must pass over from B 1 under I 4. The cord now forms a sort of spiral worm round and through the machinery and cisterns, beginning at B, C, and ending at the top of B 1 to 4 , the number of revolutions heing governed hy the number of divisions in the racks D and $D 1$, so that if there were fifteen divisions in each rack there rould he fifteen revolutions under C, round B through G, under E through D, and fifteen revolutions over c round B 1 , over I 3 through D 1 and $G 1$, under $E 1$ over 12 , and again over c, passing from the top of в 1 to I 4 ; and by this means, if onc end of the back of goods marked K , and placed upon the frame F (fig.188), is fastened to the end of the guide cord, the goods will, when the ealender is put in motion, be condncted and washed thirty times through the water in the cisterns, and squeezed thirty times through the calenders. As the operation proceeds and the guide cord passes through the calender, it is wound hy hand upon roller a to prevent it from beeoming entangled, and to keep it in readiness for the next operation. As soon as the first end of the goods has passed through fig. 188, and arrives at the guide roller 14 , it is detaehed from the end of the guide cord and attached to the guide cord at the other cnd, or with the opposite set of calcnders. After this, hy putting these in motion, the goods arc washed and squeezed through its cisterns, which cisterns are supplied with lot and strong lime lye, and the goods passing over guide roller 19 , they are conveyed over other guide rollers to be placed for the purpose, and taken down hy some person or some proper machincry into one of the boiling vessels, where, sicam or fire heat being added, they are suffercd to remain while the lime-boiling takes effect.

We need not follow the inventor into all the particulars. When the goods were suffieiently aeted on hy one solution, another solution was used, so that this mode of calendering not only was a method of moving the goods from place to place hy means of rollers, hut it was a method also of saturating goods thoroughly with a solution, and of washing them.

It was by a similar methed that Mr. Bentley bleached skeins of yarn, of linen, or of entton. The skeins are looped logether by tying any soft material ronnd the middle of the first skein. whieh will leave the loops from one end of the next skein to pass half way throngh, and which will alrays leare other tro loops, and by re-
peating which any quantity of skeins may be looped together, tying the last loop with another soft material.

The mode of saturating the goods with solutions is effected by the arrangement shown in fig. 189. Rapid motion and frequent pressure are introduced instead of a still soaking process.

189

\boldsymbol{A} is a roller for the guide cords ; B, B, B, are eleven washing rollers; c, C, C are speed rollers ; $\mathrm{E}, \mathrm{E}, \mathrm{E}$ are twelve rollers immersed in twelve divisions of the cistern g . The eleven staple-formed irons which pass through the frame rails on each side of the centres of the eleven rollers $\mathrm{B}, \mathrm{B}, \mathrm{B}$, and the eleven rollers $\mathrm{C}, \mathrm{c}, \mathrm{c}$, serve to stay these rollers in their places, at the same time allowing the eleven washing rollers $\boldsymbol{B}, \mathrm{B}, \mathrm{B}$, to rise and fall according to the pressure by which they are held down by the eleven weights attached to these irons at $\boldsymbol{в}$, and upon the bottom rail may be placed such staves, brushes, or rollers, as may be found necessary for holding and brushing the goods in the best maurer to keep them straight during the different washings in water and bleaching liquors. The goods are prepared by steeping, as before described, and placed in batches at F, and passing under the immersing rollers E and the twelve divisions of cistern G , between the eleveu speed rollers c and the eleven washing rollers $\mathbf{в}$, as seen at \mathbf{K}, are taken down straight and open into one of the vessels, and are then boiled by steam, which is succeeded by rcpeated washings alternately in water and bleaching liquors, until they are sufficiently bleached, as before described.
The elevation and ground-plau of a bleach-house and machinery capable of bleaching 800 pieces of 4 lbs . cloth per day (for best madder work), with the labour of one man and three boys, working from 6 until 4 o'clock, exclusive of singeing and drying, are represented in figs. 190 and 191 (p. 340). The letter d represents two lengths of cloth of 400 pieces each (end of pieces being stitched together by patent sewing machine made by Mather and Platt), making together 800 pieces, passing through washing machine, g, and from thence delivered over winch, w, into kier, c, - this operation occupies one hour, - where they are boiled for twelve hours in lime. They are then withdrawn by the same washing machine, g, washed, for twelve hot second kier, b (operation occupying one hour), where they are boiled washed, squeezed (see pes and resin; again withdrawn by the same machine, g, operation occupies one hour). Thas passed over winch, c, aud piled at h (this through sour-machine, e soured wey are then taken from pile, h, and threaded one hour), where it remains in, passed over winch, $e^{\prime \prime}$, and piled at k (operation, and washed through machine, g (an hour's three hours. It is then squeezed at U , hoiled for six hours, washed at g, squeezed at U (an liour's operation), and kier, a,
 it is soured again (an hour's operation) squon), and piled for one hour; after which tion), squeczed again at f (au hour's squeetion), and washed at g (an hour's opera190).

There are several advantages in using the squeezing process so often in the above arrangement:-Firstly, The bowls of the wasling maching are not so muelı damaged

191

by the heavy pressure which is required to be applied, if no squeezers arc uscd, in order to prepare the pieces for the sour and chemick machines: Sccondly, A drier statc of the cloth than can possibly be produced by the washing machine alone, thus fitting it to become better saturated with the chemick or sour: Thirdly, The piece passing from the souring to the washing machine, in this arrangement, carries with it less of the acid, and thus ensures a bctter washing with less water.

It may be observed, that the velocity of the above-mentioned machines is much higher than usual, expericnce having shown that the various operations are thus better performed than when running slower. The reason of this appears to be, firstly, that the piece, running at such velocity, carries with it, by reason of capillary attraction, a greater quantity of liquid to the nip of the bowls; secondly, the great velocity of the bowls, together with the greater quantity of water carried up, produces a more powerful current at the nip and down the ascending piece, thus penetrating to every fibre of it.

It may also be remarked, that the above-mentioned machincs are not adapted to the bleaching of linen ; for the latter cloth, not having the same elasticity as cotton, if it should become tight, would either be pulled narrow or torn.

In illustration of the continuous proeess as at present used, the plan of procecding at Messrs. McNaughten, Barton, and Thom's, at Chorley, may be described.

1. In order that there may be no interruption in the process, the pieces are united in onc continuous picce - each piece being about 30 yards, the whole varying with the weight of cloth-about 300 yards long. Each piece is marked with the name of the printer. This is sometimes done in marking-inls of silver, and sometimes in coal-tar, at the extremity of the piece. The pieces are rapidly tacked together by girls, who use in some establishments a very simple sewing machine. (See Sewing Machine.) The whole amount to be bleached at a time is united in one piece, and is drawn from place to place like a rope. To give tbem this rope form, the goods are drawn through an aperture whose surface is exceedingly smooth, being generally of glass or earthenware. Of these many are used in transferring the cloth from place to place. They serve instead of pulleys. The cloth when laid in a vessel is not thrown in at random, but laid down in a carefully made coil. The rope form enables the water to penetrate it more easily.
2. The pieces are singed.
3. They are boiled in the first kier. In this, 3500 lbs . of cloth have added to them 250 lbs . of caustic lime, 1 lb . of lime to 14 of cloth. The kier is cylindrical, 7 feet deep and 8 feet in diameter; as much water is added as will cover the cloth, about 500 gallons. This boiling lasts thirteen honrs.
4. They are washed in the washing machine. Robinson and Young's machine is used.
5. They are soured in a similar machine with hydrochloric acid of specific gravity 1010 , or 2° of Twaddle.
6. The same amount of cloth being supposed to be used, it is bucked in a solution of soda-ash and resin, 170 lbs of soda-ash to 30 lbs . of resin. The boiling lasts sixteen hours, the same amount of water being used.
7. Wasbed as before.
8. Passed through chloride of lime, or chemicked. The cloth is laid in a stonc or wooden cistern, and a solution of bleaching powder is passed through it, by being poured over it and allowed to ron into a vessel below; this is managed by continued pumping. This solution is about half a degree Twaddle, or specific gravity 1002.5,
The cloth lies in it from one to two hours.
9. Washed.
10. Boiled again in a kier for five hours with 100 lbs , of earbonate of soda crystals.
11. Washed.
12. Put in chloride of lime as before.
13. Soured, in hydrochloric acid of $1012 \cdot 5$ specific gravity, or $2 \frac{1_{2}^{\circ}}{}{ }^{\circ}$ Twaddle.
14. Lies six hours on stillages.-A stillage is a kind of low stool used to protect the cloth from the floor.
15. Washed till clean.
16. Squeezed in rollers.
17. Dried over tin cylinders heated by steam.

This is the process for calico generally ; some light goods must be more carefully handled. The usual time occupied by all these processes is five days. They are sometimes dried in a hydro-extractor; after singcing, laid twenty-four hours to steep, then washed before being put into the lime kier.
High-pressure Steam Kier. - This is designed still further to hasten the process of
one

Fig. 192 is an elevation showing the arrangement of these kiers (whiel are recommended to be made of strong boiler-plate iron). One of these is shown in seetion. a and b are the kiers ; c is a perforated platform, on whieh the goods to be bowked are

laid; $k k$ is the pipe eonnecting the bottom of the kier b with the top of the adjoining kier, a; and l, l, the corresponding pipe conneeting the opposite ends of the kiers a and $b ; m m$ are draw-off eoeks, eonneeted with the pipes k and l, by whieh the kiers ean be emptied of spent liquor, water, \&ee.; n and o are ordinary two-way taps, by which the steam is admitted into the respeetive kiers from the main pipe, p, and the reversing of whieh shuts off the steam communieation, and admits the bowking liquor as it beeomes expelled from the adjoining kier; q is a blowing-off valve or tap; r, the pipe through whieh the bowking liquor euters into the kier; s, manhole (elosed by two eross bars, seeured by bolts and puts) through which the goods are introdueed and removed; t t are gauges, by whieh it is ascertained when the liquor has passed from one kier and has entered the other.

The proeess adopted for bleaching is as follows; it is the shortest and simplest in use.

1. The box or water trough of the washing maehine is then half filled with milk of lime of considerable consistence, and the goods are run through it, being earried forward by the winches and deposited in the kiers. The whole of the eloth in a kier is in one length, and a boy enters the vessel to lay it in regular folds until the kier is filled. All the eloth before entering the kier must pass through the lime.
2. When the kiers are filled, a grid of movable bars is laid on the top of the eloth, and the manhole of the kiers is elosed. High-pressure steam is then admitted at the top; this presses down the goods and removes the lime water, whieh is drawn off at the bottom. At the same time the air is also removed from the goods and replaced by steam. When this is driven off, and nothing but steam issues from the tap at the bottom, 40 lbs . of lime, whieh have been previously mixed with 600 gallons of water, mitted, whieh fore the first kier in a boiling state. High-pressure the of the vessel, then mitted, whieh forees the lime liquor through the goods to the bottom of the vessel, then
up the tube l, and on to the goods iu the sccond kicr. The tap is then closed which admits steau into the first kier, and the steam is now sent into the second. The same process occurs, only in this case the liquid is sent again on to the top of the goods in the first kier. This process is continued about eight hours.

In this method each 7000 lbs , of cloth take into the kiers 2 cwts . of lime, which is equally distributcd. The clear lime water which is blown out of the steam at the commencement contains only 3 to 4 lbs. of lime in solution. At the close of the operation the liquor has a specific gravity of $3 \frac{1}{2}$ to 4° Twaddle ($1017 \cdot 5$ to 1020), instead of half that amount, or $1 \frac{1}{2}$ to 20 Twad. (10075 to 1010), as is usual.
3. When the liming is completed the steam pressure in the kiers is removed, the mauway opened, the grid lying above the cloth removed, and the cloth in the kier attacleed to the washing machine, which draws the goods out of the kiers and washes them.
4. The pieces are then passed by the winches through the souring machine, or soured by haviug muriatic acid of 2° Twaddle pumped upon them (1010). They inust remain with the acid two to three hours, eithcr steeped in it, or after having passed through it.
5. Again attach the cloth to the washing machine, and wash it well, passing it on by winches, as before, into the kier.
6. Introduce steam and drive off the air and the cold water; these arc let out by the tap at the bottom : add then 224 lbs . of soda-ash and 150 lbs . of resin, boiled in 600 gallons of water, for 7000 lbs . of cloth. Work the kiers by driving the liquid from one to the other as before; about eight hours is a sufficient time. These proportions of soda may be varied. If the cloth is very strong a little more may be used (or if the cloth has been printed upon in the grey state, from having been used to cover the blanket of the calico-printing machine).
7. After this the cloth is passed through the washing machine, and then submitted to chloride of lime. This may be done either by the machine or by pumping. In either case it is an adrantage to warm the bleaching liquid up to 80° or $90^{\circ} \mathrm{F}$. The strength of the solution when the machine is used may be about $\frac{10}{2}$ Twaddle, or $1002 \cdot 5$ specific gravity; but if the pump is uscd it must be much weaker. When the bleaching is for finishing white, milk of lime is addcd to the chloride, in order to retard the operation; the goods are also washed from the bleaching liquor before souring them. This causes a smaller escape of chlorine, and is a more careful method; it tends to preserve the beadings, or the coloured threads, which are often put into the ends of pieces of cloth in order to see if the bleaching has beeu performed roughly or not. The original use of this has almost been forgotten, but these bcadings are still carefully preserved. This method preserves also the cloth, which is also less apt to be attacked by the chlorine.
If the cloth has been well managed, it will be almost white when it leaves the second kier containing the resinate of soda; it will therefore require very little decolourising. If the goods have been printed on, more chloride will be needed. The cloth should lie from two to eight hours in the liquor, or after saturation with it. The action is quickened if warmth is used. They are soured then, as before, in muriatic and sulphuric acid, at $2^{\circ} \mathrm{Tw}$., for three or four hours; then wash for drying.
This method of Mr. Barlow's is an undoubted shortening of the process of bleaching; eight hours only of bucking are found to be euough, and the whole may be performed, by the help of the continuous system, in two days. It will be scen that the steam drives the solution through the cloth; and this is equal to the process of stirring, which is a continual change of surfacc and of liquid, but it is more effectual than any stirring could possibly be. The goods are laid in a firm, compact mass, and held down by an iron grid, so that the liquid cannot run through ruts and crevices, but must run through the cloth itself.

From what has been said, it will be seen that the operations of the bleacher are not so nurnerous as at first sight appears, when we call every washing a separate process ; and although it really is so, it is managed so rapidly that it can scarcely be said to occupy time, and as it is carried on at the same time as the other processes, it scarccly can be said to give trouble. The work may be divided into:-

1. Singeing.
2. Bowking with lime.
3. Washing, souring, and washiug.
4. Bowking with resinate of soda.
5. Washing and chlorinating.
6. Souring washing, and drying.

This process las been tried with success on linen, although not yet in active ope-

Bleaching of Liney.

Linen contains much more colouring matter than cotton. The former loses nearly a third of its weight, while the latter loses not more than a twenticth. The fibres of flax possess, in the natural condition, a light grey, yellow, or hlond colour. By the operation of rotting, or, as it is commonly called, watcr-1'ctting, which is employed to cnable the textile filaments to be scparated from the boon, or woody matter, the colour becomes darker, and, in eonsequence prohably of the putrefactiou of the green matter of the hark, the colouring substance appears. Hence, flax prepared without rottiug is much paler, and its colouring matter may he in a great measure removed by washing with soap, leaving the filaments nearly white. Mr. James Lee obtained a patent in 1812, as having discovered that the process of stecping and dew-retting is unnecessary, and that flax and hemp will not only dress, but will produce an equal if not greater quantity of more durahle fibre, when cleaned in the dry way. Mr. Lee stated that, when hemp or flax plants are ripe, the farmer has nothing more to do than to pull, spread, and dry them in the sun, and then to hreak them by proper machinery. This promising improvement has apparently come to nought, having been many years abandoned hy the patentec himself, though he was favoured with a special Act of Parliament, which permitted the specification of his patent to remain sealed up for seven years, contrary to the general practice in such cascs.

The substance which gives stceped flax its peculiar tint is insoluble in boiling water, in acids, and in alkalis; hut it possesses the property of dissolving in caustic or carhonated alkaline lyes, when it has b previous exposu e been acted on only by chlorine. This process is effected in great measure hy the influcnce of air in combination with light and moisture acting on the linen cloth laid upon the grass : but chlorine hastens the operation. In no case, however, is it possible to dissolve the colour completcly at ouce, hut there must he many alternate exposures to oxygen or chlorine, and alkali, hefore the flax becomes white. It is this circumstance alonc which renders the bleaching of linen an apparently complicated business.

Old Method.- A parcel of goods consists of 360 pieces of those linens which are called Britannias. Each piece is 35 yards long, and weighs, on an average, 10 lbs .; the weight of the parcel is, in consequence, ahout 3600 lbs a avoirdupois weight. The linens are first washed, and then steeped in waste alkaline lye, as formerly descrihed under these processes; they then undergo the following operations:-

1.	Bucked with	60	lhs. pearl-ashes,	washed, exposed on the field.	
2.	Ditto	80	ditto	ditto	ditto

9. Soured one night in dilute sulpharic acid ; washed.
10. Bucked with 50 lhs. pearl-ashes, washed, exposed on the field.
11. Immersed in the chloride of potash or lime 12 hours.
12. Boiled with 30 lhs . pearl-ashes, washed, exposed on the field.
13. Ditto 30 ditto ditto ditto ditto.
14. Soured, washed.

The linens are then taken to the rubbing-hoard, and well rubbed with a strong lather of black soap, after which they are well washed in pure spring water. At this period they are carefully examined, and those which are fully bleached are laid aside to he blued, and made up for the market; while those which are not fully white are returncd to be boiled, and steeped in the chloride of lime or potash; theu soured, until they are fully white.

By the ahove process, 690 lbs . weight of alkali is taken to hleach 360 pieces of linen, each piece consisting of 35 yards in length; so that the expeuditure of alkali would he somewhat less than 2 lbs . for cach piecc, were it not that some parts of the linens are not fully whitened, as above noted. Two pounds of alkali may therefore be stated as the average quantity employed for bleaching each picce of goods.

What is called the old method, or that used from ahout the introduction of bleaching powder, at the beginning of the century, till within ten or fifteen ycars, required bleaching on the grass; and the mode in which it was mauaged in Ircland and Scotland, where it held its ground longest, is as follows :-

1. They were rot-steeped in a weak solution of potash, at ahout $130^{\circ} \mathrm{F}$., for two days, until the dressing used in manufacturing the cloth was removed.
${ }_{2}$ Washed.
2. Boiled or bowked in potash lye, at ${ }_{2}^{10}$ Twaddle, for ten hours.
3. Wasled, and the ends turned so that the whole might be equally exposed to the ley.
4. Boiled or bowked in a similar lye to the above for twelve hours.
5. Washed well.
6. Exposed on the grass for three days, and watered.
7. Taken up and soured with sulphuric aeid, at $2^{\circ} \mathrm{Tw}$., for four hours.
8. Taken up and washed well.
9. Boiled again for eight hours in potash lye, at $1^{\circ} \mathrm{Tw}$., to whieh had been added black or soft soap, about 20 lbs. to a kier of about 300 gallons.
10. Washed.
11. Crofted, or exposed on the grass, as before.
12. Treated with chloride of lime at $I_{\frac{1}{2}}{ }^{\circ} \mathrm{Tw}$., for four hours.
13. Wasbed.
14. Soured in sulphnric acid, at $2^{\circ} \mathrm{Tw}$., for four hours.
15. Washed.
16. Boiled for six or seven hours with soap and lye, using in this case more soap and one-third less lye than in the former bowkings.
17. Drawn out and put through rab-boards. This is a kind of washing machine, made of bloeks of wood, with hard-wood teeth. The goods are washed by it in a soapy liquid. The teeth moving rapidly, drive the soap into the eloth.
18. Boiled in the lye alone for six hours.
19. Washed.
20. Crofted, keeping tbem very clean, as this is the last exposure.
21. Treated with ehloride of lime.
22. They are then starehed, blued, and beetled, to finish them for the market. These operations last six weeks.

New System, as practised in Scotland and Ireland.-Directions given by an extensive

1. Wash.
2. Boil in lime water ten or twelve hours.
3. Sour in muriatie aeid, of $2^{\circ} \mathrm{Tw}$, for three, four, or five hours.
4. Wash well.
5. Boil with resin and soda-ash twelve hours.
6. Turn the goods, so that those at the top shall be at the bottom, and boil again as at No. 5.
7. Wash well.
8. Chemick, at $\frac{10}{10}$ Tw., or $1002 \cdot 5$, four hours.
9. Sour, at $2^{\circ} T^{2} w$., or 1010° specifie gravity.
10. Wash.
11. Boil in soda-ash ten hours.
12. Chemick again.
13. Wash and dry.

This is the system chiefly adopted when the goods are to be printed.
The following is the system praetised in the neighbourhood of Perth, where the chief trade is in plain sheetings :-

1. Before putting them into operation, they are put up into parcels of about 35 ewts.
2. They are then steeped in lye for twenty-four hours.
3. Then washed and spread on the grass for about two days.
4. Boiled in lime water.
5. Turned, and boiled again in lime water, those at the top being put at the bottom. 60 lbs. of lime are used at a time, and about 600 gallons of water.
6. Washed, then soured in sulphurie acid of 2° Tw., or $1010^{\circ} \mathrm{sp}$. gr., for four hours, then washed again.
7. Boiled with soda-ash for ten hours ; 110 lbs . used.
8. Washed and spread out on the green, or crofted.
9. Boiled again in soda as before.
10. Crofted for three days.
11. They are then examined: the white ones are taken out; those that are not finished are boiled and crofted again.
12. Next, they are scalded in watcr eontaining 80 lbs . of soda-ash, and washed.
13. The chloride of lime is then used at $\frac{10}{2} \mathrm{Tw}$., or 1002.5 speeific gravity.
14. Washed and scalded.
15. Washed and treated with ehloride of lime.
16. Soured, for four hours, with sulphurie aeid, at $2^{\circ} \mathrm{T}$ W., or 1010° speeific gravity.
17. Washed.

If eloths lighter than sheetings are used, the washing liquids are used weaker. The great point is to observe them earefully during the proeess, in order to see what treatuent will suit them best.

It will be seen that the process of bleaehing linen is still very tedious; and although it may be managed in a fortnight, it is seldom that this oceurs regularly for a great length of time. The action of the light introduces at onee an uneertain element, as this varies so mueh in our elimate. If, again, linen be long exposed to the air in a moist eondition, it is apt to become injured in strength. To shorten the process, therefore, is importaut; and if no injurious agents are introduced, a shortening promises also to give inereased strength to the fibre. It has not been found possible to introduee chlorine into linen bleaching at an early stage, as in the case of eotton; and the processes for purifying it without any ellorine render it su white that unskilled persons would eall it as white as snow. The ehlorine is iutroduced nearly at the end of the operation, after a series of boilings with alkalis, sourings, and exposures on the grass. If introdueed at an earlier stage, the colour of the raw eloth beeomes fixed, and eannot be removed. The teehnieal terni for this eondition is "set." Mr. F. M. Jennings, of Cork, has just patented a method which promises to obviate the diffieulty. The peeuliarity eonsists in using the alkali and the ehloride of alkali at the same moment, thus giving the alkali opportunity to seize on the colouring matter as soon as the chloride has aeted, and thereby preventing the formation of an insoluble compound. He prefers the ehlorides of potash or soda. His plan is as follows :-

1. He soaks the linen in water for about twelve hours, or boils it in lime or alkali, or alkali with line, and then soaks it in aeid, as he uses soaps of resin in other mix-tures-the alkalis being from 3° to $5^{\circ} \mathrm{Tw}$., 1015.-1025 speeifie gravity.
2. Boils in a similar alkaline solution.
3. Washes.
4. Puts it into a solution of soda, of $5^{\circ} \mathrm{Tw} ., 1025^{\circ}$ specifie gravity, adding ehloride of soda until it rises up to from $6^{\circ}-7^{\circ} \mathrm{Tw}$. It is allowed to remain in this solutiou for some hours, and it is better if subjected to heating or squeezing between rollers, as in the washing maehine.
5. He then soaks, sours, and washes.
6. He then puts it a second time into the solution of alkali and ehloride.
7. Then washes, and boils again with soda. These operations, 6 and 7 , may be repeated until the eloth beeomes almost white.
The amount of exposure on the grass by this proeess is said to be not more than from one-half to one-fourth that required by the usual method, or it may be managed so as entirely to supersede erofting.

Chevalier Clausen has opened up the filaments of flax by the evolution of gas from a earbonate in which the plant is steeped, and at the same time bleaehed by ehloride of magnesia.

Bleaching of Sile.

Silk in its raw state, as spun by the worm, is either white or yellow of various shades, and is covered with a varnish which gives it stiffness and a degree of elastieity. For the greater number of purposes to which silk is applied, it must he deprived of this native eovering, whieh was long cousidered to be a sort of gum. The operation by which this colouring matter is removed is ealled seouring, eleansing, or boiling. A great many different proeesses have been proposed for freeing the silk fibres from all foreign impurities, and for giving it the utmost whiteness, lustre, and plianey; but none of the new plans has superseded, with any advantage, the one practised of old, which eonsists esseutially in steeping the silk in a warm solution of soap; a eircumstance placed beyond all doubt by the interesting experiments of M. Roard. The alkalis, or alkaline salts, aet in a marked manner upon the varnish of silk, and effeet its complete solution; the prolonged ageney even of boiling water or soap and water destroys the brillianey of silk. It would appear, however, that the Chinese do not employ this method, but something that is preferable. Probably the superior beauty of their white silk may be uwing to the superiority of the raw naterial.

The most aneient method of seouring silk eonsists of three operations. For the first, or the ungumming, thirty per cent. of soap is dissolved in elean water at a boiling heat; then the temperature is lowered by the addition of a little cold water, by withdrawing the fire, or at least by damping it. The hanks of silk suspended upon horizontal poles over the boiler are now plunged into the soapy solution, kept at a heat somewhat under ebullition, whieh is an essential point; for, if hotter, the soap would attaek the substanee of the silk, and not only dissolve a portion of it, but deprive the whole of its lustre. The portions of the hanks plunged in the
bath get scoured by degrees ; the varnish and the colouring matter are removed, and the silk assumes its proper whitencss and pliancy. Whenever this point is attained, the hanks are turned round upon the poles, so that the portion formerly in the air may be also subjected to the bath. As soon as the whole is completely ungummed, they are taken out, wrung by the peg, and shaken out; after which, the next step, called the boil, is commenced. About 25 lbs . or 35 lbs . of ungummed silk are enclosed in bags of coarse canvas, called pochets, and put into a similar bath with the preceding, but with a smaller proportion of soap, which may therefore be raised to the boiling point without any danger of destroying the silk. The ebullition is to be kept up for an hour and a half, during which time the bags must be frequently ṡtirred, lest those near the bottom should suffer an undue degree of heat. The silk experiences in these two operations a loss of about 25 per cent. of its weight.
The third and last scouring operation is intended to give the silk a slight tinge, which renders the white more agreeable, and better adapted to its various uses in trade. In this way we distinguish the China white, which has a faint cast of red, the silver white, the azure white, and the thread white. To prodnce these different shades, we begin by preparing a soap-water so strong as to lather by agitation; we then add to it, for the China white, a little arnotto, mixing it carefully in; and then passing the silk properly through it, till it has acquired the wished-for tint. As to the other shades, we need only azure them more or less with a fine indigo, which has been previously washed several times in hot water, and reduced to powder in a mortar. It is then diffused through boiling water, allowed to settle for a few minutes, and the supernatant liquid, which contains only the finer particles, is added to the soap bath, in such proportion as may be requisite. The silk, on being taken out of this bath, must be wrung well, and stretched upon perches to dry; after which it is introduced into the sulphuring chamber, if it is to be made use of in the white state. At Lyons, however, no soap is employed at the third operation; after the boil, the silk is washed, sulphured, and azured, by passing through very clear river water properly blued.
The present practice in the silk-works in Lancashire is as follows:-
The Italian silk arrives in this country with a little soap in it, put in by the tbrowsters there, amounting to one drachm to a pound of silk. It is received here in hanks, and bleached in that statc. The hanks are hung on sticks or small poles, about three pounds of silk being on each stick. The sticks being laid across a vessel, the silk hangs down, and in this way may be immersed in any liquid. The treatment of silk is then much more tender than that of cotton.

1. The hot lather is made with 3 lbs. of soap in 50 gallons of water; to this is added 1 lb . of soda crystals. The silk is kept in this lather at a temperature of from 175° to $190^{\circ} \mathrm{F}$. for three quarters of an hour. It is then wrung or dried in the hydroextractor (called hydro or whizzer in Lancashire works). 2. It is then, for the purpose of straightening it, rolled on a cocoa-nut roll-pin 4 in . in diameter, a little turn being given it occasionally, by the finger and thumb, to prevent entangling. 3. It is then put into bags of one yard square. The hanks are laid flat, and the bags stitched down. In this state they are boiled for $3 \frac{1}{2}$ hours, using for the same amount of water as before, 3 lbs . of soap to 20 lbs , of silk. 4. The silk is then washed or moved about by the hand in a cistern onc yard wide and one deep, retaining as much soap as will make a pretty permanent lather. To this there is generally added a small quantity of archil, about $\frac{1}{4}$ oz. to 4 lbs . of silk. 5. It is then dried in the hydro-extractor. 6. It is then straightened and sulphured. The sulphuring is done in a small apartment, which should be very high. The size is frequently 10 feet 40 square by 20 in height. The silk is hung up in it, and 4 lbs . of sulphur for each possible, and the put on the floor and set fire to. The room is closed as well as requires now only to bew to remain 4 hours. This is the bleaching, and it little indigo blue is used to give it a pearly a three to four times in cold water. A has been mentioned, depends upon the shappearance. The usc of archil, which 7. The silk is now dried by the hydro-extractor first so to speak, which is wanted. temperature of $85-90^{\circ}$. If heavily laden with gums, silk must be exposing to a cooler temperature. In this operation of bleaching, 1 lb, of mood silk dried at a still as it seldom arrives very pure, the usual loss to the pound of sill is 5 oses 4 oz ; but The first, or simmering, operation mentioned here, is not necessary. silk of China.
The silks intended for the manufacture of blondes and gauzes are not subjected to the ordinary scouring process, because it is essential, in these cases, for them to preserve their natural stiffness. Wc must therefore select the raw silk of China, or water, or in raw silks of other countries; stecp them, rinse them in a bath of pure water, or in one containing a little soap; wring them, expose them to the rapour of
sulphur, and then pass them through the azure water. Soinetimes this process is repeated.

Before the memoir of M. Roard appeared, extremcly vague ideas were entertained about the eomposition of the native varnish of silk. He lias shown that this substance, so far from being of a gummy nature, as had been believed, may be rather eompared to bees' wax, with a species of oil and a colouring matter which exist only in raw silks. It is eontained in them to the amount of from 23 to 24 per cent., and forms the portion of weight whieh is lost in the ungumming. It possesses, however, some of the propertics of vegetable gums, though it differs essentially as to others. In a dry mass, it is friable and has a vitreous fracture; it is soluble in water, and aflords a solution whieh lathers like soap; but when thrown upon burning eoals, it docs not soften like gum, but burns with the exhalation of a fetid odour. Its solution, when left exposed to the open air, is at first of a golden yellow, becomes soon greenish, and ere long putrefies, as a solution of animal matter would do in similar circumstances. M. Roard assures us that the eity of Lyons alone eould furnish several thousand quintals of this substanee per annum, were it applicable to any useful purpose.

The yellow varnish is of a resinous nature, altogether insoluble in water, very soluble in aleohol, and eontains a little volatile oil, whieh gives it a rank smell.' The colour of this resin is easily dissipated, either by exposure to the sun or by the aetion of ehlorine : it forms about one fifty-fifth of its weight.

Bees' wax exists also in all the sorts of silk, even in that of China; but the whiter the filaments, the less wax do they contain.
M. Roard has observed that, if the silk be exposed to the soap-baths for some time after it has been stripped of its foreign matters, it begins to lose body, and has its valuable qualities impaired. It becomes dull, stiff, and eoloured in eonsequenee of the solution, more or less considerable, of its substance; a solution which takes place in all liquids, and even in boiling water. It is for this reason that silks cannot be alumed with heat; and that they lose some of their lustre in being dyed brown, a colour whieh requires a boiling hot bath. The best mode, therefore, of avoiding these ineonvenienees, is to boil the silks in the soap-bath no longer than is absolutely necessary for the seouring proeess, and to expose them in the various dyeing operations to a temperature as moderate as may be sufficient to communicate the colour. When silks are to be dyed, much less soap should be used in the eleansing, and very little for the dark colours. According to M. Roard, raw silks, white or yellow, may be completely seoured in one hour, with 15 lbs . of water for one of silk, and a suitable proportion of soap. The soap and the silk should be put into the bath half an hour before its ebullition, and the silk should be turned about frequently. The dull silks, in whieh the varnish has already undergone some alteration, never aequire a fine white until they are exposed to sulphurous aeid gas. Exposure to light has also a very good effeet in whitening silks, and is had reeourse to, it is said, with advantage, by the Chinese.

Baumé contrived a process which does not appear to have reeeived the sanction of experienee, but whieh may be a guide in the right way. He macerates the yellow raw silk in a mixture of aleohol at 36° (sp. gr. 0837) and one thirty-second part of pure muriatic aeid. At the end of forty-eight hours, it is as white as possible, and the more so, the better the quality of silk. The loss whieh it suffers in this nenstruum is only one fortieth; showing that nothing but the colouring matter is abstracted. The expense of this menstruum is the great obstacle to Baumé's process. The alcohol, however, might be in a very great measure reeovered, by saturating the acid with chalk, and redistillating.

Bleaching of Woot..

Wool, like the preeeding fibrous matter, is eovered with a peeuliar varnish, whieh impairs its qualities, and prevents it from being employed in the raw state for the purposes to which it is well adapted when it is seoured. The English give the name yolk, and the Freneh suint, to that uative eoat: it is a fatty unetuous matter, of a strong smell, whieh apparently has its ehief origin in the cutancous perspiration of the sheep; but whieh, by the ageney of external bodics, may have undergone some ehanges whieh modify its constitution. It results from the cxperiments of M. Vauquelin, that the yolk is eomposed of several substanecs; namely, 1 , a soap with basis of potash, whieh eonstitutes the greater part of it ; 2 , of a notable quantity of aeetate of potash; 3. of a small quantity of carbonate, and a trace of chloride of potassium ; 4, of a little lime in an unknown state of combination; 5 , of a species of scbaceous matter, and an animal substanee to which the odour is duc. There are sevcral other aecidental matters present on shecp's wool.

The proportion of yolk is variable in different kinds of wool, but in geucral it is
more abundant the finer the staple; the loss by scouring being 45 per cent. for the finest wools, and 35 pcr cent. for the coarse.

The yolk, on account of its soapy nature, dissolves readily in water, with the exception of a little free fatty matter, which easily separates from the filaments, and remains floating in the liquor. It would then appear sufficient to expose the wools to simple washing in a stream of water; yet experience shows that this method never auswers so well as that usually adopted, which consists in steeping the wool for some time in simple warm water, or in warm water mixed with a fourth of stale urine. From 15 to 20 minutes of contact are sufficient in this case, if we heat the bath as warm as the hand can bear it, and stir it well with a rod. At the end of this time the wool may be taken out, set to drain, then placed in large baskets, in order to be completely rinsed in a stream of water.
It is generally supposed that putrid urine acts on the wool by the ammonia which it contains, and that this serves to saponify the remainder of the fatty matter not combined with the potash, although M. Vauquelin gave another opinion. Fresh urine contains a free aeid, which, by decomposing the potash soap of the yolk, counteracts the scouring operation.
If wools are better seoured in a small quantity of water than in a great stream, we can conceive that this circumstance must depend upon the nature of the yolk which, in a concentrated solution, acts like a saponaceous compound, and thus contributes to remove the free fatty particles which adherc to the filaments. It should also be observed that too long a continuance of the wool in the yolk water, hurts its quality very much, by weakening its cohesion, causing the filaments to swell, and even to split. It is said then to have lost its nerve. Another circumstance in the scouring of wool, that should always be attended to, is never to work the filaments together to such a degree as to occasion their felting; but in agitating we must merely push them slowly round in the vessel, or press them gently under the feet. Werc it at all felted, it would neither card nor spin well.
As the heat of boiling water is apt to decompose woollen fibres, we should be carcful never to raise the temperature of the scouring bath to near this point, nor, in fact, to exceed $140^{\circ} \mathrm{F}$. Some authors recommend the use of alkaline or soapy baths for scouring wool, but practical people do not deviate from the method above described.

When the washing is completed, all the wool which is to be sent white into the market, must be exposed to the action of sulphurous acid, either in a liquid or a gaseous state. In the latter case, sulphur is burned in a close chamber, in which the wools are hung up or spread out; in the former, the wools are plunged into water moderately impregnated with the acid. (See Solphuring.) Exposure on the grass may also contribute to the bleaching of wool. Some frandulcnt dealers are accused of dipping wools in butter-milk, or chalk and water, in order to whiten them and increase their weigh.

Wool is sometimes whitened in the fleece, and sometimes in the state of yarn; the latter affording the best means of operating. It has been obscrved that the wool cut from certain parts of the sheep, especially from the groin, never bleaches well.

After sulphuring, the wool has a harsh crispy feel, which may be removed by a weak soap-bath. To this also the wool-comber has rccourse when he wishes to cleanse and whiten his wools to the utmost. He generally uses a soft or potash soap, and after the wool is well soaked in the warm soap-bath, with gentle pressure he wrings it well with the help of a hook, fixed at the end of his washing tub, aud hangs it up to dry.
The actual operations of purifying wool are so blended with the methods of weaving and working it, that, to show it fully, I shall give here the process of preparing flannels, out of which the parts relating to cleansing may be taken.

1. The wool is weighed outinto parcels of 120 lbs . Add, on an average, 20 to 21 lbs . or 10 quarts of oil -rape oil or olive, or mixed, or, as is . very common now, oleic acid, which may be so used as not to be hurtful to the machinery in this condition. This was introduced by Mr. M'Dougall.
2. It is then devilled or willowed, carded, slubbed, and spun.

The warp portion is made at this stage if wanted.
3. Scoured in the warp with urinc and hot water, occasionally using a little am-

monia.

4. Sized with a mincral sizing, and put into the looms.
5. lf spun for weft, it is soaked, when on the bobbin, with cold watcr in a cistern, an air-pump being used to extract the air from the threads and to compel the water to
enter.
6. The water is then removed by a revolving watei-extractor. This process
.

Skin wool, so called, is taken from the skin by means of lime, which makes tae oil stiff, forming a compound.
7. The piece being now woven is grey. It is sent to the finishing or fulling mill, sprinkled over with urine and pigs' dung, and put under the fulling hanmers until equally wet.
8. It is then washed out or scoured with cold water, raised with teasels, dried out of doors or in a stove.

Treated a little differently, accordingly as Welsh or Lancashire is wanted.
9. It is then sprinkled again with soap-and-water, and milled one to two hours in the fulling stock.

Three quarters to 1 lb . of soap is given for each piece.
10. Cleared with cold water.
11. Hung up wet in a sulphur stove, several pots of sulphur lighted. The door is shut till morning. Washed four to six hours in cold water, treated with finelyground indigo, dried, and a little further raised, pressed, and rolled up for sale.

If the flannel is Welsh, it is dried and sprinkled with fullers' earth (instead of the soap-and-water used for the Laneashire), well milled for some time, and then cleared in cold water. It is then put into a cistern filled with water, having some soap thrown in as well as a few cakes of Prussian blue. This dipping is repeated three or four times, and between each the flannel is milled in the fulling stock. This levels the colour. When blue enough, the pieces are dried and made up for sale.

It appears that Welsh flannel is not sulphured; the cleaning is done entirely by ammonia.

Sulphuring. - In the usual mode of sulphuring the cloth is hung on pegs or rails in rooms which are called the sulphur chambers or stoves. An iron pot eontaining sulphur is placed in eaeh corner of the room, and the sulphur inflamed. The door is then shut and clayed. By the morning the process is finished, and the door is opened. This mode is objected to, because the sulphur, not being properly burnt, lodges in the cloth, and acts injuriously on it in the processes of dyeing or printing. Sparks also are apt to rise up and injure the pieces, the sulphur not being pure, and burning irregularly. Drops also of water impregnated strongly with sulphurous acid are apt to fall from the roof, doing injury to the cloth.

To avoid these inconveniences Mr. Thom has invented a method by which the cloth is rapidly carried through the sulphuring chamber, and subjected to the influence of the vapour on the principle of the washing machine. A great deal of time and space is of course saved; it is on the same principle as the washing apparatus, vapour being used instead of water. This has not yet been applied to thick woollen. See Calico Printing.

Bleaching of Materials for Paper.

The bleaching of paper is conducted on the same principle as the bleaching of cotton. Paper is made principally of two materials, cotton and flax, generally mixed. The cotton waste of the mills, which is that inferior portion which has become too impure for spinning, or otherwise deteriorated, and cotton rags are the principal, if not the only, sources of the cotton used by paper makers. The waste is sorted by hand, the hard and soft being separated, and all accidental mixtures which oecur in it are removed. This is done at first roughly on a large lattice, which is a frame of wire cloth, having squares of about three-quarters of an inch through which impurities may fall. It is then put into a duster, which is a long rectangular box, it may be ten feet long. lying horizontally, the iuside diameter about two feet, and covered with wire gratings running horizontally, leaving openings of half an inch in width. As this revolves, the waste is thrown from one angle to the other, and throws out whatever dust or other material falls into the holes or spaces. The fibrous matter has little tendency to separate from the mass, which is somewhat agglutinated by being damp, chiefly from the oil obtained during the processes in the cotton mill. A second duster, however, is used to retain whatever may be of value ; it is a kind of riddle. It is then transferred to the lattices, whieh are a series of boxes covered with wire gauze, the meshes of which are about half an inch square, and so arrauged as to form a series of sorting tables. The sorting generally is done by young women. Each table has a large box or basket beside it, into which the sorted material is thrown; this is renoved when filled, by being pushed along a railroad or tramway. Pieces of stone, clay, leather, wood, nails, and other articles, are taken out. The cotton is then put into a devil similar to that which is used in cotton machinery, but laving larger, stronger teeth, which tear it up iuto small fragments.

The rags are sorted according to quality, woollen carefully removed, and all the unavailable material sent back to the buyer. They are then chopped up by a knife,
on the circumfercnee of a heavy wheel, into pieces of an inch wide, devilled, and dusted.

The rags and the cotton waste are hleached in a similar manner. The cottou is put into kiers of ahout ten feet in diameter, of a kind similar to those descrihed, aud hoiled with lime. The amount of lime used is about 6 lhs. to a cwt. of of cotton or rags, but this varies according to the impurity. The lime removes a great amount of impure organic matter, and, as in hleaching, cotton cloth. lays hold of the fatty matter, of which there is a great deal in the waste. When taken out, it is allowed to lie from two or three hours. The appearance is not much altered; it appears as impure as ever.
It is then put into the rag-enginc and washed clean. This is a comhined washing machine and filter, the invention of Mr. Wrigley, near Bury. The washing may last an hour and a half, or more. See Paper.
The cotton has now a hright grey colour, and looks moderately clean. It is full of water, which is removed hy a hydraulic press, the cotton heing put into an iron cylindrical hox with perforated sides. It is then hoilerl in kiers or puffing hoilers, where soda-ash is uscd, at the rate of 4 to 5 lhs. a cwt. Ouly as much water is used as will moisten the goods thoroughly. Much water would weaken the solution and render more soda necessary. It is then washed again in the rag-engine; afterwards put into chloride of lime, acidified as in cotton hleaching, and washed again in the rag-engine.
The cotton rags are treated in a similar manner. The colourcd rags are treated separately, requiring a different treatment according to the amount of colour; this consists chiefly in a greater use of chloride of lime.
Some points relating to hleaching are neeessarily treated of under Calico Printing.
BLEACHING POWDER. Chloride of Lime (which see).
BLEAK. (Cyprinus alburnus.) The scales of this fish are used for making the essence of pearl, or essence d'orient, with which artificial pearls are manufactured. In the scales of the fish the optical effect is produced in the same manner as in the real pearl, the grooves of the latter heing represented hy the inequalities formed by the margins of the concentric laminæ of which the scales are composed. These fish are caught in the Seine, the Loire, the Saone, the Rhine, and several other rivers. They are ahout four inches in length, and are sold very cheap after the seales are washed off. It is said that 4000 fish are necessary for the production of a pound of scales, for which the fishermen of the Chalonnois get from is to 25 livres.
The pearl essence is ohtained merely hy well washing the scales which have heen seraped from the fish in water, so as to free them from the hlood and mucilaginous matter of the fish. See Pearls, Artificial.

BLENDE (sulphide or sulphuret of zinc, "Black Jack") is a eommon ore of zinc, compused of zinc 67 , sulphur 33 ; hut it usually contains a certain proportion of the sulphide of iron, which imparts to it a dark colour, whence the name of "Blaek Jack," applied to it hy the Cornish miner. The ore of this country generally consists of zinc $61 \cdot 5$, iron $4 \cdot 0$, sulphur 33.0 . Blende oecurs either in a hotryoidal form or in crystals (often of very complex forms), helonging to the tetrahedal division of the monometric system. $H=3.5$ to 4. Specific gravity $=3.9$ to 4 . See Zinc.-H. W. B, In some districts the presence of the sulphide of zinc is regarded hy the miners as a favourahle indication, hence we have the phrase, "Black Jack rides a good horse." In other localities it is thought to he equally unfavourahle, and the miners say, "Black Jach cuts out the ore." For many years the English zinc ores were of little value, the immense quantity of zinc manufactured hy the Vieille Montagne Company, and sent into this country, heing quite sufficient to meet the demand. Beyond this, there was some difficulty in ohtaining zine which would roll into sheets, from the English sulphides. Although this has been to some extent overcome, most of the zinc ohtained from hlende is used in the manufacture of hrass.
Dana has given the following analyses of varieties of hlende:-

		Sulphur.	Zinc.	Iron.	Cadmium.
Carintlia - -	-	$32 \cdot 10$	$64 \cdot 22$		
New Hampshire -	-	32. 6	52.00	$\begin{aligned} & 1.32 \\ & 10.0 \end{aligned}$	
New Jcrsey -	-	$32 \cdot 22$	$67 \cdot 46$		$3 \cdot 2$ trace
Tuscany - -	-	$32 \cdot 12$	$48 \cdot 11$	$11 \cdot 44$	$\begin{aligned} & \text { trace } \\ & 1 \cdot 23 \end{aligned}$

The following is a list of the mines in these islands producing and selling blende, and the quantities sold hy them in 1856 and 1857 :-

	1856.		185%	
	Ore.	Value.	Ore.	Value.
	Tons cwts. qre.	\& s. d.	Tons cwts. qrs.	$\mathrm{E}_{6} \quad s . \quad d$.
Nantycria -	68470	273300	$728 \quad 60$	2446911
Rheidol United	53110	133150	157100	$510 \quad 56$
Castell - -	- -	- -	2616	$97 \quad 50$
Abbey Consols	- -	- -	$14 \quad 40$	4250
Lisburn - -	26410	79760	284110	92346
Cefn Brwyno -	$94 \quad 10 \quad 0$	27410	$160 \quad 20$	$432 \quad 3 \quad 6$
	$1096 \quad 9 \quad 0$	$3938 \quad 2 \quad 0$	1371	445113
Cornwall :-				
Pencorse Consols	928 3 1	2093410	49900	$164315 \quad 9$
Budnic Consols	$81215 \quad 2$	19385	52080	152240
Huel Anna - -	10614	31259	$\begin{array}{lll}155 & 2 & 0\end{array}$	$438 \quad 2 \quad 8$
East Huel Falmouth-	$2818 \quad 2$	$\begin{array}{lll}75 & 1 & 10\end{array}$	$118 \quad 5$	418611
United Mines -	$90 \quad 3 \quad 3$	20394	$\begin{array}{llll}96 & 12 & 0\end{array}$	18295
Duke of Cornwall -	- -	-	4500	10150
Rosewarne, United -	1000	1500	$\begin{array}{llll}44 & 6 & 1\end{array}$	$\begin{array}{llll}66 & 12 & 0\end{array}$
Alfred Consols -	-	-	2000	3500
Great Huel Baddern	11061	881411	$\begin{array}{lll}33 & 14 & 2\end{array}$	$\begin{array}{llll}26 & 9 & 8\end{array}$
West Huel Jane	$23 \quad 4 \quad 3$	$39 \quad 0 \quad 8$	840	$14 \quad 0$
Huel Seaton -	- -	- -	$7 \begin{array}{lll}7 & 7 & 0\end{array}$	1200
North Pool -	- -	- -	2350	$\begin{array}{llll}11 & 12 & 4\end{array}$
Perron St. George -	- -	- -	$\begin{array}{lll}7 & 4 & 3\end{array}$	$\begin{array}{llll}11 & 0 & 4\end{array}$
East Alfred Consols-	- -	- -	400	718
East Huel Rose -	- -	- -	3100	4130
West Huel Towen -	- -	- -	$\begin{array}{lll}1 & 7 & 2\end{array}$	$1 \begin{array}{lll}1 & 7 & 1\end{array}$
Consolidated Mines -	- -	30	$59 \quad 10 \quad 0$	2000
Nangiles - -	14414	23076		
Boiling Well -	$54 \begin{array}{lll}54 & 1 & 0\end{array}$	8110		
North Roskear	$6 \quad 0$	$9 \begin{array}{llll}9 & 16 & 10\end{array}$		
Huel Hope -	130	1179		
	$2316 \quad 4 \quad 3$	413360	$1658 \quad 6 \quad 3$	$469616 \quad 4$
Devonsmire :-	505181	1350196	$\begin{array}{lll}730 & 7 & 2\end{array}$	$234315 \quad 2$
West Collacombe	$\begin{array}{r}99 \\ \hline\end{array} 11$	24181	3700	12050
Borringdon Consols -	- -	- -	$8 \quad 0 \quad 0$	$14 \quad 8$
Huel Carpenter	$55 \quad 6 \quad 3$	119011	- -	
	$66016 \quad 2$	171186	775	2478
Isle of Man:-	$3000 \quad 2 \quad 2$	$\begin{array}{cc}10500 & 0\end{array}$	2908 8 1400	$\begin{array}{rrr}10739 & 4 & 2 \\ 32 & 0 & 0\end{array}$
			$291614 \quad 0$	1077142
Cumberland : -				
Alston Moor Mines -	257 -	978 9	37480	$\begin{array}{lll}562 & 10 & 0\end{array}$
Calamine - -			1176	134110
			$49114 \quad 0$	69710
Nortit Wales: -	$\begin{array}{rrr}794 & 0 & 0 \\ 757 & 15 & 0\end{array}$		648150	2953184
Minera Mines -		278400	13981.40	$489310 \quad 6$
Talargoch -	757150	2784 -	12100	$40 \quad 0 \quad 0$
	$155110 \quad 0$	575200	$2059 \quad 19 \quad 0$	7887810

Summary of Zinc Produce for 1856 and 1857.

Cardiganshire -	1856.		1857.	
	$\frac{\text { Ore. }}{\text { Tons cwts. qrs. }}$	Value.	$\frac{\text { Ore. }}{\text { Tons cwts. qrs. }}$	Value.
		\pm s. d.		${ }_{2}$ s. ${ }^{\text {d }}$
	10969	3958	1371	445113
Cornwall	$2316 \quad 4 \quad 3$	41336	16586	469616
Devonshire	$66016 \quad 2$	$\begin{array}{llll}1711 & 8 & 6\end{array}$	775	$2478 \quad 8 \quad 2$
Isle of Man	300022	10500 0 0	2916140	$107714 \begin{array}{ll} \\ 107\end{array}$
Cumberland	$257 \quad 70$	$\begin{array}{lll}978 & 9 & 0\end{array}$	491140	69710
North Wales	155110	57520	$205919 \quad 0$	7887810
Total	8882 9 3	$27033 \quad 5 \quad 6$	922611	309821111

BLIND COAL, a name given to Anthracite (which sce).
BLOCK MANUFACTURE. Though the making of ships' blocks belongs rather to a dictionary of engineering than of manufactures, it may be expected that some aecount should be given of the automatic machinery for making blocks, so admirably devised and mounted by Sir M. I. Brunel, for the British Navy, in the dockyard of Portsmouth.

The series of machines and operations are as follows:-

1. The straight cross-cutting saw. - The \log is placed horizontally on a very low bench, which is continued through the window of the mill into the yard. The saw is exactly over the place where the \log is to be divided. It is let down, and suffered to rest with its teeth upon the log, the back still being in the cleft of the guide. The crank being set in motion, the saw reciprocates baek wards and forwards with exactly the same motion as if worked by a carpenter, and quickly cuts through the tree. When it first begins to cut, its back is in the cleft in the guide, and this causes it to move in a straight line; but before it gets out of the guide, it is so deep in the wood as to guide itself; for in cutting across the grain of the wood, it has no tendency to be diverted from its true line by the irregular grain. When the saw has descended through the tree, its handle is caught in a fixed stop, to prevent its cutting the beuch. The maehine is thrown out of gear, the attendant lifts up the saw by a rope, removes the block cut off, and advauces the tree to receive a fresh cut.
2. The circular cross-cultiny saw. - This saw possesses universal motion; but the axis is always parallel to itself, and the saw in the same plane. It can be readily raised or lowered, by inclining the upper frame on its axis; and to move it sidewise, the saw frame must swing sidewise on its joints which counect it with the upper frame. These movements are effected by two winches, cach furnished with a pair of equal pinions, working a pair of racks fixed upon two long poles. The spiudles of these winches are fixed in two vertical posts, which support the axis of the upper frame. One of these pairs of poles is jointed to the extreme end of the upper frame; therefore, by turning the handle belonging to them, the frame and saw are elevated or depressed; in like manner, the other pair is attached to the lower part of the saw frame, so that the saw can be moved sidewise by means of their handles, which then swing the saw from its vertical position.

These two handles give the attendant a complete command of the saw, which we suppose to be in rapid motion, the tree being brought forward and properly fixed. By one handle, he draws the saw against one side of the tree, which is thus cut into (perhaps half through); now, by the other handle, he raises the saw up, and by the firstmentioned handle he draws it across the top of the tree, and cuts it half through from the upper side; he then depresses the saw and cuts half through the next side; and lastly a trifling cut of the saw, at the lower side, completely divides the tree, which is then advanced to take another cut.

The grcat reciprocating saw is on the same principle as the saw mill in common use in Ameriea.
3. The circular ripping saw is a thin circular plate of steel, with teeth similar to those of a pit saw, formed in its periphery. It is fixed to a spindle placed horizontally, at a small distanee beneath the surface of a bench or table, so that the saw projects a few inches above the bench through a crevice. The spindle being supported in site cnd, round which an endlatory motion communicated to it by a pulley on the oppoThe bloek cut by the preceding machine from the a drum placed oycrlead in the mill. of the sides flat upon the bench, and thus slides forward arainst placed with one

[^33]whieh cuts the wood with a rapidity incredible to anyone who has not seen these or similar machincs.
4. Boring muchine. - The bloeks prepared by the foregoing saws are placed in the machine represcnted in fig. 193. This machine has an iron frame, $\Delta \wedge$, with threc

legs, beneath which the block is introduced, and the screw near s being forced down upon it, confines it precisely in the proper spot to reeeive the borersD and E. This spot is determined by a piece of metal fixed perpendicularly just beneath the point of the borer E, shown separately on the ground at X; this piece of metal adjusts the position for the borer \mathbf{D}, and its height is regulated by resting on the head of the screw x, which fastens the piece x down to the frame. The sides of the block are kept in a parallel position, by being applied against the heads of threc serews tapped into the double leg of the frame A. The borer D is adapted to bore the hole for the centre pin in a direction exactly perpendicular to the surface resting against the three serews; the other, at E , perforates the holes for the commencement of the sheave holes. Buth borers are constructed in nearly the same manner; they are serewed upon the ends of small mandrels, mounted in frames similar to a lathe. These frames, G and H , are fitted with sliders upon the angular edges of the flat broad bars, r and K . The former of these is serewed fast to the frame; the latter is fixed upon a frame of its own, moving on the eentre screws at Lu, beneath the principal frame of the machine. By this means the borer e can be moved within certain limits, so as to borc holes in different positions. These limits are determined by two screws, one of which is scen at a; the other being on the opposite side is invisible. They are tapped through fixed pieees projecting up from the frame. A projecting pieee of metal, from the under side of the slider K of the borer E , stops against the ends of these screws, to limit the by means of levers mand N. These are centred on a pin, at the oppositc sides of the frame of the machinc, and have oblong grooves through them which reeeive screw pins, fixed into the frames \mathbf{G} and \mathbb{H}, beneath the pulleys $P \mathrm{P}$, which give motion to the spindles.
5. The mortising machine is a beautiful picce of meehanism, but too complieated for description within the limits preseribed to this artiele.

The corner saw, fig. 194, consists of a mandrel mounted in a frame A, and rarrying a eircular saw it upon the extreme end of it. This mandrel and its frane
being exactly similar to those at \mathbf{G} and $\mathbf{H}, f i g .193$, do not require a separate view, although tbey are hidden bchind the saw, except the end of the screw, marked Λ. This frame is screwed down upon the frame в в of tbe machine, which is supported upon four columns. C C, DD, is an inclined bench, or a kind of trough, in which a block is laid, as at E, being supported on its edge by the planc C c of tbis bench, and its end kept up to its position by the otber part of tbe bench $D \mathrm{D}$.

By sliding tbe block along this bench, it is applied to the saw, which cuts off its angles, as is evident from the figure, and prepares it for the shaping engine. All the four angles are cut off in succession, by applying its different sides to the trough or bench. In tbe figure, two of them are drawn as being cut, and the third is just marked by the saw. Tbis machine is readily adapted to different sizes of blocks, by the simple expedient of laying pieces of wood of different thickness against the plane D, so as to fill it up, and keep the block nearer to or farther from the saw ; for all the blocks are required to be cut at the same angle, though, of course, a larger piece is to be cut from large than from small blocks. The block reduced to the state of E is now taken to.
7. The shaping machine. - A great deal of tbe apparent complication of this figure arises from the iron cage which is provided to defend the workmen, lest tbe blocks, which are revolving in the circles or chuck with an immense velocity, should be loosened by the action of tbe tool, and fly out by their centrifugal force. Witbout this provision, the consequences of such an accident would be dreadful, as the blocks would be projected in all directions, witb an inconceivable force.
8. The scoring engine receives two blocks as they comc from the shaping engine, and forms the groove round the longest diameters for tbe reception of their ropes or straps, as represented in the two snatch blocks and double block, under figs. 193, 194.
A, B, fig. 195, represent tbe above two blocks, each held between two small pillars a (the other pillar is hid behind the block), fixed in a strong plate \mathbf{D}, and pressed against the pillars by a screw b, which acts on a clamp d. Over the blocks a pair of circular planes or cutters, E e, are situated, botb being fixed
 on tbe same spindle, which is turned by a pulley in the middle of it. The spindle is fitted in a frame $F \mathbf{F}$, moving in centres at $e e$, so as to rise and fall when moved by a handle f. This brings the cutters down upon the blocks; and the depth to which they can cut is regulated by a curved shape g, fixed by screws upon the plate D, between the blocks. Upou this rests a curved piece of metal h, fixed to the frame F, and inclosing, but not touching, the pulley. To admit tbe cutters to traverse the whole length of the blocks, the plate \mathbf{D} (or rather a frame beneath it) is sustained between tbe points of two centres. Screws are seen at l, on these centres. Tbe frame inclines when the handle I is depressed. At M is a lever, with a weight at the end of it, counterbalancing the weight of the blocks, and plate D, all wbich are above the centre on which they move. Tbe frame \mathbf{F} is also provided with a counterpoise to balance the cutters, \&c. The cutters f e are circular whecls of brass, with round notches chisels has two notches in its circumference, at opposite sides; and in these notches chisels arc fixed by screws, to project beyond the rim of the wbeel, in the manner of a plane iron before its face.
he two pins (only used as follows:-In order to fix the block, it is pressed between the two pins (only one of which, at a, can be seen in this view), and the clamp d, screwed up against it, so as just to hold the block, but no more. The clamp has two claws, made in tbe end of the block. sucb a segment of each as will just retain rings arc partly cut avray, leaving only taken out to admit the cutter to operate betwecn them, or nearly so. In putting the
blocks into this machine, the worknnan applies the double prints to the ends of the claws of the clamps, but takes care that the blocks are higher between the pins a than they slould be; he then takes the handle f, and by it presses the cutters E E (which we suppose are standing still) down upon the blocks, depressing them between their pins at the same time, till the descent of the cutters is stopped by the piece h resting on the shape g. He now turns the screws $l l$, to fix the blocks tight. The cutters being put in motion cut the scores, which will be plainly seen by the mode of adjustment just described, to be of no depth at the pin-hole; but by depressing the handle L, so as to incline the blocks, and keeping the cutters down upon their shape g, by the handle f, they will cut any depth towards the ends of the blocks, which the shape g admits.

By this means one quarter of the score is formed; the other is donc by turning both blocks together half round in this manner. The centres l are not fitted into the plate D itself, but into a frame seen at Ω bencath the plate, which is connected with it by a centre pin, exactly midway betwcen the two blocks A b. A spring catch, the end of which is seen at r, confines them together ; when this catch is pressed back, the plate D can te turned about upon its centre pin, so as to change the blocks, end for end, and bring the unscored quarters (i. e. over the clamps) beneath the cutters; the workman taking the handles f and L , one in each hand, and, pressing them down, cuts out the second quarter. This might have been effected by simply lifting up the handle L ; but in that case the cutter would have struck against the grain of the wood so as to cut rather roughly; but by this ingenious device of reversing the blocks, it always cuts clean and smooth, in the directiou of the grain. The third and fourth quarters of the score are cut by turning the other sides of the blocks upwards, and repeating the above operation. The shape g can be removed, and another put in its place, for different sizes and curves of blocks; but the pins a and holding clamps d will suit many different sizes.

By these machines the shells of the blocks are completely formed, and they are next polished and finished by hand labour; but as this is performed by tools and methods which are well known, it is needless to enter into any explanation: the finishing required being only a smoothing of the surfaces. The machines cut so jerfectly true as to requirc no wood to be removed in the finishing; but as they cut without regard to the irregularity of the grain, knots, \&ce., it happens that many parts are not so smooth as might be wished, and for this purpose manual labour alone can be employed.

The lignum vitæ for the sheaves of the blocks is cut across the grain of the wood hy two cross-cutting saws, a circular and straight saw, as before mentioned. These machines do not essentially differ in their principle from the great eross-cutting saws we have described, except that the wood revolves while cutting, so that a small sar will reach the centre of a large tree, and at the same time cut it truly flat. These machines cut off their plates from the end of a tree which are exactly the thickness for the intended sheavc. These pieces are of an irregular figure, and must be rounded and centred in the crown saw.
9. The crown saw is represented in fig. 196, where \boldsymbol{A} is a pulley revolving by means of an endless strap. It has the crown or trepan saw a fixed to it, by a screw cut within the piece, upon which the saw is fixed, and which gives the ring or hook of the saw sufficient stability to perform its office. Both the pulleys and saw revolre together upon a truly cylindrical tube b, which is stationary, being attached by a
 flanch c to a fixed puppet B , and on this tube as an axis the saw and pulley turn, and may be slid endwise by a collar fitted round the centre piece of the pulley, and having two iron rods (only one of which can be seen at d in the figurc), passing through holes made through the flanch and puppet b. When the saw is drawn back upon its central tube, the end of the latter projects beyond the tecth of the saw. It is by means of this fixed ring or tube within the saw, that the piece of wood c is supported together during the operation of sawing, being pressed forcibly against it by a screw D , acting through is puppet fixed to the frame of the machine. At the end of this serew is a cup or basin which applics itself to the picce of wood, so as to form a kind of riec, one side being the end of the fixed tule, the other the cup
the end of the screw \mathbf{D}. Within the tuhe b is a collar for supporting a central axis, which is perfectly cylindrical. The other end of this axis (seen at f) turns in a collar of the fixed puppet e. The central axis has a pulley F, fixcd on it, and giving it motion by a strap similar to the other. Close to the latter pulley a collar g is fitted on the centre piece of the pulley, so as to slip round freely, hut at the samc time confined to move endwise with the pulley and its collar. This collar rcceives the ends of the two iron rods d. The opposite ends of these rods arc, as above mentioned. connected by a similar collar, with the pulley a of the saw a. By this connection, hoth the centre bit, which is screwed into the end of the central axis f, and the saw sliding upon the fixed tube b, are hrought forward to the wood at the same time, hoth being in rapid motion hy their respective pulleys.
10. The coaking engine. - This ingenious piece of machinery is used to cut the three semi-circular holes which surround the hole hored hy the crown saw, so as to produce a cavity in the ceutre of the disc.
11. Face-turning lathe. - The sheave is fixed against a flat chuck, similar to that in the coaking engiuc, except that the centre pin iustead of having a nut is tapped into the flat chuck, and turned by a screwdrivel.
A complete set of this hlock machinery has since been made, hy Messrs. Maudslay and Field, for the Spanish Government, from the original drawings and models.
Iron blocks and sheaves have heen introduced with great aãvantage hy Messrs. Brown and Lenox, and are used extensively in the naval and mercliant services. See Malleable Iron.
BLOCK TIN. Metallic tin cast into a block, the weight of which is now about $3 \frac{1}{2} \mathrm{ewts}$. Formerly, when it was the custom to carry the hlocks of tin on the backs of mules, the hlock was regulated by what was then considered to be a load for the mule, at $2 \frac{1}{2}$ cwts. Suhsequently, the hlock of tin was increased in size, and made as much as two men could lift, or 3 cwts. It was the custom to order so many blocks of tin, and the smelter, being desirous of selling as much tin as possible, continued to incrense the size of the block, so that, although $3 \frac{1}{2} \mathrm{cwts}$. is the usual weight, many hlocks are sold weighing $3_{7}^{3} \mathrm{cwts}$.

BLOOD. (Sang, Fr.; Blut, Germ.) The liquid which circulates in the arteries and veins of animals; hright red in the former and purple iu the latter, among all the trihes whose temperature is considerahly higher than that of the atmosphere. It consists - 1 , of a colourless transparent solution of several suhstances in water; and, 2 , of red undissolved particles diffused through that solution. Its specific gravity varies with the nature and health of the animal, being from 1.0527 to $1^{\circ} 0570$ at $60^{\circ} \mathrm{F}$. It has a saline suh-nauseons taste, and a smell peculiar to each animal. When fresh drawn from the vessels, it rapidly coagulates into a gelatinous mass, called the clot, cruor, or crassamentum, from which, after some time, a pale-yellow fluid, passing into yellowish-green, oozes forth, called the serum. If the warm hlood he switched with a bundle of twigs as it flows from the veins, the fihrine concretes and forms long fibres and knots, while it retains its usual appearance in other respects. The clot contains fihrine and colouring matter in various proportions. Berzelius found, in 100 parts of the dried clot of blood, 35 parts of fibrine, 58 of colouring matter, $1 \cdot 3$ of carbonate of soda, 4 of an animal matter soluhle in water, along with some salts and fat. The specific gravity of the serum varies from 1.027 to 1.029 . It forms about threefourths of the weight of the hlood, has an alkaline reaction, coagulates at $157^{\circ} \mathrm{F}$. into a gelatinous mass, and has for its leading constituent albumen to the amount of 8 per cent. hesides fat, potash, soda, and salts of these bases. Blood docs not seem to contain any gelatine.
The red colouring matter called hematosine may be obtained from the cruor by washing with cold water and filtering.
Blood was at one time largely employed for clarifying syrup, but it is very sparingly used hy the sugar refiners in Great Britain at the present day. It may he dried hy cvaporation at a heat of 130° to 140°, and in this state has heen transported to the colonies for purifying cane juice. It is an ingredient in certain adhesive cements, coarse pigments for protecting walls from the weather, for making animal charcoal in the Prussian-bluc works, and, hy an after-process, a decolouring carbon. It is used in some Turkey-red dye works. Blood is a powerful manure.
Mr. Pillans, in 1854, took out a patent for the separation of the colouriug matter of hlood and also for drying the prepared scrous matters. He recommends the blood (which must be received warm) to be caught in shallow vessels containing from $1+1 \mathrm{lbs}$. to 20 lhs. of hlood, to stand at rest from two to six hours according to the weather aud the nature of the blood; then the clot is separated hy a strainer from the serous fluid, considerahle quantity of knives, or rollers, the clot is divided into small pieces; a aside to dcposit ; the clot is placed matter flows with the serum, which is to be sct A A 3 until the serum has all drained away,

By these operations there are obtaincd readily from the blood - 1st, the clot, in a comparatively dry state, comprising hematosinc, with a portion of serum and all the fibrine; 2nd, a portion of scrum, highly coloured with henatosine; 3rd, the clar serum.
The blood, in small fragments, is dried on wirework or trays, at a less tempcrature thau will coagulate the hematosine, so that, when dry, it may be soluble in watcr; 110° to 115° is the temperature recommended. The second or highly coloured serum can be dricd by itself or mixcd with the serum, and may be used for sugar refining and in dyeing.
The clear serum is dried and ground and in a fit state to be used as albumen, and may be cmployed by the printers of textile fabrics for fixing ultramarine bluc and other colours, or as a substitutc for egg albumen, both in printing colours and in refining liquids.

Instcad of drying at once the clear serum, it may be mixed with $\frac{1}{2}$ per cent. of oil of turpentinc. Other vegetable and, particularly, volatile oils are also suitable, preferring those that have been exposed to the air ; from 10 to 20 per cent. of water, ultramarine, suitable colours, or thickening, may be added, taking care that under no circumstance is it to be exposed to a heat high enough to coagulate it while in the drying room.

BLOODSTONE. A very hard, compact variety of hæmatite iron ore, which, when reduced to a suitable form, fixed into a handle, and well polished, forms the best description of burnisher for producing a high lustre on gilt coat-buttons. The gold on china is burnished by the same means.-Knight.

Blondstone is a name also applied to the jaspery variety of quartz knowu as the heliotrope, coloured deep-green, with interspersed blood-red spots like drops of blood. -Dana.

Blowing Machine. See Iron, Metallurgy, Ventilation.
BLOWPIPE. (Chalumeau, Fr.; Löthrohr, Germ.) Jewellers, mineralogists, chemists, enamcllers, \&cc., make frequent use of a tube,-usually

bent near the end,-terminated with a finely pointed nozzle, for blowing through the flame of a lamp, candle, or gas jet, and producing thereby a small couical flame possessing a very intense heat.

The blowpipe is so extremely useful to the manufacturer and to the miner that a more exact description of the instrument is required.

When wc propel a flame by meaus of a current of air blown into or upon it, the flame thus produced may be divided into two parts, as possessing different properties that of reducing under one condition and of oxidising under another.

The reducing flame is produced by blowing the ordinary flame of a lamp or candle simply aside by a weak current of air impinging on its outer surface; it is therefore unchanged except in its direction. Unconsumed carbon, at a white heat, giving the yellow colour to the flame, coming in contact with the substance aids in its reduction.

The oxidising flame is formed by pouring a strong blast of air into the interior of the flame; combustion is thus thoroughly established, and if a small fragment of an oxidisable body is held just beyond the point of the flame, it becomes intensely heated, and, being exposed freely to the action of the surrouuding air, it is rapidly oxidised.

The best form of blowpipe is the annexed (fig.197). which, with the description, is copied from Blandford's excellent trauslation of Dr. Theodore Scheerer's "Introduction to the Use of the Mouth Blowpipe."
The tube and nozzle of the instrument are usually made of German silver, or silver with a platinum point, and a trumpet-shaped mouth-piecc of horn or ivory. Many howpipes have no mouth-pieces of this form, but are siuply tipped with ivory, or some similar matcrial. The airchamber a serves in some degree to regulate the blast and receives the stcm, B, and the nozzle, a, which are madc separatcly, and accurately ground into it, so that they may be put together or taken apart at plcasurc. The point b is best made of platinum, to allow of its being readily cleaned, and is of the form shown in the woodeut. When the instrument is used, the mouth-
piece is pressed against the lips, or, if this is wanting, the end of the stem must be held between the lips of the operator. The former mode is far less wearying than the latter; and whereas, with the trumpet mouth-pieee, it is easy to maintain a contiuued blast for five or ten minutes, without it it is almost impossible to sustain an unbroken blast of more than two or three minutes' duration. While blowing, the operator breathes through his nostrils only, and, using the epiglottis as a valve, forces the air through the blowpipe by means of the cheek muscles.

Some years since, Mr. John Prideaux, of Plymouth, printed some valuable "Suggestions" for the use of the blowpipe by working miners. Some portions of this paper appear so useful, especially under circumstances which may preclude the use of superior instruments, \&c., that it is thought advisable to transfer them to thesc pages.

For ordinary metallurgic assays, the common blowpipe does very well. A mere tapering tube, 10 inches long, $\frac{1}{2}$ inch diameter at one end, and the opening at the other scarcely equal to admit a pin of the smallest kind, the smaller end curred off for $1 \frac{1}{2}$ inch to a right angle. A bulb at the bend, to contain the vapour condensed from the breatb, is useful in long operations, but may generally be dispensed with. In selecting the blowpipe, the small aperture should be chosen perfectly round and smooth, otberwise it will not command a good flame.

A common candle, such as the miner employs under ground, answers very well for the flame.
To support the subject of assay, or "the assay," as it has been happily denominated by Mr. Children, two different materials are requisite, according as we wish to calcine or reduce it. For the latter purpose, nothing is so good as charcoal; but that from oak is less eligible, both from its inferior combustibility and from its containing iron, than that from alder, willow, or other light woods.
For calcination, a very convenient support, where platinum wire is difficult to procure, is white-baked pipeclay or china clay, selecting such as will not fuse uor become coloured by roasting with borax.
These supports are conveniently formed by a process of Mr. Tennant. The clay is to be beaten to a smooth stiff body; then a thin cake of it, being placed between a fold of writing paper, it is to be beaten out with a mallet to the thickness of a wafer, and cut, paper and all, into squares of ${ }_{6}$ this inch diameter, or triangles about the same size. These are to be put in the bowl of a tobacco-pipe, and heated gently till dry, then baked till the paper is burnt away, aud the clay left perfectly white. They should be baked in a clear fire, to keep out coal dust and smoke as much as possible, as either of these adhering to the clay plates would colour the borax in roasting. A small fragment of the bowl of a new tobacco-pipe will serve instead in the absence of a more convenient material.

A simple pair of forceps (fig.198), to move and to take up the hot assay, may be made of a slip of stiff tinplate, 8 inches long, $\frac{1}{2}$ inch wide in the middle, and $\frac{1}{16}$ th inch at the ends. The tin being rubbed off the points on a rough whetstone, the slip is to be bent until they approach each other within $\frac{1}{2}$ an inch and the two sides are parallel; thus there will be spring enough in the forceps to open and let go the assay when
 not compressed upon it by the finger and thumb.

A magnetic needle, very desirable to ascertain the presence of iron, is easily made of the requisite delicacy where a magnet is accessible. A bit of thin steel wire, or a long fine stocking-needle, having $\frac{1}{4}$ inch cut off at the point, is to be heated in the middle that it may be slightly bent there (fig 199). While hot, a bit of scaling wax is to be attached to the centre, and the point which had been cut off, being heated at the thick end, is to be fixed in the sealing wax, so that the sharp end may serve as a pivot, descending about $\frac{1}{8}$ th inch below the centre, taking care that the ends of the needle fall enough below the pivot, to prevent it overturning. It must be magnetised,
 by sliding one end of a magnet half a dozen or more times from the centre to one end of the needle, and the other end a similar number of times from the centre of the needle to its other end. A small brass thimble (not capped with iron) will do for for the support, the point of the pivot being placed in one of the indentations near the centre of the tap, when, if well balanced, it will turn until it settles north and south. If one side prepondcrate, it must be nipped until the balance be restored.
A black gun-flint is also occasionally used to rub the metallic globules (first attached, whilst warm, to a bit of sealing wax), and ascertain the colour of the streak which they give. Thus minute particles of gold, copper, silver, \&c., are readily discriminated. A little refined borax and carbonate of soda; both in powder, will complete the
requisitcs.

Having collected these matcrials, the next objcet for the operator is to acquire the faculty of keeping up an unintermitted blast through the pipe whilst breathing freely through the nose.

A very sensitive and, for most purposes, sufficiently delicate balance (fig. 200) was also devised hy Mr. Prideaux, of which the following is a deseription:-

The common marsh reed, growing generally in damp places throughout the kingdon, will yield straight joints, from 8 to 12, or more, inches long ; an 8 -inch joint will serve, but the longer the better. This joint is to be split down its whole length, so as to form a trough, say $\frac{1}{4}$ inch wide in the middle, narrowed away to $\frac{1}{3}$ rd inch at the ends. A narrow slip of writing paper, the thinner the better (bank post is very convenient for the purpose), and as long as the reed trough, is to be stuck with common paste on the face of a carpenter's rule, or, in preference, that of an exciseman, 一as the inches are divided into tenths instead of eighths ;-in either ease observing that the divisions of the inch on the rule he left uncovered by the paper. When it is dry, lines must he drawn the whole length of i, $\frac{1}{8}$ th inch apart, to mark out a stripe $\frac{1}{8}$ th inch wide. Upon this stripe the divisions of the inch are to be ruled off by means of a small square.
The centre division being marked 0 , it is to be numbered at every fourth line to the ends. Thus the fourth from the centre on each side will he 10 ; the eighth, 20 ; the twelfth, 30 ; the sixteenth, 40 , \&ce; and a slip of 10 inches long, graduated into tenths of an inch, will have on each arm 50 lines, or 125 degrees, divided by thesc lines into quarters. While the lines and numhers are drying, the exact centre of the reed-trough may he ascertained, and marked right across, by spots on the two edges. A line of gum water, full $\frac{1}{8}$ th inch wide, is then laid with a camel-hair pencil along the hollow, and the paper being stripped from the rule (which it leaves easily), the graduated stripe is cut out with scissors, and laid in the trough, with the line 0 exactly in the centre. Being pressed to the gummed reed, hy passing the round end of a quill along it, it graduates the trough from the centre to each end. This graduation is very true, if well managed, as the paper does not stretch with the gum water after heing laid on the rule with the paste.

A very fine needle is next to he procured (those called bead-needles are the finest) and passed through a slip of cork the width of the centre of the trough, about $\frac{1}{2}$ th inch square, th thick. It should be passed through with carc, so as to be quite straight, The cork should then he cut until one end of it fits into the trough, so that the needle shall hear on the edges exactly in the spots that mark the centre, as it is of importance that the ncedle and the trough be exactly at right angles with each other. The cork is now to be fixed in its place with gum water, and, when fast dry, to be soldered down on each side with a small portion of any soft resinous cement, on the point of a wire or knitting needle; a little cement heing also applied in the same manner to the edges of the cork where the needle goes through, to give it firmness, the heam is finished. It may be balanced by paring the edges on the heaviest side: hut accurate adjustment is needless, as it is subject to vary with the dampuess or the dryness of the air.

The support on which it plays is a bit of tin plate (or, in preference, brass plate), ${ }^{\frac{3}{6} \text { ths }}$ inch long, and 1 inch wide. The two ends are turned up square $\frac{3}{8}$ ths of an ineh, giving a base of 5 ths of an inch wide, and two upright sides $\frac{3}{8}$ ths high. The upper edges are then rubbed down smooth and square upon a Turkey stone, letting hoth edges bear on the stone together that they may exactly correspond. For use the heam is placed cvenly in the support, with the needle resting across the edges. Being hronght to an exact balanec by a bit of writing paper, or any other suhstance, placed on the lighter side, and moved toward the end until the equilibrium is produced, it will turn with extreme delicacy, a hit of horsehair, $\frac{1}{8}$ th inch long heing sufficient to hring it down freely.
It must not he supposed that any such instrument as this is recommended as in any way substituting the beantiful balances which arc constructed for the ehemist, and others requiring to weigh with great aecuracy. The object is mercly to show the miner a method by which he may construct for hinself a balance which shall be suffieiently accurate for such blow pipe investigations as it may be important for him to learn to perform for himsclf. If the suggestions of the chemist who devised the nbove balance had heen carried out, much valuable mincral matter which has been lost might have been turned to profitahle account.

The blowpipe is largely used in manufaetures, as in soldering, in bardening and tempering simall tools, in glass-blowing, and in cnamelling. In many cases the blowpipes are used in the moutli, but frequently they are supplied with air from a bellows moved by the foot, by vessels in which air is condensed, or by means of pneumatic apparatus.
Many blowpipes have been invented for the employment of oxygen and hydrogen, by the combustion of which tbe most intense heat wbich we can produce is obtained. Professor Hare, of Philadelphia, was tbe first to employ this kind of blowpipe, when be was speedily followed by Clark, Gurney, Leeson, and others. The blowpipe, fcd with hydrogen, is employed in many soldering processes with much advantage.

Tbe general form of the "worksbop blowpipe" is that of a tube open at one end, and supportcd on trunnions in a wooden pedestal, so that it may be pointed vertically, borizontally, or at any angle as desired. Common street gas is supplied througli one hollow trunnion, and it escapes through an annular opening, while common air is admitted tbrougb the other trunnion, which is also bollow, and is discharged in the centre of tbe bydrogen through a central conical tube ; the magnitude and intensity of the flame being determined by tbe relative quantities of gas and air, and by the greater or less protrusion of the inner cone, by which the annular space for the bydrogen is contracted in any required degree.-Holtzap.ffel.
BLUE COPPERAS, or BLUE STONE. The commercial or common names of tbe sulphate of copper. See Copper.

BLUE JOHN. A beautiful variety of fluor spar, found at Tray Cliff, near Castleton, Derbyshire, from whieh vases and other ornamental articles are wrougbt. See Fiuor Spar.
BLUE PIGMENTS. Several metallic compounds possess a blue colour, especially those of iron, cobalt, and molybdenum. The blues of vegetable origin, in comnon use, are indigo, litmus, and blue cakcs. The blue pigments of a metallic nature found in commerce are the following:-Prussian blue; sesqui-ferrocyanide of iron, called also Berlin blue;-mountain blue, a carbonate of copper mixed with more or less earthy matter;-Brenen blue, or verditer, a greenish-blue colour obtained from copper mixed witb cbalk or lime;-iron blue, phospbate of iron, but little employed ; cobalt blue, a colour obtained by calcining a salt of cobalt with alumina or oxide of tin; smalt, a glass coloured with cobalt and ground to a fine powder ;-charcoal blue, a deep shade obtained by triturating carbonised vine stalks with an cqual weight of potash in a crucible till the mixture ceases to swell, then pouring it upon a slab, putting it into water, and saturating the alkali with sulphuric acid. The liquor becomes blue, and lets fall a dark blue precipitate, which becomes of a brilliant blue colour when heated.

Molybdenume blue is a combination of this metal and oxide of tin, or phosphate of lime. It is employed both as a paint and an enamel colour. A blue may also be obtained by putting into molybdic acid (made by digesting sulphuret of nolybdenum with nitric acid), some filings of tiv, and a little muriatic acid. The tin deoxidises the molybdic acid to a certaiu degree, and converts it into the molybdous, which, when evaporated and heated with alumina recently precipitated, forms this blue pigment.

Ultramarine is a beautiful blue pigment (which see).
Turnbull's and Clinese blues are both double cyanides of iron.
King's blue.-A carbonate of cobalt.
Saxon blue.-A solution of indigo in Nordhausen sulphuric acid. See Colours.
BLUE VITRIOL. Sulphate of copper. When found in nature, it is due entirely
the decomposition of the sulphides of copper; especially of the yellow coprer to the decomposition of the sulphides of copper, especially of the yellow copper pyrites, which are liable to this change when placed under the influence of moist air, or of water containing air. See Copper.

BOGHEAD COAL, and other Brown Cannel Coals. The brown cannels are chiefly confined to Scotland, and bave been wrought, with the exception of the cclebrated Bogbead, for tbe last thirty years. They are found at Boghead, near Bathin Fife. The first namirdrie ; Pirnie, or Methill; Capeldrea, Kirkness, and Wemyss, nature, has only been in the market eight years. It is conso much dispute as to its coal hitherto discovered for gas- and oil-making purposes; but, strange to valuable middle portion of the Pirnie, or Methill, seam, wbich has been, strange to say, the ycars, is nearly as valuable for both purposes.
BoGnead. Amorphous ; fracture subconchoidal, compact, containing impressions of the stems of Sigillaria, and its roots (Stigmaria), with rootlcts traversing the mass. Colour, clove-brown, streak yellow, without lustre; a non-electric ; takes fire easily, splits, but does not fuse, and burns with an empyreumatic odour, giving out much smoke, and leaving a considerable amount of white ash. H 25 . Specific gravity;
$1 \cdot 200$.

According to Dr. Stenhousc, F.R.S., its composition is:-

g to Dr. Stenhousc, F.R.S., its composition is:								
Curbon	-	-	-	-	-	-	-	-
Mydrogen	-	-	-	-	-	-	-	-

Dr. Stenhouse's analysis of the ash of Boghead coal, from three analyscs, was as follows:-

Silica	-	-	-	-	-	-	-	-
	58.31							
Alumina	-	-	-	-	-	-	-	-
33.65								
Sesquioxide of iron	-	-	-	-	-	-	-00	
Potash -	-	-	-	-	-	-	-	0.84
Soda	-	-	-	-	-	-	-41	
Limi and sulphuric acid	-	-	-	-	traees.			

Dr. Andrew Fyfe, F.R.S.E., on analysis, found that the coal yielded, from a pieked specimen, 70 per cent. of volatile matter, and 30 per cent. of coke and ash. From a ton he obtained $14 \cdot 880$ cubic feet of gas, the illuminating power of whieh was determined by the use of the Bunsen photometer, the gas being consumed by argands bmining from $2 \frac{1}{2}$ to $3 \frac{1}{2}$ feet per hour, aecording to circumstances. The candle referred to was a spermaceti candle, burning 140 grains per hour.

Cubic Feet of Gas per Ton of Coal.	Specific Gravity.	Condensation by Cnlorine in 100 Parts.	Durahility 1 foot burns.	Illuminating Power 1 foot $=$ Light of Candles.	Pounds of Coke per Ton of Coal.
14.880	802	27	Min.Sec. 88 25 7.72		
		760			

The Pirnic or Methill brown cannel, on analysis, gives the following results :-

						1.126	
Specific gravity Gas per tou			-	-	-		
Gluminating power	-		-		-	138 candles	
Coke and ash -	-	-	-	-	-	36 per eent.	
Hydro-carbons cond	ensed		om			20	O
Sulphuretted hydrog		-	-	-			交 "
Carbonic acid -		-	-				${ }^{4}$
Carbonic oxide -	-	-		-			
Volatile matter in c		-	-	-			
Specific gravity of							

The Boghead coal occurs in the higher part of the Scotch coal field; in about the position of the "slaty band " of ironstone, its range is not more than 3 or 4 miles in the lands of Torbane, Inchcross, Boghead, Capper's, and Bathvale, near Bathgate, in the county of Linlithgow. In thickness it varies from 1 to 30 inches, and at the present consumption, say from 80,000 to 100,000 tons per annum, it cannot last many years.

The following section of a pit at Torbane shows that the cannel occurs in ordinary coal measures, and under circumstances common to beds of coal: $-\overline{\text { Ft. }}$ In.

One of the chief characters of this cannel is its indestructibility under atmospleric agencies; for whetber it is taken from the minc at a depth of fifty fatbems, or at the outcrop, its gas- and oil-yielding propertics arc the samc. Even a piecc of the mineral taken out of the drift deposits, where it had most probably lain for thousands of years, appears to he just the same in quality as if it had heen but lately raised from the mine.
In the earth the seam lics parallel to its roof and floor, like other heds of coal; and it is traversed hy the usual vertical joints, dividing it into the irregular cuhes which so generally characterise beds of cannel. The roof lying ahove the cement stone contains remains of Calamites; and the ironstone nodules, fossil shells of the genus Unio. The floor of the mine contains Stigmarice; and the coal itself affords more upright stems of Sigillaria, and its roots (Stigmaria) and their radicles, running tbrough the seam to a considerahle distance, than the majority of coals show. In these respects it entirely resemhles the Pirnie or Methill seam. Most cannels afford remains of fisl; hut in Boghead no traces of these fossils have yet been met with, although they have heen diligently sought after.

The roots in the floors, and the uprigbt stcms of trees in the seam itself, appear to show that the vegetahle matter now forming the coal grew on the spot where it is found. If the mangroves and other aquatic plants, at the present day found growing in the hlack vegetahle mud of the marine swamps of Brass town, on the west coast of Africa, were quietly submerged and covered up with clay and silt, we should have a good illustration of the formation of a hed of carbonaceous matter showing no structure, mingled with stems and roots of trees showing structure, which is the casc of Boghead coal, the structure heing only detected in those parts showing evidence of stems and roots, and not in the matrix in which those fossils are contained.

The chemical changes hy which vegetahle matter has heen converted into Boghead cannel will not be here dwelt on; hut the chief peculiarity about the seam is its close and compact roof, composed of cement-stonc, and shale. This is perfectly water and air tight, so much so that, although the mine is troubled with a great quantity of water, it all comes through the floor, and not the roof. This tight covering of the coal has douhtless exercised considerable influence on the decomposing vegetable matter after the latter had heen suhmerged. It is worthy of remark that, above the Pirnie or Methill seam,-the coal nearest approaching Boghead,-a similar bed of impure iron-
stone occurs. tone occurs.
Away from whin dykes which traverse the coal field, there are no appearances of the action of an elevated temperature, either upon the coal or its adjoining strata, to give any sanction to the hypotbesis, that the cannel has resulted from the partial decomposition of a substratum of coal hy the heat of underlying trap, the volatile matters having heen retained in what has prohahly been a hed of shale. First, it must he understood that Boghead cannel, even when treated with hoiling naphtha, affords scarcely a trace of bitumen; and, secondly, when the seam of coal is examined in the neighhourhood of a whin dyke, where heat has evidently acted on it, it is found nothing like cannel, but as a soft sticky suhstance, of a hrown colour, resembling hurnt Indian-rubher. Besides these facts, tbe seams of coal and their accompanying strata, hoth above and helow the cannel, show no signs of the action of heat, but, on tbe contrary, exhibit every appearance of having been deposited in the usual way, and of remaining without undergoing any particular alteration.-E. W. B. See Coals.

BOGHEAD NAPHTHA (syn. Bathgate naphtha), naphtha from the Boghead coal. See Naphtha, Boghead.

BOG IRON ORE is an example of the recent formation of an ore of iron, arising from the decomposition of rocks, containing iron, by the action of water charged with carhonic acid. Tbe production of this ore of iron in the present epoch, explains to us many of the conditions under which some of the more ancient heds of iron ore have been produced.
Bog-iron ore is common in the pent bogs of Ireland and other places.
The iron manufactured from hog-iron ore is what is called "cold short," from the presence of phosphorus; it cannot, therefore, he cmployed in the manufacture of wire, or of sheet iron; but, from the fluidity of the metal, it is valuable for
casting.
It varies much in composition, some specimens giving 20 and others 70 per cent. of the peroxide of iron. Protoxide of iron and oxide of manganese are often present; and as mucb as 10 per cent. of phosphorus and organic matter have been detected. See Iron.
BOG MANGANESE. Wad, or earthy manganese. A. Derbyshire variety gave

Red ox	de	man	an		-			-		$38 \cdot 59$
Red oxid	dc	irou	-	-	-	-		-	-	$52 \cdot 34$
Baryta	-	-	-	-	-	-		-	-	$5 \cdot 4$
Water	-	-	-	-	-	-		-	-	10\%9
Silica	-	-	-	-	-	-		-	-	$2 \cdot 74$

This might reasonably be called a bog-iron ore.
boiler. Sec Steam Boiler.
BOLE. A kind of clay, often highly coloured by iron. It usually consists of silica, alumina, iron, lime, and magnesia. It is not a well-defined mincral, and, conscquently, many substances are described by mineralogists as bolc.

Armenian bole is of a bright red colour. This is frequently employed as a dentifrice, and in some cases it is administered mcdicinally.

Bole of Blois is yellow, contains carbonate of lime, and effervesecs with acids.
Boliemian bole is a yellowish red.
French bole is of a pale red, with frequent streaks of yellow.
Lemnian bole and Silisean bole are, in most respects, similar to the above-named varieties.
The following analyses are by C. Von Hauer
Capo di Bove-Silica, 45.64 ; alumina, 29.33 ; peroxide of iron, 8.88 ; lime, 0.60 ; magnesia, a trace ; water, $14 \cdot 27=98 \cdot 72$.

New Holland-Silica, $38 \cdot 22$; alumina, 31,00 ; peroxide of iron, 11.00 ; lime, a trace; magnesia, a trace ; water, $18.81=99.03$.

BOLOGNIAN STONE. A sulphate of barytes, found in roundish masses, which phosphoresces when, after calcination, it is exposed to the solar rays.
BOMBAZINE. A worsted stuff mixed with silk; it is a twilled fabric of which the warp is silk and the weft worsted.
BOMBYX MORI. The moth to which the silkworm turns. This species was originally brought from China. In this country the eggs of this moth are hatched early in May. The caterpillar (silkworm) is at first of a dark colour ; but gradually, as with all other caterpillars, it becomes lighter coloured. This worm is about eight weeks in arriving at maturity, during which time it frequently changes its colour. When full grown, the silkworm commences spinning its web in some convenient place. The silkworm continues drawing its thread from various points, and attaching it to others; it follows, therefore, that after a time the body becomes, in a great measurc, enclosed in the thread. The work is then continued from one thread to another, the silkworm moving its head and spinning in a zigzag way, bending the fore part of the body back to spin in all directions within reach, and shifting the body only to cover with silk the part which was beneath it. As the silkworm spins its web by thus bending the fore part of the body back, and moves the hinder part of the body in such a way only as to enable it to reach the farther back with the fore part, it follows that it encloses itself in a cocoon much shorter than its own body; for soon after the beginning, the whole is continued with the body in a bent position. During the time of spinning the cocoon, the silkworm decreases in length very considerably; and after it is completed it is not half its original length; at this time it becomes quite torpid, soon changes its skin, and appears in the form of a chrysalis. The tine required to complete the cocoon is five days. In the chrysalis state the animal remains from a fortnight to three weeks; it then bursts its case, and comes forth in the imago state, the moth having previously dissolved a portion of the cocoon by means of a fluid which it ejects.-Penmy Magazine.

On the 29th January, 1858, Mr. Secretary Labouchere laid before the Council of the Society of Arts, a despatch from the Governor of Malta, on the subject of the Bombyx Cynthia silkworm. This is so interesting and important, that the despatch is given entire :-
"Pulacc, Valetta, Dec. 22, 1857.
"Sir,-In 1854, I made several reports on the Bomby.x Cynthia silkworm, which feeds on the castor-oil plant, for the iuformation of the Society of Arts. It had been introduced into Malta from India, in that ycar, and appeared both hardy and wonderfully prolific; yct it failed in Marta in 1855.
"2. I had, however, previously distributcd a great number of eggs, by sending them to Italy, France, and Algeria; and I contrived to watch the accounts of the trials made in those countries. I found that it had spread there, and had been carried to Spain and Portugal, and was creating considerable interest wherever it laad been tried.
"3. I was, therefore, induced to re-introduce it into Malta. At the cud of July last, I reccived a few eggs by post, in a quill, from Paris; and these lave multiplicd
in an extraordiuary manner, so that I have not attempted to have them counted. The remperaturc of the winter season, now December, seems, however, to be affecting then, even in Malta, inasmuch as they grow more slowly than they did in the summer; but, nevertheless, they appear healthy.
"4. A very interesting paper, on the progress making in different countries in rearing the Bombyx Cynthia, will be found iu the last number of the papers of the Freneh Société d'Aeclimation. This paper is by the able President of that society, M. Geoffroy Saint Hilaire.
" 5 . I had, in 1854, successfully sent the insect to the West Indies. The French Soeiety lave sent it to Brazil, to the Southern United States, and into Egypt. It is being introduced into Germany, and we are now sending more eggs and worms from Malta to Sicily.
"6. Experiments are making in France on spinning the silk, whieh is found to be very fine, very strong, and to take dyes well. In France the cocoons are corded, and afterwards spun, as in Malta. It is said tbat the chrysalis, on extricating itself from the cocoon and becoming a moth, does not, as was supposed, cut the thread; and the French have partially succeeded in unwinding the cocoons.
" 7. The great interest I find taken in other countries in the attempts making to naturalise the Bombyx Cynthia, has induced me to report to you its re-introduction into Malta, with the view of begging you to make this known to the Society of Arts. I inclose an extract from my despatch, dated 7th of July, 1855, which explains the manner in which I successfully sent the insect to the West Indies; and in the same manner it may be easily conveyed from any one country to another. It may be found difficult to preserve the silkworm throughout the winter season, as well as difficult to grow the Ricinus, its proper food, in the climate of Europe. The proper climate for the Bombyx Cynthia is within, or on the borders of, the tropics. But the attempts now making ought not to be the less encouraged on that account, for they are producing a new raw material for thread and clothing within reach of men of skill and science; and 127,000 cocoons have recently been sent from Algeria to be manufaetured in Alsace.
" 8. The extraordinary manner in which the Bombyx Cynthia multiply, together with the abundance of food for them produced without culture in warm climates, renders the study of the habits of this insect, and the nature of its cocoons, of considerable importance.
" 9 . I send herewith a small sample of the cloth made from the worms reared in Malta.

> "I have the honour to be, Sir,
> "Your most obedient humble servant,
> "WILLiAM Reid, Governor."

Additional information on the Bombyx Cynthia, or Eria Silkworm, will be found in the "Society of Arts Journal " of June 4th, 1858.
Mr. Wells, writing from Grenada, in the West Indies, says, of these silkworms forwarded to him by Sir William Reid:-"I have the eighth generation of worms now hatehing, having had seven erops of cocoons within the year. These worms multiply nne hundredfold in each generation; and there is no doubt of their bcing easily fed to any amount." They are fed on the castor-oil plant, Ricinus communis, which grows rapidly, can be cultivated without much expense, and yields a good return in its very abundant seeds. See Sluk.
BON-BONS. Comfits and other sweetmeats of various descriptions pass under this name. A large quantity is regularly imported from France into this country, and, from its usually superior quality, it is much in request. The manufacture of sweetmeats, confectionary, \&c... does not enter so far into the plan of this work as to warrant our giving any speeial detail of the various processes employed; a general notice will however be found under the head of Confectionary.
Liqueur Bon-bons are made in the following manner. A syrup evaporated to the proper consistence is made, and some aleoholic liqueur is added to it. Plaster of Paris models of the required form are made; and thesc are employed, sevcral being shallow trays. The syrup is then, by means of a funnel, powred ind starch, filling and there being a powerful repulsion means of a funnel, poured into these moulds, upper portion of the fluid assumes a spherical form. then the alcoholic syrup, the the surface, and the mould is placed in a warm closet. Crystallisation commener on the outside of the bon-bon, forming a crnst inclosing the syrup which commences gives up sugar to the crystallising crust until it inclosing the syrup, which constantly being removed. A man and two boys will make three hundred weights of bon-bons in a day.

Crystallised Bon-bons are prepared by putting them with a strong syrup contained
in shallow dishes, placed on shelves in the drying chamber, pieces of linen being stretched over the surface, to prevent the formation of a crust upon the surface of the fluid. In two or three days the bon-bons are covered with crystals of sugar; the syrup is then drained off, and the comfits dried.

Painted Bon-bons.-Bon-bons are painted by being first covered with a layer of glazing; they are then painted in body colours, mixed with mucilage and sugar.
The French have some excellent regulations, carried out under the "Préfet de Police," as to the colours which inay be employed in confectionary. These are to the following effect:-
"Considering that the colouring matter given to sweets, bon-bons, liqueurs, lozenges, \&c., is generally imparted by mineral substances of a poisonous nature, which imprudence has been the cause of serious accidents ; and, that the same character of accidents have been produced by chewing or sucking the wrapping paper of such sweets, it being glazed and coloured with substances which are poisonous; it is expressly forbidden to make use of any mineral substance for colouring liqueurs, bon-bons, sugar-plums, lozenges, or any kind of sweetmeats or pastry. No other colouring matter than such as is of a vegetable character shall be employed for such a purpose. It is forbidden to wrap sweetmeats in paper glazed or coloured with mineral substances. It is ordered that all confectioners, grocers, dealers in liqueurs, bon-bons, sweetmeats, lozenges, \&c., shall have their name, address, and trade printed upon the paper in which the above articles shall be enclosed. All manufacturers and dealers are personally responsible for the accidents which shall be traced to the liqueurs, bonbons, and other sweetmeats manufactured or sold by them."

If similar provisions were in force in this country, it would prevent the use, to an alarming extent, in our cheap confectionary, of such poisonous substances as

Arsenite of copper,	Sulphide of arsenic, Oxide of lead, Acetate of copper, Chromate of lead,
Sulphide of mercury, \&cc.	

The colouring matters allowed to be used in France are indigo, Prussian blue, saffron, Turkey yellow, quercitron, cochineal, Brazil wood, madder, \&c.

BONES. (Os, Fr.; Knochen, Gr.). They form the framework of animal bodies, commonly called the skeleton, upon which the soft parts are suspended, or in which they are enclosed. Bones are invested with a membrane styled the periosteum, which is composed of a dense tissue affording glue; whence it is convertible into jelly, by ebullition with water. Bones are not equally compact throughout their whole substance: the long ones have tubes in their centres, lined with a kind of periosteum of more importance to the life of the bones than even their external coat; the flat, as well as the short and thick, bones exhibit upon their surface an osseous mass of a dense nature, while their interior presents a cavity divided into small cellules by their bony partitions.
In reference to the composition of bones, we have to consider two prineipal constituents ; the living portion or the osseous cartilage, and the inorganic or the earthy salts of the bones.
The osseous cartilage is obtained by suspending bones in a large vessel full of dilute muriatic acid, and learing it in a cool place at about $50^{\circ} \mathrm{F}$. The acid dissolves the earthy salts of the bones without perceptibly attacking the cartilage, which, at the end of a short time, becomes soft and translucil, retaining the shape of the bones; whenever the acid is saturated before it has dissolved all the earthy salts, it should be renewed. The cartilage is to be next suspended in cold water, which is to be frequently cbanged till it has removed all the acidity. By drying, the cartilage shrinks a little, and assumes a darker hue, but without losing its translucency. It becomes, at the same time, hard and susceptible of breaking when bent, but it possesses great strength.
This cartilage is composed entirely of a tissue passing into gelatine. By boiling with water, it is very readily convertible in a glue, which passes clear and colourless through the filter, leaving only a small portion of fibrous matter insoluble by further boiling. This matter is produced by the vessels which penetrate the cartilage, and carry nourishment to the bone. We may observe all these phenomena in a very instructive manner, by maccrating a bone in dilute muriatic acid, till it has lost about the half of its salts; then washing it with cold water, next pouring boiling water upon it, leaving the whole in repose for 24 hours, at a temperature a few degrees below $212^{\circ} \mathrm{F}$.

The cartilage, which has been stripped of its eartly salts, dissolves, but the small vessels which issue from the undecomposed portion of the bone remain under the forn of white plumes, if the water has received no movement eapable of crushing or breaking them. We may then easily reognise then with a lens, but the slightest touch tears them, and makes them fall to the bottom of the vessel in the form of a precipitate; if we digest bones with strong hot muriatic acid, so as to aecelerate their deeomposition, a
portion of the cartilage dissolves in the acid with a manifest disengagement of carbonic acid gas, which hrcaks the interior mass, and causes the half-softencd hone to hegin to split into fibrous plates, separahle in the direction of their length. According to Marx, these plates, when sufficiently thin, possess, like scales of mica, the property of polarising light, a phenomenon which hecomes more beautiful still when we soak them with the essential oil of the bark of the Laurus Cassia. The osseous cartilage is formed before the earthy part. The long hones are then solid, and they become hollow only in proportion as the earthy salts appear. In the new-born infant, a large portion of the bones is hut partially filled with these salts; their deposition in the cartilage takes place round certain invariahle points of ossification, and begins at a certain period after conception, so that we may calculate the age of the feetus according to the progress which ossification has made.

Composition of Bones.

Heintz found that the fixed hases in the hones were sufficient to saturate completely the acids contained in them, so that the phosphate of lime, as well as the phosphate of magnesia, which the bones contain, is composed according to the formula $3 \mathrm{RO}, \mathrm{PO}^{5}$. Bone phosphate of lime was considered hy Berzelius to he $8 \mathrm{CaO}, 3 \mathrm{PO}^{5}$. True bony structure is perfectly free from chlorides, from sulphates, and from iron, these salts heing only found when the liquid pervading the bones has not been completcly removed. The hones in youth contain less earthy constituents than those of adults; and, in advanced age, the proportion of mineral matters increases. Von Biria found more hone earth in the hones of birds than in those of mammals; he found also the ratio of the carbonate of lime to the phosphate to be generally greater. In the hones of amphibia, he found less inorganic matter than in those of mammals and hirds; and, in the bones of fishes, the earthy matters vary from 21 to 57 per cent. The scales of fishes have a composition somewhat similar to that of hone, hut they contain phosphate of lime in small quantity only.

In certain diseases (the craniotabes in children), the earthy salts fall in the spongy portion of the hone as low as $28 \cdot 16$ per cent. of the dry hone; and in several cases the proportion of earthy matter was found by Schlossherger as low as 50 per cent. At the agc of 21 years, the weight of the skeleton is to that of the whole hody in the ratio of $10.5: 100$ in man, and in that of $8.5: 100$ in woman, the weight of the body heing about 125 or 130 lhs .

The quantity of organic matter in fossil bones varies very considerably: in some cases it is found in as large a quantity as in fresh bones, while in others it is altogether wanting. Carbonate of lime generally occurs in far larger quantity in fossil than in recent bones, which may arise from infiltration of that salt from without, or from a decomposition of a portion of the phosphate of lime by carbonic acid or carbonates. Magnesia often occurs in larger quantities in the fossil remains of vertebrated animals than in the fresh bones of the present animal world. Liebig found in the cranial hones excavated at Pompeii a larger proportion of fluoride of calcium than in recent bones; while, on the other hand, Girardin and Preisser found that this salt had greatly
diminished in hones which had lain long in the earth, diminished in hones which had lain long in the earth, and, in some cases, had even
wholly disappeared.
The gelatinous tissue of bones was found hy Von Biria to consist of :-

Carhon		-		Ox bones.				ossil bone
Hydrogen	-	-				-		50.130
Nitrogen	-	-	-	$8 \cdot 15$	-	-	-	7.073
Oxygen	-	-	-					18.449
Sulphur				24.119 0.216				$24 \cdot 348$

This is the same composition as that of the gclatinous tissues.
In the arts, hones are employed by turners, cutlers, manufacturers of animal charcoal, and, when calcined, by assayers, for making cupels. In agriculture, they are cm-
ployed as a manure. Laid on in the form of dust, at the rate of 30 to 35 errts. per acre, they have been known to inerease the value of old pastures from 10 s . or 15 s . to 30 s . or 40 s. per aere; and after the lapse of 20 years, though sensibly beeoming less valuable, land has remained still worth two or three times the rent it paid before the bones were laid on. In the large dyeing establishments in Manchester, the bones are hoiled in open paus for 24 hours, the fat skimmed off and sold to the eandle makers, and the size afterwards hoiled down in another vessel till it is of sufficient strength for stiffen. ing the thiek goods for which it is intended. The size liquor, when exhausted or no longer of suffieient strength, is applied with mueh benefit as a manure to the adjacent pasture and artifieial grass lands, and the exhausted hones are readily hought up by the Laueashire and Cheshire farmers. When burned bones are digested in sulphurie aeid diluted with twice its weight of water, a mixture of gypsum and aeid phosphate of lime is ohtained, whiel, when largely diluted with water, forms a most valuable liquid manure for grass land and for erops of rising eorn; or, to the acid solution, pearl ashes may be added, and the whole then dried up, hy the addition of chareoal powder or vegetable mould, till it is sufficiently dry to be seattered with the hand as a top dressing, or buried in the land by means of a drill.
In France, soup is extensively made by dissolving bones in a steam heat of two or three days' continuance. Respecting the nutritive property of such soup, Liehig has expressed the following strong opinion:-"Gelatine, even when aceompanied by the savoury constituents of flesh, is not eapahle of supporting the vital process; on the contrary, it diminishes the nutritive value of food, which it renders insuffieient in quantity and inferior in quality, and it overloads the blood with nitrogenous produets, the presence of which disturbs and impedes the organic proeesses." The erroneous notion that gelatine is the active prineiple of soup arose from the observation that soup made, hy boiling, from meat, when concentrated to a certain point, gelatinises. The jelly was taken to be the true soup until it was found that the best meats did not yield the fiuest gelatine tablets, which were obtained most beautiful and transparent from tendons, feet, eartilage, bones, \&c. This led to an investigation on nutrition generally, the results of which proved that gelatine, which by itself is tasteless, and when eaten exeites nausea, possesses no nutritive value whatever.

The following Table exhibits the relation between the combustible animal matter and the mineral substances of bones, as found by different ohservers:-

Prior to the use of bones by the turner or earver, they require the oil, with which they are largely impregnated, to be extraeted, by boiling them in, water and bleaching them in the sun or otherwise. This process of boiling, in place of softening, rohs them of part of their gelatiue, and therefore of part of their elastieity and contraetihility likewise, and they become more brittle.
The forms of the bones are altogether unfavourable to their extensive or ornamental employment: most of them are very thin and curved, contain large cellular eavities for marrow, and are interspersed with vessels that are visible after they are worked up into spoons, brushes, and artieles of common turnery. The buttoek and shin bones of the ox and ealf are almost the only kinds used. To whiten the finished works, they are soaked in turpentine for a day, boiled in water for ahout an hour, and then polished with whitening and water:

Holtzapffel also informs us that after the turning tool, or seraper, has beeu used, bone is polished, 1st, with glass paper ; 2ud, with Trent sand, or Flanders briek, with water on flannel ; 3rd, with whiting and water on a woollen rag; 4th, a small quantity of white wax is rubbed on the work with a quiek motion; the wax fills the minute pores, but only a very minute portion should be allowed to remain on the work. Common bone artieles, sueh as nail and tooth brushes, are frequently polished with slaked lime used wet on flannel or woollen eloth. See "On Bone aud its Uses,"
The importane Transs of Society of Arts, 1832 and 1839.
Imports, in 1856, of the bones of animals and fish-not whalebone.

					Tons.	Computed real Value.
Russia -	-	-	-	-	13,383	£68,588
Norway -	-	-	-	-	878	4,500
Denmark -	-	-	-	-	2,636	13,509
Prussia -	-	-	-	-	826	4,233
Hanover -	-	-	-	-	551	2,824
Hanse Towns	-	-	-	-	4,073	20,874
Holland -	-	-	-	-	4,453	22,822
France -	-	-	-	-	881	4,515
Spain -	-	-	-	-	777	3,982
Tuscany - -	-	-	-	-	787	4,033
Two Sicilies -	-	-	-	-	901	4,618
Austrian Italy -	-	-	-	-	1,968	10,086
Turkey Proper	-	-	-	-	857	4,392
Brazil - -	-	-	-	-	589 7812	3,019
Uruguay -	-	-	-	-	7,812 15,457	40,036
Buenos Ayres -	-	-	-	-	15,457 9,936	79,217 50,922
Australia -	-	-	-	-	-837	5,289
Other parts	-	-	-	-	3,347	17,154
					70,949	$£ 363,613$

In 1857, of bones, whether burnt or not, or as animal charcoal, 63,951 tons. H. M. N.

BONE BLACK (Noir d'os, Fr.; Knochenschwartz, Germ.), or Animal Charcoal, as it is less correctly called, is the black carbonaceous substance into which bones are converted by calcination in close vessels. This kind of charcoal has two principal applications-to deprive various solutions, particularly syrups, of their colouring matters, aud to furnish a black pigment. The latter subject will be treated of under Ivory Blace.
The discovery of the antiputrescent and decolouring properties of charcoal in general is due to Lowitz, of Petersburg ; but their modifications have occupied the attention of many chemists since his time. Kels published, in 1798, some essays on the decolouring of indigo, saffron, madder, syrup, \&ce., by means of charcoal; but he committed a mistake in supposing bone black to have less power than the charcoal of wood. The first useful application of charcoal to the purification of raw colonial sugar was made by M. Guillon, who brought into the French markets considerable quantities of fine syrups, which he discoloured by ground wood charcoal, and sold them to great advantage, as much superior to the cassonades (brown sugars) of that time. In 1811, M. Figuier, an apothccary at Montpellier, published a note about animal charcoal, showing that it blanched vinegars and wines with much more energy than vegetable charcoal; and lastly, in 1812, M. Derosnes proposed to employ animal charcoal in the purification of syrups and sugar refining. The quantities of bone black left in the retorts employed by MM. Payen, for producing crude carbonate of ammonia, furuished abundant materials for making the most satisfactory expcrinents, and cnabled these gentlemen soon to obtain ten per cent. more of refined sugar from the raw article than had been fornierly extractcd, and to improve, at the time, the characters of the lumps, bastards, treacle, \&c.

The calcination of bones is effected by two different systems of apparatus; by heating them in a retort similar to that in which coal is decomposed in the gas works, or in small pots piled up in a kiln. On the second plan, which furnishes the best, charcoal, the boncs, broken into pieces, are put into small cast-iron pots of the form shown in fig. 201, about three-eighths of an inch thick, two of which are dexterously placed with their mouths in contact, and then luted together with loam. The lip of the upper pot is made to slip inside the under onc. These double vessels, containing together about fifty pounds of boncs, are arranged alongside, and over each other, in an oven like a potter's kiln, till it is filled. The oven orkiln may be cither oblong or upright. The latter is represcnted in figs. 202, 203, 204. A is the fireplace or grate for the fuel ; c c are the openings in the dome of the furnace through which the flame flows; the divisions of these orifices are shown in fig.204. B is the wall of brick-work. D the space in which the pots are distributed. E is the door by which the workman carries in the pots, which is afterwards built up with firer
Vol. I.
bricks, and plastered over with loam. This door is secn in fig. 202. Y F are the lateral flues for conveying the disengaged gases intothe air.

Fig. 205 is a longitudinal section, and fig. 206 a ground plan of a horizontal kilh for calcining bones. a is the tire-chamber, lying upon a level with tbe sole of the kiln ; it is separated by a pillar b, from the calcining hearth c. In the pillar or wall, several rows of holes, d, are left at different heights; e is the entrance door; f, the outlet vents for the gases, vapours, and smoke, into the chimney g; h, a sliding damper-plate for regulating the admission of the air into the fire in the space a.

By this arrangement the offensive enlanations are partly consumed, and partly carricd off with the smoke. To destroy the smell completely, the smoke should be made to pass through a secoud small furnacc.
The number of pots that may be put into a kiln of this kind dcpends, of course, upon its dimensions; but, in general, from 100 to 150 are piled up over each other, in iu many respects, the greatest heat beiug nearest the roof of the kiln, which resembles,
In both kilns the interior walls are built of fire-bricks. In the oblong onc, the fiercest heat is near the vaulted roof; in the upright oue, near the sole; and the pots, containing the larger lumps of bones, should be placed accordingly near the top of the former and the bottom of the latter. Such a kiln may receive about scventy double pots, containing in the whole thirty-five cwts. of bones.

After the hearth is filled with the pots, and the entrance door is shut, the fire is applied at first moderately, but aftcrwards it must be raised, and maintained at a brisk heat for eight or ten hours. The door of the ash-pit and the damper may now bc nearly closed, to moderate the draught, and to keep up a steady ignition for six or cight hours louger, without additional firing; after which the doors must be all opened to cool the furnace. When this is done, the brick-work of tbe cntrance-door must be takeu down, the kiln must be emptied, and immediately flled again with a set of of pots previously filled with bones, and luted together: the pots wbich have been ignited may, in the coursc of a short time, be opened, and the contents put into the magazine. But in operating with the large decomposing cylinder retort, the bones being raked out hot, must be instantly tossed into a receiver, which can be covered in air-tight till they are cool.
The bones lose upon an average about oue-half of their weight in the calcination. In refercnce to the quality of the black, cxperience has shown tbat it is so much more 1 1owerful as a decolouring agent, as the bones from which it was madc have becn
1feer fin The charcoal is ground fleshy, and tendinous matters. tion of dust. The bones are thrown into a long quadrangular box furnished at its lower aperture with movable steel cheeks, between which the roller revolves; they are thus coarsely broken up, and the granulation is completed by another pair of bluntly grooved rollers, which can be placed nearer to, or further from, eaeb other at pleasure. The crushed charcoal is collected on sieves, which separate the dust fron the grains.

The composition of perfectly dry bone black of average quality is as follors :Phosphate of lime, with carbonate of lime, and a little sulphuret of iron, or oxide of iron, 88 parts ; iron in the state of silicated carburet, 2 parts ; charcoal containing about $\frac{1}{1}$ th of nitrogen, 10 parts. Nonc of the substances present, execpt the charcoal, possess separately any decolorising power.
It was formerly supposed that the peculiar absorbing and decolouring power of aniual charcoal was only exerted towards bodies of organic origin ; but it was found,
by Graham, that inorganic substances are equally subject to this action; and later experiments have demonstrated that there are few, if any, chemical compounds which altogether resist the absorbirg power of charcoal. The action is of a mechanieal nature, and in some cases it is sufficiently powerful to overcome chemical affinities of eonsiderable power. It is not confined to eharcoal, though pre-eminent in this substance, in consequence of the immense extent of surface which its porous structure presents. The action of charcoal in sugar refining has been particularly studied by Lïdersdorf. When the defceated saccharine juice is allowed to flow upon a moist and firmly compressed charcoal filter, pure watcr is the first product that passes through; but a considerably larger quantity is obtained than was employed for moistening the charcoal. Water is then obtaiued of a decidedly saline character, which increases in strength, and after this has passed through for some time, a swcet taste becomes perceptible, which gradually increases, and at last entirely masks the saline. This purely sweet fluid continucs to flow for some time; after which, the liquid acquires an alkaline reaction from the presence of caustic lime; it then becomes coloured, the liquor getting gradually darker, till the action of the charcoal eeases. Lime is completely abstracted from lime water by bone charcoal; and, according to the experiments of Chevallier, lead salts are likewise entirely absorbed, the acetate the most readily. It has also been shown by Graham, that iodine even is separated from iodide of potassium. The commercial value of auimal charcoal has usually been estimated by its decolouring power on sulphate of iudigo; its absorbeut power, which is a property of equal, perhaps of greater importance, may, according to M . Corenwinder, be determined, approximatively, by the quantity of lime which a given weight will absorb. For this purpose he employs a solution of saccharate of lime of known strength. An acid liquor is first prepared, composed of 20 grammes of pure oil of vitriol diluted with water to exactly 1 litre. A solution of saccharate of lime is then prepared, by dissolving 125 to 130 grammes of white sugar in water, adding thereto 15 to 20 grammes of quick-lime, boiling the liquid, and then filtering to separate the undissolved lime. This solution is prepared of such a nature, that it will be exactly saturated by the same volume of the dilute sulphuric acid. By addiug the latter to 50 cubic centimetres of the liquid filtercd from the animal clarcoal, it is easy to see how many degrees of the burette are required to complete the saturation of the lime. Suppose 35 are required for this purpose, $100-35=65$, which represent the proportion of lime absorbed by the charcoal : this is, therefore, the number representing the standard. By operating with a burette graduated from the bottom, the degrce of the charcoal experimented upon may be read directly.
This decolourising power docs not belong alone to bone black; different varieties of lignite, or even coal, when well carbonised in close vessels, afford a decolouring charcoal of considerable value. By reducing 100 parts of clay into a thin paste with water, kneading into it 20 parts of tar and 500 of fincly ground pit-coal, drying the mixed mass, and calciniug it out of contact of air, a charcoally matter may be obtained not much inferior to bone black in whitening syrups.
The restoration of animal charcoal from burnt bones, fur the purpose of sugar refining, has been long practised iu France. Mr. W. Parker has made the following process the subject of a patent. The charcoal, when taken from the vessels in which it has been employed for the purposes of clarifying the sugar, is to be thoroughly washed with the purest water that can be obtained, in order to remove all the saecharine matter adliering to it. When the washing process has been complcted, the charcoal is laid out to dry, cither in the open air or in a suitable stove; and when perfectly free from moisture, it is to be separated iuto small pieces and sifted through a sieve, the wire or meshes of which are plaeed at distances of about two and a half in every inch. This sifting will not only divide the charcoal into small pieces, but will cause any bits of wood or other improper matters to be separated from it.

The charcoal thus prepared is then to be packed lightly in cylindrical ressels called erucibles, with some small quautity of bones, oil, or other animal matter, mixed with it. The crucibles are then closed by covers, and luted at the joiuts, leaviug no other openiug but one small hole in the centre of the cover, through which any gas escape.

The crucibles are now to be ranged round the oven, and placed ouc upon auotlier, in vertical positions; and when the oven is properly heated, gas will be geucrated within eaeh crueible, and issue out from the central hole. The gas thus emitted, being of an inflammable quality, will take firc, and assist in heating the crucibles; is then to be clon being carried on until the crucibles become of a red heat, the oven when the charcoal will be found to lave becer which the crucibles are to be removed, as before.

A process for the restoration of bone-black, or animal charcoal, was made the subjeet of a patent by Messrs. Bancroft and Mac Innes of Liverpool, which consists in washing the granular charcoal, or digesting it, when fincly ground, with a weak solution of potash or soda, of speeific gravity $1 \cdot 06$. The bone black whieh has been used in sugar refining may be thus restored, but it should be first cleared from all the soluble filth by means of water.

Mr. F. Parker's method, patented in June, 1839, for effecting a like purpose, is by a fresh calcination, as follows :-

Fig. 207 represents a front section of the furnace and retort; and fig. 208 a transverse vertical section of the same. a is a retort, surrounded by the flues of the furnace $b ; c$ is a hopper or chamber, to 0 which a constant fresh supply of
the black is furnished, as the preceding portion has been withdrawn, from the lower part of a. d is the cooling vessel, whieh is connected to the lower part of the retort a by a sand joint e. 'The cooler d is made of thin sheet iron, and is large; its bottom is closed with a slide plate, f. The black, after passing slowly through the retort a into the vessel d, gets so much cooled by the time it reaches f, that a portion of it may be safely withdrawn, so as to allow more to fall progressively down; g is the charcoalmeter, with a slide door.-H. M. N.

BOOKBINDING. The process of sewing together the sheets of a book, and securing them with a back and side-boards.

Books are said to be either stitched, or in boards, or half-bound, or bound. The first consists simply of stitching the sheets together: The second, of placing the sheets, after they have been stitched, between millboard sides, which are covered with paper or cloth, and with the backs lettered and ornamented. The third is a process of more perfectly securing the leaves, and of placing them between boards with a back of leather, the sidc-boards being covered with marble paper. Books are whole bound when the sides as well as back are covered with leather. Bookbinding is performed in the following manner:-The sheets are first folded into a certain number of leaves, aceording to the form in which the book is to appear, as follows:-
The folio consists of -
the
" quarto of -
"
octavo of -
" duodecimo of
"

When the leaves are thus folded and arranged in proper order, they arc, if the books have been long printed, usually beaten upon a stone with a heavy hammer, to make them solid and smooth, and are then subjected to severe pressure in a powerful press; but in the case of newly-priuted books, pressure alone is considered sufficient. Beating, or severe pressure, would spoil the book; because the ink, not being well dried, would "set off" on the opposite pages.

The cmployment in bookbinding of a rolling-press for smoothing and condensing the leaves, instead of the hammering which books have usually received, is an improvement introduced several years ago into the trade by Mr. W. Burn. His press consists of two iron cylinders about a foot in diameter, adjustable in the usual way by means of a screw, and put in motion by the power of onc man, or of two if need be, applied to one or two winch-handles. In front of the press sits a boy who gathers the shects into packets, by placing two, threc, or four upon a piece of tin plate of the same size, and covering them with another piece of tin plate, and thus proceeding by alternating tin plates and bundles of shects till a sufficient quantity has been put together, which will depend on the stiffness and thickness of the paper. .he winch, and is then passed between the rollers and received by the mand over the tin plates by the who has time to lay the shects on a second packet. A minion bible may be passed time tlat the boy has prepared a second packet. A minion bible may pep
through the press in one minute, whereas the time necessary to beat it would be twenty minutes. It is not, however, merely a saving of time that is gained by tbe use of the rolling-press ; the paper is made smoother than it would have been by beating ; and the compression is so much greater, that a rolled book will be reduced to about five-sixths of the thickness of the same book if beaten. A shelf, therefore, that will hold fifty books bound in the usual way would hold nearly sixty of those bound in this manner - a circumstance of no small importance, when it is considered how large a space even a moderate library nccupies, and that book-cases are expensive articles of furniture. The rolling-press is now substituted for the hammer by our principal bookbinders.

After the sheets have been thus prepared, thcy are sewed; for which purpose the sewing-press is employed.

Fig. 209 represents tbe sewing-press, as it stands upon the table, before which the bookbinder sits. Fig. 210 is a ground-plan without the parts a and n in the former figure. A is tbe base-board, supported upon the cross-bars $m n$, marked with dotted lines in fig. 210. Upon the screw rods $r r, f i g$. 209, the nuts $t d$ serve to fix the flat upper bar n, at any desired distance from the base. That bar has a slit along its middle, through which the hooks below $z z$ pass down for receiving the ends of the sewing cords $p p$, fixed at $y y$, and stretched by the thumb-screws $z z$. The bar $y y$ is let into an oblong space cut out of the front edge of the baseboard, and fixed there by a movable pin a, and a fixed pin at its other end round whicb it turns. The cords or packtbread, called "bands," are fixed at distances agreeably to certain saw-marks made in the backs of the sheets. The thread is drawn tbrougb the middle of each sheet and turned round each band, beginning at the first and proceeding to tbe last. The number of bands is usually six for folios, and five for quartos, three or four being employed for smaller sizes.

211

All the sheets being stitched together, and secured around the bands, the back is glued. The cnds of the bands having been opened and scraped with a knife, they are, in common binding, pasted flatly upon the millboard sides; after which the back is beaten into a convex form with a hammer, the book being fixed in a press, between boards called backing boards, in order to form a groove for admitting tbe millboard sides. When the sides are applied in the better class of binding, holes are made in the millboard for drawing the bands through, the superfluous ends are cut off, and the parts are hammered sniooth. The book is next pressed for cutting.
Fig. 211 is the bookbinder's cutting press, which is set upright upon a sort of chest for tbe reception of tbe paper shavings; and consists of three sides, being open above and to the left hand of the workman. The pressbar, or beam a, has two holes $n n$ upon its under surface, for securing it to two pegs standing on the top of the chest. The screw rods t t pass tbrough two tapped holes in the bar, marked $b c$, at its upper end; their heads $r r$ being beld by the shoulders $o 0$. The heads arc pierced with holes into which lever pins are thrust for screwing tbe rods hard up. The heavy beam by the two scrovable, wbile the parallel bar witb the book is brouglit home towards it parallel; and the two two rulers s s serve as guides to preserve the motions truly plough, whose knife is sbown lath bars $b c$ guide between them the end bar c of the

A machine for cutting the i, with its clamping screw z, polygonal, with mathematical precision, was patented by Nr., either truly square or used, being known as Wilson's cutting machine or the millor. Wilson, and is much an cnd elevation of the machinc; figachnc or the millstone. Fig. 212 represents reference indicating the same parts of the machine in of the same, the letters of
" is the top cross bar with rectangular grooves $b b$ we c are side posts; $d d$ eross feet to the same, with streugthening brackets; e e a square box in which the press stands, for holding waste euttings. Fig. 214 is a cross section of the upright posts $c c$ taken horizontally. 'There are rectangular grooves in the upright posts, for the projecting ends of the east-iron cross bracket f to slide up and down in. In the middle of the under side of this piece f there is a boss, within which is a round recess, to receive the top of the serew g, which works in the east-iron cross pieec h, similarly made with the former, but bolted firmly to the posts cc. Upon the screw g there is a cireular

handle or ring i, for partially turning the screw, and immediately over it eross holes for tightening the press by means of a lever bar. Upon the cross pieee f is bolted the board j, and upon each end of this board is made fast the rabbetted pieces $k k$, for another board l to slide in. Across the middle of this board, and parallel to the

216

pieces $k h$, the tongue piece m is made fast, which fits into a groove at the bottom of board l. A horizontal representation of this is seen at fig. 215; and immediately under this view is also seen an end view of l and f connected together, and a side view of f by itself. In the middle of the board l is a pin for a circular board n to turn upon, and upon this latter board is placed the "material to be eut," with a saving piece between it, and the eircular picce which is to be divided upon its edge into any number of parts required, with a stationary index on the board l to poiut to each.

It will now be understood that the material to he cut, may be turned round upon the centre pin of the board n, and also that both it and the board can be shifted backward and forward under the top cross piece a, and between the side slide slips $k k$, the surfaees of which should also be divided into inches and tenths.

The plough (f fi. 216) is made to receive two knives or cutters, and which are situated in the plough in the following manner:-The plough is composed of three principal parts-namely, the top, and its two sides. The top, o, is made the breadth of the cross piece a, and with a handle made fast thereon. The sides, $p p$, are bolted thereto with bolts and nuts through corresponding holes in the top and sides. The figures give inside views and cross sections of the details of the manner in which the cutters and adjustments are mounted. A groove is cut down each cheek or side, in which are placed screws that are held at top and bottom from moving up and down, but, by turning, they cause the nuts upon them to do so; they are shown at $q q$. These nuts have each a pin, projecting inwards, that goes into plain holes made in the top ends of cutters $r r$.

The cutters and the work for causing them to go up and down are sunk into the cheeks, so as to be quite level with their inner surfaces. Fig. 217 shows one of those screws apart, how fixed, and with movable nut and projecting pin. The top of each screw terminates with a round split down, and above it a pinion-whecl and boss thereon, also similarly split. This pinion fits upon the split pin. Above, there is cross section of a hollow coupling cap, with steel tongue across, that fits into both the cuts of the screw pin and pinion boss, so that, when lowered upon each other, they must all turn together. In the middle and on the top of the upper piece, o, the large wheel, s, runs loose upon its centre, and works into the two pinion wheels, t. The wheel s has a fly nut with wings mounted upon it.

It will now be seen, when the plough is in its plaee, as at fig. 218 , that if it be pushed to and fro by the right hand, and the nut occasionally turned by the left, the knives, or cutters, will be protruded downwards at the same time, and these either will or will not advance as the coupling caps, $u u$, are on or off. The ribs, $v v$, run in the grooves, $b b$ (fig. 212), and keep the cutters to their duty, working steadily. The top cross bar, a, is the exact breadth of a bank note, by which means both knives are made to cut at the same time. The paper is cut uniformly to one length and accurately square. By the use of this machine, the air-pump paper-wetting apparatus, and appendant press, the laper of 45,000 notes is fully prepared in one hour and a half by one person, and may then be printed. It is not so much injured by this process as by the ordinary method of clipping by hand, soaking it, \&c. The woodcuts to fig. 222 represent the plough in its different positions.
One of the improvements in the art of bookbinding is that for which Mr. William Haucock obtained a patent. After folding the sheets in double leaves, he places them vertically, with the edges forming the back of the book down wards, in a concave mould, of such rounded or semi-cylindrical shape as the back of the book is intended to havc. The mould for this purpose consists of two parallel upright boards, set apart upon a cradle frame, each having a portion or portions cut out vertically somewhat deeper than the breadth of the book, but of a width nearly equal to its thickness before it is pressed. One of these upright boards may be slidden nearer to or farther from its fellow, by means of a guide-bar attached to the sole of the cradle. Thus the distance between the concave bed of the two vertical slots in which the book rests, may be varied according to the length of the leaves. In all cases about one-fourth of the length of the book at each end projects beyond the board, so that one-half rests betiveen the two boards. Two or three packthreads are now bound round the leaves, thus arranged, from top to bottom of the page in different lines, in order to preserve the form given to the back by the mould in which it lay. The book is next subjected to the action of the press. The back, which is left projecting very slightly in front, is then smeared carefully by the fingers with a solution of caoutchouc, whereby each paper edge recelves a small portion of the cement. In a few hours it is sufficiently dry to take another coat of a somewhat stronger caoutchouc solution. In 48 hours, four applications of the caoutchouc may be made and dried. The back and the adjoining part of the sides are next covered with the usual band or fillet of cloth, glued on with caoutchouc; after which the book is ready to have the boards attached,
We thus see that Mr. Hancock dispenses antirely be desired. sewing, sawing-in, hammering leaves attached by thread stitches back, or the use of paste and glue. Instead of securcly along their whole length. Books bound in this way open so perfectly fat upon a table, without strain or resilieuce, that they are equally comf perfectly flat student, the musician, and the merchant. That they are equally comfortable to the repulsive to insects and not affected by humidity, gives the cement, moreover, being superiority over the old method with paste or cluc. For mode of binding some ledgers, this binding is admirably adpaste or gluc. For engravings, atlases, and played most freely witlout the risk of dislocating the volume pages to be dis-
threc or four stitches should he made. The leaves of music hooks hound with caoutchoue, when turned over, lic flat at their whole extent, as if in loose sheets, and do not torment the performer like the leaves of the ordinary hooks, which are so ready to spring back again. Manuscripts and collcetions of letters which happen to have little or no margin left at the back for stitching them hy, may be bound hy Mr. Hancock's plan without the least encroachment on the writing. The thickcst ledgers thus bound open as easily as paper in quire, and may be written on up to the innermost margin of the book without the least inconveniencc.

An iugenious in vention, for which Mr. Thomas Riclards, of Liverpool, bookbinder, obtained a patent in April, 1842, is called by him "mechauical hookhinding." Ie employs, 1st, a mechanism to sew, weave, or bind a number of shects together to form a book, instead of stitching them by hand; 2ndly, a table which slides to and fro to feed or supply cach sheet of paper separately into bis machine; also needle bars, or holders, to present needles with the requisite threads for stitching such shcets as they are supplied with in succession. He has, moreover, a scrics of holding fingers, or pincers, suitahly provided with motions, to enahle them to advanee and clasp the necdles, draw them through the sheets of paper, and return them into their respective lolders after thrcading or stitching the sheet; lastly, there are arms, or levers, for delivering each sheet regularly upon the top of the preceding sheets, in order to furm a collection or book of sueh sheets, ready for boarding or finishing. A minute description of the whole apparatus, with plates, is given in Newton's "Journal," C.S. xxiii. 157.

After the sides have been attached to the hook, they have to be covercd with leather. For this purpose, the preparcd skin, moistcned with water, is cut to the size of the book, and the thickness of the edge is pared off on a marble stone. It is next smeared over with paste made of wheat flour, stretched ovcr the millboard on the outside, and douhled over the edges within. The book is then corded, that is, hound firmly betwixt two boards to make the cover adhere strongly to the millhoard and the back, on the exact performance of which the neatness of the hook in a great measure depends. The hack is then warmed at the fire to soften the glue, and the leather is rubhed down with a bodkin or folding stick, to set and fixed it close to the back of the book. It is now set to dry, and, when dry, the hoards are removed; the cover of the book is then washed or sprinkled over with a little paste and water, the edges then sprinklcd with a fine brush, by striking it against the hand or a stick, or with large spots, by being mixed with the solution of green vitriol, or they are marbled. Two hlank leaves are then pasted down to the cover, and the edges of the leaves, when dry, are hurnished in the press, and the cover rolled on its edges. The cover is now glazed twice with the white of an egg, filleted, and, last of all, polished, hy passing a hot iron over the glazed colour.
Nothing places in so striking a point of view the superior taste, judgment, and resources of London tradesmen over those of the rest of the world, than the extensive suhstitution which they have recently made of embossed silks and calicoes for leather in the binding of books. In old libraries, cloth-covered boards indeed may occasionally be seen, hut they have the meanest aspect, and are in no respect to be compared with our modern cloth binding. The silk or calico may be dyed of any shade which use or fancy may require, impressed with gold or silver foil in cvery form, and variegated hy ornaments in relief, copied from the most beautiful productions in nature. This new style of hinding is distinguished not more for its durahility, elegance, and variety, than for the economy and dcspatch with which it ushers the offspring of intellect into the world. For example, should a house eminent in this line receive 5000 volumes from Messrs. Longman and Co. upon Monday morning, they can have them all ready for publication within the incredibly short period of two days. The reduction of price is not the lcast advantage incident to the new method, amounting to fully 50 per cent. upon that with leather.

The dyed cloth being cut by a pattern to the size suited to the volume, is passed rapidly through a roller press, between engraved cylinders of hard steel, wherehy it receives at once the impress characteristic of the back and the sides along with emhossed designs over the surface in sharp relief. The cover thus rapidly fashioned is as rapidly applied by paste to the stitched and pressed volume, no time being lost in mutual adjustments, since the stecl rollers turn off the former of a slape precisely adapted to the latter. Hard-glazed and rarnished calico is moreover much less an object of depredation to moths and other insects than ordinary leather has been found to bc.

BORACIC ACID. (Acide Borique, Fr. $13 \mathrm{O}^{3}$; chemical equivalent, $34 \cdot 9$; specific gravity, 183.) Supposed to be the chrysocolla of Pliny. In the scventh ceutury. Geher mentions borax ; and it was descrihed by Gcoffioy and by Baron in the carly
part of the eightecnth century. Boracic acid was formerly called Homberg's sedutive salt.
This acid occurs in several minerals, particularly as tincal, or crude biborate of soda, which is found in the form of incrustations in the beds of small lakes in Thibet, where it is dug up during the hot season. Sassolin, so called from its having been first ohtained from one of the localities in Tuscany, named Sasso, is native boracic acid. It is found abundantly in the crater of Vulcano, one of the Lipari Islands, forming a layer on the sulphur and around the fumaroles, or exits, of the sulphurons exhalations. The native stalactitic salt, according to Klaproth, contains mechanically mixed sulphate of magnesia and iron, sulphate of lime, silica, carbonate of lime, and alumina. Erdmann has stated that sassolin contains $3 \cdot 18$ per cent. by weight of ammonia, and, instead of heing pure horacic acid, that it is a horate of ammonia. Native horacic acid is composed of horacic acid, $56 \cdot 4$; water, $43 \cdot 6$.-Dana.

Hayescine is, another mineral containing horacic acid, which has been within the last few years imported in Liverpool from Peru. Hayescine is a borate of lime, having a composition of boracic acid, 45.46 ; lime, 14.32 ; soda, 8.22 ; potash, 0.51 ; sulphuric acid, $1 \cdot 10$; chloride of sodium, $2 \cdot 65$; sand, $0 \cdot 32$. This analysis was made hy Mr. A. Dick in the metallurgical laboratory of the Museum of Practical Geology. It occurs over the dry plains of Iquique, in Southern Peru, in white reniform masses, from the size of a hazel nut to that of a potato, where it is called tiza.

In many other parts of South America, minerals containing boracic acid are known to exist ; and they are said to be ahundant in some parts of Brazil. The great supply of horacic acid, however, is derived from the Boracic Acid lagoons of Tuscany. Before the discovery of this acid, in the time of the Grand Duke Leopold I., hy the chemist Hæfer, the fetid odour developed hy the sulphuretted hydrogen gas and the disruptions of the ground occasioned hy the appearance of new suffioni, or vents of vapour, had made the natives regard them as a diaholical scourge, which they sought to remove hy priestly exorcisms; hut since science has explained the phenomena, the fumachi have hecome a source of public prosperity, and, were they to cease, would he prayed to return. The vapours, containing a very minute quantity of horacic acid, which issue from the lakes in the lagoons of this volcanic district, keep the waters always at a hoiling temperature; hence, after impregnation for 20 or 30 hours, by the steams pouring through the highest lake, the waters are drawn off into a second lake, to suffer a fresh impregnation. Thence they are drawn into a third, and so on, till they reach the lowest receptacle. In this passage they get charged with $\frac{1}{2}$ per cent. of boracic acid. They are then concentrated in leaden reservoirs by the heat of the vapours themselves.
The liquid, after having filled the first compartment, is diffused very gradually into the second, then into the third, and successively to the last, where it reaches such a state of concentration that it deposits the crystallised acid; the workmen remove it inmediately hy means of wooden scrapers. This mode of gradual concentration is very ingenious, and requires so few hands, that it may almost he said that the acid is ohtained without expense. From 1818 to 1845, the quantity of acid manufactured was $33,349,095$ Tuscan pounds. From 1839 to 1845, the mean quantity has becn 2,500,000 lhs.

Thus, in estimating the product at 7500 lbs . per day, the quantity of saturated water upon which they operate is $1,500,000$ daily, and annually $547,500,000 \mathrm{lhs}$.

This lahour brings to Tuscany $10,000,000$ francs. It is surprising that it should have remained unproductive for so many ages, and that it should have heen reserved for the skill of Count Larderel, of Monte Cerboli - before 1818 a simple waudering merchant, entirely unacquainted with scientific researches - to discover the nature of the fugitive vapours, and render them a source of inexhaustible wealth.

Professor Graham, in his "Report on the Chemical Products of the Great Exhihition of 1851," thus speaks of Larderel's discovery:-
"The preparation of horacic acid by Count F. de Larderel, of Tuscany, was rewarded hy a Council medal. Although this well-known manufacture is not recent, having attained its full development at least ten years, still the bold originality of its first conception, the perseverance and extraordinary resources displayed in the successful estahlishment, and the value of the product which it supplies, will always place the opcrations of Count de Larderel among the highest achievements of the useful arts, and demand the most honourahle mention at this epoch. The vapour issuing from a volcanic soil is condensed, and the minute proportion of boracic acid which it contains (not exceeding 0.3 per cent.) is recovered by cvaporation, in a district without fuel, hy the application of volcanic vapour itself as a source of heat. The boracic acid thus obtained greatly exceeds in quantity the old and linited supply of borax fliom the upper districts of India, and has greatly extended the use of that salt in the glazes of porcelain, and recently in the making of the most brilliant crystal, when
combined with the oxide of zine instead of oxide of lead." -Reports of the Jurors of the Great Exhibition of 1851.

The violence with which the scalding vapours eseape from the suffion gives rise to muddy explosions when a lake has been drained by turning its waters into another lake. The mud is then thrown out, as solid matters are ejected from voleanoes, and there is formed in the bottom of the lake a crowd of little cones of eruption, whose temperatures when in activity and play are generally from 120° to $145^{\circ} \mathrm{C}$., and the clouds which they form in the lagoons constitute true natural barometers, whose greater or less density rarely disappoints the predictions that they announce to the iuhabitants of those lagoons.

The boracic acid of the Tusean lagoons is obtained from nine different works belonging to Count Larderel, the produee of which is on the average as follows:-

Sasso -	-	-	-	-	36,000	lbs. per month.
Larderello	-	-	-	-	-	32,700
$"$						
Lervazano	-	-	-	-	-	20,270
Monte Cerboli	-	-	-	-	19,125	$"$
Castel Nuovo -	-	-	-	-	16,870	$"$
Monte Rotondo	-	-	-	-	16,850	$"$
San Frederigo	-	-	-	-	9,000	$"$
Lustignauo	-	-	-	-	7,640	$"$
Lago -	-	-	-	-	5,400	$"$

163,855 avoirdupois pounds.
M. Payen has given the following as the composition of this crude boracie aeid for 100 kilogrammes :-

The processes of chemical alteration taking place beneath the erater of Vulcano, already spoken of, may, according to the statement of Hoffmann, depend upon conditions very similar to those existing in Tuseany. There, likewise, sulphuretted hydrogen is associated with the boracie acid, and, it would appear, in much greater quantity, since the fissures through which the vapour issues are thickly lined with sulphur, which is in sufficient quantity to be collected for sale. A profitable factory is established at the place, which yields daily, besides boracic acid and chloride of ammonium, about 1700 lbs . of refined sulphur and about 600 lbs . of pure alum.Bischof.

The trade in boracie aeid will be shown by the following statements. The first was Dr. Ure's original return:-

		- cwts.	1841.	1842.	1843.	1844.
				7,333	14,986	15,060
Quantities imported			- -	1	22	620
Quantities exported --			-	7,245	13,716	15,953
Retained for consumption	-	- ${ }^{\prime}$	3,193	798	361	422

The duty was repealed in 1845.
In 1855 our Imports were:-

And in 1856:-

Boracic acid from	Sardinia	-	Cwts. 313		Comp	$\begin{gathered} \text { uted real } \\ £ 1,377 \end{gathered}$
,"	Tuseany -	-	25,063		-	110,264
"	Peru	-	1,453		-	6,394
"	other parts	-	1		-	4
			26,827			118,039

BORAX. (Borax, Fr.; Borar, Germ.) A native saline eompound of boraeic acid and soda, found in Thibet, in China, in Pcrsia, the island of Ceylon, and in South America; it has also been found in small quantities in Saxony. The erude product from the former loeality was imported into Europe under the name of tincal, and was purified from some adhering fatty matter by a process kept a long time secret by the Venetians and the Dutch, and which consisted ehiefly in boiling the substanee in water with a little quicklime.

Gmelin found borax, in prismatic crystals, to contain 46.6 per cent. of water; and Arvredson gives as the composition of borax, in the ealeined state, 68.9 of acid, and $31 \cdot 1$ soda, in 100 parts. M. Payen deseribes an octahedral borax, whieh contains only 30.64 per cent. of water, and is therefore preferred by the braziers in their soldering processes.

Anhydrous Borax, therefore, is composed of -

Tincal was originally brought from a salt lake in Thibet; the borax was dug in masses from the edges and shallow parts of the lake; and in the course of a short time the holes thus made were again filled. The borate of soda has been found at Potosi, in Peru; and it has been discovered by Mr. T. Sterry Hunt, of the Geological Survey, in Canada, from whose report the following extract is made:-
"In the township of Joly there oeeurs a very interesting spring on the banks of the Ruisscau Magnenat, a braneh of the Rivicre Souci, about five miles from the mills of Methot at Saint Croix. The spring farnishes three or four gallons a minute of a water whieh is sulphurous to the taste and sinell, and deposits a white matter along its channel, whieh cxhibits the purple vegetation generally met with in sulphur springs. The temperature of this spring in the evening of one 7 th of July was $46^{\circ} \mathrm{F}$., the air being $52^{\circ} \mathrm{F}$. The water is not strongly saline, but when concentrated is very alkaline and salt to the taste. It contains, besides chlorides, sulphates, and earbonates, a considerable proportion of boraeic aeid, whieh is made evident by its power of reddening paper coloured by turmeric, after being supersaturated with hydroehloric acid.
The analysis of 1000 parts of the water gave as follows :-
Chloride of sodium
Sulphate of soda \quad -
Carbonate and borate of do.
C

Professor Beehi has analysed a borate oceurring as an inerustation at the Tusean lagoons, whieh afforded boraeie aeid $43 \cdot 56$, soda $19 \cdot 25$, and water $37 \cdot 19$. Lagonite is a mineral of an eartly yellow enlour, which appears to be boraeie aeid and iron; while Larderellite, also from T'useany, is a eompound of boraeic aeid and soda. See Duna, and "Ameriean Journal of Seienee."

Borax has a sweetish, somewhat lixivial, taste, and affeets regetable eolours like an alkali ; it is soluble in 12 parts of eold and in 2 parts of boiling water. It efloresees and beeomes opaque in a dry atmosphere; it appears luminous, by frietion, in the dark. It melts at a heat a little above that of boiling water, and gives out its water of crystallisation, after which it forms a spongy mass, ealled ealeined borax. The oetahedral borax, whieb is prepared by erystallisation, in a solution of 1.255 speeific gravity, kept up at $145^{\circ} \mathrm{F}$., is not eflloreseent. When borax is ignited, it fuses into a glassy-looking substance.

The following is the mode of purifying borax. The erude erystals are to be broken into small lumps, and spread upon a filter lined with a lead grating, under whieh a pieee of eloth is stretehed upon a wooden frame. Tbe lumps are piled up to the heigbt of 12 inehes, and washed witb small quantities of caustic soda lye of $5^{\circ} \mathrm{B}$. (speeifie gravity 1.033) until the liquor comes off nearly colourless; they are then drained, and put into a large eopper of boiling water, in sueh quantities that the resulting solution stands at $20^{\circ} \mathrm{B}$. (speeifie gravity $1 \cdot 160$) Carbonate of soda equivalent to 12 per eent. of the borax must now be added; the mixed solution is allowed to settle, and the elear liquid is siphoned off iuto erystallising vessels. Wbenever the mother waters get foul, they must be evaporated to dryness in east-iron pots, and roasted, to burn away the viseid eolouring matter.
The following process for refining the native Iudian borax, or tineal, has been published by MM. Robiquet and Marehand:-

It is put into large tubs, eovered with water for 3 or 4 inehes above its surface, and stirred through it several tintes during six hours. For 400 lbs. of the tineal there must now be added 1 lb . of quieklime diffused through two quarts of water. Next day tbe whole is thrown upon a sieve, to drain off the water witb the impurities, consisting, in some measure, of the fatty matter combined with the lime, as an insoluble soap. The borax, so far purified, is to be dissolved in $2 \frac{1}{2}$ times its weight of boiling water, and 8 lbs . of muriate of lime are to be added for the above quantity of borax. The liquor is now filtered, evaporated to the density of 18° or $20^{\circ} \mathrm{B}$. $(1 \cdot 14$ to $1 \cdot 16$ speeifie gravity), and set to erystallise in vessels shaped like inverted pyramids, and lined with lead. At the end of a few days, the erystallisation being completed, the mother waters are drawn off, the erystals are detaehed and dried. Tbe loss of weight in this operation is about 20 per cent.

Borax is sometimes adulterated with alum and common salt: the former addition may be readily deteeted by a few drops of water of ammonia, whieh will throw down its alumina; and the latter by nitrate of silver, wbieh will give with it a preeipitate insoluble in nitric aeid.
The native boraeie acid obtained from the lakes of Tuseany, being manufaetured in France into borax, has greatly lowered the price of this artiele of conmeree. When MM. Payen and Cartier first began the business, they sold tbe erystals at the same price as the Duteh, viz., 7 franes the kilogramme ($2 \frac{1}{5}$ lbs. avoird.) ; but, in a few years, they could only obtain 2 franes and 60 eentimes, in consequence of the market getting overstocked. The mode of making borax from tbe acid is as follows:-The lake water is evaporated in graduation houses, and then coneentrated in boilers till it crystallises. In that state it is earried to Marseilles. About 1100 lbs . of water are made to boil in a copper, and 1320 lbs . of erystallised earbonate of soda are dissolved in it by sueeessive additions of about 40 lbs . The solution being maintained at nearly the boiling point, 1100 lbs of the erystallised boraeie aeid of Tuseany are introdueed, in successive portions. At eaeh addition of about 22 lbs . a lively effervescence ensues, on whieh aecount the copper should be of mueh greater eapacity than is suffieient to contain the liquors. When the whole aeid has been added, the fire must be damped by being eovered up with moist ashes, and the copper must be covered with a tigbt lid and blankets, to preserve the temperature uniform. The whole is left in this state during 30 hours; the elear liquor is then drawn off into shallow erystallising vessels of lead, in whiell it should stand no higher than 10 or 12 inehes, to favour its rapid cooling. At the end of three days in winter, and four in summer, the erystallisation is usually finished. Tbe mother water is drawn off, and cinployed, instead of simple water, for the purpose of dissolving fresh erystals of soda. The erystals are earefully detaehed with ehisels, redissolved in boiling water, adding for caeh 220 lbs . of borax, 22 lbs of earbonate of soda. This solution marks 20° B. (speeifie gravity $1 \cdot 160$); and, at least, one ton of borax should be dissolved at
once, in order to obtain crystals of a marketable sizc. Whenever this solution lias become boiling hot, it must be run off into large crystallising lead chests of the form of inverted truucated pyramids, furnished with lids, inclosed in wooden frames, and surrounded with mats to confine the heat. For a continuous business there should be at least 18 vessels of this kind, as the solution takes a long time to complete its crystallisation, by cooling to $30^{\circ} \mathrm{C}$. ($86^{\circ} \mathrm{F}$.) The borax crystals are taken out with chisels, after the liquor has been drawn off and the whole has become cold.
One hundred parts of the purest acid, usually extracted from the lakes of Tuscany, contain only fifty parts of the real boracic acid, and yield no more, at the utmost, than 140 or 150 of good borax.
A considerable saving of expense in manufacturing borax, and a more ready application of the borax to use, has been proposed by Saulter, as follows :-Take about 38 parts of pure crystallised boracic acid, pounded and sifted; mix them well with 45 parts of crystals of carhonate of soda, in powder ; expose the mixture upon wooden shelves to heat in a stove-room; and rake it up from time to time. The boracic acid and the alkali thus get combined, while the carbonic acid and water are expelled; and a perfect dry borax is obtained.

According to Wittstein, the commercial boracic acid is composed as follows :-

Dry borax acts on the metallic oxides, at a high temperature, in a very remarkable manner, melting and vitrifying them into very beautiful coloured glasses. On this account it is a most useful reagent for the blowpipe. Oxide of chrome tinges it of an emerald green; oxide of cobalt, an intense blue; oxide of copper, a pale green; oxide of tin, opal; oxide, of iron, bottle green and yellow ; oxide of manganese, violct; oxide of nickel, pale emcrald green. The white oxides impart no colour to it by themselves. In the fusion of metals, borax protects their surface from oxidisemenf, and even dissolves away any oxides formed upon them; by which twofold agency it, becomes an excellent flux, invaluable to the goldsmith in soldering the precious metals, and to the brazier in soldering copper and iron.

Borax absorbs muriatic and sulphurous acid gases, but no others, whereby it becomes, in this respect, a useful means of analysis.

The strength or purity of borax may be tested by the quantity of sulphuric acid requisite to neutralise a given wright of it, as indicated by tincture of litmus.

When mixed with shellac in the proportion of one part to five, borax renders that resinous body soluble in water, and forms with it a species of varnish.
The applications of borax in the manufacture of enamels, glazes, and of glass, will be noticed in the articles devoted to the consideration of those special industries.
In 1855 and 1856 our Importations were as follows: -

BURING. The importanee of boring, as a means of searching for coal and for water, renders it necessary that some special attention should be giveu to the subject in a work devoted to manufactures and mining.

Boring for water appears to have been in use from the earliest periods, in Egypt and in Asia. In many of the desert tracts there are remains of borings, which scrved, evidently, at one period, to supply the wants of extensive populations which once inhabited those now deserted regions. In the "Guide du Sondeur," by M. J. Degousée, we find it stated, with reference to China, "There exist in the canton of Ou-Tong-Kiao many thousand wells in a spaee of ten leagues long by five broad. These wells cost a thousand and some hundred taëls (the taël being of the value of $6 s .6 d$.), and are from 1500 to 1800 feet deep, and about 6 inches in diameter. To bore these wells, the Chinese eommence by placing in the earth a wooden tube of 3 or 4 inches diameter, surmounted by a stone edge, pierced by an orifice of 5 or 6 inches; in the tubc a trepan is allowed to play, weighing 300 or 400 lbs . A man, mounted on a scaffold, swings a block, which raises the trepan 2 feet high, and lets it fall by its own weight. The trepan is secured to the swing-lever by a cord made of reeds, to which is attached a triangle of wood; a man sits close to the cord, and at each rise of the swing seizes the triangle and gives it a half turn, so that the trepan may take in falling another direction. A change of workmen goes on day and night, and with this continuous labour they are sometimes three years in boring wells to the requisite depth."
Boring appears to have been practised in England during the last century, but to a very limited extent ; it has, however, for a considerable period been employcd in seeking for coal, and in the formation of Artristan Wells (which see).
The ordinary practice of boring is usually carried out, by first sinking a well of such a depth that the boring apparatus can be fixed in it; aud thus a stage, raised from the surface of the ground, is dispensed with. A stout plank floor, well braced together by planks mailed trausversely and resting on putlocks, forms the stage. In the centre of the floor is a square hole, through which the boring-rods pass. The boring-rods are of many different forms, some of which have been already described in the article on Artesian Wells. A few others are represented in the following figure (223).
$1,2,3$ are an elevation, plan, and section of an auger; the tapped socket is for the purpose of allowing the rods to be screwed into it

4,5 are two views of a small auger, with a longitudinal slit, and no valve, which is used for boring through clay and loam. In very stiff clay the slit is generally made larger ; in moist ground the slit is objectionable.
$6,7,8$ are different views of a shell. $a a$ are valves opening upwards, to adnit the material. These tools are used for boring through sand, or through ground which has been loosened by other tools.
$9,10,11$ show an S chisel, for cutting through roeks, flints, and the like.
Such are the principal tools employed. Berstood. The boring rods are turned general arrangement of the handles moved by man, or, where the work is heavy, by horse, or sometimes, even steam power is applied. Besides the circular motion of the tool, a vertical percussive action of the same is required in certain cases, such as rock or hard sand; indced, always, where the position of the augur or chisel requires a fresh place to act upon during its rerolution. This notion is most readily got by suspending the boring rods to a windlass, through the intervention of a rope coiled tro or three times round the latter, and adjusting it so that if the workman holds one end of the coil tight, sufficient will be the friction to raise the rods on putting the windlass
in motion. Should the end of the rope the workman holds now be slackened, the coil becomes loose, and the rods descend with a force equivalent to their weight and the distance through which they have fallen. A regular percussive action is thus gained by keeping the windlass continually in motion in one direction, the attendant workman alternately allowing the rods to be drawn up a certain distance, and then, by relaxing his hold, allowing them to fall. - Swindell, on Boring.

The following list of the prices of boring, in different localities, may prove useful :-
In the North of England, the prices for boring, in the ordinary strata of the district or of that coal field, are as follows:-

and so increasing 5 s .6 d . per fathom on each succeeding depth of 5 fathoms. When any unusually hard strata are met with, the borer is paid by special arrangement, unless a binding contract has been previously made. It is sometimes usual for the the tools : -

and so increasing 7s. $6 d$. per fathom on each succeeding lepth of 5 fathoms.

In the Midland Counties, where the strata are more inclined than in the north of England, the prices for ordinary strata are as followa:-

$$
s . \quad d
$$

and so advancing 1 s .6 d . per yard upon each 10 yards.
In some localities, where the boring is still more favourable, the prices are as follows, - the bore hole being $2 \frac{1}{2}$ to $2 \frac{3}{4}$ inches diameter :-
d.

In boring strata of unusual hardness a special arrangement is made, as before stated and the borer is allowed some.payment for filling up and for removing tackling.

In Seotland the general prices for boring are as follows:-

and so advancing 5 s . per fathom for each succeeding 5 fathoms.
In boring through very hard strata, the work is done either by shaft-work, or at the following rat. s , the bore hole being $2 \frac{3}{4}$ inches diameter :-

			s.	d.			
First 5 fathoms	-	-	-	-	-	10	0
per fathom.							

The borer usually specifies to have his tackle laid down ready for ereeting at the cost of the employer.

As the boring proceeds, it is often necessary to lower pipes into the hole made, to prevent the falling of fragments from the sides of the cylinder. There are many ingenious contrivances for effecting this, which need not be described in this place.

Skill in boring judiciously for coal distinguishes the genuine miner from the empirical adventurer, who, ignorant of the general structure of coal-basins, expends labour, time, and money at random, and usually to no purpose; missing the proper coal-field, and leading his employer to sink a shaft where no productive seams can be had. A skilful coal-viewer, therefore, should always direct the boring operations, especially in an unexplored country.
The boring rods should be made of the best and most tenaeious Swedish iron; in area, about an inch and a quarter square. Each rod is usually 3 feet long, terminating in a male screw at one cnd and a female screw at the other. The boring chisels are commonly 18 inches long, and from $2 \frac{1}{2}$ inches to $3 \frac{1}{4}$ inches at their eutting edge, which must be tipped with good steel. The chisel is serewed to an intermediate 18 -inch rod, called the double-box rod, forming together a rod 3 feet long. There are, moreover, three short rods, a foot, 18 inches, and 2 feet long each, whieh may be screwed, as oceasion requires, to the brace-head, to make the height above the mouth of the bore convenient for the hands of the men in working the rods. Hence the series of rods becomes a sealc of measurement for noting the depth of the borc, and keeping a journal of the strata that are perforated. The brace-liead rod, also 18 inches long, has two large eyes or rings at its top, set at right angles to each other, through which arms of wood are fixed for the men to lift and turn the rods by, in the boring proeess.

When the bore is intended to penctrate but a few fathoms, the whole work may be performed directly by the hands; but when the bore is to be of eonsiderable depil, a lofty triangle of wood is sct above the bore-hole, with a pulley depending at its sumuit angle, for conducting the rope to the barrel of a windlass or wheel and axle, secured to
the ground with heavy stones. The loose end of the rope is eonueeted to the rods by an oval iron ring, ealled a runner; and by this meehanism they may be raised and let fall in the boring; or the same effect may be more simply produced by substituting for the wheel and axle a number of ropes attaehed to the rod-rope, each of which may be pulled by a man, as in raising the ram of tbe pile-engine.
In all the eoal distriets there are professional master-borers, wbo undertake to seareb for eoal, and furnish an aeeurate register of the strata perforated.
The boring tools employed in the coal distriets are represented in the following plan (fig. 224) : -

1. The brace-head.
2. Tbe eommon rod.
3. The double-box rod; intermediate рieee.
4. Tbe eommon ehisel.
5. The indented ebisel.
6. Another of the same.
7. The eross-mouthed ebisel.
8. The wimble.
9. The sludger, for bringing up the mud.
10. The rounder.
11. The key for supporting the train of rods at the bore-moutb.
12. The key for serewing together and asunder tbe rods.
13. Tbe topit, or top pieee.
14. The beebê, for eatehing the rod when it breaks in the hore.
15. The runner, for taking hold of the topit.
16. The tongued ebisel.
17. The right-banded worm serew.
18. The left-banded ditto.
19. Tbe finger-grip or eateh.

We sball now explain the manuer of eonducting a series of bores in searehing ground for eoal.

Fig. 225 represents a distriet of eountry in wbieh a regular survey has proved the existence and general distribution of coal strata, with a dip to the south, as bere

showu. In this ease, a convenient spot should be pitehed upon in the north palt dip. Tbe first bore may therefore beres put down may advanee in the line of the In the progress of tbis perforation, many diversititio. 1, to the deptb of sixty yards. probably passed through, as we see in the seetion and alternations of strata will be quality and tbiekness, is noted in the journal, aud speithe strata; eaeh of which, as to is seen to penetrate tbe strata d, c, b, a, witbout eneountenins are preserved. This bore that the dip of tbe strata be one yard in ten, the guestion any coal. Now, suppose hore No. 1, in a south direetion, will a seeond boestion is, at what distanee from stratum, d, of the preeeding? The rule obviously is, of 60 yards strike the first bore by the dip-that is, 60 hy 10 - and tbe produet 600 mivestiply tbe depth of the for, by the rule of three, if 1 yard of depression 600 gives the distanee required; length, 60 yards of depression will eorrespond to 600 in ends to 10 iu borizontal marked I, 2, 3, 4, and 5, are suceessively distrihuted a in length. Henee the bores the first is let down being regarded as the point of in the figure, the spot where all the suceeeding bores are referred. Should the topel to whieh the summits of higher or lower than the top of No. 1 , allowanee must of No. 2 bore be 10 yards in the operation; and henee a surfaee-level survey is reaust he made for this difference down the strata, and advantage should be taken of them, when they are revines cut In No. 2 a eoal is seen to oceur near the surfaee, and another they are considerable. C C
bore; the latter scam resting ou the first stratum d, that occurred in bore No. 1 ; and No. 2 perforation must be eontinued a little farther, till it has eertainly deseended to the stratum d. Thus these two bores have, together, proved the beds to the depth of 120 yards.
No. 3 bore, being placed according to the preceding rule, will pass through two coal-seans near the surface, and after reaching to nearly its depth of 60 yards, it will touch the stratum h, which is the upper stratum of bore No. 2 ; but since a seam of coal was detected in No. 2, under the stratum h, the proof is confirmed by running the borer down through that coal. The field has now been probed to the depth of 180 yards. The fonth bore is next proceeded with, till the two coal-scams inct in No. 3 have been penetrated; when a depth of 240 yards has been explored. Henee No. 4 bore could not reach the lower stratum a, unless it were sunk 240 yards.

The fifth bore (No.5) being sunk in like manner, a new coal-seam occurs within a few yards of the surface; but after sinking to the depth at which the coal at the top of the fourth bore was found, an entirely different order of strata will occur. In this dilemma, the bore should be pushed 10 or 20 yards deeper than the 60 yards, to ascertain the alternations of the new range of superposition. It may happen that no coals of any value shall be found, as the figure indieates, in consequence of a slip or dislocation of the strata at B , which has thrown up all the coals registered in the former borings to such an extent that the strata b, a, of the first bore present themselves immediately on perforating the slip, instead of lying at the depth of 300 yards (5×60), as they would have done had no dislocatiou intervened. Some coal-fields, indeed, are so intersected with slips as to bewilder the most experienced miner, which will partieularly happen when a lower coal is thrown upon one side of a slip, directly opposite to an upper coal situated on the other side of it; so that if the two seams be of the same thickness, erroneous conclusions are almost inevitable.

Wheu a line of bores is to be conducted from the dip of the strata towards their outcrop, they should be placed a few yards nearer each other than the rule prescribes, lest the strata last passed through be overstepped, so that they may disappear from the register, and a valuable coal-seam may thereby escape notice. In faet, each successive borc should be so set down, that the first of the strata perforated should be the last passed through in the preceding bore; as is exemplified by viewing the no deeper than f, ande direction, Nos. 4, 3, and 2. But if the bore No. 2 had gone immediately subjacent and No. 1 been as represented, then the stratum e, with its would have touched it ; and would wave wave remained unnoticed in the journe bores unknown.

BORON. One of the non-metallic elements; it exists in nature in the form of boracic acid, and as borax, tineal, \&c.
Homberg is said to have obtained boron from borax in 1702; if so, his discovery appears to have been forgotten, since it was unkuown, except hypothetically, to the more uodern chemists until, in 1808, it was obtained by Gay-Lussac and Thénard, and by Davy in 1808, who decomposed boracic acid into boron and oxygen.

Boron is best obtained by preparing the double fluoride of boron and potassium ($3 \mathrm{KF} 2 \mathrm{BF}^{2}$), by saturating hydrofluoric acid with boracic acid, and then gradually adding fluoride of potassium. The difficultly soluble double compound thus produced is eollected and dried at a temperature nearly approaching to redness. This compound is then powdered and introduced into an iron tube closed at one end, together with an equal weight of potassinm, whereupon heat is applied sufficient to melt the latter, and the mixture of the two substanecs is effeeted by stirring with an irou wire. Upon the mass being exposed to a red heat, the potassium abstracts the fluorine. The fluoride of potassiun may afterwards be removed by heating the mass with a solution of chloride of ammonium. Which converts the free potassa into chloride of potassium, and thus prevents the oxidation of the boron, which takes place in the presence of fixed alkali; the chloride of ammonium adhering to the boron may be afterwards removed by treatment with aleohol. Boron is a dark greenish-brown powder, tasteless, and inodorons; its chemical equivalent is 10.9 , or, according to Laurent, 11.0 .
bot'tle manufacture. See Glass and Stone Ware.
BOUGIE. A smooth, flexible, elastic, slender cyliuder, introduced into the urethra, rectum, or œsophagus, for opening or dilating it, in cases of strieture and other diseases. The invention of this instrument is claimed by Aldereto, a Portuguese phy'siciau; but its form and uses were first deseribed by his pupil Amatus, in the year 1554. Some are solid and some hollow, some corrosive and some mollifying. They owed their elastieity, as formerly made, to linseed oil, inspissated by long boiling, and rendered dry by litharge. This viseid matter was spread upon a very finc cord or tubular web of cotton, flax, or silk, which was rolled upon a slab, when it became nearly solid by drying, and was finally polished.

Piekel, a French professor of medicine, published the following reeipe for the com-
position of bougics. Take 3 parts of boiled linseed oil, $]$ part of amber, and 1 ot oil of turpentine ; melt and mix these ingredents well together, and spread the compound at 3 successive intervals upon a silk cord or web. Place the pieces so coated in a stove heated to 150 F ; ; leave them in it for 12 hours, adding 15 or 16 fresh layers in succession, till the instruments have acquired the proper size. Polish them first with pumicc-stone, and finally smooth with tripoli and oil. This process is the one still employed in Paris, with some slight modifications; the chicf of which is dissolving in the oil one-twentieth of its weight of caoutchouc, to render the substance more solid. For this purpose the caoutchouc must be cut into slender shreds, and added gradually to the hot oil. The silk tissue must be fine and open, to admit of the composition entering frecly among its filaments. Every successive layer ought to be dried in a stove, and then in the open air, before another is applied. This process takes 2 months for its completion, in forming the best bougics called by distinction elastic bougies; which ought to bear twisting round the finger without cracking or scaling, and extension without giving way, but retracting when let go. When the bougies are to be hollow, a ulandrel of iron wire, properly bent, with a ring at one end, is introduced into the axis of the silk tissue. Some bougies are made with a hollow axis of tinfoil rolled into a slender tube. Bougies are now usually made entirely of caoutchouc, by the intervention of a solution of this substance in sulphuric ether, a menstrum sufficiently cheap in France, on account of th:e low duty npon alcohol, or of naphtha. There are medicated bougies, the composition of wbich belongs to surgical pharmacy. The manufacture of these instruments of various kinds forms a separate and no inconsidcrable branch of industry at Paris. Very superior bougics are now made by the surgical-instrument makers, and by the workers in caoutchouc, in this country.

BOULDERING STONE. A name given by the Shefficld cutlers to the smooth flint pebbles with which they smooth down the faces of buff and woodeu whecls. As these stones are usually taken from gravel pits, the name is, no doubt, used in the same scnse as the geologist uses the wood boulder.
BOX WOOD. (Buis, Fr.; Buchsbrum, Germ. ;) Burus scmpcrvirens. - Tro varieties of box wood are imported into this country. The European is brought from Leghorn, Portugal, \&c.; and the Turkey box wood from Constantinople, Smyrna, and tbe Black Sca. English box wood grows plentifully at Box Hill, in Surrey, and in Gloucestershire. The Euglish box wood is used for common turncry, and is preferred by brass finishers for their lathe-cbucks, as it is tougher than the foreign box, and bears rougher usage. It is of very slow growth, as in the space of 25 years it will only attain a diameter of $1 \frac{1}{2}$ to 2 inclics.- Hollzapiffel.
Box wood is used for making clarionets and flutes, car'penters' rules, and drawing scales. As the wood is peculiarly free from gritty matter, its sawdust is used for cleaning jewellery. Box wood is exclusively employed by the wood engraver. Sce Evgraving on Wood.

A similar wood was imported from America by the name of Tugmutton, which was uscd for making ladies' fans; but we cannot learn tbat it is now employed.
BRACES. (Bretelles, Fr.; Hosenträger, Germ.) Narrow fillets or hands of leather or textile fabric, which pass over the shoulders, and are attached behind and before to the waistbands of pantaloons and trowsers, for supporting their weight, and bracing them up to the body. Braces are now commonly made of an elastic material, into the structure of which Indian-rubber fibre enters.
BRAIDING MACHINE (Machine à lacets, Fr: ; Bortenwirkerstuhl, Germ.) Tbis being enployed, not only to manufacture stay-laces, braid, and upholsterers' cord, but to cover the threads of caoutchouc for weaving brace-bands, deserves a description in this work. Tbrce threads at least are required to make such a knitted lace, but 11, 13, or 17, and even 29 threads are often employed, the first thrce numbers being preferied. They are made by means of a frame of a very ingenious construction which moves by a continuous rotation. We shall describe a frame with 13 threads, from which the structure of the others may be readily coneeived. The basis of the machine consists of four strong wooden uprights, 1 , fig. 226, 227, 228, occupying the four angles of a rectangle, of which one side is 14 inches long, the other side 18 inches, and the lieight of the linc a b of fig. 227, which is a vertical section in a horizontil plane, passing through of the macbine \mathbf{c}, according is a vertical section in a plane passing through the centre front of the frame; and the opposite side, y, thic back. The side x is supposed to be the numbered from 1 to 6 , placed in a vertical position upon the six spindles or skewers, whose centre coincides with that of the machine at the point c. These six a circle are composed 1, Of so many iron shafts or axcs D point c. These six spindles (fig. 227), and extended downwards within 6 inches of the in brass stcps fixed upon a horizontal beam. 2, Wooden heads, made of horn rest
or nut-tree, placed, the first upon the upper end of each spindle, opposite the cut-out

reciprocally working together, placed between the beam \mathbf{a} and the collet-beam E . The toothed wheels and the lower heads for cach spindle are in one piece.
The heads and shafts of the spindles No. 1 and 6 are one-fifth stronger than those of the other spindles : their heads have five semi-circular grooves, and whecls of 60 tecth, while the heads of the others have only four grooves, and wheels of 48 teeth; so that the number of the grooves in the six spindles is 26 , one-half of which are occupied with the stems of the puppets I , which carry the 13 threads from No. 1 to 13. ment, but in different whive gil the spidisposed as to bring their grooves opposite to each other in the course of rotation.
K, the middle winglet, triple at bottom and quintuple at top, which serves to guide the puppets in the direction they ought to pursue.

L , three winglets, single at top and bottom, placed exteriorly, which serve a like purpose.
3 , two winglets, triple at bottom and single at top, placed likewise exteriorly, and which serve the same purposes as the preceding; m, are the pins inserted in the cut-out beam \mathbf{a}, which serve as stops or limits
Now, if by any moving power (a mau can drive a pair) rotation be impressed upon the large spindle No. 1, in the direction of the arrow, all the other spindles will necessarily pursue the rotatory movement indicated by the respective arrows. In this case the 13 puppets working in the groves of the heads of the spindles will be carried round simultaneously, and will proceed, each in its turn, from one extremity of the machine to the opposite point, crossing those which have a retrograde movement. The 13 threads united at the point s , situated above the centre of the machine, will form at that point the braid, which after having passed over the pulley o, comes between the two rollers $\mathbf{P Q}$, and is squeezed together, as in a flatting-mill, where the braid is calendered at the same time that it is delivered. It is obvious that the roller P , receives its motion from the tonthed wheel of the spindle No. 3, and from the intermediate wheels, r, s, T , as well as from the endless screw z, which drives at proper speed the wheel w, fixed upon the shaft of the roller P.

The braid is denser in proportion as the point N is less clevated above the tops of the puppets, but in this case, the excentric motiou of these puppets is mueh more sensible in reference to that point towards which all the threads converge than whell it is elevated. The threads,
which must be always kept equally stretched by means of a wcight, as we shall presently see, are considerably strained by the traction oceasioncd by the constautly excentric movement of the puppets. From this cause, braiding machines must be worked at a moderate velocity. In general, for fine work, 30 turus of the large spindle per minute are the utmost that can safely be madc.

The puppet or spindle of this machiue, being the most important piece, I have represented it in section, upon a seale one-fourth of its actual size, fig. 22S. It is formed of a tube, a, of strong sheet irou well brazed; b is a dise, likewise of sheet iron, from which a narrow fillet, c, rises vertically as high as the tube, where both
are piereed with holes, $d e$, through which the thread f is passed, as it eomes from the hobbin, g, which turns freely upon the tube a. The top of this hohbin is conieal and toothed. A small catcb or detent, h, movahle in a vertieal direetion round i, falls by its own weight into the teetb of tbe crown of the bohhin, in which case this cannot revolve; but when the detent is raised so far as to disengage tbe teeth, and at the same time to pull the tbread, the bobbin turns, and lets out thread till tbe detent falls back into these same teeth.
A skewer of iron wire, k, is loaded with a small weight, l, melted upon it. The top of this skewer has an eyc in it, and the bottom is recurved, as is shown iu fig. 228, so that supposing the thread comes to break, tbis skewer falls into the actual position in the figure, wbere we sec its lower end exteuding beyond the tube a, by ahout $\frac{1}{4}$ of an iuch; but as long as the thread is unbroken, the skewer k, which serves to keep it always tense during the excentric movement of the puppct, does not pass out below the tube.
This disposition has naturally furnisbed tbe means of causing the machine to stop whenever one of the threads brcaks. This inferior protrusion of the skewer pushes in its progress a detent, whieh instantly causes the band to slide from the driving pulley to the loose pulley. Thus the macbine cannot operate unless all the threads be entire. It is the business of the operative, who has 3 or 4 under her charge, to mend the threads as tbey break, rnd to substitute full bohhins for empty ones, whenever the macbine is stopped.

BRAN. (Son, Fr. ; Kleie, Germ.) The husky portion of ground wheat, separated by the boulter from the flour. It is advantageously employed hy the calico printers, in the clearing process, in whieh, by boiling in hran-water, the colouring matters adhering to the non-mordanted parts of maddered goods, as well as the dun matters whicb cloud the mordanted portions, are removed. A valuable series of researches concerning the operation of bran in such cases, was made a few years ago hy that distinguished chemist and calico printer, M. Daniel Kœeblin-Scboucb, and published in the ninth number of the Bulletin de la Société Industrielle de Mulhausen. Nine sets of experiments are recorded, which justified the following eonclusions :-

1. The dose of 2 bushels of hran for 10 pieces of calieo is the best, the ehullition heing kept up for an hour. A boil for the same time in pure water had no effect in clearing either the grounds or the figures.
2. Fifteen minutes' boiling are sufficient when the principal object is to elear white grounds, but in certain cases 30 minutes are requisite to brighten the dyed parts. If, by increasing the cbarge of bran, the time of the ehullition could be shortened, it would be, in some places, as Alsaee, an economy; because in the passage of the 10 pieces througb a copper or vat heated with steam, 1 cwt . of eoal is consumed in fuel, which eosts from $2 \frac{1}{2}$ to 3 francs, while 2 bushels of bran are to he bought for 1 franc.
3. By increasing tbe quantity of water from 12 to 24 bectolitres with 2 bushels of bran, the clearing effect upon the 10 pieees was impaired. It is therefore advantageous not to use too mueh water.
4. Many experiments concur to prove tbat flour is altogether useless for the clearing hoil, and tbat finer hran is inferior for tbis purpose to the coarser.
5. The whitc ground of tbe calicoes boiled with wheat hran is distinguishahle by
superior brightness from that of those boiled with rye its superior brightness from that of tbose boiled with rye bran, and especially witl
barley bran; the latter having hardly any effect. barley bran ; the latter having hardly any effect.
6. Tbere is no advantage in adding soap to the hran hoil; thongh a little potash or soda may be properly introduced when the water is calcareous.
7. The pellicle
8. The pellicle of the bran is the most powerful part ; tbe flour and the starch are of bran, has considg goods, but the mucilage, which forms one-third of the weight of the as the mucilaginous substance dissolems to act in the following way. In proportion cloth, tbe busky surface attracts and fes the colouring and tawny matters upon the cordingly, when used bran is digested in a weak alfole the greater part of them. Aewhich it had absorbed from the cloth.

From bran, Péligot obtained 8.0 pe tracting considerable quantities of glutinous of cellulose. Millon sueceeded in exand alcobol. He found in 100 parts, starchostances from the bran with acetic acid gluten, 14.9 ; fat, 3.6 ; cellulose, 9.7 ; salts, 5.7 ; water, 13.9 sugar, 50.0 ; sugar, 1.0 ; resinous matters, $1 \cdot 2$ per eent.

BRANDY. (Eau de Vie, Fr.; Branntwein, Germ.) The name given in this country to ardent spirits distilled from wine, and possessing a peenliar taste and flavour, due to a minute portion of a volatile oil. Eaeh variety of aleohol has an aroma characteristic of the fermented substance from which it is procured; whe the distinguished even as proeured from different growthe of potatoes; and it may be C c 3

Langucdoc, Bordeanx, Armagnac, Cognac, Aunis, Saintonge, Rochelle, Orleans, Barcelona, Naples, \&e., being each readily recognisable by an expericnced dealer.

Aubergicr showed, by experiments, that the disagreeable taste of the spirits distilled from the marc of the grape is owing to an cssential oil contained in the skin of the grape; and found that the oil, when insulated, is so energetic that a few drops are sullicient to taint a pipe of 600 litres of fine-flavourcd spirit. See Fusel Oil.

The most celebrated of the French brandies, those of Cognac and Armagnac, are slightly rectified to only from 0.935 to 0.922 : they contain more than laalf their weight of water, and come over therefore highly eltarged with the fragrant essential oil of the husk of the grape. When, to save expense of carriage, the spirit is rectified to a much higher degrec, the dealer, on receiving it at Paris, reduces it to the market proof by the addition of a little highly-flavoured weak brandy-and-water; but he camnot in this way produce so fincly-flavoured a spirit as the weaker product of distillation of the Cognac wine. If the best Cognac brandy be carefully distilled at a low heat, and after distillation the strong spirit be diluted with water to restorc it to its original strength, it will be found that the brandy has suffered much in its flavour.

Genuine French brandy evinces an acid reaction with litmus papcr, owing to a minute portion of vinegar; ; it contains, besides, some acetic ether, and, when long kept in oak casks, a little astringent matter.

The constitucnts of brandy are alcohol, water, volatile oil, acetic acid, acetic ether, colouring matter, and tannin.-Pereira.
Pale Brandy acquires the slight colour which it possesses from the cask in whieh it is kept. Brown Brandy is coloured by caramel - sugar carefully burat and dissolved in lime water.

This spirit is sold of various strengths, but it is usually about 10 per cent. under proof.

BRANDY, BRITISH. Dr. Ure gave the following formule for its preparation:Dilute the pure alcohol to the proof pitch; add to every hundred pounds weight of it from half a pound to a pound of argol, dissolved in water, a little acetic cther, and French winc vinegar, some bruised French plums, and flavour stuff from Cognae ; then distil the spirit with a gentle fire in an alembic furnished with an agitator. British brandies are now sold professedly as pure grain spirits, flavoured of course, and coloured with caramel. Sce Alcoнor.

BRASS. (Laiton, cuivre jaune, Fr.; Messing, Germ.). An alloy of copper and zinc. The brass of the ancients appears, in very early times, to have chiefly consisted of a mixture of copper and tin, and to have, consequently, becn a species of bronze, or bell metal. Zine would seem to have been first employed for this purpose about the Christian era, as will be observed from an extensive series of analyses of rarious ancient alloys made by J. Arthur Phillips. See Alloys.
Brass was formerly manufactured by cementing granulated copper, called beanshot, or copper clippings, with calcined calaminc (native carbonate of zinc) and charcoal in a crucible, and cxposing them to bright ignition. Three parts of copper were used for 3 of calamine and 2 of charcoal. The zinc, reduced to the metallic state by the agency of the charcoal, combined with the copper into an alloy which formed, on cooling, a lump at the bottom of the crucible. Several of these, being rcinelted and cast iu moulds, constituted ingots of brass for the market. James Emerson obtained a patent, in 1781, for making brass by the direct fusion of its two metallic elements, and it is now usually manufactured in this way.
It appears that the best proportion of the constituents to form fine brass is 2 equivalents of copper $=63 \frac{1}{2}+1$ of zinc $=32.3$; or very nearly 2 parts copper to 1 of ziuc.

In the process of alloying two metals of such different fusibilities as copper and zinc, a considerable waste of the latter metal by combustion might be expected; but, in reality, their mutual affinities seem to prevent the loss, in a great measure, by the speedy absorption of the zinc into the substance of the copper. Indced, copper plates and rods are often brassed externally by exposure, at a high temperature, to the fumes of zinc, and afterwards laminated or drawn. The spurious gold wire of Lyons is made from such rods. Copper vessels may be superficially converted into brass by boiling them in dilute muriatic acid containing some tartar and zinc amalgan.

The first step in making brass is to plunge slips of copper into melted ziuc till an alloy of somewhat difficult fusion be formed, to raise the heat, aud add the renaining proportion of the copper.

The brass of the first fusion is broken to pieces, and melted with a fresh quantity of zinc, to obtain the finished brass. Each melting takes from 8 to 9 liours. The metal is now cast into plates, about 40 inches long by 26 broad, and from one-third to half an inch thick. The moulds are, in this casc, slabs of granite mounted in an iron frame. Granite appears to be preferred as a mould, because it preserves the
heat, whilst, by the asperitics of its surfaee, it keeps bold of the elay lute applied to secure the joiuings.

The cast plates are usually rolled into sheets. For this purpose they are eut into ribands of various breadths, eommonly about $6 \frac{1}{2}$ inches. The cylinders of the brass rolling press are generally 46 inches long, and 18 inches in diameter. The ribands are first of all passed through the eylindcrs eold; but the brass soon beeomes too hard to laminate. It is then annealed in a furnaee, and, after cooling, is passed afrcsh through the press. After paring off the chipped edges, the shects are laminated two at a time; and if they are to be made very thin, even 8 plates are to passed through together. The brass in these operations must be annealed 7 or 8 times before the sheet arrives at the required thickness. Thesc successive heatings are expensive; and hence manufacturers have been led to try various plans of economy. The anncaling furnaces are of two forms, according to the size of the sheets of brass. The sinaller are about 12 fcet long, with a fire-place at each end, and about 13 inehes widc. The arch of the furnace has a cylindrical shape, whose axis is parallcl to its small side. The hearth is horizontal, and is made of bricks set on edge. In the front of the furnace there is a large door, which is raised by a lever, or chain and counterweight, and slides in a framc between two cheeks of east iron. This furnaee has, in general, no chimney, exeept a vent slightly raised above the door, to prevent the workmen being incommoded by the smoke. Sometimes the arch is perforated with a number of holes. The sheets of brass are placed above each other, but separated by parings, to allow the hot air to cireulate among them, the lowest sheet resting upou bars of cast iron placed leugthwise.

The larger furnaccs are usually 32 fcet long, by $6 \frac{1}{2}$ feet wide, in the body, and 3 feet at the hearth. A gratc 13 inches broad cxtends along each side of the hearth, through its whole length, and is divided from it by a sinall wall, 2 or 3 incles high. The vault of the furnace has a curvature, and is pierced with 6 or 8 openings, which allow the smoke to pass off into a low bell-chimney above. At each end of the furnace is a cast-iron door, which slides up and down in an iron frame, and is poised by a counterweight. On the hearth is a kind of railway, composed of two iron bars, on which the carriage moves with its load of sheets of brass.
These shects, being often 24 feet long, could not be easily moved in and out of the furnace; but as brass laminates well in the cold state, they are all introduced and moved out together. With this view an iron carriage is framed with bars, which rest on four wheels. Upon this carriage, of a length nearly equal to that of the furnaec, are laid the sheets, with brass parings between them. Thc carriage is then raised by a cranc to a level with the furnace, and entered upon the grooved bars which lie upon the hearth. That no heat may be lost, two carriages are provided, the one being ready to put in as the other is taken out; the furnaee is meanwhile uniformly kept hot. This method, however convenient for moving the sheets in and out, wastes a gond deal of fuel in heating the iron earriage.

The principal places in which brass is manufactured on a large seale, in England, are Bristol and Birmingham, and at Holywell, in North Wales.

At the brass manufactory of Hegermatil, upon the Finon Canal, near Potsdam, the following are the materials of one charge: 41 pounds of old brass, 55 pounds refined copper (Gährhupfer) granulated, and 24 pounds of zinc. This mixture, weighing 120 pounds, is distributed in four crucibles, and fused in a wind furnaee with piteoal fuel. The waste, upon the whole, varies from $2 \frac{1}{2}$ to 4 pounds.
Fïg. 229 represents the furnaee as it was formerly worked with charcoal; a, the laboratory, in which the crucibles were plaeed. It was walled with fire bricks. The foundations and the filling-in walls were formed of stone rubbish, as being bad conductors of heat; sand and ashes may be also used; ζ, cast-iron circular grating plates, pierced with 12 holes (see fig. 230), over them a sole of loam, c, is beaten down, and perforated with holes eorresponding to those in the iron discs; d, the ash-pit; e, the book, a draught fluc which conducts the air requisite to the combustion, from a sunk tunnel in comThunication with several melting furnaces. The terrace or crown of the furnace, f,
 lies on a level with the foundry floor, $h h$, and is shut with a tile of fire-clay, g, whieh
may be moved in any direetion by means of hooks and eyes in its binding iron ring. Fiy. 231 the tongs for putting in and taking out the tharges, as viewed fiom above and from the side.

The following description of a continental brass manufaetory, well deseribed by Dr. Ure, it has been thought advisable to retain, with only a few verbal alterations.

Figs. 232, 233 represent the furnaees more reeently constructed for the use of piteoal fuel; fig. 232 being an upright section, and fig. 233 the ground plan. In this furnaee the crueibles are not surrounded with the fuel, but reeeive the requisite melting leat from the flame proceeding from the grate upon which it is burnt. The erucitles stand upon seven arehes a, which unite in the middle at the key-stone, b, fiy. 233 ; between the arches are spaees through which the flame rises from the grate,
 $c ; d$, is the fire door; e, a sliding tile or damper for regulating or shutting off the air-draught; f an inelined plane, for earrying off the einders that fall through the grate, along the draught tunnel g, so that the air in entering below may not be heated by them.

The erucibles are 16 inches deep, $9 \frac{1}{2}$ wide at the mouth, $6 \frac{1}{2}$ at the bottom; with a thiekness in the sides of 1 inch above and $1 \frac{1}{2}$ below; they stand from 40 to 50 meltings. The old brass, whieh fills their whole eapacity, is first put in and melted down; the erueibles are now taken out and charged with the half of the zine in pieces of from 1 to 3 cubie inches in size, covered orer with eoal ashes; then one-half of the copper eharge is introduced; again dust; and thus the layers of zine and eopper are distributed alternately with coal-ashes betwixt them, till the whole charge becomes finally fused. Over all, a thicker layer of earbonaceous matter is laid, to prevent oxidation of the brass. Eight erueibles filled in this way are put snto the furnace between the 12 holes of the grate; and over them are laid two empty erucibles to be heated for the easting operation. In from $3 \frac{1}{2}$ to 4 hours the brass is ready to be poured. Fifteen English bushels of coals are consumed in one operation; of which six are used at the introduction of the erueibles, and four gradually afterwards.

When sbeet brass is to be made, the following proeess is pursued:-
An empty erueible is taken out of the furnace through the crown with a pair of tongs, and kept red hot by plaeing it in a hollow hearth surrounded with burning eoals; into tbis erueible the contents of four of the melting pots are poured; the dross is raked out with an iron seraper. As soon as the melting pot is emptied, it is immediately re-charged in the manner above deseribed, and placed in the furnace. The surface of the melted brass is swept with the stump of a broom, and then stirred about with the iron rake, to bring up any light foreign matter to the surface, whieh is then skimmed with a little scraper; the erucible is now seized with the easting tongs, and emptied in the following way:-
The mould or form for easting sheet brass consists of two slabs of granite, a a, figs. 234, 235. These are $5 \frac{1}{2}$ feet long, 3 feet broad, 1 foot thick, and, for greater security,

girt with iron bands, $b b, 2$ inelies broad, $1 \frac{1}{2}$ thiek, and joined at the four corners with bolts and nuts. The mould rests upon an oaken block, $c, 3 \frac{1}{2}$ feet long, $2 \frac{1}{6}$ broad, and $1 \frac{1}{4}$ thiek, which is suspended at each end upon gudgeons, in bearing bloeks, placed under the foundry floor, $d d$, in the easting pit, $c c$. This is lined with brieks; and is $6 \frac{3}{1}$ feet long, $5 \frac{1}{2}$ broad, and 2 deep; upon the two long side walls of the pit are laid the bearing blocks which support the gudgeons. The swing bloeks are 10 inches long, 18 inches broad, 15 inehes thiek, and somewlat rounded npon their back edge,
so that the casting frame may slope a little to the horizon. To these blocks two cross wooden arms, $f f$, are mortised, upon which the under slah rests frcely, hut so as to project ahout 5 inehcs over the bloek backwards, to secure an equipoise in the act of casting. $g g$ are hars, placed at hoth of the long sides, and onc of the ends, betwecn the slabs, to determine the thickness of the brass.plate. Upon the other slab the gate h is fastened, a shcet of iron 6 inches broad, which has uearly the shape of a parallel trapezium (lozenge), and slopes a little towards the horizon. This serves for setting the easting pot upon in the act of pouring, and renders it more convenient to empty. The gate is eoated with a mixture of loam and hair. The upper slah is securcd to the under one in its slanting position by an armour or binding. This consists of teusiou bars of wood, i, k, l, m, of the iron hars n, (3 to $3 \frac{1}{2}$ inehes hroad, $1 \frac{1}{2}$ iuch thick, see the top view, fig. 235) of a rod with holes and pins at its upper end, and of the iron serew spindle o. The mode in which these aet may he understood from inspection of the figure. Iu order to lift the upper slah from the under one, which is effected hy turning it rouud its edge, a chain is cmployed, suspending two others, conneeted with the slah. The former passes over a pulley, and may be pulled up and down hy means of a wheel and axle, or the aid of a counterweight. Upon each of the two long sides of the slah are two iron rings, to which the euds of the chains may he hooked. The casting faces of the slab must he coated with a layer of finely ground loam; the thinner this is the hetter.
When calamine is employed, $\frac{1}{2}$ ewt. of copper, $\frac{3}{4}$ cwt. of calamine, and $\frac{1}{3}$ rd the volume of both of chareoal mixcd, are put into seven crucihles, and exposed to heat during 11 or 12 hours; the produet heing from 70 to 72 lhs. of hrass.
Brass-Plate Rolling.-AtHegermïhl there are two re-heating or annealing furnaces, one larger, 18 feet long, and another smaller, $8 \frac{1}{2}$; the hot chamber is separated from the fireplace hy iron heams, in such a way that the hrass castings are played upon hy the flames on hoth their sides. After each passage through the laminating rolls, they are heated anew, theu cooled and laminated, until they have reached the proper length.
The plates are smeared with grease hefore rolling. The plates are smeared with grease hefore rolling.
Fig. 236 shows the ground plan of the furnaee and its railway; fig. 237, the cross sectiou; and fig. 238, the section lengthwise; a a, the iron way bars or rails upon

the floor of the foundry for enahling the wheels of the waggon to move rapidly backwards and forwards; $b b$, the two grates ; $c c$, the ash pits ; $d d$, the fire heams; eee, vents in the roof of the hot chamber $f ; g g$, two plates for shutting the hot chamber; h, the flue; i, the ehimney. After rolling, the sheets, covered with black oxide of coppcr, arc plunged for a few minutes into a mother water from the alum works, then For musical watcr, and lastly, smeared with oil, and scraped with a hlunt knife. cclebrity; but that of Birminghass wire of Berlin had acquired great and merited The following Tahle, for the compilation of which we prefcrred by foreigners. Mallct, C.E., presents, in a very intelligible form, the chemical and to Mr. Robert tions of the various kinds of brass :-

业岂	
	ب

Brass, Malleable. It is known that common brass, eoutaining from $27 \cdot 4$ to $31 \cdot 8$ per cent. of zinc and from 71.9 to 65.8 per cent. of eopper, is not malleable while hot, but that articles of it must be made by easting. As it would be of great advantage in many braneles of industry to have an alloy of this kind that could he worked while liot, like malleable iron, the information that sueh an alloy exists must be welcome to artists.

By melting together 33 parts of copper and 25 parts of zine, there was a loss of 3 parts, thus making 60 per cent. copper and 40 per cent. zinc. It differs from the English specimens by containing a larger proportion of zinc, and possesses, aecording to M. Macbts, the proprietor of a brass foundry in Hanover, the precious property of malleability in a ligher degree than the English specimens.
A piece of "yellow metal," similar in colonr to this alloy, was found on analysis to contain $60 \cdot 16$ copper and $39 \cdot 71$ zinc, which is the composition of malleable brass. It also showed great density or solidity.

An alloy was prepared by melting together 60 parts copper and 40 parts zinc, which had the following properties:- The colour was between that of brass and tombak, it had a strong metallie lustre, a fine close-grained fracture, and great solidity (density). Its specific gravity at the temperature of $10^{\circ} \mathrm{C}$. was 8.44 ; by calculation it ought only to have been 8.08 ; thns showing that in the formation of the alloy a condensation must have taken place. Calculation shows that the alloy may be considered as a determinate chemical combination, for the results of the analysis very nearly aeeord with the assumption that it may be considered as composed of three atoms by weight of copper and two atoms by weight of zinc $(3 \mathrm{Cu}+2 \mathrm{Zn})$. The hardness of the alloy is the same as that of fluor spar; it can be scratclied by apatite (phosphate of lime), consequently its harduess is $=4$. The alloy is harder than copper, very tough, and is, in a properly managed fire, malleable; so much so tbat a key was forged ont of a east rod.

These important properties of tbis alloy warrant an expectation of its application to many purposes in tbe arts, and it wonld appear that they depend on its definite cbemical proportions.

We learn some further particnlars from the "Gewerbeverein," of Lower Anstria. The eommission obtained from an English specimen $65^{\circ} 03$ of copper and $34 \cdot 76$ zinc. Elsuer analysed a malleable brass, and found it to eontain $61 \cdot 16$ copper and $39 \cdot 71$ zine. These numbers approximate to the composition $\mathrm{Cu}^{8} \mathrm{Zn}^{2}$ (59.4 per eent. copper and 40.6 zinc).-Liebig and Kopp's Report.
Brass Colour, for staining glass, is prepared by exposing for several days thin plates of brass upon tiles in the leer, or anuealing arch of the glass honse, till they are oxidised into a black powder, aggregated in lnmps. This beiug pulverised and sifted, is to be again well calcined for several days more, till no partieles remain in the metallic state, when it will form a fine powder of a russet-brown colour. A third calcination must now be given with a carefully regulated heat, its quality being tested from time to time by fusion with some glass. If it makes the glass swell and intumesee, it is properly prepared; if not, it must be still further caleined. Sueh a powder communicates to glass greens of varions tints, passing into turquoise,
When thin narrow strips of brass are stratified with sulphur in a crucible and calcined at a red leat, they become friable and may be reduced to powder. This being sifted and exposed upon tiles in a reverberatory furnace for 10 or 12 days, becumes fit for use, and is capable of imparting a chaleedony - red or yellow - tinge to glass by fusion, according to the mode and proportion of using it.

The glassmakers' red colour may be prepared by exposing small plates of brass to a moderate heat in a reverberatory furnace till they are thoroughly calcined, when the snbstance beeomes pulverulent, aud assumes a red colonr. It is then ready for immediate use.

Brass colonr, as employed by the colonrmen to imitate brass, is of two tints - the red or bronze, and the yellow, like gilt brass. Copper filings mixed with red ochre, or bole, constitnte the former; a powdered brass, imported from Germany, is used for the latter. Both must be worked up with varnisb after being dried with heat, and then spread flat with a camel-hair brush evenly npon the surfaee of the ohject. The best varnish is composed of 20 onnees of spirits of wine, 2 ounces of shellac, and 2 ounces of sandaracb, properly dissolved. (See Varnisi.) Only so much of the hrass powder and varnisb should be mixed at a time as is wanted for immediate use.
Brass Foil. Dutch leaf, called Knitter or Rauschgold in Germany, is made from
very thin sheet brass, beat out nnder a hammer worked gives from 300 to 400 straks out noder a hammer worked by water power, which other. By this treatment it acquires its charaeteristic solidity and being laid over each the process for converting eopper superfieially into brass by the fumes of zine above,

Brass, Yellow. The following Table exhibits the gomposition of sevcral varieties of this species of brass. No. 1 is a cast brass of uncertain origin; 2, the brass of Jemappes; 3, the shect brass of Stolberg, near Aix-la-Chapelle; 4 aud 5 , the brass for gitding, according to D'Arect; 6, the shect brass of Romilly; 7, English hrass wire; 8, Augsburg brass wire; 9, brass wire of Ncustadt-Eberswald, in the neighbourhood of Berlin:-

Copper		1.	2.	3.	4.	5.	6.	7.	8.	9.
	-	$61 \cdot 6$	64.6	$64 \cdot 8$	63.70	64.45	$70 \cdot 1$	$70 \cdot 29$	71.89	$70 \cdot 16$
Ziuc	-	$35 \cdot 3$	$33 \cdot 7$	32.8	33:5	$32 \cdot 44$	$29 \cdot 9$	$29 \cdot 26$	$27 \cdot 63$	$27 \cdot 45$
Lead	-	$2 \cdot 9$	$1 \cdot 4$	2.0	$0 \cdot 25$	$2 \cdot 86$	- -	0.28	-	$0 \cdot 20$
Tiu	-	0.2	02	0.4	$2 \cdot 50$	0.25	- -	$0 \cdot 17$	0.85	0.79
		$100 \cdot 0$	99.9	$100 \cdot 0$	100.00	$100 \cdot 00$	- -	$100 \cdot 00$	$100 \cdot 37$	$98 \cdot 60$

Tombak, or Red Brass, in the cast state, is an alloy of copper and zinc, containing not more than 20 per cent. of the latter constituent. The following varieties are distinguished :-1, 2, 3, tombak for making gilt articles; 4, French tombak for swordhandles, \&c.; 5, tombak of the Okar, ncar Goslar, in the Hartz; 6, yellow tombak of Paris for gilt ornaments; 7 , tombak for the same purpose from a factory in Hanover; 8 , chrysochalk ; 9 , red tombak from Paris; 10 , red tombak of Vienna.

Copper		1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
	-	82.0	82	$82 \cdot 3$	80	85	$85 \cdot 3$	86		$\begin{array}{r} 92 \\ 8 \end{array}$	$\begin{array}{r} 97.8 \\ 2.2 \end{array}$
Zinc -	-	18.0	18	$1 \cdot 75$	17	15	$14 \cdot 7$	14	$7 \cdot 9$		
Lead -	-	1.5	3	- -	-	- -	- -	- -	$1 \cdot 6$		
Tin -	-	$3 \cdot 0$	1	$0 \cdot 2$	3	trace.					
		104.5	104	$100 \cdot 0$	100	100	$100 \cdot 0$	100	$99 \cdot 5$	100	$100 \cdot 0$

Mr. Holtzapffel, in his "Mechanical Manipulation," has given some very important descriptions of alloys. From his long experience in manufacture, no one was more capable than Mr. Holtzapffel to speak with authority ou the alloys of copper and zinc. From his work, the following particulars have been obtained:-

The red colour of copper slides into that of yellow brass at about 4 or 5 ounces of zinc to the pound of copper, and remains little altered unto about 8 or 10 ounces; after this it becomes whiter, and when 32 ounces of zinc are added to 16 of copper, the mixture has the brilliant silvery colour of speculum metal, but with a bluish tint.

These alloys - from about 8 to 16 ounces to the pound of copper - are extensively used for dipping, a process adopted for giving a fine colour to an cnormous variety of furniture work. The alloys with zinc retain their malleability and ductility well unto about 8 or 10 ounces to the pound; after this the crystalline character slowly begins to prevail. The alloy of 2 zinc and 1 copper may be crumbled in a mortar when cold. In the following list, the quantity of zinc employed to 1 lb . of copper is given :-

1 to $1 \frac{1}{2}$ oz. gilding metal for common jewellery.
3 to 4 oz. Bath metal, pinchbeck, Mannheim gold, Similor; and alloys bearing various names, and resembling inferior jewellers' gold.
8 oz. Emerson's patent brass.
10_{5}^{2} oz. Muntz's metal, or 40 zinc and 60 copper. "Any proportions," says the patentee, "between the extremes, 50 zinc and 50 copper and 37 zinc and 63
copper, will roll and work well at a red heat."
16 oz . soft spelter solder, suitable for ordinary brass work.
$16 \frac{1}{2}$ oz. Hamilton and Parker's patent mosaic gold.
Brass is extensively employed for the bearings of machinery. Several patents have been taken out for compositions varying but slightly. The following, for improveneluts in casting the bearings and brasses of machinery, appears important:-Mr. W. Hewitson, of Leeds, directs, in his patent, that the proper mixture of alloy, copper, tin, and
zine, should be run into metal or "ehill" moulds, in place of the ordinary moulds. In large castings, it is found more espeeially that the metals do not mix intimately in cooling, or, rather, they arrange themselves into groups when east in sand, and the bearings are found to wear out more quiekly; but if the bearings are east so that the alloy eomes in eontaet with metal, the mixture is more intimate, and the bearings last longer than if east in dry or green sand moulds.

Mr. Hewitson generally only applies these ehill-metal surfaees of the moulds to those parts of a brass, or bearing, that are to reeeive the shaft or bear the axis of a maehine. The ehills are preferred of iron, perforated with holes ($\frac{1}{16}$ th to $\frac{1}{8}$ th ineh) for the passage of air or vapours; the surfaee should be thinly eoated with loam, and heatcd to about 200°.
Fenton's patent metal consists of eopper, spelter, and tin: it has less speeifie gravity than gun metal, and is deseribed as being " of a more soapy nature," by whieh, consequently, the eonsumption of oil or grease is lessened.
Many of the patentees of bearing metals assure us, that the metals they now use differ very eonsiderably from the statement in their speeifieations. Surely this requires a eareful examiuation.
We exported of our Brass Manufactures, in 1856, 19,198 ewts., the deelared real value of whieh was 121,206 .
BRASSING IRON. Iron ornaments are covered with copper or brass by properly preparing the surface, so as to remove all organie matter, whieh would prevent adhesion, and then plunging them into melted brass. A thin eoating is thus spread over the iron, and it admits of being polished or burnished. The eleetro-magnetic proeess is now employed for the purpose of preeipitating brass on iron. This proeess was first mentioned in Shaw's "Metallurgy," in 1844, where he remarks, "In depositing eopper upon iron, a solution of the eyanide or aeetate of eopper should be employed. The only value of these salts is, that a die or surfaee of iron may be immersed in their solutions without reeeiving injury by the eorrosion eonsequent upon the deposition of a film of metal by ehemical aetion." The following solutions are reeommended by Dr. Woods, in the "Seientific Ameriean," for eoating iron with coppel; zinc, or brass, by the eleetrotype proeess.
To make a Solution of Copper or Zinc.-Dissolve 8 ounees (troy) eyanide of potassium and 3 ounces of eyanide of eopper or zine in 1 gallon of rain or distilled water. These solutions to be used at about $160^{\circ} \mathrm{F}$. with a eompound battery of from 3 to 12
cells cells.
To prepare a Solution of Brass. - Dissolve 1 lb . (troy) eyanide of potassium, 2 sunees of cyanide of eopper, and 1 ounce of eyanide of zine, in 1 gallon of rain or distilled water; then add 2 ounees of muriate of ammonia. This solution is to be used at $160^{\circ} \mathrm{F}$. for smooth work, and from 90° to 120°, with a eompouud battery of from 3 to 12 eells. See Electro-Metallurgy.
Brazilian arrow Root. See Arrow Root, and Jatropha Manhot. BRAZIL WOOD. (Bois de Pernambouc, Fr.; Brasilienholz, Germ.) This dyewood gives its name to the part of Ameriea whenee it was first imported, It has also the names of Pernambuea, wood of St. Martha, and of Sapan, aecording to the plaees whieh produee it. Linnæus distinguishes the tree whieh furnishes the Brazil wood by the name of Casalpinia crista. It eommonly grows in dry plaees among roeks. Its trunk is very large, erooked, and full of knots. It is very hard, suseeptible of a fine polish, and sinks in water. It is pale when newly eleft, but becomes produeing this wood:-
The ibiripitanga, or Brazil wood, ealled, in Pernambueo, pao da rainha (Queen's wood), on aeeount of its being a Government monopoly, is now rarely to be seen within many leagues of the coast, owing to the improvident manner in whieh it has been eut down by the Government agents, without any regard being paid to the size of the trice or its eultivation. It is not a lofty tree. At a short distanee from the gromnd, innumerable branches spring forth aud extend in every direction in a straggling, irregular, and unpleasing manner. The leaves are small and not luxuriant ; the wood is very hard and heavy, takes a high polish, and sinks in water: the only valuable portion of it is the heart, as the outward eoat of wood has not any peeuliarity. The name of this wood is derived from brasas, a glowing fire or eval; its botanical name is Casalpiniu Brasileto. The leaves are pinnated, the flower white and papilionaceous, growing in a pyramidal spike: one speeies has flowers variegated with red. The "Granches are slender and full of small priekles. There are nine speeies. See Bell's " Geograpliy."

The speeies Brasileto, whieh is inferior to the crista, grows in great abundanee in the West Indies. The demand for the Brasileto, a few years ago, was so great, owing to its being a little eleaper than the crista, that nearly the whole trees iu the British
possessions were cut down and sent home, whiel Mr. Bell very justly terms im. providenee. It is not now so mueh used, and is eonsequently seareer in the English market.

The wood known in eommeree as Pernambuco is most esteemed, and has the greatest quantity of eolonring matter. It is hard, has a yellow eolour when newly eut, but turns red hy exposure to the air. 'That kind termed Lima wood is the same in quality. Sapan wood grows in Japan, and in quality is next the two nanied above. It is not plentiful, but is mueh valued in the dyehouse for red of a certain tint; it gives a very elear and superior colour. The quantity of ash that these two qualities of wood eontain is worthy of remark. Lima wood, as imported, gives the average of 2.7 per eent., while Sapan wood gives 1.5 per cent.; in both, the prevailing earth is lime. The quantity of moisture in the wood averages about 10 per cent.; that in the ground wood in the market about 20 per cent.

Peach wood, or Niearagua, and sometimes termed Santa Martha wood, is inferior to the other two uamed, but is mueh used in the dyehouse, and, for many shades of red, is preferred, althongh the colouring matter is not so great. It gives a bright dye. The means of testing the quality of these woods by the dyer is similar to that deseribed for \log wood, with the same recommendations and preeautions. - Nupier on Dyeing.

Brazil wood has different shades of red and orange. Its goodness is determined particularly by its density. When ehewed, a saecharine taste is pereeived. It may be distinguished from red saunders wood by its eolouring water, whieh the latter does not.

Boiling water extraets the whole eolouring matter of Brazil wood, and if the ebullition be long enough continued, it assumes a fine red colour. The residnum appears blaek. In this ease an alkali may still extraet mueh eolouring matter. The solution in aleohol or ammonia is still deeper than the preeeding.

The decoetion of Brazil wood, ealled juiee of Brazil, is observed to be less fit for dyeing when reeent than when old, or even fermented. By age it takes a yellowishred eolour. For making this decoetion, Hellot recommends the use of the hardest water; but it should be remarked that this water deepens the colour in proportion to the earthy salts whieh it eontains. After boiling this wood redueed to chips, or, what is preferable, to powder, for three hours, this first deeoetion is poured into a eask. Fresh water is poured on the wood, which is then made to boil for three hours, and mixed with the former. When Brazil wood is employed in a dyeing bath, it is proper to inelose it in a thin lincon bag.

Wool immersed iu the juiee of Brazil wood takes but a feeble tint, whiel is speedily destroyed; it must therefore reeeive some preliminary preparations.
The wool is to be boiled in a solution of alum, to whieh a fourth or even less of tartar is added, for a larger proportion of tartar would make the colour yellowish. The wool is kept impregnated with it, for at least eight days, in a cool plaee. After this, it is dyed in the Brazil juiee with a slight boiling. But the first colouring partieles that are deposited afford a less beautiful colour; henee it is proper to pass a coarser stuff previously through the bath. In this manner̂ a lively red is proeured, whieh resists pretty well the aetion of the air.
Brazil wood is inade use of for dyeing silk the colour known as false erimson, to distinguish it from the erimson made by means of eoehineal, whieh is mueh more permanent.
The silk shonld be boiled at the rate of 20 parts of soap per cent., and then alumed. The aluming need not be so strong as for the fine erimson. The silk is refreshed at the river, and passed through a bath more or less charged with Brazil juiee, aecording to the slade to be given. When water free from earthy salts is employed, the eolour is too red to imitate erimson; this quality is given it by passing the silk through a slight alkaline solution, or by adding a little alkali to the bath. It might, indeed, be washed in a hard water till it had taken the desired shade. They thus beeome permament eolours. But what distinguishes them from madder and kermes, and approximates them to eochineal, is their reappearing in their natural eolour, when they are thrown down in a state of combination with alumina, or with oxide of tin. These two eombinations seem to be the fittest for rendering them durable. It is requisite, therefore, to inquire what eireumstanees are best caleulated to promote the formation of these eombinations aeeording to the nature of the stuff.

The astringent prineiple, likewise, seems to contribute to the permanenee of the eolouring matter of Brazil wood; but it deepens its lue, and ean only be employed for light shades.

To make deeper false erimsons, a dark red juiee of logwood is put into the Brazil bath after the silk has been impregnated with it. A little alkali may be added, aeeording to the shade that is wanted.

To initate poppy or flame colour, an arnotto ground is given to the silk, deeper
even than when it is dyed with earthamus; it is then washed, alumed, and dyed with juice of Brazil, to which a little soap water is usually added.

The colouriug particles of Brazil wood are easily affected, and madc yellow by the action of acids.

The colouring particles of Brazil wood are very sensible to the action of alkalis, which give them a purple hue; and there are several processes in which the alkalis, either fixcd or volatile, are used for forming violets and purples. But the colours obtained by these methods, which may be easily varied according to the purpose, are perishable, and possess but a transient bloom. The alkalis appear not to injure the colours derived from madder, but they accelerate the destruction of most other colours.

In England and Hollaud the dye-woods arc reduced to powder by means of mills erected for the purpose.

The bright fugitive red, called fancy red, is given to cotton by Nicaragua, or peach wood, a cheap kind of Brazil wood.

The cotton being scoured and bleached, is boiled with sumach. It is then impregnated with a solution of tin (at $5^{\circ} \mathrm{B}$., according to Vitalis). It should now be washed slightly in a weak bath of the dyeing wood; and, lastly, worked in a somewhat stale infusion of the peach or Brazil wood. When the temperature of this is lukewarm, the dye is said to take better. Sometimes two successive immersions in the bath are given. It is now wrung out, aired, washed in water, and dried.
M. Vitalis says, that his solution of tin is prepared with two ounces of tin and a pound of aqua regia, made with two parts of nitrie acid at $24^{\circ} \mathrm{B}$. and three parts of muriatic acid at 220 .
For a rose colour, the cotton is alumed as usual, and washed from the alum. It then gets the tin mordant, and is again washed. It is now turned through the dycbath, an operation which is repeated if necessary.

For purple, a little alum is added to the Brazil bath.

1. For amaranth, the cotton is strongly galled, dried, aud washed.
2. It is passcd through the black cask (tonneau noir, see Black Dre), till it has taken a strong grey shade.
3. It receives a bath of lime water.
4. Mordant of tin.
5. Dycing in the Brazil wood bath.
6. The last two operations are repeated.

Diugler has endearoured to separate the colouring matter of the different sorts of Brazil wood, so as to obtain the same tint from the coarser as from the best Pernambuco. His process consists in treating the wood with hot water or steam, in concentrating the decoction so as to obtain 14 or 15 pounds of it from 4 pounds of wood, allowing it to cool, and pouring into it two pounds of skim milk; agitating, then boiling for a few minutes, and filtering. The dun colouring matters are precipitated by the coagulation of the caseous substance. For dyeing, the decoctions must be diluted with water; for printing, they must be concentrated so that 4 pounds of wood shall furnish only 5 or 6 pounds of decoction, and the liquor may be thickeued in the ordinary way. These decoctions may be employed immediately, as by this treatment they have acquired the same property as they otherwise could get only by being long lept. A slight fermentation is said to improve the colour of these decoctions; some ground wood is put into the decoction to favour this process.

Gall-nuts, however, sumach, the bark of birch or alder, render the colour of Brazil wood more durable upon alumed linen and cotton goods, but the shade is a little darker.

In dyeing wool with Pernambuco Brazil wood, the temperature of the bath should never be above $150^{\circ} \mathrm{F}$., since higler heats impair the colour.
According to Dingler and Kurrer, bright and fast scarlet reds may be obtained upon wool, by preparing a decoction of 50 pounds of Brazil wood in three successive boils, and setting the dccoction aside for 3 or 4 weeks in a cool place; 100 pounds of the wool are then alumed in a batly of 22 pounds of alum and 11 pounds of tartar, and afterwards riused in cold watcr. Meanwhile we fill two-thirds with water a copper containing 30 pails, and lieated to the temperature of 150° or $160^{\circ} \mathrm{F}$. We pour in 3 pailfuls of the decoction, heat to the same point again, and introduce 30 pounds of wool, which does not take a scarlet, but rather a crimson tint. This being removed, 2 pails of decoction arc put in, and 30 pounds of wool, which becomes scarlet, but not so fine as at the third dip. If the dyer strengthens the colour a little at the first dip, a little more at the second, and adds at the third and fourth the quantity of decoction merely necessary, he will obtain an uniform searlet tint. With 50 pounds of Pernambuco, 1000 pounds of wool may be dyed scarlet iu this way, and with the colour faster, but less brilliant.

Karkutseh says the dye may be improved by adding some ox-gall to the bath.
In dyeing eotton, the tannin and gallic acid are tro necessary mordants, and the eolour is partienlarly bright and durable wben the cloth has been prepared with the oily process of Turkey red.

It is said that stale urinc heightens the eolour of the Brazil dye when the ground wood is moistened with it.

Chevreul obtained the colouring matter from Brazil wood in the following man-ner:- Digest the raspings of the wood in water till all the colouring matter is dissolved, and cvaporate the infusion to dryness, to get rid of a little acetie aeid which it contains. Dissolve the residue in water, and agitate the solution with litharge, to get rid of a little fixed aeid. Evaporate again to dryness; digest the residue in alcohol; filter and evaporate, to drive off the aleohol. Dilute the residual matter witb water, and add to the liquid a solution of glue, till all the tannin which it contains is thrown down; filter again, and evaporate to dryness, and digest the residue in alcohol, which will leave undissolved any excess of glue whieh may have been added. The last alcoholie solution, being cvaporated to dryness, leares brezilin, the colouring matter of the wood, in a state of considerable purity.

The quantity of Brazil or Niearagua wood imported into the United Kingdom in 1844 was 4559 tons, whereof 1016 were exported. The duty has been repealed.

The Importations of Brazil Wood (which has been admitted free since 19th Mareh, 1845) in 1855 was as follows:-

From	Mexieo		-	-		Tons.		Computed real Value.			
			-		-	131	-		6574		
,	New	Grana			-	-	-	35	-	-	1763
"	Brazil	1	-	-	-		113	-		5668	
"	Chili	-	-	-	-	-	39	-		1938	
,	Peru	-		-	-	-	46	-		2292	
"	other	parts	-	-	-	-	29	-	-	1428	

Of Brazil wood there was re-exported 262 tons, the computed real value being 13,087l.

BREAD. One of the most important, if not altogether the most important, article of food, unquestionably, is bread; and although rye, barley, oats, and other eereals, are sometimes used by the baker, wheat is the grain which is best fitted for the manufacture of that article, not only on account of the larger amount of gluten, or nitrogenous matter, which it contains, and than can be found in other edible grains, but also on account of the almost exact balance in which the nitrogenous and nonnitrogenous constitnents exist in that cereal, and owing to which it is capable of ministering to all the requirements of the human frame, and of being assimilated at once and without effort by our organs, whence the name of "staff of life," which is often given to it, wheat being, like milk, a perfeet food.

Although gluten is one of the most important constituents of wheat, the nutritive power of its flour, and its value as a bread-making material, should not be altogether considered as dependent upon the quantity of gluten it may contain, even though it be of the best quality. Doubtless a high per-centage of this material is desirable, but there are other considerations whieh must be taken into account ; for, in order to become available for making good bread, flour, in addition to being sound and genuine, must possess other qualities beyond containing merely a large amount of gluten. Thus, for example, the blé rouge glacé d'Auvergne, which contains hardly 45 per cent. of stareh, and as much as 36 per cent. of gluten, though admirably adapted for the manufacture of macaroni, vermicelli, semolina, and other pâtes d'Italie, is totally unfit for making good bread: the flour used for making best white loaves eontaining only froni 10 to 18 per cent. of gluten, and from 60 to 70 per cent. of stareh.
Bread is obtained by baking a dough, previously fermented either by an admixture of yeast or leaven, or it is artificially rendered spongy by causing an acid, muriatic or tartarie, to react upon carbonate or biearbonate of soda, or of ammonia, mixed in the doughy mass; or, as in Dr. Dauglish's process, whieh will be described further on, by mixing the flour whieh has to be converted into dough, not with ordinary water, but with water strongly impregnated with carbonic acid.

Although a history of bread making eannot be introduced in the present article, a few words on the subjeet, reproduced from the former edition of this work, will not be deemed uninteresting.
Pliny informs us, that barley was the only speeies of eorn at first used for food; and even after the method of redueing it to flour had heen diseovercd, it was long before mankind learned the art of converting it into eakes.

Ovens were first invented in the East. Tbeir construetion was understood by the Jews, the Greeks, and the Asintics, among whon baking was practised as a distinct
profession. In this art, the Cappadoeians, Lydians, and Phœnieians, are said to have particularly excelled. It was not till about 580 years after the foundation of Rone that these artisans passed into Europe. The Roman armies, on their return from Macedonia, brought Greeian bakers with them into Italy. As these hakers had handmills beside their ovens, they still continued to be ealled pistores, from the aneient practiee of bruising the eorn in a mortar; and their bakehouses were denominated pistoric. In the time of Augustus there were no fewer than 329 publie bakehouses in Rome; almost the whole of which were in the hands of Greeks, who long eontinued the only persons iu that eity aequainted with the art of baking good bread.
In nothing, perhaps, is the wise and cautions poliey of the Roman government more remarkably displayed, than in the regulations whieh it imposed on the bakers within the city* To the foreign bakers who eame to Rome with the army from Maeedonia, a number of freedmen were assoeiated, forming together an ineorporation from which neither they nor their ehildren eould separate, and of whieh even those who married the daughters of bakers were obliged to beeome members. To this incorporation were entrusted all the mills, utensils, slaves, animals, everything, in short, which belonged to the former bakehouses. In addition to these, they reeeived considerable portions of land; and nothing. was withheld whieh eould assist them in pursuing, to the best advantage, their highly prized labours and trade. The practice of eondemning eriminals and slaves, for petty offenees, to work in the bakehouse, was still eontinued; and even the judges of Afriea were bound to send thither, every five years, sueh persons as had ineurred that kind of ehastisement. The bakehouses were distrihuted throughout the fourteen divisions of the eity, and no baker could pass from one into another without speeial permission. The publie granaries were eommitted to their eare; they paid nothing for the corn employed in baking bread that was to be given in largess to the eitizens; and the price of the rest was regulated by the magistrates. No eorn was giveu out of these granaries exeept for the bakehouses, and for the private use of the prinee. The bakers had besides private granaries, in which they deposited the grain which they had taken from the puhlic granaries for immediate use; and if any of them happened to be eonvieted of having diverted any portion of the grain to another purpose, he was eondemned to a ruinous fine of five hundred pounds' weight of gold.
Most of these regulations were soon introdueed among the Gauls; but it was long before they found their way into the more northern countries of Europe. Borriehius informs us that in Sweden and Norway, the only bread known, so late as the middle of the 16 th eentury, was unleaven eakes kneaded by the women. At what period in our own history the art of baking beeame a separate profession, we have not been able to aseertain; but this profession is now eommon to all the eountries in Europe, and the proeess of baking is also nearly the same.
The Freneh, who partieularly exeel in the art of baking, have a great many different kiuds of hread. Their pain bis, or brown bread, is the eoarsest kind of all, and is made of eoarse groats mixed with a portion of white flour. The pain de méteil is a bread made with rye and barley flour, to whieh wheat flour is sometimes added also. The pain bis blanc, is a kind of hread between white and brown, made of white flour and fine groats. The pain blanc, or white bread, is made of white flour, shaken through a sieve after the finest flour has heen separated. The pain mollet, or soft bread, is made of the purest flour without any admixture. The pain chaland, or eustomers' bread, is a very white kind of bread, made of pounded paste. Pain chapelé, is a small This name is with a well-beaten and very light paste, seasoned with butter or milk. removed by a rasp. Pain cornu is a name from whieh the thiekest erust has been bread made with four eorners, and sometimes given by the Freneh bakers to a kind of this has the strongest and firmest paste. Paine. Of all the kinds of small bread Ségovic, pain claapelé, and pain cornu, are Pain à la reine, queen's bread, pain à la the lightness or thiekness of the paste. Pain de gruun is a small, very white bread made now in Paris, from the flour separated after a slight grinding from the best wheat. Such flour is in hard granular partieles.

In England, however, we have but few varieties of bread, the loaves known under the names of bricks, Coburg, cottage, batch, and Frencl rolls, heing all made of the same dough; the only differenee is in the shape given to them, their various flavonrs depending on the way in whieh they are affeeted by the heat of the oven in the baking. These loaves are erusted all over beeause they are deposited in the oven hread is erusted only at the toped in moulds made of tinned iron, whercas the bateh form, touch eaeh other in the top and bottom, because the loaves, whieh have a cubie erust on three of their sides. The those, however, whieh lie round the oven lave a best flour,-known under the name of whites;-but bateh rolls are generally made of Vol. I.

[^34]and of households, or flour of second quality, and of seconds, which is flour of a third quality - that is, of flour containing nore bran than the other kinds just enumerated.

We have also "rye bread," which is generally made of nothing else than ordinary wheat flour aud bran.

Dr. Ure, in the former edition of this Dictionary, truly remarked, "The object of baking is to combine the gluten and starch of the flour into a homogeneous substance, and to excite such a vinous fermentative action, by means of its saccharinc matter, as shall disengage abundance of carbonic acid gas in it for making an agreeable, soft, succulent, spongy, and easily digestiblc bread. The two evils to be avoided in baking are, hardness on the one hand and pastiness on the other. Well-made bread is a chemical compound, in which the gluten and starch cannot be recognised or separated, as before, by a stream of water. When flour is kneaded into a.dough, and spread into a cake, this cake, when baked, will be horny if it be thiu, or if thick, will be tough and clammy; whence we sec the value of that fermentative process, which generates thousands of little cells in the mass or crumb, each of them dry yet tender and succulent through the intimate combination of the moisture. By this constitution it becomes easily soluble in the juiees of tbe stomach, or, in other words, light of digestion. It is moreover much less liable to turn sour than cakes made froun unfermented dough.
"Rye, which also forms a true spongy bread, though inferior to that of wheat, consists of similar ingredients - namely, 61.07 of starch, 9.48 of gluten, 3.28 of vegetable albuuen, $3 \cdot 23$ of uncrystallisable sugar, 11.09 of gum, 6.38 of vegetable fibre; the loss upon the 100 parts amounted to $5 \cdot 62$, including an acid whose nature the analyst, M. Einhof, did not determine. Rye flour contains also several salts, principally the phosphates of lime and magnesia. This kind of grain forms a dark-coloured bread, reckoned very wbolesome; comparatively little used in this country, but very much in Frauce, Germany, and Belgium.
"Dough, fermented with the aid either of leaven or yeast, contains little or none of the saccharine matter of the flour, but, in its stead, a certain portion, nearly half its weight, of spirit, which imparts to it a vinous smell, and is volatilised in tbe oven, whence it might be condensed into a crude, weak alcohol, on the plan of Mr. Hick's patent, were it worth wbile. But the increased complexity of the bakiug apparatus will probably prove an effectual obstacle to the commercial success of this project, "That the sugar of the upwards of $20,000 l$. sterling were foolishly squandered. dough undergoes, and that the starch and gluten have nothing to do with it may be proved by decisive experiments. The vinous fermentation continues itll the whole sugar is decomposed, and no longer; when, if the process be not checked by the heat of baking, the acetous fermentation will supervene. Therefore, if a little sugar be added to a flour which contains little or none, its dough will become susceptible of fermenting, with extrication of gas, so as to make spongy succulent bread. But since tbis sponginess is produced solely by the extrication of gas and its expansion in the heat of the oven, any substance capable of emitting gas, or of being converted into it under these circumstances, will answer the same purpose. Were a solution of bicarbonate of ammonia obtained by exposing the common sesquicarbonate in powder for a day to the air, incorporated with the dougb, in tbe subsequent firing it will be converted into vapour, and, in its extricaacid gas be used bread very porous. Nay, if water highly impregnated with carbonic Could a light article of fool the dough, the resulting bread will be somewhat spongy. undecomposed, the bread would be so much the sweeter and the more nourishing How far a change propitious to digestion takes place in the constitution of the starch and glaten during the fermentative action of the dough has not been hitherto ascertained by precise experiments.
"Dr. Colquhoun, in his able essay upon the art of making bread, has shown that its texture, when prepared by a sudden formation and disengagement of elastic fluid generated within the oven, differs remarkably from that of a loaf which has been made after the preparatory fermentation with yeast. Bread which has been raised with the common carbonate of ammonia, as used by the pastry-cooks, is porous no doubt, but not spongy with vesicular spaces, like that made in the ordinary way. The former kind of bread never presents that air-cell stratification which is the boast of the Parisian baker, but which is almost unknown in London, It is, moreover, very difficult to expel by the oven the last portion of the ammonia, which gives both a tinge and a taste to the bread. The bicarbonatc would probably be free from this objection, which opcrates so inuch against the use of the sesquicarbonate."- Ure.
The conversion of flour into bread includes two distinct operations - namely, the preparation of the dongh and the baking. The preparation of the dough, however,
though reekoned as oue, eonsists, in faet, of three-operations - namely, hydrating, Rneading, and fernenting.

When the baker intends to make a bateh of bread, his first eare is, in technical language, to stir a ferment. This is done, in London, by boiling a few potatoes, in the proportion of 5 lbs . or 6 lhs . of potatoes per saek of flour (which is the quantity we shall assume it is desired to eonvert into bread), peeling them, mashing and straining them through a cullender, and adding thereto about three-quarters of a pailful of water, 2 or 3 lbs . of flour, and one quart of yeast. The water employed need not be warmed beforehand, for the heat of the potatoes is sufficient to impart a proper temperature (from 70° to $90^{\circ} \mathrm{F}$.) to the liquid mass, which should he well stirred up with the hand into a smooth, thin, and homogeneous paste, aud then left at rest.
In the course of an hour or two, the mass is seen to rise and fall, which swelling and heaving up is due to earbonie acid, generated hy the fermentation induced in the mass, which may be thus left until wanted. In ahout three hours, this fermeuting aetion will appear to be at an end, and when it has arrived at that stage, it is fit to be used. The ferment, however, may be left for six or seven hours and he still very good at the end of that time, but the common practiee is to use it within four or five hours after its preparation.
The next operation eonsists in " setting the sponge." This eonsists in stirring the ferment well, adding thereto about two gallons of lukewarm water, and as much flour as will make, with the ferment, a rather stiff dough. This constitutes "the sponge." It is kept in a warm situation, and in the course of ahout an hour fermentation agaiu hegins to make its appearanee, the mass heeomes distended or is heaved up hy the earbonie aeid produced, the escape of which is impeded by the toughness of the mass. This earbonie acid is the result of the fermentation indueed under the influence of water, by the aetion of the gluten upon the stareh, a portion of whieh is converted therehy into sugar, and then into aleohol. A time, however, soon enmes when the quantity of carbonic aeid thus pent up beeomes so great that it hursts through, and the sponge collapses or drops down. This is ealled the first sponge.-But as the fermentation is still going on, the earbonie aeid soon causes the sponge to rise again as before to nearly twiee its volume, when the earbonie acid, hursting through the mass, eauses it to fall a second time; and this constitutes what the bakers eall the second sponge. The risiug and falling might then go on for twenty-four hours; but as the aleoholie would pass into the aeetous fermentation soon after the seeond rising, the baker always interferes after the seeond, and very frequently after the first sponge. The bread made from the first sponge is generally sweeter; hut unless the best flour is used, and even theu, the loaf that is made from it is smaller in size and more eompaet than that which is made with the second sponge. In hot weather, however, as there would be much danger of the hread turning sour, if the sponge were allowed to "takc a second full," the first sponge is frequently used. The next process eonsists in brealing the sponge, which is done by adding to it the necessary quantity of water and of salt,-the quantity of the latter substance varying from $\frac{1}{2}$ lh. to $\frac{3}{4}$ of a pound per hushel of flour; that is, from $2 \frac{1}{2} \mathrm{lbs}$. to $3 \frac{3}{4} \mathrm{lbs}$. per saek of flour (new flour, or flour of inferior quality, always requires, at the very least, $3 \frac{1}{2}$ lbs. per saek, to bind $i t$, that is to say, to render the dough sufficiently firm to support itself while fermenting). Salt aets, to a great extent, like alum, though not so powerfully. As to the quantity of water to he used, it depends also a great deal on the quality of the flour, the best quality absorhing foree and keep in we shall have oceasion to remark, the baker too often contrives to the same amount of water as is from inferior flour, by a process called under baking, rally speaking, and with flour of mally taken up by that of the hest quality. Genethat the diluted sponge forms ahout 14 gallons of liquid. The whole mass is such, torn to pieces hy the hand, so as to hreak any lumps that there may be, and mix it up thoroughly with the water. This being done, the rest of the sack of flour it gradually added and kneaded into a dough of the proper consisteney. This kneading of the dough may he said to be one of the most important proeesses of the manufacture, sinee it not only produces a more complete hydration of the flour, but, by imprisoning a certain quautity of air within the dough, and foreibly bringing iuts also with a portion of the stareh, yeast or leaven with the sugar of the flour, and which the sponginess of the lareh, the fermentation or rising of the whole mass, on When by forcing the hand into and its digestibility subsequently depend, is secured. none of the dough adheres to it, he lnows the baker sees that, on withdrawing it, dough is then allowed to remain in the trough for about an hour and a balf or The hours, if brewers' or Germun yeast have beong for about an hour. and a half or two the eontrary, patent yeast or hop yeast have been used in making the spouge ;-if, ou
requirel for the dough to rise up, or, as in technical language, to give proof. When the dough is sufliciently "proofed," it is weighed off into lumps, shaped into the proper forms of 4 lbs .4 oz . each, and exposed for about one hour in an oven to a temperature of about $570^{\circ} \mathrm{F}$., the heat gradually falling to 430 or $420^{\circ} \mathrm{F}$. The yield after baking is 94 quartern (not $4-1 \mathrm{~b}$.) loaves, or from 90 to 92 really 4 lb . loaves, as large again as they were when put into the oven in the shape of dough.
The manner in which yeast acts upon the flour-is as, yet, an unsolved mystery, or at any rate an, as yet, unsatisfactorily explained action ; for the term "catalysis," which has sometimes been applied to it, explains absolutcly nothing.
A yeast, or fermenting material, may be prepared in various ways; but only three kinds of yeast are used by bakers : namely, brewers ' yeast, or barm,-German yeast, aud patent, or hop yeast.
The most active of these ferments is the first, or brewers' yeast ; it is, as is well known, a frothy, thickish material, of a brownish or drab colour, which, when recent, is in a state of slight effervesoence, exhales a sour characteristic odour, and has an acid reaction.

When viewed through the microscope, it is seen to consist of small globules of various size, generally egg-shaped. They were first described by M. Desmayières.

The best, and in fact the ouly, brewers' yeast used in bread-making is that from the ale breweries; porter yeast is unavailable for the purpose, because it imparts to the bread a disagreeable bitter tastc.

German yeast is very extensively used by bakers. It is a pasty but easily crumbled mass, of an agreeable fruity odour, and of a dingy white colour. German yeast will remail good for a few weeks, if kept in a cool place. When in good condition, it is an darker colour, viscid, and emitting an offensive cheesy od ou bakers' premises, of a being in a putrefied state, is, of course, objectionable.

The so-called "patent yeast" is the cheapest and at the same time the wcakest of these ferments ; very good bread, however, is made with it, and it is most extensively used by bakers. It is made either with or without hops : when with hops, it is called lop yeast, and is nothing more than a decoction of hops to which malt is added while in a scalding hot state; when the liquor has fallen to a blood heat, a certain quantity of brewers' or German yeast is thoroughly mixed with it, and the whole is left at rest. The use of the hops is intended to diminish the tendency of this solution to become acid.

Potato yeast is a kind of "patent yeast" in general use. Dr. Ure, "owes this valuable quality to the gluten, which it contains in greater abundance than any of the other cerealia (kinds of corn). This substance does not coustitute, as has been heretofore imagined, the membranes of the tissue of the perisperm of the wheat; but is enclosed in cells of that tissue under the epidermic coats, even to the centre of the grain. In this respect the gluten lies in a situation analogous to that of the starch, and of most of the immediate principles of the vegetables. The other immediate principles which play a part in panification are particularly the starch and the sugar; aud they all operate as follows :-
"The diffusion of the flour through the water hydrates the starch, and dissolves the sugar, the albumen, and some other soluble matters. The kneading of the dough, by completing these reactions through a more intimate union, favours also the fermentation of the sugar, by bringing its particles into close contact with those of the leaven or ycast ; and the drawing out and laminating the dough softens and stratifies it, introducing at the same time oxygen to aid the fermentation. The dough, when distributed and formed into loaves, is kept some time in a gentle warmth, in the folds of the cloth, pans, \&c., a circumstance propitious to the development of their volume by fermentation. The dimensions of all the lumps of dongh now gradually enlarge, from the disengagement of carbonic acid in the decomposition of the sugar, which gas is imprisoned by the glutinous paste. Were these phenomena to continue too long, the dough would become too vesicular; they must, therefore, be stopped at the proper point of sponginess, by placing the loaf lumps in the oven. Though this canses a sudden expansion of the enclosed gaseous globules, it puts an end to the fermentation, and to their growth ; as also evaporates a portion of the water.
"The fermentation of a small dose of sugar is, therefore, essential to true bread making; but the quantity actually fermented is so small as to be almost inappreciable. It seems probable that in well-made dough the whole carbonic acid that is generated remains in it, anounting to one-half the volune of the loaf itself at its baking temperature, or $212^{\circ} \mathrm{F}$. It thence results that less than one-hundredth part of the weight of the flour is all the sugar requisite to produce well-raised bread.
"Although the rising of the dongh is determined by the carbonic acid resultiug from
the decomposition of the sugar, produced by the reaction of the gluten on hydrated or moist flour, considering that the quantity of sugar necessary to produce fermentation does not amount, probably, to more than one-hundredth part of the weight of the flour employed, and perhaps to even considerably less than that, -the saving and economy which is said to accrue to the cousumer from the use of unfermented bread (which is bread in which the action of yeast is replaced by an artificial evolution of carbonic acid, by decomposing bicarbonate of soda with muriatic acid, as we said before) is therefore much below what it has been estimated (25 per cent.!) by some writers; and is certainly very far from compensating for the various and scrious drawbacks which are peculiar to that kind of bread, one of which-and it is not the least-is its indigestibility, notwithstanding all that may have heeu said to the contrary.
"In a pamphlet entitled, 'Instructions for making Unfermented Bread, by a Physician,' published in 1846, the formula recommended for bread made of wheat meal is as follows:-

" Bread made in this manner," says the author, "contains nothing but flour, common salt, and water. It has an agreeable, natural taste, keeps much longer than common bread, is much more digestible, and much less disposed to turn acid," \&c.
Liebig, in his "Letters on Chemistry," very judiciously remarks, "that the intimate mixture of the saliva with the bread, whilst masticating it, is a condition which is favourable to the rapid digestion of the starch; wherefore the porous state of the flour in fermented bread accelerates its digestion."

Now, it is a fact, which can be readily ascertained by anyone, that unfermented bread is permeated by fluids with difficulty. It will not absorb water, hence its heavy and clammy feel; nor saliva, hence its indigestibleness; nor mills, nor butter. Unfermented bread will neither make soup, nor toast, nor poultice. When a slice of ordinary bread is held before a bright fire, a portion of the moisture of the bread, as the latter becomes scorched, is converted into steam, which penetrates the interior of the mass, and imparts to it the sponginess so well known in a toast properly made ; but if a piece of unfermented bread be treated in the same manner, the stcam produced by the moisture, not being able to penetrate the unabsorbent mass, craporates, and the result is an uninviting slice, toasted, but hard inside and out, and into which butter penetrates about to the same extent as it would a wooden slab of the same dimensions.
"Fermentation," says Liebig, "is not only the best and simplest, but likewise the most economical way of imparting porosity to bread : and bcsides, chemists, generally speaking, should never recommend the use of chemicals for culinary preparations, for chemicals are seldom met with in commerce in a state of purity. Thus, for example, the muriatic acid which it has been proposed to mix with carbonate of soda in bread is always very impure, and very often contains arsenic. Chemists never employ such an acid in operations which are certainly less important than the one just mentioned, without having first purified it."

In order to remove this ground of objection, tartaric acid has been recommended instead of muriatic acid for the purpose of decomposing the carbonate of soda; but in that way, another unsafe compound is introduced, since the result of the reaction is tartrate of soda, a diurctic aperient, and consequently very objectionable salt, for it is impossible to say what mischief the continuous ingestion of such a substance may eventually produce; and whatever may be the divergence of opinion,-if there be such a divergence,-as to whether or not the constant use of an aperient, however mild, may be detrimental to health, it surcly must be admitted that, at any rate, it is better to eschew such, to say the least of it, suspicious materials; and that, at any rate, if deprecating their use be an error, it is an error on the safe side;-after all, a bakehouse is not a chemical laboratory.

Before leaving this question of unfermented bread, we must not omit to speak of a remarkable process invented by Dr. Dauglish, and which has lately excited some attention. Without discussing the value of the idea which is said to have led Dr. Dauglish to invent the process in question, we shall simply describe Dr. Daughish's method of making bread, and give his own version of its benefits :-
"Taking advantage of the well-known capacity of water for absorbing carbonic acid, whatever its density, in quantities cqual to its own bulk, I first preparc the water which is to be used in forming the dough, by placing it in a strong vessel
eapable of bearing a high pressure, and forcing carbonic acid into it to the extent of say ten or twelve atmospheres" (about 150 to 180 lbs . per square iuch); "this the water absorbs without any appreeiable inerease in its bulk. The water so prepared will of course retain the carbonic acid in solution so long as it is retained in a close vessel under the same pressurc. I therefore place the flour and sall, of whieh the dough is to be formed, also in a close vessel capable of bearing a high pressure. Within this vessel, whieh is of a spheroidal form, a simply-eonstrueted kneeding apparatus is fitted, worked from without through a elosely-packed stutfing box. Into this vessel I force an equal pressure to that which is maintained on the aërated watervessel; and then, by means of a pipe councetiug the two vessels, I draw the water into the flour, and set the kneading apparatus to work at the same time. By this arrangement the water aets simply as limpid water among the flour, the flour and water are mixed and kneaded together into paste, and to sueh an extent as shall give it the necessary tenacily. After this is aecomplished the pressure is released, the gas eseapes from the water, and in doing so raises the dough in the niost beautiful and expeditious manner. It will be quite unneeessary for me to point out how perfeet must be the mechanical structure that results from this method of raising dough. In the first plaee, the mixing and kneading of the flour and water together, before any vesicular property is imparted to the mass, render the most eomplete incorporation of the flour and water a matter of very easy aceomplishment; and this being secured, it is evident that the gas whieh forms the vesicle, or sponge, when it is released, must be dispersed through the mass in a manner which no other method - fermentation not excepted-could aceomplish. But besides the advantages of kneading the dough before the vesiele is formed, in the manner above mentioned, there is another, aud perhaps a more important one, from what it is likely to effect by giving seope to the introduetion of new materials into bread making,-and that is, I find that powerful maehine-kneading, continued for several minutes, has the effect of imparting to the dough tenaeity or toughness. In Messrs. Carr and Co.'s maehine, at Carlisle, we bave kneaded some wheaten dough for half an hour, and the result has been that the dough has been so tough, that it resembled birdlime, and it was with difficulty pulled to pieces with the hand. Other materials, sueh as rye, barley, \&e. are affected in the same manner. So that by thus kneading, I am able to impart to dough made from materials which otherwise would not make light bread, from their wanting that quality in their gluten whieh is capable of holding or retaining, the same degree of lightness whieh no other method is eapable of effeeting. And I am sanguine of being able to make from rye, barley, oatmeal, and other wholesome and nutritious substinces, bread as light and sweet as the finest wheaten bread. One reason why iny process makes a bread so different from all other processes where fermentation is not followed is, that I am enabled to knead the hread to any extent without spoiling its vesicular property; whilst all other unfermented breads are merely mixed, not kneaded. The property thus imparted to my bread by kneading, renders it less dependent on being placed immediately in the oven. It certainly eannot gain by heing allowed to stand after the dough is formed, but it bears well the neeessary standing and waiting required for preparing the loaves for baking.
"There is one point which requires care in my process, and that is,- the baking: as the dough is excessively eold ; first, beeause cold water is used in the proeess; aud next, beeause of its sudden expansion on rising. It is thus placed in the oven some 40° Fahr. in temperature lower than the ordinary fermented bread. This, together with its slow springing until it reaches the boiling point, renders it essential that the top erust shall not be formed until the very last moment. Thus, I have been obliged to have ovens construeted which are heated through the bottom, and are furnished with the means of regulating the heat of the top, so that the bread is cooked through the bottom; and, just at the last, the top heat is put on and the top erust formed.
"With regard to the gain effeeted by saving the loss by fermentation, I may state what must be evident, that the weight of the dough is always exactly the sum of the weight of flour, water, and salt put into the mixing vessel; and that, in all our experiments at Carlisle, we invariably made 118 loaves from the same weight of flour which by fermentation made only 105 and 106. Our advantage in gaiu over fermentation can only be equal to the loss by fermentation. As there has been considerable differenee of opinion among men of seience with respect to the amount of this loss-some stating it to be as high as $17 \frac{1}{2}$ per cent., and others so low as 1 per eent.I will here say a few words on the subject. Those who have stated the loss to he as high as $17 \frac{1}{2}$ per cent. have, in support of their position, pointed to the extra yield from the same flour of bread when made by non-fermentation, compared with that made by fermentation. Whilst those who have opposed this assertion, and stated the loss to be but 1 per eent. or little more, have deelared the gain in weight to be siluply a gain of extra water, and have based their caleulations of loss on the destruction of
material caused by the generation of the necessary quantity of carbonic acid to render the bread light. Starting theu with the assumption that light bread contains in bulk half solid matter and balf aëriform, they have calculated that this quantity of aëriform ruatter is obtained by a destruction of but one per cent. of solid matcrial. In this calculation the loss of carbonic acid, by its escape through the mass of dough during the process of fermentation and manufacture, does not appear to have been taken into account. All who have been in any way practically connected with bakerics well know how large this loss is, and how important it is tlat it should be taken into aecount, that our calculations may be correct.
"One of the strongest proofs that the escape of gas through ordinary soft bread dough is very large arises from the fact, that when biscuit dough, in which there is a mixture of fatty matter, is preparcd by my process, about lalf the quantity of gas only is needed to obtain an equal amount of lightness with dough that is made of flour and water only, the fatty matter aeting to prevent the escape of gas from the dougb. Othcr matters will operate in a similar manner-boiled flour, for instance, added in small quantities. But the assumption that light bread is only half aëriform matter is altogether erroneous. Never before has there been so completc a method of testing what proportion the aëriform bears to the solid in light bread as that which my process affords. The mixing vessel at Messrs. Carr and Co.'s works, Carlisle, lias an internal capaeity of 10 bushels. When $3 \frac{1}{2}$ bushels of flour are put into this vessel, and formed into spongy bread dougb, by my process, it is quite full. And when flour is mixed with water into paste, the paste measures rather less than half the bulk of the original dry flour. This will therefore represent about $1 \frac{3}{4}$ bushels of solid matter expanded into 10 bushels of spongy dougb, showing in the dough nearly 5 parts aëriform to 1 solid; and in all instances, if the baking of tbis dough has not been accomplished so as to secure the loaves to 'spring' to at least double their size in the oven, they have always come out heavy bread when compared with the ordinary fermented loaves. This gives the relative proportion of aëriform to solid in light brcad at least as 10 to 1 , and at once raises the loss by fermentation from 1 to 10 pcr cent., without taking into account the loss of gas by its passage through the mass of dough.
"Of the quality and propertics of the bread manufactured by my process, there will shortly be ample means of judging. I may be allowed, however, here to state, what will be evident to all, that the absence of cverything but flour, watcr, and salt, must render it absolutely pure; - that its sweetness cannot be equalled except by bread to whicb sweet materials are superadded; - that, unlike all other unfermented bread, it makes excellent toast ; and, on account of its high absorbent power, it makes the most delicious sop puddings, \&cc., and also cxcellent poultice. Sop pudding and poultice made from this bread, however, diffcr somewhat from tbose made from fermented bread, in being somewhat richer or morc glutinous. This arises from the faet of the gluten not having been changed, or rendered soluble, in the manner caused by fermentation; but that this is a good quality rather than a bad one is crident from the fact, that the richer and purer fermented bread is, the more glutinous are the sop, \&c., made from it ; and the poorer and more adulterated with alum it is, the freer the sop, \&c., are of this quality."

Such then is Dr. Dauglish's plan, and it is impossible to deny that it possesses great ingenuity.
From the fact that, in all his experiments at Carlisle, Dr. Dauglish invariably made 118 loaves from the same weight of flour which, by fermentation, made only 105 or 106, to argue that the gain over fermentation can only be equal to the loss by fermentation, is to draw a somewhat hasty conclusion; for the gain may be, and is probably due, not to the preservation in the bread of what is generally lost by fcrmentation, but simply to a retention of watcr.
It is of course certain tbat the production of the porosity required in bread produced by the carbonic acid and alcobol crolved by fermentation, entails the loss of a portion of the valuable constituents of the flour, but the amount of that loss should not be estimated, I think, from the proportions which the aëriform bear to the solid matter of the loaf after it is baked.
In effect, the fermentation induced in bread differs from that produced at the distillery, in as much as, instead of the fcrmenting material bcing sheltered from the air by an atmosphere of carbonic acid, the dough is on the contrary thoroughly permeated by, and retains a considerable quantity of atmospheric air introduced into it by the kncading process, and owing to the prescnce of which, in fact, the acetous fermentation is carried on to a certain extent, witbin the dough, simultancously with the alcoholic fermentations, so that even the 10 parts of aëriform matter to 1 of solid matter in a quartern loaf, arc not altogether carbonic acid resulting from the fermentation, but are carbonic acid from that source mixed with the atmospheric air with which the
dough is permeated. On the other hand, the aëriform matter thus imprisoned in the dough, expands to at least twice its volume when expused to the temperature of the oven, and accordingly the bread after breaking becomes as bulky again as the dough from which it was made. and this doubling of the volume being due to the expansion of the gases, and not to the fermentation, bears no proportion whatever to the amount of the sugar of the flour employed in the production of the alcoliol and carbonic acid crolved. Moreover, as a quartern loaf, for example, measures about 9 inches by $6 \cdot 5$ inches by 5 inches, making a total of about 292 cubic inches, if we take nine-tenths of that to be aëriform matter, we liave 262.8 inches as the aëriform cubic contents of the quartern loaf.

It is ascertained beyond doubt by numerous experiments, that genuine, properly maullactured new bread contains, on an average, 42.5 per cent. of water, and 575 of tlour, aud consequently a quartern loaf weighing really four pounds, would consist of 11,900 grains of water and 16,000 grains of solid matter, 422.5 grains of which are salt and inorganic matter, the rest, 15677.5 grains, being starch and gluten. Now a quartern loat measuring about $9 \times 6.5 \times 5$ inches gives a total of 292 cubic incbes. Assuming with Dr. Dauglish, nine-tenths of that to be ac̈riform matter, we have 262.8 inches as the aëriform cubic contents of a quartern loaf, but as the gases expanded in the dough to double their volume during its being baked into a loaf, we must divide by 2 the 262.8 incbes above alluded to, which gives 131.4 as the number of cubic inches of aëriform matter contained in the dough before it went into the oven. Again, assuming with Dr. Dauglish that these 131.4 cubic inches consist altogether of carbonic acid resulting from the fermentation of the flour, they would represent in weight only 62 grains of that gas, and as 1 cquivalent $=198$ of sugar produces 4 equivalents $=88$ of carbonic acid, it follows that, at most, about 140 grains of sugar or solid matter out of the 15677.5 of flour in the quartern loaf would have disappeared, which loss is less than 1 per cent., from which, however, it is necessary to make a considerable reduction, since a large quantity of air is mixed with that carbonic acid, and expanded with it in the oven. Unless, therefore, it can be satisfactorily proved that the unfermented bread manufactured by Dr. Dauglish's process is more nutritious, weight for weight, or more digestible, or possesses qualities which fermented bread has not, or is sold at a reduced price proportionate to the quantity of water thus locked up and passed off for bread, the benefits and advantages will be all on the manufacturer's side, but the purchasers of the unfermented bread will make but a poor bargain of it.

Of all the operations connected with the manufacture of bread, the most laborious, and that which calls most loudly for reform, is that of kncading. The process is usually carried on in some dark corner of a cellar, where the temperature is seldom less than $60^{\circ} \mathrm{F}$, and frequently more; by a man, stripped naked down to the waist, and painfully engaged in extricating his fingers from a gluey mass into which he furiously plunges alternately his clenched fists, heavily breathing as he, struggling, repeatedly lifts up the bulky and tenacious mass in his powerful arms, and with effort flings it down again with a groan fetehed from the innermost recesses of his chest, and which almost sounds like an imprecation.

We know, on very good and unexceptionable authority, that a certain large bakery on the borders of a canal actually pumped the water necessary for making the dough directly and at once from the canal, and this from a point exactly contiguous to the dischargings of the cesspool of that bakery? And let us not imagine that this is a solitary instance of horrible filth. The following memoranda recorded by Dr. Wm. A. Guy, in his admirable lecture on "The Evils of Night-work and Long Hours of Labour," delivered on 'Thursday, July 6, 1848, at the Mechanics' Institution, Southampton Buildings, will serve to illustrate the condition of the bakehouses:-

1. Underground, two ovens, no daylight, no ventilation, very hot and sulphurous.
2. Underground, no daylight, two ovens, very hot and sulphurous, low ceiling, no rentilation but what comes from the doors. Very large business.
3. Underground, no daylight, often flooded, very bad smells, overrun with rats, no ventilation.
After mentioning several other establishments in the same, or even in a worse, condition than those just enumerated, Dr. Guy adds -
" The statements comprised in the foregoing memoranda are in conformity with my own observations. Many of the basements in which the business of baking are carried on are certainly in a state to require the assistance of the Commissioners of Sewers, and to invite the attention of the promoters of sanitary reform."

If we reflect that bread, like all porous substances, readily absorbs the air that surrounds it, and that, even under the best couditions, it should never, on that account, be kept in confined places, what must be the state of the bread manufactured

BREAD.

in such a villanous manner, and with a slovenliness greater than it is possible for our imagination to conceive? What can prove better the nccessity of Goverument supervision than such a fact? The heart sickens at the revolting thought, but after all there is really but little difference between the particular casc of the bakery on the border of a canal above alluded to, and the mode of kneading generally pursued, and to whieh we daily submit.

In the sitting of the Institute of France, on the 23rd of January, 1850, the late M. Arago presented and recommended to the Académie the lneading and baking apparatus of M. Rollaud, then a humble baker of the 12 th Arrondissement, which, it would appear, fulfils all the conditions of perfect kneading aud baking.
"The kneading machine (pétrin mécanique) of M. Rolland," says Arago, "is extremely simple, and can be easily worked, when under a full charge, by a young man from 15 to 20 years old: the neeessity for horse labour or steam power may thus be obviated. The machine (figs. 239 to 242) consists of a horizontal axis traversing a trough containing all the dough requisite for one baking batch, and upon which axis a system of curvilinear blades, alternately long and short, are placed in such a manner that, while revolving, they describe two quarters of cylindrical surfaces with contrary curves, so that the eonvexity of one of these surfaces, and the concavity of the other, is turned towards the bottom of the trough. The axis has a fly wheel, and is set in motion by two small cog-wheels connected with the handle, as represented in the following figures:-

The action of the kneading machine is both easy and efficacious. In 20, and if necessary in 15 , or even 10 minutcs, a sack of flour may be converted into a perfcetly
homogeneous and aërated dough, without either lumps or clods, aud altogether superior to any dough thau could le obtained by manual knending. The time required in kueadiug varies according to the greater or less density of dough required; and the quantity of dough manufactured in that space of time varies, of course, also with the dimensious of the kueading-trough; for instance, in the trough provided with 16 blades, one sack aud a half of flour ean be kneaded at once; in that of 14 blades one sack, and in that of 12 blades two-thirds of a sack.
M. Rolland gives the following instructions for the use of the maehine, in order to impart to the dougli the qualities produced by the operations known in France under the names of frasage, contrefrasage, aud soufflage, which we shall presently deseribe, and to whieh the bread mauufactured in that eountry mainly owes, in the words of Dr. Ure, "a flavour, colour, and texture, never yet equalled in London."

The uecessary quantity of leaven or yeast is first diluted with the proper quantity of water, as deseribed before; and iu order to effect the mixture, the erank should be made to perform 50 revolutions alternately from right to left.-Frasage is the first nixture of the flour with the water. The flour is simply poured into the kneadingtrough, or, better still, when convenience permits it, it is let down from a room above through a linen hose, whieh may be shut by folding it up at the extremity.
Three-fourths only of the flour should at first be put into the trough ; the first revolutions of the kneader should be rather rapid, but during the remainder of the operation the turning should be at the rate of about two or three revolutions a minute, according to the density of the dough to be prepared. The dough thereby having time to be well drawn out between the blades, and to drop to the bottom of the trough. From 24 to 36 revolutions of the erauk will gencrally be sufficient; but in order to obtain the dough in the condition which the frasage would give it iu the usual way, it will be neeessary to make about 250 revolutions of the crank alternately from right to left, about the same number of turns.

Contrefrasage is the eompletion of the proeess of mixing; and, in order to perform that operation, the last fourth part of the flour must now be added, the erank turned 150 revolutions, to wit, 75 turus rather slowly, alternately from right to left, and the remainder at the rate of speed above mentioned.

The operation of Souflage consists in introducing and retaining air in the paste. To effeet this, the kneader should be made to perform, during nearly the whole time occupied in the operation, an almost continual motion baekwards and forwards, by whieh means the dough is shifted from place to place; five revolutions being made to the right, and five to the left, alternately, taking care to accelerate the speed a little at the moment of reversing the direction of the revolving blades.

All these operations are aecomplished in twenty or twenty-five minutes.
Of course, the reader should not imaginc that these numbers must be strictly followed, they are given merely as a guide indicative of the modus operandi.

The kneadiug being completed, the dough is left to rest for some time, and then divided into lumps, of a proper weight, for each loaf. The workman takes one of these lumps in each hand, rolls them out, dusts them over with a little flour, and puts each of them separate in its panneton; he proceeds with the rest of the dough iu the same manner, and leaves all the lumps to swell, whieh, if the flour have been of good quality, will take place at a uniform rate. They are then fit for baking, which operation will be deseribed presently.

Another kueading trough, said to be very effectual, is that for which Mr. Edwin Clayton obtaincd a patent in August, 1830. It consists of a rotatory kneading trough, or rather barrel, mounted in bearings with a hollow axle, and of an interior frame of east iron made to revolve by a solid axle which passes through the hollow one; in the frame there are cutters diagonally placed for kneading the dough. The revolving frame and its barrel are made to turn in eontrary directions, so as greatly to save time and equalise the operation. This double action represents kneading by the two hands, in whieh the dough is inverted from time to time, torn asunder, and reunited in every different form. The mechanism will be readily understood from the following description.

Fig. 243 exhibits a front elevation of a rotatory kneading trough, construeted aecording to improvements speeified by the patentee, the barrel being shown in seetion ; a is the barrel, into which the several ingredients, eonsisting of flour, water, and yeast, are put, which barrel is mounted in the frame-work b, with hollow axles c and d, which hollow axles turn in suitable bearings at $e ; f$ is the revolving frame whieli is mounted in the interior of the barrel a, by axles g and h. The ends of this revolving frame are fastened or braeed together by means of the oblique eutters or braees i, which act upon the dongh when the machine is put in motiou, and thus eause the operation of kneading.

Either the barrel may be made to revolve without the rotatory frame, or the rota-
tory frame without the barrel, or both may be made to revolve together, but in opposite ways. These several motions may be obtained by means of the gear-work, slown at l, l, and m, as will be presently deseribed.

If it be desired to have the revolving motion of the barrel and rotatory frame together, but in contrary direetions, that motion may be obtained by fastening the hollow axle of the wheel m, by means of a serew n, to the axle h of the rotatory frame f tight, so as they will revolve together, the other wheels k and l being used for the purpose of reversing the motion of the barrel. It will then be found that by turning the handle o, the two motions will be obtained.

If it be desired to put the rotatory frame f only into motion, that action will be obtained by loosening the serew n upon the axle of the wheel m, when it will be found that the axle h will be made to revolve freely by means of the wineh o, without giving motion to the wheels k, l, and m, and thus the barrel will remain stationary. If the rotatory aetion of the barrel be wanted, it will be obtained by turning the handle p, at the reverse end of the machine, whieh, although it puts the gear at the opposite end of the barrel into motion, yet as the hollow axle of the wheel m is not fastened to the axle h by the serew h, these wheels will revolve without earrying round the frame f.

The Hot-water Oven Biseuit-baking Company possesses also a good machine with which 1 evt. of biscuit dough, or 2 ewts. of bread dough, ean be perfeetly kneaded in 10 minutes. The machine is an Ameriean invention, and of extraordinary simplieity, for it is in reality nothing more than a large eorkserew, working in a eylinder, by meaus of which the dough is triturated, squeezed, pressed, torn, haeked, and finally agglomerated as it is pushed along. The dough as it issues from that maehine ean at once be shaped into loaves of suitable size and dimensions. A maehine eapable of doing the amount of work alluded to does not come to more than from $6 l$. to $7 l$. ; the other forms of kneading machines are likewise inexpensive, so that, in addition to ${ }^{\circ}$ the ceonomy of time which they realise, there does not seem to be any excuse for retaiuing the abomination of manual kneading.

Amoug superior and very desirable apparatus for bread-making, there are at any rate three whieh fulfil the desiderata above alluded to, in the most complete and eeonomieal manner. One of them is M. Mouehot's aërothermal bakery; the seeond is A. M. Perkins' hot-water oven ; the third is Rolland's hot-air oven, with revolving floors : all three are exeellent.
Before proceeding to explain them, a plan and longitudinal seetion of au ordinary

London baker's oven is given (figs. 244 and 245), that the reader may be the better able to judge of the vast improvenent realised by the other ovens.
a, the body of the oven; b, the door ; c, the fire-grate and furnace ; d, the smoke
fluc; e, the flue above the door, to carry off the steam and hot air, when taking out the bread ; f, recess below the door, for reeeiving the dust ; y, damper plate to shut off the steam flue; h, damper plate to shut off smoke flue, after the oven has eome to its proper
 heat; i, a small iron pan over the fire-place c, for heating water; k, ash-pit below the furnace.

Fig. 246 is the front view; the same letters refer to the same object in all the figures.

The flame and burnt air of the fire at c, sweep along the bottom of the oven by the right hand side, are reflected from the baek to the left hand side, and thence escape by the flue d. Whenever the oven has acquired the proper degree of heat, the fire is withdrawn, the flues are elosed by the damper plates, and the lumps of fermented dough are introduced.

We shall now give a deseription not only of the oven, but of the improved bakery, boulangerie

perfectionnée, of M. Mouchot.

Fig. 247 is a ground plan of the aërothermal bakehouse: the gravaries being in the upper storeys, are not shown here. $b b$ are the ovens ; c, the kneading machine; d, the place where the machinery is mounted for hoisting up the bread into the store room above; e, a space common to the two ovens, into whieh the hot air passes; f, the place of a wheel driven by dogs, for giving motion to the kneading machine.

247

Fig. 248 is a longitudinal section of the oven ; A, the grate where coke or even pitcoals may be burned ; в в, void spaees which, becoming heated, serve for warmiug small pieces of dough in; cc are flues for condueting the smoke, \&e., from the fireplace ; D , seen in fig. 249, is the chimney for carrying off the smoke transmitted by the flues; $E E$, void spaces immediately over the flues, and beneath the sole $F F$, of the oven. By this arrangement the air, previously heated, whieh arrives from the void spaces is through the flucs $c c$, gets the benefit of the heat of the flame which circulates in these flues, and, after getting more heated in the spaces \mathbf{E} E, ascends through channels into the oven $F F$, upon the sole of which the loaves to be baked are laid. The hot air is admitted into it through the passages a a being drawn from the reservoirs is в b, and also by the passage $d d$, drawn from the reservoirs E e. The sole is likewise heated by contact with the hot air eontained in the space EE, placed immediately below it. The hot air, loaded with moisture, issues by the passage $b b$, and returns directly into the reservoir b B. G G, an cnelosed space directly over the oven, to obstruct the dissipation of its heat; g, vault of the fire-place. Fig. 249, it transverse section through the middle of the oven. Fig. 250, the kneading-maehine, a longitudinal section passing through its axis; rl , the contour of the maehinc, made of wood, and divided into three compartments for the reeeption of the dough. The
wooden bars oo are so placed in the interior of the empartments, as to divide the dough whenever the cylinder is made to revolve. One portion, D, of the cylinder may

be opened and laid over upon the other by means of a hinge joint, when the dough and flour are introduced. A, B, C, the three compartments of the machinc, two for making the dough, and one for preparing the sponge, called levain, or leaven, by the Freneh. a a is the pullcy whieh reccives its motion from the cngine, and transmits it to the eylinder through the pinion b, and the spur-wheel $e ; d d$, the fly-wheel to regulate the motion; g, a brake to act upon the fly d, by means of a lever $h ; i$, the pillar of the fly-wheel. There is a ratchet-wheel counter for numbering the turns of the kneading machine, but it eannot be shown in this view ; n, eross bars of wood, whieh are easily removed when the cylinder is opened; they divide the dough.

Each of the threc eompartments of the lincader (fig. 250) is furnished at pleasure
with two bars fixed erosswise, but whieh may be easily removed, whenever the eylinder is opened. These bars constitute the sole agents for drawing out the dough. In a

eontinuous operation, the leaven is eonstantly prepared in the eompartment A ; with whieh view there is put into it -

125 kilogrammes of ordinary leaven or yeast.

67	$"$	-	- flour.
33	$"$	-	- water.

In all, 225 kilogrammes.

The person in eharge of the meehanieal kneader shuts down its lid, and sets it a-going. At the end of ahout 7 minutes he hears the bell of the eounter sound, announeing that the number of revolutions has been sufficient to eall for an inspeetion of the sponge, in regard to its consistence. The eylinder is therefore opened, and after verifying the right state of the leaven, and adding water to soften, or flour to stiffen it, he eloses the lid, and sets the maehine onee more in motion. In 10 minutes more the eounter sounds again, and the kneading is eompleted. The 450 kilogrammes of leaven obtained from the two eompartments are adequate to prepare dough enough to supply alternately eaeh of the two ovens. For this purpose 75 kilogrammes of leaven are taken from eaeh of the two compartments A and A^{\prime}, and plaeed in the intermediate compartment B. The whole leaven is then $75+75=150$ kilogrammes; to whieh are added 100 kilogrammes of flour and 50 of water $=150$, so that the ehest eontains 300 kilogrammes. There is now replaeed in each of the eavities A and Λ^{\prime} the primitive quantity, by adding 50 kilogrammes of flour and 25 of water $=75$.
The eylinder is again set a-going; and, from the nature of the apparatus, it is obvious that the kneading takes plaee at onee on the leavens A and A^{\prime}, and on the paste \mathbf{B}; whieh last is examined after 7 minutes, and completed in 10 more $=17$, at the seeond sound of the eounter-bell.
The kneader is opened, the paste on the sides and on the bars is gathered to the bottom by means of a seraper. The whole paste of the ehest B being removed, 150 kilogrammes of the leaven are taken, to whieh 150 kilogrammes of flour and water are added to prepare the 300 kilogrammes of paste destined for the supply of the oven No. 2. These 75 kilogrammes of leaven from eaeh eompartment are replaeed as before, and so on in sueeession.
The water used in this operation is raised to the proper temperature, viz. 25° or $30^{\circ} \mathrm{C}$. $\left(77^{\circ}\right.$ or $86^{\circ} \mathrm{F}$.) in eold weather, and to about $68^{\circ} \mathrm{F}$. in the hot season, by mixing eommon eold water with the due proportion of water maintained at the temperature of about $160^{\circ} \mathrm{F}$., in the basin F , plaeed above the ovens.
Through the water poured at each operation upon the flour in the eompartment n, there is previously diffused from 200 to 250 grammes of fresh leaven, as obtained from the brewery, after being drained and pressed (German yeast). This quantity is suffieient to raise properly 300 kilogrammes of dough. As soon as this dough is taken out of the kneader, as stated above, and while the maehine goes on to work, the quantity requisite for eaeh loaf is weighed, turned about on the table \mathbf{D}, to give it its round or oblong form, and there is impressed upon it with the fore-arm, or roller, the eavity whieh eharaeterises eleft loaves. All the lots of dough of the size of one kilogramme, ealled eleft loaves (pains fondus), are plaeed upon a eloth, a fold of whielı is raised between two loaves, the eloth being first spread upon a board; whiel thus eharged with 10 or 15 loaves is transferred to the wooden shelves G G , in front of the oven. The whole of them rise easily under the influenee of the gentle temperature of this anteehamber or fournil. Whenever the dough loaves are suffieieutly raised here, they are put into the oven, a proeess ealled cufonrucment in Franee; whieh eonsists in setting eaeh loaf on a wooden shovel dusted with eoarse flour, and plaeing it
thereby on the sole of the oven, close to its fellow, without touching it. This operation is made easy, in consequence of the introduction of a long-jointed gas pipe and buruer into the interior of the oven, by the light of which all parts of it may be minutely examined. The oven is first kept moderately hot, by shutting the dampers; but whenever the thermometer attached to it indicates a temperature of from 300° to $290^{\circ} \mathrm{C}$. (572° to $554^{\circ} \mathrm{F}$.), the dampers or registers are opened, to restorc the heat to its original degree, by allowing of the circulation of the hot air, which rises from the lower cavities around the fire-place into the interior of the oven. When the baking is completed, the gas-light, which had been withdrawn, is again introduced into the oven, and the bread is taken out; called the process of defournement. If the temperature have becn maintained at about 300° C., the 300 kilogrammes of dough, divided into loaves of one kilogramme ($2 \frac{1}{3}$ lbs. avoirdupois), will be baked in 27 minutes. The charging having lasted 10 minutes, aud the discharging as long, the baking of cach batch will take up 47 minutes. But on account of accidental interruptions, an hour may be assigned for each charge of 260 loaves of 1 kilogramme each; being at the rate of 6240 kilogrammes (or 6.75 tons) of bread in 24 hours.

Although the outer parts of the loaves be exposed to the radiation of the walls, heated to 280° or $300^{\circ} \mathrm{C}$., and undergo therefore that kind of caramelisation (charring) which produces the colour, the taste, and the other special characters of the crust, yet the inner substance of the loaves, or the crumb, never attains to nearly so high a temperature; for a thermometer, whose bulb is inserted into the heart of a loaf, does not indichte more than $100^{\circ} \mathrm{C}$. ($212^{\circ} \mathrm{F}$.)

Perkins' hot-water oven is an adaptation of that distinguished engineerss stove, which, as is well known, is a mode of heating by meads of pipes full of water, and hermetically closed; but with a sufficient space for the expansion of the water in the pipes. As a means of warming buildings the invention has already produced the very beneficial effects which have gained for it an extensive patronage. There is 110 doubt but that this novel application entitles the inventor to the warmest thanks of the public. The following figure (251), represents onc of these ovens. A, stove; B, coil of iron pipe placed in the stove ; c c, flowpipe ; n, expansive tube ; e, oven charged with loaves, and surrounded with the hot-water pipes ; F, return hot-water pipe; \mathbf{G}, door of the oven; r, flue for the escape of the vapours in the oven; r, rigid bar of iron supporting the regulating box ; J J, regulating box containing threc small levers; к, nut adjusted so that if temperature of the hot-water pipe is increased beyond the adjusted point, its elongation causes the nut to bear upon the levers in the box J, which levers, lifting the straight rod \mathbf{x}, shat the damper mof the stove ; \mathbb{N} is an index indicating the temperature of the hot-water pipes.

251

The oven is first built in the ordinary manner of sound briekwork, made very thick in order to retain the heat. Then the top and bottom of the internal surfaces are lined with wrought-iron pipes of one iuch external diameter, and five-eighths of an inch internal diametcr, and their surface amounts, in the aggregate, to the whole surface of the oven. These pipes are then connceted to a coil in a furnace outside the oven. The coil having sucli a rclative proportion of surface to that which is in
the oven, that the pipes may be raised to a temperature of $550^{\circ} \mathrm{F}$., and no morc. This fixed and uniform temperature is maintained by a self-regulating adjustment peculiar to this furnace, which works with great precision, and which cannot get out of order, since it depends upon the expansion of the upper ascending pipe close to the furnace acting upon thrce levers connected with the damper which regulates the draught. The movable nut at the hottom of that expanding pipe being adjusted to the requisite temperature, that precise temperature is uniformly retained. The smallest fluctuation in the heat of the water which circulates in the pipes instantly sets the levers in motion, and the expansion of onc-thirty-sixth part of an inch is sufficient to close the damper.

It will be observed that if the pipes be heated to $550^{\circ} \mathrm{F}$. the brickwork will soon attain the same temperature, or ncarly so, and accordingly the oven will thus possess double the amount of the heating surface of ordinary ovens applicable to baking. The baking temperature of the oven is from 420° to $450^{\circ} \mathrm{F}$., which is ascertained by a thermometer with which the oven is provided.

With respect to Rolland's oven, Messieurs Boussingault, Payen, and Poncelet, in their report to the Institute of Francc ; Gaultier de Glaubry, in a report made in the name of the Committee of Chemical Arts to the Société d'Encouragement; and the late M. Arago, represented that oven as successfully meeting all the conditions of salubrity, cleanliness, and hygiène. Wood, coals, ashes, are likewise banished from it, and neither smoke nor the heated air of the furnace can find access to it. As in Perkins', the furnace is placed at a distance from the mouth of the oren, but instead of conveying the heat by pipes, as in the hot-water oven, it is the smoke and hot air of the furnace which, cireulating through fan-shaped flues, ramifying under the floor and spreading over the roof of the oven, impart to it the requisite temperature. The floor of the oven, on which the loaves are deposited, consists of glazed tiles, and it can thus be kept perfectly clean. The distinctive character of M. Rolland's oven, however, is that the glazed tiles just spoken of rest upon a revolving platform which the workman gradually, or from time to time, moves round by means of a small handle, and without effort.
Figures 252 to 261 represent the construction and appearance of M. Rolland's oven on a reduced scale.
252. Front elevation.
253. Vertical section through the axis of the firegrate.
254. Ditto, ditto.
255. Elevation of one of the vertical flues.
257. Plan of the first floor.
258. Plan of the sole.
259. Plan of the second floor.
260. Plan of the firegrate and flues.
261. Plan of the portion under ground.

When the oven has to be charged, the workman deposits the first loaves, by means of a short pecl, upon that part of the revolving platform which lies before the mouth of the oven, and when that portion is filled, he gives a turn with the haudle, and proceeds to put the loaves in the fresli space thus presented before him, and so on until the whole is fitted up. The door is then closed through an opening covered with glass, and reserved in the wall of the oven, which is lighted up with a jet of gas, or by opening the door from time to time the progress of the baking may be watched; if it appears too rapid on one point, or too slow on another, the journeyman can, by

BREAD.

means of the handle, bring the loaves suceessively to the hottest part of the oven, and vice versâ, as occasion may require. The oven is provided with a thermometer, aud, in an experiment witnessed, the temperature indicated $210^{\circ} \mathrm{C}=410^{\circ} \mathrm{F}$., the baking

257

of a full charge was completed in one hour and ten minutes, and the loaves of the same kind were so even in point of size and colour that they could not be distin-
guished from each other.

Vol. 1.

The top of the oveu is provided with a pan for the purpose of heating the water necessary for the preparation of the dough, by means of the lieat whieh in all other plans (Mouehot's exeepted) is lost. The workman should take eare to keep always

some water in that pan, for otherwise the leadeu pipe would melt and oeeasion dangerous leaks. For this and other reasons the safest plan, however, would be to replaee this leaden pipe hy an iron one. The said pan should be frequently seoured, for, if negleeted, the water will heeome rusty and spoil the colour of the hread. Bread haking may be eonsidered as eonsisting of four nperations-namely, heating the oven, putting the dough into the oven, haking, and taking the loaves out of the oven. The general direetions given by Mr. Rollaud for eaeh of these operations are as follows :-
In order to obtain a proper heat and one that may he easily managed, it is neeessary to eharge the furnaee moderately and often, and to keep it in a uniform state.
When the fire is kindled, the door should he kept perfectly elosed, in order to enmpel the eurrent of air neeessary to the eomhustion to pass through the grate, and thenee through the flues under and the dome over the oven. If, on the eontrary, the furnaee door were left ajar, the eold air from without would rapidly pass over the eoals without becoming properly heated, and passing in that eondition into the flues would fail in raising it to the proper temperature. In order that the flame and heated products of the emmbustion may pass throngh all the flues, it is, of eourse, necessary to keep them elear by introdueiug into them onee a unonth a brusl made of wire, or

whalcbone, or those whieh are now generally used for sweeping the tubes of marine tuhular boilers, and the hest of whiel are those patented and manufaetnred by Messrs. Moriarty of Greenwich, or How of London. The vertieal flues whieh are built in the masonry are eleared from without or from the pit, aceording to the nature of the plan adopted in huilding the oven. These flues need not be eleaned more often than about onee in three months.
Sweeping hetween the floors should be performed about every fortnight.
In ease of aecideut or injury to the thermometers, the following direetions, which
indeed apply to all ovens, may enable the baker to judge of the temperature of his oven. If on throwing a few pinches of flour on the wiles of the oven it remains white after the lapse of a few sceouds, the temperature is two low; if, on the contrary, the flour assumes a deep brown colour, the temperature is too high; if the flour turns yellowish, or looks slightly scorched, the temperature is right.
'The baking in Rolland's oven takes place at a temperature varying from 410 to 432 F. according to the nature and size of the articles intended to be balked. During the baking, the revolving floor is turned every ten or twelve minutes, so that the loaves not remaining in the same place the baking becomes equal thronghout.

As to the hot-water oven, two establishments only have as yet adopted it in England; one of them is the "Hot-water Oven Biscuit-baking Company," on whose premises fancy buisenits only are baked; the second cstablishment is that of a haker of the name of Neville, earrying on his business in London. With respect to M. Mouehot's system, it is not eren known in this country, otherwise than by having been alluded to in one or two teehnologieal publieations or dietionaries.

The quantity of bread which ean be made from a saek of flour depends to a great extent upon the quantity of gluten that the flour of whieh it is made contains, but the wheat which coutains a large proportion of nitrogenous matter does not yield so white a flour as those which are poorer. From a great number of determinations it is found that the amount of gluten contained in the flour to make best white bread ranges from 10 to 18 per cent., that of the stareh being from 63 to 70 per cent., the ashes ranging from 0.5 to 1.9 per cent.

This day (17 th of March, 1858) the saek of genuine best household flour, weighing 280 lbs., delivered at the baker's shop, costs $42 s$. , and the number of sacks of flour converted weekly into bread by the London bakers is nearly 30,000 , which gives about 12 saeks of flour per week as the average trade of each of them. The average eapital of a baker doing that amount of business may be computed at 300l., wbich at 5 per cent. gives 15l. interest; his rent may be estimated at about $55 l$., and the rates, taxes, gas, and other expenses at about $25 l$., in all $95 l$., or very nearly $1 l .16 s .6 \frac{1}{2} d$. per week, which sum divided by 12 would give $3 s$. $0_{2}^{1} d$. pcr sack.

In the ordinary plan of bread making, London bakers reckon that 1 sack of such a flour, weighing 280 lhs., will make 90 real 4 -lb. loaves (not quartern) of pure genuine bread, although a saek of sueh flour may yield him 94 or even 95 quartern (not 4-1b.) loaves.*
From this aceount it may be easily imagined that if the baker could suceeed in disposing at once of all the loaves of his day's baking either by sale at his shop, or, still better, by delivery at his eustomers' residenees, such a business would indeed be a profitable one commercially speaking, for on that day he would sell from 28 to 34 lbs . of water at the price of breard, not to speak of the deficient weight: but, on the one hand, so many people provokingly require to have their loaves weighed at the shop, and are so stingily partieular about having their short weight made up; and, on the other hand, the loaves, between the first, second, and third day, do so obstinately persist in letting their water evaporate, that the loss of weight thus sustained nearly balanees the profit obtained upon the loaves sold on the first day at the shop, or to those customers who have their bread delivered at their own own door, to those wbo the baker knows, from position or avoeations, will never take the trouble to verify the weight of his.loaves, and who, he says, are gentlefollss, and no mistake about it.

As to those bakers who, by underbaking, or by the use of alum, or by the use of both alum and underbaking, manage to obtain $96,98,100$, or a still larger number of loaves from inferior flour, or unaterials, their profit is so reduced by the much lower price at which they are compelled to sell their sophistieated bread, that their tamperings avail them but little; theif emphatically hard labour yields theu but a mere pittance, exeept their business be so extensive that the small profits swell up into a large sum, in whieh case they only jeopardise their name as fair and honest tradesmen.

Looking now at the improved ovens, of which we have been speaking merely in an eeonomical point of view, and abstractedly from all other considerations, the profits realised by their use appears to be well worth the baker's attention. But as with the improved ovens the ceonomy bears upon the wages and the fuel, the ad vantages are nuuch less considerable in a small eoncern than in a large one. Thus the ceonouy which, upon 12 saeks of flour per week, would scareely exceed 20 shillings upon the whole,

There are of course a few bakers whoso quartern loaves weigh exaetly four pounds, but the linmonse mijorlty are from four to six ounees sliort.
would, on the contrary, assume considerable proportions in establishments baking from 50 to 100 sacks per week. We give here the following comparative statements of converting flour into bread at the rate of 70 saeks per week, from documents whieh may be fully relied upon. 70 saeks of flour manufaetured into genuine bread, in the ordinary way, would yield 6300 real $4-\mathrm{lb}$. loaves, and the aceount would stand as follows, taking 90 loaves, weighing really 4 lbs., as the ultimate yield of 1 saek of good household flour, of the quality and priee above alluded to:-

By the Ordinary Process.
 RETURNS.

By Perkins's Process.

RETURNS.

In Rolland's proeess the profits are very nearly the same as in that of Perkins, except the amount of fuel consumed is still more reduced, and does not amount, it is stated, to more thau $4 \frac{1}{2} d$. per sack, which for 70 sacks is $1 l .6 s .3 d$., instead of $1 / .15 s$., or $9 s$. difference betweeu the two methods for baking that quantity of flour.

The riehness or nutritive powers of sound flour, and also of bread, are proportional to the quantity of gluten they contain. It is of great importance to deternine this point, for both of these objeets are of enormous value and consumption; and it may be aceomplished most easily and exaetly by digesting in a water-bath, at the temperature of $167^{\circ} \mathrm{F}$., 1000 grains of bread (or flour) with 1000 grains of bruised barley malt, in 5000 grains, or in a little more than half a pint, of water. When this mixture ceases to take a blue colour from iodine (that is, when all the stareh is couverted into a soluble dextrine), the gluten left unchanged may be colleeted on a filter cloth, washed, dried at a heat of $212^{\circ} \mathrm{F}$, and weighed. The colour, texture, and taste of the gluten ought also to be examined, in forming a judgment of good flour
or bread.

The question of the relative value of white and of brown bread, as nutritive agents, is one of very long standing, and the arguments on both sides may be thus resumed.

The advocates of brown bread hold :-
That the separation of the white from the brown parts of wheat grain, in making bread, is likely to be baneful to health;
That the general belief that bread made with the finest flour is the best, and that whiteness is a proof of its quality, is a popular error
That whiteness may be, and generally is, communieated to bread by alum, to the injury of the consumer;

That the miller, in refining his flonr, to please the public, removes some of the ingredients nceessary to the composition and nomrishment of the various organs of our hodies; so that fine flour, instead of being better than the meal, is, on the contrary, less nourishing, and, to make the case worse, is also morc difficult of digestion, not to speak of the enormous loss to the population of at least 25 per cent, of branny flour, containing from 60 to 70 per cent. of the most nutritious part of the flour, a loss which, for London only, is equal to at least 7500 sacks of flour annually ;

That the uuwise preference given so universally to white bread, leads to tbe pernicious practice of mixing alum with the flour, and this again to all sorts of inpositions and adulterations; for it enables the bakers who are so disposed, by adding alum, to make bread manufactured from the flour of inferior grain to look like the best and more costly, thus defrauding the purchaser and tanpering with his health.

On the other side, the partisans of white bread contend, of course, that all these assertions are without foundation, and their reasons were summed up as follows in the Bakers' Gazette, in 1849:-
"The preference of the public for white bread is not likely to be an absurd prejudice, seeing that it was not until after years of experience that it was adopted by them.
"The adoption of white bread, in preference to any other sort, by the great body of the community, as a general article of food, is of itself a proof of its being the best and most nutritious.
"The finer and better the flour, the more bread can be made from it. Fifty-six pounds of fine flour from good wheat will make seventy-two pounds of good, sound, well-baked bread, the bread having retaincd sixtecn pounds of water. But bran, either fine or coarse, absorbs little or no water, and adds no more to the bread than its weight."

And lastly, in confirmation of the opinion that white bread contains a greater quantity of nutriment than the same weight of brown bread, the writer of the article winds up the white bread defence with a portion of the Report of the Committee of the House of Commons, appointed in 1800, "to consider means for rendering more effectual the provisions of 13 Geo. III., intituled 'An Act for the better regulating the assize and making of Bread.' "

In considering the propriety of recommending the adoption of further regulations and restrictions, they understood a prejudice existed in some parts of the country against any coarser sort of bread than that which is at present known by the name of "fine household bread," on the ground that the former was less wholesome and nutritious than the latter. The opinions of respectable physicians examined on this point are, - that the change of any sort of food which forms so great a part of the sustenance of man, might for a time affect some constitutions; that as soon as persons were habituated to it, the standard wheaten bread, or even bread of a coarser sort, would be equally wholesome with the fine wheaten bread which is now generally used in the metropolis; but that, in their opinion, the fine wheaten bread would go farther with persons who have no other food than the same quantity of bread of a coarser sort.

It was suggested to them that if only one sort of flour was permitted to be made, and a different mode of dressing it adopted, so as to leave in it the fine pollards, 52 lbs . of flour might be extracted from a bushel of wheat weighing 60 lbs ., instead of 47 lbs., which would afford a wholesome and nutritious food, and add to tbe quantity 5 lbs. in evcry bushel, or somewhat more than $\frac{1}{8}$ th. On this they remarked, that there would be no saving in adopting this proposition; and they begged leave to obscrve, if the physicians are well founded in their opinions, that bread of coarser quality will not go equally far with fine wheaten bread, an increased consumption of wheaten bread would be the consequence of tbe measurc.

From the baker's point of view, it is evident that all his sympathies must be in favour of the water-absorbing material, and therefore of the fine flour; for each pound of water added and retained in the bread which he sells, represents this day so many twopences; but the purchaser's interest lies in just the opposite direction.

The question, however, is not, in the language of the Committce of the House of Commons of those days, or of the physicians whom they consulted, whether a given weight of wheaten bread will go farther than an equal weight of bread of a coarscr sort; nor whether a given weight of pure flour is more nutritions than an equal weight of the meal from the same wheat used in making brown brcad. The real question is,- Whether a given weight of wheat contains more nutriment than the flour obtained from that weight of wheat.

The inquiry of the Committee of the Honse of Commons, and the defcnee of white bread versus brown bread, resting as it does, in this respect, upon a false ground, is therefore perfectly valueless; for whatever may have been the opinion of respectable
physicians and of committees, either of those days or of the prescnt times, onc thing is certain-namely, that bran contains only 9 or 10 per cent. of woody fibre, that is, of matter devoid of nutritious property ; and that the remainder consists of a larger proportion of gluten and starch, fatty, and other highly nutritive, constituents, with a few salts, and water, as proved by the following analysis by Millon:-

Composition of Wheat Bran.

Starch	-	-	-	-	-	-	-	-	-
$52 \cdot 0$									
Gluten	-	-	-	-	-	-	-	-	-
Sugar	-	-	-	-	-	-	-	-	-
$1 \cdot 0$									
Fatty matter	-	-	-	-	-	-	-	-	$3 \cdot 6$
Woody "	-	-	-	-	-	-	-	-	$9 \cdot 7$
Salts	-	-	-	-	-	-	-	-	-
Water	-	-	-	-	-	-	-	$-13 \cdot 8$	

And it is equally certain that wheat itself-I mean the whole grain-does not contain more than 2 per cent. of unnutritious, or woody matter, the bran being itself richer, weight for wcight, in gluten than the fine flour; the whole meal contains, accordingly, more gluten than the fine flour obtained therefrom. The relative proportions of gluten in the whole grain, in bran, and in flour of the same sample of wheat, were represented by the late Professor Johnston to be as follows :-

Gluten of Wheat.

Whole grain -	-	-	-	-		
Whole bran	per cent.					
Fine flour	-	-	-	-	-	14 to 18
-	-					

Now, whercas a bushel of wheat weighing 601 bs . produces, according to the mode of manufacturing flour for London, 47 lbs. -that is, 78 per cent. of flour, the rest being bran and pollards; if we deduct 2 per cent. of woody matter, and $1 \frac{1}{2}$ pcr cent. for waste in grinding at the mill, the bushel of 601 bs . of wheat would yield 58 lbs , or at least 96_{3}^{2} per cent., of nutritious matter.

It is, therefore, as clear as anything can possibly be, that by using the whole mcal instead of only the fine flour of that wheat, there will be a difference of about $\frac{1}{6}$ th in the product obtained from equal weights of wheat.
In a communication made to the Royal Institute nearly four years ago, M. Mège Mouries announced that he had found under the envelopc of the grain, in the internal part of the perisperm, a peculiar nitrogenous substance capable of acting as a ferment, and to which he gave the name of "córéaline." This substance, which is found wholly, or almost so, in the bran, but not in the best white flour, has the property of liquefying starch, very much in the same manner as diastase; and the decreased firmness of the crumb of brown bread is referred by him to this action. The coloration of bread made from mcal containing bran is not, according to M. Mège Mouriès, due, as has hitherto been thought, to the presence of bran; but to the peculiar action of cerealin; this new substance, like vegetable casein and gluten, being, by a slight modification, due perhaps to the contact of the air, transformed into a ferment, under the influence of which the gluten undergoes a great alteration, yielding, among other products, ammonia, a brown-coloured matter analogous to ulmine, and a nitrogenous product capable of transforming sugar into lactic acid. M. Mège Mouriès having experimentally established, to the satisfaction of a committec consisting of MM. Chevreul, Dumas, Pclouze, and Peligot, that by paralysing or destroying the action of cerealin, as described in the specification of his patent, bearing date the 14th of June, 1856, white bread, having all the characters of first-quality bread, may be made, in the language of the said specification, "with using either all the white or raw elcments that constitute either coru or rye, or with such substances as could produce, to this day,
but brown bread" but brown bread."

Cerealin, according to M. Mège Mouriès, las two very distinct properties:the first consists in converting the hydrated starch into glucose and dextrine; the second, which is much more important in its results, transforms the glucose into solve the gluten fact, a series of decompositions, py and emulsive, like that of rye; producing, in teristics of bread made from inferior flour eventually a loaf having all the charac-
In order to convert the whole of the bread, it is thereforc neeessary to destroy the cerealin; and the proeess, or series of
processes, ly whieh this is aecomplished, is thus described by M. Mège Mouriès in his speeification :-
"The following are the means I employ to obtain my new product:-
"1st. The application of vinous fermentation, produced by alcoholie ferment or yeast, to destroy the ferment that I call 'céréaline' existing, together with the fragmeuts of bran, in the raw flour, and which in some measure produces the acidity of brown bread directly whilst it destroys indircetly most part of the gluten.
" 2ndly. The thorough purification of the said flour, either raw or mixed with bran, (after dilution and fermentation,) by the sifting and separating of the farinaeeous liquid from the fragments of bran disseminated by the millstone into the inferior products of corn.
"3dly. The employing that part of eorn producing brown bread in the rough state as issuing from the mill after a first grinding, in order to faeilitate its purification by fermentation and wet sifting.
" 4 thly. The employing an aeidulated water (by any aeid or acid salt) in order to prevent the lactic fermentation, preserving the vinous fermentation, preventing the yellow colour from turning into a brown colour (the ulmic aeid), and the good taste of corn from assuming that of brown bread. However, instcad of acidulated water, pure water may be employed with an additiou of yeast, as the acid only serves to facilitate the vinous fermentation.
" 5 thly. The grinding of the corn by means of millstones that erush it thoroughly, increasing thereby the quantity of foul parts, a method which will prove very bad with the usual proeess, and very advantageous with mine.
" 6 thly. The application of corn washed or stripped by any suitable means.
" 7 thly. The application of all these contrivances to wheat of every description, to rye, and other grain used in the manufacture of bread.
"8thly. The same means applied to the manufacture of biscuils.
"I will now deseribe the manner in which the said improvements are earried into effect.
" First Instanee. When flour of inferior quality is made use of.-This description of flour, well known in trade, is boited or sifted at 73,75 , or 80 per cent. (a mark termed Scipion mark in the French War Department), and yields bread of middle quality. By applying to this sort of flour a liquid yeast, rather different from that which is applied to white flour, in order to quicken the work and remove the sour taste of bread, a very niee quality will be obtained, which result was quite unknown to everybody to this day, and which none ever attempted to know, as none before me was aware of the true eauses that produce brown bread, \&c.
" Now, to apply my process to the said flour (of inferior mark or quality) I take a part of the same - a fourth part, for instance - which I dilute with a suitable quantity of water, and add to the farinaceous liquid 1 portion of beer yeast for 200 portions of water, together with a small quantity of aeid or acid salt, sufficient to impart to the said water the property of lightly staining or reddening the test-paper, known in France by the name of papier de tournesol. When the liquid is at full working, I mix the remaining portions of flour, which are kneaded, and then allowed to ferment in the usual way. The yeast applied, whieh is quite alcoholic, will yield perfectly white bread of a very niee taste; and I deelare that if similar yeast were ever commended before, it was certainly not for the purpose of preventing the formation of brown bread, the eharacter of which was believed to be inherent to the nature of the very flour, as the following result will suffieiently prove it, thus divesting sueh an application of its industrial appropriation.
"Second Instanee. When raw flour is made use of.-By raw flour, I mean the corn crushed only once, and from which 10 to 15 per cent. of rough bran have been separated. Such flour is still mixed with fragments of bran, and is employed in trade to the manufacture of so ealled white flour and bran after a second and third griuding or crushing. Instead of that, I only separate, and without submitting it to a fresh crushing, the rough flour in two parts, about 70 parts of white flour and 15 to 18 of rough or coarse flour, of which latter the yeast is made ; this I dilute with a suitable quantity of water, suffieient to reduce the whole flour into a dough, say, 50 per cent. yeast and acid, (whenever acid is applied, which is not indispensably added the stated,) and the whole is allowed to work for 6 hours at a tispensable, as before for 12 hours at 68°, and for 20 hours at 59°, thus proportionally to the temper $77^{\circ} \mathrm{F}$. While this working or fermentation is going on, the various elements (cércealine ese. which by their peeuliar action are productive of brown bread, have uudergone. : modification ; the rough parts are separated, the gluten stripped from its pellicles and disaggregated, aud the same flour whiel, by the usual process, could have ouly produced deep brown bread, will actually yicld first-rate bread, far superior to that
sold by bakers, cbiefly if the fragments of bran are separated by the following process, whieb consists in pouring on the sicve, deseribed hereafter, the liquid containing the rough parts of flour thus disaggregated and modified by a well-regulated fermentation.
"The sieve alluded to, whiclı may be of any form, and consist of several tissues of different tightness, the closest being ever arranged underneath or the most forward, wheu the sieve is of eylindrieal or vertieal form, is intended to keep back the fragments of bran, which would by their interposition impair the whitencss of bread, and by tbeir weight diminish its nutritive power. The sifted liquid is white, and constitutes the yeast with whieh the white flour is mixed after being scparated, so as to make a dough at either a first or several workings, according to the baker's practice. This dough works or ferments very quickly, and the bread resultiug therefrom is unexecptionable. In case the whiteness or neatness of bread sbould be looked upon as a thing of little conscquenee, a broader sieve might be employed, or even no sieve used at all, and yet a very nice bread be obtained.
"The saving sccured by the applieation of my process is as follows:-By tbe common proeess, out of 100 parts of wheat 70 or 75 parts of flour are extracted, whieh are fit to yield cither white or middle bread; whilst, by the improved process, out of 100 parts of wbeat 85 to 88 parts will be obtained, yielding bread of supcrior quality, of the best taste, neatness, and nutritious richncss.
"In case new yeast cannot be easily provided, the same should be dried at a temperature of about 86° F., after being suitably separated by means of some inert dust, aud previous to being made use of it sbould be dipped into 10 parts of water, lightly sweetened, for 8 to 10 hours, a fit time for the liquid being brought into a full fermentation, at which time the yeast has recovered its former power. The same process will hold good for manufaeturing rye bread, only 25 per cent., about, of coarse bran are to be extracted. For manufacturing biscuits, I use also the same process, only the dough is made very hard and immediztcly taken into the oven, and the produets thus obtained are far supcrior to the common biscuits, both for their good taste and preservation. Should, however, an old practice exelude all manner of fermentation, then I might dilute the rough parts of flour in either aeidulated or non-acidulated water, there to be left to work for the same time as beforc, then sift the water and decant it, after a proper settling of the farinaeeous matters of which the dough is to be made; thus the action of the acid, decantation, and sifting, would cffeetively remove all causes of alteratiou, whieh generally impair the biscuits made of inferior flour.
"The apparatus equired for tbis process is very plain, and consists of a kreading trough, in wbich the foul parts arc mixed mecbanically, or by manual labour, with the liquid above mentioned. From this trough, and through an opening made tbercin, tbe liquid mixture drops into the fermenting tub, deeper tban wide, which must be kept tightly closed during the fermenting work. At the lower part of this tub a cock is fitted, whieh lets the liquid mixture down upon an ineline plane, on which the liquid spreads, so as to be equally distributed over the whole surface of the sieve. This sieve, of an oblong rectangular form, is laid just beneath, and its tissue ought to be so elose as to prcvent the least fragments of bran from passing through; it is aetuated by the hand, or rather by a crank. In all eases that part of the sieve which is opposite to the cock must strike upou an unyielding body, for the purpose of shaking the pellicles remaining on the tissue, and driving them down towards an outle on the lower part of the sieve, and thence into a trough purposely contrived for receiving tbe watcrs issuing from the sieve, and discharging them into a tank.
"The next operation eonsists in diluting those pellicles, or rougher parts, which could not pass through the sicve, sifting them again, and using the white water resulting therefrom to dilute the foul parts intended for subsequent operations. The sieve or sieves may sometimes happen to be obstructed by some parts of gluten adhering thercto, whieh I wash off with aeidulated water for silk tissues, and with an alkali for metallic oncs. This washing method I deem very important, as its non-applieation, may hiuder a rather large opcration, and thercfore I wish to secure it. This apparatus may be liable to some variations, and admit of sevcral sieves supcrposed, and with different tissues, tbe broadest, however, to be placed uppermost.
"Among the various deseriptions and combinations of sicves that may be employed, the annexed figures show one that will give satisfaetory results.
"Fig. 263 is a longitudinal seetion, and fig. 264 an end view, of the maehiue from whicb the bran is ejeeted. The apparatus rests upon a cast-iron framing a, consisting of two eheeks, kept suitably apart by tic pieces b; a strong eross bar on the upper part admits a wood cylinder c, circled round with iron, and provided with a wooden coek d. Tbe eylinder c receives through its eentre an arbor f, provided
with four arms e, which arbor is supported by two cross bars g and h, secured by means of bolts to the uprights i. Motion is imparted to the arbor f by a crank j, by pulleys driven by the endless straps k, and by the toothed wheel l, gearing into the wheel m, which is keyed on the upper cnd of the arbor f. Beneath the cylinder c,

two sieves n and o are borne into a frame p, suspended on one end to two chains q, and on the other resting on two guides or bearings r, beneath which, and on the crank shaft, are cams s, by which that end of the frame that carries the sicves is alternately raised and lowered. A strong spring u is set to a shaft borne by the framing a, whilst a ratchet wheel provided with a clink allows the said spring, according to the requirements of the work, to give morc or less impulse or shaking as the cams s are acting upon the frame-sieve carrying the sieve. Bencath the said frame a large hopper t is disposed, to receive and lead into a tank the liquid passing through the sieves. The filter sieve is worked as follows :-After withdrawing, by means of bolting hutches, 70 per cent., about, of fine flour, I take out of the remaining 30 per cent. about 20 per cent. of groats, neglecting the remaining 10 per cent., from which, howcver, I could scparate the little flour still adhering thercto, but I decm it more available to sell it off in this state. I submit the 20 per cent. of groats to a suitable vinous fermentation, and have the whole taken into the cylinder c, there to be stirred by means of the arbor f and the armse; after a suitable stirring, the cock d is opened and the liquid is let out, spread on the uppermost sieve n, which keeps back the coarsest bran. The liquid drops then into the sccond sieve or filter o, by which the least fragments are retained ; the passage of the liquid through the filters is quickened by the quivering motion imparted by the cams s to the frame carrying the sieve."

The advantages resulting from such a process arc obvious : first, it would appear and those experiments have been confirmed by the committee of the Académic des Sciences, who had to report upon them - that no less than from 16 to 17 per cent. of white bread of supcrior quality can be obtained from wheat, which increasc is not due to water, as in other methods, but is a true and real one, the Commissioners having ascertained that the bread thus manufactured did not contain more water than that made in the usual way, their comparative examinations in this respect laving given the following results:-

Loss by drying in Air.

Old method	-		-	$\begin{gathered} \text { Crumb } \\ 37 \cdot 8 \end{gathered}$	-	-	$\begin{aligned} & \text { Crust. } \\ & 12.0 \end{aligned}$
New method	-	.	-	$37 \cdot 5$	-	-	14.0
Difference	-	-	-	003	-	-	$2 \cdot 0$

Another experiment by Peligot:-
Loss by drying in Air at $248^{\circ} \mathrm{F}$.

Sinee the enrolment of his Speeification, however, M. Mège Mouriès has made an improvement, which simplifies considerably his original proeess, aeeording to which the destruetion of the cerealin, as we saw, was effeeted by ordinary yeast; that is to say, by alcoholie fermentation. The last improvement eonsists in preventing eerealin from becoming a laetie or glueosie ferment, by preeipitating it with common salt, and not allowing it time to become a ferment. In effeet, in order that ecrealin may produee the objeetionable effects alluded to, it must first pass into the state of ferment, and, as all nitrogenous substanees require a eertain time of ineubation to beeome so*, if, on the one hand, eerealin be preeipitated by means of common salt, the glueosie aetion is neutralised; whilst, on the other hand, the levains being made with flour eontaining no eerealin-that is to say, with best white flour-if a short time before baking households or seconds are added thereto, it is elear that time will be wanting for it (the ferment) to beeome developed or organised, and that, under this treatment, the bread will remain white.

The applieation of these seientifie deduetions will be better understood by the following deseription of the proeess :-

100 parts of elean wheat are ground and divided as follows :-

These figures vary, of course, aeeording to the kind of wheat used, aecording to seasons, and aeeording to the deseription of mill and the distance of the millstones used for grinding.
"In order to convert these produets into bread," says M. Mège Mouriès, " a leaven is to be made by mixing the 40 parts of best flour above alluded to, with 20 parts of water, and proeeeding with it aeeording to the mode and eustom adopted in each loeality. This leaven, no matter how prepared, being ready, the 8 parts of groats mixed with the larger quantity of bran above alluded to, are diluted in 45 parts of water in which 0.6 parts of eommon salt have been previously dissolved, and the whole is passed through a sieve which allows the flour and water to pass through, but retains and separates the partieles of bran. The watery liquid so obtained has a white eolour, is floeeulent, and loaded with eerealin; it no longer possesses the property of liquefying gelatinous stareh, and weighs 38 parts (the remainder of the water is rctained in the bran, whieh has swelled up in eonsequenee, and remains on the sieve). The learen is then diluted with that water, whieh is loaded with best flour, aud is used for eonverting into dough the 38 parts of white groats above alluded to ; the dough is then divided into suitable portions, and after allowing it to stand for one hour, it is finally put in the oven to be baked. As the operations just deseribed take plaee at a temperature of $25^{\circ} \mathrm{C} .\left(=77^{\circ} \mathrm{F}\right.$.), the one hour during whieh the dough is left to itself, is not suffieient for the cercalin to pass into the state of ferment, and the consequenee is the production of white bread. Should, however, the temperature be higher than that, or were the dough allowed to be kept for a longer time before baking, the bread produecd, instead of being white, would be so mueh darker, as the contact would have lasted longer. By this proeess, 100 parts in weight of wheat yield 136 parts of dough, and, finally, 115 parts in weight of bread "instead of 100 , whiel the same quantity of wheat would have yielded in the usual way. This is supposing that the grinding of the wheat has been effected with elose set millstones; if ground in the usual manuer, the average yield does not exeeed 112 parts in weight
of bread.

[^35][^36]are, water, alone or incorporated with rice, or water and alum : other substauces, however, are or have been also occasionally used for the same purpose; they are, sulphute of copper, carbonate of magnesia, sulphate of zinc, carbonate of ammonia, carbonate and biearbonate of potash, carbonate and bicarbonate of soda, chalk, plaster, lime, elay, starch, potatoss, and other fecula.

This retention of water into bread is seeured by underbaking, by the introduction of riec and feculas, and of alum.

Underbaking is an operation which eonsists of keeping in the loaf the water which otherwise would escape while baking; it is, thercfore, a process for selliug water at the price of bread. It is done by introducing the dough into an oven unduly heated, whereby the gases contained in the dough at onee expand, and swell it up to the ordinary dimensions, whilst a decp burnt erust is immediately afterwards formed; whieh, inasmuch as it is a bad conductor of heat, prcvents the interior of the loaf from being thoroughly baked, and at the same time opposes the free cxit of the water contained in the dough, aud whieh the heat of the oven partly converts into steam; while the crust bceomes thieker and darker than it otherwise should be, a sensible loss of nutritive elements being sustained, at the same time, in the shape of pyrogenous products which are dissipated.

The proportion of water retained in bread by underbaking is sometimes so large, that a baker may thus obtain as mueh as 106 loaves from a sack of flour.

The addition of boiled rice to the dough is also pretty frequently used to inerease the yield of loaves; this substanee, in fact, absorbs so much water that as many as 116 quartern loaves have thus been obtained from one sack of flour.

From a great number of experiments made with a view to determine the normal quautity of water contained in the erumb of genuine bread, it is ascertained that it amounts, in new bread, from 38 at least to at most 47 per cent.

The quantity of water eontained in bread is easily determined, by eutting a slice of it, weighing 500 grains, for example, placing it in a small oven heated, by a gasburner or a lamp, to a temperature of about $220^{\circ} \mathrm{F}$., until it no longer loses weight, the difference between the first and last weighing (that is to say, the loss) indicating, of course, the amount of water.
Alum, however, is the priueipal adulterating substance used by bakers, alnost without exception, in this metropolis; as was proved by Dr. Normanby in his evidence before the Select Committee of the House of Commons, appointed in 1855, under the presidenee of Mr. W. Seholefield, to inquire into the adulteration of food, drinks, and drugs, whieh assertion was corroborated and established beyond doubt by the other chemists who were examined also on the subject.
The introduction of alum into bread not only enables the baker to give to bread made of flour of inferior quality the whitencss of the best bread, but to force and keep in it a larger quantity of water than could otherwise be done. We shall see presently that this fact has been denied, and on what grounds.
The quantity of alum used varies exceedingly; but no appreciable effeet is produced when the proportion of alum introduced is less than 1 in 900 or 1000 , which is at the rate of 27 or 28 grains in a quartern loaf. The use of alum, however, has become so universal, and the Act of Parliament which regulates the matter has so long been eonsidered as a dead letter, from the trouble, and chance of pecuniary loss which it entails on the prosecutor should his aeeusation prove unsuccessful, that but few, and until quite lately none, of the public officers would undertake the discharge of a duty most disagreeable in itself and at the same time full of risk.
When alum is used in making bread, one of the two following things may happen: either the alum will be decomposed, as just said, in which case the alumina will, of necessity, be set free as soon as digestion will have decomposed the organic matter with which it was combined; and thus it is presumable that either alum will be re-formed in the stomaeh, or that, aecording to Liebig, the phosphorie acid of the phosphates of the bread, uniting with the alumina of the alum, will form an insoluble phosphate of alumina, and the beneficial aetion of the phosphates will, consequently, be lost to the system; and since phosphoric acid forms with alunina a compound hardly deeomposable by alkalis or acids, this may, perhaps, explain the iudiges tibility of the London bakers' bread, whieh strikes all foreigners. - Letters on Chemistry.

The last defcnee set up in behalf of alumed bread to be notieed is, that, with certain deseriptions of flour, bread eannot be made without it; that by means of aluu a large quantity of flour is made available for human food, which, without it, must be withdrawn, and turned to some other less important uses, to the great detriment of the population, and partieularly of the poor, who would be the first to suffer fiom the increase of the priee of bread whieh sueh a withdrawal must fatally produce.

The process usually adopted for the detection of alum is that known as Kuhlman's proecss, which consists in incinerating about 3000 grains of hread, porphyrising the ashes so obtained, treating them by nitric acid, evaporating the mixture to dryness, and diluting the residue with about 300 grains of water, with the help of a gentle heat; without filtering, a solution of caustie potash is then added, the whole is boiled a little, filtered, the filtrate is tested with a solution of sal ammoniac, and boiled for a few minutes. If a precipitate is formed it is not alumina, as hitherto thought and stated by Kuhlman and all other chemists, but phosphate of alumina, - a circumstance of great importance, not in testing for the presence of alumina, but for the determination of its amount, as will be shown further on, when entering into the details of the modifications which it is necessary to make to Kuhlman's proeess.

In a paper read in April, 1858, at the Society of Arts, Dr. Odling stated that out of 46 examinations of ashes furnished him by Dr. Gilbert, and treating them by the above process, he (Dr. Odling) obtained, to use his own words, "in 21 instanees, the celcbrated white precipitate said to be indicative of alumina and alum, so that had these samples been in a manufactured instead of the natural state - had the wheat, for example, been made into flour - I should have been justified, according to the authority quoted, in pronouncing it to be adulterated with alum. But a subsequent examination of the precipitates I obtained, showed that in reality they were not due to alumina at all. Mr. Kuhlman's process, as above described, is possessed of rare merits: it will never fail in detetecting alumina when present, and will often succeed in deteeting it when absent also. The idea of weighing this olla podrida of a precipitate, and from its weight calculating the amount of alum present, as is gravely recommended by great anti-adulteration adepts, is too preposterous to require a moment's refutation."

Having stated the question in dispute as it is at present stands, we must leave it to be discussed in another plaee.

In order, however, to render the process for the detection of alum in bread free from objections, the following method is recommended. It requires only ordinary care, and it is perfcetly accurate :-

Cut the loaf in half; take a thick slice of crumb from the middlc, carefully trimming the edges so as to remove the crust, or hardened outside, and weigh off 1500 or 3000 grains of it; erumble it to powder, or cut it into slices, aud expose them, on a sheet of platinum foil turned up at the edges, to a low red heat, until fumes are no longer evolved, and the whole is reduced to charcoal, which will require from twenty to forty minutes, according to the quantity ; transfer the charcoal to a mortar, and reduce it to fine powder; put now this finely-pulverised charcoal back again on the platinum foil tray, and leave it exposed thereon to a dark cherryred heat until reduced to grey ashes, for which purpose gas-furnace lamps will be found very convenient. Only a cherry-red heat shonld be applied, because at a higher temperature the ashes might fuse, and the incineration be thus retarded. Remove the source of heat, drench the grey ashes with a concentrated solution of nitrate of ammonia, and carefully reapply the heat; the last portions of charcoal will thereby be burnt, and the ashes will then have a white or drab colour. Drench them on the tray with moderately strong and pure hydrochloric aeid, and after one or two minutes' standing, wash the contents of the platinum foil tray, with distilled water, into a porcelain dish; evaporate to perfect dryness, in order to render the silica insoluble; drench the perfectly dry residue with strong and pure muriatic acid, and, after standing for five or six minutes, dilute the whole with water, and boil; while boiling, add caretully as much carbonate of soda as is necessary nearly, but not quite, to saturate the acid, so that the liquor may still be aeid; add as much pure alcoholpotash as is necessary to render it strongly alkaline; boil the whole for about three or four minutes, and filter. If now, after slightly supersaturating the strongly alkalinc filtrate with pure muriatic acid, the further addition of a solution of carbonate of ammonia produees, either at once or after heating it for a few minutes, a light, white, flocculent precipitate, it is a sign of the presence of alumina, the identity of which is confirmed by collecting it on a filter, putting a small portion of it on a platinum hook, or on charcoal, heating it thereon, moistening the little mass with nitrate of cobalt, and again strongly heating it before the hlowpipe; when if, without fusing, it assumes a beautiful blue colour, the presence of alumina is corroborated. If the operator possesses a silver capsule, he will do well to use it instead of a porcelain one for boiling (frem mass with pure caustic alcohol-potash, in order to avoid all chance of any. silica (from the glaze) becoming dissolved by the potash, and afterwards simulating the presence of alumina, though, if the boiling be not protracted, a poreelain capsulc is quite available. It is, however, absolutely nccessary that he should use potasse à l'alcohol, for ordinary caustic potash always contains some, and occasionally consider-
able, quantitics of alumina, aud is totally unsuited for such an investigation. Even potassc à l'alcohol retaius traces of silica, either alone or combined with alumina; so that for this, and other reasons which will be explained presently, an extravagant quantity of it should not be used.

Lastly, carbonate of ammonia is preferable to caustic ammonia for precipitating the alumiua, since that earth is far from bcing insoluble in eaustic ammonia.

The liquor from which the alumina has been scparated should now be acidificd with hydrochloric acid, and tested with chloride of barium, which should then yield a copious precipitate of sulphatc of barytes.

The ouly precipitate which can, under the circumstances of the experiment, simulate alumiua, is the phosphate of that carth, which behaves with all reageuts as purc alumina. Such a precipitate, therefore, if taken account of as purc alumina, would altogether vitiate a quantitative analysis if the amount of alum were calculated from it ; but the proof that a certain quantity of alum had been used in the bread from which it had been obtained would remain unshaken; since alumina, whether in that state or in that of its phosphate, could not have been found except a salt of alumina -to wit, alum - had been used by the baker. When, therefore, the exact amouut of alumina has to be determined, the precipitate in question should be submitted to further treatment in order to separate the alumina; and this can be done easily and rapidly by dissolving the precipitate in nitric acid, adding a little metallic tin to the liquor, and boiling. The tin becomes rapidly oxidised, and remains iu the state of an insoluble white powder, which is a mixture of peroxide of tin and of phosphate of tin, at the expense of all the phosphoric acid of any earthy phosphate which may have been present. The whole mass is evaporated to dryness, and the dry residue is then treated by water and filtered, in order to separate the insoluble white powder, and the filtrate which contains the alumina should now be supersaturated with carbonate of ammonia. If a precipitate is formed, it is purc alumina. The white insoluble powder, after washing, may be dissolved in hydrochloric acid, and after diluting the solution with water, the tin may be precipitated therefrom by passing through it a stream of sulphuretted hydrogen to supersatuation, leaving at rest for ten or twelve hours, filtering, boiling the filtrate until all odour of sulphurctted hydrogen has disappcarcd; an cxcess of nitrate of silver is then added, and the liquor filtered, to separate the chloride of silver produced, and exactly neutralising the filtrate with ammouia; and if a lemon-yellow precipitate is produced, immediately soluble in the slightest excess of either ammonia or nitric acid, it is basic phosphate of silver (3 AgO), PhO^{5}, the precipitate obtained in the first instance being thus proved to be phosphate of alumina. The pure alumina obtained may now be collected on a filter, washed with boiling water, thoroughly dried, and then ignited and wcighed. One grain of alumina represents 9.027 grains of crystallised alum.
Iu testing bread for alum, it should be borne in mind, however, that the water used for making the dough generally contains a certain quantity of sulphates, and that a precipitate of sulphate of barytes will therefore be very frequently obtained, though much less considerable than when alum has been used. Some waters called "selenitous" contain so much sulphate of lime in solution, that if they were used in making the dough, chloride of barium would afford, of course, a considerable precipitate. For these reasons, therefore, the separation and identification of alumina are the only reliable proofs; because, as that earth does not exist normally in any shape in wheat or common salt otherwise than in traces, the proof that alum has been uscd becomes irresistible when we find, on the one hand, alumina, and, on the other. a more considerable amount of sulphate of barytes than, except under the most extraordinary circumstances, genuine bread would yield.

Sulphate of copper, like alum, possesses the property of hardening gluten, and thus, with a flour of inferior quality, bread can be made of good appcarance, as if a superior flour had been used.

The use of sulphate of copper iu bread is said to have originated about 25 or 30 years ago with the bakers of Belgium.
M. Kuhlman, Professor of Chemistry at Lille, having been called upou several times by the courts of justice to examine, by chemical processes, bread suspected of containing substances injurious to health, collceted some intercsting facts upon the subjeet, which were published under the direction of the central council of salubrity of the department du Nord.

For some time public attention has been drawn to an odious fraud committed by a great many bakers in the north of France and in Belgium, -the introduction of a certain quantity of sulphate of copper into their bread. When the flour was made from bad grain, this adulteration was very gencrally practised, as was proved by many couvictions and confessions of the guilty persons. Wheu the douglh does not rise well
iu the fermentation (le pain pousse plat), this inconvenience was found to be obviated by the addition of blue vitriol, which was supposed also to cause the flour to retain more water. The quantity of blue vitriol added is extremely small, and it is ncver done in presence of strangers, becausc it is reckoned a valuable secret. It occasions no cconomy of ycast, but rather the reverse. In a litrc (about a quart) of watcr, an ounce of sulphatc of copper is dissolved; and of this solution a wine-glassful is mixed with the water necessary for 50 quartern or 4 -pound loaves.
Lime water has been recommended by Liebig as a means of improving the bread made from inferior flour, or of flour slightly damaged by keeping, by warehousing, or during transport in ships; and this method, at the mecting of the British Association at Glasgow, in 1855, was reported as having been tried to a somewhat considerable extent by the bakers of that town, and with success, the bread kneaded with lime water, instead of pure watcr, being of good appearance, good taste, good texture, and free from the sour taste which invariably belongs to alumed or even to genuine bread; admitting all this to be true, still we should deprecate the usc of lime water in bread, because it cannot be done with impunity; however small the dose of additional matter may be considered when taken separately, it is always large when considered as portion of an article of food like bread, consunied day after day, and at each meal, without interruption. To allow articles of food to be tampered with, under any circumstances, is a dangerous practice, even if it were proved that it can be donc without risk, which, howevcr, is not the case ; and Liebig himself has said that chemists should never propose the use of chemical products for culinary preparations.

The quantity of ashes left after the incineration of genuine bread, varies from 1.5 at least to at most 3 per cent.; and if the latter quantity of ashes be exceeded, the excess may safely be pronounced to be due to an artificial introduction of some saline or earthy matter.

As to the addition to bread of potatoes, beans, rice, turnips, maize, or Indian corn, which has occasionally been praetised to a considerable extent, especially in years of scarcity, it is evident that they may be, and are actually permitted under the Act of Parliament, Will. IV., cap. 27. sect. 11. As may be seen below, bread, in which these ingredients replace a certain quantity of flour, is of course perfectly wholesome; but as a given weight of it contains less nourishment than pure wheat bread, it is clear that if the mixed bread were sold under the name, or at the price, of wheat brcad, it would be a fraud on the public, and more especially upon the poor ; but the admixture is not otherwise objcctionable.
In his "New Letters on Chemistry," Liebig makes the following remarks on the subject:-
"The proposals whieh have hitherto been made to usc substitutes for flour, and thus diminish the price of bread in times of scarcity, prove how much the ratioual principles of hygiènc arc disregarded, and how unknown the laws of nutrition are still.
"It is with food as with fuel. If we compare the price of the various kinds of coals, of wood, of turf, we shall find that the number of pence paid for a certain volume or weight of these materials is about proportionate to the number of degrces of heat which they evolve in burning. The mean price of food in a large country is ordinarily the criterion of its nutritive value. Considered as a nutritive agent, rye is quitc as dear as wheat; such is the case also with rice and potatoes; in fact, no other flour can replace wheat in this respect. In times of then a higher value, beatios undergo modification, and potatoes and rice acquirc another value is superadded, which in to their natural value as respiratory food,
"The addition to wheat flour of potato starch, of dextrinc of then into account. gives a mixture, the nutritive value of which is equal to that, of the pulp of turnips, less ; and it is evident that one cannot consider as an impor potatoes, or perhaps tion of wheat flour into a food having only the same improvement this transformatrue problem consists in communicating to rice and to value as rice or potatoes. The wheat flour, and not in doing the reversc. potatoes by themselves and eat them, than with all events, it is always better to cook hibit their addition to bread, on account of the frauds ; the Legislature should cven proevitably lead to."
The detection of which is so easily effected starch, of beans, peas, Indian corn, rice, and other feculas, if not impossible, in bread. Bread whic microscope in flour, is cxceedingly difficult, corn is harsher to the touch, and has frequently aeen made of flour mixed with Indian moistened with solution of potash of ordinary strength yellowish colour, and when tinge is developed,-A. $\stackrel{N}{N_{0}}$ potash of ordinary strength, a ycllow or grcenish-ycllow

MBRECCIA. An Italian term used for a roek eomposed of angular fragments of stone, cemented together hy an earthy or a mineral substanee.

The fragments of the older rocks or minerals have, in process of time, by the action of water holding salts in solution, been cemented into one mass.

BREWING. (Brasser, Fr. ; Brauen, Germ.) The art of making beer, or an alcoholie liquor from a fermented infusion of some saecharine and amylaceous substanee with water. For a deseription and analysis of whieh, and of the substanees usually employed in its fermentation, see the article Beer.

We shall now proeeed to describe the plaw, machinery, and utensils, termed altogether "the plant," of a large hrewery.

Figs. 265 and 266 represent the arrangement of the utensils and maehinery in a porter brewery on the largest seale, in whieh it must be observed that the elevation fig. 266 , is in a great degree imaginary as to the plane upon which it is taken, hut the different vessels are arranged so as to explain their uses most readily, and at the same time to preserve, as nearly as possible, the relative position which is usually assigned to each in works of this nature.

The malt for the supply of the hrewery is stored in vast granaries or malt-lofts, usually situated in the upper part of the huildings. Of these, we have heeu ahle to represent only one, at A, fig. 265 : the others, which are supposed to he on each side of it, eannot he seen in this view. Immediately heneath the granary A, on the ground floor, is the mill; in the upper storey ahove it, are two pairs of rollers (fig. 265, 267, and 268), under a a, for bruising or erushing the grains of the malt. In the floor beneath the rollers are the mill-stones $b b$, where the malt is sometimes ground, instead of heing merely hruised by passing hetween the rollers, under a a.

The malt, when prepared, is eonveyed hy a trough into a ehest d, to the left of b, from whieh it ean he elevated by the action of a spiral screw, fig. 269, enclosed in the sloping tube e, into the large chest or binn r , for holding ground malt, situated immediately over the mash-tun D. The mash-tun is a large cireular tuh with a double hottom ; the uppermost of which is called a false hottom, and is pierced with many holes. There is a space of about 2 or 3 inches between the two, into which the stopcoeks enter, for letting in the water and drawing off the wort. The holes of the false bottom, if of wood, should he burned, and not hored, to prevent the ehance of their filling up by the swelling of the wood, which would ohstruct the drainage: the holes should be conical, and largest helow, heing about $\frac{3}{5}$ ths of an inch there, and $\frac{1}{8}$ th at the upper surface. The perforated bottom must be fitted truly to the sides of the mash-tun, so that no grains may pass through. The mashed liquor is let off into a large haek, from whieh it is pumped into the wort coppers. The mash-tun is provided with a peculiar rotatory apparatus for agitating the crushed graius and water together, whieh we shall presently describe. The size of the wort copper is proportional to the amount of the brewing, and it must, in general, he at least so large as to operate upon the whole quantity of wort made from one mashing ; that is, for every quarter of malt mashed, the copper should eontain 140 gallons. The mash-tun ought to he at least a third larger, and of a conical form, somewhat wider helow than ahove. The malt is reserved in this binn till wanted, and it is then let down into the mashing-tun, where the extraet is ohtained hy hot water supplied from the copper
The water for the service of the brewery is obtained from the well E , seen heneath the mill to the right, hy a lifting pump workcd by the steam engine; and the forcingpipe f of this pump conveys the water up to the large reservoir or water-hack F , placed at the top of the engine-house. From this cistern, iron pipes are laid to the copper a (on the left-band side of the figure), as also to every part of the estahlishment where cold water ean be wanted for cleaning and washing the vessels. The copper a can be filled with cold water hy merely turning a cock; and the water when boiled therein, is conveyed hy the pipe g into the bottom of the mash-tun D . The watcr is introdueed beneath a false bottom, upon which the malt lies, and, rising up through the holes in the false bottom, it extracts the saeeharine matter from the malt; a greater or less time heing allowed for the infusion, aecording to cireumstanees. The iustant the water is drawn off from the eopper, fresh water must he let into it, in order to be ready for hoiling the second mashing; beeause the eopper must not he left empty for a moment, otherwise the inteuse heat of the fire would destroy its botton. For the convenienee of thus letting down at once as much liquor as will fill the lower part ot the copper, a pan or seeond boiler is placed over the top of the copper, as seen in fiy. 271 ; and the steam rising from the eopper communicates a considerable degree of heat to the contents of the pan, without any expense of fuel. This will be more minutely explained hereafter.

During the process of mashing, the malt is agitated in the masli-tun, so as to expose every part to the aetion of the water. This is done hy a uechanism contained withiu
the mash-tun, which is put in motion by a horizontal shaft above it, H, leading from the mill. The mash machine is shown separately in fig. 270. When the operation of

mashing is finished, the wort ol extraet is drained down from the malt into the ressel x, called the underbach, immediately below the mash-tun, of like dimensions, and
situated always on a lower level, for which reason it has received this name. Hlere the wort does not remain longer thar is necessary to drain off the whole of it from the tum above. It is then pumped up by the three-barrelled pump h, into the pan upon the top of the eopper, by a pipe whieh eannot be seen in this section. The wort remains in the pan until the water for the sueeecding mashes is discharged from the eopper. But this delay is no loss of time, beeause the heat of the eopper, and the steam arising from it, prepare the wort, whieh lad become cuoler, for boiling. The instant the copper is ennptied, the first wort is let down from the pan into the copper, and the second wort is pumped up from the under-back into the upper pan. The proper proportion of hops is thrown into the eopper through the near hole, and then the door is shut down and screwed fast, to keep in the steam, and cause it to rise up through pipes into the pan. It is thus forced to blow up through the wort in the pan, and communieates so mueh heat to it, or to water, ealled liquor by the brewers, that either is brought near to the boiling point. The different worts sueceed eaeli other through all the different vessels with the greatest regularity, so that there is no loss of time, but every part of the apparatus is eonstantly employed. When the ebullition has continued a suffieient period to eoagulate the grosser part of the extract, and to evaporate part of the water, the contents of the copper are run off through a large eock into the juck-buck K , below G , which is a vessel of suffieient dimensions to eontain it, and provided with a bottom of cast-iron plates, perforated with small holes, through which the wort drains and leaves the hops. The hot wort is drawn off from the jack-baek through the pipe h by the three-barrelled pump, which throws it up to the coolers LIL L ; this pump being made with differeut pipes and eocks of communication, to serve all the purposes of the brewery exeept that of raising the eold water from the well. The coolers, it LL L, are very shallow ressels, built over one another in several stages ; and that part of the building in whieh they are eontained is built with latticework or shutter flaps, on all sides to admit free currents of air. When the wort is suffieiently cooled to be put to the first fermentation, it is condueted in pipes from all the different coolers to the large fermenting vessel or gyle-tun m , which, with another similar vessel behind it, is of sufficient capaeity to contain all the beer of one day's brewings.

Whenever the first fermentation is eoncluded, the beer is drawn off from the great fermenting vessel a , into the small fermenting casks or eleansing vessels N , of which there are a great number in the brewery. They are placed four together, and to each four a common spout is provided to carry off the yeast, and conduet it into the troughs u, placed beneath. In these cleansing vessels the beer remains till the fermentation is completed; and it is then put into the store-vats, which are easks or tuns of an iunmense size, where it is kept till wanted, and is finally drawn off into barrels, and sent away from the brewery. The store-vats are not represented in the figure: they are of a conieal shape, and of different dimensions, from fifteen- to twenty feet diameter, and usually from fifteen to twenty feet in depth. The steam engine, which puts all the machine in motion, is exhibited in its plaee on the right side of the figure.
On the axis of the large fly-wheel is a bevelled spur-wheel, which turns another similar wheel upon the end of a horizontal shaft, whieh extends from the enginehouse to the great horse-wheel, set in motion by means of a spur-wheel. The horsewheel drives all the pinions for the mill-stones $b b$, and also the horizontal axis which works the three-barrellcd pump k. The rollers a a are turned by a bevel wheel upon the upper end of the axis of the horse-wheel, which is prolonged for that purpose; and the horizontal shaft n, for the mashing eugine, is driven by a pair of bevel wheels. There is likewise a sack-tackle, which is not represented. It is a contents of the sacks are disclins are wheeled on a truek to the malt-loft a, and the
The horse-wheel is intended to be driven by horses oecasionally, if the steam engiue should fail ; but these engines are now hrought to such perfeetion that it is very seldom any resouree of this kind is needed.

Fig. 266 is a representation of the fermenting-house at the brewery of Messrs. Whitbread and Company, Chiswell Street, London, whieh is one of the most eomplete in its arrangement in the world: it was ereeted after the plan of Mr. Richardson, who conducts the brewing at those works. The whole of fig. 266 is to be considered as devoted to the sanie object as the large vessel 11 and the casks N , fiy. 265. Iu fig. 266, $r r$ is the pipe which leads from the differeut coolers to eonvey the wort to the great fermentirg vessels or squares m, of whieh there are two, one behind the other; $f f$ represent a part of the great pipe which conveys all the water from the well e, fig. 265, up to the water eistern F . This pipe is eondueted purposely up the wall of the fer-menting-louse, fig. 266, and has a coek in it, near r, to stop the passage. wast beneath
this passage a branch-pipe p proceeds, and enters a large pipe $x . x$. which has the former pipe r withinside of it. From the end of the pipe r, nearest to the squares m,
another braneh $n n$ proeeeds, and returns to the original pipe f, with a coek to regulate
it. The object of this arrangement is to make all, or any part, of the cold water flow through the pipe $x x$, whieh surrounds the pipe r, formed only of thin eopper, and thus eool the wort passing through the pipe r, until it is found by the thermometer to have the exact temperature which is desirable before it is put to ferment in the great square m. By means of the eoeks at n and p, the quantity of cold water passing over the surface of the pipe r ean be regulated at pleasure, whereby the heat of the wort, when it enters into the square, may be adjusted within half a degree.

When the first fermentation in the squares $n \mathrm{~m}$ is finished, the beer is drawn off from them by pipes marked v, and eondueted by its branehes wo w, to the different rows of fer-menting-tuns, marked N N , which oeeupy the greater part of the building. In the hollow between every two rows are placed large troughs, to contain the yeast which they throw off. The figure shows that the small tuns are all placed on a lower level than the bottom of the great vessels m, so that the beer will flow iuto them, and, by hydrostatie equilibrium, will fill them to the same level, When they are filled, the com-munieation-eoek is shut ; but, as the working off the yeast diminishes the quantity of beer in each vessel, it is neeessary to replenish them from tiune to timc. For this purpose, the two large vats oo are filled from the great squares m m, before any beer is drawn off into the suall easks N , and tbis quantity of beer is reserved at the higher level for filling up. The two vessels oo arc, in reality, situated between the two squares $n \mathrm{~m}$; but I have been obliged to place them thus in the seetion, in order that they may be seen. Near eaeh filling-up tun o is a small eistern t eommunieating with the tun o by a pipe, which is elosed by a float-valve. The small cisterns t are always in communieation with the pipes which lead to the small fermenting vessels N ; and therefore the surface of the beer in all the tuns, and in the eisterns, will always be at the same level ; and as this level subsides by the
 sinks and opens the valve, so as to admitng off of the yeast from the tuns, the float FF2

0 , to restore the surfaces of the becr in all the tums, and also in the cistern t, to the original level. In order to carry off the yeast which ieproduced by the fermentation of the beer in the tuns o o, a conical iron dish or funnel is made to float upon tbe surface of the beer which they contain; and from the centre of this funvela pipe, o, descends, and passes through the botton of the tun, being packed with a collar of leather, so as to be water-tight; at the same time that it is at liberty to slide down, as the surface of tbe beer descends in the tun. The yeast flows over the edge of this funnel-shaped dish, and is conveyed down tbe pipe to a trough beneath.

Beneath the fermenting-house are large arched vaults, P , built with stone, and lined with stucco. Into these the beer is let down in casks when sufficiently fermented, and is kept in store till wanted. Thesc vaults are used at Mr. Whitbread's brewery, instead of the great store-vats of which we have before spoken, and are in some respects preferable, because they preserve a great equality of temperature, being beneath the surface of tbe carth.

T'be kiln-dried malt is sometimes ground between stones in a common corn mill, like oatmeal; but it is more generally crushed between iron rollers, at least for the purpose of the London brewers.

The Crushing Mill.-The cylinder malt-mill is constructed as shown in figs. 267, 268. I is the sloping-trough, by which the malt is let down from its bin or floor to the
 hopper a of the mill, wbence it is progressively shaken in between the rollers B D . Tbe rollers are of iron, truly cylindrical, and their ends rest in bearcrs of hard brass, fitted into the side frames of iron. A screw E goes through tbe upright, and serves to force the bearer of the one roller towards that of the other, so as to bring them closer together when the crushing effect is to be increased. a is the square end of the axis, by which one of the rollers may be turned either by the hand or by power; the other derives its rotatory motion from a pair of equal-toothed wheels H, which are fitted to the other end of the axcs of the rollers. d is a catch which works into the teeth of a ratchet-wheel on the end of one of the rollers (not shown in this view). The lever c strikes the trough b at the bottom of the hopper, and gives it the shaking motion for discharging the malt bctween the rollers, from the side sluice a. ee, fig. 267, arc scraper-plates of sheet iron, the edges of which press by a weight against the surfaces of the rollers, and keep them clean.

Instead of the cylinders, some employ a crushing mill of a conical-grooved form, like a coffee mill upon a large scale.

Fig. 269 is the screw by which the ground or bruised malt is raised up, or conveyed from one part of the brewery to another. K is an inclined box or trough, in the centre of which the axis of the screw \mathbf{H} is placed; the spiral iron plate or worm, which is fixed projecting from the axis, and which forms the screw, is made very nearly to fill the inside of the box. By this means, wben the screw is turncd round by the wheels E F , or by any other means, it raises up the malt from the box d, and delivers it at the spout G .

This screw is equally applicable for conveying the malt horizontally in the trough \mathbf{x}, as slantingly; and similar machines are employed in various parts of breweries for conveying the malt wherever the situation of the works require.
Fig. 270 is the mashing-machine. $a a$ is the tun, made of wood staves hooped together. In the centre of it rises a perpendicular shaft b, which is turned slowly round by means of the bevelled wheels $t u$ at the top. c c are two arms projecting from that axis, and supporting the short vertical axis d of the spur-wheel x, which is turncd by the spur-whecl w; so that, when the central axis b is made to revolve, it will carry tbe thick short axle d round the tun in a circle. Tbat axle d is furnislied with a number of arms, $e c$, which have blades placed obliquely to the plane of tbeir motion. When the axis is turncd round, these arms agitate the malt in the tun, and give it a constant tendency to rise upwards from the bottom.

The motion of the axle d is produced by a whecl, x, on the upper end of it, which is turned by a wheel, w, fasteued on the middle of the tube b, which turns freely round upon its central axis. Upon a higher point of the same tube b is a bevel wheel o,
receiving motion from a bevel wheel q, fixed upon the end of the horizontal axis $n n$, which gives motion to the whole machine. This same axis has a pinion p upon

it, which gives motion to the wheel r, fixed near the middle of a horizontal axle, which, at its left hand end, has a bevel pinion t, working the wheel u, before mentioned.

By these means, the rotation of the central axis b will be very slow compared with the motion of the axle d; for the latter will make seventeen or eighteen revolations on its own axion of the shaft b. At the begatim it will be carried once round the tun by the
motion made to turn with a slow motion; but, after having wion of mashing, the machine is lution, it is driven quicker. For this purner having wetted all the malt by one revomotion to the machine, has two bevel wheels h, the ascending-shaft $f g$, which gives upon a central shaft. These wheels actuate the wheels m and tube, $f g$, which is fitted
horizontal shaft $n n$; but the distanee between the two wheels l and i is sueh that they eannot be engaged both at onee with the wheels m and o; but the tube $f g$, to whieh they are fixed, is eapable of sliding up and down on its eentral axis suffieiently to bring either wheel h or i into gear with its corresponding wheel o or m, upon the lorizontal shaft; and as the diameters of $n o$ and $i m$ are of very different proportions, the velocity of the motion of the maeline ean be varied at pleasure, by using one or other. k and i are two levers, whieh are forked at their extremities, and cmbraee eollars at the ends of the tube $f g$. These levers being united by a rod, l, the handle k gives the means of moving the tube $f g$, and its wheels $h i$, up or down, to throw either the one or the other wheel into gear.

Fiys. 271,272 represent the eopper of a London brewery. Fig. 271 is a vertical seetion; fig. 272, a ground plan of the fire-grate and flue, upon a smaller seale: a is the elose eopper kettle, having its bottom eonvex within; l is the open pan placed upon its top. From the upper part of the eopper, a wide tube, c, aseends, to earry off the steam generated during the ebullition of the wort, whieh is conducted through four downwardsslanting tubes, $d d$ (two only are visible in this section), into the liquor of the pan b, in order to warm its contents. A vertieal iron shaft or spindle, e, passes down through the tube c, nearly to the bottom of the eopper, and is there mounted with an iroh arm, ealled a rouser, which earries round a ehain hung in loops, to prevent the hops from adhering to the bottom of the boiler. Three bent stays, f, are stretched aeross the interior, to support the shaft by a collet at their middle junction. The shaft earries at its upper end a berel

wheel, g, working into a bevel pinion upon the axis h, whieh may be turned either by power or by hand. The rouser shaft may be lifted by means of the ehain i, whieh, goiug over two pulleys, has its end passed round the wheel and axle k, and is turned by a wineh: l is a tube for eonveying the waste steam into the ehimney m.

The heat is applied as follows :- For heating the eolossal eoppers of the Loudon brewcries, two separate fires are required, whieh are separated by a narrow wall of briekwork, n, figs. 271, 272 . The dotted eirele $a^{\prime} a^{\prime}$, indieates the largest eireumferenee of the enpper, and $b^{\prime} b^{\prime}$ its bottom; 00 are the grates upon whieh the eoaks are thrown, not through folding doors (as of old), but through a short slanting iron hopper, shown at p, fig. 271 , built in the wall, and kept eonstantly filled with the finel, in order to exelude the air. Thus the low stratum of eoals gets ignited before it realhes the
grate. Above the hopper p, a narrow ehanntl is provided for the admission of atmosplerical air, in such quantity merely as may be requisite to complete the combustion of the smoke of the coals. Belind each grate there is a fire hridge, r, which reflects the flame upwards, and eauses it to play upon the hottom of the copper. The burnt air then passes round the copper in a semieireular flue, $s s$, from which it flows off into the chimney m, on whose under end a sliding damper-plate, t, is placed, for tempering the draught. When cold air is admitted at this orifiee, the comhustion of the finel is immediately checked. There is, hesides, another slide-plate at the entrance of the slanting flue into the vertical chimney, for regulating the play of the flame under and around the copper. If the plate t be opened, and the other plate shut, the power of the fire is suspended, as it ought to he, at the time of emptying the copper. Immediately over the grate is a lrick arch, u, to protect the front edge of the copper from the first impulsion of the flame. The chimney is supported upon iron pillars, $v v ; w$ is a cavity elosed with a slide-plate, through which the ashes may he taken out from hehiud, hy means of a long iron hook.

Having thus given the general plan and requisites for a hrewery on a large scale, we need scarcely say those arrangements will vary in every estahlishment, according to the requirements and facilities of the locality, and the various modes of operation.

The first necessity is a plentiful supply of pure water, which it should he the chief aim in all arrangements to render available at the least labour and cost, as on its proper and judicious application greatly depends the regulation of the temperature in the various operations; and the most scrupulous cleanliness in every part is of the utmost importance.

The fermenting rooms and the store cellars should be placed helow the ground level, for the purpose of attaining a low and equahle temperature; and for this purpose also the double stone fermenting square is highly esteemed. It consists of an inner cuhical vessel, containing from 15 to 30 harrels; each side formed hy one slah of fine slate. This is placed in an exterior square or shell of inferior stone, leaving a space hetween the inner and outer squares, which ean he filled with hot or cold water at pleasure. The inner or fermenting square has a man-hole, with a raised rim, in the slab forming the top, on which also are raised four other fine slate slahs, which form a cistern for the expansion and overflow of the heer and yeast during the progress of the fermentation, and from which the yeast is readily removed at its close.
The processes of brewing may be classed under three heads-the mashing, the hoiling, and the fermentation.
For the principles which should guide the hrewer in the conduct of these operations, we refer to the article BeEr, where it will he seen that the ultimate suecess of the entire series depends greatly on the regulation of the temperature, the duration, and the proper management of the initial process of mashing.
With regard to temperature, the hrewer must not only regulate the heat of the water for the first mash by the colour, age, and quality of the malt, whether pale, amber, or brown, hut he should also mark the temperature of the atmosphere as influencing that of the malt, and the ahsorption of the heat hy the utensils employed; remarking that well-mellowed and brown malt will hear a higher mashing heat than pale or newlydried, and that the hest results are produced when the mash can be maintained at an equahle temperature, from 160° to 165°.

The duration of the mash must also have reference to the required quality of the beer, whether intended for keeping some time in store, or for present use, as influencing the relative proportions of dextrine and sugar. The following Tahle, by Le eesque, will exemplify the foregoing remarks.

The first column gives the temperature of the air at the time of mashing.
The second column shows the heat of the water, the quantity used, and the resulting heat of the mash - noting, that if the water has heen let into the mash-tun at the boiling point, and allowed to cool down, or the vessel has heen thoroughly warmed before the commencement of the process, the heat may he taken several degrees lower.

The third column shows the time for the standing of the mash; but this will be modified, as before stated, hy the quality of the extract required.
The bulk of the materials used must also enter into the consideration of the temperature, as a large body of malt will attain the required temperature with a mashing heat lower than a small quantity; the powers of chemical aetion and condensation of heat heing increased with increase of volume.
Donovan, speaking of the temperature to he employed in mashing, lays down the following as a gencral rule:- For well dried pale malt the heat of the first mashiug liquor may be, hut should never exceed, 170°; the heat of the second may be 180°; and, for a third, the leat may hc, but need never exceerl, 185°.
The quantity of water, termed liquor, to he employed for mashing, depends upon
the greater or less strength to be given to the beer, but, in all cases, from one barrel and a half to one barrel and three firkins is suffieient for the first stiff mashing, but more liquor may be added after the malt is thoroughly wetted.

The grains of the erushcd malt, after the wort is drawn off, retain from 32 to 40 gallons of water for every quarter of malt. A further amount must be allowed for the loss by evaporation in the boiling and eooling, and the waste in fermentation, so that the anount of liquor required for the mashing will, in some instances, be double that of the finished beer, but in general the total amount will be redueed about onethird during the various processes,

Table of Mashing Tomperatures.

	Brown Malt.			Hionsprizd.				amb.				Pals MALT.		
	$\begin{aligned} & \text { Heat of } \\ & \text { 1ash, } \\ & 1170 \text { to } \end{aligned}$			Heat of Mash, 145° to 1470 .				Heat of Math, 144° to 146°.				$\begin{aligned} & \text { Heat of Mash, } \\ & 1430 \text { to } 1450 \text {, } \end{aligned}$		
	$6 \text { Firkins }$ per Qr.			7 Firkins per Qr.	8 Firkins per Qr.			9 Firkins per Qr.	$\left\|\begin{array}{c} 10 \text { Firkins } \\ \text { Per })^{2} \mathrm{r} . \end{array}\right\|$			$\begin{gathered} 11 \text { Firkins } \\ \text { per } 0 r_{0} \end{gathered}$	12 Firkins per Qr.	
Fa			Fah.				Fah.				Fah.			н, m.
10°	197.00	$4 \cdot 00$	10°	189.00	184.00	$3 \cdot 00$	10°	178.00	175.00	200	10°	$172 \cdot 00$	$170 \cdot 00$	$1 \cdot 00$
15	195.17	$4 \cdot 00$	15	187.42	$182 \cdot 59$	$3 \cdot 00$	15	176.84	$173 \cdot 92$	$2 \cdot 00$	15	$171^{\circ} 00$	$169 \cdot 19$	100
20	193-34	$4 \cdot 00$	20	$185 \cdot 84$	$181 \cdot 18$	$3 \cdot 00$	20	175068	$172 \cdot 84$	$2 \cdot 06$	20	$170 \cdot 00$	168.28	$1 \cdot 00$
25	$191 \cdot 51$	$4 \cdot 00$	25	$184 \cdot 26$	$179 \cdot 77$	3.00	25	$174 \cdot 52$	$171 \cdot 76$	2.00	25	$169 \cdot 00$	$167 \cdot 37$	$1 \cdot 00$
30	189.68	$4 \cdot 00$	30	182.68	178.36	$3 \cdot 00$	30	$173 \cdot 36$	$170 \cdot 68$	$2 \cdot 00$	30	168.00	$166 \cdot 46$	$1 \cdot 00$
35	187.85	4.00	35	$180 \cdot 10$	176.95	$3 \cdot 00$	35	$172 \cdot 20$	$169 \cdot 60$	$2 \cdot 60$	35	$167 \cdot 00$	$165 \cdot 5.5$	$1 \cdot 00$
40	186.02	$4 \cdot 10$	40	$179 \cdot 52$	175.54	$3 \cdot 00$	40	$171 \cdot 04$	$168 \cdot 52$	$2 \cdot 00$	40	166.00	$164 \cdot 64$	$1 \cdot 00$
45	184. 19	$4 \cdot 00$	45	$177 \cdot 94$	$174 \cdot 13$	3.01	45	169.88	$167 \cdot 44$	2.00	45	165.00	$163 \cdot 73$	$1 \cdot 00$
50	182.36	$4 \cdot 00$	50	$176 \cdot 36$	$172 \cdot 72$	3.00	50	16872	$166^{\circ} 36$	$2 \cdot 00$	50	164.00	$162 \cdot 82$	$1 \cdot 00$
55	180:53	4-00	55	174.78	$171 \cdot 31$	$3 \cdot 00$	55	$167 \cdot 56$	$165 \cdot 28$	$2 \cdot 00$	55	$163 \cdot 00$	161.91	$1 \cdot 00$
60	$178 \cdot 70$	$3 \cdot 40$	60	$173 \cdot 20$	$169 \cdot 90$	$2 \cdot 45$	60	166.40	$164 \cdot 20$	$1 \cdot 50$	60	$162 \cdot 00$	161.00	$0 \cdot 55$
65	176.87	3-20	65	171.62	$168 \cdot 49$	$2 \cdot 30$	65	$165 \cdot 24$	$163 \cdot 12$	$1 \cdot 4$	65	$161 \cdot 00$	$160 \cdot 19$	$0 \cdot 50$
70	175.04	$3 \cdot 00$	70	$170 \cdot 0.4$	$167 \cdot 07$	$2 \cdot 15$	70	$164 \cdot 8$	$162 \cdot 04$	$1 \cdot 30$	70	160.00	$159 \cdot 24$	$0 \cdot 45$
Heat of the Tap, 144° to 146°.			Heat of the Tap, 143° to 145°.				Heat of the Tap, 142° to 144°.				Heat of the Tap, 141° to 143°.			

The following example will give an idea of the proportions for an ordinary quality of beer.
Suppose 13 imperial quarters of the best pale malt be taken to make 1500 gallons of beer, the waste may be calculated at near 900 gallons, or 2400 gallons of water will be required in mashing.
As soon as the water in the copper has attained the heat of 145° in summer, or 167° in winter, 600 gallons of it are to be run off into the mash-tun (which has previonsly been well eleansed or scalded out with boiling water), and the malt gradually but rapidly thrown in and well intermixed, so that it may be uniformly moistened, and that no lumps remain. After continuing the agitation for about half an hour, more liquor, to the amount of 450 gallons, at a temperature of 190°, may be carefully and gradually introduced, (it is an adrantage if this ean be done by a pipe inserted under the false bottom of the mash-tun,) the agitation being continued till the whole assumes an equally fluid state, taking care also to allow as small a loss of temperature as possible during the operation, the resulting temperature of the mass being not less than 143°, or nore than 148°.
The mash is then eovered elose, and allowed to remain at rest for an hour, or an hour and a half, after which the tap of the mash-tun is gradually opened, and if the wort that first flows is turbid, it should be earefully returned into the tun until it runs perfectly limpid and clear. The amount of this first wort will be about 675 gallons.

Seven hundred and fifty gallons of water, at a temperature from 180° to 185°, may now be introduced, and the mashing operation repeated and continued until the mass beeomes uniformly fluid as before, the temperature bcing from 160° to 170°. It is then again covered and allowed to rest for an hour, and the wort of the first mash having been quickly transferred from the underback to the copper, and brought to a state of ebullition, the wort of the second mash is drawn off with similar preeaution, and added to it. A third quantity of water, about 600 gailons, at a temperature of 185° or 190°, should now be run through the goods in the nash-tun by the sparging proeess, or any means that will allow the lot liquor to pereolate through the grains, displaeing and earrying down the heavier and more valuable produets of the first two mashings. The wort is now boiled with the hops from one to two hours.
The objeet of boiling the wort is not mercly craporation and enneentration, but extraetion, eoagulation, and, finally, combination with the hops; purposes which are
better accomplished in a deep confined copper, by a moderate heat, than in an open shallow pan with a quick firc. The copper, being encased above in brick work, retains its digesting temperature much longer than the pan could do. The waste steam of the close kettle, moxeover, can be economically employed in communicating heat to water or weak worts; whereas the exhalations from an open pan would prove a nuisance, and would nced to be carried off by a hood. The boiling has a four-fold effect : 1, it concentrates the wort; 2, during the earlier stages of beating, it converts the starch into sugar, dextrine, and gum, by means of the diastase; 3, it extracts the substance of the hops diffused through the wort; 4, it coagulates the albuminous matter present in the grain, or prccipitates it by means of the tannir of the hops.
The degree of evaporation is regulated by the nature of the wort and the quality of the beer. Strong ale and stout, for keeping, require more boiling than ordinary porter or table-beer brewed for immediate use. The proportion of the water carried off by evaporation is usually from a seventh to a sixth of the volume. The hops are introduced at the commencement of the process. They serve to give the becr not only a bitter aromatic tastc, but also a keeping quality, or they counteract its natural tendency to become sour-an effect partly due to the precipitation of the albumen and starch, by their resinous and tanning constituents, and partly to the antifcrmentable properties of their lupaline, bitter principle, ethereous oil, and resin. In these respects, there is none of the bitter plants which can be substituted for hops with advantage For strong beer, powerful fresh hops should be selected; for weaker becr an older and weaker article will suffice.

The stronger the hops are, the longer time they require for extraction of their virtues; for strong hops, an hour aud a half or two hours' boiling may be proper; for a weakcr sort, half an hour or an hour may be sufficient; but it is never advisable to push this process too far, lest a disagreeable bitterness, without aroma, be imparted to the beer. In some breweries, it is the practice to boil the hops with a part of the wort, and to filter the decoction through a drainer, called the jack hop-bach. The proportion of hops to malt is very various; but, in general, from $1 \frac{1}{4}$ lbs. to $1 \frac{1}{2} \mathrm{lbs}$. of the former are taken for 100 lbs . of the latter iu making good table-beer. For porter and strong ale, 2 lbs . of hops are used, or even morc ; for instance, from 2 lbs . to $2 \frac{1}{2} \mathrm{lbs}$. of hops to a bushel of malt, if the becr be destined for the consumption of India.

During the boiling of the two ingredients, much coagulated albuminous matter in various states of combination, makes its appearance in the liquid, constituting what is called the breaking or curdling of the wort, when numerous minute flocks are secn floating in it. The resinous, bitter, and oily-ethereous principles of thic hops combine with the sugar and gum, or dextrine of the wort; but for this effect they rcquirc time and heat; showing that the boil is not a process of mere evaporation, but onc of chemical reaction. A yellowish-green pellicle of hop-oil and resin appears upon the surface of the boiling wort, in a somewhat frothy form : when this disappears, the boiling is presumed to be completed, and the beer is strained off into the cooler. The residuary hops may be pressed and used for an inferior quality of beer; or they may be boiled with fresh wort, and be addcd to the next brewing charge.

After being strained from the hops, by passing through the false bottom of the hop-jack and allowed to rest on the coolers a sufficient time to deposit the greatest portion of the flocks separated in the boiling, the cooling process is rapidly completed by the action of the Refrigerator (which see).
The wort is then ready for the inoculation of the yeast and the commencement of the fermentative process, which completes the finished beer. See the articles Beer and Fermentation.-R. W. H.
The following statistical statement will represent the present state of the trade :-
Between October, 1855, and October, 1856, there were, in the United Kingdom, 2453 brewers, and 91,484 victuallers, 39,555 persons licensed to sell beer to be drunk on the premises, and 2742 , licensed to sell beer, not so to be drunk; 25,143 victuallers brewed, what is not inaptly called, "their own becr," and of these 11,999 were allowed to sell it for consumption on the premises; $23,585,140$ bushels of malt were consumed by hrewers, $7,164.561$ by victuallers, $2,902,318$ by persons licensed to sell beer to be drunk on the premises, and 293,588 by persons not so licensed. Between Octoher, 1856, and October, 1857, there were 2416 brewers, 92,065 victuallers, 39,789 persons licensed to sell beer to be drunk on the premises, and 2765 not so licensed; 25,026 victuallers "brewed their own beer."

BREZILIN and BREZILEIN. According to M. Preisser, the colouring matter of Brazil wood (Brezilin), is an oxide of a base Brezilein, which has no colour.
BRICK. (Brique, Fr.; Buchstcine, Zicyelstcine, Ger.) A solid rectangular mass of baked clay, employed for building purposes. Brickmaking is cxccedingly ancient; the tower of Babel was built with bricks, as we are told in Scripture, and also the city of Bahylon. Over the ruins of Babylon, and the sites of the other great
cities of the ancient monarchics, we still discover brieks of varions kinds. Some are merely sm-dried masses of clay; others are welloburnt; and others, again, are covered with a vitreous glaze. The Egyptians were great brick-makers, and the Romans were celebrated for their bricks and tiles, many of which are most ingeniously manufactured. In England, bricks do not appear to have been generally used until the middle of the 15 th century. That portion of Lambeth Palace known as the Lollards' Tower was built in 1454, and is the most ancient existing brick building in London. The older portion of Hanıpton Court, was built in 1514. These two buildings may, thereforc, be regarded as the oldest examples of our English brick manufacture.

The natural mixture of clay and sand, called loom, as well as marl, which consists of lime and clay with little or no sand, are the materials usually employed in the manufacture of bricks.

There are few places in this couktry which do not possess alumina in combination with silica and other earthy matters, forming a clay from which bricks can be manufactured. That most generally worked is found on or near the surface in a plastic statc. Others are hard marls on the coal measure, new red sandstone, and blue lias formations. It is from these marls that the blue bricks of Staffordshire and the firc bric is of Stourbridge are made. Marl has a greater resemblance to stone and rock, and varies much in colour ; blue, red, yellow, \&c. From the greatly different and varying character of the raw material, there is an equal diffcrence in the principle of preparation for making it into brick; while one merely requires to be turned over by hand, and to have sufficient water worked in to make it subservient to manual labour, the fire-clays and marls must be ground down to dust, and worked by powcrful machinery, bcfore they can be brought into even a plastic state. Now these various clays also shrink in drying and burning from 1 to 15 per cent., or more. This contraction varies in proportion to the excess of alumina over silica, but by adding sand, loam, or chalk, or (as is done by the Iondon brick-makers), by using ashes or breeze-as it is technically called-this can be corrected. All clays burning red contain oxides of iron, and those having from 8 to 10 per cent. burn of a blue, or almost a black colour. The bricks are exposed in the kilns to great heat, and whent he body is a fire-clay, the iron, melting at a lower temperature than is sufficient to destroy the bricks, gives the outer surface of them a complete metallic coating. Bricks of this description are common in Staffordshire, and, when made with good machinery (tbat is, the clay being very finely ground), are superior to any in the kingdom, particularly for docks, canal or river locks, railway-bridges, and viaducts. In Wolverhampton, Dudley, and many other towns, these blue bricks are commonly employed for paving purposes. Other clays contain lime and no iron ; these burn white, and take less heat than any other to burn hard enough for the use of the builder, the lime acting as a flux on the silica. Many clays contain iron and lime, with the lime in cxcess, when the bricks are of a light dun colour, or white, in proportion to the quantity of that earth present; if magnesia, they have a brown colour. If iron is in excess, they burn from a pale red to the colour of cast iron, in proportion to the quantity of metal.
There are three classes of brick earths :-
1st. Plastic clay, composed of alumina and silica, in different proportions, and containing a small per-centage of other salts, as of iron, lime, soda, and magnesia.

2 nd. Loams, or sandy clays.
3rd. Marls, of which there are also thrce kinds; clayey, sandy, and calcareous, according to the proportions of the earth of which they are composed, viz., alumina, silica, and lime.
Alumina is the oxide of the metal aluminium, and it is this substance which gives tenacity or plasticity to the clay-earth, having a strong affinity for water. It is owing to excess of alumina that many clays contract too much in drying, and often crack on exposure to wind or sun. By the addition of sand, this clay would make a better article than we often see produced from it. Clays contain magnesia and other carthy matters, but these vary with the stratum or rock from which they are composed. It would be impossible to give the composition of these earths corrcetly, for none are exactly similar; but the following will give an idca of the proportions of the ingredients of a good brick earth, silica, three-fifths; alumina, one-fifth; iron, lime, magnesia, mangancse, soda, and potash forming the other onc-fifth.

The clay, when first raised from the mine or bed, is, in very rare instances, in a a state to allow of its being at once tempered and moulded. The material from which fire-bricks are manufactured lias the appearance of ironstone and bluc lias limestone, and some of it is remarkably hard, so that in this and many other instances in order to manufacture a good article, it is neccssary to grind this material down into particles as fine as possible.

Large quantities of bricks are made from the surface marls of the new red sand-
stone and blue lias formations. These also require thorough grinding, but from their softer nature it ean be cffected by less powerful machinery. - Chamberlain.

Receutly, some very valuable fire-bricks have been made from the refuse of the China Clay Works of Devonshire. The quartz and mica left after the Kuolin has beera washed out are united with a small portion of infcrior clay, and made into bricks. These are found to resist heat well, and are largely cmployed in the construction of metallurgical works. See Clat.

The general process of brick making consists in digging up the clay in autumn; exposing it, during the whole winter, to the frost and the action of the air, turning it repcatedly, and working it with the spade ; breaking down the clay lunups in spring, throwiug them into shallow pits, to be watered and soaked for several days. The next step is to temper the clay, which is generally done by the treading of men or oxen. In the ncighbourhood of London, however, this process is performed in a horse-mill. The kneading of the clay is, in fact, the most laborious but indispensable part of the whole business; and that on which, in a great measure, the quality of the bricks depends. All the stones, particularly the ferruginous, calcareous, and pyritous kinds, should be removed, and the clay worked into a homogencous paste with as little water as possible.
Mr. F. W. Simms, C. E., eommunieated to the Institution of Civil Engineers, in April and May, 1843, an account of the process of briek-making for the Dover railway. The plan adopted is called slop-moulding, because the mould is dipped into water before receiving the clay, instead of being sanded as in making sand-stock bricks. The workman throws the proper lump of clay with some force into the mould, presses it down with his hands to fill the eavities, and then strikes off the surplus clay with a stick. An attendant boy, who has previously placed another mould in a water trough by the side of the moulding table, takes the mould just filled, and carries it to the floor, where he carefully drops the brick from the miould, on its flat side, and leaves it to dry ; by the time he has returned to the moulding table, and deposited the empty mould in the water trough, the briekmaker will have filled the other mould for the boy to convey to the floor, where they are allowed to dry, and are then stacked in rcadiness for being burned in clamps or kilns. The average product is shown in the following Table :

It appears that while the produee in sand-stock bricks is to that of slop-bricks, in the same time, as 30 to 16 , the amount of labour is as 7 to 4 ; while the quantity of land, and the cost of labour per thousand, are nearly the same in both processes. The quantity of coal cousumed in the kiln was at the rate of 10 cwt . 81 bs . per 1000 brieks. The cost of the bricks was 2l. 1s. $6 d$. per thousand. The slop-made brieks are fully 1 pound heavier than the sand-stock. Mr. Bennet states that at his brick-field at Cowley, the average number of sand-stock bricks moulded per day was 32,000 ; but that frequently so many as 37,000 , or even 50,000 , were formed. The total amount in the shrinkage of his brieks was $\frac{13}{13}$ of an inch upon 10 inches in length; but this differed with the different clays. M1. Simms objects to the use of machinery in brick-making, bceause it causes economy only in the moulding, which constitutes no more than about one-cighth of the total expensc.
The principal machines which have been worked for this purpose are three-1st, the pug-mill ; 2nd, the wash-mill ; 3rd, the rolling-mill.
The pug-mill is a cylinder, sometimes conical, generally worked in a vertical position, with the large end up. Down the centre of this is a strong revolving vertical shaft, on which are hung horizontal knives, inclined at such an angle as to form portions of a screw, that is, the knives follow each other at an angle forming a series of coils round this shaft. The bottom knives are larger, and vary in form, to throw off the clay, in some mills vertically, in others horizontally. Some have on the bottom of the slaft onc eoil of a serew, which throws the elay off more powerfully where it is wished to give pressure.
The action of this mill is to cut the clay with the knives during their revolution, and so work and mix it, that on its cscape it may be one homogeneous mass, without any lumps of lard untempered clay; the elay being thoroughly amalgamated, and in
the toughest state in which it can he got by tempering. This mill is an excellent contrivance for the purpose of working the clay, in combination with rollers; but if ouly one mill is worked, it is not generally adopted, for, although it tempers, mixes, and toughens, it does not extract stones, crush up hard substances, or free the clay from all matters injurious to the quality of the ware when ready for market. This mill can be worked by either steam, water, or horsc.power; but it takes much power in proportion to the quantity of work which it performs. If a briek is made with clay that has passed the pug-mill, and contains stones, or marl not aeted on by weather, or linue-shells (a material very common in clays), or any other extraneous matter injurious to the brick, it is apparent from the action of this mill that it is not removed or reduced. The result is this, the bricks being when moulded in a very soft state of tempered material, or mud, considerably contract in drying, but the stones or hard substances not contracting, cause the clay to crack; and even if they sloould not he sufficiently large to do this in drying, during the firiug of the hricks therc is a still further contraction of the clay, and an expansion of the stone from the heat to which it is subjected, and the result is generally a faulty or hroken brick, and on being drawn from the kilns, the hricks are found to be imperfect.

The carth, heing sufficiently kneaded, is brought to the heach of the moulder, who works the clay into a mould made of wood or iron, and strikes off the superfluous matter. The bricks are next delivered from the mould, and ranged on the ground; and when they have acquired sufficient firmness to hear handling, they are dressed with a knife, and staked or huilt up in long dwarf walls, thatched over, and left to dry. An able workman will make, hy hand, 5000 hricks in a day.

The different kinds of bricks madc in England are principally place bricks, grey and red stocks, marl facing brichs, and cutting brichs. The place bricks and stocks are used in common walling. The marls are made in the neighbourhood of London, and uscd in the outside of buildings, they are very beautiful hricks, of a fine yellow colour, hard, and well burnt, and, in every respeet, superior to the stocks. The finest kiud of marl and red bricks, called cutting bricks, are used in the arches over windows and doors, being rubbed to a centre, and gauged to a hcight.

Bricks, in this country, are generally baked either in a clamp or in a kiln. The latter is the preferahle method, as less waste arises, less fuel is consumed, and the hricks are sooner hurnt. The kiln is usually 13 feet long, by $10 \frac{1}{2}$ fcet wide, and about 12 feet in height. The walls are one foot two inches thick, carried np a little out of the perpendicular, inclined towards eaeh other at the top. The bricks are placed on flat arches, having holes left in them resemhling lattice-work; the kiln is then covered with pieces of tiles and hricks, and some wond put in, to dry them with a gentle fire.

This continues two or three days hefore they are ready for burning, which is known hy the smoke turning from a darkish colour to semi-transpareacy. The mouth or mouths of the kiln are now dammed up with a shinlog, which consists of pieces of bricks piled one upon anotber, and closed with wet brick earth, leaving above it just room sufficient to receive a fagot. The fagots are made of furze, heath, hrake, fern, \&c., and the kiln is supplied with these until its arches look white, and the fire appears at the top; upon which the fire is slackened for an hour, and the kiln allowed gradually to cool. This heating and cooling is repeated until the bricks are thoroughly burnt. which is generally done in 48 hours. Onc of these kilns will hold about 20,000 bricks.

Clamps are also in common use. They are made of the hricks themselves, and generally of an ohlong form. The foundation is laid with place brich, or the driest of those just made, and then the bricks to be hurnt are built up, tier upon tier, as high as the clamp is meant to hc, with two or three incbes of hreeze or cinders strewed between each layer of bricks, and the whole covered with a thiek stratum of breeze. The fire-place is perpendicular, ahout three feet high, and generally placed at the west end; and the flues are formed by gathering or arching the hricks over, so as to leave a space between each of nearly a brick wide. The flucs run straight through the clamp, and arc filled with wood, coals, and hreeze, pressed closely together. If the bricks are to be burnt off quickly, which may he done in 20 or 30 days, according as the weather may suit, the flues should he only at ahout six feet distance ; but if there be no immediate hurry, they may he placed nine feet asunder, and the clamp left to burn off slowly.

The following remarks by Mr. H. Chamberlain, on the drying of bricks, have an especial value from the great expcrience of that gentleman, and his careful ohservation of all the conditions upon which the preparation of a good hrick depends.
" The drying of bricks ready for burning is a matter of great importance, and requires more attention than it generally receives. From hand-made hrieks we have to eraporate some 25 per cent. of water before it is safe to burn them. In a work requiring
the make of 20,000 bricks per day, we have to evaporate more than 20 tons of water every 24 hours. Hand-made bricks lose indrying about one-fourth of their weight, and in drying and burning about onc-third. The average of machine bricks-those made of the stiff plastic clay-do not lose more than half the above amount from evaporation, and are, therefore, of much greater specific gravity than hand-made ones.
"The artificial drying of bricks is carricd on throughout the year uninterruptedly in sheds having the floor heated by fires; but this can only be effected in districts where coal is cheap. The floors of these sheds are a series of tunnels or flues running through the shed longitudinally. At the lower end is a pit, in whieh are the furnaces ; the fire travels up the flues under the floor of the sbed, giving off its heat by the way, and the smoke escapes at the upper end, through a series of (generally three or four) smaller chimneys or stacks. The furnace end of these flues would naturally be much more highly heated than the upper end near the chimneys. To remedy this, the floor is constructed of a greater thickness at the fire end, and gradually diminishes to within a short distance of the top. By this means, and by the assistance of dampers in the ehimneys, it is kept at nearly an equal temperature throughout. Bricks that will bear rapid drying, such as are made from marly clays or very loamy or siliceous earths, will be fit for the kiln in from 12 to 24 hours. Before the duty was taken off bricks, much dishonesty was practised by unprincipled makers, where this drying could be carried on economically. Strong clays cannot be dried so rapidly. Tbese sheds are generally walled round with loose bricks, stacked in between each post or pillar that supports the roof. The vapour given off from the wet bricks, rising to the roof, escapes. This system of drying is greatly in advance of that in the open air, for it produces the ware, as made, without any deterioration from bad weather; but the expense of fuel to heat these flues has restricted its use to the neighbourhood of collicries. In 1845 attention was turned to the drying of bricks, and experiments carried out in drying the ware with the waste heat of the burning kilns. The caloric after having passed the ware in burning, was carried up a flue raised above the floor of the shed, and gave off its spent heat for drying the ware. Although this kiln was most useful in proving that the waste heat of a burning kiln is more than sufficient to dry ware enough to fill it again, it was abandoned on account of the construction of the kiln uot being good.
"Anotber system of drying is in close chambers, by means of steam, hot water, or by flues heated by fire under the chambers. I will, therefore, briefly describe the steam chamber as used by Mr. Beart. This is a squarc construction or series of tunnels or cbambers, built on an incline of any desired length; and at some convenient spot near tbe lower end is fixed a large steam boiler, at a lower level tban the drying chamber. From the boiler the main steam pipe is taken along the bottom or lower end of the chamber, and from this main, at right angles, run branch pipes of four inchcs diamcter up the chamber, two feet apart, and at about tbree feet from the top or arch. From there being so close and shallow a chamber between the heating surface of the pipes and the top, and so large an amount of heating surface in the pipes, the temperature is soon considerably raised. At the top and bottom ends are shutters or lids, which open for the admission of the green ware at the upper end, and for the exit of the dry ware at the lower end of the chamber. Over the steam pipes arc fixed iron rollers, on which the trays of bricks, as brought from the machine, are placed, tbe insertion of one tray forcing the tray previously put in further on, assisted in its descent by the inclination of the construction. The steam being raised in the boiler flows through the main into those branch pipes in tbe chamber, and from the large amount of exposed surface becomes condenscd, giving off its latent heat. From the incline given to the pipes in the chamber, and from the main pipe also having a fall towards the boiler, tbe whole of the warm water from the condensed steam flows to tbe boiler to be again raised to steam, sent up the pipes, and condensed intermittently. Tbe steam entering at the lower end of tbe chamber, it is of course warmer than the upper end. Along the top end or highest part of the chamber is a series of chimneys and windguards, through which the damp vapour escapes. The bricks from the machine enter at this cooler end charged with warm vapour, and as the make proceeds are forced down the chamber as each tray is put in. Thus, those which were first inserted reach a drier and warmer atmosphere, and, on their arrival at the lower end, come out dry bricks, in about 24 hours, with the strongest clays. In some cases the waste steam of the working engine is sent through these pipes and condensed. Bricks will dry soundly without eracking, \&cc., in these close chambers, when exposed to much greater heat than they would bear on the open flue first described, or the open air, from the circumstance of the atmosphere, although very hot, being so highly charged with vapour. In practice, tbesc steam chambers bave proved many principles, but tbey are not likely to become universal, for they are very expensive in erection on aecount of the quantity of stcam pipes, and involve constant expense in fuel, and
require attention in the management of the steam boiler; but their greatest defeet is the want of a current of hot air through the chauber to earry off the excess of vapour faster than is now done. The attaining a ligh degree of temperature in these chambers is useless, unless there is a current to earry off the vapour. Why should this piping be used, or steam at all, when we have a large mass of heat being constantly wasted, night and day, during the time the kilns are burning? and after the proeess of burning the kiln is completed, we have pure hot air flowing, from 48 to 60 hours, from the mass of eooling brieks in the kilns, free from carbon or any impurities ; this could be directed through the drying chambers, entering in one constant flow of hot dry air, and escaping in warm vapour. The waste heat during the proeess of burning eau be taken up flues under the chamber, and thereby all the heat of our burning kilns may be economised and a great outlay saved in steam pipes, boilers, and atteution. It must not be forgotten also, that so large an atmospherie condenser as the steam chamber is not heated without a considerable expenditure in fuel. This drying by steam is a great stride in advance of the old flued shed, but practieal men must see the immense loss incurred constantly from this source of the spent heat of the burning kilns, and that by economising it, an immense saving will be effeeted in the manufacture. The kilns are constructed as near the lower end of these ehambers as eonvenient."

A kiln for attaining the object of the one built in 1846 by Mr. Chamberlain is now at work at Epsom, at Mr. Hand's brick-works; but with this difference, that the smoke is consumed. The drying shed is kept quite elose, that the hot flues may raise the temperature so high as to dry the ware. In this kiln the heated gases eseape from the top, after passing up through the ware, into flues, and are carried to the ground, and thence into the drying shed, which is a very large construetiou in proportion to the size of the kiln, and holds nearly sufficient ware to fill four kilns. In this shed the heat passes up a hollow wall, about six feet high, and after running through the length of the shed on one side, returns down similar flues on the opposite side of the shed, and is again carried to the kiln, through the bottom of which it passes in two close flues betweeu the three kiln-furnaces, with the exeeption of small apertures through which the heat enters to consume the smoke. From these return flues the spent gases rise up a shaft at the end of the kiln. One result of earrying these return flues through the kiln, is the attaining a grcat draft or suction in the flues to earry off vapour.

The common brick kiln is a reetangular building, generally open, but sometimes arched over. In the side walls and opposite to each other, are built fireplaces, or holes for the insertion of the fuel. The furnaces are formed in the setting of the kiln with unburnt bricks, and above these the kiln is filled as above deseribed. In these kilns, from the raw ware forming the furnace, the flash of the flame, from the fires in the walls, too often vitrefies and destroys the nearest bricks. In the open kiln, as the fire or heat reaches to the top, the fireman soils or earths it down, which throws the draught to another part more backward; and, as it eontinues to rise, he proceeds with this operation until all the top is earthed in; be then continues the firing until the whole has sunk, by the contraction of the clay in the fire, to the desired depth. The fire-holes are then stopped up with mud, and the kiln is left to cool gradually. If the air were admitted too rapidly while the kiln was at this intense heat, it would eause brieks, made with strong elays, to fly to pieces like glass; it is, in fact, the proeess of annealing. Cooling too quiekly also affeets, in many clays, the eolour of the brieks.
Temporary kilus are constructed in the country with unburnt brieks, and ealled elamps. In Staffordshire, the brieks are burnt in small round kilns, called ovens, which hold from 7000 to 8000 brieks eaeh; these are burnt from fire in the walls round the ovens, and the raw ware is set in, so as to form a flue from each fire, to direct the flame to the centre. These ovens burn very quiekly, and a most intense heat ean be obtained in them. Mr. Chamberlain must be again quoted on the burning of bricks:-
"I will now more fully describe a principle of burning whieh I hare had in practice for the last six years, and which I can therefore recommend with great confidenee. The great object in briek-burning is to attain a sufficient heat to thoroughly burn the ware with as small a consumption of coal as possible; and with nearly inn equal distribution of the heat over all parts, so that the whole of the ware, being subjected to the same temperature, may contract equally in bulk, and be of one uniform colour throughout. The advantage is also gained of burning in muelu less time than in the old kilns, whieh, on an average, took a week; and the management is so simplified that any man, even though not at all conversant with the manufucture, after he has seen one kiln burnt, will be able to manage another ; and the last, though not least, advantage is, that of delivering up to us the waste heat at the ground level,
or under the floor of the kiln, to be used in drying the green ware, or in partially burning the next kiln.
" Hitherto the heat lias been applied by a series of fireplaces, or flues and openings round the kiln, cach exposed to the influence of the atmosphere; aud in boisterons weather it is very difficult to keep the heat at all regular, the consequence of which is, the unequal burning we often see. The improvements sought by experimentalists have been the burning the goods equally, and, at the same time, more cconomically. These are obtained by the patent kilns, as improved by Mr. Robert Scrivener, of Shelton, in the Staffordshire Potteries. The plan is both simple and effective, and is as follows:- A furnace is constructed in the centre of the kiln, much below the floor level, and so built that the heat can be directed to any part of the kiln at the pleasurc of the fireman. First, the heat is directed up a tube in the centre to the top of the oven or kiln, and, as there is no escape allowed to take place there, it is drawn down through the goods by the aid of flues in connection with a chimney. Thus, all the caloric generated in the furnace is made use of, and, being central, is equally diffused throughout the mass; but, towards the bottom, or over the exit-flues, the ware would not be sufficiently burnt without reversing the order of firing. In order to meet this requirement there is a series of flues under the bottom, upon which the goods are placed, with small regulators at the end of each; these regulators, when drawn back, allow the fire to pass under the bottom, and to rise up among the goods which are not sufficiently fired, and thus the burning is completed. By means of these regulators the heat may be obtained exactly the same throughout; there is, therefore, a greater degree of certainty in firing, and a considerable saving of fuel, with the entire cousumption of the smoke. From the fire or draught being under command, so as to be allowed either to ascend or descend through the ware during the time of burning or cooling, the waste caloric can be economised and directed through the adjoining kilu in order to partially burn it, or be used in drying off the raw wares on flues or in chambers. I have found the saving of fuel in these kilns, over the common kiln, 50 per cent.; and to give an idea of the facility with which they can be worked, it is common for my men to fill the kiln, burn, cool, and discharge it in six days." Chamberluin.
In France attempts were long ago made to substitute animals and machines for the treading of men's feet in the clay kneading pit ; but it was found that their schemes could not replace, with advantage, human labour where it is so cheap, particularly for separating the stones and heterogeneous matters from the loam. The more it is worked, the deuser, more uniform, and more durable, the bricks which are made of it. A good French workman, in a day's labour of 12 or 13 hours, it has been said, is able to mould from 9000 to 10,000 bricks, 9 inches long, $4 \frac{1}{2}$ inches broad, and ${ }^{2} \frac{1}{4}$ thick; but he must have good assistants under him. In many brick-works near Paris, screw-presses are now used for consolidating the bricks and paving tiles in their moulds. M. Mollerat employed the hydraulic press for the purpose of condensing pulverised clay, which, after baking, formed beautiful bricks; but the proeess was too tedious and costly. An ingenious contrivance for moulding bricks mechanically is said to be employed near Washington, in America. This machine moulds 30,000 in a day's work of 12 hours, with the help of one horse, yoked to a gin wheel, and the bricks are so dry when discharged from their moulds, as to be ready for immediate burning. The machine is described, with figures, in the "Bulletin de la Société d'Encouragement" for 1819, p. 361. See further on, an account of our recent patents.
Mechanical Brick moulding. - Messrs. Lyne and Stainford obtained, in August, 1825, a patent for a machine for making a considerable number of bricks at one operation. It consists, in the first place, of a cylindrical pug-mill of the kind usually employed for comninuting clay for bricks and tiles, furnished with rotatory knives, or cutters, for breaking the lumps and mixing the clay with the other materials of which fifteen bre commonly madc. Secondly, of two movable moulds, in each of the machine for the purpese once; thesc moulds being made to travel to and fro in filled with the clay, and then removed to situations where under the pug-mill to be act upon them. Thirdly, in a contrivance by which the plungers are euabled to descend, for the purpose of compressing the by which the plungers are made to mould in the form of bricks. Fourthly, in thaterial and discharging it from the trucks which carry the receiving hoards, and method of constructing and working formed.

Fig. 273 exhibits the general construction of the applas; being exactly similar, little more than half of the apparatus; both ends of which cylindrical pug-mill, slown partly in section, the machine is represented. a is the other materials from a hopper above; $b b$ are the is supplied with the clay and
are attached to the vertical shaft, and, being placed obliquely, press the clay down towards the bettom of the cylinder, in the act of beaking and mixing it as the shaft

revolves. The lower part of the cylinder is open; and immediately under it the mould is placed in which the bricks are to he formed. These moulds run to and fro upon ledges in the side frames of the machine; one of the moulds only can he shown by dots in the figure, the side rail intervening: they are situated at $c c$, and are formed of hars of iron crossing each other, and encompassed with a frame. The mould resembles an ordinary sash window in its form, being divided into rectangular compartments (fifteen are proposed in each) of the dimensions of the intended hricks, hut sufficiently deep to allow the material, after heing considerably pressed in the mould, to leave it, when discharged, of the usual thickness of a common hrick.

The mould being open at top and hottom, the material is allowed to pass into it, when situated exactly under the cylinder; and the lower side of the mould, when so placed, is to he closed hy a flat hoard d, supported hy the truck e, which is raised hy a lever and roller heneath, running upon a plane rail with inclined ends.

The central shaft, f, is kept in continual rotatory motion, hy the revolution of the upper horizontal wheel g, of which it is the axis ; and this wheel may be turned by a horse yoked to a radiating arm, or by any other means. A part of the circumference of the wheel g, has teeth which are intended at certain periods of its revolution to take into a toothed pinion, fixed upon the top of a vertical shaft $h h$. At the lower part of this vertical shaft there is a pulley i, over which a chain is passed that is connected to the two moulds c, and to the frame in which the trucks arc supported; by the rotation of the vertical shaft, the pulley winds a chain, and draws the moulds and truck frames along.

The clay and other material having been forced down from the cylinder into the mould, the tceth of the horizontal wheel g, now come into gear with the pinion upon h, and turn it and the shaft and pullcy i, hy which the chain is wound, and the mould at the right hand of the machine hrought into the situation shown in the figure; a scraper or edge-bar under the pug mill having levelled the upper face of the clay in the mould, and the hoard d, supported by the truck e, formed the flat under side.

The mould being hrought into this position, it is now necossary to compress the materials, which is done by the descent of the plungers, k a. A friction-rollcr, 1 , pendant from the under side of the horizontal wheel, as that whech revolves, concs in contact with an inclined plane, at the top of the slaft of the plungers; and, as the friction-roller passes over this inclined plane, the plungers are made to descend into
the mould, and to compress the material; the resistance of the board beneath causing the clay to he squeezed into a compact state. When this has been effectually accomplished, the further descent of the plungers hrings a pin, m, against the upper end of a quadrant catch-lever, n, and, hy depressing this quadrant, causes the halance-leverupon which the truck is now supported to rise at that end, and to allow the truck with the board d to descend, us shown hy dots; the plungers at the same time forcing out the bricks from the moulds, whereby they are deposited upon the hoard d; when. by drawiug the truck 'forward out of the machinc, the board with the hricks may he removed, and replaced by another board. The truck may then be again introduced into the machine, ready to receivc the next parcel of hricks.

By the time that the discharge of the hricks from this mould has heen cffected, the other mould under the pug cylinder has hecome filled with the clay, when the tecth of the horizontal wheel coming round, take into a pinion upon the top of a vertical shaft, exactly similar to that at h, but at the reverse end of the machine, and cause the moulds and the frame supporting the trucks to he slidden to the left end of the machine; the upper surface of the mould hcing scraped level in its progress, in the way already described. This movement brings the friction-wheel, o, up the inclined plane, and thereby raises the truck, with the board to the under side of the mould, ready to receive another supply of clay; and the mould at the left-hand side of the machine heing now in its proper situation under the plungers, the clay becomes compressed, and the hricks discharged from the mould in the way descrihed in the former instance; when this truck being drawn out, the bricks are removed to be dried and baked, and another hoard is placed in the samc situation. There are hoxes, p, upon each side of the pug cylinder containing sand, at the lower parts of which small sliders are to be opened (hy contrivances not shown in the figure) as the mould passes under them, for the purpose of scattering sand upon the clay in the mould to prevent its adhering to the plungers. There is also a rack and toothed sector, with a halance-weight counected to the inclined plane at the top of the plunger-rods, for thic purpose of raising the plunger after the friction-roller has passed over it ; and there is a spring acting against the hack of the quadrant-catch, for the purpose of throwing it into its former situation, after the piu of the pluuger has risen.
An effective machine for hrick-making is that patented by Mr. Edward Jones, of Birmingham, in August, 1835. His improvemeuts are descrihed under four heads: the first applies to a machine for moulding the earth into bricks in a circular frameplate horizontally, containing a series of moulds or rectangular boxes, standing radially round the circumference of the circular frame, into which hoxes successively
the clay is expressed from a stationary the clay is expressed from a stationary hopper as the frame revolves, and after heing so formed, the hricks are successivcly pushed out of their hoxes, each by a piston a reetangular horizontal frame, having a seriond head of the specification describes rauge, which are acted upon fur pressing the of moulding boxes placed in a straight fixed in a horizontal frame, workedsing the clay by a corresponding range of pistons crank shaft, the moulding boxes being allowed to by rods exteuding from a rotatory pistons to force out the hricks when moulded, and leave them upon the hed or hord helow. The third head applics particularly to the making of tiles for the floorinard kilns in which malt or grain is to he dried. There is in this contrivance a rectangular mould, with pointed pieces standing up for the purpose of producing air-holes through the tiles as they are moulded, which is done by pressing the clay into the moulds upon the points, and scraping off the superflnous inatter at top by hand. The fourth or last head applies to moulding chimney-pots in double moulds, which take to pieces for the purpose of withdrawing the pot wheu the edges of the slabs or sides are sufficiently brought into contact.
Fig. 274 represents, in clevation, the first-mentioucd nachine for moulding bricks. The moulds are formed in the face of a circular plate or wheel, a a, a portion of the upper surface of which is represented in the horizontal view, fig. 275. Any convenient which is mounted upon a central per of these moulds are set readily in the wheel, Vox. I.
$G \mathrm{G}$

of teeth round the outer edge of the wheel $a a$, which take into a pinion, c, on a shaft conneeted to the first mover; and by these means the wheel a, with the moulding

the earth being pressed into the moulds, and its surface scraped off smooth by a conical roller, f, in the bottom of the hopper.

Through the bottom of each moulding box there is a hole for the passage of a piston rod, g, the upper end of which rod carries a pistou with a wooden pallet upon it aeting within the moulding box; and the lower cnd of this rod has a small antifrietion roller, which, as the wheel a revolves, runs round upon the face of an oblique ring or inclined way, $h h$, fixed upon the masonry.

The clay is introduced into the mouldiug boxes from the hopper fixed over the lowest part of the inclined way h; and it will be perceived that as the wheel revolves, the piston rods, g, in passing up the inclined way, will cause the pistons to force the new-moulded bricks, with their pallet, or board, under them, scverally up the mould, into the situation shown at i, in fig. 274 , whence they are to be removed by hand. Fresh pallets being then placed upon the several pistons, they, with the moulds, will be ready for moulding fresh bricks, when, by the rotation of the wheel, a, they are severally brought under the hopper, the pistons having sunk to the bottoms of their boxes, as the piston rods passed down the other side of the inclined way h.
The second head of the invention is another construcrion of apparatus for moulding bricks, in this instance in a rectangular frame. Fig. 276 is a front elevation of the machine; fig. 277, a section of the same taken transversely. $a a$ is the standard frame-work and bed on which the bricks are to be moulded. Near the corners of this standard frame-work, four vertical pillars, $b b$, are erected, upon which pillars the frame of the moulding boxes, c, slides up and down, and also the bar, d, carrying the rods of the pistons, eee. These pistons are for the purpose of compressing the clay in the moulding box, and therefore must stand exactly over and correspond with the respective moulds in the frame c, beneath.

The sliding frame, c, constituting the sides and ends of the moulding boxes, is supported at each end by an upright sliding rod, f, which rods pass through guides fixed to the sides of the standard frame, $a a$, and at the lower end of eael there is a roller, bearing upon the levers, g, on each side of the machine, but seen only in fig. 277, whieh levers, when depressed, allow the moulding boxes to descend and rest upon the bed or table of the machine $h h$.

In this position of the machine resting upon the bed or table, the briek-earth is to be placed upon, and spread over, the top of the frame c, by the hands of workmen, when
the descent of the plunger or pistons e e e will cause the earth to be forced into the moulds, and the bricks to be formed therein. To effect this, rotatory power is to be applied to the touthed wheel i, fixed on the end of the main driving crank slaft $k h$, which ou revolving will, by means of the crank rods $l l$, brmg down the bar a, with the pistons or plunger e e ee, aud compress the earth compactly into the moulds, and thereby form the bricks.

When this has been done, the bricks are to be released from the moulds by the mouldiug frame, c, rising up from the bed, as shown in $f y .276$, the pistons still remaining depressed, and bearing upon the upper surfaces of the brieks. The moulding frame is raised by means of cams, m, upon the crank shaft, which at this part of the operation arc brought under the levers q, for the purpose of raising the cims and thic sliding rods f into the position shown in fig. 277.
The brieks having been thus formed and released from their moulds, they are to be removed from the bed of the machine by pushing forward, on the front side, fresh boards or pallets, which of course will drive the bricks out upon the other side, whence they are to be removed by hand.

There is to be a small holc in the centre of each pallet, and also in the bed, for the purpose of allowing any superfluous earth to be pressed through the moulding boxes when the pistons descend. And in order to cut off the projecting piece of elay which would be thus formed on the bottom of the brick, a linife-edge is in some way connected to tbe bed of the maehine, and as the briek slides over it, tbe knifc separates the protuberant lump; but the particular construction of this part of the apparatus is considered to be of little importanee, and the manner of effecting the object is not clearly stated in the specification.

Fig. 278 represents Mr. Hunt's machine. The principal parts consist of two cylinders, each covered by an endless web, and so placed as to forin the front and back of a bopper, the two sides being iron plates, placed so that when the hopper is filled with tempered clay from the pug-mill, the lower part of the hopper, and consequently

the mass of clay within it, has cxactly the dimensions of a brick. Beneath the hopper an endless chain traverses simultaneously with the movement of the cylinders. The pallet-boards are laid at given intervals upon the chain, and being tbus placed under the hopper, wbile the clay is brought down with a slight pressure, a frame with a thickness of the brick, whichected through the mass of clay, cutting off exactly the ment of tbe cndless chain. This opcration is repeated each by tbe for ward moveconnes under the hopper.

There arc numerous machines in use for the manufacture of bricks. For the manufacture of perforated bricks, Mr. Beart's machine is the most gencrally employed. Mr. Cbamberlain thus describes it :-" The most universally used die machine Which has been extensively worked up to the present time is Mr. Beart's patent for in order to remedy the gentleman, who is praetically acquainted with these matters, through a large aperture or die, hung a series of small ton expressing a mass of clay hollow or perforated bricks. By this means the clay was or cores, so as to form through the dic into the corners, having tbe greater clay was forced in its passage centre. Still, tbe bricks canne out rough at the edge with many clays, or with whe is termed a jagged edge. The water dic was afterve with many clays, or with what the perforated bricks, now so commonly uscd in Beart's machinc, which is a pug-mill, the clay is takeu after passing through Mr. rolling-mill, and being fed in at the top, is worked down by the thing through the bottom are two horizontal clay.boxes, in which a plunger works the knives. At the wards. As soon as it has reached the extremity of its stroks, back wards and for-
one box through the die, the other box receiving during this time its charge of clay from the pug-mill, the plunger returns and empties this box of elay through a die on the opposite side of the machine. The result is, that while a stream of clay is being forced out on one side of the machine the clay on the opposite side is stationary, and can, therefore, be divided into a series of five or six brieks with the greatest correctness by hand. Some of these machines have both boxes on one side and the plungers worked by cranks. This machine cannot make bricks unless the clay has previously passed through rollers, if coarse; for anything at all rough, as stone or other hard substance, would hang in the tougues of the die. But the elay being afterwards pngged in the machine is so thoroughly tempered and mixed, that the bricks when made cannot be otherwise than good, provided they are sufficiently fired. As to the utility of hollow or perforated bricks, that is a matter more for the consideration of the arehitect or builder than for the briek-maker. Perforated brieks are a fifth less in weight than solid ones, which is a matter of some importance iu transit; hut it takes considerably more power to foree the clay through those dies than for solid briek-making. In the manufacture of perforated brieks, there is also a royalty or patent right to be paid to Mr. Beart."

Mr. Chamberlain's own machine is in prineiple as follows (fig. 279):-The clay is fed into a pug-mill, placed horizontally, which works and amalgamates it, and then forces it

off through a mouth-piece or die of about 65 square inches, or about half an inch deeper and half an ineh longer than is required for the brick, of a form similar to a brick on edge, but with corners well rounded off, each corner forming a quarter of a 3 -inch circle, for clay will pass smoothly through an aperture thus formed, but not through a keen angle. After the clay has escaped from the mill it is seized by four rollers, covered with a porous fabrie (moleskin), driven at a like surface speed from connection with the pug-mill. These rollers are two horizontal and two vertical ones, having a space of 45 inches between them; they take this larger stream of rough clay, and press or roll it into a squared block, of the exaet size and shape of a briek edgeways, with beautiful sharp edges, for the clay has no friction, being drawn through by the rollers instead of forcing itself through, and is delivered in one unbroken stream. The rollers in this machine, perform the functions of the die in one elass of machinery, and of the mould in the other. They are, in fact, a die with rotating surfaces. By hanging a series of mandrels or cores between these rollers, or by merely ehanging the month-piece, we make hollow and perforated brieks, without any alteration in the machine.
Messrs. Bradley and Craven, of Wakefield, have invented a very ingenions briekmaking machine: -
It consists of a vertical pug-mill of a peculiar form, and greatly improved construction, into the upper part of which the elay is fed. In this part of the apparatus the clay undergoes a most perfect tempering and mixing, and on reaching the bottom of the mill, thoroughly amalgamated, is foreibly pressed into the monlds of the form and size of brick required, which are arranged in the form of a circular revolving table.

As this table revolves, the piston-rods of the moulds ascend an incline plane, and gradually lift the bricks out of the moulds, whence they are taken from the ma-

chine by a boy, and placed on an endless band which carries the bricks direct to the waller, thus effecting the saving of the floor room.

The speed of the several parts of the machine is so judiciously arranged, that the operations of pugging, moulding, and delivering proceed simultaneously in due order, the whole bcing easily driven by a steam engine of about six-horse power, which, at the ordinary rate of working, will make 12,000 bricks per day; or, with eight-horse power, from 15,000 to 18,000 .
In consequence of the perfect amalgamation of the elay, and the great pressure to which it is subjected in the moulds, the bricks produced by this machine are perfect; and from the stiffness of the clay used, less water has to be evaporated in the drying, thus saving one half the time required for hand-made bricks, and avoiding the risk of loss from bad weather.
The following remarks by Dr. Ure are deserving attention:-
"The brick kilns and clamps round London and other large cities, which are fired with the breeze rubbish collected from dust holes that contain the refuse of kitchens, coke or coals give fires. The consideration gases of a more noxious nature than common household being consultcd concerning an injuriction was closely pressed upon my attention on clamp in the Isle of Wight fired with istion issued by the Chancellor against a brick nace at Portsmouth dockyard. The bricks, coke cinders from the steam-enginc furwere of course made in moulds very slightly dusted description called sand stock, freely out. The sand was brought from Portsnouth Harbour, sand, to make them fall to a degree of heat more intense certainly thought to give out traces of hydrochloric acid. it could suffer in the clamp, was
"As it is well known to the chemist that with moist sand will emit hydrochloric a common salt strongly ignited in contact above observation; but I ascertained that the was nothing remarkable in the strewed would give out no hydrochloric acid at and witl which the moulds were bricks were exposed to in a clamp 10 or 12 feet heat equal at least to what the with a layer of cinders 3 or 4 inches thick. But I fund fired at its bottom only entire substance of the brick, with its scanty film of sand, on deing exposed that the tion in a suitable apparatus, gave out - not hydrochloric on being exposed to ignibut ammonia gas. Hence, the allegations that the clamp scut forth a hosive acid,

BRICK.

gases to blight the neighbouring trees were shown to be utterly groundiess; on the contriry, the ammonia coolved from the heated claty would act bencficially upon vegetation, while it was too snall in quantity to annoy any human being. A few yards to leeward of a similar clamp in full activity, I conld perceive no offensive odour. All ferruginous clay, when exposed to the atmosphere, absorbs ammonia from it, and of course emits it again on being gently ignited."

A very ingenious and simple brick-making machinc was constructed and patented by Mr. Roberts, of Falmouth, and it has been extensivcly worked by him in the parish of Mylor:

Fig. 281 shows a plan of machinery combined, according to Mr. Roberts's inven-

tion; and fig. 282 shows a side elevation, partly in section. a is a circular track, on which arc fixed series of moulds, b, at intervals, the form of moulds being according to the shape of bricks or tiles to be made. Each set of moulds is provided with movable bottoms (one for cach mould), which arc connected to the bar c, so that they may be all simultancously lifted by the lever d.

In fig. 282 one set of the moulds and apparatus used therewith is shown, and the several sets of moulds (the positions of which are in the drawing, fig. 281) are similarly provided. e is a roller, which is moved round on the track a, by means of the frame f, which receives motion from a steam engiuc or other power, by means of the shaft g, the cog-wheel h, and circular-toothed raek fixed on the frame f. The elay, or brick earth, is filled into the moulds, and the roller c presses the sume into the
moulds as it rolls over them; i is a scraper which, following the roller c, removes any excess of clay or brick earth from the moulds; and j is a smaller roller which acts as a balance, to prevent the cutter from rising; k is a pressing plate attached to the bar c, and is raised at the same time by the lever d. The roller e, in its further progress, passes over and presses down the plate k, which completes the pressurc ; e then passes on and presses down the lever d, by which all the movable bottoms of the moulds will be raised with the bricks or tilcs thereon. The whole of the pistons and bar, c, are kept up by the stop l, which works by a spring, and is removed by the treadle m, as soon as the bricks or tiles are taken away; n are small rollers, fixed to the frame o, to which the cutter or scraper is attached.
Floating bricks are a very ancicnt invention : they are so light as to swim in water; aud Pliny tells us that they were made at Marseilles, at Colento, in Spain, and at Pittane, in Asia. This invention, however, was completely lost until M. Fabroni published a discovery of a method to imitate the floating bricks of the ancients. According to Posidonius, these bricks are made of a kind of argillaceous earth, which was employed to cleau silver plate. But as it could not be our tripoli, which is too heavy to float in water, M. Fabroni tried several experiments with mineral agaric, guhr, lac-lunx, and fossil meal, which last was found to be the very substance of which he was in search. This earth is abundant in Tuscany, and is found near Casteldelpiano, in the territories of Sienna. According to the analysis of M. Fabroni, it consists of 55 parts of siliceous earth, 15 of magnesia, 14 of water, 12 of alumina, 3 of lime, and 1 of iron. It exhales an argillaceous odour, and, when sprinkled with water, throws out a light-whitish smoke. It is infusible in the fire, and. though it loses about an cighth part of its weight, its bulk is scarcely diminished. Bricks composed of this substance, either baked or unbaked, float in water; and $\frac{1}{20}$ th part of clay may be added to their composition without taking away their property of swimming. These bricks resist water, unite perfectly with lime, are subject to no alteration from heat or cold, and the baked differ from the unbaked only in the sonorous quality which they have acquired from the fire. Their strength is little inferior to that of common bricks, but much greater in proportion to their weight; for M. Fabroni found that a floating brick, measuring 7 inches in length, $4 \frac{1}{2}$ in breadth, and 1 inch 8 lines in thickness, weighed only $14 \frac{1}{4}$ oz., whereas a common brick weiglied 5 lbs. $6 \frac{3}{4} \mathrm{oz}$ 。

As an experiment, Fabroni constructed the powder magazine of a ship of these bricks; the vessel was set on fire, and sank without exploding the powder.
This earth has been found near Clermont and in the Auvergne. Ehrenberg has shown that it is entirely composed of microscopic siliceous shells. Bricks composed of this earth weigh only half as much as the ordinary ones.

Fire bricks are made extensively in the neighbourhood of Newcastle-on-Tyne and at Stourbridge. For the analyses of the clays of which these and others are constructed, see Clay.

Stone Brichs.-These are manufactured at Neath, in Glamorganshire, and are very much used in the construction of copper furnaces at Swansea.
The materials of which the bricks are made are brought from a quarry in the neighbourhood. They are very coarse, being subjected to a very rude crushing operation under an edge stone, and, from the size of the pieces, it is impossible to mould by hand. There are three qualities, which are mixed together with a little water, so as to give the mass coherence, and in this state it is compressed by the machine into a mould. The brick which results is treated in the ordinary way, but it resists a much greater heat than the Stourbridge clay brick, expands more by heat, and does not contract to its original dimensions. The composition of the three materials is as follows:-

In immediate connection with this subject, it appears that the following machinc for raising bricks, mortar, \&c., by M. Pierrc Journct, described to the London Institution of Civil Engineers, merits attention. It is a machinc for raising bricks and materials to progressive heights in the building of chimneys and other works. A strong frame on the ground contained the winch wheel and on the second motion a notched wheel; on the scaffold frame above is a similar notched whecl, and round thesc two wheels an endless ehain travels, made of flat links and cross pins, which are
held by the notches iu the wheels. The buckets for mortar and hods for bricks arc hooked upon these transverse pins, and are raised, by the winch motion below, to the lauding above; the bricks are removed by labourers, and empty buckets and hods liung to the descending clain, to be detached and filled below.

It appeared tbat a working rate of 15 feet in a minute for the chain to travel was a convenient rate for the men. One man turning the winch will raise -

10 fcet high 90 bricks per minute, or $=5400$ bricks per hour

20	$"$	45	$"$	$"$	$=2700$	$"$	$"$
30	$"$	30	$"$	$"$	$=1800$	$"$	$"$
40	$"$	22	$"$	$"$	$=1350$	$"$	$"$
50	$"$	18	$"$	$"$	$=1080$	$"$	$"$
60	$"$	15	$"$	$"$	$=900$	$"$	$"$

As the work increases, the scaffold is elevated and the chain lengthened, adding more hods.

The great advantages are, that the men are rclieved from the labour of climbing laddcrs and risk of accideuts, that the building is carried on quicker and therefore at less cost. The plan was adopted with success at the large buildings at Albert Gate, Hyde Park, and at the new Houses of Parliament.

Steam power, of course, can be employed; and a great practical advantage arises from not encumbering the building with the weight of ladders and materials collected on the scaffolding.

In 1856, we imported -

Bricks or clinkers, Dutch	-	-	-	-
Number.				

In the same year our Exports were as follows :-

Russia	- -	$\begin{aligned} & \text { Number. } \\ & 1,085,661 \end{aligned}$	Declared real value. $-£ 2,709$
Denmark -	- -	913,85	- 2.960
Prussia	- -	1,528,696	- 4,343
Hanse Towns	- -	1,034,15	2,820
Holland	- -	1,554,267	- 5,895
France	- -	1,111,071	- 3,763
Spain and the Canaries	- -	609,401	- 2,668
United States	- -	2,180,518	- 6,728
Chili	- -	2,247,311	8.320
Australia -	- -	999,406	- 4,340
British North America	- -	884,700	- 2,419
British West Indies and	Guiana -	4,040,336	- 9,267
Other countries	- -	4,772,855	- 14,360
		22,962,230	£70,592

Bridge. See Iron Bridge.
BRIMSTONE. (Soufre, Fr.; Schwefel, Germ.) Sulphur (which see). As the Importations are given by the Custom House under this head, they are given here.

Brimstone, 1856 :-

Re, 1856 -				Cwts. 9,155	-)	ted
Unrefined				,401,452	-	-			

Of this quantity $1,370,717 \mathrm{cwts}$. came from the Two Sicilies.
In 1857, tbe Imports were 987,811 tons.
The cost of Sicilian sulphur has led to the use of iron pyrites in our vitriol and copperas works, and hence the falling off in the quantity imported.

BRI'TISH GUM. See Dextrine.
BRISTLE. The stiff glossy hair of swine, which grows chicfly on the backs of those animals, both in the wild and the domesticated state. Bristles are used in the manufacture of brushes.

In 1856 our Imports of bristles - ihs. Computed rent value.
Rough and in the tufts, and not in any way sorted, was 193,928 £21,817
Sortcd or arranged in colours
Russia supplies, by far, the greatest quantity.
In 1857 the total inportation of bristles was $2,644,012 \mathrm{lbs}$.

BROMINE. (Br. Atomic weight, 80. Density in liquid state, 297. Density of vapour by experiment, $5 \cdot 39$; calculation on supposition of the density of hydrogen bcing $0.0692,5 \% 536$.) One of the most active of the elements. It was discovered in 1826, by Balard, of Montpellier, in the bittern produced from the water of the Mediterranean. Bromine is a very interesting substance, and its discovery has had great infiuence on the progress of theoretical and applied chemistry. It is the only element, save mercury, which exists in the fluid state at ordinary temperatures. It is found not only in sea water, but in numerous saline springs. It also exists in combination with silver and chlorine in some Mexican and Chilian minerals.
Preparation 1. From bittern. - Chlorine gas is passed in for some time; this has the effect of combiuing with the metallic base of the bromide present, the bromine being, in consequence, liberated. When the bittern no longer increases in colour, the operation is suspended or cllloride of bromine would be formed, and spoil the operation. The coloured fluid is placed in a large globe, with a neck having a glass stopcock below like a tap funnel, the upper aperture being closed with a stopper. Ether is then added, the stopper replaced, and the whole well agitated. After a short repose, the ether rises to the surface, retaining the bromine in solution. The stopper being removed to permit the entrance of air, the stopcock is opened, and the aqueous fluid is permitted to run out. As soon as the highly coloured etheral solution arrives at the apcrture in the stopcock, the latter is shut; a quantity of solution of potash is then poured, by the upper aperture, into the globe, and the stopper is replaced. The whole is now to be agitated, by which means the bromine combines with the potash, forming a mixture of bromate of potasl and bromide of potassium. The stopeock is again opened, and the aqueous fluid received into an evaporating vessel, boiled to dryness, and iguited. By this means the bromate of potash is all converted into bromide of potassium. The bromine may be procurcd from the hromide of potassium by distillation with peroxide of manganese and sulphuric acid. In this operation one equivalent of bromide, two cquivalents of sulphuric acid, and one of peroxide of manganese, yield one equivalent of sulphate of manganese, one of sulphate of potash, and one of hromine ; or, in symbols, $\mathrm{KBr}+2 \mathrm{SO}^{9}+\mathrm{MnO}=\mathrm{KO}, \mathrm{SO}^{3}+\mathrm{MnO}, \mathrm{SO}^{3}+\mathrm{Br}$. The reaction, in fact, takes place in two stages, but the ultimate result is as represented in the equation.

Preparation 2.-In some saline springs where bromine is present, accompanied by considerable quantities of salts of lime, \&cc., the brine may be evaporated to one-fourth, and, after repose, decanted or strained from the deposit. The mother liquid is to have sulphuric acid added in order to precipitate most of the lime. The filtered fluid is then evaporated to dryness, redissolved in water, and filtered ; by this means more sulphate of lime is got rid of. The fluid is then distilled with peroxide of manganese and hydrochloric acid.
The only well developed oxide of bromine is bromic acid, BrO^{5}. Solutions of bromine in water may have their strength determined, even in presence of hydrochloric or hydrobromic acids, by means of a solution of turpentine in alcohol. One quarter of an equivalent of turpentine (34 parts) decolorises 80 parts or 1 equivalent of bromine. - C. G. W.

Bromacetic Acid.-Obtained by Messrs. Perkin and Duppa. They take a mixture of crystallisable acetic acid and bromine in the proportion of equal equivalents, introduce it into a sealed tube, which is placed in an oil bath and heated to $150^{\circ} \mathrm{C}$. The mixture, which is nearly colourless, or of a light amber colour, is transferred to a retort, and the excess of acetic acid driven off by heating to $200^{\circ} \mathrm{C}$. On cooling, a benutiful white crystalline solid is obtained, which is bromacetic acid together with hydrohromic acid and bibromacetic aeid. The mixed acids are heated to $130^{\circ} \mathrm{C}$., carbonic acid passed until the reaction of hydrobromic acid, with nitrate of silver, is no longer evident. Carbonate of lead is then added, the whole heated to $100^{\circ} \mathrm{C}$., and allowed to stand for some hours; the liquid filtered off from the crystalline deposit.

The acid thus obtained crystallises in rhombohedra, is exceedingly deliquescent, and very soluble in water or alcohol. It fuses below $100^{\circ} \mathrm{C}$., and boils at $208^{\circ} \mathrm{C}$. When distilled with acetate of potassium, it gives off acetic acid; when heated with metallic zinc, it yields acetate and bronide of zinc.

It attacks the epidermis powerfully, raising a blister like that produced by a burn. It forms crystallisable salts with most bases, nany of which decompose rapidly.
The lead salt is obtained by neutralising bromacetic acid alis and alkalinc earths. recrystallising in water, was neutralising bromacetic acid with oxide of lead, and crystalising from water: It has the crystalline precipitate with cold water, and reThe silver salt is obtained by tre formula $\mathrm{C}^{4} \mathrm{H}^{-1} 3 \mathrm{Br} \cdot \mathrm{PbO}$. by adding solution of bromacetic acidg bromacctic acid with carbonate of silver, or down as a crystalline precipitate, having the fition of nitrate of silver. It is thrown down as a crystalline precipitate, having the formula $\mathrm{C}^{4} \mathrm{I}^{2} \mathrm{Br} \mathrm{AgO}^{4}$.

Bromacetate of methyl is a colourless mobile liquid, having an aromatic odour ; it boils at $144^{\circ} \mathrm{C}$. The bromacetate of ethyl bgils at $159^{\circ} \mathrm{C}$.; that of anyl at $207^{\circ} \mathrm{C}$.

By the action of ammonia on bromacetic acid, bromide of ammonium is formed, and glycocol, or a body isomeric with it, according to the equation
$\mathrm{C}^{4} \mathrm{H}^{3} \mathrm{BrO}^{1}+2 \mathrm{NH}^{3}=\mathrm{C}^{1} \mathrm{NH}^{5} \mathrm{O}^{4}+\mathrm{NH}^{4} \mathrm{Br}$
Clycocol. -H. M. W.
Bibromacetic Acid. - Formed when brominc and acetic acid are heated in presence of light, but it is difficult to obtain in large quantitics. It is a liquid boiling at $240^{\circ} \mathrm{C}$., which is partially decomposed every time it is distilled, evolving liydrobromic acid. It docs not solidify at $15^{\circ} \mathrm{C}$. It has a very high specific gravity. The silver salt is a crystalline precipitate which is, however, decomposed, by boiling with water, into bromide of silver and a soluble acid. It has the formula $\mathrm{C}^{4} \mathrm{HBr}^{2} \mathrm{AgO}^{1}$.

Bibromacetate of ethyl is obtaincd by heating hydrate of ethyl with bibromacetic acid in a sealed tube at a temperature of $100^{\circ} \mathrm{C}$., washing with water and drying over chloride of calcium. It is a colourless liquid, heavier than water, acting on the eyes and nose like the bromacetate.-H. M. W.

BROOM DYERS, or GREENWEED. The Genista tinctoria, a dwarf shrub from the flowers of which a bright yellow colour is obtained, which for dyeing green with woad is said to be preferred by dyers to all other yellows.
BRONZE. (Bronze, Fr.; Bronze, Ger.) A compound metal consisting of copper and tin, to which sometimes a little zinc and lead are added. There is some confusion amongst continental writers about this alloy; they translate their bronze into the English brass.

Sec, for an example of this, "Dictionnaire des Arts et Manufactures." This has arisen from the carelessncss of our own writers. Dr. Watson, "Chemical Lssays," remarks: "It has been said that Queen Elizabeth left more brass ordnance at her death than she found iron on her accession to the throne. This must not be understood as if gun metal was made in her time of brass, for the term brass was sometimes used to denote copper ; and sometimes a composition of iron, copper, and calamine was called brass; and we, at this day, commonly speak of bruss cannon, though brass does not enter into the composition used for casting cannon."

Bronze is an alloy of copper and tin.
Bruss is an alloy of copper and zinc.
In many instances, we have zinc, lead, \&c., entering into the composition of alloys of copper and tin. However this may be, the alloy is called a bronze, if tin and copper are the chief constituents.
This alloy is much harder than copper, and was employed by the ancients to make swords, hatchets, \&ce., before the method of working iron was generally understood. The art of casting bronze statues may be traced to the most remote antiquity, but it was first brought to a certain degrce of refinement by Theodoros and Rœcus of Samos, about 700 years before the Christian era, to whom the invention of modelling is ascribed by Pliny. The aucients were well aware that by alloying copper with tin, a more fusible metal was obtained, that the process of casting was therefore rendered easier, and that the statue was harder and more durable. It was during the reign of Alexander that bronze statuary reccived its greatest extension, when the celebrated artist Lysippus succecded, by new processes of moulding aud melting, in multiplying groups of statues to such a degree that Pliny called them the mob of Alexander. Soon aftcrwards cnormous bronze colossuses were made, to the heiglit of towers, of which the isle of Rhodes possessed no less than one lhundred. The Roman consul Mutianus found 3000 bronze statues at Athens, 3000 at Rhodes, as many at Olympia and at Delphi, althongh a great number had bcen previously carried off from the last town.

From the analyses of Mr. J. A. Phillips, we learn that most of the aneient coins were bronzes, the quantity of tin relatively to the copper varying slightly. The proportions of copper and tin in many of those coins arc given below, the other ingredients being omitted:-

A coin of Alcxander the Great, 335

The arms and cutting instruments of the ancients were composed of similar hronzes, as the fullowing proportions, also selected from Mr. J. A. Pbillips's analyses, will sbow : -

Layard brought from Assyria a considerable variety of bronze articles, many of them objects of ornament, but many evidently intended for use. Amongst others was a bronze foot, wbich was constructed for the purpose of support of some kind. This was submitted to the examination of Dr. Percy. It was then found that the bronzc had been cast round a support of iron. By tbis means the appearancc of considerable lightness was attained, while great strength was insured. This discovery proves in a very satisfactory manncr, that the metallurgists of Assyria were perfctly conversant with the use of iron, and that they employed it for tbe purpose of imparting strength to the less tenacious metals which they employed in tbeir art manufactures. This bronze, as analysed in the Metallurgical Laboratory of the Museum of Practical Geology, consists of copper 88.37 , tin 11.33 .
Examination bas shown that all tbe bronze weapons of the Greeks and Romans were not only of the true compositiou for ensuring the greatcst density in the alloy itsclf, but that these, by a process of hammering the cutting edges, were brought up to tbe greatest degree of hardness and tenacity.

Before 1542 "brass ordnance" (bronze) was founded by foreigners. Stow says that Jobn Owen began to found brass ordnance, and that he was the first Englishman who ever made that kind of artillery in England.

Bell founding followed. Bell-metal and other broken metal were allowed to be exported hitberto; but it being discovered that it was applied to found guns abroad, "brass, copper, latten, bell metal, pan metal, gun metal, and shroff metal, arc prohibited to be exported."

Brouze has almost always been nsed for casting statues, basso relievos, and works whicb were to be exposed to atmospheric influences. In forming such statues, the alloy should be capable of flowing readily into all the parts of the mould, however minute; it should be hard, in order to resist accidental blows, be proof against the iufluence of the weather, and be of such a naturc as to acquire that greenish oxidised coat upon the surface, which is so mucb admired in the antique bronzes, called patina antiqua. The chemical composition of the bronze alloy is a matter therefore of the first moment. The brothers Keller, celcbrated founders in the time of Louis XIV., whose chefs-d'cuvre are well known, directed their attention towards this point, to which too little importance is attached at the present day. The statuc of Desaix, in the Place Dauphine, and the column in the Place Vendôme are noted specimens of most defective workmanship from mismanagement of tbe alloys of which they are composed. On aualysing separately specimens taken from the bas-reliefs of the pedestal of this column, from the shaft, and from the capital, it was found that the first contained only 6 per cent. of tin, and 94 of copper, tbe second mucb less, and the tbird only 0.21 . It was tbereforc obvious tbat the founder, unskilful in the melting of bronze, bad gone on progressively refining his alloy, by the oxidisement of tbe tin, till he had exbausted tbe copper, and that be had tben worked up the refuse scorix in the upper part of the column. The cannon which the Government furnished him for casting the monument consisted of :-

Copper -	-	-	-	-	-	-	-	-	89.360
Tin	-	-	-	-	-	-	-	-	10.040
I ead	-	-	-	-	-	-	-	-	0.102
Silver, zinc, iron, and loss	-	-	-	-	-	0.498			

The moulding of the several bas-reliefs was so ill exccuted, that the chiselers employed to repair the faults removed no less than 70 tons of bronze, which was given them, besides 300,000 francs for tbeir work. Tbe statues made by the Kellers at Versailles were found, on chemical analysis, to consist of :-

The analysis of the bronze of the statue of Louis XV. was as follows :-

The bronzes of France, according to M. L. E. Rivot, contain ncarly always four metals, copper, tin, lead, and zinc. They may contain also very small and variable quantities of iron, nickel, arscnic, antimony, and sulphur.

The alloys most proper for bronze to be afterwards struck for medals is composed of from 8 to 12 parts of tin and from 88 to 92 of copper ; to which if 2 or 3 parts in the hundred of zinc be added, they will make it assume a finer bronze tint. The alloy of the Kellers is famous for this effect. The medal should be subjected to three or four successive stamps of the press, and be softencd between each blow by being beated and plunged into cold water.
The bronze of bells, or bell metal, is composed, iu 100 parts, of copper 78 , tin 22. This alloy has a finc compact graiu, is very fusible and sonorous. The other metals sometimes added are rather prejudicial, and merely increase the profit of the founders. Some of the English bells consist of 80 copper, 10.1 tin, 5.6 zinc, 4.3 lead; the latter metal, when in such large quantities, is apt to cause isolated drops, hurtful to the uniformity of the alloy.

The Tam-trms and Cymbals of Bronze.-The Chinese make use of bronze iustruments forged by the hammer, which are very thin and raised up in the middle; they are called gongs, from the word tshoung, which signifies a bell. Klaproth has shown tbat they contain uothing but copper and tin, in the proportion of 78 of the former metal and 22 of the latter. Their specific gravity is 8.815 . This alloy, when newly cast, is as brittle as glass; but by being plunged at a cherry-red heat into cold water, and confined hetween two dises of iron to keep it in shape, it becomes tough and malleablc. The cymbals consist of 80 parts copper and 20 tin.

Bronze vessels, naturally brittle, may be made tenacious by the same ingenious process, for which the world is indebted to M. Darcet. Bronzc mortars for pounding have their lips tempered in the same way.

Cannon Metal consists of about 90 or 91 copper, and 10 or 9 of tin. From the cxperiments of Papacino d'Antony, made at Turin, in 1770, it appears that the most proper alloy for great guns is from 12 to 14 parts of tin to 100 of copper; but the Comte Lamartilliere concludcd, from his experiments made at Douay, in 1786, that never less than 8 nor more than 11 of tin should be employed in 100 parts of bronze.

Gilt Ornaments of Bronze. - This kind of bronze should be easy of fusion, and take perfectly the impression of the mould. The alloy of copper and zinc (brass) is, when fused, of a pasty consistence, does not make a sharp cast, is apt to absorb too mueh amalgam, is liable to crack in cooling, and is too tough or too soft for the chaser or turner; and if the quantity of zinc was increased, to make the metal harder, it would lose the yellow colour suitable to the gilder. A fourfold combination of copper, ziuc, tiu, and lead is preferable for making such ornamental bronze articles ; and the following proportions are probably the best, as they unite closeness of grain with the other good qualities. Copper 82, zinc 18 , tin 3 or 1 , lead $1 \frac{1}{2}$ or 3 . In the alloy which contains most lead, the tenacity is diminished and the density is increased, which is preferable for pieces of small dimensions. Another alloy, which is said to reqnire for its gilding only two-thirds of the ordinary quantity of gold, has the following composition; copper 82.247 , zinc 17.481 , tin 0.238 , lead 0.024 .

The antique bronze colour is given to figures and other objects made from thesc alloys by the following process : - Two drachms of sal-ammoniac, and half a drachn of salt of sorrcl, (binoxalate of potash,) arc to be dissolved in fourtcen ounce measures (English) of colourless vinegar. A hair pencil being dipped into this solution, and pressed gently between the fingers, is to be rubbed cqually over the clean surface of the object slightly warmed in the sun or at a stove; and the operation is to be repeated till the wished-for shade is obtained.
The bronze founder ought to melt his metals rapidly, in order to prevent the loss of tin, zinc, and lead by their oxidisement. Reverberatory furuaces have been long used for this operation, the best being of an elliptical form. The furnaees with dome tops are employed by the bell founders, becausc, their alloy being more fusible, they do not require so intense a heat; but they also would find their advantage in :sing the most rapid mode of fusion. The surface of the melting metals should be covered with small charcoal or coke; and when the tin is added, it should be dexteronsly
thrust to the bottom of the melted copper. Immediately after stirring the melted mass so as to iucorporate its ingredients, it should be poured out into the monlds. In geueral, the metals most casily altered by the fire, as the tin, should be put in last. The cooling should be as quick as possible in the moulds, to prevent the risk of the metals separating from each other in the order of their density, as they are very apt to do. The addition of a little iron-in the form of tin plate - to bronze, is reckoned to be advantageous.

Onc part of tin, and two parts of copper (nearly one atom of tin and four of eopper, or more exactly 100 parts of tin and 215 copper), form the ordinary speculun metal of reflecting telescopes, which is of all the alloys the whitest, the most brilliant, the hardest, and the most brittle. The alloy of 1 part of tin and 10 of eopper (or nearly one atom of the former to eighteen of the latter), is the strongest of the whole series.

Ornamental objects of bronze, after being cast, are commonly laid upon red-hot coals till they take a dull red heat, and are then exposed for some time to the air. The surface is thereby freed from any greasy matter, some portion of the zinc is dissipated, and the alloy assumes more of a coppery hue, which preparcs for the subsequent gilding. The black tinge which it sometimes gets from the fire may be removed by washing it with a weak acid. It may he made very clean by acting upon it with nitric acid, of specific gravity $1 \cdot 324$, to which a little common salt and soot have been added, the latter being of doubtful utility; after which it must be well washed in water, and dried with rags or sawdust.
For the following Table we are indcbted to Mr. Robert Mallet, C. E., whose investigations in this direction have been most extensive, and as accurate as they are extensive: -

	Chemical Constitution.	Composition by Weight per Cent.				Colour of Fracture.						Commercial Titles, characteristic Properties In working, \&c.
	$\mathrm{Cu}+\mathrm{Sn}$	$100 \cdot 00+0$	31.6	8. 667	E	Tile red - -	$24 \cdot 6$	1	2	10	16	Copper.
2	$10 \mathrm{Cu}+\mathrm{Sn}_{1}$	$84 \cdot 29+15 \cdot 71$	$374 \cdot 9$	8-561	FC	Reddish yellow, 1	$11 \cdot 1$	2	6	8	15	Gun metal, sc.
3	$9 \mathrm{Cu}+\mathrm{Sn}$	$82 \cdot 81+17 \cdot 19$	$343 \cdot 3$	$8 \cdot 462$	FC	Reddislı yellow, 2	$15 \cdot 2$	3	7	5	14	Ditto.
4	$8 \mathrm{Cu}+\mathrm{Sn}$	$81 \cdot 10+18 \cdot 90$	311.7	$8 \cdot 459$	FC	Yellowish red, 2	177	4	10	4	13	Gun metal, tempers best
5	$7 \mathrm{Cu}+\mathrm{Su}$	$78 \cdot 97+21 \cdot 03$	$280 \cdot 1$	8.728	VC	Yellowish red, 1	13.6	5	11	3	12	pers best Hard mill brasses, \&e.
6	$6 \mathrm{Cu}+\mathrm{sn}$	$76 \cdot 29+23 \cdot 71$	$248 \cdot 5$	$8 \cdot 750$	V	Bluish red, 1	$9 \cdot 7$	0	12	2	11	Brittle. \dagger
7	$5 \mathrm{Cu}+\mathrm{Sn}$	$7280+27 \cdot 20$	2169	8. 575	C	Bluish red, 2	$4 \cdot 9$	0	13	1	10	Brittle. \dagger
8 9	${ }_{4} \mathrm{Cu}+\mathrm{Sn}$	$68 \cdot 21+3179$ $61 \cdot 69+38 \cdot 31$	$185 \cdot 3$	8.400	$\stackrel{C}{C}$	Ash grey - -	$0 \cdot 7$	0	14	6	9	Crumbles. \dagger
9	$3 \mathrm{Cu}+\mathrm{Sn}$ $2 \mathrm{Cu}+\mathrm{Sn}$	$61 \cdot 69+38 \cdot 31$ $51 \cdot 75+48 \cdot 2 \%$	$153 \cdot$ 12%	$8 \cdot 539$ 8.416	$\mathrm{V}_{\mathrm{V} \mathrm{C}}$	Dark grey - -	0.5	0	16	7	8	Crumbles. \dagger
11	$2 \mathrm{Cu}+\mathrm{Sn}$ $\mathrm{Cu}+\mathrm{Sn}$	51. $31 \cdot 92+48 \cdot 25$ 108	$122 \cdot 1$ $90 \cdot 5$	8.416 8.056	${ }^{\text {TC }}$	Greyish white, 1	$1 \cdot 7$	0	15	9	7	Brittle. \dagger
12	$\mathrm{Cu}+2 \mathrm{Sn}$	$21 \cdot 15+78 \cdot 85$	$149 \cdot 4$	7-387	CC	Ditto 3	$1 \cdot 4$ $3 \cdot 9$	0	$\begin{aligned} & 9 \\ & 8 \end{aligned}$	1	5	Small bells, lrittle. \dagger Ditto brittle. \dagger
13	$\mathrm{Cu}+3 \mathrm{Su}$	$15 \cdot 17+81 \cdot 83$	$208 \cdot 3$	7-447	CC	Ditto						Speculum : -
14	$\mathrm{Cu}+4 \mathrm{Sn}$	$11 \cdot 82+8818$	$267 \cdot 2$	$7 \cdot 472$	CC	Ditto 5	$3 \cdot 1$	0	5	14		Metal of authors.
	$\mathrm{Cu}+5 \mathrm{Sn}$	$9 \cdot 68+90 \cdot 32$	$3 \pm 6 \cdot 1$	$7 \cdot 442$	E	Ditto 6	$2 \cdot 7$	6	3	15	2	Files, solt and
16	$+\mathrm{Sn}$	$000+100.00$	58.9	7-291	F	White, 7 -	$2 \cdot 5$	7	1	16	1	Tin. ${ }^{\text {toligh. }}$

In 1856, we imported, of Bronze, works of art, 21 cwts ; and of manufactures of bronze, or of metal bronzed or lacquered, 3492 cwts.

BRONZING. The process for giving to metals, plaster, wood, or any other body, a bronze-like surfacc.

Various processes have been adopted for producing this effect.
When brass castings are to be bronzed, it is essential, in the first place, that they should be thoroughly cleansed from grease, and brightened either with the file or emery-paper, or by boiliug in a stiong ley and then scouring with fine sand and water.

Vinegar done is sometimes employed to produce the green bronze colour; sometimes dilute nitric acid, and often the muriate of ammonia (sal ammoniac). This latter salt and vinegar are frequently combined, and often a little common table salt is added to the bronzing floid.

[^37]Coins and medals may be bronzed with the following solution: -2 parts of verdigris and 1 part of sal nmmoniae are to be dissolved in vinegar ; the solution is to be boiled, skimmed, and diluted with water till it has only a weak metallie taste, and npon further dilution lets fall no preeipitate. This solution is made to boil briskly, and is poured upon the objeets to be bronzed. These are wcll washed with clean water, and then laequered.

To give fresh-made bronze objeets an antique appearance, three quarters of an ounce of sal ammoniac, and a drachm and a half of binoxalate of potash (salt of sorrel) are to be dissolved in a quart of vinegar, and a soft rag or brush moistened with this solution is to be rubbed over the clean bright metal till its surface becomes entirely dry by the friction. This process must be repeated several times to produce the full effect; and the object should be kept a little warm. Copper acquires very readily a brown colour by rubbing it with a solution of the common liver of sulplur, or sulphuret of potassium.

The Chinese are said to bronze their copper vessels by taking 2 ounces of verdigris, 2 ounces of cinnabar, 5 ounces of sal ammoniac, and 5 ounces of alum, all iu powder, making them into a paste with vinegar, and spreading this pretty thick like a pigment on the surfaces previously brightened. The piece is then to be held a little while over a fire, till it becomes uniformly heated. It is next cooled, washed, and dried; after which it is treated in the same way once and again till the wished-for colour is obtained. An addition of sulphate of copper makes the colour incline more to chesnut brown, and of borax more to yellow. It is obvious that the cinnabar produces a thin coat of sulphuret of copper upou the surface of the vessel, and might probably be used with advantage by itself.
To give the appearance of antique bronze to modern articles, we should dissolve 1 part of sal ammoniac, 3 parts of cream of tartar, and 6 parts of coummon salt in 12 parts of hot water, and mix with the solution 8 parts of a solution of nitrate of copper of specific gravity $1 \cdot 160$. This compound, when applied repeatedly in a modcrately damp place to bronze, gives it in a short time a durable green coat, which becomes by degrees very beautiful. More salt gives it a yellowish tinge, less salt a bluish cast. A large addition of sal ammoniac accelerates the operation of the mordant.

The best and most rapid bronzing liquid, which may be applied to copper, brass, irou, or to new bronze, with equal advantage, is a solution of the chloride of platinum (nitro-muriate of platinum) called chemical bronze; but it is expensire. With the chloride of platinum, almost any colour can be produeed, aecording to the degree of dilution and the number of applications.
Some beautiful effects are produced upon bronze, and also upon iron eastings, by treating them with dilute acids. The action here is seareciy to be deseribed as bronzing; it is, in faet, merely developing the true colour of the metal or alloy.

With the view of rendering the action of the bronzing liquid as uniform as possible, small articles are dipped; for larger articles, the bronzing liquid is dabbed on plentifully with a linen rag. The dabbing process is to prevent the occurrence of streaks, which might arise if the liquid was applied in straight strokes. When properly bronzed and washed, the work is usually black-leaded, to give it a polished appearance.

Bronzing of Objecls in Imitation of Metallic Bronze. - Plaster of Paris, paper, wood, and pasteboard, may be made to resemble pretty closely the appearance of articles of real bronze, modern or antique. The simplest way of giving a brilliant aspect of this kind is with a varnish made of the waste gold leaf of the beater, ground up on a porphyry slab with honey or gum-water. A coat of drying linseed-oil should be first applied, and then the metallic powder is put on with a linen dossil. Mosaic gold ground up with six parts of bone-ashes has been used in the same way. When it is to be put on paper, it should be ground up alone with white of eggs or spirit varnish, applied with a brush, and burnished when dry. When a plate of iron is plunged into a hot solution of sulphate of copper, it throws down finc scales of copper, whieh being repeatedly washed with water, and ground along with six times its weight of boneashes, forms a tolerable bronzing.
Powdered and sifted tin may be mixed with a clear solution of isinglass, applied with a brush, and burnished or not, aecording as a bright or dead surface is desired. Gypsum casts are comunonly bronzed by rubbing brillant blaek-lead, graphite, upon them with a cloth or brush.

Browning of Gun-Barrels and other Arms.-By this process the surface of several articles of iron acquircs a shining brown colour. This preparation, which protects the iron from rust, and also improves its appearanee, is eliefly employed for thic barrels of fowling-pieces and soldiers' rifles, to conceal the fire-arms from the game and the enemy. The finest kind of browning is the Dimascus, in which dark and bright lincs run through the brown grouud.

This operation cousists in producing a very thin uniform film of oxide or rust upon the iron, and giviug a gloss to its surface by rubbing wax over it, or coating it with a shell-lac varnish.

Several means may be employed to produce this rust speedily and well. The effect may be obtaiued by inclosing the barrels iu a space filled with the vapour of muriatie acid. Moistening their surface with diluted muriatic or nitric acid will answer the same purpose. But the most common material used for browning is the butter or chloride of antimiony, which, ou account of its being subservieut to this purpose, has been called bronzing salt. It is mixed uniformly with olive oil, and rubhed upon the iron slightly heated, which is afterwards exposed to the air, till the wished-for degree of browning is produced. A little aquafortis is rubbed on after the antimony, to quicken its operation. The brown barrel must be then carefully cleaned, washed with water, dried, and finally polished, either by the steel burnisher, or rubbed with white wax, or varnished with a solution of 2 ounces of shell-lac and 3 draehms of dragon's blood, in 2 quarts of spirits of wine.
The following proesss may also be recommended :-Make a solution with half an ounce of aquafortis, half an ounce of sweet spirit of nitre, 1 ounce of spirit of wine, ? ounces of sulphate of copper, and 1 ounce of tincture of iron, in so much water as will fill altogether a quart measure. The gun barrel to be browned must first of all be filed and polished bright, and then rubbed with unslaked lime and water to clear away all the grease. Its two ends must now be stopped with wooden rods, which may serve as handles, and the touch-hole must be filled with wax. The barrel is theu to be rubbed with the solution, applied to linen rags or a sponge, till the whole surface be equally moistened; it is allowed to stand 24 hours, and is then scrubbed off with a stiff brush. The application of the liquid and the brushiug may be repeated twice or oftener, till the iron acquires a browu colour. After the last brushing, the barrel must be washed with plenty of boiling water containing a little potash, theu washed with clean water, dried, rubbed with polishing woods, and theu coated with shell-lac varnish.
BRONZE POWDERS have been uuch used of late in the decorative painting of houses, \&c. They are prepared of every shade, from that of bright gold to orange, dark copper, emerald greeu, \&cc. Pale gold is produced from an alloy of $13 \frac{1}{4}$ of copper, and $2 \frac{3}{4}$ of zinc ; crimson metallic lustre - from copper : ditto, paler, copper and a very little zinc; green bronze with a proportion of verdigris; another fiue orange by $14 \frac{1}{4}$ copper and $1 \frac{3}{4} \mathrm{zinc}$; another ditto, $13 \frac{3}{4}$ copper aud $2 \frac{1}{4}$ zine: a beautiful pale gold from au alloy of the two metals in atomic proportions.
The alloy is laminated into very fine leaves with careful annealing, and these are levigated into impalpable powders along with a film of fine oil to prevent oxidisement, and to favour the levigation.
On the subject of bronze powders and metallic leaves, Mr. Brandeis furnished, to the New York Exhibition, an account of his articles of manufacture.
"Brouzes, or, more correctly, metallie powders resembling gold dust, were iuvented, according to my researches. in 1648, by a monk, at Furth, in Bavaria, named Theophrastus Allis Bombergensis, He took the scraps or cuttings of the metallic leaves then known as "Dutch leaf," and ground them with honey. This roughly made bronze powder was used for ornamenting parchments, capital letters in bibles, choral books, 를.
As the consumption of metallic leaf increased, and the properties of alloys became better known, leaves of different colours were produced, and from the scraps a variety of powders or brouzes.

At Furth bronze powders are largely made for Europe, and with little change or improvement. There are four sorts of Dutch leaf.

Common leaf, soft, and of reddish cast, composed of 25 or 30 per cent. of zine to 75 or 70 per cent. of copper.

French leaf contains more zinc, is harder, less ductile, and has a purer yellow colour.
Florence leaf has a larger proportion of zinc, and is of a greenish gold colour; and lastly,

White leuf, composed of tin. The more zine these alloys contain, the larder, the more brittle, and more difficult are they to work into perfect leaves. The manner of beating is similar to the mode for producing gold leaves.

The scraps, cuttings, and fragments of thesc leaves are the materials for the German bronze powders. First brushed through a seive and ground with gunt water on marble slabs for six hours, the gum washed out, the powders sorted, dried, and a coating of grease given to make them appear inore brilliant, and to protect then from oxidation. Varieties of colour, such as orange, \&c., are produced by a film of suboxide upon the surface of the particles. The price of bronze powders depends upon thic demand, and the supply of the waste material of the metal leaves, and prices
change accordingly. change accordingly.

Messrs. Bramdeis patent their process, and in place of heing dependent upon uncertain supplies of netal and unknown compositign, they take the metals at once in a state of purity (say copper by voltaic precipitation): it is alloyed with zinc, cast into ingots, rolled into ribands, cut, annealcd, and rolled until the metal is thin and leaflike; then it is taken to a stemn mill, and ground. The bronze powder is wasled out and dried, then introduced into an air-tight room, with an arrangement of hoxes; the air of the chamber is sct in violent motion by bellows, and thepowder diffused throughout; the bronze powders arc deposited, the finest in the upper boxes, and the coarser powders below. When settled, mineral varnish is introduced; the boxes fitted with tight lids are made to revolve, and the particles are thus rapidly coated and the highest metallic brillianey imparted. Different shades of colour, pink, crimson, \&c, are produced by submitting the powder to heat and oxidation before the rapid revolutions of the varnishing boxes.

The quantity thus produced by one firm, with three steam-engines at work, enables the finished bronze powders to be produced at a rate about equal to the price the German manufacturer has to pay for his materials-the cuttings and scraps of leaves. Hence, for the purposes of trade and art, a large exportation of bronze powders takes place from America to Europe, South America, and China.
The bronze powders are largely used in japanning, bronzing tin and iron goods, ornamental works of paper, wood, oil-cloth, leather, \&c.; while sign-boards and the decoration of public buildings have effective metallic brilliant surfaces of beauty and durability. In fact, for ornamental decorations, the demand steadily inereases.

In Holland and Germany the suhject has been examined, with the view of ascertaining the effect of chemical composition.
De Heer E. R. Konig has lately given a Table of the analyses of the best European samples of bronze powders and leaves (Volksfight):-

	Copper.	Zinc.	Iron.	Tin.
1. Light yellow	Per Cent. $82 \cdot 38$	$\begin{gathered} \text { Per Cent. } \\ 16.69 \end{gathered}$	$\begin{gathered} \text { Per Cent. } \\ 0.16 \end{gathered}$	$\begin{gathered} \text { Per Cent. } \\ 0 \end{gathered}$
2. Gold yellow	$84 \cdot 50$	15:30	0.07	0
3. Messing yellow, or brass copper redyellow colour .	90°	961	$0 \cdot 20$	0
4. Copper bronze orange . . .	98.93	0.73	$0 \cdot 08$	0
5. Copper red, high shade of purple colour	$99 \cdot 90$	0.00	trace.	${ }^{0}$
6. Purple violet . . .	98.22	0.5	0.30	trace.
7. Light green	84.32	15.02 2.39	0.05	traee.
8. Tin white or leaden grey	0.00	$2 \cdot 39$	0.56	$97 \cdot 46$

Our Importations in 1856 of Bronze Powders were valued at 4737l., according to the Custom House computation.

BROWN COAL is of a brownish-black colour, and presents, in some cases, the texture of wood, when it is called Lignite; but, in some varieties, all organic structure has disappeared, and it is then called pitch coal, from its strong resemblanee to true coal.

The beds of brown coal are generally of small extent, and are of later date than the true carboniferous strata, belonging to the Tertiary period.

Brown coal is worked in Saxony and in countries where there is an absence of true carbonifcrous deposits. It burns with an empyreumatic odour, and generally contains more pyrites than ordinary coal.

At Steicregg, in Southern Styria, brown coal occurs in the form of a hasin; and has been opened out through a distance of more than two miles. The coal, froin 8 to 16 feet thick, is of good quality. It contains 9 to 14 per cent. of water, and leaves from 5 to 12 per cent. of ash after combustion.

The following is an analysis of a variety from Oregon: volatile matter 49.5 ; fixed earbon $42 \cdot 9$; ash $2 \cdot 7$; water $4 \cdot 9=100 \cdot 00$.

A varicty of brown coal, called the paper-eoal of Rott, near Bonn, and of Erpel on the Rhine, eontains numerous remains of freshwater fishes, Leuciscus papyraceus; and of Frogs, Palcophrygnos grandipes. The ashes of this coal are, also, rich in infusorial remains.

For an aceount of the brown coals of this comitry, see Lignte and Bognead Coal. - M. W. IB.

BROWN DIE. Upon this subject some general views are given in the article Dyeing, explanatory of the nature of this colour. This dye presents a rast rariety of tints - from yellow and red to black-brown - and is produced either by mixtures
of red, ycllow, and blue with each other, or of yellow or red with black, or by substantive colours, such as catechu or oxide of manganese alone. We shall herc notice only the principal shades, lcaving their modifications to tbe caprice or skill of tbe dyer.

Brown, from mixture of other colours.
Wool and woollen cloths must be boiled with $\frac{1}{5}$ th their weight of alum and sulpho. tartrate of iron, afterwards wasbed, and winced through tbe madder bath, whicb dyes the portion of the stuff imbued with the alum red, and that with the salt of iron black, the tint depending upon the proportion of each and the duration of the madder bath.

A similar brown is produced by boiling every pound of the stuff with two ounces of alum and one ounce of common salt, and then dyeing it in a bath of logwood containing eitber sulphotartrate, acetate, or sulphate of iron; or the stuff may be boiled with alum and tartar, dyed up in a madder batb, and then run through a black bath of iron mordant and galls or sumach. Here the black tint is added to the red till the proper hue be hit. The brown may be produced also by adding some iron liquor to the madder bath, after the stuff has been dyed up in it with alum and tartar. A better brown of this kind is obtained by boiling every pound of wool with two ounces of alum, dyeing it up in cochincal, then changing the crimson thus given into brown, by turning the stuff through the batb after acetate of iron has been added to it.
Instead of cochineal, archil or cudbear, with a little galls or sumach, may be added.
A superior brown is produced upon cotton goods which have undergone the oiling process of the Turkey-red dye. Such goods must be galled, mordanted with alum (see MADDER), sulphate of iron, and acetate of lead (equal to $\frac{2}{3}$ rds of the alum); after washing and drying, dyed in a madder bath, and cleared with a soap boil. The tint of brown varies with the proportion of alum and sulphate of iron.
Brown may be produced by direct dyes.
The decoction of oak bark dyes wool a fast brown colour, of different shades according to the concentration of the bath. Alum improves the colour.
The bastard marjorum (Origanum vulgare) dyes cotton and linen a reddish-brown witb acetate of alumina, and wool of a dark-brown.
The bark of the mangove tree (Rhizophora mangle) gives a red-brown colour to wool when boiled with alum and tartar, and a fast chocolate colour when sulphate of iron is added.
Tbe pods of the East Indian Mimosa eineraria and the African Mimosa nilotica, called the bablat, give cotton a brown, with acetate or sulphate of copper.
Tbe root of the wbite rose (Nymphaca alba) gives to cotton and wool beautiful shades of brown. A mordant of sulphate of iron and zine is first given, and then the wool is turned tbrougb the decoction of the root till the wished-for sbade is obtained. The cotton must be mordanted with a mixture of the acctates of iron and zinc.

Walnut (Juglans regai) peelings, when ripe, contain a dark-brown dyestuff, which communicates a permanent colour to wool. The older the infusion or decoction of tbe peel, the better dye does it make. The stuff is dyed in the lukewarm bath, and needs no mordant, though it becomes brighter with alum ; or this dye may be combined witb tbe madder or fustic bath, to give varieties of shade. For dyeing silk, tbis batb sbould be hardly lukewarm, for fear of causing inequality of colour.
The peelings of horse-chesnuts may be used for the same purpose: with muriate of tin they give a bronze colour, and witb acetate of lead, a reddish-brown.

Catechu gives cotton a permanent brown dye, as also a bronze and mordoré, when its solution in hot water is combined with acetate or sulphate of copper, or when the stuff is previously mordanted with the acetates of copper and alumina mixed, sometimes with a little iron liquor, rinsed, dricd, and dyed up, the bath being at a boiling
heat.
Ferrocyanate of copper gives a yellow-brown or a bronze to cotton and silk.
The brown colour called carmelite by the French is produced by 1lb. of catechu to 4 oz . of verdigris, with 5 oz . of muriate of ammonia. The bronzc (solitaire) is giveu by passing the stuff through a solution of muriate or sulpbate of manganese, with a fixing witl solution of cbloride of lime.

Tbese examples of cbloride of lime. upon what principles they are founded, and the browning of dyes nay be modified, shade more or less towards red, black, yellow, bluc, \&c. it in our power to turn the

Under the heads of different substances employ, \&c. description of the methods employed for the purpose by the dyers will be found some sonc good practical receipts, Jove's "Art of Cleaning, extracting their colours. For ing" may be consulted.

BROWN IRON ORE (or Limonite) is one of the most important ores of iron, and, at the same time, one of the most abundant as welhas most widely diffused. It never occurs crystallised, but usually in stalactitic, botryoidal, and mammillated forms, with a fibrous structure, a silky lustre, and often a scmi-metallie appearance: it also occurs massive and sometimes eartlyy. In colour it is of various shades of brown, generally dark, never bright. It affords a brownish-yellow strcak, which distinguishes it from other ores of the same metal. It dissolves in warm nitro-muriatic acid, and in a matrass gives off water. Before the blowpipe it blaekens and fuses, when in thin splinters; with borax, it gives an iron reaction. $H=5$ to 5.5 ; specific gravity $=3.6$ to 4. Brown iron ore is a hydrated peroxide of iron, composed of peroxide of iron, $85 \cdot 6$, and water $14 \cdot 4=100 \cdot 0$; but it frequently contains small per-centages of silica, alumina, sce.

The principal varieties of this ore are brown hematite, comprising the compact and mammillary varieties, scaly and ochry brown iron ore, yellow ochre constituting the decomposed earthy varieties, which are often soft, like chalk. Bog iron ore and clay iron stone are sometimes classed under this head, but it appears to us, especially as it regards the latter, improperly. 'The hydrated oxides of Northamptonshirc and Bedfordshire may with propriety be called brown iron ore.

Brown iron ore is found in Cornwall, in the carboniferous limestone at Clifton, near Bristol, and in the Forest of Dean ; in Shetland, Carinthia, Bohemia, Siegen near Bonn, Villa Rica in the Brazils, and Peru.
Brown Hematite occurs at 'Talcheer, in the Bengal coal-bearing strata, which are probably of Permian age. It is smelted with the charcoal made on the spot, and produces iron of excellent quality. According to the calculations of Professor Oldham, it takes $2 \frac{1}{2}$ tons of charcoal to produce 1 ton of iron.- H. W. B. See Iron.

BRUCINE. ($\mathrm{C}^{46} \mathrm{H}^{26} \mathrm{~N}^{2} \mathrm{O}^{4}$; syn. Canimarine, Vomicine.) A very bitter and poisonous alkaloid accompanying strychnine in nux vomica and in the false angustura bark (Brucia antidysenterica). Brucine may be separated from strychnine by taking advantage of the greater solubility of the former and its nitrate. It is somewhat less poisonous than strychnine, and, like that base, is used in the treatment of paralysis, but in rather larger doses. Brucine is prepared by the same process as strychnine.C. G. W.

BRYLE, or BROIL. A mining term. The loose matters found in a lode near the surface of the earth; probably a corruption of Bedreyl (which see).

BRUSHES. (Brosses, Fr.; Bürsten, Gern.) Since Mr. Mason introduced his mode of securing the hairs in brushes, it has, in all the better class of brushes, been very generally adopted. His patent dates 1830. Modified contrivances, partaking more or less of the original conditions, have been introduced in the manufacture. The principles of Mr. Mason's invention and its subsequent modificatious consist in a firmer mode of fixing the knots, or small bundles, of bair into the stock or the handle of the brush. This is done by forming grooves in the stocks of the brushes for the purpose of receiving the ends of the knots of hair, instead of the holes drilled into the wood, as in brushes of the common constructions. These grooves are to be formed like a dovetail, or wider at the bottom than the top; and when the ends of the
 knots of hair have been dipped into cement, they are to be placed in the grooves and compressed into an oval form, by which the ends of the hair will be pressed outwards into the recess or wider part of the dovetailed groove, or the grooves may be formed with threads or teeth on the sides, instead of being doretailed; and the cement and hairs, being pressed into the teeth or threads, will cause them to adhere firmly to the stock or handle of the brush.

A metal ferrule may be placed on the outside of the stock of the brush, if necessary, and securcd by nins or rivets, or in any other convenient manner, which ferrule may also form one side of the outer groove.

Fig. 285 is a plan view of the stock of a round brush; fig. 283 is a section of the same; a a are the dovetailed grooves which are turned out of the wood; δ is the metal fcrrule; cc are knots, or small bundles of hair, to form the brush. After a number of the knots of liair are prepared, the ends are to be dipped into proper cement, and then placed into the grooves, when their cnds are to be squeczed by a pair of pliers, or other means, which will compress them into the oval slape, as shown in fiy 284, and cause the ends of the hairs to extend outward under the dovetailed part of the recess.

The knots of hair are to be successively plaeed in the groores, aud foreed up by
a tool against the last knot put in, and so on, until the grooves arc filled; fig. 285 is a brush with teeth or threads of a screw formed upon the sides of the groove; into these teeth or threads the cement and hairs will be forced by the compression, by which means they will be held firmly in the stock of the brush.

Brushes and Brooms : Exports in 1856 :-Value of exports, $37,041 \mathrm{l}$.
BRUSH WHEELS. In light machinery, wheels are sometimes madc to turn each other by means of bristles fixed in their circumference; these are called brush wheels. The term is sometimes applied to wheels which move by their friction only.

BUCKING. A mining term. Bruising of the ore. A buching iron is a flat iron fixed on a handle, with which the ore is crushed; and a bucking plate is an irou plate on which the ore is placed to be crushed.

BUCKTHORN. (Rhamnus catharticus.) This plant is a native of England; it grows to the height of from 15 to 20 feet; its flowers are greenish-coloured, and its berries four-seeded. It is the fruit of this plant which is sold under the name of French berries. The juice of these, when in an unripe state, has the colour of saffron; when ripe and mixed with alum, it forms the sap-green of the painters; and iu a very ripe state, the berries afford a purple colour. The bark also yields a fine yellow dye.

The alder buckthorn (Rhamnus Frangula) grows naturally, and is very abundant in woods and thickets in some parts of Britain. The berries of this species are often substituted for those of the above; but they are casily detected, since they contain only two secds. In a green state, they dye wool green and yellow; when ripc, bluish grey, blue, and green. The bark also dyes yellow, and, with preparations of iron, black. Lawson.

Rock buckthorn (Rhamnus saxatilis), the berries of which are used to dye morocco leather yellow. These, in common with the narrow-leaved buckthorn berries (R. Clusii) and those of the yellow-berried buckthorn (R. infectoria), are sold as Avignon berries. The wood of the Rhamnus erythroxylon (which is a native of Siberia, but grows freely in this climatc), in a ground state, yields the bright red colour known to dyers under the name of red wood.

BUCKWHEAT. (Blé Sarrasin, Fr.; Buchweizen, Germ.) The common buckwheat (Polygonum fagopyrum, from poly, many, and gonu, a knee, in reference to its numerous joints) is cultivated for feeding pheasants and other game; and is now being largely used in France and in this country in distilleries.
"In France, besides being used for feeding fowls, pigs, \&c., it is given to horses; and it is said that a bushel of its grains goes further than two bushels of oats, and, if mixed with four times its bulk of bran, will be full feeding for any horse for a wcek. Its haulm, or straw, is said to be more nourishing than that of clover, and its beautiful pink or reddish blossoms form a rich repast for bees." - Lawson.

It has been stated that the leaves of the common buckwheat (Polygonum fagopyrum) yield, by fermentation, Indigo-blue. On examining this plant, for the purpose of ascertaining whether this statement was correct, Schunck was unable to obtain a trace of that colouring matter, but he discovered that the plant contains a considerable quantity of a yellow colouring mattcr, which may very easily be obtained from it. This colouring matter crystallises in small primrose-yellow needles. It is very little soluble in cold water, but soluble in boiling water, and still more soluble in alcohol. Muriatic and sulphuric acid change its colour to a deep orange, the colour disappearing on the addition of a large quantity of water. It dissolves easily in caustic alkalis, forming solutions of a beautiful deep yellow colour, from which it is again deposited in crystalline needles on adding an excess of acid. It is, however, decomposed when its solution in alkali is exposed for some time to the air, being thereby converted into a yellowish brown amorphous substance, resembling gum. Its compound with oxide of lead has a bright yellow colour, similar to that of chromate of lead. The compounds with the oxides of tin are of a pale but bright yellow colour. On adding protosulphatc of iron to the watery solution, the latter becomes greenish, and, on exposure to the air, aequires a dark green colour, and appears almost opaque. The watery solution imparts to printed calico, colonrs, some of which exhibit considerable liveliness. Silk and wool do not, however, acquire any colour when immersed in the boiling watcry solution, unless they have previously been prepared with some mordant. The composition of this substance in 100 parts is as $\mathrm{C}^{30} \mathrm{H}^{20} \mathrm{O}^{20}$. It appears to be $5 \cdot 55$, oxygen 44.45 . Its formula is probably contained in the Rula gravio identical with Rutine, the yellow colouring matter a substance derived from the leaves of comon rue, and in eapers; and with Ilixanthim, buckwheat lcaves, a little more than the common holly. Froni 1000 parts of fresh As the seed of the plant is the only part at of the eolouring matter may be obtained. to eollect and dry the lcaves, to be used as a dyeing material. it might be of advantage

The Tartarian Buchwheal (Pelyyonum Turturium) differs from the former in having the edges of its seeds twisted. It is not considered so productive, but it is more hardy; and better adapted for growing in mountaiffous situations.

The Dyers' Buchucheat. (Polyyomul tinctorium.) 'This plant was introdueed to the Royal Gardens at Kew by Mr. John Blake, in 1776. Authentic information as to its properties as a dye-yielding plant was only reeeived at a comparatively reeent period, from missionaries resident in China, where it has always been eultivated for its colomring matter. In Europe, attention was first directed to its growth by M. Delile, of the Jardin du Roi at Montpellier, who in 1835 obtained secds from the Baron Fiseher, Director of the Imperial Gardens at St. Petersburg. It has sinee that time beeome sufficiently valuable to render its eultivation as a dyc drug of suffieient importanee. The Japanese are said to extract blue dyes from Polygonum Chinensis, P. barbatum, and the common roadside weed, P^{\prime}. aviculare.-Lawson.

BUDDLING. A mining term. The proeess of separating the metalliferous ores from the earthy matters with which they are associated, by means of an inclined huteh, ealled a buddle, over which water flows. It is indeed but an arragement for availing ouselves of the action of flowing water to separate the lighter from the heavier particles of matter.

BUHL. Buhl-work consists of inlaid veneers, and differs from marquetry in being confined to deeorative serollwork, frequently in metal, while the latter is more commouly used for the representation of flowers and foliage. Boule, or Buhl, was a eelebrated cabinet-maker in France, who was born in 1642 and died in 1732. He was appointed "Tapissier en titre du Roi," and he gave his name to this peculiar process of inlaying wood with either wood or metal. See Marquetry, Parquetry.

BUHR-STONE, mineralogically, is a eellular flinty quartz roek, constituting one of the jaspery varieties of the quartz family. A celebrated grit-stone, much used in France and other parts of the eontinent for grist mills. Those of La Ferté-sousJonarre (Seine et Maine) are regarded as superior to all others. In consequence of the necessity for earefully piecing these stones together, they are naturally expensive; yet the demand for buhr stones continues great.

BULRUSH or TALL CLUB. (Scirpus lacustris ; Celtie, cirs, rushes.) The bulrush, belonging to the natural order of Cyperacea, grows naturally on alluvial soils which are oceasionally covered with fresh water. It is nuch nsed by coopers for putting between the staves of barrels, and by ehair makers. Many other plants belonging to this order are employed for eeonomieal purposes, sueh as forming seats, ropes, mats, and fancy basket-work, also for thatching houses. lu 1856, we imported 562 tons.
BURGUNDY PITCH. Burgundy pitch, when genuine, is made by melting frankineense (Abietis resina) in water and straining it through a coarse eloth. The substanee usually sold as Burgundy pitch is, however, common resin incorporated with water and coloured with palmoil. In some cases American turpentine is employed. See Pitch and Tar.

BURNING HOUSE. A miner's term. In Cornwall the kiln or oven in which the tin and other ores are placed to sublime the volatile constituents, sulphur, aud arsenic, is so called.

BURROW. A miner's term for a heap of rubbish.

BUTT. A measure for wine, \&c., containing 2 hogsheads, or 126 gallons.
BUTTER. (Beurre, Fr.; Butter, Germ.) Butter is the fatty matter of milk, usually that of the cow. Milk is composed of butter, easeine, sugar of milk, several salts, and water. The butter exists in the form of very small globules of nearly uniform size, quite transparent, and strongly refractive of light. Nilk left in repose throws up the lighter particles of butter to the surface as cream. It was imagined that the butter was separated in the process of churning, in consequence of the milk becoming sour; but this is not the case, for milk rendered alkaline by bicarbonate of potash affords its butter fully more readily than aeidulous milk. The best temperature for churning milk or cream is $53^{\circ} \mathrm{F}$. ; that of 60° is too high; and under 50° it is too low. By the ehurning action the heat rises from 3° to $4^{\circ} \mathrm{F}$. All the particles of butter are never separated hy churning; many remain diffused through the butter-milk, and are easily discoverable by the mieroseope. Thesc are more numcrous in proportion to the bulk of the liquid; and hence it is more economical to churn cream than the whole milk which affords it. It is computed that a cow which gives 1800 quarts (old English) of milk per annum eats in that time 8000 lbs . of hay, and produces 140 lbs , of butter. Analysis shows that this weight of hay eontains 168 lbs . of fat. The finest flavoured butter is obtained from milk churned not loug after it is drawn; but the largest proportion is derived from the cream thrown np by milk after standing 24 hours, in a temperature of
about $50^{\circ} \mathrm{F}$. The butter-milk, which contains the very fermentable substance caseine, slould be well separated from the butter by washing with cold water, and by beating with the hands, or preferably, without water, for the sake of fine flavour, by the action of a press.

The Tartars and Frencl have been long in the habit of preserving butter, by melting it with a moderate heat, whereby are coagulated the albuminous and curdy matters remaining in it, which are very putrescible. This fusion should be made by the heat of a warm bath, about $176^{\circ} \mathrm{F}$., continued for some time, to effect the more complete purification of the butter. If in this settled liquefied state it be carefully decanted, strained through a tammy cloth, and slightly salted, it may be kept for a long time nearly fresh, without becoming in any degree rancid, more especially if ${ }^{-}$it be put up in small jars closely covered.
In Cornwall and western Devon, the first process in the manufacture of butter is the formation of the cream by heat. After tbe milk has stood for some hours, it is cxposed to a very slow heat, until it acquires a temperature of about $200^{\circ} \mathrm{F}$.; care being taken that, if it exceeds this, the milk never boils. The pellicle of cream being formed, the vessel is removed from the fire, and allowed to cool ; when cold, the butter is made from this cream in the usual way.
When subjected to microscopical examination, milk is found to consist of infinitely minute globular particles floating in a scrous fluid. Raspail says the largest of thesc globules are not above 1-2500th of an inch in dianeter. These globules consist essentially of butter. See Mrus.

Butter is preserved by salting iu Ireland, in Holland, and in the Channel Islands, which together with the preserved butter of many of the English counties, is introduced largely into London.
BUTTON MANUFACTURE. This art is divided into several branches, constituting so many distinct trades. Metal, horn, leather, bonc, and wood are the substauces frequently employed for buttons, which are either plain, or covered with silk, mohair, thread, or other ornamental materials. The most durable and ornamental buttons are made of various metals, polished, or covered with an exceedingly thiu wash, as it is termed, of silver or gold.

The buttons intended to be covered with silk, \&c., are termed in geueral moulds. They are small cireles, perforated in the centre, and made from those refuse chips of bone which arc too sinall for other purposes. For the large and coarser buttons, pieces of hard wood, are sawu into thin flakes, of an equal thickness; from which, by a machine, the button moulds are cut out at two operations.

White metal and brass buttons, as well as plated buttous, are stamped by the flypress, out of coppcr-plate, covered on one side with silver at the flatting-mill. The copper side is placed upwards in stamping, and the die or hole through which they are stamped is rather chamfered at its edge, to make the silver turn over the edge of the button. The backs are stamped in the same manner as the gilt buttons. The shanks are soldered on with silver solder, and heated, one by one, in the flame of a lamp, with a blow-pipe urged by bellows. The edges are now filed smooth in the lathe, care being taken not to remove any of the silver which is turned over the edge. They arc next dipped in acid, to clean the backs, and boiled in cream of tartar and silver, to whiten them : after which they are burnished, the backs being first brushed clean by a brush held against them as they revolve in the lathc. The mode of burnishing is the same as for galt buttons. When the buttons are first cut they have exceedingly sharp edges, to correct whieh and to produce a round, smooth, wirclike edge, they are rolled between two parallel pieces of steel, one moving horizontally past the other, which is fixed, and both of them containing polished grooves on their corresponding faces. To the movahle piece A, fig. 286, motion is given by means of the handle B. In both the grooved pieces, which are about eighteen inches in length, there are semicircular openings as at a, which, hy corresponding once during each revolution of the handle, admit of the blauk e being dropped into the grooves, after which it is carried, revolving as it proeceds, between the picces of stecl, till coming to the hole i, it drops
 through into a basket. This operation is performed with amazing celcrity by a hoy, who drops the blanks into the cavity with his left hand, while he turns the handle with his right : they are now reatly to receive the shanks.

Button shanks are anade by hand from brass or iron wire, bent and eut by the following means:-

The wire is lapped spirally round a pieee of steel har. The steel is turned round by serewing it into the end of the spindle of a lathe, and the wire by this means lapped elose round it till it is envered. The coil of wire thus formed is slipped off, and a wire fork or staple with parallel legs put into it. It is now laid upon an anvil, and by a punch the eoil of wire is struck down between the two prongs of the fork, so as to form a figure 8, a little open in the middle. The puneh has an edge whieh marks the middle of the 8 , and the eoil being cut open by a pair of shears along this mark, divides eaeh turn of the coil into two perfeet button shanks or eyes.

Buttons to be gilded are stamped out from copper (having sometimes a small alloy of zine), laminated in the flatting mill to the proper thiekness. These cireular pieces, called blanks, are annealed in a furnace to soften them; and the maker's name, \&e. is struck on the baek by a moukey, which is a maehine very similar to a pile engine. This stamp also renders the faee very slightly eonvex, that the buttons may not stick together in the gilding proeess. The burnishing is performed by a piece of hematite or blood-stone, fixed into a handle, and applied to the button as it revolves by the motion of the lathe.

A great number of the buttons, thus prepared for gildiug, are put into an earthen pan, with the proper quantity of gold to eover them, amalgamated with mercury in the following manner:- The gold is put into an iron ladle, and a small quantity of mereury added to it ; the ladle is held over the fire, till the gold and mereury are perfectly united. This amalgam being put into the pan with the buttons, as mueh aquafortis, diluted with water, as will wet them all over, is thrown in, and they are stirred up with a brush, till the aeid, by its affinity to the eopper, earries the amalgam to every part of its surfaee, eovering it with the appearance of silver. When this is perfeeted, the acid is washed away with clean water. This process by the workman is called quieking.

The old proeess, in gilding buttons, ealled the drying off was exceedingly pernieious to the operator, as he inhaled the vapour of the merculy, which is well known to be a virulent poison. In order to obviate this, the following plau of apparatus has been employed with suceess. The vapour, as it rises from the pan of bnttons heated by a ehareoal fire, is enndueted into an oblong irou flue or gallery, geutly sloped downwards, having at its end a small vertieal tube dipping into a water eistern, for condensing the mercury, and a large vertical pipe for promnting the draught of the produets of the combustion. By aet of parliament 5 grains of gold are allotted for the purpose of gilding 144 buttons, though they may be tolerably well gilt by half that quantity. In this last ease, the thiekness would be about the 214,000 th part of an ineh.

Mr. Holmes of Birmingham patented a process which was fully described in the former editions of this work; that portion of the deseription is retained which relates to sueh parts of his maehinery as are found upon inquiry to be still in use.

Having explained the peeuliar forms of his improved metallie shanks for bnttons, and the tools employed in making the same, he proceeds to describe the machinery or apparatus hy which he earries his invention into effect. He takes a sheet of metal,
 say about 30 or 40 feet long, and of the proper width and thickness, which thin sheet is to be wound upou a roller, and placed above the maehine, so that it ean be easily drawn down into the machine as required for feeding the punehes and dies. Fig. 287 is a plan view of a machine intended to work ally convenient number of sets of punches and dies placed in rows. Fig. 288 is a side vicw, and fig. 289 a longitudinal section, taken through the ma. chine ; figs. 290 and 291 are transverse seetions
taken through the nachine between the punches and counter dies, fig. 290 representing its appearance at the face of the punches, aud fiy. 291 the opposite view of the counter dies. a a are the punches; $b b$, the counter dies; each being mounted in rows in the steel plates $c c$, fixed upon two strong bars d and e, by countersunk screws and nuts, the punches and dies beiug retained in their proper position hy the plates, which are screwed on to the front of the steel plates, and press against the collars of the punches and dies. The bars d and e are both mounted on the guide-pins $g g$, fixed in the heads, $h h$, of the frame, which guide-pins pass through the bosses on the ends of the bars. The bar d is stationary
 upon the guide-pins, being fixcd to the heads, $h h$, hy nuts and screws passed through ears cast on their hosses. The har e slides freely upon the guide-pins $g g$, as it is moved backwards aud forwards by the crank $i i$, and connecting-rods $j j$, as the crank shaft revolves. The

sheet of thin iron to he operated upon is placed, as before stated, above the machine; its end being hrought down as at $a \alpha$, and passed hetween the guide-rod and clearing plate h, and between the pair of feeding rollers $l l$, which, by revolving, draw down a further portion of the sheet of metal between the puuches and dies, after each operation of the punches.

As the counter dies advance towards the punches, they first come in contact with the sheet of metal to be operated upon; and after having produced the pressure which cuts out the discs, the perforations of the sheet are pushed on to the ends of the punches hy the counter dies; and in order that the sheet may be allowed to advance, the carriage which supports the axles of the feeding-rollers, with the guide-rod and clearingplate, are made to slide hy means of the pin m, which works in a slot in the slidingpiece n, bearing the axis of the feeding-roller $l l$, the slide n being kept in its place on the framework hy dovetailed guides, shown in fig. 291.

When the counter dies have advanced near to the shect of metal, the pin n comes in contact with that end of the slot in the piece n which is next to the punches, and forees the carriage with feed-rollers and clearing-plate, and also the sheet of metal, onwards, as the dies are advanced by the reaction of the cranks; and after they have cut out the dises, and raised the shanks, the sheet of metal will remain upon the punches; and when the bar e returns, the finished backs and shanks are forced out of the counter dies, by the clearing-pins and rods o o, which project through the har c, and through the holes before mentioned in the counter dies ; these clearing-pins heing stationary between the hars $p p$, mounted upon the standard $q q$, on the cross bar of the frame, as shown in figs. 287, 289, 290. Immediately after this is done, the pins m come in contact with the other ends of the slots in the pieces n, and draw back the feeding-rollers
$l l$, together with the clearing-plate h and the sheet of metal, away from the punches, into the position represented in the figures.

At lhis time the feeding of the metal into the machine is effected by a erank-pin r, on the end of the crank-shafts coming in coutact with the bent end of the sliding-bar s, supported in standards $t \ell$; and as the erank-shaft revolves, this pin r forces the bar s forward, and causes the tooth or pall u, on its reverse end, to drive the ratchet-wheel v one or more teeth; and as the ratchet-whecl v is fixed on to the end of the axle of one of the rollers l, it will cause that roller to revolve; and by means of the pair of spurpinions on the other cnds of the axles of the feeding rollers, they will both revolve sinultaneously, and thercby draw down the sheet of metal into the machine. It will be perceived that the standards which support the elcaring-plate and guide-bar are earried by the axles of the feeding rollers, and partake of their sliding motion : also that the clearing-pins o, are made adjustable between the bars p, to correspoud with the connter dies. There is an adjustable sliding-stop x upon the bar s, whieh comes in contact with the back standard t, and prevents the bar s sliding back too far, and consequently regulates the quantity of sheet metal to be fed into the maehine by the pall and ratchet-wheel, in order to suit different sizes of punches and dies. In ease the weight of the bar c, earrying the counter dies, should wear upon its bearings, the guidepins $g \cdot g$ have small friction-rollers $y y$, shown under the bosscs of this bar, which frictionrollers run upon adjustable beds or planes, $z z$, by which means the guide-pins may be partially relieved from the weight of the bar c, and the frietion consequently diminished.

Buttons of Horn. - Mr. Thomas Harris obtained, in April, 1841, a patent for improvements in the manufacture of horn buttons, and in their dies. His inventiou relates, first, to a mode of applying flexible shanks to horn buttons; secondly, to a mode of ornamenting horn buttons, by inlaying the front surface thereof; thirdly, to a mode of ornamenting what are called horn buttons, by gilding or silvering their surfaces; fourthly, to a mode of constructing dies, by applying separate boundary circles to each eugraved surface of a die, by which the process of engraving, as well as the forming of aceurate dies, will be facilitated; fifthly, to a mode of eonstructing dies, used in the manufacture of horn buttons, whereby the horn or hoof employed will not be permitted to be expressed beyond the circumference of the button.

Fig. 292 represents, in section, a pair of dies, A and B, used in produeing the

improved horn buttons, aecording to the first improvement; the upper die A is made to produce the back surfaces of the buttons, and the reecss or groove for receiring the flexible shank. Fig. 293 shows, in seetion and back view, the form of a button proauced by the dies.
Buttons thus formed are now ready to reecive flexible shanks; and if the buttous are to have plain smooth front surfaces, then, in fixing the flexible shanks, the same kind of under die, n, may be used; but if the front surface of the button is to be embossed or ornamented, then, in place of that die, a similar one, having engraved or suitably ornamented surfaces, is to be used. When fixing the shanks to buttons, the lower or face die, containing the previonsly formed buttons, is to be heated till a drop of water will ucarly boil upon it.

The shank is applicd as follows:-a metal shell or collet a (scc fig. 294) is placed over the flexible shank b, and a plate of metal c is laid under the sliank; these are placed in the groove or recess of the button, which had been previously leated in the lower die ; the upper die a (fig. 295) is then to be placed on the lower die \boldsymbol{B}, and the two subnitted to pressurc, until they become cool, when the shank will be firmly attached, as shown at fig. 296, and the bottom may be finished in the usual way.

The second part of the invention, which relates to a mode of ornamenting horn buttons, by iulayiug the front surface thereof, is performed in a manner similar to What has been above described, for fixing flexible shanks, and consists in first forming the front face or surface of a button, in suitable dies, for providing a recess; and then, by a second pressure in dies, to fix the ornamental surface; and, when desired, the surrounding front surface of the button may be embossed. Fig. 297 is a longitudinal section of a pair of dies, for forming a recess in the face of a button. Fig. 298 shows, in front view and section, a horn button produced by these dies. Fig. 299 shows a metal ornament, to bc inlaid or fixed in the front surface of the button, but it should be stated that the ornamenting surfacc, to be fixed in the front surface of the button, may be of pearl or other material ; and the size and device varied according to taste. Fig. 300 shows in scetion a pair of dies, for giving the second pressure for affixing the ornamental surface; and, if desired, the remaining front surface of the button may be ornamented, by having the lower die engraved, or otherwise suitably ornamented. Fig. 301 shows in front view and section a button made according
to this part of the invention.

The third part of the invention relates to a mode of ornamenting horn buttons, by gilding or silvering their surfaces. This is effected by applying a suitable cementing or adhesive material with a soft brush to the button, in order that gold or silver leat may be attached to its surface. The cementing or adhesive material preferred to be used is dressing varnish rendered sufficiently liquid by essence of turpentine; and when the varnish is nearly dry, gold or silver leaf is applied thereto, and pressed in the same manner as practised when gilding and silvering other surfaces; by thus treating horn buttous a very novel manufacture of that description of buttons may be produced.
The fourth part of this invention relates to the construction of dies used in the manufacture of horn buttons. Fig. 302 is a section of a die, constructed according to this part of the invention; and fig. 303 is a section showing the die without the bounding circles, which confine the patterus; f is the die engraved at the parts $g g$; around each of which engraved surfaces are circular grooves or recesses to receive the bounding circles $h h$, which fit accurately. By the after insertion of these circles, the workman is not confined to move his graver within the bounding line, as that line is not present when engraving the plate; and the graver inay pass beyond, and the grooves and the bounding circles may readily be made witl great accuracy to each of the engraved
surfaces.
The fifth part of the invention also relates to a mode of constructing dies for the manufacture of horn buttons, and consists in forming the dies so that the bounding circle shall be a sufficient depth for the counter die to slide within it, and fit accurately in order that the circumference of each button shall be smoothly and accurately formed. Fig. 304 represents in section two dies, and one counter die, made according to this part of the invention ; fig. 305 shows one of the dies in plan and section; and fig. 306 a plan and section of a counter die suitable for flexible shank buttons. $I^{2} h$ are the dies, having the engraved surfaces $i i$ on separate circular discs of metal, such as have heretofore becn used; j is a counter die, and k a tube within which the counter die is held, the object of this tube being to guide the projecting edges $l l$ of the dies as shown, and thus keep the dies and counter dies correct to eaeh other. Fig. 307 is a section of two dics h, and a counter die j; but in this ease the tube h is dispensed with, the dies being decper sunk, and thus guiding the counter die correctly. By the usc of these dies, the edges of horn buttons will be more accurately formed, and consequently require less finishing. This description of dies may be made according to the mode described in the fourth part of this invention; that is by forming the boundary circle separately, as will be understood by referring to fig. 308, which is a side section of a die complete, with its boundary circle formed in a similar manner to that described above. Fig. 309 represents. in plan and seetion, a variation in the means of affixing a separate bounding circle to cach engraved surface ; and it is suitable for working without the tube. In using these dies they are to be lieated but slightly, whether for buttons with metal shanks, or to reccive flexible shanks, and are to be pressed as heretofore. The patentec claims, firstly, the mode of manufacturing horn buttons with flexible shanks, by first forming buttons by pressure and heat, and then, Secondly, the mode of ornamenting lorn buttons, by causing sato above described. Secondly, the mode of ornamenting lorn buttons, by causing suitable surfaees to be
affixed in the front surfaces, by pressing the buttons with the ornaments in dies, as above deseribed. Thirdly, the mode of ornamerting horn buttons by gilding and silvering their surfaces as described. Fourthly, the mode of construeting dies used in the manufacture of horn buttons, by applying separate boumding eireles to eaeli engraved surface, for a button; and fifthly, the mode of manufacturing horn buttons in dies, wherein the horn or hoof is prevented from being expressed at the eireumference of the buttons as deseribed.

Buttons, Covered.-Mr. Joseph Parkes obtained in 1840, a patent for improvements in the manufacture of covered buttons made by dies and pressure, by the applieation of horn as a envering material. The process resorted to by the patentees for earrying out this invention is very similar to that pursued in manufaeturing Florentine buttons; such modifieations being applied as are rendered necessary for adapting such proeess to the peeuliar nature of the material employed for covcring the face of each button. a (fig. 310) shows a plan of a dise of iron plate, with four projecting points, which is formed by suitable dies in a fly-press, as is well understood; the points are then turned down, and the dise a is sunk into the shape shown at $f i g$. 311 , and two sueh sunk dises are applied to the internal core of the button-board of each button: b (fig. 312) shows a plan and edge view of a circular dise of button-board suitable for forming the internal core of a button.
The dies being placed in suitable presses, as is well understood in using similar dies in manufacturing Florentine and other covered buttons, one of the sunk dises a is placed in the under die, with the points upwards, having a dise of button-board placed on the points, as shown at fig. 313 ; the upper die or punch is then eaused to deseend and press the button-board b into the shape shown at fig. 314; whieh, wheu thus formed, is to have a die a applied on the other side, as shown at fig. 315. The dise a, to be next fixed to the button-board, is placed in a suitable die, the dise whieh has already been fixed being upwards; the die or punch is now to be pressed down, which will produce the button-board, with the dises $a a$, on either side, into the shape shown at fig. 316; and it will be seen, that one of the dises will by the shape of the die, be sunk coneave, whilst the other dise a, on the other side, will be formed convex, or aceording to the figure of the face of the intended button.
The eore of button-board (fig 316) is now ready to be inserted into the fabric which is to become the flexible shank of the button, and which Hexible shank is formed by sinking a portion of fabrie in suitable dies, as is well understood when making similar shanks for Florentine or other eovered buttons; and the shank being so sunk, the button-board or core (fig. 316) is to be placed thereon, with the coneave surface

towards the protruding shank; and the edges of the fabrie are then to be pressed over the core, as is well understood, which will produce the partly formed button (fig. 317), which is a side view, and consists of the shank containing the eore, which is next inserted into the metal shell e (fig. 318) and these parts being placed iu a suitable die, are pressed together, and the partly manufactured button (fig. 319) will be produced, eonsisting of the shank eontaining the core, covered ou the front surface with the metal shell c, which, by the die, has its edges bent down on the fabric of the flexible shank. The button, thus far formed, is now in a condition to be covered with a thin plate of horn, whieh is performed in the following manner:-d (fig. 320) shows a dise of horn, eut out by suitable dies, the eireumference being seolloped, in order that in
folding over the mould (fig. 319) the horn may not be puckered. ee (fig. 321) shows a collct, for affixing the coveriug of horn to the button, the collet being similar to that used in what is called "Sandar's plan of making Florcntine and other covered buttons."
The method of covering the mould of the button with horn is deseribed as follows :Fig. 322 represents, in section, a lower covering dic, and also a proper punelı for pressing the parts into the lower die ; these dies being in a suitable press, as is well understood. The lower dic is to be kept heated to such an extent that the workman can just bear his hand to rest, for a very short time, on the upper surface of the die; the heating is prcferred to be accomplished by means of a flame of gas below the die; and it will be seen that there are holes, $f f$, in the dic, through whieh the heat of the flame may pass, and g is an opening to allow of atmospheric air flowing under the lower die. The disc of horn d is placed in the lower die g. The shape or mould (fig. 319) is then placed on the horn, and the punch or die H, is caused to descend, and press the parts into the dic g; the punch h is then raised, in order to allow of the introduetion of the parts showu at figs. 323 and 324 , whieh consist of the tubc I, and the punch or die j. The lower edge of the tube I is made bell-mouthed, so as to cause the seolloped edges to be pressed on the back of the buttons, and the die or punch j is to cause the collet to be forced through the horn in the button: and, in using these parts, the eollet is placed in the tube I , whieh with its punch is inserted into the dic s, as shown at fig. 325, whieh figure represents the die g and punch h in the condition just described, after having foreed the parts iuto the die G ; and this figure also shows the tube I , with a collet d and the punch or die J placed in the tube I ; and all things are in a condition to receive the pressure of the punch H. In order to prevent the pressure coming on the punch or die 3 before the horn has been folded down by the tube I, the hollow bloek к is plaeed over the die or puneh \mathbf{J}; conscquently when the punch H is caused to deseend, it will foree down the tube I , and eause it to gather the edges of the horn, and press them on the back of the mould of the button, when the punch iI will be raised again, and the block K removed, whieh will leave all things in the position shown at fig. 326 ; and then again, the bringing down of the punch \mathbf{H} will cause the die or punch s to deseend, and force tbe eollet into the button, the die \mathbf{J} being retained in the tube I by means of the pin z, passing through a slit formed therein, whieh allows of the die J rising and falling in the tube I , but prevents its coming out of that tube. The button, thus far formed, is now in a condition to be completed in the finishing dies (fig. 327), the lower dies being kept heated in a similar manner to the die c. The dies being fixed in a suitable press, the button to be finished is inserted into the die \mathbf{L} (whieh may be ornamented or plain), with the slank upwards, and the puneh or die m is eansed to deseend and press the button into slape.
When the front of the button is to be plain, the dise of horn should be polished before heing used for covcring; but when used to eover a button, and finished by an engraved or ornamented die, the polishing is not neeessary. The button being thus made is to be finished by plaeing it in a lathe to be "edged," as is eommonly praetised in finishing horn buttons.

The patentec does not elaim the means of making the mould or shape shown at fig. 319, nor the dies employed when separately considered, very similar dies having been before used in the manufacture of other eovered buttons; nor does he confine himself thereto, so long as the peculiar character and essenee of the invention be retained; viz., that of manufaeturing eovered buttons, made by dies and pressure by the application of thin sheet horn as the eovering material. He elaims the mode herein describer of manufaeturing eovered buttons by the applieation of horn as a covering material, as above described.
Porcelain Buttons.-These buttons were manufaetured by Messrs. Minton and Co. under Prosser's patent, for the eompression of dry porcelain elay in moulds (the process will be fully deseribed under the head Tesserx). This manufaeture is however abandoned in this country; but Mr. Bagaterasse has a large establishment at Briare, where he manufactures these buttons on a large scale, and being in eompetition with Mr. Lebenf of Creil, they are sold very cheaply. Bagaterasse has greatly improved the process by striking several hundred buttons at onee, instead of doing them singly as by Prosser's proeess. See Tiles and Tessere.

In 1856 we imported: -

$$
\begin{aligned}
& \text { Buttons and STuDs of metal to the value of }-£ 4,872 \\
& " \# \text { of other sorts }
\end{aligned}
$$

BIJTYLAMINE ($C^{8} \mathrm{H}^{י 1} \mathrm{~N}$). \AA volatile organie base, homologous with methylamine. It is found in the more volatile portion of bone oil. It may be prepared artificially hy processes analagous to those employed for methylamine, amylanine, \&e., substitut. ing the butylic eyanate, urea, or iodide, for those of methyle and annyle. See Amr-
Laminn.-C. G. W.

CABI.E. (Cable, Fr.; Ankertun, Germ.) A strong rope or chain, eonneeting the ship with the anchor for the purpose of mooring it to the ground. The sheet anchor cable is the strongest, aud is used at sea after the bower, which is in constant use, goes, gives way, or requires help: the stream eable is smaller, being used chiefly in rivers. A cable's length is 100 to 140 fatboms in the merebant service; in the Royal Navy 4 eables are employed each of 100 fathoms, 2 cables being attached end to end. The greatest improvement in mooring vessels has been the introduetion of the ehain cable, which, when duly let nut, affords in the weight of its long eatenary eurve, an elastic tension, and play to the ship under the pressure of the wind. The dead strain upon the anchor is thus greatly reduced, and the sudden pull by whieh the flukes or arms are readily snapped is in a great measure obviated. The best iron eables are chains made of links, whose sides are stayed by eross bars or studs, welded across the middle of the link. Experience has taught that the ends of these links wear out much sooner than the sides. To remedy this evil, Mr. Hawkes, iron manufacturer, obtained a patent in July, 1828, for constructing these anchor chains with links considerably stouter at the ends than in the middle. With this view he forms the short rods of iron, of whieh the links are to be made, with swells or protuberanees about one-third of their length from each of their ends, so that when these are welded together, the slenderer parts are at the sides, and the thieker at the ends of the elliptie links. Such rods as the above are formed at onee by rolling, swaging, or any other means; but in praetice, this plan has not been extensively earried out; the simple round iron seems best.

The first avowed proposal to substitute iron eables for cordage in the sea serviee is stated to be made by Mr. Slater, surgeon of the Navy, who obtained a patent for the plan in 1808, though he does not seem to have bad the means of earrying it into effeet -a very general misfortune with ingenious projectors. It was Lieut. Samuel Brown, of the Royal Navy, who, in January, 1808, had represented to the Naval Boards the policy of employing iron rigging and chain cable, and who, in February of that year, enrolled a patent for those articles, and in 1811 first employed chain eables in the vessel "Penelope," of whieh he was commander, for the purpose of experimental experience, this vessel of 400 tons having been fitted expressly for the trial by Captain Brown, Mr. Brunton, and other friends, at personal expense and risk, with iron rigging, chains, and cables, in place of hemp and rope.

He made a voyage in this ship firm England to Martinique and Guadaloupe and home again, in the course of four months, having anchored many times in every variety of ground witbout any aceident. He multiplied his trials, and acquired certain proofs that irou might be substituted for hemp in making eables, not only for mooring vessels, bnt for the standing rigging. Upon his return from the West Indies, Captain Brown strongly represented the advantages practically experienced of iron over hemp. A eommittee of naval officers reported upon the whole affair, and the Government ordered the "Namur" of 74 guns, the "Monmouth" of 64, the "Crescent" frigate, and the "Alonzo" sloop, to be fitted with tro chain eables of 100 fathoms each, and Lieut. Brown was promoted to the rank of eaptain. These ehains were of various forms of links ; those, for instanee, supplied to the "Crescent" were composed of very short links with parallel sides.

Sinee this period, chain eables have been universally introduced into all the sbips of the Royal Navy, but the twisted links employed at first by Brown have been replaecd by straight ones, stayed in the middle with a eross rod, the contrivance of Capt. Brown, which was secured by patent in this country.

The twisting of the links was doue in order to assimilate the ehain to the form of rope, and for the purpose of making it run out with less eoncussion to the ship; but this in practice was found really to let the cable render out too easily, and was diseontinued in practiee.

Some of the eables supplied in 1811 to the ships of war were found to hare defective links; their general use was suspended until the beginning of 1812, when Captain Browu invented a mode of sbutting the links with a long searf, and intro duced a maehine to put upon the chain any amount of strain tbat ought to be brought to bear, and thus aseertain defeets of workmanship and materials. This proving machine led to the introduction of stay pins in the links; about the middle of 1812, chain cables were thus brought to great perfeetion, and very generally introduced into the Royal Navy.

The first thing to be eonsidered in the manufneture of iron eable is, to procure a
material of the best quality, and, in using it, always to keep in view the direction of the strain, in order to oppose the maximum strength of the iron to it. The best form of the links may he dednecd from the following investigation.

Let \boldsymbol{A} в (fig. 328) be a circular link or ring, of one-inch rod iron, the outer circumfereucc of the ring being 15 inches and the inner 9 . If equal opposite forces he applied to the two points of the link c 1 , pulling c towards E , and D towards F, the result will be, when the forces are sufficiently intense, that the circular form of the link will be changed into another form with two round ends and two parallel sides, as seen in fig. 329. The ratio of the exterior to the interior periphery, which was originally as 15 to 9 , or 5 to 3 , is no longer the same in fig. 329 . Hence there will be a derangement in the relative position of the component particles, and consequently. their cohesion will be progressively impaired, and eventually de.. stroyed. In fig. 328, the segment m N of the outside periphery
 being equal to 3 inches, the corresponding inside segment will he $\frac{3}{3}$ ths of it. If this portion of the link, in consequence of the stretching force, comes to be extended into a straight line, as shown in fig. 329, the corresponding segments, interior and exterior, must both be reduced to an equal length. The matter containcd in the 3 inches of the outside periphery must therefore be either compressed, that is, condensed into $1 \frac{4}{5}$ inch; or the inside periphery, which is only $1 \frac{1}{5}$ inch already, must he extended to 3 inches: that is to say, the exterior conclensation and the interior expausion must take place in a reciprocal proportion. But, in every case, it is impossihle to effect this contraction of one side of the rod and extension of the other, without disrupture of the link.

Let us imagine the outside periphery divided into an infinity of points, upon each of which, equal opposite forces act to straighten the curvature; they must uudoubtedly occasion the rupture of the corresponding part of the internal periphery. This is not the sole injury which must result; others will occur, as we shall perceive in considering what passes in the portion of the link which surrounds c d (fig. 329) whose length is $4 \frac{1}{2}$ inches outside and $2 \frac{1}{10}$ th inside. The scgments $m P$ and $N O$ (fig. 328) are actually reduced to semi-circumferences, which are inside no more thau half an inch, and outside as before. There is thus contraction in the interior with a quicker curvature or one of shorter radius in the exterior. The derangenient of the particles takes place here in an order iuverse to that of the preceding case, but it no less tends to diminish the strength of that portion of the link; whence we may certainly conclude that the circular form of cahle links is an extremely faulty one.

Leaving matters as ve have supposed in fig. 328, hut suppose that \mathbf{G} is a rod introduced into the link, hisdering its two opposite points a b from approximating. This circumstance makes a remarkahle change in the results. The link, 330 pulled as above descrihed, must assume the quadrilateral form shown in fig. 330. It offers more resistance to deformation than before; but as it may still suffer change of shape, it will lose strength in so doing, and cannot therefore be recommended for the construction of cahles which are to he exposed to very severe strains.

Supposing still the link to he circular, if the cnds of the stay comprehended a larger portion of the internal periplery, so as to leave merely the space necessary for the plan of the next link, there can he no doubt of its opposing more effectively the change of form, and thus rendering the chain stronger. But, notwithstanding, the circular portions which remain between the points of application of the strain and the stay would tend always to he straightened, and of consequence to be destroyed. Besides, though we could construct circular links of sufficient strength to hear all strains, we ought still to reject them, because they would consume more matcrials thau links of a more suitable form, as we shall prescutly see.

The effect of two opposite forces applied to the links of a chain is, as we have seen, to reduce to a straight line or a straight plane every curved part which is not stayed: whence it is ohvious that twisted links, such as Brown first cmployed, even with a stay in their middle, must of necessity he straightencd out, because there is no resistance in the direction opposed to the twist. A cable formed of twistcd links, for a vessel of 400 tous, stretched 30 feet, when put to the trial strain, and drew back only 10 feet. This elongation of 20 feet proceeds evidently from the straightening of the twist in each link, which can take place only by impairing the strength of the cable.
Twisted cahles are not now made, and hut little of twisted chain. They were made to give the familiar form of rope to the chain, to please the sailors' prejudice.

From the preceding remarks, it appears that the strongest liuks are such as present, in their original form, straight portions betwecu the points of tension; whence it is clear that links with parallel sides and round ends would be preferable to all others,
did not a good cable requirc to be able to resist a lateral force, as well as one in the direetion of its length.

Let us suppose that by some aeeident the link fig. 329 should have its two ex-
 tremities pulled towards \mathbf{y} and z, whilst an obstaele x , plaeed right opposite to its iniddle, resisted the effort. The side of the liuk which touches x would be bent inwards; but if, as in fiy. 331, there is a stay, A G B, the two sides would be bent at the same time; the link would notwithstanding assume a faulty shape.
In thus considering the vieious forms, we are naturally direeted to that whiel has had at onc time the preferenee, as is shown in fig. 332 ; but this form of link and stay-pin is so faulty, as to give place now to the general usc of the simple link of
 parallel sides (see fig. 343) and with a very different staypin, as will be shown hereafter. This old link has a eastiron stay with large ends; it presents in all directions a great resistanee to every ehange of form ; for let it be pulled in the direetion $a b$, against an obstacle c, it is evident that the portions $d e$ and $d f$, whieh are supported by the parts $g e$ and $g f$, cannot get deformed or bc broken without the whole link giving way. As the matter composing $g e$ and $g f$ eannot be shortened, or that whieh eomposes $d e$ and $d f$ be lengthened, these four sides will remain neeessarily
 in their relative positions, by virtue of the largeended stay h, whose profile is shown in fig. 333. We have examined the strength of a link in every direction, exeept that perpendieular to its plane. Fig. 334 represents the assemblage of three links in the above predieament; but we ought to observe that the link c, placed between the links AB, could not resist the pressure or impaet of the two lateral links.
Proeess of manufacturing Iron Cables. - The implements and operations are arranged in the following order:-

1. The eutting, by a maehine, of iron bars, in equal lengths, but with opposite bevels, to allow of the requisite erossing and splicing of the ends in the aet of welding.
2. A reverberatory furnace (see Iron), in which a number of rods or round bars of the best possible wrought iron, and of proper dimensions, are heated to a red heat. The furnaee is like those used in the sheet-iron works, but somewhat larger, and needs no partieular deseription here.
3. The bending of eaeh of these pieces by a maehine, so as to form the links; the last operation is done rapidly whilc the iron is red-hot.
4. The welding of the links at small forge fires, fitted with tools for this express purpose, and the immediate introduction of the stay, by a top tool and hammer.
5. Proving the cables by an hydraulic press, worked by a pump, with levers to ascertain the strain applied by working the pump.

Any ordinary shears will do to eut the iron, if furnished with a gauge or stop, to regulate the length of link.

The following forms of apparatus employed by the late Mr. Brunton and others, relate more to the history of the past manufaetures, than to the present practice on a large scale.

Figs. 335 and 336 are a plan and elevation of the shears with which rods are cut

into equal pieees, for a link, moved by a steam engine, or worked by four or more labourers. These must be relieved, however, frequently by others, for eaeh shears' machine is ealeulated to require nearly one horse in steam power.
A and n are the two east-iron limbs of the slears. 'The first is fixed and the second

CABLE.

is movable by means of a erank shaft, c, driven by a heavy fly-wheel is. The cutting jaws, a, are of steel pieces madc fast by bolts, and may be clianged at pleasurc. F is a stop which determines the equal lengths of the picces cut off, and can be shifted to suit different lengths; a piece of iron is shown as being eut off between the upright stop and the shears.

The following figures represent the plan and elevation of a machine for bending links into an elliptie form, superseded by the machine hercafter to be deseribed. It is represented at the moment when a link is getting bent upon it.

A is an elliptic mandrel of cast-iron; it is fixed upon the top of a wooden pillar $\boldsymbol{B}_{\text {, }}$ solidly supported in the ground, c is the jaw of the viec, pressed by a square-headed screw against the mandrel A.

D, part of the mandrel comprehended between X and Y, formed as an inclined plane, so as to preserve an interval cqual to the diameter of the rod between the two surfaces that are to be welded togcther.
e, rectangular slots (shcars) passing through the eentre of the nut of the mandrel, in which each of the pins F may be freely slidden.
a, horizontal lever of wrought iron six feet long. It carries at \boldsymbol{H} a pulley or frie-tion-roller of stcel, whose position may be altered according to the diameter of the of links.

The piece of iron intended to form a link being eut, is carried, while red hot, to the bending machine, where it is seized with the jaw of the vice c, by one of its ends, the slant of the eut being turned upwards; this pieec of iron has now the horizontal direction $m n$; on pushing the lever G in the line of the arrow, the roller \mathbf{H} will foree $m \mathrm{~m}$ to be applied suecessively in the clliptic groove of the mandrel; thus finally the two faces that are to be welded together will be plaeed right opposite each other.

The length of the small diameter of the ellipse ought to exceed by a little the length of the stay-piece, to allow of this bcing readily introduced. The diffcrence between the points $F \in$ is equal to the difference of the radii vectores of the ellipsc. Hence it will be always casy to find the excentricity of the ellipse.

Fig. 340 is a lever press for squeezing the old form of links upon their stays,

after the links are welded. This machine was contrived for the purpose of superseding manual labour, but the skill and dexterity of the workmen have quite superseded this machinery; however completely this and other machincs may do the work, hand labour does the work quicker and better, almost beyond comparison. The hand practice is as follows :-

The links bent are carried to the forge hearth to be welded, and to receive their stay; two operations performed at one heating. Whenever the welding is finished, while the iron is still red hot, the link is placed upright upon the stake, i.e., the shorter axis vertical and the longer axis of the link horizontal ; then a workman introduces the stay with a pair of tongs or pincers, while another workman strikes down upon it. This mechanical compression first of all joins perfectly the sides of the link against the concave ends of the stay, and afterwards the retractiou of the iron on cooling increases still more this compression. If each link bc made with the same care, the cable must be sound throughout. It is not delivered for use, however, till it be proved by the hydraulic press, at a draw-bench made on purpose, and examined link by link, on the side of the machine, or on a bench crected for the purpose, to detect any flaw the strain may have caused.

The following Table of compared materials and strains is given as a matter of historical reference; it is believed the dates of the expcriments are 1815 and 1816 ; since then, alterations in the make of iron, and the introduction of new fibres, as well as hemp, render this Table of value, as the materials here cmployed were, no doubt, good examples, and subjected to critical attention.
Table of Iron Cables as substituted for Hemp, with the Strains applied at that Datc.

Iron Cables. Diameter of Iron Rod.	Hemp Cables. Circnmference of Rope.	Old Proof, by Mr. Brunton.
Inches.	Inches.	Tons.
0%	9	12
1	10	18
11	11	26
11	12	32
$1{ }_{16}^{5}$	13	35
$1: 8$	14 to 15	38
$1 \frac{1}{2}$	16	44
$1{ }^{\frac{5}{8}}$	1.7	52
$1{ }^{18}$	18	60
17	20	70
2	22 10 24	80

It would be imprudent to put hempeables to severer strains than those indicated in the Lloyd's Table, drawn up from expcriments ; but the iron cables of the above sizes will support a double strain without breaking. They ought never, in common eases,
however, to be exposed to a greater stress. A cable destined for ships of a certain tounage sloould not be employed in those of greater burden. Thus treated, it may be always trusted to do its duty, and will last longer than the ship to which it belongs. It has ofteu heen stated, that chain eables possess double the strength of the iron of which they are made, owing to the forms of the links cmployed : this, however, is an ahsurd error ; for suppose the two sides of a link to be of inch iron, yet a part of the strength must be lost in the hending of the ends, for the straining force is at right angles, at the ends, to what it is at the side, or would he exerted upon portions of straight rods; next, to make a link, the two ends have to he joined hy welding, and wherever this join is made, there is every chance for less union, and no possible means of getting the fibre to be stronger than if they had never heen separated, strength really must he lost by heating the iron and shaping the link.

Mr. Lenox has found in praetice, that an inch holt will hear $21 \frac{1}{2}$ tons, while the inch cahle will break at 34 tons, and not at the douhle streugth, or 43 tons, of two lengths of straight iron.

One of the most valuahle qualities of iron eahles is their resisting lateral as well as longitudinal strains, as explained under figs. 332 and 334.

Vcssels furnished with chain cahles have hecn saved hy them from the most imminent peril. The "Henry," sent out with army stores during the peninsular war, was cauglit on the northern eoast of Spain in a furious storm. She ran for shelter into the Bay of Biscay among the rocks, where she was exposed for three days to the liurricane. She possessed fortunately 70 fathoms chain cahles, which held good all the time, but it was found aftcrwards to have had the links of its lower portion polished bright by attrition against the rocky hottom. A hemp cahle would have been speedily worn to pieces in such a predicament.
In the contracts for the Admiralty of chain cahles for the British Navy, it is stipulated that "the iron shall have been manufactured in the hest manner from pig iron smilted from ironstone only, and selected of the hest quality for the purposc, aud shall not have received in any process whatever, suhsequent to the smelting, the admixture of either cinders or oxides produced in the manufacture of iron, and shall also have been puddled in the best manner upon iron bottoms, and at least three times sufficieutly drawn ont at three distiuct weldiug heats, aud at least twice properly fagotted."
The following is a Table of the hreaking proof of chain cables, and of the iron for the purpose of making them, and the proofs required by Her Majesty's Navy for

Size of Bolt.	Proof of Bolt.	Proof of Chain.	Navy Proof of Chain.
Inches.	Tons. cwts.	Tons. cwts.	Tons.
$\frac{\frac{1}{3}}{\frac{2}{3}}$	$\begin{array}{ll}5 & 7 \\ 8 & 7\end{array}$	8 ${ }^{13} 11$	Tons. 4 $4 \frac{1}{2}$
${ }^{\frac{3}{3}}$	$\begin{array}{rr}8 & 7 \\ 12 & 1\end{array}$	134	$\begin{aligned} & 4_{2}^{2} \\ & 5_{2}^{1} \end{aligned}$
$\frac{8}{8}$	$16 \quad 4$	$\begin{array}{ll}19 & 5 \\ 26 & 5\end{array}$	$10{ }^{\frac{2}{2}}$
1	218	26 34 34	$13{ }_{4}^{3}$
$1 \frac{1}{8}$	$27 \quad 2$	$\begin{array}{ll}48 & 15\end{array}$	18
$1 \frac{1}{3}$	3310	5311	22 28
13	$40 \quad 10$	650	${ }_{34}{ }^{2}$
$1 \frac{1}{1}$	$48 \quad 4$	$77 \quad 0$	${ }_{40}{ }^{1}$
${ }^{18}$	5611	$90 \quad 10$	$45 \frac{1}{2}$
$1{ }^{13}$	$65 \quad 12$	1050	$55 \frac{1}{8}$
${ }_{2}^{17}$	7.5 8.5 8.5	$120 \quad 10$	$63 \frac{1}{4}$
$2{ }_{21}^{81}$	$\begin{array}{ll} 85 & 14 \\ 96 & 15 \end{array}$	$\begin{array}{ll}137 \\ 155 & 0 \\ & 0\end{array}$	72
		1550	$81 \frac{1}{4}$

In these iron cahles, the matter in the link is thrown very much into one plane; the link being of an oval form, and provided with a stay. As there are emergencies in which the cahle must be severed, this is accomplished in those of iron by means of a holt and sherkle (shackle), whieh is inserted in the Royal Navy cables at the end of every $12 \frac{1}{2}$ fathoms, and at the end of every 15 fathoms in the merchant service; so that by striking out this bolt or pin, this cable is parted with more ease thau a hempen one can be cut. And the iron eable can be reconnected when the ship is clear, while with the hempen cahle it would be neeessary to cut it with an axe, and thus pernanently injure the cable. Mr. Lenox's plan for securing these bolts is now made part of the Government contracts.
We lave avoided all relating to the general history and applieation of ehain eables,
Yol Yol. I.
but in eonnection with the following partieulars, obtained from Brown, Lenox, and Co.'s ehain works at Milhwall, we must aduit the impormut part performed by this house in the improvement of this mannfature. 'The following remarks refer to ehain eables for the loyal Navy, messenger and mooring ehains for the Trinity Corporation, and ship eables for merehant serviee, showing the praetiee in 1858.

After seleeting the best iron, eutting it off iuto required lengths, and leating it as before deseribed, the links for ehain eables may be bended at the rate of about 60 per minute, by machinery at Lenox's works in Wales, worked by water power,-the welding of the links in all eases being effeeted by hand labour.

In the praetiee with the new bending muchine at Newbridge Works, Pont-y-Prid Glamorganshire, it as follows:- When the iron is eut to the requisite length for links, - from 20 to 60 pieees, aeeording to size, are put into the furnaee, and when heated, are plaeed separately on the bending mandrel G (fiy. 341) the maehine is set in motion, and one revolution forms a link, whieh is pinehed off the mandrel by a small erowbar, and another pieee of iron applied, and so on, until from 40 to 60 links are formed in a minute.

The bending machine is conneeted with a water-wheel, or other power, by an ordinary eoupling eluteh, or box, whieh a lever throws into and out of gear at pleasure.
'There is a stub or knob of iron on the mandrel under whieh the point of the pieee of iron to be bent is fixed; the mandrel being oval, or of the inside shape of the link, when turned, is followed by the roller above, and this, pressing upon the pieee of iron, forms it to the shape of the mandrel.

A B C (fig. 341) are standards, D conneeting rod, E erank for lifting, F F the roller for 341

pressing sides of links, a mandrel, н mandrel spindle, I wheel for mandrel spindle, J pinion on main spindle, π erank spindle.

The form of the link, after being bended into shape (fig. 341) is shown with the two slant-cut surfaces of the ends to be welded together and hammered into form.
For short lengths of ehain the bending may be effected by hand; in this ease the proeess is simple:- A sufficient length of the best iron is cut off, and, while hot, is partially bent by the workman over an iron ring, one end of the bar resting on the ground ; the bend is finished upon the anvil; one entire end of the link is thus formed. The two slanting eut ends are made to approaeh eaeh other ; heated up to a high temperature, the expert workman, by a peeuliar blow, detaehes the seale of oxide, and instantly presses both surfaees together; two men then by repeated-blows effeet the welding junetion, and thus the link is formed.
The shape of the link, after due consideration of the advantages of partieular patterns, seems to resolve itself into the deeided preferenee for a link of parallel sides, unehanged in form from the round of the iron employed, while the ends may be redneed, somewhat flattened, and inereased in lreadth. The limks thus in eontact
lave the pressure sustained by a greater breadth of surface, and compression can scareely alter the form.

The length of a good link may be of round iron 6 diameters in length of link. (See fig. 343.) $\mathrm{A} a$ and from B to 63.7 to 4 diametcrs of the iron rod employed, and $1 \cdot 7$ to 2 dianeters inside.

The stud, staple, or cross bit is of cast iron, and is placed across; its use is to prevent the sides fiom collapsing by extension of the chain; in fact, to keep up a succession of joints, and prevent the chain from becoming a rigid bar of metal.

The stud or cross-piece shown at c is of cast iron, with dates and marks upon the surface. It is cast with a hollow bearing, having a cnrve to receive the round iron of the link; its shoulders, or feathering, enables thic workman to insert it readily, aud a few blows upon the yielding iron give the requisite grip, and all proper service only tends more firmly to keep it in position, very different indecd to the form fig. 333, which would positively injure the link.

In all cases this cross-piece has been of cast iron. Wrought iron was tried, but found to be tno expensivc. Malleable iron has been patented, bnt it is a question whether it can supersede common foundry iron, from the cheapness and facility of the latter.
The cables are proved and testerl by regnlated strains bronght to bear continuously 11 p to the proof strain, and then even up to the nltimate destruction of some of the links, if the final strength or opposition to resistance is reqnired to be known. The proof of cable should be 600 lbs . for each circle of iron $\frac{1}{8}$ th of an inch in diametcr.
The chain is attached at one cud horizontally to a liydraulic press, the other end to the enormons head of a bent iron lever, whose power is multiplied by second and third iron levers, all working npon knife edges, and to the last lever a scalc-pan is attached; 1 lb . being here placed is equivalent to a strain of 2240 lbs . upon the bar or chain that is being tested. This machine of Brown, Lemox, and Co., Millwall, is more powerful than that used in the Royal dockyard. The proving machine, invented by Captain Brown in 1813, was a great step towards the production of confidence.

In practice length after length is tried np to the proof required; when the tension is to be exerted to the ntmost, a few links are taken : in snch cxpcriments it is usual for onc link alone to give way, and the strength of the cable itself is uninjured by testing to find its ultimate strength.
Perfection of practice is found when the link and the stay yield together; in the largest chain cables cver produced, such were the due proportions and symmetry of form affording cquality of resistance, that the cross-piece split or broke at the time the link fractured and opened.
To measure these chains, or be near them when under such tension, is not without danger: The cable, on being strnck, rings out with strange shirill sonnd, a link may suddenly snap, the chain lashes about, and the fragments fly to a great distance, penetrating the factory roof at times, and, at the moment of fracture, the link becomes very hot.

The cables are nsually told off into lengths. The Government length is $12 \frac{1}{2}$ fathoms; for the merchant service the length is 15 fathoms; as explained, thesc lengths are nnited by shackles. In the merchant scrvice cables, larger links are Navy cablcs, cach extremity for the anchor shackle to pass through; but in the Royal Navy cablcs, cach length is alike provided with large links; thus, then, at any time, any end of any length may be placed to the anchor stock. Sce figs. $3+2,343$.

To obviate evils from the twisting of the chain cable, swivels are inserted: in the Goremment eables, a swivel is inscrted in the middle of every other length; for the
merchaut serviee there does not appear to be any precise rule. Sometimes one, two, or more swivels may be in 100 fathoms; and in elieap clains, bought aud judged by weight and figures, no swivel whatever exists in the cable.

The cffect of such twisting, or torsion, is to form a kink, and give powerful lateral pressure npon the link; the stud or eross-piece is forced out, and the link itself may yield at the moment at any flaw or imperfcetion of welding.

The mooring swivel is that by which a ship can ride with two anehors down at the same time, and two bridles on board the ship. The mooring swivel, being equal in strength to the two cables, is over the bow, and enables the ship to swivel round her anchors without fouling lawse; in any direction the ship ean swing round this swivel or point, leaving her anchors undisturbed, whereas by two cables out, without this, she would require great care to prevent them from fouling, and even being lost. This is an essential advantage of chain over hemp.
The splicing shackle is to unite or splice a hempen eable to be used on beard ship, attacbed to the chain cable, which lies on the ground or bottom, so that tbe vessel rides lightly at her anchor, while tbe iron chain cable preserves the hempen cable from being destroyed by the rocky bottom, and tbe ship has the light bemp eable rendered buoyant by the water, which lifts portions of the cbain cable by tbe motions of the vessel; and thus, the sbip is relieved from weight and the anchor from jerks.
Tbe splicing shackle, on the Hon. George Elliott's plan, is shown above (fig. 343). The rope is served round an iron thimble A, on tbe shackle B, with end links, and enlarged links without stay-pins CD, leading to the anchor, while the hempen cable a gnes to the ship.

In the Royal Nary 4 cables are employed to moor the ships, two being end to end.
When ships lay long on certain shores, the pin or fastening often gets loose by the constant tapping and vibrations of the chain cable on tbe rocky or shingly bottom. Men-of-war at some stations suffered scverely in this way, and the commander at Malta had reason to represent it as a very serious matter. Mr. Lenox's plan for seeuring the bolts and pins is now made a point of contract to be adopted in all fastenings for the Royal Navy.
Simple as it would seem to devise a plan, yet it was years before all the difficulties
could be surmounted. Tbis arrangement may be understood by reference to the figure

344

 of a shackle with links, (fig. 344): at E is secn the aperture at riglit angles to the bolt F , (of oval iron) througb this cliannel, cut through the sbackle and the bolt, a tapering but not quite cylindrical steel pin, fits exactly; but docs not quite pro. ceed through the iron; it is shown at $g g$. Various plans used to be resorted in before this final preference; for the steel pins, of whatever form, got loose by repeated tapping on the rocky bottom, or the links upon eacb otber. Mr. Leuox succeeded in cutting the cavity at E of the form of a hollow cone, and to complete the fastening, a pellct or cylinder of lead that will just allow insertion at E is driven, and then by repcated blows the lead is made to fill up tbe cavity, the superfluous quantity of lead being cut off by tbe hammer at E. To release the bolt it is only necessary to find the small space at the small end of the steel pin, to insert a punch, and then, with a few blows, the steel pin $g g$ is driven out of its conical bearing, and its flat top and cutting edges enable it to emerge again at E . Being forced out, the bolt F is taken out, aud the chain severcd if required; the aperture at E can be cleared of its lead by a proper eutting-out tool, and the steel pin replaced to make all fast.
This operation ean be effected on the darkest night; the sailor can sever the ehain cable, and thus whin oue vessel is driving down mon auother, more chain may be attached or the eable severcd, and no harin done; while with hempen cable it night be found more than difficult, and even impossible, to cut them in time.

All the principles involved, and perfection of practice, in making ehains and chain cables, have recently been deeply considered and fully verified by the firm of Brown, Lenox, and Co., Millwall, who, for the purpose of obtaining comparative results up to the greatest links required for the "Leviathan," selected iron of the same identical quality and worked it into rods, links, and chains. The progression of resistance to increased strains, by increase of mass of iron, with all the influences of variation of make, flaws in the material, and other cireumstanees inseparable from practice, were thus matters of critical experiment.

Conmencing with $\frac{1}{2}$ inch chain, and trying 4 links of small chains up to 2 ? ths, being
the largest diameter of round iron for the greatest eable links ever hitherto made, being those for the shect anchor of the "Leviathan," taking the breaking strains, and reducing all the links to the proportion borne upon a eirele $\frac{1}{8}$ th of an inel in diameter, the minimum breaking foree was $\boldsymbol{7} 96.25 \mathrm{lbs}$, and the maximum 1052.8 lbs .
Sometimes the fraeture was found to be dependent upon flaws, sometimes from over heating, or unequal heating, and other praetical eauses; but the whole series of experiments was important and interesting.
The iron lengthens to the intense strains employed, long before fraeture. The comparison of aetual extension, while under enormons foree at ordinary temperatures, was ascertained by the following inpressive experiments :-
The "Leviathan " seeond size eable of 25 ths diameter of iron employed in the links. Three links measured $35 \frac{1}{4}$ inehes by strain of 10 tons (of eourse it requires power to extend them fairly).

A few links of the best bower anehor eable of the "Leviathan "taken, proved, and destroyed.

Three links measured at 15 tons 39 inehes.

Table showing the Principal Dimensions of the Common Links, Weights, and Scale of Proof for Chain Cables to be supplied to Her Majesty's Navy.

As the merehant marine may frequently be called upon for public service，it may be uscful to know the particulars，which are prohnulgated from Lloyd＇s．A chain cable seldom breaks with the duty assigned，if proportioned to the tonnage，if the iron be sound and the workmanship good．

Weights of Ordinary Anchors，Sizes and Lengths of Chain Cubles，and Sizes and Lengths of Hawsers and Warps，to be recommended whon the Surveyors are applied to by Ship Builders and Ship Owners．

	Anchors．								Сha＇ns．		Hawsels and Warps．			
	Number．			Weight．										
		$\begin{aligned} & \dot{5} \\ & \stackrel{y}{む} \\ & \stackrel{y}{幺 幺} \end{aligned}$							華				立	立
Tons．				Cwts．	Cwts．	Cwts	Cwts．	Cwts．	Inch．	Fathms．	Inch．	Inch．	tuch．	
50	2	1	1	3	4	$1 \frac{1}{2}$	－	－	$\frac{11}{16}$	120	5		－	
75	2	1	1	，	5	$1{ }^{3}$	－	－	$\frac{18}{10}$	120	5	3	－	\cdots
100	2	1	1	5	7	$2 \frac{1}{2}$	$1 \frac{1}{4}$	－	$\frac{14}{16}$	150	$5 \frac{1}{2}$	3	－	己
150	2	1	1		10	$3 \frac{1}{2}$	$1 \frac{3}{4}$	－	1	180	6		－	$\stackrel{\sim}{0}$
200	3	． 1	1	10	12	$4 \frac{1}{4}$	21	－	1	180	$6 \frac{1}{2}$	4	－	\％
250	3	1	2	13	15	5	$2 \frac{1}{2}$	－	$1 \frac{1}{8}$	200	7	5	－	牙
300	3	1	2	15	17	6	3	－	$1 \frac{1}{4}$	200	$7 \frac{1}{2}$	$5 \frac{1}{2}$	－	¢
350	3	1	2	17	20	$6 \frac{1}{2}$	31	－	$1{ }^{\frac{3}{6}}$	240	$7 \frac{1}{2}$	$5 \frac{1}{2}$	－	8
400	3	1	$\stackrel{2}{2}$	19	22	$7 \frac{1}{2}$	$3{ }^{3}$	－	${ }^{13}$	240	8	6	－	$\%$
500	3	1	2	23	26	9	${ }_{5}{ }^{\frac{1}{2}}$	$\bar{\square}$	${ }^{1} 1$	270	9	7	－	\bigcirc
600	3	1	2	26	30	10	5	$2!$	$1{ }^{\frac{5}{6}}$	270	$9 \frac{1}{2}$	7	4	
700	3	1	2	29	34	11	$5 \frac{1}{2}$	$2 \frac{3}{7}$	$1{ }^{\frac{5}{8}}$	300	10^{-}	8	5	気
800	3	1	2	31	36	12	6	3	$1{ }^{\frac{3}{4}}$	300	10	8	5	\％
900	3	1	2	33	39	12	$6 \frac{1}{2}$	$3{ }^{\frac{1}{4}}$	$1{ }^{3}$	300	10	－	$5 \frac{1}{2}$	항
1000	3	－	2	35	41	12	－6 ${ }^{\frac{3}{4}}$	$3 \frac{1}{7}$	$1{ }^{17}$	300	10	9	$5 \frac{1}{2}$	\cdots
1100	3	1	2	37	44	12	7	$3 \frac{1}{2}$	17	300	10	$9 \frac{1}{2}$	6	的
1200	3	1	2	39	46	12	$7 \frac{1}{2}$	$3 \sqrt{3}$	$1{ }^{\frac{7}{6}}$	300	10	$9 \frac{1}{2}$	6	$\stackrel{\square}{-}$
1400	3	1	2	41	48	12	$7{ }^{\text {星 }}$	4	2	300	10	10	6	
1600	3		2	43	50	14	$8 \frac{1}{4}$	4	$\stackrel{2}{2}$	300	11	$10^{\frac{1}{2}}$	$6 \frac{1}{2}$	E
1800	3	1	2	45	52	14	$8 \frac{1}{2}$	$4 \frac{1}{4}$	$2 \frac{1}{6}$	300	11	11	7	
2000	4	1	2	47	54	14	－	$4 \frac{1}{2}$	$2 \frac{1}{8}$	300	11	11	7	

See Messenger，Shackle，and Coir．
CACAO．The Theobroma Caeao（or Food of the Gods，as Linnæus named the tree） is a native of the West Indies and of continental America．Its seeds（nuclei Cucao）， when torrefied，and with various additions（sugar，and usually either cinnamon or vanilla）made into a paste，constitutes Chocolate（chocolutu），which furnishes a very nourishing beverage，devoid of the injurious properties ascribed to both tea and coffee； but which，on account of the contained oil，is apt to disagree with dyspeptics．Cocos is another preparation of these seeds．It is said to be made from the fragınents of the seed－coats，mixed with portions of the kernels．－Pereira．Sec Chocolate，Cocoa， Oils．

CADMIUM is a metal discovered by Stromeyer about the beginning of the year 1818．It derives the name Cadmium from Cadmia fossilis－a denomination by which the common ores of zine were formerly distinguished．It necurs chicfly in Silesia in several ores of zinc，and may be readily recognised by means of the blowpipe；for，at the first impression of the reducing or smoky part of the flame，the ores containing cadmium stain the charcoal all round them with a reddish－yellow circle of oxide of cadmium．The Silesian native oxide of zinc contains from $1 \frac{1}{2}$ to 11 per cent．of cadmium．

The cadnium may be extracted by dissolving the ore in sulphuric acid，leaving the solution acidulous，and diluting it with water，then transmitting through it a stream of sulphuretted hydrogen，till the ycllow precipitate ceases to fall．This pow－ der，which is sulphuret of cadmium，is to be dissolved in concentrated muriatic acid， the excess of which is to be expelled by evaporation ；and the muriatic salt being dissolved in water，carbonate of amnonia is to be added in excess，whereby the eadmium separates as a carbonate，while the small portion of adhering copper or zine

[^38]is retained in solution by the ammouia. Herapath has shown that, in distilling zine per descensum (see ZINc), the first purtions of gaseous metal whieh are disengaged burn with a brown flame and deposit the brown oxide of cadmium.

Caduium has the colour and lustre of tin , and is susceptible of a fine polish. Its fracture is fibrous; it crystallises readily in regular octahedrons; and when it suddenly solidifics, its surface gets covered with fine mossy vegetations. It is soft, easily bent, filed, and cut, soils like lead any surface rubbed with it. It is harder and more tenacious than tin, and emits a creaking sound when bent, like that metal. It is very ductile, and may be drawn out into fine wire, and hammered into thin leaves, without cracking at the edges. Its specific gravity, after being merely melted, is $8 \cdot 604$; and 8.6944 after it has been hammered. It is very fusible, melting at a heat much under redness; indeed, at a temperature little excceding that of boiling mercury, it boils and distils over in drops. Its vapours have no smell. It is but slightly altered by exposure to air. When heated in the atmosphere, it readily takes fire, and burns with a brownish-yellow smoke, which is destitute of smell. In strong acids it dissolves with disengagement of hydrogen, and forms colourless solutions. Chromate of potash causes no precipitate in them, unless zinc or lead be present.

There is only one oxide of cadmium, CdO , the hrown above mentioned. Its specific gravity is 8.183 . It is neither fusible nor volatile at a very high temperature. When in the state of a hydrate, it is white. The oxide of cadmiuns consists of 87.45 parts of metal, and 12.55 oxygen, in 100 parts. Berzelius states its atomic weight to be 55.833 (55.74 is the equivalent now usually adopted) to hydrogen $1 \cdot 000$. Its sulphide (sulphuret) has a fine orauge-yellow colour, and would form a beautiful pigment, could the metal be found in sufficient quantity for the purposes of art. A crystalline sulphide is obtained by fusing 1 part of the precipitated sulphide with 5 parts of carbonate of potaslı and 5 parts of sulphur, or by passing dry hydrosulphuric acid gas over strougly-heated chloride of cadmium. The chloride, iodide, bromide, and sulphate of cadmium have been prepared and examined; but, with the exception of the use of the iodide and bromide in photography, none of these salts are of any importance in the arts. There are several definite alloys of cadmium, but tbey have no commercial or inanufacturing intercst. The sulphate is applied to the eyes, by surgeons, for removing specks on the cornea.

CAFFEINE. ($\mathrm{C}^{8} \mathrm{H}^{5} \mathrm{~N}^{2} \mathrm{O}^{2}$.) A weak alkaloid discovered in eoffee, remarkable for containing azote. It is white, erystallisable in silky needles, fusible, volatile, and soluble in water, alcohol, and ether. It is identical with Theine and with Guaranin.
According to Robiquet, the proportion of caffeine in 1000 of coffee is as follows:-
Martinique $6 \cdot 4$, Alexandrian $4 \cdot 4$, Java $4 \cdot 4$, Mocha 4 , Cajennée $3 \cdot 8$, St. Domingo $3 \cdot 2$. It is probable that 0.64 per cent. is an ordinary proportion. Aceording to Liebig, the proportions are per lb. - Martinique 34 gr., Alexandrian 22, Java 22 , Moeha 20, Cayenne 19, St. Domingo 16. H. J. Versman of Lubeck mixes 10 lbs . of bruised raw coffee with 2 of eaustic lime, made previously into hydrate; treats the mixture in a displacement apparatus with alcohol of 80°, till the fluid whieh passes through, no longer furnishes evidence of the presence of caffeine. The eoffee is then roughly ground and brought nearly to the state of a powder, and the refuse of the once digested mixture from the displacement apparatus, dried and ground again, and mixed with hydrate of lime, is once more macerated. The grinding is more easily effected after the coffee bas been subjected to the operation of alcohol, having lost its horuy quality, and the caffeine is thus more certainly extraeted. The clear alcoholic liquid thus obtained is then to be distilled, and the refuse in the retort to be washed with warm water to separate the oil. The fluid is now evaporated into a crystalline mass, filtered, and expressed. The impure caffeine is freed from oil by pressure between folds of hlotting-paper, purified by solution in water with animal charcoal, and is thus obtained in shining white silky crystals. See Theine.
CAIRNGORUM, or CAIRNGORM, is the name generally applied to the more pellucid and paler coloured varicties of smoky quartz, with a tint resembling that of sherry or amber. It is so called from the district Cairngorum, or the "Blue Mountain," in the south-west of Banff, where these crystals are frequently found. When of a good colour, this crystal is made into ornaments, and used for jewellery; indeed, so great a favourite is the Cairngorum with the people of Scotland, that brooches, pins, bracelets, and a variety of ornaments, are made with this stone, for use by all

CAJUPU'T OIL, is obtained from the leaves of the tree called Melaleuca minor which grows upon the mountains of Amboyna, and in other of the Molueea islands. It is procured by distillation of the dried leaves with water, is prepared in great quantities in the island of Banda, and sent to Holland in copper flasks: henee, as it eomes to us, it has a green colour:-Ure. M. Guibort appears to have deteeted eopper in several samples of cajuput oil. Pereira says, "All the samples of the oil
which I have examined, though green, were quite devoid of copper ;" and Mr. Brande observes, that none of the samples which he haswexamined lave contained even a trace of copper. It is very limpid, lighter than water, of a strong smell resembling camphor, and pungent taste like cardanoms. In 18:31, oil of cajnput was greatly extolled as a remety for cholera; and to meet the sudden and large demand, various adulterations and imitations were introduced. One of these cousisted of oil of rosemary, flavoured with cardanoms, and oil of cardamoms, and coloured. According to Blanchet, the composition of oil of cajuput ($\mathrm{C}^{10} \mathrm{H}^{\nu} \mathrm{O}$) is carbon $77 \cdot 92$, hydrogen $11 \cdot 69$, oxygen 10:39. It is used iu medicine as a stimulant. See Oifs, Ethereous.
CALAMANCO. A sort of woollen stuff of a slining appearance, chequered in the warp, so that the checks are secn only upon one side.

CALAMANDER. A wood, the produce of Ceylon. Sce Coromandel.
CALAMINE. A native carbonate of zinc. (See Zinc.) The term Culamine, or Lupis calaminuris, has been applied to this ore of zine since the days of the Arabian alchemysts. It is so used now hy Brook and Miller, by Greg and Lettsom, and others; yet we find Dana defining calamine to be the liydrous silicate of zinc,- another example of the sad want of system, and indced of agreement, among mineralogists.

CALCAREOUS EARTH (Tcrre calcaire, Fr.; Kalkcrle, Germ.) commonly denotes lime, in any form ; but, properly speaking, it is purc lime. This term is frequently applied to marl, and to earths containing a considerahle quantity of lime.

CALCAREOUS SPAR. Crystalised native carhonate of lime, of which there are many varieties.

Carbonic acid 44°, lime 56.0 , may he regarded as the usual composition of calc spar ; it often eontains impurities upon which depend the colours assumed by the crystal. The carbonates of lime are extensively distributed in nature, as marbles, chalk, and crystalline minerals. See Iceland Spar, Marble, \&c.

CALCAREOUS TUFA. This term is applied to varicties of carbonate of lime, formed hy the cvaporation of water containing that mincral in solution.
It is formed in fissures and caves in limestone rocks, about the borders of lakes, and near springs, the waters of which are impregnated with lime. In the latter cases it is frequently deposited upon shells, moss and other plants, which it covers with a calcareous crust, producing frequently a perfect representation in stone of the substance so enveloped.-H. W. B.
CALCEDONY. See Chalcrdony.
CALCIIANTUM. The ancient aame of the native sulphate of iron.
CALCINATION (from Calcine). The operation of expelling from a substance, by heat, either water, or volatile matter combined with it. Thus, the process of burning lime, to expel the carbonic acid, is one of calcination. The result of exposing the carbonate of magnesia to hcat, and the removal of its carbonic acid, is the production of calcined mugnesia. 'This term was, by the earlier chemists, applied only when the substance exposed to lieat was redueed to a calx, or to a friable powder, this being frequently the oxide of a metal. It is now, however, used when any hody is subjected even to a process of roasting.

CALCIUM. (Equivalent 20) The metal contained in the oxide well known as lime. It was first obtained by Davy, in 1808, by the electrolysis of the lydrate, carbonate, chloride, or nitrate of lime. Matthiessen obtains it by heating, in a porcelain crucible, a mixture of two equivalents of chloride of calcium, with one equivalent of chloride of strontium, and muriate of ammonia, until the latter is volatilised. The current from six cells of Bunsen's battery is then sent through the mixture by a charcoal pole of as large size as possible, and a piece of irou piano-forte wire (No. 6), not more than two lines in length, which is united with the negative pole of the battery by means of a stronger wire reaching close to the surface. A small crust is to be formed round the wire at the surface. To collect the small globules deposited on the wire, the latter must be taken out every two or threc minutes, together with the crust. The globulcs are crushed in a mortar, and the flattened granules are then picked out. Calcium is a brilliant pale yellow metal, malleable and ductilc. See Lime.-C. G. W.

CALC-SINTER. The incrustations of carbonate of lime upon the ground, or the pendulous conical pieces called stalactites, attached to the roofs of eaverns, are so called.

CALCULUS. The stony-looking morbid concretiou occasionally formed in the bladders and other parts of living animals.

Its examination belongs to medical chenistry.
CALENDER (Calandre Fr.; Kalander, Germ.), a word derived from the Greek hatindros (cylinder), is the name of a machine consisting of two or more cylinders revolving so nearly in contact with each other, that cloth passed throngh between them is smoothed, and ceven glazed, by their powerful pressure. It is employed either to finish goods for the market, or to prepare cotton and linen wehs for the calico
priuter, by rendering their surfaces level, compact and uniform. This condensation and polish, or sutinage as the French call it, differ in degrec according to the object in view, and may be arranged in three different series : 1. For goods which are to receive the first impression by the block, a very strong pressure is required, for upon the uniformity of the polish the neatuess and the regularity of the printing and the correspondence of its members depend. 2. The pieces already dyed up at the madder bath, or otherwise, and which remain to be filled in with other colours, or grounded in, as it is technically called, must receive a much less considerable gloss. 3. The degree of glazing given to finished goods depends upon the taste of purchasers, and the nature of the article ; but it is, in general, much less than for the first course of block printing.
The calico printers of Alsace employ an improved form of calender, to that usually employed in this country, which is the contrivance of M. Charles Dollfus. It is described as possessing the following advantages: 1. It passes two pieces at once, and thus does double the work of any ordinary machine. 2. It supersedes the necessity of having a workman to fold up the goods, as they cmerge from the calender, with the aid of a self-acting folder. 3. It receives, at pleasure, the finished pieces upon a roller, instead of layiug them in folds; and, by a very simple arrangement, it hinders the hands of the workman from being caught by the rollers.

The most remarkable feature of M. Dollfus's machine is its being managed by a single workmau. Six or eight pieces are coiled upon the feed roller, and they are neither pasted nor stitched together, but the ends are merely overlapped half a yard or so. The workman is careful not to cnter the second piece till one third or one half of the first one has passed through on the other side, to prevent his being engrossed with two ends at a time. He must, no doubt, go sometimes to the one side and sometimes to the other of the machine to see that no folds or creases occur, and to be ready for supplying a fresh piece as the preceding onc has gone through. The mechanism of the folder in the Alsace machine is truly ingenious: it performs extremely well, and saves the attendance of an extra workman. The lapping-roller works by friction, and does its duty fully better than similar machines guided by the hand.
The numerous accidents which have happened to the hands of workmen engaged in calenders should direct the attention towards an effective contrivance for preventing such misfortunes. These various improvements in the Alsace machine may be easily adapted to the ordinary calenders of almost every construction.
The folder is a kind of cage in the shape of an iuverted pyramid, shut on the four sides, and open at top and bottom: the top orifice is about five inches, the bottom one an inch and a half : the front and the back, which are about four feet broad, are made of tin plate or smooth pasteboard, and the two sides are made of strong sheet-iron, the whole being bolted together by small bars of iron. Upon the sheet-iron of the sides, iron uprights are fixed, perforated with holes, through which the whole cage is supported frecly by means of studs that cnter into them. One of the uprights is longer than the other, and bears a slot with a small knob, which, by means of the iron piece, joins the guide to the crank of the cylinder, and thereby comunicates to the cage a seesaw movement: at the bottom extremity of the great upright there is a piece of iron in the shape of an anchor, which may be raised, or lowered, or made fast by screws.

At the cnds of this anchor are friction rollers, which may be drawn out or pushed back and fixed by screws: these rollers lift alternately two lcvers made of wood, and fixed to a wooden shaft.

The paws are also made of wood : they serve to lay down alternately the plies of the cloth which passes upon the cage, and is folded zigzag upon the floor, or upon a board set below the cage; a motion imparted by the seesaw motion of the cage itself.

To protect the fingers of the workmen, above the small plate of the spreading-board or bar, there is another bar, which forms with the former an angle of about 75° : they come sufficiently near together for the opening at the summit of the angle to allow the cloth to pass through, but not the fingers. Sce Bulletin de la Société Industrielle de Mrulhausen, No. 18.

It is not thought necessary to give a drawing of the calender usually employed in this country; a few remarks may not, however, be out of place. The iron rollcrs are inade hollow for the purpose of admitting either a hot roller of iron, to be made of wood, but it was liable to many defects. Ther cylinders used formerly roller consists in its being devoid of any tendency to split, crack, or warp, especiner when exposed to a considerable heat from the contact and crack, or warp, especially rollers. The paper, moreover, takes a vastly fincr polish, pressure of the hot iron
nature, presses into every pore of the cloth, and smooths its surface more effectually than any wooden cylinder, however truly turned, eould possibly do.

The paper cylinder is constructed as follows:-The axis of the cylinder is a strong square bar of the best wrought iron, cut to the proper length. Upon this bar a strong round plate of cast iron is first put, somewhat less in diameter than the cylinder when finished, a quantity of thick stout pasteboard is then procured, and cut into round pieces an iuch larger in diameter than the iron plate. In the centre of the plates, and of every piece of the pasteboard, a square hole must be cut to reccive the axis; and, the circle being divided into six equal parts, a hole must also be cut at each of the divisions, an inch or two within the rim. These pieces of pasteboard being successively put upon the axis, a long bolt of malleable iron, with a head at one end, and screwed at the other, is also introduced through each of the holes near the rim; and this is continued until a sufficient number of pasteboards are thus placed to form a cylinder of the length required, proper allowance being made for the compression which the pasteboard is afterwards to undergo. Another round plate is then applied, and, nuts being put upon the screws, the whole are screwed tight, and a cylinder formed. . This cylinder is now to be placed in a stove, exposed to a strong heat, and must be kept there for at least several days; and, as the pasteboard sbrinks by exposure to the heat, the screws nust be frequently tighteucd until the whole mass has beeu compressed as much as possible. When the cylinder is thus brought to a suffieient degree of density, it is removed from the stove; and, when allowed to cool, the pasteboard forms a substance almost inconceivably dense and hard. Nothing now remains but to turn the cylinder; and this is an operation of no slight labour and patience. The motion in turning must be slow, not excecding about forty revolutions in a minute; the substance being now so hard and tough that tools of a very small size must be used to cut, or rather scrape it, until it is true. Three men are generally employed for the turning, even when the motion of the cylinder is effected by mechanical power, two being necessary to sharpen tools, as quickly as he blunts them, for the third who turns.

Let us suppose it to be a five-rollered machine: when a person stands in front of the calender, the cloth coming from behind above the uppermost cylinder 1 , passes between 1 and 2: proceeding behind 2, it again comes to the front between 2 and 3 : between 3 and 4 it is once more carried behind, and, lastly, brought in front between 4 and 5 , where it is received, and smoothly folded on a clean board, or in a box, by a person placed there for the purpose. In folding the cloth at this time, care must be taken that it may be loosely done, so that no mark may appear until it be again folded in the precise length and form into which the piece is to he made up. The folding may be donc either by two persons or by one, with the aid of two sharp polished spikes placed at a proper distance, to ascertain the length of the fold, and to make the wholc equal. When folded into lengths, it is again folded across upon a smooth clean table, according to the shape intended, which varies with the different kinds of goods, or the particular market for which the goods are designed.

When the pieces have received the proper fold, the last operation previous to packing them is the pressing. This is commonly performed by placing a certain number of pieces, divided by thin smooth boards of wood, in a common screw press, similar to those used by printers for taking out the impression left by the types in the printingpress. Besides the wooden boards, a piece of glazed pasteboard is placed above and below every piece of cloth, that the outer folds may be as smooth and glossy as possible. The operation of the common screw press being found tedions and laborious, the hydraulic press is now had recourse to in all well mounted establishments. See Hydradlic Press.
For lawns and muslins of a light texture, the operation of smoothing requires a different process iu some respects than close heavy fabrics. They only require to be slightly smoothed to remore any marks which they may have received at the bleaching; and, as their beanty depends rather on their transparency thau their closeness, the more the cylindrical form of the yarn is preserved the better. They are therefore put through a small machine, consisting of three rollers or cyliuders: and, as the power required to move this is small, the person who attends it geuerally drives it by a small wiuch; or the same effect may be produced by passing the muslins between only two or three rollers of the above calender, lightly loaded.

In the thick fubries of cloth, including those kinds which are used for many parts of household furniture, as also those for female dress, the operation of glazing is used both to add to the original beauty of the cloth, and to render it more impervious to dust or smoke. The glazing operation is performed entirely by the friction of any smooth substance upon the cloth; and to render the gloss brighter, a small quantity of bleached wax is previously rubbed over the surface. The operation of glazing by the common plan is very laborions, but the apparatus is of the most simple kind. A
table is mounted with a thick stout cover of level and well-smoothed wood, forming au inclined plane; that side where the operator stands at work heing the lowest. The table is generally placed near a wall, hoth for convenience in suspending the glazing apparatus, and for the sake of light. A long piece of wood is suspended in a groove formed between two longitudinal beams, placed parallel to the wall, and fixed to it. The groove resembles exactly the aperture between the shears of a common turning latlie. The lever, of which the groove may be supposed to he the centre or fulcrum, is faced at the bottom with a semi-cylindrical piece of finely polished flint, which gives the friction to the cloth stretched upon the tahle below. Ahove the flint are two cross handles, of which the operator lays hold, and moves them hackward and forward with his hands, keeping the flint pressing slightly upon the cloth. When he has glazed a portion equal to the breadth of the flint, he moves his lever hetween the shears sidewise, and glazes a fresh part : thus he proceeds from one side or selvage of the cloth to the other; and when all which is upon the table is sufficiently glazed, he draws it over, and exposes a new portion to the same operation. To preserve the cloth at a proper tension, it may he wound smoothly upou a roller or heam, which heing set so as to revolve upon its own axis belind the table, another roller to receive the cloth may be placed hefore, both heing secured by a catch, acting in a ratchet wheel. Of late years, however, a great part of the labour employed in glazing clnth has heen saved, as the common four or five bowl calender has been altered to fit this purpose hy direct pressure.

As a matter of accommodation, the different processes of packing, cording of hoxes, sheeting of trunks, and, in general, all the arrangements preparatory to shipment, and also the intimations, and surveys necessary for ohtaining drawhacks, dehentures, or bounties, according to the excise laws, are generally conducted at the calender houses where goods are finished.
CALICO-PRINTING is the art of producing a pattern on cotton cloth, by printing in colours, or mordants, which become colours, when subsequently dyed. Calico derives its name from Calicut, a town in India, formerly celebrated for its manufactures of cotton cloth, and where calico was also extensively printed. Other fabrics than cotton are now printed hy similar means, viz. linen, silk, wool, and mixtures of wool and cotton. Lineu was formerly the principal fahric printed, hut since modern improvements have produced cotton cloth at a comparatively cheap rate, linen fabrics are now sparingly used for printing, and then principally for handkerchiefs, linen cloth not producing such heautiful colours, in consequence of the small affinity of flax for mordants, or colouring matters. Silk printing, also, is chiefly confined to handkerchiefs, hut the printing of woollen fahrics or mousseline de laines is an important hranch of the art. The earliest mode of ornamenting cloth with designs was, no doubt, by emhroidery with the needle, and this mode was almost coeval with the art of dyeing, which is of very remote antiquity. Herodotus mentions, that Amasis, king of the Egyptians, sent to the Lacedæmonians a pectoral of linen, adorned with many figures of animals, woven into the cloth, and enriched with gold and a variety of colours. A similar pectoral was taken among the spoils at the battle of Issus, and presented to Alexander the Great, who wore it afterwards as part of his military attire. Cloth was, however, stained in a rude manner by ancient tribes with juices of plants. Herodotus mentions a Scythian tribe who stained their garments with figures of animals by means of the leaves of a tree bruised with water, which figures would not wash out, and lasted as long as the cloth. It is an interesting speculation as to what this dye was. The garments so stained were prohably woollen, as in early times the outer garments were always woollen, and the particular dye might have been indigo in a soluble state, as produced by fermenting the leaves with water; according to Sir William Jones, the leaves of the shruh henna, when bruised in water. stain the skin or nails orange, and would douhtless do the same on woollen cloth. The first record of calico-printing as an art is that of Pliny, who describes degree of refinement the Egyptians, who seem to have attained a very considerable Egypt iu a wouderful way. They are first imhued, veils," says he, "are painted in absorhing drugs, hy which, though they seem to be not with dyes, hut with dyefor a little while in a cauldron of the hoiling dyc-liquor, they are found to become painted. Yet, as there is only one colour in the cauldron, it is marvellous to see many colours imparted to the robe, in consequence of the influence of the excipient drug. Nor can the dye be washed out. A cauldron, which would of itself mercly confuse the colours of clotls previously dyed, is thus made to innpart several pigmeuts from a single dye-stuff, painting as it boils." The last expressiou, pingitque dum coquit, is perfectly graphic and descriptive of some processes in calico-printing.
birth-place of the is of very ancient date in India, and probably this country is the birth-place of the art, since, beyond doubt, cotton cloth originated in India, and the
abundance of dye-stuffs, and the faeility with which cotton reccives dyes, rendered the staining it with figures a natural consequenee, ant there is good reason to suppose that the Egyptians learnt the art from India, since the Indians were highly eivilised twenty-two eenturies ago ; and there was undoubtedly eommunication hetween India and Egypt before the time of Pliny. There is an account of Indian calieo-printing by Father Cœurdoux, a missionary at Pondieherry, and in a manuseript aeeount sent from thenee by M. du Fay, and eommunicated to the Royal Aeademy of Seiences at Paris by the Abbé Mazeas, also from the report by M. Bcaulieu, of operations performed under his inspeetion at Pondieherry.-Bancroft.
These aecounts describe the mode of producing the chintz calieoes, which were eelcbrated in Europe hefore the art hadd been introduced and simplified there. From these accounts of the eumhrous and tedinus processes adopted by the natives, we have no diffieulty in understanding the nccessity that arose for the intervention of European skill and science, and can readily compreheud how it is that the Europeau printer, to say nothing of superior artistic excelleuce, can compete successfully in India with the proverbially low-priced lahour of Hindostan. After the cloths were partially hleached, they underwent several alternate steeps in goats'-dung, heating, washing, and drying in the sun ; they were then soaked in an astringeut solutiou obtained from myrabolams, mixed with huffalocs' milk; squeezed out of this, they were dried in the sun, and, by pressure with wooden rollers, made smooth enough to have a pattern drawn on them with a peneil, applying various mordants : the general course was to paint on a mordant of iron liquor, similar in eonstitution to that at present used in ealico-printing. This formed a hlack with the tannin substanee previously applied. The next stcp was to give the blue, and for this purpose the eloth required to be freed from the astringent hy maceration in goats'-dung, well washing and drying in the sun; the parts intended to be white were then protected hy a eoat of melted wax; the cloth was then dipped in an indigo vat: when dyed, the wax had to be thoroughly removed by hoiling in water, steeping in dung, washing with a sort of inpure soda, renewed steeping in dung, washing and drying in the sun; after this the cloth was treated, as before, with the astringent milk mixture, dried and smonthed. It was then ready to receive the red and ehocolate mordants, the red heing simply alum mixed with a little soda to render it basic, and the ehocolate, this red mixed with the iron mordant; (the use of acetate of alumina not being known, the albumen of the milk and the tannin eomhined with and fixed the alumina on the cloth). After eareful sundrying, the cloth was well steeped and rinsed in water to remore the excess of mordants, \&c., and then djed with madder or chaya root. After this they were washed with dung and soap, exposed to the sun, and watered oeeasionally till the white parts were bleaehed. Yellow, made from alum and myrabolams was now peneilled in, and green formed hy the yellow going over the blue. This proeess gave ehintzes, the colours of which were generally very hright and lively, and most of them execedingly durable. M. Koechlin Roder, of Mulhausen, hrought home from India a rich eolleetion of cloths in every state of preparation, whieh are in the eabinet of the Société Industrielle of that interesting emporium of calieo-printing. The native implements for applying the wax and colouring bases are placed alongside of the cloths, and form a eurious pieture of primeval art. There is among other samples an aneient pallampoor, five French yards long, and two and a half hroad, said to he the lahour of Hindoo princesses, whieh must have taken a lifetime to execute.

Calico-printing was not, however, in all oriental eountries exeeuted with the pencil. The shawl printers of Cashmere use small wooden bloeks for their complieated patterns. Mr. Buckingham states, that at Orfah, in Mesopotamia, the printers cmploy wooden hloeks of 4 to 6 inches square, and use them nearly in the same manner as the hlock printers in this country; and it is well known that the Chinese employed bloek-printing long hefore any species of printing was known in this country.
Calieo-printing has heen for several hundred years praetiscd by the oriental methods in Asia Minor and the Levant, hut it was unknown as an Englislı art till ahout the close of the scventeenth century. It is -believed that the first attempts at imitating the printed calieoes of India were made in Holland, the Duteh East India Company haviug introduced the Indian ehintzes there before their introduction into this country. It is uncertain where or when these first attempts were made; but it appears the art soon spread to Germany, for about the close of the seventeenth eentury Augsburg had obtaiued a notoriety for printed linens and cottons. The art was most probably introdnced into England ahout 1676, by Flemish emigrants. Mr. James 'Thompson, of Clitheroe, one of the most eminent English ealico-printers, fixed the date at 1690 , and supposed that a Freneliman, a rcfugee, at the time of the rerocation of the ediet of Nantes, was the first to print calicoes in this country, and that his works were at liehmond on the Thames; but there is evidence to show that prior to
this date, ealieocs were printed in this country, for Sir Joshua Child, a distinguished director of the East India Company, in a pamphlet published in 1677, mentions that calicoes were then bronght over from Iudia to be printed in this eountry, in imitation of the Indian printed chintzes. It appears, from a petition addressed to the House of Coumons by the East India Company in 1627, that Iudian calicoes were at that time imported, and iu 1631, in a catalogue of legal imports from India, painted calicoes are mentioned as to be allowed. In 1634, apparently, attempts were made to ornament fabrics with coloured patterns by meehanical means, for in that year Charles II. granted an exelusive pateut for fourtecn years, for the art or mystery of affixing wool, silk, and other materials of divers colours upon linen, silk, or eotton cloth, leather, and other substances, by means of oil, size, or other cements, to make them useful for hangings, \&c., the patentee paying 10l. yearly to the Exchequer. Calico-printing was commenced in 1689, at Neufchâtel, by Jaques Deluze, a native of Saintonge, and this establishment rapidly became prosperous, and in time the parent of numerous offshoots in Germany, Portugal, and Frauce.
Some time after the Richmond estahlishment, a considerable printing work was established at Bromiey Hall, in Essex, and several others sprung up successively in Surrey, to supply the London shops with chintzes, their import frcm India having beeu prohibited iu 1700 by parliament. The art in its infancy had to struggle with many diffieulties ; an excise tax on all printed or dyed calicoes of $3 d$. per square yard was enacted in 1702, and which was increased to $6 d$. per square yard in 1714, only half these duties being laid on priuted linens.
The sill and wooilen weavers had all along mauifested the keenest hostility to the use of printed calicoes, whether brought from the East or made at home. In the year 1680 they mobbed the India House in revenge for some large importations then made of the chintzes of Malabar. They next induced the Government, by iucessant clamours, to exclude altogether the beautiful robes of Calicut from the British market. But the printed goods imported by the English and Dutch East India contpanies found their way into this country, in spite of the excessive penalties annexed to smuggling, and raised a uev alarm among the maurfacturing population of Spitalfields. The sapient legislators of that day, intimidated, as would appear, by the East London mobs, enacted in 1720 an absurd sumptuary law, prohibiting the wearing of all printed calicoes whatsocver, either of foreign or domestic origin. This disgraeeful enactment, worthy of the meridian of Cairo or Algiers, proved not only a death-blow to rising industry in this ingenious department of the arts, but prevented the British ladies from attiring themselves in the becoming drapery of Hindostan.
"The effect of this law," says Mr. Edmund Potter, in his lecture on Calico Printing, before the Society of Arts, as reporter on printed fabrics in the Exhibition of 1851, "was to put an end to the printing of calieoes iu England, aud to confine the printers to the printing of linens. In 1736, so much of this Act was repealed as forbade the use or wear of printed goods of a mixed kind, containing cotton; and these fabrics were allowed to be printed, weighted with a duty of $6 d$. per square yard. In 1750, the entire production of Great Britain was estimated at 50,000 pieces per annum. In 1764, printers estahlished themselves in Lancashire, tempted, doubtless, by the cheapness of fuel, and by this being the locality in which the cloth was manufactured. In 1774, the printer was released from his fetters with regard to the kind of cloth he must use, by the repeal of this law, so as to leave him the choice of his material; but he was still saddled with a duty of $3 d$. per square yard, to which a halfpenny was added iu 1806. On the accession of Lord Grey's government to office it was one of their first acts to repeal this duty. Thus, after a period of about 140 years from its first introduction, the print trade was allowed to enter into competition with other kindred fahries on a fair footing."

France pursued for some time a similar false policy with regard to calico-printing, but she emerged sooner from the mists of manufacturing monopoly than England. Her avowed motive was to cherish the manufacture of flax, a native product, instead of that of cotion, a raw material, for which prejudice urged that moncy had to be exported. Her intelligent statesmen of that day replicd, that the money expended in the purchase of cotton was the product of French industry bencficially employed, and they therefore took immediate measurcs to put the cotton fabrics upon a footing of cquality. Meanwhile the popular prejudices became irritated to such a degrce, by the project of permitting the free manufacture and sale of printed cottons, that every French town possessed of a chamber of commeree uade the strongest remonstrances against it. The Rouen deputies declared to the Govcrument, "that the intended measure would throw its inhabitants into despair, and make a desert of the surronnding country:" those of Lyons said, "the news had spread the body of the State :" Workshops:" Tours "foresuw a commotion likely to eonvulse the body of the State:" Amiens said, "that the new law would be the grave of the
manufacturing industry of France;" and Paris declared that "her merelants eame forward to bathe the throne with their tears upon Hat inauspicious oecasion."

The Government persisted in carrying its truly enlightencd prineiples into effect, and with manifest advantage to the nation, for the despair of these manufaeturing towns has becu replaced by the most signal prosperity.

Frauce probably produees at the present time nearly $5,000,000$ pieces of print per annum, which, eonsidering the quality of many of them, may be eonsidered a very iupportant manufacture.
'The great disadvantage under which the Freneh printers labour is the higher priee they pay for eotton fabrics and fuel above that paid by the English printers.

The repeal, in 1831 , of the eonsolidated duty of $3!2$. per square yard upon printed calicoes in Great Britain is one of the most judicious aets of modern legislation. By the improvements iu ealico-printing, due to the modern discoveries and inventions in ehemistry and mechanics, the trade had beeome so vast as to yield in 1830 a revenue of $2,280,000 l$. levied upon $8,596,000$ of picces, of which, however, about thrce-fourths were exported, with a drawback of $1,579,000 l$. $2,281,512$ pieces werc eonsumed in that year at home. When the expenses of collection were dedueted, only $350,000 l$. found their way into the Exchequer, for which pitiful sum thousands of frauds and obstruetions were committed against the honest manufacturer. This reduction of duty enables the consumer to get this extensive article of clothing from 50 to 80 per eent. cheaper than before, and thus places a beeoming dress within the reach of thousands of females in the liumbler ranks of lifc. Printed goods, whieh in 179.5 were sold for $2 s .3 d$. the yard, may be bought at present for $6 d$. The rcpeal of the tax has been no less beneficial to the fair dealers, by putting an end to the contraband trade, formerly pursued to an extent equally injurious to them and the revenue. It has, moreover, emancipated a manufacture eminently depeudent upon taste, scienee, and dexterity from the venal cmriosity of petty cxeisemen, by whom private improvements, of great value to the inventor, were in perpetual jcopardy of being pirated and sold to any sordid rival. The manufacturer has now become a free agent, a master of his time, his workmen, and his apparatus; and can print at whatever hour he may receive an order; whereas he was formerly obliged to wait the eonvenience of the excise officer, whose provinee it was to measure and stamp the cloth before it could be packed, - an operation fraught with no little annoyance and delay. Under the patronage of Parliament, it was easy for needy adventurers to buy printed ealicoes, because they eould raise such a sum by drawbacks upon the export of one lot as would go far to pay for another, and thus carry on a fraudulcut system of credit, which sooner or later merged into a disastrous bankruptey. Neanwhile the goods thus obtained were pushed off to some foreign markets, for which they were, possibly, not suitcd, or where they produced, by their forced sales, a depreciation of all similar merchandise, ruinous to the man who meant to pay for his wares.

Calico-printing was first practised in Seotlaud in 1738 , twenty-six years previous to its introduction into I.aneashire. The following sketeh of the early Lancashire printing is taken from Mr. Potter's pamphlet:-"The trade was established in Lancashire in 1764 , by Messi's. Clayton, of Bamber Bridge, near Prestou; the cloth that was printed being made with linen warp and cotton weft, and produced principally at Blaekburn ; this was the reason of many printers settling near Blaekburn, which was for a long time the great seat of the print trade. The introduction of power-loom cloth caused the migration of a considerable print trade to Stockport, Hyde, Staleybridgc, and North Derbyshire. The Claytons were followed by Mr: Robert Peel, who entered into the cotton business, and added to it the printing business. He carried on the business for some years at Brookside, near Blackburu, aided by his sons. The eldest son afterwards branched off from his father's coneern, and established himself at Bury with his uncle, Mr. Haworth, and Mr. William Yates.
"During the period 1796 to 1821, the Forts, Hargreaves, and Thompsons fairly established themselves as extensive and wealthy printers, not more by their energy and business talent thau by their scientific attainments, and by the unbounded and lavish support whieh they gave to everything which art and science could suggest to assist them. Mr. James Thompson, of Primrose, near Clithcrue, was for forty years the recognised head of the print trade. The era of his commencement in the trade was the beginning of a series of diseoveries and new applications in clicmical science to the purposes of ealieo-printiug. During forty years he devoted himself and the ample funds his business placed at his disposal to the advancement of taste in connection with his trade. No sums, however large, were spared to draw into its service the talent even of royal academieians, and of many other eninent men high in art." Mr. John Mcrcer, of the house of Fort Brothers, and a eouteuporary of Mr. Thonpson. but now retired from business, for a long period rendered valuable assistanee to the
trade by the introduction of eliemieal novelties; aud many styles founded by him are still popular. The house of Hargreaves Brothers and Co., duriug the same period, took a prominent position in the production of new and origiual colours and styles.
In France M. Koechlin was looked up to as tle leader of the trade, and was mainly instrumental in establishing sound scientific principles in the art. "During the progressive improvement, dating from 1831, one house may be named, of ligh standing, who introduced a colour superior in brilliancy, fastness, and utility for domestie wear;, to any other previously known. This was the madder purple of Messrs. Thomas Hoyle and Sons, a colour whieh may be said to have superseded the old Navy blue print in English wear. Messrs. Hoyle and Sons maintained their well-deserved superiority for many ycars. The Londou printers, up to the repeal of the duty, still held their position for first-class goods. They made great use of the flat press printing maehine. Their plates were well engraved, and for a long time they succeeded in getting a smartness of impression, better than any at that time obtained from the cylinder. Some few of the Lancashire printers adopted the press, the better to compete with the town printer. The rapidly increasing trade in Lancashire, aud with it the power of so much cheaper produetion, gradually undermined the London printers, and brought about a complete change in their class of work."-The London printers now print fine shawls, handkerchiefs, waistcoatings, and a superior class of cotton prints for furniture hangings. The present annual production of printed cloth of all kinds in Great Britain may be estimated at about $20,000,000$ pieces. In 1840 the quantity produced was about $16,000,000$. The quantity now, probably, rather exceeds $20,000,000$ of pieces; but, from the absenee of any very authentic statistics, the quantity is very difficult to arrive at. The print trade, aecording to Mr. Bazley, eonsumes a weight of cotton about one-seventh the entire import into this eouutry.
Owing to her natural advautages, England has by far the largest portion of the calico-printing trade, and especially of the export trade; and probably at the present time England produces as many printed pieces as all the rest of the world put together. The United States produces next to ourselves in quantity; Franee and Switzerland the next to America iu quantity, but far superior to her in quality, and second only to ourselves in value of production. France is the only competitor we have to meet in the neutral narkets of the world. The Zollverein, Austria, and Bohemia produce for their own markets, and by high proteeting duties prevent any other supply, except of very fine French grods. Holland produces a small quantity of medium goods; Belgium also produces a few; Naples has a few small print works; Russia produces for her own market, and the number of works has rapidly increased of late - her market is almost prohibited to us: Spain produces a limited quantity of inferior goods; Portugal has a slight production; Turkey produces a few priuted goods, hardly worth notiee; the Sultan Abdul Medjid has tried the experiment of organising print works on the English principle, with English artisans and foremen, but the experiment was a eomplete failure : Egypt also has revived the art, with very inferior results. The Chinese undoubtedly practised the art of calico printing many eenturies before ourselves. Mr. Potter was able to exhibit samples of Chinese work to the Society of Arts, which he described as of very primitive taste and rude execution. "Mulhausen, it may not be uninteresting to mention," says Mr. Potter, "is certaiuly the seat of the finest printing in the world. Calico-printing was first established there in 1746, by the firm of Koechlin and Co., and is still carried on by descendants of the original firm ; and during the whole period, and not less so now, the house has bad a high and justly most deeply indebted for mand taste ; and to them the chemistry of the trade is almost equal celebrity fomany valuable processes and discoveries. Other houscs of of heing, for fine goods, the first and Mulhausen has justly maintained its reputation The first ste ρ in calico-printing is to remove district in the world." the cloth, which is done by passing the piece rapidly through a flame of gas, a red hot semi-circular plate. The latter method will be found described under over head of Bleaching; the former is performed as follows: - Fig. 345, is a vertical set the of the gas-singeing apparatus. Its diameter is such as to admit of pieces of tlie greatest width. The pipe a runs along from end to end under the machine, and is supplied with ordinary gas; the pipes в в are branched into this, being five in number on each side. Connected with these branehes are the pipes c c, which are perforated a a. Above the tubtanees of about $\frac{1}{8}$ th of an inch, the pipes B B are furnished with taps length, and communieate by the branch Dipes FFwith are eut open at the bottom along the hausted by a fan. Two pairs of cylinch pipes \mathbf{F} F with the large pipe \mathbf{e}, whieh is extheir axes in the direction of the arrows, and d, of wond, eovered with fustian, turn on velocity of about 4 feet per second. The pair of rollers them the pieees $d d$ with a . The pair of rollers GG to the right are noved by
a belt and pulley; the other pair is moved by belts which cmbrace the nuder roller of each pair. If in are brushes in pairs which renlove the loose down. The rubber

II of wood, covered with fustian, serves to extinguish any sparks that might be drawn on with the cloth. In using this machinc the two rows of gas are lighted, and the size of flame regulated by the taps till it burns blne, and in one continuous linc of fire, the drawing rollers are then made to revolve, and the end of the first piece being laid between the left rollers, is drawn through by means of a narrow picce of list fastened to it; the end of the piece once through the right rollcrs, the opcrition proceeds rapidly, the pieees, of course, being stitched end to eud.
This gas-singeing apparatus has the effect of making cloth appear thinner than it really is, iu consequeuce of the flame passing through the fibres, and not morely on the surface. It is, thereforc, not so much used as the hot plate. In France aud Germany a machine called the tondeuse is used, and which is very similar to the shearing machine used in the manufacture of woollen cloth. (Sce Woollen Manufactore.) A series of kuives, running spirally round a roller, shave off the dowu by the roller revolving on its axis as the cloth passes underneath. This machine makes the cloth smoother and more free from flaws or lumps than either of the other machines, but is not yet used in England.
The bleaching requisite for printing cloths is of much supcrior uature to that sufficient for calico intended to be sold in the white state. It is sufficient for the latter to be white euough to please the eyc, a result easily obtaiued by chlorine treatment after a comparatively mild alkaliue boiling; but the former must be so well boiled with lime anca alkali, as to remove every particle of resinous and glutinous matter previous to the chloriue steep. This, if not atteuded to, becomes a source of great annoyance to the printer in his subsequent operations, from the difficulty of obtaining sufficiently good whites without iujuring the colours. The high pressure kiers patented by Barlow, and which are fully described in the article Bleaching, have becn found to facilitate the thorough scouring of the cloth very much at a less cost than the old kiers.

Till about the ycar 1760, the printing of linens or calicoes was done by hand, wooden blocks being employed, on which the pattern is raised in relief. About this time a modification of the press used for priuting engravings was adapted to printing with flat engraved copper plates on fabrics. This press was used to produce certain styles only, generally single colours, where delicacy of outline was required, shaded or stippled work being also introduced. The printing by blocks in scveral colours was the principal mode still, till in 1785 the cylinder priuting uachine was invented by a Scotchman named Bell, and brought into successful use at Dlossuly, near Preston, by the house of Livescy, Hargrcaves, and Co. The housc of Oberkanmf, of Jony, iu Frauce, almost immediately adopted the invention, and have been frequently eonsidered, in France at least, the originators of the machinc ; but it is now pretty certain that the honour of the invention is duc to Great Britain. The introduction of the eylinder
machine gradually caused the disuse of the flat press, the London printers continuing to use them long after the Lancashire printers had given them up; the first cylinder machine was used in London in 1812. Blocks are still freely used for some description of prints, such as woollen or mousscline de laine goods, and also for introducing colours after printing by the cylinder and dyeing \&c. - the cylinder not being capalse of fitting in colours, after the piece has once left the machine. A blocking-machine, called the Perrotine was introduced in France in 1834 by M. Perrot, and is still extensively used there, but though tried in this country, it never came into general use. It executes as much work as twenty hand printers, and for the special purposes for which it was invented is a satisfactory machine; the patterns capable of being printed by it are, lowever, limited in size, in consequence of the narrow width of the blocks. Surface printing, or printing from cylinders engraved in relief, was an invention precediug by a few years the engraved copper cylinder, but apparently not in general use. In 1800, a Frenchman, named Ebingar, patented somewhat the same sort of thing, and in 1805, James Burton, of the house of Peel, at Church, invented the mule machine, which worked with one or two engraved copper cylinders, and one or two wooden rollers engraved in relief. This machine is very little used now, the impression produced by it not having the precision of that from copper rollers, and improvements in engraving copper rollers having given the printer many of the advantages possessed by the surface roller. Quite lately, however, Mr. James Chadwick has patented a species of surface roller which promises to become useful. The ordinary stereotyped patterns described hereafter are adapted by screws to a brass or other metal roller, which is then fitted on the mandrel used with the ordinary engraved rollers, and a firmness and solidity thus given which was never possessed by the wooden surface roller.
Printing by block is thus performed : - The hand blocks are made of sycamore or pear-tree wood, or of deal faced with these woods, and are from 2 to 3 inches thick, 9 or 10 inches long, and 5 broad, with a strong box handle on the back for seizing them by. The face of the block is either carved in relief into the desired design, like an ordinary wood-cut, or the figure is formed by the iusertion edgewise into the wood of narrow slips of flattened copper wire. These tiny fillets, being filed level on the one edge, are cut or bent into the proper shape, aud forced into the wood by the taps of a hammer at the traced liues of the configuration. Their upper surfaces are now filed flat, and polished into one horizontal plane, for the sake of equality of impression. As the slips are of equal thickness in their whole depth, from having been made by running the wire through between the steel cylinders of a flatting mill, the lines of the figure, however nuch they get worn by use, are always equally broad as at first ; an advantage which does not belong to wood-cutting. The interstices between the ridges thus formed are filled up with felt-stuff. Sonetimes a delicate part of the design is made by the wood-cutter, and the rest by the inscrtion of copper slips.
The colouring matter or mordant, properly thickened, is spread with a flat brush, by a child, upon fine woollen clotl, stretched in a frame over the waxcloth head of a wooden drum or sieve, which floats inserted in a tubful of old paste, to give it elastic buoyancy. The iuvcrted sieve drum should fit the paste-tub pretty closely. The printer presses the face of the block on the drum-head, so as to take up the requisite quantity of colour, applies it to the surface of the calico, extended upon a flat table covered with a blanket, and then strikes the back of the block with a wooden mallet, in order to transfer the impression fully to the cloth. This is a delicate operation, requiring equal dexterity and diligence. To print a piece of cloth 28 yards loug and 30 inclies broad, no less than 672 applications of a block, 9 inches long and 5 iuches broad, arc requisitc for each colour; so that if there are 3 colours, no less than 2016 applications will be neeessary. The blocks have pin-points fixed into their corners, by means of which they are adjusted to their positions upon the cloth, so as to join the different parts of the design with precision. Each printer has a colour-tub placed within reach of his right hand; and for every different colour he must have a wood, two of them being deal, with cause their blocks to be made of threc layers of sycamore, for engraving.

The printing slop is an oblong apartment, lighted with numerous windows at each side, and having a solid table opposite to each window. The table is (fig. 346) is formed of a strong smootl flag, with a surface truly plane. Its length is about 6 feet, its breadth 2 feet, and its thickness 3,4 , or 5 inches. It stands on strong feet, with its top about 36 incles above the floor. At one of its cnds there are two brackets c for The table is covered of the roller x, which carries the white calico to be printed. The hanging rollers e are lainket stretched tightly across and hooked at the side. the printing shop, the ceiling and flool hetweed near the roof of the apartment above Vol. I.
the middle of the room. Thcir use is to facilitate the exposure, and, consequently, the drying of the printed pieces, and to prevent one figure being daubed by another.

Should they come to be all filled, the remainder of the goods must be folded lightly upon the stool D.
The printer stretches a length of the piece upon his table A B, taking care to place the selvage towards himself, and one inch from the cdge. He presents the block towards the cnd, to determine the width of its impression, and marks this line A B, by means of his squarc and tracing point. The spreader or teerer now besmears the cloth with the colour, at the commencement, upon both sides of the sieve head; beeause, if not uniformly applied, the block will take it up unequally. The printer seizes the block in his right hand, and daubs it twice in different directions upon the sieve cloth, then he transfers it to the calico in the line A B, as indicated by the four points $a b c d$, corresponding to the four pins in the corners of the block. Having done so, he takes another daub of the colour, and makes the points $a b$ fall on $c d$, so as to hare at the second stamp $u^{\prime} b^{\prime}$, covering $a b$ and $c^{\prime} d^{\prime}$; and so on, through the rest, as denoted by the accented letters. When one table length is finished, he draws the eloth along, so as to bring a new length in its place.
The grounding in, on re entering (rentragc), of the other colours is the next process. The blocks used for this purpose arc furnished with pin-points, so adjusted that, when they are made to coincide with the pin-points of the former block, the design will be correct; that is to say, the new colour will be applicd in its due place upon the flower or other figure. The points should not be allowed to touch the white clo:h, but should be made to fall upon the stem of a leaf, or some other dark spot.

Evcry colour is printed separately, the printer goiug all through the piece with one block; the rest of the colours are next separately fitted into their places by the appropriate bloeks, and the piece is then ready for the subsequent operations for raising the colours. Calico intended for printing by block is always smoothed by the calender (see Calender) the object being to leave the cloth stiff, so as to facilitatc the printer joining the different block impressions. When pieces that have been printed by machine are required to have other colours inserted by block, as for instance, the grounding-in of blues, yellows, greens, \&c., after printing and dyeing in madder colours, the same sort of process is adopta, the pieces being dried and calendcred, from the dyed piece when calendered, and, consequently, fit accurately those parts which arc intended to be blocked. The grounding-in of colours, after the operatious of dyeing, was formerly done by pencils, which were merely small thin pieces of wood, which were dipped iu the colour, and the nccessary portions of the patterns, such as leaves, \&c., painted in by hand. Of course, this method soon gave way to blocks; but the usc of these pencils was continued down to a comparatively recent pcriod for certain colours, such as pencil-blue, which being a solution of reduced indigo, was too speedily oxidised when spread on the sieve, and required instant application of the peneil. Eveu this colour was crentually applied by block, by a peculiar kind of sieve.
Of late years the tedious hand labour of cutting or copperiug blocks has been much reduced by stereotyping; when the pattern has several repents on the block, a casting in type-metal being made of the pattern, and as many of these as requisite arranged.
on a plain block, aud securely nailed down. It is obvious that the matrix once made, an infinite number of castings can be easily produced; the skilled labour is therefore reduced to a small portion of what was formerly requisite. The ordinary way of making the mould is to draw or trace on a small block of pear tree (sawn aeross the grain, so that the pattern is puton the end of the grain), the pattern to be typed. Slips of copper of varying thickness. but uniform width, are then driven down to a certain distance in the wood, just as in the ordinary way of eoppering blocks. When the pattern is thus completed, the slips are pulled out, of eourse leaving the pattern indented in the wood; the bloek is now rubbed with clalk, and a border about $\frac{1}{10}$ th of au inch deep of card nailed rouud the block. Melted type-metal is now run in level with the top of the card, and when cold, a tap with a hammer on the under side of the block easily detaches the type, which requires very little trimming to be ready for putting on the block; when a number of these are arranged on a block, the surfaee is filed and ground on a stone till perfeetly level. The introduction of Burch's patent typing maehine, still further simplified the stereotyping process. In this beautiful invention the matrix is formed by steel punches of varying shapes, which are moved up and down by a stirrup and lever, and whieh are kept heated, by a gas flame ingeniously applied, to the temperature suffieient to char wood, and by moving the bloek about under these punehes and depressing them, the pattern is burnt into the wood to a uniform depth, and the labour of eutting and bending slips of copper, \&e., done away with.
There are some interesting modifications of block-printing apparatus which may be here described. In 1834, Mr. Hudson, of Gale Print Works, near Rochdale, patented a mechanical teerer which was to dispense with the labour of children. The contrivance consists in a travelling endless web, moved by power, which, by passing progressively from the colour vat over the diaphragm, brings forward continuously an equable supply of the coloured paste for the workman's block.
Fig. 347 represents the construction of this ingenious apparatus, shown partly in section. a a is a vessel of iron, supported upon wooden standards, $b b$, over the upper surface of which vesscl a sheet or diaphragm, $c c$, of oiled cloth, or other suitable elastic material, is distended, and made fast at its edges by being bent over a flange, and packed
 or cemented, to render the joints water-tight water to the interior of the vessel a, and, by a small elevation of the column, to ereate such upward pressure as shall give to the diaphragin a slight bulge like the swimming tub.

An endless web, e e e passing over the surface of the diaphragm, is distended over three rollers, $f g h$, the lower of which, f, is in contact with the colour-roller i in the colour-trough k . On the axle of the roller i a pulley wheel is fixed, which allows the roller to be turned by a band from any first mover; or the roller may receive rotatory motion by a winch fixed on its axle. On this said axle there is also a toothed wheel, taking into d another toothed wheel on the axle of the roller f; lience, the rotation of the colour-roller i in the one direction will cause the roller f to revolve in the opposite, and to carry forward the endless. web, e e e, over the elastic diaphragm, the web taking with it a stratum of colour received from the roller i, evenly distributed over its surface, and ready for the printer to dip his bloek into.
The axles of the rollers f and g turn in stationary bearings; but the axle of h is mounted in sliding nuts, which may be moved by turning the screws m, for the purpose of tightening the endless web. The axle of the colour roller i turus in mortises, and may be raised by serews n, in order to bring its surface into contaet with the endless web. To prevent too great a quantity of colour being taken up, the endless web passes through a long slit, or parallel aperture in the frame o, which aets as a seraper or doetor, and is adjustable by a serew p, to regulate the quantity of colour carried up. The contents of the vessel a, and of the eolour trough к, may be discharged general use, probably from the bottom of each. This eontrivanee did not cone into a mode of applying with one block several
bloeks is saved, and, what is of more consequenee, the cost of labour is very much redueed, as one printer produces the same result as the combined efforts of several.

Whenever designs are composed of coloured parts, where each colour lies separate,
348
 close together, a sicve of the following construction is made use of (fig. 348). A block of wood is scooped out in hallow compartments E , which vary in size and number according to the number and extent of the shades to be printed; these compartments communicate by tubes B at the boltom, with reservoirs A, at the sides of the sieve; over the compartments is then streteled tightly a woollen sieve; the surface of this eloth is cemented with melted resin string about $\frac{1}{8}$ th of an inch thick, following the configurations of the compartments; the use of this is to provent the colours mixing and becoming blended at the edges. Colours are now put in the reservoirs, which are kept filled up above the height of the cloth, so that a gentle pressure is exerted against the under side of the sieve. The colours are made of such a thickness as to pass through the cloth, and keep the upper surface moist, but still not too thin, or they would spread when printed. The sieve being thus prepared, the block is furnished with guides, which, working against the sides of the siere frame, constrain the block to be always dipped in one place, and thus each part of the pattern finds itself furnished with its proper colour. Sometimes the compartments for the colours are made of metal when required to be durable, so as to serve for a large number of pieces of the same pattern.

Where colours are required to melt into one another,
 technically called rainbowed (fondus, Fr.), the following apparatus is used. a A (fig. 349) is a rectangular frame of wood, about 6 inches deep, 2 feet long, and about 1 foot broad. On this frame is stretched, by means of small hooks, a woollen cloth, and the frame then laid on the elastic surface of the usual swimming tub, the cloth downwards and pasted or gummed to the oilskin cover of the tub. At one end is now put the colour reservoir в $\mathrm{B}_{\text {, which }}$

349

consists of a wooden or metal box, divided into water-tight compartments longitudinally by strips of thin metal ; this box is of such a width as to fit easily into one end of the frame, and resting on a board of the same size, fixed across the frame; the
depth of the box may he ahout 4 inches, and the width ahout 8 inches; hut this is regulated by the number of colours to he blended or rainbowed. A semi-circular piece of wood, of nearly the same width as the frame, is covered with printer's hlanket, and a handle formed on the top, so that the teercr can move it backwards and forwards. The colour lifter, c c, is a flat piece of wood just covering the colour hox ; on the under side of this are inserted wooden pegs, as \mathbf{D}, at certain places determiued hy the width of the stripe of rainhowed colour and the number of shades composing it. These pegs are of turned wood, about $\frac{1}{8}$ th of an inch thick at the small end, and about ${ }^{3}$ ths of an inch at the thick end, this end being also recessed so as to lift more colour; they are nearly as long as the colour box is decp. In the figure, suppose it is desired to produce on the sieve two stripes, say e of dark-green in centre, and two shades of greeu at each side, and \mathbf{F} of chocolate in centre, purple next, and drah next, at each side, the colour-box is filled thus:-in No. 1 compartment is put the darkest green; in No. 2, the medium green; in No. 3, the palest green ; in No. 4, the chocolate; it No. 5 , the purple; and in No. 6, the drah. The colour lifter is so studded with pegs, that when put iu the colour-hox, the pegs $1,2,3,4,5$, and 6 respectively dip into their appropriate colours. The hrush, or semicircular roller, \mathbf{G}, is then moved up to the top, as shown in the dotted lines, the colour lifter heing then lifted up out of the colour-hox is held a moment till the colour has ceased dropping from the pegs, and then lifted over, and the pegs allowed to deposit the colour on the sieve, as shown hy the black spots $1,2,3,4,5$, and 6 . The lifter is then returned to the box, and a fresh portion of colour lifted, and deposited, as hefore, at a different part of the sieve, the spots of colour heing of necessity all in straight lines; the hrush G is then moved backwards and forwards hy the teerer till the colours are sufficiently ruhhed together or hlended at the edges. It is necessary to ohserve, that the thickness of the colours must he pretty uniform, and sufficiently thin to allow them to mix at the edges. By this means one colour is made to melt insensihly into another, and a heautiful shaded effect produccd on the sieve, and consequently on the piece, when printed from a block dipped on it.

The Perrotine is a machine for executing hlock-printing hy mechanical power; and it performs as much work, it is said, as 20 expert hands. It is in use in many factories in France and Belgium, in a very satisfactory manner; hut there is reason to believe that there are none of them now working in this conntry. Threc wooden blocks, from $2 \frac{1}{2}$ to 3 fect long, according to the hreadth of the cloth, and from 2 to 5 inches hroad, faced with pear-tree wood, engraved in relief, are mounted in a powerful cast-iron framework, with their planes at right angles to each other, so that each of them may, in succession, he brought to hear upon the face, top, and hack of a square prism of iron covered with cloth, and fitted to revolve upon an axis between the said hlocks. The calico passes hetween the prism and the engraved hlocks, and receives successive impressions from them as it is successively drawn through hy a winding cylinder. The blocks are pressed against the calico through the agency of springs, coat of coloured paste from a woollen surface, smeared afterch hlock receives a mechanical hrush. One man with ene surface, smeared after every contact with a giving surfaces, can turn off ahout 30 pir two children for superintending the colouris the work of fully 20 men and 20 childres English per day, in three colours, which some styles of work to which the cylinder machine printing hy hand. It executes inadequatc.

The annexed cuts are taken from the "Traité de l'Impression des Tissus," of M. Persoz.

Fig. 350 is a vertical section, and $f i g .351$ an elevation.
A cast-iron framework. в в в cast-iron tahles, planed smooth, over which circulate the hlanket, the hackeloth, and the piece that is printed; c c c sliding pieces, to which the hlock holders 3 , are screwed, and causing the engraved hlocks, 2 ,to move alternately against the woollen surface, from which they receive the colours and the stuff to bo printed, by the action of the arms 4 and 5 , the supports of which, 6 , rest on the frame A, and which act, through the medium of connecting rods, on the heams, 7, keycd to the slides c . The lower of these slides, heing in a vertical position, takes by its own weight a retrograde movement, regulated hy a counterweight. E E e are inovahle colour-sieves, keyed to connccting rods, and recciving from the power applied to the machinethe kind of morement which they require. These sicves, which are flat, and covered with cloth on the surface opposite to the blocks, slide in grooves on the afterwards transmit to the blocks. F FF from thed rollers the colours whioh they and furnished each with two rollers 8 and the colour troughs filled with colour, troughs, are charged with colour, which they , the last of which, dipping into the heing covered with woollen cloth; and these in thicir turn the the roller 8 , the latter
sicves E , on which it is spread by the fixed brushes, 9 . As it is important to be able to vary at pleasure the quantity of colour supplied the sieves, and consequently to the bloeks, the rollers, 10 , are in eonnection with levers, 11 , which, by meaus of

adjusting screws, bring them into more or less intimate contact with the rollers 8 , and consequently vary the charge of colour at pleasure.
The blanket, backeloth, and fabric are circulated as follows:-At the four angles formed by the three tables, B , are rollers, 1 , armed on their surface with needle points, which prevent the cloths from slipping as they pass round, and thus secure the regular movement of the stuff to be printed, a movement determined by the toothed wheels 21 (fig .351) fixed at the extremities of the axes of these rollers. G is a roller for stretching the endless web, resting with the two ends of its axes on two cushions forming the extremities of the screws 12 , by which the roller can be pushed further out when required, to give the cloth the necessary tension. H is another tension roller, supporting the blanket and backeloth. K is a roller which serves similar purposes for the blanket, the backeloth, and the fabric in course of being printed. T, the blanket, which in its course embraces the semicircumference of the roller G, passes over the roller \mathbf{H}, and behind π, to circulate round the cylinders 1 , and over the surfaces of the tables B. \mathbf{L} is a cylinder from which the backeloth is unwound, being first stretched by the roller H , and then smoothed by the scrimping bars 13, from which it proceeds to join the blanket on arriving at the roller k. m a roller, from which the fabric to be printed is unrolled by the movement of the nachine, first passing over the scrimping bars 14, and joining at k the blanket and backeloth, which it accompanies in their course till it arrives at the roller c , when it scparates and passes off in the direction of the line N , to the hanging rollers, where it is dried.

The machine is put in movement, either by a man with a winch-handle, or by power communicated by a strap which passes over the pulley 18. This pulley has several diametcrs, so as to give several speeds; it is loose on the driving shaft, and carries eatehes which lock into those of a sliding catcl-box on the shaft, when the machine is to be put in movement. The movement of the machinc is intermittent because the printing is intermittent; moreover, it must be so regulated that the fabric is obtained by means of a re charged with colour from 20 . The wheels 21, fixed at the extremities of the axis of the cylinders 1 , and having each the same number of teeth, receive their movement from a central wheel toothed in the same manner, and placed behind the wheel 20 . This last receives an alternating motion from a rack,

24 , fixed in a copper piece, 25 , and which rises and falls alternately, being keyed at its lower end to one of the spokes of the wheel 28. By varying the position of the point at which the end of the raek is conneeted with the spoke 26 , the length or

35I

range of its movement is proportionally ehanged, and more or less of the teeth of the wheel 20 are made to pass, which renders proportionally, greater or less, the advance of the cloth at each movement; and this is further regulated by a ratchet wheel placed at D. At each half turn of this last, the lever 22 raises the eatch or pallet, and throws out of gear the wheels 21 during the other half turn; but as in the working of these wheels there would be inevitably a backward movement, this is prevented by a break, consisting of a pulley, mounted on the shaft of the axis of the wheel 20 , and a brass wire which after making a turn and a half, or two turns, on this shaft, is stretched by the weight 23 , which offers a sufficient resistance to any recoil. The slides or bloek-holders are put in motion by the wheels 27 and 28 , gearing with the larger wheel 29. And to vary their action at pleasure, both for eausing the blocks to bear more or less strongly on the sieves, so as to be more or less charged with colour, and likewise for attaining the exact pressure, which suits best for the colour to be laid on, it is sufficient to move the points of junction, 16 and 17, to a greater or less distance from the point marked 15 , which constitutes the centre of oscillation of the beams that work the slides. The movement of the sieves is controlled by that of the cam 11.30, which works them all three by putting in motion a shaft with which they are respectively keyed. The furnishing rollers receive their movement from gearing with pinions on the axes of the rollers 88 . The general working of this complex machine remains to be deseribed. When put into regular motion, and the three blocks have delivered their impression exactly at the same instant, three simultaneous movements then commenee.
Ist. The stuff advances a distance exactly equal to the breadth of the bloeks, and with it the blanket and backcloth, so that the portion of the fabric whicl leaves the third block hehind it. is fully printed; that which was under the second advances opposite the third; that which was under the first, moves along to the seeond; and a fresh breadth of white or imprinted fabrie arrives opposite the first. 2 ud. While the seetion, fig. 350, that is to say the the sieves take tho place which they oceupy in the left to right, the third descends, and in this movement all three sccond moves from furnishing rollers 8 , from whicli they receive the cent all three press slightly on the formly by the brushes 9 . 3rd. In the meantime, the sur, which has been spread uniward movement, push the bloeks against the sieves, to charge the the blocks at the same time reeeive from the slides a to charge them with colour, and which the sieves deviate from their position ; the blocks baek thard movement, during
are drawn back again after being applied to a new part of the eolour surfaee. When these simultaneous movements have taken place, the aetion of the maehine proeeeding without intermission, the sieves move back from before the bloeks, and these are pushed up against the latter, printing the position of the fabrie that is stretehed upon them. This brings the machine to that position at which the deseription eommeneed; and this sueeession of movements is renewed and repeated as long as the operation lasts; the printer having it always in his power to suspend the advanee of the stuff whilst the working of the bloeks and sieves eontinues, so that the colour may be reapplied to the same part of the fabrie as often as may be required for a good impression.

There have been several attempts at bloek-printing by maehinery in this country, amongst which the maehines of Mr. Joseph Bureh have been most sueeessful; but from one canse or another, none of them have ever eome into general use, and it is unneeessary therefore to partieularise them.

The eopper-plate printing of ealieo is almost exactly the same as that used for printing engravings on paper from flat plates, and being nearly superseded by the next maehine, need not be deseribed.

The eylinder printing maehine is one by which one or more eolours are rapidly printed from engraved copper cylinders or rollews by the mere rotation of the maehine, driven by the ageney of steam or water. The productive powers of this printing automaton are very great, amounting for some styles to a pieee of 30 yards per minute, or a mile of printed cloth per hour. Fig. 352 wild give the reader a
 general idea of this elegant and expeditious plan of printing. The pattern is engraved upon the surfaee of a hollow eylinder of eopper, and the eylinder is forced by pressure upon a strong iron mandrel, which serves as its turning shaft. To faeilitate the transfer of the impression from the engraving to the cotton eloth, the latter is lapped round another large eylinder, rendered elastie by rolls of woollen cloth, and the engraved eylinder presses the ealieo against this elastie eushion, aud thereby prints it as it revolves. Let a be the engraved eylinder mounted upon its mandrel, whieh reeeives rotatory motion by wheels on its end, connected with the steam or water power of the faetory. B is a large iron drum or roller, turning in bearings of the end frames of the maehine. Against that drum the engraved eylinder a is pressed by weights or serews; the weights aetiug steadily, by levers, upon its brass bearings. Round the drum \boldsymbol{B} the endless web of felt or blanket stuff $a a$, travels in the direetion of the arrow, being carried rouud along with the drum \boldsymbol{B}, whieh again is turned by the friction of eontaet with the cylinder A. c represents a elothed wooden roller, partly plunged into the thickened colour of the trough $D \operatorname{D}$. That roller is also made to bear. with a moderate foree, against A, and thus reeeives, by frietion, in some eases, a movement of rotation. - But it is preferable to drive the roller c from the eylinder A, by means of a system of toothed wheels attaehed to their ends, so that the surfaee speed of tbe wooden or paste roller shall be somewhat greater than that of the printing eylinder, whereby the eolour will be rubbed, as it were, into the engraved parts of the latter.

As the cylinder A is pressed upwards against B , it is obvious that the bearers of the trough and its roller must he attaehed to the bearings of the cylinder a in order to preserve its eontaet with the eolour-roller c. b is a sharp-edged ruler of gun-metal or steel, ealled the colour doctor, screwed between two gun-metal stiffening bars; the edge of whieh wiper is slightly pressed at a tangent upon the engraved roller A. This ruler vibrates with a slow motion from side to side, or right to left, so as to exereise a delieate shaving aetion upon the engraved surfaee, as this revolves in the direction of the arrow. c is another similar sharp-edged ruler, ealled the lint doctor, whose office it is to remove any fibres whieh may have come off the ealieo in the aet of printing, and which if left on the engraved eylinder, would be apt to oeeupy some of the lines, or at least to prevent the eolour from filling them all. This lint doctor is pressed very slightly upon the eylinder A, and has no traverse motion.

What was stated with regard to the bearers of the eolour trough 1 , namely, that they are conneeted, and moved up and down together, with the bearings of the cylinder Λ, may also be said of the bearers of the two doetors.

The working of this beautiful meehanism may now be casily eomprehended. The web of ealieo, indieated in the figure by the letter d, is introdueed or earried in along with the blanket stuff $a n$, in the direetion of the arrow, and is moved onward by the pressure of the revolving eylinder Λ, so as to reecive the impression of the pattern engraved on that eylinder.

Before proceeding to describe the more complex machines whiel print upon eloth several colours at one operation, by the rotation of so many cylinders or rollers, it is advisable to give some insight into the modern method of engraving the eopper cylinders. These were formerly engraved altogether by hand, in the same manner, and with similar tools, as the ordinary eopper-plate engravings, till the happy invention of Mr. Jaeob Pcrkins, of Ameriea, for transferring engravings from one surface to another by means of steel roller dies, was with great judgment applied by Mr. Lockett to calieo-printing, so long ago as the year 1808, before the first inventor eame to Europe with the plan. The pattcrn is first redueed or inercased in size to sueh a seale, that it will repeat evenly over the roller to be engraved; and as rollers are of varying diameters, owing to old patterns being turned off, \&e., this drawing to scale has to be adopted for every roller, the exaet eireumference of the roller being taken and the pattern arranged in aeeordance with this. This pattern is next engraved in intaglio on a roller of softened steel, which is of such a size that one repeat of the pattern exactly eovers its surface; generally these rollers are about 3 inches long and from $\frac{1}{2}$ an ineh to 2 or 3 inehes in diameter. The engraver aids his eye with a lens when employed at this delieate work. This roller is hardened by heating it to a cherry-red in an iron ease containing pounded bone-ash, and then plunging it into cold water : its surface being proteeted from oxidisement by a ehalky paste. This hardened roller is put into a press of a pceuliar construetion, ealled the elamming maehine, where by a rotatory pressure, it transfers its design to a similar roller in the soft state; and as the former was in itaglio, the latter must be in relievo. This second roller being hardened, and placed in the engraving machine, is employed to engrave by indentation upon the full sized eopper eyliuder the whole of its intended pattern. The first rollcr engraved by hand is ealled the die; the seeond, obtained from it by a proeess like that of a milling tool, is ealled the mill. By this indentation and multiplieation system, an engraved eyliuder may be had for 17., whieh engraved 3y hand would eost 57 . The restoration of a worn-out cylinder beeomes extremely ensy in this way; the mill being preserved, need merely be properly rolled over the copper surfaee again, The die roller is made of suelı a size that its eireumference is exactly a fraetional part of that of the mills, say one-half, one-third, one-fourth; then in the elamming machinc the dic revolving in contaet with the mill rcpeats its surface so many times on the surfaee of the mill. By this means as little skilled labour as possible is used. When a pattern having more than one colour is to be engraved, the drawing is reduced to seale as before, each roller being made of the same diameter; then a traeing is made of each colour, whieh is engraved on a separate die and mill a mill being required for each colour - which engraves its separate copper roller; when these rollers come to be worked in the printing maehine, each rollcr fits its part of the pattern into place, and the original pattern is reproduced. 'The annexed drawings of engraving maehincry are from those made by Messrs. Gadd and Hill, of Manchcster, to whose eourtesy are due also the drawings of the printing maehines and their drying apparatus hereafter deseribed. Fig. 353 is a front view of the clammingmaehine, and fig. 354 is a side vier of the same. A a east-iron framework; B a headstoek screwed on the frame work A ; c a sliding piece, capable of movement from back to front on the headstoek B ; the position being determined, it is seeured by the screw shown under c; the roller o revolves iu bearing
 attached to the sliding picce c ; the s supporting piece E has a motion baekwards and whieh again supports the die roller seen in mes up or down; e is a small steel roller, of softened stecl called the nill, which reve the ecntre of the drawing. The roller F is which las a sliding movement on the revolves in bearings attached to the head stock, left by the serew I, worked by the lie slide bloek II, which is moved from right to wheel N , and turned by the wineh landle M ; the phin gearing into the toothed wheel N , and turned by the wineh handle M ; the shaft P has a sliding movement
through the wheel N, and earries the boss o, which has a square aperture to receive the centre of the mill, which is squared to fitinto i. $\quad y$ is a serew used to tighten and keep in the desired position the saddle picees E o, which together are pushed up or down to meet the varying size of the die.

354

The die d having been hardened, is inserted in the machine resting on the auxiliary hard steel roller e, which again rests on the supporting piece E ; the die being in contact with the hard steel roller d , the soft steel roller or mill E is next foreibly serewed up in contact with the die, rotatory motion being given to the roller D by the toothed whecls, those portions which are in intaglio in the die become in relief on the mill. It is then ready for the machine engraver to transfer its pattern to the copper roller. Fig. 355 is an elevation of the engraving machine. A A is a mandrel which earries the copper roller B; the mandrel is fitted in the universal joint c , which is secured on the shaft of the wheels D D , which are a double pair of wheels for the purpose of altering the speed from fast to slow, and are moved by the winch-handle or pulley. The lever e is fitted, works loosely on the shaft, on which is keyed the wheel F . By means of the serew G , the lever E can be secured to the wheel F . By this contrivance the motion termed rocking is effected, that kind of motion being

required wheu the pattern repeats at great intervals. The mill works in bearings attached to the pillar and earriage $\mathbf{H} \mathbf{I}$, which is moved from right to left by the serew II ; the mill is forcibly pressed against the eopper roller by a weighted lever which forees down the bearings of the mill in the pillar H : this lever eannot be slown in the figure, but is at right angles to the roller. The mill being in contact with the copper roller, revolves with it simultancously on the roller being moved by the wheels $\mathbf{D} D$ or the lever E , and consequently impresses or engraves its pattern on the copper roller; when the mill has traversed the circumference, it is then moved to its next relative position by the serew I , whieh moves the pillar aud carriage in; the exact distance the mill moves is determincd by an index on the wheel x , which is divided into segments, corresponding with the number of repeats laterally on the roller. The apparatus shown at L is used oceasionally when the machine is cmployed for turning off an engraved pattern, which, however, is generally performed in a slide larhe, and is unneeessary further to deseribe here.

Etching by nitric acid is largely employed in engraving for calico-printing, the following heing the proecss:-The copper roller is first coated all over with a thin coating of hituminous varnish, and when dry put in a machine which rules lines ahout the $\frac{1}{3}$ of an inch apart all over the surface, the lines all running in one direction and diagonally to the axis, the rarnish heing cut through hy the ruling point. The pattern is theu traeed on in the usual manner. All the parts that are intended to he blank, are then painted in with the bituminous varnish hy hand; generally the outlines are put in by skilled operatives, the filling-in heing done hy girls or boys; when dry, the roller is immersed horizontally iu a hath of diluted nitric acid, and kept there for a few minutes, during which time the acid attacks and deepens the lines which are unproteeted by varnish; the roller is then removed, well washed with water, and the varnish removed hy oil of turpentine; the pattern is found etelied with diagonal bars, which in a good engraving should be nearly level with the blank parts of the roller, the interstices being sufficient to supply the colour. The outlines of the pattern are generally completed with the graver. This mode is well adapted for giving a decp engraving, which is necessary for printing coarse fabrics. When a pattern is worn down it is easy to renew it, by simply painting up the hlank parts and etching deeper hy nitric aeid.

In 1854 , William Righy patented a mode of transferring patterns to copper rollers hy a modifieatiou of the pentagrapl. The pattern to he engraved heing drawn on an enlarged seale, and put on a bed curved to an arc of a circle, a tracer being then moved over all the lines of the pattern hy a beautiful, hut simple, arrangement of machinery, a tracer executed, on a varnished roller, a reduced eopy of the pattern on the circular hed. In a patent, dated lst January, 1857, Righy introduced an inprovement whereby any numher of tracers could he simultaueously worked on the roller, by the simple movement of the tracer on the pattern; thus all the repeats of the pattern could he executed at once. The method is becoming very extensively adopted, and, independent of several large printers having hegun engraving on this system, a very large estahlishment, "The Burlington Engraving Company" has heen commenced with a view to engrave ou this principle. All descriptions of engraring cannot however he done on this plan. The process is the following:-
The pattern is first cnlarged to five times its size : this is conveniently done by the canera. The paper pattern being put in the camera, an enlarged copy is thrown on a tahle in a darkened room, and is there easily traced on paper. It is then transferred to a thin zinc plate, and this plate is then engraved with a coarse graver, the lines of the cngraving heing adapted for the tracing point to work easily in. The zine pattern, if of a two- or more coloured pattern, is coloured for the guidance of the operative. It is then laid on the curved hed of the pentagraph machine, and a varnished roller being mounted in the machine, a numher of tools, corresponding in number to the repeats laterally, and carrying diamond points, are placed in contact with the roller. The operative then carries the tracer successively into all the lines of the pattern, a lever allowing the points to touch the roller only when necessary. The pattern is thus traced by the etching points on the roller one-fifth of the size of that on the zinc plate, or the same size as the paper drawing. The roller is then painted and etched with nitric acid, as hefore described. A rcference to the annexed engravings will more clearly illustrate this system.

In figs. 356 and 357, a represents the cylinder to he operated upon; and b, the bed or tahle for the reception of the enlarged pattern or original device ; c, the tracer, which is made to traverse in the direction of the arc of the bed or tahle, and hy means of its connection with the carriage h, the rail d, and the conuecting arms $e e$, communicates part of a revolution to the har or axis f, and thenee to the cylinder through the dics $g g$, on which the cylinder rests. The cylinder being thus moved in a rotary direction, will receive from the tools in contact with it diminished copies of the transverse lines which may have been gone over hy the tracer on the enlarged pattern or device. The tracer c being conneeted with the carriage h which travels along the rail d, will, in passing over a line running longitudinally with the machine, commurieate a partial revolution to the wheel l by means of the bands of steel $j j$, similar to watch springs, which pass under and over the small wheels $k k$, and are passed round aud secured to the large wheel l, which is mounted on the vertical shaft m, carrying at its npper eud the small drum m^{1}, round which passes the steel hand n, secured at each end to the picces oo. These pieces are secured hy bolts or screws to the sliding frames p, to which the upper tool bar or hars q, which support the graving, drilling, or etching tools $r r r$, are fixed. Thus any motion of the large wheel l will he imparted to the q, and, consequent through the steel band n to the sliding frames p and the tool bars q, and, consequently, to the touls r, therchy transferring to the cylinder diminished copies of any lines in a lateral direction that may be gone over hy the tracer. It will
be evident that the result of the simultancous action or be evident that the result of the simultancous action or compounding of the two

motions, by passing the tracer over any diagonal or curved line, will be the production of a diminished copy of such diagonal or curved line by each of the tools. s is a treadle with a vertical link and appropriate leverage, by which the tools may be brought in contact with the cylinder when required; $t t$ are counterbalance weights for the connecting arms $e e$, lower rail $d, \& c . ; u$ and v represent a worm and wheel for the purpose of giving the roller an extra partial revolution when it is required to engrave upon a different portion of the circumference of the cylinder; and to effect a similar purpose in the longitudinal direction, the tool bar may be made to shift in its sliding frame with an adjusting screw attached to it, by means of which any degree of exactitude in the setting of the tools may be obtained.

In the machine, as shown in the accompanying drawings the design executed on the cylinder would bear the same proportion in size to the enlarged pattern on the bed or table that the small drum m^{i} bears to the large wheel l, and the radius of the discs $g g$, to the radius of the circular bed; but by the adaptation of wheels and discs of different diameters, any desired proportion between the pattern engraved and the enlarged pattern may be adopted.
In fig. 358, representing a modc of giving an alternate reverse action to the tools and bars, a^{i} are the bars, to one of which a longitudinal to-and-fro motion is given, and a reverse motion given at the same time to the other bar by means of the links or rods b^{1}, connected to the beam or lever c^{1}, working on the pin or fulcrum d^{1} attached to the framing e^{1}. This arrangement of the machine is suitable for turnover patterns.

In figs. 359 and 360 the tool holders are adapted for employing two or more rows of tools, the members of the two rows being placed in alternate holders, or otherwise, according to the pattern. It is cvident that by slight modifications in the form of the tool holders the tools may be made to occupy any position on the surface of the cylinder, thus affording great facility for placing the tools and making them applicable for step patterns or other suitable sketches.

Figs. 359 and 360 show two such modifications, in which f^{1} is the copper roller; g^{1} tool holders with their tools being lifted off by the cam l^{\prime} and advanced to their work by the weights m^{l}, which can be adjusted with any required nicety.

In figs. 361 and 362 is shown auother arrangement of tools with sivivel bars, the swivel bars being show at p^{1}, and placed and held in the desired positiou by the serews q^{1}. To the bar is attached the carriage r^{1}, to one end of which is eonncted the tool holder s^{1}, in which is a projection t^{1}, acted upon by a beam or lever u^{1} working on a fulcrum in the carriage r^{1}. The tool is lifted off the roller v^{1} by means of the cam w^{1}, and returned to its work by means of a spring or Indian-rubber band x^{1} attached to the slide r^{1}. It will be perceived that, independently of the slot or slide in the tool holder, great change of position is obtained by simply shifting the carriages longitudinally.

The "excentric engraving," or etching, of Mr. Loeket. of Manchester, produces on a varnished roller the most curious variety of configurations, by means of diamond points, moved by very claborate machinery, the patterns being the result of excentric movements given to the tracer by a combination of machinery. In this case the exact cffect that will be produced by any given modification of the machine cannot be determined, though an approximation can be made; but when a pattern is produecd, and notes taken of the relative positions of the wheels, \&c., the same pattern can at any time be reproduced. This system is applicable principally to groundworks, or, as they are termed, "covers." It is impossible in the scope of this article, to give a clear idea of this machine, as a very elaborate set of drawings would be required.

With regard to the 2 and 3 -coloured machincs, we must observe, that as the calico in passing between the cylinders is stretched laterally from the central line of the web, the figures engraved upon the cylinders must be proportionally shortencd, in their lateral dimensions, especially for the first and second cylinder.

Cylinder printing, although a Scotch invention, has received its wouderful development in England, and does the greatest honour to this country. The economy of labour introduced by these machines is truly marvellous; onc of them, under the guidance of a man, to regulate the rollers, and the service of two boys, to supply the colour troughs, \&c., beiug capable of printing as many pieces as nearly 200 men and boys could do with blocks.

In mounting two or more cylinders in one frame, several adjustments become necessary. The first and most important is that which ensures the correspondence between the parts of the figures in the successive printing rollers, for unless those of the second and subsequent engraved cylindcrs be accurately inserted into their respective places, a confused pattern would be produced upon the cloth as it advances round the pressure cylinder.

Each cylinder must have a forward adjustment in the direction of rotation round its axis, so as to bring the patterns into correspondence with each other in the length of the piece; and also a lateral or traverse adjustment in the line of its axis, to effect the correspondence of the figures across the piece ; and thus, by both together, each cylinder may be made to work symmetrically with its fellows.

Fig. 363 is an end elevation of a 4 -colour printing machine, and fig. 364 is a section of same: the same letters of reference refer to both. A is thic east-iron frame-
work, bolted to a corresponding framework by the bolts B, with a spaee of from 3 to 4 feet between; c is the pressure cylinder, about 2 feet diameter, of iron, but hollow, and between 3 and 4 feet long, according to the sort of cloth the maehine is intended to print; \mathbf{D} are the eupper rollers, the width of a piece of eloth; \mathbf{E} are wrought-iron mandrels on whieh the eopper roller is forced by a serew press, the mandrel being about 4 inches diameter where the roller fits on, but with journals of smaller diameter. The roller is made with a projeeting piece inside, about $\frac{1}{2}$ an inch broad, and $\frac{1}{4}$ of an inch deep, extending all the width of the roller; this tab, as it is ealled, fits in a slot cut in the mandrel, which causes it to turn without slipping on the mandrel; the pressure cylinder or bowl c, rests with its gudgeons in bearings or bushes, whieh ean be shifted up and down in slots of the side cheeks A; these bushes

are suspended from powerful serews F, whieh turn in brass nuts made fast to the frame 4 . These screws counteract the pressure upwards of the two lowest rollers, and enable the bowl to be lifted out of the way of the rollers, \&e., when they have to be removed. GG are sliding pieces, moving in arms of the framework, by means of screws н н. These sliding pieees carry the bearings of the mandrels; to them are also attached the colour boxes and doetors. The screws n^{\prime} work in female screws I^{\prime}, which form part of a system of jointed levers к. These levers are for the purpose of giving an additional pressure or nip to the rollers d , the pressure being also elastic. There are four pairs of levers, each pair bearing upon one mandrel. It will be sufficient to describe one side only, both sides being precisely alike. The two highest rollers are pressed against the eylinder by the compound levers K^{\prime}, which have attachments to the arms of the framework at f, and to the inside of the main framework at g and $n y^{\prime}$ as fulerums, and are jointed together; at $h h$, but the bent levers h, g, i, mercly fit into sockets i, of the horizontal levers $\mu^{\prime} \mathrm{K}^{\prime}$, which are weighted at the ends K^{\prime}, by movable weights made to fit expanded parts. The two lowest rollers are pressed against the eylinder by the system of compound levers $\mathrm{K}^{\prime \prime}$, which have attaehments to the framework at k and $\mathrm{n}^{\prime \prime}$ as fulerums ; the screws $\Pi^{\prime \prime} n^{\prime \prime}$, working in female screws $I^{\prime \prime} I^{\prime \prime}$, as in the other set of levers. For convenience of removing the rollers, colour boxes, \&c., these levers are provided with a hinged piece \mathbb{N}, in a socket o , on the top of whieh work the serews $l l$, which, by means of the female serew in the lever $h s^{\prime \prime}$ serve still further to regulate the pressure; the lever $\kappa^{\prime \prime} h$ is shown as when the machine is printing, but when the rollers, ovel; the lever with its burd lever is lifted by the handle, and the hinged piece N pulled over, the lever with its burden being then lowered down ; the weighting of these levers,
whieh are partly outside the machine, is best seen in figs. 363-364 where \mathbf{L} are the weiglits, Q arc colour boxes, the sides and bottomwn which are made of sheet copper, and the ends of gun-metal; in cach end is a slot, which reeeives the brass journals of the wooden furnishing rollers P , which are wrapped with a few folds of coarse calico, and, by revolving in the colour and against the engraved rollers D, supply it cqually all over with the colour: the superfluous colour is next wiped off by the colour doctors т. These doctors are thin blades of steel or brass, which are mounted in doctorshears, or plates of metal screwed together with bolts; the shears have journals which rest in bearings movable backwards and forwards by the serews s; the doctors are kept in elose contact with the engraved roller by levers and weights, for the way of arranging which, see fig. 365 , where A, B, c , are the levers attached to the doctor shears. On the ends of these levers, weights are hung, and by this means the doetors are pressed forcibly against the roller.

After printing the pattern on the piece, the roller \mathbf{D} is cleaned from threads or dust by the lint doctors U , pressed against the roller by the serews s, fig. 364 ; any loose threads from the pieee are prevented by the lint doctors from going into the colour. and consequently under the cleaning doctors, where by preventing them fiom perfectly wiping the blank parts of the roller, smears on the piece would ensue. The colour boxes are mounted on wooden boards, to give them greater strength, and are tightened up against the roller, by the screws R R and w w ; the lower pair of eolour boxes are removed from the copper roller when not in use by the handles v, after detaching the screws $\mathrm{w} \mathbf{w}$. There is a toothed wheel slipped on to each mandrell, working into a toothed wheel on the axis of the furnishing roller, whieh ensures the copper roller and furnishing roller always turning together. 13y means of an exeentrie, fixed on the axis of the pressure bowl, and connected with each cleaning doctor, a regular vibratory movement is given to them, which prevents the doctor being worn down unequally. Sometimes for the highest rollers, and especially in machines of more than fur colours, the cumbrous colour box is dispensed with, and a doctor inserted in a curved frame is applied to the roller instead. In this arrangement the doctor forms the bottom of the colour reservoir, and is pressed strongly against the roller, the curved frame stopped off at the sides with a piece of copper curved to fit both roller and frame, and which is padded with a pieee of folded cotton cloth, forms the colour box. 'This doctor box takes but little room, and wastes but little colour, but is

CALICO-PRINTING.

only used for the uppermost rollers. Neither of thesc arrangements can be shown in fig. 364. The roll of picces is shown at a, wound on the wooden roller b, the axis of which rests in bearings at the end of the arms. The picce is conducted under a small wooden roller, next over a square iron bar, and next against the scrimping bar Y , thence over the wooden roller x, round which also pass the grey picce d, and the woollen blanket e. The scrimping bar is a bar of iron or brass, with curved surface, furrowed by grooves, cut right and left from the contre, as in fig. 366. In passing over this bar, the cloth is stretched equally from the centre, and any folds or creases removed. In order that the picce may be constantly stretched, the roller b is provided with a wooden pulley, round which passes a leather strap, one end of which is made fast to the framework, and to the other is attached a weight ; the friction of the strap against the pulley causes a retarding action of the piece, and consequently keeps it stretched.

Fig. 367 is an elevation of a 12 -colour machine, which is inserted to show the way

in which all machines are driven. The large spur wheel is keyed on the axis of the pressure bowl, and works into pinions staked on the mandrels; there is a peculiarity about these pinions, or box wheels, as they are called, which may be observed in fig. 367, but is shown on an enlarged scale in fig. 368, which is a box-wheel detached. This wheel may be compared to the fine adjustment of a microscope, as by means of it the rollers receive the final and delicate adjustment so as to register accurately with one another. It consists essentially of two parts: the disc A, carrying the cogs ; and the hollow axis B , carrying a disc at one side, and the connecting piece and screw CD at the other. The part AA, or shell of the wheel, is about 10 inches diameter and 3 inches broad across the cogs ; one side of the shell is cut out to receive the plate shown by dotted lines. This plate is provided with the hollow axis B , which comes through the shell, and projects about 3 inches, the part projecting being cut through
 at \mathbf{F}; fastencd to it also is the connectin screw just fits in two projecting lugs $\mathbf{G} \mathbf{G}$ Vol. I.
I. L
forms part of the axle piece, and works in the slide ir. When this wheel is used, it is slipped on the mandrel whiel earries the eopper roller, and a eotter is driven through the cleft axle and through a eorresponding eotter hole in the inandrel, thus firmly eonneeting the mandrel and wheel; the mandrel and roller being put in their place in the machine, the cogs of the mandrel whecl work into the main driving wheel, as shown in fig. 367. The coarse adjustment of the rollers being made when putting them in their places, the fine adjustment is made by turning the serew p . It is obvious that the serew \mathbf{D}, by pressing against the lugs \mathbf{G} of the shell A , which is geared into the driving wheel, will turn the mandrel and roller without moving the cogs. By this arrangement, any roller may be moved round about 2 inches at any time after being fixed in its place. All machines of more than one colour arc fitted with these wheels, which indeed are indispensable.

In fig. 367 is also shown a piece of apparatus attached to the framework for the purpose of eleaning the eloth from dust and threads before printing. This apparatus, patented by John Coates, of Manehester, is shown on an enlarged seale in fig. 369. It consists essentially of a brush and a roller, covered with eard or the wire material used in cotton-carding engines; these, with the gearing, are attaehed by the straps of iron B в to the ends of the rods $A \quad A$, eare being taken that the roller G is placed parallel to the printing machine, and the apparatus sufficiently high to be over the head of the person engaged at work behind the maehine, and eonvenient for him to reach out the roller and brush, when they require cleaning. The piece passes over the small roller c, whether delivered from the "roll," or "beam," as at N or o; it then gocs under the wooden rail D , and over a brush E , and afterwards, at F , it comes on to the eard roller, whieh is turucd by the plain roller G (over whieh the piece passes) the eontrary way to the piece, so that the card eatches any loose material, and prevents it again adhering to the piece.
Four, five, and six-eolour machines, similar to the above, are now at work in many establishments in Laneashire, which will turn off a pieee of 28 yards per minute, each of the three or four eylindcrs applying its peeuliar part of the pattern to the cloth as it passes along, by ceaseless rotation of the unwearied wheels. At this rate, the astonishing length of one mile of many-eoloured web is printed with elegant flowers and other figures in an hour. When we call to mind how much knowledge and skill are involved in this process, we may fairly consider it as the greatest achievement of ehemieal and mechanical scienee.

The general course of printing in thus performed:-The pieces to be printed arc wound on a beam, and, last of all, a few yards of common conrse cotton or ealico, kept for this purpose: this is for the printer to fit the pattern on, to save good eloth. The roll of cloth being put in its place behind the machine, the printer's assistant stations himself behind to guide the eloth erenly, and pluek off any loose threads he may see. The machine printer stands in front, and, after having fitted the pattern on the cloth, attends to supplying the colour boxes with colour, and regulating any misfitting or inequality in the printing. The maehine then prints rapidly. After running through 30 or 40 pieces, the printer stops the machine, removes the doctors, and fills them anew to a bevelled sharp edge.

To prevent the blanket being too soon soiled, it is usual to run grey or unblenehed pieces between the blanket and the white pieces. The blanket, grey, and printed pieees are dried separately. There are several ways of drying after the maehine. The fig. 370 may be taken as representing a good and effective method. Behind the
priuting machines there is a hot room, in which is fixed the bulk of the drying apparatus. This room is kept closed, and is ventilated so as to let out the steam, \&c.; it is of necessity of much higher temperature thau the printing apartment. Above

the printing machine is fixed a framework, which carries the supports for the rolls of grey pieces, and a long rauge of stcan chests a a. These steam chests are the same width as the machine, about 1 foot broad and 3 or 4 inches deep, and are connected one with another by bent pipes at the end. The range of steam chests is continned through an aperture iu the wall into the hot room, and below them is an arrangement of steam cylinders, turning on hollow axes, throngh which steam is admitted. The coursc of the blanket, grey, and piece, will be seen on reference to fig. 370 in which the shortest arrow shows the course of the blanket, the longest arrow the comse of the printed pieces, and the middlc-sized oue that of the grey pieces. The white picces leave the roll b, passing over a wooden roller, and thence round the cylinder along with the grey and the blanket. After receiving the impressinn, the piece passes over a small roller at the cdge of the framework, and thence along the top of the stcam chests, the roller being so regulated as to keep the pieces close to the chests, but not touching them. It passes along the straight length and down the incline; on leaving the chests, it passes round the cylinders Nos. 6, 5, and 4, being so stretched by rollers as to cmbrace nearly the whole of the cylinders; it then passes uuder the framework and up through another narrow aperture in the wall, being conducted through a plaitingdown apparatus, which has drawing rollers at the end of a pair of arms, which move in a segmeut of a circle, and so fold the piece backwards and forwards in a loose pile. The grey and the blanket, on leaving the cylinder, proceed together over a roller at the under side of the steam chests, along which they travel as far as the roller c, where they part company, the blankets passing down over the cylinders 1 and 2 , thence under these cylinders and over and under the rollers $d d$, returning along under the steam chests round rollers $e c$, and so again into the maehine. The grey pieces, after leaving the roller c, pass along the under side of the chests to the roller f, thence round the cylinder 3 , the rollers $g g$, being finally wound on a beam at h. When the roll of grey pieces i is exhausted, the roll h is put in its place, the grey pieces being run through the machine two or three times, according as they are more or less stained, and then sent to the bleach house.

Scarcely any print works are without several 5 and 6 -colour printing machines, and the printers of goods intended for hangings, which are generally of elaborate floral designs, employ machines capable of printing from 10 to 20 colours at once. These machines are necessarily of very large dimensions. Fig. 371 is an end vicw of a 20 -colour machine, made by Messrs. Gadd and Hill, of Manchester, for Mr. Kay, of Castlcton Print Works, and is employed in printing very beautiful floral patterns on woollen fabrics, in imitation of those produced by haud labour in France.
The system of turning cylinder machines, patented by Mr. Joseph Leese, possesses sevcral advantages. In this plan a smali high pressure oscillating engine is attached directly to the axis of the large cylinder, thereby dispensing with the heavy gearing and shafting required when machines are turned by a large stationary ellgine; fit the manine printer also has perfect command over the speed of the machine, and can usual system. On this systurning very slowly, with more convenience than on the works, and are independent of the machines can be put down in any portion of the
In surface printing the cylinder or rollery engine. by hand, and the manner of workiug them is shown in fig as the wooden blocks used anl 8 -colour surface machine of Gadd's. is shown in fig. 372, which is the section of cylinder, which is hollow, and made with arms inside; c C arc the ; B the bowl or

plied with colour by the endless web or sieve $f f$, revolving round the wooden tension rollers DDE; the roller E is screwed down so as to press the sieve on the furnishing roller F which revolves in the copper colour box G ; the two tension rollers next to the surface roller move in slides, so that by means of the screw H, the sieve can be pressed against

the surface roller; on leaving the furnishing roller F, the sieve is wiped by the doctor I screwed lightly against the sieve by the screw k .

The printing roller being in relief, there is no necessity for the complicated arrangement of levers as in the ordinary machinc, and consequently the surface machine is much more simple. It is only adapted for patterns of littlc delicacy, as the outlines are apt to be not well defined; the colours, however, from being laid on the top of the cloth, are very rich, hence for woollen fabrics the surface machine is well adapted.
Pieces for printing by machine are stitched together end to end, which is usually done by girls, but the use of stitching machines is rapidly becoming general, and probably will soon become universal. One of thesc machines, found advantageous, is shown in fig. 373.

This machine was the invention of Charles Morey in 1849. A pair of wheels are fitted with leaves on their peripheries, and gear into one another like cog-wheels. These wheels are mounted in suitable bearings fixed to a sole plate, and receive rotary motion by means of a winch-handle. The centre of the teeth of both wheels is cut away, so as to form a circular groove between the two teeth which happen to carries a sliding piece, with groove, and attached to the frame, there is a bracket which sliding pieee, which passes thre spiral spring wrapped round it. In the end of the of a needle, the point of which rests in bracket, there is a receptacle for the eye end threaded, and the fabric to be stitcha groove formed by the wheel; the needle is motion is communicated, whereby the fabric is suhind the wheels, to which rotary which, as the operation proceeds, are forced is suecessively folded into undulations, needle is full, and the piece at the other side of the point of the needle; when the on the spring, removed from the machine, and the wheels, the needle is pushed back which are then basted or stitehed together. The thread drawn through the pieces, ends of pieces together; but where a number of pieces very rapid mode of stitching purpose of being put through several operations without sntitching to a for for the scription of stitehing is required, and a machine, known as unstitching, a firmer depatented by Newton in 18.53 , is frequently used. This machin Ameriean machine, and ment, whereby a bearded needle is employed for throwing a line of looped arrangeinto the fabric. The pieees are hung double on pinsing a line of looped stitehes racks, which move in grooves formed in the face of a cins projecting from two circular driven by pinions taking into their teeth, and thus circular frame. These racks are the action of the needle, which having a and thus the piece ends are passed under the needles of stocking frames, and being in like mating motion similar to that of passed backwards and forwards through the fike manner supplied with thread, is loops on the inner face thereof. Carried by the sam, and thereby leaves a chain of holes in the fabric to allow of the needle passing arm is a stiletto, which pierces machine being rather elaborate, will heedle passing freely through the same. The Pieces are also frequently gummed together at in the article Sewing Machines. the ends for about $1 \frac{1}{2}$ inches with paste or gum, and ends, which is done by pasting drying them immediately on a steam pipe in front, after laying one on the other, advantageous for some purposes, as when the pieees cof the operator. This mode is into hot water, they are easily detached onc from the othe the subsequent operations,

By whichever of these modes the pieces are joined together, they are then wound in rolls of about 40 pieces by a machine called a caudroy, which winds then on the wooden bean which fits in at the back of the printing machine, the cloth during the operation of wiuding becomes stretched latcrally quite smoath, by the aid of one or two grooved stretching bars, as described in fiy. 366, a due degree of strain being kept on the piece by it passing under and over scveral plain wooden bars, and to the axis of the wooden beam which receives the picces being suspended weights which keep it forcibly in contact with the wooden drum which turns it by friction. In this machine the ends of the axis of the beam pass through slots, which allow it to rise as the picces become wound on, and the diameter consequently increases. If fewer pieces than 40 are to be printed in onc pattern or colouring, it is usual to stitch a few yards of old cloth between two pieces where the change is intended to be madc; by this means the printer, on coning to the waste piecc stops his machine, and fits another pattern or changes the colours without damaging good cloth.

The doctors used in cleaning off the superfluous colour from the rollers, are generally thin blades of steel, of a thickuess varying from $\frac{1}{32}$ of an inch to $\frac{1}{16}$ of an inch, according to the sort of engraving on the roller; but some colours, such as those eontaining salts of copper, would be too corrosive on a steel doctor, and in this case doctors of a composition like brass are used. They are filed to a bevelled edge, and require to be retoached with the file after printing from 10 to 30 pieees. The cylinder or drum, in contact with which revolve the copper rollers, is wrapped round with a cloth called "lapping," which is generally a coarse strong woollen cloth of peculiar make, and is folded tight on the cylinder about $\frac{1}{2}$ an inch thick. The blanket is next put on and drawn tight: this blanket is a very important part of the machine; it is a thick woollen web, about 40 yards long, and requires to be made with great care, so as to be uniform in texture, thickness, and elasticity. If the blanket is uneven, it has the effect of throwing the blanket into confusion at the uneven places.

A good blanket will serve to print 10,000 pieces, being washed whenever loaded with colour, and then is suitable for covering the tables of the block printer.

In the year 1835 Messrs. Macintosh and Co. patented an Indian-rubber blanket, which consists of several thick cotton webs, cemented together with dissolved Indian-rubber This blanket is very useful and economical for some purposes; the surface being very smooth, great delicacy of impression is obtained, and when soiled it is not necessary to remove it from the machine, as it is easily washed with a brush whilst revolving on the machine. An Indian-rubber blanket will print 20,000 pieces, which is twice as much as a woollen one will do, the price per yard being also lower. Several descriptions of these blankets are made by Messrs. Macintosh, some of theu having a coating of vulcanised Indian-rubber on the face that is printed from, thereby giving a still more clastic surface. A great improvement has been recently made in these Indian-rubber blankets by shrinking or preparing the cotton previous to cementing, according to the patent process of Mr. John Mcrcer, viz. by soaking in strong alkali, and afterwards in dilute sulphuric acid; this process contracts the fibre to a certain extent, and the cloth is found to possess a great increase of strength. When made into blankets they are found to be more capable of resisting the severe strains of the printing process, and consequently many more pieces can be printed from them than from the old sort. They are made by Mr. Richard Kay, of Accrington, and are coming into general use. The woollen blanket, however, seems to be preferred for several styles. Several patents have been taken out for printing without blankets, but have never come into general use; but recently a mode of printing with grey or unbleached calico has come into use, whieh is very favourably spoken of. In this method a roll of grey cloth is so disposed behind the machine that the fabric can be conducted five times through the machine before finally going away to be wound on a beam for removal. There are, therefore, 5 layers of cloth under the white calico when printing, which gives a sufficiently elastic bed for printing from; and very delicate shapes can be got. Any given part of the grey cloth is 5 times uppermost on the pressure cylinder, and consequently 1 piece of grey cloth is used to print 5 pieces of whitc. Gutta percha pressure cylinders, or "bowls," have been suggested by Dalton, an English priuter; but, though thcoretically preferable to iron, they do not appear to be much used.

The proper hygrometric state of calico when printing should be attended to ; very dry calico does not take colours or mordant nearly so well as when containing a certain amount of hygrometric moisture. Practically this is attained by the bleached pieces being storcd in the "white room," generally several hundred pieces in advance, and they easily absorb sufficient mosture from the air to be in a proper state for printing on.

Pieces after printing by either block or machine are rarcly put through the next operations at once, but are for the most part hung in spacious airy chambers in folds,
from an arrangement of rails at the top of the room. These chambers are kept at an equable summer temperature, aud in proper hygroscopic conditions, due ventilation being also provided. Thesc "ageing rooms," as they are called, are in several print works of enormous diunensions, and arc gencrally separatc buildings. Those of Messrs. Edmund Potter \& Co., and Messrs. Thomas Hoyle \& Co., in Lancashire, may he particularised as forming quite a feature in the works. The pieces stay in these chambers from 1 to 6 days, according to the style of work, during which time the colour which was deposited on the outside of the fihrc gradually permeates it, and becomes more firmly attached, a portion of the base heiug deposited, and acetic acid given off in vapours. Where colours are required to absorb a certain amount of oxygen, such as iron mordant, catechu hrowns, \&c.., they find the necessary conditions here. On the proper ageing of printed goods depends in a great measure the success of many styles; should the room be too hot, or ton dry, imperfect fixation of the colour ensues, and meagre and unevcu tints are obtained in the subsequent operations. In countries where in summer the atmosphere is dry, great difficulty is found in ageing properly. In Amcrica catechu browns have been known to require weeks hefore being of the proper shade. These are of course exceptional cases; the scientific printer knows how to comhat these evils by the introduction of watery vapour, or even hy erecting his ageing room over a reservoir of water, with rather open boarding for floor ; many colours also may have deliqucscent salts introduced. In England the process of ageing is of pretty uniform duration.
Quite recently several printers have hegun to adopt a method of "ageing," which promises to revolutionise the old way of hanging for several days, and thus occupying a large space. In a patent of Mr. John Thom for sulphuring mousseline-de-laines, a claim is made for using the same apparatus, or a modification of it, for passing calico printed goods through a mixture of air and aqueous vapour. Pieces, after leaving the hot room in which they are dried after printing, are run over rollers arranged in a narrow room, above and below. A very small quantity of steam is allowed to escape into this room, which is kept slightly warm by the steam-pipes. The pieces, on issuing from the apparatus, should feel soft, but not moist; they are loosely folded together, and stay in this state one night, and are taken to tbe dyehouse next day. It is even stated that this onc night's age may be dispensed with, and the pieces dunged off after five or six hours' age.
The thickening of mordants and colours is a subject of very great importance to the printer. It is ohvious that a mere solution of salts or colouring matters, such as used in dycing, cannot be used in printing a pattern; capillary attraction speedily causes such a solution to spread heyond the limits of the pattern, and nothing hut confusion is the result. A proper degree of inspissation is then essential. To the capability of very thick colour being printed hy engraved plates or rollers under severe pressure is due the superior smartness of outline cbaracteristic of goods produced by these means. Where colour can be laid on the outside of the cloth, so as to penetrate as little as possible to the other side, much brighter shades arc produced. act as a sort of min the most brilliant shades of colour, it is necessary tbat the cloth act as a sort of mirror behind the colour, which cannot be the casc if the fihre is perfectly saturated with colour. Independent of this, a great cconomy of colouring only. This is cspecially proper application of the colour or mordant to the face in excess, is apt to give up a portion from the cloth in the dyebeck, therehy printed suming a certain quantity of madder in pure loss.
The colour-house should be a spacious apartment on the ground floor, with the roof ventilated in such a manner that the steam produced finds a speedy exit; at one end, or down one side, is fixed a range of colour-pans, varying in sizc, and supplied with steam and cold watcr. Colour-pans are usually made to swing on pivots, whereby they are easily emptied and cleaned. A range of this sort, as manufactured hy Messrs. Storey \& Co., of Manchestcr, is represented in fig. 374. This range consists of 8 douhle-cased copper pans, containing from 1 to 28 gallons, riveted together at the top, wired at the edges, and made perfectly steam-tight; they are supported on cast-iron pillars, and are so arranged or fitted as to swivel or turn over when the colour is required to he cmptied, hy means of a brass stuffing hox attached to pan, and working in the corresponding part attached to pillar on the one side, and moving at the other on a plain brass nozzle, supported by a pedestal projecting from pillar, the nozzle having a blank end, therehy cutting off the communination of stcam, which is carried to the following pan. They are also supplied with a condense tap to carry with a hrass tap on the top, with 3 flan pillar in the range, except the last, is supplied as more fully explained hereafter. A, fig. 374 , is a copper pipe, with one blank end, and open at the other with flange
for the admission of stean, which passes through the downward-bent pipe marked B, in connection with the brass tap on top of pillar, the plug of this tap being open at bottom to admit the steam down the pillar as far as the stuffing box, marked E , through which it rushes into the easing of pans, and out by the condense pipe \mathbf{D}, when required. c is a copper pipe, with one blank end and open at the other, for the admission of cold water for cooling the colour after boiling, and is likewise connceted with the tap on top of pillar, as shown in fig. 375 , marked f, the water passing through precisely in the same manner as the steam in A. D is the condense pipe, with one blauk end and open at the other, with flange, underneath the pans, to carry off the

water or steam, and is supplied with ground brass nozzles to fit the condense tap at bottom of pan, being accurately adjusted, so that in the swivelling of pan it leaves its seat and returns perfectly steam-tight. Fig. 375 represents an end view of range, showing more fully the position and connection of steam and cold water pipes to brass tap, the cold water pipe running along back of range, the steam pipe above, parallel with eentre of pans, and the downward-bent pipe in front; and likewise the stoppage in pillar, so far as is necessary there should be an aperture for the steam or water to meet the brass stuffing box. In this fig. is also shown the copper pipe, with elbow swivel tap, for supplying pans with cold water (one pipe to supply two pans), and fixed on top of cold water pipe exactly opposite pillar, as further shown in fig. 376 marked g. Fig. 377 is nn end view of range, with pillar cut, in order to show the position of condense tap at bottom of pan, and its connection with condense pipe, and where the point of separation takes place in swivelling, by the line marked h. It will be seen by the foregoing that the process of boiling and cooling is rapid and certain, everything being accurately adjusted and steam-tight throughout the whole apparatus.

The colours are placed in these pans and stirred well all the time they are being boiled; good stirring is very essential to produce smooth colours. This was formerly done by hand with a flat stick, but lately the best print works have been fitted with machinery over the pans to stir mechanieally. A very effective plan of this sort is represented in figs. 378 and 379. It is that of Messrs. Mather and Platt, of Manchester, the boilers in this drawing being not reversible, though the plan can be just as casily adapted to that description of pans. Fig. 378 is a front elevation; fig. 379 is a transverse section, and fig. 380 is a sectional plan, the sane letters referring to all. a is a horizontal shaft above the pans, fitted with a pair of mitre wheels, $b b$, for each pan. The vertical wheel b is not keyed on the shaft a, but is brought into connection with it when required by the eateh box c, which slides on a key ou the shaft, and

revolves with it (see small cuts); the catch box is worked by a lever handle d, and thus motion is given to the vertical shaft e. The shafts a and e are both supported by the framework f, fastened to the wall; the shaft e is terminated by the frame $g h g$, the centre of which, h, is a continuation of the shaft e; and the wings g are hollow to carry the shafts k, which are surmounted by the cog wheels $i i$, which gear into a cog wheel l on the shaft e. The agitators $n n$ are made of flat brass rod, and arc curved to fit the bottom; they are connected with the shafts $k k$ by a hook joint, which is steadicd by the conical sliding ring m; the agitators thus hang from the shaft e, and nearly touch the bottom of the boiler. When the shaft e is put in motion, one round each other, and also each on its own axis; as they are sct at right angles to each other, as shown in fig. 380 , it follows that no part of the pan can escape being
stirred. When the colour is made, the picce m is slid up on h, and the agitators unhooked aud takeu out, the waste of colonr being very trifling, in conscquence of

the agitators being outlines only. The saving of labour effected in a colourhouse by this machinery is very great, as, after turning on the steam, the pan may be left to itself till the colour is finished.

From the great variety of substances used in mordants and colours, of very different chemical properties, a variety of thickening substances is required. Chemical combination between the mordants or colour and the thickening substance is to be aroided as much as possible, for such combination may be regarded as so much pure loss, the fibre of the fabric not being able to decompose and assimilate tbem. Several circumstances may require the consistence of the thickening to be varied; such as the nature of the mordant, its density, and its acidity. A strong acid mordant cannot be easily thickened with starcb; but it may be by roasted starch, vulgarly called British gum, and by gum arabic or senegal. Some mordants which seem sufficiently inspissated with starch, liquefy in the course of a few days; and being apt to run in the printingon make blotted work. In France, tbis evil is readily obviated, by adding one ounce of spirits of wine to half a gallon of colour.

The very same mordant, when inspissated to different degrees, produces different tints in the dye-copper; thus, the same mordant, thickened with starch, furnisbes a darker shade than when thickened with gum. Yet there are circumstances in which the latter is preferred, because it communicates more transparency to the dyes, and because, in spite of the washing, more or less of the starch always sticks to the mordant. Gum has the inconvenience, however, of drying too speedily, and forming a hard crust on the cloth, which does not easily allow the necessary capillary attraction to take place, and the tints obtained are thin and meagre. The substances generally employed in thickening are: -

1. Wheat flour.
2. " starcb.
3. Torrefied wheat starch, or British gum.
4. Torrefied potato farina.
5. Gum substitutes or soluble gums.
6. Gum Senegal.
7. Gum tragacanth.
8. Salep.
> 9. Pipe-clay or china-clay mixed with gum Senegal.
> 10. Sulphate of lead.
> 11. Molasses.
> 12. Dextrin.
> 13. Albumen of eggs.
> 14. Lactarine.
> 15. Gluten.
> 16. Glue.

Those most used are the first seven. The rest are only adapted for special styles or colvurs. The artificial gums produced by roasting starch or farina are very largely in use. The action of heat on starch causes a modification in it. According to the degree of heat and its duration a greater or less modification ensues, the higher the heat, the more soluble in water the gum, but also the browner and of least thickening properties. The addition of various acids and alkalies to starch or farina before calcination, causes them to become soluble at lower temperatures than without; different acids also produce different results; those most gencrally used are nitric, acctic, muriatic, oxalic, and recently laetic acid has been proposed by Pochin. The proportion of acid used is very small, and, though the effect is produced, the acid disappears during calcination. Small quantities of alkalies are also used for special modifications of these gum substitutes. The making of these gums is a distinct branch of trade, and fiuds cmployment for large capital and numerous hands. In giving the receipts for the various colours, care will be taken to specify the nature and proportion of
thickening to be employed for each colour ; a most important matter, often neglected hy English writers upon calico printing.
It is often ohserved that goods printed upon the same day, and with the same mordant, exhibit inequalitics in their tints. Sometimes the colour is strong and decided in one part of the picce, while it is dull and meagre in another. The latter has heen printed in too dry an atmosphere. In such circumstances a neutral mordant answers best, especially if the goods he dried in a hot flue, through which humid vapours are in constant circulation.

In padding, where the whole surface of the calico is imbued with mordant, the drying apartment or flue, in which a great many pieces are exposed at once, should be so constructed as to afford a rcady outlet to the aqueous and acid exhalations. The cloth ought to be introduced into it in a distended state; because the acetic acid nay accumulate in the foldings, and dissolvc out the earthy or metallic hase of the mordant, calusing white aud grey spots in such parts of the printed goods. Fans may he employed with great advantage, comhined with Hot Flues. See Ventilation.
The mordant aud thickening, or the dye decoction and thickening, heing put in one of the copper pans, is stirred by hand or machinery and hoiled till perfectly smooth; the steam then being shut off, cold water is admitted to the douhle casing, and the colour coolcd. It is then emptied out of the pan into a straining cloth, stretched over a tub, and strained to remove all gritty particles, whicl would he very injurious to the copper rollers. A very useful straining machine has heen rccently invented hy Dolifus Mieg \& Co. and patented in this country. This machine is shown in fig. 381. It consists of a casc or cylinder, in which a piston is worked, either hy hand or power, to press the colour through a cloth made of cotton, linen, hair, or other suitable material at the hottom of the case or cylinder; or, instead of the said cloth, a wire gauze may be uscd. The hotton of the piston may he made of wood, copper, brass, gutta percha, caoutchouc, or other suitable material. The manner of working the apparatus will he clearly understood by reference to the drawings, in which fig. 381 is a side elevation of the said machine or apparatus, and fig. 382 a front elevation of the same. Δ represents the case or cylinder, which is strengthencd at its upper part by the iron hand B , and also at its lower part hy the ring a. The skeletou plate b, which forms the bottom of the cylinder, is removahle, and sustained by the four hooks c. To disengage the platc b, springs are fitted on the ring d, which aet upon two of the hooks c, so as to throw them out from under the grid b. Upon the ring a the second ring d is laid, which supports the circular handle e. The upper parts of the four hooks c lay upon four inclined plancs fitted on the ring d. The modus operandi is as follows:-- If the ring d is turned right or left, the skeleton plate b, on which one of the said clotls or wire gauze has previously heen placed, will he brought firmly up to the extremity of the cylinder a; and if the said cylinder be filled with colouring matter, the piston M , being worked by the, pulley E , the wheels F, G, $\mathrm{H}, \mathrm{I}, \mathrm{K}$, and the rack L , will force it through the cloth or sieve, to he received in a vessel under it for the purpose; and hy a proper arrangement of the tecth of the said rack l, the piston can only descend to any required point in the cylinder. To facifixed on pivots at N , so apparatus and increase its general efficiency, the cylinder is for the purpose of introducing he easily inclined or hrought towards the operator ring or hand B is fixed raised from the notch k on the handles f and the two catches h. The catches heing of the handles f, till the hooks, heing acted \mathbf{P}, the cylinder may he pulled forward hy means at h on the lower part of the frame second wheel Q , hy which a reverse motion is oltained, and the phaft x is placed a original position.

Colours for printing by block are for the most part thickeued in the same manner as thosc for machine, but are made thinner, siuce very thick colour cannot he applied to machine, such as pipe-cs also can he used in hlock printing that are inapplicable contain gritty particles, which would speedily of the machine rollers.

A spacious drug room is attached to the colour-house where all the drugs used are kept away from the steam of the colour-house. Near the colour-house should be a well appointed lahoratory, where drugs can he tcsted and experiments made.
Formerly, all the decoctions and mordants used in print-works were made on the spot, hat the trade having very much extended, the manufacture of the various
mordants and dece supplied with these articles dyewood, is now a separate business, and printers can be be produced for on the works, the quality also heing uniformer rate than they could now only makes for himself a few unimportant articles. The province of the forinter
colour maker, who is generally a well paid and responsible scrvant, is to combine these primary materials so as to form the different colours required for the different styles of work; as the tastc of customers varies, he is required to be able to make any

given variation of shade at will, and be able to judge of the quality of the various materials submitted to him. The ordinary decoctions that are kept in stock in the colour department are:-

Logwood liquor.
Peachwood liquor.
Sapan liquor.
Quercitron bark liquor.
And the various mordants and solutions are: -

Gall liquor.
Persian berry liquor.
Cochineal liquor.
Fustic liquor.

Red liquor, or acctate of alumina,
Iron liquor, or acetate of iron.
Buff liquor, or pyrolignite of iron.
Pernitratc of iron.
Permuriate of iron.
Protomuriate of iron.
Buf inuar, or pyrolignt

左

Protochloride of tin in solution.
Oxymuriate of tin in solution.
Nitrate of copper in solution.
Acetate of copper in solution.
Lime juice.

Catechu liquor.
Ammoniacal cochineal liquor.
Extract of indigo.

Ammonia liquor.
Acetic acid.
Pyroligneous acid.
Nitric acid.
Muriatic acid.
Sulphuric acid.
Caustic soda liquor.
Caustic potash liquor.

Many other dry acids and salts are also kept in stock. For the constitution of the various mordants and their preparation see Mordan's.
It would be impossible to particularisc all the styles of calico printing. The variety is infinite; but they may be broadly classed as follows :-
I. Madder styles, varietics of which are -
a. The simplest form is a pattern printed in mordants on white ground, such as black and red; black, red, and purple; black and two reds, \&ce, cbocolate being sometimes substituted for black, and brown from catechu being also introduced; tbese arc dyed witb madder, the ground remaining white.
b. Any or all of the above mordants, together with lime juice, technically termed acid, printed, and a fine pattern printed all over or covered in purple or light chocolate, then dyed madder. In this style the red is a peculiar one, termed resist red; and the result when dyed is, tbat the acid and red have prevented tbe purple or chocolate fixing on those parts, the red remaining pure and tbe acid having formed a white, the rest of the ground being covered witb the fine pattern or cover; of this style large quantities are printed in black, purple, and acid, and covered in palcr purple, tbe cover roller being any small full pattern, and this not being required to fit to the other pattern, a great variety of effects may be produced by varying tbe cover : often a still weaker purple is padded or blotched in a plain shade all over the piece, and in tbis case the only wbite in tbe pattcrn is that reserved by the acid.
c. The French pink style, which is wholly various shades of reds or pinks, and is printed in one or more shades of red and acid, theu covered or blotcbed in pale red, then dyed madder and subjected to a peculiar clearing witb soap, whereby pink shades of very great delicacy are obtained.

All these are what are termed fast colours, and having, after dyeing, undergone severe soaping, cannot be altered by the usual domestic wasbing process.
II. The same styles are dyed with garancin instead of madder ; heavier and darker colours being employed. Tbese goods arc not soaped, garancin producing bright colours at once, but tbe shades, though still classed as fast colours, do not possess the permanence of those dyed with madder.
III. The first style is frequently relieved by lively colours, such as green, blue, yellow, \&c., blocked in after dyeing and clearing ; these colours are generally what are termed steam-colours, being fixed by steaming the cloth, and afterwards washing in water only, or the printed or dyed pattern is covered with a resist paste blocked on, and various shades of drab, slate, buff, \&c., printed with a small pattern all over ; sometimes these colours are mordants, to be subsequently dyed with cochineal, quercitron bark, \&c., or they may be colours composed of dyewood decoctions, mixed with mordants, and are fixed by passing through soda or other solutions. The result in either case being that the original pattern, generally a group of flowers, being protected by the paste which prevented the subsequent colour fixing there, stand out pure, the rest of the ground being covered by the small pattern or cover. White may be also reserved by the paste, and frequently these white parts are blocked with blue, yellow, green, \&cc., as before.
IV. Padded-styles.-In these the cloth is first padded (as will be hereafter explaiued) all over with a liquid mordant, dried and printed in spots or figures with strong acid, or discharge as it is called, then put through the dyeing operations necessary for the shade required; the printed spots remaining white, and the rest of tbe piece one plain shade. The wbite portions are frequently relieved by steam-colours blocked in.
V. Indigo-blue; a style of considerable importance. In this, a resist paste, either alone or accompanied by resist yellow, or orange mordant, is printed on white calico, wbich is then dipped in the indigo vat, till tbe shade of blue wanted is obtained. If yellow or orange is present, these colours are raised with bichromate of potash liquor. The peculiar colours printed in tbis style have the property of preventing tbe indigo fixing on the printed parts, and the result is dark blue ground, with white, orange, or yellow spots, steam-colours being sometimes blocked in the whites.
VI. China-blues, a modification of the indigo-blue style, but in tbis case the pattern is produced by indigo colours, printed on white cloth: the pieces are next put through a peculiar process fixing the indigo in the clotb, the result being blue figures on white ground. All indigo styles are fast or permanent.
VII. Turley red and discharge. - On dyed Turkey-red cloth is printed an acid, or acid solutions mixed with pigments or salt of lead; the printed pieces are passed through chloride of lime solution, when chlorine is climinated by the acid colours, and discbarges the red. The pigments or lead-salt bcing fixed in the cloth at the same time, after washing, and chroming wbere ycllow has to be obtained, the piece presents a pattern, bitten as it were in the Turkey red ground. Black is also printed along with the other colours. A modification of this stylc is the well known Bandanna style used for handkerchiefs. Turkey red cloth is folded in a hydraulic press
on a lead plate perforated witl a pattern. When a sufficient number of folds are made on this plate, a precisely similar plate is put the top, so as to register accurately with the bottom one; pressure being now applied, the cloth is squeezed tightly between the two plates, a top being opened above the upper plate, solution of chlorine is forced through the perforations, and in its passage through the cloth, discharges the dye; the chlorine liquor is followed by water, and the operation is finished: the pieces when removed from the press being discharged, according to the pattern of the lead plates.
VIII. Stcam-colours.-In this style colours are formed from nixtures of dyewood extracts and mordants, together with various acids and salts, and being printed on calico which has beell mordanted with peroxide of tin, the picces are exposed to steam at 212° in close vessels, which causes an intimate union of the calico with the dyewood extract and mordant, so that subsequent washing with water removes only the thickening substance, and leaves the cloth dyed according to the pattern in various colours. Woollen fabrics and de laines, are always printed in this manner, and also often silk; animal fabrics not being well adapted for mordanting and dyeing in the same manner as cotton fabrics, owing to the peculiar property of wool to absorb colouring matters, which renders the obtaining of whites an impossibility where the wool is steeped in a dye decoction. These steam-colours are very brilliant and tolerably permanent to light, but do not withstand hot soap solution which alters their shades.
IX. Spirit-colours are made in somewhat the same manner as the steam-colours, but contain larger quantities of mordant and acid, and will not bear steaming, because the calico would be too much tendered by the acid, and are thercfore only dried and hung up a day or two, and then washed in water. They are the most brilliant colours, but generally fugitive and are not much used.
X. Bronzes, formerly a style in large demand, but now almost obsolcte; done by padding the cloth in solution of protochloride of manganese, precipitating the oxide by means of alkali, peroxidising this by chloride of lime, and then printing on colours composed of protochloride of tin and pigments or decoctions ; the protochloride of tin immediately deoxidises, bleaching the brown oxide of manganese, and, where mixed with decoctions or pigment, leaving a dyed pattern cutting through the ground.
XI. Pigment-printing.-The colours in this class are the same pigments as used by painters, such as Scheele's green, ultramarine bluc, chrome yellow, \&cc., and being quite insoluble in water are, so to speak, cemented to the fibre. The vehicle used for fixiug these, is generally albumen, which coagulates when the cloth is steaned, and imprisons both cloth and fibre with the coagulum ; of course these colours, though not altered in shade by soap, are detached in part by severe treatment, such as rubbing, \&c.

First Style : Madders.

Madder styles being the most important, demand the most detailed descriptions. The colours used are of the class termed mordants, which, not colouring matters themselves, act by combining with both cloth and colouring matter. They are generally the acetates or pyrolignites of iron and alumina.
Red Liquor is the technical name of the pyrolignite of alumina used as mordant for red, \&c.
Iron Liquor is the pyrolignite of iron used as mordant for black, purple, \&sc.
The preparation of these liquors on a large seale forms a separate business, and will be fouud described under the head Mordants.

Fixing Liquor.-For a long time it has been customary to add to black and purplc colours, or mordants, some substance which has a tendency to prevent the oxide of iron from passing to the state of peroxide. The oxide of iron necessary to produce the best results with madder is a mixture of protoxide and peroxide of iron, probably the black or magnetic oxide, though this point is not precisely deternined. If the oxide should pass to the red oxide state, inferior shades are produced; and the object of the printer introducing fixing liquor into his colour is to prevent this in. jurious tendency.

The earliest fixing liquor used was a solution of arsenious acid; and though other fixers have from time to time been introduced, the preparations of arsenic still hold their ground. A very good fixing liquor, that has been much used in Frauce and England, is made as follows:-

No. 1. Purple Fixing Liquor:-7六 gallons water, $1 \frac{1}{2}$ gallons acctic acid, 91bs. sal ammoniac, 91 bs . arsenious aeid; boil till the arscnic is dissolved, and let stand till quite clear.

In 184.t, Mr. John Mercer patented an assistant mordant liquor for the same purpose, which was made as follows:-

No. 2. To 100 lbs. potato starch, add $37 \frac{1}{2}$ galions watcr, 123 gallons nitric acid, specific gravity $1 \cdot 3$, and 4 oz . oxide of manganese. 'The chemical action which takes place
amongst these ingredients is allowed to proceed till the nitric acid is destroyed. To the residuum thus produced is added 50 gallons of pyroligneous acid, and the compound is the assistant mordant liquor in a fit state to add to the various mordants used in printing and dyeiug. The intention in making this liquor is to carry on the decomposition of the nitric acid and starch as far as possible without forming oxalic acid, and as little as possible of carhonic acid, which is gently aided by the catalytic action of the oxide of mangancse, preventing the formation of oxalic acid. Apparently thcre is formed by this process saccharic acid, or an acid in a low state of oxidation, which is the active agent in preventing the peroxidisement of the iron when added to purple mordants. This liquor has been largely used, and is still preferred by some priaters. Of late, various fixing liquors have been made and sold by manufacturing chemists, pyroligneous acid and arsenious acid, or arsenite of soda, forming the staple of them; some of these have chlorate of potash added, the object being the formation of arseniate of iron when the cloth is dried, whereby the acetic acid is more speedily driven off; and since arseniate of iron does not pass beyond a certain degree of oxidisement in the air, the mordant is kept in a proper state for dyeing good colours. The following is also a good purple fixing liquor: -
No. 3. Purple fixing Liquor. - Boil together till dissolved 2 gallons water, 25 lbs . soda crystals, $22 \frac{1}{2}$ lbs. arsenious acid. When dissolved, add to 50 gallons wood acid, previously heated to $120^{\circ} \mathrm{F}$.; let stand for a day or two till the tar of the acid is settled, and add 3 quarts muriatic acid.

The following madder colours are from some in practieal use, and though almost every colour-maker has different receipts for his colours, they may be taken to represent the general principles on which these colours arc composed.

In all these colours the thickening substance is first heaten up with a little of the liquid till quite fine and free from lumps, then the remainder of the liquid added, and the whole boiled and stirred in one of the double-cased steam-pans till quite smooth; cooled, and strained.

No. 4. Black for Machine (Madder). -4 gallons iron liquor at 24° T., 4 gallons pyroligneous acid, 4 gallons water, 24 lbs. flour; boil, and add 1 pint oil.
No. 5. Black for Garancin (Machine). - $7 \frac{1}{2}$ gallons water, 3 gallons iron liquor at $24^{\circ} \mathrm{T}$., $1 \frac{1}{\frac{1}{3} \text { gallon purple fixing liquor (No. } 3 \text {), } 24 \mathrm{lbs} \text {. flour, } 1 \text { pint oil. } \mathrm{t} \text {. }{ }^{2} \text {. }}$
No. 6. Dark-red for Madder (Muchine). - 12 gallons red liquor at 18° T., 24 lbs . flour.

No. 7. Pale-reds for Madder (Machine) are made by redueing the standard liquor, No. 8, with gum water to the shade wanted: for instance, No. 3 pale red is 1 of
No. 8 and 3 of gum water, No. 9 .
No. 8. Standard red Liquor.- 10 gallons hot water, 40 lbs . alum, 25 lbs . white acetate of lead; rake up till dissolved, let settle, and decant the clear.
No. 9. 3 lbs.-Gum-substitute Water. - 10 gallons water, 30 lbs gum substitute, No. 5 in the list of thickeners.
No. 10. Dark resist red Madder (Machine), see Mordants. - 12 gallons resist-red liquor, $18^{\circ} \mathrm{T} ., 24 \mathrm{Ibs}$ flour; boil, and when nearly cold add 12 lbs of muriate of tin crystals.
No. 11. Dark resist red Machine.-Same as No. 10, but 6 Ibs. of tin crystals only.
Of these two last, No. 10 is used when it has to resist a chocolate cover, and No. il when it has to resist a purple cover.
No. 12. Pale resist-reds Madder (Machine). - Made by reducing resist-red liquor with water, and thickening it. For instance, No. 5, pale red : 12 gallons resist-red liquor at $5^{\circ} \mathrm{T}$., 9 lhs. flour; boil, and add, when cool, 2 lhs. tin crystals.

No. 13 Chocolates are made from iron liquor and red liquor nixed, and the red liquor is a multiple of the iron; as, for instance, 3 chocolate (madder) (machine):- 3 gallons iron liquor at $24^{\circ} \mathrm{T}$., 9 gallons red liquor at $18^{\circ} \mathrm{T}$., 24 lbs . flour, 1 pint oil. No. 6 Chocolute: -1 gallon iron liquor at $24^{\circ} \mathrm{T}$., 6 gallons red liquor at $18^{\circ} \mathrm{T}$., 14 lbs. flour, $\frac{1}{2}$ pint oil.

No. 14. Strong red for Garancin (Machine). - 10 gallons red liquor at 18° T., 2 gallons water, 24 lbs. flour.

No. 15. Resist-red for Gurancin (Machine). - 12 gallons resist-red liquor at 14° T., 24 lbs . flour ; boil, cool, and add 9 lbs. tin crystals. This for resisting chocolate.

No. 16. Resist-rcd for Gurancin (Machine).-12 gallons resist-red liquor at $14^{\circ} \mathrm{T}$., 241 hs . flour; boil, cool, and add $4 \frac{1}{2}$ lhs. tin crystals. This for resisting purple.
No. 17. Brown Standard for Mudder. - 50 gallons watcr, 200 lbs . catechu ; boil 6 out, and let stand 36 gallons acctic acid, and add water to make up to 50 gallons; take sal ammoniac, dissolve, and leavecant the clear ; heat it to 130° F., and add 96 lbs . with 4 lbs . of gum Senegal per gallon.

No. 18. Brown Colour for Madder (Machine). - 4 gallons No. 17, 1 gallon aeetate of eopper (No. 19), 2 quarts acetie acid, 2 quarts gum Senegal, water 4 lbs. per gallon.

No. 19. Acctatc of Coppcr. - 1 gallon hot water, 4 lbs . sulphate of enpper, 4 lb . white acetate of lead ; dissolve, let settle, deeant the clear, and set at $16^{\circ} \mathrm{T}$.
No. 20. Brown for Madder (Muchinc). - 7 gallons of No. 17, $1 \frac{1}{2}$ gallon of No. 19, 1 $\frac{1}{2}$ gallon gum red (No. 21).
No. 21. Gum rcd. -3 gallons red liquor at $18^{\circ} \mathrm{T} ., 12$ lbs. gum substitute; boil.
No. 22. Brown for Garancin (Machine).-2 gallons of No.18, 1 gallon 4 lbs.-gumsubstitute water.
No. 23. Brown for Garancin (Machine).-2 gallons No. 17, 3 $\frac{1}{2}$ gallons 4 lbs--gumsubstitute water, 3 quarts aeetie aeid, 3 quarts No. 19.

No. 24. Drab for Madder (Machine).-4 gallons No. 17, 1 gallon protomuriate of iron at 9° T., 3 gallons No. 19, 1 gallon 4 lbs.-gum-substitute water. .For garanein, add 4 gallons gum water instead of 1 gallon.

No. 25. Drub for Madder (Machine).-5 gallons No. 24, 1 quart muriate of iron at 9° T., 5 gallons 4 lbs.-gum-substitute water, 3 quarts No. 19.

No. 26. Madder Fawns are made by adding to madder drab $\frac{1}{1}$ th, or so, of red liquor, aeeording to the shade wanted.

No. 27. Madder Purples.-Iron liquor, mixed with purple fixing liquor, is diluted with gum water aeeording to the shade wanted. For instance, No. 4 purple for madder (machine):-1 gallon of iron liquor at 24° T., 2 gallons No. 3, 4 galions farina gum water No. 28. No. 12. purple: -1 gallon iron liquor at 24° T., 2 gallons No. 3, 12 gallons No. 28.

No. 28. Dark Farina Gum Water.-10 gallons water, 60 lbs . dark ealeined farina; boil.

No. 29. Garancin Purples are redueed from iron liquor to the shade wanted with the following gum:-20 lbs. light British gun, 8 gallons water, 1 gallon purple fixing liquor No. 3 ; boil well, then take out, and let stand 3 or 4 days before using. Colour: 1 measure iron liquor, $8,10,20,30, \& \varepsilon$. ., of the above gum, aeeording to shade wanted.

No. 30. Padding Purples. - Reduee to shade with the following gum :- $6 \frac{3}{4}$ gallons water, 1 gallon No. 3, 1 quart \log wood liquor at $8^{\circ} \mathrm{T}$., 9 lbs . flour; boil, and add 5 quarts farina gum No. 28. For instanee, 70 -padding purple for machine :-1 gallon iron liquor at $24^{\circ} \mathrm{T}$., 70 gallons of the above gum.

Bloek eolours are made from any of the preeeding receipts, by making them a little thinner.

No. 31. Alkuline red Mordant. - In a vessel eapable of holding 12 gallons, put 10 lbs. alum, and dissolve with 5 gallons boiling water, then add gradually 3 quarts eaustie soda at $70^{\circ} \mathrm{T}$., mixed with 1 gallon cold water, fill up with eold water; let settle, decant and repeat the washing till the elear liquor is tasteless; filter to a pulp, take off, and add to it 5 pints eaustie aeid at $70^{\circ} \mathrm{T}$. ; boil down to 3 gallons, add 9 lbs . dark gum substitute, and boil again a short time.

No. 32. Pale red Alkaline Mordant. - 1 measure of the above eolour and 2 or 3 measures of dark gum-substitute water.

No. 33. 10 Acid. -1 gallon lime juice at $10^{\circ} \mathrm{T} ., 1 \mathrm{lb}$. stareh ; boil.
No. 34. 20 Acid.-1 gallon lime juice at $20^{\circ} \mathrm{T} ., 1 \mathrm{lb}$. stareh; boil.
No. 35. 30 Acid. -1 gallon lime juiee at $30^{\circ} \mathrm{T} ., 1 \mathrm{lb}$. starch ; boil.
No. 36. Acid Dischargc.-1 gallon lime juiee at $22^{\circ} \mathrm{T} ., 1 \mathrm{lb}$. bisulphate of potash; filter, and thieken the clear with 1 lb . starch.

No. 37. Acid Discharge.-1 gallon lime juice at 28° T., 2 lbs. bisulphate of potash; filter, and thieken the elear with 5 lbs . dark British gum.

In the last two colours, the bisulphate throws down a quantity of floceulent matter, which has to be filtered out.
No. 38. Reserve Paste.- $3 \frac{1}{2}$ gallons lime juiee at $50^{\circ} \mathrm{T}$., $2 \frac{1}{4}$ gallons eaustic soda at $70^{\circ} \mathrm{T}$. ; heat to boil, then, in a separate vessel, beat up 56 lbs . pipeelay with $3 \frac{3}{4}$ gallons boiling water, and add $3 \frac{1}{4}$ gallons 6 lbs .-gum-Senegal water; add to the other solution, and boil 20 minutes.

No. 39. Reserve Paste. -4 gallons lime juiee at 60° T., 3 gallons eaustic soda at $70^{\circ} \mathrm{T}$.; boil, and add 48 lbs . pipeelay beat up with 2 quarts boiling water, aud 4 gallons 6 lbs.gum-Senegal water; boil 20 minutes.
The above two pastes are used for bloeking on madder-work, to proteet the pattern from the following eovering shades, whieh are raised with quereitron bark, \&e. \&c. No. 38 is a paste used where there are only black and reds to preserve, and No. 39 is used where there is also purple.

Covcring Shades.
No. 40. 5 Drab. - 1 quart iron liquor at 24° T., 5 quarts water, $2 \nmid$ lbs. light British gum.

No. 41. 10 Drab. - 1 quart iron liquor at 24° T., 10 quarts water, $4 \frac{1}{2}$ lbs. light British gum.

No. 42. 5 Drab. - 1 quart iron liquor at $24^{\circ} \mathrm{T}$., 1 quart red liquor at $20^{\circ} \mathrm{T}$., 5 quarts water, $2 \frac{1}{2} \mathrm{lbs}$. light British gum.

No. 43. 10 Drab. - 1 quart iron liquor at $24^{\circ} \mathrm{T}$., 1 quart red liquor at $20^{\circ} \mathrm{T}$., 10 quarts water, 5 lbs . light British gum.

No. 44. Olive.-2 gallons red liquor at $12^{\circ} \mathrm{T} ., 1$ gallon iron liquor at $14^{\circ} \mathrm{T} ., 6 \mathrm{Ibs}$. light British gum.

No. 45. Olive. -3 gallons red liquor at $18^{\circ} \mathrm{T} ., 2$ gallons iron liquor at $8^{\circ} \mathrm{T} ., 10 \mathrm{lbs}$. light British gum.

No. 46. Saye.-9 quarts red liquor at $9^{\circ} \mathrm{T}$., 1 quart iron liquor at $12^{\circ} \mathrm{T} ., 4 \mathrm{lbs}$. light British gum.

No. 47. Sage.- 14 quarts red liquor at $3^{\circ} \mathrm{T} ., 1$ pint iron liquor at $12^{\circ} \mathrm{T} ., 5 \frac{1}{2} \mathrm{lbs}$. light British gum.

No. 48. Chocolate Brown. -6 gallons red liquor at 15° T., 1 gallon iron liquor ate $24^{\circ} \mathrm{T} ., 10 \frac{1}{2}$ lbs. light British gum, $3 \frac{1}{2}$ lbs. flour.
No. 49. Slute - 3 quarts logwood liquor at $8^{\circ} \mathrm{T} ., 2$ quarts iron liquor at $24^{\circ} \mathrm{T} ., 1$ quart red liquor at $18^{\circ} \mathrm{T}$., 1 quart No. 50, 7 gallons water, 18 Ibs. light British gum; ol
No. 50. Gall Liquor.-28 lbs. ground galls, 2 gallons acetic acid, 12 gallons water; stir occasionally for two days, and filter.

No. 51. Hazel. - 4 quarts brown No. 18, 2 quarts bark liquor at $10^{\circ} \mathrm{T} ., 1$ pint logwood liquor at $12^{\circ} \mathrm{T}$., 1 quart cochineal liquor at $8^{\circ} \mathrm{T}$., 16-oz. measure No. $52,4 \frac{1}{2}$ quarts 6 lbs.-gum-Senegal water.

No. 52.-1 quart nitrate of iron at $80^{\circ} \mathrm{T}$., 1 pint nitrate of copper at $100^{\circ} \mathrm{T}$.
No. 53. Standard for Buffs. - 10 gallons water, 40 lbs . copperas, 20 lbs. brown acetate of lead: stir till dissolved, settle, and use the clear; reduced to shade wanted with gum-Scnegal water

No. 54. Chrome-oxide Standard.-3 gallons water, 12 lbs bichromate potash ; dissolve with heat, put in a mug of 12 gallons' capacity, add $3 \frac{1}{4}$ pints oil of vitriol diluted with 6 quarts cold water, add gradually 3 lbs. sugar ; when the effervescence has ceascd, boil down to 3 gallons.

No. 55. Drab.-5 quarts gum-tragacanth water (8 oz . per gallon), $2 \frac{1}{2}$ quarts No. 55 , $\frac{3}{4}$ pint cochineal liquor at $4^{\circ} \mathrm{T}$., $\frac{3}{4}$ pint bark liquor at $8^{\circ} \mathrm{T}$.
No. 56. Fawn.- 1 gallon No 55, 2 gallons 8 oz.-gum-tragacanth water, $\frac{1}{2}$ gallon brown No. 17.
No. 57. Slale.-1 gallon No. 55, 1 gallon 8 oz.-gum-tragacanth water.
No. 58. Gum-tragacanth Water. - 10 gallons water, 5 lbs. gum tragacanth in powder: stir occasionally for 3 days.

No. 59. Fast Blue Standard. - 150 gallons water, 18 lbs . indigo in pulp, 24 lbs. cop. peras, 28 lbs . lime previously slaked; stir occasionally for 2 days, let settle, and draw off the clear liquor, and to every 10 gallons add 1 pint muriate-of-tin liquor at $120^{\circ} \mathrm{T}$.; filter on flannel to a thick paste.

No. 60. Fast Blue for Machine.-1 quart No. 60, 6 oz . muriate-of-tin crystals, 3 quarts of water.

No. 61. Fast Blue Standard.-4 lbs. indigo ground to pulp, 3 quarts caustic soda at $70^{\circ} \mathrm{T} ., 3$ quarts water, and granulated tin in excess; boil in an iron pot till perfectly yellow, when put on a piece of glass.

No. 62. Fust Blue (Block).-1 quart No. 62, 12 oz . muriate-of-tin crystals, 12 oz . lime juice at $60^{\circ} \mathrm{T}$., 3 quarts 6 lbs .-gum-Senegal water.

No. 63. Fast Green.-1 $\frac{1}{4}$ quart No. 60, 2 quarts lead gum No. 64, $\frac{1}{2} \mathrm{lb}$. muriateof tin crystals.

No. 64. Lead Gum.-1 gallon hot water, 8 lbs . white acetate lead, 4 lbs . nitrate lead; dissolve, and add 1 gallon 6 lbs.-gum-Senegal water.
The course of operation for the styles 1,2 , and 3 above, is to print in one or more of the madder colours ; after dyeing, the goods are hung in the ageing room for a day or two, then brought to the dye-housc. The first operation is that termed dunging, which is the same in principle for all varieties of madder or garancin goods, and as it is an operation the careful performance of which is of vital importance to the success of the subsequent operations, a somewhat detailed description of it will not be out of place. The process of dunging has for its object -

1. Precipitating on the fibre, by double decomposition, that portion of the mordant which has escaped decomposition in the ageing room.
2. Rendering insoluble and inert those portions of the mordant which are not in direct contact with the fibre, and which, if allowed to diffuse in water are not in fix on and stain the white or unprinted parts of the cloth. 3. Softening and removal of the staining substances.

Vol. L.

4. Nentralising the acids which may have been added to the mordants, and which otherwise would dissolve in the water and weaken the colours.
5. The formation, in the case of iron mordants, of a compound of oxide of iron, and certain organic or inorganic acids which will not become peroxidised beyond a certain point. The use of cow's ding, derived from India, has been continued down to the preseut time, though for scveral years printers have largely introduced various substitutes.

No very exact analysis has heen made of cow dung. Morin's, which is the most recent and elaborate, is as follows :--

Water	-					-			$0 \cdot 00$
Vegetahle fibre									-08
Green resin and	f	cid		-					. 52
Undccomposed	bi	y							
Peculiar extrac		mat							
Alhumen -	-	-						-	
Biliary resin	-	-		-		-	-		

Aecording to M. Kœehlin's practical knowledge on the great scale, it consists of a moist fibrous vegetahle substance, which is animalised, and forms about one-tenth of its weight; 2 , of alhumen; 3 , of animal mucus; 4 , of a suhstance similar to bilc; 5 , of muriate of soda, muriatc and acetate of ammonia, phosphate of lime, and otber salts; 6. of henzoin or musk.

Prohably the hot water in whieh the calico-printer diffuses the dung exerts a powerful solvent action, and in proportion as the uncomhined mordant floats in the hath it is precipitated hy the alhumen, the animal mucus, and the ammoniacal salts; hut there is reason to think that the fibrous matter in part animalised or covered with animal matter, plays here the prineipal part; for the great affinity of this substance for the alnminous salts is well known.

It would appear that the principal function of dunging is to hinder the uncomhined mordant diffused in the dung hath from attaching itself to the unmordanted portion of the cloth, as already observed; for if we merely wished to ahstract the thickening stuffs, or to complete by the removal of acetic acid the combination of the aluminous base with the goods, dung would not he required, for hot water would suffice. In fact, we may ohserve, that in such cases the first pieces passed through the boiler are fit for dyeing; but when a certain number have been passed through, the mordant now dissolved in the water is attracted to the white portions of the cloth, while the free acid impoverishes the mordanted parts, so that they cannot afford good dyes, and the hlank spaces are tarnished.

It scems to be ascertained that the mordant applied to the cloth does not combine entirely with it during the drying; that this combination is more or less perfect according to the strength of the mordants, and the circumstances of the drying; that the operation of dunging, or passing through hot water, completes the combination of the cloth with the aluminous base now insoluhle in water ; that this base may still contain a very minute quantity of acetic acid or sulphate of alumina; that a long ehullition in water impoverishes the mordant but a little; and that even then the liquid does not contain any perceptible quantity of acetate or sulplate of alumina.
A very ahle and learned memoir upon this subject, by M. Penot, Professor of Chemistry, appeared in the Bulletin of the Society of Mulhausen, in Octoher 1834, with an ingenious commentary upon it, under the title of a Report by M. Camille Kœechlin, in March 1835.

Experience has proved that dunging is one of the most important steps in the process of calico printing, and that if it he not well performed the dycing is good for nothing. Before we can assign its peculiar function to the dung in this case, we must know its composition. Fresh cow's dung is commonly neutral when tested hy litmus paper ; hut sometimes it is slightly, alkaline, owing, prohahly, to some peculiarity in the food of the animal.

The total constituents of 100 parts of cow dung are as follows : Water, 69.58 ; hitter matter, 0.74 ; sweet suhstanee, 0.93 ; chlorophylle, 0.28 ; alhumine, 0.63 ; muriate of soda, 0.08 ; sulphate of potash, 0.05 ; sulphate of lime, 0.25 ; carbonate of lime, 0.24 ; phosphate of lime, 0.46 ; carbonate of iron, 0.09 ; woody fihre, 26.39 ; silica, 0.14 ; loss, 0.14 .

In dunging calicoes the excess of uncombined mordant is in part attracted hy the soluble matters of the cow's dung, and forms an insoluble precipitate, which has no affinity for the cloth, especially in presence of the iusoluble part of the dung, which strongly attracts alumina. The most important part which that insoluble matter plays, is to scize the excess of the mordants, in proportion as they are dissolved by the water of the hath, and thus to render their reaction upon the cloth impossible. It is only in
the deposit, therefore, that the matters carried off from the cloth by the dung are to be found.
M. Camille Kœechlin ascribes the action of cow dung chiefly to its albuminous constituent combining with the alumina and iron, of the acetates of these bases dissolved by the hot water of the bath. The acids consequently set frec soon becomc evident by the test of litmus paper, after a few pieces arc passed tbrough, and require to be got rid off either by a fresh batb or by adding cbalk to the old one. Tbe dung tbus serves also to fix the bascs on the clotb, wben used in moderation. It exercises likewise a deoxidating power on the iron mordant, and restores it to a state more fit to combine with colouring matter. See Cow Dung.
The use of cow dung is open to some objections, amongst which are its giving a eertain amount of greenish colouring matter to the white mordants, and its being apt to vary in its constituents from differences in the food of the animals, their health, \&c.; the method of using substitutes for it being now well known, and better colours and whites being more easily obtained from them than with dung, it is probable that cow dung will in a sbort time cease to be used in calico-printing processes. The dunging operation ougbt to be a definite cbemical decomposition, which cannot be the case with a variable substance like dung. The substitutions for dung in use are :-

1. Phosphate of soda and lime.
2. Arscniate of soda.
3. Arsenite of soda.
4. Silicate of sola.
5. Silicate of lime.

Each of these has its peculiar virtues, and the printer determines for himself which is best adapted for his styles. The first was patented by John Mercer, about 1842, and is made by calcining bones, then decomposing them with sulphuric acid, filtering out the sulphate of lime, and, to the clear superpbosphate of lime, adding carbonate of soda till sligbtly alkaline; the resulting mixture of phospbatc of soda and phosphate of lime is dried down to a powder; the use of arseniates formed part of the same patent. Arsenite of soda followed as a matter of course, though not so safe in usc as phosphates and arseniates. Silicate of soda was suggested by Adolph Schlieper, of Elberfeld, and patented by Jäger in 1852. It is the ordinary soluble glass dissolved in water. It is open to the objection of being too alkaline, and requires care in the use. The silieate of lime was suggested by Higgin with a view to rennove this objection. Tbe silicate of lime is formed in the dung eistern, by nixing silicate of soda and muriate of lime, wben sparingly soluble silicate of lime is formed; tbe quantity in solution at one time being never so much as to be dangerous, and fresh portions being dissolved as wanted. Dunging salts, or liquors, are now made by the manufacturing chemist, containing various mixtures, arseniates, phospbates, arsenites, \&c., whicb are adapted for every variety of dunging. Great economy of time and material result from the use of these dung substitutes. In some of the largest print works, instead of, as witb dung, running off tbe spent-dung cistern after passing tbrough from 100 to 200 pieces, and baving to fill again, and heat to the proper temperature, it is found possible to run pieces through the same cistern cbarged with substitute, at the rate of a piece per minute half a day, and with ligbt goods a whole day-before letting off, of coursc occasionally adding some of tbe substitute; to make up for that saturated by tbe mordants. Tbe dunging process is always performed twice: the first time in a cistern with rollers; and the second, in a beck similar to a dye beck, washing well between. The first is called fly dunging; tbe otber, second dunging.
The manner of immersing the goods, or passing them tbrough the dung bath, is an important circumstance. Tbey should be properly extended and free from folds, wbicb is secured by a serics of cylinders.
Tbe fly-dung cistern is from 10 to 12 feet long, $4 \frac{1}{2}$ feet wide, and 6 or 8 feet deep. The piecc passes alternately over the upper rollers and under rollers near the bottom. There are two main squeezing rollers at one end, which draw the cloth through betwcen them. Tbe immersion should take place as fast as possible; for the moment tbe bot water penetrates the mordantcd clotb, tbe acetic acid quits it, and. tberefore, if the immersion was made slowly, or one ply after another, the acid, as well as the uncombined mordaut, become free, would spread thcir influence, and would hare time to dissolve the aluminous subsalts now combined with the cloth, whence inequalitics atid impoverishment of the colours would ensuc.
T'be fly-dung cistcrn should be set witb about 30 gallons of dung to 1000 gallons of water; or, to the same quantity, 3 to 4 gallons of dung-substitute liquor ; a little chalk is added, to make the cistern slightly milky. Tbe heat varics for different styles - from 150° F. to boil. Where there is acid discharge or resist, and the colours arc heavy, fly-dunging at boil is necessary, to enable the acid to cut properly tbrough the colour; the ncarer to $150^{\circ} \mathrm{F}$. that the bath will give good whites at, tbe better will be the
subsequent dyed colour. subsequent dyed colour. With cow dung, an excess of it is injurious, both to white
and colour ; but with a tolerably neutral substitute, excess does no harm. The pieecs should run at the rate of 50 to 60 per hour. On leaving the cistern, they are well wineed in water, and washed, and are then seeond dunged, which is generally performed in a beck similar to a dye beck, whieh will be found deseribed further on. This beck is set with about 1 quart of dung-substitute liquor, or 12 gallons of dung to 250 gallons. From 12 to 24 pieces are put in together, and made to revolve over a reel for about 20 minutes or half an hour, the heat being about $150^{\circ} \mathrm{F}$. They are then well washed, and are ready for dyeing. This second danging is principally for the purpose of removing the thiekening substance from the eloth, and it should feel quite soft when well done. An improved method of dunging adopted by some extensive firms consists in arranging a fly-dung cistern, a wince pit, a machine similar to the bleacher's washing machine, and containing the second dunging solution and one of the dye house washing machines all in a line; the picees, being then stitehed end to end, are drawn through the series; first, extended and free from folds, through the fly-dung cistern; thence dropping into water in the pit; from that being worked spirally from end to end of the second dunging vessel, which runs at such a speed that one picce is about 15 minutes in traversing it; from that into a water pitagain, and finally, spirally, through the washing machine, when they are ready for dyeing. By

384

this arrangement the process is a continuons one, and little labour is required. The drawing rollers on the fly dung eistern are worked by a strap from a slaft. On the
thorough cleansing from loosely attached mordant, and especially thickening, depends a good deal of the success of the dycing, and this process is one that requires to be carefully attended to.

The washing processes in the dye house bave undergone great modifications within the last fuw years. Formerly dasih whecls (see Dash Wheed) were exclusively employed, but now are considercd far too slow, and expensive in labour, and are nearly abolished, being substituted by varions washing maehines. A great number of machines have been invented, which all have their admirers. Three, which have been found very efficacious, are here given.

Fig. 383 is a perspcctive view, and fig. 384 a scetion of the machinc patented by Mather and Platt. The pieces, fastened end to end, are run spirally through the machine, being subjected to the aetion of the beams or beaters, DD, whilst lying in loose folds on the large wooden roller c.

Fig. 385 is a machine patented by Whitaker, and possesses the merit of great simplicity with comparatively small first cost, together with great efficiency. The invention consists of a peculiar arrangement of the material to be washed, by which, instead of it moving in one continuous direction, it is made to cross in its traverse; and by one part being in constant contact with another part, a powerful rubbing action is continually kept up, thereby washing or cleansing the cloth or material more effectually than can be done by the usual method of merely passing it between presser rollers.
Fig. 385 is an end vicw of this washing machine, and fig. 386 an end view with the frame side removed, to show the improved arrangement. A and B represent two stones, upon which the machine is fixed; c is the frame, which forms sides for the water cistern, and also the journals, or bearings, of the bowls d, e, f, which pass from one side to the other, as in ordinary washing machines; g is a peg rail, with the pegs h passing across the machine; i is the outlet for spent water; j, a wooden frame surrounding the whole of the water or liquor in the cistern k, which is open at the top

end, and communicates with the space for over water. The machine is put in motion by spur wheels, represented by the dotted circles l, m, and n, in fig. 385 ; the when m is put upon the main shaft or shafts connecting with the moving power. The piece o is introduced into the machine at that end where the ontlet for water is placed, the fresh water is introduced just upon the cloth the other end of the machine, where machine is in motion, the cloth moves on phor material as it leaves. When the by the varying dimensions of the square bowl progressively, and is causcd to vibrate material against another part, by being crossed once on eath side rabs onc part of the M 313
and washes in the same manner as a woman would do in ordinary domestic washing. And it will be observed that when a corner of the square bowl is at the bottom, the material is then below the surface of the water, and when the side of the square bowl

is at the bottom the cloth is above the surface ; thus, for each revolution of the square bowl, the cloth is plunged four times, which action encloses air within the folded material, and opens it out betwecn the peg rail and square bowls, sometimes as large as a man's hat. The water is prescrved clean at that end of the machine where the material leaves it, by its being brought in there, and allowed to escape where the dirty material enters, and by the shallowness of the water cistern the water is constantly being renewed.
Fig. 387 represents the machine patented by Mr. David Crawford of the Barrowfield Printworks. It is said to answer well for all sorts of fabrics, the finest muslins not being torn by this, as is the case with most washing machines. This machine eonsists of a rectangular frame, fitted up with rollers, dashboards, a dashing frame and driving gearing. The frame is divided into a series of stories or flats, onc above another, like the floors of a house, each flat having a dashboard or a fixcd platform divided down the centre, towards which divisinn-line each half inclines downwards. The goods in a continuous length-like form are passed first of all round a taking-in roller, which directs the cloth round a long horizontal roller of considerable diameter, which runs in bearings at one side or end of the lowest of the scries; the fabric passes round this roller, and there proceeds horizontally along and through the flat at that level, passing in its way through a vertical traversing frame, which works between the contiguous cdges of the platforms or dashboards of all the flats where the boards are divided as before explained. In the centre, at the opposite-end of the flat, there is a corresponding horizontal roller, round which the fabric passes, returning through the flat and through the vertical traversing frame to the first rollcr; the fabric passes again round this roller and again through the flat, and so on until the required number of crossings and re-crossings has been completed. The rollers are gearcd together so as to be driven simultancously to carry the fabric along back and forward over these rollers and through the flats, whilst jets of water or other fluids are allowed to fall upon the fabric in its passagc, and whilst the vertical traversing frame dashes the cloths with rapidity and severity upon the dashboards beneath; the As tlie cleansing liquid falls down it is reccived upon the dashboards bencath, until it pours off at the centre : the striking action causes the liquid to be well forced into the fabric. When the water falls away at the centre it is received by a bottom duct and conveycd away to a bottom side-chamber, into which chamber the fabric, as primarily washed in the bottom flat, is first of all delivered from its rollers to the
next flat on the series, where it is treated in a preeisely similar manner; and this routine is continued throughout the whole of the flats until the fabrie finally emerges from the top of one of the series in its completely cleansed condition. Each flat is supplied with jets of water, and it is obvious that as the fabric passes through and beneath these jets, and is violently struek upon the dashboards, a most powerful washing and eleansing action is seeured : provision is made for varying the length of traverse of the vertical dashing frame and the rapidity of its traverses.
Fig. 387 on the drawings is a sectional elevation, and fig. 388 is an end view cor-

responding, as looking on the driving gear, and the taking in and delivering movements. The two cast-iron side standards, Λ, form the main frame. These standards MM M 4
carry internal bracket flanges for supporting the four dashboard floors, c. All the driving movements are actuated from a bottom horizontal shaft, earrying a bevel wheel, Q , in gear with a eorresponding wheel, n , fast on the lower end of a vertical slaft, s. This slaft, by means of the two pairs of bevel wheels, w, drives the two large end rollers, s, carried in end bearings external to the main framing. The lower end of the shaft rests in a footstep bearing on the floor, whilst the upper end is supported in a collar bearing, carried by a bracket, T , bolted to the frame. At this part, a third pair of bevel wheels, u, forms the driving eommunication between the shaft and the end eonieal roller pulley, L , working the dashing movement. All the stories or dashboards of the machine are plentifully supplied with water by the pipe D, having a regulating stop-cock at its upper or lower branch. From this main pipe, cross branches, D, pass into and through all the divisions diseharging the water by the jets upon the goods passing through the machine. A guide ring is attaehed to the ceiling of the workshop, v, for the passing through of the goods, b. From this ring, the line of goods passes in the direction of the arrow, down and round a guide roller arrangement, so as to be directed through the water in the small bottom chamber, z. On leaving this ehamber the fabric passes through a delph eye in the end boarding of the maehine, and thus reaehes the lowest division of the series. As it continues its eourse it passes between the lowest pair of rollers or bars, E , of the vertical traversing frame, \mathbf{F}, whieh gives the neeessary dashing action, then procecds, guided by the pin o round the bottom back roller N , corresponding to the lowest of the front rollers N . On rounding this roller, the fabrie repeats the circuit already deseribed three or more times, as indieated by the turns upon the roller, in the view of fig. 2. After the completion of this traverse, the line of fabrie aseends, as shown by the arrow being drawn out between the nipping roller P and the bottom roller N . The fabrie again ascends for the last time and passes through the third and fourth divisions, being delivered in a eleansed condition at \mathbf{c}. The dashing action, as already explained, is worked from the eonical pulley J, the spindle of which runs in pedestal bearings immediately above the eentre of the machine, A sliding rod, with a double strap fork, \mathbf{m}, is fitted up for enabling the attendant to set the drawing belt, \mathbf{x}, at any part of the eonieal pulley, so as to vary the rate of revolution of the driving pulley J, that of L being eonstant. The spindle of the pulley J carries at each end an adjustable disc erank, I , the faee slots of these dises liaving crank stud-pins set in them for working the upper ends of the pendant conneeting rods, \boldsymbol{n}. The lower ends of these rods are similarly jointed to stud G upon the opposite edges of the traversing dashing frame F . These studs work through vertieal slots in the main standards, and as the dise erank I revolves at a rapid rate, it follows that the corresponding rapid traverse of the dashing frame energetieally dashes the lines of fabrie passing between its rollers upon the several dashboards of the machine. The cleansing water falling from the several jets, is conducted from flat to flat by conductors, \mathbf{x}, thoroughly washes the goods, whilst this is going on, and it finally falls through the central openings in the dashboards, and is received into the bottom central trough, whenee it flows away by the duct, and is delivered into the ehamber z . The lever x in eonnection with pulley P is to enable the attendant to rise up pulley p in threading the machine. This maehine is beautifully adapted for bleaehing purposes, as from the peeuliarity of its action it answers as a perfeet Bleaehing Maehine in itself. The slots, grooves in the dise cranks, afford a ready means of varying the length of the traverse of the dashing frame; and this adjustment, coupled with that of the rate of revolution of the eentral eonical roller, affords the greatest possible nicety of adjustment of the powers of the maehine, which the manufacturer, bleaeher, or finisher ean ever require, either for light or heavy goods.

Up to this point there is seareely any differenee in the operations on pieees destined for styles 1 a, b, \&c., and 2. Those intended for dyeing with madder are printed in stronger eolours than those for dyeing with garancin, sinee the soaping process reduces the strength of colour considerably, and garanein eolours undergo no severe treatment after dyeing. The general proeess of dyeing is thus performed :-
Fig. 389 represents a front elevation of a pair of dye beeks, with antomatic wineh reel, and fig. 390 is an end elevation of one of them. The drawing is kindly supplied by Messrs. Mather and Platt, of Salford. a A is a east-iron eistern, 8 feet long by 4 feet deep by 3 feet wide, with eurved bottom; brackets в в are east on the ends to support the eistern on the stone foundation. The beck is fixed over a channel c, which communieates with the system of drains which earry away the maste liquors into the river. There are two holes in the eurved bottom-one at cael end-which, when the beek is in use, are stopped with movable plugs ; one of these holes communicates direet with the drain and the other with a trough D , which commmieates with a pit outside the dyehouse, and where the spent madder ean be run for the purpose of making into garaneeux. E is a water pipe, with a braneh into eaeh beek, with a serew
tap attached ; F is a main steam pipe, wbicb divides into the branches c , furnished with valves at H; the pipes g suhdivide in brancbes x, one of wbich goes down each end of the dye beck, the perforated pipe k, wbicb traverses the beck from end to end, connecting tbem; a perforated iron diaphragm is placed across the beck from end to

end ; above this is a strong rod nr , from end to end, carrying picces N projecting at right angles from it. Bolted on the ends of the dye beck is the framework 0 , which carries tbe bearings of the sbaft Q of the winch reel ; keyed on the shaft are three sets of cast-iron arms R , which terminate in forks, in which fit the spars s; the reel is boarded between the spars, as at π. Tbe framework o of tbe two dye becks is connected by the piece 0 , wbich carries tbe bearings of the sbort shaft t , on which is keyed one of a pair of mitre wheels $w w$; there are sliding catch boxes $\mathrm{x} x$, on this sbaft, wbicb revolve with it; there are corresponding catch boxes keyed on the ends of the shaft Q; the connecting piece σ carries also the pillar P, whicb carries the bearings of tbe vertical sbafts y , and also of the horizontal shaft z; keyed on the sbafts y
and z are bevel and z are bevel wbeel $a a$, and at the bottom of sbaft y , the mitre wheel w. Permanent motion being given tbe shaft $\nabla \nabla$, by this gearing, either of the reels can be put in motion or stopped by tbe catcb boxcs $x x$, worked by lever bandles, in or
out of the catch box out of the catch boxes on the ends of the reels. In working the becks, two picces are knotted end to end, and each length passed over the reel down between two of the studs N , under the stcam pipe к, up behind the diaphragm L , being then knotted together so as to form an endless web, the bulk of which lies on the bottom
 of the beck. The drawing shows a beck 30 pieces. About 200 gallons of water adapted for 15 lengths of 2 pieccs each, or 30 pieces. About 200 gallons of water are put in the beck before the picces are
put in; and, after the picces, the dye stuff is added, the recl set in motion, and the stean gently turned on; from the steam going itrat each end, the beck is uniformly heated; the licat is then gradually raised to boil, generally in about two hours, the picces continually revolving with the recl so as to bring cach portion successively into the air, agitating the dyeing materials at the same time. When the dycing is finished, the steam is shut off, the knots unticd, and the pieces pulled over into a pit of water surrounded by a winch reel, which is always placed behind every dye beck. After wincing in this, the pieces are fastened together again, and put through the washing maehine two or three times; they then arc ready for the subsequent operatious. Maddered goods, on issuing from the dye beek, are far from possessing the bcauty that they afterwards show, the colours are dull and heavy, and the white part stained with a reddish shade ; various clearings are required, in which soap plays a principal part. Garancined goods show pretty nearly the colour they are intended to be; but as the white is also stained, a peculiar clearing is given them which will be described further on. Madder goods are cleared with soap in a beck similar to a dye beck. They receive generally two soapings of about half an hour, with from $\frac{1}{4}$ to $\frac{1}{2} \mathrm{lb}$. of soap per piece each time, washing between. If the white is not sufficiently good, the picces are spread out on the grass for a day or two, and are afterwards winced in hot water to which a little solution of chloride of lime or soda is added. They are then washed and dried. Chintz work is dyed with from 1 lb . to 5 lbs madder per piece of 30 yards, according to the pattern; generally, a little chalk is added, and if there is no purple in the pattern, some sumac, which is found to economise madder, but will not do where there is purple, the shade of which it deadens. Pieces of any style, after undergoing the final process, are passed through a pair of squeezing rollers, or put in the hydroextractor, when the moisture is driven out by centrifugal force (see Hydroextractor); they are then dried on the cylinder drying machine.

Plate Purple is a style composed of black and one or more shades of purple only, and requires a little different treatment. Print in black No. 4, dark purple to shade No. 27 and acid, say No. 35, cover pad in pale purple No. 30, age. Fly dung at 170° F., second dung at $165^{\circ} \mathrm{F}$. half an hour ; wash and dye with ground Turkey madder root giving $\frac{1}{20}$ of its weight in chalk, and 3 quarts of bone size to the beck; bring to $175^{\circ} \mathrm{F}$. in 2 hours, and keep at $175^{\circ} \mathrm{F}$. half an hour; wash well and soap 15 pieces, $\frac{7}{6}$ ths, 30 yards, half an hour at boil with 5 lbs soap to 15 pieces; wash well and wince 5 minutes at $140^{\circ} \mathrm{F}$. with 2 quarts chloride of lime liquor at $8^{\circ} \mathrm{F}$ to 300 gallons; wince and soap again at boil half an hour with 3 lbs . soap to 15 pieces; wash and wince 5 minutes in 4 quarts chloride of lime at $8^{\circ} \mathrm{F}$. and 2 lbs . carbonate of soda crystals to 200 gallons water; at $160^{\circ} \mathrm{F}$. well wash and dry.

In this style, as in any where there is severe soaping, it is necessary to give a slight excess of madder in the dye, so as to ensure perfect saturation - if this is not done, the colour speedily dcgrades, and becomes impoverished. It may be observed here, that the style plates are such as formerly were printed by the plate or flat press, and are generally small patterns, with padded or well covered grounds, the colours being few, and frequently only different shades of one colour.

Plate Pinks or Swiss Pinks - a style imported from Switzerland, consisting of various shades of red and delicate pinks, produced as follows. Print in No. 6 with second or third shades as No. 7 -acid No. 34 may be also printed and a very pale sliade of red covered, aged two or three days, dunged at $160^{\circ} \mathrm{F}$.- if dung substitute is used, care must be taken to use one that is not caustic from frec alkali: the dyeing must be done with the finest quality of French or Turkcy madder. The pieces must have sufficient madder allowed to overdye them, or dye a heavy brownish red. For a full plate pink ou $\frac{7}{8}$ ths cloth, from 4 to 6 lbs . of French madder will be required. About 5 per cent of chalk may be added to the dye where the water is soft. The heat should be raised to $150^{\circ} \mathrm{F}$. in 2 hours, and kept at that heat lialf an hour. It is necessary to keep the heat low in dyeing French pinks, to prevent the impurities from fixing on the mordants, as only the very finest portion of the colouring matter must be fixed - after dyeing the pieces are well washed and soaped with about half a pound of soap per piece in a beck at $140^{\circ} \mathrm{F}$. for half an hour, they are then well washed and cntered iu a beck with cold water to which has been added sufficient oxymuriate of tin or sulphuric acid to make faintly sour, a little steam is turned on and the heat raised to about $120^{\circ} \mathrm{F}$. in half an hour, the colnurs which on cntering the beck were full shades of red, gradually assume an orange tint, and when of a bright orange colour, the pieces arc taken out, and winced in water. This operation termed cutting is the one that decides the depth of tint in the finished piece. The longer the pieces are kept in the beck and the greater the heat, the paler and more delicate the shade of pink obtained. After this treatment they are put iu a beck with soapand boiled for an hour, taken out, washed well, and put in a strong pan charged witis soap and water, the lid serewed down, aud boiled at a pressure of two atmosplieres,
either by direct fire or high pressure steam, for two or threc hours, then taken out. washed, and put in a beck with water at $160^{\circ} \mathrm{F}$. charged with a little hypochlorite of soda : they stay in this about ten minutes, and are theu washed and dricd. In some print works, after thic high pressure boil, the picces are spread out on the grass for a night or two, and then cleared in hypochlorite, \&c. The use of the acid here is not very clear, it probably completely purifies the colour from iron which may have been in the mordant, but it also scems to render the combination of alumina, tin, lime, colouring matter and fat acid a definite one by removing a small quantity of the mordant. The French chemists assert, that after the final process, a definite atomic compound of lime and alumina, colouring matter, and fat acid remains.

The quality of the soap used by printers is of great importance. It is made for them specially from palm oil, and requires to be as neutral an oleo-stcarate as possible; an alkaline soap like domestic soap would impoverish and degrade the shades.
The soaping process has a two-fold action:-
To clear the white by decomposing the compound of lime and colouring matter which forms the stain; this it does by double decomposition, forming olco-stearate of lime, which dissolves or forms an emulsion with the excess of soap; and a compound of soda and colouring matter, which dissolves. In its action on the dyed parts, it probably first removes resinous and other impurities which are loosely held by the mordant, and secondly gives up a portion of its fat acid to the dyed parts-the resinous acids or possibly phosphoric acid from the dyed parts, by combining with the soda, setting free fat acid for this purpose.

Second Style: Garancin.

Almost all the madder styles are imitated by dyeing with garancin, a concentrated preparation of madder (see MADDER), which dyes fine brilliant colours at once, not requiring to be soaped to develope the shades, but not possessing the extreme solidity of madder colour. Garancin dyeing is the most economical way of using madder, since more colouring matter is obtained in this way than by using madder direct, audconsequently garancin is principally used for full heavy colours, which, if dyed with madder and soaped, would be to a certain extent abraded and not stand so finely on; the surface of the cloth. Chocolate grounds, black, red, and chocolate, with brown or drab, dark purple plates, black and scarlet ground, are thus dyed; in short, wherever' the pattern is very full and cheapness cssential, garancin is resorted to. The colours or mordants for garancin are usually about two-thirds of the strength of similar colours for madder (see the list of colours), the ageing and dunging, \&c., are the same as for' madder; the dycing is performed in the same manner, using from one-fourth to onethird the quantity that would be used of madder. A little chalk is also added where the water is soft; and the dyeing is commenced at $110^{\circ} \mathrm{F}$., and carricd to $185^{\circ} \mathrm{F}$., or $190^{\circ} \mathrm{F}$. in 2 hollrs; then got out and well washed and rinsed in water at $140^{\circ} \mathrm{F}$., in a beck, for 10 minutes, then squeezed and dried. The white is always stained a little, though not to the same extent as in maddered goods, and this slight stain is removed by a process peculiar to garanein goods. In front of an ordinary cylinder drying machine, is placed a padding apparatus, and between it and the drying machine is placed a chest provided with a few rollers at top and bottom; this chest is covered hy a lid, which has at cach end a slit, by which the piece enters and issues; a perforated steam pipe at the bottom of the chest allows steam to blow freely in. The
 Twaddell's hydrometer; according to the depth of the stain on the white; the pieces are padded in this liquor, squeezed out by the bowls, and then run into the steaming chest, which is of such a size, that any given point on the piece is about $\frac{1}{2}$ minute in passing through it ; on leaving this chest the pieces pass through water or water is spirted on from a perforated pipe; after again passing through squeezing, rollers, they proceed on to the cylinders of the drying machine, on leaving which thic white is found to be perfectly bleached and the colours brightened.
There are several varietics of garancin, each adapted to particular styles. For dark full black, chocolate, and red, with brown or drab, and where there is no purple, a garancin termed chocolate garancin, made from the commonest descriptions of madder, answers very well, and this class of goods is usually dyed with chocolate garanc, assisted by small quantities of sumac, quercitron bark, and peachwood, whieh uscd, and the garancin requires to be made from a superior of thesc adjuncts can be Within the last three or four ycars, great improvematserior description of madder. garancins have been made. The Alizarin patentedcuts in the manufacturc of purple property of dycing at once purples as purc as thic fin Pincoff and Schunck, has tho the disadvantage of not dyeing good blaek and reds, soaped madder shades; it has freely introduced along with purple, an admixturc of and when these colours are
required, the general cficet being still very good, but the purple not quite so fine. The garancin patented by Higgin dyes very good purple, with black, chocolate, and red also. Both these inproved garancins stain the white grounds very little, and produce considerably faster work than the ordinary garancins; the goods may even be soaped to a considerable cxtent. A garancin that will bear as severe soaping as madder, or a method of so dyeing with garancin as to produce the same effect is still a desideratum. When this can be accomplished, there will be an end of dyeiug with madder, which will be considered a raw material, and be all manufactured into garancin.

Guranceux. - Iu ordinary madder dycing, the madder ean never be made to give up all its colouring inatter ; when all colouring matter soluble in water has bcen cxhausted, there still remains about a quarter of the whole quantity combined with line and mixed with the woody fibre. This madder is turned to account by converting it into garancin, or, as this preparation is called, garanceux. The spent madder is run off into a pit outside the dyehouse, where it is mixed with a small quantity of sulphuric acid, to precipitate any colouring matter in solution. It is then allowed to drain dry; removed from the pit, it is boiled in a leaden vessel, with more sulphurie acid, for several hours, then washed on a filter till frce from acid, and after draining is ready for use. It dyes to about one-third the strength of ordinary chocolate garancin, and is principally used for the commoner garancin styles. Mr. John Lightfoot, of Accrington, has patented an improvement in the ordinary process of making garanceux. He recommends large vats to be provided, two or more in number, each sufficiently large to contain all the waste dyeing liquor produced in the dyehouse in one day, and so arranged that the liquor runs from the dyebecks into them; at a certain point in the trough that conducts the liquor to the vats is placed a lead cistern with a valve and perforated bottom; this eistern holds a regulated quantity of concentrated sulphuric acid, and whenever a dyebeck is let off and the liquor flowing down the trough, a quantity of acid, proportionate to the quantity of madder, is allowed to run down through the perforated bottom and mix with the hot liqnor; the acidulated liquor then runs into the vat, a tightly fitting cover on which keeps the liquor hot. When the day's dyeing is done, the vat is left covered up all night; next day the lid is raised, and by means of holes and pegs in the side of the rat, all the elear liquor is drained away, the vat filled anew with water, stirred up, and when settled, the clear drawn off again; this washing being repeated till all the acid is washed away, the garanceux is then run on a filter to drain for use. The advantages of this plan are, first, the saving of fuel, by economising the heat of the waste liquor, and, secondly, the production of one-fourth more colouring matter.

Third Style : Reserved.
Maddered or garancined goods are often left with white spots, as leaves, \&c., and when dyed these spaces are filled with various bright colours, such as green, bluc, yellow, \&c. These colours are the ordinary steam colours described hereafter, and are fixed in the same manner.

Another way of combining madder or garancin colours with steam colonrs is by blocking on the dyed object, generally groups of flowers, a reserve paste (No. 39), and when this is dry, covering by machine in small patterns with various shades of drab, olive, \&e. (Nos. $5,44,46, \& c$.), which then are dunged and dyed with qnercitron bark, cochineal, madder and bark, \&c. \&c. Where the paste has been applied, the colours underneath, or the white spots reserved, are unaffected by the covering colour, and stand out clear surrounded by the covering colour. In the white spaces reserved are now blocked stcam colours, which are raised by steam as described further on.

Fourth Style: Padded.

In this style the white cloth is mordanted all over by padding in red or iron liquor, or mixtures of them, drying in the padding flue ; then a pattern is printed on in acid, and the usual dunging and dyeing operations performed, the result being a dyed ground with a white pattern.

Fig. 391 represents a section of the padding flue used in mordanting to this style.
It eonsists of a long vaulted chamber, about 35 yards long by 5 yards, and 4 yards high, cut in two at nearly half its length, by 6 small arches built in an oppositc direction to that of the chamber, the object of which is to preserre the principal arch from the action of the heat, and to hinder the dried picees from being exposed, on coming to the higher part, to moisture and acids, which are discngaged in great abundance and might condense there. CC is a long furuace, the flue of which forms tbe bottom of the chamber; the top of the flue is corered with plates of cast iron fitting one into another, and which can be heated to near red heat by the flame of the furnace. F is au arched passage by which the interior of this store can be reached. $h h$ are ventilating holes in the lateral wall which can be opened and closed at will by means of the rod j, which is connected with sliding doors over the apertures.
$k k$ arc cast iron supports for turned copper rollers, which are fixed to the eross pieces $y y$, and scrve to conduct the piece. Il are hars of iron which carry the fans $m m$, which are covered hy gratings, and make ahout 300 turns per minute.

In front of this hot flue is placed all the apparatus necessary for padding the pieces, and moving them through the drying chanhers. This movement is caused hy pulleys rr driven from a prime mover.

Tbe mordant liquor being put in the box of the padding machine, the pieces wound on a beam and placed ahove the machine are conducted through the box, then between the two lowest rollers ahove the hox, from them through the liquor again, passing next througb the highest rollers, and so into the flue, their course heing easily traced hy the arrows; on leaving the flue dry, they are wound on a heam, or plated dowu on the wooden platform behind the machine. The 3 rollers of the padding machine are made of hrass, and arc wrapped with a few folds of calico; the iron journals of them work in slots, the lowest one heing at the bottom of the slot working in brass hearings; a weighted lever presses the top roller in forcihle contact with the otbers.
Padded goods after printing in acid are hung 2 or 3 days in the ageing room, dunged, and dyed. A few of these shades are bere given.
a. Claret and white. Pad in red liquor at $10^{\circ} \mathrm{F}$., dry, cool, and pad again insame liquor, dry, cool, and print in acid No. 37, age 3 nights. Fly dung at boil, wash, second dung at $160^{\circ} \mathrm{F}$., $\frac{1}{2}$ hour, wash, dry, and singe, wash and dye 12 pieces 7 ft .8 in . 30 yards with 18 lhs. ground peachwood, 21 lhs. of French madder, 5 lhs. sumac, 5 lbs . prepared logwood, run the pieces in tbe beck cold for 20 minutes and then hring to a boil in 1 hour and 10 minutes, hoil 15 minutes, get out, rinse and wash, bran 10 ninutes at boil in a beck with a few pounds of bran, rinse in a pit and hran again at boil, wash and dry.
Prepared Logwood is thus made. - Ground logwood is spread out on a floor, damped with water, and heaped up. It is then turned over once a day for a fortnight and occasionally wetted, during which time it chauges from a dull red to a bright scarlet. It is then ready for use. Some change, probably oxidation, bas taken place, and the wood dyes further after this process.
b. Scarlet and white. - Padded and dunged as for clarets; then 10 pieces dyed with 15 lhs. French madder, 15 lbs. Dutch crop madder, 7 lbs . peach wood, 4 lhs. suniac witb 3 quarts hone size; bring to a hoil in $2 \frac{1}{4}$ hours, and hoil a quarter of an hour; wash and hran, \&cc.
c. Scarlet and yellow. - Proceed as for scarlet and white, hut dye 10 pieces with $22 \frac{1}{2}$ lbs. crop Dutch madder : $22 \frac{1}{2} \mathrm{lhs}$. French madder ; $7 \frac{1}{2}$ lhs. sumac, wash, hran, and dry; then pad in red liquor at $10^{\circ} \mathrm{T}$., age 2 nights, fly dung at $130^{\circ} \mathrm{F}$., wash and warm 1 wour, keep at $120^{\circ} 15$ mine 10 pieces with 20 lhs . quercitron hark, heat to 120° in 1 hour, keep at $120^{\circ} 15$ minutes, wash and dry.
madder, 18 lhs. peachte. - Pad, \&c., as for clarets; dye 10 pieces with 18 lbs . French in $1 \frac{3}{4}$ hours, hoil a quarter of an
e. Tyrian purple and white. - Pad, \&asb as for clarets ; atyc minutes, wash and dry. prepared logwood, 5 lbs . Dutch erop madder, a and clarets; dyc 10 picces with 5 lbs. 3 quarts bonc size. Bring to boil in $1 \frac{3}{4}$ hours, boil a 7 lbur. peachwood, $2 l$ bs bran, and bran at $150^{\circ} 5$ minutes with 1 lh . bran per piece, a quarter of an hour, wash and f. Puce and white. - Pad, \&c. as for pleee, wash and dry.
ground eochineal, 1 lb . ground galls, 4 lbs. prepared logwood, 3 lbs. peaehwood, heat to 170° in 1 hour, and 20 minutes, keep at $170^{\circ} \mathrm{J} 0$ minutes, wash, bran at $160^{\circ} 10$ miuntes ; wash and dry.
g. Amber and white.- Pad , \&e. as for elarets; dye 10 pieces with 20 lbs . quereitron bark, 10 lbs . Dutch erop madder, 2 quarts bone size. Heat to 160° in 1 hour and 15 minutes, keep at $160^{\circ} 15$ minutes, wash, bran 10 minutes at 150°; wash and dry.
h. Peach and white.-Pad, \&c. as for clarets; dye 10 picees with 2 lbs. ground coehincal, 2 lbs . peachwood, 6 oz . logwood, heat to 140° in $1 \frac{1}{4}$ hours, wash, bran at $140^{\circ} 10$ minutes; wash and dry.
i. Blach and white.-Pad in red liquor at $20^{\circ} \mathrm{T}$. onee, print in No. 36, age 3 nights, fly dung at boil, second dung at $140^{\circ}, 20$ minutes, wash, dry, and singe, wash and dye 10 pieees with 60 lbs . prepared logwood, 4 gallons of bone size, and 6 oz . earbonate of soda erystals, heat to boil in 1 hour and 10 minutes; wash well and dry.
k. Olive, drabs, fsc. with white. - $~$ great variety of shades may he obtained by varying the mordants. For drahs pad in iron liquor diluted about 10 times aecording to the shade wanted, and dye in hark, or bark and logwood. For olives, pad in mixtures of red liquor and iron liquor, diluted, and dye in bark, or bark and logwood. The acid used may be No. 33 .
l. Bark dyeing.-Dye 10 pieces with 25 lhs . hark, and 3 quarts bone size; heat to 190° in $1 \frac{1}{2}$ hours, and keep at $190^{\circ} 10$ minutes, wash and bran at $160^{\circ} 10$ minutes wash and dry.
m. Bark and Logwood dyeing.- Dye 10 pieees with 20 lbs . hark, and 30 oz . prepared \log wood, with 3 quarts hone size; heat as in bark dyeing.

Fifth Style: Indigo.

The indigo dyehouse is always on the ground floor of a building, and is fitted np with a numher of stone vats let into the ground. There are generally several rows of these vats, about 3 feet apart. Tbey are about 8 feet long by 4 feet wide, and 8 to 10 feet deep. Some of them have steam pipes inserted, whieh go to near the bottom, so that they ean be heated when neeessary. There are ahout 10 vats in a row.
A. Blue and white. The simplest form of hlue styles is hlue and white; darkhlue ground with white figures. The cloth is printed in one of the following reserve pastes :-

No. 65. Reserve paste for Bloch. - 3 lbs. sulphate of copper dissolved in 1 gallon of water, 15 lbs pipeelay, heat up with some of the liquor; 1 gallon of thick gum Senegal solution, and 1 quart of nitrate of copper at $80^{\circ} \mathrm{T}$.

No. 66. Reserve paste for Maehine. - $2 \frac{1}{2}$ lhs. sulphate of eopper, I gallon of water, thickened with 9 lhs. flour, and 2 lbs. dark British gum.
. No. 67. Rescrve paste for Machine. -5 lbs. sulpbate of eopper, 2 lbs . white aeetate of lead, 2 gallons water dissolve and thicken the elear with 3 lbs . flour and 2 lhs . pale British gum ; when cold, add half a pint of nitrate of eopper at $80^{\circ} \mathrm{T}$., to every 2 gallons of colour.

No. 68. Reserve paslc for Machine. - 4 gallons boiling water, 16 lbs . of sulphate of copper, 8 lhs. white aeetate of lead, let settle and pour off the clear liquor ; thicken 3 gallons of this with 8 lhs. of flour, and 4 lhs. pale British gum. When boiled, add 4 lbs. sulphate of zinc, and dissolve. The foregoing are all to resist deep sbades of hlue, for light shades of hlue dipping any of the following.

No. 69. Mild paste for Bloek. - 25 lbs. dark British gum, 15 quarts of water, hoil 10 minutes and add $7 \frac{1}{2} \mathrm{lhs}$. soft soap; stir well in, and when mixed, add 20 lbs . sulphate of zinc, stir well in, and add 10 lbs . pipe clay beaten up into $7 \frac{1}{2}$ quarts of water, and $7 \frac{1}{2}$ gills of nitrate of eopper at $80^{\circ} \mathrm{T}$. Mix all well togetber.

No. 70. Mild paste for Machine. -8 lhs. dark British gum ; $3 \frac{3}{4}$ quarts water; hoil and add 2 lbs . soft soap, eool, and add 6 lbs . sulphate of zinc dissolved in 2 quarts of boiling water and 1 quart of nitrate of eopper at $80^{\circ} \mathrm{T}$.

After printing in one of these reserves, hang in a rather humid atmosphere for 2 days, and then dip hlue.

Indigo for use in the dyehouse is ground with water to a fine pulp; a series of eastiron mills with eurved hottoms, are arranged in a linc: one or two iron rollers are moved backwards and forwards on the eurved bottom in eaeh mill by an upright rod, which is furnished with a roller at the bottom, and is connected with a horizontal rod worked by an excentric. Indigo and a certain quantity of water are left in these mills several days, till the pulp is perfeetly smooth. The method of blue dipping is as follows.

In a line of ten vats, the first one is set with lime; as-
(No. 1). 1000 gallons water, 250 lbs of hydrate of lime, or lime slaked to a dry powder; when used it is well raked up.

The indigo vats vary aceording to the style of work; for dcep blue and white, or blue and ycllow, or orange, the following is a good one:-
(No. 2.) 1000 gallons water, 50 lbs indigo previously pulped, 140 lbs . eopperas, and

170 lbs. lime ; dissolve the copperas in the water, then add the indigo, stir well up, and add the lime, previously riddled, to separate small stones. Rakc up every two hours for two days, and let settle clear. The clear liquor, when taken up in a glass, must have a deep yellow colour, be perfectly transparent, and be immediately covered with a pellicle of regenerated indigo when exposed to the air. Eight or nine vats are all set alike.

The pieces to be dipped are hooked backwards and forwards on a rectangular frame which just fits the vats, so that the cloth can be immersed, but still not so deep as to touch the scdiment of the vats. The process is tbus performed: - The lime-vat No. 1 being stirred up, the frame, which contains two pieces, is lowered down into it, so as to completely immerse the pieces; a gentle up and down movement is given by hand. The frame is allowed to stay 10 minutes in, is then lifted out and supported over the vat by rods put aeross. After draining here a few minutes it is then removed and immersed in vat No. 2, or the first indigo vat. It stays here seven minutes, is lifted out, and drained as before over the vat 8 minutes, then removed to No. 3 vat, and so on till it has gone through the whole series, or till the shade of blue is considered strong enough. After the last dip the pieces are unbooked and winced in a pit of water, then winced about 10 minutes in a pit containing sulphuric acid at $6^{\circ} \mathrm{T}$., washed well in the wheel, squeezed, and dried. In large dyehouses there is an arrangement for collecting all the waste indigo which is washed off the pieces, by running all the water used into a vaulted chamber under the dychouse, Where it passes from one compartment to another, gradually depositing the suspended indigo, which is periodically removed.

In heavy bodies of colour, the paste sometimes slips or the shapes beeome irrcgular ; this is counteracted by using the first indigo vat raked up instead of clear. The vats are used till ncarly exhausted, and then the clear liquor pumped off to be used instead of water for setting fresh vats with.
B. Blue and Yellow, or Orange. - Print in one of the reserve pastes, and yellow or
orange colour made as follows:-

No. 71. Chrome-yellow for Machine. - 2 gallons water, 20 lbs sulphate copper, 20 lbs. nitrate of lead; dissolve, and beat up with 12 lbs . flour, and 2 gallons sulphate of lead bottoms; boil all together.
The sulphate of lead here is the by-product in making red mordant No. 8, and is drained to a thick paste.
No. i2. Orange. - Make a standard liquor by dissolving 24 lbs . white acetate of lead in 6 gallons water, and stirring 12 lbs. litharge in it till perfectly white, then let settle, and use tbe clear.

For the orange colour take 2 gallons of this standard liquor, instead of the gallons of water in the above yellow colour.

Follow the same routine in dipping, \&ce., as for blue and whitc. Aftcr wincing in sulphuric acid sours, wash well, and wince 10 minutes in hichromate of potash solution, 2 oz . per gallon at $100^{\circ} \mathrm{F}$. Wasb well, and wince in dilute muriatic acid at $\frac{1}{8} 0$ T., containing 1 oz. oxalic acid pcr gallon, till the yellow is quite bright. The small quantity of chromic acid sct free oxidises and destroys the indigo that may be attached to the yellow colour. After this souring, wash and dry.

If orange was printed instead of yellow, treat as for yellow; and after the muriooxalic sour, wash, and raise orange in the following:- 10 lbs . bichromate of potash, 300 gallons water, and sufficient slaked lime to make slightly milky; heat to $180^{\circ} \mathrm{F}$., and wince the pieces in till the orange is full and bright; then take out and wash well, and dry.
Other varieties of bluc dyeing are : -
c. Two blues.
D. Two blues and white.
e. Two blues, white, and yellow or orange.
f. Dark blue and green.
c. Two blues and ycllow.

For c and e a pale shade of bluc is first given the eloth. The light blue vat is thus composed:-
(No. 3.) Light Blue Vat. 1000 gallons water, 40 lbs . indigo, 70 lbs . eopperas, 80 lbs . lime. For c. Dip light blue by three immersions, drawing well hetween ; unbook, wince in water, then in sulphuric sours at $2^{\circ} \mathrm{T}$.; wash, squeeze, and dry ; then print on a reserve paste, and proceed as for dark blue and white; when finished, the pale dark blue.

For f. Instead of reserve paste, print on yellow No. 71, and dip dark-bluc, sour and raise the yellow with bichromate of potash, omit the souring after chroming, and wash and dry. The yellow falling on the pale bluc, makes a green.

- For D. On white cloth print an object in muriate of manganese, thickened with
dark British gum, raise this as deseribed under the head Bronzes, dry and bloek in a reserve paste No. 65, then lime and dip in the dark blue vat, letting stay in half an hour, remove, oxidise in the air, wash and sour with dilute muriatie aeid to whieh some muriate of tin liquor has becn added, wash and dry; where the peroxide of manganese had been is now dark bluc, the ground pale bluc with white object.

For E. Print as D, with yellow or orange in addition, and after the sulphurie sours, raise yellow or orange as before.

Dip light blue; print rescrve pastc and yellow; dip dark blue; wince; sour in sulphurie sours at $6^{\circ} \mathrm{T}$.; wince in water; chrome at $140^{\circ} \mathrm{F} .10$ minutes at 2 oz . hichromate per gallon; wince, wash, and sour in the following: - 7 lbs . oxalic acid, 3 lbs . strong sulphuric aeid; dilute with water to standard $8^{\circ} \mathrm{T}$.; winec till the ycllow is bright ; then wash and dry.

A style formerly very much in vogue, but now searcely ever used, is the neutral or Lazulite style. It consists in combining mordants with reserves, and dipping bluc; the eolours throw off the blue, and are subsequently dyed with madder.

Neutrals are of two sorts. -

1. Where reds and chocolate, or black, with resist white are printed, and dipped light blue, the resist white being only required to resist the blue.
2. Where the white is required to cut through the block, reds or chocolate in addition to the blue.

The following are examples of lazulite colours for the first variety.
No. 73. Black (Mackine). -4 quarts logwood liquor at 12° T., 1 quart gall liquor at 9° T., 1 quart red liquor at $20^{\circ} \mathrm{T}$., 1 quart iron liquor at $24^{\circ} \mathrm{T}$., 1 quart aeetic acid, thicken with 3 lbs . flour, and 8 oz . starch: when boiled, add 1 pint Gallipoli oil, and 1 pint turpentine.

No. 74. Chocolate (Machine). - 5 quarts red liquor at 12° T., 1 quart iron liquor at $24^{\circ} \mathrm{T}$., $1 \frac{1}{2} \mathrm{lbs}$ sulphate of eopper, 24 oz . measure of nitrate of copper at $100^{\circ} \mathrm{T}$., thieken with $2 \frac{1}{2} \mathrm{lbs}$. flour, and $\frac{1}{2} \mathrm{lb}$. dark British gum.
No. 75. Chocolate (Block).-5 quarts red liquor 12° T., 1 quart iron liquor $24^{\circ} \mathrm{T}$., $2 \frac{1}{4} \mathrm{lbs}$. sulphate of copper, 36 oz . measure nitrate of copper at $100^{\circ} \mathrm{T} ., 9 \mathrm{lbs}$. pipe elay beat up well, and add 3 quarts of gum Senegal solution at 5 lbs. per. gallori.

No. 76. Dark resist Red (Block). - 2 quarts red liquor 22° T., $5 \frac{3}{4}$ oz. white acetate of lead, $4 \frac{1}{4} \mathrm{oz}$. sulphate of copper, dissolve, and beat up in it $6 \frac{3}{4} \mathrm{lbs}$. pipe clay. Thicken separately 2 quarts red liquor at $12^{\circ} \mathrm{T}$., with 12 oz . flour, and add when boiling hot 8 oz . of soft soap melted; mix well, add the pipe clay mixture to this, and then 2 quarts red liquor at 2° T., thickened by dissolving gum Senegal in it. Stir the whole well together.

No. 77. Dark resist Red (Machine). - 20 quarts nitrate of zinc at 36 B., 10 quarts water coloured with a little peachwood, $12 \frac{1}{2} \mathrm{lbs}$. alum, 10 lbs . acetate of lead; dissolve all together with heat, stir till cool, thicken all together with 8 lbs . flour, and $1 \frac{1}{2}$ lbs. dark British gum.
No. 78. Any shade of pale red is made for block by substituting the red liquor in colour No. 76 by the mordant No. 8. reduced with water, aecording to the shade wanted.

No. 79. Any shade of pale red for machine is made by reducing the quantities of alum and acetate of lead in colour No. 77.

The white reserve for this variety of neutrals is either of the mild pastes.
No. 80. Resist Brown. -2 gallons water, 24 lbs catechu, 6 lbs . sal ammoniac, 1 gallon acetie aeid; boill 15 minutes, and add $7 \frac{1}{2}$ gallons gum solution, 5 quarts nitrate of eopper at $100^{\circ} \mathrm{T}$.

Process. - The colours after printing are aged 3 days, then dipped light blue in the following blue vat.
(No. 4.) Neutral vat. - 1000 gallons water, 120 lbs . indigo, 135 lbs . coppcras, 150 lbs. lime; rake up for two days, and let settlc.

A frame with rollers top and bottom is lowered into this, and the pieces are run through; after leaving the vat, they are made to travel over rollers in the air for a sufficient distance to turn them blue; then into a pit of water, from that into a beck with eowdung and water, at $160^{\circ} \mathrm{F}$., where they run 15 minutes, then washed and dyed madder or garancin, \&c. \&cc.

In the second variety of ncutrals, the white is required to resist both mordants and blue, and is made thus:-

No. 81. Neutral White for Blocks. -7 quarts lime juice at 30° T., 1 quart water, $4 \frac{1}{2}$ lbs. sulphate of copper, 24 lbs . pipe elay, $3 \frac{1}{2}$ quarts lime juice at $30^{\circ} \mathrm{T}$., previously thiekencd with gum Senegal. Machine.-1 gallon lime juice at $42^{\circ} \mathrm{T}$., 2 lbs. sulphate of
No. 82. N.

No. 82. Neutral White for te of copper at 100° T., thickened with $1 \frac{1}{2} \mathrm{lbs}$ stareh. copper, 32 oz. measure nitrate ordder or garancin blaek, Nos. 4 and 5 process.

The black is the ordinary madder or garancin blaek, Nos. 4 ; if the latter, it cannot
be in a pattern which shonld register accurately with the subsequent colours, as it must be dried perfectly before the other colours are printed, to avoid obtaining irregnlar shapes; the ahove reserve colours are then printed over the neutral white. Mild paste Nos. 71,72 may also he printed along with the other colours, to reserve a white under the hlne only. The subsequent process is the same as for the first variety.

After dyeing madder and garancin, and clearing with soap, \&c., steam or spirit colours are generally blocked iu. Parts of the ycllow being made to fall over the hlue form green.

Sixth Style: China Blues.

China blues, so ealled from the shade of blue resembling that on porcelain. In this style indigo is printed on, and made to penetrate and fix in the cloth by the subsequent process. The colour is made thus :-
No. 83. Standard China Blue. - In an indigo mill are put 45 lbs . indigo, 9 gallons iron liquor at $24^{\circ} \mathrm{T}$., and 18 lhs . copperas, the whole ground till quite fine; then add $7 \frac{1}{2}$ gallons gum Senegal solution at 6 lhs. per gallon; grind an hour longer, take out and wash the mill with 6 quarts hot water, and add to the ahove.

No. 84. China blue gum.- Gum Seuegal solution at 3 lbs. per gallon, containing 4 oz . copperas per gallon.
Colours are made by reducing the standard blue with the gum, according to the pattern and strength required. For instance, for two hlues of medium shades: -
No. 85. Strong Blue. -1 volume standard, 2 volumes gum.
No. 86. Pule Blue.-1 volume standard, 10 volımes gnm.
After printing, age one night, and raise as follows:- Two vats similar to indigo vats are set. No. 1. 1000 gallons water, 500 lbs . slaked and dry lime. - No. 2. Solution of eopperas at $5^{\circ} \mathrm{T}$. In each vat is lowered a frame, which is provided with rollers at top and hottom, and in addition, has a pair of hushes at each side of the frame, just above the surface of the liquor, in which are put heams, on which the pieces are wound alternately; the hearings of the beams heing just ahove the surface of the liquor, allows the roll of pieces to be always half iu and half ont of the liquor. The conrse of proceeding is this:-A heam containing two or three pieces stitched end to end is placed on a small frame at one side of vat No. 1, and by means of a cord previously threaded through the rollers in the vat, the picces are slowly wound through the rat and on to a heam placed in the bearings at the opposite side of the vat, by means of a winch handle fitted on this beam; when the pieces have thus passed throngh vat No. l, which is kept in a milky state all the time, the heam is lifted ont and transferred to one of the pair of bearings in vat No. 2; the pieces are wond through this vat in the same manner; after this vat, they are removed to No. 1 vat, and worked through; this alternate liming and eopperasing is continued till the pieces have heen 4 times through each vat; then detach and wince in water; then put into sulphmic sours at 10° T., immersing completely in the liquor till the whites appear quite clear; then wash well, soap in a heck at $120^{\circ} \mathrm{F}$. a quarter of an
 $110^{\circ} \mathrm{F}$. ; wash well and dry.
explanation whith the lights of ocur in the dipping of China hlues are not difficult of explanation with the lights of modern chemistry. We have, on the one hand, indigo and sulphate of iron alternately applied to the cloth; by dipping it into the protoxide of is deoxidised, heeause a film of the sulphate of iron is decomposed, and green, and soluhle at er forth to seize the oxygen of the indigo, to make it yellowof the fibres, and, on exposure time in lime-water. Then, it penctrates into the heart and fixed within their pores. On dipping therhs oxygen, so as to hecome insoluble of iron, a layer of oxide is formed upon its whole surfato the second vat of sulphate action only upon those parts that are covered with indigo, and deoxidises exercises an it; thns rendering a second dose soluble hy the interventiond deoxidises a portion of lime hath. Hence we see that while thes alternate transition the second dip in the of deoxidisement, solution, and re- these alternate transitions go on, the same series creasing fixation of indigo within the fibres Other indigo styles are dipped greens, hlue wie cotton.
Dipped Greens. - There are 4 vats similar with white discharge.
First: (No. 5.) Light blue Val for Greens.- 1000 gallons water row, set with :coppcras, 65 lbs . lime, dry slaked, 17 lbs . caustic soda, 240 T , 25 lbs . indigo, 45 lhs . and settled clear.

Second: (No. 6.) Yellow Vat for Greens.-1000 pallons water, of lead, 130 lbs d dry slaked lime; rake 1 p till dissolved, and let settlo brown acetate Third: (No. 7.) Filled with water only.
Fourth : (No. 8.) Set with hichromate
Each of these vats is mounted with of potash at $4^{\circ} \mathrm{T}$.
Vol. I.
pieces to be dipped are stretehed end to end, and a length of eord being threaded throngh all the vats and fastened to a drawing rollur the the end of the form, the pieces are drawn slowly throngh between the first and second; the cloth is made to travel several yards so as to ensure oxidation of the indigo before going into the lead vat; after leaving the fonth, they are detaehed, winced, and washed well.

For dipped greens, either white cloth is printed in patterns, as spots, Scc. with mild paste, Nos. 69, 70 ; or a pattern previously printed in madder colours and dyed, \&e. is covered up with mild paste by bloek; the eloth being now dipped green, the pattern or spots arc reserved or untouehed by the green: a very good effieet is produced by dipping the Burgundy and acid No. 4, green, when the Burgundy part comes out a beautiful chocolate, aud the white part green.

Acid Discharge on Blue. - A blue and white style, but which permits the most delicate pattern to be printed, whieh is not the case with the ordinary blue and white stylc. The eloth is first dipped a medium shade of blue, washed and dried, then padded in biehromate of potash at $6^{\circ} \mathrm{T}$., and carefully dried in the shade, without artifieial heat, and printed in the following coiour:-

No. 87. White Discharge for Blues. - 1 gallon water, thicken with 2 lbs. flour, and 2 lbs. dark British gum; when partly cooled, add 2 lbs. oxalic acid, and when quite eold, $7 \frac{1}{2}$ oz. measure sulphuric aeid. A few seconds after the colour is printed on the padded cloth the blue is discharged, and a dirty white left in the printed parts; after printing, the pieces are dried so as to leave then slightly damp, and immediately winced in chalk and water, then wineed in sulphuric sours at $2^{\circ} \mathrm{T}$., winced and well washed; the printed pattern is now a pure white, and if eare has been taken not to dry the bichromate too hard, and not expose it to sunlight, the blue is bright and good.

This ingenious process was the invention of Mr. John Mereer. At the moment the block applies the preeeding diselarge to the bichromate dye, there is a sudden decoloration, and a production of a peculiar odour.

The pieees padded with the bichromate must be dried at a moderate temperaturn, and in the shade. Whenever watery solutions of chromate of potash and tartarie acid are mixed an effervescenee takes plaee, during which the mixture possesses the power of destroying vegetable colours. This property lasts no longer than the effervesceuce.

Sevcuth Style: Dischargc on Turkey Red Ground.

No. 88. White Discharge (Machine). - 8 lbs . light British gum, 1 gallon tartarie acid liquor $62^{\circ} \mathrm{T} ., 1$ gallon aeetic acid $6^{\circ} \mathrm{T}$.

No. 89. White Discharge (Block). - The above eolour a little thinner.
No. 90. Black for Turkey Red. -7 gallons logwood liquor at 8° T., 1 gallon pyroligneous aeid, 10 lbs starch; boil and add 2 lbs. 10 oz. copperas; boil again and cool, then add $3 \frac{1}{2}$ pints pernitrate of iron at $80^{\circ} \mathrm{T}$., and 1 gallon of blue paste.

No. 91. Blue Puste. - (a) 6 lbs. eopperas, 2 quarts water; dissolve. (b) 4 lbs. prussiate of potash, 1 gallon of water; dissolve. Mix a and b together, and add 1 quart standard red linuor No. 8, 1 quart nitric acid $60^{\circ} \mathrm{T}$.

No. 92. Yellow Discharge (Block).-1 gallon lime juiee at 50^{\wedge} T., 4 lbs . tartarie acid, 4 lbs. nitrate of lead; dissolve, thicken with 6 lbs . pipeelay, and 3 lbs . gum Senegal.

No. 93. Yellow Discharge (Muchine).-Thicken the above with $1 \frac{1}{2}$ lbs. starch, insteal of the pipeelay and gum.
No. 94. Yellow Dischargc (Machine). -1 gallon lime juice at $40^{\circ} \mathrm{T}$., $4 \frac{1}{2}$ lbs. tartaric aeid, 5 lbs . white acetate of lead, $1 \frac{1}{4} \mathrm{lbs}$. starch; boil and cool, then add 1 lb .14 oz. nitrie aeid, at 60°.
No .95. Blue Discharge (Machinc).-(a) 1 lb . Prussian blne, 1 lb . oxalie aeid, 1 quart hot water; grind well together, and leave to react on each other 24 hours; then (b) 3 quarts of water, $1 \frac{1}{4}$ lbs. starch; boil, and add 2 lbs . tartarie acid, and mix a and b together.
No. 96. Grecn Discharge (Machine).- $1 \frac{1}{2}$ gallons No. 95 blue, 1 gallon No. 94 yellow. Process :- Print in any of the above colours, and as soon as dry from the machine, put through the deeolonring rat.
(No. 9.) Decolouring Vut. - 1000 gallons water, 1000 lbs. ehloride of lime ; rake wrll up, till quite smooth and free from lumps, then immerse a frame with rollers top and bottom, as in dipping greens, \&e.; keep the vat stirred up so as to be milky, and rum the pieecs through at the rate of 1 piece of 28 yards in 3 minntes; on learing the squeezing rollers, eonduct into water and rince, theu winec 10 minutes in biehromate of potash at $4^{\circ} \mathrm{T}$.; wash and wince in very dilute muriatic acid; wasl well and dry.

In this style, sueh is the permanenee of the Turkey red dye, that it is not mueh altered by passing through chloride of line, whilst in the parts printed in the diselarge colours, an instantaneons disengagement of chlorinc takes place, which decolourises the dyed ground, and where a mineral colour or moruant formed part of the discbarge, it is left in place of the red dye. This style was invented in 1811 by N. 1.

Kœehlin, and patented in England by Mr: James Thompson, of Primrosc, who priuted immense quantities of it.

The Bandanna printing, being a business of itself, is more fitly described in another place. (See Bandanna.)

Eighth Style: Stean Colours.

The printing of steam colours may be considered as a mode of dyeing at one operation, for iu most cases one or more mordants are mixed with dye-wood decoctions, and printed on the eloth, the subsequent steaming causing the mordant to combine with the colouring matter, and both with the cloth. Steam colours in some cases are made so as to produce a fair colour when printed on ordinary white calico; but much superior colours are produced by mordanting the cloth first, so as to fix peroxide of tin in the fibre; and as this is the almost uuiversal rule, it is this sort of steam printing alone that will be described. Woollen fabrics, indeed, requirc a good preparation by tin, \&e., before lively and substantial colours cau be fixed on them by steam.
The following is the mode of preparing calicoes for steam colours:-
Pad the picces stitched together, in a paddiug machine with wooden bowls, through a solution of stannatc of soda at $10^{\circ} \mathrm{T}$. twice over, letting them lie wet an hour between; immediately after padding the second time, ruu through a cistern with rollers, containing dilute sulphuric acid at $1_{\frac{1}{2}}{ }^{\circ}$ to $3^{\circ} \mathrm{T}$., thence into a pit of water, wince well, and run through a washing machine. It has been observed by Mr. James Chadwick, that if the cloth, with oxide of tin newly precipitated on it, is subjected to any severe washing, it loses a considerable quantity of oxide, so that no more washing must be given at this stage than will remove the free sulphuric acid. It appears that tbe cloth, onee dried with the oxide in it, does not part with the oxide again by severe washing. After washing, the pieces are unstitched, and put in the hydro-extractor, then dried gently over the steam eylinders, and are then ready for printing.

The following list of steam colours comprises the usual variety of shades printed on alico :
No. 97. Steam Black (Machine).-1 gallon logwood liquor at $12^{\circ} \mathrm{T}$., 1 quart gall liquor at 9° T., 1 quart mordant, 2 lbs , flour, 6 oz . starch; boil 10 minutes, and add $\frac{1}{2}$ pint nitrate of iron.

Steam Black Mordant. - 1 quart acetic acid, $1 \frac{1}{2}$ quart acetate of copper at $3^{\circ} \mathrm{T}$., $1 \frac{1}{2}$ quart iron liquor at $24^{\circ} \mathrm{T}$., 1 quart red liquor at $20^{\circ} \mathrm{T}$.
No. 98. Chocolate (Machine).-3 gallons logwood liquor at $12^{\circ} \mathrm{T}, \mathrm{I}^{2}$ gallons Sapan liquor at $12^{\circ} \mathrm{T}$., 1 gallon nitratc of alumina, $\frac{1}{2}$ gallon bark liquer at $12^{\circ} \mathrm{T}$.. 4 gallons water, 17 lbs. starch; hoil, and add 8 oz . chlorate of potash, $2 \frac{1}{2} \mathrm{lbs}$. red prussiate.
No. 99. Dark Blue (Machine).-7 gallons water, 14 lbs. starch, $2 \frac{3}{1}$ lbs. sal ammoniac; boil, and add whilst lot 12 lbs . yellow prussiate of potash in powder, 6 lbs . red prussiate of potash, 6 lbs . tartaric acid, and wben nearly cold, 1 lb . sulphuric acid (specific gravity $1 \cdot 85$), 1 lb . oxalic acid dissolved in 2 quarts hot water, and 6 gallons prussiate of tin pulp.
No. 100.-Dark Blue. - 8 quarts water, 4 lbs. yellow prussiate of potash, 3 lbs pale British gum ; boil, and add 1 lb . bisulphate of potash, 2 lhs. muriate of ammonia, 8 oz . alum, 4 oz. oxalic acid, 4 oz. sulphuric acid at $170^{\circ} \mathrm{T} ., 4$ quarts tin pulp No. 103.
No. 101. Cimnamon.-1 quart cochincal liquor at 8^{\cup} T., 1 quart \log wood liquor at 8° T., 1 quart berry liquor at $10^{\circ} \mathrm{T} ., 6 \mathrm{oz}$. alum, 4 oz . cream of tartar, 8 oz . starch ; boil, and whilst warm add 3 oz . muriate-of tin crystals.
No. 102. Orangc.- 12 lbs. annatto, 1 gallon caustic soda at $70^{\circ} \mathrm{T}$., 5 gallons water; boil 20 minutes, strain. and add 3 quarts red mordant No. 146,6 lbs. alum; heat till clear, and add 4 gallons thick gum-suhstitute water.
No. 103. Tin Pulp.-To protochloride of tin solution add as much yellow prussiate of potash in solution as will precipitate all the tin as ferroprussiate; this is washed by decantation, and filtcred to a stiff paste.
No. 104. Light Blue for Mac̣izue. - 1 gallon dark blue No. 99, 3 gallons 4 -lb. gum-substifute water.
No. 105. Green (Mucline). $\rightarrow 7$ gallons Persian-berry liquor at $12^{\circ} \mathrm{T} ., 1.5 \mathrm{lbs}$. yellow prussiate of potash, 8 lbs . alum, 28 lbs . gum-substitute ; boil, and add 2 lbs . muriate--tin crystals, 2 lbs. oxalic acid.
No. 106. Pialk (Muchinc).-4 gallons cochineal liquor at $6^{\circ} \mathrm{T} ., 2 \mathrm{lbs}$ alum, 2 lbs . Ni-tartate of potash, 8 oz, oxalic acid, 4 gallons thick gum-Senegal water.
No. 107 . Purple (red prussiate of potash, 4 oz . oxalic acid, 8 gallons gunn-substitu T., 12 oz . alum, 8 oz . add 12 gallons gum water instead of 8 gallons. No. 108. Dark Red (Machinc) - 8 gallons. lifuor at $8^{\circ} \mathrm{T}$., 2 quarts nitrate of aluuina sapan liquor at $12^{\circ} \mathrm{T}$., 2 quarts bark tute, 4 quarts water, 4 oz . chlorate of potash, 12 oz , alum. $\frac{1}{2}$ lbs. starch, 1 lb . gum. substi-

No. 109. Nitrate of Aluminu.-8 gallons boiling water, 24 lbs . nitratc-of-lead crystals, 24 lbs. alum, 5 ibs. carbonate-ol-soda crystals; let settle, and use the clear.

No. 110. Blue Stundurd.-1 gallon water, 12 oz. alum, $4 \frac{1}{2}$ oz. oxalic acid, $1 \frac{3}{3} \mathrm{lbs}$. yellow prussiate of potash, 1 gallon gum-substitute water.

No. 111. Lavender Liquor. - 2 gallons red liquor at 18° T., 6 lbs ground logwood; let stecp for 48 hours, then strain off the liquor.

No. 112. Lavender. - 4 gallons lavender liquor No. 111, 4 gallons bluc standard No. 110 , from 24 to 48 gallons gum water, according to shade wauted.

No. 113. Drab.-4 gallons lavender liquor, 4 gallons blue standard, 1 gallon bark liquor at $8^{\circ} \mathrm{T}$., from 40 to 70 gallons gum water, according to shade wanted.

No. 114. Stone.-4 gallons lavender liquor No. 111, 6 gallons blue staudard No. 110, 1 gallon bark liquor at $12^{\circ} \mathrm{T}$., reduced same as drab.

No. 115. Suge Green for Blotch Grounds.-2 gallons yellow No. 48, 2 gallons blue standard No. 110 , from 28 to 56 gallons gum watcr, aecording to shade wanted.

No. 116. Yellow. -4 gallons berry liquor at $12^{\circ} \mathrm{T} ., 1 \frac{1}{2} \mathrm{lb}$. alum.
No. 117. Brown Standurd. - 14 quarts bark liquor at 12° 'T., $3 \frac{1}{2}$ quarts Sapan liquor at $12^{\circ} \mathrm{T}$., $1 \frac{1}{2}$ quarts \log wood liquor at $12^{\circ} \mathrm{T}$., 12 quarts $8-\mathrm{lb}$. gum-substitute water, $3 \frac{1}{2} \mathrm{lbs}$. alum, 2 oz . chlorate of potash, 5 oz . red prussiate. All shadcs of light browns are made from this by reducing with gum-substitute water, according to shade wanted.

No. 118. Yellow. -4 gallous bark at $8^{\circ} \mathrm{T}$., 2 quarts red liquor at $18^{\circ} \mathrm{T}$., 2 quarts nitrate of alumina No. 109, 12 oz. tin crystals, 5 lbs. starch.

No. 119. Green for Block.-28 lbs. ycllow prussiate of potash, 6 gallons hot water; in a separate vessel 10 gallons $6-1 \mathrm{~b}$. gum-Senegal water, 2 gallons water, 1 gallon muriate of tin at $120^{\circ} \mathrm{T}$.; mix the prussiate solution with the tin and gum by pouring one into the other, and violently agitating; when quite fine and free from flocculent matter, add 12 gallons berry liquor at $10^{\circ} \mathrm{T}$., then add 12 lbs . and $2 \frac{1}{2} \mathrm{lbs}$. oxalic acid dissolved in 5 gallons water, then 3 quarts acetic acid, and $2 \frac{1}{2}$ gills extract of indigo.

No. 120. Brown -6 quarts berry liquor at 20° T., 6 quarts Brazil-wood liquor at 8° T., 3 lbs. alum, 3 quarts lavender liquor, 6 quarts $6-\mathrm{lb}$. gum-Senegal water, 24 oz . nitrate of copper at $100^{\circ} \mathrm{T}$.

After printing, the pieces are hung for some hours to equalise their temperature, and are then steamed.

There are two methods of steaming now commonly employed - the column and the chest. The column is a hollow cylinder of copper, from 3 to 5 inches in diameter, aud about 44 inches long, perforated over its whole surface with holes of about $\frac{1}{6}$ th of an inch, placed about $\frac{1}{4}$ of an inch asunder. A circular plate, about 9 inches diameter, is soldered to the lower end of the column, destined to prcvent the coil of cloth from sliding down off the cylinder. The lower end of the column terminates in a pipe, mounted with a stopcock for regulating the admission of steam from the main steam boiler of the factory. In some cases, the pipe fixed to the lower surface of the disc is made tapering, and fits into a conical socket, in a strong iron or copper box, fixed to a solid pedestal; the steam pipe enters into one side of that box, and is provided, of course, with a stopcock. The condensed water of the column falls down into that chest, and may be let off by a descending tube and a stopcock. In other forms of the column, the conical junction pipe is at its top, and fits there into an inverted socket connected with a steam chest, while the bottom has a very small tubular outlet, so that the steam may be exposed to a certain pressure iu the column when it is encased with cloth.
The pieces are lapped round this column, but not in immediate contact with it; for the copper cylinder is first enveloped in a few coils of blanket stuff, then with scveral eoils of white calico, next with the several pieces of the printed goods, stitched endwise, and lastly, with an outward mantle of white calico. In the course of the lapping and unlapping of such a length of wcbs, the cylinder is laid in a horizontal frame, iu which it is made to revolve. In the act of steaming, however, it is fixed upright, by one of the methods above described. The stcaming lasts for 20 or 30 minutes, according to the nature of the dyes; those which contain much solution of tin admit of less steaming. Whenever the steam is shut off, the goods must be immediately uncoilcd, to prevent the chance of any aqueous condensation. The unrolled picces are free from damp, and require only to be exposed for a few minutes in the air to appear perfectly dry. Were watcr condensed during the process, it would be apt to make the colours run.
The other method of steaming, and the one now most generally cmployed, is that of the chest. This is a reetangular iron chamber, with penthouse top; its dimensions are about 12 feet in length by 6 feet in width, by 9 feet iu height at the highest part. It is provided with closely-folding doors at one end, with a cross bar, which ean be fastened with wedges or screws. There is a perforated false botom, at the same
level as the room in whieh the steam ehest stands; underneath the false bottom is a perforated pipe, running round three sides of the chest; this pipe admits the stean, whieh is further diffused by the holes in the false bottom. On the false hottom is laid a pair of rails parallel with the sides of the chest; these rails are eontinued outside the ehest into the room, the parts next the ehest for about 3 feet being linged so as to be moved on one side when the doors are opened or shut. Upon the rails moves a rectangular frame of wood, which just fits inside the chest, and stands as high as the commencement of the slope of the roof. This frame, when drawn out into the room, is filled with pieces in the following manner:-They are first wound on an open reel, one by one, the selvages of each fold being kept as parallel as possihle. The pieee is then slid off the end of the reel, pulled flat, and a needle and thread passed through all the selvages of one side, and loops made, through which are passed wooden rods, whieh rest on the sides of the earriage. The pieees heing thus suspended with selrages downwards, the earriage, heing filled with the rods, is run into the ehest, the doors firmly shut, and steam turned on, the steam eseaping by a safety valve. They hang thus for 45 minutes, are taken out, unfolded, and loosely folded for washing off. They are next stitehed end to end, and passed through a cistern with water, from that into a eistern containing a very weak solution of hiehromate potash; they are then put in a washing maehine, hydro-extracted, starched, and dried.

The colours that are fixed by steaming may, with one or two exeeptions, be deserihed as eoloured lakes temporarily held in solution by aeids, and during the steaming, the cloth gradually withdraws these lakes from solution, the aeid heing either dissipated or so modified as to he ineapable of holding the lakes dissolved. The state of the steam is an important matter. It is not the heat alone that produees the effeet ; for it may easily he demonstrated that heating eloth, when printed and dried, has no effeet whatever. The steam, to he effective, must he as saturated with moisture as possihle, and for this reason the steaming apparatus should never he near the hoiler: it is no disadvantage for the steam to travel a considerahle distanee hefore being applied. In some print works the steam is made to pass through water in a vessel plaeed below the steam ehest, so that it arrives in the chest perfeetly saturated with water. At the same time, the steam must not he of so low tension as to eause a delosit of moisture on the pieces, which would he very injurious, by eausing the colours to run or mix. Steam blue depends for its fixation on the decomposition of ferroeyanie aeid by the high temperature and presence of vapour water into white insoluble ferroeyanide of iron and potassium, which, hy acquiring oxygen from the air or during the washing-off, beeomes Prussian hlue. The shade of it is mueh modified hy the oxide of tin in the eloth and the prussiate of tin that forms part of the eolour. It appears that tin suhstitutes iron, forming a compound ferroeyanide of tin and iron, or a ferro-stanno-eyanide of iron, whieh is of a deep violet-blue colour. Greeus are mixtures of yellow lakes with the Prussian hlue, formed by deeomposition. In hoth these colours there is a large quantity of hydroeyanie acid disengaged during the steaming; steam heing decomposed, its hydrogen going to form hydroeyanie acid.

Mousseline de laines are treated somewhat in the same manner, the preparation of the cloth heing different, and the colours are made in such a manner as to fix equally on both the wool and the cotton of the fahric. The steaming and washing-off is nearly the same as for ealicoes. The following is the method in detail:-

The eloth is first well bleached (see Bleaching) and sulphured. This operation is usually performed by hanging the goods in a close stone or hriek ehamber. Trays of sulphur being lighted, the door is elosed tight, and the pieees stay in the sulphurous gas for several hours, and are then removed and washed. An improvement on this method was patented by John Thom, and is here shown.

Thom's Sulpluring Apparutus. - Fig. 392. A is the roof, made of sheet lead, 4 lbs. to the foot. B is a lead pipe, of one ineh diameter, taking off the exeess of sulphurous aeid to the fluc. c and c are rolls of pieces, going in on one side and coming off at the other. D and D , rollers of wood, three inehes in diameter, with iron centres at the ends. E and e , tiles, as in malt kilns, to let the gas pass up through to the eloth.

Fig. 393 shows the ehamher ; it is six feet in length by four feet in breadth. and about five feet high. There are two windows, which are plaeed opposite each other. F is a cast-iron tray for burning the sulphur. It is plaeed on a flag, inclining towards the chamher at about one ineh to a foot. It is furnished with a slide, on which to put the sulphur to he pushed in, and to admit what air may be wanted. The spaee for air may be from half an ineh to an ineh wide. It eosts 188 . to $20 l$.
Preparation.-Pad the picees, previously well hleached (see Bleaching), in a wooden padding maehine through stannate of soda at 10° twiee over, then pass through a eistern with rollers, eontaining dilute sulphurie acid at $3^{\circ} \mathrm{T}$., wash gently, and partially dry, then pad through sulphomuriate of tin at $40{ }^{\circ} \mathrm{T}$. twiee.

No. 121. Sulphomuriate of Tin.-3 quarts muriate of tin at 120° T., 1 quart sulphurie aeid at $170^{\circ} \mathrm{T}$, mixed together gradually, wnd 4 quarts muriatic aeid added; reduee to $4^{\circ} \mathrm{T}$.

393

Run from this without washing into a large eistern with rollers, entaining dilute chloride of lime at $\frac{10}{2}$ T., then wash, put in the hydro-extractor, and dry. When wanted for printing, pad through gum-Senegal water at 8 oz to the gallon, and dry. After printing they are hung the same as ealieoes to equalise the temperature, then hung in the steam ehest in the same manner as ealicoes, and steamed 45 minutes. After stenming, they are unrolled and loosely folded for washing-off, whieh is done by wincing over a reel in a pit of water gently for $\frac{1}{4}$ of an hour, theu transferred to a washing maehine or large automatie wince reel, aud washed till no more coloured liquor comes away, then hydro-extraeted, and dried over the steam eylinders. After drying, it is found advautageous to lang the pieees in a cool roon, with eovered shutter sides, for a day or two, so that they may imbibe a little moisture, and the colours appear rieher. The wool in mousseline de laines is apt to be partially deeomposed during steaming, and sulphuretted liydrogen liberated, whieh deeomposes the metallie salts, sueh as nitrate of eopper, used in some colours, and produces a very
disagreeable effeet, termed silvering. 'To avoid this, it is now eustomary to wind on the reel for steaming, at the same time as tbe printed piece, a grey or unbleached piece, whieh has been padded in a weak solution of acetate of lead, and dried. By tbis means the printed piece is stcamed in contaet with the prepared piece, and any sulphurcted hydrogen tbat may be disengaged is immediately absorbed by the acetate of lead.

The following are the colours used in mousscline-de-laine printing:-
No. 122. Dark Red. - 4 gallons cochineal liquor at $10^{\circ} \mathrm{T}$., 7 lbs . starcb; boil, and when cooled to $180^{\circ} \mathrm{F}$., add $1 \frac{1}{4} \mathrm{lb}$. oxalic acid, and when this is dissolvcd, $1 \frac{1}{4} \mathrm{lb}$. muriate-of-tin crystals.

No. 123. Chocolute. -6 gallons Sapan liquor at 12° T., 2 gallons logwood liģuor at $12^{\circ} \mathrm{T}$., I gallon bark liquor at $12^{\circ} \mathrm{T}$., 16 lbs . starch; boil, and add $5 \frac{3}{1} \mathrm{lbs}$. alum, 12 oz . ehlorate of potash, $4 \frac{1}{2}$ lbs. red prussiate of potash.

No. 124. Yellow. -4 gallons berry liquor at 10° T., $5 \frac{1}{4} \mathrm{lbs}$. starch, 1 lb . pale British gum ; boil, and add $1 \frac{3}{4} \mathrm{l}$ b. muriate of-tin erystals.
No. 125. Dark or Royal Blue.-6 gallons water, $6 \frac{1}{2}$ lbs. starch, $2 \frac{1}{1} \mathrm{lbs}$ sal ammoniac; boil well, and add 6 gallons tin pulp No. 103 ; mix well into the paste, and add 16 lbs . pounded yellow prussiate of potasb, 8 lbs . rcd prussiate, 24 lbs . tartarie acid, and $1 \frac{1}{2} \mathrm{lb}$. oxalic acid previously dissolved in 4 pints hot water.
No. 126. Pale Blues are made from the dark blue No. 125, by redueing with gumsubstitute water; say 1 of dark blue and 7 of gum-water for pale blue, for two blues, and 1 of dark-bluc and 14 of gum water for bloteb or ground blue.
No. 127. Green. -4 gallons berry or bark liquor at $12^{\circ} \mathrm{T}$., 3 lbs . alum, 6 lbs . stareh; boil, and add 6 lbs . powdered yellow prussiate of potash, 1 lb . muriate-of.tin crystals, 1lb. oxalic acid, and $2 \frac{3}{4}$ pints extract of indigo.
No. 128. Pale-green. -3 quarts berry liquor at $6^{\circ} \mathrm{T}, 1 \frac{3}{4} \mathrm{lb}$. ycllow prussiate of potash, $9 \frac{1}{2}$ oz. alum, $\frac{3}{4}$ pint acetic aeid, 16 quarts 4 -lb. gum-Senegal water, 8 oz . weight muriate-of-tin liquor at $12^{\circ} \mathrm{T}$.,,$\frac{3}{1}$ pint extract of indigo.
No. 129. Dark Brown.- $2 \frac{1}{2}$ quarts Sapan liquor at $8^{\circ} \mathrm{T} ., 1$ pint \log wood liquor at $12^{\circ} \mathrm{T} ., 5$ quarts bark liquor at $10^{\circ} \mathrm{T}$., 12 oz . alum, 1 oz . chlorate of potash, 6 lbs . gum substitute; boil, and add 4 oz . red prussiate of potash, 2 oz . oxalic aeid.

No. 130. Pale Browns are made from the dark-brown No. 129, by reducing with gum water, say 1 to 3 or 1 to 5 .

No. 131. Pule Red. - 1 lb. fine-ground coehineal, 1 lb . liquor ammonia, specific gravity 0.88 ; put in a jar with tight-fitting cover, which may be luted down; keep in a warm place for 48 bours, then mix with 2 gallons boiling water, and simmer in a mug down to 1 gallon, tben strain off, wash tbe cochineal with a little water, and strain again ; to the liquor made up to 1 gallon add 4 oz . alum, 4 oz . muriate-of-tin crystals, 4 oz. oxalic acid, and 1 gallon $6-1 \mathrm{lb}$. gum-Senegal water.

No. 132. Scarlct.-2 gallons cochineal liquor at $12^{\circ} \mathrm{T} ., 4 \mathrm{lbs}$. starch; boil, and add 4 oz . oxalic acid, 4 oz . binoxalatc of potash, 8 oz . pink salts (double permuriate of tin and ammonia), and 8 oz. muriate-of-tin crystals.

No. 133. Scarlet.- 3 gallons standard No. 136,1 quart berry liquor at $10^{\circ} \mathrm{T} ., 4 \frac{3}{4} \mathrm{lbs}$. starch; boil, and add 8 oz . binoxalate of potash, 8 oz . oxalic acid, $1 \frac{1}{4} \mathrm{lb}$. pink salts, $\frac{1}{2}$ pint oxymuriate of tin at $120^{\circ} \Gamma$.

No. 134. Stundard.-2 lbs. finc-ground eochineal, 6 quarts water, 1 quart red liquor at 20° 'T., 4 oz. nitrie acid, 2 oz. oxalic acid; boil 20 minutes, and strain off.

No. 135. Medium Blue.-6 gallons standard blue No. 136, $1 \frac{1}{\frac{1}{2}}$ quart oxymuriate of tin at $120^{\circ} \mathrm{T}$., alded gradually, and beaten fine, then $2 \frac{1}{2}$ quarts extract of indigo.
No. 136. Stundurd Blue. -10 lbs. yellow prussiate of potash, 3 lbs alum, 2 lbs. oxalic acid, 4 gallons water, 4 gallons $6-\mathrm{lb}$. gum water.
No. 137. Medium Green.- 8 quarts berry liquor at $8^{\circ} \mathrm{T}$., 3 lbs. yellow prussiate of potash, $1 \frac{1}{2} \mathrm{lb}$. alun, 7 quarts $6-1 \mathrm{~b}$. gum water, 1 quart water, 1 quart acetic aeid, 14 oz. weight inuriate-of-tin liquor, 1 pint extract of indigo.
No. 138. Lilac.- 8 quarts lavender liquor No. 111, 6 oz. oxalie aeid, 2 oz. measure extract of indigo. No. 139. Lavender Liquor.-2 gallons red liquor, 10 lbs ground logwood; steep 12 hours, and strain off.
No. 140. Dove.- 6 quarts blue for doves, No. 141, 4 quarts lavender liquor No. 111 , 8 quarts 6-lb. gum-Scnegal water.
No. 141. Bluc for Doves.-5 quarts water, 2 lbs. jellow prussiate of potash, 2 lbs. alum, 5 quarts $6-\mathrm{lb}$. gum water, 1 pint cxtract of indigo.
No. 142. Orange. -3 gallons berry liquor at 10° T., 9 lbs . gum Senegal, 3 pints red inordant No. 146, 12 oz. niuriate-of-tin erystals; boil 15 minutes.
$10^{\circ} \mathrm{T}$., $\frac{1}{2}$ pint red liquar at $20^{\circ} \frac{\mathrm{T}}{\mathrm{T}} \mathrm{T}$., $\frac{1}{4}$ piut extraet of indiro. I quart bark liquor at Drabs arc made from this by redueing with gum indigo.

No. 144. P'urple Liquor.-1 gallon lavender liquor No. 111, 3 oz. oxalic acid.
No. 145. Silver-drub Stunderd.-3 quarts galwliquor at $12^{\circ} \mathrm{T}$., 2 quarts standard blue No. 136. 1 quart lavender liquor No. 111.

Colours reduced with gum water from this, 1 to 2 or 3.
No. 146. Red Mordunt.- 1 gallon water, 6 lbs. alum, 3 lbs. white acetate of lead; stir till dissolvel, let settle, and use the clear:

No. 147. Butf Standurd. - 1 quart cochincal liquor at 8° T., $3 \frac{1}{2}$ quarts herry liquor at $10^{\circ} \mathrm{T}$., 1 quart red mordant No. 146. 20 oz , oxalic acid.
Colours reduced from this with gum water.
No. 148. Olive.-1 quart lavender liquor No. 111, 2 quarts berry liquor at $10^{\circ} \mathrm{T}$., 2 quarts 8-lb. gum-Scnegal water.
In mousseline-de-laine printing success depends morc on the bleaching and preparing of the cloth than in any other style. To Mr. John Merecr is due the merit of having effected an improvement in the preparation of woollen fabrics, the importance of which can hardly be overrated. Before his discovery of the power of prepared wool to absorb chlorine, mousselinc de laines could only be effectively printed hy block, which allows a large body of colour to be laid on, and the fibre supersaturated with it. Machine colours were meagre and dull. But monsseline de laines prepared with tin, and then subjected to the action of chlorine gas (as in the process given ahove, where the acid salt of tin remaining in the cloth disengages chlorine from the chloride of lime), have thcir power of absorhing and retaining colour considerably enlanced. The exact part the chlorine plays is not well known, probably a compound similar to the chloro-protein of Mulder is formed. The effect produced is not one, as might be supposed, of oxidation; but apparently a merely heightened power of the wool to assimilate colouring matter. Wool suhjected to chlorine without tin is much improved in its capacity for colour, but nothing like the same when prepared with tin also. The whole of the chlorine may be removed from the cloth by passing through an alkali, which renders it necessary to give the stannatc-of-soda padding previously to the chlorinating. It may fairly be assumed that the devclopment of mousseline-de-laine printing by cylinder to the present perfection is due in a great measure to this chlorinating process. It ought also to be stated that, with rare liherality, Mr. Mercer gave the discovery to the trade, reserving for limself no right whatever.

Ninth Style: Spirit Colours.

Topical colours of great brilliancy, but possessed of very little solidity, are made some what like steam colours, but with much larger proportions of "spirits," by which term is meant the metallic salts and acids, which, comhining with the dyestnff decoctions, give the peculiar tone and vivacity to these colours. These colours, from the large admixture of these salts, are necessarily very acid, and cannot be steamed without the destruction of the cloth. They are merely gently dried after printing, aud hung in the ageing room for several hours, then rinsed in water, washed, and dried.

The fullowing are examples of spirit colours:-
No. 149. Blach.-1 gallon logwood liquor at 8° T., 1 gallon water, 10 oz . copperas, 3 lbs. starch; boil, and add $\frac{1}{2}$ pint pernitrate of iron at $80^{\circ} \mathrm{T}$.

No. 150. Pink.-1 gallon Sapan liquor at 8° T., 1 gallon water, 2 lbs . common salt, $1 \frac{1}{2} \mathrm{lb}$. starch ; boil, cool, and add 1 pint oxymuriate of tin at $120^{\circ} \mathrm{T}$., 3 oz. measure nitrate of copper at $80^{\circ} \mathrm{T}$.

No. 151. Blue.-1 gallon water, 1 lb . yellow prussiate of potash, 6 oz . alum, $1 \frac{1}{4} \mathrm{lb}$. starch ; boil, and add $\frac{3}{4}$ pint nitrate of iron at $80^{\circ} \mathrm{T}$., $1 \frac{1}{2}$ gill oxymuriate of tiu at $120^{\circ} \mathrm{T}$.

No. 152. Brown.-1 gallon berry liquor at $8^{\circ} \mathrm{T}$., 2 lbs. light British gum ; bnil, and add 1 lb . muriate-of-tin crystals, 2 quarts spirit pink No. 150 , 2 quarts spirit purple No. 153.
No. 153. Purple.-1 gallon logwood liquor at $8^{\circ} \circ \mathrm{T} ., 1$ gallon water, 10 oz . copperas, 21 bs . starch; hoil, and add 1 pint protomuriate of iron at $80^{\circ} \mathrm{T}$., 1 pint oxymuriate of tin $120^{\circ} \mathrm{T}$.

No. 154. Orange.- $1 \frac{1}{2}$ gallon berry liquor at 8° T., 12 lbs. light British gum ; boil, and add 6 lbs. muriate-of-tin crystals, 4 gallons spirit pink No. 150.

No. 155. Chocolate.-2 $\frac{1}{2}$ gallons spirit pink No. 150, 1 gallon spirit hlue No. 151.
No. 156. Red. - 3 gallons Sapan liquor at $4^{\circ} \mathrm{T} ., 1 \mathrm{lb}$. sal anmıniac, 1 lb . verdigris, $4 \frac{1}{2}$ lbs. sourch; boil, cool, and add 5 lhs. pink salts, 1 lb. oxalic acid.
No. 157 . Yellow.-1 gallon berry liquor at $10^{\circ} \mathrm{I} ., \frac{1}{2} \mathrm{lb}$. alum, 1 lb . starch; boil, and add I pint muriate-of-tin liquor at $120^{\circ} \mathrm{T}$.

No. 158. Green.-1 gallon spirit blue No.-151, 1 gallon spirit ycllow No. 157.
No. 159. Spirit Pink for blocking Madder Work.- $4 \frac{1}{2}$ gallons Brazil-wood liquor at $10^{\circ} \mathrm{I}$., 9 lbs. pink salts, 3 lbs. sal ammoniac, 2 lbs. sulphate of copper, $5 \frac{1}{4} \mathrm{oz}$. oxalie
acid dissolvcd in 1 pint water, $4 \frac{1}{2}$ gallons of $6-\mathrm{lb}$. gum-Senegal water, $1 \frac{1}{8}$ quart oxymuriate of tiu at $120^{\circ} \mathrm{T}$.

Tenth Style: Bronzes.

The cloth is padded in solution of sulphatc of manganese, the strength of which dctermiues the slade of hrown produced; for a medium shade of brown, suitahle for discharge colours, the liquor may be $80^{\circ} \mathrm{T}$.

After padding and drying, pad the pieces through caustic soda at $24^{\circ} \mathrm{T}$., and again through caustic soda at $12^{\circ} \mathrm{T}$., wince well in water, and then in solution of chloride of lime at $2^{\circ} \mathrm{T}$. till perfectly hrown; wash well in water, and dry.
The colours for printing on this dyed ground are so madc as to discharge the brown and substitute their own colour in place of it.
No. 160. Blue Discharge.-(a) 6 gallons water, $3 \frac{3}{4}$ lbs. yellow prussiate of potash, 10 lbs. starch, 6 lbs. light British gum ; hoil, and add 12 lhs. tartaric acid, 6 lbs. oxalic acid, $1 \frac{1}{4}$ quarts pernitrate of iron: then take (b) 5 quarts of this standard, 3 quarts muriate of tin at $120^{\circ} \mathrm{T}$.

No. 161. Discharge Yellow for Chroming.-(a) 1 gallon water, 5 lbs. nitrate of lead, 4 lhs. light British gum ; hoil, and add 4 lbs. tartaric acid; thell take (b) 3 quarts this standard, 1 quart muriate of tin at $120^{\circ} \mathrm{T}$.

No. 162. Discharge Green.-2 quarts yellow standard No. 161 (a), 1 quart blue standard No. 160 (a), 1 quart mıriate of tin at 120°.

No. 163. Discharge Pink.- (a) 2 gallons Brazil-wood liquor at 12° T., 4 oz. sulphate of copper, 4 oz . sal ammoniac, 4 lhs . starch; boil, and add 8 oz . mcasure oxymuriate of tin at $120^{\circ} \mathrm{T}$.: then take (b) 2 quarts of this standard, 1 quart muriate of tin at $120^{\circ} \mathrm{T}$.

No. 164. White Discharge.-2 gallons water, 8lbs. light British gum ; boil, and add 8 lhs. tartaric acid, and 1 gallon muriate of tin at $120^{\circ} \mathrm{T}$.

Black.-Spirit hlack No. 149.
After printing, hang for a few hours, and wince in a pit with water freely flowing into it; then wince in chalky water, again in water, then wince in bichromate of potash at $4^{\circ} \mathrm{T}$., to raise the grcen and yellow; wash and dry.

The discharging agent in these colours is the protomuriate of tin, which, by its superior attraction for oxygen, rohs the peroxide of manganese of a portion. The protoxide of manganese formed by this change being then soluble in the acid, and suhsequently washed away, the pigment Prussian hlue and chromate of lead, also the Brazil lake, heing left fixed in the discharged place.

Eleventh Style: Pigment Printing.

In this style the ordinary pigments, such as used in oil painting, are mechanically attached to the cloth hy a species of cementing. The first fixing vehicle used was a solution of caoutchouc in naphtha, which was mixed with the pigment so as to make colours of sufficient viscosity to print. The naphtha was then driven off hy steaming, and the pigment was then cemented to the cloth by a film of caoutchouc. This method makcs very fast colours, not affected by soaping and moderate friction; but, unfortunately, the naphtha volatilising during the printing process, rendercd the use of it too dangerous, and after it was found that explosions of the naphtha vapour fre-. quently took place, calico printers turned their attention to some other fixing vehicle. Animal substances, of which the white of eggs is the type, and which, soluble in water, are coagulated by heat, are now usually employed. Of these, three may be particulariscd:-Albumen of eggs; lactarine; gluten.

The first is made by simply drying gently the white of eggs, and powdering.
The second is uade by separating the solid part of buttermilk, purifying it from hutter and free acid, and drying it.

The third is the residue of starch-making from wheat flour by the simple washing process, the gluten heing gently dried.

The two latter thickeners require a small quantity of alkali to bring them in solution ; they then resemble albumen in their power of coagulating by heat. There are few colours of this style printed, chiefly ultramarine hlue and carhon drab.

No. 165. Uliramarine Blue with Lactarine. $-1 \frac{1}{2}$ lbs. lactarine, $3 \frac{1}{2}$ pints water; mix well, and add $2 \frac{1}{2}$ oz. measure liquid ammonia specific gravity $\cdot 880,5 \mathrm{oz}$. measurc caustic soda at $32^{\circ} \mathrm{T}$.; then having beaten up 3 lbs . ultramarinc with $1 \frac{1}{4}$ pint watcr, mix with the lactarine solution.

No. 166. Ultramarine Blue with Albumen. - 4 lbs. ultramarine, 3 全 quarts water ; mix well, and add slowly 3 lbs . albumen in powder; let it stand a fcw hours, stirring occasionally ; when dissolved, add 1 pint gum-tragacanth water at 12 oz . per gallong,

No. 167. Ultramarine Blue with Glutcn. -6 lhs. ultramarine, 5 quarts watcr; uix, and add gradually $3 \frac{1}{2}$ lbs. ground gluten ; let it stand a few minutes, then add 1 quart caustic soda at $16^{\circ} \mathrm{T}$.; mix wcll, and let it stand a few hours before using.

Other shades of blue are made by altering the quantity of ultramarinc.
No. 168. Drab.-3 lbs. lampblack. 3 pints acetiu acid at $8^{\circ} \mathrm{T}$.; mix well together, and add a solution of 3 lbs. albunen in 3 pints water; then add 3 piuts 12.0% ganntragacanth water.

Aftcr printing these colours, stcam half an hour, wince in water, and dry. Colours fixed in this manner are not intended to resist severe treatment.

Pencil Breue.- Before the introduction of steam blues und the species of indigo blues termed fast blucs, the only blue that could be introduced into dyed prints was a solution of deoxidised indigo dissolved in caustic alkali: this at first was applied by the printer with a small flat bit of wood termed a pencil; he dipped this in the blue eolour, and instantly applicd it to the proper parts of the pattern, thus the colour arrived at the cloth before it had time to oxidise and the indigo to become insoluble. It is evident that this process was one of extreme clumsiness, as it required skill to apply the bluc just to the proper places, and an apparatus for applying the blue, still called pencil bluc, was at last devised. It cousists of a eopper case or box A, in which is laid

a frame B , filled with pretty stout canvas. The box communicates by a tube with the cistern c, mounted with a stopcock D. Fig. 395 represents the apparatus in plan: A, the box ; B the canvas, with its edges a a a a, fixed by pin-points to the sides. The coloured is teered, or spread even, with a wooden scraper as broad as the canvas. In working with this apparatus, the colour being contained in the vessel c is drawn off into the case A, by opening the stopcock \mathbf{D}, till it rises to the level of the canvas. The instant before the printer daubs the block upon the canvas, the teerer, boy or girl, runs the scraper across it to renew its surface; and the printer immediately transfers the colour to the cloth. In this kind of printing great skill is required to give evenly impressions. As the blue is usually applied to somewhat large designs, it is very apt to run; an inconvenicnce counteracted by dusting fine dry sand upon the cloth as soon as it is blocked. The goods must be washed within 24 hours after being printed.

Pencil blue, bcfore the introduction of China blues, was printed by cylinder with a doctor-box.

No. 169. Pencil Blue.- 10 gallons of pulp of indigo, containing 40 lbs indigo, 40 lbs . yellow orpiment, $11 \frac{1}{2}$ gallons of caustic soda at $70^{\circ} \mathrm{T}$., $18 \frac{1}{2}$ gallons of water, 4 lbs . line; boil till quite yellow, when spread on glass; let settle and thicken the clear with 120 lbs . gum Seuegal.

Pieces printed in pencil blue are washed in water immediately after drying and sometimes soaped a little. Mr. Bennett Wooderoft, struck with the waste of indigo attending the printing of either China bluc or pencil blue some few years ago invented and patented a method of printing pencil blue by the cylinder machinc. His plan was to attach to an ordinary single-colour machine an Indian rubber apparatus which enveloped the colour-box and piece after printing : this apparatus was filled with coal gas ; a glass plate formed part of the long bag through which the piece travelled after printing, so as to cnable the printer to sec the progress of his work. By this means the deoxidised indigo was fairly applicd to the cloth, and oxidation only ensued when the picce left the apparatus. The saving of indigo was said to be considcrable, but the plan was not generally adopted.

Safflower Dreing. - 'The beautiful but fugitive colouring matter of safflower is applicd in the printing for dycing a self colour, generally after the goods have been printed in black and red mordant, or black alone, and dyed madder or garancin. It is commonly used for cotton velvets, the colour given to velvet appcaring very brilliant from the nature of the cloth. The process is as follows:-Safflower contains two distinct colouring matters; one yellow, being soluble in water; and the other pink, insoluble iu water, the latter only bcing valuable. The ycllow matter is thereforc carcfully washed away. To effect this, the safflower is put into canvas bags, 4 lbs . in a bag, and thesc bags put into running water and occasionally trodden upon-till the water runs off perfectly colourless from them. 12 of these bags are then empticd into a cask with 90 gallons of water and 10 quarts of pearlash liquor at 24 T., stirred up for 2 hours : after standing all nigbt, drain off the liquor, add 90 gallons more water and 3 pints of 1earlash liquor; stir up well, and after standing for threc hours, drain off again; this

Weak liquor is saved for putting on fresh safflower: about 30 gallons of the safflower solution is put in a tub mounted with a winee over it, and a mixture of vinegar and lime juice is added to it till it is feebly acid to test paper. The earthamie aeid, a red colouring matter of safflower, is thus precipitated, and remains as an exceedingly fine powder iu suspension in the liquid; 2 picces of 30 yards of velvet are put in and wineed backwards and forwards 5 times, then wound upon the reel and allowed to stay there half an hour, then wince 5 times more, wind up again and let stay half an hour'; wince again 5 times and wind up again ; run off the liquor and put in 30 gallons of fresh liquor and acid as before ; repeat the process wincing 3 times of 5 ends eael, and letting lie wound on the reel half an hour each time; then take out and winee in very dilute acetic acid, hydro-extraet, and dry. The pieces when wound on the reel should be opened out flat or they might be uneven. Carthamic acid, being of a resinous nature, has the property of attaching itself to eloth, and dyeing it a beautiful pink like the petals of a rose: this dye is very fugitive, strong sunlight even being injurious to it. There has been no way yet discovered of making it permanent.

Murexide. - The purpurate of ammonia, or murexide, was discorered by Liebig and Wöhler in 1838, and in its pure state is one of the most beautiful produets of chemistry. It is a crystalline substance of a beautiful metallie green, like the wings of the eantharides fly, and is produced when uric acid is dissolved in dilute nitrie acid, the solution evaporated somewhat, and ammonia added; from the beautiful erimson liquid, nurexide erystallises. This substance had, until a short time ago, no praetical application. M. Albert Schlumberger diseovered that metallic insoluble salts, posscssing all the brilliancy of the original substance, could be made; and this faet was soon applied to a praetical use by the French chemists, who sueceeded in fixing a beautiful murexide erimson upon eotton eloth. The process was patcnted in this country for French interests in February, 1857, and is now in extensive use. The process is as follows :-

Print in the colour,
No. 170. 1 gallon water, 4 lbs . nitrate of lead, 1 lb . murexide, $1 \frac{1}{2} \mathrm{lbs}$. stareh; boil. After printing, hang a few hours, then run through a cistern with rollers above and below, and provided with a cover, through apertures in which the pieces entcr and leave. This cisteru is kept supplied with ammoniaeal gas; on leaving this cistern they pass into water, and from that into a cistern ebarged with 2 lbs . bichloride of mereury, 4 lbs . acetate of soda, $\frac{1}{2} \mathrm{lb}$. acetic acid, 80 gallons water; run very slowly through this, wash and dry. In the first operation purpurate of lead is formed on the cloth, and in the second, or ehanging bath, the lead is wholly or partly removed, and oxide of mercury left in its place; the resulting lake is a colour of great brillianey and purity, so much so that few of the ordinary colours will bear to be looked at along with it. Though perfeetly fast as to soap, it appears that strong sunlight is rather injurious to its permanency.

A few outline illustrations of the various madder styles will render them nore clear.
1 a. Black, 2 reds, purple and browu on white ground. Print by maehine in eolours 4, 5, 6, 9, 27, (No. 12 shade) and 18 ; age 3 nights; fly dung at $160^{\circ} \mathrm{F}$., sccond dung at $150^{\circ} \mathrm{F}$., wash and dye with French or Turkey maddcr, bringing to boil in $1 \frac{3}{4}$ hours, and boiling $\frac{1}{4}$ hour; wash and soap twice at $180^{\circ} \mathrm{F}$., wash ; ehloride of lime bath (see No. 1 platc purples), wash and dry.

1 b . Blaek, red, white and brown figures, covered in purple. Print in colours, $4,11,34$, and 18 ; when dry, cover with a fine pattern in 27 (12 shade); age 3 nights; fly dung at $170^{\circ} \mathrm{F}$., second dung at $160^{\circ} \mathrm{F}$.; wash, dye, and clean as 1 a.

1 c. Print in eolours 6, 7 (No. 3 shade), 34 ; dry and cover in $7,(6$ shade) and bloteh (or pad with a roller engraved with a pin, which has the effeet of giving a uniform shade) in 7 (10 shade); age three nights, and treat as deseribed under the head S wiss Pinks.

1 d. Some printers prefer to mordant for Swiss pinks with alkaline mordants, eonsidering the composition of the colours to be a guarantee against their containing iron; in such case, they print in colours 31, 32, and 35, covering in paler shades of 32 after dyeing; fly dung with 3 cwts. cow-dung, 12 lbs . sal-ammoniae, 1000 gallons water at $110^{\circ} \mathrm{F}$.; seeond dung with $\frac{3}{4} \mathrm{cw}$ ts. cow-dung at $110^{\circ} 15$ minutes; wash and dye as for $1 c$. In this method of mordanting, the aluminate of soda that has escaped decomposition by the earbonic acid of the air is deeomposed by the muriate of ammonia, and alumina precipitated on the cloth.

2 a. Black, choenlate, red, and brown on white ground. Print in colours 5, 13 (6 shade), 14 , and 22 ; age 3 or 4 nights; fly-dung at $160^{\circ} \mathrm{F}$., second dung at $160^{\circ} \mathrm{F}$., and dye with ehoeolate garancin or garanecux (sec p. 539).
2 b. Black, chocolate, red, and purple. Print as $2 b$, but dye with purple garanein (see p. 539).

3 a. For ehintz work treat as 1 a, then in the parts of the patteris meant for ground-
ing-in, block the colours 118 yellow, 119 green, and 129. If the pattern is such as to admit of it, all these colours may be printed atonce from one block, using the tobying sieve, 1). 500 : the colours, however, for this method must be tbickened with gurn; steam, \&c., as described for stcam colours.

3 b. Black, 2 reds, bluc, green, and ychow covered in drab, or other shades. Print in 4, 6, and 7; dyc, sce., as 1 a; block-in colour 38 with Ω block which covers all the patteru, and also those portions which are iutended for the stcam colours: when this paste is dly, cover by machine in any of colours 40 to 47 , age 2 or 3 nights; fly-dung at $160^{\circ} \mathrm{F}$, sceond dung at $150^{\circ} \mathrm{F}$, and dye with bark, or bark and logwood or cover in colour 48, and dye madder and bark as No. 6 (p. 527) for chocolate; or cover in colour 49 or 51 , and after drying and agcing, wincing in chalky water; or in any of colours 55,56 , or 57 , rinsing in carbonate of soda liquor at $5^{\circ} T$. when dry. After obtaining the grouud shade by any of these processes and drying, ground-in by block colours 118, 119, and 135, stcam, wash, and dry.

3 c . For furniture bangings, which are generally printed in large groups of flowers, a very pretty pea-green ground is often blocked-in as groundwork, which is made and fixed as follows:-
171. Pea Green-((t) Standard: 6 lbs. sulphate of copper, 1 gallon water, 4 lbs. brown acetate of lead; dissolve, Ict scttle, and use the clear. - (b) Colour : 2 measures of standard, 1 measure of 7 lb . gum-Senegal solution.

After priuting, age 2 nights, and pass tbrougb a cistern witb rollers, set with caustic potasb liquor at $15^{\circ} \mathrm{T}$., which has 8 oz . per gallon of arsenious acid dissolved in it. The liquor should be heated to $110^{\circ} \mathrm{F}$.; out of this wash and dry.

Instcad of blocking-in steam blue and green, fast blue and green are introduced where the colours are required to be particularly permanent; colours 62 or 63 or botb are blocked-in and raised as follows. 5 stonc cisterns, each mounted witb a hand reel, and containing about 200 gallons each, are sct with carbonate-of-soda liquor, No. 1 at 7° T., No. 2 at 6° T., No. 3 at 5° T., No. 4 at 4° T., anil No. 5 at 3° T.; wince 10 times backwards and forwards in cach pit, beginning with No. 1, and ending with No. 5; wince in water and wash. Tbc cbange tbat takes place here is similar to that in raising China blucs. Tbe indigo is maintained in a deoxidised state by the protoxide of tin formed, until it has fixed itself in the clotb by reoxidation in tbe air. Where fast green has been printed, the pieces are winced in bicbromate-ofpotash liquor at $4^{\circ} \mathrm{T}$. for 10 minutes, tben wasbed and dried.

3 e. Black and purple and white with buff ground. Print in 4 and 27 (12 shade), age, dung, and dye. \&ce., as directed for plate purples (p. 528); block over the pattern and portions of the unprinted part the paste No. 39; block with pad roller in No. 53 (6 shade), dry and raise as follows :- Wince 14 miuutes in caustic soda at $2^{\circ} \mathrm{T}$. at 110° F., then wince in water till quite buff, tben wince in 400 gallons water witb 1 quart cbloride of lime at $12^{\circ} \mathrm{T} .10$ minutes; wash and dry.

Silk Printing.

Silk, in its capacity for receiving colours, holds a medium place between cotton and wool. From its being an animal substance, it is difficult to obtain white grounds or objects after dycing mordanted silk, the silk itself attracting colouring matter somewhat as a mordant. Previously to printing silk, it is well scoured by boiling for 2 hours with $\frac{1}{4} \mathrm{lb}$. of soap to every pound of silk, then well wasbed and dried. For handkerchicfs, black, chocolate, and red mordants are printed, aged, and dunged off same as for cottons, and dyed with madder or garancin, soaped, washed, and dried. Purples cannot be obtained on silk by mordanting and dyeing madder, tbe colour produced being a mixture of red and purple. All sorts of colours can be produced on silk by steam, the whites remaining brilliant. For steam colours, silk is mordanted with tin, by steeping 4 bours in a solution of sulphomuriatc of tin at 2 T, made by dissolving 1 lb . of muriate of tin crystals in water, and adding 1 lb . of sulphuric acid at $170^{\circ} \mathrm{T}$., and reducing to 2° T. After stceping, the silk is washed with water, and dried. Tbe following are specimens of steam colours for silk:-

Blach.-2 gallons logwood liquor at $8^{\circ} \mathrm{T}$., 1 quart iron liquor at $10^{\circ} \mathrm{T} ., 1 \mathrm{lb}$. flour, 1 lb . light British gum ; boil, and add 6 oz. yellow prussiate of potash; cool, and add 2 oz . sulphate of copper, 1 pint muriate of iron at $80^{\circ} \mathrm{T}$., $\frac{1}{2}$ pint pernitrate of iron at $80^{\circ} \mathrm{T}$.

Chocolate.-2 gallons of sapan liquor at $12^{\circ} \mathrm{T}$., 5 quarts logwood liquor at $12^{\circ} \mathrm{T}$., 1 quart bark liquor at 16° T., 2 lbs . alum, $1 \frac{1}{2} \mathrm{lb}$. sal ammoniac, 14 lbs . gum Scucgal. Red. -3 gallons of cochineal liquor at $4^{0} \mathrm{~T}$., $1 \frac{1}{2}$ pint bark liqnor at $12^{\circ} \mathrm{T}$,, 3 lbs . stareh; boil, then cool, and add 1 1b. oxalic acid, I lb. muriate of tin crystals.

Yellow. -3 gatlons of bark hiquor at $16^{\circ} \mathrm{T}$., S oz. alun, 3 oz . muriate of tiu crystals, 3 oz. oxalic acid, 9 lbs. gum Scnegal.

Green. -1 gallon yellow, $\frac{1}{2}$ pint extract of iudigo, $2 \frac{1}{2}$ oz. measure of muriate of tin at $120^{\circ} \mathrm{T}$.

Blue. - 1 gallon water, 1 lb . yellow prussiate of potash, $\frac{1}{4} \mathrm{lb}$. oxalic acid, $\frac{1}{2} \mathrm{lb}$. tartaric acid, 2 oz. sulphuric acid at $170^{\circ} \mathrm{T} ., 1$ gallon 6 lbs . gum Senegal water.

Calico, \&c. printing has, since the repeal of the duty, risen steadily in importance, till it is now one of the most influential manufactures of Great Britain. From a table compiled by the late Mr. Binyon, and communicated by Mr. John Graham, there were in 1840 the following number of machines, \&c. in use:-
List of Machines, Tables, \&c., employed by the trude in England and America in 1840.

Lancashire				Cylinder and Surface Machines.	Flat Presses.	Discharging Presses.	Tables.
	-	-	-	435	2	-	8275
Scotland -	-	-	-	75	82	124	4997
Ireland -	-	-	-	18	1	,	300
America -	-	-	-	109		- -	884

Since that period there are no data as to the number of printers in Great Britain ; but Mr. John Graham, in an unpublished "History of the Lancashire Printers," gives a table, which he was at considerable care to compilc from perfectly trustworthy sources, showing that in the Lancashire district, which includes also the contiguous counties, there were, in 1846, 128 firms, employing-

> 549 cylinder machines.
> 33 perrotines.
> 7187 block tables.

The producing power of the Lancashire district having thus bcen doubled in 6 years. Several printing firms, both in England and Scotland, have since that period much enlarged their powers of production. There are many who manufacture 10,000 pieces of printed cloth per week; and there arc four concerns, of great magnitude, whose united production at the present time probably does not fall short of four millions of pieces per anuum, or nearly $\frac{1}{5}$ th of the total quantity printed.
The following estimate of the exports of printed goods is from Mr: Potter's Lceture before the Society of Arts, as reporter for printed fabrics cxhibited in the Exhibition of 1851 -
"In reference to the exports of printed goods, our information is rather obscure, owing to their being classed with dyed goods of all kinds." "After considerable thought and calculation, I have ventured to estimate them for 1851 at $15,544,000$ pieces, or rather morc than threc-fourths of our cntire production. These goods are, however, many of them of the chcap and more staple class of prints, or slight goods suited to warm climates, and for markets where cheapness is the great recommendation. In value, I should be disposed to estimate our export of printed goods at 5,775,000l.
"In reference to the entire export of manufactured cotton goods (exclusive of yarns), it may be assumed that out of $23,447,1031$., given as the export of 1851 , about onefourth may be placed to the account of the print trade. I have endeavoured to estimate, from the Table of Exports for 1851, the probable quantity of low priced prints we export, and should be disposed to class them as follows :-

duties arc cliefly very liglat - our our lowest description of goods, and where the duties are chiefly very light - our colonies, India, and China - receive from nis about
$6 \frac{1}{2}$ millions of pieces, or about 40 per cent. of our exports in printed goods. A great proportiou of the finer part of our exports, perhaps three-fourths, are very seriously taxed, either for protection, as in the United States, the Zollverein, and Belgiun, or for reveune, as in Brazil and the other South American markets. A part, however, of these better goods find their way into consumption in Canada, Turkey, the Ionian Isles, Lgypt, \&xc., subject to very moderate duties." (Potter.)

Exports of Calicoes printed and dyed in 1857.
Declared real value.

"The home-consumption," says Mr. Potter, "I estimate at $4,500,000$; the exeise
returns for 1830. gave it as $2,281,512$ pieces. The repeal of the duty, and the decrease in the cost of production, giving the consumer goods in much better taste and value at one-half the price, have greatly tended to this increase." "The inmense increase of production in lower goods has not decreased the taste in the higher in this country, though it may have caused it to make less apparent progress than when the larger part of the supply was of fine goods. We find specimens of good taste ou the lowest material, printed at the lowest possible price for export, showing a taste supcrior to that in use for our best work twenty years ago, employiug greater talent in design, greater skill in engraviug, - the cost of production cheap, because repaid by the quantity produced. This diffusion of art and of a hetter taste cannot be otherwise than beneficial, even to the higher class of productions, as preparing a taste and demand for them in countries where high price would never have given prints any admission. The improvement of the lower cannot militate against that of the higher, either in the moral, iutellectual, or artistic world. The productions of the highest class of French goods of to-day, whether furniture or dresses, are superior in taste and execution to those of any former period. The productions of the first-class printers of Great Britain maintain an equal advance, and are superior in taste and execution, in every respect, to those of former years. Great competition and rapidity of production are not immediately beneficial to high finish and executiou in art; but this tendency to quickness of production, rather than perfection, rectifies itself; and machinery, which perhaps at first does not give the polish that exccssive labour formerly supplied, ultimately exceeds it by its cheaper and more regular application. It is remarkable how taste or novelty in that class of demand, which would strike the casual observer as the one fitted for its greatest development, is limited in quantity. The limit or commencing point, in which taste or novelty enters freely into the composition of a print, is for the supply of the working and middle classes of society. They require it quiet, modest, and useful; and any deviation, for the sake of novelty, which calls in the aid of the brightcr and less permanent colour, quickly checks itself. The sober careful classes of society cling to an inoffeusive taste, which will not look obsolete and extravagant after the lapse of such a time as would render a garment comparatively tasteless and unfashionable in a higher class. This trade is, to the printers, most extensive and valuable, and las its necessary and practical bearing on his taste; and hence it is in this branch of the business the Euglish printer is most decidedly superior to his French competitors."
It would appear that occasionally attempts were made, during the carly days of printing, to produce work possessing a high degree of artistic excellence; and as the specimens that have been preserved to our time are very rare, it is fair to conclude that these experiments were not successful in a pecuuiary point of view. In the museum of the Peel Park, at Salford, there is a curious and interesting piece of printed linen, bearing the date 1761 (at this period cloth of all cotton was prohibited), and which must have been printed frou copper plates of very unusual size. Apparently, the pattern has been produced by two plates, each about 4 feet 6 inches by 3 feet. The design is printed in madder red, and is thus described by Mr. Plant, the curator of the museum. "The printed piece of linen ineasures, in the full length of the design, 6 fuet 10 inches, by 3 feet 2 inches in breadth. The composition in the designn is very bold and fice-in my opinion indicating very strongly the feelings of an artist who had becn educated in the Flemish school. The grouping of the trees, figures, cattle, and fowls, is probably a direct copy from an engraving or sketeh by Berghen, whose paintings and engraviugs of such subjects are well known for their truth to nature. His works bear date 1638 to 1680 . Perhaps, to fill up the design, and form a picturesque composition, the artist has borrowed from the French painters the classic ruins which form the sides of the design; it has had the effcet of producing an anachronism. The upper group represents a peasant seated upon the wall of a well blowing a flute; near him stands a wonnan with a distaff; a group of sheep, cow, and a dog, in the foreground. The background shows a landscape, and on each side this group are ruins, columns, and trees, reflected in the strearn below. On a broken bank, midway between the two gronps, are two dogs chasiug a stag. The lower group, although there is no defined liue of separation between the groups, represents a peacock, fowls, and chickens, upon a bank and ruins ; landseape and river secnery beyond. Over, a hawk carrying a chicken, the sides ocenpied with a ruined portico, tomb, and pedestal aud vase, trees, and broken ground ; and below are ducks swimming, and water-plants on the bank. At the bottom of the piece are those parts of the pattern which would print or fit ou the top part of the design. On the stoncwork of the well, in the upper group, is printed, ' IR. JONES, 1761 ;' on the broken FORD, 1761 .'" Old Ford is situated er group, is printed, ' 1R. I. and Co., OLDD now are, and where there was a print Bow, where the East London Water Works ow are, and where there was a print works at the tine specified. This design
was no doubt printed for furniture hangings or tapestry, for which it is cxceedingly well adapted, and the work being altogether a remarkable production for the period.

CALOMEL. (Chlorure de Mereure, Fr.; Versusstes Querksilber, Germ.) The mild sub-chloride of mercury $\left(\mathrm{Hg} \mathrm{g}^{3} \mathrm{Cl}\right)$. The manufacture of this substance upon the large scale may be performed in various ways. The cheapest, and most direct, consists in mixing $1 \frac{1}{8}$ parts of pure quieksilver with 1 part of pure nitric acid, of specific gravity from 1.2 to 12.5 ; and in digesting the mixture till no nore metal can be dissolved, or till the liquid has assumed a yellow colour. At the same time, a solution is made of 1 part of common salt in 32 parts of distilled water, to which a little muriatie acid is added; and, when heated to nearly the boiling point, it is mixed with the mercurial solution. The two salts exclange bases, and a subchloride of mercury precipitates in a white powder, which, after being digested for some time in the acidulous supernatant liquor, is to be washed, with the greatest care, in boiling water. The circumstances which may injure the process are the following :-1. When less mercury is employed than the acid can dissolve, there is formed a nitrate of mercury, which gives rise to some corrosive sublimate aud causes a proportional defalcation of calomel. 2. If the liquors are perfectly neutral at the moment of mixing them, some subnitrate of mercury is thrown down, which cannot be removed by washing, and which gives a noxious contamination to the bland calomel. The acid prescribed iu the above formula obviates this danger.

Another manner of manufacturing calomel is to grind very carefully 4 parts of corrosive sublimate (chloride of mercury, HgCl) with 3 parts of quicksilver, adding a little water or spirits to repress the noxious dust during the trituration. The mass is then introduced into a glass globe, and sublimed at a temperature gradually raised. The quicksilver eombines with the chloride and converts it into the sub-chloride, or calomel.

The following are the directions given by the London College for the preparation of this salt:-2 pounds of mercury are boiled to dryness in a suitable vessel with 3 pounds of concentrated sulphuric acid: the sulphate of mercury thus obtained is rubbed when cold, first with 2 pounds more mercury in an earthen vessel until perfectly mixed, and then thoroughly incorporated with $1 \frac{1}{2}$ ibs. of chloride of sodium ; the whole is then sublimed in an appropriate vessel ; the sublimate is rubbed to a fine powder, and then washed with boiling distilled water, until the washings are no longer tinged by sulphuretted hydrogen. This process is absolutely necessary in order to remove cvery trace of corrosive sublimate which is always formed in greater or less quantity.

At Apothecaries' Hall 50 lbs. of mercury are boiled with 70 lbs . of sulphuric acid to dryness in a cast-iron vessel; 62 lbs. of the dry salt are triturated with $40 \frac{1}{2} \mathrm{lbs}$. of mercury until the globules disappear; and 34 lbs . of common salt are then added. The mixture is submitted to heat, and from 95 lbs . to 100 lbs . of sublimed calomel arc obtained. It is washed in large quantities of distilled water after having been ground to a fine and impalpable powder:

According to the patent of Mr. Josiah Jewell, the vapour of calomel was to be trausmitted into a vessel containing water, in order to condense it at once into an impalpable powder. But this process was beset with many difficulties. The vapour of the calomel was afterwards introduced into a large receiver, into which steam was simultaneously admitted; but this plan has also been found to be preearions in the execution. The best way is to sublime the calomel into a very large chamber from an iron pot, in the same way as the flowers of sulphur are formed. The great body of cool air serves to cause the precipitation of the calomel in a fincly comminuted state. It is afterwards washed with water, till this is no longer coloured by sulphuretted hydrogen.

This process has been improved by M. O. Henry : the ingredients are heated in an earthen retort having a wide short neck: the receiver has three tubulures, one communicating with the retort, a second dipping into water in an earthen jar, and a third connected to a steam pipe. Souberain substitutes a current of air for the vapour of water.

A patent was obtained in September, 1841, by Anthony Todd Thomson, M. D. for an improved method of manufacturing calomel aud corrosive sublimate, as follows :-
This invention consists in combining chlorine in the state of gas with the vapour of mercury or quicksilver, in order to produce calomel and corrosive sublimate.
The apparatus cmployed consists of a glass, eartlenware, or other snitable vessel, mounted in brickwork, and commmicating at one end with a large air-tight chamber, and at the other end, by means of a bent tube, with an alembie, such as is gencrally used in generating chlorine gas. The alembie is charged with a mixture of common
salt, binoxide of mangancse, and sulphuric acid, or of binoxide of manganese and muriatic acid, in order to produec chlorine gas.
The mode of operating with this apparatus is as follows:-A quantity of mercury or quicksilver is placed in a glass vessel, and the temperature of the same is raised to between 350° and 660° Fahr., by means of an open fire beneath. The chlorine gas, as it is generated, passes from the alembic through the bent tube into the glass vessel, and there combining with the vapour of the mercury, forms either corrosive subliuate or calomel, according to the quantity of ehloriuc gas employed.
The product is found at the bottom of the air-tight chamber, and may be removed from the same throngh a door, when the operation is finished.
Prosessor Wöhler proposes to prepare ealomel in the hunid way by decomposing a solution of eorrosive sublimate by sulphurous aeid. The commercial salt is dissolved in water at 122° to saturation. Sulphurons acid gas, evolved by heating coarse charcoal powder with concentrated sulphurie acid, is passed into the hot solution : the separation of the ealomel commences immediately. When the solution is saturated with the gas, it is digested for sone time, then left to get cold, and filtered from the caloniel, which is afterwards washed. The filtrate usually contains some unchangeable corrosive sublimate, whieh may be converted into calomel, cither by heating to boiling, or by a fresh introduction of sulphurous acid and heating. Calomel obtained in this manmer is a crystalline powder of dazzling whiteness, glittering in the
sunlight.

The presenee of corrosive sublimate in ealomel is easily detected hy digesting alcohol upon it, and testing the decanted alcohol with a drop of caustic potash, when the characteristic brick-coloured precipitate will fall, if any of that salt be present. To detect subnitrate of mercury in calomel, digest dilute nitric acid on it, and test the aeid with potash, when a precipitate will fall in case of that contamination. As it is a medicine so extensively administered to children at a very tender agc, its purity ought to be scrupulously watched.
117.75 parts of calomel contain 100 of quicksilver. H. M. N.

CALORIC. A term once extensively used in physical science, and perhaps some. what too hastily abandoned. When employed there was a very general improssion that heat was the effect of some undeveloped cause, and to this cause the term caloric was applied. The modern hypothesis regarding heat but as a mode of motion, the term las been dispensed with. See Heat.
CALORIFERE OF WATER. (Calorifîre d'eau, Fr.; Wasser-Ileitzung, Germ.) In the Dictionnaire Technologique, vol. iv., we find a description of this apparatus, of late y cars so much employed in Great Britain for heating conservatorics, \&c., by hot
water circulating in pipes:water circulating in pipes:-
This mode of heating is analogous to that by stove pipes: it is effected by the circulation of water, which, like air, is a bad conductor, but may serve as a carrier of caloric by its mobility. We may readily form an idea of the apparatus which has beeu employed for that purposc. We adapt to the upper part of either a close kettle, or of an ordinary cylindric boiler A, fiy. 396, a tube B, which rises to a certain height, and descends, making several sinuositics with a gentle slope till it reaches the level of the bottom of the boiler, to whose lowest part, as that which is least heated, it is fitted at c. At the highest point of the tube F we adapt a vertical pipe, destined to serre as an outlet to the steam which may be formed if the temperature be too much raised; it serves also for the escapc of the air expelled from the water by the heat; and it permits the boiler to be replenished from time to time as the water is dissipated by evaporation; lastly, it is a tube of
safety.

The apparatus being thus arranged, and all the tubes as well as the boiler filled with water, if we kindle fire in the grate D , the first portions of water heated, having become specifically lighter, will tend to rise: they will actually mount into the the same time the boilcr, and, of course, enter the tube в f : at boiler by the othequivalent quantity of water will re-enter the these simultaneous movements of the tubc. We pereeive that
 liquid, which will continue as long as lieat is a errentation in the whole mass of the suppose that the tubes, throughout their different wind in the fire-place; and if we walls of a chamber, or a stove room, the air will get warmed are applied against the surfaces; and we may accelerate the warming by met warmed by contact with the hot mocle indicated.
This caloriferc
VoL. I.
0 equal advantage and with more safety than
those with heated air, when it is wished to heat large apartments. In the present ease, the temperature of the watcr, without pressure, in the tubes, mnst be always under $100^{\circ} \mathbf{C},\left(212^{\circ} \mathrm{F}\right.$), even iu those points where it is most heated, and less still in all the other points, while the temperature of the flues in air stoves, leated directly by the products of combustion, may be greatly higher. In air stoves, however, the pipes may without incouvenience have a large diameter, and present, cousequently, a large heating surface; whereas, with the water calorifere, the pressure exercised by liguid upon the sides of the tubes being in the ratio of the surfaces, we are obliged, in order to avoid ton great pressure, to employ a multitude of small tubes, which is expensive. Lastly, if the hot-water circulation is to be carried high, as may be often necessary in lofty buildings, the pressure resulting from the great elevation would call for proportioual thickness in the tubes and the boiler: for these reasons, it appears that water caunot in all cases be advantageously substituted for air or steam in the applications above stated : yet this mode of heating presents very decided advantages where it is needcd to raise the temperature a small number of degrees in a uniform manner.
II. Bonnemaiu applied, with much success, these ingenious processes of heating by the circulation of water to maintain a very equal temperature in hot-houses (serresch(tudes), in stoves adapted to artificial incubation, and in preserving or quickening vegetation within hot-hcuses, or outside of their walls, during seasons unpropitious to horticulture.

Since the capacity of water for heat is very great, if the mass of it in a circulationapparatus be very considerable, and the circulation be accelerated by proper arrangements, as by cooling the descending-tube exterior to the stove-room, we may easily obtain by such means a moderately high and uniform temperature, provided the heat generated in the fire-place be tolerably regular. We may easily secure this essential point by the aid of the fire-regulator, an instrument invented by M. Bonnemain.

It should be clearly understood that wood will become charred and eventually take fire if lept in contact with iron pipes through which hot water circulates. This may appear contrary to ordinary experience. There are, however, numerous evidences which prove distinctly that it is dangerous to have wood in contact with even hot water pipes, and that it is infinitcly more so to have it near to pipes through which the circulation of heated air is carried on.

CALORIMETER. An instrument intended to measure the quantity of heat produced by burning bodies, devised by Lavoisier and Laplace. The principle upon which these instruments depended may be easily understood. To convert a certain quantity of ice into water, a given amount of heat is necessary. Now suppose we coustruct a funnel-shaped vessel, and laving placed in the middle of it a vessel containing boiling water, or hot mercury, or oil, or a red-hot picce of metal, it is packed round with ice, care being taken that no heat shall escape, except it is employed to thaw the ice. The water formed by the ice is collected in a vessel placed below the funnel, and the quantity collected during the cooling of the heated body will represent the heat given out and enployed in liquefying the ice. For nice experiments certain exact determinations are required, for which, and the general rules to be observed, some good treatise on Physics should be consulted.
CALOTYPE (signifying beautiful picture). A name given by Mr. Henry Fox Talbot to a photographic process invented by him in 1840, and patented in 1841.

Mr. Talbot's description of his process, is as follows:-
Take a sheet of the best writing-paper, having a smooth surface, and a close and even texture. The water-marl, if any, should be cut off, lest it injure the appearauce of the picture. Dissolve 100 grains of erystallised nitrate of silver in six ounces of distilled water. Wash the paper with this solution with a soft brush on one side, and put a mark on that side, whercby to know it again. Dry the paper cautiously at a distance from the fire, or clse let it dry spontaneously in a dark room. When dry, or nearly so, dip it into a solution of iodide of potassium, containing 500 grains of that salt dissolved in one pint of water, and let it stay two or three minutes in the solution. Then dip the paper into a vessel of water, dry it lightly with blotting-paper, aud finish drying it at a fire, which will not injure it even if held pretty near: or clse it may be left to dry spontaneously. All this is best done in the evening by caudle-light: the paper, so far prepared, is called iodised paper, because it has a mniform pale-yellow coating of iodide of silver. It is scarcely scnsitive to light, but nevertheless it ought to be kept in a portfolio or drawer until wanted for usc. It may be kept for auy length of time without spoiling or undergoing any change, if protected from sunshine. When the paper is required for use, take a shect of it, and wash it with a liquid prepared in the following manncr:-

Dissolve 100 grains of erystallised nitrate of silver in two ounces of distilled water; add to this solution one-sixth of its volune of strong acetic acid. Let this be called mixture Λ.

Make a saturated solution of erystallised gallic acid in cold distilled water. The quantity dissolved is very small. Call this solution B.

Mix together the liquids A and B in equal volumes, but ouly a small quantity of them at a time, because the mixture does not keep long without spoiliug. This mixture Mr. Talbot calls the gallo.nitrate of silver. 'This solution must be washed over the iodised paper ou the side marked, and being allowed to remain upon it for half a minute, it must be dipped into water, and then lightly dried with blotting-paper. This operation in particular requires the total exelusion of daylight; and although the paper thns prepared has beeu found to keep for two or three months, it is advisable to use it within a few hours, as it is often rendered useless by spontaueous change in the dark.
Paper thus prepared is exquisitely sensitive to light; an exposure of less than a sccond to diffused daylight being quite sufficient to set up the process of change. If a piece of this paper is partly covered, and the other portion exposed to daylight for the briefest possible period of time, a very decided impression will be made. 'This impression is latent and invisible. If, however, the paper be placed aside in the dark, it will gradually develop itself; or it may be brought out immediately by being washed over with the gallo-nitrate of silver, and held at a short distauce from the fire, by which the exposed portions become brown, the covered jarts remaining of their original colour. The pictures being thus procured, are to be fixed by washing in clean water, and lightly drying between blotting paper, after whieh they are to be washed over with a solution of bromide of potassium, containing 100 grains of that salt, dissolved in eight or ter ounces of water; after a miunte or two, it is again to be dipped into water, and then finally dried.

A great number of modifications of the calotype have been introduced, by which greater sensibility to the chemical influences of the solar rays has been obtained. For a description of these, see Hunt's Researches on Light, and Hunt's Manual of Photography. See Photography.

Cambogia. See Gamboge.
CAMBRIC. (Batiste, Fr.; Kammertuch, Germ.) A sort of very fine and rather thin linen fabrie, first made at Cambray. An excellent imitation of this fabrie is made in Lancashire, woven from fine cotton yarn, hard twisted. Linen cambric of a good quality is also now manufactured in the United Kingdom from power-spun flax.
CAMEO. (Camée, Fr.; Cummeo, It.) Correetly a precious stouc engraved in relief, as opposed to an intaglio, which is cut into the stone. The carliest eameos appear to have heen cut upon the onyx, and, subsequently, on the agate. The true cameo is formed upon a stoue having two or more layers, differing in colour'; and the art of the cameo engraver consists iu so cutting as to appropriate those differently coloured layers to distinet parts or elevations of the work.
Many of the varieties of calcedony present in section transparent and opaque layers; and beautiful works have been cut upon such specimens of this material. The calcedony and agate are, however, not unfrequently colourcd artificially. The layers vary very much in their structure, some being absorbent and others not so. Such stones are taken, and if it is desired to have black and white layers, they are boiled in a solution of sugar or honey, and then in sulphuric acid. The sugar or honey is, in the first place, absorbed by the more porous layers, and then decomposed by the acid. Red or brownish-red layers are produced, by occasioning the stone to absorb a solution of sulphate of iron, and then by exposure to heat effectiug the oxidation of the metal. This being done, layers very strongly contrasted in colour are the result ; and very fine eameos have been cut upou stones so prepared. In ltaly and in France, the art of producing the cameo dur has been, to some extent, revived; that these cameos hard materials require, renders them so expensive, Porcelain and glass have been employed as sub the results were so inferior, that these materials hitutes for the natural stones, but解
The shells of several molluscous animals are now commonly used. Many of these shells afford the necessary variety of colour, are soft enough to be worked with facility, yet hard enough to wear for a considerable time without injury.
The natural history of the mollusca producing the shells, and the best account of the.manufaeture of cameos, was given by J. EE. Gray, of the British Muserum, in a paper read before the Society of Arts in 1847, to which, and to his paper in the Philosophical Transactions, we are indebted for much of the information contained in this article. kinds of turbines or an internal pearly one. These are now rarely an opaque white cxternal coat over those of the flesh-eating univalve (Gasteropodu ptenobranchiata zoophayow whed are
peeuliar for being all formed of three layers of calcareous matter, eaeh layer being composed of three perpendicular lamine placed sids by side; the laminæ comprising the central layer, being placed at right angles with one of the inner and outer ones; the inner and outer being placed longitudinally with regard to the axis of the line of the shells, while the inner laminx are placed across the axis, and eoncentrieally with the edge of the mouth of the eone of the shell. (Gruy, Phil. Trans.)

This structure furnishes the eameo cutter with the means of giving a partieular surface to his work, a good workman always putting his work on the shell in such a manner, that the direetion of the laminæ of the eentral eoat is longitudinal to the axis of his figure. The eentral layer forms the body of the bas-rclief, the inner lamina being the ground, and the outer one, the third or superficial colour, whieh is sometimes used to give a varied appearance to the surface of the figure. The eamen eutter, therefore, selects for his purpose those shells whieh have three layers of different colours, as these afford him the means of relieving his work; and seeondly, those whieh have the three layers strongly adhereut together, for if they separated, his labour would be lost.

The following are the kinds of shells now employed: 1. The bull's mouth (Cassis rufum), which bas a red inner eoat, or what is called a sardonyx ground. 2. The blaek helmet (Cassis Madaguscariensis), which has a blackish inner coat, or what is called an onyx ground. 3. The horned helmet (Cassis cornutum), with a yellow ground. 4. The queen's eonch (Strombus gigas), with a pink ground.

The bull's mouth and the black helmet are the best shells. The horned helmet is apt to separate from the ground, or double, and the last, the queen's conch, has but seldom the two colonrs marked with suffieient distinctness, and the finish of the ground colour flies on exposure to light.

The red colour of the bull's mouth extends only a slight distanee into the mouth of the shell, beeoming paler as it proceeds backwards. The dark eolour extends further in the black and yellow varieties. Henee, the bull's mouth only affords a single cameo large enough to make brooches of, and several small pieces for shirtstuds. The black helmet yields on an average about five brooehes, and several pieees for studs, while the queen's conch affords only one good pieee.

Forty years sinee, very few cameos were made from any shells but the black helmet, and the number of shells then used amounted to about 300 annually, nearly all of which were sent from England, being all that were then imported. The black helmet is imported into England from Jamaiea, Nassau, and New Providence. They arc not found in Madagascar, though naturalists have for a long period ealled them Madagascar helniets. (Gray.)

Of the bull's mouth, half are received direct from the Island of Bourbon, to which place they are brought from Madagasear, and the other half are obtained from the Island of Ceylon, being reeeived by the way of Calcutta; henee they are often ealled "Caleutta shells."
Sn rapidly has the trade in those shells inereased, that Mr. Gray informs us, that in Paris 100,500 shells are used for cameos annually. These are divided as follows :

							Value.
Bull's mouth -	80,000	-	1 s .	8 d.	-	-	± 6400
Blaek helmet	8,000	-	5	0	-		
Horned helmet	500	-	2	6	-		
Queen's eonch	12,000	-	1	$2 \frac{1}{2}$	-	-	725

The manufacture of shell eameos was for some time confined to Italy ; about twenty years since, an Italian commenced making them in Paris, and now the trade is confined principally to the French capital, where not less than 300 persons are engaged in the manufacture.
Nearly all the eameos made in France are sent to England. In Birmingham, many of them are mounted as brooches, and exported to Ameriea and the British colonies.

In 1856, we imported, of shell eameos not set, to the value of $£ 6683$.
CAMERA OBSCUR A, literally, dark chamber. An iustrument invented by Baptiste Porta. It is employed for the production of photographie pietures, and will be fully described in the article devoted to that art. See Photograpiy.

CAMLET or CAMBLET. A light stuff, formerly much used for female apparel. It is made of long wool, hard spun, sometimes mixed in the loou with eotton or linen yarn. Several fabries of the same kind as camlet are now introduced under other names.

CAMPEACHY WOOD (Hamatoxylon Campechiamum). Logwood brought from the bay of that name. See Logwood.

CAMPHINE. Rectified oil of turpentine is sold in the shops under this nause for burning in laups. Crude oil of turpentine is redistilled with potash, and then with water, and lastly, to secure its perfect purity, with chloride of calciuus. 'The oil thus prepared forms a limpid colourless liquid; its specific gravity is about 0.870 , but it is subject to some slight variations ; $\mathrm{C}^{5} \mathrm{H}^{4}$ appears fairly to represent this and several other similar oils. It is very inflammable, burning with a bright white flame, and without a proper supply of air it evolves mueh dense smoke, hence peculiar lamps (Camphine lumps) are required. Where it has, from exposure to air, absorbed oxygen, and become resinified, it is unfit for purposes uf illumination. Such campline very rapidly clogs the wick with a densc carbon, aud is liable to tbe thick black smoke, which is so objectionable in the camphine lamps if they are not properly attended to.
To purify old camphine, it must be redistilled from carbonate of potash, or some similarly active substance to deprive it of its resin. See Lamps.
CAMPHOLE. One of the oils obtained from coal tar. Mansfield gave this name to tbe oils cumole and cymole, which boil at 284° and 338° Fahrenheit, wheu eollected together. The speeific gravity of crude camphole ranges from $\cdot 88$ to $\cdot 9 \mathrm{~S}$, and tbe liss volatile portions frequently contain naphthaline, which raises their specific gravity. This substance, either alone or mixed with pyroxylic spirit, is applicable for burning in lamps or for dissolving resins, as a substitute for oil of turpentine.
CAMPHOR, or CAMPHIRE. (Camphre, Fr.; Kampher, Germ.) This immediate product of vegetation was known to the Arabs under the names of kampliur and kuphur, whence the name camphora. Camphor was not known to the ancients; it is first mentioned by Avicenna, and Serapion calls it cuffir. Symeon Seth, who lived in the eleventb century, describes it. It is found in a great many plants, and is secreted, in purity, by several laurels; it occurs combined with the essential oils of many of the labiace; but it is extracted, for manufacturing purposes, only from the Laurus cumphora, wbich abounds in China and Japan, as well as from a tree which grows in Sumatra and Borneo, called, in the country, Kapour barros, from the name of the place where it is most eommon. Tbe camphor exists, ready formed, in these vegetables, between the wood and the bark; but it does not exude spontaneously. On cleaving the tree Laurus Sumatrensis, masses of pure campbor are found in the pith.

The wood of the laurus is cut into small pieees, and put with plenty of water into large iron boilers, which are covered with an earthen capital or dome, lined within with rice straw. As the water boils, the camphor rises with the steam, and attaches itsclf as a sublimate to the stalks, under the form of granulatious of a grey culour. In tbis state it is picked off the straw, and packed up for exportation to Europe.
Formerly Venice held the monopoly of refining camphor, but now France, England, Holland, and Germany refine it for tbeir own markets. All the purifying processes proceed on the principle that camphor is volatile at the temperature of 400° Fahr. The substance is mixed, as intimately as possible, with 2 per cent. of quicklime, and the mixture is introduced into a large bottle made of thin uniform glass, sunk in a sand bath. The fire is slowly raised till the whole vessel becomes' heated, and then its upper part is gradually laid bare in proportion as the sublimation goes on. Much attention and experience are required to make this operation succeed. If the temן erature be raised too slowly, the neck of the bottle might be filled with camphor before the heat had acquired tbe proper subliming pitch; and, if too quickly, the whole eontents might be exploded. If the operation be carried on languidly, and the heat of the upper part of the bottle be somewhat under tbe melting point of camplor, that is sufficiently compact ans 10° Fahr., the condensed camphor would be snowy, and not of temperatare cause and transparent to be saleable. Occasionally, sudden altcrations bottom, on the cake formed above, which soil it, out of the liquid camphor at the sary.

If to the mixture of 100 parts of crude camphor and 2 of quicklime, 2 parts of boncblack, in fine powder, be added, the small quautity of colouring matter in the camphor will be retained at the bottom, and whiter cakes will be produced. A spiral slip of platina foil immersed in the liquid may tend to equalise its ebullition.
By exposing some volatile oils to spontancous evaporation, at the heat of about 70° weight; from oil of sage, $12 \frac{1}{2}$; from oil of marioram oil of lavender, 25 per cent. of its Refined camphor is a white from oil of marjoram, 10 per cent.
It may be obtained, from the slow coolidid, possessing a peculiar taste and smell. crystals. It may be seratehed by the nail, is its a'coholie solution, in octahedral powder readily by mixing it with a few drops very flexible, aud can be reduced into eamphor. Its specific gravity varies froms of alcoliol and giving a few blows to the six times its weight of clay, it is decomposed, and to 0.99 G . Mixed and distilled with which has a flavour analogous to that of a mixe, and yields a golden yellow aronatic oil,
a suall quantity of acidulous water tinged with that oil, charcoal remains in the retort. In the air, camphor takes firc on contact of an ignted body, and burns all away with a bright fuliginous flame.

Camphor is little soluble in water ; one part being capable of communicating smell and taste to 1000 of the fluid this is the Misturee Cumphorce of the apothecary. 100 parts of alcohol, spec. grav. $0 \cdot 806$, dissolve 120 parts of camphor, at ordinary temperatures. It is separated iu a pulverulent state by water. Ether and oils, both expressed and volatile, also dissolve it.

When distilled with 8 parts of aquafortis, camphor is converted into camphoric acid. Camphor absorbs 144 times its volume of muriatic acid gas, and is transformed into a colourless transparent liqnid, which becomes solid in the air, because the acid attracts hunidity, which precipitates the camphor. One part of strong acetic acid dissolvts 2 parts of camphor. By Dr. Ure's analysis, camphor consists of 77.38 carbon, $11 \cdot 14$ hydrogen, and $11 \cdot 48$ oxygen.
Dumas (1) and Blanchct and Sell (2) have given the following composition :-

				(1)				(2)
Carbon	-	-	-	78.02	-	-	-	77.96
Hydrogen	-	-	-	10.39	-	-	-	$10 \cdot 61$
Oxygen	-	-	-	11.59	-	-	-	11.43

There are two kinds of camphor imported:-
Japan Camphor, called Dotch Camphor because it is always brought by the Dutch to England. It comes by the way of Batavia, and is imported in tubs (hence it is called tub camphor), covered with matting, and each surrounded by a second tub, sccured on the outside by hoops of twisted cane.

China Cayphor, or Formosa Camphor, is imported from Singapore and Bombay in chests lincd with lead-foil containing about $1 \frac{1}{2} \mathrm{cwts}$.

It has been suggested to introduce the camplior trecs into other countries. South Georgia and Florida are named as suitable localities.
The Laura camphora is commonly found in all the nurseries around Paris, and sold at 5 francs for a plant 30 inches high. At full growth the trec attains an altitude of from 40 to 50 feet.

The wood of the camphor tree is in favour for carpenter's work; it is light, easily worked, durable, aud not liable to be attacked by insects.

It is said that in Sumatra numbers of trees are cut down before one is found to repay. Not a tentl part of the trees attacked yicld either camphor or camphor oil.

The camphor is distinguished by the names of head, belly, and foot, when in bulk. The head camphor is in large white flakes; the belly camphor, small brown flakes, transparent, like resin coarsely powdered ; the foot, like dark-coloured resin. A native "Catty" may be divided into:-

	Capallo, or large h							
	Capallo cachell, or	s						
	Baddan, or belly	-	-	-				
	Cakce, or foot	-	-	-				
	$=1$ Catty							

The inquiries of Royle and Roxburgh agree with the records of Sir G. Staunton, Dr. Abel, and Mr. C. Grove, of the estimation placed upon the camphor of Borneo by the Chinese, who actually give a greater price for the coarser article than they afterwards sell it for, when in a purified state for commerce. Hence it is inferred that the Borneo camphor, being so strong, communicates its odour and virtues to other matters, and thns an adulterated drug is sold by the Chinese ; or it may be mixed with the camphor obtaincd by cutting and macerating the wood of the Laura camphora, that grows in China. Sir G. Stamnton, however, declares the Chiuese sell the camphor at a lower price than they give for it at Boruco.

Our importations in 1856 were:-

$$
\begin{gathered}
\text { Camphor unrcfined } \\
{ }_{\text {refined }}
\end{gathered}-\overline{-} \quad-\quad-\quad-\quad 4,505 \text { ewts. }
$$

CAMPHOR, ARTIFICIAL. When hydrochloric acid (muriatic) is passed into oil of turpentine, surrounded by icc, two compounds arc obtained, one solid and the other fluid. The first, solid artificial camphor, $\mathrm{C}^{10} \mathrm{H}^{16} \mathrm{HCl}$, is white, trmensparent, highter than water, and has a camphoraccous tastc. The fluid is termed liquid artificial camphor, or terebinc.
are distilled with oHL, OF L, AUREL. When the branches of Camphora officinarum are distilled with water, a mixture of camphor and a liquid essential oil is obtained.

This is the oil of camphor; it has a density of $0 \cdot 910$, and its composition is $\mathrm{C}^{120} \mathrm{H}^{16} \mathrm{O}$. By exposurc to oxygcu gas, or to the action of nitric acid, it absorbs oxygen, and becones solid camphor, $\mathrm{C}^{20} \mathrm{H}^{16} \mathrm{O}^{2}$.

This is an cstecmed article iu the eastern markets; it undergocs no preparation, and though named oil, it is rather a liquid and volatile resin. The natives of Sumatra make a transverse incision in the trec to the depth of some inches, the cut sloping downwards, so as to form a cavity of the capacity of a quart; a lighted reet is placed in it for about 10 minutes, and in the space of a night the carity is filled with this fluid. The natives consider this oil of great use as a domestic remedy for strains, swellings, and inflammations.
Dr. Royle states the trees are of large dimensions, from $2 \frac{1}{2}$ to 7 fect in diameter. The same tree that produces the oil, would have produced the camphor if unmolested, the oil being supposed to be the first stage of the camphor's forming, and is consequently found in younger trees.
CAMPHOR STORM GLASSES. Glasses called usually storm glasses, and sold as indicators of atmospheric changes.
"Storm glasses" are made by dissolving :-

Camphor	-	-	-	-	-	-	$2 \frac{1}{2}$ drachms
Nitre	grains						
Sal ammoniac	-	-	-	-	-	38	
Water	-	-	-	-	grains		
Rectified spirit of wine	-	-	-	-	9 fluid drachms		
	-	-	-11 fluid drachms.				

Plumose crystals form in the glass, and are said to condensc and collect at the bottou of the bottlc on the approach of a storm, and to rise up aud diffuse themselves through the liquid on the approach of fine weather; but Dr. Parrion thinks that their weather prcdicting qualities arc false, and that light is the agent which, together with tempcrature, influences the condition.

CAM-WOOD. An African dye wood, shipped principally from Sierra Leone in short logs. Mr. G. Loddiges in his botanical cabinet, figures the plant, producing it under the name of Baphia nitida; it is a leguminous plant, and has been introduced into, and has flowered in this country.

CANADIAN BALSAM. A product of the Abies balsumea, or balm of Gilead fir. The finer varieties of this balsam are uscd for mounting objects for the microscope. See Balsams.

CANARY WOOD. A wood is imported into this country under the name of Madcira mahogany, which appcars to be this canary wood. It is the produce of the Royal Bay, Laurus indica, a native of the Canary Islands. It is rather a light wood, and of a yellow colour.

CANDLE. (Chandelle, Fr.; Kerze, Licht, Germ.) Candles are either dipped or moulded. As the quality of the candle depends upon the material employed in its manufacture, the first part of the tallow chandler's process is the sorting of the tallow. Mutton suet with a proportion of ox-tallow is sclected for mould candles, because it gives them gloss and consistencc. Coarser tallow is reserved for the dipped candles. After being sorted, it is cut into small pieces, preparatory to being nelted or rendered; and the sooner this is done after the fat is taken from the carcase the better, because the fibrous aud fleshy matters mixed with it promote its putrefaction. Tallow is too commonly melted by a naked fire applied to the bottom of the ressel, whereas it should be done either in a cold set-pan, where the flame plays only round the sides a little way above the hottom, or in a steam-cased pan. After being fused a considerable time, the membranous matters collcet at the surface, constituting the cracklings used sometimes for fceding dogs, after the fat has bcen squeezed out of it by a press. The liquid tallow is strained through a sieve into another copper, where it is treated with water at a boiling temperature in order to wash it. After a while, when the foul water has settled to the bottom, the purificd tallow is lifted out, by means of tinned irou buckets, into tubs of a moderate size, where it concretes, and is rcady for use.
It is a remarkable circumstancc, that the wicks for the best dipped caudles are still cotton roviugs imported from Turkey, notwithstanding the vast extension and perfection of cotton-spinning in this country. Four or more of thesc Turkey skeins, according to the intcnded thickncss of the wick, arc wound off at once into bottoms or clues, and afterwards cut by a simple machiue into lengths corresponding to those of the candles to be made. The operations for cultiug, twisting, and spreading wicks, are performed upon a series of threads at once. The apparatus is placed in a box, in front of which the operator sits. A reel cxtends across the box at the hinder part, upon which the cotton threads have been previously wound: from this recl they are drawn the wicks into the melted tallow, rubbing theur between the palmins of the By dipping
allowing the tallow which adheres to laarden, they may be arranged with facility upon the broaches for the purpose of dipping. The dipping room is furnished with a boiler for melting the tallow, the dipping mould or cistern, and a large wheel for supporting the broaches. From the ceiling of the workshop a long batance-shaped bean is suspended, to one end of which a wooden frame is attached for holding the hroaches with the wieks arranged at proper distances. The opposite arm is loaded with a weight to counterbalance the wooden frame, and to enable the workman to ascertain the proper size of the candles. The end of the lever which supports the frame is placed immediately above the dipping cistern ; and the whole machine is so balaneed that, by a gentle pressure of the hand, the wicks are let down into the melted tallow as often as may be required.

The following is a convenient apparatus for dipping candles. In the centre of the dipping-room a strong upright post A A, fig. 397, is erected, with turning iron pivots at its two ends. Near its middle, six nortises are cut at small distances from one another, into cach of which is inserted a long bar of wood, B B, which moves vertically upon an iron pin. also passing through the middle of the shaft. The whole presents the appearance of a large horizontal wheel with twelve arms. A complete view of two of them only is given in the figurc. From the extremity of each arm is suspended a frame, or port, as the workmen call it, containing 6 rods, on each of which are hung 18 wicks, making the whole number of wicks upon the wheel 1296. The machinc, though apparently heavy, turns round by the smallest cffort of the workman ; and each port, as it comes in succession over the dipping-mould, is gently pressed downwards, by which means the wicks are regularly immersed in melted tallow: As the arms of the lever are all of the same length, and as cach is loaded with nearly the same weight, it is obvious that they will all naturally assume a horizontal position. In order, however, to prevent any oscillation of the machine in turning round, the levers are kept in a horizontal position by means of small chains, $a a$, onc end of which is fixed to the top of the upright shaft, and the other terminates in a small square piece of wood, b, which exactly fills the notch c in the lever. As one end of the levers must be depressed at cach dip, the square picce of wood is thrown out of the notch by the workmen pressing down the handle D, which communicates with the small lever e, inserted into a groove in the bar b. In order that the square piece of wood fixed in one extremity of the chain, may recover its position upon the workman's raising the port, a small cord is attached to it, which passes over a pulley inserted in a groove near c, and eommunicates with another pulley and weight, which draws it forward to the notch. In this way the operation of dipping may be eonducted by a single workman with perfect ease and regularity, and even despateh. No time is lost, aud no unnecessary labour expended, in removing the ports after each dip; and, besides, the process of eooling is much accelerated by the candles being kept in constant motion through the air. The number of revolutions which the wheel must make, in order to complcte one operation, must obviously depend upon the state of the weather and the size of the candles; but it is said that, in moderately cold weather, not more than two hours are necessary for a single person to finish one wheel of candles of a common sizc. Upon the supposition, therefore, that six wheels are completed in one day, no less a number than 7776 caudles will be manufactured in that space of time by one workman.

The process of moulding, is even less complicated in its details than that of dipping. The moulds are made of some metallic substance, usually pewter, and consist of two parts. The slaft or great body of the mould is a hollow eylinder. finely polished in the inside, and open at both extremities. The top of the mould is a small metallic cup, having a moulding within-side, and a hole to admit the wick. The two parts are soldered together, and when united, as will readily be imagined, have the shape of a moulded eandle. A third picec, ealled the foot, is sometimes added: it is a kind
of small funnel, through which the liquid tallow runs into the mould, and, being screwed to the oppositc extremity of the shaft, is removable at pleasure. This additioual piece may ccrtainly be useful in very mild weather; sinee, by removing it, the candles may be drawn more easily from the moulds; but, in general, it may be dispensed with.

Eight or twelve of these monlds, according to their sizc, are fixed in a frame, which bears a great rescmblance to a wooden stool, the upper surfaee of whieh forms a kind of trough. The tops of the moulds point downwards, and the other extremity, which is open, is inserted into the trough or top of the stool, and made quite level with its upper surface. In order to introduce the wieks into the mould, the workman lays the frame upon its side on an adjoining table, and holding in his left hand a quantity of wicks, previously cut to the proper length, he introduces into the mould a long wire with a hooked point. As soon as the hook of the wirc appears through the hole in the top of the mould, he attaches to it the looped end of the wick, and, immediatcly drawing baek the wire, brings the wick along with it. In this manncr each mould in succession is furnished with a wick. Another workman now follows, and passes a small wire through the loop of each wick. This wire is obviously intended to keep the wick stretched, and to prevent it from falling back into the mould upon the fraure being placed in the proper position for filling. The frame is then handed to the person that fills the moulds, who previously arranges the small wires in such a manner that each wick nay be cxactly in the axis of the mould.

The moulds are filled, by running tallow into eaeh of them, or iuto the trough, from a cistern furnished with a cock, and which is regularly supplied with tallow of the proper temperature from an adjoining boiler. When the workman observes that the moulds are nearly half filled he turns the cock, and laying hold of that portion of the wick which hangs out of the mould, pulls it tiglat, and thus preveuts any curling of the wick, which might injure the eandles: he then opens the cock, and completes the process of filling. The frame is now set aside to eool; and when the tallow has acquired a proper consistenee, which the workman easily discovers by a snapping noise emitted by the candles upon pressing his thumb against the bottom of the moulds, he first withdraws the small wires which kept the wicks tense, and then, scraping off the loose tallow from the top of the frame with a small wooden spade, he introduces a bodkin into the loop of the wick, and thus draws eaeh candle in suceession from its mould. The candles are now laid upon a table for inspection, and afterwards removed to the storehonse. Previous to storing them up, some eandlemakers bleach their candles, by exposing them to the air and dews for several days. This additional labour can be necessary only when the dealer is obliged to have carly sales; for if the candles are kept for some months, as they ought to be, before they are brought to market, they become sufficiently whitened by age.

Wax Candles. - Next to tallow, the substance most employed in the manufacture of candles is wax. Wax candles are made either by the hand or with a ladle. In the former ease, the wax, being kept soft in hot water, is applied bit by bit to the wick, which is hung from a hook in the wall; in the latter, the wieks are hung round an iron circle, placed immediately over a large eopper-tinncd basin full of melted wax, which is pourcd upon their tops, one after another, by means of a large ladle. When the candles have by either process acquired the proper size, they are taken from the hooks, and rolled upon a table, usually of walnut-tree, with a long square instrument of box, smooth at the bottom.

Spermaceti Candles, are moulded in the same manner as those eomposed of stearine, or stearie acid, to be described presently,
In June, 1825, M. Gay-Lussac obtained a patent in England for making candles from margaric and stearic acids, called stearine, by converting tallow into the above fat acids by the follo wing process:- Tallow consists, by Chevreul's researehes, of stcarinc, a solid fat, and eluine, a liquid fat; the former being in much the larger proportion. What is tallow is treated with an alkaline body, sueh as potash, soda, or lime, it is saponified; form compounds with these become respectively stearic and claic acids, and, as sueh, or muriatic, these combinations are den by the aetion of an acid, such as the sulphurie of stearic and elaic acids; the former bomposed, the fats reappear in the altered form somewhat like spermaceti, the latter body being fliditer than tallow. and of a texture soap should be made," says the patentee, "in gluid like oil. "T he decomposition of the during the operation, and warmed by steam intrge quantity of watcr, kept well stirred the mixturc has bcen allowed to stand, the aciduced in any convenient way. When surface, and the water bcing drawn off, will carry ar the tallow or fat will rise to the but, if the acids of the tallow should retain ary the alkaline or saline matters with it; thrown upon it, and the whole well agitated, uutil the of the salts, fresh water may be from the alkaline matters; and when allowed to eool, the have become perfectly free
solid mass. This mass is now to be submitted to considerable pressure in such an apparatus as is cmployed in expressing oil from seeds; when the liquid acid will run offin the form of a substance resembling oil, leaving a solid matter, sinilar, in every respect, to spermaceti, which is fit for making candles."

The wiek to be used in the manufacture of the Stearine eandles, and which forms one of the features of this invention, is to be made of cotton yarn, twisted rather hard, and laid in the same nanner as wire is sometimes coiled round the bass strings of musical instruments. For this purpose, straight rods or wires are to be procured, of suitable lengths and diameters, according to the intended size of the candles about to be made; and these wires, having been covered with cotton coiled round them, as described, are to be inserted in the candle moulds as the common wicks are; and when the candle is made, and perfectly hard, the wire is to be withdrawn, leaving a hollow cylindrical aperture entirely through the middle of the candle. (Sec Stearine) 'The first successful application of the fat acid, or stcaric candles, appears to have been made by Messrs. Motard and Nilly. They made stcarine candles, which they called "bougies de l'etoile," for which the "Society of Encouragement" voted them their silver medal.

Messrs. Hempbell and Blundell have given a very minute account of the process for making palm oil, stearic and margaric acids, in the specification of their patent for this mode of maunfacturing eandles:-

1. Their first process is called crystallisation, which consists in pouring the melted palm-oil into iron pans, allowing it to cool slowly, whereby, at about $75^{\circ} \mathrm{F}$., the claine separates from the crystalline stearine and margarine.
2. The concreted oil is subjected to the action of an hydraulic press, in order to separate the elaine from the solid fats.
3. This process is called oxidution. To 104 lbs. of the stearine and margarine, melted in an iron pan, about 12 lbs. of slaked and sifted quicklime are added, with diligent stirring, during which the temperature is to be slowly raised to $240^{\circ} \mathrm{F}$., and so maintained for about 3 hours, till a perfect chemical combination takes place. This is shown by the mass becoming thin, transparent, and assuming a glassy appearance when it cools. The fire being now withdrawn, cold water is added, very gradually at first, with brisk stirring till the whole mass falls into a state of powdery granulation, when it is passed through a wire sieve to break down any lumps that may remain.
4. Separation of the Stearic and Margaric Acids from the lime. For this purpose, as much muriate of lime (chloride of calciunt) is taken as will, with its equivalcnt quantity of sulphuric acid (8 lbs . of dry muriate of lime, require 7 lbs . of the strongest sulphuric acid), produce as much muriatic acid as will dissolve the lime combined with the fat acids: and therefore that quantity of muriate of lime dissolved in water must be treated with as much sulphuric acid as will saturate its lime and throw it down iu the state of sulphate of line. Add the supernatant solution of muriatic acid in such proportion to the stearate and margarate of lime as will rather more than saturate the lime. Three pounds of muriatic acid diluted with 9 lbs . of water are stated as enough for 1 lb . of lime. This mixture is to be let alone for 3 or 4 days, in order to insure the complete scparation of the lime from the fat acids; and then the mixture is heated so as to melt and cause them to scparate in a stratum on the top of the liquid. The resulting muriate of lime is drawn off into another tub, and decomposed by its dose of sulphuric acid, so as to liberate its muriatic aeid for a fresh opcration.
5. The fat acids, being well washed by agitation with hot water, are then set to cool and crystallise, in which state they are subjected to the action of the hydraulic press, at a temperature of $75^{\circ} \mathrm{F}$, whereat the margaric acid runs off from the solid stearic acid.
6. Bleaching. The stearic acid is taken from the press, and exposed upon water in - large shallow vessels placed in the open air, where it is kept at the melting temperature from 1 to 12 hours, stirring meanwhile, in order to promote the blanchiug action of the atmosphere. The margaric acid is bleached in a similar mauner in separate vessels.
7. Refining Process. The fat is warmed again, and poured in a liquid state into an agitating tub; where, for every 1000 lbs. of the stearic acid, about $2 \frac{1}{2}$ lbs. of conmmon black oxide of manganesc, and 40 lbs . of concentrated sulphuric acid, diluted with 200 lhs. of pure water, are to be uscd. This solution (" mixture"), while waru from the heat evolved in diluting the acid, is placed in a suitable ressel above the agitating tub. The stearic acid being at the melting point, in the vessel below, agitation is to be given with a revolving shaft, while the mixed manganese and acid are run slowly down into it, till the whole be well mixed, which generally requires about 2 hours. The mass is allowed to lic in this state for 48 hours; after which it maty be boiled by steam for 2 or 3 hours, when it will be sufficiently refined. The sulphuric acid, which is at the bottom, is now run off, and the stearic acid which remains is well washed with pure water. It is then put into large conical vessels of stonc-ware, inclosed in a box
or jacket, kept warm by steam-hent, and lined with conical bags of a suitable strong filtering paper, through whieb, being walm, it finds its way; and when the stearic acid las been tlus filtercd, it is run into blocks, when it will be found to be a beautiful stearic aeid or palm-wax, and is ready to be made into eandles in the usual way.

The chicf solid constituent of palm oil is margaric acid. This they direct to be melted with tallow, in the proportion of from 10 to 20 lbs . of the former to 100 lbs . of the latter. See Newton's Journal, C. S., xi. 207.

Price and Co. introduced, in 1840, on the oceasion of her Majesty's marriage (when, for tbe illuminations, a cheap self-snuffing candle was required), a new eomposite candle, which was a mixture of stearic acid and cocoa-nut steariue. Mr. George Gwynne, in $18 \not \pm 0$, patented a process for purifying the fatty acids hy distillation: this was followed by a similar patent by Dubrunfant, -and Mr. Wilson, of Belmont, Vaushall, obtained in August, 1842, a patent for improvements in treating fats for making candles. These advances led to many modifications in candle manufacture.

If distilled fats are used in making composite candles, they are bleached and hardened in that operation. When palm oil is the material, it is first saponified, then distilled, - granulated by fusion and slow cooling,-and cold-pressed; by which means stearic acid and a light-coloured oil are obtained, which may be mixed with the stearine of cocoa-nut oil, or other stearine. A cheaper article may be had by mixing the entire product of the above distillation with half its weigbt of distilled and cold-pressed stearic acid of tallow. Tallow is deprived of its oleine by pressure, accompanied by artificial cold if necessary; this being added to the other hard matter, the mixture is converted into fatty acids, and distilled, and the entire produet of distillation is employed for making candles; or it may be pressed to make them harder. As distilled stcaric acid is more crystalline than undistilled, 2 or 4 per cent. of wax may be added to assist the combination of the fatty acid with the stearine.

Candles consisting of alternate layers of tallow and stearine have been made by dipping their wieks alternately in these two fatty bodies in a fluid state. Mr. W. Sykes has gone to the expense of a patent on the contrivance. The wieks are impregnated with a solution of bismuth or borax.
In a lecture delivered at the Society of Arts by Mr. Wilson, and published in their journal, he described the progress of the more reeent improvements. In this he says : -"Candles, bcautiful in appearanee, were made by distilling the cocoa-nut acids; but, on putting them out, they gave off a ehoking vapour, which produced violent coughing." This prevented those eandles from being bronght into the market. *By distilling cocoa-nut lime-sonp, we made beautiful candles, rcsembling thosc made from paraffine, burning perfectly; but the loss of material in the process was so great, that the subsequent improvements superseded its use. Under one part of this patent, the distillation was carried on sometimes with the air partially excluded from the apparatus, by means of the vapour of water, sometimes without, the low evaporating point of the cocoa-nut acids rendering the exclusion of air a matter of mueh less inportauce than when distilling other fat acids." At this time, in eonjunction with Mr. Jones, Mr. Wilson appears to have first tried using the vapour of water to exclude the air from the apparatus during distillation. This led, in 1842, E. Price and Co. to patent, in the names of Wilson and Jones which involved the treatment of fats, previously to distillation, with sulphuric aeid, or nitrous gases. M. Frémy, in his valuable paper in the "Annales de Chimie," deseribes treating oils with half their weight of concentrated sulphuric aeid, by whieh their melting point was greatly raised. He gave, however, partieular directions that the matter under process should be kept cool. Instead of doing this, Mr. Wilson found it advantageous to cxpose the mixture of fat aeid and fat to a high temperature, and this is still done at Price's
works.
"Our process of sulphuric aeid saponification was as follows. Six tons of the matcrial employed - usually palm oil, though occasionally we work chcap animal fat, vegetable oils, and butter, and Japan wax-were cxposed to the combined action of $\sigma_{1}^{63} \mathrm{cwts}$. of concentrated sulphuric aeid, at a temperature of $350^{\circ} \mathrm{F}$. In this process the glycerine is decomposed, large volumes of sulphurous acid are given off, and the fat is changed into a mixture of fat acids, with a very ligh melting point. This is washed, to free it from charred matter and adhering sulphuric acid, and is then transferred into a still, from which the air is excluded by means of steam. The steam used by us is heated in a scries of pipes shmilar to those used iu the hot-blast apparatus in the manufaeture of iron, the object of heating the steam being only to save the still, and reduee to a small cextent gaseous loss in distillation." ". We still," says
the patentec, "cmploy this the patentec, "cmploy this proeess, and in sone eases reduce the quantity of aeid employed to 4 lhs, and eren 3 ils., to a cwt. of the fat."
Vegetable tallow inelts at a degrce of but considerably below that of vegetable wax. Mr. Wilso that of animal tallow, hut considerably below that of vegetable wax. Mr. Wilsou treats his tallow by
putting 6 tons of it into an iron still eapable of holding 9 tons, heats it gradually to $350^{\circ} \mathrm{F}$., and then adds gradually 1440 lbs . of sulplurie aeid of 1.8 speeifie gravity. At the expiration of about two hours, the tallow is pumped into a vessel, eontaining water slightly aeidulated with sulphurie acid; and is therein agitated by free steam passing through it for 2 hours. The materials are then left to repose for 6 hours; both these vessels, and the former, should be provided with a cover and a means of conveying the gases whieh may be evolved into a chimney. The vegetable tallow is next distilled in sueh a manner that the atmosphere is exeluded. This is best effeeted by the use of steam highly heated, whieh he introduces into the still, in numerous jets below the tallow. The distilled products are reeeived into condensers, and they may be used alone, or they may be mixed with other matters for making the best elass of eandles. The patentee improves paraffine by a like process. He nakes candles with 2 or 3 wieks, by mixing palm oil pressed with tallow, or the above distilled fat, for burning in eandle lamps.

In 1854, Mr. Tighlman obtained a patent for the exposure of fats and oils to the aetion of water at a high tempcrature, and under great pressure, in order to eause the combination of the water with the elements of the neutral fats; so as to produce at the same time free fat aeid and solution of glyeerine. See Glycerine.

He proposed to effeet this by pumping a mixture of fat and water, by means of a foree-pump, through a coil of pipe heated to about $612^{\circ} \mathrm{F}$., kept under a pressure of about 2000 lbs . to the square inch; and he states that the vessel must be closed, so that the requisite amount of pressure may be applied to prevent the conversion of water into steam. Mr. Wilson improved upon this process, by passing steam into fat at a high temperature; and by this process hundreds of tons of palm oil are now treated. The glyeerine and fat distil over together, but no longer combined ; and the former, being separated, is subjeeted to a redistillation, by which it is purified. This distillation is effeeted by transmitting through the fat contained in an iron still, steam at about 600° or $700^{\circ} \mathrm{F}$., heated by passing through iron pipes laid in a fire. The steam is transmitted till the oily matter is heated to about 350°; the vapours produeed being earried into a high shaft by a pipe from the cover of the iron vessel. The hot oily matter is then run into another vessel made of brick lined with lead, and sunk in the ground, for the purpose of supporting the brick-work under or against the internal pressure of the fluid. It has a wooden cover lined with lead, direetly beneath which, and extending across the vessel, is a leaden pipe, 1 inch in diameter, having a small hole in each side, at every 6 inches of its length; and through this pipe is introdueed a mixture of 1000 lbs . of sulphuric acid, sp. gr. 188 , and the same weight of water. The introduction of the mixture, which falls in divided jets into the heated fat, produees violent ebullition; and by this means the acid and fat are perfectly incorporated before the aetion of the aeid becomes apparent by any considerable discoloration of the fat. As the ebullition eeasts, the fat gradually blaekens; and the matter is allowed to remain for 6 hours after the violent ebullition has ceased. The offensive fumes produced are carried off by a large pipe, which rises from the top of the vessel, then deseends, and afterwards rises again into a high ehimney. At the downward part of this pipe a small jet of water is kept playing, to condense such parts of the vapours as are condensable. At the end of the 6 hours above mentioned, the operation is complete, and the product is then pumped into another elose vessel and washed, by being boiled up (by means of free steam) with half its bulk of water. The water is drained off, and the washing repeated, exeept that in the second washing the water is aeidulated with 100 lbs . of sulphurie aeid. The ultimate product is allowed to settle for 24 hours; after whieh it is distilled in an atnosphere of stean - onee, or oftener-until well purified; and the product of distillation is again washed, and after being pressed in the solid state, is applied to the manufacture of candles.

The following definitions of terms applied to eandles are by Mr. Wilson :-
Belmont Sperm.-Made of hot-pressed, distilled palm aeid.
Belmont Wax.-The same material, tinged with gamboge.
Best Composite Candles.- Made of a mixture of the hard palm acid, and stearine of eocoa-nut oil.

Composites, Nos. 1, 2, and 3, are made of palm aeids, and palm aeids and enenanut stearine, the relative proportions varying aecording to the relative market prices of palm oil and eocoa-nut oil at the partieular time when the eandles are mannfactured.

Composite, No. 4.-A deseription of eandle introduced at a priee a very little above the price of tallow dip eandles. They are somewhat dark in eolour, but give a good light.
The highest prieed eandles are usually made in the ordinary mould; but at Priee and Co.'s manufaetory they have a maehine for moulding the ordinary stearine eandles,
and others of a similar naturc. When one set of candlcs is discharged from the moulds, the moulds are re-wicked for the next process of filling. These moulds are arranged side by side, eighteeu in number, on a frame; and for each mould there is a reel capable of holding sixty yards of wick, enclosed in a box. The moulded candle, being still attached to the cotton wick, when it is forced out of the monld, hrings the fresh wick into it. The moulded eandles are, by a very ingenious contrivance, held firm in a horizontal position whilc a knife passes across and severs the wick. The wicks for the new set of candles are secured, hy forceps, firmly to the conical caps of the moulds; these arc carried into a vertical position, and slid upon a railway to a hot closet, where they hecome sufficiently warm to reccive the fat, which, kept at the melting point by steam-pipes, is held in a cistern above the rails; from this cistern the moulds are filled by as many cocks, which are turned by one impulse. If we imagiue an extensive series of these scts of moulds travelling from the machine over a railway, in regular order, and that, when the fat has hecome solid, these return, the candles are discharged, and the process is renewed,-the machine will he tolerably well understood. Each machine holds about 200 frames of moulds, and each contains 18 bohbins, starting each with 60 yards of cotton wick.
Night-Lights.-These are short thick cylinders of fat, with a very thin wick, so proportioned one to the other, that they hurn any required numher of hours. The moulds in which these are made are metal frames, perforated with a number of cylindrical holes, and having a movahle hottom, with a thin wire projecting from it into every mould. These are filled with melted fat, and, when cold, the hottoms are forced up, and all the cylinders of fat ejected, each having a small hole through which the wick, a cotton previously impregnated with wax, is inserted. This being donc, the night light, heing pressed on a warm porcelain slab, is melted sufficiently to cement the wick. These night-lights are hurued in glass cylinders, into which they fit.

Child's Night-Lights are melted fat poured into card-board boxes, which have a hole in the bottom, through which the wick and its metallic support are placed.
Dr. Ure made a set of experiments upon the relative intensitics of light, and duration of different candles, the results of which are contained in the following Table:-

Number in a Pound.	Duration of a Cindle.		Weight in Grains.	Consumption per Hour in Grains.	Proportion of Light.	Economy of Light.	Candles equal one Argand.
10 mould - -	h. 5	$\begin{gathered} m . \\ 9 \end{gathered}$	682	132			
10 dipped - -	4	36	672	150	13	68	$5 \cdot 25$
8 mould - -			856	132	$10 \frac{1}{2}$	591	6.6
6 ditto -			1160	163	$14 \frac{2}{3}$	$66{ }^{2}$	$5 \cdot 0$
4 ditto - -			1707	186	$20 \frac{1}{7}$	80	
Argand oil flame	-	-	170	512	$69 \cdot 4$	100	

A Scotch mutchkin, or $\frac{1}{8}$ th of a gallon, of good seal oil, weighs 6010 gr , or $13 \frac{1}{10} \mathrm{oz}$. a voirdupois, and lasts in a hright Argand lamp 11 hours 44 minutes. The weight of oil it consumes per hour is equal to 4 times the weight of tallow in candles 8 to the pound, and $\frac{1}{7}$ th the weight of tallow in candles 6 to the pound. But its light heing equal to that of 5 of the latter candles, it appears from the above table that 2 pounds weight of oil, value 9 d., in an Argand, are equivalent in illuninating power to 3 pounds of tallow candles, which cost ahout 2 shillings. The larger the flame in the above candles the greater the economy of light.
In 1856, we imported stearine candles from the following places:-

ussia	-		-	Cwts.		Comp	ted real
Denmark	-	-	-	106			E1771
Holland	-	-	-	106		-	595
Belgium	-	-	-		-	-	1136
France	-	-	-	84		-	

In the same year our Exports were as follows :-

CANE-MILI., The mill employed for crushing the sugar cane. See Sugar.
CANES. Canes of varions kinds are employed in manufactures, as the Sngar cane, Bamboo cancs, and Kattan eanes, \&c. The bamboo is a plant of the recd kind, growing iu the last Indics, and other warm climates, and sometimes attaining the height of 60 feet. Old stalks grow to five or six inches diameter, and are so hard and durable as to be used for building, and for all sorts of furniture, for water-pipes, and for poles to support palunquins. 'The smaller kinds are used for walking-sticks, flutes, \&c.

In 1856, we imported 309,000 Bamboo canes into England.
Rattan cancs are often confonuded with the Bamboo. They are, however, the produce of various species of the geuus Calamus. They are cylindrical, jointed, very tough and strong, from the size of a gnosequill to that of the human wrist, and from fifty to a hundred fect in length. They are used for wieker-work, seats of chairs, walking-sticks, \&c.

In 1856, we imported of Rattau cancs, $7,840,702$, the computed value of which was £15,681.

CANGICA WOOD, called also in England Angica. It is of a rose-mood colour, is imported from the Brazils in trimmed logs from cight to ten inches diametcr. As a variety in cabinct work, small quantities of this wood are employcd.

CANNABIC COMPOSITION. This material for architectural decoration is described by Mr. B. Albano to have a basis of hemp, amalgamated with resinous sul)stances, carefully prepared and worked into sheets of large dimension.

Ornaments in high relief and with great sharpness of detail are obtained by pressure of metal discs, and they are of less than half the wcight of papier maché ornaments, sufficiently thin and elastic to be adapted to wall surfaces, bearing blows of the hammer, and resisting all ordinary actions of heat and cold without change of form. Its weather qualitics had been severely tried on the coutinent, as for coverings of roofs, \&c., remaining exposed without injury.

This composition is of Italian origin, and in Italy it has becn employed for panels, frames, and centrcs. It is well fitted to receive bronze, paint, or varnish, the material is so hard as to allow gold to be burnished, after gilding the ornaments made of it.

CANNEL COAL. Cannel coal is obtained in Lancashirc, in Derbyshire, in Warwickshire, and in Scotland, in considerable quantities; there are some other localities in which it is procured, but not so cxtensively. Its use as a fuel and for gas making will be found in the articles devoted respectively to these subjects.

This coal has a dark greyish black colour, the lustre is glistening and resinous, it takes a good polish, and is hence made into a variety of ornaments. It is not equal to jet (see JET), being more brittle, heavier, and harder ; but cheap ornaments made of cannel coal are not unfrequently sold for jet: cannel coal is made up of horizontal layers, and has a grain something resembling wood.

The coal, when worked for ornament, is cut with a saw, and the picces are roughshaped with a chopper. For making a snuff-box, whether plain, screwed, or excentric turned, the plank way, or the surface parallel with the seam, is most suitable; it is also proper for vases, the caps and bases of columns, \&c. Cylindrical pieces, as for the shafts of columns, should be cut from either edge of the slab, as the laminæ then run lengthways, and the objects are much stronger : cylindrical pieces thus prepared, say 3 inches long and $\frac{3}{8}$ ths of an iuch diameter, are so strong they cannot be broken between the fingers. Similar pieces have been long since used for the construction of flutes, and in the British Museum may be seen a snuff-box of cannel coal, said to have been turned in the reign of Charles I., and also two husts of Henry VIII. and his danghter Lady Mary, carved in the same material. The plankway surfaces turu the most freely, and with sharings much like those of rood; the edges yield small chips, and at last a fine dust, but which docs not stick to the hands in the manner of common coal. Flat objects, such as inkstands, are rorked with the joiner's ordinary tools and planes. The edges of cannel coal are harder and polish better than flat surfaces.-Holtzap.ffel. See Coal and Boghead Coal.

CANNON. Sec Ahtillery and Shell.

CANTHARIDES. The blister beetle or Spanish fly, the Cantharis vesicatoria. Cantharides are imported from St. Petersburg in cases, each contaiuiug 160 to 170 lbs., and also from Messina in barrels or cases holding each 100 lbs . See Pereira's "Materia Medica." In 1856 we imported 35,922 lbs.

CANVAS. (Canevas, Fr.; Kanefass, Gerun.) A coarse cloth made of hemp or flax, which is used for the sails of ships and for tents. It has beeu found that sails of ships made with the selvages and seams of the canvas runniug down parallel to their cdges are very apt to bag, and becone torn in the middle. from the strain to which they are subjected by the pressure of the wind. To obviate this inconvenience, a mode of making sails, with the scans and selvages ruuning diagonally, was proposed by

Arlmiral l3rooking, and a patent granted to him for the same on 4 thl of November, 1828. The invention of Messrs. Ramsay aud Orr, has a similar object, viz., that of giving additional strength to sails by a peculiar manner of weaving the canvas of which they are made.

The improvement consisted in weaving the canvas with diagonal threads; that is, placing the weft yarn, or shoot, in weaving, at an oblique augle to the warp yarns, instead of making the decussation of the warp, or weft threads, or yarns, at riyht augles to each other, as in the ordinary mode of weaving.

To accomplish this object the looru must be peculiarly constructed; its warp and work beams uust stand at an oblique augle with the sides of the loom, and the batten and slay must be hung in a peculiar mauner, in order to beat up the weft or shwot, in lines ranging diagonally with the warp.

Canvas painted of various patterns is used for covering halls, \&e., and is gencrally called floor choth. A finer lind of cauvas, properly prepared, is employed by artists.
CAOUTCHOUC, GUM-ELASTIC, OR INDIAN-RUBBER (Ctoutchouc, Fr.; Kautschut Federharz, Germ.) occurs as a milky juice in several plants, such as the siphonia, cahuca, called also hevea guianensis, cautschuc, jatropha elastica, castilleja elastica, cecropia pelleta, ficus religiosa and undica, urceolaria elustica, \&c. Dr. Lindley's account of the plants that yield the most important supplies of commercial caoutchouc, with plates of the leaves and flowers, will be found in Mr. Hancock's work on Caoutchouc. These are stated to be siphonia elastica, Hancornia spcedosa, ficus elastica, and urceola elustica. It is, however, extracted chiefly from the first plant, which grows in South America and Java. The tree has iucisious made into it tlirongh the bark in nany places, and it discharges the nilky juice, which is spread upon clay moulds, and dried in the sun, or with the smoke of a fire, which blackens it. Portions of this milky juice had been occasionally sent to Europe in bottles; some few arrived with the milky emulsion, but generally they were found to be resolved into a coagulum floating in an aqueous solution. A small bottle from Cayenne or the Isle of France, in the possession of M. D'Arcet, passed some years without change, but the severe winter of $1788-9$ caused it to pass to the solid state, and the bottle was broken.
Sir Joseph Banks is reported to have liad a bottle of liquid unaltered, but which afterwards was decomposed. Fifty gold lonis d'ors were alterwards offered by him at Lisbou in vain to receive a second supply.
Caoutchouc, Gum Elastic, or Indian-Rubber, are the general names for a substance now so well known, familiar, and important, that it seems matter for surprise that the latter half of the preceding century should have passed away before it was made known to Europe by memoirs read to a learned body; for the remainder of the century, its extraordinary property of elasticity and the grotesque objects made by the Indians, caused it to be met with in the cabincts of the curions; its general knowledge and use was confined to erasing marks of black lead pencil from paper, and in this country it reccived the common name of lead-eater:

Europe is indebted to the observations of M. de la Condamine, who, despatched from France on a scientific mission, found the natives and residents of that part of South America which he visited, constantly using syringes, bottles for non-corrosive liquids, boots, and many other articles, made of Indian rubber. In 1736, he wrote an account to the Academy of Scieuces at Paris of this substance; which during his ten years' residence in Para, and journeys in the country, and along the banks of the Amazon, he had constant observation of the use of by the natives.
He describes the forms of bettles and articles moulded with clay, coated with the out, and that the Indians, with a point of hard wood, impressed ornaments upon then soft mass.
M. Condamine described the resin spread upon cloth as forming a waterproof covering; its great use for bagging to keep biscuits, food and clothing dry from rain, damp and water, and as a substitute for tarpaulins; and he especially remarks the use it stood on its legs, which allowed it to be left in the rain cover the quadrant circle as them to make observations at it to be left in the rain and snow, and thus enabled ing the instruments to boxes and places of weather, and avoid great labour of removof the Cordilleras and the Andes, boots are made which resist water, at the missions like skins when they have been smoked.

To obviate the adhesion of objects recently made to each other, especially if the sun is upon them, "Spanish white, and cven dust, is employed:" the inconvenience is thus prevented, and the articles immediately take the brown colour which is ultimately
acquired by the exposure of the acquired by the exposure of the white juice to the sun and air, smoke and fire,
methed by the Indians. 11. Condamine found in the province of Emeraldes, a substance called Hhévé ; it
is ohtained by a single incision from the plants, and is a white liquid like milk, which hardens and hlackens in the air. They make flambeaux $1 \frac{1}{1}$ inch thick and 2 feet long, that burn very well without a wick for 24 hours, with a brilliant flame and without any disagreeable odour. The caoutchouc was wrapped in two leaves of bananier to form the flambeanx; he used these lights habitually, on his route along the river Emerandes, and cspecially in the wood of Sylanche, where lie was detained for days.

It was in 17.51 , that M. Condamine brought the subject into notice, for his friend Mons. Fresneau had found and descrihed trees in Cayenne, yielding elastic resio. Writing to his friend, he records the localities, trees, tools, aud details for ohtaining the sap, and forming articles. He also found that the heat of a sand-hath, with nut oil, softened, and in a manner, dissolved the caoutchouc.
M. Condamine concludes bis remarks upon the memoir of M. Fresneau with words of sufficient import, and indeed with prophetic spirit, and says, "it will he an cxclusive ohject of commerce for that colony which possesses this species of treasure." Such were his words a century past.
MM. Herisseut and Macquer in 1761, gave their chemical observations to the Academy Royal on caoutchouc, or elastic resin of Cayenne. They refer to the softening and solution by oils and heat, "but the caoutchouc does not again take its solidity or elasticity." By rectifying oil of turpentive upon lime and dissolving caoutchonc in it, they obtained a pasty mass which allowed the caoutchouc to regain its former elastic state. They point out that ether may be advantageously used, and they complain of the great expeuse of Dippel's animal oil as a solvent. While pointing out the surgical uses of cacutchouc, Macquer describes the necessity for carefully rectifying the ether, taking 8 or 10 pounds, and only receiving the first 2 pounds for the solutiou of caoutchouc. He used instead of clay, moulds of wax, held by pincers, and plunged in the ethereal solution, and by repeated coatings, allowing the ether to evaporate, a thin covering was obtained; by the heat of hoiling water the wax flowed out, and a tuhe of caoutchouc remained. He states that he found it difficult to get the tubes uniform.
M. Grossart in 1768, puhlished his experiments to ohtain good tuhes of Indian rubher hy means of ether and boiling water, these memoirs seem to have remained without sufficient reference and study.

It has been received as an opinion in England and America, that one of the earliest nutices of the useful properties of Indian rubher is that given by Dr. Priestley, in a work evidently got up with great care, called, "A Familiar introduction to the Theory and Practice of Perspective, hy Joseph Priestley, LL.D., London, 1770." At the end of the preface is the following addition :-
"Since this work was printed off, I have seen a substance excellently adapted to the purpose of wiping from paper the marks of a black-lead pencil. It must, thercfore, he of singular use to those who practice drawing. It is suld by Mr. Nairne, Mathematical Instrument maker, opposite the Royal Exchange. He sells a cubical piece of about half an inch, for three shillings, and he says it will last several years." . It will be remarked, that no name for the substance is mentioned ; the preface is dedicated "to Sir Joshua Renolds, Knt., F.R.S., Leeds, March 20th, 1770 ;" and we may fairly conclude that the substance was a novelty in art and trade.

It seems probahle, that the experiments with balloons, and the application of airtight varaishes, especially by Messrs. Charles and Rohert, called more general attention to the properties of Indian rubber in Europe.

Mr. Hancock says, "This suhstance came first into notice about the beginning of the last century, moulded into the shapes of hottles and animals. It was sold as high as a guinea the ounce, and used for rubbing out pencil marks; but scarcely anything was known of its history, except that it came from America:" Such are the brief historical notices of this now important substance.

The juice itself has heen of late years imported. It is of a pale yellow colour, and has the consistenee of cream. It hecomes covered in the hottles containing it with a pellicle of eoncrete caoutchoue. Its specific gravity is 1.012 . When it is dried it loses 55 per cent. of its weight; the residuary 45 is elastic gum. When the juice is hented it iminediately coagulates, in virtue of its alhumen, and the elastic gum rises to the surface. It mixes with water in any proportion; and, when thus diluted, it coagulates with heat and alcohol as hefore.
The specific gravity of caoutchouc is 0.925 , and it is not permanently increased by any degree of pressure. By cold or long quiesecnce it becomes hard and stiff. When the milky juice has become once coherent, no means hitherto known can restore it to the emulsive state. By long hoiling in water it softens, swells, and becomes more readily soluble in its peculiar menstrun; but when exposed to the air it speedily resumes its pristine consistence and volume. It is quite insoluble in alcolol; but in ether, de-
prived of alcohol by washing with water, it readily dissolves, and affords a colourless solution. When the ether is evaporated, the eaontehouc becomes again solid, bnt is sonnewhat elaminy for a while. When treated with lot naplitha, distilled from native petrolenm, or from coal tar, it swells to 30 times its former bulk; and if then triturated with a pestle, and pressed through a sieve, it affords a homogeneous varnish, whieh being applied by a flat edge of metal or wood to eloth, prepares it for forming the patent water-proof clotl of Macintosh. Two surfaces of cloth, to which scveral coats of the above varnish have been applied, are, when partially dried, brought cvenly in contact, and then passed between rollers, in order to condense and smoothe them together. This double eloth is afterwards suspended in a stove-room to dry, and to dispell the disagreeable odour of the naplitha.
Caontchouc dissolves in the fixed oils, such as linseed oil, but the varuish has uot the property of beeoming concrete upon exposure to air.
It has been lately asserted tbat eaoutchouc is soluble in the oils of lavender and sassafras. Roxburgh found it perfeetly soluble in oil of eajeput.

It melts at $248^{\circ} \mathrm{F}$., and stands afterwards a much higher heat without undergoing any further change. When the melted caoutchouc is exposed to the air, it becomes hard on the surfaee in the course of a year. When kindled it burns with a bright flame and a great deal of smoke.

Neither chlorine, sulphurous aeid gas, muriatie aeid gas, ammonia, nor flnosilicic aeid gas, affect it, whence it forms very valuable flexible tubes for pueumatie ehemistry. Cold sulphurie aeid does not readily deeompose it, nor does nitric acid, unless it be somewhat strong. The strongest eaustie potash lye does not dissolve it even at a boiling heat.

Caoutchouc, aceording to the experiments of Dr. Ure, whieh have been confirmed by those of Dr. Faraday, contains no oxygen, as almost all other solid vegetable produets do, but is a mere eompouud of earbon and hydrogen, in the proportion, by these results, of 90 carbon to 10 hydrogen, being three atoms of the former to two of the latter. Dr. Faraday obtained only 87.2 carbon. Dr. Ure observes, "from which I would infer that some of the carbon, which in this substanee is difficult to aeidify by peroxide of copper, had eseaped its action. It is obvious that ton little earbonie acid gas may be obtained, but eertainly not more than corresponds to the carbon in the body. No carbon ean be ereated in the process of ultimate analysis by pure peroxide of copper, such as I employed; and I repeated the ignition after attrition of the mixture used in the experiment." Melted caoutchoue forms a very excellent chemical lute, as it adheres very readily to glass vessels, and withstands the corrosive action of acid vapours. Caoutchoue is much used for effacing the traees of plumbago peneils, whence it derived the name of Indian-rubber. It has been employed very extensively for making elastie bands or braces. The eanutchone bottles are skilfully eut into long spiral slips, which are stretched, and kept extended till nearly deprived of their elasticity, and till they form a thread of moderate fineness. This thread is put into a braid machine, and covered with a sheath of cotton, silk, linen, or worsted. The clothed caoutchouc is then laid as warp in a loom, and woven into an elegant riband. When woven, it is exposed upon a table to the aetion of a hot smonthing iron, which restoring to the caoutehoue all its primitive elasticity, the riband retraets considerably in length, and the braiding corrugates equally upon the eaoutchoue eores. Sueh bands possess a remarkable elasticity, combined with any desired degree of softness. Sometimes cloth is made of these braided strands of caoutehoue used both as warp and as weft, whieh is therefore elastic in all directions. When a light fabric is required, the strands of eaoutehouc, either naked or braided, are alternated with common warp yarns. For this mixed fabric a patent has been obtained. The original manufaeturer of these elastic webs is a major in the Austrian service, who has ereeted a great faetory for them at St. Denys, near Paris.

Mr. William Henry Barnard, in the eourse of some experiments upon the impreg. nation of ropes with caoutchoue, at the factory of Messis. Enderby at Greenwich, diseovered that when this substanee was exposed to a heat of about $600^{\circ} \mathrm{F}$. it resolved itself into a vapour, which, by proper refrigeratory methods, was condensuhle into a liquid possessing very remarkable properties, to which the name eaoutchoueine has been given. For this invention " of a solvent not hitherto used in the arts," Mr: in his specification as follows:-"I rubber, as imported, and having cut it into small of the said eaoutchoue, or Indianinches each (which I prefer), I throw these lumps inps, containing abont two eubic adapted for the purpose, and a diagram of which is annext-iron still (whieh I find this my specifieation), with a worm attaehed (fig. 398) ; aned to. and forms part of ground to a metallie fit, to admit of a thernmometer to ; A is the still, B the enver fire place, D the ash-pit, E the worm-tub and worm, F the the temperature; c the

Vol. I.
P P
roller and carriage, in conjunction with a cranc, or other means, to raise the cover to take out the residue, and to charge the same; u the chain.
"I then apply heat to the still in the usual mamerr, which heat is increased until the thermometer ranges at 600 degrees of Pahrenheit, or thereabouts. And, as the thermometer ranges progressively upivards to 600 degrees of Fahrenlicit, a dark-coloured oil or liquid is distilled over,
 which I claim as my snid invention, such liquid being a solvent of caoutchouc, and other resinous and oleaginous substances. When the thermometer reaches 600 degrecs, or thereabouts, nothing is left in the still but dirt and charcoal.
"I have found the operation of distillation to be facilitated by the addition of a portion of this vil, cither previous or subsequent to rectifieation, as hereinafter mentioned, in the proportion of one-third of vil to two-thirds of caoutchoue.
"I afterwards subject the dark-coloured liquid thus distilled to the ordinary process of rectification, and thereby obtain fluids varying in specific gravity, of which the lightest hitherto has not been under 670, taking distilled water at 1000 , which fluids I also chaim as my said invention.
"At cach rectification the colour of the liquid becomes more bright and transparent, until at the specific gravity of $0 \cdot 680$, or thereabouts, it is colourless and highly volatile.
"In the process of rectification (for the purpose of obtaining a larger product of the oil colourless) I put about one-third of water into the still. In each and every state the liquid is a solvent of caoutchonc, and several resinous and oleaginous substances, and also of other substances (such as copal), in combination with very strong alcohol.
"Having experienced much difficulty in removing the dirt whieh adheres to the bottom of the still, I throw into the still lead and tin in a state of alloy (commonly called solder), to the deptlo of about half an inch, and, as this becomes fused, the dirt which lies on the surface of it is more easily removed.
"Objections have been made to the smell of this liquid : - I have found such smell removed by mixing and shaking up the liquid with nitro-muriatic acid, or chlorine, in the proportion of a quarter of a pint of the acid (of the usual commercial strength) to a gallon of the liquid."

The discovery of the chemical solvent, which forms the subject of the patent above described, has excited considerable interest in the philosophical world, not only from its probable usefulness as a new article of commerce, but also from two very extraordinary characteristics which it is found to possess, viz., that, in a liquid state, it has less specific gravity than any other liquid then known to chemists, being considerably lighter than sulphuric ether, and, in a state of vapour, is heavier than the most ponderous of the gases.

Its elementary constituents arc,
Carbon $-6.812 \quad-\quad-8$ proportions.
Hydrogen $-\quad-1.000 \quad-\quad-7$ ditto.

This new material (when mixed with alcohol) is a solvent of all the resins, and particulatly of copal, which it dissolves without artificial heat, at the ordinary temperature of the atmosphere; a property possessed by no other solvent known; and hence it is peculiarly useful for making varnishes in general. It also mixes readils with oils, and will be found to be a valuable and cheap menstruum for liquefying oilpaints; and, without in the slightest degree affecting the most delicate colours, will, from its ready evaporation, eanse the paint to dry ahmost instantly.

Cocoa-nut oil, at the common temperature of the atmosphere, always assmmes a concrete form; but a portion of this caoutchoucine mixed with it will cause the oil to become fluirl, and to retain sufficient fluidity to burn in a common lamp with extraordinary brilliancy.

Caoutchoucine is extremely volatile ; and yet its vapour is so exceedingly heavy, that it may be poured, without the liquor, from one vessel into another like water. One of the real practical objections to eaoutehoncine seemed to be its easy decomposition. Messrs. Enderby and Burnard found that, if exposed to air, and especially if a small quantity of water was present, that it very speedily decomposed, ehanging eolour to deep brown or black. Speecimens, however, remain perfectly clear and without ehange, in bottles, after twenty years.
Hitherto the greater part of tbe eaoutchouc has been imported into Europe from South America, and the best from Para; but of late years a considerable quantity has been bronght from Java, Penang, Singapore, Assam, aud Africa. About twelve years ago, Mr. Williams Griffith published an interesting report upon the Firus clastica, the eaoutehouc tree of Assam, which he drew up at tbe request of Captain Jenkins, agent in that country to the Governor-Gencral of India. This remarkable species of figetree is either solitary, or in twofold or threefold groups. It is larger and more umbrageous than any of the other trees in the extensive forest where it abounds, and may be distinguished from the other trees at a distance of scveral miles, by tbe picturesque appearance produced by its dense, huge, and lofty crown. The main trunk of one was carefully neeasured, and was found to have a circumference of no less tban 74 feet; while the girth of the main trunk along with the supports immediately round it, was 120 feet. The area covered by the expanded branehes had a cireumference of 610 feet. The height of the central tree was 100 feet.
It has been estimated, after an accurate survey, that there are 43,240 sueb noble trees witbin a length of 30 miles and a breadth of 8 miles of forest, near Ferozepoor, in the distriet of Chardwar, in Assam.
Lientenant Veitch has since diseovered that the Ficus elastica is equally abundant in the district of Nandwar. Its geographical range in Assam seems to be between $25^{\circ} 10^{\prime}$ and $27^{\circ} 20^{\prime}$ of north latitude, and between $90^{\circ} 40^{\prime}$ and $95^{\circ} 30^{\prime}$ of east longiThis tree is of the the slopes of the hills up to an elevation of probably 22.500 feet. ahont the motber tree," which has furnisled pillared slade, "whose danghters grow Royal Asiatic Society. Speeies of this genus afford grateful shade, however, to the tropieal regions of America, as well as A sia.

Many species of other trees yield a milky tenacions jnice, of which birdline has becn frequently made; as Artocarpus integrifoliu and Lahoocha, Ficus indica and religiosa, also F. Tsiclu Roxburghii, glomerata, and oppositifolia. From some of these an inferior kind of canoutchouc has been obtained.

Tbe jnice of the Ficus elastica of Chardwar is better wheu drawn from the old than from the young trees, and rieher in the cold season than in the loot. It is extracted by making incisions a foot apart, across the bark down to the wood, all round the trunk, increasing with the heines, up to the very top of the tree; the quantity which exudes every fortnight. Tbe flnid, as fresh pure white. Somewhat more than half awn, is nearly of the consistence of cream, and produce of each blecding of one tree ; or 20,000 trees will yield abont 12,000 merage of juice; which is composed in 10 parts, of from 4 to will yield abont 12,000 maunds from 6 to 4 parts of caoutchouc. Tbe bs, of from 4 to 6 parts of water, and. of enurse, so as not to interfere with or obstruet the vigg should be confined to tbe cold months, months.

Mr. Griffith says, that the richest juice is ohtained from transverse iucisions made into the wood of the larger reflex roots, which are half exposed above ground, and that it proceeds from the bark alone. Bencath the line of incisions, the natives of Assam (Linn.), rudely folded earth, in wbich they place a leaf of the Phynnium capitatum species of Tetranthera, upon whiche shape of a eup. He observes that the various plant, which is the chief food of the EMonga silkworm feeds, as also the eastor oil juice. Hence it would appear that Dr. Royle's notion not afford a milky eaoutchouc sary ingredient in the food of silk worms, and being " in some way employed in uccestenacity to their silk," seems to be unfonnded. If "in some way employed in giving Cbemistry would seem to scout it altogether ; for sill Botany discountenances this idea, and caoutchone contains nonc at all, being simply a coliains 11.33 per cent. of azote, fore widely dissimilar in constitution to sills, which consists of carburet, and there$11 \cdot 33$, carbon 50.69 , and hydrogen 3.94 in 100 parts. This hy dro carburet emulsion is of com 100 parts. and Tuticeu, which may be Iooked on as the occurrence in the orders Enphorbiacea riean caoutcbouc is said to be furnished hy the Siphonia elastica, or the The Amenensis of Aublet, a tree which grows in Brazil, and also in Surinam. or the Hevea guiaDr. Royle scut models of eylinders of $1 \frac{1}{2}$ to $2 \frac{1}{2}$ inches in dianneter,
in length, to both the Asiatic and Λ gricultnral Socictics of Bengal, to scrve as patterns for the natives to monld their caoutchone by. ML. Griffith says that this plan of forming the caloutchouc into tumblers or bottles, as recominended by the commitlec of the Loudon Joint-Stock Caoutchouc Company, is, in his opinion, the worst that can possibly be offered; being tedious, laborions, cansing the caoutchoue to be blackened in the drying, and not obviating the viscidity of the juice when it is exposed to the sun. He recommends, as a far better mode of treating the juice, to work it ap with the hands, to blanch it in water, and then subjeet it to pressurc. Better methods have recently occurred whilo experimenting upon the caoutchoue juice. This fluid, with certain precautions, chicfly exclusion from air and much warmth, may be kept in the state of a creamy emulsion for a very long time. Mr. Hancoek states, some barrels treated with ammonia arrived in England in the fluid state.

However plausible these observations may appear, the practical men wanted shect rubber to cut into threads, \&c., and Mr. Hancock states he had a cylinder made of masticated rubber, of a convenient size, and sent it to Para as a pattern for the natives, and great numbers of cylinders were soon after in the markct, well made, of the quality desired, and called tubes. Such cyliwders arc still imported (1857).

Great interest was taken by Mr. Hancock to introduce the native juice into this country; and, after great expense, he had the disappointment of finding the barrcls contained coagulated Indian-rubber and watery fluid. Some samples, by peculiar trcatment, escaped; whatever might have becn expected there seemed but little confidence in these plans, and valuable as the native juice might be at one timc, yet by solvents and by working the rubber with machinery, it is far more profitable to employ this state, than to import a large quantity of watery fluid, with all the expenses of casks and cooperage, whilc the solid article is cxcellently adapted to take care of itself.

Sharp and clean casts werc taken with this liquid, and as it is susceptible of heing tinted with delicate colours, it might be used for beautiful ornamental purposes; when the solid rubber separates, it is white, but in small pieces or thin shects, it is semitransparent.

According to Dr. Faraday, the pure caoutchouc, obtained from the sap, had a specific gravity of 0.925 , and no reduplication of it in a Bramah's press was found to effect permanent alteration.

Experimental Researches on Caoutchouc.

The specific gravity of the best compact Pufa caoutchouc,
taken in dilute alcohol, is
The specific gravity of the best Assam is
"
"
$"$

Haying been favoured by Mr. Sievier, formerly managing dircctor of the Joint-Stock Caoutchouc Company, and by Mr. Bcale, engineer, with two different samples of caoutchouc juice, Dr. Ure subjected each to chemical examination.
"That of Mr. Sievier is greyish brown, that of Mr. Beale is of a milky grey colour ; the deviation from whiteness in cach case being due to the presence of aloetic matter, which accompanies the caoutchouc in the secretion by the tree. The former juice is of the consistence of thin cream, has a specific gravity of 1.04125 , and yields, by exposure upon a porcelain capsulc, in a thin layer, for a few days, or by boiling for a few minutes with a little water, 20 per cent. of solid caoutchouc. The latter, though it has the consistence of pretty rich crcam, has a specific gravity of only 1.0175 . It yields no less than 37 per cent. of white, solid, and very clastic caoutchouc.
"It is interesting to obscrve how readily and compactly the separate little clots or threads of caoutchouc coalesce into one spongy mass in the progress of the cbullition, particularly if the cmulsive mixture be stirred; but the addition of water is nccossary to prevent the congulated caoutchouc from sticking to the sides or bottom of the ressel and becoming burnt. In order to convert the spongy mass thus formed into good caoutchoue, nothing more is requisite than to expose it to moderate pressurc between the folds of a towel. By this process the whole of the aloetic extract, aud other vegetable matters, which concrete into the substance of the balls and junks of canoutchouc preparcd in Assam and Java, and contaminatc it, are entircly scparated, and an article nearly white and inodorous is obtained. Sone of the cakes of American caontchoue when ent exhale the foetor of rotten checse; a smell which adheres to the threads madc of it after every proeess of purification.
"In the interior of many of the balls which come from both the Brazils and East Indics, spots are frequently found of a viscid tary-looking matter, which, when exposed to the air, act in some manner as a ferment, and decompose the whole mass into
a soft substanee, whieh is good for nothing. Werc the plan of boiliug the fresh juice along with its own bulk of water, or a little more, adopted, a much purer article would be obtained, and with ineomparably less trouble and delay, than has been litherto brought into the markct.
"I find that neither of the above tro samples of eaoutchoue juiee affords any appearance of coagulum when mixed in any proportions with aleohol of 0.825 spceific gravity; and, therefore, I infer that albumen is not a necessary constituent of the juice, as Dr. Faraday inferred from his experiments published in the 21 st vol. of the Journal of the Royal Institution.
"The odour of Mr. Sievier's sample is slightly aeeseent, that of Mr. Beale's, which is by far the richer and purer, has no disagreeable smell whatever. The taste of the latter is at first bland and very slight, but eventually very bitter, from the aloetie impression upon the tongue. The taste of the former is bitter from the first, in consequence of the great exeess of aloes which it contains. When the brown solution, which remains in the eapsule after the eaoutchouc has been separated in a spongy state by ebullition from 100 grains of the richer juice, is passed through a filter and evaporated, it leaves 4 grains of concrete aloes.
"Both of these emulsive juices mix readily with water, aleohol, and pyroxylic spirit, though they do not beeome at all clearer ; they will not mix with caoutchoucine (the distilled spirit of eaontehoue), or with petroleum-naphtha, but remain at the bottom of these liquids as distinct as mercury does from water. Soda eaustie lye docs not dissolve the juice; nitric acid (double aquafortis) converts it into a red curdy magma. The filtered aloetie liquid is not affected by the nitrates of baryta and silver; it affords with oxalate of ammonia minute traces of lime."
The best solvent is a mixture of 100 parts of sulphuret of earbon with from 6 to 8 parts of anhydrous aleohol. If the alcohol be mixed with a little water a dough is obtained, from whieh the eaoutchoue may be drawn out into threads and spmu. By Gerard's proeess, gutta percha is also soluble in the above mixtures of sulphurct of
The sulphuration of eaoutehouc, a valuable invention, is due to Mr. Charles Goodycar
of New York.

I. Cautchouc Manufactures,

But before entcring upon these special divisions we may advert to some of the steps that have ereated this new employment for capital, commerce, and skill, especially as Mr. Hancoek coneeives it but just to the memory of the late Mr. Maeintosh, to reeord the circumstanees which led to his invention of the "Waterproof double textures," that have been so long eelebrated through the world by the name of "Maeintoshes."
It will be recolleeted that on the introduction of eoal gas, the diffieulties were very great to purify it from matters that gave a most disagreeable odour to the gas aud gas apparatus; the nuisance of these produets led to many ineonveniences. Mr. Maeintosh, then employed in the manufaeture of eudbear, in 1819 entered into arrange. ments with the Glasgow Gas Works to reeeive the tar and ammoniaeal prodnets. After the separation of water, ammonia and pitch, the essential oil termed naphtha was produced, and it oecurred to him that it might be made of use as a solvent for Indian-rubber, and by the quality and quantities of the volatile naphtha, he could soften and dissolve the Indian-rubber; after repeated experiments to obtain the mixtures of due consisteney, Mr. Maeintosh, in 1823, obtained a patent for waterproof proeesses, and established a manufaetory of artieles at Glasgow, and eventually, with partners, entered upon the extended scale of business at Manchoster, now so well
The aetion of many solvents of Iudiand Co.
sort of gelatinous compound with Indian-rubber is first to soften and then to form a the bulk so as to get complete solution-rubber, requiring mechanieal aetion to break thirty times to form a mass: it may be imagine original bulk is inereased twenty or was oeeupied, and manual labour, to break up the soft eoherent marly trials much time labour, sieves, the painter's slab and muller, and other simple mass, \&e., while hand-
Maeintosh, Hancoek, and Goodyear alike reeord the simple manipulations thed to. employed, and the impression produeed at the last, when the manipulations they first efforts with the gigantie maelinery to effect the same results.
Mr. T. Hancoek's first patent was in April 1820. "/ For. application of a certain material to various articles of dress an improvement in the the same may be reudered elastic." Thus, to wrists of gloves, to opoclects, artieles, that their being pieked, to waisteoats, riding-belts, boots and sh, to pockets, to prevent laeing, the public had their attention directed. To get the proper turpentiuc to fyeilitate solution, and remedy defeets of these small articles, and to meet the difficulties of practice and failures, Mr. Hancock gare eonstant zeal, and pursued the difficulties of
united with the firm of C . Macimosh and Co . he has heen eonstantly before the world, and produced one of the most important manufactures known.

To get two elean pieces to unite together at their recently cut surfaces, to olbain facile adhesion by the use of hot water, to cut the Indian rubber by the nse of a wet blade, to eollect the refuse pieces, to make them up into blocks, and then ent the blocks into slices, were stages of the trade which required patience, years of time, and machinery to effect with satisfaetion to the manufacturer.

To operate upon the impure rubler was a matter of absolute neeessity for eeonomic reasons: the botles made by the natives were the purest form, but larger quantities of rubber could be chcaply obtained, finll of dirt, stones, wood, leaves and earth. 'To faeilitate the labour of entting or dividing, Mr. Haneoek resorted to a tearing aetion, and coustructed a simple machine for the purpose. (See fig. 399.) a shows the en-

trance for pieees of rubber ; в, interior of fixed cylinder, with teeth; c, eylinder to revolve, with teeth or knives; D , the resulting ball of rubber.

This machine had the effect of tearing the Indian-rubber into shreds and small fragments by the revolution of a toothed roller; the caontchouc yielded, became hot, and ultimately a pasty mass or ball resulted; when eooled and cut it appeared homo. geneous. Waste cuttings put, in the first instanee, on the roller, were dragged in, and there was evidence of action of some kind taking place; the machine was stopped, the pieces were foumd eohering togetber into a mass, this being ent showed a mottled grain, but being replaced and subjeeted to the revolving teeth of the rollers, it beeame very hot; and was found to be uniformly smooth in texture when eooled and cut open.

The first eharge was about 2 ounees of rubber, and required about the power of a man to work it. The next maehinc soon formed a soft solid, with speed and power, from all linds of seraps of Indian-rubber, euttings of bottles, lumps, shoes, \&c., a charge of one pound gave a smooth uniform eylindrical lump of about 7 inehes in length and 1 iueh in diameter. This proeess, including the use of heated iron rollers, was long kept secret; it is known as the masticating process now, and the machines are called "Masticators." In the works at Manchester the charges now are 180 lbs . to 200 lbs . of Indian-rubber each, and they produce single blocks 6 feet long. 12 or 13 inches wide, and 7 inches thick, by steam-power. The Mammoth maehine of Mr. Cliauffée, in the United States, weighs about 30 tons, and appears to have been invented about 1837, and is a valuable machine, differing in eonstruetion from Hancock's masticators, but answers well in many respeets; it may be considered as the foundation of the American trade.
In 1820 the bloeks were eut into forms of square pieces sold by the stationers to rub out peneil marks, and then thin sheets for a varicty of purposes. A cubical block cut by a keen sharp blade constantly wet, gave a sheet of Indian-rubber, the block raised by serews and the knife guided, enabled sheets of any thickness to be cut, sonetimes so even and thin, as to be semi-transparent; when warm the sheets eould be joined edge to edge, and thus large sheets be produced: from these bloeks, rollers of solid rubber eould be made, cylinders were eovered for maehinery, billiard tables had evenly cut pieces adjusted, tubes and vossels for chemical use were employed, and constantly increasing trials were made of the mastieated rubber.
These remarks upon the early and suecessful manufacturers will better enable the outline of improvements to be folloned: it can readily be imagined that when capital
and interest eombine with the ehanging requirements of the public, that it would demaud more space than a volume would afford to give the insights into trade applications, still guarded with seeret means to produce success. But the foregoing remarks may lead to the appreeiation of many of the following arrangements.

The department of operative industry which embraces caoutchoue manufactures has, within a few years, acquired an importauce equal to that of soule of the older arts, and promises, erc long, to rival even the ancient textile fahries in the variety of its designs and applications. The manufacture of caoutchouc has, at present, these principal branches:-1. The condensation of the erude lumps or shreds of caoutchouc, as imported from South America, India, \&c., into eompact homogeneous blocks, and the cutting of these blocks into cakes or sheets for the stationer, surgeon, sboemaker, \&c. 2. The filature of cither the Indian-rubber bottles, or the artificial shcet caoutchouc. into tapes and threads of any requisite length and fineness, which, heing clothed with silk, cotton, linen, or woollen yarns, form the basis of elastic tissues of every kind. 3. The conversion of the refuse cuttings and coarser qualities of eaoutchoue into a viseid varnish, which, being applicd hetween two surfaces of cloth, constitutes the well-known douhle fabrics, impervious to water and air; and by special applications to one surfaee, to constitute the single texture fabrics. 4. The vuleanisation of Indian-rubber. 5. The mechanical applications resulting from the changed Indian-rubber. 6. The solarisation of caoutchouc. 7. Trade applications of eaoutchouc.

The caoutchouc, as imported in skinny shreds, fibrous balls, twisted concretious, cheese-like eakcs, and irregular masses, is, more or less, impure, and sometimes fraudulently interstratifed with carthy matter. It is cleansed by being cut into small pieces, and washed in warin water. It is now dried on iron trays, heated with steam, while being carefully stirred about to separate any remaining dirt, and is theu passed through, hetween a pair of iron rolls, under a stream of water, whereby it gets a secoud washing, and becomes at the same time equalised by the scparate pieces being blended together. The shreds and cuttiugs thus laminated, if still foul or heterogeneous, are thrown baek into a kind of hopper over the rolls, set one-sixtecnth of an inch apart, and passed several times through between them. The above method of preparation is that practised by Messrs. Kcene aud Co., of Lambeth, now Thouas Whecler and Co., of Leicester, in their excellent manufactory, under a patent granted in October, 1836, to Mr. Christopher Nickels, a partner in the firm.
In the great establishment of the Joint-Stoek Caoutehoue Company, now the property of William Warne and Company, at Tottenham, originally under the direetion of Mr. Sievier, a gentleman distinguislied no less by his genius and taste as a sculptor, than by his constructive talents, the preparatory rinsing and lamination are superseded by a process of washing practised in Mr. Nickels's seeond operation, commonly called the grinding, or, as it should more properly be styled, the kneading. The mill employed for agglutinating or incorporating the separate fragments and shreds of caoutchouc into lomogeneous elastic ball, is a cylindrical hox or drum of east iron, 8 or 9 inches in diameter, set on its side, and traversed in the line of its horizontal axis (also 8 or 9 inches long) by a shaft of wrought iron, furnished with 3 rows of projecting bars, or kueading arms, placed at angles of 120 deg. to each other. These act by rotation against 5 chisel-shaped teeth, which stand obliquely up from the front part of the bottom of the drum The drum itself eonsists of 2 semi-cylinders; the under one of which is made fast to a strong iron framing, and the upper one is hinged to the under one behind, hut bolted to it before, so as to form a eover or lid, which may he opened or laid back at pleasure, in order to examine the caoutehoue from time to time, and take it out when fully lneaded. In the eentre of the lid a funnel is made fast, hy which the cuttings and shreds of the Indian-rubber are introduced, and a stream of water is made to trickle in, for washing away the foul matter often imbedded in it. The power required to turn the axis of one of these mills, as the drums or boxes are called, may be judged of from the fact, that if it be only 2 inehes in diameter, it is readily twisted asunder, and requires to he 3 inches to withstand every strain produeed constitute a chath holding the caoutchoue against the revolving arms. Five pounds 7 to 14 lbs .

One of the most remarkahle phenomena of the kneading operation, is the prodigious heat disengaged in the alternate eondensation and expansion of the caontehoue. Though the water he eold as it trickles in, it soon hecomes boiling hot, and emits copious vapours. When no water is admitted, the temperature rises muel higher, so the hand. As we shall presently find thator of heat, eannot be safely touched with manent diminution of its volume by the eaoutchoue suffers 110 considerable or per-
must aseribe the heat evolved in the kneading process to the violent intestine movements excited thronglout all the particles of the clastic mass.

During the steaming much muddy water runs off through apertures in the bottom of the drum. In the course of half an hour's trituration the various pieces become agglutinated into a soft, elastic, ovoid ball, of a reddish hrown colour. This ball is now transfered into another sinilar iron drum, where it is exposed to the pricking and kneading action of 3 sets of chisel points, 5 in cach set, that project from the revolving shalt at angles of 120 deg. to each other, and which encounter the resistance oecasioned by five stationary chisel teeth, standing ohliquely upwards from the bottom of the drum. Here the caoutchouc is kneaded dry along with a little quicklime. It soon gets very hot; discharges in steam through the punctures, the water and air which it had imbiled in the preceding washing operation; hecomes in consequence more compact; and in about an hour assumes the dark hrown colour of stationers' rubber. During all this time frequent explosions take place, from the expansion and sudden cxtrication of the imprisoned air and steam.

Instead of close hoxcs and tearing teeth or knires, rollers of iron are now employed (1858), their forms are corrugated, cut or indented, the picces of Indian-rubber are thrown betwcen, aud by heat and pressure are cleansed and incorporated; streams of water, warm or cold, rcgulate these operations at will, of course with large rollers of metal cxposed to air and streams of water ; the temperature is now found to be kept so low that the previous statement may appear exaggerated to those who now work with more power but with less velocity. Mr. Hancock, however, says, "the heat it acquires is very surprising; I have since found in cutting a heavy charge open, and closing it upon the hulh of a thermometer, that the temperature reached 280°;" this heat was only due to motion of the machine and friction upon the ruhber, as the materials and the machine were cold at the outset of the experiment tried with one of the carly machines.

From the second sct of drums the ball is transferred into a third set, whose revolving shaft being furnished both with flat pressing hars, and parallel sharp chisels, perpendicular to it, exercises the twofold operation of pricking and kneading the masss so as to condense the caoutchouc into a homogeneous solid. Seven of these finished balls, weighing, as above stated, 5 pounds each, are then introduced into a much larger iron drum of similar construction, but of much greater strength, whose shaft is studded all round with a formidable array of hlunt chisels. Here the separatc halls become perfectly incorporated into one mass, free from honeycomb cells or pores, and therefore fit for being squeezed into a rectangular or cylindrical form in a suitable cast-iron. mould, by the action of a screw-press. When condensed to the atmost in this box, the lid is secured in its place by screw holts, and the mould is set aside for several days. It is a curious fact, tbat Mr. Sievicr tried to use this as a moulding force, by the hydraulic press, without effect, as the cake of caoutehouc, after heing so condensed, resiles much more considerably than after the compressing action of the screw. The cake form generally preferred for the recomposed, ground, or milled caoutchouc, is a rectangular mass, about 18 inches long, 9 inches broad, and 5 inches thick.

This is sliced into cakes for the stationer, and into sheets for making tapes and threads of caoutchouc, by an ingenious self-acting machinc, in which a straight steel hlade, with its edge slanting downwards, is made to vibrate most rapidly to and fro in a horizontal plane; while the cake of caoutchouc clamped or emhraced at each side between two strong iron bars, is slowly advanced against the blade by screw-work, like that of the slide-rest of a lathe. In cutting caoutchouc hy knives of crery form, it is essential that either the blade or the incision be constantly moistened with water; for otherwise the tool would immediately stick fast. As the above straight vibrating knifc slants obliquely down rards, the sheet which it cuts off spontaneously turns up over the blade in proportion as it is detached from the hottom nass of the cake. The thicker slices are afterwards cut by hand, with a wetted knife, into small paralielopipeds for the stationer, the sections being guided rectangularly by saw lines in a wooden frame. Slices may be eut off to almost any desired degrce of thinness, by means of an adjusting screw - a mechanism that aets against a board which supports the bottom of the cake, and raises it by any aliqnot part of an inch, the cutting blade being caused to vibrate always in the same horizoutal planc. Thesc thin slices constitute what is called sheet caontchouc, and they serve tolerahly for makirg tubes for pneumatic apparatus, and sleaths of every kind; since, if their two edges be cut ohliquely with clean scissors, they may be made to coalesce, by gentle pressure, so intimately, that the line of junction cannot he discovercd cither by the eye, or by inflation of a hag or tube thus formed.

The mode of recomposing the cuttings, shreds, and coarse lumps of caontchouc into a homogeneous clastic cake, specified by Mr. Niekcls, for his patcht, sealed Octoler 24, 1836, is not essentially different from that above described. The eyliuders of his miil
are more capacious, arc open at the sides like a cage, and do not requirc the washing apparatus, as the caoutchouc has been clcansed by previous lamination and rinsing. He completes the kneading operation, in this open cylinder, within the space of about two hours, and afterwards squcezes the large ball so formed into the checse form, in a mould subjccted to the action of an hydraulic press. As he snceceds perfectly in making compact cakes in this way, his caoutchouc must differ somewhat in its physical constitution from that recomposed by Mr. Sicvier's process. He uses a press of the power of 70 tons; such prcssure, however, must not be applicd suddenly, but progressively, at intervals of two or three minutes between each stroke ; and when the pressing is complete, he suffers the caoutchouc to remain under pressure till it is cold, when he thrusts it out of the mould entirely, or, placing his mould iu the slide-rest mechanism, he gradually raises the caoutchouc out of it, while the vibrating knife cuts it into slices in the manner already described. The elegant machine by which these shcets arc now so easily and accurately sliced, was originally contrived and constructed by Mr. Bealc, engineer, Church-lane, Whitechapel.

II. Filature of Caottchouc for Maring Elastic Fabrics

The following particulars may be deemed as belonging to the history of the manufaeture of threads of native rubber,--the cured, or vulcanised, or mineralised rubber having quite superseded the modes of preparing threads from native bottle caoutclouc.

Messrs. Ratticr and Guibal mounted in their factory at St. Denys, Dr. Ure says, in the year 1826 or 1827 , a machinc for cutting a dise of caoutchoue into a continuons fillet spirally, from its circumference towards its centre. This flat disc was made by pressing the bottom part of a bottle of Indian-rubber in an iron mould. A machine on the same principle was made the subject of a patent by Mr. Joshua Proctor Westhead, of Manchester, in February 1846; and, bcing constructed with the well-known precision of Manchester workmanship, it has been found to act perfcetly well in cutting a disc of caoutchouc, from the circumference towards the centre spirally, into one continuous length of tape. For the service of this machine, the bottom of a bottle of Indian-rubber of good quality being sclected, is cut off and flattened by heat and prcssure into a nearly round cake of uniform thickness. This cake is made fast at its centre by a screw nut and washer to the end of a horizontal shaft, which may be made to revolve with any desired velocity by means of appropriate pulleys and bands, at the same time that the edge of the disc of caoutchouc is acted on by a circular knife of cast steel, made to revolve 3000 times per minute, in a plane at right angles to that of the disc, and to advance upon its axis progressively, so as to pare off a continuous uniform tape or fillct from the circumference of the cake. During this cutting operation, the knife and caoutchouc are kept constantly moist with a slender stream of water. A succession of threads of any desired finencss is afterwards cut out of this fillct. by drawing it in a moist state through a guide slit, against the sharp edge of a revolving steel disc. This operation is dexterously performed by the hands of young girls. MM. Rattier and Guibal employed, at the above-mentioned period, a mechanism consisting of a series of circular steel knives, fixed parallcl to each other at minute distances, regulated by interposed washers upon a revolving shaft; which serics of knives acted against another similar series, placed upon a parallcl adjoining shaft, with the cffcet of cutting the tape throughout its length into eight or more threads at oncc. An improved modification of that apparatus is described and figured in the specification of Mr. Nickels's patent of October, 1836. He employs it for cutting into threads the tapes made from the recomposed caoutchouc.

The body of the bottle of Indian-rubber, and in gencral any hollow cylinder of caoutchouc, is cut into tapes, by being first forced upon a mandril of soft wood of such dimensions as to keep it equally distended. This mandril is then secured to the shaft of a lathe, which has one end formed into a fine threaded screw, that works in a fixed nut, so as to traversc from right to left by its rotation. A circular dise of stecl, kept moist, revolves upon a shaft parallel to the preceding, at such a distance from it as to cut through the caoutchouc, so that, by the traverse movement of the mandril shaft, the hollow eylinder is cut spirally into a continuous fillet of a breadth equal to the thickness of the side of the cylinder. Mr. Nickels has described two methods of fillts by such a machine.

It is probable that the threads formed from the best Indian-rubber bottles, as importcd from Para, are considerably stronger thau those made from recomposed elastic cordage, When, however, the kneading operation has becn skevilf's patent formed, it is found that threads of the grounded caoutelioute as it is becn skilfully per-
the workmen, answer well for every ordinary purpose of elastic fabrics, and are, of coursc, greatly more ceonomical, from the mueh lower price of the material.

The following figs. 400, 401, 402, represcnt the maehine for cutting the spiral riband. The dise m, plaecd horizontally, turus round its vertieal axis, so as to present

its periphery to the edge of a knifc c, formed likc a circular blade, whose plane is perpendicular to that of the bases of the dise. It is obvious, that if the dise alone revolved, the motiouless knife could aet" only by pressure, and would meet with an enormous resistance. A third movement becomes neeessary. In proportion as the dise is diminished by the removal of the spiral band, the eentre of this disc must advance upon the knife in order that the riband may have always the same breadth. The inspection of fig. 402, will make the aceordauce of the three motions intelligible. The knife c is plaecd upon a shaft or axis Δ, which carries a pulley, round which a belt or cord runs which drives the whole maehine.

The shelf a bears a pinion p, which takes into a wheel R , plaeed upon the shaft A^{\prime}; upon which there is cut a worm or endless screw, v, v. This worm bears a nut e, which advances as the serew turns, and earries with it a tie \mathbf{x}, whieh in its turn pushes the disc D , carried upon a shoulder, constantly towards the knife. This shoulder is guided by two ears whieh slide in two grooves cut in the thiekness of the table. The diameter of the pinion p is about one fifth of that of the wheel e ; so that the arbour A turns five times less quiekly than the arbour A^{\prime}; and the fineness of the screw v contributes further to slacken the movement of translation of the dise.

The rotatory movement of the disc and its shoulder, is given by an endless serew w , w, which governs a pinion p, provided with ten teeth, and earlied by the shaft a, upon which the shoulder is mounted. The arbour A^{\prime} of this endless screw reeeives its motion from the first shaft A, by means of the wheels s and s^{\prime} mounted upon these shafts and of an intermediate wheel $\mathrm{s}^{\prime \prime}$. This wheel, of a diameter equal to that of the shaft $\mathbf{A}^{\prime \prime}$, is intended mercly to allow this shaft to reeede from the shaft \mathbf{A}. The diameter of the wheel of this last shaft is to that of the two others in the ratio of 10 to 8 .

Second machine for subdividing the ribands. Figs. 403, 404.-The riband is cngaged

between the eircular linives c , c , which are monnted upon the rollers n, n; thin brass washers keep these knives apart at a distanec which may be varied, and two extreme washers mounted with screws on eaeli roller maintain the whole system. The axes of these rollers traverse two uprights $3 \mathrm{r}, \mathrm{M}$, furnished with brasses, and with adjusting screws to alproximate them at pleasurc. The axis of the lower roller carries a wheel r, which takes into another smatler wheel r^{\prime}, plaeed upon the same shatt as the pulley r, whieh is driven by a cord. The diameter of the wheel r is three times greater than
the wheel r^{\prime}. The pulley r is twice the size of the wheel r^{\prime}; and its cord passes round a drum B , which drives the rest of the machine.

Threads of caoutchonc arc readily pieced by paring the hroken ends ohliquely with scissors, and then pressing them together with clean fingers, taking care to admit no grease or moisture within the junction line. These threads must be deprived of their elasticity before they can be made subservient to any torsile or textile manufacturc. Each thread is inelasticated individually in the act of reeling, by the tenter boy or girl pressing it betweeu the moist thumb and finger, so as to stretch it to at least eight times its natural length, while it is drawn rapidly through hetween them by the rotation of the power-driven reel. This extension is accompanied with condensation of the caontchouc, and with very considerable disengagement of heat, as pointed out in Nicholson's Journal upwards of 30 years ago, by Mr. Gough, the blind philosopher of Kendal. To stretch the thread, in the act of reeling, the sensation of heat is too painful for unseasoned fingers. The reels, after being completely filled with the thread, are laid aside for some days, more or fewer, according to the quality of the caoutchouc, the recomposed requiring. a longer period than the bottle material. When thus rendered inelastic, it is wound off upon bobbins of various sizes, adapted to various sizus of braiding, or other machines, where it is to he clothed with cotton or other yarn.

In the process of making the elastic tissues, the threads of caoutchouc, being first of all deprived of their elasticity, are prepared for receiving a sheath upon the braiding machine. For this purpose they are stretched hy hand, in the act of winding upon the reel, to 7 or 8 times their natural length, and left two or three weeks in that state of tension upon the reels. Thread thus inelasticated has a specific gravity of no less than 0.948732 ; but when it has its elasticity restored, and its length reduced to its pristine state, by rubhing between the warm palms of the hands, the specific gravity of the same piece of thread is reduced to 0.925939 . This phenomenon is akin to that exhibited in the process of wire-drawing, where the iron or hrass gets condensed, hard, and hrittle, while it disengages much heat ; which the caoutchonc thread also does in a degree intulerable to unpractised fingers, as ahove mentioned.
The thread of the Joint-Stock Caoutchouc Company is numbered from 1 to 8. No. 1. is the finest, and has ahout 5000 yards in a pound weight; No. 4, has 2000 in the pound weight; and No. 8, 700, being a very powerful thread. The finest is used for the finer clastic tissues, as for ladies' gold and silver elastic bracelets and hands. The Company produced threads that had 13,000 yards to the pound weight. The ropes made by Mr. Sievier with the strongest of the above threads, clothed with henip and worked in his gigantic braiding machine, possess, after they are re-elasticated hy heat, an extraordinary strengtl and elasticity ; and, from the nearly rectilinear dircetion of all the strands, can stand, it is said, double the strain of the hest patent cordage of like diameter. Sievier's patent elastic cordage is now disused.

In the manufacture of elastic fabrics, the riband loons at Holloway display to great advantage the mechanical genius of the patentee, Mr. Sievier. Their productive powers inay be inferred from the following statement : - " 5000 yards of 1 -inch braces are woren wrekly in one 18 .rihand loom, wherehy the female operative, who has nothing to do but watch its automatic movements, earns 10 s . a-week; 3000 yards of 2 -inch hraces are woven upon a similar loom in the same time." But one of Mr. Sievier's most curions patent inventions is that of producing, by the shrinking of the caoutchoue threads in the foundation or warp of the stuff, the appearance of raised figures, closely resembling coach-lace, in the weft. Thus, by a simple physical opcration, there is produced, at an expense of one penny, an effect which could not he effected hy mechanical means for less than one shilling. This manufacture is not carried on in that locality now, hut in London and Iseicester.

III. Of the Water-proof double Fabrics.

The following description, however correct at the time, as applied to all Macintosh fabrics, is only of value as a record, bcfore the public demand for single textures, and the discovery of chanyed Indian-rubber for articles of dress, gave the manufacture its present character.
The parings, the waste of the kneading operations above deseribed. and the coarsest qualitics of imported caoutchouc, such as the inelastic lumps from Para, are worked up into varnish, wherewith two surfaces of cloth are cemented, so as to form a compound fahric impervious to air and water. The caoutchouc is dissolved either in the solvents in a close cast-ir, or of of turpentine, by being triturated with either of cal power. The heat generated dessel, with a stirring apparatus, moved by mechanifavour the solution, willout the application of fuel in choutchouc, is sufficient to
cylinders have been ealled pug-mills by the workmen, beeause they are furnished with obliquely pressing and revolving arms, but in nther respeets they differ in construction. 'They are 4 fect in diancter and depth, receive 13 ewt. at a time, have a vertieal revolving shaft of wrought iron 4 inehes in diameter, and make one turu in a second. Three days arc required to eomplete the solution of one charge of the varnish materials. The proportion of the solvent oils varies with the objeet in view, being always luueh more in weight than the caoutchoue.

When the varnish is to be applied to very nice purposes, as bookbinding, \&c., it must be rubbed into a homogeneous smooth paste, by putting it in a hopper, and letting it fall between a couple of parallel iron rolls, set almost in contaet.

The wooden frame-work of the gallery in which the water-proof eloth is manufuctured, should be at least 50 yards long, to give ample room for extending, airing, and drying the pieces; it should be 2 yards wide, and not less tban 5 bigh. It is formed of upright standards of wood, bound with three or four horizontal rails at the sides of the ends. At the end of the gallery, where the varnish is applied, tbe web which is to be smeared must be wound upon a beam, resembling in size and situation the eloth beam of the weaver's loom. This piece is thence drawn up and stretehed in a horizontal dircetion over a bar, like the breast beam of a loom, whence it is extcoded in a somewhat slanting direction downwards, and passed over the edge of a borizontal bar. Above this bar, and parallel to it, a steel-armed edge of wood is adjusted, so elosely as to leave but a narrow slit for the passage of the varnish and the eloth. Tbis horizontal slit may be widened or narrowed at pleasure by tlumb-serews, wbieh lower or raise the morable upper board. The caoutchouc paste being plastered thickly with a long spatula of wood upon tbe down-sloped part of tbe web, whicb lies between the breast-beam and the above described slit, tbe eloth is then drawn through the slit by means of cords in a horizontal direetion alung the lowest rails of the gallery, whereby it gets uniformly besmeared. As soon as tbe whole web, eonsisting of about 40 yards, is thus coated with a viseid varnish, it is extended horizontally upon rollers, in the upper part of the gallery, and left for a day or two to dry. A second and tbird coat are then applied in succession. Two sueb webs, or pieces, are next eemented face to face, by passing them, at the instant of tbeir being brought into contact, through, or between a pair of wooden rollers, care being taken by tbe operator to prevent the formation of any creases, or twisting of the twofold web. The under one of the two pieces being intended for the lining, should be a couple of inches broader than the upper one, to insure the uniform envering of the latter, which is destined to form tbe outside of the garment. The double eloth is finally suspended in a well-ventilated stove room, till it becomes dry, and nearly free from smell. The parings cut from the broader edges of the under piece, are reserved for cementing the seams of cloaks and other artieles of dress. The tape-like shreds of the double eloth are in great request amoug gardeners, for nailing up the twigs of wall shrubs.

In 1837, Mr. Hancock obtained a patent to produce eloth waterproof with greatly reduced quantities of dissolved caoutchouc, and in some cases without any solvent at all. The masticated rubber, rolled into sheets, was moistened on both sides with solvent and rolled up. The following day these were submitted to rollers of different speeds, and the whole beeame a plastic mass. Instead of a wooden plank as tbe bed of the maebine, a revolving iron cylinder was used, kept hot by steam or water, and the coated eloth passed over flat iron chambers, heated the same way, to evaporate the small quantity of solvent. Mastieated rubber has been spread without any solvent by these machines ; but the spreading is best effected by the rubber being in some degree snftened by the addition of small quantities of the solvent.

Sheets of rubber have been prepared by saturating tbe cloth with gum, starch, glie, \&e., then rubber dough was placed on this smoothed surface; sufficient coatings of the rubber were spread to make up the desired thiekness, the eloth was immersed in warm water to dissolve the gum, when tbe sheet of rubber came off with ease, and the plastie, or dough state, was the precursor of vuleanisation experiments and success.

The clamminess of eaoutehouc is removed by Mr . Haneock in the following manner : 10 pounds of it are rolled out into a thiu sheet between iron cylinders, and at the same time 20 pounds of French-ehalk (silicate of magnesia) are sifted on and incorporated with it, by means of the usual kneading apparatus. When very thin films are required (like sheets of paper), the eaoutchone, made plastie with a little naphtha, is spread upon cloth previously saturated with size, and when dry is stripped off. Mixtures of eaoutehoue so softened may be made with asphalt, with pigmeuts of various kinds, plumbago, sulphur, \&e.

The first form of bags or pillows, or ordinary nir-cushions, is well-known, and mannfactured by C. Macintosh and Co. as early as 1825 and 1826 ; when pressure is applied they yield for the instant to the eompressing body, and then beeome rigid, and the whole strain is borne by the inclastie material of the bag, which theu re-
sistingly bears the strain. Mr. T. Haneoek onee tried an ordinary pillow between boards in a lyydraulic press, and reeords that it bore a pressure of 7 tons before it burst. To remedy the evils of this form an ingenions arrangement was made of inserting slips of Indian-rubber into the fabrie, so that it expanded in every direetion. This yielding of the case, and divisions into strengthened partitions, enabled seats, beds, and other applications to be made. Partieular details will be found in Hancoek's patent for $1 \leqslant 35$.

The gas bags now so eommonly used appear, by Mr. Hancoek's statement, to be made for experimental purposes in the year 1826; and in May 1826, at the suggestion and for the use of Lieut. Drummond, tbey were employed in the Trigonometrical Survey, with the oxy-hydrogen jets of gas on balls of lime.

They were made strong and of rough materials-fustian made air-proof with thin sheet rubbcr. Mr. Haneock, to try whetber the rubber was absolutely impcrvious to water, had a bag made and weigbed it during 30 years; the decreasc of weight is sbown : -

Oet. 21st 1826 weight								1 h.		dr
				-	-	-	-	1	1	
Oet. 2nd	1835	"	-	-	-	-	-	1	0	0
Nov.	1844	"	-	-	-	-	-	0		12
Oet.	1849	"	-	-	-	-	-	0	13	4
Fcb.	1851			-	-			0	7	8
May	1854			-	-	-			3	
In 1856 it was eut open and weighed						-		0	3	

It was quite dry. Tbus 12 oz . of water had evaporated or eseaped in a quarter of a century, and 13 oz .8 dr . in 30 years of observation.
He remarks that bags of such cloth made with a tbin eoating of rubber, soon evaporated suffieient water to cause mildew, when laid upon each other; but this slow evaporation does not interfere with their ordinary applieations.

The porosity of eaoutehouc explains tbe readiness witl whieh it is permeated by different liquids whieh have no ehemical aetion npon it. Thin seetions of dry eaoutcboue of the best kinds absorb from 18 to 26 per cent. of water in the course of a montb, and beeome white from baving been brown.

To enumerate the applieations of tbese double fabries for cusbions, life preservers, beds and boats, would he out of plaee here, however important and ingenious the plans. Thus, instead of one bag, scveral tuhes or compartments gave the required form, and this again may be divided into eells, very small, and kept apart by wool or bair ; of the advantage of tbis plan to divide the air spaces tbere ean be no doubt.
For single texture fabrics, or eloth with one side only prepared, the proeess is the same as that described for double fabries, only that one side is proofed, or covered with Indian-rubber solution or paste; and this kind of waterproof has an advantage over the old, tbat the surface worn outside, being non-absorbent, imbibes no moisture and requires no drying after rain or wear. Tbe objection to single texture fabries, of being liable to deeomposition by the heat of tbe sun and from close paeking, has been obviated by a diseovery adopted by Messrs. Warne and Co., termed by them tbe Sinealor proeess (sine calore, without heat); by wbich the properties of the rubber are so ebanged tbat heat, greasc, napbtha, and perspiration, which deeomposes the ordinary Indian-rubber waterproof, in no way affects the waterproof goods of the "Sincalor" proeess. Tbe singular. changes effected by this process is espeeially shown by the application of a hot iron to tbe surface, which destroys witbout the usual deeompositions; the substanee is burnt but is not rendered stieky. The proeess
is stated to be sceret.

IV. Vuicanisation.

Of all the ehanges effeeted by cbanec, observation, or ehemical experiments of late years, few eases have been so important as the ehange in Indian-rubber by the process ealled Vuleanisation. The union of sulphur with eaoutehoue to give new properties so valuable, that it may be said tbe former well-known quality of elasticity is now hardness of metals, has becnost every range, from the most delicate tenuity to the the caoutchoue are produeed with and aeid solutions; the material is incapable of permanenee to defy air, water, saline under harsh usage than any other set of bodies ining corroded, and more permanent tbe processes that induce a "clıange" in eaoutin the world. Such are the results of ployed; where metals and minerals are employed, "metallish" and heat are em"thionised," and a number of other terms have been uscd.

When eaoutchoue is mixed with sulphur from 2 to 10 per cent. and then heated to 270° and 300°, it undergocs a change, it aequires new characters, its clasticity is greatly increascd, and is more equable ; it is not affected nor is the substance altered by cold, no climate effects a change, heat scarcely affects it, and when it does it does not become sticky and a viscid mass; if it yields to a high temperature it is to hocome harder, and will ultinately yicld only at the advanced temperature to char and to decompose. All the ordinary solvents are ineffectual. The oils, grease, ether, turpentine, naphtha, and other solvents scarcely alter it, and the quantity of sulphur that will effect the change is known not to excecd 1 or 2 per cent. Further, if peeuliar solvents, such as alkalies, remove all apparent sulphur from it, still the change remains; indecd, the analogy of steel to iron by the changes of condition effected by some small quantitics of other bodies secms to be an analogous condition. Whatever the theory, which is excecdingly obscure, still the practice, by whatever name, is to obtain this changed state and exalted elastic properties.
"Vulcanisation" had its discovery in America. Mr. Goodyear relates, that having made a contract for Indian-rubber mail bags, they softened and decomposed in servicc, and while he thought a permanent article had been made, the colouring materials and the heat united to soften and to destroy the bags; henee, by tbis failure, distress of all kinds arose, and the trade was at an end. During one of the calls at the place of abandoned manufacture, Mr. Goodyear tried a few simple experiments to ascertain the effect of heat upon the composition that had destroyed the mail bags, and carelessly bringing a picce in contact with a hot stove, it charred like leather. He called the attention of his brother, as well as other individuals who were present, and who were acquainted with the manufacture of gum elastic to the fact, as it was remarkable, and unlike any before known, since gum elastic always melted when exposed to a bigh degree of heat. The occurrence did not at the time appear to them to be worthy of much notice. He soon made other trials, the gum always charring and hardening.

As ordinary Indian-rubber is always tending to adhere, many plans had becn tried to prevent this. Chalk, magnesia, and sulphur had been patented in England and America, but no one seems to have supposed any other change would be produced by heat. Mr. Goodyear proceeded to try experiments, and produced remarkable results : samples of goods were shown about and sent to Europe.

The late Mr. Brockedon, so well known for his talents and love of scientific investigations, had loug pursued means to obtain a substitute for corks, and, after much ingenuity, had devised Indian-rubber stoppers. As soon as all mechanical difficulties were over, objections were taken to the colour of the substance. Some samples of a changed rubber came into his possession, of which it was declared they would keep flexible in the cold, and were found not to have an adhesive surfacc. These caused numerous expcriments, as it was recognised that a change had been effected, and although Mr. Brockedon failed, yet Mr. Hancock kept on working, combining sulphur, with every cffect but that of vulcanisation, as he was ignorant of the power of heat to effect tbis change. He used melted sulphur, and produced proof of absorption, for the pieces of caoutchouc were made yellow throughout; by elcvating the temperature he found they hecame changed, and then the lower cnd of slips "nearest the fire turning black, and becoming hard and horny" (the sulphur was melted in an iron pot). By these simple observations, as they now seem, Mr. Goodyear in America and Mr. Hancock in Eugland, were induced to take out patents, and commence that series of manufacturing applications to which there seeins no limit. The first English patent was by Mr. Hancock. The general method is to incorporate sulphur with caoutchouc, and submit it to heat ; if any particular form is required, the mixture is placed in moulds, and takes off any delicate design that may be upon the iron or metal mould, and if these arc submitted to higber degrees of heat, the substance and evolved gases expand, and thus a very hard, horny, or light but very strong substance is produced, called hard Indian-rubber, or "vulcanite." Mouldings, gun-stocks, combs, eabinet work, and hundreds of forms may be obtained by these curious means. The term rulcanisation was given by Mr. Brockedon to this process, which seemed by the enployment of heat and sulphur to partake of the attributes of the Vulcan of mythology. For the "change" or "vulcanising" to get a yielding but permanently elastic substance, steam heat is usually cmployed in England, but in Amcriea, ovens, with various plans for producing dry heat, are gencrally employed.

The articles thus made bcing morc clastic, unaffected by heat, cold, or solvents, attracted much attention, and Mr. Parkes was engaged to find out a method of producing the same cffcets now sccured by patent: ali ordinary means were used and given up, but he finally succecded. The process of cold sulphuring of Mr. Parkes consists in plunging the shects or tubes of caontelouc in a mixture of 100 parts of sulphurct of carbon, and $2 \frac{1}{2}$ parts of protochloride of sulphur: for a minute or two, and
then immersing them in eold water. Thus supersulphuration is prevented in consequence of decomposing the chloride of sulphur on the surface by this immersion, while the rest of the sulphur passes into the interior by absorption. Mr. Parkes prescribes another, and perlaps a preferable process, whicb eonsists in immersing the caoutchouc in a closed vessel for 3 hours, containing a solution of polysulphurct of potassium indicating a density of 25° Beaumé, at the temperature of 248° Fahr., then washing in an alkaline solution, and lastly in pure water. A uniform impregnation is thus obtained.

In the first instance sulphur, caoutehoue, and beat were alone employed. The temperaturc and the time to whicb the mixtures are subjected to heat afford conditions to be best understood by the practieal man. Vulcanised rubber now is not only the elhanged substance as produced by sulphur but it enntains metallie oxides, \&c. Metallic and mineral substanees, and these compounds, are perlaps much better fitted for their respective uses than the purc sulphur and Indian-rubber. White lead, sulphuret of antimony, black lead, and other substances enter into thcse combinations. After the early experiments with vulcanised rubber there seemed reason to believe that changes slowly took place. The rubber was found to become brittle, and bands stretehed out broke immediately. To a great extent tbis has been remedied by the use of lead, whicb seems to eombine with tbe sulphur, for changes are bclieved by practical men to take place with pure elastie vuleanised eaoutchouc, wbich do not oceur when metallic matters are duly mixcd. This is a trade statement, which may be true for some special uses. The brittleness may perhaps more fairly be admitted to be due to inexperience, and the difficulties to meet the demands of the publie for a new article ; but to those whom it may most coneern, we have raised this question so far as to obtain the conscientious opinion of Mr. Thomas Haneock (now retired frons business), wbo considers that by the peculiar plan of vulcanising by a bath of sulphur, and employing higb pressure steam (described in Patent of 1843), be obtains what he calls pure vulcanising, that is, the use of sulphur, rubber, and heat. He states "That by this mode, the greatest amount of extensile elusticity is obtained, and that this quality is diminished in proportion as otber matters are present in tbe compound." It may, however, be useful to record some of the results of early trials made by eompeteut authorities, with the view of testing its ultimate employments. Mr. Brockedon stated at the Institution of Civil Engineers, that he had kept rulcanised Indianrubber in tranquil water for 14 years without visible change, and be summed up the then knowledge of trade production, that there was perhaps no manufaeturing process of which the rationale was so little understood as that of vulcanising caoutchouc; all was conducted on the observation of faets, a giveu quantity of sulphur to a certain thickness of rubber, at a certain temperature; and certain results were reckoned upon with confidence, but more from practice than theory. Mr. Brockedon had placed vulcanised rubber for 10 years in damp earth, and it exhibited no change.

When articles were moulded, the metal of the mould was not a matter of indifference: if of tin, the article was usually delivered perfectly clean, but if of brass or eopper, then the material adhered to it, probably from the greater affinity of tbe sulphur for the metal than for the caoutehouc: these surface effcets may well be borne in mind, for it appear's not to be an easy matter to vulcanise large masses of caoutchouc, while sheets and thin films are readily cbanged. The soft masses of materials are placed in moulds, strongly securcd, if a bigh temperature is to be used, and the mass comes out with tbe form tbus given to it, and more or less elastic, hence the surface of a mass is always likely to be advanced in the vulcanising ehanges.
At present a very large proportion of the articles made have the forms given to them in the plastic state, and then subjected to heat; the ehange is effected, and tbey retain their form, although readered permanently elastie.
Mr. Brockedon and Mr. Brunel tried this substance on the Great Western Railway in place of felt, to be used between the under sides of bearing rails and slecpers of railways. It appeared, by constant trials of nearly a year, to be quite indestructible to any action to wbich it had been exposed; the slips were indented by the edge of the rail, but not permancatly so, and the surface was glazed, as if by friction; the slips were 6 inches wide, and weighed 8 oz . to the yard in length, the transit of the carriages was easier over that part of the line.
To test the power of enduranec to heavy blows, Mr. Broekedon subjected a pieee of vulcanised Indian-rubber, $1 \frac{1}{2}$ inch thiek and 2 inehes area, to onc of Nasmyth's steam hammers of 5 tons; this first rested on the rubber without effect, then was lifted
2 feet and dropped upon it torn, but its elastieity was not destroyed. Shen lifted 4 feet, the vulcanised cake was of vuleanised cuoutehouc was placed as butw inore severe trials werc made, a biock of the heavicst stean hammers cmployed, butween cannon balls, with the whole power elasticity of the vuleanised eaoutchoue was not destroyed

The natural and the vulcanised rubber have both been proposed as absolutely resisting the power of shot and rifle balls. Instructive cases are known of projectors offering to be clothed in their own cuirasses, and meet the charge of a fired rifle; when a deal board or leg of mutton has been substituted in the interior, they have been found perforated by the rifle ball, while back and front the cuirass showed no change, the truth being that the bullet cut its way through, and the edges of the aperture closed and joined, so that no hole beiug visible, led to the conclusion that the ball had declined to penetrate the rubber.

Among the applications may be named the construction of boats and pontoons. On the first trial in the Arctic regions, they were adopted to give possible conveyance when other boats could not be carried; the Indian-rubber boat soon won its character; it took the icy channels, and bore the brunt of all collisions, and without damage met rock, and ice, and storm, where it was believed no other boat could live. Since then, they have been employed on the rivers of Africa by missionaries aud travellers, and on lakes in England.

Sheets of enormous size,-ship-sheets,-have been made 50 yards long and 56 inches wide, others 10 feet square; these are proposed to pass over a steam-vessel's side, to adapt a valve, fix a pipe, or repair, froun the interior, the vessel itself, without going into dock. These stout sheets, $\frac{3}{8}$ th inch thick, are let down by ropes over a ship's side, and brought over the hole or place for repair by the pressure of the water on the elastic sheet, the leak may be stopped and the ship pumped dry, pipes renewed, shot-holes, and leaks stopped. Indeed an early application of compounds of uative rubbers and other materials was applied directly as sheathing for ships with success; but litigation among the parties cansed the business to cease. Since the various plans for getting a flexible material have been successful, there seems no doubt but many .unexpected applications will be made.

Messrs. Macintosh had coated some logs of wood with vulcanised Indian-rubber, and caused them to be towed in the wake of a vessel all the way to Demerara and back, and it was found that the coated logs were quite intact, while the uncoated timber was riddled by marine insects. The same firm stated: "That the only effect they could trace upon long immersed vulcanised caoutchouc, was a slight change of colour, perhaps a hydrate produeed by superficial absorption, but this change of colour disappeared on being dried. If they were called upon to select a situation for the substance to retain its properties for the longest period, they would sclect immersion in water. After years of experience in the nse of hose-pipes, pipe-joints, valves for pumps and steam-engines, they had never known an injury from the contact of any kind of water."

Mr. Goodyear sums up the advantages of vulcanised rubber under the following heads, as being either properties new or superior to those possessed by the natural caoutchouc:-

1. Elasticity.
2. Pliability.
3. Durability.
4. Insolubility.
5. Unalterability by climate, or artificial heat, or cold.
6. Inadhesiveness.
7. Impermeability to air, gases, and liquids.
8. Plasticity.
9. Facility of receiving every style of printing.
10. Facility of being ornamented by painting, bronzing, gilding, japanning, and mixing with colours.
11. Non-electric quality.
12. Odour.

Mr. Burke in describing his patented process, for the use of the golden sulphuret of antimony, now the property of Messrs. Warne and Co., for vulcanising and mineralising Indian-rubber, says, that he avoids two prineipal defects of the usual article, viz. its efflorescence of sulphur with an offensive odonr, and its consequent decomposition and becoming rotten. He employs crude antimony ore (the sulphuret of that metal in fine powder), and converts it by boiling in water with soda or potash (carbonates) into the orange sulphuret of that metal (Kermes mineral) by the addition of hydrochloric acid to the fluid in slight excess. He combines this compound (after being well washed) with caoutchouc or gutta percha; either together or separately, according to the degree of elasticity which he wishes to obtain. This mixture is afterwards subjected to a heat of from 250° to 280° Fahr. He masticates the caoutchouc in the nsual irou box, by means of the kneading fluted revolving rollers, subjecting the whole to heat. The antimonial compound is then added in quantities varying from 5 to 15 lbs ., according to the strength and elasticity required in the compound. At the end of from one to two hours' trituration, the block is removed from the box, and while in a warm state it is strongly eompressed iu au iron
mould; and after being uuder pressure for a day or two is subjected to a steam heat for a couple of hours. The hlock thus prepared may now be cut into sleets, and afterwards divided into threads, or formed into such other articles as are desired. This forms the clastic red rubber.

Red Rubber. - The peculiar advantages of this mineralised rubber consists in the ahsence of the efflorescence common to all articles in which sulphur is used, the material seems preserved by the metallic oxide, is not liable to decomposition, or to become rotten or brittle; and is cfficiently used for all sorts of valves.

This nineralised rubber, in various qualities, is used for flange-washers, packing, and for all general steam purposes, and joints for water and gas. Comhined witb cotton or linen canvas, it is employed for hose for locomotives, fire-engincs, \&c., pliable and strong, bearing 300 lbs . pressure on the square inch.
Another application of Indian-rubber by Messrs. Warne is carpet-cloth. This is a stout canvas, proofed thickly with mineralised Indian-rubber on the lower side; the upper surface is then printed and appears like oil-cloth: it is to combinc the strength of ordinary floor cloth with the flexibility of Indian-rubber, to have the properties of heing impenetrable hy water, and uninjured by damp; may be used without the noise and inconvenicnee of oil-clotb; it is of sufficient thickness to he yielding to the foot, for public offices and halls. Such a non-conducting substance may be a valuahleaddition to floors and passages, admitting of artistic contrast with the building, and yet affording comfort to those who for hours may have to remain there.

The improvements patented in January, 1849, hy Mr. Christopher Nickels, cousist in a modification of the grinding, kneading, or masticating machine, by furnishing its rollers with flanges at its two ends to prevent the rubber from coming against the ends of the cylinder. When sulphur is to he kneaded into it in the process of vulcanising the rubber, as it is called, he covers in the trough, but nototherwise. He has also given an excentric action to his roller.

He kneads with his rubber flowers of sulphur, or compounds thereof, in the proportion of 10 pounds of sulphur to 60 pounds of caoutchouc, and he subjects the compound to pressure in moulds. He prefers to treat the caoutchouc with the fumes of sulphur, or gases containing sulphur, in order to make a comhination in the kneading cylinder. He uses a retort to distil the vapour of sulphur upon the rubber in the cylinder heated in a steam jacket. He also occasionally introduces hydrogen or phosphorus along with it. Tbe eompound mass thus obtained is to be suhjected to hydraulic pressure in the moulds, heated to ahout 220° or $250^{\circ} \mathrm{F}$. He causes the blocks to undergo a rolling motion under heavy pressure hy machiuery ; the effect of whicb Inotion is to equalise the sulphur diffused in the hlocks. Even thread of tbe ordinary Indian-rubber, wben agitated in a box witb flowers of sulphur, is said to be glazed and improved therehy.-Newton's Journal, xxxv. 21.
We are indebted for the following facts and remarks to Messrs. Silver and Co., of London and Woolwich.
Tbe chicf improvements operated in caoutcbouc hy the process of vulcanisation, are tbe properties of resisting and remaiuing unaffected hy very high degrees of beat and cold, and increased compressibility and elasticity. In its natural state, Indianrubber becomes rigid by exposure to cold, and soft and plastic by heat, under the action of boiling water. Articles manufactured of this substanree suffer and lose the qualities which constitute their value in cold and in hot countries. A piece of Indianruhber cloth, for instance, taken to Moscow in Decemher or January, would assume all the qualities of a piece of thin sheet iron, or thick pasteboard; the same cloth would in India or Syria become uncomfortably pliahle, and present a moist and greasy appearance; and, indeed, after being folded up some time, it will he found to be glued tbe most intensc cold practical purposes. These adreat up to and above 300°, makes Indian-ruhher fit for in connection with machinery of every description ; and as steam power is still fyed employed, and as the numerous other advantares possessed hy vulcanised Indian further becone known (for it is only of late that anes possessed hy vulcanised Indian-rubher its applieation will he extended and proportionally its consumption inereased realiscd) The compressibility and the return to its formally its consumption increased. ceased, in one word, the elasticity, of the Indian-rubber is ins, when tbe pressure has hy vulcanisation, that comparing the improved with the original article, it degree said tbat the native Indian-rubber is almost devoid of elasticity. Thal article, it may be elasticity which it obtains by vulcanisation is sbown elasticity. The higli degree of expcriments, in which a block of tbe vulcanised Indian-rubber, of the the following the manufacture of railway carriage springs, measuring-rubber, of the kind used for inside dise, and 6 inches deep, was talings, measuring 6 inches outside disc, 1 inch Vol. I. $Q Q$ exposed to pressure :-

The bloek was left under pressure for 48 hours, and in cach ease returned to its original dinuensions after a short period when the pressure was removed.

Indian-rubber and canvas hose are now generally used where leathern pipes were used in former times, viz. where a flexible tube is required, in fact, where it is not possible to use a metal pipe. The advantages which the Indian-rubber and canvas hose has over the leathern pipe, are, that it does not require draining and greasing after being used, that it ean be left in the water without rotting, and that it does not harden or lose its flexibility. Leathern pipes, on the contrary, require the most eareful treatment, and even witb the greatest care tbey are liable to frequent leaking. Indian-rubber and canvas hose are made to resist atmospheric and hydraulie pressure, say up to 1000 lbs. pressure on the square inch. Of this Indian-rubber and eanvas lose, the deseriptions mostly in use are the following: -

1 Ply whieh will stand a pressure of abont	-	-20 lbs. to square inch.		
2 Ply for eondueting water	$"$	-30	to 40	$"$
2 Ply stout	$"$	-	-75	$"$
3 Ply for brewers, \&e.	$"$	-	-75	$"$
4 Ply for steam and fire-engines	$"$	-	-175	$"$

Among the most receut uses of Indian-rubber and eanvas, are those of its manufacture into gas and ballast bags, the former are used for the transport of gas, and applied to the various emergencies of gas engiucering. Indian-rubber gas tubing is now in general use, tbe great advantage over metal tubes being, tbe ease with which gas ean be conveyed to wbatever part of the building it may be required; this, where iny alterations are being effected, is a great desideratum. Ballast bags, large stout bags of lndian-rubber and canvas, capable of bolding from 1 to 5 or 10 tons of water, are coming into use as the most convenient form of ballast, thus saving valuable spacc which is made available for cargo. These bags may be emptied at any time, and when flattened down and rolled up they ean be stowed away. Indian-rubber bags for inflatiou have also in a few eases been made use of for buoying up vessels, but hitherto the practice has been experimental only, and such floating machines arc not as yet generally in use.

The vulcanising Indiau-rubber on silk or woollen was for a long time considered impracticable, beeause the process of vulcanisation destroyed the fibre and texture of the two substances; and it is stated that now this process is effected in a manner which deprives neither silk nor wool of their natural qualities and strengtb. By this improvement, combined with Silver's patent process of annihilating the unpleasant smell which all Indian-rubber goods used to aequire in tbe process of manufacture, the advantages of that substance for clothing purposes are extended to the lightest and the warmest of our textures. Silk and Indian-rubber garments are made without any deterioration of the strength and durability of the stuff, while they are perfeetly free from odour of any kind. (See page 602.)

V. Mechanical Applications of Caoutchouc.

Numerous important applications of eaouteboue have been made in the meehanieal arts, among which we may mention, springs for railway and common road carriages, military earriages, lifting springs for mining ropes and cliains, towing ropes and eables, rigging of ships, reeoil of guns on ships, the tyres and naves of railmay and otber wheels, to axles and axle bearings, to windows of railway earriages, railway switches, bed of steam-hammer, couplings for locomotives and teuders, paeking for steam and water joints, shields for axle boxes, sockets for water pipes, bands for driving machinery, valves for pumps, tubes for convcying aeids, bcer, water, and otber fluids, packing for pistons.

Many of these improvements have been the subject of patents, a list of the principal of which are given, stating the name of patentee, date, and object of so much of patent as relates to the use of eaouteliouc

List of Patents.

List of Patents (eontinucd).

No.	Name.	Date.	Object of Patents.
29	R. Eaton - -	8th Dcc. 1856	Indian-rubber springs in thin laminæ for buffer, bearing, and draw springs, and lifting purposes.
30	H. Bridges -	14th Mar. 1857	Spencer's eoues applied to wood bloeks in buftcre, bearing springs, $\& c$.
31	J. Williams W, E. Nethersole	11th Nov. 1857	Indian-rubber springs applicd to the side or safety ehains of trucks, \&c. Do.

We have been at some pains to aseertain the progress that has been made in the practieal application of thesc inventions, and notice them below, under the several heads inentioned above.

Springs.-The first proposal to use caoutehouc for springs that we are aware of, occurs in Lacey's patent (see list), in 1825, when bloeks of eaoutehouc were proposed to be used, having dividing plates of iron between each series; but little seems to have been donc towards any practical application at that time: later in 1844 (see list), Melville proposed to use spheres of eaoutehouc, enclosing air, and separated by dises of wood or metal, the whole being enclosed in iron cases, and used for buffers and bearing springs for railway earriages. In 1845 (see list), Walker and Mills proposed to use bags of caoutchouc enelosing air, and contained in cases of iron, for use as buffer springs.

The next improvement is contained in Fuller's patent of 1845, which consists in the use of cylindrieal rings of vulcanised Indian-rubber, in thieknesses varying from $\frac{1}{2}$ to 3 inches, and with diameter of ring suitable to the power of spring required; between each of these cylindrieal rings he places a thin iron plate, through a hole in the eentre of which passes a guide rod. Fig. 405 shows Fuller's spring in seetion and plan.

Thesc springs have been extensively used as buffer, bcaring, and draw springs for railway uses alone and in eombination with De Bergue's improvements: some defeets have been found in practice in this form, to obviate which, the ingenuity of later inveutors has been exercised; the defects alluded to are, the tendency to sivell out at the central unsupported part of the ring, thus from the undue tension rendering it liable to break under sudden eoncussion, and occasioning complete disintegration of the material where not breaking.

To obviate thesc defeets, Genrge Spencer (see list, Nos. 12, 18) proposed to mould the caoutchouc at onee in the form it assumes under pressure, and then to place a eonfining ring of iron on the larger diameter. (Sce fig.406.) By this ingenious plau, the eaoutchouc loses its power of stretehing laterally, being held by the ring b, seeured in a groove moulded in the eonc to receive it; when the pressurc is applied to the ends, the rubber is squcezed into the euplike spaces c, and thus the action of the spring is limited. By this plan, rubber of a eheaper and denser kind ean be used than on the old eylindrieal plan, and the patentec states that many thousands of earriages and trueks are fitted with these springs whieh give entire satisfaction; among which, are
those on the Brighton, South-Western, North London, South Wales, Vale of Neath, Bristol and Exeter, T'aff Vale, Laneashire and Yorkshire, St. Helen's, Bombay and Baroda, Theiss Railways, and many others. These cones are used as buffer, bearing,

and draw springs for railway earriages, and are made in several sizes to suit various uses. To show the power that such springs are equal to, we append the result of an experiment on a No. 1 eone (for inside buffers), 3 inehes in length, 3_{3}^{3} inches diameter at ring, 5 inches diameter of ring.

1st Experiment, without the eonfining ring, weight of eone $1 \frac{1}{4} \mathrm{lb}$.
Without any pressure the cone measured - Inches.
Giving a stroke of
With pressure-280 lbs.

-	3	-	Giving a stro
-	$2 \frac{1}{2}$	-	-
$-\frac{1}{2}$ ineh.			
-	2	-	1
-	$1 \frac{1}{2}$	-	-
		$1 \frac{1}{2}$,	

2nd Experiment.

With the confining ring b, on the same double cone; the following were the results:-

Without any pressure the cone measured

With-448 ${ }^{\text {Wins }}$						eh
With-1,680 Ibs.	"	-	-	-	$2 \frac{1}{2}$	
With-2,912 lbs.	"		-		2	
With-15,6S0 lbs.	"				$1 \frac{3}{4}$,
	"	-	-	-	$1 \frac{1}{2}$	

The advantages are stated to be, less first cost than steel; less weight, 6 ewt. being saved in each earriage by their use ; and great durahility. Coleman's improvement (see list, No. 15) confine the lateral swelling of Indian-rubber eylinders. (Se the use of iron rings to

407

as hearing springs for engines and tenders on the North-Western railway, by J. E. M'Connell, Esq., who prefers them to steel, as being easy in action, durable, safe, and easy of repair; they are used also as buffers and draw springs, but not to the extent of Fuller's and Speneer's form. 'To give an idea of the power of such a spring, and Co.'s.

Experiments with one of Coleman's eylinders with and without the rings. Cylinder 6 inehes long, 6 inehes diameter, 1 ineh hole, weight 9 lbs.

The next form of these springs is R. Eaton's (see fig. 408; and list, Nos. 28, 29). This spring seems to be peculiarly adapted to use where a powerful spring, acting through a snaall space, and taking little room, is required as for use in mining ropes and chains, (see Safety Cages); iron ropes, for ship-rigging, for enginc-springs, station buffers, and powerful draw-springs. Eaton's main idea is the use of lamine of Indian-rubber, of a maximum thiekness of $\frac{1}{2}$ an inch, with dividing plates, as in Lacey's and Fuller's, which avoids the objections stated above, by supporting the Indian-rubber at smaller

408
intervals; for springs, wherc great power is wanted in little eompass, and to act through short distanees,-as in engine bearing-springs, lifting springs, and some kinds of draw-springs, - this form proves to be well suited. We give below the result of one such spring of the following dimensions: the spring was built up of 24 laminæ, $\frac{1}{4}$ of inch thiek, $4 \frac{1}{2}$ inches square, with a thin iron plate between eaeh, and a hole of one inch diameter for the guide rod through all ; this, and several of the other experiments were made in a press of great delieaey and power, eonstrueted for Messrs. Geo. Spencer and Co., for the purpose of testing such springs, at their office, in Cannon Street West, London (see Proving Machines).

Experiment.

Hodge's compound spring (No. 13) is designed to obviate the frequent breakage of the steel springs on locomotive engines. Fig. 409 shows one of these springs; a block of Indian-rubber is placed on cach end of the steel spring, or is suspended under the engine frame; they are in nse on several of the English railways, and are said to answer the purpose intended well.

Scott's patent (see fig. 410; and list, No. 14), consists in the use of bloeks of Indianrubber, or cones, placed over the centre of spring; they are to obviate the danger of overloading carriages and trueks, a frequent souree of danger to the springs, and are made to take the whole load in ease of a spring breaking: they are in use on the Brighton and Crystal Palace Railway, Eastern Counties, Bombay and Baroda, and others the sume patentee has scveral ingenious applications of Indinu-rubber to earriages to wheel tyres, to the bosses of wheels, to shackle pins, and to the axle.

Bridges' Patent.-(See list, No. 30, fig.411.) This inventor proposes to use Spencer's eones in blocks of wood, instead of iron eonfining rings. A series of them are enelosed in a ease formed in the side timbers of the underframe of the railway truek or earriage;

the cup space is formed in the block of wood, as our figure shows, and no guide rods are required : the same principle is applied to draw and bearing springs. The advan-

tages proposed by this arrangerment are, the dispensing with guide rods and the taking the ultimate blow on bloeks of wood, which deadens its effeet; they are said to

answer very well, and are used almost exelusively on the South Western and Bristol
and Exeter Railways.

In 1847, Mr. De Bergue patented some improvements in the application of Fuller's spring to bufler, bearing, and draw springs for railway uses.

Mr. Fuller's patent. - The applications for common road carriages, patented by Mr. Fuller of Bueklersbury in 1852 and 1855, have been extensively used, both in the form of cylindrical rings acting by compression and also of suspension springs for lighter kinds of vehicles.

Respecting these springs, figs. 412, 413, we have been furnished by the patentee with the following particulars:-

The form generally used for heavy purposes, sueh as drays, vans, waggons, \&e., consists of a series of rings of cylindrieal or eircular form, working on a perpendieular rod or spindle, on each side the axle, with the usual separating plates or washers; the depth and diameter of the rings being regulated by the weight to be sustained and the speed required.

During the late war, these springs were introdueed by Mr. Fuller to the notiee of the Go:ernment authorities at the Royal Arsenal, Woolwich, and were in consequence extensively adopted for all kinds of military carriages, store waggons, ammunition waggons, \&c. They are also applied in the suspensory form for the medieal cars and ambulance waggons for the wounded, for whieh purposes the use of Indian-rubber on the principle of extension is found to produce the easiest and most satisfactory spring hitherto discovered.

When the matcrial is used as a suspension spring, the mast advantageous form for the purpose is found to be round eord of the best and purest quality, prepared by solvents, and about $\frac{1}{4}$ or $\frac{3}{8}$ inch diameter.

A eontinuous length of such eord is wound at a considerable tension over the ends of two metal soekets or rollers, in shape something resembling a cotton reel, and whilst in a state of tension, bound at each end with strong tape or other suitable

412

binding; the number of cords eomposing the spring, varying from 10 to 20,30 , or 40 , aecording to the strength required.

Another important adaptation of Indian-rubber by Mr. Fuller, is that of anchor spriugs, towing ropes, and springs for the recoil of guns and mortars.

During the Russian war, about 120 mortar boats were constructed of light draught, each carrying a 13 -ineh mortar on a revolving pivot and platform in the eentre of deek. It was considered desirable, if possible, to diminish the shock produeed by the tremendous recoil of such heavy artillery on the deck of small vessels, and after a series of trials at Shoeburyness, which proved perfectly satisfactory, the plan was adopted of mounting each platform upon twenty powerful rings of Indian-rubber, the united foree of whieh, at 1 inch deflexion, would resist about 400 tons. The performance of these mortar vessels at Sweaborg, the Blaek Sea, and also subsequently in China, has been highly satisfactory; the intervention of this elastic material being found effectually to preserve the timbers of the vessel.
The application to towing ropes and anehor eables, has not yet beeu tried to an extent sutficient to test its merits; but it is universally admitted by cngineers and praetical men, that a powerful spring adapted to the chain cables of vessels when riding at anchor (aeting on the prineiple of the buffer and draw-springs) would often prove of invaluable service in preventing the parting of the eable and its disastrous results.
In the list of patents, we have indicated the nature of several other improvements, whieh, being merely variations of the more important ones, we do not dwell on here.

Support for railway chairs. - Several proposals have been devised to this end, and a number of plans are given in Colcman's patent, 1852. He plaees the Indian-rubber under the chair, between the ehair and rail, between the rail and sleeper. The plan has been only partially tried, but the proposer is very sanguine that the plan will prove useful.

Wheel tyres.- Fig. 414 shows an important application to the tyres of wheels for railway purposes. A thin baud of Indianrubher is inserted hetween the tyre and spoke ring, by first covering it with a thin plate of iron, to protect the Indiau-ruhher while the hot tyre is put on, when the wheel is instantly thrown into water and cooled. This has bcen severely tested for some time, and found to answer very well; the advantage gaincd, is the saving in the breaking and wear of the tyres.

For windows. - Small ropes of Indian-ruhber are inserted in grooves at each side of the window, and so stop out draught and prevent noise.

414

For steam-hammer beds.- A plate of Indian-ruhber $\frac{5}{8}$ thick, is placed under the hed of the hammer ; the effect is greatly to diminish the transmission of shocks to the huilding, and to cheapen the foundation : as an instance of useful application, we may state, that at Messrs. Ransome and May's worlss, at Ipswich, the working of the steamhammer shook the building and windows to an alarming extent; hut the insertion of hlocks of vulcanised ruhher under the anvil, almost entirely ohviated these effects.
Joints between engines and tenders.-Messrs. Lund, Spencer, and Fenton, have also introduced the use of rings of this material to form a joint between the locomotive and tender (fig. 415). They are extensively used, and entirely prevent the leakage

415

common to the old ball and socket joints, and are much cheaper in first cost. Rings of Indian-ruhber were proposed hy Mr. Wickstead, for closing the socket joint of water pipes, and they are used in a variety of forms for that purpose.

Messrs. W. B. Adams, Normanville. Wrighton, and Hodge, have also introduced the use of shields and rings of Indian-ruhber, for keeping the hacks of axle boxes tight, so as to prevent the escape of the grease or oil, or the entry of dust aud dirt.
A large trade has heen cstahlished in the supply of bands of Indian-rubber for driving machinery; for many purposes they answer hetter than leather, watcr having no effect on them and there being little or no slip and fewer joins thcy are made iu all widths, and helts costing 1501. each have heen used in some cases. They are made with two or more layers of thread cloth between, and outside of which the ruhber is placed.
As valves for steam and water pumps, Indian-rubber prepared to suit the use is also much used hy all our large engine makers.
As tubes for couvcying beer, watcr, aud acid, Indian rubber is also found to answer well, and is used largely. The tuhes are made in all sizes and strengths, and the hest are made by alternate layers of cloth and Indian ruhber. Very good tubes are also imported from America.

Another useful application of this material, is for the joints of stcam and hot water pipes; for this and similar purposes, a peculiar compound, known as Hodge's compound, is used (patent No. 11). This consists in the mixture of cotton fibre with the rubber used for springs, kuown as the triple compound.
The success of these applications depends of course entirely on the composition being suitable to the various purposes to which they are applied; some being made to resist the effect of heat, others of acids, grease, and oils, the study of which has hecome an important element in the commercial adaptations of the various inventions

VI. Solarisatton of Cafoutchouc.

Singular as caoutchouc is in its propertics and iu its application, it is probable that hesides the mechanical and electrical qualities and gencral resistance to chemical action, it may yet be found to have other modifications peculiar and valuable. The practical men most conversant with this substance, and dceply involved with patents and heat upon this suhstance.
Mr. Hancock says, "
employed was very quickly decomposed when exposed to the sun: as the heat was never more than 90°, and rubber exposed to a much higher temperature was not injured by it, I suspected that light had some effect iu producing this mischicf. To ascertain this, I cut two square pieces from a piece of white rubber, onc of these I coloured black, and exposed it to the sun's rays; in a short time, the piece which had beeu left white, wasted away, and the sharp angles disappenred, it seemed like the shape of a thin piece of soap after use ; the blackened piece was not at all altered or affected. The lesson taught me by this experiment was of great value cver after."

Speaking of the annoyances and failures in the early Macintosh goods by heat, grease, \&cc., Mr. Hancock says, "The injurious effect of the sun's rays upon thin tilms of rubber we discovered and provided against before much damage accrued."

Mr. Goodycar says, "In anticipation of the future as relates to a mode of treatment in manufacture, which, though lightly esteemed and little thought of now, I believe will be extensively practised hereafter, I feel bound to make a strong thongh qualified clain to the process of solarisation. This process consists in exposing caoutchouc, when combined with sulphur, to the sun's rays." Again, "when exposed to the sun's rays for several hours, a change is produced which may be called natural vulcanisation, in all thin fabrics or thin sheets of caoutchouc." "Solarisation is an effectual and cheap process of curing Indian-rubber." He further says, "it is well established that Indianrubber melted at about 200°, and in the sun's rays at 100° or less. Another effect yet more remarkable in the treatment of gum clastic, is that of the sun's rass upon it when combincd with sulphur and exposed to the sun, either iu hot weather or cold, it beeomes solarised, or divested of its adhesive quality ; whereas, no other kind of light or heat has any similar cffect, until the high degree of heat is applied to it, about 270°, which is used in vulcanising."-Goodyear, p. 114, vol. i. New Haven, U. S.

ViI. Trade Applications of Vulcanised Indlan-Rubber.

Maciutosh and Hancock give the following descriptions of their trade quality, to guide practical men; other manufacturers may also have similar scales of rubber.
A quality is the most elastic, it weighs about 60 lbs . per cubic foot, or $\frac{1}{29}$ th of a lb . per cubic inch (this is understood to mean pure sulphur and caoutchouc, all other qualities are mixtures).
D quality, weighs 821 bs . per cubic foot, or $\frac{1}{2 T}$ of a lb . to 1 cubic inch.
E quality, more elastic than D, weighs about 92 lbs . to the cubic foot, or $\frac{1}{19}$ of a lb . to 1 cubic inch.
F. c. Fibrous compound, used for flange washers, valves, and pump-buckets, weight $\frac{1}{25}$ th of a lb. per cubic inch.
Many applications of caoutchouc can only be named. Surgical apparatus, and remedial adaptations for hospital purposes, would alone occupy great space : to call attention to the various ingenious contrivances, other information and specialities may be referred to the heads of Indian-rubber and vulcanite, or hard rubber, vulcanisation, hose pipes, pontoons, life-preserving apparatus, shoes, waterproof fabries, washers for joints, valves for cngines and pumps, clastic, eudless, and driving bands. For hot and cold water valves this substance has been one of the most valuable applications to ocean steamers for many years.

The old mode of thread making is now entirely obsolete, having given way to a new one rendered necessary by the introduction of vulcanised Indian-rubber, which now, for the purpose of thread cutting, is always produced in the sheet by the sprendiug process before described, and of a thickness exactly agreeing with the widths of the thread to be cut; that is, if No. 28 be required, which means, if 28 of the threads werc placed side by side they would measure one inch ; then the sheet is spread $\frac{1}{28}$ th of au inch in thickness, and consequently wheu 28 are cut out of the iuch, square threads, i.c. threads with a rectangular section, are produced. The sheets are wound upon rollers, which are then fixed on centres in the lathe, and by means of a slide rest and a suitable knife, slices of the sheet are cut off, varying in thickuess from $\frac{1}{1 / t h}$ of an inell, to $\frac{1}{80}$ th of an inch; aud one of the greatest advantages of the vulcanised thread is the great length that can be cut; from a sheet of rubber wound upon a roller, hundreds of feet or yards may be cut at once into one continuous thread, wherens from the bottles the lengths were short, had to be joined, and differed in quality from each other.

Vulcanised thread is covercd with silk and cotton; both are wound round it; the vulcanised thread is considerably more clastic than the native thread cut from botles or sheets. Belts and bandages made from the vulcanised thrend are very superior to the old sort, now completcly obsolete.

The vulcanised rubber thread has lately been introduced into the Jacyuard loom, by Messrs. Bonnet and Co., Mauchester; the thread nsed is, by its elastic force, to supersede the use of the weights commonly employed, the nuniber of which some times anounts to from two to three thousnid in onc loom.

In preceding editions, the names of Maueock and Goodyear were scarcely mentioned, yet for thirty-six years Mr. Hancock has laboured to make a manufacture. For many years Messrs. Haneock and Macintosh were alonc in the trade, indeed until Macintosh's patent eeased, when the trade widened. His first patent was dated 1820 , and the masticating machine was the foundation of the manufaeture. Mr. Goodyear had his attention drawn to the subject by the manufacture of gum elastie in the United States, about 1831-2. Both have contributed to the literature of the art, (mingled with personal narratives, and trade affairs,) and it is presumed that had the late Dr. Ure had their practical works before him, eulogistic mention would have been offered for past neglect.* Both gentlemen's patents arc being worked by other men, and of the value of their processes, and the trade, some idea may be entertained when "The Scientific American" receutly, whilc opposing the renewal of the terms for eertain patents about to expire, gives the estimate of worth at $2,000,000$ dollars for Chauffee's patents, and Goodyear's several patents are set at $20,000,000$ dollars. It is probable that the trade was not a really profitable one in America until about 1850. Of the value of the works in England and France of caoutchouc applications no adequate data appears. Of the facts involved in some of these patents, we may quote Mr. Hancoek's words, p. 106. "I think I might venture to state, not boastfully, but as a matter of fact, that there is not to this day, 1856, any document extant, (including those referred to in it,) which contains so mueh information upon the manufacture and vulcanisation of rubber, as is contained in this speeification. If any of my readers," he goes on to say, "can point out sueh a document, I shall feel obliged if they will inform me of it." This is the patent of 1843.

The following is a list of fourteen patents, to Thomas Hancock, on the treatment and applications of Indian-rubber: -

Mr. Hancoek gives the following Table, compiled from offieial sourees.
Imports of Indian Rubler into the United Kingdom for the Years 1842 to 1855, inclusive.

Year.	East Iudies.	United States.	Brazil.	Java.	Elsewhere.	Total.
1842	lbs. $42,112$	lbs. 33,936			lbs.	lbs.
1843	42,112 7,504	$\begin{aligned} & 33,936 \\ & 17,024 \end{aligned}$	222,432 306,320		18,704	317,184
1844	7,504	17,024	306,320	27,664	784	359,296
1845		13,644 1,232	422,576 329,952	2,240	10,416	448,896
1846	1,568	55,552	-429,952	- 224	9,416	340,592
1847	13,776	2,576	$440,2,12$ 630,336	$\underline{224}$	54,096	551,712
1848	45,472	-,576	630,336 417,200	11,760	1,120	659,568
1849	62,608	-	515,760	6,608 8,400	2,016	471,296
1850	32,480	61,488	668,304	8,400 35,504	9,968	596,736
1851	66,864	181,888	1,237,936	35,504 191,968	55,328	858,104
18.52	356,472		1,237,936	191,968	31,472	1,710,128
1853	391,216	21,392	1,435,056	293,888 77,280	110,768	2,195,984
1854	663,936	277,200	$\begin{aligned} & 1,1+3,520 \\ & 1,660,960 \end{aligned}$	77,280	307,104	1,940,512
1855	940,128	284,928	$\begin{aligned} & 1,660,960 \\ & 2,395,344 \end{aligned}$	$\begin{aligned} & 184,912 \\ & 203,30 t \end{aligned}$	302,848	3,089,856
		281,0-8	2,395,34.4	203,304	1,166,032	5,006,736
Total -	2,623,936	950,880	11,825,968	1,060,752	2,080,064	

[^39]In 1856 we imported Caoutciouc from the following places . -

Caoutchouc is admitted duty free ; the manufactures paying a duty of $4 d$. per pound. Of caoutchouc manufactures, we exported in 1856 -

> English manufacturc, cntcred at value - - - $£ 66,488$ Foreign and colonial produce and manufacture, entered by weight

112,256 Ibs.
T. J. P.

CAPERS. The Capparis spinosa, the flower buds of which constitute the capers of the shops. Their quality depends exelusively upon the age at which they are gathered, the smallest and youngest being the most delicate and the dearest; and the largest, the coarsest and cheapest. The buds arc plucked before they open, and thrown into strong vinegar, slightly salted, where they are pickled. The crop of each day is added to the same vinegar tub, so that in the course of the six months during which the caper shrub flowers, the vessel gets filled, and is sold to persuns who sort the capers by means of copper sieves. This metal is attacked by the acid, wherefrom the fruit acquires a grcen colour, much admired by ignorant connoisseurs. About $60,000 \mathrm{lbs}$. a year are consumed in this country.

The capsules of the caper spurge, Euphorbia lathyris, are sometimes pickled as a substitute for capers; but although the acid destroys some of the acrid properties, the free use of them is dangerous.- Pereira.

We imported, in 1856, Capers, including the pickle, 73,691 lbs.
CAPILLAIRE. Originally a kind of syrup, extracted from maiden-hair. The term is now applied to a finely clarified simple syrup, which is made chiefly with orangeflower water.

CAPNOMORE. ($\mathrm{C}^{40} \mathrm{H}^{22} \mathrm{O}^{4}[?]$) One of the substances discovcred by Reichenbach in wood-tar. It appears to be a product of the metamorphosis of creosote under the influence of heat, or of the alkalics or alkalinc earths. It has not been sufficiently examined to allow of its formula being considered as established. The above formula is founded on the analysis of M. Velckel. When those oils from wood tar which are heavier than water are treated with a strong potash lye, creosote and capnomore dissolve. Pure capnomore is not soluble in potash, but it appears to dissolve owing to the prescnce of creosotc. When the alkaline solution is distilled, the capnomore comes over (Vœelckcl). It is more probable that the capnomore, instead of dissolving under the influence of the creosote, and subsequently distilling over with the water, is, in fact, produced by a decomposition of the creosote, for I have found that if the latter be long boiled with potash lye, it gradually diminishes in quantity, and finally almost disappears.
The density of capnomore is 0.995 . It boils between 350° and 400°. This variation of the boiling point is indicative of a mixture.-C. G. W.

CAPRYIAMINE. ($\mathrm{C}^{16} \mathrm{H}^{19} \mathrm{~N}$.) A volatile base obtained by Squirc, and also by Cahours, by acting on ammonia with iodide of capryle. It is homologous with metlyylamine, \&c.-C. G. W.
CAPSTAN. (Cubestan, Fr:; Spille, Germ.) A machine wherenn the cable is wound successively in weighing the anchor of a vessel. It is a species of wheel and axle; the axle bcing vertical, and pierced with holes ncar its top for the insertion of the ends of horizontal levers, called handspikes, which represent the wheel. These arc turned by the force of men moving in a circlc. The power applied to the lever is to the resistance to be overcome, (the weight of the anchor, for example.) when the forces are in equilibrio, as the radius of the cylinder round which the cable is coiled is to the circumference described lyy the power. It is manifest that the radins of the
axle must be augmented in this computation by half the dianneter of the cable, whiel is snpposed to lie always one coil thick upon it. The foree of a man, thns applicd, has beeu conmonly estimated as equal to the traetion of 27 ponnds hanging over a pulley. Friction heing so variahle a quantity in eapstans, renders the exaet calculation of its mechanieal effeet somewhat uneertaiu. A stont man, stationed near the bottom of the axle, holds fast the loose part of the eable, which has already made two or three turns; and, being aided by its frietion upon the wood, he both prevents it from slipping baek wards, and uncoils eaeh turn as it is progressively made.

Mr. Hindmarsh, of Newcastle, ohtained a patent, in February, 1827, for a contrivanee to enable a eapstan or windlass to he oceasionally worked with increased mechanieal advantage. With this view, he plaeed toothed wheel-work, partly in the drum-head of the eapstan, and partly in the upper part of the harrel, upon whieh the eable is coiled and nneoiled in suceessive portions.
The drum-head, and also the barrel, turn loosely upon a central spindle, independent of each other, and are conneeted together either hy the toothed gear, or hy holts. On raising or withdrawing the conneeting pinion from the toothed wheels, and then loeking the drum-head and barrel together, the eapstan works with a power equal only to that exerted hy the men at the capstan-hars, as an ordiuary eapstan; but on lowering the pinion into gear with the wheel-work, and withdrawing the holts whieh locked the drum-head to the harrel, the power exerted by the men heeomes inereased in proportion to the diameter and numher of teeth in the wheels and pinions.
Fig. 417 is the external appearance of this eapstan. Fig. 416 a horizontal view of the toothed gear at the top of the barrel. The harrel, with the whelps a a, turn loosely upon a vertieal spindle fixed into the deck of the vessel. The drum-had b also turns loosely upon the same spindle. The cireular frame $c c$, in fig. 416 , in which the axes of the toothed wheels $d d d$ are monnted, is fixed to the eentral spindle. The rim e ee, with internal teeth, is nade fast to the top of the harrel, aud the pinion f, whieh slides upon the spindle, is connected to the drum-liead.

Wheu it is intended to work the eapstan with ordinary power, the pinion f is raised up into the reeess of the drumhead, by means of a serew g, fig. 417, whieh throws it out of 417 gear with the toothed wheels, and it is then loeked up by a pin z : the holts $h h$ are now introdueed, for the purpose of fastening the drum-head and barrel together, when it becomes an ordinary eapstan.

But wheu it is required that the same numher of men shall exert a greater power, the bolts h are withdrawn, and the piuion f lowered into gear with the toothed wheels. The rotatiou of the drum-head, then carrying the pinion round, eauses it to drive the toothed wheels d d d; and these working into the toothed rime ee, attached to the harrel, eause the barrel to revolve with an inereasing power.

Thus, nuder particular cireumstanees, a smaller numher of men at the capstan or windlass (which is to be eonstrueted
 upon the same prineiple) will he cuabled to hanl in the cable and anchor, or warp off the vessel, which is an important ohject to he effected.

In 1819, Captaiu Phillips obtained a patent for eertain inprovements in capstans, a part of which invention is preeisely the same as this in prineiple, though slightly varied
in its adaptation.

James Brown, ship-rigger, iu his capstan, patented iu 1833 , instead of applying the moving power by handspikes, haviug fixed two rims of teeth round the top of the eapstan, aets upon them by a rotatory worm, or pinions turned hy a wineh.

Fig. 418 is an elevation of this capstan, and fig. 419 is a horizoutal top view. a is an upright shaft, fixed firmly to the deek, scrving as an axle round which the hody of the eapstan revolves. A frame c, fixed to the top of a stationary shaft a, above the body of the eapstan, carries the driving apparatus. The upper part of the body of the capstan has a ring of ohlique teeth d formed round its edge; and above this, on the top of the capstan, is a ring of
 bevel teeth e. A horizontal shaft f, monnted in the endless serew, which takes into the tecth of the ring d; and a short axle worm or
its bearings in the central shaft a, and in the frame c, earries a bevel pinion, whieh takes into the bevel teeth of the ring e.

The bearings of the shaft f, in the top frame, are in long slots, with angular

419
 returns, something like the fastening of a bayonet, whieh is for the purpose of enabling the shaft to be readily lifted in and out of gear with the teeth of the ring d : the outer bearing of the axle g of the bevel pinion is also supported in the frame c, in a similar way, in order to put it in and out of gear with the teeth of the bevel ring e. A mode of shifting these is essential ; beenuse the two toothed rings, and their driving worm and pinion, give different speeds, and, of course, cannot be both in operation at the same time.

The worm of the sbaft f being placed in gear with the tecth of the ring g, on applying rotatory power thercto, by means of winches attaehed to the ends of the shaft, the barrel or body of the eapstan will be made to revolve with a slow motion, but with great power ; and thus two men at the winches will do the same worle as many men with eapstan bars in the ordinary way.
If a quicker movement than that of the endless serew is desired, then the driving power may be applied by a winch to the axle g of the bevel pinion, that pinion being put into gear with the bevel ring e, and the endless serew withdrawn. It should, however, be here remarked, that the patentee proposes to employ two short axles g, placed opposite to each other, with bevel pinions acting in the bevel-toothed ring, though only one is shown in the figure to avoid confusion. He also contemplates a modifieation of the same contrivance, in which four short axles g, placed at right angles, with pinions taking into a bevel ring, may be employed, and made effective in giving rotatory motion to the barrel of a capstan by means of winehes applied to the onter ends of the axle, and turned by the labour of four men.

CAPUT MORTUUM, literally, dead matter; a term employed by the alehemists to express the residuum of distillation or sublimation, the volatile portions having been driven off.

CARAMEL. Burnt or dried sugar, used for colouring spirits and gravies. It is a black, porous, shining substance, soluble in water, to which it imparts a fine darkbrown colour. The French are in the habit of dissolving the sugar, after it has been exposed for some time to temperature sufficiently high to produce the proper eolour, in lime-water: this is sold under the name of "colouring."

CARAT. The term earat is said to be derived from the name of a bean, the produce of a species of erythina, a native of the district of Shangallas in Afriea, a famous gold dust mart. The tree is ealled liuara, a word signifying sun iu the language of the country, beeause it bears flowers and fruit of a flame colour. As the dry seeds of this pod are always of nearly uniform weight the savages have used tbem from time immemorial to weigh gold. The beans were transported into India at an aneient period, and have been long employed tbere for weighing diamonds. Tbe carat of the civilised world is, however, an imaginary weight, consisting of four nominal grains, a little lighter than four grains troy (poids de marc). It requires 74 earat grains and $\frac{1}{16}$ th to equipoise 72 of the other.

It is stated that the karat, a weight used in Mecea, was borrowed from the Greeks, and was equal to the 24 th of a denarius or denier.

The Encyelopedists thus explain the carat:-" The weight that expresses the fineness of gold. The whole mass of gold is divided into 24 parts, and as many 24th parts as it contains of pure gold it is called gold of so many carats. Thus gold of twentytwo parts of pure metal is gold of twenty-two carats. The earat of Great Britain is divided into four grains ; among the Germans into 12 parts ; and among the Freneh into 32 ." Among assayers, even in this country, the German division of the earat is becoming common.

CARBOLIC ACID. $\left(\mathrm{C}^{12} \mathrm{H}^{6} \mathrm{O}^{2}\right.$. Syn. Phenic Acid, Phenole, Phemylic Alcohol, Hyllrate of Phenyle.) The less volatile portion of the fluids produced by distillation of coal tar contain considerable quantities of this substance. It may be extracted by agitation of the coal oils (boiling between 300° and 400°) with an alkaline solution. The latter, separated from the undissolved portion, contaius the earbolic aeid in the state of earbolate of the alkali. On addition of a mineral acid, the phenole is liberated, and rises to the surface in the form of an oil. To obtain it dry, recourse must be had to digestion with chloride of caleium, followed by a new rectifieation. If required pure, only that portion must be received whieh boils at 370°. If, instead of extraeting the carbolic aeid from coal produets beiling between 300° and 400°, a portion be selected distilling between 400° and 428°, and the same treatnent as before be adopted, the acid whech
passes over between 347° and 3.19° will consist, not of earbolie aeid, but of its homologue, cresylic aeid, $\mathrm{C}^{14} \mathrm{H}^{8} \mathrm{O}^{3}$. Commereial carbolie acid is generally very impure. Some specimens do not contain more than 50 per cent. of acids soluble in strong solution of potash. The insoluble portion contains naphthalinc, fluid hydroearbons, and small portions of chinoline and lepidine. Carbolic aeid, when very pure and dry, is quite solid and colourless. The crystals often remain solid up to 95°, but a trace of water renders them fluid. Its speeific gravity is $1 \cdot 065$. Carbolic acid, when mixed witl lime and exposed to the air, yields rosolic acid. The lime aequires a rich red colour, during the formation of the acid. No means of dyeing reds permanently with this substance have yet been made known. Unfortunately, the red tint appears to require an excess of base to enable it to exist, consequently the carbonic acid of the air destroys the colour (Dr. Angus Smith). I find that homologues of carbolic acid exist which boil at a temperature beyond the range of the mereurial thermometer, and that all the acids above carbolic acid afford rosolic acid, or homologues of it, when treated with lime. Creosote of commerce appears to consist of a mixture of carbolic and cresylic aeids. If only that portion be received which distils at the temperature given by Reichenbach as the boiling point of creosote, it will, if prepared from coal oil, consist almost eutirely of cresslic acid (Williamson and Fairlie). A splinter of deal wood, if dipped first in carbolic acid and then in moderately strong nitric acid, acquires a blue tint. For a comparison of the properties of Creosote and Carbolic Acid, see Creosote.-C.G.W.
CARBON. (Equivalent 6 ; hypothetical density of vapour 0.8290 ; eombining measure one volume.) Carbon exists in a considerable variety of forms, most of which are so unlike each other, that it is not surprising the older ehemists should have believed them to be compounds. The purest variety of carbon is the diamond. The latter crystallises in octohedrons and derived forms. The diamond does not owe its hardness and brilliancy solely to its purity, for many specimens of graphite consist of carbon as free from admixture as the best diamonds. The density of graphite and diamond, however, is very different; for while the former seldom exceeds 2.45 . and is often much lower, the diamond is very constant, generally ranging between 3.50 and 3.55 . Diamonds, if perfectly transparent, leave scareely any residue when burnt in oxygen gas. If not clear, they yield from 0.05 to 0.20 of ash, consisting chicfly of peroxide of iron, but also containing traees of silica. The refractive power of diamonds is as high as $2 \cdot 439$. Sir Isaac Newton, observing that oily or inflammable bodies generally possessed the greatest refraetive powers, inferred from the high index of refraction of the diamond, that it was "an unctuous body congealed." This idea will appear the more happy, when it is considered that the ashes of the dianoond exlibit a strueture resembling that of vegetable parenchyma. In freedom from ashes, certain graphites nearly approach the diamond, some natural varieties not yielding more than 0.33 per cent.

Graphite. - This kind of carbon is found in many parts of the world, and in different degrees of purity: it is also formed artificially. Some native varicties are exccedingly soft, of a black or greyish tint, metallic lustre, and, in consequence of making a streak on paper, of various degrees of blackness, according to the mode of preparation and other circumstances, are invaluable for the manufacture of artists' pencils. See Plembago.

A very hard graphite is found lining the retorts in which coal gas is made: it is, When cut into plates or rods, used in galvanie arrangements, either for the poles or the inactive elements of batteries.

Coke. - This variety of carbon is produced by the distillation of pit-coal. The largest quantities are produeed in the manufacture of coal gas. It of course varies greatly in quality with the coal from which it is proeured. The density of coke varies not only with the quality of the coal, but also with the greater or less rapidity of the firing and the duration of the operation. From $1 \cdot 2$ to $1 \cdot 4$ is a not uucommon range $1 \cdot 223$ will have its specific gravity raised to to I. I find that a coke of the density removed by placing it in watgravity raised to 1.540 , if the air in the interstiees be Some varieties of coke, such as those receiver of the air-pump. biturninous shales and cannel eoals, leave an aluminous residue almeture of gas from to the coke itself.

Anthracite is a
1.390 to 1%. It differs consideral variety of earbon, its specific gravity varying from extraneous matters as graphite, while others appre kinds being almost as free from Thus the hydrogeu in anthracite oscillates between 1.0 aner to the nature of coals. coal have only 4.5 to 5.0 per cent. of hydrogen, thus 1.0 and 4.0 . Some varieties of which have high hydrogens.

Charcoal. -There are several varieties of chareoal: among them may be mentioned
those from wood, bones, and the peculiar substance found between the layers of certain pit coals, and known as mineral charcoal. Ordinary charcoal from wood contains many substances besides carbon, among wich may be mentioned oxygen, hydrogen, traces of nitrogen, and ashes.

Bonc charcoal contains a large quantity of cartly phosphates and carbonates, besides other matters. The mineral chareoal is mercly a scientific curiosity. Charcoal is remarkable for its power of absorbing and oxidising animal and vegetable colouring matters, also for the property which it possesses of absorbing gases. The bleaching and disinfecting powers of charcoal appear to depend chicfly on some peculiarity in its structure, enabling it to condense oxygen in a manner somewhat resembling platinum black.

Animal charcoal is used as a bleaching agent in the form of coarse grains: when once used, it may be partially restored to activity by reburning; but, ceventually, it becomes worthless for that purpose, and is then only fit for conversion into superphosphate of lime for manure, by the agency of sulphuric acid. Where acid solutions are to be decolorised by animal charcoal, it is nccessary before use to remove the earthy phosphates, \&c., by digestion with hydrochloric acid. It is essential that the purificd charcoal should be washed with a great quantity of water, in order to remove the acid and the salts formed by its action. Advantage has been taken, by Dr. Stenhouse, of the absorbent power of charcoal, in order to prevent danger arising from putrid or offensive vapours. For this purpose he has contrived a charcoal respirator, which fulfils its intended office with remarkable success. See Charcoal.

For a description of the method of preparing the variety of carbon known as Lamp-Black, see Lamp-Black.

The description of the charcoal best adopted for pyrotechnic purposes will be found under the head Gunpowder.

Carbon combines with several elements, forming in general well marked and highly important substances. Several of thesc compounds will be found under the heads Carionic Acld, Sulphuret of Carbon, Hydrocarbon, \&e.

The quantities of charcoal yielded by various kinds of rood have been given by more than one experimenter; but the results are so widely different that no great valuc can be attached to them. It is evident that the most extreme care would be required in selecting the various wonds and preparing them for analysis, if results were desired capable of being employed as standards for reference. Charcoal is extremely indestructible under ordinary circumstances; it is, therefore, usual to char stakes or piles of wood, which are to be employed for supporting buildings, or other crections in damp situations.

It will be seen, from what has already been said, that absolutely pure carbon is scarcely to be met with, cven in the diamond. In determining the atomic weight of carbon by combustion of the diamond in oxygen, according to the method employed by MM. Dumas and Stas, it was always nccessary to determine and allow for the ashes remaining after the combustion. The purest charcoal that can be oblained by the calcination of sugar for several hours at the highest temperature of a powerful blast furnace, contaius oxygen and hydrogen, the former to the extent of about $\frac{1}{2}$ per cent. and the latter 0.2 .

Carbon, on uniting with sulphur, forms the curious fortid volatile fluid known as bisulphide or sulphurct of carbon. In constitution it resembles carbonic acid, and it may, in fact, be considered as that gas in which the oxygen is replaced by sulphur: A new gas has been recently described by M. Baudrimont, bcaring the same relation to carbonic oxide that bisulphide of carbon does to carbonic acid: its formula therefore is CS.

When certain hydrocarbons are treated alternately with chlorine and alkalies, substitution-compounds are formed, in which the hydrogen in the original substance is replaced by chlorine; thus olefiant gas ($\mathrm{C}^{4} \mathrm{II}^{4}$), by this mode of operating, yields $\mathrm{C}^{4} \mathrm{Cl}^{4}$. It is true that this formula might be written, for siuplicity's sake, CCl, but such an expression would be incorrect; because, in the first place, it would not indicate its relation to the parent substance ; and, in the next, it would not correspond to the, at present, almost universally received axiom, that an equivalent of au organic body is that quantity which is represented by four volumes of vapour.

A bromide of carbon exists; its mode of formation appears to be of a somewhat similar character to the chloride, for it is sometimes fomd in commercial bromine which has becn prepared with the ageney of ether. See Bromine. It is doubeless formed by the gradual replaceuent, by bromine, of the lyydrogen iu the ethyle.C. G.W.

CARBON, BISULPPIIDE OF (formerly Curburet of Sulphar or Sulphurct of Curbon), also called by the elder chemists the Alcohol of Salphar ; a limpid volatile liquid possessing a penetrating foctid smell and an acrid buruing taste.

Bisulphide of earbon is prepared by distilling, in a poreelain retort, from pyrites, the bisulphide (bisulphuret) of irou, with a forrth of its weight of well dried eliareoal, both in a state of fine powder and intimately mixed. The vapour from the retort is conducted to the bottom of a bottle filled with eold water to eondense it. The equivalent of the bisulphide of earbou is 38 ; its formula CS^{2}.

The bisulphide of carbou is insoluble in water, but it is soluble in aleoliol. It dissolves sulphur, phosphorus, and iodine. The solution of phosphorns in this liquid has been employed for electrotyping very delieate objects, sueh as grasses, flowers, feathers, \&e. Any of these are dipped into the solution : by a short exposure in the air the bisulphide of earbon craporates and leaves a film of phosphorus on the surfaees; they are then dipped into nitrate of silver, by whieh silver is preeipitated in an exceedingly minute film, upon whieh, by the eleetrotype proeess, any thiekness of silver, gold, or copper ean be deposited. If a few drops of the bisulphide of earbon are put into a solution of the eyanide of silver, from whieh the metal is being deposited by the eleetroplating process, it eovers the artiele quite brightly, whereas, without the bisulphide, the preeipitated metal would be dull. See Eleectrotype.

CARBONATES. By this term is understood the salts formed by the union of earbonie aeid with bases.

The earbonates are among the most valuable of the salts, whether we regard their physical, geologieal, ehemieal, or teehnieal interest. Were limestone and marble the only earbonates familiarly known, they would be sufficient to stamp this elass of salts as among the most important. The earbonates of lime, potash, soda, ammonia, and lead are articles of immense importanee to the teehnologist, and are prepared on a vast seale for various purposes in the arts. The earbonates of iron and eopper are the most valued ones of those metals. Numerous proeesses of separation in analysis are founded on the various degrees of solubility in water aud eertain reagents of the different carbonates. By taking adrantage of this fact, baryta, strontia, and lime, may be separated from magnesia and the alkalies. There are few analytieal problems which have attracted more attention than the aeeurate determination of the earbonie aeid in the carbouates. This has partly arisen from the frequeney with whieh the potashes, soda ashes, limestone, and other earbonates of commeree, are sent to chemists for analysis. The number of instruments contrived for the purpose is something extraordinary, especially when the simplicity and ease of the operation is considered. Among them all, there is none more eonvenient or easy to use than that of Parnell. "It eonsists of a glass flask (fig. 420) of about two ounees' eapacity, fitted with a sound eork, through whieh two tubes pass, one serving to conneet a chloride-of-ealcium tube, a, while the other, b, will be deseribed presently. A small test-tube, c, is so plaeed in the flask, and is of sneh a size, that it eannot fall down, but its contents may be made to flow out by inelining the apparatus to one side. To perform the experiment, a weighed quantity of the earbonate is plaeed in the flask, and water added up to the level seen in the figure; the test-tube is then filled nearly to the top with eoneentrated sulphurie aeid, and is earefully lowered into the flask; the eork with the tubes attaehed is then affixed, the aperture b being elosed with a small eork. The whole apparatus is now earefally weighed; the flask is then to be inclined so as to allow some of the aeid to flow out, and, when the efferveseenee has subsided, a little more, and so ou until no more earbonie aeid is evolved. The flask is now to be so inelined as to eause the whole of the acid to mingle with the aqueous fluid, and thus eause a eonsiderable rise of temperature ; this expels the carbonic acid from the liquid; but as an atmosphere of the latter gas fills the flask, it must be removed and replaced by air,
 eork b is removed and air is are the very considerable. For this purpose, the aeid; the flask is then allowed to beeome perfeetly it no longer tastes of earbonic replaeed, it is then re-weighed: the differenee in the cold, and, the little eork being carbonie acid in the speeimen. On drawing air for some weighings is the amount of it begins slowly to acquire weight, arising from the some time through the apparatus, absorbed by the ehloride of ealeinm, and although moisture in the atmosphere beiug is too minute to effect ordinary experiment, it must not be nerlodueed hy this means quantity of material in the flask being limiter, or other negleeted where, from the R 1
has an important bearing on the result. In this latter case another chloride-of-caleimm tule is to be attached to the aperture b, and the air must be drawn through by means of a suction-tube applicd at d." - C. G. W.s Chemical Manipulation.

The commercial value of the carbonates of potash and soda may equally well be determined by ascertaiuing the quantity of dilute sulphurie aeid required to neutralise them.-C. G. W.

CARBONIC ACID. (Equivalent, 22. CO^{2}.) A compound of carbon and oxygen. The formula of carbonic acid as generally received is CO^{2}, but such an expression is doubtless ineorrect. In the first plaee, there are several goorl reasons for supposing carbonie aeid to be bibasie. If, moreover, we must have some definition of an equivalent, and the neeessity for some rule on the subject is obvious, we ean find none so convenient, so muel in harmony with ehemieal phenomena geuerally, as that whieh insists on the uuiversality of four-volume formulæ for the eompounds of carbon, or, in other words, organic substances. Of course this rule assumes the adoption of the atomie weights commouly ennployed in tbis eountry. In this case earbonic oxide beeomes represented by $\mathrm{C}^{2} \mathrm{O}^{2}$ and carbonic aeid by $\mathrm{C}^{2} \mathrm{O}^{4}$. Nevertheless, for all the purposes of chemistry, as applied to "arts, manufactures, and mines," it will be sufficieut to represent the carbonates by the older and better known formula.-C. G. W.

Carbonic acid is destitute of eolour, has a sour smell and an acidulous pungent taste ; it iuparts to moist, but not dry, litmus-paper a transieut reddish tint, and weighs, per 100 eubic inches, $47 \cdot 19$ grains, and per cubic foot, $815 \cdot 44$ grains, a little nore than $3 \frac{3}{3} \mathrm{oz}$. avoirdupois. It nay be eondensed into the liquid state by a pressure of 40 atmospheres; and this liquid may tben be solidified by its own sudden spontaneous evaporation. If air contains more than 15 per cent. in bulk of this gas, it beeomes unfit for respiration and combustion, animal life and burning bodies being speedily extinguished by it.

Carbonic acid is eonstantly given off by animals during respiration; and ordinary combustion being the enmbination of earbon with oxygen, this acid is formed in enornous quantities in all our manufactories and by our ordinary fires.

Carbonic acid is eonsequently eontinually being poured into the air. The purity of the atmosphere is, however, maintained by the action of the vegetable world, all plants removing carbonic aeid from the air, and, under the influence of light, decomposing it again into carbon, which goes to the formation of wood, and oxygen, whieh is given out to the atmosphere.

Notwithstanding tbis beautiful provision of Nature, we find earbonie acid aecumulating in caverns, deep wells, and long-closed eellars, rendering them dangerous. This gas, being much denser than common air, ean be pumped out of any place containing it. Milk of lime-quicklime mixed with water-may be used with advantage to purify the air of a sunk apartment, by its affinity for, or power of absorbing this aërial acid.

In the natural eondition of the atmosphere, from 4 to 6 volumes of carbonie acid exists in every 10,000 volumes of air. This aeid gives the fresh aud pleasant tastc to spring-water and to all fermented drinks.
Nany springs are very highly cbarged with this aeid, and form a sparkling beverage, as Seltzer water (Selterswasser) and the like. Large quantities of similar water are made artificially in this enuntry, and sold under the names of Soda Water, Ac̈rated Water, \&c. - See "Ure"s Dietionary of Chemistry."
CARBONIC OXIDE. (Equivalent 14. CO.) Carbonie acid is readily deprived of half its oxygen at a red heat by a variety of substanees, and so reduced to carbonic oxide.
This gas is presumed to eontain two volumes of carbonic vapour and one volume of oxygen eondensed into two volumes, so that its eombining measure is two volumes. Carbouie oxide is 14 times heavier than hydrogen. It is very fatal to animals, and when inspired in a pure state almost inmediately produces coma. It has never been liqueficd. It is easily kindled, and burns with a pale blue flame like that of sulphur, combining with half its volume of oxygen, and forming carbonic acid, which retains the original volume of the earhonic oxide. This eombustion is often witnessed in a eoke or ehareoal fire. The carbonie acid produeed in the lower part of the fire is converted into carbonie oxide as it passes up throngh the hot embers, and afterwards burns with a pale. blue flame where it meets the air. - Graham.

CARBUNCLE. Λ gem mueh prized by the aneieuts, and in high repute during the middle ages, from its supposed mysterious potrer of emitting light in the dark. Benvenuto Cellini affirms, in his treatise on jewellery, that he had sceu the carbuncle glowing like a coal with its own light.
"The garnet was, in part, the carbnenlus of the aneients, a term probably also applied to the spinel and oriental ruby. The Alabandie carbuncles of Pliny were so
called because cut and polished at Alabanda. Hence the name Almandine now in usc. Pliuy describes vessels of the capacity of a pint formed from earbuncles, 'non claros ac plerumque sordidos ac semper fulgoris horridi,' devoid of lustre and beauty of colour, - wbich probably were large common garnets." - Dana.
CARBO-HYDRIDE, commonly HYDROCARBON. A term used to deuote those bodies which consist of carbon and hydrogen only. The number of hydrocarbons now known is very great, and the list is increasing every day. They were very little understood until lately, but so mueb bas now been done that the anomalics aud difficulties attending thcir history are rapidly disappearing. Altbough the number of individual bodies is, as has been said, very considerable, they are derived from a few great families. The principal are the following:-
Homologues of Olefiant gas.
" Methyle.
" \quad Marsh gas.
" \quad Berzole.
Isomers of Turpenthine.

The otber families which yield hydroearbon derivatives are less important than the above, and will not be noticed berc.
It is eurious that the destructive distillation of organie matters is, of all operations, the most fruitful source of tbese hodies. Coal yields a great number, the nature varying with tbe temperature. When ordinary coals are distilled at very high temperatures, as in the production of gas, hydroearbons belouging to the first four families are produced, and also a considerable quantity of naphthaline; but when, on the other hand, they are distilled at as low a heat as is compatible with their thorough decomposition, they yield fluid hydrocarbons, principally belonging to the first two elasses, accompanied, however, by a considerable quantity of paraffine. The homologues of olefiant gas have acquired extreme interest, owing to the brilliant results obtained by MM. Berthelot, aud De Luca, by Cahours, and Hofmann in the study of tbeir derivatives. Tbe homologues of methyle have attracted considerable attention, in consequence of tbe successful isolation, by MM. Frankland aud Kolbe, of the singular group of hydrocarbons known as the organie radicals, and which, until then, were regarded as hypothetical bodies, existing only in combination.
The hydrocarbous homologues with benzole not only cxist in considerable quantity in ordinary coal napbtba, but are produced in a great variety of interesting reactions. Those at present known are contained in the following 'Table:-

Table of the Physical Properties of the Benzole Series.

Name.	Formula.	Boiling Point.	Specific Gravity.	Specific Gravity of Vapour.	
Benzole - -	$\mathrm{C}^{12} \mathrm{H}^{6}$			Experiment.	Theory.
Toluole - - -	$\mathrm{C}^{1+1 / 1} \mathrm{I}^{\text {8 }}$	$176{ }^{\circ}$	0.850	$2 \cdot 77$	$2 \cdot 699$
Xylole - - -	$\mathrm{C}^{16} \mathrm{H}^{10}$	259	$0 \cdot 870$	$3 \cdot 26$	$3 \cdot 183$
Cumole - - -	$\mathrm{C}^{18} \mathrm{H}^{12}$	298	- -	- 3.9	$3 \cdot 668$
Cymole - -	$\mathrm{C}^{20} \mathrm{H}^{14}$	298 347	- 0.861	$3 \cdot 96$ $4 \cdot 65$	$4 \cdot 150$
		347	0.861		$4 \cdot 636$

Benzole has already been sufficiontly described, and will not, therefore, be further alluded to. All these hydrocarbons yield a great number of derivatives, when treated with various reagents. By first treating them with stroug uitric acid, so as to obtain nitro-compounds, that is to say, tbe original substance in which an cquivalent of hydrogen is replaced by liyponitrie acid (NO^{4}), strongly odorous oils are produced. When treated with sulphide of ammonium or protaeetate of irou, these oils become reduced, and yield a very interesting series of volatile organie bases or alkaloids; these are aniline, toluidine, xylidinc, cumidine, and cymidine. Mr. Barlow has shown that special precautions are necessary in converting cymole into nitrocymole, preparatory to the formation of the alkaloid cymidine. Cymole is aeted on too violently by nitric acid to allow of the nitro-compound being formed, freezing nixture, be is taken of cooling the acid and hydrocarbon, by means of a wben well formed, may allowing them to react on eaeh other. The nitro-eomponnd lately acquired special importance in the ordinary manner. These alkalies lave Perkins has succeeded in producing from them. Paraffine is a solid lyydrocarbon of great in

CARD, CARDBOARD.

coal tar. When coal is distilled for the purpose of producing gas, the temperature is so high as to be unfavourable for its production, and eonsequently mere traces only are found in ordinary coal tar. But if any kind of coal be distilled at the lowest possible temperature, not only is the resulting naphtha of much lower density than that produced in the ordinary manner, but considerable quantities of paraffine are found in the distillate. The last-mentioned substance is every day becoming more important, in consequence of the valuable illuminating properties that have been found to belong to it. Colourless, inodorous, hard at all moderate temperatures, it forms the most elegant material for candles yet discovercd. Sce Paraffine.

Modern researches have shown that the hydrocarbons generally are formed on one, type, viz., hydrogen. Assuming hydrogen in the frec state to be a double molecule, HH, the hydrocarbons are formed by the substitution of one or two equivalents of a positive or negative radical for one or two of the equivalents of hydrogen; thus methyle, the formula of which (for four volumes) is ${ }^{C^{2} H^{3} H^{3}}$ or $\mathrm{C}^{4} \mathrm{H}^{3} \mathrm{H}^{6}$, is hydrogen in which both equivalents are reflected by methyle. Olefiant gas is hydrogen in which one equivalent is replaced by the negative radical acetyle, or vinyle, and so on.

There is one large class of hydroearbons the rational formulæ for which are not known, and which will probably remain in this condition for some time. We allude to the numerous essential oils isomeric with oil of turpentine. Many of these have almost the same boiling point and precisely the same vapour density as their type; but in odour, fluidity, density in the liquid state, and various other minor points, are essentially different. The following Table exhibits some of their physical pro-perties:-

Table of the Physical Properties of some Isomers of Oil of Turpentine.

An inspection of the above Table will show that while, beyond doubt, a great number of essential oils are truly isomeric with turpentine, there are some the constitution of which is by no means well established.

The above account of some of the more prominent hydrocarbons is necessarily brief and imperfect ; partly because the limits of this work preclude the possibility of entering minutely into the details of their history, and partly beeause many of them are described at greater length in other articles, especially under Naphrita.-C. G. IV.

CARBURETTED HYDROGEN. A compound of carbon and liydrogen. See Coal Gas, and consult Ure's Dictionary of Chemistry.

CARD, CARDBOARD, called also pastcboard, from the eircumstance that several shects of paper are pasted together to form the board or eard, which is then subjected to very great pressure between rollers.

A patent machine for cutting cards was invented by Mr. Dickinson. It consists of a pair of rollers with circular revolving cutters, the edges of which are intended to act against each other as cireular shears; and the pasteboards, in passing between these rollers, are cut by the circular shears into cards of the required dimensions. These rollers are mounted in suitable standards with proper adjustments, and are
made to revolve by a band and pulley connceted to the axle of a crank, or by any convenicnt meaus. Fig. 421 is a front view of this machine: $a a$ and $b b$ are the two rollers, the upper one turning upon an extended axle, bearing in the standards, the lower one upon pivots. These rollers are formed by a series of circular blocks, between a series of circular steel cutters, which are slidden on to iron shafts, and held together upon their axle by nuts screwed upat their ends. The accurate adjustment of the cutters is of the first importance to their correct performance; it is therefore found necessary tointroducespiral springs within the blocks, in order to press the cutters up to their proper bearings. A section of one of the blocks is shown at

fig. 422 , and an end view of the same at fig. 423, with the spiral springs inserted.
At the outer extremity of the axle of the roller a, a rigger c, is attached, whence a band passes to a pulley d, on the crank shaft e, to which a fly wheel f, is affixed, for crank shaft, the upper roller action uniform. Rotatory motion being given to the the friction against the edges of the cutters.
Fiy. 424 is an end view of the rollers, showing the manner in which the pasteboards are guided and conducted between the cutters. In front of the machinc a movable frame g, is to be placed, for the purpose of receiving the pasteboards, preparatory to cutting them into cards, and a stop is screwed to this frame for the edge of the pasteboard to bear against, which stop is adjustable to suit different sizes. From the back of a ratchet whecl i, fixed extends, the extremity of which acts against the periphery round, the frame is made to rise and fall upon its pivots hence, as the roller goes the pasteboard up to the cutters; at upon its pivots, for the purpose of guiding the sides of the standards (shown by dots ine time a rod k, hanging in arms from confines it, while the cutters take hold, and racks. 421), falling upon the pasteboard, of the rollers, are placed as at $l l$, by means of which the out of the grooves.

As various widths of cards will require to be cut by this machine, the patentee proposes to have several pairs of rollers ready adjusted to act together, when mounted in the standards, in preference to shiftiug the circular cutters, and introducing blocks of
greater or less width.
The second part of the invention is a machinc for pasting the papers, and pressing the sheets together to make pasteboard. This machine consists of scveral reels on which the paper is to be wound, along with a paste trough, and rotatory brushes.
Damped paper is to be wouud upon two reels, and conducted from thence over two circular brushes; by these brushes rolving in the paste trough supply paste to two pressed together by rollers to make the apers are to be pasted upon one side, and then drawn ou to a table, and it remains there until and; after this, the pasteboard is other rollers, by which it is subjected to the necessary pently dry to be wound upon enamelled by the use of porcelaiu-clay, white lead, and pubnitre. Cards are glazed or CARDS (Curdes, Fr. ; Karden, Germ.) are instrumubnitrate of bismuth. the fibres of wool, cotton, or other analogous bodies, to arranich serve to disentangle of fleece, and thereby prepare them for being spun into uniform them in au orderly lap ness and the levelness of the yarn, as well as the beanty of the thrcads. The fineenters, depend as much on the regularity and perfection of the cloth into which it subsequent opcrations of the factory. The quality of the of the carding. as upon any that of the cards than upon any attention or skill in the carding depends more upon nearly an automatic process, conducterl by young women operative, since it is now

Cards are formed of a sheet or fillet of leather piereed with a multitude of small holes, in whiel are implanted small staples of wire with bent projecting ends ealled teeth. 'Thus every piece of wire is double toothed. Whe leather is afterwards applied to a flat or eylindrieal surface of wood or metal, and the eo-operation of two or more sueh surfaees constitntes a eard. The teeth of eards are made thieker or slenderer, aecording as the filaments to be earded are coarser or finer, stiffer or more pliant, more valuable or eheaper. It is obviously of great importance that the teeth should be all alike, equably distributed, and equally inelined over the surface of the leather a degree of precision whieh is seareely possible with handwork. To judge of the diflieulty of this manipulation, we need only inspeet the annexed figures, 425, 426. The wire must first be bent at right augles in c and d, fig. 427, then eaeh braneh must receive a seeond bend at a and b at a determinate obtuse angle, invariable for eaeh system of eards. It is iudispensable that the two angles $c a e$ and $d b f$ be mathematically equal, not only as to the twin teeth of one staple, but through the whole series : for it is easy to see that if one of the teeth be more or less sloped than its fellow, it will lay hold of more or less wool than it, and render the earding irregular. But though the perfeet regularity of the teeth be important, it is not the sole condition towards makiug a good eard. It must be always kept in view that these teeth are to be implanted by pairs in a piece of leather, and kept in it by the eross part $c d$. The leather must therefore be piereed with twin holes at the distance $c d$: and piereed in sueh a manner that the slope of the holes, in reference to the plane of the leather, be invariably the same; for otherwise the length of the teeth would vary with this angle of inelination, and the eard would be irregular.

A third condition essential towards produeing perfeet regularity, is that the leather ought to be of the same thickuess throughout its whole surfaee, otherwise the teeth, thongh of the same length and fixed at the same angle, would be rendered unequal by the different thieknesses of the leather, and the operation of earding would be in

consequenee extremely defeetive. Fig. 425 shows the eard-teeth aetiug against eaeh other, as indicated by the arrows in two opposite direetions; in fig. 426 they work one way.

Of late years very complex but eomplete and well-aeting maehines have been construeted for splitting the leather or equalising it by shaving, for bending and eutting the wires, and implanting them in the leather, into holes piereed with perfeet regularity. Card maehines whieh fashion the teeth with great precision and rapidity, and pieree the leather, have been for a considerable time in use at Halifax, in Yorkshire, a town famous for the exeellenee of its eard-eloth, as also Leeds, Glasgow, and several other plaees. The wires and the leather thus prepared are given out by the manufaeturer to women aud ehildren, who put them together.
The simplest maehine for equalising the leather whieh ean be employed, is that of MM. Serive of Lille, where the leather is drawn forwards by a roller over a solid horizontal table, or bed, and passed uuder a nieely adjusted vertieal blade, whieh shaves it hy a seraping motion to a perfeetly uniform thiekness. About one-half the weight of the leather is lost in this proeess and in the subsequent squaring and trimming.
A maehine for making eards, invented by a Mr. Ellis of the United States, for which a first patent was obtained in this eountry by Joseph Cheeseborough Dyer, Esq., of Manelester, in 1811, and a seeond and third with further improvements in 181 . and 1824 , is one of the most elegant automatons ever applied to produetive industry. It is however neeessarily so eomplieated with different mechanisus as to reuder its representation impraetieable in such engravings as are compatible with the seope of this dietionary. The following general deseription of its constitueut parts must therefore suffice.

The first thing to be done after having, as above, prepared the long sheets or fillets of leather of suitable length, breadth, and thiekness, for making the eards, is to stretel the leather, and hold it firmly; whieh is aeeomplished by winding the fillet of leather upon the roller or drum, like the warp roller of a loom, and then eoudueting it upwards, between guide rollers, to a receiving or work roller at the top of the maehine, where the fillet is held fast by a cramp, by which means the leather is kept stretched.

Secondly, the holes are picrecd iu the leather to reccive the wire staples or teeth of the eard, by means of a sliding fork, the points of whieh are presented to the faee of the leather; while the fork is made to advance and recede continually, by the ageney of levers worked by rotatory eams upon a revolving main shaft.
The points of the fork being thus made to penetrate into the leather, the holes for receiving the staples are piereed, at regular distanees and in correet order, by shifting the leather fillet so as to bring different parts of its surface opposite to the points of the sliding fork. This is done by eams, or indented wheels and gear, which shift the guide rollers and confining drums laterally, as they revolve, and eonsequently move the fillet of leather at intervals a short distance, so as to present to the points of the fork or piereer at every movement, a different part of the surface of the leather.

Thirdly, the wire of which the teeth or points of the card are to be made, is supplied from a coil on the side of the machine, and is brought forward at intervals, by a pair of sliding pineers, whieh are slidden to and fro through the ageney of levers actuated by rotatory eams upon the main shaft. The pincers having advanced a distanee equal to the length of wirc intended to form one staple, or two points, this length of wire is pressed upon exactly in the middle by a square piece of steel, and being there confined, a eutter is brought forward, which cuts it off from that part of the wire held in the pineers.

The length of wire thus separated and confined is now, by a movement of the machine, bent up along the sides of the square steel holder, and shaped to three edges of the square, that is, formed as a staple; and in the same way, by the continued movements of the maehine, a succession of pieces of wire are eut off, and bent iuto staples for making the teeth of the eard as long as the meehanism is kept in aetion.
Fourthly, the wire staple thus formed is held with its points or ends outwards, closely contiguous to the forked piereer deseribed above, and by another movement of the meehanism the staple is protruded forward, its end entering in the two holes made previonsly in the leather by sliding of the fork.
While tbe wire staple is being thus introduced into the leather, its legs or points are to be beut, that is, formed with a knee or angle, whieh is the fifth object to be effected. This is done by means of a small apparatus consisting of a bar or bed, which bears up against the under side of the wire staple when it has heen passed half-way into the holes in the leather, and another bar above it, whieh being brought down behiud the staple, bends it over the resisting bar to the angle required; that is, forms the knee in eaeh leg. A pusher now aets behind the staple, and drives it home into the leather, which eompletes the operation.

The leather being thus conducted, and its position shifted before the piereer progressively, a suceession of the above-deseribed operations of eutting the wire, forming the staple, passing it into the leather, and bending its legs to the angular form, prorluces a sheet of eard of the kind usually employed for earding or combing wool, cotton, and other fibrous materials. It may be necessary to add, that as these wire staples are required to be set in the leathers, sometimes in lines erossing the sheet, whieh is called ribbed, and at other times in oblique lines, called twilled, these variations are produced by the positions of the notehes or steps upon the edge or periphery of the cam or indented whell, whieh shifts the guide rollers that hold the fillet or sheet of leather
as already described. as already described.

CARDS, PLAYING. (Cartes à jouer, Fr.; Karten, Germ.) Playing cards were probably invented in the East. In Italy eards originally bore the name of naibi, and, they are still, in Spain and Portugal, ealled naipes, signifying, in the Oriental laugrages, divination. Cards were first painted by hand: the art of printing eards was discovercd in Germany between 1350 and 1360. It has been stated that eards were in use in Spain in 1332: in 1387, John I., King of Castile, prohibited their use. In France, we find that card-playing was practised in 1361; and at the end of the 14 th ecntury, we find Charles V1. amusing himself with eards during his sickness. The figures on modern eards are of French origin, and are said to have been invented between 1430 and 1461 .
Mr. de la Rue obtained, in February, 1832, a patent for certain improvements in the manufacture of playing eards, which he distributed under three heads: first, printing the pins, and also the picture or eourt-eards, in oil colours, by means of types or bloeks; secondly, effeeting the same in oil colours by means of lithography; and thirdly, gilding or silvering borders, and other parts of the eharacters, by the printing process, cither by types, bloeks, or lithography.

In the ordinary mode of manufacturing playing cards, their devices are partly produced by eopperplate printing, and they are filled up with water colours by the means called stencilling.

The patentec does not purpose any material alteration in the deviecs or forms upon
the cards, but only to produce them with oil colours; and, to effeet this, he follows precisely the same mode as that practised by calieo printers.

A set of blocks or types, properly devised, are produeed for printing the different pips of hearts, diamonds, spades, and clubs, or they are drawn, as other subjects, in the usual way, upon stone. The ink, or colour, whether blaek or red, is to be prepared from the best Freneh lamp-black, or the best Chinese vermilion ground in oil, and laid on the types and bloeks, or on the stone, in the same way as printer's ink, and the impressions taken on thiek drawing-paper, by meaus of a suitable press, in the ordinary manner of printing.

The picture or court-cards are to be produced by a series of impressions in different colours, fitting into each other exaetly in the same way as in printing paper hangings, or silks and calicoes, observing that all the eolours are to be prepared with oil.

For this purpose a series of blocks or types are to be provided for each subject, and which, when put together, will form the whole devicc. These bloeks are to be used separately, that is, all the yellow parrs of the pieture, for instance, are to be printed at one impression, then all the red parts, next all the flesh colour, then the blue portions, and so on, finishing with the black outlines, whieh complete the picture.

If the same is to be done by lithograpliy, there must be as many stones as there are to be colours, each to print its portion only; and the impression, or part of the pieture, given by one stone must be exactly fitted into by the impression given from the next stone, and so on until the whole subject is complete.

A superior kind of card is proposed to be made, with gold or silver devices in parts of the pictures, or gold or silver borders round the pips. This is to be effeeted by printing the lines whieh are to apperr as gold or silrer, with gilder's size, in place of ink $0 r^{\circ}$ eolour; and immediately after the impression has been given, the face of the card is to be powdered over with gold dust, silver, or bronze, by means of a soft cotton or wool dabber, by whieh the gold, silver, or bronze will be made to adhere to the pieture, and the superfluous portions of the metal will wipe off by a very slight rubbing. When the prints are perfeetly drg, the face of the eard may be polished by means of a soft brush.

If it should be desirable to make these improved eards to resemble ivory, that may be done by preparing the faee of the paper in the first instance with a eomposition of size and fine French white, and a drying oil, mixed together to about the consistenee of cream; this is to be washed over the paper, and dried before printing, and when the eards are finished they will exactly resemble ivory.

The only thing remaining to be deseribed, is the means by whieh the suecessive impressions of the types, blocks, or stones forming the parts of the pictures, are to be brought exactly to join each other, so as to form a perfect whole design when complete ; this is by printers ealled registering, and is to be effected mueh in the usual way, by points in the tympan of the press, or by marks upon the stones.

The parts of the subject having been all aceurately eut or drawn to fit, small holes are to be made with a fine awl through a quire or more of the paper at once, by placing upon the paper a gauge-plate, having marks or guide-holes, and by observing these, the same sheet laid ou several times, and always made to correspond with the points or marks, the several parts of the pieture must inevitably register, and produce a perfeet subjeet.

Of Playing Cards, 119,740 paeks were impotted in 1856.
CARMINE. (Carmin, Fr.; Karminstoff, Germ.) The eolouring matter of the eochineal insect. See Cochineal.

There are several methods of preparing earmine, the following being the most approved:-

Dr. Pereira speaks highly of this proeess. A decoction of the black eochineal is made iu water ; the residue, ealled carmine yrounds, is used by paper-stainers. To the decoction is added a precipitant, usually biehloride of tin. The decoction to which the bichloride has been added is put into a shallow vessel and allowed to rest. Slowly a deposit takes place, which adheres to the sides of the ressel, and the liquid being poured off, it is dried: this preeipitate is earmine. The liquid, when coneentrated, is called liquid rouge.

By the Old German Process, carmine is prepared by means of alum without any other addition. As soon as the water boils, the powdered cochiueal is thrown into it, stirred well, and then boiled for six minutes; a little ground alum is added, and the boiling is continued for three minutes more. The vessel is removed from the fire, the liquor is filtered, and left for three days in porcelain vessels, in the eourse of which time a red matter falls down, whieh must be separated and dried in the shade. This is earmine, which is sometimes previously purified by washing. The liquor, after three days more, lets fall an inferior kind of earmine; but the residuary eolouring matter may also be separated by the muriate of tin.

The proportions for the above process are 580 parts of elear river water, 16 parts of eochineal, and 1 part of alum : there is obtained from $1 \frac{1}{2}$ to 2 parts of earmine.

Another Carmine with Tartar:-To the boiling water the cochineal is added, and after some time a little eream of tartar; in eight minutes more we add a little alum, and continue the boiling for a minute or two longer. Then take it from the fire and pour it into glass or porcelain vessels; filter, and let it repose quietly till the earmine falls down. We then deeant and dry iu the shade. The proportions are 8 pounds of water, 8 oz. of cochineal, $\frac{1}{2}$ oz. of cream of tartar, $\frac{3}{4} \mathrm{oz}$. of alum, and the produet is an ounce of carmine.

The Process of Alxon or Langlois.- Boil two pails and a half of river water (30 piuts), throw into it, a little afterwards, a pouud of cochineal, add a filtered solution of six draehms of earbonate of soda and a pouud of water, and let the mixture boil for half an hour ; remove the copper from the fire, and let it cool, inclining it to one side. Add six drachms of pulverised alum, stir with a brush to quickeu the solution of the salt, and let the whole rest 20 minutes. The liquor, which has a fine searlet colour, is to be earefully deeanted into another vessel, and there is to be put into it the whites of two eggs well beat up with half a pound of water. Stir again with a brush. The eopper is replaced on the fire, the alumina becomes conerete, and carrics down the eolouring matter with it. The copper is to be taken from the fire, and left at rest for 25 or 30 minutcs, to allow the carmine to fall down. When the supernatant liquor is drawn off, the deposit is placed upon filter-eloth stretched upon a frame to drain. When the carmine has the consistence of eream cheese, it is taken from the filter with a silver or ivory knifc, and set to dry upon plates, covered with paper, to sereen it from dust. A pound of eochineal gives in this way an ounce and a half of carmine.
Process of Madame Cenette of Amsterdam, with salt of sorrel.-Into six pails of river water boiling hot, throw two pounds of the finest coelineal in powder; continue the ebullition for two hours, and then add 3 oz . of refined saltpetre, and after a few minutes 4 oz . of salt of sorrel. In ten minutes more take the copper from the fire, and let it settle for four hours; then draw off the liquor with a siphon into flat plates, and leave it there for three weeks. Afterwards there is formed upon the surface a pretty thiek mouldiness, which is to be removed dexterously in onc pelliele by a slip of whalcbone. Should the film tear and fragments of it fall down, they must be removed with the utmost care. Decant the supernatant water with a siphon, the end of which may touch the bottom of the vessel, because the layer of carmine is very firm. Whatever water remains must be sucked away by a pipette. The earmine is dried in the shade, and has an extraordinary lustre.

Carmine by the Sult, of Tin, or the Carmine of China.- Boil the cochineal in river water, adding some Roman alum; then pass through a fine cloth to remove the coehincal, aud set the liquor aside. It becomes brighter on keeping. After having heated this liquor, pour into it, drop by drop, solution of tin till the carmine be preeipitated. The proportions are one pailful of water, 20 oz . of cochineal, and 60 grains of alum, with
a solution of tin containing 4 oz . of the metal. a solution of tin containing 4 oz . of the metal.

To make Ordinary Carmine.

Take 1 pound of cochineal in powder;
3 drachms and a half of carbonate of potash ;
3 draehms of alum in powder;
3 drachms and a half of fish-glue.
The eochineal must be boiled along with the potash in a copper containing five pailfuls of water (60 pints) ; the ebullition being allayed with cold water. After boiling a few minutes the copper must be taken from the fire, and placed on a table at such an angle as that the liquor may be conveniently transvased. The pounded alum is then thrown in, and the decoction is stirred; it changes colour immediately, and inclines to a more brilliant tint. At the end of fifteen minutes the cochineal is deposited at the bottom, and the hath becomes as clcar as if it had been filtered. It contains the colouring matter, and probably a little alum in suspension. We decant it then into a in a great deal of watel. the earmine is perecived to rise formed, like what takes plaee in clarifiet surface of the bath, and a coagulum is be immediately taken from the fire, and its eontents be stirred with a spatupper must course of fifteen or twenty minutes the earmine is deposited. liquor is dceanted, and the deposit must be drained upou a fiter The supernatant linen. If the operation has been well conducted, the carmiter of fine canvas or* readily under the fingers. What remains after the precipitation of the carme crushes much loaded with colour, and may be employed very adpitation of the carmine is still lakes. See Lake.

There is sold at the shops diffcrent kinds of carmine, distinguished by numbers, and possessed of a corresponding value. This differenee depends upon two causes, cither' upon the proportion of aluminat added in the precipuation, or of a certain quantity of vermilion put in to dilute the colour. In the first case the shade is paler, in the sccond, it lias not the same lustre. It is always easy to discover the proportion of the adnlteration. By availing ourselves of the property of pure earmine to dissolve in water of amuonia, the whole foreign matter remains untouched, and we may estimate its amount by drying the residuum.

Carmine is, according to Pelletier and Caventou, a triple compound of the colouring substance and an animal matter contained in cochincal, combined with an acid added to effect tlic precipitatiou. The most successful investigator into the colouring matter of the cochincal has been Mr. Warren de la Rue. This clemist had the opportunity of submitting the living insect to microscopical examination. He found it to be covered with a white dust, which was likewise observed on the adjacent parts of the eactus leaves on which the animal feeds. This dust, which he considered to be the excrement of the animal, has, under the microseope, the appearance of white curved cylinders of a very uniform diameter. On removing the powder with cther, and piercing the side of the insect, a purplish-red fluid exudes, which contains red colouring matter, in minute granules assembled round a colourless nucleus. These groups seem to float in a colourless fluid, which appears to prove, that whatever may be the function of the colouring matter, it has a distinct and marked form, and docs not pervade, as a mere tint, the fluid portion of the insect. To this colouring matter, Mr. De la Rue has given the name of Carminic Acid, which see.

There are some remarkable pecnliarities about the production of carmine: the shade and character of the colour are altered by slight, very slight, differences of the temperature at which it is prepared; and with every variation in the circumstances of illumination, a change is discovered in the colour. Sir H. Davy relates the following anecdote in illustration of this:-
"A manufacturcr of carmine, who was aware of the supcriority of the French colour, went to Lyons for the purpose of improving his process, and bargained with a celebrated manufacturer in that city for the acquisition of his secret, for which he was to pay 1000 . He saw all the process, and a beautiful colour was produced, but he found not the least difference in the French method and that which had been adopted by himself. He appealed to his instructor, and insisted that he must have kept something concealed. The man assured him that he had not, and invited him to inspect the process a second timc. He very minutely examined the water and the materials, which were in every respect similar to his own, and then, very much surprised, he said: ' I have lost both my money and my labour ; for the air of England does not admit of our making good carmine.'-'Stay,' said the Frenchman, 'don't deceive yourself; what kind of weather is it now?'-'A bright sunny day,' replied the Englishman. 'And such are the days,' replied the Frenchman, 'upon which I make my colour : were I to attempt to manufacture it on a dark and cloudy day, my results would be the same as yours. Let me advise you to make your carmine ore sunny days.' "

Experiments on this subject have proved that coloured precipitates which are brilliant and beautiful when they are precipitated in bright sunshine, are dull, and suffer in their gencral character, if precipitated in an obscure apartment, or in the dark.

To revive or brighten Carmine - We may brighten ordinary carmine, and obtain a very fine and clear pigment, by dissolving it in water of ammonia. For this purpose we leave ammonia upon carmine in the heat of the sun, till its colour is cxtracted, and the liquor has got a fine red tinge. It must be then drawn off and precipitated, by acetic acid and alcohol, next washed with alcohol, and dried. Carmiue dissolved in ammonia has been long employed by painters under the name of liquid carminc.
Carmine is the finest red colour which the painter possesses. It is principally employed in miuiature painting, water colours, and to tiut artificial flowers, because it is more transparent than the other colours.

This valuable pigment is often adulterated with starch. Water of ammonia cnables us to detect this fraud by dissolving the pure carmine, and leaving the starchy matter, as well as most other sophisticating substances. Such debased carminc is apt to spoil with damp.

Of Carmine, 9726 oz . werc imported in 1856.
CARMINIC ACID. The following is the best method of obtaining, in a state of purity, the colouring principle of cochincal, or carminic acid. The ground cochineal is boiled for about twenty minutes with fifty times its weight of water; the strained decoction, aftre being allowed to subside for a quarter of an hour, is decanted off and precipitated with a solution of the acetate of protoxide of lead, acidulated with acetic
acid (1 acid to 6 of the salt). The washed precipitate is decomposed by hydrosulphuric acid (sulphuretted hydrogen), the colouring matter precipitated a seeond time with acidulated aeetate of protoxide of lead, and decomposed as before. The solution of earminic acid thus obtained is evaporated to dryness, dissolved in boiling absolute alcohol, dissolved with a portion of carmiuate of protoxide of lead, which has been reserved (for the separation of the phosphoric acid), and then mixed with ether, to precipitate a small portion of nitrogenous matter. This filtrate yields, upon evaporatiou in vacuo, pure carminic aeid. Wheu thus prepared, it is a purple-brown friable nass, transparent when viewed by the microscope, and pulverisable to a fine red powder, soluble in water and in alcohol in all proportions, and very slightly soluble in ether, which does not however precipitate it from its alcoholic solution. It decomposes at temperatures above 136°. The aqueous solution has a feebly acid reaction, and does not absorb oxygen from the air ; alkalies change its colour to purple; in the alcoholic tincture, they produce purple precipitates; the alkaline earths also produce purple preeipitates. Alum gives with the acid a beautiful crimson lake, but only upon the addition of a little ammonia. The acetates of the protoxides of lead, copper, zinc, and silver give purple precipitates; the latter is immediately deeomposed and silver deposited. Protochloride and bichloride of tin give no precipitates, but change the colour to a deep crimson.

The analyses of carminic acid led to the formula $\mathrm{C}^{29} \mathrm{H}^{44} \mathrm{O}^{16}$. The compound of protoxide of copper appeared to be the only salt that could be employed with any certainty for the determination of the atomic weight, as the otler salts furnished no satisfictory results. The salt of copper was prepared by adding cautiously to an aqueous solution of earminic acid, acidulated with acetic acid, acetate of protoxide of copper, so as to leave an excess of carminic aeid in the liquid. When dried it is a brown-coloured hard mass.-Lielig and Kopp's Report.
CARDAMOM. The fruit of the Eletharia cardamomum, or the true officinal cardamom. Cardamoms are produced naturally and by cultivation in Malabar, at Travancore, and the western part of Soonda. The Malabar cardamoms arc distinguished in commerce as shorts, short-longs, and long-longs. The three sorts are brought from Bombay iu chests, the shorts fetching from 3d, to 6d. per pound more than the longs.
The small cardamom was analysed in 1834 by Trommsdorff; he obtained the following results:-Essential oil, $4 \cdot 6$; fixed oil, $10 \cdot 4$; a salt of potash connbined with colouring matter, 2.5 ; fecula, 3.0 ; nitrogenous mucilage with phosphate of lime, 1.8 ; yellow colouring matter, 0.4 ; and woody fibre, 77.3 .

Cardamom seeds are employed needicinally, and for flavouring cordials.
Of Cardamosss, 88,132 lbs. were imported in 1856.
CARNELIAN, or CORNELIAN. (Cornaline, Fr.; Korneol, Germ.; Cornalina, Ital.) A reddish variety of chaleedony, generally of a clear bright tint; it is sometimes of a yellow or brown colour, and it passes into common chalcedony through greyish red. Herntz, by his analysis, shows that the colour is due to oxide of iron. He found

Peroxide	ron	-	-		-				Per Ceñt.
Alumina	-	-	-				-		0.050
Maguesia	-	-	-	-	-	-	-	-	0.081
Potash -	-	-	-	-	-				0.028
Soda	-	-	-	-	-	-			0.0043

the remainder being Silica.-Dana.
Carnelians are the stones usually employed when engraved for seals. The French give to those carnelians which have the utmost transparcney and purity, the name of Cornaline d'ancienne roche. See Agate.

The late James Forbes, Esq., long a resident in India, and with ample means of referenee to the province of Guzerat, thus describes the locality of the carnelian mines:-
"Carnelians, agates, and the beautifully variegated stoncs improperly called Mocha Stones, form a valuable part of the trade at Cambay. The best agates and carnelians are found in peculiar strata, thirty feet under the surface of the earth, in a small tract among the Rajepiplee hills on the banks of the Nerbudda; they are not to be met with in any other part of Guzerat, and are generally cut and polished in Cambay. On being taken from their native bed, they are exposed to the heat of the sun for two years: the longer they remain in that situation, the brighter and deeper will be the colonr of the stone. Fire is sometimes substituted for the solar ray, but with less effect, as the stones frequently crack, and seldons acquire a brilliant lustrc. After having undergone this process, they are boiled for two days, and sent to the manufacturers at Cambay. The agates are of different hues; those generally called car-
nelians are dark, white, and red, in shades from the palest yellow to the deepest scarlct.
"The variegated stoncs with landscapes, trecs, Mnd water beautifully delincated, arc found at Copper-wange, or, morc properly, Cubbeer-punge, 'The Five Tombs,' a plaee sixty miles distant."-Oriental Memoirs, vol. i. p. 323, 2nd ed.

At Neemoudra, a village of the Rajepiplee district, and three miles cast, are some celebrated carnelian mines. The country in the immediate vicinity of the mines is but little cultivated; and on aceount of the jungles, and their inhabitants the tigers, no humau inhabitants are found nearer than Rattumpoor, which is seven miles off. The miners have huts at this plaee when stones are burned.

The earnclian mines are situated in the wildest parts of the jungle, and eonsist of numerous slafts worked down perpendieularly about 4 fect wide, the deepest about 50 feet. Somc extend at the bottom in a horizontal dircction, but usually not far, the nature of these pits being sueh as to prevent their being worked a second year, on aceount of the heavy rains eausing the sides to fall in; so that new ones must be opened at the conclusion of every rainy season. The soil is gravelly, and consists chiefly of quartz sand, reddened with iron and a little elay. The nodules weigh from a few ounces to even two or three pounds, and lie elose to cach other, but for the most part distinct, not being in strata, but scattered through the masses in great abundance.

On the spot, the carnelians are mostly of a blackish-olive eolour, like common dark flints, others somewhat lighter, others still lighter with a milky tinge; but it is quite uncertain what appearance they will assume after they have undergone tbe process of burning.

From Neemoudra they arc carried by the merchants to Cambay, where they are eut, polished, and formed into beautiful ornaments, for which that city is so justly celebrated.-Copeland, Bombay Résearches; Hamilton's Description of Hindostan, 4to. 1820.

The stones from Cambay, are offered in commeree, cut and uncut, as roundish pebbles from 1 to 3 inches in diametcr. The eolour of red earnelian of Cambay varies from the palest flesh-colour to the dcepest blood-red ; the latter being most in demand for seals and trinkets. The white are searce, but when large and uniform they are valuable; the yellow and variegated are of little estimation in the Bombay market.

The following is a statement of the Carnelians exported by sea from the port of Bombay to foreign and Indian stations not subjeet to the Presideney of Bombay, from 1st May, 1856, to 30th April, 1857 :-

Total value in rupees, 69,046 ; the rupee being valued at two shillings.
CARPET. (Tapis, Fr.; Teppich, Germ.) A thiek woollen fabric of variegated colours, for covcring the floors of the better sort of apartments. This luxurious manufacture took its origin in Persia and Turkey, whence the most beautiful patterns were wont to come into Europe; but they have been for some time surpassed by the workmanship of France, Great Britain, and Belgium. To form a just conception of the elegant and ingenious processes by which earpets are made, we should visit the royal estahlishment of the Gobelins at Paris, where we should sec the eclebrated carpet manufactory of the Savounerie, which has been transported thithcr. A detailed set of engravings of this art is given by Roland de la Platière in the first and sccond volumes of the Encyclopédie Méthodique, to which we refer our readers, as a due exposition of its maehines and operations would far excced the scope of tbe present volume.

The warp, says Mr. Roland, being the foundation of the fabric, ought to be of finc wool, equally but firmly spun, and consist of three yarns twisted into one thread. The yarns that are to form the velvety surfaee of the carpet, ought also to be of the best quality, but soft and downy in their texturc, so that the dye may penctratc every filament. Hemp or linen yarns are likewise employed in this manufaeturc, as a woof, to bind the warp firmly together after eaeh shoot of the velvety threads. Thus we see that good carpeting consists essentially of two distinet webs woren at the same time, and firmly decussated together by the woof threads. Hence the form of the
pattern is the same upon the two sides of the eloth, only the eolours are reversed, so that what was grcen upon one side becomes red or black upon the other, and vice versat. The smaller the figures the more frequent the deeussation of the two plancs, and the firmer and more durable the fabric.
The earpet manufaeture, as now generally praetised, may be distributed into two systems - that of double fabries, and that eut in imitation of velvet. Of late years the Jacquard loom has been mueh used in weaving earpets, the nature of whieh will be found fully explained under that title.

For the sake of illustration, if we suppose the double earpets to be eomposed of only two colours, the prineiple of weaving will he easily understood: for it is only necessary to raise the warp of each web alternately for the passage of the shuttle, the upper web being entirely above when the under web is being woven, or deeussated, and vice versâ. In the Brussels earpet the worsted yarn raised to form the pile, and make the figure, is not eut; in the Wilton the pile is eut to give it a velvety aspeet and softness. In the imperial Brussels earpet the figure is raised above the ground, and its pile is eut, but the ground is uneut; and in the royal Wilton the pile is both raised higher than in the common Wilton, and it is eut, whereby it has a rieh eushionlike appearance. Thc eloth of all these superior earpets consists of woollen and linen, or hemp; the latter being put upon a bcam, and brought, of eourse, through heddles and a reed; but as its only purpose is to bind together the worsted fabrie, it should not be visible upou the upper faee of the earpet. The worsted yarn is wound upon small bobbins or pirns, with a weight affixed to each, for giving proper tension to the threads. The number varies, for one web, from 1300 to 1800 , aecording as the earpet is to be 27 or 36 inehes wide; and they are placed, in frames, behind the loom, filled with differently eoloured yarn, to eorrespond with the figure. This worsted warp is then drawn through the harness, heddles, aud reed, to be associated with the lincn yarn in the compound fabrie.
In Kidderminster carpeting, both warp and weft appear upon the face of the eloth, whereas, in the Brussels style, only the warp is seen, its binding weft being fine liempen or linen threads. The three-ply imperial earpct, ealled the Seoteh, is coming very mueh into vogue, and is reekoned by many to be little inferior in texture, look, and wear to the Brussels. Kilmarnoek las acquired merited distinetion by this ingenious industry. In this fabrie, as well as in the two-ply Kidderminster, the weft predominates, and displays the design; but, iu the Freneh earpets, the worsted warp of the web shows the figure. Plain Venetian earpets, as used for stairs and passages, The woven in simple looms, provided merely with the eommon heddles and reed. eompletely from the view. Figured Venetian earpets are woven in the two-ply weft derminster looms, and are provided with a meehanism to raise the pattern wly Kidworsted warp. The weft is an alternate shoot of worsted and linen yarn, and must
be eoncealed. be eoneealed.
The following figure and deseription will explain the eonstruetion of the three-ply imperial Seoteh and two-ply Kidderminster earpet loom, whieh is merely a modifieation of the Jaequard métier. The Brussels earpet loom, on the contrary, is a drawboy loom on the damask plan, and requires the weaver to have an assistaut. Fig. 428, a A A, is the frame of the loom,
eonsisting of four upright posts, with eonsisting of four upright posts, with
eaps and eross-rails to bind them together. The posts are about six feet high. c c, the cloth-beam, is a wooden eylinder, six inches or thereby in diameter, of suffieient length to traverse the loom, with iron gudgeons in the two cnds, whiel work in bushes in the side frame. On one end of this beam is a ratehet wheel, with a tooth to keep it from turning round baekwards by the tension of the web. D, the lay, with its recd, its urder and upper shell, its two lateral rulers or swords, and rocking-tree above. There are grooves in the upper and under shell, into whieh the reed is fitted. e, the heddles, or haruess, with a double neek attaelied to eaeh of the tower or eard mcehanisms, fr, of the Jaequard loonı. The hed-

dies are connected and work with the treddles B B , hy means of eords, as shown in the figure. G a are wooden boxes for the cards. H, the yarn, or warp beau.

In draw-loous of every kind, there is no sinkingof any portion of the warp, as in plain eloth-weaving; but the plane of the eloth is plaeed low, and the threads under whieh the shuttle has to pass are raised, while all the rest remuins stationary. The harness part of this earpet-loom is moved by an assistant boy or girl, who thus allows the weft to be properly deeussated, while the weaver attends to working the front mounting or heddles. Fig. 429, a repre-
 sents the frame of a earpet draw-loom; B is a box or frame of pulleys, over which the cords of the harness pass, and are then made fast to a pieee of wood, seen at w, whieh the weavers eall a table. From the tail of the harness the simples deseend, and to the end of eaeh is attached a small handle \mathbf{G}, called a bob. These handles being disposed in pairs, and their regularity preserved by means of a perforated board c , it is merely neeessary to pull every handle in sueeession, the weaver, at the same time, working his treddles with his feet, as in any other loom. The treddles are four in number, the fabrie bcing that of plain or alternate eloth, and two treddles allotted for each web. The harness part of the earpet draw-loom is furnished with mails, or metallie eyes, to save frietion ; two threads being drawn through eaeh eye. The design or pattern of a earpet is drawn upon eross-rule paper, exaetly in the same way as every other kind of faney-loom work, and is transferred from the paper to the mounting by the rules for damask weaving. Suppose that a double web is so mounted that every alternate thread of the one may be raised, so as to form a suffieient shedway for the shuttle, without depressing the other in the least: theu suppose another web placed upon the former, at sueh a distance that it will exaetly toueh the eonvexity of those threads of the former which are raised. Then, if the threads of the latter web are sunk while the others are raised, the two would be entirely ineorporated; but if this be only partially done, that is, at particular places, only those parts immediately operated upon will be affeeted by the aetion of the apparatus. If the earpet is a two-eoloured pattern, as blaek and red, and if upon the upper surface, as extended in the loom, red flowers are to he represented upon a blaek ground, then all those speeies of design paper whieh are eoloured may he supposed to represent the red, and those whiel are vacant the black. Then eounting the spaces upon the paper, omit those whieh are vaeant, and eord those which are coloured, and the effeet will be produeed. But as the two webs are to be raised alternately, whatever is eorded for the first handle must be passed by for the second, and vice versâ, so that the one will form the flower, and the other the ground.
The board by whieh the simples are regulated appears at F . D shows the weights.
Mr. Simeox, of Kidderminster, has patented an invention for an improved manufaeture of earpets, in whieh, by dispensing with the Jacquard loom, as well as the iron wires and tags usually employed to produee terry fabries, sueh as Brussels earpets and eoaeh-laee, he ean work his unachinery at greater speed and more economieally. His seeond improvement relates to the manufaeture of fabries with ent pile, sueh as Wilton or Axminster earpets. He makes a ribbed fabric, greatly resembling the Brussels earpet, by a combination of woollen and linen warp and weft, arranged in sueh a manner that the woollen warp in the form of a ribbed surfaee may eonstitute the face of the fabrie, while the linen warp forms the ground or back of the fabric. The plan he prefers, as most resembling the Brussels, consists in weaving the fabrie as nearly as possible in the ordinary way, except that, instead of inserting a tag or wire to form the rib or terry, the patentee throws in a thick shoot or weft of woollen or eotton, over whieh the woollen warp is drawn, and forms a rib; the woollen warp being afterwards bound down with a liuen shoot or weft in the ordinary way. The woolleu warp employed beiag all of one eolour, the falbric produeed will be plain or unomamented, with a looped or terry pile; and npon this fabrie any design may be printed from bloeks.

The looms differ from the former ehiefly in the employment of two separate shuttles, one for the woollen and one for the linen weft. These sliuttles are both thrown by the same piekers and the same pieking-sticks, and consequently the shuttle boxes must be moved up and down as may he required, in order to allow the pieker to throw the proper sluttle. It will also be neecssary to work the lealds in a suitable manner to
form the proper slureds, in order that the woollen faee may he properly bound to the linen ground.

The second part of his invention relates to the produetion of fabries with a eut pile, like the Axminster or Wilton rugs or carpets. The ordinary mode of making some of these fahrics is to weave the pattern in hy means of a Jacquard apparatus, and pass the woollen warp over a rod or tag, whieh is alterwards eut hy passing a suitahle knife along it, therehy producing the eut pile. The patentee produces the design and surface of the fahric from the weft in place of the warp as heretofore. For this purpose the weft is made to consist of thick woollen shoots, which must be printed or stained with suitable colours, precisely as the woollen warps have heen heretofore done; and the woollen shoot, when thrown in, is, hy means of suitably formed hooks, pulled up and turned into loops, which, when they are properly secured to the foundation or ground of the fabric, are afterwards cut by means of knives or cutting instruments, with which the hooks are furnished, for the purpose of releasing them from the loops and producing the cut pile. The patentee ohserves, that cotton and other cheap materials may he employed with great advantage in the productiou of some of these fabrics.

Another invention of improvements in manufaeturiug figured fahrics, principally designed for the production of carpeting, patented by Mr. James Templeton, of Glasgow, consists in producing the pattern either on one or both sides of the fahric, hy means of printed weft; also in the use of printed party-eoloured fur or weft, in the manufaeture of Λ xminster carpets and other similar fabries. This invention is also applicable to the production of figured chenille weft for the manufacture of ehenille shawls. -Under the new arrangements of the Patent Office the speeifieations of these patents are cheaply ohtained.
Carpets, Printed. Mr. Wood has taken a patent for weaving and printing carpets, using an ordinary Brussels carpet loom. After putting in the wire, or otherwise forming the loop, he throws in the usual linen shont, on the face, to hind it; and then, for the hack shoot, he throws in a thick soft weft. Or, to make a better edge and more elastic hack, he employs the ordinary two linen shoots, - one ou the face and the other in the hack, - and then (or before throwing in the seeond linen shoot) lie draws down only one-half of the lower portion of the linen warp (being oue-quarter of the whole), and throws in the thick shoot which is driven up hy the hatten or lay, so as to cover the second linen shoot, which is then inside the fabric : from the thiek shoot being bound only hy each alternate yarn of the warp, it will be more elastic than if bound more closely hy using every yarn; while the second linen shoot, having half the warp over it, holds down the face or first shoot; and any inequality in the taking up of the linen warp by one portion of it hinding in a greater substance than the other, is remedied hy drawing down the different portions in succession.

In printing Brussels and other pile carpets, the patentee first provides a table, long enough to reeeive the entire length or piece of the carpet to be printed: at eaeh end of the table there is a frame of the same height or level, sufficiently long to reeeive the cylinder printing machine when off the fahric; and on the surface of the table the printing blanket is laid hetween two rails or guides, whieh are fixed at exactly the same distance apart as the carpet is wide, so as to keep it in one position, and to form the guides for the printing cylinders. The carpet is fastened to one end of the tahle, and is then laid on the top of the same, and dravru tight at the other end hy a roller, which is furnished with a ratchet wheel and click. The printing cylinders are mounted in a movahle frame, containing a enrresponding numher of colour cans and feeding rollers, to supply them with colour. This printing apparatus is passed over the table, and between the guide rails (the patters on the eylinder being coloured, and hearing upon the carpet), to the frame at the other end of the table, and then hack again; and this process is repeated until the fahric is sufficiently coloured. In order to insure each part of the pattern or printing surface coming again and again on the same place, toothicd whecls are affixed on the axis of the printing cylinders, which apparatus passes over the fabric, every part of the pattern will fequently the printing Instead of the printing apparatus heing passed haek again will fall on the same place. by the application of movable frames at thed haek again over the same tahle, it may, another table, and so suceessively. See Recs. CARRAGEEN. (Chondrus crispus.) Irish moss. See Alg
called hy some writers vegetuble jelly 1 res eonstituent of carrageen moss. It is appears to me (Percira) to be a peculiar modification of muge, by others pectin. "It call it carrageenin. It is soluble in boiling water, and its solutiou forms a preeipitate efore diaeetate of lead, and silicate of potash, and, if sufficiently coneentrated, preeipite with on cooling. Carrageenin is distinguished from ordinary gum by its aquegelatinises,
not producing a precipitate on the addition of alcohol, from starch by its not assuming a blue colour with tincture of iodine ; from animal jelly, by tincture of nutgalls cansing no precipitate ; from pectin, by acctate of lead not throwing down arything, as well as by no mucie acid being formed by the action of nitric acid." The composition of earrageenin dricd at $212^{\circ} \mathrm{F}$., aceording to Schmidt, is represeuted by the formula $\mathrm{C}^{12} \mathrm{H}^{10} \mathrm{O}^{10}$, so that it appears to be identieal with starcl aud sugar. Mulder, however, represents it by the formula $\mathrm{C}^{24} \mathrm{H}^{10} \mathrm{O}^{10}$.

CARTHAMUS, or SAFFLOWER (Carthumus tinctorius; Carthane, Fr.; Fürber distel, Germ.), the flower of which alonc is used in dyeing, is an anuual plant eultivated in Spain, Egypt, and the Levant. There are two varietics of it - one which has large leaves, and the other smaller ones. It is the last whieh is cultivated in ligypt, where it forms a ensiderable article of commeree.

Carthamus contains two colouring inatters, one yellow and the other red. The first alone is soluble in water: its solution is always turbid; with reagents it exhibits the characters usually remarked in yellow eolouriug matters. The acids render it lighter, the alkalies dcepen it, giving it more of au orauge hue; both produce a small dun precipitate, in consequence of whieh it becomes clearcr. Alum forms a preeipitate of a deep yellow, in small quantity. The solution of tin and other metallic solutions cause preeipitates which have nothing remarkable in them.

The yellow matter of carthamus is not employed; but in order to extraet this portion, the carthamus is put into a bag, which is trodden under water, till no more colour can be pressed out. The flowers, which were yellow, become reddish, and lose in this operation nearly one-half of their weight. In this state they are used.

For extraeting the red part of carthamus, and afterwards applying it to stuff, the property which alkalies possess of dissolving it is had recourse to, and it is precipitated by an acid.
The process of dyeing consists, therefore, in extraeting the eolouring matter by means of an alkali, and precipitating it on the stuff by means of an acid.

This solution of carthamus is prepared with erystallised carbonate of soda, and it is precipitated by lenon juice. It has been remarked that lemons beginning to spoil are fitter for this operation than those which are less ripe, whose juice retains much mueilage. After squeezing out the lemon juice, it is left to settle for some days. The precipitate of carthannus is dried at a gentle heat upon plates of stone-ware; from which it is detaehed and very carefully ground with talc which has been reduced to a very subtile powder by means of the leaves of sliave-grass (preste), and successively passed through sieves of increasing fineness. It is the fineness of the talc, and the greater or less proportion which it bears to the carthamus preeipitate, which constitute the difference between the high- and low-priced safflower rouges.

Carthamus is used for dyeing silk, poppy, nacaral (a bright orange-red), cherry, rose colour, and flesh colour. The process differs according to the intensity of the eolour, and the greater or less tendeney to flame-colour that is wanted. But the earthamus bath, whose application should be varied, is prepared as follows : -

The carthamus, from which the yellow matter has been extraeted, and whose lumps have been broken down, is put into a trough. It is repeatedly sprinkled with crude pearl ashes or soda, well powdered and sifted, at the rate of 6 lbs . for 120 lbs . of carthamus; but soda is preferred, mixing earefully as the alkali is introduced. This operation is called amestrer. The amestred earthamus is put into a small trough with a grated bottom, first lining this trough with a closely woven cloth. When it is about haif filled, it is placed over a large trough, and cold water is poured into the upper one till the lower becomes full. The carthamus is then set over another trough till the water eomes from it almost colourless. A little more alkali is now mixed with it, and fresh water is passed through it. These operations are repeated till the earthamus be exhausted, when it turns yellow.

After distributing the silk in hanks upon the rods, lemon juice, brought in casks from Provence, is poured into the bath till it beeomes of a fine cherry eolonr; this is ealled turning the bath. It is well stirred, and the silk is immersed and turned round the slein-stieks in the bath, as long as it is pereeived to take up the colour. For ponceau (poppy colour), it is withdrawn, the liquor is run out of it upon the peg, and it is turned through a new bath, where it is treated as in the first. After this it is dried and passed through fresli baths, continuing to wash and dry it betwcen eaelt operation, till it has aequired the depth of eolour that is desired. When it has reached the proper point, a brightening is given it by turning it round the stieks seveu or eight times in a bath of hot water, to which about half a pint of lemon juice for each pailful of water has been added.

When silk is to be dyed poncean, or poppy eolour, it must be previonsly boiled as for white ; it must then reeeive a slight foundation of arnatto, as explaincd in treating of that substance. The silk should not be alumed.

The nacarats, and the decp cherry colours, are given precisely like the ponceaux, only they receive no arnatto ground; and baths may be employed which have served for the ponceau, so as to complete their exhaustion. Fresh baths are not made for the latter colours, uuless there be no occasion for the poppy

With regard to the lighter cherry-reds, rose colour of all shades and flesh eolours, they are nade with the second and last runuings of the earthamus, which are weaker. The decpest shades are passed through first.

The lightest of all these shades, which is an extremely delicate flesh colour, requires a little soap to be put iuto the bath. This soap lightens the colour, and prevents it from taking too speedily, and becoming uneven. The silk is then washed, and a little brightening is given it in a bath which has served for the deeper colours.

All these baths are employed the moment they are made, or as speedily as possible, because they lose much of their colour upon keeping, by which they are even entirely destroyed at the end of a certain time. They are, moreover, used cold, to prevent the colour from being injured. It must have been remarked, in the expcriments just described, that the canstic alkalies attack the extremely delicate colour of carthamus, making it pass to yellow. This is the reason why crystals of soda are prefcrred to the other alkaline matters.

In order to diminish the expense of the carthamus, it is the practice in preparing the deeper shades to mingle with the first and the second bath about one-fifth of the bath of archil.
Dobereiner regards the red colouring matter of earthamus as an acid, and the yellow as a base. His carthamic acid forms, with the alkalies, colourless salts, dccomposed by the tartaric and acetic acids, which precipitate the acid of a bright rose-red. Heat has a remarkable influence upon carthamus, rendering its red colonr ycllow and dull. Hence, the colder the water is by which it is extracted, the finer is the colour. counteracting this effect Fery rapidly, and hither to no mcans have becn found of shade, its dye must be given in a shady place, and the silk stuffs dyed with it must the preserved as much as possible from the light. Age is nearly as injurious as light, especially upon the dyc in a damp state. The colour is very dear; a thousand parts of carthamus contain only five parts of carthaminc.

In preparing the finest rouge, the yellow colouring matter bcing separated by washing with water, the red is then dissolved by the aid of alkali, and is thrown down on lincn or cotton rags, by saturating the solution with vegetahle acid. The colour is rinsed out of thesc rags, dissolved anew in alkalies, and once more precipitated by
lemon juice. The best and bags, which are placcd in freshest carthamus must be selected. It is put into linen colourless. The bags are then put into water, and kneaded till the water runs off till the colour is all expelled, and finally rinsed in running water vinegar, kneaded
The colouring matter of safflower has been examined water. much difference in carthamus of reputed good quality; by Salvétat, who has found of reod quality; a few of his results will

		1.	2.	3.	4.
Water Albumen	-	6.0	11.5	$4 \cdot 5$	
Yellow colouring matter a^{-}-	-	$3 \cdot 8$	40	8.0	1.8
" \quad, " $\mathrm{b}^{\text {- }}$	-	27.0 3.0	$30 \cdot 0$	30.0	26.1
Extraetive matter -	-	3.0	$4 \cdot 0$	6.0	$2 \cdot 1$
Waxy matter -	-	5.0	4.0	6.0	$4 \cdot 1$
Carthamine - -	-	1.0	$0 \cdot 8$	$1 \cdot 2$	1.5
Woody fibre - -	-	0.5 50.4	$0 \cdot 4$	0.4	0.6
Silica - - - -	-	50.4	$41 \cdot 77$	38.4	56.0
Sesquioxide of lron and Alumina		2.0 0.6	1.5	$3 \cdot 5$	1.0
" " Manganese -	-	$0 \cdot 1$	$0 \cdot 1$	1.6 0.3	0.5

Salvétat has found it advantageous to mix the red of safflower with the pigments used in poreclain painting for purple, carmine, and violet, colours which, in consequence avoid this, he imparte shade before and after firing, are very liable to mislead. To silver) by means of the red pigmeut (consisting of flux, gold, purple, and chloride of he desires to ohtain after firing.

CARVING BY MACHINERY is an art of comparatively modern date, nearly, if not the whole of the originators and iniprovers of it, heing men of the present
Vor. I.
day. It is true that the Medallion Lathe and many other applianees for ornamental turning and drilling ean claim a mueh earlier origin, but these can searcely be called earving machines, and are altogether ineapable of siding the cconomy of producing arehiteetural decorations of any kind. We are not aware of any practieal seheme for aeeomplishing this objeet prior to the patent of Mr. Joseph Gibbs, in 1829, whieh we believe was used by Mr. Nash in ornamentiug some of the floors of Buekingham Palace, and on many other works of inlaying and tracery. The cutting of ornamental forms in low relief seems to have been the principal object of the inventor; and this he aeeomplished satisfaetorily by a series of ingenious mechanical arrangements, which greatly reduced the eost, while securing unusual aecuracy in this kind of work. Some modifications of maehinery for copying busts, bosses, and other works in bold relief are also deseribed in Mr. Gibbs's patents, but these were never carried into sueeessful praetiee. The traecry and inlaying maehinc is illustrated by fig. 430, which is a plan of the maehine. A is a shaft eapable of vertieal

motion in its bearings, whieh are in the fixed framing of the maehinc; B, c, and D, E, are swing frames jointed together by a short vertical shaft a, and seeurely keyed to the shaft A. The point b is the axis of a revolving tool, which is driven by the belts c, d, e, and the compound pulleys f, g, h, which increasc the speed at eaeh step; $\mathbf{F}, \mathrm{G}, \mathrm{H}$, is the table on whieh the work is fixed; \mathbf{I}, K the work; and k, l, a templet of brass pierced with the horizontal form of the pattern to be produeed in the wood; this templet is seeurely fixed on the top of the work, or over it, and the machinc is adjusted for aetion.

There is a treadle, not shown in the figure, whieh enables the workman to lift or depress the shaft A , and the swing frames and tool attaehed to it; he can thus command the vertieal position of the tool with his foot, and its horizontal position with his hand by the handles m, n, whieh turn freely on a collar of the swing frame surrounding the mandril or tool holder. The tool having been brought over onc of the apertures of the templet when in rapid aetion, is allowed to sink to a proper depth in the wood underneath, and the smooth part of its shaft is then kept in contaet with the guiding edges of the templet and passed round and over the entire surface of the figure, until a reeess of the exact size and form of that opening in the templet is produced; this proeess is repeated for every other opening, and thus a scries of reeesses arc formed in the oak flooring planks whieh correspond with the design of the templets used. To complete the work it is requisite to eut out of some darker or differently coloured matcrial a number of thin pieees whieh will fit these reeesses,
and thesc are produced in the same way from templets which will fit the varions apertures of that first used; these picces are next glued into the recesses, aud the surface when planed and polished exhibits the pattern in the various colours uscd. For inlaying it is important that the cutting clge of the tool should travel in the same radius as the cyliudrical shaft, which is liept against the cdge of the templet; hut if the tool is a moulded one, a counterpart of its mouldings will be produced in the work, while the pattern, in planes parallel to that of the panel, will have the form of the aperturcs in the templet used. In tbis way, by great care in the preparation of the templets and the tools, much of the gothic tracery used in church architecture may be produeed, but the process is more applicable to Bath stone than to wood when moulded tools are requisitc.
Mr. Irving's pateuts for cutting ornamental forms in wood and storie are identical in priueiples of action and in all important points of construction with the arrangements previously described. In that of 1843 le particularly claims all combinations for accomplishiug the purpose, "provided the swing frame which carries the eutter, and also the table on which the article to be wrought is placed, have both the means of cireular motion." The picreed templet is the guiding power, and the work and templet are fixed on a circular iron table, which is at liherty to revolve on its axis. The swing frame which carries the cutter is single, as in Mr. Gibbs's eurved moulding maehiue, and its radius so adjusted, that an arc drawn by the tool would pass over the eentre of the circular table. The mode of operating with this machine was to keep the shaft of the tool against the guiding edge of the templet, by the joint movements of the table on its centre, and of the swing frause about its shaft; and it will he obvious that by this means any point of the table could be reached by the tool, and therefore any pattern of moulded work within its range produced, in the way already deserihed in speaking of Mr. Gibbs's machinery. But as these modifications of the original idea are not, strictly speaking, carving machines, seeing that they only produced curved mouldings, we need not further describe them.
Perhaps the most perfect carving machine which has been made for strietly artistic works is that used by Mr. Cheverton for obtaining his admirable miniature reductions of life-sized statuary; but we can only judge of the perfection of this machine by its work, seeing that the inventor has more faith in secrecy than patents, and has not made it public.
The carving maehincry which is best known, and las been most cxtensively used, is that invented by Mr. Jordan and patented in 1845, since which date it has beeu in constant operation in producing the carved decorations of the iuterior of the Houses
of Parliament.

Its principle of action and its construction is widely different from that above described, and it is capable of copying any carved design which can be produced, so far as that is possible by revolving tools; the smoothness of surface and slarpuess of finish is neither possible nor desirable, because a keen edge guided by a practised hand will not only produee a better finish, but it will aecomplish this part of the work at less cost; the only object of using machinery is to lessen the cost of production, or to save time; and in approaching towards the finish of a pieee of carving, there is a time when furtler progress of the work on the machine would be more expensive than to finish it by hand. This arises from the neeessity of using smaller tools towards the finish of the work to penetrate into its sharp recesses, and the necessarily slow rate at which these cut away the material; it is consequently a matter of commercial calculation, how far it is desirable to finisl on the machine, and when to deliver it into the hands of the artist, so as to secure the greatest economy. This depends in a great measure on the hardness of the material; rosewood, ebony, box, ivory, and statuary marble, should be wrought very nearly to a finish ; but lime, deal, and other soft woods slould only be roughly poiuted.
Fig. 431 is a plan of the maehine, fig. 432 a front elevation, and fig. 433 a side elevation. The same letters indicate the same part in all the figures. The carving machine consists of two distinct parts, each having its own peculiar motions quite independent of the other, but each capable of acting simultaneously and in unison with the other. The first, or horizontal part, is the bed plate "floating-table," \&cc., on Thich the pattern and work are fixed; all the motions of this part are horizontal. The second, or vertical part, is that which carries the cutters and tracer, the only The horizontal except the revolution of the tools, is vertical. a railway supported on consists of three castings : The bed plate A, B, C, D, which is frame, $\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$, mounted on whom the floor and fixed strictly level. The carrying this frame are plancd into (v) rails), and the "floatinc-table" plate (the long sides of mounted on whecls to travel on the rails of the carrying frame. P, which is also
"floating-table" because it can be moved in any horizontal direction with almost as much facility as if it were a floating hody. Primarily this tahle has two straight lined motions at right angles to each other, but by combination of thesc it may move over any figure in an horizontal plane; and because this is accomplished without angular motion ahout a centre, ceery point in the surface of the tahle moves through the same figure at the same time; hence the power of producing many copies of a pattern simultaneously.

The second, or vertical part of the machine, is a cast-iron bridge supported on columns across the centre of the bed plate; on the centre of this bridge piece is a wide vertical slide, 5,6 , with a (T) slotted bar on its lower edge; to this har the mandril heads or tool holders, $9,10,11$, are bolted, at such distances apart as suits the width of the work in hand, and in such numbers as it is convenient to work at one time. If the framing of the machine is massive and well fixed, six or eight narrow pieces may he carved at once; but if the width of the work is equal to half that of the tahle, only one can be done, as in that case half the table is required for the pattern. The motion of the vertical slide is governed by the workman's foot on the treadle, $\mathrm{R}, \mathrm{Q}, \mathrm{s}$; at s balance weights are placed, so as to adjust the foree with which the tools will descend on the work; any pressure on the foot-board m lifts the slide, and with it the tools and tracing point.

Returning to the horizontal part of the machine, d, e, f, g, is the pattern or original carving which is to he copied, and h, i, j, k, two copies in progress. The movements of the floating table are managed hy the workman with the hand-wheels U, v; the left hand, on u , directs the lateral motion on the frame, and the right, on v , directs the longitudinal motion on the hed plate; the left-hand movement is communicated by the cord x, x, which is fixed to hrackets w, w, underncath the table, and makes one turn round a small pulley on the axis of the wheel U. The right-hand movement is communicated by the cord z, which is fastened to each end of the bed plate, and

makes one or two turns round the pulley k . When at work the mian stands inside the frane of the bed plate, with his right foot on the board 18 and his hands on the steering wheels; on releasing the pressurc of the foot the vertical slide descends by its unbalanced weight uutil the tracer h comes in contact with the pattern; the cutters m, m, are made to revolve by stean power at the rate of seven thousand times per ninute, and are so shaped as to cut like a revolving gouge, so that they instantly cut away all the supcrfluous material they come iu contact with; and, by the time the tracer has been brought over every part of the pattern, the pieces h, i, j, h will have become exact copies of it.

So far as panel carving is concerned the whole machine has been deseribed; but it is requisite to claborate its construction a little more for the purpose of carving on the round, and copying subjects which require the blocks to be cut into in all possible directions. Various modifications have been used, but we shall only explain that which we think best adapted to ornamental carving. It is not requisite that we should go into the various applications of this machine, to the manufacturc of printing blocks, ship's blocks, gunstocks, letter cutting, tool handling, cabinet shaping, \&c. \&.c., all of which have been shown from time to time to be within its power; nor is it requisite to describe more recent inventions founded on it, as they will more properly come under other heads.

When the machine is intended to copy any form which can be carved by hand, the floating table is diffcrently constructed, but all other parts remain as before. In the floating table uscd for this purpose, therc is an opening in the centre of the table, and a turning plate, which is mounted a few inches above the lcvel of the table, to turn in bearings in standards. Underneath the turning plate, and forming a part of it, there is an arc of rather more than half a circle, having its centre in the axis on which the plate turns, and this are is cogged on its edge to fit the threads of the tangent serew on the axis of the wheel, so that by turning this wheel, and dropping its detent into any cog, the workman can fix the plate at any angle with the horizon. There are three chucks fitted into sockets of the turn plate, and these are similarly divided on their edges by holes or cogs, into which detents fall, so as to secure them steadily in any required position.

When in use onc chuck carries the patterv, and two other chucks the work. The process of carving is prccisely the same as bcfore; but in consequence of the work and pattern being so mounted that it can be turned into every possible position with respect to the cutters, any amount of undercutting which is possible in hand carving is also possible in machine carving.
In going through the process the workman will, of course, attack the work when it is placed in a favourable position for the tools to reach a large portion of its surface; and having completed as much as possible on that face, he will turn all the chucks through the same number of divisions; the pattern and work will still have the same relative position to each other as before, but an entirely new face of both will be presented to the tools; this will be carved in like manner, and then another similar cliange made, and so on until all has been completed which can be reached without changing the angular position of the turning plate. This can be done by the wheel, and when a sufficient number of these changes have been gone through, the work will be complete on every face, although the block may have required to be pierced through in fifty diffcrent directions.-T. B. J.

CASE-HARDENING is the name of the process by which iron tools, keys, \&c., lave their surfaces converted into steel.
Steel when very hard is brittle, and iron alone is for many purposes, as for fine keys, far too soft. It is therefore an important desideratum to combine the hardncss of a steely surface with the toughness of an iron body. These requisites are united by the process of case-hardening, which does not differ from the making of steel, except in the shorter duration of the process. The property of hardening is not possessed by pure malleable iron; but by a partial process of cementation the iron is converted exteriorly into steel, and is subsequently hardened to that particular depth. Tools, utensils, or ornaments, intended to be polished, are first manufactured in iron, and nearly finished, after which they are put into an iron box, together with vegetable or animal charcoal in powder, and cemented for a certain time. This treatment converts the external part into a coating of steel, which is usually very thin, because the time allowed for the cementation is much shorter than when the whole mass is to be converted into steel. Immersion of the heated pieces in water hardens the surface, which is afterwards polished by the usual methods. Moxon, in his "Mechanic Exercises," p. 56, gives the following receipt for casc-hardening:-"Cow's horn or hoof is to be baked or thoroughly dried and pulverised. To this add an equal quantity of bay salt; mix them with stale chamber-lcy, or white wine vinegar : cover the iron with this mixture, and bed it with the same in loam, or
enclose it in an iron box : lay it on the hearth of the forge to dry and harden : then put it into the fire, and blow till the lump has a blood-red heat, and no higher, lest the mixture be burnt too mueh. Take the iron out, and immerse in water to harden."

When the case-hardening is requircd to terminate at any particular part, as a shoulder, the objcct is left with a band or projection; the work is allowed to cool withont being immersed in water; the band is turned off, and the work, when hardened in the open fire, is only effected as far as the original cemented surface remains. This ingenious method was introduced by Mr. Roberts, of Manchester, who eonsiders the suceess of the case-hardening process to depend on the gentle applieation of the heat; and that, by proper management not to overheat the work, it may be made to penetrate threc-eighths of an inch in four or five hours. - Holtzapffel.

The recent applieation of prussiate (ferrocyanate) of potash to this purpose is a very interesting chemical problem. The piece of iron, after being polished, is to he made brightly red-hot, and then rubbed or sprinkled over with the above salt in fine powder, upon the part iutended to be hardened. The prussiate being decomposed, and apparently dissipated, the iron is to be quenched in eold water. If the process has bcen well managed, the surface of the metal will have bccome so hard as to resist the file. Others propose to smear over the surface of the iron with loam made into a thin paste with a strong solution of the prussiate, to dry it slowly, then expose the whole to a nearly white heat, and finally plunge the iron into cold water, when the heat has fallen to dull redness. Sec Steel.

CASHMERE, or CACHEMERE, a peeuliar textile fabrie first imported from the kingdom of Cashmere, and now well imitated in France and Great Britain. The material of the Cashmere shawls is the downy wool found about the roots of the hair of the Thibet goat. The year 1819 is remarkable in the history of French husbandry for the acquisition of this breed of goats, imported from the East under the auspices of their goverriment, by the indefatigable eourage and zeal of M. Jaubert, who cncountered every fatigue and danger to enrich his country with these valuable animals, aided by the patriotism of M. Ternaux, who first planned this importation, and furnished funds for cxecuting it, at his own expense and responsibility. He placed a portion of the flock brought by M. Jaubert, at his villa of St. Ouen, near Paris, where the climate seemed to be very favourable to them, sinee for several sucecssive years after their introduction M. Ternaux was cnabled to sell a great number of both male and female goats. The quantity of fine fleece or down afforded by eaeh animal annually is from a pound and a half to two pounds.

The wool imported into Europe comes by the way of Casan, the eapital of a government of the Russian empire upon the eastern bank of the Wolga ; it has naturally a greyish colour, but is easily bleached. Its price at Paris is about 6 s. the pound avoirdupois. The waste in picking, earding, and spinning, amounts to about one-third of its weight.

The mills for spinning Cashmere wool have multiplied very much of late years in France, and the prices of the yarn have fallen by from 25 to 30 per cent., notwithstanding their improved fineness and quality.

The oriental Cashmere shawls are woven by processes extremely slow and consequently costly, whenee their prices are very high. They are still sold in Paris at from 4000 to 10,000 franes a piece; and from 100 to 400 pounds sterling in London. It became necessary, therefore, either to rest satisfied with work which should have merely a surfaee appearance, or contrive economical methods of weaving, to produce the real Cashmere style with much less labour. By the aid of the draw-loom, and still better of the Jaequard loom, M. Ternaux first sueceeded in weaving Caehemere shawls perfectly similar to the oriental in external aspect, whieh became fashionable under the name of French Cachemere. But to construet shawls altogether identical on hoth sides with the eastern was a more diffieult task, which was aecomplished only at a later period by M. Bauson, of Paris.
In both modes of manufacture, the piece is mounted by "reading-in" the warp for the different leaves of the heddles, as is commonly practised for warps in the Jacquard looms. The weaving of imitation shawls is executed, as usual, by as many shuttles as there are colours in the design, and which arc thrown across the warp in the order established by the "reader." The greater number of these weft yarns being introduced main floating loose at web, when the composition of the shawls requires it, they rein the least the quality of the texture pieee and are cut afterwards, without affeeting weaving, which is worked up into carpets.
The weaving of the imitation of real cae The yarns intended to form the weft ale caehemere shawls is different from the above of the pattern to be imitated, but, besides only equal in number to that of the colour.
those used by embroiderers) are filled with these yarns as there are to be colours repeated in the breadth of the picee; which renders their number considerable when the pattern is somewhat complicated and loaded witt colours. Each of these small bobbius or shuttles passes through only that portion of the flower in which the colour of its yarn is to appear, aud stops at the one side and the other of the cloth exactly at its limit; it then returns upon itself after having crossed the thread of the adjoining shuttle. From this reciprocal intertexture of all the yarns of the shuttles, it results that although the weft is composed of a great many different threads, they no less constitute a continuous line in the whole breadth of the web, upon which the lay or batten acts in the ordinary way. Wc see therefore that the whole art of manufacturing this Cachemere cloth consists in avoiding the confusion of the shuttles, and in not striking up the lay till all have fulfilled their function. The labour does not exceed the strength of a woman, even though she has to direct the loom and work the treddles. Seated on her bench at the end opposite to the middle of the beam, she has for aids in weaving shawls from 45 to 52 inches wide, two girl apprentices, whom she directs and instructs in their tasks. About four hundred days of work are required for a Cachemere shawl of that breadth.

In the oriental process all the figures in relief are made simply with a slender pirn without the shuttle used in European weaving. By the Indians the flower and its ground are made with the pirn, by means of an intertwisting, which renders them in some measure independent of the warp. In the Lyonsimitation of this style, the leaves of the heddles lift the yarns of the warp, the necdles embroider as in lappet weaving, and the flower is united to the warp by the weft thrown across the piecc. Thus a great deal of labour is saved, the cye is pleased with an illusion of the loom, and the shawls cost little more than those made by the common fly shuttle.

Considered in reference to their matcrials, the French shawls present three distinct classes, which characterise the three fabrics of Paris, Lyons, and Nìmes.

Paris manufacturcs the French Cachemere, properly so called, of which both the warp and the weft are the yarn of pure Cachemere down. This web represents with fidelity the figures and the shades of colour of the Indian shawl, which it copies; the deception would be complete if the reverse of the piece did not show the cut ends. The Hindoo shawl, as woven at Paris, has its warp in spun silk, which reduces its price without impairing its beauty much.

Lyons, however, has made the greatest progress in the manufacture of shawls. It excels particularly in the texture of its Thibet shawls, the weft of which is yarn spun with a mixture of wool and spun silk.

Nîmes is remarkable for the low price of its shawls, in which spun silk, Thibet down, and cotton, are all worked up together.

It appears that M. J Girard at Sèvres, near Paris, has sncceeded best in producing Cachemere shawls equal in stuff and stylc of work to the oriental, and at a lower price. They have this advantage over the Indian shawls, that they are woven without seams, in a single piece, and exhibit all the variety and the raised effect of the eastern colours. Women and children alone are employed in his factory.
CASK. (Tonneau, Fr. ; Fass, Germ.) Much ingenuity has been displayed in cutting the curvilinear and bevelled edges of the staves of casks by circular saws. Sir John Robinson proposed many years back that the stave should be bent to its true curve against a curved bed, and that while thus restrained, its edges should be cut by two saws $s s$, placed in radii to the circle, the true direction of the joint as shown by the dotted circle fiy. 434, representing the head of the cask. Mr. Samuel Brown obtained a patent, in Nov. 1825, for certain improvements in the machinery for making casks. His mechanism consists in the first place of a circular saw attached to a bench, with a sliding rest, upon which rest, each piece of wood intended to form a stare of a cask is fixed; and the rest being then slidden forward in a curved direction, by the assistance of an adjustable guide, brings the piece of wood against the cdge of the rotatory saw, and causes it to be cut into the curved shape required for the edge of the stave. The second feature is an apparatus with cutters attached to a standard, and traversing round with their carrier upon a centrc, by means of which the upper and lower edges of the cask are cut round and grooved, called chining, for the purpose of receiving the heads. 'Thirdly, an apparatus not very dissimilar to the last, by which the straight picces of wood designed for the heads of the cask are held together, and cut to the circular fignre requircd, and also the bevelled edges produced. And fonthly, a machine in which the cask is made to revolve upon an axis, and cutting tool to traverse for the purpose of shaving the external part of the cask, and bringing it to a smooth surface.

The pieces of wood intended to form the staves of the cask having been cut to their
required length and breadth, are placed upon the slide-rest of the first mentioned machine, and confined by cramps ; and the guidc, which is a flexible bar, having been previously bent to the inteuded curve of the stave and fixed in that form, the rest is then slidden forward upon the bench by the hand of the workman, which as it advances (moving in a curved direction) brings the piece of wood against the edge of the revolving circular saw, by which it is cut to the curved shape desired.
The guide is a long bar held by a scries of movable blocks fitted to the bench by screws, and is bent to any desired curve by shifting the screws; the edge of the sliderests which holds the piece of wood about to be cut, runs against the long guide bar, and of consequence is conducted in a corresponding curved course. The circular saw receives a rapid rotatory motion by means of a band of rigger from any first mover; and the piece of wood may be shifted laterally, by means of racks and pinions on the side-rest, by the workman turning a handle, which is oceasionally necessary in order to bring the piece of wood up to, or away from, the saw.

The necessary number of staves being provided, they are then set round within a confining hoop at bottom, and brought into the form of a cask in the usual way, aud braced by temporary hoops. The barrel part of the cask being thus prepared, in order to effect the chining, it is placed in a frame upon a platform, which is raised up by a treddle lever, that the end of the barrel may meet the cutters in a sort of lathe above : the cutters are then nuade to traverse round within the head of the barrel, and, as they proceed, occasionally to expand, by which means the bevels and grooves are cut on the upper edge of the barrel, which is called chining. The barrel being now reversed, the same apparatus is brought to act against the other end, which becomes chined in like manner.

The pieces of wood intended to form the heads of the cask arennw to be cut straight by a circular saw in a machine similar to the first described; but, in the present instance, the slide-rest is to move forward in a straight course. After their straight edges are thus produced, they are to be placed side by side, and confined, when a scribing cutter is made to traverse round, and cut the pieces collectively into the circular form desired for heading the cask.

The cask having now been made up, and headed by hand as usual, it is placed between centres, or upon an axle in a machine, and turned round by a rigger or band with a shaving cutter sliding along the bar above it, which cutter, being made to advance and recede as it slides along, shaves the outer part of the cask to a smooth
surface.

Mr. Smart cuts the edges of thin staves for small easks on the ordinary saw-bench,

by fixing the thin wood by two staples or hooks to a curved block, the lower face of which is bevelled to give the proper chamfer to the edges, fig. 435. One edge having becn cut, the stave is released, changed end for end, and refixed against two pins which determine the position for cutting the second edge, and make the staves of one common width. The curved and bevelled block is guided by two pins $p p$, which euter a straight groove in the bench parallel with the saws. This mode of bending is from various reasons found inapplicable to large staves, and these arc cut, as shown in three views, fig. 436, whilst attached to a straight bed, the bottom of which is also bevelled to tilt the stave for chamfering the edge. To give the curve suitable $g g$ in the saw-bench, which the under side of the block run in two curved grooves very large circle, instead of in a staves to sweep past the saw in the arc of a the middle. Mr. Sinart obscrves (ight line, so that the ends are cut narrower than whilst straight, the edges become chans. Soc. of Arts, vol. xlvii.) that in staves cut although theoretically wrong is sufficiently near tor same angle throughout, which when the staves are cut whilst bent to their truc curvature.

The necessary flexibility which is reque curvature. obtained by steaming them in sitabrequired for bending the staves of casks is Taylor's patent machinery for making casks the in contact with rigid moulds. By cut, out of white Canada oak, to the sizc of thinty blocks intended for the staves are are well stcamed, and then sliced into pieces one-half or fy five, and smaller. They
at the rate of 200 a minute, by a process far more rapid and cconomical than sawing, the instrument being a revolving iron plate, of 12 or 14 feet diancter, with two radical knives arranged somewhat like the ironswof an ordinary plane or spokeslave.

CASSAREEP or CASSIREEPE. The concentrated juice of the roots of the bitter eassava, flavoured by aromatics. It is used to flavour soups, and other dishes, and is the basis of the West Iudian dish pepper-pot. In French Guiana, the term cabion is applied to a similar condiment. - Pereira.
CASSAVA. (Cassave, Fr.; Cassava, Gcrm.) Cassava, or Cassada Meal, are names given to the starch of the root of the Manihot utilissima, prepared, in the following manner, in the West Indies, the tropical regions of America, and upon the African coast. The tree belongs to the natural family of the Euphorbiacece.

The roots are washed, and reduced to a pulp by means of a rasp or grater. The pulp is put into coarse strong canvas bags, and thus submitted to the action of a powerful press, by which it parts with most of its noxious juice (used by the Indians for poisoning the barbs of their arrows). As the active principle of this juice is volatile, it is easily dissipated by baking the squeezed cakes of pulp upon a plate of hot iron. Fifty pounds of the fresh juice, when distilled, afford, at first, 3 ounces of a poisonous water, possessing an intolerable offensive smell ; of which 35 drops being administered to a slave convicted of the crime of poisoning, caused his death in the course of 6 minutes, amid horrible eonvulsions.*

The pulp, dried in the manner above described, concretes into lumps, which become hard and friable as they cool. They are then broken into pieces, and laid out in the sun to dry. In this state they afford a wholesome nutriment, and are habitually used as such by the negroes, as also by many white people. These cakes constitute the only provisions laid in by the natives, in their voyages upon the Amazon. Boiled in water with a little beef or mutton, they form a kind of soup similar to that of rice.

The Cassava cakes sent to Europe are composed almost entirely of starch, along with a few fibres of the ligneous matter. It may be purified by diffusion through warm water, passing the milky mixture through a linen cloth, and evaporating the strained liquid over the fire, with constant agitation. The starch, dissolved by the heat, thickens as the water evaporates, but, on being stirred, it becomes granulated, and must be finally dried in a proper stove. Its specific gravity is 1.530 - that of the other species of starch.

The product obtained by this treatment is known in commercc under the name of tapioca; and being starch very nearly pure, is often prescribed by physicians as an aliment of easy digestion. A tolerably good imitation of it is made by heating, stirring, and drying potato starch in a similar way.
The expressed juice of the root of manioc contains in suspension a very fine fecula, which it deposits slowly upon the bottom of the vessels. When freed by decantation from the supernatant liquor, washed scveral times and dricd, it forms a beautiful starch, which creaks on pressure with the fingers. It is called cipipa, in French Guiana; it is employed for many delicate articles of cookery, especially pastry, as also for hair powder, starching linen, \&c. This is imported into England from Rio Janeiro as Brazilian arrow root.
Cassava flour, as imported, may be distinguished from arrow root and other kinds of starch, by the appearance of its particles viewed in a microscope. They arc spherical, all about. $\frac{1}{1000}$ th of an inch in diameter, and associated in groups; those of potato starch are irregular ellipsoids, varying in size from ${ }_{300}{ }^{1}$ th to ${ }_{30}{ }^{1}$ th th of an inch ; those of arrow root have the same shape nearly, but vary in size from ${ }_{300}$ th to $\frac{1}{80}$ th of an inch; those of wheat are separate spheres $\frac{1}{1000}$ th of an inch.
The formula of Cassava starch is, $\mathrm{C}^{12} \mathrm{H}^{10} \mathrm{O}^{10}$, like the other starches. See Tapioca.
Cassava has for some years been imported into France, from Martinique, as la moussuche and la cipipa.
CASSIA. (Cinnamomum cassia.) A bark cmployed for flavouring. The cinnamon cassia is a native of China, and is cultivated in Java. It is imported from Singapore, Calcutta, Bombay, and Manilla. In 1856 we imported $1,408,021$ lbs., the conuputed real value being e 46,575 .
CASSIA BUDS. (Flores cassice immature.) The cassia buds and bark are both obtained from the same tree (Reeves). "According to the latest observations which the clder Nees has madc known, cassia buds arc the calyces (Fruchthelche) of Cinnamomum aromaticum, about $\frac{1}{4}$ th of their normal sizc. It is also said that they are collceted from Cinnamomum dulce which is found in China." - Martins, quoted by Percira.
The Exports of Cassia buds from Canton in 1831 werc $177,866 \mathrm{lbs}$; and in

- Memoir of Dr. Fermin, communicated to the Academy of Berlin, concerning experiments made at Cayenne, upon tho juice of the Mimloc.

1832 the Imports into Great Britain werc 75,173 lbs. In 1856 the Imports were 119,270 Ibs.

CASSIS, the black currant (Ribes nigra, Linn.), which was formerly cclcbrated for its medicinal properties with very little reason.

The only technical use to which it is now applicd is in preparing the agreeable liqueur called rutufiu, by the following French recipe:-Stone and crush 3 pounds of black currants, adding to the magma 1 drachm of cloves, 2 drachms of cinnamon, 4 quarts of spirit of wine, at 98° Baumé, and $2 \frac{1}{2}$ pounds of sugar. Put the mixture into a bottle which is to be well corked; let it digest for a fortnight, shaking the bottle once daily during the first 8 days; then strain through a linen cloth, and finally pass through filtering paper.
CASSITERITE. Oxide of Tin; Stream Tin. Strcam tin is the alluvial débris of tin veins. (See Tin One.) This is one of the very objectionable names, of which a very great number have, of late years, been introduced into the science of Mineralogy.

CASSIUS, purple powder of. A preparation used in the arts as a colour, chiefly for staiued glass and porcelain. It is also enployed in medicine by some French physicians, and has been prepared in the following manner: - 10 parts of acid chloride of gold are dissolved in 2000 parts of water. In another vessel, 10 parts of pure tin are dissolved in 10 parts of nitric acid mixed with 20 parts of hydrochloric acid, and this solution is diluted with 1000 parts of distilled water. The solution of tin is added by degrees to that of the acid chloride of gold, so long as any precipitate results. This is allowed to subside; it is then washed, filtered, and then dried at a very gentle heat. The tin salt above used contains both the protoxide and binoxide in certain proportions. The double compound of chloride of tin with sal ammoniac, called the pink salt of tin, is the preferable form ; as it is not altered by the atmosphere, is of definite composition, and when boiled with metallic tin it takes up just so much as will form the protochloride: 100 parts of pink salt require for this purpuse $10 \cdot 7$ parts of metallic tin.

Professor Graham, in his "Elements of Chemistry," gives the following account of the purple of eassins, and of its preparation. "When protochloride of tin is added to a dilute solution of gold, a purple powder falls. It is obtained of a finer tint when protochloride of tin is added to a solution of the sesquichloride of iron till the colour of the liquid takes a sbade of green, and the liquid in that state added, drop by drop, to a solution of sesquichloride of gold, frce from nitric acid, and very dilutc. After 24 hours a brown powder is deposited, which is sligbtly transparent, and purple-red, by transmitted light: when dricd and rubbed to powder, it is of a dull blue colour. Heated to redness it loses a little water, but no oxygen, and retains its former appearance. If washed with ammonia, on the filter, while still moist, it dissolves, and a purple liquid passes, which rivals the hypcrmanganate of potash in beauty. It may also be formed by fusing together 2 parts of gold, $3 \frac{1}{2}$ parts of tin, and 15 parts of silver, undel borax, to prevent the oxidation of the tin, and treating the alloy with nitric acid, to dissolve out the silver; a purple residue is left, containing the tin and gold that were employed."
"Berzelius proposed the theory that the powder of Cassius may contain the true protoxide of gold combined with sesquioxide of tin, $\mathrm{AuOSn}^{2} \mathrm{O}^{3}$, a kind of combination containing an assoeiation of three atoms of metal, which is exemplified iu black oxide of iron, spinele, Franklinite, and other minerals. A glance at its formula shows how readily the powder of Cassius, as thus represented, may pass into gold and binoxide of tin, $\mathrm{AuOSn} \mathrm{O}^{2}=\mathrm{Au}+2 \mathrm{SnO}_{2}$."- Graham and Watts.

CASTLLE SOAP, or SPANISH SOAP, is prepared with olire oil and a solution of caustic soda. There are two varieties, the white and the marbled. The marbled appearance is produced in the soap, by adding, as soon as it is made and separated from the speut ley, a fresh quantity of ley, and immediately a solution of the protosulphate of iron. A precipitate of oxide of iron is at oncc formed, and this gives the dark coloured streaks to the soap. By exposure to the air these strcaks become red, in consequence of the conversion of the black oxide of iron into the red or scsquioxide. See Soap.
CAST-IRON SCOURING. Cast-iron surfaces are said to be casily scourcd by adding a little of any kind of organic matter, such as glycerine, stearine, naphthaline, creosote to dilute sulphuric acid; zinc and brass yield to the same method, with great conomy of labour, time, and material.
CASTOR. The Beaver. Sec Furs.
CASTOR, or CASTOREUM. This name is given to a secretion of the Beaver (Castor fiber), contained in pear-shaped cellular organic sacs, placed near the genital organs of both the male and femalc animals. It is a substance analogous to civet and musk, of a consisteuce similar to thick honey. It lias a bittcr acrid taste; a powerful penetratiug, fotid, and very volatile sniell; but, when dricd, it becomes inodorous.

CATECHU.

Several ehemists, and in partieular Bouillon, Lagrange, Langier, and Hildebrandt have examined castor, and found it to be eomposed of a resin, a fatty substancc, a volatile oil, an extractive matter, benzoie aeid, and some salts.

The mode of preparing it is very simple. The sacs are eut off from the eastors when they are killed, and are dricd to prevent the skin being affeeted by the weather. In this state the intcrior substance is solid, of a dark eolour, and a faint smell; it softens with heat, and bceomes brittle by eold. Its fraeture bctrays fragments of membranes, indieating its organic strueture. When ehewed, it adheres to the teeth somewhat like wax; it has a bitter, slightly aerid, and nauseous taste.

The castor bags, as imported, are often joined in pairs by a kind of ligature. Sometimes the substanee whiel eonstitutes their value is sophistieated; a portion of the castoreum being extraeted, and replaeed by lead, elay, gums, or some other foreign matters. This fraud may be easily deteeted, even when it exists in a small degree, by the absence of the membranous partitions in the interior of the bags, as well as by the altered smell and taste.

The use of eastoreum in medicine is considerable, especially in nervous and spasmodie diseases; and it is often advantageonsly eombined with opium.

In English eommeree, two varieties of Ameriean eastor are made: one eallcd the Hudson's Bay and the other the Canadian - though both are imported by the Hudson's Bay Company. Castor is only used medieinally.
CASTORINE. A substance existing in castoreum. (See Castor.) Its chemieal formula is not known, and its entire history requires to be freshly investigated. It is obtained by treating the secretion of the castors with hot alcohol, and filtering through a Platamour's ebullition funnel. On cooling, the alcohol deposits erystals of a fatty substance. The eastorine is retained in the mother liquor, and is procured by evaporation on the water-bath to a small bulk, and then setting aside to allow crystals to form. Castorine erystallises in needles possessing a slight odour of eastoreum.C. G. W.

CASTOR OIL. The expressed oil of the seeds of the Palna Christi or Ricinus communis, a native tree of the West Indies and South Ameriea; but whieh has been eultivated in France, Italy, and Spain.

In England the eastor oil is cxpressed from the seeds by means of powerful hydrau. lie presses fixed in rooms artificially heated. It is purified by repose, decantation, and filtration, being bleaehed in pale-coloured Winchester quart bottles whieh are exposed to light on the tops of houses. Unbleaehed castor oil is certainly more aerid and possesses more purgative properties than such as has been long exposed to the light; we may therefore infer that the acrid resin of the oil has undergone some chemieal ehange. In America the oil is expressed from the seeds by pressure between heated plates. In the East Indies, women shell the fruit; the seeds are placed between rollers and erushed ; they are then put into hemp eloths, and pressed in the hydraulie press. The oil thus proeured is afterwards heated with water in a tin boiler, until the water boils, by whieh the mueilage or albumen is separated as a seum. The East Indian eastor oil is sold in England as cold drawn. The following is the eomposition of castor oil: -

-					Ure.	Saussure.
Carbon	-	-	-	-	74.00	74.178
Hydrogen-	-	-	-	-	$10 \cdot 29$	10.034
Oxygen	-	-	-	-	$15 \cdot 71$	$14 \cdot 718$
					100.00	$100 \cdot 000$

CATALYSIS.-A term introdueed to denote the very peeuliar phenomenon of one body establishing, by its mere presence, a like condition in another body to that whieh exists in itself. Thus a pieee of meat undergoing the putrcfaetive fermentation, almost immediately sets up a similar aetion in fresh meat, or produces in a saeeharine fluid that motion which is known as vinous fermentation. The aetion of the yeast plant,-a living organisation,--establishes an action throughout a large quantity of an infusion of malt, - fermcutation, or that disturbance which leads to the conversion of sugar into aleohol. This catalytie power is ill understood, and we are content to hide the imperfection of our knowledge under a sounding name.

CATECHINE. Catechuic Acid. When Gambir catechu is treated with water, an insoluble residne is left, whieh has been termed by Nees resinous tannin. Its eomposition is $\mathrm{C}^{15} \mathrm{H}^{6} \mathrm{O}^{6}$.
CA'IECHU, sometimes ealled Terra Japonica, is au extraet made from the wood of the tree Mimosa catechu, whieh grows in Bombay, Bengal, and other parts of India. It is prepared by boiling the ehips of the interior of the trunk in water, evaporating the solution to the consistence of syrup over the fire, and then exposing it in the sun to harden. It oceurs in flat rough cakes, and under two forms. The first, or the

Bombay, is of uniform texture, of a dark red colour, and of specific gravity 1.39. The second is more friable and less solid. It has a chocolate colour, and is marked inside with red streaks. Its specific gravity is 1.28 .

According to Sir H. Davy, these two species are composed as follows :-

			Bombay.	Bengal.
Tannin	-	-	-	$54 \cdot 5$
Extractive	-	-	-	-
Mucilage	$34 \cdot 0$	$41 \cdot 5$		
Insoluble matters, sand, and lime	-	6.5	36.5	
		5	8	

Areka nuts are also found to yield catechu : and catechu is prepared from them in Ceylon, for which purpose they are cut into pieces, watered in an earthen pot with solution of nitre, and have a little of the bark of a species of mimosa added to them. The liquor is then boiled with the nuts, and affords an inspissated decoction.

Good catechu is a brittle compact solid, of a dull fracture. It has no smell, but a very astringent taste. Water dissolves the whole of it, except the earthy matter, which is probably added during its preparation. Alcohol dissolves its tannin and extractive. The latter may be oxidised, and thus rendered insoluble in alcohol, by dissolving the catechu in water, exposing it for some time to a boiling heat, and evaporating to dryness.

The tannin of catechu differs from that of galls, in being soluble in alcohol, and more soluble in water. It precipitates iron of an olive colour, and gelatine in a mass which gradually becomes brown.

It has been long employed in India for tanning skins, where it is said to effect this object in five days. Sole leather has been completely tanned by it in this country in ten days, the ox-hide having been made into a bag, with the hair outsidc, and kept filled with the solution of catecluu. In India it has also been used to give a brown dye to cotton goods, and of late years it has been extensively introduced into the calico print-works of Europe. The salts of copper with sal ammoniac cause it to give a bronze colour which is very permanent ; the proto-muriate of tin, a brownish yellow; the per-chloride of tin, with the addition of nitrate of copper, a deep bronze hre; acetate of alumina alone, a reddish brown, and, with nitrate of copper, a reddish-olive grey; nitrate of iron, a durk-brown grey. For dyeing a golden coffee brown, eatechu has entirely superseded madder; one pound of it being equivalent to six pounds of
this root. is root.
CATGUT. (Corde à boyau, Fr.; Darmsaite, Germ.) The name given to cords made of the twisted intestines of the sheep. The guts, being taken while warm out of the body of the animal, are to be cleared of feculent matter, freed from any adhering fat, and washed in a tub of water. The small ends of all the intestines are next to be tied together, and frequently one edge of the tub, while the body of them is left to steep in some water, frequently changed, during two days, in order to loosen the peritoneal which overhangs the tub. The bundle of intestines is then laid upon a sloping table if the external membrane will eir surface is scraped with the back of a knife, to try cumference. This substance is called ay freely in breadths of about half their cirprocess filer. If we attempt to remove it by beginnina mafacturers filandre, and the testine, we shall not succeed. This filandre is employed as the large end of the inand to make the cords of rackets and battle is employed as thread to sew intestines, fresh water, and after steeping a night, are taken The flayed guts are put again into the wooden bench with the rounded back of a knif and scruped clean next day, on The large ends are now cut off, and sold to a knife. This is called curing the gut. again stecped for a night in fresh water, and the following day in an alkalinctines are made by adding 4 ounces of potash, and as much pearlash to a ank livivium ing about 3 or 4 imperial gallons. This ley is pearlash, to a pail of water containthe intestines, and poured off again, after 2 or poured in successive quantities upnn are now drawn several times through an open hours, till they are purified. They with the nail, in order to smooth and equalise their thimble, and pressed against it according to their sizes, to suit different purposes.

Whipcord is made from the above int purposes. the filandre, each junction being cut aslant, so as to cord is put into the frame, and each end is twisted scpakc it strong and smonth. The made out of two guts twisted together. When twisarately; for whip-cord is scldons twice. It may also be dyed black with common ink, it is to be sulplured once or phurous acid changes to pink, and green with a green dye whith red ink, whiclı sul-

[^40]sell for the purpose. The guts take the dyes readily. After being well smoothed, the cord is to be dried, and coiled up for salc.

Hatter's Cord for Bowstrings. - The longest and Jargest intestines of sheep, after being properly treated with the potash, are to be twisted $4,6,8,10$, or 12 together, according to the intended size of the cord, which is usually made from 15 to 25 feet long. This cord must be free from seams and knots. When half dry, it must be cxposed twice to the fumes of burning sulphur; and, after each operation, it is to be well stretched and smoothed : it should be finally dried in a state of tension.

Clockmaker's Cord. - This cord should be extremely thin, and be therefore made from very small intestines, or from intestines slit up in their length by a knife fitted for the purpose, being a kind of lancet surmounted with a ball of lead or wood. The wet gut is strained over the ball which guides the knife, and the two sections fall down into a vessel placed beneath. Each haud pulls a section. Clockmakers also make use of stronger cords made of 2 or more guts twisted together.

Fiddle and Harp Strings.-These require the grcatest care and dexterity on the part of the workmen. The treble strings are peculiarly difficult to make, and are made at Naples, probably becausc the Neapolitan sheep, from their small size and leanness, afford the best raw material.

The first scraping of the guts intended for fiddle-strings must be very carefully performed; and the alkaline leys being clarified with a little alum, are added, in a progressively stronger state from day to day, during 4 or 5 days, till the guts are well bleached and swollen. They must then be passed through the thimble, and again cleansed with the lixivium; after which they are washed, spun, or twisted and sulphured during two hours. They are finally polished by friction, and dried. Sometimes they are sulphured twice or thrice before being dried, and are polished between horsehair colds.

It has been long a subject of complaint, as well as a serious inconvenience to musicians, that catgut strings cannot be made in England of the same goodness and strength as those imported from Italy. These are made of the peritoneal covering of the intestines of the sheep; and, in this country, they are manufactured - at Whitechapel, and probably elsewhere, - in considerable quantity; the consumption of them for harps, as well as for the instruments of the violin family, being very great. Their chief fault is weakness; whence it is difficult to bring the smaller ones, required for the higher notes, to concert pitch; maintaining at the same time, in their form and construction, that tenuity or smallness of diameter which is required to produce a brilliaut and clear tone.

The inconvenience arising from their breaking when in use, and the expense in the case of harps, where so many are required, are such as to render it highly desirable to improve a mannfacture which, to many individuals may, however, appear sufficiently contemptible.

It is well known to physiologists, that the membranes of lean animals are far more tough than of those animals whieh are fat or in high condition; and there is no reason to doubt that the superiority of the Italian strings arises from the state of the sheep in that country. In London, where no lean animals are slaughtered, and where, indeed, an extravagant and useless degree of fattening, at least for the purpose of food, is given to sheep in particular, it is easy to comprehend why their membranes can never afford a material of the requisite tenacity. It is less easy to suggest an adequate remedy; but a knowledge of the general principle, should this notice meet the eyes of those interested in the sulyect, may at least serve the purpose of diminishing the evil and improving the manufacture, by inducing them to choose in the market the offal of suoh carcases as appear least overburthened with fat. It is probable that such a manufacture might be advantageously established in those parts of the country where the fashion has not, as in London, led to the use of meat so much orerfed; and it is equally likely, that in the choice of sheep for this purpose, advantage would arise from using the Welsh, the Higbland, or the Southdown breeds, in preference to those which, like the Liucoln, are prone to excessive aceumulations of fat. It is equally probable that sheep dying of some of the diseases aceompanied by emaciation, would be peculiarly adapted to this purpose.

That these suggestions are not merely speculatire is proved by comparing the strength of the membranes in question, or that of the other membranous parts, in tbe unfattened Highland sheep, with that of those found in the London markets.

CATHARTINE. A bitter, nou-azotised, purgative substance found in senna. Its formula is not known. To prepare it, an aleoholic extract of senna leaves is to be cvaporated to dryness, and then treated with water as long as anything is dissolved. The aquenus solution eontains the cathartine mixed with several impurities. A considerable amount of the latter may he got rid of by adding a solution of aectate of lead as long as a precipitate is formed, and then filtering through a calico bag.

The solution flowing through contains excess of lead, which must be removed by passing a current of hydrosulphuric acid gas through it and again filtering. The solution now contains (according to MM. Lassaignc and Feneulle) the cathartine, and is to he cvaporated to dryness to remove the water and acetic acid. It is plain that such a mode of preparation offers no guarantec for the purity of the resulting suhstance. - C. G. W.

CAT'S EYE. A translucent quartz, presenting peculiar internal reflections. This effect is said to he owing to filaments of ashestos. When cut en cabochun, it is esteemed as an ornamental stone.
CAUSTIC. Any chemical suhstance corrosive of the skin and flesh; as potash, called common caustic,-and nitrate of silver, called lunar caustic, hy surgcons.
CAVIAR. The salted roe of certain species of fish, especially the sturgeon. This product forms a considerable article of trade, heing exported aunually from the town of Astrakhan alone, upon the shores of the Caspian sea, to the amount of several hundred tons. The Italians first introduced it into Eastern Europe from Constantinople, under the name of caviale. Russia has now monopolised this branch of commerce. It is prepared in the following manner:-

The female sturgeon is gutted; the roe is separated from the other parts, and cleaned hy passing it through a very fine searce, hy rubbing it into a pulp hetween the hands : this is afterwards thrown into tubs, with the addition of a considerable quantity of salt; the whole is then well stirred, and set aside in a warm apartment. There is another sort of caviar,-the compressed,-in which the roe, after having heen cured in strong hrine, is dried in the sun, then put into a cask, and subjected to strong pressure.

CAWK. The English miner's name for sulphate of baryta, or hcavy spar.
CEDAR. (Cédre, Fr.; Ceder, Germ.) The cedar of Lehanon, or great cedar (Pimus cedrus) is a cone-hearing tree. This tree has heen famous since the days of Solomon, who used it in the construction of the temple. The wood has heen obtained frons Crete and Africa.

Specimens have also been procured from Morocco, showing the prohability that the range of the tree not only extends over the whole group of mountains which is situate hetween Darnascus and Tripoli in Syria, and which includes the Libanus and Mounts Amanus and Taurus of antiquity, and various others, - but that its distribution on the mountainous regions of North Africa is extensive.
Indeed, if we are to suppose that the cedar and the cedar wood mentioned by many of the ancient writers referred exclusively to the Lehanon specics, we must believe that its distribution at one period extended over countries where no trace of its having existed now remains. Egypt, Crete, and Cyprus are mentioned hy Pliny and Theophrastus as native habitats of the cedrus; we may thus fairly infer that the cedrus of the ancients as frequently had reference to the other conifere as to the Lebanon species.
The pencil cedar is the Juniperus Virginiana. It is imported from America in pieces from 6 to 10 inches squarc. The grain of the wood is remarkably regular and soft, on which account principally it is used for the manufacture of pencils, and from its agreeahle scent for the inside of small cahinets; it is also made into matches for the drawing-room.

The gencral use of the cedar wood dates from the highest antiquity. Pliny makes mention of cedar wood and the uses to which it was applied, and cites, as examples of its durahility and imperishable nature, the timber of a temple of Apollo at Utica, in A frica, which, when nearly 2000 years old, was found to he perfectly sound, -and the famous statue of Diana in the temple of Saguntum in Spain. Cedria, an oil or resin extracted from a cedar, was also, according to Vitruvius, used to smear over the leaves of the papyrus to prevent the attacks of worms; and Pliny states that the Egyptians applied it with other drugs in the preparation of their mummies; but whether this extract was ohtained from the Lebanon cedar or from trees belonging to the genus Cupressus or Juniperus, which also afford odoriferous resins, it is now impossible to ascertain.

In regard to the cedar and cedar wond mentioned in profane history, it is difficult, from what we have already stated, to determinc what has reference to the true cedar, and what belongs to other coniferous species; all that we can know for certainty is that a wood called cedar, distinguished for its incorruptible nature, was frequently used for purposes most important in the eyes of the pagan, viz., in the huilding and decoration of their temples, and for the statues or images of their heroes and gods.

The peculiar balsamic odour of cedar has long been licld as a meaus to prescrve articles from the attacks of insects; chips and shavings of the wood liave becn in the s way kept in collections of linen, papers, and objccts of prescrvation. Cabinets have been recomincuded, or at least the drawers and fittings, to be made of cedar. 'that
the popular charaeter may receive its due limitation, it may be uscful to call attention to some facts when cedar is employed as a means of prescrvation.

That the odoriferous substance when diffiused rayy affect some forms of organic lifc, is not disputed, but it is as probable some of the effect may be due to covering the inseet with a coating of varnish, alike irritating and interfering with the texture of the surfuces of the body; but the rule cannot be general; if the creatures have a sufficient hardihood they may, and indced do, attaek the wood itself.

The following cases will show that the substances emanating from cedar may producc unexpected interfcrence. Mr. Vulliamy states that George III. had a cabinet in the observatory at Kew with drawers of cedar wood in them ; watehes were placed with the intention of keeping them going. In a short time they all came to rest; the experiment, however, repeated had the same result: on cxamination, the oil used in different parts of the watches was found to be completely changed into a substance like gum. Mr. Farey's observations, also communicated to tbe Institution of Civil Engineers, still more show the extraordinary atmosphere produced in close cabinets of cedar wood, and of the effects upon delicate objects. The late Mr. Smith, of . Derby having shown him a small collection of minerals which had bcen locked up in closely fitted drawers of cedar wood; on opening the drawers for the first time after some months, the minerals were found to be covered with a gummy matter having the strong odour of cedar, and troublesome to remove ; the bright surface of the crystals appeared as if varnished in an unskilful manner. The cedar had given off a rapour that had condensed on all the minerals, and the same effect might be expected to be produced upon watches, metals, and other substances.

Indced, cascs are known where the action of cedar has produced unpleasant effects, and not without exciting the idea of remote danger. A bundle or package of black lead pencils, the wood as usual of cedar, had been kept in stock upon a shelf wrapped in paper: by the heat of the gas, \&c., the cedar vapour had attacked the paper and its materials; the paper seemed thick and stiffencd as with varnish forming one mass with tbe pencils, and damaging other paper and articles of stock near, while the paper was rendered highly inflammable, burning with a great flame. This case was laid before the officers of the Society of Arts, who are desirous of extending the proper uses of cedar wood, and of avoiding the evils arising from unsuspected chemical action.

White cedar is a native of North America, China, and Cochin China; in the United States it occupies large tracts, denominated cedar swamps. The wood is soft, smooth, and of an aromatic smell, and internally of a red colour, permanent in shape, very durable, and is csteemed as a material for fences. Large quantitics of shingles are made of it ; it is a favourite material for wooden wares or the nicer kinds of coopers' work.
Colonel Lloyd, speaking of another species of cedar, the Juniperus Bermudiana, says, " Up to this time there are great quantities of the finest ccdar growing in the British island of Bermuda, and the best ships and schooners are always built of it; it is imperishable."
The ccdar known to cabinet makers as the Havannah cedar is the wood of the Cedrela odorata of Linnæus, and belongs to the same natural order as mahogany. All the cigar boxes from Havannah are made of this kind of cedar ; it is imported from the island of Cuba, and is used for the insides of drawers and wardrobes.

New South Wales produces a cedar, Cedrela trona, somewhat similar to the Havannah, but more red in colour.

A similar kind is found in the East Indies; the Himalayan cedar, Juniperus excelsa, is harder and less odoriferous than the pencil cedar.
In the sketch of tbe route and progress of Lieutenant A. Burnes and Dr. Gerard (by a recent traveller, vol. i. "Journal of Asiatic Society," Bengal, Calcutta, 1832), in their adventurous journey to explore the Oxus, it is stated:-
"While on the banks of the Jelum they werc much struck by the immense size of the firs floated down the river. The houses in all the towns along its banks arc roofed therewith.
"Immense cedar trces were seen rolled down from the hills; it was these which supplied materials for Alcxauder's fleet. One tree mcasurcd 13 fcet in girtl, whieh may afford some idea of their applicability."
There is much confusion in the application of the term cedar, several trees which are not cedars being so called.
The cedar of Lebanon is usually called Pinus cedrus, but sometimes Cedrus Libanus. The lofty deodara, a native of the Himalayas, with fragraut and alınnst impcrishable wood, and often called the Indian cedar, is sometimes referred to the genus pinns, and sometimes to that of cedrus or larix, with the speeific name of deodura.

The wood of several conifero is, however, ealled eedar. The wood of Juniperus Virginiana is called the red or pencil eedar, and that of J. Bermudiana is called Bermuda cedar ; that of J. Barbadensis is ealled Barbadoes cedar, while the juniper of the north of Spain and south of Franee and of the Levant is called J. o.xycerrrus. The white cedar of North Anierica, a less valuable wood than the red cedar, is yielded by Cupressus thyoidcs, and the cedar wood of Japan, aecording to Thunberg, is a species of cypress.

The name cedar is, however, applied to a number of woods in our different colonies, which are in no way related to the conifere; thus the cedar of Guiana is the wood of Icica altissinct, the white wood or white cedar of Jamaica is Bignonia lcucoxylon; and bastard cedar is Guazuma erlimfolia. In New South Wales again the term white cedar is applied to Melia arzedarach, and red cedar to that of Findersia australis. as well as to the wood toon tree, or Cedrela toona. - T. J. P.
CEDRA (cedrat, Fr.) is the fruit of a species of orange, citron, or lemon, a tree which bears the same name. Its peel is very thick, and covered with an epidermis whieh encloses a very fragrant and highly prized essential oil. The preserves flavoured with it are very agreeable. The eitrons are cut into quarters for the dry comfits, but are put whole into the liquid ones. The liquorist-perfumer makes with the peel of the cedra an excellent liquor; for which purpose, he plucks them before they arc quite ripe; grates down the peel into a little brandy, or cuts them into slices, and infuses these in the spirits. This infusion is distilled for making perfume; but the flavour is better when the infusion itself is used. See Perfumery.

CEDRIRET. A singular compound of unknown composition existing in wood tar. When crude ereosotc is dissolved in potash and aeetie acid is added, creosote separates. If the creosote be decanted and the solution of acetate of potash be distilled, a fluid is obtained at a certain epoch of the distillation, whieh, when dropped into persulphate of iron, forms a net work of crystals. This is cedriret. It has not yet been observed in eoal naphtha.

CELES'CINE. (Strontiane sulfutée, Fr.; Cölestris, Germ.) Native sulphate of strontia. Celestine is usually assoeiated with secondary or Silurian limestone or sandstone, also with trap-rocks; and it is found in the red marl formations associated with gypsum. In Sicily it is commonly associated with sulphur. The eelestine of Girgenti was found by Stromeyer to be eomposed as follows:-

Sulphurie acid	-	-	-	-	-	-	-	-
43.08								
Strontian	-	-	-	-	-	-	-	-
56.35								
Red oxide of iron	-	-	-	-	-	-	-	0.03
Carbonate of lime	-	-	-	-	-	-	-	0.09
Water -	-	-	-	-	-	-	-	0.18

This mineral is found in Sieily, at Bey in Switzerland and Corril in Spain. It exists at Aust Ferry near Bristol, in trap-roeks ncar Tantellan in the East Lothians, and at Calton Hill, Edinburgh. Dana gives several loealities for eelestine in Ameriea. It is decomposed by ignition with chareoal into sulphide of strontia, whieh is converted into the nitrate by the action of nitric acid. The nitrate of strontian is employed for the production of the red light in theatrical fire-works.
CEMENTATION. A chemical process, which eonsists in imbedding a solid body in a pulverulent natter, and exposing both to ignition in an earthen or metallic case. In this way, iron is eemented with chareoal to form steel, and bottle glass with gypsum powder, or sand, to form Reaumur's poreelain.
CEMENTS. (Ciments, Fr. ; Cämente, Kilte, Germ.) Substances which are capable of assuming the liquid form and of being applied between the surfaces of bodies so as to unite them firmly when solidifying. They are of very varied eharacter. Gum, glue, and paste are cements, the uses of which are well known.
Diamond cement is a preparation of isinglass and gum ammoniacum dissolved in alcohol (see Ammoniacum Gum); it is employed to mend glass and china. Sir John Robinson's cement he thus describes:-
"If it be wished to dissolve good isinglass in spirits of wine, it should first be allowed to soak for some time in cold water, when swelled it is to he put into the spirit, and the bottle containing it being set in a pan of cold water may be brought to thc boiling point, when the isinglass will melt into a uniform jelly, without lumps or strings, whieh it is apt to have if not swelled in eold water previously to being put
into spirits. A small addition into spirits. A small addition of any essential oil diminishes its tendency to bceome
noldy. mouldy.
"If gelatine, which has been swelled in eold water, be immersed in linseed oil and heated it dissolves, and forms a gluc of remarkable tenaeity, whielh, when onee dry, Vol. I.
else rather than at the joint. Ordinary glue may be thus dissolved, and sometimes a small quantity of red lead in powder is added."

Shellac dissolved in alcohol, or in a solution of borax, or still better in naphtha, forms a good cement. White of egg alonc, or mixed with finely sifted quicklime, will answer for uniting objects which arc not exposed to moisturc. The latter combination is very stroug, and is much employed for joining picces of spar and marble ornaments. A similar composition is used by copper-smiths to sceure the cdges and rivets of boilers; only bullock's blood is the albuminous matter used instead of white of egg. Another cement in which an analogous substance, the curd or caseun of milk is employed, is made by boiling slices of skim-milk chceses into a glucy consistence in a great quautity of water, and then incorporating the mixture with quicklime ou a slab with a muller, or in a marble mortar. When this compound is applied warm to broken edges of stoneware, it unites them very firmly after it is cold.

A cement which gradually indurates to a stony consistence may be made by mixing 20 parts of clean river sand, 2 of litharge, and 1 of quicklime, into a thin putty with linseed oil. When this cement is applied to mend broken pieces of stone, as steps of stairs, it acquircs after some time a stony hardness. A similar composition has been applied to coat over brick walls, under the name of "Mastic." Portlaud oolite powder with a little litharge and oil makes good mastic.

The iron-rust cement is made of from 50 to 100 parts of iron borings, pounded and sifted, mixed with one part of sal ammoniac, and when it is to be applied moistened with as much water as will give it a pasty consistency. Formerly flowers of sulphur were used, and much more sal ammoniac, in making this cement, but with decided disadvantage, as the union is effected by the oxidisement, consequent expansion and solidification of the iron powder, and any heterogenous matter obstructs the cffect. The best proportion of sal ammoniac is, one per cent. of the iron borings. Another composition of the same kind is made by mixing 4 parts of fine borings or filings of iron, 2 parts of potter's clay, and 1 part of pounded potsherds, and making them into a paste with salt and water. When this cement is allowed to concrete slowly on iron joints it becomes very hard.

For making architectural ornaments in relief, a moulding composition is formed of chalk, glue, and paper paste. Even statues have been made with it, the paper aiding the cohesion of the mass. Some French statuettes are so made.

Mastics of a resinous or bituminous nature which must be softened or fused by heat are the following :-
Mr. S. Varley's consists of 16 parts of whiting sifted and thoroughly dried by a red heat, adding when cold a melted mixture of 16 parts of black resin and 1 of bees'wax, and stirriug well during the cooling.

Mr. Singer's electrical and chemical apparatus cement consists of 5 lbs . of resin, 1 of bees'-wax, 1 of red ochre, and 2 tablespoonfuls of Paris-plaster, all melted together. The ochre and the plaster of Paris should be calcined beforehand, and added to the other ingredients in their melted state. The thinner the stratum of cement that is interposed, the stronger, generally speaking, is the junction.
Boiled linseed oil and red lead mixed together into a putty are often used by coppersmiths and engineers to secure joints. The washers of leather or cloth are smearcd with this mixture in a pasty state.
The resin mastic alone is sometimes used by jewellers to cement by heat cameos of white enamel or coloured glass to a real stonc, as a ground to produce the appearance of an onyx. Mastic is likewise used to cement false backs or doublets to stones to alter their hue.

Melted brimstone, citlicr alonc or mixed with resin and brick dust, forms a tolerably good and very cheap cement.

Plumber's cenent consists of black resin 1 part, brick dust 2 parts, well incorporated by a melting heat.
The cement for coating the fronts of buildings consists of linseed oil, rendered dry by boiling with litharge, and mixed with porcelain clay in fine powder, to give it the consistence of stiff mortar. Pipe-clay would answer equally well if well dried, aud any colour might be given with ground bricks or pottery. A little oil of turpentine to thin this cement aids its cohesion upon stone, brick, or wood. It has been applicd to sheets of wire cloth, and in this state laid upon terraces, in order to make them water-tight; but it is little less expensive than lead.

The bituminous or black cement for bottle corks consists of piteh hardened by the addition of resin and brick dust.

In certain localities where a limestone impregnated with bitumen occurs, it is dried, ground, sifted, and then mixed with about its own weight of melted pitel, either mineral, vegetable, or that of coal tar. When this nixture is getting semifluid, it may
be moulded iuto large slabs or tiles in wooden frames lined with sheet iron, previously smeared over witb common line mortar, in order to prevent adhesion to the moulds, which, being in movable picees, are easily dismounted so as to turn out the eakc of artificial bituminous stonc. This eement is manufactured upon a great scale in many places, and used for making Italian terraces, eoveriug the floors of baleonics, flat roofs, water reservoirs, water conduits, \&c. When laid down, the joints must be well run together with hot irons. Tbe floor of the terrace should be previously covered with a layer of Paris plaster, or eommon mortar, nearly an inelı thiek, with a regular slope of one iuch to the yard. Sueh bituminous eemeut weighs 144 pounds the cubic foot; or a foot of square surfaee, one ineh thick, weighs 12 pounds. Sometimes a second layer of these slabs or tiles is applied over the first. with the precaution of making the seans or joints of the upper correspond with the uiddle of tlie under ones. Occasionally a bottom bed, of eoarse eloth or grey paper; is applied. The larger tbe slabs are made, as far as they ean be eonveniently transported and laid down, so nueh tbe better: For hydraulic eements, see Mortar.
An exeellent eement for resisting moisture is made by ineorporating thorouglly eight parts of melted glue, of the consistence used by earpenters, with four parts of linseed oil, boiled iuto varnish with litharge. This cement hardens in about fortyeight hours, and renders the joints of wooden cisterns and easks air and water tight. A compound of glue with one-fourth its weight of Veniee turpeutine, made as above, serves to eement glass, metal, and wood to one another. The gluten of wheat, well prepared, is also a good eement. White of eggs with flour and water well mixed, and smeared over linen eloth, forms a ready lute for steam joints in sniall apparatus.

White lead ground upon a slab with linseed oil raruisl, and kept out of eontaet of air, affords a eement capable of repairing fraetured bodies of all kinds. It requires a ferr weeks to harden. Wheu stone and iron are to be cemented together, a compound of equal parts of sulphur and pitel answers very well.
Lapidaries' cement is made of resin, teupered with bees'-wax and a little tallow, and hardened with red oehre or Spanish brown and whiting.
Optieians' eemeut, for fixing glasses for grinding, is made by sifted wood ashes with melted piteh, the essential oil of which is absorbed by the wood ashes, and the adhesiveness of the piteh is therefore redueed. The proportions are somewlat dependeut on tbe temperature of tbe weatber and the qualities of the pitcl; but generally about 4 lbs . of wood ashes to 14 lbs . of piteh are employed, and the cement, if too hard aud brittle, is softened with hog's lard and tallow.
Japanese eement is said to be prepared by mixing rice flour intimately with eold water, and then boiling the mixture : it is white, and dries nearly transparent. See Mortar.
CERASINE. The name biven by Dr. John to those gums which swell, but do not dissolve in water; sueh as gum tragaeanth. It is synouymous with Bassorine, which see.

CERATE, from cera, wux. An unguent, of rather a stiff eonsistence, made of oil, or lard and wax, thickened oceasionally with pulverulent matters.

CEREALIN. (Céréaline, Fr.) A nitrogenous substance found by M. Mìge Mouries in bran. See Bread.

CERINE. A substanee whieh forms from 70 to 80 per cent. of bees'-wax. It may be obtained by digesting wax for some time in spirit of wine at a boiling temperature. Tbe myricine separates, while the cerine remains dissolved, and may be obtained from the decanted liquor by evaporation. Cerine is white, analogous to wax, fusible at 134° F., hardly acted upon by hot nitric aeid, but is readily earbonised by hot sulphuric aeid. When treated with eaustie alkaline ley, it is converted into margaric aeid and ceraine.

CERIUM. A peeuliar metal discovered in eonneetion with lanthanum and didymium, cerite, allanite, orthite, and a few other minerals of rare oecurrence, found in Sweden. Cerium, extraeted from its chloride by potassium, appears as a dark red or chocolate powder, which assumes a metallic lustre by frietion. It does rot conduct electrieity well, like other metals ; it is infusible; its specific gravity is unknown. It has beeu applied to no use in the arts. See Ure's "Dietionary of Chemistry." CERUSE. A name of white lead. See White Lead.
CET'INE. The name was given by Chevreul to spermaceti.
CEYLON MOSS. (Plocaria candida.) Sec Alge.
CHAINWORK is a peeuliar stylc of textile fabrie, to which hosiery and tambouring belong. See Hosiery.
CIIALK. (Craic, Fr.; Kreide, Gern.) An earthy carbonate of lime, white, opaque, soft, dull, or without any appearanee of polish in its fraeture. Its specific gravity varies from $2 \cdot 4$ to 2.6 . Composition : carbonic acid $44 \cdot 0$, lime 56.0 ; but it nsually eontains a little silica, alumina, and oxide of iron. It may be purified by tri-
turation and clutriation. The silieious and ferruginous matters subside first, and the finer chalky particles floating in the supernatant liquid may be decanted with it, and obtained by subsidence. When thus purified it is called whiting and Spanish white, in England; Schlemmereide, in Germany; blanc de TYoyes, and blanc de Meudon, in Frauce. Pure chalk should dissolve readily in dilute muriatic acid, and the solution should afford no precipitate with water of ammonia. Chalk is burnt into lime in great quantities, in which statc it is used as a manure, also for making nortar and whitewash. Some of the lower beds, which arc argillaceous, ifford a good liydraulic cement, equal in every respect to Roruan cement.

Of late years, it las become the custom to manure land with unburnt chalk spread on the surface in the proportiou of about 40 loads (tons) to an acre. The effect produced by ehalk applied in its crude state is similar to that resulting from the application of quicklime, but morc lasting, on some lands not requiring to be renewed for several years : it also has the advantage of rendering the soil mechanically lighter, fiom the larger quantity in which it is used.

In chalk districts, it is sometimes employed as a huilding material.
CHALK, BLACK. A mineral, called also drawing-slatc.
CHALK, FRENCH. Steatite, or soap stoue; a soft magnesian mineral.
CHALK, RED. A clay coloured with the peroxide of iron, of which it contains about 17 per cent.

CHAl,LIS. About the year 1832 this article was introduced, certainly the neatest, best, and most elegant silk and worsted article ever mauufactured. It was made on a similar principle to the Norwich erape, only thinner and softer, composed of much finer materials; and instead of a glossy surface, as in Norwich crapes, the objeet was to produce it without gloss, and very pliable and clothy. The best quality of challis, when finished with designs and figures (either produced in the loom or printed), was truly a splendid fabric, which commanded the attention of the higher circles, and became a favourite article of apparel at their fashionable resorts and parties. The worsted yarn for the weft of this article was spun at Bradford, from numhers 52 's to 64's. The making of the challis fabric soon afterwards commenced in the north.James's History of Woollen Manufacture.

CHALYBEATE is a name given in medicine to preparations of iron.
CHALCEDONY. A lard mineral of the quartz family, often cut into seals. Under it may be grouped common chalcedony, heliotrope, chrysoprase, plasma, agate, belonging to the rhombohedral system, onyx, cat's eye, sardonyx, carnelian, and sard-

CHAMOMILE FLOWERS. The Authemis nobilis of Linnæus. The chamomile grows very abundantly in Coruwall, and some other parts of England. It is cultivated at Mitcham and in Derhyshire, for the London market. The chamomile is used medicinally, and is employed hy some hrewers to substitutc hops in bitter heer. It would he well if no more ohjectionable hitter was employed.

In 1856 we imported $72,751 \mathrm{lbs}$.
CHAMELEON MINERAL. As this compound-so long known in chemistry as a mere curiosity, on account of the surprising changes of colour which it spontaneously assumes - has of late heen largely employed for whitening tallow, palm oil, and decolouring other organic matters, it merits description in this dictionary. It exists iu two statcs; one of which is called by chemists the manganate of potash, and the other the oxymanganate; denoting that the first is a compound of manganic acid with potash, and that the second is a componnd of oxymanganic acid with the same base. They are hoth prepared in nearly the same way: the former by calcining together, at a red-heat in a covered crucihle, a mixture in oue part of the black peroxide of manganese with three parts of the hydrate of potash (the fused potash of the apothecary). The mass is of a green colour when cold. It is to be dissolved in cold water, and the solution allowed to settle, and hecome clcar, but hy no means filtercd, for fear of the decomposition to which it is very prone. When the decanted liquid is evaporated under the exhausted receiver of an air-pump, over a surface of sulphuric acid, it affords crystals of a beautiful green colour, which should be laid on a clean porous brick to drain and dry. They may he preserved in dry air, but should he kept in a well-corked bottle. They are decomposed hy water, but dissolve in weak water of potash. Ou diluting this, decomposition of the salt ensues, with all the chameleon changes of tint; red, bluc, and violet. Sometimes a green solution of this salt becomes red on heing heated, and preserves this colour even when cold, but resumes its green hue the ruoment it is shaken : it might, therefore, furnish the erafty votarics of St. Januarius with an admirable means of mystifying the worshippers at his shrine. The original calcined mass, in heing dissolved, always deposits a considerable quantity of a brown powder, which is a compound of the acid and peroxide of manganese combined with water: Much of the potash remains unchanged, which mity he recovered.

The oxymanganate of potash is made by fusing with a strong heat a mixture of equal parts of peroxide of manganese and hydrate of potash, or one part of peroxide and two parts of nitre. The mass is to be dissolved in water, and if the solution be green, it should be reddened by the eautious addition of a few drops of nitric acid. The clarified liquor is to be evaporated to the point of crystallisation. Even the smallest crystals of this salt have such au intense red colour, that they appear blagek with a green metallic reflection. In the air they gradually assume a steel-grey hue without undergoing any esscntial change of nature. A very little of the salt reddens a large body of water. The least portion of any organic matter added to the solution of this salt reduces the oxymanganic acid to the state of peroxide, which precipitates combined with water; the liquor beeoming green or colourless, according to circumstances.
A more permanent oxymanganie salt may be made as follows :- Melt chlorate of potash over a spirit lamp, and throw into it a few pieces of hydrate of potash, which inmediately dissolve, and form a limpid liquid. When pcroxide of manganese in fine powder is gradually introduced into tbat melted mixture, it inmediately dissolves, with the production of a rieb green colour. After adding the manganese in cxcess, the whole is to be exposed to a gentle red heat, in order to decompose the residuary chlorate of potash. It is now a mixture of manganate of potash, chloride of potassium, and peroxide of manganese. It forms with water a deep green-coloured solution, whieh, when boiled, assumes a fine red colour, in consequence of its becoming an oxymanganate, and it ougbt to be decanted off the sediment while hot. By cooling, and still morc after further evaporation, the oxymanganate of potash separates in erystals possessed of great lustre ; but towards the end eolourless crystals of ehloride of potassium.
Both the ahove salts are readily decomposed by organic bodies and other combnstibles, whereby they have their acid converted into an oxide, with the disengagement of oxygen, and the destruetion of many vcgetable and animal colours. In this respect they resemble the nitrates and chlorates.
CHARCOAL. The fixed residuum of vegetables when they are exposed to ignition out of contaet of air. The earliest plan of coaling wood, as the manufacture of charcoal was termed, and is still ealled, is carried on as follows:- A piece of ground is levelled, at some convenient spot in the forest, which is termed the "hearth " or "earth." In the centre of this a thick pole or buudle of brushwood is plaeed, around which the wood is arranged, some of the pieces being laid horizontally and others set up at an inclination ; or the wood may be placed altogether at any steep angle, sloping outwards from the centre to form a flattened cone, whieb when eomplete is usually called a heap ; the object, whichever way the wood is placed, is to obtain a free circulation of air under the heap, to communicate with the chimney in the centre, whieh is formed by then withdrawing the centre pole or bundle of brushwood. The large wood sbould if convenient be at the bottom of the heap, and the outside packed as close as possible; the heap is then covered with small brushwood, and afterwards with turf, or the material most impervious to air which can be couveniently obtaide. A fire is lighted in the centre ehimney, and by leaving openings in the outany part by making temporary the heap, the fire soon extends, and can be guided to ciently fired all the openings ary openings to admit the air. When the heap is suffialways extend most rapidly on the side and lastly the chimney itself. The fire will must be taken to watch and cbeck this by keeping the covering on that side in eare order. The charcoal burner must possible through the heap, and after it is coaled to stop it down carefuliy; he cau always aecelerate the process in any part of the heap if well built, by opening the outside to admit air freely : but if he finds this does not act, from any fault in setting the wood, he had better open a hole with a bar at the place required, and light a fire iu the hole; this will soon emmmunieate with the main fire in the heap. As soon as the from the air draw. The fire must ny possible, uutil the charcoal is quite cooled and is ready to and regular, the better the burn too fast ; the slower the process, if the firc is stcady time to coal than soft open-graied cbarcoal. Hard close-grained woods take a longer ingly. These teehnical instructions, handed and should be placed in the heap aecordfrom father to son amongst the "coalliers" in erery in the forests for ages as seerets of long practieal experienee, and strictly accord with thtry in Europe, are the results proeess is based.
true prineiples on which the ployed very mueh in under a movable eovering, the plan of meiler, or heaps, is emor in nearly vertical ones, with a slight slope, so as to either in horizontal layers, different sizes. The former are called lying meiler, fig conical rounded heaps of meiler, fiys, 438 and 439. Both are distributed in mueh the 437 ; the latter standing

In districts where the wood can be transported into one place by means of rivers, or mountain slides, a dry flat spatee must be pitched upon, sercened from storms and

floods, which may be walled round, having a slight declivity made in the ground, towards the centre. (See fig. 440.) Into this space the tarry acid will partially fall, and may be conducted outwards, through a covered gutter beneath, into a covered tank. The mouth of the tank must be shut, during the coking, with an iron or stone slab, luted with clay. A square iron plate is placed over the inner orifice of the

440

 gutter to prevent it being choked with coal ashes. Fiy. 440 represents a walled meiler station ; u, the station; b, the gutter; c, the tank, which is covered with the $\operatorname{slab} d ; e$, a slab which serves to keep the gutter clear of eoals. The cover of the heaps is formed of earth, sand, ashes, or such other matter as may be most readily found in the woods. They should be kindled in the centre. From gidays to 4 weeks may be required for charring a heap, according to its size, hard wood requiring most time ; and the slower the process, the better and greater is the product, generally speaking.

Charring of wood in mounds (Haufe or liegende Werke), figs. 441 and 442, differs from that in the meiler, because
 the wood in the haufe is successively charred, and the charcoal is raked out by little and little. The product is said to be greater in this way, and also better. Uncleft billets, 6 or 8 feet long, heing laid over each other, are covered with ashes, and then carbonised. The station is sometimes horizontal, and sometimes made to slope. The length may be 24 feet, the brcadth 8 feet ; and the wood is laid crosswise. Piles are set perpendicularly to support a roof made of boughs and leaves covered with ashes. Pipes are occasionally laid within the upper part of the mounds, which serve to catch and carry off some of the liquid.

Fig. 443 is a vertical seetion, and fig. 444 a half bird's-eye view, and half cross

443
 seetion at the height of the pit hottom, of Chabeanssière's kiln for making wood charcoal. a is the oven; b, vertical air pipes; $c c$, horizontal flues for admitting air to the kiln ; d d, small pits which communicate by short horizontal ones, which communicate, by short horizontal pipes $c e$, with the vertical ones; f, the sole of the kiln, a circle of brickwork, upon which the cover or hood h reposes; i, a pipe which leads to the cistern $k ; l$, the pipe destined for carrying off the gaseous matter; $m n$, holes in the iron cover or lid.

The distribution of the wood is like that in the horizontal meilers, or heaps; it is kindled in the central vertical canal with burning fuel, and the lid is covered with a few inches of earth. At the beginning of the operation all the draught flues are left open, hut they are progressively closed, as occasion requires. In cight kilns of this kind, 500 decasters of oak wood are carbonised, from which 15,000 hectolitres of charcoal are ohtained, equal to 64,000 pounds French, heing ahout 25 per cent., hesides tar, and 3000 velts of wood vinegar, of from 2° to 3° Baumé.

At Crouy upon the Ourcq, near Meaux, there is a well constructed kiln for making turf-charcoal. It resembles most nearly a tar-kiln. In fig. 445, a is the cylindrical coking place, whose surrounding walls are heated hy the flame which passes through the intermediate space b. The place itself is divided hy partitions of fire tiles into three stages, through the apertures in which the flames of the fire $c c$, rise, and heat the cxterior of the coking apartment. In order to confine the heat, there is in the enclosing walls of the outer kiln a cylindrical hollow space d, where the air is kept stagnant. Through the apertures left in the upper end at e, the turf is introduced; they are then shut with an iron plate f, which is covered with ashes or sand. The fire-place opens ahove this aperture, and its outlet is provided with a movable iron cover g, in which there is a small hole for the issue of the gases. The sole of the kiln consists of a cast-iron slah h, which may he raised hy means of a hook i upon it. This is drawn hack after the carhonisation is completed, wherehy the charcoal falls from the coking space into a suhjacent vault. The volatile products are carried off by the pipe k, and led into the condensing cistern ; the gases escaping to the fire-placc, where they are hurned. The iron slab is protected from the corrosion of the acid vapours by a layer of coal ashes.

Charcoal obtained by the action of a rapid fire in close vessels is not so solid and so good a fuel as that which is made in the ancient way by the slow calcination of pyramidal piles covered with earth. One of the most economical ovens for making wood charcoal is that invented by M. Foucauld, which he calls a sliroud, or abri. To construct one of these, 30 feet in diameter at the base, 10 feet at its summit, and from 8 to 9 feet high, he forms, with wood 2 inches square, a frame 12 feet long, 3 feet broad at one end, and 1 foot at the other. The figures $446-447$ will explain the construction. The uprights, A B and CD, of this frame are furnished with three wooden handles a a a, and $a^{\prime} a^{\prime} a^{\prime}$, by means of which they can he joined together, hy passing through two contiguous handles a wooden fork, the frame heing previously provided with props, as shown in fig. 446, and covered with loam mixed with grass. A flat cover of 10 feet diametcr, made of plants well joined, and secured hy 4 cross bars, is mounted with 2 trap doors, M N, fig. 449, for giving egress to the smoke at the commencement of the operation; a triangular hole \mathbf{P}, cut out in the cover, receives the end of the conduit \mathbb{Q} R 8, (figs. 448 and 449) of wood formed of three deals destined to convcy the gases and condensed liquids into the casks FGH. Lastly, a door T, which may hc opened and shut at pleasure, permits the operator to inspect the state of the fire. The charcoal calcinced by this abri has heen found of superior quality.

When it is wished to chauge the place where the abri is erected, and to transport it to a store of new-felled timber, the frame is taken down, after beating off the clay which covers it; the joints are then cut hy a saw, as well as the ends of the forks which fixed the frames to onc another. This process is economical in use, simple and cheap in construction; since all the pieces of the apparatus are casily moved about, and may bc
readily mounted in the forests. For obtaining a compact clarcoal, for the usc of artisuns, this mixed process of Foucauld is said to be preferable to cither the close iron cylinder or the pile.

For making gunpowder-charcoal the lighter woods, such as the willow, dogwood, and alder answer best; and in their carbonisation care should be taken to let the vapours frecly eseape, especially towards the end of the operation, for when they are re-absorbed, they greatly impair the combustibility of the charcoal.

By the common process of the forests, about 18 per cent. of the weight of the wood is obtained; by the process of Foucauld about 24 per cent. is obtained, with 20 of crude pyroligneous acid of 10° Baumé. By the process described under Acertic AcID, 27 of charcoal, 18 of acid at 6°, are procured from 100 parts of wood, besides the tar. These quantities were the results of careful experimenting, and are greater than can be reckoned upon in ordinary hands.

Charcoal for chemical purposes may be extemporaneously prepared by calcining pieces of wood covered with sand in a crucible, till no more volatile matter exhales.

The charcoal of some woods eontains silica, and is therefore useful for polishing metals. Being a bad conductor of heat, charcoal is employed sometimes in powder to encase small furnaces and steam-pipes. It is not affected by water; and hence, the extremities of stakes driven into moist ground are not liable to decomposition. In like manner casks when charred inside preserve water much better than common casks, because they furnish no soluble matter for fermentation or for food to animalcules.

Lowitz discovered that wood charcoal removes offensive smclls from animal and vegetable substances, and counteracts their putrefaction. He found the odour of succinic and benzoic acids, of bugs, of empyrcumatic oils, of infusions of valerian, essence of wormwood, spirits distilled from bad grain, and sulphureous substances were all absorbable by freshly calcined charcoal properly applied. A very ingenious filter has been constructed for purifying water, by passing it through strata of charcoal of different fineness.

When charcoal is burned, one-third of the heat is discharged by radiation, and twothirds by conduction.
The following Table of the quantity of charcoal yiclded by different woods was published by Mr. Mushet, as the result of cxperiments carefully made upon the small scale. He says, the woods before being charred were thoroughly dried, and pieces of cach kind were selected as nearly alike in every respect as possible. One hundred parts of each sort were taken, and they produced as under:-

Messrs. Allen aud Pepys, from 100 parts of the following woods, obtained the quan. tities of charcoal as under:-

Reech -	-15.00	Oak	-	-1740	
Mahogany	-	-15.75	Fir	-	-
Lignum Vitæ	-	-17.25	Box	-	-

It is observable that the quantities obtained by Messrs. Allen and Pepys are in general less than those given by Mr. Mushet, which may be owing to Mr. Mushet not having applied sufficient heat, or operated long enough, to dissipate all the aqueous matter or the gaseous products.

To those persons who buy charcoal by weight, it is important to purchase it as soon after it is made as possiblc, as it quickly absorbs a considerable portion of water from the atmosphere. Different woods, however, differ in this respect. Mcssrs. Allen and Pepys found that by a week's exposure to the air, the charcoal of

Lignum Vitæ gained	-	-	-	-	-	9.6	per cent.	
Fir	-	-	-	-	-	-130	ditto.	
Box -	-	-	-	-	-	-	-14.0	ditto.
Beech	-	-	-	-	-	-	-163	ditto.
Oak	-	-	-	-	-	16.5	ditto.	
Mahogany	-	-	-	-	-	$-18 \cdot 0$	ditto.	

The following is a tabular view of the volumes of the different gases which were ab. sorbed in the course of 24 hours, by one volume of charcoal, in the experiments of M. Théodore de Saussure, which were conducted in a way likely to produce correct results. Each portion of charcoal was heated afresh to a red heat, and allowed to cool under mercury. When taken from the mercury, it was instantly plunged into the vessel of gas.

Ammoniacal gas	90	Bicarburetted hydroge	35•00
Muriatic acid gas	85	Carbonic oxide	$9 \cdot 42$
Sulphurous acid	65	Oxygen gas	$9 \cdot 25$
Sulphuretted hydrogen	- 55	Nitrogen	$7 \cdot 50$
Nitrous oxide -	40	Carburetted hydrogen	$5 \cdot 00$
Carbonic acid gas	- 35	Hydrogen gas -	$1 \cdot 75$

Neumann, who made many experiments on charcoal, informs us that for the reduction of the metallic oxides, the charcoal of the heavier woods, as that of the oak and the beech, is preferable, and that, for common fuel, such charcoal gives the greatest heat, and requires the most plentiful supply of air to keep it burning; while those of the lighter woods preserve a glowing heat with a much less draught of air; and that for purposes where it is desirable to have a steady and a still fire, charcoal should be employed which has been made from wood previously divested of its bark, since it is the cortical part which crackles and flies off in sparks during combustion, while the coal or the wood itself seldom does.

For making crayons of charcoal, the willow is the best wood that can be employcd, as the softess is uniform in all its parts. The durability of charcoal may be seen in several of our old churchyards, where the letters made with lamp-black are still perfect, though the white lead with which the body of the stones was painted is entirely destroyed.

This property of carbon is shown, however, in a more striking manner by the writings that were found in the ruins of Herculaneum, which have retained thcir original blackness for two thousand years. The ancients wrote with ink made from ground charcoal.

If it be required to purify any carbonaceous matter, to render it fitter for delicate pigments, this may be done by first calcining it in a close vessel, and then lixiviating it in water slightly acidulated by nitric acid.
The incorruptibility of charcoal was well known to the ancients, and they availed themselves of this property upon all important oecasions.
About sixty years ago a quantity of oak stakes were found in the bed of the Thames, in the very spot where Tacitus says that the Britons fixed a vast number of such stakes, to prevent the passage of Julins Ceesar and his army. Thesc stakes were charred to a considerable depth, had retained their form completcly, and were firm at the heart.

Most of the houses in Venice stand upon piles of wood, which have all been previously eharred for their preservation. In this country, estates were formerly marked out by clarred stakes driven to a considerable depth into the ground. Sce l3one-biack, and Graphite.

For the purpose of showing, within a limited space, the products of dry distillation of woon, the following list has been compiled for this work by the kindness of a friend engaged in those manufactures. For more specific information, see Destructive Distillation, and the articles enumerated under their special heads.

The only products of the dry distillation of wood at present of any commercial importance, are clarcoal, acetic acid, naphtha, and, in a minor degree, tar and ercosote.

The products of wood are, however, very numerous, and, when examined chemically, found to be very complex in character and constitution, many of them being very little understood.

They are gaseous, liquid, and solid.
The gaseous products are those not condensible by ordinary means, viz.:Carbonic oxide. Carbonic acid. Light carburetted hydrogen, or marsh gas. Olefiant gas.
These are usually employed (such as are combustible) for heating purposes in the manufactories where found.

The liquid products are water, containing from 6% to 10% of dry acetic acid, ammonia, and, associated with them under the the ordinary names of tar and naphtha, numerous oily, ethereal, and resinous bodies.

The following list will comprehend the greater number of these bodies:-
Water.
Acetic acid in its erude state, called pyroligneous aeid.
Ammonia.
Ordinary naphtha, or
Hydrate of methyle, syn. with spirit of wood and methylic alcohol.
pyroligneous spirit. Acetate of methyle, or methyle acetic æther.
Acetone, syn. with pyroacetic spirit.
Oils found
in crude
naphtha. $\left\{\begin{array}{l}\text { Benzole, } \\ \text { Toluole, } \\ \text { Xylole, } \\ \text { Cumolc, } \\ \text { Cymole. }\end{array}\right\}$

According to the researches of Cahours these are all hydrocarbons, and separated by him from crude spirit of wood.

From the distillation of tar are obtained, besides many of the foregoing, which would come under the name of "light oils," from their low speeific gravity :

Oils heavier than water, besides residuary resin or pitch -

Xylite.	Picamar.	Paraffine.
Mesite.	Cedrirete.	Resin or pitch.
Capnomore.	Pittacal.	

Solid products : Pyroxanthine, Chareoal.-C. H. B. H.
CHASCHISCH. Hadschy is not the correct term for this narcotic drug, for Hadschy means a pilgrim; the true name is, according to pronunciation, Chaschisch, the Arab word for hemp (Cunnabis sativa). By this name, all intoxicating drugs whose chief constituent is this herb are well known over the whole of the East. The mode of preparing chaschisch is the following:-

The tops and all the tender parts of the hemp plant are collected after the period of inflorescence, dried and kept for nse. It must be premised that the hemp plant is in the East distinguished by its narcotic properties, although botanists are unable to detcet any difference between this and the European species. The dried heunp, or chaschisch, is used -
lst. Boiled in fat, butter, or oil, with a little water; the filtered product is emplojed in all kinds of pastry.
2nd. Powdered for smoking: 5 or 10 grs . of the powder are smoked from a common pipe (tsubuh) with ordinary tobacco (tiutüm), or from a water pipe (nargicle) with another kind of tobacco (tombeki). The tombeki is probably the leaf of a species of lobelia; it is smoked in a nargiele, and is uncommonly narcotic ; so much so, that it is ordinarily steeped in water for a few hours before it is used, to weaken it, and the pipe is charged with it whilst it is yet wet.

3rd. Formed with tragacanth mucilage into pastiles, which are placed upon a p pe and smoked in similar doses. These two last preparations arc termed esrar (esrar is the Arab word for "secret"); they are the most active of all the preparations of chaschiscl, and the first pipe will cause ecrebral congestion in beginners.
4th. Made into an electuary with dates or figs and honey. This preparation is of a dark brown, almost black, colour, and tastes of dates and hemp; it is less active than the csrar.
5th. Lastly, another electuary is prepared of the samc ingredients with the addition of spices, clove, cinnamon, pepper, amber, and musk. This preparation is used as an aphrodisiac.
Chaschisch is said not to produce stupor, but the most pleasant species of intoxication. The person under its iufluence feels with perfect consciousness in the best of all humours; all impressions from without produce the most grateful sensations; pleasant illusions pass before his eyes, and he feels comfortably happy; he thinks himself the happiest man on earth, and the world appears to him Paradise. From this imaginative state he passes into the every day state, with a perfect recollection of all sensations, and of everything he has done and of every word he has spoken. The effects of a continued use of the nareotic are emaciation and nervous debility.
CHEESE (composition of):-

Cheese from Chester			Water.	Ash of the substince.		Nitrogen.			Fat.		
			Normal.	Diy.	Normal.	Dry.	$\left\lvert\, \begin{gathered} \text { Free } \\ \text { fromash. } \end{gathered}\right.$	Normal.	Dry.		
			Per Ct.								
			$30 \cdot 39$	4.78	6.88	5.56	$8 \cdot 00$	$8 \cdot 59$	25.48	36.61	
"	"	Parmesan		$30 \cdot 31$	$7 \cdot 09$	10.18	$5 \cdot 48$	$7 \cdot 87$	$8 \cdot 76$	21.68	$31 \cdot 12$
"	"	Neufchatel	61.87	$4 \cdot 25$	$11 \cdot 17$	$2 \cdot 28$	$5 \cdot 99$	6.07	18.74	$49 \cdot 15$	
	"	Brie	53.99	$5 \cdot 63$	$12 \cdot 08$	$2 \cdot 39$	$5 \cdot 14$	5.85	24.83	53.29	
"	"	Holland	$41 \cdot 41$	6.21	10.61	$4 \cdot 10$	7.01	$7 \cdot 84$	$25 \cdot 06$	$42 \cdot 78$	
"	"	Gruyere	32.05	$4 \cdot 79$	$7 \cdot 05$	$5 \cdot 40$	$7 \cdot 96$	8.56	28.40	41.81	

Payen Journal Pharma.
Cheese of certain dairies and districts is apt to undergo a remarkable decomposition, whereby valerianic acid is formed. Messrs. Iljenko and Laskowsi distilled along with water a turbid ammoniaeal liquor, which being redistilled along with some sulphuric acid, and the product neutralised by barytes, the resulting saline componnd proved to be the valerianate of that base, mixed with compounds of butyric acid, caproic acid, caprylic acid, and capric acid. The cheese was from Limbourg. Valerianic acid was found by M. Balard in the cheese of Roquefort.

CHEMICAL FORMULEE. The term formula, in ordinary chemical language, is always understood to mean the collection of symbols indicating a compound substance. Thus if we allude to the letter or letters indicating an element, we say its symbol; but if we are speaking of a compound, we say its formula. The symbols of all the elements will be found under the head "Equivalents, Chemical." In constructing formulæ there are several rules to be observed, the neglect of which will lead to misapprehension of the meaning intended to be conveyed. Substances in the most intimate union are expressed by placing the symbols in juxtn-position. Thus oxide of lead is represented by PbO , dry sulphuric acid by SO^{3}, acetic acid by $\mathrm{C}^{4} \mathrm{H}^{4} \mathrm{O}^{4}$. But where a compound is to be expressed which is itself formed by the union of two compounds of the class first mentioned, such as an acid and a base, a comma is placed between them thus: Sulphate of lead is $\mathrm{PbO}, \mathrm{SO}^{3}$, nitrate of copper $\mathrm{CuO}, \mathrm{NO}^{5}$. The number of atoms, when more than one enters into a compound, is expressed by writing the number on the upper part of the right haud of the clement. But if only one atom is to be expressed, the mere symbol is written. Thus oxide of copper is CuO , but the sub-oxide is $\mathrm{Ca}^{2} \mathrm{O}$. If it be intended to multiply a formula not containing a comma or other sign, such as $\mathrm{SO}^{3} ; \mathrm{C}^{4} \mathrm{H}^{4} \mathrm{O}^{1}, \& \mathrm{\&}$., the number is to be written on the left hand of the formula, and is to be made larger than would be the casc if it merely multiplied the atoms of an element. Thus two atoms of oxide of lead are written 2 PbO , three atoms of aeetic acid, $3 \mathrm{C}^{4} \mathrm{H}^{4} \mathrm{O}^{4}$. But it is to be remembered that a number placed on the left hand of a symbol or formula only multiplies as far as the first comma or sign, so that if we wish to multiply a formula containing a comma or other sign, the formula must be placed between parentheses. Thus two atoms of sulphate of lead are written $2\left(\mathrm{PbO}, \mathrm{SO}^{3}\right)$. If it be inteuded to express the fact that one substance is to be added to another, with a view to the production of a given compound or reaction, the substances to be added together are connected by a plus
sign. For cxample, suppose it be necessary to express the fact that one equivalent of oxide of lead added to one cquivalent of sulphuric acid produces sulphate of lead, we write, $\mathrm{PbO}+\mathrm{SO}^{3}$ forms sulphate of lead. But $i t$ is more usual and brief to put down the terms connceted by the plus sign followed by the sign of equality, and then the formula of the resulting compound, thus: $-\mathrm{PbO}+\mathrm{SO}^{3}=\mathrm{PhO}, \mathrm{SO}^{3}$. Λ collection of symbols expressing the nature of a reaction or decomposition, the two terms being united by the symbol of equality, is called an equation. Equations are of the highest value to the chemist, as cnabling him to express in the simplest possible manner the most complicated reactions. Morcover, these equations enable us to sec at a glance the true nature of a decomposition. To take a simple case, namcly, that of the dccomposition of terehloride of antimony by carbonate of ammonia, we have

$$
\mathrm{SbCl}^{3}+3\left(\mathrm{NH}^{\prime} \mathrm{O}, \mathrm{CO}^{2}\right)=\mathrm{SbO}^{3}+3 \mathrm{NH}^{4} \mathrm{Cl}+3 \mathrm{CO}^{2}
$$

Or, in words, terehloride of antimouy plus three equivalents of carbonate of ammonia, yields one equivalent of teroxide of antimony, thrce equivalents of ehloride of anmonium, and three equivalents of earbonic acid.

The above illustrations will suffice to show the principles upon which formule and cquations expressive of chemieal decompositions are constructed. In writing equations showing the metamorphoses of substances with which it may be supposed the reader of them may not be very fully acquainted, it is proper to place beneath them the names of the substances in full ; thus : in writing the change supposed to be experienced by amygdaline under the influcnce of a ferment which does not itself contribute any substance to the reaction, we might say:-

$$
\underbrace{\mathrm{C}^{40} \mathrm{H}^{27} \mathrm{NO}^{23}}_{\text {Amygdaline. }}+4 \mathrm{HO}=\underbrace{\mathrm{C}^{14} \mathrm{H}^{6} \mathrm{O}^{2}}_{\begin{array}{c}
\text { Bitter almond } \\
\text { oil. }
\end{array}}+\underbrace{\mathrm{C}^{2} \mathrm{NH}}_{\begin{array}{c}
\text { Prussic } \\
\text { acid. }
\end{array}}+\underbrace{2 \mathrm{C}^{12} \mathrm{H}^{12} \mathrm{O}^{12}}_{\text {Grape sugar. }}
$$

In writing the formulæ of substitution compounds, it is eonvenient to place the replaced and replacing substances in a vertical line, so as at a glance to indicate the substitution which has taken place. As an illustration we shall place side by side the chemical type ammonia and some bodies derived from it by substitution.

In the first of the above formulæ we have the type or starting point, ammonia itself. In the next we find one atom of hydrogen (two volumes) replaced by one atom (two volumcs) of the radical methyle. In the third we fiud two atoms of hydrogen replaced; and in the fourth illustration all three have been replaced by methyle. The fifth formula is that of ammonia, in which one equivalent of hydrogen is replaced by phenyle, forming phenylamine, or, as it is more usually termed, aniline. The sixth illustrates a very peculiar substitution. In it we find two atoms of hydrogen replaced by the platinicum of the late illustrious chemist, M. Gerhardt, who regards platinum as entering into substitutions with two atomic weights, as if it were two metals. The one being the platiuum of chemists generally, its atomic weight being 99 (and its symbol Pt); this he calls platinosum. The other being platinicum (pt), with an atomic weight half that of platinosum, namcly, 49.5 . The last formula is that of the singular base, triphosphmethylamine. In it we see the nitrogen of the original type replaced by phosphorus, and cach equivalent of hydregen ly methyle.

It is a fruitful source of annoyance to students and others to find, on looking through chemical works, the same substance represented by differcut authors with totally different formule. Wc shall cndeavour to give a few instances aud such explanations as will assist in enabling the student to orercome the difficulty. It is often the case that the differences in the formule arise from the works consulted having been written at different dates; the older one is then, in most cases, to be rejected, because it is probable that the formula in it have becn corrected by subsequent and more accurate rescarches. It not unfrequently happens that an author writes nitrons aeid NO, and the truc nitrous acid ($\mathrm{N} \mathrm{O}^{3}$) is called hyponitrous acid. It may serve to assist the student in corrceting any errors on this point, to consult a list of the oxides of nitrogen according to the nomenclature at present employed : such a list will be found in the article Nitnogen. A still more common cause of difliculty is owing to the different theoretical vicws of chenists regarding the constitution of chemical sub-

CHEMICAL FORMULE.

stances. The papers of MM. Laurent and Gerhardt, and the morc advaneed of their followers, are at times almost unintelligible to the beginner, owing to their adoption of different atouie weights to those employed in this country. Whatever opinion may be held by individuals respeeting the neeessity for the changes adopted by them, it must be remembered tliat the arguments in favour of their doetrines are in general of the most weighty kind; and moreover, that chemieal reactions can often be explained and generalised when seen through the medium of their thcoretical views, which present cxceedingly embarrassing poiuts if viewed under the old system. It will serve to a great extent to remove the diffienlties alluded to if it be remembered that, in order to pass from the ordinary atomie weights used in this work to those employed by M. Gerhardt, it is merely neeessary to double the atomie weights of carbon, oxygen, sulphur, aud seleniun, while the hydrogen, nitrogeu, phosphorous metals, chlorine, bromine, iodine, and fluorine remain unaltered.
Some of the more advanced chemists of the present day write carbonic acid $\mathrm{C}^{\circ} \mathrm{O}^{1}$, instead of CO^{2}. This is in eonsequence of their regarding it as a bihasic instead of a monobasic aeid. The same thing applies to sulphurie aeid. It is also to be remembered that most modern ehemists assume organic bodies to undergo a condensation to four volumes; eousequently cther beeomes $\mathrm{C}^{8} \mathrm{H}^{10} \mathrm{O}^{2}$, instead of $\mathrm{C}^{4} \mathrm{H}^{5} \mathrm{O}$. The same remark applies to many other substanees. Bodies that cannot have their vapour relations properly studied, in consequence of their not being volatile without decomposition, are often written in two or three different ways by various authors. It is probable that these anomalies will, for a time, iucrease rather than diminish, beeause recent discoveries are constantly showing the inadequaey of the older views of the chemical constitution of bodies to explain the reaetions that occur.
It will greatly assist the student in his endeavours to reeollect chemieal formulx, if he commits to memory the principal types and the substances whieh are regarded as formed on their model. The following are those which are best established:-

Type, two atoms of water.- This type is written in sueh a manner that the replacement of the hydrogen can be distinetly seen. By its side are plaeed a few of the substances formed on the same model.
Two atoms
\(\overbrace{\mathrm{O}^{2}\left\{\begin{array}{l}\mathrm{H}

\mathrm{H}\end{array}\right.}^{\)| of water. |
| :---: |\(} \overbrace{\mathrm{O}^{2}\left\{\begin{array}{c}\mathrm{C}^{4} \mathrm{H}^{3} \mathrm{O}^{2}

\mathrm{H}\end{array}\right.}^{Acetic aeid.} \overbrace{\mathrm{O}^{2}\left\{$$
\begin{array}{c}\mathrm{C}^{4} \mathrm{H}^{5} \\
\mathrm{H}\end{array}
$$\right.}^{Aleohol.} \overbrace{\mathrm{O}^{3}\left\{$$
\begin{array}{l}\mathrm{C}^{4} \mathrm{H}^{5} \\
\mathrm{C}^{4} \mathrm{H}^{5}\end{array}
$$\right.}^{Ether.*} \overbrace{\mathrm{O}^{3}\left\{\begin{array}{l}\mathrm{K}

\mathrm{H}\end{array}\right.}^{\)| Hydrate of |
| :---: |
| potash. |\(} \overbrace{\mathrm{O}^{2}\left\{\begin{array}{l}\mathrm{K}

\mathrm{K}\end{array}\right.}^{\)| Anhydrous |
| :---: |
| potash. |$}$

In the above simple illustrations of the type water we have, in the ease of aectic aeid, one atom of hydrogen replaced by the oxidised radical acetyle $\mathrm{C}^{-1} \mathrm{H}^{3} \mathrm{O}^{2}$, and the other by one atom of basic hydrogen. By basic hydrogen is meant, that it acts the part of, and can be replaced by, a metal. The opinions of chemists with regard to the nature of the radieal existing in acetie aeid are divided. Some consider the aeid as the hydrated teroxide of the non-oxidised radieal aeetyle ($\mathrm{C}^{4} \mathrm{H}^{3}$), and therefore write its formula $\mathrm{C}^{4} \mathrm{H}^{3} \mathrm{O}^{3}+\mathrm{HO}$. But as the ehloride of the oxidised radical can be isolated, we cannot doubt its existence. Moreover, there is no doubt of the existence of the other radical, $\mathrm{C}^{4} \mathrm{H}^{3}$, because we find it replaeing hydrogen in the base acetylamine. See Acetylamine. But the conelusion must be drawn from these facts that there are two radieals, one existing in aectic aeid $\mathrm{C}^{4} \mathrm{H}^{3} \mathrm{O}^{2}$, whieh Williamson calls othyle, and another, sometimes ealled vinyle $\mathrm{C}^{4} \mathrm{H}^{3}$, whieh exists in aldehyde, in olefiant gas, and several other bodies. The radieal in aeetic aeid is, consequently, not $\mathrm{C}^{1} \mathrm{H}^{3}$, but $\mathrm{C}^{4} \mathrm{H}^{3} \mathrm{O}^{2}$.
The next illustration is that of aleohol, which eonsists of two atoms of water, in which one atom of hydrogen is replaeed by ethyle, and the other by hydrogen. Ether, on the other hand, is derived from the same type, both atoms of basic hydrogen being replaeed by ethyle. Hydrate of potash and anhydrous potash will, after what has been said, explain themselves. It will be secn that in all these illustrations, the same vapour volnme is preserved, and by this means the exceeding anomaly of ether and aleohol being of different vapour volumes is removed. While the type two atoms of water ($=4$ voluines) has an actual existence, it remains for chemists to diseover whether we are justified in receiving as types bodies whieh have no real existenee, such as three atoms of water.

Type, two atoms of hydrogen.-The type ammonia has already becn suffieiently illustrated; it remains, then, only to show what substances are to be regarded as formed ou the type hydrogen. M. Gerhardt, in addition to these, adopts hydrochloric acid as a type; but when we eonsider that that aeid is itself formed on the hydrogen model, it appears unneeessary to raise it to the dignity of a separate type.

[^41]| Two atoms of hydrogeu. $\overbrace{1}$ | Olefiant gas. | $\underbrace{\begin{array}{c} \text { Marsh } \\ \text { gas. } \end{array}}$ | Hydroehlorie aeid. | Benzole. | Prussie aeid. | Chloride of ethiyle. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | $\mathrm{C}^{4} \mathrm{H}^{3}$ | $\mathrm{C}^{2} \mathrm{H}^{3}$ | Cl | $6^{6} \mathrm{C}^{12} \mathrm{I}^{5}$ | $\mathrm{C}^{2} \mathrm{~N}$ | $\mathrm{C}^{4} \mathrm{H}^{5}$ |
| H | H | H | H | H | H | Cl |

The above will be sufficiently plain after what has been said, it being remenbered that $\mathrm{C}^{2} \mathrm{H}^{3}$ is methyle, $\mathrm{C}^{4} \mathrm{H}^{5}$ ethyle, $\mathrm{C}^{12} \mathrm{H}^{5}$ phenyle, and $\mathrm{C}^{2} \mathrm{~N}$ eyanogen.

It is sometines a source of perplexity to the beginner to find that the formulx of salts are written by different authors in a somewhat different manner. Thus sulphate of potash will, by one, be written $\mathrm{SO}^{3}, \mathrm{KO}$, and by another $\mathrm{SO}^{\prime} \mathrm{K}$. The reason of this will beeome plain from the following considerations:-All salts are derived from ucids by the substitution of metals for hydrogen. Thus if, instead of writing sulphuric acid $\mathrm{SO}^{3}, \mathrm{HO}$, we writc $\mathrm{SO}^{4} \mathrm{H}$, we shall at once see that sulphate of potash, $\mathrm{SO}^{\prime} \mathrm{K}$, is sulphuric aeid in which one equivalent of hydrogen is replaced by potassium. It is true that the relation between acids and salts may be more completely seen by using a different class of formulæ, founded ou the theory of types; but, nevertheless, the above illustrations will serve to explain why one person will write acetate of potash $\mathrm{C}^{4} \mathrm{H}^{3} \mathrm{O}^{4}$, another $\mathrm{C}^{4} \mathrm{H}^{3} \mathrm{O}^{2}, \mathrm{O}^{2}$, a third $\mathrm{C}^{4} \mathrm{H}^{3} \mathrm{O}^{3}, \mathrm{KO}$, and perhaps a fourth $\mathrm{C}^{1} \mathrm{H}^{3} \mathrm{O}^{2}, \mathrm{KO}^{2}$.

On the modes of determining the empirical and rational formule of substances from the results of their analysis. - It now remains to show how the formula of bodies are determined. There are two kinds of formulæ- the empirieal and rational. An empirical formula merely indicates the simplest ratio existing between the elements present ; a ratioual formulæ shows the absolute eonstitution of an atom or equivalent of any substance. Sometimes the expression rational formula is used in a more extended sense, and then signifies the aetual manner in which the elements are arranged in a compound moleeule, but this happeus so seldom, that we shall in this work understand the term in the sense first given.

An empirieal formula can always be dedueed from the mere result of an aecurate analysis. A rational formula, on the other hand, demands a knowledge of the atomie weight of the substance. The latter datuu eau be best determined-1st, by the analysis of a compound with a substance the atomie weight of which is well established; 2nd, by determining the density of its vapour.

Empirical formula. - The percentage eomposition of a compound having been aceurately found, the empirical formula may be dedueed from the following rule:Divide the percentage of eael constituent by its atomic weight, and reduce the number so obtained to its lowest terms. Suppose, for example, the empirical formula of nitric acid to be required, the composition being:-
Nitrogen - $\quad-\quad 25.3$
Oxygen $\quad-\frac{74.1}{100 \cdot 0}$

These numbers, divided by their respective atomic weights, give: -

$$
\begin{aligned}
& \frac{25 \cdot 9}{14}=1.85 \\
& \frac{74 \cdot 1}{8}=9 \cdot 26
\end{aligned}
$$

To reduce these numbers to their lowest terms, it is merely necessary to divide $9 \cdot 26$ by $1 \cdot 85$. The simplest terms being:-

Nitrogeu, 1.00 : Oxygen, 5.00

Nitric acid eonsequently consists of one equivalent of nitrogen, and five of oxygen.
Rational formula. - In the above illustration we found the simplest ratio existing between the elements of nitric acid. But it will be seen that, for aught that appears there, it may eonsist of n times NO^{5}. It becomes necessary, therefore, to find the atomic weight of the aeid, and then to find the number of atoms of the elements (combined in the above ratio), which will make that atomic weight. In order to do this, it will be proper to determine the atomie weight of the acid from the data procured by the first method, given above. In order to aceomplish this, a salt was analysed for the percentages of soda and nitric acid, with the annexed result :-
Soda -
Nitric acid

The required datum, namely, the atomic weight of the acid can casily be obtained by saying,-As the percentage of base is to the percentage of acid, so is the atomic weight of the base to the atomic weight of the acid. In the instance given we have, therefore: -

$\underbrace{36 \cdot 47}_{$| Pcreentage of |
| :---: |
| base. |$}: \underbrace{63 \cdot 53}_{$| Percentage of |
| :---: |
| acid. |$}:: \underbrace{31}_{$| Atomis weight of |
| :---: |
| base. |$}: \underbrace{53 \cdot 999}_{$| Atomic wcight of |
| :---: |
| acid. |$}$

It is evident that 53.999 may be written 54.0 without any inaccuracy. If, therefore, we add together the equivalents of nitrogen and oxygen in the ratio found in the empirical formula, we shall have:-

$$
\begin{aligned}
& 1 \text { equivalent of nitrogen }=14 \\
& 5 \text { equivalents of oxygen }=40
\end{aligned}
$$

$54=$ the atomic weight of the acid.
We will now consider the mode of determining the rational formula of a substance from the results of the analysis and the density of the vapour. Suppose a hydrocarbon to have yielded on analysis:-

$$
\begin{aligned}
& \text { Carbon - - } 85.714 \\
& \text { Hydrogen - } 14.286 \\
& \text { And- } \quad \frac{85.714}{6}=14.286 \quad \frac{14.286}{1}=14.286
\end{aligned}
$$

The quotient being the same, the empirical formula becomes $\mathrm{C}^{n} \mathrm{H}^{\mathrm{n}}$. It remaius, therefore, to determine the value of n . The density of the vapour was found to be $2 \cdot 9064$. Now the hydrocarbons always possess a condensation to four volumes. In the article Equivalents, Chemical, rules are given for ascertaining the equivalents of substances from the densities of their vapours. For four volume formulæ the rule is:-Divide the density of the gas by half the density of hydrogen. Applying this rule we have:-

$$
\frac{2 \cdot 9064}{\cdot 0346}=84 \cdot 00
$$

It is therefore nccessary to find what multiple of the atomic weight of CH will make $84 \cdot 00$. Now $\mathrm{C}+\mathrm{H}=6+1=7$, and $7 \times 12=84$. Consequently the formula is $12(\mathrm{CH})$, or, as it is always written, $\mathrm{C}^{12} \mathrm{H}^{12}$.

The above rules will suffice to enable any person to determine the empirical and rational formulx of substances from the results of analysis.-C. G. W.

CHERRY TREE. - The Tunbridge turners use the wood largely, considering the wood of the black heart cherry the best. It is a hard, close-grained wood, of a pale red-brown colour.

CHERT, a silicious mineral nearly allied to chalcedony and flint, but less homogeneous and simple in texture. A gradual passage from chert to limestone is not uncoinmon (Lyell). Chert is a term often applied to hornstone, and to any impure flinty rock, including the jaspers (Dana).

Chert is worked extensively out of the carboniferous limestone quarries of Flintshire, especially at Halkin and at Talacre. It is also produced in considerable quantities in the same formation in Derbyshire. It is used in the Potteries.

CHESTNUT. (Castanea vesca.) The wood of this, the sweet or Spanish chestnut, is sometimes used in house carpentry. The wood of an oak (Quercus sessiliflora) is often mistaken for it.

The wood of the horse chestnut (\mathbb{N} sculus hippocastum) is one of the white woods much used by the turners of Tunbridge; it is also employed for brush backs. The white (inner) bark of the horse chestnut, when infused in boiling water, produces a yellow fluid, which posesses the remarkable power of fluorescence; that is, it throws buck from its first surface a set of rays of high refrangibility, and of a bluc colour, while the ordinary yellow rays are duly transmitted. The phenomena have becn fully investigated by Professor Stokes, to whom the name is also duc. See Fluorescence.

CHICA is a red colouring principle made use of in America by some Indian tribes to stain their skins, It is extracted from the bignonia chica by boiling its leaves in water, decanting the decoction, and allowing it to settle and cool, when a red matter. falls down, which is formed into cakes and dried.

The savages mix this pigmeut with the fat of the cayman or nlligator, and rub their skins with the mixture. It may probably be turned to account in the arts of civilised nations.

CHICORY. The root of the Cichorium intybus, Wvild Succory or Chicory. This plant is cultivated in various parts of England, growing well in a gravelly and chalky soil; also in Belgium, Holland, Germany, and France. The roots of the wild succory were formerly used medicinally; it possesses properties in many respects rescmbling those of the dandelion, but it is rarely employed for curative purposes in the present day.

Chicory root roasted has bcen employed as a substitute for coffee for more than eighty years. (Constantini Nachricht von d. Cichoriunwurzel, 1771.) It is now employed extensively as a mixture with coffce, which, although allowed, cannot be regarded other than an adulteration.

Chicory root is heated in iron cylinders, which are kept revolving as in the roasting of coffee. In this country about two pounds of lard are added to every cwt. of chicory during the ronsting process : in France butter is used; by this a lustre and colour resembling that of coffee is imparted to it. When roasted the chicory is ground to powder aud mixed with the coffee. Chicory has been supposed by some persons to be wholesome and nutritive, while others contend that it is neither one nor the other ; however, no obvious ill efficts have been observed to arise from its employment, if we except the occasional tendency to excite diarrhea when it has been used to cxcess. The analysis of chicory root by John gave 25 parts watery bitter extractive, 3 parts resin, besides sugar, sal ammoniac, and woody fibre. Waltl procured inulin from it, but the quantity varies greatly in different roots. The following remarks on the adulteration of chicory are by Dr. Pereira.
" Roasted chicory is extensively adulterated. To colour it, Venetian red and, perhaps, reddle are used. The former is sometimes mixed with the lard before this is introduced into the roasting machine; at other times it is added to the chicory during the process of griuding. Roasted pulse (peas, beans, and lupines), corn (rye and damaged wheat), roots (parsuips, carrots, and mangold wurzel), bark (oak-bark tan), wood dust (logwood and mahogany dust), seeds (acorns and horse-chestnuts), the marc of coffee, coffee husks (called coffee-flights), burnt sugar, baked bread, dog biscnit, and baked livers of horses and bullocks (!), are substances which are said to have been used for adulterating chicory. A mixture of roasted pulse (peas usually) and Venetian red has been used, under the name of Hambro' powder, for the same purpose.
"The following are the chief modes of examining chicory with the view to the detection of these adulterations:-
" 1 st. Careful examination of the odour, flavour, and appearance to the naked eye of the suspected powder. In this way foreign substances may sometimes be detected.
" 2 nd. A portion of the dried powder is to be thrown on water ; the chicory rapidly imbibes the water and falls to the bottom, whereas some intermixed powders (as the mare of coffee) float.
" 3 rd. The suspected powder is to be submitted to careful microscopical examinatiou. Pulse and corn may be detected by the size, shape, and strusture of the starch grains. The tissues of barks, woods, and other roots may also be frequently distinguished from those of chicory.
"4th. A decoction of the suspected chieory is then to be prepared, and, when cold, to be tested with solution of iodine and persulphate of iron.
"Iodine colours a decoction of pure chicory brownish; whereas it produces a purplish, bluish, or blackish colour with decoctions of roasted pulse, roasted eorn, baked bread, roasted acorns, and other substances containing starch. Persulphate or perchloride of iron does not produce much effect on a decoction of pure chicory, but it communicates a bluish or blackish tint to a decoction of oak-bark, of roasted acorns, and other substances containing tannic or gallic acids.
" 5 th. By incineration, purc dried chicory yields from 4 to 5 per eent. of a grey or fawn-coloured ash. If Venetian red, or any enrtly or mincral substances, be present, a larger amount of ash is obtained. Moreover, when Venetiau red has been employed, the colour of the ash is more or less red."

In 1856 we imported of chicory, raw or kiln dried, $81,721 \mathrm{cwts}$; computed real value, 42,9033 .

CHILDRENITE. This mineral may be regarded as an liydrons phosplate of alumina and iron. Its composition being phosphoric acid, $27 \cdot 8$; alumina, $14 \cdot 4$; protoxide of iron, $31 \cdot 8$; protoxide of manganese, $8 \cdot 9$; water, $17 \cdot 6$. (Dana.) At Crinnis mine in Cornwall, childrenite is found on slate, and at Taristock in Devonshire, with apatite.

CHIMNEY. (Cheminee, Fr.; Schornstein, Gcrm.) (The whole of this article is
retained as written by Dr. Ure. His investigation on some of the points involved being of much value.) Chimney is a modern invention for promoting the draught of fires and carrying off the smoke, introduced into England so late as the age of Elizabeth, though it secms to lave been employed in Italy 100 years before. The Romans, with all their luxurious refinement, must lave had their epicurean cookery placed in perpetual jeopardy from their kitchen fires, which, having no vent by a vertieal tunnel in the walls, discharged their smoke and frequently their flames at their windows, to the no small alarn of their neighbours, and annoyance of even the street passengers.
Chimneys in dwelling houses serve also the valuable purpose of promoting salubrious circulation of air in the apartments, when not foolishly sealed with anti-ventilating stove-chests.
The first person who sought to investigate the gencral principles of chimney draughts, in subserviency to manufacturing establishments, was the celebrated Montgolfier. As the ascent of heated air in a conduit depends upon the diminution of its specific gravity, or, in other words, upon the increase of its volume by the heat, the asceusional force may be deduced from the diffcrence hetween the density of the clastic fluid in the interior of the chimney, and of the external air; that is, between the different heights of the internal and external columns of elastic fluid supposed to be reduced to the same density. In the latter case, the velocity of the gascous products of combustion in the intcrior of the chimney is equal to that of a heavy body let fall from a height equal to the difference in height of the two aerial columns..

To illustrate this position by an example, let us consider the simple case of a chimney of ventilation for carrying off foul air from a factory of any kind; and suppose that the tunnel of iron be incased throughout with steam at 212° Fahr. Suppose this tunnel to be 100 yards high, then the weight of the column of air in it will be to that of a column of external air 100 yards high, assumed at 32° Fahr., inversely as its expansion hy 180°; that is, as 1000 is to $1 \cdot 375$; or as $72 \cdot 727$ is to 100 . The column of external air at 32° heing 100 yards, the internal column will be represented by $72 \cdot 727$; and the difference $=27 \cdot 27$, will be the amount of unbalanced weight or pressure, which is the effective cause of the ventilation. Calculating the velocity of current due to this difference of weight by the well-known formula for the fall of heavy bodies, that is to say, multiplying the above difference, which is 27×27, by the constant factor $19 \cdot 62$, and extracting the square root of the product; thus, $\sqrt{19 \cdot 62 \times 27 \cdot 27}=23.13$ will be the veloeity in yards per seeond, which, multiplied by 3 , gives $69 \cdot 39$ feet. The quantity of air which passes in a second is obtained of course by multiplying the area or cross section of the tunnel by this velocity. If that section is half a yard, that is $=$ a quadrangle $2 \frac{1}{4}$ feet by 2 , we shall have $23 \cdot 13 \times 0.5=11 \cdot 565$ cuhic yards, $=312 \frac{1}{4}$ cubic feet.

The problem becomes a little more complicated in calculating the velocity of air which has served for combustion, because it has changed its nature, a variable proportion of its oxygen gas of specific gravity $1 \cdot 111$ being converted into carbonic acid gas of specific gravity 1.524 . The quantity of air passed through well-constructed furnaces may, in general, be regarded as double of what is rigorously necessary for combustion, and the proportion of carbonic acid generated, therefore, not one half of what it would be were all the nxygen so combined. The increase of weight in such burned air of the temperature of 212°, over that of pure air equally heated, being taken into account in the preceding calculation, will give us about 19 yards or 57 feet per second for the velocity in a chimney 100 yards high incased in steam.

In comparing the numbers resulting from the trials made on chimneys of different materials and of different forms, it has been concluded that the obstruction to the draught of air, is directly proportional to the length of the chimneys, and to the square of the velocity, and inversely to their diameter.

With an ordinary wrought iron pipe of from 4 inches to 5 inches diameter, attached to an ordinary stone, burning good charcoal, the difference is prodigious between the velocity calculated by the above theoretical rulc and tbat observed by means of a stop watch, and the ascent of a puff of smoke from a little tow dipped in oil of turpentine thrust quickly into the fire. The chimney being 45 feet high, the temperature of the atmosphcre 68° Fahr. the velocity per second was:

Trials	By Theory.	By Experiment.			
1 -					Mean Temperature
2	- 29.4	-	5 feet	-	- 190° Fahr.
3 -	- 34.5		$5 \cdot 76$	-	- 212°
			- 63 , -	-	270°

To obtain congruity between calculation and experiment, several circumstances must be introduced into our formulx. In the first place, the theoretical velocity must
Vol. I.
be nultiplied by a factor, which is different according as the chimney is made of bricks, pottery. sheet iron, or cast iron. 'This factor must be multiplicd by the square root of the diameter of the chimney (supposed to be round), divided by its leugth, inereased by four times its diamcter. Thus, for pottery, its expression is $2.06 \sqrt{\frac{1}{L+1}} ; D$ being the diameter, and L the length of the chimney.

A pottery chinmey, 33 feet high, and 7 inches in diameter, when the excess of its mean temperature above that of the atmosphere was 205° Fahr., had a pressure of hot air equal to $11 \cdot 7$ feet, and a velocity of $7 \cdot 2$ fcet per second. By calculating from the last formula, the same number very nearly is obtained. In none of the experinents did the relocity exceed 12 feet per second, when the difference of temperature was more than 410° Fahr.

Every different form of chimney would require a special set of experiments to be made for determining the proper factor to be used.

This troublesome operation may be saved by the-judicious application of a delicate differential barometer, such as that invented by Dr. Wollaston; though this instrument does not seem to have been applied by its very ingenious author in measuring the draughts or ventilating powers of furnaces.

If iuto one leg of this differential siphon, water be put, and fine spermaceti oil into the other, we shall have two liquids, which are to each other in density as the numbers 8 and 7. If proof spirit be employed instead of water, we shall then have the relation of very nearly 20 to 19. I have made experiments on furnace draughts with the instrument in each of these states, and find the water and oil siphon to be sufficiently sensible; for the weaker draughts of common firc-places the spirits and wil will be preferable barometric fluids.

To the lateral projecting tube of the instrument, as described by Dr. Wollaston. I found it necessary to attach a stop-cock, in order to cut off the action of the chimney, while placing the siphon, to allow of its being fixed iu a proper state of adjustment, with its junction line of the oil and water at the zero of the scalc. Since a slight deviation of the legs of the siphon from the perpendicular changes very considerably the line of the level, this adjustmeut should be made sccure by fixing the horizontal pipe tightly into a round hole, bored into the chimney stalk, or drilled through the furnace door: On gently turning the stop-cock, the difference of atmospheric pressure corresponding to the chimney draught will be immediately indicated by the ascent of the junction-line of the liquids in the siphon. This modification of apparatus permits the experiment to be readily rectified by again shutting off the draught, when the air will slowly re-enter the siphon; because the projecting tube of the barometer is thrust into the stop eock, but not hermetically joined; whereby its junction-line. is allowed to return to the zero of the scale in the course of a few seconds.

Out of many experiments made with this instrument, I shall content myself with describing a few, very carefully performed at the breweries of Messrs. Trucman, Hanbury, and Buxton, and of Sir H. Meux, Bart., and at the machine factory of Mcssrs. Braithwaite; in the latter of which I was assisted by Captain Ericssen. In the first trials at the brewerics, the end of the stop-cock attached to the differential barometer was lapped round with hemp, aud made fast into the circular peep-hole of the furnace door of a wort-copper, comnunicating with two upright parallel chimneys, each is inches square and 50 feet high. The fire was burning with fully its average intensity at the time. The adjustment of the level being perfect, the stop-cock orifice was opencd, and the junction level of the oil and water rose steadily, aud stood at $1 \frac{1}{4}$ inches, corresponding to $\frac{125}{8}=0.156$ of 1 inch of water, or a column of air 10.7 feet high. This difference of pressure indicates a velocity of 26 feet per second. In a second set of experiments, the extremity of the stop-cock was inserted into a hole bored through the chimney stalk of the boiler of a Boulton and Watt steam-cngine of twenty-horse power. The area of this chimney was exactly 18 inches squarc at the level of the bored hole, and its summit rose 50 feet above it. The fire-grate was about 10 feet below that level. On opening the stop-cock, the junction line rose $2 \frac{1}{4}$ inches. This experiment was verified by repetition upon different days, with fires burning at their average intensity, and consuming fully 12 lbs. of the best coals hourly for each horse's power, or nearly one ton and a third in twelve hours. If we divide the number $2 \frac{1}{d}$ by 8 the quoticnt 0.28 will represent the fractional part of 1 inch of water supported in the siphon by the unbalanced pressure of the atmosphere in the said chimucy; which corresponds to $19 \frac{1}{4}$ feet of air, and indicates a velocity in the chimney current of 35 feet per second. The consumption of fuel was much more considerable in the immense grate under the wort copper, than it was uuder the stcam-enginc boiler.

In my experiments at Messrs. Braithwaite's factory, the maximum displacement of the junction line was 1 inch, when the differential oil and water barometer was plaeed
in direct communication with a chimucy 15 inches square, belonging to a stcam boilcr, and when the fire was made to burn so fiercely, that, on opening the safety-valve of the hoiler, the excess of steam beyoud the consumption of the engine rushed out with such violence as to fill the whole premises. The pressure of one-eighth of an inch of water denotes a velocity of draught of 23.4 fect per second.

Iu building chimneys, we should be careful to make tbeir area rather too large than too small; because we can readily reduce it to any desired size by means of a sliding register plate near its bottom, or a dauper plate applied to its top, adjustible by wires or cbains passing over pulleys. Wide chimneys are not so liahle as narrow ones to have their draught affected by strong winds. In a factory, many furnace flues are often conducted into one vertical chimney stalk, witb great economy in the first crection, and increased power of drauglit in the several fires.

Vast improvements have hecn made in tbis country of late vears in building stalks for steam boilers and chemical furnaces. Instead of constructing an expensive, lofty scaffolding of timber round the chimney, for the bricklayers to stand upon, and to place their materials, pigeon-holes, or recesses, are left at regular intervals, a few feet apart, within the chimney, for receiving tbe ends of stout wooden bars, which are laid across, so as to form a species of temporary ladder in the interior of the tunnel. By means of tbese bars, with the aid of ropes and pulleys, everything may be progressively hoisted for the building of the highest engine or other stalks. An expert bricklayer, witb a handy labourer, can in this way raise, iu a few weeks, a considerable elimney, 40 feet higb, 5 feet 8 iuchcs square outside, 2 feet 8 inches inside at the base, 28 inches outside, and 20 inches inside at the top. To facilitate the crection, and at the same time increase the solidity of an insulated stalk of this kind, it is built with three or more successive plinths, or recedures, as shown in fig. 450. It is necessary to make sucb chimneys thick and substantial near tbe base, in order that they may sustain the first violence of the fire, and prevent the sudden dissipation of the heat. Wben many flues are conducted into one chimney stalk, tbe area of the latter sloould be nearly equal to the sum of tbe areas of the former, or at least of as many of them as shall be going simultaneously. Wben the products of combustion from any furnace must be conducted downwards, in order to enter near the bottom of the main stalk, they will not flow off until tbe lowest part of the channel be heated by burning some wood shavings or straw in it, whereby the air sipbon is set agoing. Immediately after kindling this transient fire at that spot, the orifice must he sbut by which it was introduced ; otherwise tbe draugbt of the furnace would be seriously impeded. But this precaution is seldom necessary in great factorics, where a certain degree of beat is always maintained in tbe flues, or, at least, sbould be preserved, by shutting the damper plate of each separate flue, whenever its own furnace ceases to act. Such chimneys are finished at top with a coping of stone-slabs, to secure their brick-work against the infiltration of rains, and they should be furnished with metallic conducting rods, to protect tbem from explosions of lightning.
When small domestic stoves are used, with very slow combustion, as has been recently proposed upon the score of a misjudged economy, there is great danger of tbc immates being suffocated or asplyxicd, by the regurgitation of the noxious burned air. The smoke doctors who recommend sucb a vicious plan, from their ignorance of chemical science, are uot aware that the carbonic acid gas of coke or coal must he heated $250^{\circ} \mathrm{F}$. above the atmospheric air to acquire tbe same low specific gravity with it. In other words, unless so rarefied by heat, that gaseous poison will descend through the orifice of tbe asb-pit, and be replaced by the lighter air of tbe apartment. Drs. Priestley and Dalton bave long ago shown the co-existence of these twofold crossing currents of air, even through the suhstance of stoneware tubes. True economy of heat and salubrity alike requirc vivid combustion of the fuel, with a somewhat brisk draught inside of the chimney, and a corresponding abstraction of air from the apartment. Wholesome continuous ventilatiou, under tbe ordinary circumstances of dwelling-houses, cannot be secured in any other way. Were tbese mephitic stoves, which have been of late so ridiculously puffed in the public prints, generally introduced, the faculty would need to be inmediately quadrupled to supply the demand for medical advice; for headaches, sickncss. nervous ailments, and apoplexy would bccome tbe constant inmates of every inliabited mansion. The phenomena of tbe grotto of Pausilippo nuight then be daily realised at home among those who ventured to recline upon sofas in such carbonated apartments; only, instead of a puppy being suffocated pro tempore, human beings would be sacrificed, to save two pennyworths of fuel per diem.
The figures upon the following page represent one of the two chimneys erected at the Camden Town station, for the steam boilers of the two engines of 60 -horse power cach, belonging to the Loudon and Birminghan Railway company. These engines then drew their train of carriages up the inclined plane of LIampstead Hill. The chinncys were designed by Robert Stephenson, Esq., engincer to the Company,
executed by William Cubitt, Esq., of Gray's Inn Road, - and do equal honour to both gentlemen, being probably among the most elegant and substantial specimens of this style of architecture in the world. In the section, fig. 450 ,

E, shaft built of Malm paviours in mortar.
F, ditto, built from the inside, without exterior scaffolding.
G, the cap, ornamented (as shown in the plan alongside) with Portland stone, the dressings being tied together with copper cramps and an iron bond.

Fig. 451 represents the mouldings of the top, upon an enlarged scale.
Fig. 452, a plan of the foundation, upon an enlarged scale.
Fig. 453, ditto, at the level of the entrance of the flue as seen in
Fig. 454, the elcvation of the chimncy.
Fig. 455, plan at the ground level I, in figs. 450 and 454.
к, fig. 450, the lightning condueting rod.
china clay. Kaolin, or Porcelain Clay, which see. A fine white clay produced by the decomposition of the felspar of the granite rocks. It is found and prepared in this country in Cornwall and Devonshire.

CHINA INK. (Enrre de Chine, Fr.; Chinesischer Tusch, Germ.) It is said that the true China ink is made from the condensed smoke or soot of burned camphor; and hence, when of the best quality, it has this odour.

Most of the China ink is made from oil lampblack, disguised as to smell with musk, or with a little camphor-black. The binding substance is gelatine, commonly made from parchment; but isinglass answers equally well. A good imitation may be made by dissolving isinglass in warm water, with the addition of a very little alkali to destroy the gelatinising powcr, and incorporating with that solution, by levigation on a porphyry slab, as much of the finest lampblack as to produce a mass of the proper consistence. The minute quantity of alkali serves also to saponify the oil which usually adheres to lampblack, and thereby to make a pigment miscible with water.

CHINA STONE. A semi-decomposed granite, (Petuntze) which has nearly the same composition as the China clay (see Porcelain Clay). "Indeed, the China elay can be eonsidered as little more than this granite in a more advanced state of decomposition."-De la Beche.

The Chiua stoue is a kind of granite, the felspar of which has undergone a partial decomposition. It is carefully sclected so as to be entirely free of schorl, and requires no other preparation for the market than to be broken into a size convenient for carriagc. This granite is of a peculiar nature; it does not contain any mica, but numerous glossy scalcs of greenish-yellow talc. It has been stated by some authors that "this rock (Pegmatite, or Graphic granite), after exposure to the decomposing action of the weather, is the chief source" of the China stone and clay. This represents but very imperfcctly - indced, incorrectly - the conditions. The decomposition of the granite is not brought about by the action of the weather, but by some peeuliar decomposition proceeding to a considerable depth through the whole mass. In many places, from the very surface to the depth of more than 100 feet, this decomposition is equally apparent ; and possibly it extends to much greater depths in some places. The same stone exposed to the air does not, in any ordinary time, exhibit any signs of disintegration. No satisfactory explanation has yet been offered of the conditions under which granite is decomposed to produce the Kaolin and the China stone.
There was an agreement existing amongst the producers of China stone to send off annually only 12,000 tons; but when the demand is brisk, this has been extended to 18,000 tons, and sometimes even morc. The value of the China stone at the works in Cornwall is annually about 1800l. The whole that is raised is sent to the Staffordshire potteries.

CHINOLINE. $\mathrm{C}^{18} \mathrm{H}^{7} \mathrm{~N}$. A volatile base, found in coal naphtha, and also, accompanied by several others, in the basic fluid obtained by distilling cinchonine with potash. - C. G. W.

CHINTZ. (Zitz, Germ.) Probably derived from the East, the Hindoo name cheent, and the Persian chinz, signifying spotted or stained: The term is applied inthis country to a fast-printed calico, in whieh sevcral colours are imprinted upon a white or coloured ground, and usually glazed.
CHLORATE OF POTASH, formerly ealled oxymuriate of potash. This interesting saline cornpound has become the object of a pretty extensive manufacture, in consequencc of its applieation to make matches for procuring instantaneous light, and a detonating powder for fire arms. It may be prepared both in the humid and dry way.
Having made a strong solution of purified potash, or carbonate of potash, with from 2 to 3 parts of water, we pass through it in a Woulfe's apparatus a current of chlorine gas, till it ceases to absorb any morc. Chloride of potash aud chloride of potassium alone are formed as long as there is an excess of alkali in the solution; but afterwards in the further reaction of the materials, the chloride passes into the state of a chlorate, and, as such, precipitatcs from the solution. During the first half of the
operation, tlat is, till the potash is about one half saturated with ehlorine, as indicated by litmus paper ceasing to be darkened and beginning to be blanched, only the chloride of potassium or muriate of potash falls. The process should be interrupted at this point in order to remove the salt, to wash it, to add the washings to the liquor, and then to trausuit the gas freely through the solution. As the operation advanees, less muriate of potash is formed, and at length nothing but the purc ehlorate is separated in erystals. Wheu finally the bubbles of gas pass through without being sensibly absorbed, the process is knowu to be eompleted; the liquid may then be allowed to settle, and be poured off from the crystals of cblorate of potash, whieh are purified from the muriate by dissolving tbem in three times their weight of boiling water, and filtcring the solution whilc hot. On its eooling, the ehlorate will separate in pearlycrystalline plates. It may be rendered quite pure by a second crystallisation, in which state it does not affect solution of nitrate of silver.

The above potasli ley usually gets a reddish tint in the eourse of tbe proeess in eonsequenee of a littlc mangancsic acid enming over with the chlorine, but it gradually loses this eolour as the saturation beeomes eomplete, and then the solution turns yellow. The tubes for conveying the gas sbould be of large diameter, if they be plunged into the saline solution, because the erystallisation whieh takes place in it is apt to ehoke them up. Tbis inconvenience may, however, be obviated by attaching to the end of the glass tube, a tube of caoutehoue terminated in a small glass funnel, or simply the neek of a caoutehouc bottle with a part of its body, whose width will not be readily closed with a saline erost. The residuary lixivium may be used in another operation, or it may be evaporated down to half its bulk and set aside to crystallise, whereby some more ehlorate will be obtained, mixed indeed with muriate and earbonate, from whieh, however, it may be separated by a seeond crystallisation. In general the pure ehlorate obtained does not exceed $\frac{1}{10}$ the weight of tbe potasb employed; because in thus treating potash with ehlorine, $\frac{5}{6}$ of it are converted into muriate of potasb and only $\frac{1}{6}$ into ehlorare, and a part of the latter adheres to the muriate, or is lost in the mother waters of tbe crystallisations.

Tbe ehlorate of potash may be more conveniently manufactured, like that of lime, in the dry way. St. Romer patented at Vienna tbe following method for that purpose in $1821:-$ Ten pounds of erystallised peroxide of manganese are to be finely pulverised, mixed with 10 pounds of plumbago, and 30 pounds of common salt, and put into the leaden retort represented in fig. 456, p. 667. From the middle of the helmet-shaped lid of this vessel, a lead tube, 2 feet long, and 2 inebes wide, conduets to the receiver, which is a square earthen pan, hard glazed both within and without, of the same eapacity with the retort. The end of the tube must be made fast to a frame at the height of 6 inches above the bottom of tbe receiver. Upon its inner side, 4 inehes apart, braekets are to be fixed for supporting a series of latbs or shelves of white wood, on wbieb a number of little paper or paste-board boxes are to be laid. In these boxes 10 pounds of the purest carbonate of potash, prepared from tartar, are to be spread. The receiver must now be eovered with a lid made tight by a water lute. Twenty pounds of concentrated sulphuric acid, previously diluted with 16 pounds of water, and then cooled, are to be poured upon tbe mixed materials in the retort, the lid immediately secured, with the tube adjusted in the reeeiver. The whole must be allowed to operate spontaneously without heat for 12 hours. At the end of tbis time the retort is to be surrounded witb a water bath and steadily heated during 12 hours, and then left to cool for 6 bours. The apparatus must now be opened, the eakes of ehlorate of potash removed, and freed from muriate by solution and crystallisation.
M. Liebig proposes the following proeess for obtaining ehlorate of potash : -

Heat chloride of lime in water till it ceases to destroy vegetable colours. In this case a mixture of chloride of calcium and ehlorate of potash is obtaiued. Tbis is to be dissolved in bot water, and to the solution concentrated by evaporation, ehloride of potassium is to be added, and tben suffered to cool. After cooling, a quantity of erystals of chlorate of potash is obtained, which are to be redissolved and erystallised again to purify them. M. Liebig considers that tbis will be a cheap process for obtaining ehlorate of potash. From 12 ounces of chloride of lime, of so bad a quality that it left 65 per cent. of insoluble mattcr, he obtained an ounce of ehlorate of potash.

Tbe only difficulty to overcome in this process is, from the chloride of lime not being so easily decomposed by heat as is generally supposed ; a solution of it may be kept boiling for an hour without losing its bleaching power. The best method is to form a thin paste with chloride of lime and water, and then to evaporate it to dryucss. If it be required to prepare it by passiug cblorine into eream of lime, it is adrantageous to keep it very hot.

Illic ehlorate of potash which separates from the solution by crystallisation has not the form of scales wbieh it usually possesses, but is prismatic: whether this is oceasioned
by some admixture has not been ascertained; but on recrystallising, it is obtained in the usual form.

The solution ought not merely to be left to cool, in order to procurc crystals, for the crystallisation is far from heing terminated even after complete cooling ; crystals continue to he deposited for 3 or 4 days.

The following modification of the process for making chlorate of potash is that of M. Vée. A solution of chloride of lime marking 18° or 20° Baumé is to be set upon the fire in a lead or cast iron pot, and when it begins to get hot, there is to be dissolved in it a quantity of chloride of potassium sufficient to raise the hydrometer 3° or 4°. It must be theu concentrated as quickly as possible till it marks 30° or 31°, taking care that it does not boil over hy the sudden cxtrication of oxygen. The concentrated liquor is set aside to crystallise in a cool place, when a deposit of chlorate of potash forms, mixed with chloride of potassiun. The mother waters heing evaporated to the density of 36°, afford another crop of crystals, after which they may be thrown away.
The salts ohtained at the first crystallisation are to he redissolved, and the solution being hrought to 15° or 16° is to be filtered, when it will afford upon cooling pure chlorate of potash.
The following ingenious and casy way of making this valuahle chlorate was suggested hy Professor Graham:-Mix equal atomic weights of carbonate of potash and hydrate of lime (70 of the former, if pure, and 37 of slaked lime in powder), diffuse them through cold water, and transmit chlorine gas through the mixture. The gas is ahsorhed with great avidity, and the production of a boiling heat. When the saturation is complete, carhonate of lime remains, and a mixture of muriate and chlorate of potash, which latter salts are to he separated, as usual, hy the difference of their solnhility in watcr.

It has been remarked on the above process, that it effects no saving of potassa, and therefore is far inferior to the one long practised in several parts of Germany, especially at Giessen, and introduced into this country a good many years ago hy Dr. Wagenmann, from Berlin. The chlorine is passed into a mixture of one equivalent of chloride of potassium (76), and 6 equivalents of hydrate of lime (22?), previously stirred with water, to the consistence of a thin paste. Thus the calcium of the lime unites with the chlorine to form chloride of calcium, while the chloride of potassium is converted into chlorate of potassa, which salt is easily separated in crystals hy its sparing soluhility, which remains unfrozen even at the cold of $220^{\circ} \mathrm{F}$.

Chlorate of potash may also he made by saturating with chlorine a mixture of 74 parts of chloride of potassium (muriate of potash) and 168 parts of quicklime, hrought to the consistency of a thin pap by the cautious addition of water. The mass being dissolved in warm water, and evaporated and cooled, yields crystals of chlorate of potash, while a mother watcr of chloride of calcium (muriate of lime) remains. The following process has likewise been prescribed :-Mix 10 parts of good chloride of lime and water into a pap, and evaporate to dryness, wherehy it is converted into a mixture of chloride of calcium and chlorate of lime devoid of hleaching power; dissolve it in water, filter, concentrate the solution hy evaporation, then add to it 1 part of chloride of potassium, and cool for crystallisation. The salt which may therehy be separated from the chloride of calcium will afford 0.83 of pure chlorate of potash. By this process of Professor Liehig $\frac{5}{6}$ of the potash are saved, but much oxygen is wasted in the evaporation to dryness of the chloride of lime; and consequently, much chloric acid is lost towards the production of the salt. Vée mixes the chloride of, lime pap, hefore heating it, with the chloride of potassium, boils the mixture smartly, wbereby much oxygen is undoubtedly thrown off, and then sets the liquor aside to crystallise. L. Gmelin suggests that saturation of the liquor with chlorine hefore hoiling might he advantageous. Gay-Lussac has suggested to make this valuable salt by precipitating a solution of chloride of lime with carbonate (or sulpbate) of potash, saturating the liquor after filtration with chlorine gas, evaporating. and crystallising.*

Professor Juch's process is to pass chlorine gas into a mixturc of 1 pound caustic lime and 1 pound carbonate of potash, with 8 pounds of water. The resulting chloride of potash readily separates in the filtered liquid by crystallisation from the very soluble chloride of calcium. By this method potash is not wasted in the uscless production of chloride of potassium. Chlorate, the old oxymuriate of potash, has a cooling, some what unpleasant, and nitrous taste; it does not hleach. At $60^{\circ} \mathrm{F} .100$ parts of water dissolve 6 parts of the salt, and at its boiling point, or $220^{\circ}, 60$ parts. When heated to dnll ignition in a glass retort, it gives out $39 \cdot 15$ per cent. of its weight of oxygen, and be-

[^42]comes thercby chlorate of potassium. When strongly triturated in a mortar it crackles, throws out sparks, and becomes luminous. It deflagrates upon red hot cinders like nitre: when triturated along with sulphur or phosphorus, it detonates with great violence, not without danger to the hands of the operator, if they be not protected by a thick glove. Similar detonations may be produced with cinnabar or vermilion, suiphuret of potassium, volatile oils, sugar, \&e ; but they can he effected only by the smart blow of a heated hammer and anvil. A mixture of sugar or starch with chlorate of potash is readily inflamed by a drop of sulphuric acid, and this experiment is the basis of the preparation of the oxygenated matches, as they have been commonly called. The following formula forms a good paste for tipping the said matches made of narrow slips of cither wood or card : - 60 parts of clilorate of potash, 14 parts of sulphur, 14 parts gum benzoin, a small quantity of gum tragacantl and cininabar; or 30 parts of chlorate of potash, 10 parts of sulphur, 8 parts of sugar, 5 parts of gum arabic, and a little cinnabar. The sulphur must be wetted, or great danger will be incuricd in mixing. To kindle the match it must be touched with strong sulphuric acid, which for this purpose is usually kept in a small-well stoppered phial, and thickened with amianthus. The lucifer matches now universally employed for procuring a light, are generally the wooden sulphur match, coated with a paste containing phosphorus, which, when dry, will ignite by friction. To prepare the paste, phosphorus is melted with a certain quantity of water at 120°, the requisite proportion of nitrate, with a small proportion of chlorate of potash, is dissolved in this water, a sinall quantity of binoxide of manganese or red lead added, and the liquid thickened with gum ; the whole is well triturated together in a mortar till the globules of phosphorus cease to be visible to the cye, and the mass is colourcd with prussian blue or with minium. The points of the matches are dipped into this paste, and then cautiously dried in a stove. The use of the gum is to serve as a varnish to protect the phosphorus from oxidation by the air. The mixture for percussion powder for guns may be 54 parts of chlorate of potash, 21 parts of nitre, 18 parts of sulphur, 7 parts of lycopodium; or 100 parts of chlorate of potash, 55 parts of nitre, 33 parts of sulphur, 17 parts of sifted touch wood, and 17 parts of lycopodium ; or 20 parts of gunpowder, freed from nitre by means of water, and then mixed with 11 parts of chlorate of potash and water to the consistence of a thin paste. 'This powder when dry is dangerous to handle, being very apt to explode. But this danger is guarded against, by letting fall a drop of the paste into each percussion cap, and leaving it to dry there. In the detonation of this powder chlorine is generated, which rusts the metal very fast. For this reason fulminate of mercury is preferred by many sportsmen as a detonating powder. Gunpowder prepared with chlorate of potash and charcoal acts too violently, and inflames too easily.-H. M. N.

CHLORATES. Compounds of chloric acid with salifiable bases.
CHLORIC ACID. The acid constituent of the preceding saits. It consists of one equivalent of chlorine $=35 \cdot 5$, and five of oxygen $=40$, the sum of which (75.5) is the equivalent of the acid. This acid, which is only known in combination with one equivalent of water, is exceedingly unstable, being instantly decomposed by contact with organic matter ; undergoing gradual spontaneous decomposition in diffused daylight, and being instantly decomposed, at a temperature of a little above $100^{\circ} \mathrm{F}$., into chlorine, oxygen, and perchloric acid, the two former escaping as gases. It is prepared by decomposing chlorate of potash by the addition of hydrofluosilicic acid, which forms with potash an insoluble compound.

CHLORINE, one of the most energetic of the undecomposed substances, exists, under ordinary circumstances, as a greenish-yellow gas; but, when exposed to a pressure of 4 atmospheres, it becomes a transparent liquid, which remains unfrozen even at the cold of $-220^{\circ} \mathrm{F}$. In the first state, its density, compared to air, (reckoucd $1 \cdot 000$, is 2.47 ; in the second, its density, compared to water, (1.000 ,) is 1.33 . It is obtained either by the action of sulphuric acid on a mixture of common salt and binoxide of manganese, or by the action of moderately strong hydrochloric acid on binoxide of manganese alone. In the first case, the proportions are 7 parts by weight of oil of vitriol, previously diluted with 7 parts of water and 4 parts of common salt, intimatcly mixed with 3 parts of binoxide of manganese; in the latter, which is the most convenient method, hydrochloric acid, specific gravity $1 \cdot 15$, is gently heated with the finely powdered binoxide, in the proportions of about 3 oz . of oxide to half a pint of acid. The hydrochloric acid should not be more diluted than above indicated, otherwise an explosion may occur, probably in consequence of the formation of one of the explosive oxides of chlorine. The gas must be collected either over brine or over warm water.

Chlorine has a peculiar smell, and irritates the nostrils most violently when inhaled, as also the windpipe and lnggs. It is eminently noxious to animal life, and if breathed in its undiluted state, would prove instantly fatal. It supports the combustion of many bodies, and indeed spontancously burns several without their being pre-
viously kiudled. The resulting combinations are called chlorides, and act most important parts in many manufacturing processes.

Water absorbs, at the ordinary temperature of the atmosphere, about donble its volume of chlorine, and acquires the colour, taste, and smell of the gas, as well as its power of destroying or bleaching vegetable colours. When this aqueous chlorine is cooled down to $36^{\circ} \mathrm{F}$., dark-yellow crystalline plates appear in it of the hydrate of chlorine, which are composed in 100 parts of $27 \cdot 7$ chlorinc, and 72.3 water. If these crystals be heated to about 45°, they liquefy, and the gas flies off.

Chlorinc has a powerful affuity for hydrogen, not only combining with it rapidly in the gaseous state, but seizing it in many of its liquid and solid combinatious: as in certain volatilc hydrocarbons, which it inflames; and iu yellow wax, cotton, and flax, which it whitens. The compound of chlorinc and hydrogen gases is hydruchloric or muriatic acid gas. Binoxide of manganese, when mixed with liquid hydrochloric acid, as in the above process, abstracts the hydrogen and eliminates the chloriuc. When chlorine is passed into water, it decomposes some of it, seizes its hydrogen to form a little hydrochloric acid, and enables its oxygen to unite, either with the clilorine into chlorous acid, or with the remaining watcr, and to constitute oxygenated water. Hence aqueous chlorine, exposed to the sunbeam, continually evolves oxygen, and ere long becomes hydrochloric acid.
This watery compound acts in a powerful way upon coloured regetable fibrcs, extracting their hydrogen or colouring element by the twofold affinities of the chlorinc and oxygen for it. Hence chlorine, as a bleaching agent, requires to he tempered by the quiescent affinity of some alkaline base - potash, soda, or lime. Malaria, or morbific and putrescent miasmata, consist chiefly of hydrogenous matter as their bases, and are best counteracted by chlorine. where it can be conveniently applied. In fumigating the Millbank Penitentiary, Mr. Faraday found that a mixture of 1 part of common salt and 1 part of binoxide of manganese, when acted upon by two parts of oil of vitriol previously mixed with one part of water (all by weight), and left till cold, produced the best results. Such a mixture at 60°, in shallow pans of red earthenware, liberated its chlorine gradually, but perfectly, in four days. The salt and nanganese were well mixed, and used in charges of $3 \frac{1}{2}$ pounds of the mixture. The acid and water were mixed in a wooden tub, the water being put in first, and then about half the acid ; after cooling, the other half was added. The proportions of water and acid were 9 measures of the former to 10 of the latter. - Magazine of
Science. - H. M N.

CHLORIDES OF POTASH, SODA, AND LIME. Thcse are the most important preparations through which chlorine cxcrts its peculiar powers upou the objects of manufacture. When a weak solution of caustic potash or soda is saturated with chlorine, it affords a bleaching liquor, still used by some bleachers and calico-printers for delicate processes ; but the price of the alkalies has led to the disuse of these chlorides as a general means, and has occasioned an extensive employment of chloride of lime. This compound was first employed in the liquid form as a bleaching agent in 1:98, and in the fullowing year the idea suggested itself to Mr. Charles Macintosh, at that time a partner of Micssrs. Tennant and Knox, to impregnate quicklime in a dry state with chlorine, and a patent was taken out accordingly. The discovery of the bleaching property of chlorine is due to Berthollet, who announced the fact to the Academy of Sciences in 1785. In the following year, the new method of bleaching was introduced into Great Britain by Mr. Watt. In 1788, Mr. Thomas Henry of Manchester exhibited calico bleached by chlorine, without having any knowledge of the previous expcriments of Watt; and in the following year a detailed method of the process was published by Berthollet. To give some idea of the rapidity with which bleaching is conducted by the improved modern processes, the writer of the article on this suhject in the Encyclopredia Britannica quotes the following illustration. A bleacher in Lancashire received 1400 pieces of grey muslin on a Tuesday, which on the Thursday immediately following were returned hleached to the manufacturers at the distance of 16 milcs and they werc packed up and sent off that very day to a ser.
A great variety of apparatus has been at different times contrived for favouring the combination of chlorine with the slaked lime for the purpose of commerce. The simplest construction for subjecting lime-powder to chlorine, is a large chamber 8 or 9 feet high, built of siliccous sandstone, having the joints of the masonry secured with a cement composed of pitch, resin, and dry gypsum in equal parts. A door is fitted into it at one end, which can be made air-tight by strips of cloth and clay lute. A window on each side enables the operator to judge how the impregnation goes on by the colour of the air, and also gives light for making the arrangements within at the commencement of the process. As water lutes are inconparably superior to all others where the pueumatic pressure is sinall, I would recommend a large valve or door on
this principle to be made in the roof, and two tmmels of considerable width at the bottom of cach side wall. The three covers could be simultaneonsly lifted off by cords passing over a pulley, without the necessity of the workmanapproaching the delcterious gas, when the apartment is to be opened. Λ great number of wooden shelves, or rather trays, 8 or 10 fect long, 2 feet broad, and 1 ineli deep, are provided to receive the ridded slaked lime, containing generally about 2 atoms of lime to 3 of water. These sleelves are piled one over another in the chamber, to the height of 5 or 6 fect, eross bars below cach kecping them about an inch asunder, that the gas may have fice room to circulate over the surface of the calcarcous hydrate.

The alembies for gencrating the chlorine, which are usually nearly spherical, are in some cases made entircly of lead, in others of 2 hemispheres joined together in the middle, the upper hemisphere being lead, the uuder one cast-iron. The first kind of alembic is cuclosed for two-thirds from its bottom in a leaden or iron case, the interval of two inches between the two being destined to receive steam from an adjoining boiler Those which consist below of cast-iron have their bottom dircctly exposed to a very geatle fire; round the outer edge of the iron hemisphere a groove is cast, into which the under edge of the leaden hemisphcre fits, the joint bcing rendered air-tight by Roman or patent cement. In this leaden dome there are four apertures, each sccurd by a water-lutc. The first opening is about 10 or 12 inches square, and is slut with a leaden valve, with incurvated cdges, that fit into the water channel at the margin of the hole. It is destined for the admission of a workman to rectify any derangement in the apparatus of rotation, or to detach hard concretions of salt from the bottom.

The second aperture is in the centre of the top. Here a tube of lead is fixed, which descends nearly to the bottom, and down through which the vertical axis passes. To its lower end the cross bars of iron, or of wood, sheathed with lead, are at ached, by whose revolution the materials receive the proper agitation for mixing the dense manganese with the sulphuric acid and salt. The motion is communicated either by the hand of a workman applied from time to time to a winch at top, or it is given by connecting the axis with wheel work, iupelled by a stream of water or a steam-enginc. The third opening admits the siphon-formed funnel, through which the sulphuric acid is introduced; and the fourth is the orifice of the eduction-pipe.

Manufacturers differ much from each other in the proportion of their materials for generating chlorinc. In gencral, 10 cwt . of salt are mixed with from 10 to 14 cwt . of manganese, to which mixture, after its introduction into the alembic, from 12 to 14 cwt . of sulphuric acid are added in successive portions. That quantity of oil of vitriol must, however, be previously diluted with water, till its specific gravity becomes about $1 \cdot 6$. But, indeed, this dilution is seldom actually made, for the manufacturer of bleachingpowder almost always prepares his own sulphuric acid for the purpose, and therefore carrics its concentration no higher in the leaden boilcrs than the density of $1 \cdot 65$, which, from Dr. Ure's table of sulphuric acid, indicates $\frac{1}{4}$ th of its weight of water, and therefore $\frac{1}{3} \mathrm{rd}$ more of such acid must be used.

The fourth aperture admits the eduction pipe. This pipe is afterwards conveycd into a leaden chest or cylinder, in which all the other eduction-pipes also terminate. They are connected with it simply by water-lutes, having hydrostatic pressurc of 2 or 3 inches. In this general diversorium the chlorine is washed frou adhering muriatic acid, by passing through a little water, in which each tube is immersed, aud from this the gas is let off by a pretty large leaden tube, into the combination room. It usually enters in the top of the ceiling, whence it duffuses its heavy gas equally round.

Four days are required, at the ordinary rate of working, for making good marketable bleaching-powder. A more rapid formation would merely cndanger an elcration of temperature, productive of muriate of lime, at the expense of the bleaching quality. But skilful manufacturers use here an alternating process. They pile up, first of all, the wooden trays only in alternatc shclres in each column. At the end of two days the distillation is intermitted, and the chamber is laid open. After tro hours the work. man enters, to introduce the alternate trays covered with fresh hydrate of lime, and at the same time rakes up thoroughly the half-formed chloride in the others. The door is then secured, and the chamber, after being filled for two days more with chlorine, is again opened, to allow the first set of trays to be removed, and to be replaced by others containing fresh liydrate, as before. Thus the process is conducted in regular alternation ; thus very superior bleaching-powder is manufactured, and thus the chlorine may be suffered to enter in a pretty uniform strean. But for this judicious plan. as the lydrate advances in impregnation, its faculty of absorption heconing dimiuisleed, it would be requisite to dimiuish proportionately the cvolution of chlorine, or to allow the excess to escape, to the great loss of the proprietor, and, what is of more couscquence, to the great detriment of the health of the workmen.*

* According to C. H. Mène (Comptes Rendus, Nov. 22, 18it), chloride of lime may be propired atmost pure, and instantancously, by pouring upon slaked lime water saturated with chtorine. 'Ihe most purs, and instantancously, by pouring upon staked lime water smornted with embrme flre

The manufaeturer gencrally reckons on obtaining from one ton of rock-salt, employcd as above, a ton and a half of good bleaching-powder. But the following analysis of the operation will show that he ought to obtain two tons.

When a mixture of sulphurie acid, common salt, and black oxide of manganese arc the ingredients used by the manufacturer of bleaching-powder, the absolute proportions are, upon the hydrogen scale of equivalents :-

1 cq. chloride of sodium	-	-	-	-	58.5		29.75
1 eq. binoxidc of manganese	-	-	-	-	$43 \cdot 5$		21.25
2 eq. oil of vitriol	-	-	-	-	98.0		49.00
					$200 \cdot 0$		00.00

and the products ought to be; -

Chlorine disengaged	-	-	1	eq.	-	-
35.5	-	-17.75				
Sulphate of soda	-	-	1 eq.	-	71.0	-

These proportions are, however, very different from those employcd by the manufaeturers; and they ought to be so, on account of the impurity of their oxide of manganese. Yet, making allowance for this, many of them commit great errors in the relative quantities of their materials.

From the preceding computation, it is evident that 1 ton of salt with 1 ton of the above native oxide of manganese, properly treated, would yield 0.59 of a ton of chlorine, which would impregnate $1 \cdot 41$ tons of slaked lime, producing 2 tons of bleaching-powder, stronger than the average of the commercial spccimens; or, allowing for a little loss, which is uuavoidable, would afford 2 tons of ordinary powder, with a little more slaked lime.

Fig. 456 represents a retort of lead, well adapted to the evolution of ehlorine from the mixture of salt, manganese, and sulphuric acid, or from manganese and muriatic acid.

The interior vessel is cast in lead, and it has round its bottom part a cast-ironsteam case. The salt and manganese are introduced by the aperture c, and the sulphuric acid by the siphon funnel f. The eontact of these three substanees is eontinually renewed by the agitator or stirrer B, which eonsists of wrought or east-iron sheathed with lead. e is the gas discharge pipe. The residuums are drawn off by the bottom discharge pipe c. The heating ease reeeives its steam by the pipe h.

The chlorine gas, fig. 457, is conveyed from the retort B , into the chamber I , by the tube E E E. This chamber is divided into four eompartments, to receive the gas dischlarine is absorbel the moment the llquid comes into contact with the lime, and if the supernatant water is immediately decanted, and the lime remaining at the bottom of the vessel salurated by frequent
repetition of the treatment with chiol finds that the absorption of chlorine by moistened liydrate oflinlo iside of lime is obtained. Labarrayue ioth of its welght of common salt.'
engaged from four retorts, like the above. The bottom of it is covered with a stratum three or four inches thick of quicklime, newly slaked and sifted, which is stirred about from time to time, by the rakes L L. L L. When the saturation is sufficient, the chloride of lime is taken out by the doors \boldsymbol{K} к к к. The size of this apparatus allows 2 cwt . of manganese, and its equivalent quantity of salt and sulphuric acid, or of muriatic acid, to be introduced at once into the retort. \mathbf{D} is the handle of the agitator.

The same form of retort will suit perfectly well to prepare chlorine for making liquid chloride of lime, which is preferred by many bleachers and calico-printers who lave conveniences for preparing it themselves. The most concentrated solutions of the dry chloride of lime do not mark more than $6^{\circ} \mathrm{B}$. (specific gravity 1.04), and discolour only 50 volumes of Gay-Lussac's solution of indigo, whilst the chloride made in the humid way marks from 8° to $9^{\circ} \mathrm{B}$. (about $1 \cdot 060$), and discolours 80 volumes of the same solution.

In the chloride of lime apparatus, most generally used by the skilful calico-printers of Mülhausen, the mixture of muriatic acid and manganese is put into glass globes, with long necks, heated upon a sand-bath. The chlorine is conveyed by glass tubes into a cylindrical stone cistern, containing milk of lime. The furnace of the sandbaths is made of cast-iron, and has brick partitions, to give each retort its own fire. The smoke of all these fires goes off by a flue into sheet iron pipes. The cistern is made of siliceous sandstone. Its cover is of wood, coated with a resinous cement; and it fits at its edges into grooves cut in the stone. A wheel serves to agitate the liquid continually ; its paddles being kept at 2 inches distance from the sides of the cistern. The milk of lime is introduced by a funnel, and the chloride is drawn off by a discharge pipe. I think the lead retort and agitator used in this country greatly preferable to the experimental laboratory plan described above. In all such apparatus we should avoid giving any pressure to the tubes or vessels, and should not therefore dip the extremities of the gas pipes beneath the surface of the liquid, but rather facilitate the combination of the chlorine and the lime, by enlarging the surfaces of contact and by agitating. Intermediate vessels containing water, or the chemical cascade of M Clement, are very useful for absorbing any muriatic acid which may be disengaged along with the chlorine, and thereby preventing the needless formation of muriate of lime in the ehambers or cisterns of impregnation.

When the solution of the chloride of lime is mixed with hydrate of lime, it bears, without decomposing, a pretty high temperature, provided it be not too long continued; it may even, in certain cases, be raised to near the boiling point without suffering a marked loss of its discolouring power; but when the chloride is deprived of that excess of lime, it is decomposed in a short time, even at a heat of $110^{\circ} \mathrm{F}$.

When chlorine is admitted to milk of lime, it infallibly produces some muriate of lime; but the quantity is kept at a minimum by constantly presenting an excess of lime to the gas with the agitator, and by keeping the temperature as low as possible. Hence the influx of gas should not be so rapid as to generate much heat. An automatic agitator, moved by steam or water power, is therefore much better than onc driven by the hand of the operator, who is apt to intermit his labours.

If the liquor becomes hot at the end of the process, it should be immediatcly drawn off into large stone bottles and cooled. The rose colour, which sometimes supervenes, is due to a minute quantity of manganese : the strongest liquid chloride of lime that can be prepared will not discolour more than 80 times its volume of Gay-Lussac's indigo test.

On acting upon cotton-cloth with a concentrated solution of chloride of lime, at from 110° to $120^{\circ} \mathrm{F}$., pure carbonic acid is disengaged, and the texture of the cloth is injured. Here the hydrogen of the water, and of the cotton, being seized by the chlorine, the liberated oxygen combines with the carbon to form carbonic acid. In the dischargctroughs, where printed calicoes are passed through strong solutions of chloride of lime, stalactitic crusts of carbonate of line come to be formed in this way:

The residue in the still is a mixturc of sulphate of manganese, bisulphate of soda, and free sulphuric acid : it is mixed with as much common salt as the sulphuric acid is able to decompose, and the whole is gradually fused in a furnace. By this fusion, the sulphate of manganese is decomposed, as well as the common salt, and there remains sulphatc of soda, mixed with oxide of manganese and peroxide of iron. Lixiviation gets rid of these two oxides, and leaves a solution of sulphate of soda, which is evaporated to dryness, mixed with pounded coal, and ignited in a reverberatory furnace. By this process the Glauber salt is converted into sulphuret of sodium, from which carbonate of soda is extracted by simple aud well-known processes.

In the year 1846, Mr. Pattinson patented an improved node of manufactıring chlorine. In this process he made use of a stone vessel or gencrator, enclosed in a double iron vessel. The hydrochloric acid, specific gravity $1 \cdot 16$, is poured into the generator, and on a grating or false bottom is placed the binoxide of manganesc in lumps.

The temperature of the contents of the generating vessel is then raiscd to $180^{\circ} \mathrm{F}$, by means of steam, made to circulate betwcen the stone vessel and the iron casing. This heat is continued for about 18 hours; and then, by means of a suitable pipe passing to the bottom of the generator, steam, under a pressure of 10 lbs . to the inch, is injected into the vessel for about two minutes, and this is repeated every balf hour for about six hours. In tbis process no mechanical agitation is required, as the steam caters with sufficient force, under the pressure above mentioned, to effect the requisite agitation of the contents, and by clearing the lumps of manganese from all adhering matters, expose a fresh surface continually to the action of the acid.

In carrying this process into practical operation, Mr. Pattinson found that the apparatus is liable to be completely deranged, and the iron vessel destroyed by the action of the hydrochloric acid, if the stone generating vessel should happen to get broken; to obviate which inconvenience, and to enable the generator to be used thougb in a broken condition, the inner iron vessel is perforated; and the spaces between the two iron vessels, and between the inner iron vessel and the stone generator, are filled witb coal tar, or pitcb, thackened by boiling to such a consistence as to be tough, but not brittle, when cold. Steam, circulating through a coil of pipe passing between the iron vessels, serves to maintain the tar at the requisite degree of heat; and in the event of the breakage of the stone generator, the liquefied tar flows into tbe fissure, and prevents the escape of tbe hydrochloric acid into the steam vessel.

A method of treating the residuum obtained in the manufacture of chlorinc was patented in 1855 by Mr. C. Tcnnant Dunlop. It consists in trausforming the chloride of manganese, first into carbonate and then into oxide, by the action of heat. Whatever impurity the chloride of manganese may contaiu-as chloride of iron, for iustance - is first separated, eitber by calcination or by the ageucy of a suitable precipitant. Practical working has sbown that the carbonate of manganese thus treated yields an oxide of a richness equivalent to that of 80 per cent. pure peroxide. The carbonate of manganese may be obtained by prccipitation from the chloride by carbonate of ammonia. The chloride of ammonium resulting from this treatment may either be employed as such, or it may be re-transformed in the usual way into carbonate for the precipitation of fresb chloride of mangancse. Hydrate of lime is also used as a precipitant, the resulting hydrated oxide of manganese being subsequently converted into carbonate by the transmission through it of a stream of carbonic acid.
By anotber process, carbonate of manganese is obtained by passing carbonic acid througb the solution of cbloride of manganese which has been prcviously mixed with a quantity of carbonate of soda. The carbonate of soda, under the influence of carbonic acid, decomposes the chloride of manganese into carbonate, from which tbe oxide can be obtained. The essential feature of this invention is the production of artificial oxide of manganese, by first converting the chloride into carbonate, and afterwards this latter into oxide, by tbe joint agencies of beat and atmospheric air.

Mr. Dunlop has also obtained a patent for the production of chlorine by a very elegant method, whicb dispenses witb the use of mangancse altogether. It consists in mixing common salt with nitrate of soda, and submitting the mixture to the action of sulphuric acid. Chlorine and nitrous gas are evolved, and are caused to traverse a vessel containing strong sulphuric acid, by which the nitrous gas is readily absorbed, and the chlorine passes of. A current of atmospberic air is now passed through the nitrous sulphuric acid, until the nitrous is converted into nitric acid. These mixed acids are then made to act upon common salt without any addition of nitrate of soda, and the same gaseous products are obtained as before.

Nature of Bleaching Powder.-An elaborate series of experiments on the manufacturc of chloride of lime was made in 1822 by Dr. Ure, the most important results of
which are embodied in the subjoined table.

Mr. Graham found that hydrate of lime, dried at 212°, absorbed afterwards little or no ehlorine; but that, when dried over sulphuric acid, it was in the most favourable condition for becoming chloride of lime. A dyy, white, pulverulent compound is obtained by exposing the last hydrate to cllorine, whiel contains 41.2 to $41 \cdot 4$ chlorine in 100 parts, of which 39 parts are available for bleachiug, the remainder going to form chtoride of calcium and chlorate of lime. This appears to be the naxinum absorption of ellorine by dry hydrate of lime; but the bleaching powder of commeree rarely, even when fresh prepared, contains more than 30 per cent. of chlorine, and after being kept for several months, the proportion often falls as low as 20 per eent. A compound containing one equivalent of chlorine and one equivalent of liydrate of lime, should contain 48.57 ehlorine and 51.43 hydrate of lime; a compound of one cquivalent of ehlorine and two of hydrate of lime, should contain $32 \cdot 42$ chlorine and 67.58 hydrate of lime; and these are abont the proportions in good commercial specimens. It would not be advisable to attempt to manufacture a more highly ehlorinated product, as the stability of the compound is inereased by an excess of lime. Where a stream of chlorine is transmitted through water holding lydrate of lime in suspension, the lime is entirely dissolved, and the full equivalent of chlorine is absorbed. Water poured upon bleaching powder dissolves out the bleaching combination, leaving a large residue of lime. Ton parts of water are required for one part of dry chloride. The solution emits the peeuliar odour of hypochlorous acid; and if we regard bleaching powder as hypochlorite of lime, the reaction which occurs in its formation will be thus represented :-

$$
2 \mathrm{CaO}+2 \mathrm{Cl}=\mathrm{CaCl}+\mathrm{CaO}, \mathrm{ClO} .
$$

But good bleaching powder is not deliqueseent, neither does alcoholdissolve anything from it, both which should oceur if the compound contained free chloride of calcium. It is possible, however, that the two salts may exist in bleaching powder in the form of a double salt, or that the chlorine is in direet combination with the oxide. If the compound be supposed to be pure ehloride of lime, the reaction is simply an absorption of chlorine ; and the same should be the case with the other bleaching eompounds -chloride of soda, for instance. But when carbonate of soda, saturated with chlorine (Labarraque's Liquor), is evaporated, no ehlorine is evolved, and the residue still possesses bleaching properties. The true nature of bleaching powder is open, therefore, to speculation.
The bleaching action of solution of chloride of lime is very slow unless an acid be added to it. When dilute sulphuric acid in insufficient quantity is employed, no chlorine is evolved but hypochlorous acid, which may be distilled off and condensed in a suitable receiver; but with excess of aeid, chlorine only is liberated. When ealieoes and other woven goods are to be bleached, they are first thoroughly cleansed by boiling successively with lime-water and a weak solution of caustic soda; they are then digested in a solution of bleaching powder, specific gravity $1 \cdot 02$, containing about $2 \frac{1}{2}$ per cent. of chloride of lime; after which they are immersed in very dilute sulphuric acid, which, by liberating the chlorine within the fibres of the cloth, rapidly removes the colour. The goods are then washed, a second time steeped in alkali, and again passed through a weaker solution of ehloride, and then through dilute acid; after which they are thoroughly washed iu water. The quantity of liquor necessary for 700 lbs . of eloth is 971 gallons, coutaining $388 \frac{1}{2}$ lbs. of ehloride. When white figures are required on a coloured ground, the pattern is printed on the eloth with tartaric acid, thickened with gum. The colour is discharged in those places where the acid was present, but elservere untouehed. When chloride of lime is heated, it evolves oxygen gas, and sometimes chlorine, and it becomes converted into a mixture of cllorate of lime and chloride of ealcium, whieh has no bleaching properties. Half au ounce of chloride of lime boiled iu tro ounces of water yields, aecording to Keller, 165 eubie inches of oxygen contaminated with chlorine.
The property of ehlorine, to destroy offensive odours and to prevent putrefaction, gives to the cllorides of lime and soda a high value. On this important subject Pereira has the following remarks (Mat. Med. vol. i.) with refercnce to medical police. "If air be blown through putrid blood, and then through a solution of chloride of lime, carbonate of lime is preeipitated, and the air is disinfected; but if the air be first passed through putrid blood, then through caustic potash, or milk of lime, to ahstraet the earbonic acid, and afterwards throngh the solution of ehloride of lime, it retains its stinking quality. Chloride of lime may be employed to prevent the putrefaction of corpses previous to interment; - to destroy the odour of cxhmmed bodies during medico-legal investigations;-to destroy bad smells and prevent putrefaetion in dissecting-rooms and workshops in which animal substanees are employed (as catgut manufaetories); -to destroy unpleasant odours froun privies, sewers, drains, wells, docks, \&e. ; - to disinfect ships, hospitals, prisons, stables, \&e. The various modes
of applying it will readily suggest themselves. For disinfecting eorpses, a shect should be soakcd in a pailful of water containing a pound of chloride, and then wrapped round the body. For destroying the smell of dissecting-rooms, \&ce., a solution of the chloride may he applicd hy means of a gardening pot." Of equal importance is this suhstance to the medical practitioner. "We employ them," observes Pereira, " to gangrenous parts, to ulcer's of all kinds attended with foul secretions; to compound fractures accompanied with offensive discharges; in a word, we apply them in all cases accompanied with offensive and fetid odours. Their efficaey is not confined to an action on dead parts, or on the discharges from wounds and ulecrs; they are of the greatest hencfit to living parts, in which they induce more healthy action, and the consequent secretion of less offensive matters. Furthermore, in the sick chamber, many other occasions present themselves on which the power of the hypochlorites to destroy offensive odours will he fonnd of the highest value: as to counteract the unpleasant smell of dressings, or handages, \&cc. \&c. In typhus fever a handkerchief, or a piece of calico, dipped in a weak solution of an alkaline hypochlorite, and suspended in the sick chamher, will he often of considerable serviee hoth to the patient and to the attendants." : The poisonous exhalations from foul sewers, may be counteracted by a slight inhalation of chlorine gas, as ohtained from a little chloride of lime placed in the folds of a towel wetted with acetic acid.-H. M. N.
CHLOROMETRY. 'The processes or series of processes by which the strength or commercial value of substances containing chlorine, or from which chlorinc may be rendered availahle, is ascertained, is called Chlorometry. Chloride (bypochlorite) of lime, of potash, or of soda, and the ores of manganese, are the most important of these suhstances.

Chloride of lime is a mixture of hypochlorite of lime, chloride of calcium, and hydrate of lime ($\mathrm{CaO}, \mathrm{ClO}+\mathrm{CaCl}+\mathrm{CaO}, \mathrm{HO}$), and is decomposed hy the weakest acids-even hy earbonic acid; and therefore, by exposure to the air, it gradually loses its chlorine, and heing converted into carbonate of lime, it may become perfectly valueless. This decomposition hy all acids is conmon to all decolourising chlorides (hypochlorites), and may be explained, either hy admitting that the decomposing acid (say, for example, the carhonic acid of the air) simply elininates the hypochlorous acid, the oxygen of which oxidises in a direct manner the calcium of the chloride of calcium mixed with the hypochlorite of lime, thus :-

$$
\mathrm{CaO}, \mathrm{ClO}+\mathrm{CaCl}+2 \mathrm{CO}^{2}=2 \mathrm{CaO}, \mathrm{CO}^{2}+2 \mathrm{Cl} ;
$$

or hy considering the decolourising chloride (chloride of lime, for example) not as a hypochlorite, hut as a compound resulting from the direct combination of chlorine with $\mathrm{CaO}(\mathrm{CaO}, \mathrm{Cl})$; in which view of the ease the decomposition is explained as follows :-

$$
\mathrm{CaO}, \mathrm{Cl}+\mathrm{CO}^{2}=\mathrm{CaO}, \mathrm{CO}^{2}+\mathrm{Cl} .
$$

The value of the decolourising chlorides in general, and of chloride of lime in particular, depends upon the quautity of chlorine which may be liberated from it nnder the influence of an acid. For technical purposes this estimation is exceedingly important, and should never he neglected hy the bleacher.

Chlorine, whether in the free state, or combined with weak alkalies, or caustic lime, having the property of destroying colouring matter of an organic nature, this reaction was from the first resorted to as a means of determining the commercial value of these chlorides; namely, hy ascertaining the quantity of a solution of indigo of known strength which could he decolourised by them; for this purpose a test liquor is prepared hy dissolving a given quantity of sulphatc of indigo in water, and pouring therein, drop hy drop, a certain quantity of the sample of chloride of lime previously dissolved in a measured quantity of water. The solution of chloride of lime must he added, drop hy drop, to the sulphate of indigo test liquor until the latter turns from hlue to yellow, the operator taking care to stir the mixture without intermission.

This method of chloromctry, however, is ohjectionable, and is, in fact, the worst of all, on account of the difficulty of ascertaining when the reaction is complete; for the yellow colour, resulting from the dccomposition of the indigo (chlorisatine), mixing with the original hlue colour of the solution, produces a green colour, which interferes with the correctness of the observation. On the other hand, the test liquor of sulphate of indigo always undergoes spontaneous and gradual decolorisation by standing, not only when exposed to diffused light, but even though it he kept in well stoppered hottles, and in the dark.
The process generally adopted now is one which gives exceedingly accurate results; it was contrived hy Gay-Lussac, and it is hased on the property whieh arsenious acid $\left(\mathrm{AsO}^{3}\right)$ in solution in ehlorhydrie aeid possesses of becoming peroxidised, that is
to say, eonverted into arsenic acid (ssO^{5}), in the presence of ellorine and water. This reaction may be represented by the following equation:-

$$
\begin{aligned}
& \mathrm{AsO}^{3}+2 \mathrm{Cl}+2 \mathrm{HO}_{\mathrm{O}}= \\
& \mathrm{AsO}^{5}+2 \mathrm{HCl} .
\end{aligned}
$$

That is to say, one equivalent of arsenious acid (AsO^{3}) in presence of two equivalents of chlorine (2 Cl) and of two equivalents of water (2 HO), produces ouc equivalent of arsenic acid $\left(\mathrm{AsO}^{5}\right)$ and two equivalents of chlorhydric acid (2 HCl).

This reaction is so rapid, that if organic substances capable of being decolourised by the action of chlorine are present while it is taking place, the colour is not destroyed so long as any portion of arsenious acid remains uneonverted into arsenic acid; but as soon as the last portion of the arsenious acid las been peroxidised, the liquor is instantly decolourised, whieb reaetion at once indicates that the experinent is at an end.

Taking the equivalent of arsenious aeid $=99$, and that of chlorine $=35.5$, it is evident that 99 grains of arsenious acid will correspond to $71 \cdot 0$ of chlorine ($35^{\circ} 5 \times 2=71^{\circ}$); or, which is the same thing, $139 \cdot 436$ grains of arsenious acid will correspond very nearly to 100 of chlorine.

Take, therefore, a certain quantity of tbe arsenious acid of commerce, reduce it to powder, and dissolve it in hot diluted chlorhydric acid; allow it to reerystallise therefrom, wash the erystalline powder with cold water, dry it well, reduce it into fine powder, and of this dry and pure arsenious acid take now $139 \cdot 44$ grains, prepared as above said, put them into a flask, and add thereto about 3 ounces pure chlorhydric acid, free from sulphurous and nitric acid, and diluted with three or four tiules its bulk of water; keep the whole at a boiling heat until all the arsenious acid has totally dissolved. Pour now the solution into a glass cylinder graduated into 10,000 grains-measures, rinse the flask with water, and pour the rinsings into the graduated glass eylinder until, in fact, it is filled up to the seratch marked 10,000 . This done, it is clear that each 1000 grains-measure of that liquor will contain $13 \cdot 944$ grains weight of arsenious aeid, corresponding to 10 grains weight of chlorine. This shonld be labelled "arsenious acid test liquor." If it be desired to prepare a larger quantity of test liquor, instead of $139 \div 4$, the operator may take, for example, ten times that quantity of arsenious acid, namely, 1394.44 grains (or, more correctly, 1394.36), and dissolve them in as much liquid as will form 100,000 grains-measures; but he will have to take eare to keep it in one or more well stoppered jars, in order that the streugth of the solution may not be altered by evaporation.

Having thus prepared a quantity of arsenious acid test liquor, weigh off 100 grains from a fair average sample of the chloride of lime to be examined, and after triturating them first in the dry state, and then with a little water in a glass mortar, and then adding more water, pour the whole into a flask or glass vessel capable of holding 2000 grains-measure, and marked with a serateh at that point. The mortar in wbich the ehloride of lime has been triturated must be rinsed with more water, and the rinsings poured into the 2000 grains-measure glass vessel first mentioned, until the whole of the 2000 grains-measures are filled up to the seratch. The whole must now be well sbaken, in order to obtain a uniformly turbid solution, and half of it (namely, 1000 grains-measure) is transferred to an alkalimeter, whicb therefore will thus be filled up to 0°, and will contain 50 grains of the chloride of lime under examination; and as the 1000 grains-measure of the alkalimeter are divided into 100 degrees, each degree or division will therefore contain 0.5 , or half a grain of chloride of lime.
-On the other band, pour also 1000 grains-measure of the arsenious acid test liquor into a somewhat large beaker, and add thereto a few drops of a solution of sulpbate of indigo, in order to impart a distinet blue colour to it ; shake the glass, so as to give a circular motion to the liquid, and while it is whirling round pour gradually into it the chloride of lime liquor from the alkalimeter, watching attentively the moment when the blue tinge of the arsenious aeid test liquor is destroyed. Care must be taken to stir the liquor well during the process, and to stop as soon as the decolourising is effeeted, wbich indieates that the whole of the arsenious acid is converted into arsenie acid, and that the process is finisbed.

The quantity of chlorine contained in the sample is then determined in the following manner:-

We have seen that the 1000 grains-measure of the arsenious acid test liquor, iuto which the chloride of lime liquor was poured from the alkalimeter, eontained $13 \cdot 9 \cdot 4$ grains weight of arsenious aeid, eorresponding to 10 grains weight of ehlorinc. And the 1000 grains-measure of chloride of lime liqnor poured from the alkalimeter coutained 50 grains weight of chloride of lime, eaeh degree of the alkalimeter containiug, therefore, half a grain of chloride of lime.

Let us suppose that, in order to destroy the blue colour of the 1000 grains-measure
of the arsenious acid test liquor, 80 divisions (800 grains-measure) of the chloride of lime liquor in the alkalimeter have been employed. lt is evident that these 80 divisions contained the 10 grains weight of chlorine necessary to destroy the colour of the arsenious acid test solution, or rather to peroxidise all the arsenious acid ($13 \cdot 944$) contained in that solution tinged blue with indign. And since cach division represents half a grain of chloride of lime, 40 grains weight of chloride of lime, containing 10 grains weight of chlorine, must have been prosent in the 80 divisions employed. If now 40 grains of the ehloride of lime under examination eontained 10 grains of chlorinc, what is the percentage of chlorine in that same chloride? The answer is 25.

$$
40: 10:: 100: 25
$$

The chloride of lime submitted to the experiment contained, therefore, 25 per cent. of chlorine.
Iu the method just described it will be observed that, instead of pouring the arsenious acid test liquor into the solution of the sample, as in alkalimetry, it is, on the contrary, the solution of the sample which is poured into that of the test liquor. It is necessary to operate in this manner, because, otherwise, the chlorhydrice acid of the arsenious acid test liquor would disengage at once more chlorine than the arsenious aeid could absorb, and thus render the result quite ineorrect. On the contrary, by pouring the chloride of lime into the solution of arseuious acid, the chlorine being disengaged in small portions at a time, always meets with an abundance of arsenious acid to react upon. It is better, also, to employ the turbid mixture of chloride of lime, than to allow it to settle and to perform the experiment on the decanted portion.
Instead of arsenious acid, protosulphate of iron may very conveniently be employed; and this method, first proposed, I belicve, by Runge, yields also exceedingly aecurate results.
This method is based upon the rapid peroxidisation which protosulphate of iron undergoes when in contact with chlorine in the preseuce of water and of free sulphuric aeid, two equivalents of the protosulphate being thereby converted into one equivalent of persulphate, on account of one equivalent of chlorine liberating one cquivalent of oxygen from the water, whieh equivalent of oxygen adds itself to the protoxide of iron whieh thus becomes eonverted into peroxide, and consequently into persulphate of iron, while the equivalent of hydrogen, liherated at the same time, forms with the chlorine one equivalent of chlorlydric acid; thus:-

$$
\begin{aligned}
& 2 \mathrm{FeO}, \mathrm{SO}^{3}+2 \mathrm{SO}^{3}+\mathrm{HO}+\mathrm{Cl}= \\
& \mathrm{Fe}^{3} \mathrm{O}^{3}, 3 \mathrm{SO}^{3}+\mathrm{HCl} ;
\end{aligned}
$$

by which it is seen that two equivalents of protosulphate of iron correspond to one cquivalent of chlorine.

Protosulphate of iron may be obtained in a state of great purity as a by-produet of the action of sulphuric acid upon protosulphurct of iron in the preparation of sulphuretted hydrogen, the crolution and reducing action of the latter gas preventing the formation of any peroxide. All the operator has to do is to redissolve in water, with addition of a little sulphuric acid, the crystals which have formed in the sulphuretted hydrogen apparatus, to filter the whole liquor, and to reerystallise it; or else to pour the hot and very concentrated solution into strong alcohol: by the latter process, instead of obtaining the protosulphate in crystals, it is in the shape of a fine clear blue preeipitate. Or else, as much piano-forte wire may be dissolved in moderately diluted sulphuric acid as will nearly neutralise it ; the liquor is then filtered and left to crystallise, taking care, however, to leave a few fragments of the wire suspended in it, that no peroxidisation may take place; or else the iron solution may be concentrated by heat, and while hot pour into strong alcohol, by which a clear blue crystalline precipitate of pure protosulphate of iron will be obtained. In either ease the protosulphate of iron so produced contains 7 equivalents of water of crystallisation ($\mathrm{FeO}, \mathrm{SO}^{9}, 7 \mathrm{HO}$).

Takc, accordingly, 2 equivalents, or 278 grains, of the crystallised protosulphate of iron, before alluded to, and previously dried between folds of blotting-paper, or moistened with alcohol and left to dry in the air until all odour of alcohol has vanished, and dissolve these 278 grains of protosulphate of iron in water strongly acidified with cither sulphuric or chlorhydric aeid, so that the liquor may occupy the bulk or volume of 3550 grains of water. 1000 grains of such a solution will therefore contain 78.31 grains of crystallised protosulphate of iron, and will accordingly be peroxidised by, or will correspond to, 10 grains of cllorine. When only one experiment is contemplated, 78.31 of erystallised protosulphate of iron may be at once dissolved in 1000 grains (1 alkalimeter full) of water acidified with sulphuric acid; and this is the protosulphate of iron test liquor.

Weigh now 100 grains of the ehloride of lime under examination, and dissolve them, as before mentioned, iu a glass mortar, with a suffieieut quantity of water, so that it may oecupy the bulk of 2000 grains-measures of water; pour half of this, mamely, 1000 grains-measure, into au alkalimeter divided, as usual, into 100 divisions or degrees, eaelt degree of whieh will therefore eontain half a grain of chloride of lime. Pour gradually the ehloride of lime from the alkalimeter into a glass beaker eontaining 1000 graius-measure of the test solution of protosulphate of iron, above alluded to, stirring all the while, until it is completely converted iuto persulphate of iron, which may be aseertained by means of strips of paper, previously dipped into a solution of red prussiate of potash and dried, more ehloride of lime being poured from the alkalimeter as long as a blue stain is produeed by touching the red prussiate of potash test paper with a drop of the solution of protosulphate of iron operated upon. The quantity of ehlorine contained in the ehloride of lime under examination, is estimated as follows:-Sinee 1000 grains-measure of the protosulphate of iron test liquor, into whieh the solution of ehloride of lime is poured, contains, as we said, 78.31 grains of proto-sulphate of iron, eorresponding to 10 grains of ehlorine ; and sinee, on the other hand, 1000 grains-measure of the solution of ehloride of lime in the alkalineter contains 50 grains of ehloride of lime, that is to say, $\frac{1}{2}$ grain of that substance in each division of the alkalimeter:
Let us suppose, for example, that the quantity of ehloride of lime required to peroxidise the iron of the 1000 grains-nueasure of protosulphate amounts to 90 divisions, it is evident that the solution eontained 45 grains of chloride of lime, and if these 45 grains of chloride of lime contained the 10 grains of chlorine necessary to peroxidise the iron of the protosulphate in the glass beaker, the 100 grains of the same ehloride under examination evidently contain 22.22. This ealeulation is readily effeeted by dividing 1000 by half the number of the divisions poured from the alkalimeter. The half of 90 (number of divisions employed) being 45 , dividing 1000 by 45 is 22.29.

Or, instead of 100 grains, the operator may take only 50 grains of the ehloride of lime to be examined, aud this will prove a more eonvenient quantity, in that case, the dividing 1000 by the number of divisions employed, will at onee give the percentage. Let us suppose, for example, that 45 divisions only of the 50 grains of chloride of lime solution, taken as sample, to have been employed; then, siuce these 45 divisions contained the 10 grains of ehlorine neeessary to peroxidise the iron contaiued in the 1000 grains-measure of the protosulphate, it is evident that 100 grains will contain 22.22 of ehlorine; thus:-

Divisions.	Grains of ehlorine.	Divisions.				
45	$:$	10	$:$	100	\quad	Grains of ehlorine.
:---:						
$\mathrm{x}=22 \cdot 22$						

There are other aecurate methods of determining the amount of ehlorine in ehloride of lime, provided a proper eare be bestowed on the operation; but the processes by arsenious aeid and by proto-sulphate of iron are by far the less liable to error from the eireumstance, among other reasons, that their solutions are less liable to beeome altered. The other methods also require a longer time, and we shall only mention the rationale of their mode of aetion.

Thus the process by chloride of manganese eonsists in deeomposing a test solution of it by the ehloride of lime, to be examiued as long as a brown preeipitate is produeed. The reaction is as follows: -

$$
\begin{aligned}
& \mathrm{MnCl}+\mathrm{CaO}, \mathrm{Cl}+\mathrm{HO}= \\
& \mathrm{MnO}^{2}+\mathrm{CaCl}+\mathrm{HCl} .
\end{aligned}
$$

The proeess with yellow prussiate of potash depends upon the following reaction:-

$$
\begin{aligned}
& 2(\mathrm{FeCy}+2 \mathrm{KCy})+\mathrm{Cl}= \\
& \left(3 \mathrm{KCy}+\mathrm{Fe}^{2} \mathrm{Cy} \mathrm{y}^{3}\right)+\mathrm{KCl} .
\end{aligned}
$$

That is to say, 2 equivalents of yellow prussiate (ferroeyanide of potassium) produce 1 equivalent of red prussiate (ferricyanide of potassium), 1 equivalent of ehloride of potassium ; and. therefore, 2 equivalents $=422$ grains of the yellow prussiate will eorrespond to 1 equivalent $=35.5$ of ehlorine. The chloride of lime is, as usual, poured into the solution of the chloride of manganese, and the operation is completed when a brown colour begins to appear.
The proeess by subchloride of mercury ($\mathrm{Hg}{ }^{2} \mathrm{Cl}$), whiel is insoluble in water, is based upon its conversion by ehlorine into ehloride of mereury (HgCl), whieh is soluble in water, thus:-

$$
\begin{aligned}
& \mathrm{Hg}^{2} \mathrm{Cl}+\mathrm{Cl}= \\
& =
\end{aligned}
$$

The modus operandi is briefly as follows:-As subnitrate of mereury is diffieult to
obtain in a perfeetly neutral state, and free from basie, or from pernitrate, take a kuowu volume of pernitrate of mereury, preeipitate it by an addition of ehlorhydrie acid, eolleet the precipitate formed, wash it, dry it at 212° F., and weigh it. Having thus aseertained the quantity of subebloride of mercury contained in the known bulk of pernitrate, 1000 grains mcasure of it are measured off, and precipitated by an excess of chlorhydric acid; and the whole is then well shaken so as to agglomerate it; a given weight of chloride of lime, say 50 grains, are dissolved as usual iu water so as to obtain onc alkabimeter full, which is then gradually poured into the liquor containing the precipitated subchloride of mercury, until it completely disappears and the liquor beeomes as elear as water, which indicates that the operation is at au end. The number of divisions of the chloride of lime liquor used are then read off, and the quantity of chlorine present in the chloride of lime is easily caleulated from the quantity of subchloride of mercury which was known to have existed in the known bulk ot pernitrate employed, and which has been converted into perehloride of mercury by the ehlorinated liquor poured iuto it.

Testing of Black Oxide of Manganese for its available Oxygen.

Manganese is found, in combination with nore or less oxygen, in a number of minerals, but the principal ores of that substance are the pyrolusite (binoxide of mauganese), MnO^{2}, braunite (sesquioxide of manganese), $\mathrm{Mn}^{2} \mathrm{O}^{3}$, manganite (hydrated sesquioxide of manganese), $\mathrm{Mn}^{2} \mathrm{O}^{3}+\mathrm{HO}$, hausmannite (red oxide of manganese), $\mathrm{Mu}^{3} \mathrm{O}^{4}, \& \mathrm{c}$. \&e.

The first, namely, the pyrolusite, is by far the most important of these ores which are chiefly employed for the preparations of ehlorine, and their commercial value depends upon the quantity of this gas which a given weight of them can cvolve, which quantity is proportionate to that of the oxygen contained in the ore beyond that which eonstitutes the protoxide of that metal, as will be shown preseutly. The maufacturer who uses these ores, ought also to take into consideration the amount of impurities which may be present in them, such as earthy carbonates, peroxide of iron, alumina, silica, sulphate of barytes, since these impuritics diminish, pro tunto, the value of the ore. The estimation of the eommercial value of a manganese ore may be accomplished in various ways.

One of these methods consists in first redueing iuto fine powder a sample of the ore, and treating it by moderately diluted nitric acid. 1f this produces an effervescence, it is owing to the presenee of carbonates, and an excess of nitrie aeid should then be used, so as to dissolve them entirely. When all effervescence has ceased, even nfter a fresh addition of acid, the whole should be thrown on a filter, and the residue within the filter should be washed and dried. For technical purposes the weight of these carbonates may be thus easily effected, namely, by weighing a eertain quantity of the sample (for example 100 grains), digesting it for a few hours in dilute nitric acid, collecting on a filter, washing, and drying until it no longer diminishes in weight. The loss indicates, of course, the quantity per cent. of the carbonates which it eoutained. This being done, take a weighed quantity of the sample, dry it well, as just said, iutroduce it into a small counterpoised retort, at the extremity of which a tube containing fragments of fused chloride of caleium, also weighed, should be adjusted. Apply then to the retort the strougest lieat that can be produced by an argand spirit lamp, or by my gas furnace-lamp, and, after some time, disconncet the chloride of calcium tube and weigh it. The inerease of weight indicates the quantity of water whieh has volatilised, and which was yielded principally by the hydrate of sesquioxide (manganite, $\mathrm{Mn}^{2} \mathrm{O}^{3}+\mathrm{HO}$), some portion of which is always found mixed with the peroxide ; every grain of water thus evaporated corresponds to $9 \cdot 77$ of naanganitc.
The contents of the small retort should now be emptied iuto a counterpoised platiunm eapsule or cruciblc, and ignited therein, until, after repeated weighings, the weight is observed to remain uniform ; this converts the mass completely into manganosomanganic oxide $\left(\mathrm{Mn}^{3} \mathrm{O}^{1}\right)$. The crucible is then weighed, and the loss indicates the quantities of oxygen evolved, from which that of the peroxide is calculated. Eael grain of oxygen corresponds to 2.71 of pure peroxide. This experiment should evidently be carried on with great eare, since a small quantity of oxygen represents a large quantity of peroxide.

In order to effeet the complete conversion of the peroxide in the sample into red oxide of manganese, as above mentioned, the ignition should he continued for a long time, and the quantity operated upon should be small ; if a larger quantity be treated a common fire should be used instcad of an argand lamp.
The value of mangauese may also be very aecurately estimated by measuring the quantity of ehlorine whieh a given weight of the ore produees, when treated by chlorhydric aeid.

In order to understand the rationale of this method, the reader must bear in mind
that all the oxides of manganese when heated in eontact with ehlorhydrie aeid evolve a quantity of ehlorine exaetly proportionate to that of the oxygen above that which it contained in the protoxide. For example, protoxide of manganese being treated ly ehlorhydrie aeid produees only protoehloride of manganese, but yields no free ehlorine, as showu by the following equation: $\mathrm{MnO}+\mathrm{HCl}=\mathrm{MnCl}+\mathrm{HO}$. Not so however the red oxide of manganese or manganoso-manganic oxide ($\mathrm{Mn}^{3} \mathrm{O}^{4}$), which, when treated hy ehlorhydrie aeid, forms protochloride of manganese, but disengages one third of an equivaleut of ehlorine, as shown by the following equation: Red oxide of manganese, or manganoso-manganie oxide, may be represented by the formula $\mathrm{MnO}+\mathrm{Mn}^{2} \mathrm{O}^{3}$, or by $\mathrm{Mn}^{3} \mathrm{O}^{4}$, or by $3 \mathrm{MnO}_{\frac{1}{3}}$; therefore: $1 \frac{1}{3} \mathrm{MnO}+1 \frac{1}{3} \mathrm{HCl}=1 \frac{1}{3} \mathrm{H}$ $\mathrm{O}+\mathrm{MnCl}+\frac{1}{3} \mathrm{Cl}$.

Sesquioxide of manganese when treated by chlorhydric aeid yields half an equivalent of free ehlorine for eaeh equivalent of protoehloride of manganese formed ; as shown by the following equation: Sesquioxide of manganese, $\mathrm{Mn}^{2} \mathrm{O}^{3}$, is the same as $2 \mathrm{MnO} 1 \frac{1}{2}$; therefore $1 \frac{1}{2} \mathrm{MnO}+1 \frac{1}{2} \mathrm{HCl}=1 \frac{1}{2} \mathrm{HO}+\mathrm{MnCl}+\frac{1}{2} \mathrm{Cl}$.

Lastly peroxide of manganese when treated by elılorhydrie aeid yields one entire equivalent of chlorine for each equivalent of protoehloride formed; as shown by the following equation: Peroxide of manganese is MnO^{2}; therefore $\mathrm{MnO}^{2}+2 \mathrm{HCl}=2 \mathrm{HO}$ $+\mathrm{MuCl}+\mathrm{Cl}$. And as the eommereial value of the ores of manganese depends, as already said, upon the amount of chlorine which they ean evolve when treated by chlorhydrie aeid, the object in view will evidently be attained by determining that quantity.
Runge's method, whieh we detailed at the beginning of this artiele in the testing of chloride of lime, may also be applied for the testing of the ores of manganese. That method, it will be reeolleeted, is based upon the rapid peroxidisation which sulphate of protoxide of iron undergoes when in eontaet with ehlorine, water being present; whieh reaction is represented as follows: $2 \mathrm{FeO}, \mathrm{SO}^{3}+\mathrm{HO}+\mathrm{Cl}=\mathrm{Fe}^{2} \mathrm{O}^{3}, \mathrm{SO}^{3}+\mathrm{HCl}$. Showing that two equivalents of protosulphate of iron represent one equivalent of ellorine, since one equivalent of ehlorine is required to convert two equivalents of protosulphate of iron into one of the persulphate of that base. The experiment is performed as follows: Pulverise 278 grains (2 equivalents) of erystallised protosulphate of iron ($2 \mathrm{FeO}, \mathrm{SO}^{3}, 7 \mathrm{HO}$), and mix them in a small flask with $43 \cdot 6$ grains of the manganese under examination, and previously redueed into very fine powder. These $43 \cdot 6$ grains represent one equivalent of pure binoxide of manganese (MnO^{2}), and would, therefore, if pure, peroxidise exaetly the two equivalents, or 278 of protosulphate of iron. About three fluid ounees of strong ehlorhydrie acid should now be poured upon the mixture in the flask, whieh flask must be immediately elosed with a perforated eork provided with a tube-funnel drawn to a point, in order that the vapour may eseape, and the whole is then rapidly boiled. The ehlorine disengaged by the manganese is immediately absorbed by the protosulphate of iron. We just said that 43.6 grains of peroxide of manganese would, if pure, exactly peroxidise the 278 grains of protosulphate of irou, but as the peroxide of manganese of commerce is never pure, it is evident that the $43 \cdot 6$ grains of the sample employed will prove insufficient to peroxidise the iron, and henee, the neeessity of ascertaining the amount of protosulphate whieh eould not be peroxidised, and which remains in the aeid solution. This may be done by means of a ehlorate of potash test-liquor, as follows: Sinee 1 equivalent ($=122.5$ grains) of ehlorate of potash ($=\mathrm{KO}, \mathrm{ClO}^{5}$) produee, under the influenee of hoiling ehlorhydric aeid, 6 equivalents of ehlorine, as shown by the equation $\mathrm{KO}, \mathrm{ClO}^{5}+6 \mathrm{HCl}=\mathrm{KCl}+6 \mathrm{HO}+6 \mathrm{Cl}$, it follows that 20.41 of ehlorate of potash would be suffieient to peroxidise 278 grains (2 equivalents) of protosulphate of iron, and would therefore represent 35.5 (1 equivalent) of ehlorine, or 43.6 of peroxide of manganese.

The ehlorate of potash test-liquor, therefore, is prepared by dissolving 20.41 of ehlorate of potash in 1000 water-grains' measure of water. The solution is then poured earefully, drop by drop, from a glass alkalimeter through the tube funnel into the boiling hot solution containing the salt of iron. The whole of the ehlorine which is disengaged is immediately absorbed by the protosulphate of iron, hut as soon as the latter is completely peroxidised, the free ehlorine whieh is evolved immediately reaets upon the eolouring matter of a slip of paper, stained blue by sulphate of indigo, or litmus, previonsly placed by the operator between the eork and the neek of the flask, which piece of paper hecoming hleaehed indieates that the operation is terminated. The operator then reads off the number of measures of the ehlorate of potash test-liquor whieh have been employnd to complete the peroxidisation of the protnsulphate of iron.
Let us suppose that 50 divisions of the alkalimeter (500 water-grains' measures) have been employed; it is elear that half the quautity only of the protosulphate of iron employed has heen eonverted into persulphate, aud that eonsequently the quantity of the sample of manganese contained half its weight of valueless material; or, in other words, each measure of the test-solution of ehlorate of potash employed to
complete the peroxidisation of the protosulphate represents 1 per cent. or 21.8 graius of useless matter contained in the $43 \cdot 6$ grains of the ore of manganese operatcd upon. The air should be cxcluded from the flask during the peroxidisation of the protosulphate of iron, clse the oxygen of the air acting upon the salt of iron, would peroxidise a portion of it and vitiate the result. Instead of protosulphate, protochloride of iron may be used, for which purpose 56 grains (2 equivalents) of piano. forte wire should be put into a matras or flask as above mentioned, and about four fluid ounces of pure concentrated chlorhydric acid poured upon them. The flask being closed, as directed in the preceding process, with a cork provided with a funnel tube drawn to a point at the lower end, a gentlc heat is then applicd to promote the solution of the iron. When all the metal has dissolved, the operator introduces 43.6 grains of the peroxide of manganese uuder examination, previously reduced into fine powder and kept in readiness, weighcd and folded up in a piece of paper; the flask is immediately closed with its cork, the liquor is slightly agitated and then brought to the boiling point. The chlorine disengaged by the manganese is completely absorbed by the protochloride of iron, the excess of which is determiued by the chlorate of potash test-liquor precisely as explained just above.

By the methods which we have described the proportion of chlorine which a sample of manganese can evolve may be ascertained, but this alone is far from constituting the commercial value of the article as a source of chlorine, and it is not less inportant to determine the proportions of the other substances, such as peroxide of iron, earthy carbonates, \&c., which are contained in the sample and which unprofitably consume a certain quantity of hydrochloric acid withoutevolving chlorine, and mercly pioducing chlorides of iron, of calciunt, of barium, \&c. Hence the necessity of estimating not only the quantity of chlorine which a given weight of peroxide of manganese can yield but likewise the proportion of hydrochloric acid which is uselessly saturated by the forcign substances contaiued in the orc. For this purpose the following method which was first recommended by Gay-Lussac may be resorted to :- One cquivalent, or 43.6 grains, of the peroxide of manganese under examination are treated by an excess of hydrochloric acid ; for example, by 500 water-grain measures of chlorhydric acid of specific gravity 1003 , which quantity contains, according to Dr. Ure, 100 grains of real acid. The amount of chlorine corresponding to that of the pure manganese in the sample is then determined as mentioned before by means of protosulplate or protochloride of iron.

Since $43 \cdot 6$ grains (one equivalent) of pure peroxide of nanganese require 74 grains (two equivalents) of pure chlorhydric acid to evolve 35.5 of chlorine, if we saturate the excess of chlorhydric acid employed by means of a solution of carbonate of soda, as in acidimetry, and thus determine the quantity of free acid, the difference will at once show what quantity of acid has been consumed both by the peroxide of manganese and by the foreign substances conjointly; but if we now subtract from that number the quantity consumed by the manganese, which will have been asecrtaincd in the first part of the experiment, the remainder will of course represent the proportion which has been uselcssly consumed by the impuritics.

Taking a test solution of carbonate of soda of such a strength that 100 alkalimetrical divisions contain exactly 53 grains (one equivalent) of it, and are consequently capable of saturating exactly 36.5 grains (one cquivalent) of purc chlorhydric acid, let us suppose that in order to saturate the cxcess of frec acid left after the determination of the chlorine evolved by the manganese, it is found that 140 alkalimetrical divisions of the test solution of carbonate of soda just alluded to have been required. Since 100 alkalimetrical divisions or measures of carbonate of soda can saturate 36.5 grains of pure chlorhydric acid, the 140 divisious or mcasures cmployed rcpresent therefore $51 \cdot 1$ grains of acid left in excess and in a free state, which being deducted from the 100 grains (contained in the 500 grain measures of acid of specific gravity 1.093 cmployed) leave 48.9 grains as the proportion of real acid consumed by the manganese and impurities of the sample. Let us suppose now that the 43.6 grains of manganese operatcd upon have bcen found in the first part of the experiment to contain only 21.8 grains, or 50 per cent. of peroxide of manganese as beforc mentioned; these will therefore have consumed 36.5 grains of chlorhydric acid, which being deducted from the 48.9 grains (the joint quautity of acid consumed by the acid and impurities), leave 12.4 as the proportion of pure chlorhydric acid wasted or uselessly taken up by the impurities alone, and therefore the $43 \cdot 6$ grains of peroxide of mangancse operated upon consisted of

The amount of water containcd in the sample may be scparately estimated hy exposing a givell weight of it (100 grains, for example) in a capsule at a temperature of about 215° Fahr. until they no longer lose weight. Whe loss, of course, indicates the percentage of water.

Dr. Ure recommended a chlorometrie apparatus represented in the fig. 458. Into the flask or phial c put 100 grains of the manganese to be
 tested, and into the globes, A, B, pour out of an alkalimetrical tube charged with 1000 grain measures of the above equivalent eopperas solution, from 200 to 500 grain mcasures, according to the supposed quality of the manganese; then introduce through the funnel d some hydroeliloric aeid of known specific gravity (suppose $1 \cdot 1$), containing nearly 20 per cent. of chlorine, also from a charged alkalimetrical tube, and apply gentle heat to the bottom of the flask by placing it in a capsule of water standing over a spirit lamp. The chlorine evolved will rise up through the tube f, which passes merely beyond the cork, and will cnter into the solution in 13 and A, converting it into red sulphatc. Have ready some dry paper imbued with solution of red ferrocyanide of potassium (red prussiate of iron). Dip a slip of whalebone into the liquor in the globe Λ, through the funnel e (represented in the figure rather too high above the globe), and touch the paper with its point. As long as it forms a blue spot, some of the iron still exists as black oxide, and the process is to be urged by the addition of a little more hydrochloric acid to the manganese, as long as chlorine gas continues to be disengaged, and while it maintains the level of the liquor in A above that in в. Whenever the liquor, by the reaction of the chlorine, ceases to stain the test-paper blue, more of the solution from the graduated tube must be added till it begins to do so. By the cautions administration of the hydrochloric acid on the one hand, and of the copperas liquor on the other, the term of saturation will be arrived at in a few minutes. The mangancse has then produced all the chlorine which it can yield. The number of water grain measures of the liquor, or degrees of its alkalimeter scale, being multiplied by 44, will give a product denoting the percentage of pure manganese present in the sample; or being multiplied by 36 , a product which will denote the quantity of chlorinc by weight which 100 grains of it can serve to generate.

Since one atom of pure manganesc (44 grains), in producing 36 grains of chlorine, consumes 2 atoms $=74$ grains of hydrochloric acid, the quantity of this acid expended from the graduated tubes, beyond the due proportion of chiorine obtained, will show how much of the acid is unprofitahly consumed by foreign substances in the manganese. In fact, every grain of chlorine should, with pyrolusite, be gencrated by an expenditure of little more than 2 grains of real muriatic acid, or 10 grains weight of the dilute acid, = about 9. grain measures of the graduated tube. Liquid hydrochloric acid of specific gravity 1.093 contains in 1000 grain measures exactly 200 grains of real acid. Hence 100 grains of pure pyrolusite should produce about 82 grains of chlorine, and consume about 169 of rcal muriatic acid $=845$ grain measures of liquid acid, specific gravity 1.093. Instead of taking 100 grains of manganese as the testing dose, 10 or 20 grains may be taken, according to the dimensions of the apparatus and the exactness of the operator.

But if it be wished to obtain direct per centages of manganese by the graduated tubes without the trouble of reduction, then for a dose of 10 grains take a solution of fresh grcen copperas (free from adhering moisture), containing 632 grains in 10,000 grain measures. Proceed as above directed. If the manganese be a pure peroxidc, 10 grains of it will generate as much chlorine as will peroxidise exactly 1000 grain measures, or 100 degrees by the test-tube of the copperas solution. But if the manganese contain only 40 or 50 per cent. of peroxide, then 40 or 50 centigrade measures of the said solution will he equivalent to the chlorine evolved from it by the reaction of hydrochloric acid.

It the object is on the other hand to ohtain direct iudications as to ehlorine, then a test solution of copperas, containing 772 grains in 10,000 grain measures, will scre to show, by the peroxidisement of each 10 grain measures, or of one degree of the centesimal scale of the test tube, the reaction of onc grain of chloriue available for bleaching, \&cc. in the chloride of lime or of soda, \&c. The test solutions of copperas should be kept in well-corked bottles, containing a little powdered sulphuret of iron at
their bottom, which is to be shaken up oceasionally in order to preserve the iron in the state of protoxide.

The manganese should always be treated with dilute nitric acid before submitting it to the above-deseribed ordeal; and if it exhibits cffervescence, 100 grains of it should be digested with the aeid for a sufficient time to dissolve out all the carbonates present, then thrown upon a filter, washed and dricd before weighing it for the testing operation. The loss of weight thereby sustained denotes the percentage of carbonates, and if calcarcous it will measure the waste of acid that would ensue from that source alone, in using that manganese for the production of chlorine.

That manganese is most chlorogenous which contains no earbonates, the least proportion of oxide of iron, and of sesquioxide of manganese.

Another method of determining the commercial valuc of peroxide of manganesc is that of Drs. Fresenius and Will. This method is grounded upon the fact that when peroxide of manganesc is treated by oxalic acid, or oxalate of potash in presence of an cxcess of sulphuric acid, the result is sulphate of protoxide of manganese, carbonic acid being at the same time evolved, as shown by the following Oxalic acid.
equation: $-\mathrm{MnO}^{2}+\mathrm{SO}^{3}+\widetilde{\mathrm{C}^{2} \mathrm{O}^{3}}=\mathrm{MnO}, \mathrm{SO}^{3}+2 \mathrm{CO}^{2}$. That is to say, one equivalent of peroxide of manganese, under the influcnce of sulphuric acid, parts with one equivalent of oxygen, which is transposed to the three equivalents of oxygen of the oxalic acid, thus forming two equivalents of earbonic acid, which escape in the state of gas, so that the loss of weight resulting from this escape of carbonie acid is, practically speaking, equal to the weight of peroxide of manganesc.
The apparatus employed by Drs. Fresenius and Will is absolutely the same as that which we represented, fig. 35 , in the article on Alizalimetry, and which we reproduce here, the modus operandi being as follows:
Into bottle a introduee 43.6 grairs (one equivalent) of the manganese to be cxamined, previously well pulverised and levigated; and likewise 100 grains of neutral oxalate of potash, which may be prepared by saturating ordinary oxalate of potash with carbonate of potash, and eraporating to crystallisation. The neutral oxalate of potash should be pulverised. This being done, fill now bottle B with eoncentrated sulphuric acid to about one-third of its capacity. Cork flasks A and $\overline{3}$ up air-tight, and thus connect them into one twin-apparatus, and weigh the whole accurately. Close the opening b of the tube of bottle Δ with a small pellet of wax, and suck a little air at d so as to produce a vacuum in bottle A, and thus cause a little of the sulphuric acid of bottle \mathbf{B} to pass into it. The oxygen of the manganese will then react upon the oxalic aeid, which will be thereby converted into carbonic acid, which passing through the concentrated sulphuric acid in bottle B_{3} will be deprived of its moisture by it, aud finally escape through the tube d. As soon as the dis-
 engagement of carbonic acid ceases, the opcrator should rcpeat the samc manœuvre, that is to say, he should suck up again at d, in order to cause fresh portions of sulphuric acid to pass from bottle B into bottlc A, and so on, until bubbles of gas are no longer disengaged. When the last portion of sulphuric acid thus sucked up fails in producing a disengagement of carbonic acid, the operator removes the little wax stopper, and again applying his lips to the tube d, sucks the air in order to swecp the carbonic aeid from the apparatus, and replace it by common air, the suction being eontinucd as long as a taste of carbonic acid is perceptible. When the apparatus, which has become very hot during the reaction of the sulphuric acid, has become cold, it is weighed again; the loss of weight indicates the amount of pure peroxide of mangancse, cach grain of carbonic acid representing very nearly onc grain of peroxide of manganese.
In this mode of treatment, it is, of course, absolutely recessary to treat the manganese ore with dilute nitric acid, as mentioned at the beginning of this artiele, in order to remove any carbonate which might be present.
The economy of any sample of manganesc in reference to its eonsumption of acid, in geuerating a given quantity of chlorinc, may be ascertaincd also by the oxalie acid test:- 44 grains of the purc peroxide, with 93 grains of ncutral oxalate of potash, and 98 of oil of vitriol disengage 44 grains of carbonic acid, aud afford a complete
neutral sulution; because the one half of the sulphuric acid, $=49$ grains, goes to form atr atom of sulphate of manganese, and the other half to form an atom of sulphate of potash.

The deficiency in the weight of carbonic acid thrown off will show the deficiency of peroxide of manganese; the quantity of free sulphuric acid may be measured by a testsolution of bicarbonate of patash, and the quantity neutralised, compared to the carbouic gas produced, will show by the ratio of 98 to 4.4 , the amount of acid unprofitably consumed. - A. N.

CHLOROPHANE. A name given to some of the varieties of fluor spar. See Fluor Spar.

CHOCOLATE. (Eng. and Germ.; Chocolat, Fr.) Is an alimentary preparation of very ancient use in Mexico, from whieh country it was introduced into Europe by the Spaniards in the year 1520 , and by them long kept a secret from the rest of the world. Linuæus was so fond of it, that he gave the specific name, theabroma, food of the gods, to the cacao tree which produced it. The cacao-beans lie in a fruit somewhat like a cucumber, about 5 inches long and $3 \frac{1}{2}$ thiek, which contains from 20 to 30 beans, arranged in 5 regular rows with partitions between, and which are surrounded with a rose-eoloured spongy substance, like that of water melons. There are fruits, however, so large as to contain from 40 to 50 beans. Those grown in the West India islands, Berbice, and Demerara, are much smaller, and have only from 6 to 15 ; their development being less perfect than in South America. After the maturation of the fruit, when their green colour has changed to a dark yellow, they are plucked, opened, their beans cleared of the marrowy substance, and spread out to dry in the air. Like almonds, they are covered with a thin skin or husk. In the West Indies they are immediately packed up for the market when they are dried ; but in the Caraccas they are subjected to a species of slight fermentation, by putting them into tubs or chests, covering them with boards or stones, and turning them over every morning, to equalise the operatiou. They emit a good deal of moisture, lose the natural bitterness and acrimony of their taste by this process, as well as some of their weight. Instead of wooden tubs, pits or trenches dug in the ground are sometimes had recourse to for curing the beans; an operation called earthing (terrer). They are lastly exposed to the sun and dried. The latter kind are reckoned the best, being larger, lougher, of a darker brown colomr, and when roasted, throw off their husk readily, and split into several irregular fragments; they have an agreeable mild bitterish taste, without acrimony. The Guiana and West India sorts are smaller, flatter, smoother-skinned, lighter coloured, more sharp and bitter to the taste. They answer best for the extraction of the butter of cacao, but afford a less aromatic and agreeable chocolate. According to Lampadius, the kernels of the West India cacao beans contain, in 100 parts, besides water, 53.1 of fat or oil, 16.7 of an albuminous brown matter, which contains all the aroma of the bean, 10.91 of starch, $7 \frac{3}{4}$ of gum or mucilage, 0.9 of lignine, and 2.01 of a reddish dye stuff, somewhat akin to the pigment of cochineal. The husks form 12 per cent. of the weight of the beans; they contain no fat, but, besides lignine, or woody fibre, whieh constitutes half their weight, they yield a light brown mucilaginous extract by boiling in water. The fatty matter is of the consistence of tallow, white, of a mild agreeable taste, called butter of caeao, and not apt to turn rancid by keeping. It melts only at 122° Fahr., and should, therefore, make tolerable candles. It is soluble in boiling alcohol, but precipitates in the cold. It is obtained by exposing the beans to strong pressure in canvass bags, after they have been steamed or soaked in boiling water for some time. From 5 to 6 ounces of butter may be thus obtained from a pound of cacao. It has a reddish tinge when first cxpressed, but it becomes white by boiling with water.

The beans, being freed from all spoiled and mouldy portions, are to be gently roasted over a fire in an iron cylinder, with holes in its ends for allowing the vapours to escape; the apparatus being similar to a coffee-roaster. When the aroma begins to be well developed, the roasting is known to be finished; and the beans must be turned out, cooled, and freed by fanning and sifting from their husks. The kernels are then to be converted into a paste by trituration in a mortar licated to 130° Fahr., or by the following ingenious and powerful maehinc. The chocolate paste has usually in France a little vanilla incorporated with it, and a considerable quantity of sugar, which varies from one-third of its weight to equal parts. For la las. of cacao onc pod of vanilla is sufficient. The roasted beans soon lose their flavour by exposure to the air.

Fiig. 460 represents the choeolate mill. Upon the sole A, made of marble, six conical rollers sis are made to run by the revolution of the upright axis or shaft q, driven by the agency of the fly wheel E and bevel wheels I K. The sole A rests upon a strong iron plate, which is heated by a small stove, introduced at the door u. The wooden framework F forms a ledge, a few inches ligh, round the
marble slab, to confine the coeoa in the act of trituration. c is the hopper of the mill through which the roasted beans are introduced to the action of the rollers, passing

first into the flat vessel D , to be thence evenly distributed. After the cacao has received the first trituration, the paste is returned upon the slab, in ordcr to be mixed with the proper quantity of sugar and vanilla, previously sliced and ground up with a little hard sugar. When the chocolate is sufficiently worked, and while it is thin with the heat and trituration, it must be put carefully into the proper moulds. If introduced too warm, it will be apt to become damp and dull on the surface; and, if too cold, it will not take the proper form. It must be previously well kneaded with the hands to insure the cxpulsion of every air bubble.

In Barcelona, chocolate mills on this construction arc very common, but they are turned by a horse-gin set to work in the under story, corresponding to \bar{H} in the ahove figure. The shaft g is, in this case, extended down through the marble slab, and is surrounded at its centre with a hoop to prevent the paste coming into contact with it. Each of these horse-mills turns out about ten pounds of finc chocolate in the hour, from a slab two feet seven inches in diameter.

Chocolate is flavoured with cinnamon and cloves in several countries, instead of the more expensive vanilla. In roasting the beans the heat should be at first very slow, to give time to the humidity to escape; a quick fire hardens the surface, and injures the process. In putting the paste into the tin plate, or other moulds, it must be well shaken down, to insure its filling up all the cavities, and giving the sharp and polished impression so much admired by connoisseurs. Chocolate is sometimes adulterated with starch; in which case it will form a pasty consistenced mass when treated with boiling water. The harder the slab upon which the beans are triturated the better; and thence porphyry is far preferable to marble. The grinding rollers of the mill should be made of iron, and kcpt very clean.
Fig. 461 represents the chocolate mills at the victualling-yard, Deptford, as mounted by the celcbrated engineers, Messrs. Rennie. There are four double mill-stones, A, B, C, D, each three feet in diameter, of which the nether rests upon a bed of castiron, like a drum-hcad, kept at the temperature of about 220° by the admission of steam to the case below. Over each mill there is a fceding hopper, $1,2,3,4$, in communication by the pipes $5,6,7,8$, with the gencral reservoir E , charged upon the floor above with cocoa through the funnel placed over it. The vertical shafts which turn these mills arc marked $\mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{L}$; they are moved by the train of bevcl-wheels above, which are driven by an arm from the main shaft of the steam-engine. Each mill can, of coursc, be thrown in and out of gear at pleasurc. At I, I, I, I, the dis-charge-spout is shown, which pours out the scmi-fluid hot chocolate into shallow cylindrical tin pans, capable of containing about nine pounds of chocolate each. Thesc four mills are capable of converting upwards of a ton of cocoa into good cho-

Fig. 462 is an end view of one of the chocolate mills, with its mitrc-gearing.

Our importutions of cocoa and chocolate, and the husks or shells of the cacao trce, werc in 1856 as follows :-

		Compute
Cocoa in the nut	¢,343,475 lbs.	$£ 167$
Chocolate or cocoa paste	34,007 lbs.	1,383
	7,376 cwts	, 9

CHROMATES, salinc compounds of chromic acid with bascs. Sec Chromun and Ceromic Acio.

CHROMATES OF POTASH. (For the preparation of these salts refer to Chrome Iron.) Bichromate of potash, by slow cooling, may be obtained in the form of square tables, with bevelled edges, or flat, four-sided prisms. They are permanent in the air, have a metallic and bitter taste, and dissolve in about one-tenth of their weight of water at $60^{\circ} \mathrm{F}$., but in one half of their weight of boiling water. The composition of bichromate of potash is

Potash -	-	-	-	-	31.6
Chromic acid	-	-	-	-	-

That of the neutral Chromate of Potash is

Potash -	-	-	-	-	48.0
Chromic acid					

These salts are much employed in Calico Printing and in Dxeing, which sec. The value of a solution of chromate of potash, if it be tolerably pure, may be infcrred from its specific gravity by the following table: -

At specific gravity $1 \cdot 28$ it contains about 50 per cent of the salt.

"	"	$1 \cdot 21$,	"	33	,"	"
"	"	$1 \cdot 18$	"	9	25	,	,
2	"	$1 \cdot 15$	"	\%	20	,	"
"	"	1-12	"	"	16	',	"
"	"	$1 \cdot 11$	"	"	14	"	"
9	"	1.10	"	"	12	"	"

In making the red bichromate of potash from these solutions of the yellow salt, nitric acid was at first chiefly used : but in consequence of its relatively high priee, sulphuric, muriatic, or acetic acid has been frequently substituted upon the large seale.

Chromate of Potash, adulteration of, to detect. -The chromate of potash has the power of combining with other salts up to a certain extent without any very sensiblc change in its form and appearance; and hence it has been sent into the market falsified by very considerable quantities of sulphate and muriate of potash, the presence of which has often escaped observation, to the great loss of the dyers who use it so extensively. The following test process has been devised by M. Zuber, of Mülhouse. Add a large excess of tartaric acid to the chromate in question, which will decompose it, and produce in a few minutes a deep amethyst colour. The supernatant liquor will, if the chromate be pure, afford now no precipitate with the nitrates of barytes or silver; whence the absence of the sulphates and muriates may bc inferred. We must, however, use dilutc solutions of the chromate and acid, lest bitartrate of potash be precipitated, which will take place if less than 60 parts of water be employed. Nor must we test the liquid till the decomposition be complete, and till the colour verge rather towards the green than the yellow. Eight parts of tartaric acid should be added to one of chromate to obtain a sure and rapid result. If nitrate of potash (saltpetre) is the adulterating ingredient, it may be detected by throwing it ou burning coals, when deflagration will ensue. The green colour is a certain mark of the transformation of the chromic acid partially into the chrome oxide; which is effeeted cqually by the sulphurous acid and sulphuretted hydrogen. Herc this metallic acid is disoxygenated by the tartaric, as has been long known. The tests which I should prefer are the nitrates of silver and baryta, having previously added so much nitric acid to the solution of the suspected chromate, as to prevent the precipitation of the chromate of silver or baryta. The smallest adulteration by sulphates or muriates will thus be detected.

A mixture of sulphate of soda and chloride of sodium tinged with strong solution of chromium is sometimes sold for pure bichromate of potash.--H. M. N.
CHROMATE OF LEAD, the chrome yellow of the painter, is a rich pigment of various shades, from deep orange to the palest eanary yellow. It is made by adding a limpid solution of the neutral chromate of potash, to a solution equally limpid of acctate or nitrate of lead. A precipitate falls which must be well washed and carcfully dried out of the reach of any sulphurctted vapours. A lighter shade of yellow is obtained by mixing some solutiou of alum or sulphuric acid with the chromate hcfore pouring it into the solution of lead; and an orange tint is to be procured by the addition of subacctate of lead in any desired proportions.
It was ascertained by MM. Riot and Delisse, that the proportion of chromic acid in chromate of lead may be much diminished without any injury to the colour, aud that the same colour is produced with 25 parts of neutral chromatc for 100 of chrome yellow, as when 54 parts are used. They give the following formula for the preparation of this pigment. Acetate of lead is dissolved in water, and sulphurie acid in
quantity neeessary to convert the oxide of lead into sulphate is added. The clear liquid contains acetic acid and may be drawn ofl; and preserved for the preparation of fresh acetate of lead. The sulphate of lead is washed and treated with a hot solution of neutral chromate of potash, 25 parts being used for every 75 parts of sulplate of lead. The liquid then enntains sulphate of potash which may be made available, aud the precipitate consists of chromate of sulphate of lead.

To prepare chrome red, Rungé direets an intimate mixture to be made of 448 lbs . of litharge, 60 lbs . of common salt, and 500 lbs . of watcr. As soon as the mass becoures white and swells up considerably, more water is added to prevent it from becoming too lard. After four or five days, the mass beeomes a compound of ehloride and liydrated oxide of lead. Without separating the mother liquor, which contains undecomposed chloride of sodium and soda, 150 lbs . of powdered bichromate of potash are to be added, and the whole well stirred together, and finally washed.

Liebig and Wöhler have lately contrived a process for producing a subehromate of lead of a beautiful vermilion hue. Into saltpetre, brought to fusion in a crucible at a gentle heat, pure chrome yellow is to be thrown by small portions at a time. A strong ebullition takes place at each addition, and the mass becomes black, and continues so while it is hot. The chrome yellow is to be added till little of the saltpetre remains undecomposed, care being taken not to overheat the crucible, lest the enlour of the mixture should become brown. Having allowed it to settle for a few minutes, during which the dense basic salt falls to the bottom, the fluid part, consisting of chromate of potash and saltpetre is to be pourcd off, and it can be employed again in preparing chrome yellow. The mass remaining in the crucible is to be washed with water, and the chrome red being separated from the other matters, it is to be dried after proper edulcoration. It is essential for the beauty of the colour, that the saline solution should not stand long over the red powader, because the colour is thus apt to become of a dull orauge hue. The fine crystalline powder subsides so quickly to the bottom after every ablution, that the above preeaution may be easily observed.

CHROME IRON. The ouly ore of ehromium which oceurs in sufficientabundance for the purposes of art, is the octohedral chrome ore, commonly called chromate of iron, though it is rather a compound of the oxides of chromium and iron. The fracture of this mineral is imperfect conchoidal, or uneven. Hardness $=5.5$; specific gravity 4.4 to 4.5 ; but the usual chrome ore found in the market varies from 3 to 4 . Its lustre is semi-metallic or resinous; colour, iron or brownish black; streak, yellowish to reddish brown. It is sometimes magnetic. Before the blowpipe it is iufusible alone, bat in borax it is slowly soluble, forming a beautiful emerald grecn bead; fused with nitre it forms a yellow solution in water.

Chrome ore was first discovered in the Var department in France; it is also found in Saxony, Silesia, Bohemia, and Styria; in Norway at Röraas: in the Ural near Katherinenberg ; in the United States at the Barehills near Baltimore, Chester in Massachusets, and Hoboken in New Jersey. In Seotland it is found in the parishes of Kildrum and Towie in Aberdeenshire; in the limestone near Portsoy in Banffshire; near Ben Lawes in Perthshire, and at Buchanan in Stirlingshire. It oceurs massive and in considerable quantity at Swinaness, and Haroldswick in Unst, one of the Shetlands; also in Fetlar and in other of the smaller Shetland Islands.

Composition of Clirome Iron Ores.

[^43]The chief applieation of this ore is to the production of Chromate of Potasll, from which salt the various other preparations of this metal used in the arts are obtained.

Treatment of the Ore. A ecording to the old method it is reduced to a fine powder, hy beiug ground in a will under ponderous edge wheels, and sifted. It is then mixed with one third or one lialf its weight of coarsely bruised nitre, and exposed to a powerful heat for several hours, on a reverheratory hearth, where it is stirred about occasionally. In the large manufactories of this country, the ignition of the above mixture in pots is laid aside as too operose and expensive. The caleined matter is raked out and lixiviated with water. The bright yellow solution is then evaporated briskly and the chromate of potash falls down in the form of a granular salt, which is lifted out from time to time from the hottom with a large ladle, perforated with small holes, and thrown into a draining hox. The saline powder may he formed into regular crystals of neutral Cliromate of Potash, by solution in water and slow evaporation : or it may he converted into a more heautiful crystalline hody, the bichromate of potash, by treating its concentrated solution with nitric, muriatic, sulphuric, or acetic acid, or indeed any acid exercising a stronger affinity for the second atom of the potash, than the chromic acid does.

The first great improvement in this manufacture was the dispensing with nitre, and oxidising entirely hy means of air admitted into the reverberatory furnace, in which the ore mixed with carhonate of potash is calcined. Stromeyer afterwards suggested the addition of lime, by which the oxidation was much quickened, and Mr. Charles Watt suhstituted the sulphates of potash and soda for the nitrates of those alkalies. The sulphate was first intimately mixed with the ground ore, and then the lime well incorporated with the mixture, which was heated to hright redness, for four hours with frequent stirring.

In 1847 Mr . Tighman obtained a patent for the use of felspar in the manufacture of certain alkaline salts, and amongst them of chromate of potash: he directs 4 parts hy weight of felspar, 4 parts of linuc, or an equivalent quantity of carbonate of lime, and one part of chromic ore, all in fine powder, to he intimately mixed together, and kept at a bright red heat for from 18 to 20 hours in a reverheratory furnace, the mixture heing turned over frequently, so that all parts may be exposed equally to heat and air; the temperature is not to rise high enough to cause even incipient fusion, and the charge should he kept in a porous state; when, on heing examined, the charge is found to eontain the proper quantity of alkaline ehromate, it is withdrawn from the furnace, and lixiviated with water.

Mr. Swindell mixes the powdered ore with an equal weight of common salt, muriate of potash, or hydrate of lime, and exposes the mixture to a full red heat, passing over it while in fusion highly heated steam, and stirring it every 10 or 15 minutes; the hydrochloric acid and irou escape in the form of sesquichloride of iron.
In treating chromium (chromate of iron), the ore is pulverised and mixed with common salt, muriate of potash, or hydrate of lime, and exposed in a reverheratory furnace to a red or even a white heat, the mixture being stirred every ten or fifteen minutes, and stcam at a very elevated temperature introduced during the operation, until the desired effeet is obtained, which may he ascertained by withdrawing a portion from the furnace and testing it, as customary. The products of this operation are finally treated in the manner usual for the chromic and bichromic salts.
The mixture of chromium and common salt produces chromate of soda, the greater portion, or perhaps all of the iron contained in the chromium being absorhed by the hydrochloric acid evolved from the salt, and earried off in the form of sesquichloride of iron. From the first mixture is manufactured pure hichromate of soda, which, hy the addition of hydroehloric acid, may he converted to chloroehromate; and from the last, or lime mixture, is produced a chromate of that earth, from which, hy the addition of soda or potash, there may he obtained a compound salt, which, with those previously mentioned, may he advantageously employed.
M. Jacquelin first prepares chromate of lime by calcining at a hright red heat in a reverheratory furnace, for 9 or 10 hours, an intimate mixture of chalk and chrome ore. The friahle and porous mass is then crushed, suspended in water, and sulphuric acid added until the liquid slightly reddens hlue litmus paper; the chromate of lime is herehy converted into bichromate ; chalk is now added, until the whole of the sesquioxide of iron is precipitated, and the clear liquid, whielh now contains only biclromate of lime and a little sulphate, may he used for the preparation of the iusoluble chromates of lead, zine, baryta, \&c., hy mixing it with the acetates or ehlorides of these metals. To prepare hichromate of potash, the bichromate of lime is mixed with solution of carbonatc of potash, whieh gives rise to insoluble earbonate of lime, which is easily washed, and a solution of bichromate of potash which is eoncentrated and set aside to crystallise.
Mr. 3ooth (patent sealed Nov. 9th, 1852) mixes powdered chrome ore with onefifth of its weight of powdered eharcoal, and heats it on the hearth of a reverberatory
furnace, protecting it carcfully from the air. The ore is by this means decomposed, and the iron reduced to the netallic state, and is dissolved out by dilute sulphuric acid ; the residue is washed and dried, and afterwards mixed with carbonate of potash and saltpetre, and heated in the same manner that the elrome ore itself is heated in the process usually employed. The solution of sulphate of iron is evaporated to erystallisation so as to produce copperas in a state adapted for coummerce.

Analysis of Chrome lron Ore.-Various methods Lave been proposed. The following, suggested by Mr. T. S. Hunt, gives accurate results : - The ore, finely levigated in an agate mortar, is mixed with 10 or 12 times its weight of fused bisulphate of potash, and preserved at a gentle heat for about half an hour. The fused mass is extracted with hot water, and boiled for a few minutes with excess of earbonate of soda; the precipitate is dried and fused with five times its weight of a mixture of equal parts of nitre and carbonate of soda, in a platinum or silver crucible. The mixture is kept in fusion for 10 or 15 miuutes, and when cold is extracted with water. The alkaline chromate thus obtained may be precipitated by a salt of lead, or it may be supersaturated by hydrochloric acid, and boiled with alcobol, by which it is couverted into chloride of chromium, from which the oxide is to be precipitated by adding ammonia in cxcess and boiling for a few minutes. Chrome iron orc is so difficult of decomposition, that the method of fusing it at once with nitre aud an alkaline carbonate frequently fails in oxidising the whole of the chromium into chromic acid.

Mr. Calvert mixes the well pulverised ore with tbree or four times its weight of a mixture made by slaking quicklime with caustic soda, and then dries and calcines the mass. He then adds one-fourth part of nitrate of soda, and calcines for two hours more, by which time he finds the whole of the chromium is converted into cbromic acid. Another process, which Mr. Calvert finds to produce good results, consists in calcining the pulverised chrome ore with nitrate of baryta, adding a little caustic potash from time to time towards the end of the process.-H. M. N.

CHROMIC ACID. There are several methods of preparing this acid, the simplest consists in decomposing bichromate of potash by oil of vitriol:-1. An excess of oil of vitriol is mixed with a warm solution of bichronate of potash, the liquid is poured off from the chromic acid, which separates in small red crystals; the crystals are drained in a funnel having its stem partly filled with coarsely pounded glass, and arc afterwards dried on a porous tile under a bell glass : 2. Mr. Warrington mixes 10 measures of a cold saturated solution of bichromate of potash with from 12 to 15 measures of oil of vitriol free from lead, and presses the red acicular erystals which separate as the liquid cools, between porous stones. If it bc desired to remove the last traces of sulphuric acid, the crystals should be redissolved in water, and a solution of bichromate of baryta should be added in quantity just sufficient to throw down the whole of the sulphuric acid as sulpbate of baryta; the solution may be recrystallised by evaporation in vacuo. 3. Meissner prepares the aeid direct from chromate of baryta by digesting that salt with a quantity of dilute sulphuric acid, not sufficient for complete saturation; the solution which contains chromic acid and acid chromate of baryta is precipitated by the exact amount of sulphuric acid required, so that the solution is neither affected by sulphuric acid, nor by a salt of baryta: it is then evaporated to dryness.

Chromic acid is obtained in quadrangular crystals, of a deep red colour; it has a very acrid and styptic taste. It reddens powerfully litmus paper. It is deliquescent in the air. When heated to redness, it emits oxygen and passes into the deutoxide. When a little of it is fused along with vitreous borax, the compound assumes an cmerald green colour.

As chromic acid parts with its last dose of oxygen very easily, it is capable in certain styles of calico printing of becoming a valuable substitute for chlorine where this more powerful substance would not from peculiar circumstances be admissible. For this ingenious application, the arts are indebted to that truly scientific manufacturer, M. Daniel Krechlin, of Mülhouse. He discovercd that whenever chromate of potash has its acid set free by its being mixed with tartaric or oxalic acid, or a neutral vegetable substance (starch or sugar for example), and a mineral acid, a very lively action is produced, with disengarcment of heat, and of sevcral gases. The result of this decomposition is the active reagent chromic acid, possessiug valuable properties to the printer. Watery solutions of chromate of potash and tartaric acid beiug uixed, an efferveseence is produced which has the power of destroying regctable colours. But this power lasts no longer than the efferveseencc. The mincral acids react uporn tbe chromate of potash only when vegetable colouring matter, gum, starch, or a vegetable acid, are present to determine the disengagement of gas. During this curious change carbonic acid is cvolved; aud when it takes place in a retort, there is condeused in the receiver a colourless liquid, slightly acid, exhaling somewhat of the smell of vinegar, and containing a little empyreumatic oil. This licuid heated with
the nitrates of mereury or silver reduces these metals. On these principles M. Kocchlin discharged indigo blue by passing the cloth through a solution of chromate of potash, and printing nitric acid thickened with gum upon certain spots. It is probable tbat the employment of chromic acid would superscde the necessity of having recourse in many cases to the more corrosive chlorine.-H. M. N.

CHROMIUM. The metallic base of the oxide of chromium. It may be obtained by exposing to a very high temperature, in a crucible lined with charcoal, an intimate mixture of sesquioxide of chromium and charcoal. The spongy mass obtaincd is powdered in an iron mortar, and mixed with a little more sesquioxide of chromium (to oxidise as much as possible of the carbon) ; it is then again exposed in a porcelain crucible to a very high temperature, when a coherent metal is obtained. This metal is greyish in colour, hard, and brittle, and is magnetic at low temperatures. It has rceeived no practical applications.
CHROMIUM, OXIDE OF. The green oxide of chromium has come so extensively into use as an enamel colour for porcelain, that a fuller account of the best modes of manufacturing it must prove acceptable to many of our rcaders.
That oxide, in combination with water, called the hydrate, may be economically prepared by boiling chromate of potash, dissolved in water, with half its weigbt of flowers of sulphur, till the resulting green precipitate ceases to increase, which may be easily ascertained by filtering a little of the mixture. The addition of some potash accelerates tbe operation. This consists in combining the sulphur with the oxygen of the chromic acid, so as to form sulphuric acid, which unites with the potash of the chromate into sulphate of potash, while the chrome oxide becomes a hydrate. Au extra quantity of potash facilitates the deoxidisement of the chromic acid by the formation of hyposulphite and sulphuret of potash, both of which have a strong attraction for oxygen. For this purpose the clear lixivium of the chromate of potash is sufficiently pure, though it should hold some alumina and silica in solution, as it generally does. The hydrate may be fireed from particles of sulphur by heating dilute sulphuric acid upon it, which dissolves it ; after which it may be precipitated, in the state of a carbonate, by carbonate of potash, not added in excess.
By calcining a nixture of bichromate of potash and sulphur in a crucible, chromic acid is also decomposed, and a hydrated oxide may also be obtained; the sulphur being partly converted into sulphuret of potassium, and partly into sulphuric acid (at the expense of the chromic acid), which combines with the rest of the potash into a sulphate. By careful lixiviation, these two new compounds may be washed away, and the chrome green may be freed from the remaining sulphur, by a slight heat.

Another method of preparing green oxide of chromium, is to mix intimately 45 parts of gunpowder with 240 parts of perfectly dry chromate of potash, and 35 parts of hydrochlorate of ammonia (sal ammoniac), reduce to powder, and pass through a fine sieve; fill a conical glass or other mould with this powder, gently pressed, and invert so as to leave the powder on a porcelain slab of any kind. When set on fire at its apex with a lighted matcb, it will burn down to the bottom with brilliant coruscations. The black residuum, being elutriated with warm watcr, affords a fine bright green oxide of chromium.
Preparation of Green Oxide of Chromium for calico-printing.- The following directions arc given by De Kerrur. At the commencement of the process the green hydrate of the oxide of chromium is first prepared by dissolving 4 kilogrammes of bichromate of potash in 22 litres (39 pints) of boiling water. Then into a boiler or vcssel containing 108 litres (24 gallons) of boiling water, 4 or 5 kilogrammes (8 or 10 lbs.) of pulverised white arsenic are thrown, and boiled for 10 minutes: a precipitate will be formed, and must be allowed to settle : the clear liquor is then run off, and immediately mixed with the solution of bichromate of potash, stirring all the time : in a short time the mixture acquires a green tint, and the bydrated oxide of chromium will be formed and precipitated. After being several times well stirred, and allowed to cool, the whole is thrown upon a filter of white wool, and the hydrate of chromium remaining on the filter is carefully washed witb boiling watcr. It is then dricd, and ready to be cmployed for the preparation of the chloride. In order to obtain that salt, hydrochloric aeid of 22° Beaumé is diluted with water, until the acid no longer gives off vapour. It is then heated, and whilst hot, as much of the hydrated oxide of chromium, prepared as above, is added as will saturate the acid and leave a slight excess of the oxide undissolved. The whole is then left to scttle, and the clear liquor is decanted from the dissolved matter. In this state the solution of chloride of chromium still presents some traces of free acid, which would act injuriously upon the fibres of the cotton. To remove this, and to obtain the product in a neutral state, potash ley (marking 36° Beaumé) is poured in very gradually, until the oxide of chromiun begins to be preeipitated. The solution of chloride of chromium thus prepared, and whieh is of a dark green colour, is cvaporated until it marks 46° Beaumé; after.
cooling, oxide of chromium of the finest green colour is obtained. This preparation is sold under the name of Sca-green.

This oxide may also be prepared by decomposing, with heat, the chromate of mercury, a salt made by adding to nitrate of protoxide of mercury, chromate of potash, in equivalent proportions. This chromate has a fine cinnabar ted, when pure; and, at a dull red heat, parts with a portion of its oxygen and its mercurial oxide. From M. Dulong's experiments it would appear that the purest ehromate of mercury is not the best adapted for preparing the oxide of chronc to be used in porcelain painting. He thinks it ought to contain a littlc oxide of manganese and chromate of potash to afford a green colour of a fine tint, cspecially for pieces that arc to receive a powerful heat. Purc oxide of chronuc preserves its colour well enough in a muffle furnace; but, under a stronger fire, it takes a dead-leaf colour.-II. M. N.

CHROMIUM, BLUE OXIDE OF. The following directions have been given for the preparation of a blue oxide of chromium. The concentrated alkaline solution of chromatc of potash is to be saturated with weak sulphuric acid, and then to every 8 lbs . is to be added 1 lb . of common salt, and half a pound of concentrated sulphuric acid ; the liquid will now aequire a grcen colour. To be certain that the yellow colour is totally destroyed, a small quantity of the liquor is to have potash added to it, and filtered; if the fluid is still yellow, a fresh portion of salt and of sulphuric acid is to be added: the fluid is then to be evaporated to dryness, redissolved, aud filtered; the oxide of chrone is fíually to be precipitated by caustic potash. It will be of a greenish-blue colour, and being washed, must be collected upon a filter.H. M. N.

CHR YSENE. A brilliant yellow substance, containcd in the least volatile portions of coal tar. It crystallises in spangles like iodide of lead. According to Laurent, who discovered it, its formula is a multiple of $\mathrm{C}^{12} \mathrm{H}^{4}$. No compound capable of distinctly controlling the formula has been procured. Its best solvent for the purpose of crystallisation is boghead naphtha.-C. G.W.

CHRYSOBERYL, or GOLDEN BERYL, is composed of alumina 80.2 and glucina $19 \cdot 8=100$. It is of various shades of yellowish and light green, sometimes with a bluish opalescence internally. It has a vitreous lustre, and varies from translucent to transparent. Fracture, conchoidal or uneven. Specific gravity $=3.5$ to 3.8 . It belongs to the trimetric system.

This stone, when transparent, furnishes a beautiful gem of a yellowish-green colour, which is cut with facets, unless it be opalescent, in which case it is cut cn cabochon. It occurs in the Brazils and Ceylon, in rolled pebbles in the alluvial deposits of rivers; in the Ural, in mica-slate ; and at Haddam, Connecticut, U. S., in granite, traversing gneiss.-H. W. B.

CHRYSOLITE, or PERIDO'T. The name given to the paler and more transparent crystals of olivine, the latter name being restricted to imbedded masses or grains of inferior colour and clearness. It is usually found in angular or rolled pieces, rarely crystallised. The crystals (generally 8,10 , or 12 sided prisms) are variously terminated, and often so compressed as to become almost tabular. They are generally very fragile, and therefore unfit for ornamental purposcs. Oriental chisysolite is composed of silica $39 \cdot 73$, magnesia $50^{\circ} 13$, protoxide of iron $9 \cdot 19$, alumina $0^{\circ} 22$, protoxide of mangauese 0.09 , oxide of nickel $0.32=99.68$.-Stromeyer.

As a gem, chrysolite is deficient in hardness and play of colour; but when the stones are large and of good colour, and well cut and polished, it is made into necklaces, \&cc., with good effect. From its softness, which is little less than that of glass, it requires to be worn with care, or it will lose its polish. The best mode of displaying the colours to the greatest advantage is to cut it in small steps. To give it the highest polish, a copper wheel is used, on which a little sulphuric acid is dropped. During the proecss a highly suffocating smell is given out, produced, probably, by the oxidation of the copper and the decomposition of the acid. Chrysolite is supposed to have been the topaz of the ancients. It is found near Constantinoplc ; at Vcsuvius; and the Isle of Bourbon, at Real del Monte; in Mexico; in Egjpt; and at Expailly, in Auvergne. - H. W. B.

CHRYSOPRASE. An apple-green or leck-green variety of chalcedony, the colour of which is caused by the presencc of nickel. It oecurs at Kosemeitz, in Silesia, and Belmont's lead mine, St. Lawrence County, Ncw York.

This stone was probably the chrysoberyl of the ancients.-H. W. B.
CINCHONICINE. $\mathrm{C}^{40} \mathrm{H}^{21} \mathrm{~N}^{2} \mathrm{O}^{2}$. Au alkaloid isomeric with cinchoninc and cinchonidine. It is produced by the action of heat on any of the saline combinations of cinchoninc. (Pasteur.) To obtain cinchonicine, it is ouly necessary to add a small quantity of water and sulphuric acid to sulphate of cinchonine, and, after driviug off all the water at a low teniperature, to keep the salt for a few hours at a temperature between 2.50° and 270°. The product is pure sulphate of cinchonicine. By a simitar
reaction quinine beeomes converted into quinicinc; quinidine also is suseeptible of a similar metamorphosis.-C. G. W.
CINCHONIDINE. $\mathrm{C}^{-10} \mathrm{H}^{34} \mathrm{NO}^{?}$. This alkaloid, the quinidine of Leers, is onc of the isomers of cinchonine. There is much confusion to be found in works on the cinchona alkaloids, partly arising from the troublesome system of giving them names greatly resembling each other, and partly from mixtures laving been analysed under the impression of their being purc bases. For some remarks on this subject, sec Quinidine. Cinchonidine was first noticed by Winckler; it is found accompanied by a little quinine in the Cinchona Bogota, also in that of Macaraïbo. For the reactions of cinchonidine, and its associated bases with chlorine water and ammonia, see Quinine. - C. G. W.

CINCHONINE. $\mathrm{C}^{40} \mathrm{H}^{24} \mathrm{~N}^{8} \mathrm{O}^{\circ}$. An alkaloid or organic base aecompanying quinine. In consequencc of its being considered less febrifuge than quinine, it is always carefully removed from the latter. Some of the differences of propertics on which processes for their scparation may be founded are the following. Cinchonine crystallises more readily than quinine from an alcoholic solution, in consequence of its being less soluble in that fluid. Sulphate of quinine, on the other hand, is less soluble than sulphate of cinchonine. Cinchonine is insoluble, while quinine is freely soluble in ether. Cinchonine forms a great number of salts, which, for the most part, are well defincd, and crystallise readily. It is not so bitter as quinine. In cold water it is quite insoluble, and even when boiling, 2500 parts are required to dissolve one of cinchonine. Laurent has studicd the action of the halogens on it at considerable length, but there are several points connected with this portion of their history which require re-investigation. Treated with potash at a high tempcrature, a basic fluid is obtained, formerly considered to be pure chinoline, but which has been shown by the anthor of this article to contain pyrrol, all the pyridine series, chinoline, and a nuew base, lepidine. - C. G. W.

CINNABAR, is the principal and only valuable ore of the mercury of commeree, which is prepared from it by sublimation.
It is a sulphide (sulphuret) of mercury, composed, when pure, of quicksilver 86.2 , sulphur $13 \cdot 8$, in which case it is a natural vermilion, and identical with the vermilion of commerce; but it is sometimes rendered impure by an admixture of clay, bitumen, oxide of iron, \&c. Cinnabar is of a cochineal-red colour, often inelining to brownishred, and lead-grey, with an adamantine lustre, approaching to metallic in dark varieties, and to dull in friable ones. It varies from sub-transparent to opaque, has a scarlet streak, and breaks with a sub-conchoidal uneren fraeture. $H=2$ to $2 \cdot 5$, speeific gravity $=8.99$. In a matrass it entirely sublimes, and with soda yields mercury with the evolution of sulphurous fumes. When crystallised, it belongs to the rloombohedral system.

Cinnabar occurs in beds in slate-rocks, The chicf European beds are at Almaden near Cordova, in Spain, and at Idria in Upper Carinthia, where it usually occurs in a massive form, and is worked on a thick vein belonging to the Alpine earboniferous strata. It also occurs abundantly in China, Japan, Fluanca Vilica in South Peru, and at New Almaden in California, in a mountain enst of San Josć, between the Bay of Francisco and Monterey, where it is very abundant, and easy of aecess. The chief source of the mereury used in England, is Spain, whence 10 cwt . of cinnabar and 14,544 lbs. werc imported in 1857.

Cinnabar in the arts is used as a pigment, in the state of a fine powder, which is known by the name of vermilion. See Vermituon.-H. W. B.

CINNAMON. (Cannelle, Fr. ; Zimmt, Germ.) The inner bark of the Laurus cinnamomum, used chiefly for flavouring cordials.

Imports, 1857 : - Cinnamon, $745,315 \mathrm{lhs} . \quad$ Computed real value, $\mathfrak{£ 5 4 , 7 6 2 .}$
CINNAMON STONE. A name given to one of the varieties of the lime garnets.
CITR1C ACID. (Acide citrique, Fr.; Citronensaure, Germ.) This acid exists in the juices of fruits, especially the Iemon, orange, currant, and quince. It was first procured from lemon juice in a purc state by Scheele, who adopted the following process. Lemon juice was put into a large tub, and saturated with dry chalk in fine powder, noting carefully the quantity employed. The eitrate of lime which precipitates being freed from the supcratant liquor is to be well washed with repeated affusion and decantation of water. For every ten pounds of chalk employed, nine and a half pounds of sulphuric acid diluted with six times its weight of water are to be poured while warm upon the citrate of lime, and well mixed with it. At the cnd of twelve hours, or even sooner, the citrate will be all deeomposed, dilute citric acid will float above, and sulphate of lime will be found at the bottom. The acid being drawn off, the calcareous sulphate must be thrown on a eanvas filter, drained, and then washed with water to abstritet the whole acid.
The eitric aeid thus obtained may be craporated in leaden pans, over a naked fire, Vol. I.

Y Y

till it aequires the specific gravity 1•13; after which it must be transferred into another vessel, evaporated by a steam or water bath till it assumes a syrupy aspect, when a pellicle appears first in patches, aud then over the whole surface. This point must be watched with great circumspection, for it it be pasced, the whole acid runs a risk of being spoiled by carbonisation. The steam or hot water, must be instantly withdrawn and the concentrated acid put into a crystallising vessel in a dry, but not very cold apartment. At the end of four days the crystallisation will be complete. The crystals must be drained, re-dissolved in a small portiou of water, the solution set aside to settle its impuritics, then decanted, re-cvaporated, and re-crystallised. A third or fourth crystallisation may be neeessary to obtain a colourless acid.
lf any citrate of lime be left undecomposed by the sulphuric acid, it will dissolve in the citric acid, and obstruct its crystallisation, and hence it will be safer to use tbe slightest excess of sulphuric acid than to leave any citrate undecomposed. Therc should not however be any great execss of sulphuric acid. If there be, it is casily detected by nitrate of barytes, but not by the acctatc of lead as preseribed by some chemical authors; because the citrate of lead is not very soluble in the nitric acid, and might thus be confounded with the sulphate, whereas citrate of barytes is perfectly soluble in that test.acid. Sometimes a little nitric acid is added with advantage to the solution of the coloured crystals, with the effect of whitening tbem.

Twenty gallons of good lemon juice will afford fully ten pounds of white crystals of citric acid.

For citric acid thus prepared Kane gives the following formula: - $\mathrm{C}^{19} \mathrm{H}^{5} \mathrm{O}^{11}+3 \mathrm{HO}+$ 2 Aq ; hut if evaporated to a pellicle, the acid crystallises while hot to a different form, and its formula is $-\mathrm{C}^{12} \mathrm{H}^{5} \mathrm{O}^{11}+3 \mathrm{HO}$. According to Berzelius, hypothetical dry citric acid is composed of $\mathrm{C}^{1} \mathrm{H}^{2} \mathrm{O}^{4}$.

The crystals of citric acid are oblique prisms with four faces, terminated by dihedral summits, inclined at acute angles. Their specific gravity is $1 \cdot 617$. They are unalterable in the air. When heated, they melt in their watcr of crystallisation; and at a higher heat, they are decomposed. They contain 18 per cent. of water, of which one-half may he separated in a dry atmosphere, at about $100^{\circ} \mathrm{F}$., when the crystals fall into a whitc powder.

Citric acid in crystals is composed by Dr. Ure's analysis; - of carbon, $33^{\circ} 0$, oxygen, $62 \cdot 37$, and hydrogen, $4 \cdot 63$; rcsults which differ very little from those of Dr. Prout, subsequently obtained. Dr. Ure found its atomic weight to be 8.375 , compared to oxygen 1,000 . The composition of crystallised citric acid has been thus represented:-

Carbon Hydrogen	-			Atoms.	Eq.wt.	per cent.	Dumas.	Prout.	Ure.
		-		4	24	35.8	36.28	34.28	33.00
				3	3	$4 \cdot 5$	$4 \cdot 45$	$4 \cdot 76$	$4 \cdot 63$
				5	40	$59 \cdot 7$	$59 \cdot 27$	$60 \cdot 96$	$62 \cdot 37$

Attempts were made, both in the West Indies and Sicily, to convert the lime and lemon juice into citrate of lime, but they seem to have failed through the difficulty of drying the eitrate for shipment.

Citric acid in somewhat crude crystals is employed with much advantage in calico printing. If adulterated with tartaric acid, the fraud may be detected by adding potash to the solution of the acid, which will cause a precipitate of cream of tartar.

The manufacture of citric acid so closely resembles that of tartaric acid, that the makers of one commonly fabricate the other. The raw material in this casc is pretty generally a black fluid, like thin treacle, which comes from Sicily, and is obtaiued by inspissating the expressed juice of the lemon, - the rind having previously been removed from the lemon for the sake of its essential oil. This black juice is impurc citric acid, and requires to be treated with chalk, as practiscd with respect to the first operation on tartar; by which means, an insoluble citrate of lime is formed ; and this, after being well washed with cold water, is decomposed by sulphuric acid; and the solution, after undergoing the action of animal charcoal and proper cvaporation, yields brownish crystals on cooling. These are re-dissolved, decoloured, and crystallised three or four times ere they can be sent into the market, for citric acid is more tenacious of colouring matter than most of the other vegetable acids. At Nicc, and in the South of France, a portion of chloride of lime is digested upon the citrate of lime, to hleach it prior to decomposition by sulpharic acid. For this purpose, the washed eitrate is exposed in shallow vessels to the action of the sun's rays covered by a weak solution of chloride of lime. In a few hours decolouration ensucs; and it is morcover stated that the nucilage which langs about the citrate of lime, and impedes
the subsequeut crystallisation of the acid, is in this way destroyed, and the number of re-crystallisations requisite to give a saleable aspect to the citric acid thereby diminished. We imported in 1857, 1,161 lbs. of citric acid.

CIVET. (Civettc, Fr.; Zibelh, Germ.) This substance approaches in smell to musk and ambergris; it has a palc yellow colour, a somewlat acrid taste, a consistence like that of honey, and a very strong aromatic odour. It is the product of two small quadrupeds of the genus viverra (v. ziletha and v. civetta), of which the one inhabits Africa, and the other Asia. They are reared with tenderness, especially in Abyssiuia. The civet is contained in a sac, situated between the aus and the parts of generation. in either sex. The animal frees itself from an cxcess of this secretion by a contractile movement which it exercises upon the sac, when the civet issues in a vermicular form, and is carefully collected. The negroes are accustomed to increase the secretion by irritating the animal; and likewise introduce a little butter, or rather grease, by the natural slit in the bag, which mixes with the odoriferous substance, and increases its weight. It is employed only in perfumery. In 1857, 1,476 ounces were imported. According to M. Boutron-Chalard, it contains a volatile oil, to which it owes its smell, some free ammonia, resin, fat, an extractiform matter, and mucus. It affords by calcination an ash, in which there are some carbonate and sulphate of potash, phosphate of lime, and oxide of iron.

CLAY. (Argile, Fr.; Thon, Germ.) The term clay is applied to hydrous-silicates of alumina, derived, for the most part, from the decomposition of felspathic rocks, and which are generally rendered impure by the aduixture of other substances. Economically, the term is applied to any finely divided mineral matter, which becomes plastic on being wetted, and retains its shape when moulded or pressed into any particular form. Lime, magnesia, oxide of iron, with some other colouring metallic oxides, are occasionally present in small quautities in certain natural clays : when iron is present, the clay burns red.

The different varieties of clay possess the following common characters :-

1. They are readily diffusible through water, and are capable of forming with it a plastic ductile mass, which may be kneaded by hand into any shape. This plasticity exists, however, in very different degrees in the different clays.
2. They concrete into a hard mass upon being dried, and assume, upon exposure to the heat of iguition, a degree of hardness sometimes so great as to give sparks by colwhen pulverised. Teel. In this state they are no longer plastic with water, even readily so by the admixture of lime, irons, thongh infusible in the furnace, become
3. All clays, even when or ime, iron, manganese, \&c.
of the reciprocal affinity of their particles; they are very absorbent the fire by virtuc dry state, aud adhere strongly to the tongue.
4. Ochrey, impure clays, emit a disagreea

Brongniart distributes the clays into:-

1. Fire-clays (argiles apyres, Fr.; feuerfeste, Germ.).
2. Fusible (schmelzbare, Germ.).
3. Effervescing (brausende, Germ.), from the presence of chalk.
4. Ochrey (ocreuses, Fr.; ochrige, Germ.)
5. Slate-clay. (Scliefer-thon, Germ.) Its colour is grey or greyish-yellow. Massive, dull, or glimmering from admixture of particles of mica. Fracture slaty, approaching sometimes to carthy. Fragments tabular; soft, sectile, and easily broken; sp.gr. $=2 \cdot 6$; adberes to the tongue, and breaks down in water. Slate-clay is ground and reduced into a paste with water for making firc-bricks; for which purpose it should be as free as possible from lime and iron.
6. Fire-clay. In this country, the geological position of the fire-clay, which is so largely employed in the mannfacture of fire-bricks, glass-house pots, \&c., is immediately beneath the coal, cach bed of which rests upon a stratum of greater or less thickncss of a clay possessing the peculiar qualities of fire-clay, and distinguished in name of under clay. from the position it occupies with reference to the coal, by the 3. Common clay. The Stourbridge clay is of this character.
ochre, and oceasionally with mica. It impurc coarse pottery clay, mixed with iron, clay. It is soft to the touch, and forms many of the external characters of plastic but is in general less compact, more friable than water, a somewliat tenacious paste'; readily diffusible in water. It does not possess the plastic clays, which are more that commencement of translucency which possess the property of acquiring in water to the touch, the common clay wants unctuosity, purer clays exhibit. Although soft ample of this argillaceous substance, is afforded consists chiefly of bluish or blaekish clay which effervesce with acids partake of the nature of marl. This Those of its strata
strong heat in consequence of the anon and lime which it contains. It is employed in the mauufacture of bricks, tiles, and conrse pottery ware.
7. Potter's clay, or Plastic clay. - This species is compact, soft, or even unctuous to the touch, and polishes with the pressure of the finger; it forms, with water, a tenacions, very ductile, and somewhat translucent paste. It is infusible in a porcelain kiln, but assuncs in it a great degree of hardness. Werner calls it pipe-clay. Good plastic clay remains white, or if grey before, becomes white in the porcelain kiln. The clay from Poole in Dorsetshire is a celebrated potter's clay, and the clay from the neighbonrlhood of Newton Abbot in Devonshire is a well- known pipe-clay.

The geological position of the Plastic clay of geologists, is beneath the London-clay, and above the sand which covers the chalk-formation. The Plastic clay of the Paris basin is described as consisting of two beds separated by a bed of saud. The lower bed is the proper plastic clay. The plastic clay of Abondant, near the forest of Dreux, analysed by Vauquelin, gave -

Silica, 43.5 ; alumina, $33 \cdot 2$; lime, 0.35 ; iron, 1 ; water, 18 .
This clay is employed as a fire-clay for making the bungs or seggars, or coarse carthenware cases, in which china ware is fired.

The plastic clay of Dorsetshire which supplies the great Staffordshire potteries, occurs near the base of the Bagshot beds. It is grey coloured, less unctuous than that of Dreux, and consequently more friable. It becomes white in the pottery kiln, and is infusible at that heat. It causes no effervescence with nitric acid, but falls down quickly in it, and becomes higher coloured. Its refractoriness allows of a harder glaze being applied to the ware formed from it without risk of the heat requisite for making the glaze flow affecting the biscuit either in sbape or colour. "Most of the plastic clays of France," says M. Brongniart, "employed for the same ware, have the disadvantage of reddening a little in a somewbat strong heat; and hence it becomes necessary to coat them with a soft glaze, fusible by means of excess of lead at a low heat, in order to preserve the white appearance of the biscuit. Such a glaze has a dull aspect, and cracks readily into iunumerable fissures by alternations of hot and cold water." Hence one reason of the vast inferiority of the French stoneware to the English.
5. Porcelain clay or Kcolin earth. - Kaolin is generally a hydrous silicate of alumina, expressed by the formula $\dddot{A} 1 \dddot{S} \dot{i}+2 \dot{H}=$ Silica $40 \cdot 0$, alumina $44 \cdot 5$, water $15 \cdot 5$. The Kaolins possess very characteristic properties. They are friable in tbe hand, meagre to the touch, and difficultly form a paste with water. When freed from the coarse and evidently foreign particles interspersed through them, they are absolutely infusible in the porcelain kiln, and retain tbeir white colour unaltered. They harden with heat like other clays, and perhaps in a greater degree; but they do not acquire au equal condensation or solidity, at least when they are perfectly pure. Most of the Kaolin clays contain some spangles of mica, which betray their origin from disintegrated grauite.

This origin may be regarded as one of their most distinctive features. Almost all the porcelain clays are evidently derived from the decomposition of the felspars contained in granite, principally in those rocks of felspar and quartz called graphic granite. Hence they are to be found only in primitive mountain districts, aunoug bauks or blocks of granite, forming thin seams or partings between them. In the same partings quartz and mica occur, being the undecomposed portions of the granite ; while some seams of Kaolin retain the external form of felspar.

The most valuable Kaolins have been found -
In China and Japan. The specimens imported from these countries appear pretty white; but are more unctuous to the touch, and more micaceous than the porcelain clays of France.

In Saxony. The Kaolin employed in the porcelain manufactories of that country has a slight yellow or flesh colour, which disappears in the kiln, proving, as Wallerius In France, at Saint-Yrieix-la-Perche, about 10 leagues from Limoges. The Kaolin occurs there in a bed, or perhaps a vein of beds of granite, or rather nf that felspathic rock called Pe-tun-tse, which exists here in every stage of decomposition. This Kaolin is generally white, but sometimes a little yellowish, with hardly any mica. It is meagre to the touch, and some beds include large grains of quartz, called pebbly by the China manufacturers. This variety, when ground, affords without the addition of any fusible ingredient, a very transparent porcelain.
Near Bayonne. A Kaolin possessing the lamellated structure of felspar, in many places. The rock containing it is a graphic granite in every stage of decomposition.
In England, in the counties of Devonshire and Cornwall. This Kaolin or Chinaclay is very white, and more unctuous to the touch than those upon the continent of Europe mentioned above. Like them it results from the decomposition of the felspars
entering into the composition of granite. For the preparation of China-clay in Corn. wall and Devonshire, sce Porcelain Clay.-H. W. B.

Pure clay, the silicate of alumina of the chemist, is infusible; but when subjected to the fire of a porcelain kiln, it contracts into about one-half of its total bulk. It nust, however, be heated very cautiously, otherwise it will decrepitate and fly in pieces, owing to the sudden expansion into steam of the water combined with its particles, which is retained with a considerable attractive force. It possesses little plasticity, and consequently affords a very short paste, which is apt to crack when kneaded into a cake.

It is not only iufusible by itself, but it will not dissolve in the fusible glasses, making them merely opaque. If either lime or silica be added separately to pure clay, in any proportion, the mixture will not melt in the most violent furnace; but if alumina, lime, and silica, be mixed together, the whole melts, and the more rcadily, the nearer the mixture approaches to the following proportions: - 1 of alumina, 1 of lime, and 3 of sand. If the sand be increased to five parts, the compound becomes infusible. These interesting facts show the reciprocal action of those earths which are mixed most commonly, in nature, with alumina.

Iron in small quantity, but in a state not precisely determined, though probably of protoxide, does not colour the clays till they are subjected to a powerful heat. There are very white clays, such as those of Montereau, which do not become red till calcined in the porcelain kiln; the oxide of iron contained in them, which colours them in that case, was previously imperceptible. It is from this circumstance, that the clays fit for making fine white stone ware, as also the Kaolins adapted to the manufacture of porcelain, are very rare.

Iron, in larger proportion, usually colours the clays green or slate-blue, before they have been heated. Such clays, exposed to the action of fire, become yellow or red according to the quantity of iron which they contain. When the iron is very abuudant, it renders the clays fusible; but a little lime and silica must also be present for this effect. The earthenware made with these ferruginous clays can bear but a moderate baking heat; it is thick, porous, and possesses the advantage merely of cheapness, and of bearing considerable alternations of temperature without breaking.
Silicate of alumina and the aluminous clays which possess most plasticity are apt to crack iu drying, or to lose their shape. This very serious defect for the purposes of pottery is rectified, in some measure, by adding to that earth a certain quautity of sand or silica. Thus, a compound is formed which possesses less attraction for water, and dries more equably from the openness of its body. The principal causes of the distortion of earthenware vessels, are the unequal thickness of their parts, and quicker desiccation upon one side than another. Hard burnt stoneware ground to powder, and incorporated with clay, answers still better than sand for counteracting the great and irregular contraction which natural pottery paste is apt to experience. Such ground biscuit is called cement; and its graius, interspersed through the ware, may be regarded as so many solutions of continuity, which arrest the fissures.
The preceding observations point out the principles of those arts which employ clay for moulding by the wheel, and baking in a kiln.

To determine the quantity of alumina in clay, a given weight of this substance, say 100 grs., well dried and in fine powder, should be mixed with double its weight of fluor spar, also in fine powder, theu the mixture placed in a platinum or leaden vessel, and about 400 grs. of strong sulphuric acid poured over it. Next expose the whole to a heat of from 212° to 215° Fahr. for half an hour ; then add three or four ounces of tion, so as to obtain the whole of a filter, adding a little water at the end of the filtraan excess of a solution of ammonia by whe matter. To the filtered fluid add now this, after being well washed on a filter, and dried alumina will be precipitated ; and determined by the balance. If, however, the precipitate thrown down by ammonia has a deep yellow or red colour, the presence of irou is indicated; and this nust be removed before drying the alumina. For this purpose, a quantity of tartaric acid should be added, so as to redissolve the mixed precipitate, and the solution slightly supersaturated with carbonatc of soda ; when, on adding hydrosulphite of ammonia, whence it may be obtained by evaporating the whole to dryuess, heating selution; from then washing away the alkaline salts by hot water; the alumina is heating red hot, and after being dried, may be weighed. As the presence of iron in clay is a left pure, and, back, the quantity of bluck sulphuret forned becomes of iron in clay is a serious drawof the sample under examination, and is therefore worthy of notice.

Although the proportion of alumina in clay is the chief of notice. by the makers of earthenware, yet it may sonetimes be requisitc to feature rcquired the amount of silica present ; which may be done by fusing tequisitc to determine also
or pan, at a fill red heat, one part of the clay in question with three parts of pure potash-both being in tine powder, and earcfully mixed beforc fusion. The fused mass must, when cold, be boiled for some time in water, until it is thoroughly disintegrated; when it should be poured into a porcelain vcssel, and supersaturated with muriatic acid; after which, by cvaporating to dryness, a residue will be obtained, that, after careful washing with boiling watcr, consists merely of the silica contained in the clay in question. After being heated red hot, it may be weighed as usual. If lime be suspected to exist with the alumina in olay, this may be scparated, when in solution, by means of tartaric acid and carbonate of soda, as above indicated; for, in such cases, the lime will fall at once as a carbonate, leaving the alumina behind in the fluid. The following remarks by Dr. Ure have still their application, and are thercfore retained :"If a glazing material could be diseovered, the expansions and contractions of which, by heat, exactly corresponded with those of the biscuit warc, or silicate of alumina, under the same influence, then the present system of covering a spongy body by a coating of vitrifiable glaze would answer the desired intention well cuough; for to the cheapness and durability of eartlenware would thus be superadded the cleanliness of glass. But this desideratum has been sought for, over and over again, during the last half century, and nothing but disappointment has resulted. In proof of which we have only to ask-Where is that glazed earthen vessel, which, though made expressly for the use of the apotheeary, will retain oil, after being two or three times heated and cooled? The answer to this question must be our argument in farour of abandoning such a system of glazing, and adopting the only other mode by which a non-absorbent pottery ware can be fabricated. The body of the ware itself must undergo a semivitrification, as happens with the finest kind of china; so that, even if by long use the glaze come to be fairly worn off, still the non-absorbent principle would remain as perfect as at first. A mixture of silica and alumina, in the proportion of four atoms of the former to one of the latter, would bear or require a certain quantity of fusible material to induce semivitrification throughout the mass; but a compound of three atoms of silica and one of alumina would probably be melted down into a worthless slag by exactly the same addition. Here then lies the root of that difficulty whieh has hitherto so injuriously restrieted the employment of felspar and other vitrifiable bodies in the fabrieation of British earthenware. Those who have attempted to use such substances have occasionally succeeded to admiration; and nothing but the uncertainty of the result, and repeated failures, have induced them to abandon the employment of a elass of articles whicb, if capahle of being controlled, every intelligent manufacturer admits would confer perfeetion on his art. But it is a great mistake to suppose that these inequalities of action arise out of some peculiarity in the vitrifiable materials themselves, or are in any way the work of cbance. The materials are, or ought to be, uniform, and certainly can be made so, whilst, for the rest, there is no such thing as chance in nature, - the laws of chemistry are not accidental or variable, they are immutable. We have shown, however, that clays not only differ from each other, but, as it were, from themselves; since, from the same pit, and within a few inches of the same spot, clays of very contrary characters may be procured. Plasticity is no more an indieation of the presence or purity of clay, than sweetness is a test of sugar. In a rough way both these qualities have a value; but the arts are now fast approaehing an epoch, when all such fallacious aids must give place to the guidance of philosophy; and the sooner our manufacturers hecome convinced of this grand truth the better for themselves and their country. The propriety of knowing the exact composition of the raw materials employed in any art or manufaeture does not, indeed, admit of dispute - it is imperative; and hence we are the more astonished at the scantiness of information respectiug the analysis of so important a production as clay. In face of such apathetic ignorance, would any one believe that, independently of an immense home consumption, our exports of earthenware last year amounted to a million sterling? Had the clays of this country been of a tolerably uniform composition, like some of those in China aud on the continent, of course mere practice would long ago have enabled our potters to produce articles of the lighest quality. Where there is no difficulty there can be but little merit, and still less profit. It is the great glory of British enterprise and industry to despise so low and facilc a position. Our manufacturers must meet and overeome the trivial impediments connccted with variations in the clay they purchase, and, by properly adjusting the other materials (so as to bring on cxactly the due amonnt of vitrification needed in the body of the ware), produce, from any kind of clay, articles identical with those which other nations fabricate from the very finest clays only.
"Before quitting this subject, a few romarks upon the substances used in the formation of glazes may not be inappropriate. To a certain extent, we are still supplied with earthenware, the glaze of which contains lead, and is, eonsequently, dangerous to health, though, when well burned on, this danger is greatly diminished, frou the
increased insolubility of the silicate of lead in weak acids. It is, however, an objectiouable mode of glazing earthenware, and requires to be watched with caution, more especially where borax is used at the samc time, for the borate of lead is more easily acted on than the silicate. It has bcen lately suggested that oxide of zinc would form a sufficiently fusible compound with silica, and is cheap cnough to supplant oxide of lead in the glazing of common earthenware. The latter assertion is undoubtedly true, and, although we entertain some suspicions as to the easy fusibility of silicate of zinc, yet this is precisely one of those problems which, from their important sanitary bearing, deserve immediate investigation. On the continent a very pure kind of felspar, mixed probably with a little carbonate of baryta and oxide of tin, forms the only glaze used upon porcelain and the china vessels intended for chemical purposes. It is so hard as to withstand the attack of a file, and it resists the action of the strongest acids and alkalies at all temperatures below 300° Fahr.-the hydrofluoric acid and its salts alone excepted." See Pottery, Porcelain Clat.
The composition of ordinary clay will be seen from the following analyses, by Mr. T. H. Henry :-

1. Fire-clay (Stourbridge, Brierly Hill).

2. Three samples of Fire-clay from Wales:-No. 1, inferior; the other two good ; No. 3, the best.

3. Clay inferior, on account of excess of carbonate of lime; effervesced strongly with acids.

Silica	- -		-	-	-	-			
Oxide of ir	and alum		-	-					
Carbonate of	lime .	-	-	-					
	magnesia	-	-	-	-				
Water, \&c.		-	-	-	-	-	-		
									00.06

5. Black shale from coal measurcs, Dudley.

Exports : -Pipeclay - \quad - \quad - 905 tons.
Other sorts - - - - 9,916 tons.

The following account of the shipments of elay from the port of Poole in 1856 and 1857 will show the importanee of this material :-

		1856.	1857.		1856.	18.57.
verpool	-	Tons. 15,995	Tons. 14,963	Birkenhead -	$\begin{aligned} & \text { Tons. } \\ & 492 \end{aligned}$	Tons. 217
Runcorn	-	11,955	13,198	Bremen	375	200
London	-	12,510	11,773	Gravesend	440	170
Newcastle	-	2,450	2,480	Leeds	310	160
Goole	-	1,525	2,248	St. Cyprian -	110	160
Bristol	-	1,685	2,198	Castlcford -	- -	155
Hull	-	1,105	1,143	Port Glasgow	- -	150
Glasgow	-	1,520	2,253	Leith - -	- -	130
Swansca	-	670	80.5	Aberdeen -	-	107
Sunderland -	-	690	800	Gloucester -	85	100
Leigh	-	-	745	Carmarthen -	-	100
Dort -	-	830	640	Whitehaven	440	100
Stochholm	-	550	600	Seaham	100	100
Seville	-	636	540	Weymouth	80	100
Rochester	-	-	370	Fisherow	-	100
Bowness	-	150	$3: 38$	Shields	600	100
Rotterdam	-	340	309	Kedby	-	80
Llanelly -	-	280	308	Cliffe	80	50
Middlesbro` -	-	200	300	Plymouth	-	40
Stockton -	-	500	250	Portsmouth -	20	30
Teignmouth	-	120	230	Total	57,613	58,840

The total produce sent by railway and by ship was 58,195 tons in $1856,60,850$ tons in 1857.

Cloth manufacture and dressing. See Woollen and Wool.
CLOVE OIL. ($\mathrm{C}^{20} \mathrm{H}^{12} \mathrm{O}^{1}$. Syn. Eugenic acid, Carophyllic acid.) When cloves are distilled with water, a large quantity of oil passes over. It has been examined by Dunas, Ettling, Böckmann, Stenhouse, Calvi, and, more recently, by Greville Williams. Treated with solution of potash, the greater portion dissolves, learing a small quantity of a hydrocarbon isomeric with oil of turpentine. Sce Carberetted Hydrogen. The potash solution, on being supersaturated with a mineral acid, allows the eugenic acid to rise to the surface in the form of an oil. When freshly distilled it is colourless, and boils at $483^{\circ} \mathrm{S}$. Its density at $57^{\circ} \cdot 2 \mathrm{~F}$. is 1.0684 . On analysis it gave:-

The density of its vapour was found to be 5.86 . Theory requires 5.67 . The above results werc confirnied by a determination of the percentage of baryta in the eugenate. C.G.W.

COAL. (Houille, Fr.; Steinhohle, Germ.) This is by far the most valuable of our mineral treasures, and the one which, at least in Great Britain, makes all the others available to the use and comfort of man. Hence it has been searched after with unremitting diligenee, and worked by the advantages derived frow the lights of science, and the resourees of art.
The coal-fields of the United Kingdom are the most important of auy worked in the world. Their production has been variously estimated as being between thirty-one and fifty-four millions of tons annually. It has now been determiued by inquirics carefully made by the Keeper of Mining Records that these amounts were far exceeded, as is shown by the following returns:-

	Tons.	Tons.	Tons.	Tous.
Northumberland and'Durham	$\begin{aligned} & 1851 . \\ & 15,420,615 \end{aligned}$	$\begin{gathered} 18.55 . \\ 15,431,400 \end{gathered}$	$\begin{gathered} 1856 . \\ 15,492,969 \end{gathered}$	$\begin{gathered} 1857 . \\ 15,826,525 \end{gathered}$
Cumberland -	887,000	809,549	913,891	942,018
Yorkshire -	7,260,500	7,747,470	9,083,625	8,875,440
Derbyshire- -	2,406,696	2,256,000	3,293,325	
Nottinghamshire-	813,474	809,400	3,293,325	3,687,442
Warwickshire	255,000	262,000	335,000	398,000
Leicestershire - -	439,000	425,000	632,478	698,750
Staffordslire \& Woreestershire	7,500,000	7,323,000	7,305,500	7,164,625
Lancashire -	9,080,500	8,950,000	8,950,000	8,565,500
Cheshire -	786,500	755,500	754,327	750,500
Shropshire - - -	1,080,000	1,105,250	752,100	750,000
Gloueester, Somerset, and				
Devon -	1,492,366	1,430,620	1,530,000	1,225,000
Wales	9,643,000	9,677,270	9,965,600	8,178,804
Scotland	7,448,000	7,325,000	7,500,000	8,21-1,473
Ireland	148,750	144,620	136,635	120,630
	64,661,401	64,453,070	66,645,450	65,394,707

This enormous quantity of fossil fuel is obtained from the distriets enumerated in the list given on the next page.
The total number of eollieries in the United Kingdom being -

The relative importanee of mineral fuel in various countries, as indieated by the aetual eoal area and the real production of the eoal-fields, may be understood by a referenee to the subjoined table. This is based ehiefly upon the authority of Mr.. Taylor, but it is modified by the editor.

Countries.	Coal Area in Square Miles.	Proportion of whole Area of the Country.	Annual Production in Tons.	
British Islands -	-	12,800	$1-10$	$66,000,000$
Franee -	-	-	2,000	$1-100$
Belgium -	-	-	520	$1-22$
Spain -	-	-	4,000	$1-52$
Prussia -	-	-	1,200	$5,500,000$
Bohemia -	-	1,000	$1-90$	250,000
United States of Ameriea	113,000	$1-20$	$3,500,000$	
British North Ameriea	18,000	$2-9$	300,000	

It will be thus seen how extremely importaut the eoal-fields of the British islands really are when compared with any others elsewhere. This is the ease not merely in the total annual produetion and the proportionate extent of the deposit, but also from the great number of points at whieh the eoal ean be advantageously worked. This will be best seen by referenee to the table on the next page.

The distribution of eoal in the United Kingdom is one of vast importanee to the eountry. It is spread over large areas, eommencing with Devonshire in the solth and extending to the northern divisions of the great Seoteh coal-fields. A eareful examination of all these deposits eannot but prove useful.

Devonshire. Liynite of Bovey-Heathfield.-Lysons (Magna Britannia) informs us that this so-ealled Bovey coal was worked for use early in the last eentury; and Dr. Maton deseribed those beds in 1797 as being from 4 to 16 feet in thiekness, alternating with elay, and he stated that the pits were about 80 feet deep, and worked for the supply of a neighbouring pottery. A pottery was established at Ideo in 1772, and one at Bovey Tracey in 1812, both of which were supplied with fuel from those lignite beds. Those heds are supposed to have been formed towards the latter part of the supereretaeeous periods. The wood of whiel they are formed las been sometimes supposed to be analogous to the oak and other existing trees. The
offensive smell emitted by this lignite when burnt has always prevented its use for domestie purposes, except among the poorer cottagers of the neighbourhood. The

List of Collifertes in the United Kingdom.

supply fiom those beds of "Bovey coal" is now falling off, the adjoining pottery being compelled to use some coal as fuel. - De la Beche.
Bideford Anthracite. - The beds of Anthracite stretch across the country from Barnstaple Bay, by Bideford and Averdiscot, towards Chittlchampton, a distance of about twelve miles and a half. The anthracite is mixed with the black shales of the carbonaceous deposits.
"The anthracite is mixed with those shales in the manner represented beneath fig. 463; a, sandstones; b, shales; c, culm or anthacite; so that the culm itself seems the result of irregular accumulations of vegetable matter intermingled with mud and sand. As so frequently happens with carbonaceous deposits
 of this kind, nodules of argillaceous iron-stone are often found in the same localities with the shales and anthracite, reminding us of the intermixture of iron ores and vegetable matters in the bogs and morasses of the present day."-De la Beche.
Somersetshire and Gloucestershire. - The Dean Forest coal-ficld, and the coal measures, extending further south forming the Bristol coal-field, are included in this division. The workable seams of coal in the forest are the following:-

Dog Delf (havin	(having a thickness of)	ft	in,
Smith Coal		2	6
Little Delf		1	8
Park End High Delf		3	7
Stakey Delf	"	2	6
Little Coal	"	1	1
Upper Churchway Delf	"	4	2
Lower Churchway Delf	"	2	0
Braizlcy Delf	",	1	9
Nag's Head, or Weaver's	",	2	9
Whittington Delf	"	2	6
Coleford High Delf	"	5	0
Upper Trenchard	"	2	0
Lower Trenehard	"	1	4

There is a small coal-field north of the Forcst of Dean, which is a long narrow strip, containing two and a half square miles, or 1600 acres.-Maclauchlan, Geological Transactions, vol. v.

About nine miles and a half to the south of Dean Forest a considerable mass of coal measures has been preserved from destruction, by the denuding causes which have carried off the connecting portion between it and Dean Forest, leaving at least two outlying patches on the north of Chepstow.

The Bristol coal-field occupies about fifty square miles, or 32,000 acres. The seams of coal are very thin in comparison with those which are worked in other districts. Buckland and Coneybeare (Geological Transactions, vol. i.) have well deseribed this coal-field.

The total thickness of the whole serics of strata in this Bristol coal-field has been shown by De la Beche to be as follows:-

Upper shales and limestones	1800 feet, with 10 beds of coal.
Middle sandstone	1725 feet, with 5 beds of coal.
Lower shales	1565 feet, with 36 beds of coal.
Farewell Rock	$\frac{1200}{6290}$

Souti Wales Coal Field.-The total thiekness of the coal strata in this important district is very great. Logan and Dc la Beche have accumulated evidence which appears to justify the admission of 11,000 , or even 12,000 feet thickness from the carboniferous limestone to the highest part of the coal series about Llanclly; in other parts of the field the scries is found to be on proportions only less gigantic. The most gencral view which can be afforded seems thus, giving the true coal mea-
sure about 8000 feet:-

$$
\begin{aligned}
& \text { Llanelly serics, with several beds of coal fect. } \\
& \text { Penllergare serics of shales, sandstones, and beds of coal, } 110 \text { beds; } \\
& \text { Ahundance of iron-stone beds and unionide occur. } \\
& \text { Farcwell-Rock and Gower shales above; the carboniferous limestonc below. }
\end{aligned}
$$

The coal on the north-eastern side of the basin is of a coking quality, excellent for the iron manufaeture; on the north-western it contains little or no bitumen, heing what is called stone-eoal or anthracite ; on the south side, from Pontypool to Cacrmarthen Bay, it is of a bituminous or binding quality.-Phillips.
Shropshire.-This district includes the small coal-ficld of Coalbrook Dalc and that of the plain of Shrewsbury. The Coalbrook-Dale field, according to Mr. Prestwick, has some remarkablc features. (Geological Transactions.) Perhaps there is no coal tract known, which in so small a compass, about twelve miles long, and, at nost, three and a half miles wide, exhihits so many curvatures in the outerops, crossed by so many continuous faults, some varying north by east, others cast-northeast; these crossed by many of shorter length, and direeted west-north-west, and in several other lines. The total thickness is supposed to he 1000 or 1100 feet, divided into 80 distinct strata. The coal varies in total thickness from 16 feet to 55 , and in the number of its beds from 7 to 22 , the increase heing to the north. The "cleat" or system of joints runs from west-north-west to east-south-east. The coal is, for the most part, of the variety called slate-coal in Scotland, and hard coal in Derhyshire. Caunel coal is rare - sulphureous coal (pyritous) very common. Petroleum ahounds in the central and upper part of the field. The heds are mostly thin; the ten uppermost are too sulphureous for other uses than lime burning, and are called stinkers; twelve beds of good coal, in all 25 feet thick, the thickest heing five feet, succeed, and the lowest bed of the whole formation, eight inches thick, is sulphureous.-Phillips, Prestwick.

Staffordshire.-The coal-field of South Stafordshire, which has been deseribed by Mr. J. Beete Jukes, who states, its houndary would be roughly described as the space included within a boundary line drawn from Rugeley through Wolverhampton to Stourbridge; hence to the southern end of the Bromsgrove Lickey, and returning through Harborne (near Birmingham) and Great Barr back to Rugcley. This geologist classes this coal strata in three divisions, by the well traced band of thick coal. The total thickness of coal ncar Dudley heing about 57 feet, and hetween Bilston and Wolverhampton upwards of 70 feet. The thick coal is formed of eight, ten, or thirteen distinguishable parts, the whole sean varying in thickness from three fect to thirtynine feet five inches; it is very irregular in parts, divided by sandstones, splitting with wide-shaped offshoots, and cnt into "swiles" or "horse backs," which rise up from the floor. Below the thick coal, are numerous heds of sandstone-shales, coal, and ironstone, having on the average a thickness of 320 feet; and above the thick coal the thickness is 280 feet on the average. - Records of the School of Mines.

North Staffordshire Cnal-field.-This field is comprised in the space hetween Congleton, Nemeastle-under-Lyne, and Lane Eud. Ahout 32 heds of coal have heen determined, rising eastward between Burslem in the centre of the field and its eastern limit near Norton church.

Derbyshire and Nottinghanshire. - The Derbyshire and Nottinghamshire coals are elassed as to structure in two varieties, as "hurd" coal, in which the divisional structures are chiefly derived from the planes of stratifieation, crossed by one set of "cleat" or natural joints (called "slines," "hacks," \&e.) so that large prismatic masses result; " sof t " coal where the cleat fissures are mumerous, and broken by cross cleat. In respect of the quality, somc of the coal is of a "crozling" or eoking nature, casily fusible and changing its figure by "coking"; the rest (and this is specially the case with the "lard" varicty) makes hoth good furnace coal and excellent cokc, whieh, however, is hardly melted at all, and the masses arc not changed in figure by the process.-Phillips's Manual of Geology.

The names by which the more importunt beds of coal worked within this district are known, are as follows : Tupton coal, hard coall, soft coal, black shalc or clod coal, low hard coal and low soft, windmill coal, Dansil eoal, Ganister coal, Parkgate coal, Aston coal, Kilburn coal, furnace roal, Hazel coal, Eureka coal, main and dcep coal.
Leicestersime and Warwickshire.-The Lecester coal-field is best developed about Ashby de la Zouch (sce Mammatt on "the coal-field of Ashby de la Zonch"),
where the eoal is much like the hard eoal of Derbyshire. Amongst the scams of coal is one variety called cannel ; and another, formed by the concurrence of more than one band, from scventeen to twenty-one fcet in thickness. The beds near Ashby de la Zonch are as follows :-

In the Moira distriet -

The Warwickshire coal-field is from a point cast of Tamworth to a point east of Coventry, about twenty miles from N.W. to S.E. parallel to the Ashby coal tracts. The strata are most productive of coal near the southern extremity, wherc, by the coming together of two seams, -worked separately at Griff,--the five-yard seam is worked. The beds are known as the seven-feet coal and rider, slate coal, two yards, lower seam, cannel, and Ell coal.

Yorissare.-Professor John Phillipsegives the following mode of elassifieation as the most natural and convenient for the Yorkshire coal.

Magnesian limestone uneonformably covers the eoal seams.

$$
\text { Upper coals }-\left\{\begin{array}{l}
\text { Shales and Badsworth eoal. } \\
\Lambda \text { ckworth rock. } \\
\text { Wragby and Sharlston eoals. }
\end{array}\right.
$$

Red rock of Woolley Hooton-Roberts, \&c.

$$
\text { Middle coals - } \begin{cases}\text { Furnaee eoals } & \text { - Barnsley thiek eoal. } \\
\text { Lntermediate coals } & -\left\{\begin{array}{l}
\text { Rock of Horbury. }
\end{array}\right. \\
\text { Iron-stone coals - } & -\left\{\begin{array}{l}
\text { Middle eoals. } \\
\text { Silkstone and Floekton beds. } \\
\text { Low Moor coals. }
\end{array}\right.\end{cases}
$$

Flagstone roek of Woodhouse, Bradford, Elland, Peniston, \&e

$$
\text { Lower coals }=\left\{\begin{array}{l}
\text { Shales and gauister stone. } \\
\text { Coals. } \\
\text { Shales and ganister stone. } \\
\text { Coals. } \\
\text { Shales, \&c. }
\end{array}\right.
$$

Millstone grit lies below the "eoal series."
The important middle coal scries are again divided by Professor Phillips as follows:-

$$
\begin{aligned}
& \text { Red rock of Woolley Edge } \\
& \text { Furnace coals of Barnsley, \&e. including the eight or ten feet } \\
& \text { seam. } \\
& \text { Rock of Horhury and Wentworth House. } \\
& \text { Iron-stone coals }-\left\{\begin{array}{l}
\text { Swit burning coals, of Middleton, Dewsbury, \&e., with } \\
\text { bands of " mussels." } \\
\text { Bituminous eoals of Silkstone and Low Moor. } \\
\text { Flagstone rocks beneath. }
\end{array}\right.
\end{aligned}
$$

The small coal-ficld of Inglcton and Black Burton in Lonsdale is thrown down on the south side of the great Craven fault.
Lancashire.--The eoal-field of Laneashire oceupies an area extending from Macclesfield to Colne, 46 miles, and from 'Torboch, near Liverpool, to Todmorden about 40 milcs. Excluding the millstonc grit, its area is about 250 square miles.
Hcyood. Hcywood.
In a line through Worsley, Bury, and Burnley to the limestone shales of Pendle Hill, we have 36 scams of coal, 10 of them not exeeeding 1 foot in thickness, making
in all 23 feet of coal.

The series is divisible into threc parts above the millstone grit.
Upper part, containing a bed of limestone at Ardwick near Manchester.
Middle part, containing the greater part of the thick and valuable scams, especially the cannel coal of Wigan.

Lower parl, corresponding to the ganister series of Yorkshirc.
Cheshire. - The coal-field of Cheshirc is not of great importance.
Nortin Wales.-Flintshire and Denbighshire. -The Flintshire coal basin extends from north to south, somewhat more than 30 milcs from Llanassa to ncar Oswestry in Shropshire. The coal strata dip generally eastward and form in the northern part a trougli beneath the cstuary of the Dee. This coal basin in Flintshire commences with beds of shalc and sandstone. The coal is of various thickncss, from $\frac{3}{4}$ to 5 yards, and consists of the common, cannel, and peacock varicties. - Phillips and Conybear.

Cumberland. - This coal-field extends as a narrow cresecnt from Whitchaven to ncar Hesket Newmarket: - around Whitehaven and at Workington the coal is worked extensively. At the latter place, a few ycars since, a very valuable colliery was destroyed by the bursting in of the sea.

There are three workable seams in the Cumberland coal-field in the neighbourhood of the three undermentioned towns, and these are known in cach place by the names given :-

Whitehaven.	Workington.	Maryport.
Bannock band. Main band. Six-quarter coal or Low-bottom seam.	Moorbanks. Main seam. Hamilton seam.	Ten quarters. Cannel and metal scams (di- vided with shale from 2 fect to 5 fathoms thick).

Northumberland and Durham. - The total thickness of the coal measures of this district is about 1600 feet. The number of distinct layers or beds, as usually notcd by the miners, about 600. The total thickness of the beds of coal rarely exceeds - does not on the average equal - 60 feet. No bed of coal is of greater thickness, -even for a short distance, than 6 or 7 feet, several are so thin as to be of no value at present. The total thickness of "workable coal," supposing all the beds to be found coal in this great district is of the coking quality, but, in this respect, there is much variation. The best coke for locomotive engincs is now made from the lower coals in the Auckland district of Durham, and the Shotley Bridge district of Northumberland. The best "steam coal" is obtained from the north side of the Tyne and the Blyth district. The best "house coal" still comes from the remains of the "High chain" on the Tyne, and from the "Hutton seam" on the Wear ; but the collierics north of the Tees have acquired a high reputation.

As a general view of the groups of strata the following summaries may suffice. (Foster and Buddle.)
Upper groups of coal measures, including chiefly thin seams of small value (8 or more) in a vast mass of sandstone and shales, with some iron-stone. At the hase is a mussel band; we estimate this at 900 fect.

On the Wear	$\begin{aligned} & \text { AND Tyne :- } \\ & \text { Ft. In. Ft. In. } \end{aligned}$			
Unknown. Five-quarter coal		3	9 to 6	9
Main coal -	-	5	6 to 6	0
Mandlin seam	-	4	6 to 6	0
Low main or Hutto seam		4	6 to 6	6
Beaumont scam -	-	3	0 to 6	0
Brockwell scam	-	3	$\begin{gathered} 0 \text { to }{ }^{6} \\ -I^{\prime} h i l \end{gathered}$	illips

Low main or Hutton
seam - - - 46 to 66
Beaumont scam - - 30 to 60
Brockwell scam - 30 to 60

The seams which are principally worked in this district are the high main, fivequarter main, Bensham sean, Hutton scam, Beaumont seam, low five-quarter, threequarter seam, Broekwell and stone coals. 'These seams are known by other nanes, each district usually adopting its own peculiar term to designate the workable seams. Thus the Beuslam seam of the Tyne is known as the Mandlin seam of the Wear. The Beaumont or Hervey seam is the Townley seam of the Townley colliery and the main coal of Wylam colliery. At Hetton the high main seam of the Cramlington district separates into two, and is called the three-quarter seam at Pontoss; where it unites again it is known as the Shieldrow seam. The Cranlington grey seam is the metal-coal seam and stone coal seam of Sherriff Hill, where it is divided; while it unites at Hetton and forms the five-quarter seam of that and the Auckland district. The Cramlington yard seam becomes the main coal seam at Hetton, Haswell, and some other localities, the Brass Thill at Poutoss, and the main coal in Auckland. Again the Cramlington five-quarter seam divides and forms the six-quarter, and the fivequarter at Sherriff Hill the Brass Thill seam at Pittington; they again unite and form the Hutton seam at Pontoss colliery, and so with regard to a few others. - Mineral
Statistics.

Scotland. - "A memoir on the Mid-Lothian and East Lothian coal fields," by David Milne, gives the most exact account of the carboniferous system of Scotland. From the list which has been already given (p. 698) it will be seen that the Scotch coal-field extends from the eastern unto the western shore.
There are three principal coal-basins in Scotland: 1. that of Ayrshire; 2. that of Clydesdale; aud 3. that of the valley of the Forth, which runs into the second in the line of the Union Canal. If two lines be drawn, one from Saint Andrews on the north-east coast, to Kilpatrick on the Clyde, and another from Aberlady, in Haddingtonshire, to a poiut a few miles south of Kirkoswald in Ayrshire, they will include between them the whole space where pitcoal has been discovered and worked in Scotland.

Aecording to Mr. Farey there are 337 principal alterations of strata between the surface in the town of Fisherrow, on the banks of the Frith of Forth (where the highest of these strata occur) and the commencement of the basaltic rocks, forming the general floor and border of this important coal-field. These strata lie internally in the form of a lengthened basin or trough, and consist of sandstone, shale, coal; limestone, ironstone, \&cc. Sixty-two seams of coal, counting the double seams as one; 7 limestones; 72 assemblages of stone and other strata; in all 5000 feet in thickness.

Professor Phillips remarks of this district, "On the whole, allowing for waste, unattainable portions, and other circumstances, this one district may be admitted as likely to yield to the miner for actual use 2,250 millions of tons of coal." The coal is partly "splint," partly "rougli" or "cherry," partly of the "cannel" or "parrot" variety. The first containing most oxygen; the last, most hydrogen and nitrogen, and the least carbon. See Bogmead Coal.
Ireland. - The coal-fields of Ireland, if we include in this term the millstonc grit, occupy large tracts of land in that country, and are upon the whole analogous, in general mineral characters and organic contents, to those of England. The same absence of limestone, the same kind of succession of sandstones and shales is remarked in them. Anthracite or stone-eoal like that of South Wales abounds in the Leinster and Munster districts; bituminous coal occurs in Connaught and Ulster. In Ulster the principal collieries are at Coal Island and Dungannon. The Munster coal district is stated by Mr. Griffith to be of greater extent than any English coalficld, but, it is much less productive. At Ballycastle the coal is found in connection with basalt. - Phillips.
Such is a gencral and rapid sketch of the distribution of fossil fuel over the Islands of the United Kingdom. The importance of a correct knowledge of the distribution of coal in other parts of the world, especially to a commercial people whose steamers now traverse every sea, has led to the compilation, from the most reliable sources, of the following account.

Between the Arctic Circle and the Tropic of Cancer repose all the principal carbonifcrous formations of our planet. Some detached coal deposits, it is true, exist above and below these limits, but they appear, so far as we know, to be of limited extent. Many of these southern coal-fields are of doubtful geological age; a few arc others are deeidedly of the the class of true coals, as they are commonly styled, belong to various intermediate ages, or and tertiary period, while the remainder doubtful character. Southward of the Tropic of Cancer the existence of coal corresponding with the

European and American hard coal is somewhat uncertain. There seems to be little caal on the South Anerican contincut. The discovery said to be made at Ano Pascr, needs confirmation, and of that in the province of Santa Catharina in Brazil we know little. On the Africau contineut we have had vaguc accourts of coal in Ethiopia, and at Mozambiquc, also at Madagascar, and quite recently wc have had intelligence of large quantities of coal in the uewly-ceded territory above Port Natal, on the eastern side of Africa, but we believe no geologist has examined these sites. In the Chinese and Burmese cmpires brown coal only appears to approach the Tropic, but true coal scems to cxist in the northern provinces. Soutliward of the Asiatic continent we arc uncertain of the exact character of the coal deposits, such as occur at Sumatra, Java, and Bornco, and ncighbouring islands. Coal, lowever, exists in these islands, and is of a fair workable quality.

In New South Wales the great coal rauge on the eastern margin of that eontinent has sometimes been described as resembling the Newcastle coal in England, and sometimes it is describcd as of morc ancient date. Tbis coal differs esseutially from that of any known European formation, but bears a strong resemblance to the Burdwan coal of India.

We have not yct arrived at the pcriod wben we could pronounce with any approach to certainty on the actual number of coal basins in tbe world; the total number must, however, amount at least to from 250 to 300 principal coal-fields, and many of these are subdivided by the disturbed position of the strata into subordinate basins.

The basins or coal districts are, however, grouped into a comparatively small number of districts, and even many of these are little known and not at all measured. The greater number occur in Western Europe and Eastern North America, while Central and Southern Afriea, South America, and a large part of Asia, arc almost without any trace of true carboniferous rocks. The remarks, therefore, that will follow chiefly refer to our own and adjacent countries, or of the United States and British North America.

Tbe principal coal-fields of Europe, apart from the British Islands, are those of Belgium, France, Spain (in the Asturias), Germany (on tbe Ruhr and Saare), Bohemia, Silesia, and Russia (on the Donetz).

Belgium.-The Belgian coal-field is the most important, and occupies two districts, that of Liege and tbat of Hainault, the former containing 100,000 and the latter 200,000 acres. In each, the number of coal seams is very considerable, but the beds are thin aud so much disturbed as to require special modes of workiug. The quality of coal is very various, including one peculiar kind, the Flenu coal, unlike any found in Great Britain, except at Swansea. It burns rapidly with much flame and smoke, not giving out an intense heat, aud having a. somewhat disagreeable smell. Therc are nearly fifty seams of this coal in the Mons district. No iron has been found with the coal of Belgium.

Mr. Dunn, H. M. Inspector of Collieries, has reportcd on tbe coal of Belgium : and first quoting a report which announces that the mines would be exhausted in twenty years, says "This announcement comes with appalling foree upon the uumerousjointstock companies. * * * Aecording to the report of M. Briavionne, Belgium is traversing towards a momentous crisis; and I am much inclined to confirm the writer's opinion that, according to the present plan of carrying on the collieries, notwithstanding the high price received for tbe coals, yet that coal will not be found workable to profit below the depth of 250 or 260 fathoms, inasmuch as the deeper they go the more destructive and unmanageable will be the effects of the pressure."-The Government MiningEngineer's report.
Belgium is traversed, in a direction from nearly west-south-west to east-nortb-cast, by a large zoue of bituminous coal formation. The entire region is gencrally described under two principal divisions.

1. Tbe western or Hainault division, comprising
a. The two basins known as Levant and Couchant of Mons.

That of Charleroi.
b. The basin of Namur.
2. The eastern or Liège division.

Finnce.-Tbe most important coal-fields of France are those of the basin of Loire, and those of St. Etienne whicb arc the best known and largest, comprising about 50,000 acres. In this basin are eighteen beds of bitmninous coal, and in the immediate neighbourhood several smaller basins containing anthracite. Other valuable localities are in Alsacc, several in Burgundy worked by very decp pits, and of considerable extent; some in Auvergne with coal of various qualitics; some in Langucdoc and Provence with good coal; others at Arveyron; others at Limosin; and some iu

Normandy. Besides these there are several others of smaller dimensions and less extent, whose resources have not yet been developed. The total area of coal in Flance lias not been ascertained, but is probably not less than 2000 square miles. The annual production now exceeds $4,000,000$ tons. But the coal of France is of an inferior descliption; and, thereforc, when good and strong coals are required, the supply is ohtained from the English coal-fields. The mineral combustibles of France are divided by the government engineers into

> | Anthracite, not yielding coke. | $\begin{array}{l}\text { Gaseous coal, long flame. } \\ > \text { Hard coal, short flame. } \\ > \text { Small coal, long flame. }\end{array}$ |
| :--- | :--- |
| > Forging or gaseous coal. | Lignite, Stipite, \&c. > |

The total of indigenous fuel, extracted aceording to the state returns is $47,222,743$ metrical quintals of $10 \cdot 1465$ to the English ton.
The geological phenomena attendant upon the coal formations in France are, that in some plaees we have the coals resting on the granite and schists, and in others on the Silurian rocks.

Taylor gives the details of eighty-eight coal, anthracite, and lignite basins in France. In 1852 only nine of these produced coal to any extent. The total produce of all the coal-fields being $4,816,355$ tons, valued at $£ 1,870,072$ sterling.

Germany.-The Germanic Union-the Zollverein-embraces the following principal coal-beds :-
German States $\left\{\begin{array}{l}\text { Saxony. } \\ \text { Bavaria. } \\ \text { Duchy of Flesse. }\end{array}\right.$
Prussian States $\left\{\begin{array}{l}\text { La Ruhr, in Westphalia. } \\ \text { Silesia. } \\ \text { Saarbrück, and provinces of the Bas Rhin. }\end{array}\right.$

The true coal of Prussian Silesia stretches for a distance of seventeen leagues. The most recent information we have been able to obtain as to its production, would appear to give above 850,000 English tons. The coal-fields of Westpbalia were described by Sedgwick and Murchison in 1840. The productive coal-beds are on the right bank of the Rhine, and possess many features in common with the English coal-fields. Bituminous wood, and lignite or brown coal occur extensively in some districts. The eoal basin of Saarbrück, a Rhenish prcrince belonging to Prussia, has thus been described by Humboldt, chiefly from a communication received from M. Von Dechen :-
" The depth of the conal measures at Mont St. Gilles, Liege, I have estimated at 3650 feet below the surface, and 3250 feet below the sea level. The coal basin at Mons lies fully 1750 feet deeper. These depressions, however, are trifling when compared with that of the coal strata of the Saar rivers (Saarbrück). After repeated trials I have found that the lowest coal-strata known in the county of Duttweiler, near Bettingen, north-eastward from Saar-louis, dip 19,406 feet, and 20,656 under the level of the sea."

The eoal of the valley of the Glane is bituminous, and of good quality ; it is procurable at a depth of 112 feet, and the seam is about two feet in thickness : about 50,000 tons annually are produced from this valley. Coal is found in Wurtennburg, but not much worked. In Saxony are extensive mines of bituminous coal ; at Schonfield, near Zivickau, the coal alternates with porphyry. Near Dresden a bituminous coal is also worked, and the coke manufactured from it is used in the metallurgical works at Freiburg.
The Hessian states produce little beyond lignite. In Hesse Cassel some bituminous coal is worked, but to a very inconsiderable extent.
In the Thuringerwald or Thuringian forest some coal is produced.
Hungary and other countries in the east of Europe contain true coal measures of the carboniferous period; but the resources of these districts are not at present developed. On the banks of the Donetz, in Russia, coal is worked to some exteut,
and is of excellent quality.

Austria.-Coal oecurs in Styria, Carinthia, Dalmatia, the Tyrol, Moravia, Lombardy, and Venice ; but 700,000 tons appears to be the maximum annual produce of the cmpire. The basin of Vienna, in Lower Austria, produces several varieties of coal, which belong to the brown coal of the tertiary period.

Bonema.-In this kingdom coals are abundant ; one coal-field oecupies a length of 15 leagues, and a breadth of from 4 to 5 leagues. Between 300,000 and 400,000 tons are produced annually.

Vol. I.

Sweden, - Anthracite is found in small quantities at Dannemora; and bituminoes coal is worked at Helsingborg, at the entranee of the Baltie.

Demanak.-The island of Bornhoim and some other islands belonging to Denmark produce coal, but it would appear to belong to the B8vey coal variety.

Russia.-The Donetz coal-ficld is the most important. In that extensive distriet many good seams, aecording to Sir R. I. Murehison, of both bituminous and anthracitic coal exists.

Tumkey.-Coal is found bordering on the Carpathian mountains, in Servia, Roumelia, and Bulgaria.

The ecal of Heraclia, on the south coast of the Black Sea, in Anatoha, has been, since the Crimean war, exciting mueh attention.

Spain.-Spain contains a large quantity of coal, both bituminous and anthracite. The riehest beds are in Asturias, and the measures are so broken and altered as to be worked by almost vertical shafts through the beds themselves. In one place upwards of 11 distinct seams have been worked, the thickest of whieh is nearly 14 feet. The exaet area is not known; but it has been estimated by a Freneh engineer that about $12,000,000$ of tons might be readily extracted from one property, without touehing the portion existing at great depths. In several parts of the provinee the eoal is now worked, and the measures seem to resemble those of the coal districts generally. The whole eoal area is said to be the largest in Europe, presenting upwards of 100 workable seams, varying from 3 to 12 feet in thiekness.

The Asturias Mining Company are working many mines in this region, and they are said to produce 400,000 tons annually, or to be capable of doing so. In Catalonia and in the Basque proviuces of Biscay there is found anthracite and bituminous coals.

In the Balearie islands also eoal exists.
Portugal.- Beds of lignite and some anthraeite are known to exist, but the production of either is small.

Italy. - The prineipal coal mines of Italy are in Savoy and near Genoa. In the Apennines some coal is found, and in the valley of the Po are large deposits of good lignite and a small quantity of good coal is worked in Sardinia.

North Abrerrca. - There are in North America four prineipal coal areas; eompared with which the richest deposits of other countries are comparatively insignificant. These are the great eentral eoal-fields of the Alleghanies; the enal-fields of Illinois, and the basin of the Ohio; that of the basin of the Missouri; and those of Nova Scotia, New Brunswiek, and Cape Breton. Besides, there are many smaller eoal areas whieh, in other countries, might well take rank as of vast national importance, and which even in North Ameriea will one day contribute greatly to the riches of various states.

The Alleghany or Appalaehian eoal-field measures 750 miles in length, with a mean breadth of 85 miles, and traverses eight of the prineipal states in the American Union. Its whole area is estimated at not less than 65,000 square miles, or upwards of 40,000 square aeres. The coal is bituminous and used for gas.
Coal has been found in Louisiana, on the Iberville rivers, and on the shores of Lake Bistineau: it is also reported as having been found at lake Borgne - but this is probably a lignite. In Kentucky both bituminous and eanuel coal are worked in seams about 3 or 4 feet thick, the eannel being sometimes assoeiated with the bituminous coal as a portion of the same seam ; and there are in addition valuable bands of iron ore (the argillaceous carbonate). The coal-field of Kentueky extends over about 9000 square miles. In Western Virginia there are several eoal-fields of variable thiekness, one, $9 \frac{1}{2}$ feet; two others of 5 , and others of 3 or 4 feet. On the whole there seems to be at least 40 fect of eoal distributed in 13 seams. In the Ohio distriet the whole coal field affords on an average at least 6 feet of eoal. The Maryland distriet is less extensive, but is remarkable as eontaining the best and most useful eoal, whieh is morked now to some extent at Frostbury. There appears to be about 30 feet of good eoal in 4 searns, besides many others of less importanee. The quality is intermediate between bituminons and anthracite, and is considered well adapted for iron making. Lastly, in Pennsylvania there are generally from two to five workable beds, yielding on an average 10 feet of workable eoal, and amongst them is one bed traeeable for no less than 450 miles, consisting of bituminous eoal, its thickness being from 12 to $1+\frac{1}{4}$ feet on the sonth-eastern border, but gradually diminishing to 5 or 6 feet. Besides the bituminous coal there are in Pennsylvania the largest authracite deposits in the States, oeenpying as meh as 250,000 aeres, and divided into three prineipal distriets.

The Illinois eoal-field, in the plain of the Mississippi, is only seeond in importanee to the vast area already deseribed. There are four principal divisions traceable, of which the first, or Indian distriet, contains several seans of bituminous eoal, distributed over an area of nearly 8000 square miles. It is of execllent quality for many pur-
poses ; one kind burning with mueh light and very frcely, approaehing eannel coal in some of its propertics; other kinds consist of eaking or splint coal. In addition to the Indian coal-field there appears to bc as much as 48,000 square miles of coal area in other divisions of the Illinois distriet, although these are less known and not at present much worked. 30,000 are iu the state of Illinois, whieh supplies eoal of excellent quality, and with great facility. The coal is generally bituminous.
The third great coal area of the United States is that of the Missouri, which is little known at present, although certainly of great importance.
Taylor states that at least one-eiglth of the State of Missouri is overlaid by eoal measures. 6000 square miles are assigned to the coal-fields of Missouri. Bituminous coal is stated to have been found in the Arlansas valley, and brown coal and lignite in abundance in the Upper Missouri valley.

British America contains coal in the provinces of New Brunswick and Nova Scotia. The former presents 3 coal-fields, oeeupying in all no less than 8000 square miles; the latter exhibits several very distinct localities where the coal abounds. The New Brunswick coal measures include not only shales and sandstones, as is usual with such deposits, but bands of lignite impregnated with various copper ores, and coated by green carbonate of copper. The coal is generally in thin seams lying horizontally. It is chicfly or entirely bituminous.

Nova Scotia possesses three coal regions, of which the Northern presents a total thiekness of no less than 14,570 feet of measures, having 70 seams, whose aggregate magnitude is only 44 feet, the thickest beds being less thar 4 feet. The Pietou or ceutral district, has a thickness of 7590 feet of strata, but the eoal is far more abundant, one seam measuring nearly 30 feet; and part of the coal being of excellent quality and adapted for steam purposes. The sonthern area is of less importance. Besides the Nova-Scotia coal-fields there are three others at Cape Breton, yiclding different kinds of coal, of which one, the Sydney coal, is admirably adapted for domestic purposes. There are here 14 seams above 3 feet thick, one being 11 , and one 9 feet.

Newfoundland coal-field.-This field is estimated at about 5000 square miles. According to Mr. Jukes, now Dircetor of the Geological Survey in Ireland, the entirc western side of the island, along a space of 356 miles in breadth, is occupied by secondary and carboniferous rocks. The coal on the south-western point of the island has been traced at intervals, along a space of 150 to 200 miles to the north-east.
Greenland. - Captain Seoresby discovered a regular coal formation here. At Hasen Island Bovey or brown eoal has been found, and also at Disco Island on the western coast.
Arctic ocean.-At Byam Martin's Island coal formations exist-and at Melville Island several varieties of eoal have been discovered, much of it being of an anthracitic or of a semi-anthracitic character. We learn that at Prinee Regent's Inlet indications of coal have been observed.

Russian America. - Beyond the icy cape and at Point Barrow, coal was observed on the beach; and it has been found by ligging but a few feet below the surface at Point Franklin.

Oregon Territory. - Coal has been discovered and worked in Wallamette valley, nearly 100 miles above Oregon City; and anthraeite has been observed by Sir George Simpson about 30 miles up one of the tributaries of the Columbia river.

California. - Colonel Fremont states that a coal formation exists in Upper California, North lat. $41 \frac{1}{2}^{\circ}$, and West long. $107 \frac{1}{2}^{\circ}$. "The position of this coal formation is in the eentre of the Rocky Mountain chain, and its clevation is 6820 feet above the level of the sea. In some of the coal seams the coal did not appear to be perfectly mineralised, and in others it was compact and remarkably lustrous." - Fremont's Report, 1843.
In 1847 a coal mine was discovered near San Luis Obiseo, North lat. 35°. There are thrce coal mines within 300 miles of Monterey.
Mexico. - On Salado river coal is worked by an American company. A coal formation 50 miles in breadth crosses the Rio Grande from Texas into Mexico at Loredo, and on the Mexican shore, within 200 yards of the Rio Grande, a remarkably fine vein of coal 8 feet thick oecurs.
Texas.- Cual is known to cxist in Texas, though the country has not been gcologically examined. The "Trinity coal and Miuing Company" was ineorporated by the Texan Congress in 1840, who worked both anthracite, and a semibituminous coal. Kcnnedy in his work "Texas, its geography, \&oc," says, "Coal, both autlıacite and bituminous, abounds from the Trinity River to the Rio Grande."
Soutin America. - In the republic of New Granada, especially at Sauta Fé de Bogota, coal occurs: also in the island of Santa Clara, and brown eoal in the

Venezuela is said to eontain conl, but whether brown or bituminous coal does not appear certain.

Penv appears to possess some coal, but a fossil charcoal of considerable value is more abundant.

Carl. - The coal of this district, has been examined by many American enginecrs, and by Captains Fitzroy and Bcechy and Mr. Darwin. In 1844 upward of 20 coal mines were open in the neighbourhood of Conceptiom. At Tulcalnano a new seam of $4 \frac{1}{2}$ feet was proved. The coal is deseribed by W. R. Jolnson as, "in external appearance nearly related to many of the richest bituminous coals of America and Europe;" and Mr. Wheelwright, in his report on the mines and coal of Chili, says, " in fact, the whole southern country is uothing but a mine of coal."

Brazil does not appear to possess much coal of any value, beyond a few lignites.
The West Indman Islands. - Cuba, in the vicinity of Havannah, produces a kind of asphaltum much resembling coal, the analysis of which gives, carbon 34.97 , volatile matter 63.0 , ashes 2.03 . At New Havannah a similar combustible is found; but it contains 71.84 of carbon. True eoal does not appear to have been found in Jamaica. Sir H. de la Bechc, Trans. Geological Society of London, deseribes three or four thin scams of coal imbedded in shale near the north-castern extremity of the island.

Barbadoes.-Bitumen is found plentifully; and, on Grove Plantation estate, a good coal is stated to have been found.

Trinidad. - The pitch lake of this island is well known. Near it, and it is believed, extending under it, a true coal of superior quality is worked.

The great Carboniferous Formations of these islands may be subdivided into four orders of rocks: 1. the coal measures, including their manifold alternations of coalbeds, sandstones, and shales; 2. the millstone grit and shale towards the bottom of the coal measures; 3. the carboniferous limestone, which, projecting to considerablc heights above the outcrop of the coal and grit, acquires the title of mountain limestone ; 4. the old red sandstone, or connecting link with the transition and primary rock basin in which the coal system lies.
The coal series usually, but not invariably, consists of a regular alternation of mineral strata deposited in a great concavity or basin, the sides and bottom of which are composed of transition rocks. This arrangement will be clearly understood by inspectiug fig. 464 , which represents a section of the coal-field south of Malmsbury.

Mendip Jills. Dundry hill. Wick rocks. Fog hill N. of Lansdowne.

1,1 , old red sandstone ; 2, mountain limestone; 3 , millstone grit; 4, 4, coal seams ; 5, Pennant, or coarse sandstone; 6 , new red sandstone, or red marl ; 7,7, lias ; 8,8 , inferior oolite; 9 , great oolite; 10, cornurash and Forest marble.

No. 1, or the old red sandstone, may therefore be regarded as the characteristie lining of the coal basins; but this sandstone rests on transition limestone, and this limestone on highly inclined beds of slaty micaceous sandstone which on the one hand altcrnates with and passes into a coarse breccia, having grains as large as peas; on the other, into a soft argillaceous slate. The mieaceous sandstone stands barc on the north-castern border of the Forest of Dean, near the southern extremity of the chain of transition limestone, which extends from Stoke Edith, near Hereford, to Flaxley on the Severn. It is traversed by a defile, through which the road from Gloucester to Ross winds. The abruptncss of this pass gives it a wild and mountainous character, and affords the best opportunity of examining the varictics of the rock.

The limestone consists in its lower beds of fine-graincd, tender, extremely argillaceous slate, known in the district by the name of water-stone, in conseqnence of the wet soil that is found wherever it appears at the surface. Calcareous unatter is interspersed in it but sparingly. Its upper beds consist of shale alternating with extensive beds of stratified limestone. The lowest of the calcareous strata are thin, and alternate with shate. On these repose thicker strati of morc compact limestone, ofteu of a dull bluc
colour. The heds are often dolomitic, which is indicated hy straw yellow colour, or dark pink colour, and by the sandy or glimmering aspect of the rock.

The old red sandstone, whose limits are so restricted in other parts of England, here occupies an extensive area. The space which it covers, its great thickness, its high iuclination, the abrupt character of the surface over which it prevails, and the consequent display of its strata in many natural sections, present, in this district, advantages for studying the formation, which are not to be met witb elsewhere in South Britain. In the neighbourhood of Mitchel Dean, the total thickness of this formation, interposed conformably between the transition and mountain limestone, is from 600 to 800 fathoms. The old red sandstone is characterised in its upper portion hy the presence of siliceous conglomerate, containing siliceous pebbles, which is applied extensively to the fabrication of millstones near Monmouth, and on the banks of the Wye. This sandstone encircles the Forest with a ring of very elevated ground, whose long and lofiy ridges on the eastern frontier overhang the valley of the Severn.
The mountain or carboniferous limestone, is distinguished from transition limestone, rather by its position than by any very wide difference in its general character or organic remains. According to the measurements of Mr. Mushet, the total thickness of the mountain limestonc in this field is about 120 fathoms. The zone of limestone belouging to this coal-basin, is from a furlong to a mile in breadth on the surface of the ground, according as the dip of the strata is more or less rapid. The angle of dip on the northern and western border is often no more than 10°, but on the castern it frequently amounts to 80°. The calcareous zone that defines the outer circle of tbe basin, suffers only one short interruption, scarcely three miles in length, where in consequence of a fault tbe limestone disappears, and the coal-measures are seen in contact with the old red sandstone.

Coal measures. - Their aggregate thickness amounts, according to Mr. Mushet, to about 500 fathoms. 1. The lowest beds, which repose on the mountain limestone, are about 40 fathoms thick, and consist here, as in the Bristol coal-basin, of a red siliceous grit, alternating with conglomerate, used for millstoncs; and with clay, occasionally used for ochre. 2. These beds are succeeded by a series about 120 fathous thick, in which a grey gritstone predominates, alternating in tbe lower part with shale, and containing 6 scams of coal. Tbe grits are of a fissile character, and are quarried cxtensively for flag-stone, ashlers, and fire-stone. 3. A hed of grit, 25 fathoms thick, quarried for bearth-stone, separates the preceding series from the following, or the 4 th, which is about 115 fatboms thick, and consists of from 12 to 14 seams of coal alternating with shale. 5. To this succeeds a straw-coloured saudstone, nearly 100 fathoms tbick, forming a high ridge in the interior of the basin. It contains several thin seams of coal, from 6 to 16 incbes in thickness. 6. On this repose a series of ahout 12 fathoms thick, consisting of 3 seams of coal alternatiug with shale. 7. This is covered with alternate beds of grit and shale, whose aggregate thickness is about 100 fathoms, occupying a tract in the ceutre of the basin about 4 miles long, and 2 miles broad. The sandstone No. 5 is prohahly the equivalent of the Pennant in the precediug figure.

The floor, or pavement, immediately under the coal heds is, almost without exception, a grayish-slate clay, whicb, when made into bricks, strongly resists the fire. This fire-clay varies in thickness from a fraction of an inch to several fathoms. Clay-ironstone is often disseminated through the shale.
'Tbe above description hy Dr. Ure holds perfectly correct for tbe great coal-fields of south-western England, where we bave coal measures, millstone grit, and mountain limestone in regular order, the latter heing at the base of the system. As we proceed northward to Yorkshire and Northumberland, the limestone begins to alternate with the true coal measurcs, the two deposits forming together a series of strata about 1000 feet in thickness. To this mixed formation succeeds the great mass of genuine mountain limestone. In Fifeshire, in Scotland, we observe a still greater departure from the type of the south of England, or a more complete intercalation of dense masses of marine limestonc, witb sandstonc and shales containing coal.
At Brora, in Sutberlandshire, we have a coal formation belonging to the lower divisions of the oolite period; and in the north-cast of Yorkshire, we have a similar formation.

The Brora coal-field is the most remarkahle example in this, or in perhaps any country hithcrto investigated, of a pseudo coal-basin among the deeper secondary strata, but above the new sandstone or red marl formation. The Rev. Dr. Buckland and Sir C. Lyell, after visiting it in 1824, had expressed an opinion that the strata there were wholly unconnected with the proper coal formation below the new red sandstene, and were in fact the equivalent of the oolitic series; an opinion fully eonfirmed by the subsequent researches of Sir R. Murchison. (Genl. Trans. for 1827, p. 293.) The Brora coal-field forms a part of those scondary deposits which
range along the south-east coast of Sutherlandshire, occupying a narrow tract of about 20 miles in length, and 3 in its greatest breadth.

One stratum of the Brora coal-pit is a coal-shalc composed of a reed-like striated plant of the natural order Erfuisetum, which seems to lave contributed largely towards the formation of that varicty of coal. From this coal-shale the next transition upwards is into a purer bituminous substance approaching to jet, which constitutes the great bed of coal. This is from 3 feet 3 inches to 3 feet 8 inches thick, and is divided nearly in the middle by a thin layer of impure indurated slate charged with pyrites, which, if not carefully excluded from the inass, sometimes occasions spontaneous combustion upon exposure to the atmosphere; and so much indeed is that mineral disseminated throughout the district, that the shales inight be generally termed "pyritiferous." Inattention on the part of the workmen, in 1817 , in leaving a large quantity of this pyritous matter to accumulate in the pit, oecasioned a spontaneous combustion, which was extinguished only by cxcluding the air; indeed the coal-pit was closed in and remaincd unworked for four years. The fires broke out again in the pit in 1827.

The purer part of the Brora coal resembles common pitcoal; but its powder has the red ferruginous tinge of pulveriscd lignites. It may be considered one of the last links betwecn lignite and true coal, approaching very nearly in character to jet, though less tenacious than that mineral ; and, when burnt, exhaling but slightly the vegetable odour so peculiar to all imperfectly bituminised substances. The fossil remains of shells and plants prove the Brora coal to be analogous to that of the castern moorlands of Yorkshire, although the extranrdinary thickness of the former, comparcd with any similar deposit of the latter (which never cxceeds from 12 to 17 inches), might have formerly led to the belief that it was a detached and anomalous deposit of true coal, rather than a lignite of any of the formations above the new red sandstouc : such misconception might more easily arise in the infancy of geology, when the strata were not identified by their fossil organic remains.

On the coast of Yorkshire the strata of this psendo coal formation appear in the following descending order, from Filey Bay to Whitby. 1. Coral-rag. 2. Calcareous grit. 3. Shale, with fossils of the Oxford clay. 3. Kelloway rock (swelling out into an important arenaceous formation). 5. Cornbrash. 6. Coaly grit of Smith. 7. Pierstone (according to Mr. Smith, the equivalcnt of the great oolite). 8. Sandstonc inferior oolite. 10. Marl-stone? 11. Alum-shale or lias. All the above strata are identified by abundant organic remains.

In the oolitic series, therefore, where the several strata are developed in conformity with the more ordinary type of these formations, we may venture to predict with certainty, that no carboniferous dcposits of any great value will ever be discovered, at all events in Great Britain. A want of such knowledge has induced many persons to make trials for coal in beds subordinate to the English oolites, and even superior to them, in places where the type of formation did not offic the least warrant for such attempts. - Ure.

Sir Charles Lyell remarks, a rich harvest of fossils has been obtained from the upper carbonaccous shales and sandstones at Gristhorpe, uear Scarborough. The lower shales are well exposed in the sea cliffs at Whitby, and are chiefly characterised by ferns and cycadea. They contain also a species of colamite, and a fossil called Equisetum columnare, which maintains an upright position in sandstone strata over a wide area. Shells of Estheria and Mico, collccted by Mr. Bcan from these Yorkshire coal-bearing beds, point to the estuary or fluviatile origin of the deposit.
The most complete and simplest form of a coal-ficld is the entire basin-shapc, whieh we find in some instances without a dislocation. An example of this is to be seen at Blairengone, in the county of Perth, immediately adjoiniug the western boundary of Clackmannanshire, as represented in fig. 465 , where the outcr clliptical line, marked A, B, C, D, represents the crop, outburst, or basset edge of the lower coal, and the inner elliptieal line represents the crop or basset edge of the superior coal. Fig. 466 is the longitudinal section of the line A B; and fig. 467 , the transverse section of the line \mathbf{c} d. All the accompanying coal strata partake of the same form and parallelism. These basins arc generally elliptical, sometimes nearly circular, but are often very eeeentric, being much greater in length than in breadth; and frequently onc side of the basin on the short diameter has a much greater dip than the other, which circumstance throws the trough or lower part of the basin concavity much nearer to the one side than to the other. From this view of oue eutire basin, it is evident that the dip of the coal strata belonging to it runs in opposite dircctions, on the opposite sides, and that all the strata regularly crop ont, and meet the alluvial eciver in every point of the circunferential space, like the edges of a nest of common basins. The waviug line marks the river Devon.

It is from this basin shape that all the other coal-fields are formed, whieh are segments of a basin produced by slips, dikes, or dislocations of the strata. If the coal

(fig. 465) were disloeated by two slips $b c$ and $d e$, the slip $b c$ throwing the strata down to the east, and the slip $d e$ throwing them as much $u p$ in the same direction, the outerops of the eoals would be found in the form represented in fig. 468 , of whiels fig. 469 is the seetion in the line A B, and fig 470 the seetion in the linc C D.

The absolute shape of the eoal-fields in Great Britain has been aseertained with surprising preeision. To whatever depth a eoal-mine is drained of its water, from that depth it is worked, up to the rise of the water-level line, and eaeh miner eontinues to advanee his room or working plaee, till his seam of eoal meets the alluvial cover of the outerop, or is eut off by a dislocation of the strata. In this way the miner travels in sueeession over every point of his field, and ean portray its basin-shape most minutely.

Fig. 471 represents a horizontal plan of the Clackmannanshire coal-field, as if the strata at the outerop all around were denuded of the alluvial eover. Only two of the concentrie beds, or of their edges a, a, are represented, to avoid perplexity. It is to bc remembered, however, that all the series of attendant strata lie parallel to the above line. This plan shows the Ochill mountains, with the north coal-fields, of an oblong elliptical shape, the side of the basin next the mountains being precipitous, as if upheaved by the eruptive trap-roeks; while the south, the east, and the west edges of the basin shelve out at a great distance from the lower part of the coneavity or trough, as miners eall it. Thus the alternate beds of eoal, shale, and sandstone, all nearly eoneentric in the north coalfield, dip inwards from all sides towards the eentral area of the trough. The middle eoalfield of this district, however, whieh is formed by the great north slip, is mercly the seg-
 ment of an elliptieal basin, where the strata dip in every dircetion to the middle or the axis marked with the letter \mathbf{x}; being the deepest part of the segment. The south eoal-field, formed by the great south slip, is likewise the segment of another elliptieal basin, similar in all respeets to the middle coal-field. Beyond the outcrop of the eoals and subordinate strata of the south coal-fields, the counter dip of the strata takes place, produeing the mantle-shaped form ; whenec the eoal strata in the Dunmore field, in Stirlingshire, lic in a direetion eontrary to those of the south coal-field of Clackmannanshire. o, are the Ochill mountains.
Fig. 475 is a very intcresting seetion of the main coal-basin of Clackmannanshire, as given by Mr. Bald in the Wernerian Soeiety's Mcmoirs, vol. iii. Here we see it broken into three subordinate coal-fields, formed by two great faults or disloeations of the strata; but independently of these fractures aeross the whole series, the strata continue quite regular in their respeetive alternations, and prescrve nearly unchanged their angle of inclination to the horizon. The section shows the south coal-field
dipping northerly, till it is cut across by the great south slip x, which dislocates the coal and the parallel strata to the cnormons extent of 1230 fect, by which all the coals have been thrown up, not simply to the day, but are not found again till we advance nearly a mile northward, on the line of the dip, where the identical scams of coal, shale, $\&$ c. are observed once more with their regular inclination. These coals of the middle area, dip regularly northward till interrupted by the great north slip y, which dislocates the strata, and throws them up 700 feet; that is to say, a line prolonged in the direction of any one well-known seam, will run 700 fect above the line of the same seam as it emerges after the middle slip. Immediately adjoining the north slip, the enals and coal-field resume their course, and dip regularly northward, rumning through a longer range than either of the other two members of the basin, till they arrive at the valley of the Devon, at the foot of the Ochill mountains, where they form a concave curvature, or trough, a, and thence risc rapidly in an almost vertical direction at b. Here the coals with all their associate strata, assume conformity and parallelism with the face of the sienitic-grecnstone strata of the Ochill mountains c, being raiscd to the high angle of 73 degrecs with the horizon. The coal-seams thus upheaved, are called edge-metals by the miners.

475

In this remarkable coal-field, which bas been accurately explored by pitting and boring to the depth of $\% 03$ feet, there are no fewer than 142 beds, or distinct strata of coal, shale, and sandstone, \&c., variously alternating, an idea of which may be had by inspecting fig. 476 . Among these are 24 beds of coal, which would constitute an aggregate thickncss of 59 feet 4 inches; the thinnest seam of coal being 2 inches and the thickest 9 feet. The strata of this section contain numerous varieties of sandstone, slate-clay, bituminous shale, indurated clay, or fire-clay, and clay ironstone. Neither trap-rock nor limestone is found in connection with the workable coals; but an immense bed of greenstone, named Abbey Craig, occurs in the western boundary of Clackmaunanshire, under which lie regular strata of slate-clay, sandstone, thin beds of limestonc, and large spheroidal masses of clay ironstone, with a mixture of lime.
"With regard to slips in coal-fields," says Mr. Bald, "we find that there is a gencral lav counected with them as to the position of the dislocated strata, which is this :-When a slip is met with in the course of working the mines if when looking to it, the vertical line of the slip or fissure, it forms an acute angle with the line of the pavement upon which the observer stands, we are certain that the strata are dislocated downwards upon the other side of the fissure. On the contrary, if the angle formed by the two lines above mentioned is obtuse, we are certain that the strata are dislocated or thrown upwards upon the other side of the fissure. When the angle is 90°, or a right angle, it is altogether uncertain whether the dislocation throws up or down on the opposite side of the slip. When dikes intercept the strata, they generally only separate the strata
the width of the dike, without any dislocation, either np or down; so

477

> \square \square that if a coal is intercepted by a dike, it is found again by running a mine directly forward, correspouding to the angle or inclination p. 133.

The Johnstone coal-field, in Renfrewshire, is both singular and interesting. The upper stratum of rock is a mass of compaet greenstone or trap, above 100 feet in thickness, not at all in a couformable position with the coal strata, but overlying; next there is a few fathoms of soft sandstone and slate-clay, alternating, and uncommonly soft. Bencath these beds, there are no fewer than 10 scams of coal, lying on each other, with a few divisious of dark iudurated clay. These coalscams have an aggregate thickness of no less than 100 feet; a mass of combustible matter, in the form of coal, unparalleled for its accumulation in so narrow a space. The greater part of this field contains only 5 beds of coal; but at the place where the sectiou shown in fig. 477 is taken, these 5 coals seem to have been overlapped or made to slide over eael other by violence. This structure is represented in fig. 478, whieh is a section of the Quarrelton coal in the Johnstonc field, showing the over-
lapped coal and the double coal, with the thick bed of greenstone, overlying the coal-field.

a. Alluvial cover.
b. Bed of trap or greenstonc.
c. Alternating coal strata.
d. Coal-seams.
e. Position of greenstone, not ascertained.
f. Strata in which no coals have bcen found.
g. The overlapped coal.
h. The double coal.

Fig. 479 is intended to represent an extensive district of country, containing a great coal-basin, divided into numerous subordinate coal-ficlds by dislocations. The lines marked b are slips, or faults; the broad lines marked c denote dikes : the former dislocate the strata, and change their level, while dikes disjoin the strata with a wall, but do not in general affect their elevation. The two parallel lines marked a, represent two seams of coal, variously heaved up and down by the faults; whereas the dikes are seen to pass through the strata without altering their relative position. In this manner partial coalficlds are distributed over a wide area of country, in every direction.
Fig. 480 is an instance of a convex coal-field exhibited in Staffordshire, at the Castle-hill, close to the town of Dudley. 1, 1, are limestone strata; 2,2 , are coal. Through this hill, canals have been cut, for working the immense beds of carboniferous limestone. These occur in the lower series of the strata of the coal-field, and therefore at a distance of many miles from the Castle-hill, beyond the outcrop of all the workable coals in the proper basinshaped part of the field; but by this apparently inverted basin-form, these limestoue beds are elevated far above the level of the general surface of the country, and consequently above the level of all
 the coals. We must regard of two coal-basins, separated by the bassen inversion as resulting from the approximation Fig. 481 is a vertical section of the Dudley coal-basin, the upper coale rcpository. has the astonishing thickncss of 30 feet; and this mass extends 7 miles in leng which 4 in breadth. Coal-seams 5 or 6 feet thick, are called thin in that district length, and For a rery satisfactory description of the coal-field of South Staffordrict. is referred to a memoir," "On the geology of the South Staffordshire coal the reader J. Beetc Jukes, published in the "Records of the School of Mines." It is not possible in the present work to enter into any further. coal-fields of this country. In the selections which any further description of the have been chosen, which are sufficiently characteristic to scrve the purde, striking types illustration. There are many variations from the conditions whe purposes of gencral cribed, but these arc due to disturbances the conditions which have been desformation of the coal, or during the period of the have taken place either since the formation of the coal, or during the period of the actual deposition of the coal.

Nature of Conl.-Truc coal is so altered from its origiual vegetable conditiou as to have left searcely any traee of its truc history. It is gencrally, however, associated with sands and elays, exhibiting numerous fragments of the aucient vegetation that obtained at the time of its formation ; but these fragments are so far reuoved in every respect, fron the existing form of vegetation, as to afford little eluc to the aneieut condition of the earth in this respeet. In eoal all trace of true woody fibre has disappeared ; the water originally present, aud so injurious in the less altered forms of vegetable fuel, is entirely absent, or if present at all, is so rather mechanieally than chemieally, while the water originally in the plant appears to lave undergone deeomposition, the hydrogen uniting with some part of the carbon, to form earburetted hydrogen gas often existing in the cells, and between the plates of the coal under considerable pressurc, and the oxygen being almost entirely removed. The former vegetable has now become a mineral substancc, and lies in vast beds of variable thiekness, and overlaying each other to the extent sometimes of more than a hundred in a single distriet; such beds being regularly interstratified with deposits of sand and elay, and oecupying a distinct geulogical position, being with only a few exceptions eonfined to rucks belonging to the uewer part of the palmozoie scries.

The changes undergone by vegetable matter when buried in the earth, and aceumulated in large quantities, and the length of time needed to produce any marked alteration, are subjeets rather more interesting, it may seem, to the chemist than to the praetical man, who looks ouly for fuel that he may employ economically. But inasmueh as the real coudition of coal varies considerably, it is desirable that the whole listory of coal and lignite beds, should be generally understood by any one using these substances extensively.

Vegctable matter consists of carbon in combination with oxygen and hydrogen, as its prineipal constituents; nitrogen forming but a small although an important part in its economy: A large quantity of water is also present, and so long as the vegctable lives, there is a constant ehange and circulation of material partielcs, kept up, replacing and renewing the different portions. When death takes place, there is a tendeney to decomposition, or the scparation of the whole into minute atoms having no further relation to each other. But this is frequently cheeked by various conditions, such as the presence of some substanees derived from plants themselves, or the absence of suffieient oxygen gas to allow the ehange to take place by combining with the earbon to form earbonic aeid gas, the first step in the process of destruction. These causes act constautly but partially, and thus a large quantity of vegetable matter is always in the course of decomposition, while in partieular spots a large quantity is constantly being aecumulated. The latter eoudition is seen in our elimate in the gradual but steady increase of peat bogs.

That coal is derived from the vegetable kingdom no longer admits of a doubt, but the elass of plants to whieh more espeeially we are to look for the origin of eoal, is still a matter of much uneertainty ; and the conditions under which the elange is brought about are very imperfectly understood, and indeed by many geologists entirely miseoneeived. The idea generally entertained is, that - already deseribed in part - which supposes, a natural basin in whieh vegetable matter is deposited, the layers, aceording to eireumstances varying in thickness, whieh beeome covered with mud or sand, and were thus entombed; the deeomposition and disintegration breaking up the vegetable structure, goes on for ages.

Mieroseopic observers assure us that they are enabled to deteet ligneous strueture in the bituminous coal. Mr. Quecket has given a great number of drawings in proof of this, and he refers the coal to the woody matter of an extinct elass of the Conifera. Botanists of eminence, however, assure us that there is no evidenee of ligneous strueture in any of the examples brought forward in proof of that hypothesis.

Sir Charles Lyell in his execllent Manual of Elementary Geology enters largely and with his usual lueid manner, into the consideration of the carbonifcrous plants. There can be no doubt of the existence of the remarkable flora described by him during the period when our beds of fossil fuel were forming. Referring to Sir William Logan as his authority, Sir Charles says, "It was observed that while in the overlying shales or 'roof' of the coal, ferns and trunks of trecs abound, without any stiymarice, and are flattened and compressed, those singular plants of the uuderelay (the stigmaria) very often retain their natural forms of branching freely, scuding out their slcuder leaf-like rootlets, formerly thought to be leaves, through the nud in all directions." This plant is siugularly indieative of the class of plants from which coal has been derived.
M. Adolph Brongniart states that the number of species of earbonifcrous plants amounts to about 500 . Lindley informs us that no less than 250 ferus lave been obtained from the eoal strata. Forty species of fossil plants of the coal period lave been referred to the Lepidodendrons. These with Equisctacea, Colamites, Asterophyllites,

SigiNaria, of which about thirty-five species are known with their roots, Sligmarice, and Conifera make up the remarkable flora which have been preserved to us in our coal series.

Trees and humbler plants in great variety are found iu the carboniferous sandstones and shales, and in the coal itself, but it does not appear that we have any one evidence of the actual conversiou of the woody fibre of these plants into coal ; that is, there is uo evidence of the direct conversion of wood into bituminous coal. The trees are almost invariably silieified, or converted into columns of sandstone; the carbon which constituted the original woody fibre being substituted by silica, or sometimes by carbonate of lime, aud sometimes by iron. Sir Charles Iyell has carefully examined the phemomena, now in progress, of the great Delta of the Mississippi, and he perceives in them many facts which fully explain, to his mind, the progress of coal deposit. It cannot, however, be disguised that even while he refers the coal to the supposed submerged forests, he does not venture to explain any of those changes, which he cvideutly believes depend upon some peculiar conditions of climate.
Professor Johu Phillips, who has devoted much study to this subject, says, "There is no necessity to enlarge upou the proofs of the origin of coal from vegetables, drawn from an examination of its chemical constitution, as compared with the vegetable products, aud the composition of the ligneous parts of the plants, and from the unanswerable identity of the carbonaceous substance, into which a vast multitude of fossil plauts have been eonverted. The chemical constitution of this carbonaceous product of the individual vegetables, is exaetly analogous to the chemical coustitution of eoal ; and it is quite probable that hereafter the reason of the variations to which both are subject, whether depeudent on the original nature of the plant or produced by unequal exposure to decay after inhumation, or metamorphic subsequent operatious, will be as apparent as that of the general argument arising from a common vegetable origin." - Manual of Geology.

Mr. Jukes says, "If therefore, wc suppose wood (or vegetable matter) buried under accumulations of more or less porous rock, such as sandstone and shale, so that it might rot and deeompose, and some of its elements enter into new combinations, always using up a greater quantity of oxygen and nitrogen than of carbon and hydrogen, or of oxygen and hydrogen than of carbon, we should have the exact conditions for the transformation of vegetable matter into coal."- The Student's Manual of Geology.
Much stress has been laid upon the fact that we have brown coal still retaining all the unmistakeable characters of wood, and the apparent passage of this into true coal.
Göppert states that the timber in the coal mines of Charlottenbrunn is sometimes converted into brown coal. The same conversion was many years ago found in an old gallery of an iron mine at Turrach in Styria. A. Sehrötter explains, according to the analysis made by him, this couversion, by the separation of marsh gas and carbonic acid from the ligneous fibre of oak wood.-Bischof.
The same authority says, "This conversion of wood into coal may take place in four different ways, namely :
"1. By the separation of carbonic acid and carburetted hydrogen.

2. "	carbonic acid and water.
3.	
4.	carburetted hydrogen and water.

Quoting the information accumulated by Bischof for the purpose of showing the chemical changes whieh take place, the following analyses are given :-

				Carbon.	Hydrogen.	Oxygen.	Authority.
Oak Wood - -	-	-	-	52.53	$5 \cdot 27$	$42 \cdot 20$	$\{$ Gay-Lussac
Decayed Oak Wood	-	-	-	$53 \cdot 47$	$5 \cdot 16$	$41 \cdot 37$	\{ and Thenard.
Fossil Wood -	-	-		57.8	$5 \cdot 8$	$36 \cdot 4$	liebig. Regnault
Turf - -	-	-	-	$60 \cdot 1$	$6 \cdot 1$	$33 \cdot 8$	Regnault. Vaux.
Coal from Marennen	-	-	-	$72 \cdot 3$	$5 \cdot 3$	$22 \cdot 4$	Regnault.
Retinite from the brown coal minesof Walchow -				$76 \cdot 7$ $80 \cdot 3$	$5 \cdot 2$	$18 \cdot 1$	Bischof.
Pcat Coal - -	-		-	80	$10 \cdot 7$	9.0	Schrötter
Coal - -			-	$80 \cdot 7$	$4 \cdot 1$	$15 \cdot 2$	Baer.
Coal - -	-		-	$82 \cdot 2$	$5 \cdot 5$	$12 \cdot 3$	Bischof.

Suel is, in the main, the evidence brought forward in support of the view that coal is the result of the decomposition, upon the place where it is found, of woody fibre. The following remarks by Professor Henry Rogers on the structure of the Appalachian coal exhibits some of the difficulties whiel surround this vicw :-
"Eael hed is made up of innumerable very thin lamine of glossy coal, alternating with equally minute plates of impure coal, containing a sinall admixturc of finely divided earthy matter. These subdivisions, differing in their lustre and feature, are frequently of excessive thinness, the less brilliant leaves sometimes not exceeding the thickncss of a sheet of paper. In many of the purcr coal-beds these thin partings between more lustrous layers consist of little lamine of pure fibrous charcoal, in which we may discover the peculiar texture of the leaves, fronds, and even the bark of the plants which supplied a part of the vegctable matter of the bed. All these ultimate divisions of a mass of coal will be found to extend over a surprisingly large surface, when wc consider their minute thickness. Pursuing any given brilliant layer, whose thickness may not exceed the fourth part of an inch, we may obscrve it to extend over a superficial space which is wholly incompatible with the idea that it can have been derived from the flattened trunk or limb of any arboreseent plant, however compressible. When a large block of coal is thus minutely and carefully disseeted it very seldom, if ever, gives the slightest evidence of having been produced from the more solid parts of trecs, though it may abound in fragments of their fronds and deciduous extremities."
It is not possible, within the space which can be afforded to this article in tbe present work, to examine further the various views which have becn entertained by geologists and cbemists of the formation of coal. A brief summary must now suffice.

1. Coal is admitted upon all bands to be of vegetable origin.
2. Many refer coal to some peculiar changes which have taken place in wood; otbers to the formation and gradual subsidence of peat bogs (Unger). Fuei have also been thought by others to supply the materials for coal-beds.
3. By some the coal is thought to be found upon the spots on which the trees grew and decayed. By others it is supposed tbat vast masses of vegetable matter were drifted into lakes or deltas, to be there decomposed.
4. Whether the plants grew on the soil - the under clay - upon which the coal is found, or were drifted to it; there must have been long periods during whieh nothing but vegetable matter was deposited, and then a submergence of this land, and vast aceumulations of mud and sand. The number of coal seams in some of our eoal fields, and the thicknesses of the strata above them, have been already given.

Henry Rogers and others suppose, that the whole period of the coal measures was characterised by a general slow subsidence of the coasts on which we conceive that the vegetation of the coal grew ; that this vertical depression was, however, interrupted by pauses and gradual upward movements of less frequeney and duration, anid that these nearly statical conditions of the land, alternated with great paroxysmal displacements of the level, caused by the migbty pulsations of earthquakes. (See Faulits, Heates.)

The diffieulties are mainly the faets -

1. Tbat the evidence is not clear that anything like ligneous structure can be detected in coal.
2. Tbat the woody matter found in coal is never eonverted into coal, although sometimes it appears as if the bark was so changed.
3. That the coal arranges itself always in exact obedience to the underlying surface, as tbough a semi-fluid mass had been spread out on a previously formed solid bed.
4. The thinning out of true coal to extreme tenuity, as mentioned by Professor Rogers; numerous examples of wbich appear in this country.
5. Tbe extreme difficulty connected with the subsidence of the surface of the earth to such a depth as that to whicb the lowest seams of coal extend.

We do not intend to answer any of those difficulties, but to leave the question open for further examination; merely remarking, in conclusion, that there can bc no doubt of the vegetable origin of coal; the only question is, the conditions of change by which bituminous coal has been produeed from vegctable fibre, - and that we have not completed all the links in the chain between brown coal and true coal.

Tbc following Table shows at a glanee the ehemical difference between wood and brown coal on the one hand, and anthracite on the other; and scrves to explain what has been said of the chemical changes; by whiel wood is supposed to pass iuto bituminous and, cventually, antbracite coal: -

	Locality.	Authorlty.	Carbon.	Hydrogen.	Oxygen.	Nitrogen.
Pure woody fibre -	- -	Schödler -	$52 \cdot 65$	$5 \cdot 25$	$42 \cdot 10$	
l3eech - -	- - -	Chevandier -	48.89	6.07	$43 \cdot 11$	0.93
Oak	- -	Ditto	$50 \cdot 64$	6.03	42.05	$1 \cdot 28$
Pent	Holland	Milder -	59.27	$5 \cdot 41$	$35 \cdot 32$	
Ditto	l.ong -	Regnault	60.06	$6 \cdot 21$	33.73	
Ditto	Bog of Allen -	Kane -	61.02	$5 \cdot 77$	$32 \cdot 40$	0.80
Ditto -	Upper Shannon	Ditto	$61 \cdot 21$	5.61	31.44	$1 \cdot 62$
Lignite -	Cologne - -	Regnault -	$63 \cdot 42$	$4 \cdot 98$	$27 \cdot 11$	
Ditto -	Patagonia	J. A. Phillips	6219	$5 \cdot 08$	$19 \cdot 44$	
Brown coal - -	Neider Alpen	Regnault -	69.05	$5 \cdot 20$	$22 \cdot 74$	
Ditto - -	Wigan -	J. A. Plillips	80.21	6.30	8.54	
Ditto - -	Boghead -	Hofmann -	65.66	8.90		
Cannel coal - -	Wigan -	Anderson -	64.02 83.75	8.90	$5 \cdot 66$	$0 \cdot 55$
Cherry coal - -	Newcastle -	Ditto -	83.75 81.20	5.66 5.04	8.03 8.43	
Carr's Hartly	Ditto -	Admiralty Inquiry	79.83	$5 \cdot 11$	$7 \cdot 26$	
Steam Wallsend -	Ditto -	Ditto -	83.71	$5 \cdot 30$	$2 \cdot 79$	1.06
Resolven - -	Snuth Wales	Ditto	7933	$4 \cdot 75$	27	$1 \cdot 38$
Neath Abbey	Ditto -	Ditto	89. 04	$5 \cdot 05$	-	1.07
Graigola -	Ditto -	Ditto	84.87	$3 \cdot 84$	$7 \cdot 19$	0.41
Aberaman - -	Ditto -	Ditto	90.94	$4 \cdot 28$	0.94	
Anthracite - - Ditto	Ditto - -	Ditto -	91.44	$3 \cdot 46$	0.79	$\stackrel{1}{0.21}$
Ditto - -	Slievardagh, Ire- land -					0.23
Ditto - - Ditto	Vizille - -	Jacqueline - -	84.09	2.30 1.85		0.23
Ditto - -	Swansea - -	Regnault - -	91. 29	2.33	0.82	$0 \cdot 45$

The ealorifie values of a variety of eoals, as tried under the eireumstanees considered the most favourable for the development of heat, will be found in the fol-
lowing Table:-

Name or Locality of Coal.	Actual Number of lbs. of Water converted into Steam by 1 lb of Coal.	Number of lbs. of Water converted into Steam by the Coke left by the coal.	Total Number of lbs. of Water convertible into Steam by 1 lb . of the Coal.	Amount of Ammonia corresponding to the Nitrogen contained in the Coal.	A mount of Sulphate of Ammonia corresponding to the Nitrogen contalned in the Coal.
	Practical.	Theoretical.	Theoretical.		
Graigola - Anlhracite, Jones and Co,	$9 \cdot 35$ 9.46	11.301	13.563	$0 \cdot 497$	
Anlhracite, Jones and Co.	$9 \cdot 46$ 8.94	$12 \cdot 554$	14.593	$0 \cdot 225$	1.939
Ward's Fiery Vein -	8.94 940	10.601	14.936	1.590	$6 \cdot 175$
Binea - -	$9 \cdot 94$	11.560	$14 \cdot 614$	1.238	$4 \cdot 808$
Llangenneck - -	$8 \cdot 86$	10.599	15.093	1.586	6.741
Pontrepolh - -	8.72	10.873	14.260 14.838	1.299	$5 \cdot 044$
Pontrefellin - -	6.36	10.841	13.888	a trace	0.848
Powell's Duftryn - -	$10 \cdot 149$	$11 \cdot 134$	13.787 15.092	a trace	6.835
Mynydd Newydd - -	$9 \cdot 52$	9.831	15.092 14.904	1.76 1.808	$6 \cdot 835$
Three-Quarter Rock Vein	$8 \cdot 84$	$7 \cdot 081$	$13 \cdot 106$	1.808 1.299	$7 \cdot 340$ $5 \cdot 044$
Cwm Frood Rock Vein -	$8 \cdot 70$ 8.42	8.628	14.788	1.347	$5 \cdot 044$ 5.232
Resolven - - -	$9 \cdot 53$	8.243 10.234	13.932	1.919	$7 \cdot 448$
Pontypool - -	$7 \cdot 47$	$10 \cdot 234$ 8.144	13.971	1.675	6.505
Bedwas - - -	9.79	8.144 8.897	$14 \cdot 295$	$1-639$	$6 \cdot 364$
Ebow Vale - -	$10 \cdot 21$	8.897 10.441	14.811	$1 \cdot 748$	6.788
Porth Mawr Rock Vein -	$7 \cdot 53$	10.441 6.647	15.635	2622	$10 \cdot 182$
Coleshill - - -	8.0	6.647	$12 \cdot 811$	$1 \cdot 55.1$	6.033
Dalkeith Jewel Seam	$7 \cdot 08$	6. 239	$12 \cdot 799$	1.785	6.930
Dalkeith Coronation	$7 \cdot 71$	6.924	12.313 12.772	$1 \cdot 214$	$0 \cdot 471$
Wallsend Elgin -	$8 \cdot 46$	6. 560	12772 $13 \cdot 422$	a trace	
Fordel Splint - -	$7 \cdot 56$	6.560	$13 \cdot 422$ 13.817	$1 \cdot 712$	6.647
Grarigemouth - -	$7 \cdot 40$	-6.292	13.817 13.692	1.372	$5 \cdot 327$
Bronmhill - -	$7 \cdot 30$	7-711	$13 \cdot 692$ 14.863	1.69	6.364
Park End Lydney -	$8 \cdot 52$	6.567	14.863 13.257	$2 \cdot 234$	8.674
Slievardagh - -	$9 \cdot 85$	10.895	13.257 12.482	1.477 0.279	9.617 1.084

This Table, in eonneetion with those whieh will be found under Fuel, will place elearly before all who are interested in the question of the heating power of coals, the values of a great variety of British and Foreign eoals and fuels.
An inquiry was instituted at the instance of Joseph Hume, Esq., M. P., who recommended the Admiralty to determine, as the Amerieans had done, the ealorific value of the fuel used in the Steam Navy. The result of the experimental examination will be found in three reports furnished to the Government by Sir Henry de le Beehe
and Dr. Ityon Playfair.

The following Trable, which has been construeted from these Reports, shows
The Mean Composition of average Sarules of Coals.

Name of Coal.			$\begin{aligned} & \text { E. } \\ & \text { 른 } \\ & \text { K } \end{aligned}$			$\frac{\dot{5}}{\frac{3}{2}}$	\sum_{0}^{1} 0 0	安	- 두둥 范 Y
Soutar Wales : -									
Lbbw Vale - -	-	1.275	89•78	$5 \cdot 15$	$2 \cdot 16$	$1 \cdot 02$	$0 \cdot 39$	1.50	77-5
Merthyr -	-	$1 \cdot 30$	90.12	$4 \cdot 33$	$1 \cdot 00$	0.85	$2 \cdot 02$	1.68	86.53
Bedwas	-	1-32	$80 \cdot 61$	$6 \cdot 01$	$1 \cdot 44$	$3 \cdot 50$	1.50	$6 \cdot 94$	71.7
Plymouth Work -	-	1.35	$88 \cdot 49$	$4 \cdot 00$	$0 \cdot 46$	$0 \cdot 84$	$3 \cdot 82$	$2 \cdot 39$	$82 \cdot 25$
Resolven - -	-	1332	79.33	$4 \cdot 75$	$1 \cdot 38$	$5 \cdot 07$	included in ash.	$9 \cdot 41$	83.9
Neath Abbey	-	$1 \cdot 31$	$89 \cdot 04$	$5 \cdot 05$	107	$1 \cdot 60$	- -	$3 \cdot 55$	$61 \cdot 42$
Llynvi -	-	1.28	87.18	$5 \cdot 06$	0.86	1.33	$3 \cdot 53$	$3 \cdot 04$	$72 \cdot 94$
Llangennech	-	$1 \cdot 312$	$85 \cdot 46$	$4 \cdot 20$	$1 \cdot 07$	-0.29	$2 \cdot 44$	6.54	$83 \cdot 69$
Pontypool -	-	$1 \cdot 32$	80.70	$5 \cdot 66$	$1 \cdot 35$	$2 \cdot 39$	$4 \cdot 38$	$5 \cdot 52$	64.8
Newcastle : -									
Willington -	-	-	86.81	$4 \cdot 96$	1.05	0.88	$5 \cdot 22$	1.08	72.19
Haswell Wallsend -	-	1.286	$83 \cdot 47$	$6 \cdot 68$	$1 \cdot 42$	0.06	$8 \cdot 17$	$0 \cdot 20$	$62 \cdot 70$
Hedley's Hartley -	-	131	$80 \cdot 26$	$5 \cdot 28$	$1 \cdot 16$	$1 \cdot 78$	$2 \cdot 40$	$9 \cdot 12$	72:31
Carr's Hartley -	-	$1 \cdot 25$	79.83	$5 \cdot 11$	$1 \cdot 17$	0.82	$7 \cdot 6$	$5 \cdot 21$	$60 \cdot 63$
N. Perey Hartley -	-	125	$80 \cdot 03$	$5 \cdot 08$	0.98	0.78	9.91	$3 \cdot 22$	$57 \cdot 18$
Broomhill - -	-	1.25	$81 \cdot 70$	$6 \cdot 17$	1.84	2.85	$4 \cdot 37$	$3 \cdot 07$	$59 \cdot 20$
Derbishitre : -									
Elscear	-	1-296	$81 \cdot 93$	$4 \cdot 85$	$1 \cdot 27$	0.91	8.58	$2 \cdot 46$	61
Park Gate -	-	$1 \cdot 311$	80.07	$4 \cdot 92$	$2 \cdot 15$	$1 \cdot 11$	$9 \cdot 95$	$1 \cdot 80$	$61 \cdot 7$
Butterley Portland	-	1-301	80.41	$4 \cdot 65$	$1 \cdot 59$	0.86	11.26	$1 \cdot 23$	$60 \cdot 9$ 57.86
Staveley - -	-	1.27	79.85	$4 \cdot 84$	1.23	0.72	10.96	$2 \cdot 40$	$57 \cdot 86$
Lancashire: -									
Ince Hall Arley	-	$1 \cdot 272$	82.61	$5 \cdot 86$	1.76 0.98	0.80 1.05	7.44 $5 \cdot 87$	1.53 3.32	64.0 62.89
Balcarres Arley -	-	l-26	$83 \cdot 54$	$5 \cdot 24$ 6.93	0.98	1.05 1.82	$5 \cdot 87$ 7.53	$2 \cdot 34$	60.69
Pemberton Yard -	-	$1 \cdot 348$	80.78	6.23	$1 \cdot 30$	1.82	7.53 8.99	$2 \cdot 34$ $5 \cdot 69$	60.6 56.66
Rushy Park Mine	-	$1 \cdot 28$	$77 \cdot 76$ 70.2	5.23 6.08	$1 \cdot 32$ $1 \cdot 18$	1.01 1.43	8.99 7.24	$5 \cdot 69$ $4 \cdot 84$	$56 \cdot 66$ $60 \cdot 33$
Cannel Wigan		$1 \cdot 23$	$79 \cdot 23$	6.08	$1 \cdot 18$	1.43 2.09	$7 \cdot 24$ $8 \cdot 69$	4.84 9.21	$60 \cdot 33$ 55.90
Balcarres, 5 -feet -	-	1.26	74.21	5.03 5.84	0.77 0.98	$2 \cdot 09$ $1 \cdot 36$	8.69 12.16	$9 \cdot 21$ $3 \cdot 16$	$\stackrel{57.7}{ }$
Moss Hall New Mine	-	$1 \cdot 278$	$77 \cdot 50$	5•84	0.98	$1 \cdot 36$	$12 \cdot 16$	$3 \cdot 16$	$57 \cdot 7$
Scoter : -									
Wallseud Elgin -	-	1.20	76.09 76.94	5.22 5.20	trace	1.51 0.38	14.37	3.10	53.5
Dalkeith Coronation	-	1-316	$76 \cdot 94$ 80.08	5.20 6.50	trace $1 \cdot 55$	0.38 1.38	14.37 8.05	3.44	54.94
Eglinton -	-	1-25	$80 \cdot 08$	$6 \cdot 50$ $5 \cdot 14$	1.55 0.10	1.38 0.33	8.05 15.51	2.44 4	54.94 49.8
Dalkeith Jewel Scam	-	1.277	74.55 79	$5 \cdot 14$ $5 \cdot 28$	0.10 $1 \cdot 35$	1.38 1.42	15.51 8.58	3.52	56.6
Grangemouth	-	1.29	79.85	5•28	$1 \cdot 35$	$1 \cdot 42$	$8 \cdot 58$	3.52	56.6
Bagilt -	-	1.269 1.275	88.48 80.97	5.62 4.96	$1 \cdot 10$	$1 \cdot 40$	$8 \cdot 20$	$3 \cdot 37$	54.5
Ewlowe	-	1.275 1.291	80.97 74.97	$4 \cdot 83$	0.88	1.45	11.88	$5 \cdot 99$	50.8
Ibstock	-	1-291	74.97	483					
Labuan -	-	1.28 1.37	64.52	5.03	0.98	$1 \cdot 14$	$24 \cdot 22$	$14 \cdot 32$	
Three-feet Seam	-	1.37 1.21	54.30	$5 \cdot 41$	$0 \cdot 67$	$1 \cdot 17$	$19 \cdot 19$	$3 \cdot 23$	
Eleven-feet Scam -	-	1-21	70.30	$5 \cdot 41$	$0 \cdot 67$	1.17	19	3.3	
'Tingal - - -	-	- -	65.54	$3 \cdot 36$	1.91	1.03	$1 \cdot 75$	26.41	
'Tasman's Peninsula	-	- -	655.86	3.18 3	$1 \cdot 12$	$1 \cdot 14$	$7 \cdot 20$	$21 \cdot 50$	
Whale's Head Adventure Bay	-		80.22	$3 \cdot 05$	$1 \cdot 36$	1.90	4.80	$8 \cdot 67$	
Sxinney - -		- -	82.39	$5 \cdot 32$	$1 \cdot 23$	$0 \cdot 70$	8.32.	$2 \cdot 04$	
Formosa -	-	$1 \cdot 24$	78.26	5•70	$0 \cdot 64$	0.49	10.95 8.70	15.83	
Vancouver's Istand		$1 \cdot 29$	66.93	5.32	1.02 0.95	2.20 1.98	8.70 13.24	15 7.52	
Conception Bay	-	1'29	$70 \cdot 55$ 65.20	5.76 4.25	1:33	0.69	- 21.69	$6 \cdot 84$	
'Trinidad			$65 \cdot 20$	4-25	$1 \cdot 33$	0.69	2169		

In concluding this notiee of mineral fuel, it may be worth while to draw attention to the vas and toverwhelming importance of the subject, by a reference both to the absolute and relative value of the matcrial, especially in the British Islands. It may be stated as probably within the truc limit, if we take the annual produce of the British coal mines at $66,000,000$ tons, the value of which is not less than $16,700,000 l$. sterling at the pit's mouth, which may be estimated at the place of consumption, and therefore including a certain amount of transport cost necessary to render available the raw material, at not less than $20,000,000 \mathrm{l}$. The capital employed in the coal trade is now estimated at $18,500,000$. We have, therefore, the following summary, which will not be without interest :-

> Value of the coal annually raised in great Britain, estimated at the pit mouth
> Mean annual value at the place of consumption
> Capital engaged in the coal trade -
> Mean annual value, at the furnace, of iron produced from
> Revitich British coal

14,545,000l
COAL BR ASSES. Iron pyrites, sulphide of iron found in the Coal Measures. These are employed in Yorkshire and on the Tyne in the manufacture of copperas, the protosulphate of iron. For this purpose they are exposed in wide spread heaps to atmospheric action ; the result is the conversion of the sulphur into sulphuric acid, which, combining with the iron, forms the sulphate of the protoxide of iron, which is dissolved out and recrystallised.

The iron ores called Brass, occurring in the coal measures of South Wales, were particularly described by E. Chambers Nicholson and David S. Price, Ph. D., F. C. S., at the meeting of the British Association at Glasgow. Their remarks and analyses were as follows :-
"There are three kinds of ores to which the namc brass is applied; they are considered to be an inferior class of ore, and are even rejected by some iron-masters. One is compact, heavy, and black, from the admixture of coaly matter, and exhibits, wheu broken, a coarsely pisiform fracture. A second is compact and crystalline, not unlike the darkest-coloured mountain limestone of Sonth Wales in appearance. The third is similar in structure to the first-named variety; tbe granules, cousisting of iron pyrites, are mixed with coaly matter, and cemented together by a mineral substance, similar in composition to the foregoing ores. It is from the yellow colour of this variety that the name brass has been assigned to the ores by the miners.
"The ores have respectively the following composition: -

"It is unnecessary to allude to the third variety; as an iron-making material, its eolour admits of its being at all times separated from the others. The pyrites which it contains, we may renark, is bisulphuret of iron.
"It is to the ores I. and II. that we would direct attention. The reason of their having hitherto been comparatively disregarded may be attributed either to their baving been mistaken for the so-called brass of coal, or to their being difficult to work in the blast-furnace in the ordinary manner, through the belief that they were similar in constitution to the argillaceous ores of the district. It will be seen from the above analyses that they are varieties of spathic iron ore, in which the mauganese has been replaced by other bases. If treated judiciously, they would smelt with facility, and afford an iron equal to that produced from the argillaceous ores. From the large amount of lime and magnesia which they contain, their employment must be advantageous in an ceonomic point of view.
"An interesting feature in these orcs is their fusibility during calcination on the large scale. When this process is conducted in heaps, the centre portions are in-
variably melted. This, eonsidering the almost entire absenee of silica, is apparently an mexpected result. The fused mass is entirely magnetie and crystalline. Treated with acids, it dissolves with great evolution of heat.
"The following is its eomposition:-

"From the above analysis, it is probable that the fusibility of the compound is owing to the magnetie oxide of iron acting the part of an acid. When thoroughly calciued and unfused, the ores retain their original form ; and if exposed to the air for any length of time, crumble to powder from the absorption of water by the alkaline earths."

COAL-GAS. Although the employment of gas for illuminating purposes ean be traeed back to remote periods of antiquity, yet the substantial history of this application may be related in few words. In various places and at different times issues of inflammable gas from the earth have been observed; the holy fires at Baku on the shores of the Caspian Sea, and those of Pietra Mala in Italy are instances; but such issues have usually been only regarded with superstitious dread by the iguorant people who have observed them. The Chinese alone, if we are to believe the accounts of that boastful people, have many centuries ago turned these natural sources of inflammable gas to useful account, and have rendered them available both for heating and illumiuating purposes. Abundant sources of inflammable gas exist in the coal districts of this country; and in some localities, as at Chat Moss in Lancashire for instance, so easy is this gas procurable, that it is only necessary to plunge an iron rod a few yards deep into the soft peat, and then on its withdrawal to insert a tin tube, iu order to secure a copious discharge of gas, which is evolved in a continuous stream at a high pressure and apparently for an unlimited period of time. But as this gas consists of nearly pure light carburetted hydrogen, and contains no luminiferous constituent, it yields seareely any light when burnt in the ordinary manner, and cannot therefore be rendered available for illuminating purposes. It has, however, been suceessfully employed as a source of heat, and a jet of it was long made use of as the sole fuel to heat a four-horse boiler used for agricultural purposes. As early as the year 1659 Mr . Thomas Shirley communicated to the Royal Society a paper describing some experiments upon an inflammable gas issuing from a well near Wigan in Lancashire, and nearly a century later the Rev. John Clayton, having noticed the same phenomenon in the same locality, and finding on digging a few feet into the soil, that the gas issued from a bed of eoal, he was led to try whether a similar gas could not be obtained artificially, by exposing coal to heat in close vessels. He succeeded in obtaining an illuminating gas, and amused his friends by collecting it in bladders and burning it from a hole prieked in the bladder. The particulars of these experiments Mr. Clay tou eommunieated to the Royal Society in the year 1739. But he does not appear to have thought of applying his diseovery to any practical purpose, and it was not until 1792 that the gas thus artifieially obtained was used for illumination by Mr. Murdoek, who first lighted his house and office at Redruth in Cornwall, and afterwards, having made several improvements in the apparatus, he lighted the factory of Messrs. Boulton and Watt at Soho about the year 1804, and in 1805 the large cotton mills of Messrs. Philips and Lee at Manehester; those of Mr. Lodge at Halifax having been lighted about the same time by Mr. Clegg, a gentleman to whose cnergy and seientific skill gas lighting, in its earlier stages especially, is much iudebted. In the year 1810 the Act of Parliament incorporating the London and Westminister Chartered Gas-light and Coke Company was passed, and on the 31st of December 1813, Westminister Bridge was lighted with gas. This step was soon followed by the introduction of gas in the place of oil, in several of the ehief thorough fares of the metropolis. Fron that period the progress of this branch of the ehenical arts has been extremely rapid and satisfaetory, so far at least as the cxtension of the manufacture and the improvement of the meehanical part of the proeess are coneerned. Nevertheless, although the methods employed for the generation and purification of gas have been rendered more economieal, it can hardly be said that the average of the gas, supplied to con-
sumers in London and the provincial towns, is either purer or better in quality thau that furnished in the carlicr years of the manufacture.

Before procceding to describe the actual processes now employed for the generation of illuminating gas, it will be advisable to cousider bricfly the general scientific principles involved in those processes, and especially the chemical relations of the materials employed for the gencration and purification of illuminating gas, together with the bearings of chemistry upon the operations of generating, purifying, and burning such gas.
The chemistry of gas-mamufueture.-The chief materials cmployed in the manufacture of gas for illuminating purposes are, coal, oil, resin, pcat, and wood. These materials, although very dissimilar in appearance, do not essentially differ from each other in their chemical constituents, they may all be regarded as consisting chicfly of the elements, carbon, hydrogen, and oxygen, and their value for the production of illuminating gas increases with the increase of the proportion of hydrogen, and with the diminution of the relative amount of oxygen. Accordingly we find that oil and resin generally produce gas larger in volume and better in quality than coal, whilst peat and wood, owing to the large proportion of oxygen which they contain, are greatly inferior to coal for the purposes of the gas manufacturer. The relative proportions of carbon, hydrogen, and oxygen, in the organic part of these substances, is seen from the following comparison:

						Percentage of Carbou.	Percentage of Hydrogen.	Percentage of Oxygen.
Cannel (Boghead)Cannel (Wigan)			-	-	-	$80 \cdot 35$	11.21	6.71
		-	-	-	-	$85 \cdot 95$	$5 \cdot 75$	$8 \cdot 14$
Coal	- -	-	-	-	-	88.15	$5 \cdot 26$	$5 \cdot+1$
Resin	- -	-	-	-	-	78.90	$10 \cdot 97$	$10 \cdot 13$
Resin Pcat	- -	-	-	-	-	79.47	$9 \cdot 93$	10.59
Wood	- -	-	-	-	-	$60 \cdot 41$	$5 \cdot 57$	3402
Wood	-	-	-	-	-	50.00	$5 \cdot 55$	$44 \cdot 45$

In addition to the three essential constitucnts above mentioned most of these materials contain small and variable proportions of sulphur, nitrogen and inorganic matter, the latter constitutiug, when the substance is burnt, what we term ash. Wheu these substances are heated to redness, they undergo decomposition, a considerable quantity of inflammable gases and vapours bcing evolved, whilst a residue, consisting of carbon, or of carbon and asl, remains behind in the solid form. When atmospheric air has free access during this hcating operation, the inflammable gases and vapours burn with a more or less bright flame, as in a common fire; whilst the carbonaceous residue continues afterwards to glow, until ncarly the whole of the carbon is consumed. If, however, the application of heat be made without access of air, by inclosing the materials for instance in an iron retort provided only with an outlet for the escape of gases, the decomposition goes on in much the same manner as beforc, but the various products formed, being no longer exposed to the simultaneous action of atmospheric oxygen, do not undergo combustion; the inflammable gases and vapours are evolved through the outlet pipe in au unburnt condition, and the carbonaceous residuc also remains unconsumed in the retort. Upon cooling the gases and vapours thus evolved, the latter condense more or less into liquids which separate into two layers, the lower one forming a dense black oily fluid, commonly known as tar, and containing several solid hydrocarbons partly in solution and partly in suspension; whilst the other one consists chiefly of an aqueous solution of salts of ammonia, if the organic matters opcrated upon contained nitrogen. Thus the volatile products of this proccss of destructive distillation consist of solids, liquids, and gases. These con-
stitucnts may be thus tabulated:

I. Gaseous,

In practice, there is not such a perfect separation of the products as is represented in the above table: thus a small proportion of the gases dissolves in the liquid products, whilst most of the liquids, and even some of the solids, diffuse themselves in the form of vapour, to a certain extent, into the gases; and the solids are in most cases almost completely dissolved in the liquids. The relative proportions also in which these products occur greatly depend upon the temperature employed in the destructive distillation, and the length of time during which the volatile products are exposed to it; a low teroperature and short exposure favouring the formation of solids and liquids, whilst a higher heat and longer exposure determiue the production of a larger proportion of gases at the expensc of the solids and liquids.

The usual process of gas-making consists in exposing coal or cannel to a brightred heat, in close vessels of convenient size and shape, until all, or the greater part, of the volatile matter is expelled. Coke is the material left in the retort, and the matters volatilised consist of condensible vapours, and of permaneut gases more or less saturated with these vapours. By a simple process of refrigeration nearly the whole of the vapours may be readily condensed, thus separating the gases more or less perfectly from the liquid and solid products of the distillation. But this preliminary process of purification leaves the gases still in a state totally unfitted for use in the production of artificial light. They still retain constituents, which are either noxious in themselves, or generate noxious compounds when they are burn, such as sulphuretted hydrogen, sulphide of ammonium, carbonate of ammonia, and bisulphide of carbon. They also contain carbonic acid, which greatly diminishes the amount of light yielded by the illuminating gases with which it is mixed.
Besides these injurious ingredients, which may be conveniently included in the term impurities, therc are others which do not contribute anything to the illuminating power of the mixture, and which may be denominated diluents. We can thus classify the constituents of coal-gas as follows:-

Illuminating Ingredients.	Diluents.	Impurities.
Olefiant gas. Propylene. Butylene. Hydrocarbon yapours of the formulx CnHn and $\mathrm{CnH}(\mathrm{n}-6)$. Vapours of hydrocarbons of the formula $\mathrm{CnH}(\mathrm{n}-12)$.	Hydrogen. Light carburetted hydrogen. Carbonic oxide.	Sulphuretted hydrogen. Hydrosulphate of sulphide of ammonium. Carbonate of ammonia. Carbonic acid. Vapour of bisulplide of carbon. Nitrogen. Oxygen. Aqueous vapour.

* Here n means an even number, as $2,4,6$, Sc.

As the intelligent manufacture of gas for illuminating purposes requires a knowledge of the leading properties of the compounds included under the three heads just mentioncd, we will now proceed briefly to describe them.

I. Illuminating Ingredients.

Olefiunt gas.-This gas has been proved by Berthelot to exist in coal-gas, and it is probably always a constituent of the illuminating gases from resin, oil, peat, and wood. It is occasionally, though rarely, met with iu nature, as a product of the action of volcanic heat upon coal-bearing strata; it never occurs, however, in coal strata under ordinary circumstances, and no trace of it has ever been met with amongst the gases issuing from the coal strata of this conntry, and which have been investigated by Graham, Playfair, and others. Olefiant gas can be prepared nearly pure by heating in a glass retort a mixture of 1 part by weight of alcohol, and 6 parts of oil of vitriol. The gas must be passed through solution of caustic soda, to reuove sulphurous and carbonic acids with which it is geuerally contaminated.

Olefiant gas is colourless, aud possesses a peculiar and slightly unpleasant odour. Its specific gravity is rather less than that of atnospheric air, being 9784: 100 cubic inches, at $60^{\circ} \mathrm{F}$. and 30 inches barometrical pressure, weigh $30.3+18$ grains. It consists of two volumes of carbon vapour and four volumes of hydrogen, the six volumes being condensed to two. It contains, in a given bulk, exactly twice as much carbon as is contained in light carburetted hydrogen. Olefiant gas is inflammable, but does not support combustion: when inflamed as it issues from a jet into the atmosphere, it burns with a white flame, emitting a very brilliant light without smoke. In burning, it consumes three times its volume of oxygen, and produces twice its volume of carbonic acid. Exposed to a full red heat, as in passing through a red-hot tube, it is rapidly decomposed, carbon being deposited, whilst hydrogen and light carburetted hydrogen are produced ; exposure to a full red heat consequently soon entirely destroys its illuminating power.

Propylene and butylene.-The first of these highly illuminating constituents of coalgas nay be obtained by passing the vapour of fusel oil through a red-hot tube, and the second by the electric decomposition of valerate of potash. Both these gases are colourless, possess a slight ethereal odour, and burn with a brilliant white flame. Like olefiant gas, they are rapidly decomposed at a bright red heat, depositing much carbon, and being converted into the non-illuminating gases - hydrogen and light carburetted hydrogen. Propylene consists of three volumes of carbon vapour and six volurres of hydrogen condensed to two volumes. It therefore contaius, in a given volume, onehalf more carbon than olefiant gas. Its specific gravity is $1 \cdot 4511$.
Butylene consists of four volumes of carbon vapour and eight volumes of hydrogen, the twelve volumes being condensed to two; it consequently contains, in a given volume, twice as much carbon as olefiant gas. Its specific gravity is 1.9348 .

Vapours of hydrocarbons of the form $\mathrm{Cn} \Pi \mathrm{n}$. 一 A considerable number of compounds having this formula are known to exist in coal-tar, and, as many of them are very volatile, they must be diffused as vapours in coal-gas; but as they have not yet been successfully disentangled from each other, no account of their individual properties can be given; they all, however, contain more carbon in a given volume than butylene, and must therefore contribute, proportionally to their volume, a greater illuminating power than any of the gaseous hydrocarbons. They are all readily decounposed at a bright-red heat, chiefly into carbon and non-illuminating gases.

Vapours of hydrocarbons of the formula $\mathrm{CnH}(\mathrm{n}-6)$. -These cousist chiefly of benzol, toluol, cumol, and cymol, compounds which, being components of the more volatile portion of the tar, diffuse themselves into the gaseous products of distillation, contributing in no incousiderable degree to the total illuminaling effect of the gas. The composition of these substances has been already given in the Table; and it is therefore ouly necessary here to remark, that benzol vapour contains, in a given volume, three times as much carbon as olefiant gas, whilst the vapours of toluol, cumol, and cymol contain respectively $3 \frac{1}{2}, 4 \frac{1}{2}$, and 5 times the amount of carbon contained in olefiant gas. For a further account of these and the following hydrocarbons, sce Coal Naphtha, Destructive Distillation.

Vapours of hydrocarbons of the formula $\mathrm{CnH}(\mathrm{n}-12)$.-The only vapour of this composition known to be present in coal-gas is naphthaline ($\mathrm{C}^{20} \mathrm{H}^{4}$), which, although a solid at ordinary temperatures, yet emits a considerable quantity of vapour; in fact, its presence occasions to a great extent the peculiar odour of coal-gas.

Naphthaline is a frequent source of serions annoyance to the gas inanufacturer, by condensing in the street mans and gradually blocking them up, or so narrowing their bore as to prevent the passage of the necdful supply of gas. This effect can ouly be produced, when the gas charged with naphthaline vapour is allowed to leave the holder at a temperature higher than that of the mains through which it subsequently flows;
but as this cannot always be avoidcd, the prevention of such deposits might perhaps be best effected by passing the gas over a large surface of coal oil before it is led into the mains. The oil wonld absorbs so muel of the nophthaline as to prevent any subsequent deposition. The vapour of naphthaline coutains, in an equal volume, five times as much carbon as olefiunt gas. The anount of light yielded by these illuminating eonstituents is dircctly proportionate to the amount of carbon contained in an equal volume of each; taking, therefore, the illuminating power of olffiant gas as unity, the following numbers exhihit the relative illuminating values of equal volumes of the several luminiferous constituents of gas:-

Propylene -	1.5	Benzol		$3 \cdot 0$
Butylene	$2 \cdot 0$	'Toluol		$3 \cdot 5$
Amylcne	$2 \cdot 5$	Heptylene -		$3 \cdot 5$
Hydride of amyl	- $2 \cdot 5$	Cumol		$4 \cdot 0$
Hydride of hexyl	- 3.0	Cymol		5.0
Hexylene -	- 3.0	Naphthaline		

II. Diluents.

Hydrogen. - This element constitutes one ninth of the total weight of the waters of onr globe, and with one or two unimportant exceptions, enters into the composition of all animal and vegetable substances and of the products derived from them, as peat, coal, oils, bitumen, \&c. It is however very rarely met with in nature in a free or uncombined state; having hitherto only been thus found in the gases emitted from volcanoes.

Hydrogen gas may be obtained in abundance and nearly pure by passing steam over iron, zinc, and several other metals, in a fine state of division, at a fill red heat. Mixed with carbonic oxide and carbonic acid gases, it is also generated in large quantity when steam is passed over charcoal, coke, or other carbonaceous substances at a red heat. In all these cases the watery vapour is decomposed, its hydrogen being liberated, whilst its oxygen unites with the metal or carbon, forming in the first case a solid non-volatile oxide, which encrusts the pure metal, and soon stops further action; in the second case a gaseous oxide of carbon is generated, and passes off along with the hydrogen, thus leaving the carbon freely exposed to the further actiou of the watery vapour. When carbon is used that portion of the steam which is converted into hydrogen and carbonic oxide yields its own volume of each of these gases; and that portion which forms hydrogen and carbonic acid affords its own volume of hydrogen and half its own volume of carbonic acid. The amount of watery vapour which undergoes the latter decomposition decreases as the temperature at which the operation is conducted increases. At a white heat scarcely a trace of carbonic acid is produced.

Hydrogen is the lightest of all known bodies, its specific gravity being only 0691 ; 100 cubic inches, at 60° Fahr. and 30 inches barometric pressure, weigh only $2 \cdot 1371$ grains. It has a powerful affinity for oxygen, but developes scarcely any light during combustion; when, however, solid substances, such as lime, magnesia, or platinum, are held in the flame of hydrogen, considerable light is emitted. Burnt in air or oxygen gas, it is entirely converted into watery vapour, which condenses non cold surfaces held above the flame.

Light carburetted hydrogen.-This gas consists of earhon and hydrogen in the proportion of 6 parts by weight of the former clement combined with 2 parts of the latter. Owing to its being copiously generated in marshy swampy places, it is frequently termed marsh gas, and from certain considerations relative to its chemical constitution, it has more recently received the name of hydride of methyl. It enters largely into the composition of coal-gas, and is also a natural product of the slow decomposition of coal, and of putrefaction in general. Thus it occurs in enormous quantities in the coal strata, and bubbles up from stagnant pools and ditches which contain putrefying organic remains. As thus generated, it is mixed with small quantities of carbonic acid and nitrogen; it can, however, be artificially prepared perfectly pure, but the processes need not be described here.
Light carburetted hydrogen when pure is colourless, tasteless, and inodorons; it is neutral to test papers, and nearly insoluble in water; its specific gravity is $\cdot 5594$, and 100 cubic inches, at 600° Fahr. and 30 inches barometric pressure, weigh $17+166$ grains. It does not support combustion or respiration, but is inflammable, burning with a blue, or slightly yellow flame, yielding scarcely any light. Nixed with a due proportion of atmospheric air or oxygen, and ignited, it explodes with great violence : the products of its combustion are water and carbonic acid.

When light carburetted hydrogen is exposed to a white heat, it is slowly deeom. posed, depositing carbon, and yielding twice its volume of hydrogen.

Carbonic oxide. - This gas consists of 6 parts by weight of carbon, and 8 parts
of oxygen. It is formed when carbon is consumed in a limited quantity of air or oxygen, and is also gencrated, as stated above, when steam is passed over ignited coke or charcoal, or when coal tar and steam mreet in a red-hot vessel. It is always a constituent of coal-gas.

Carbonic oxide is a colourless and inodorons gas, rather lighter than atmospheric air, and having exactly the specific gravity of olefiant gas, 9727 ; it is very sparingly soluble in watcr, but is very soluble in ammoniacal solution of chloride of copper. Carbonic oxide is inflammable, burning with a beautiful blue flame almost devoid of light ; the product of its combustion is carbonic acid. It is said to be very poisonous.

III. Impurities.

Sulpluretted hydrogen. - This gas consists of sixteen parts of sulphur and oue part of hydrogen: it may be produced by passing hydrogen along with the vapour of sulphur through a red-hot tube, but it is best prepared pure by decomposing protosulphuret of iron with dilute sulphuric acid, and collecting the evolved gas at the pneumatic trough or over mercury. It is always an ingredient in crude coal, peat, or wood-gas.
Sulphuretted hydrogen is a colourless gas, of a very nauseous odour, resembling that of putrid eggs ; its specific gravity is $1 \cdot 1747$. It is highly inflammable, burning with a blue flame, destitute of light, and generating a large amount of sulphurous acid: it is ehiefly this latter circumstance which renders its presence in coal-gas objectionable. It is readily absorbed by metallic solutions, by hydrated oxide of iron, and by lime both in the wet and dry state, aud is easily reeognised in coal-gas by exposing a strip of paper impregnated with acetate of lead to a strean of the gas; if the paper becomes discoloured, sulphuretted hydrogen is present.
Hydrosulphate of sulphide of ammonium.- This compound is formed by the combination of equal volumes of ammonia and sulphuretted hydrogen. It consists of 14 parts by weight of nitrogen, 15 of hydrogen, and 32 of sulphur. It is always largely produced in the manufacture of coal-gas, but is almost completely condensed and retained in the aqueous layer of liquid products, contributing principally to the unbearable odour of gre liquor; a mere trace of this body is therefore present in crude coal-gas. When quite pure it is a colourless crystalline solid, very soluble in water, and volatile at ordinary temperatures. Its vapour, when present in coal-gas, is absorbed and decomposed by hydrate of lime both in the wet aud dry state, ammonia being liberated. It is also decomposed by acids, but in this case the ammouia is retained by the acid, whilst sulphuretted hydrogen is evolved.

Curbonic ucid.-This gas is met with in nature as a constituent of atmospheric air, and is produced iu large quantities during the earlier stages of the formation of coal in the carth's strata. Thus, in the lignite districts of Germany, it is copiously evolved, and meeting with water in its passage to the surface, it is absorbed, and forms those sparkling mineral springs commonly known as seltzer-water.
Carbonic aeid is also formed during fermentation, by the combustion of carbon in air, and in the decomposition of water by carbon at a red heat.
At ordinary temperatures carbonic acid is a colourless and iuvisible gas, but it may be liquefied by very iutense cold or pressure. It consists of 6 parts, by weight, of carbon united with 16 parts of oxygen, and thus differs from carbonic oxide by containing twice as much oxygen as the latter gas. By passiug carbonic acid over ignited eoke, charcoal, or other carbonaceous matters, it tukes up as nuch carbon as it already contains, and becomes converted into carbonic oxide; but it is impossible in this way to convert the whole of the carbonic acid into carbonic oxide unless the proeess be very frequently repeated. Carbonic acid is pungent, acidulous, and soluble in an equal bulk of water, to which it communicates that briskness which we so much admire iu soda-twater; it is considerably heavier than atmospheric air, its specific gravity being 1.524 . This gas is uninflammable, and cannot support combustion or animal life. Its acid properties are not strongly developed, but it unites readily with alkaline bases, forming carbonates : it is upon this property that the removal of carbonic acid from coal-gas depends. On passing coal-gas containing this aeid through slaked lime in fine powder, or through milk of lime, the whole of the carbonic acid disappears, having united with the lime. Quick-lime, slaked in such a manner as to be neither dust-dry nor very perceptibly moist, is unost effective for the absorption of high percentages of carbonic acid, a layer thrce inches in thickness not allowing a trace of the acid gas to pass through it.
The presence cven of a small pereentage of carbonic aeid in coal-gas is much to be deprecated, on account of the great loss of light which it occasions, 1 per cent. of 6 carbourc acid diminishing the illuminating power of coal gas to the extent of about 6 per cent, ; the addition which it makes to the carbonic acid produced duriug com-
bustion is, however, too ninute to be of any importance

Carbonate of ammonia.-During the destructive distillation of coal, a considerable proportion of the nitrogen contained in the coal is converted into carbonate of ammonia, the greater part of which condenses in the aducous layer of liquid products ; but as carbonate of anmonia is very volatile, even at ordinary temperatures, crude coal-gas always contains a small quantity of this compound. It is a volatile, white, crystalline solid, very soluble in water, and possessing a pungent smell like ammonia. Its vapour is decomposed by lime, which unites with carbonic acid, liberating ammonia. The presence of this salt or of ammonia, in coal-gas is very undesirable, as it corrodes brass fittings, and is also partially converted into nitrous acid during the combustion of the gas.

Bisulphide of carbon.-This compound consists of 6 parts, by weight, of carbon, and 32 parts of sulphur ; it is formed whenever sulphur and carbonaceous matter are brought together at a bright-red heat, and therefore, owing to the presence of sulphur in all varieties of coal, its vapour is gencrally, and probably always, present in coal-gas, Bisulphide of carbon is a colourless liquid, of a most insupportable odour, resembling garlic; it is very volatile, boiling at 108 . It does not mix with water, but dissolves in alcohol and ether; it is also very soluble in solution of caustic soda or potash in methylic, cthylic, or amylic alcohol. It is very inflammable, and generates during combustion much sulphurous acid: on this account its presence in conl-gas is very injurious, and as there is no known means of removing it on a large scale by any mode of purification, its non-generation in the process of gas-making becomes a problem of great importance. Few attempts have yet been made to solve this difficulty but Mr. Wright, the cminent eugincer of the Western Gas Company, has observed that its formation is greatly hindered, if not entirely prevented, by the employment of a somewhat moderate temperature. In corroboration of this observation it has fre' quently been noticed that the gas furnished by companies who use a high heat contains a very large quantity of this noxious material, whilst gas generated at lower temperatures, as for instance, that produced by White's hydrocarbon proeess, contains mere traces of this compound. Although no process for the absorption of bisulphide of carbon vapour from coal-gas is sufficiently cheap for employment on a large scale, yet advantage might be taken of its solubility in a solution of caustic potash in fusel oil (a by-product in spirit distilleries) or in methylated spirit of wine, for its removal from the gas supplied to private houses, where the damage done by the sulphurous acid is most annoying. By passing the gas over a considerable surface of this solution, contained in a small private purifier, the bisulphide of carbon vapour is completely removed.

Bisulphide of carbon vapnur can be readily detected in coal-gas by a very simple apparatus devised by Mr. Wright * : in this instrument the products of the combustion of a jet of gas are made to pass through a small Liebig's condenser; if the liquid dropping from this condenser strongly redden blue litmus-paper, it is highly probable that bisulphide of carbon is present. As a decisive test, 50 or 60 drops of the condensed fluid should be collected in a small test-tube, and a few drops of pure nitric acid added: on heating this mixture to boiling over a spirit-lamp, and then adding a drop or two of a solution of chloride of barium, the liquid will become more or less milky if bisulphide of carbon has been present in the gas. It is necessary here to remark, that the absence of sulphuretted hydrogen must be first ascertained by the non-coloration of paper imbued with acetate of lead, and held for some minutes in a stream of the gas.

Nitrogen. - This gas is the chief constituent of atmospheric air, 100 cubic feet of air containing rather more than 79 cubic feet of this gas. It also enters into the composition of a large number of animal and vegetable substances. All descriptions of coal contain small quantities of this element. When nitrogen is eliminated from combination in contact with oxygen, it usually takes the form of nitrous or nitric acid; whilst in contact with an excess of hydrogen it generates ammonia. It is in this latter form that it is eliminated from coal in the process of gas-gencration.

Nitrogen is a colourless, inodorous, and tasteless gas, of specific gravity 0.976 . It is incombustible under ordinary circumstances, and instantaneonsly extinguishes burning bodies. Under certain conditions, however, nitrogen does undergo combustion, as when it is exposed to a very intense heat in the presenec of oxygen. This occurs, for instance, when a small quantity of nitrogen is added to a mixture of hydrogen, with a somewhat larger proportion of oxygen than is requisite to form water, and the mixture then ignited : a loud explosion takes place, and a considerable quantity of nitric acid is formed, owing to combustion of the nitrogen, or in other worls, its union with oxygen gas. This formation of nitric acid possibly oceurs also in a limited extent during the burning of coal gas; and as the teuperature required to form nitric acid is very high, the greater the volune of gas consumed from one burner

* IMls instrument can be had on application to Mr. Wright, 55 and 55a, Millbank Suect, Wicstminsler, S. W:
in a given time, the greater will be the relative quautity of nitric acid produced. The formation of suel a corrosive material as nitric acid under thesc circumstances shows the importanee of preventing the admixture of the products of the combustion of coalgas with the atmosphere of the apartments in which it is consumed. The nitrogen contained in coal-gas is due entirely to the admission of atmospheric air, and not to the elimination of the nitrogen coutained in the eoal; for this latter nitrogen appears to be evolved only in combination with hydrogen as ammonia. As nitrogen is incombustible, it is not ouly a useless ingredicnt in coal-gas, but, owing to its abstracting heat fron the flame of such gas, it causes a diminution of light, and is thus decidedly injurious. The aduixture of this element ought therefore to be avoided as much as possible.

Oxygen. - This element is always present in coal-gas, although in very small quantity if the manufacture be properly conducted. It is never evolved from the coal itself, but it makes its way into the gas through leaky joints, and also to a certain extent through the water in which the holders are immersed. Its presence is highly injurious to the illuminating power of the gas; and sinee, when once introduced, it cannot be abstracted by any practicable means, its admixture ought to be carefully guarded against.

Oxygen is a colourless, invisible and inodorous gas, very sparingly soluble in water, and which has hitherto resisted all attempts to liquefy it by cold or pressure. It is evolved from the leaves of plants under the influeuce of light, aud coustitutes about one fifth of the bulk of our atmosphere. By far the largest auount of oxygen however exists in combination with other elements; thus eight out of every nine tons of water are pure oxygen, and it forms at least one third of the total weight of the mineral erust of our globe. It is therefore the most abundant of all elements. Oxygen gas is heavier than atmospheric air; 100 cubic inches, at 60° Fahr. and 30 inches barometric pressure, weighing $34 \cdot 193$ grains, whilst 100 cubic inehes of the latter weigh only 31.0117 grains. The specific gravity of oxygen is 1.1026 . It eminently supports combustion, all combustible bodies when introduced into it burning much more vividly than in common air; indeed it is owing to the presence of this gas in our atmosphere, that common air possesses the property of supporting combustion.

Aqueous vapour.-Water is volatile at all natural temperatures, and therefore its vapour always exists to a greater or less extent diffused iu coal gas, even as delivercd to the consumer. The percentage amount of aqueous vapour thus present in coalgas is always small, even when the gas is saturated; nevertheless the presence of even this small, proportion of aqueous vapour diminishes to a certain extent the light produced by the combustion of gas. This effeet is no doubt owing to the action of aqueous vapour upon carbon at a high temperature, by which action hydrogen, carbonic oxide, and carbonic acid gases are produced. The presence of aqueous vapour therefore tends to reduce the number of particles of carbou floating in the gas flame and consequently the light is diminished. The following table shows the maximum percentages of aqueous vapour which can be present in gas at different temperatures. As a general rule the gas will contain the maxinum amount at the lowest temperature to which it has been exposed in its passage from the retorts to the burners.

Temperature.	Percentage of aqueous vapour.	Temperaturc.	Percentage of aqueous vapour.	Temperature.	Percentage of aqueous vapour.
$32^{\circ} \mathrm{F}$.	0.64%	$42^{\circ} \mathrm{F}$.	$0 \cdot 9$	520 F .	$1 \cdot 3$
33°	0.6	43°	$0 \cdot 9$		$1 \cdot 3$
34°	0.7	44°	$1 \cdot 0$	540	$1 \cdot 4$
35°	$0 \cdot 7$	45°	1.0	550	$1 \cdot 4$
36°	$0 \cdot 7$	46°	1.0	56	$1 \cdot 5$
37°	$0 \cdot 7$	47°	$1 \cdot 1$	570	1.5
38°	$0 \cdot 8$	48°	$1 \cdot 1$	580	1.6
39°	0.8		$1 \cdot 1$		1.6
$40^{\circ}{ }^{\circ}$	0.8 0.9 1.5	50 51	1.29 .1		$\begin{array}{llll}1.8 & 12.6\end{array}$
41°	0.965		$1 \cdot 2$		

Aquevus vapour has a specific gravity of 6201 , and one cubic foot of it contains one cubic foot of hydrogen and half a cubic foot of oxygen. In contact with ignited carbon, or carbonaceous substances, it is decomposed; producing a mixture of hydrogen, carbonic oxide, and carbonie acid gases. When passed over ignited iron
it yiclds its own volume of nearly purc hydrogen. it yiclds its own volume of nearly purc hydrogen.

Having thus deseribed the more important properties of the constituents of coalgas, we are uow prepared to discuss the eonditions involved iu the gencration, purification, aud combustion of gas.

On the generation of illuminating gas. - The produetion of gas for illuminating purposes whicther derived from coal, peat, wood, or oil, depends, as we have seen, upon a re-arrangement of the elements composing the material employed. The natnre of this re-arrangement is dependent upon the emperature employed. The lower the heat at which it can be effected, the less the weight of coke or carbonaceons residue left in the retort, and, conscquently, the greater the amount of carbon renaining combined with the hydrogen; the hydro-carbons thus formed being chiefly solids and liquids. On the other haud, the higher the temperature cmployed, the greater is the weight of carbonaceous residue, and, thereforc, the smatler is the amount of carbon contained in the volatilised matters, whilst the proportion of gases in these latter becomes larger as the temperaturc increases. By employing a very low tempcrature for the destructive distillation, the production of gas may be almost entirely prevented, whilst by the employment of a very high temperature the three chief constituents of coal might without doubt be completcly converted into coke, carbonic oxide, and hydrogen. Now the results produced by both thesc extremes of temperature are valueless to the gas manufacturer, and it is therefore necessary to employ a heat sufficiently high to prevent as much as possible the volatilc substances from escaping in the form of condensible vapours, but uot high enough to decompose the luminiferous eonstituents of the evolved gas. If coal were a definite and single chemical compound, aud could be so exposed to heat as to suddenly raisc the temperature of every particle to a uniform and definite degrec, it is highly probable that the results of the distillation would be far less complex than they are in the present mode of gas manufacture; and it might even be possible to find such a degree of temperature as would convert the whole of the hydrogen into one or more of the higher gaseous compounds of carbon, thus giving resnlts of maximum value to the gas manufacturer. In the ordinary processes of gas-making, where a charge of several ewts. of coal, often in large lumps, is thrown into an ignited retort, it is impossible to attain any such uniform temperature. The heat is conducted very gradually to the interior of the mass of coal, and therefore various portions of the charge arc exposed to very unequal temperatures, especially in the earlier stages of the distillation. The natural cousequence of thesc conditions is the production, on the one haud, of products resulting from excessive temperature, viz. hydrogen and light carburetted hydrogen, and on the other, of tar, which may be regarded as the consequence of deficient hcat. Notwithstanding several attempts, these disadvantages have not yet been suceessfully overcome, but the importanee of a praetical proecss which would sccure a tolerably uniform temperature during the whole course of distillation, is seen from the remarkable results obtained with Clegg's revolving web retort; a form of apparatus undoubtcdly the most ingenious yet invented for the production of gas, and which, although in its present form too complicated for successfnl practical use, yet embodies, when we cousider the early datc of its iuvention, in a remarkable manner, the true scientific principles of gas-makiug. This retort, of which a deseription will be found at p. 750 , obviated to a great extent the incquality and uncertainty of temperature in the ordinary gas retorts, and the result was an increase of from 30 to 40 per cent. in the quantity of gas produced, the quality being also improved, whilst scarcely any tar was formed.
But besides the great influence exercised by the temperature to which coal is exposed in the process of gas-making, the length of time, during which the volarile products of decomposition are exposed to that temperature, is a most important circumstance as regards the successful manufacture of gas. If we take into consideration the behaviour of the luminiferous constituents of gas when exposed to a bright red heat, and which has been described above; it will be crident that a second urost imprortant condition in the manufacture of gas is the rapid removal of these luminiferous constituents from the destructive influencc of the red-hot retort as soon as they are generated: every sccond during which these gases are allowed to remain in their birthplace diminishes their value as illuminating agents. The only method hitherto employed for the rapid removal of the gases from the retorts is White's proecss, the mechanical details of which are fully deseribed below. This process consists essentially in transmitting a current of water gas through the retorts in which coal or cannel gas is being generated. The water gas is produecd by transmitting steam throngh retorts filled with coke or charcoal, and cousists of a mixture of hydrogen, carbonic oxide, and carbonic acid gases. Thesc gases, which are not in themselves luminiferons on combustion, necessarily become mixed with the coal or cannel gas, and thus diminish the illuminating power of the latter whilst they inerease its volumc. Nevertheless, if the admissiou of water gas be properly managed, the luminiferous constituents saved from destruction by their repiel removal from the retorts, compensate for the
dilution of the gas, so as to render the diluted gas equal in illuminating power to the gas produced from the same coal or cannel in the ordinary process of manufacture. When cannels yielding very highly luminiferous gas are enployed, it is desirable to dilute them to a mueli greater extent, and this can be easily effccted by admitting into the coal retort a larger proportion of water pas. In soure cases the total amount of light yielded by the gas from a given weight of coal when trated according to White's process is more than double that obtained by the ordinary process, and in all cases the gain in total amount of light is very large, thus showing the importance of removing the gases from the red-hot retorts as rapidly as possible. This remark applies especially to gases very rich in luminiferous lydrocarbons, because such gases suffer relatively much more deteriuration than those containing a larger proportion of diluents. In addition to these adrantages such a dilution of rich cannel gases with any of the non-luminous constituents, hydrogen, carbonic oxide, or light carburetted hydrogen, increases tbe illuninating power of the gas in another way: this is effected by their forming a medium fur the solution of the vapours of such bydroearbons as exist in the liquid or even solid state at the ordinary temperature of the atmisphere, and they thus enable us to convert an additional quantity of illuminating materials into the gaseous form, which they retain permanently, unless the temperature fall below the point of saturation. The gain in illuminating power which is thus ohtained will be perhaps better seen from the following example: Suppose 100 cubic inches of olefiant gas were allowed to saturate itself with the vapour of a volatile hydrocarbon, containing three times as much carbon in a given volume of its vapour as tbat contained in an equal volume of olefiant gas, aud that it took up or dissolved 3 cubic inches of this vapour; tben, if we express the value of 1 cubic incly of olefiant gas by unity, the illuminating power of the 103 cubic inches of the nixture of olefiaut gas and hydrocurbon vapour will be 109 . Now if we mix these 103 cubic inches with 100 cubic iuches of hydrogen, the mixture will be able to take up au additional 3 cubic iuches of hydrocarbon vapour, and the illuminating power of tbe 206 cubic inches will then become 118; thus the hydrogen produees a gain in illuminating power equal to 9 cubic inches of olefiant gas, or nearly 4.5 per cent. upon the volume of mixed gases. When we consider that coal naphtha contains hydrocarbons of great volatility, and tbat these arc the surplus remaining after the satuation of the gas from wbich they have condensed, the importance of this function of the non-illuminating class of combustible gases will be sufficiently evident. It may herc be renarked tbat incombustible gases could not be employed for this purpose, since their cooling influence upon the flame during the subsequent burning of the gas would diminish the light to a greater extent than the hydrocarbon vapour could increase it.

It is evident that all the three non-illuminating gases, forming the class of diluents, Would perforua both the offices here assigued to them perfectly well, and therefore we have as yet seen no reason for giving our preference in favour of any one of these diluents; if, however, we study their behaviour during combustion, we shall find that where the gas is to be used for illuminating purposes, hydrogen has qualities which give it a very decided preference over the other two. When gas is nsed for lighting the interior of public buildings and private houses, it is very desirable tlat it should deteriorate the air as little as possible, or, in other words, it should consume as small a quantity of oxygen anid generate as little carbonic acid as possible. The oppressive heat which is so frequently felt in apartments lighted with gas also shows the advantage of the gas generating a minimum amount of heat.
The following is a comparison of the properties of the three non-illuminating gases in reference to the points just mentioned :-

One cubic foot of light carburcted hydrogen, at 60° Fahr, and 30 inches barometrical pressure, consumes 2 cubic feet of oxygen during its combustion, and generates 1 cubic foot of carbouic acid, yielding a quantity of heat capable of heating 5 lbs .14 oz . of water from 32° to 212°, or causing a rise of temperature from 60° to 80.8° in a room
containing 2500 cubic feet of air. containing 2500 cubic feet of air.

Onc cubic foot of carbonic oxide, at the same temperature and pressure, consumes, during combustion, $\frac{1}{2}$ a cubic foot of oxygen, generates 1 cubic foot of carbonic acil, and affords heat capable of raising the temperature of 1 lb .14 oz . of water from 32° to 212°, or that of 2500 cubic feet of air from 60° to 66.6°.
One cubic foot of liydrogen, at the same temperature and pressure, consumes $\frac{1}{2}$ a cubic foot of oxygen, gencrates no carbonic acid, and yiclds heat capable of raisiug the tempcrature of 1 lb .13 oz . of water from 32° to 212°, or that of 2500 cubic feet of air from 60° to $66^{\circ} 4^{\circ}$.

This comparison shows that light carburetted hydrogen is very objectionable as a diluent, not only on account of the carbonic acid which it geuerates, hut also by reason of the very large quantity of oxygen which it consumes, and the very great annount of heat which, in relation to its volume, it evolves ou combustion; the consumption of
oxygen being four times, and the absolute thermal effect more than three times as great as that of either of the other gases.

The quantity of heat evolved by the combustion of valumes of carbonic oxide and hydrogen is nearly, and the amount of oxygen consumed quite, the same; but the carbonic acid evolved from the first gives a decided preference to hydrogen as the best diluent.

The same comparison also shows that when the gas is to be used for heating purposes, and the products of combustion are carried away, light carburetted hydrogen is by far the best diluent.

The experiments of Dulong on the absolute thermal effects of bydrogen, light carburetted hydrogen, and carbonic oxide are taken as the basis of the foregoing calculations. Dulong found that -
llb . of hydrogen raised tbe temperature of 1 lb . of water through $62471^{\circ} \mathrm{F}$.
l lb . of carbonic oxide
l lb. of light carburetted hydrogen

These eonsiderations indicate the objects that should chiefly be regarded, in the generating department of the manufacture of gas for illuminating purposes. They are-

1st. The extraction of the largest possible amount of illuminating compounds from a given weight of material.
2nd. The formation of a due proportion of illuminating and non-illuminating constituents, so that on the one band the combustion of the gas shall be perfect, and without the production of smoke or unpleasant odour, and on the other, the volume of gas required to obtain a certain amount of light shall not be too large.

3rd. The presence of the largest possible proportion of hydrogen amongst tbe nonilluminating constituents, to the exclusion of light carburetted hydrogen, aud carbonic oxide; so as to produce the least amount of heat and atmospheric deterioration in the apartments in which the gas is consumed.

On the purification of illuminating gas. - If we except the insignificant quantities of nitrogen and oxygen, which become mixed with illuminating gas through imperfections in the joints of the apparatus employed, and by the transferring power of the water of the gasholder, all impurities arise from the presence of the three elements sulphur, oxygen, and nitrogen in the generating material used.
The sulphur, uniting with portions of the hydrogen and carbon of the coal, generates with the first named element sulphuretted hydrogen, and with the second, bisulphide of carbon. It is also probable that volatile organic compounds of sulphur are produced by the union of this element with carbon and hydrogen simultaneously, although we have as yet no positive evidence of their presence in illuminating gas. The oxygen, uniting with another portion of carbon, forms carbonic acid, whilst the nitrogen unites with hydrogen to form ammonia, which, by combination with sulpburetted hydrogen, produces hydrosulphate of sulphide of ammonium, and, with carbonic acid and water, carbonate of ammonia. With the exception of bisulphide of carbon aud the organic sulphur compounds just mentioned, the removal of all these impurities is not difficult. Slaked lime, cither in the form of moist powder, or suspended in water as milk of lime, absorbs the whole of them; whilst it has no perceptible effect upon the other constituents of the gas. By this process of purification the sulphuretted hydrogen and caustic lime are converted into sulphide of calciun and water ; the former being non-volatile does not mix with the gas. Hydrosulpbate of sulphide of ammoniun is in like manner converted into sulphide of calcium, water, and ammonia : part of the latter is retained by the moisture present in the purifying material, but the remainder mixes with the gas, from which, however, it can be removed by contact with a large surface of water. Carbonic acid unites with caustic lime with great energy, forming carbonate of lime, a perfectly non-volatile materinl; and thus the acid gas is effectually retained. Carbonate of ammonia is under similar circumstances decomposed, carbonate of lime being formed and ammonia libcrated; the last, as before, being only partially retained by the moisture present, and requiring when "dry lime" is used, a subsequent application of water for its complete removal. Although in the wet lime purifying process a given weight of lime can remove a much larger volume of impurities, yet the dry lime process possesses so many manipulatory advantages that it is now all but universally employed where lime is used as the purifying agent. The maximum amount of sulphuretted hydrogen or of carbonic acid which can be absorbed by 1 lb . of quick-lime, in the so-called dry and wet states respectively, is seen from the following table:-

In practice, however, the absorption actually effected is, even under the most favourable circumstances, considerably less than here indicated. As a substitute for lime in the purification of gas a mixture of hydrated peroxide of iron and sulpbate of lime has lately come into extensive use. This material is prepared in the first place by mixing slaked lime witb hydrated peroxide of iron, the composition being rendered more porous by tbe addition of a certain proportion of sawdust. This mixture is now in a condition to remove tbose impurities from coal-gas which are abstracted by lime. The peroxide of iron absorbs sulphuretted hydrogeu and sulplide of ammonium aud becomes converted into sulphide of iron. Tbe slaked lime absorbs carbonic acid and carbonate of ammonia until it is converted into subcarbonate of lime. Wben the absorbing powers of the mixture are uearly exhausted, tbe covers of the purifiers are removed and the mixture is exposed to the air. The following ehange is then said to take place. The sulphide of iron rapidly absorbs oxygen and becomes converted first into sulphate of protoxide of iron and finally into sulpbate of peroxide, which latter is decomposed by the carbonate of lime, carbonic acid being evolved as gas, whilst sulpbate of lime and peroxide of iron are produced; the mixture is thus again rendered available for the process of purification; the peroxide of iron acts as before, but in the place of quick-lime we have now sulphate of lime, wbich is quite effectual for the removal of carbonate of ammonia, with which it forms carbonate of lime and sulphate of anmonia; but the mixture is incapable of removing free carbouic acid, and it is therefore necessary to provide a separate dry lime purifier for the removal of this gas. When tbe purifying material is again saturated with the noxious gases, another exposure to atmospheric oxygen restores it again to its active condition, the only permanent effect upon it being the accumulation of sulphate of ammonia within its pores. If this latter salt be occasionally dissolved out with water, the mixture may be used over and over again to an almost unlimited extent. It has been found that this process can be mucb simplified, and Mr. Hills, who has brought gas purification to great perfection, recommends tbat hydrated peroxide of iron should be merely mixed witb a considerable bulk of sawdust and placed in the purifiers. After the gas has passed tbrough this mixture for 18 bours, it is shut off and replaced by a current of air forced tbrough by a fanner for 3 hours. The sulphide of iron is thus oxidised, sulphur being separated and hydrated peroxide of iron regenerated : and the purifying material being now revivified, the gas may be passed through it again as before. In this way it is only found necessary to remove the material once a month in order to separate the lowest stratum of about an inch in thiekness, which has become clogged up witb tar. A proportional quantity of fresh mixture of hydrated peroxide of iron and sawdust having been added, the whole is again returned to the purifier. It is difficult to conceive a more simple and inexpensive process of purification tban this. It does not, however, remove carbonic acid. Several otber materials have been proposcd for the separation of sulph uretted hydrogen from coal-gas, sueh as sulphate of lead, and ehloride of manganese, but tbey possess no peeuliar advantages and have never bcen extensively adopted.

It has been already mentioned that, in addition to sulphuretted hydrogen and carbonic acid, which arc readily removed by the processes just described, there also exist in eoal gas, as impurities, variable quantities of bisulphide of carbon and probably sulpburetted hydrocarbons. Now all these sulpbur compounds produce sulphurous acid during the combustion of the gas, and where the quantities of these impurities is considerable, as is the case with much of the gas now manufactured, the atmosphere of the apartments in which such gas is used becomes so strongly impregnated with sulphurous acid, as to be higbly offensive to the senses and very destructive to art decorations, bindings of books, \&c. It becomes, therefore, a matter of cousiderable importance to prevent, as far as possible, the occurrence of these injurious constitucnts; in fact, until this is cffected, gas will never be more than very partially adopted as a means of illumination in dwelling houses. When once generated with coal-gas all attempts to remove these constituents bave hitherto proved ineffectual, and there seems little ground for bope that any practicable process will be devised for their abstraction. Attention may, tberefore, more profitably be directed to the eonditions whicb tend to diminish the amount generated in the retorts, or altogether to prevent their formation. Mr. Wright, wbo has paid considerable attentiou to this problem, finds that the employment of a moderate beat for the gencration of the gas has the effect of greatly reducing the relative quantity of these noxious ingredients, and thus by simply avoiding excessive heat in the retorts, and rejecting the last portions of gas, he bas, to a great extent, prevented their formation. Unfortunately, however, this remedy is not likely to find favour amongst gas manufacturers in general, inasmuch as it considerably rednces the yield of gas. A few well-direeted chemical experiments could scarcely fail to discover the conditions neccssary for the non-production of these sulphurctted compounds. Probably the proper admixture of
salt or lime with the eoals before earbonisation wonld have the desired effeet. The subject is one of so much imporfance to the future of gas illumination, that it ought not to be suffered to rest in its present unsatisfactorycondition.

On the consumption of gus. - The proper consumption or burning of illuminating gas depends upon certain plysical and chemieal conditions, the due observance of whieh is of great inportanee in the development of a naximım amount of light. The produetion of artificial light depends upon the faet that, at eertain high temperatures, all matter beeomes luminous. The higber the temperature the greater is the intensity of the light emitted. The heat required to render matter luminous in its three states of aggregation differs greatly. Thus solids are sometines luminous at comparatively low temperatures, as phosphorous and phosphorie aeids. Usually, however, solids require a temperature of 600° or $700^{\circ} \mathrm{F}$, to render them luminous in the dark, and must be heated to $1000^{\circ} \mathrm{F}$. before their luminosity becomes visible in daylight. Liquids require about the same temperature. But to render gases luminous, they must be exposed to an immensely higher temperature; even the intense heat generated by the oxybydrogen blowpipe searcely suffiees to render the aqueous vapour produeed visibly luminous, although solids, sueli as lime, emit light of the most dazzling splendour when they are heated in this flame. Hence those gases aud vapours only ean illuminate which produce, or deposit, solid or liquid matter during their combustion. This dependence of light upon the production of solid matter is strikingly seen in the case of phosphorus, which when burnt in chlorine produees a light seareely visible, but when eonsumed in air or oxygen emits light of intense brilliancy. In the former case the vapour of chloride of plosphorus is produced, in the latter, solid phosphoric acid.

Several gases and vapours possess this property of depositing solid matter during combustion, but a few of the combinatious of carbon and hydrogen are the only ones capable of practical applieation : these latter compounds evolve during combustion only the same produets as those generated in the respiratory process of animals, viz. earbonic acid and water. The solid particles of earbon whieh they deposit in the interior of the flame, and whieh are the souree of light, are entirely consumed on arriving at its outer boundary; their use as sources of artificial light, under proper regulations, is therefore quite compatible with the most stringent sanitary rules.

The constituents of purified coal-gas have already been divided into illuminating and non-illuminating gases; amongst the latter will be found light carburetted hydrogen, whieh, although usually regarded as an illuminating gas, has been proved by the experiments of Frankland to produce, under ordinary circumstanees, no more light than hydrogen or earbonic oxide, and therefore for all practical purposes it must be regarded as entirely destitute of illuminating power. This is owing chiefly to the temperature required for the deposition of its carbou being bigher than that attained in an ordinary gas burner; for Frankland has proved that, if the temperature of the light carburetted hydrogen flame be inereased by previously heating the gas and air nearly to redness, then the flame beeomes luminous to a considerable degree. It is not improbable that when gas is consumed in very large burners this necessary temperature is attained, and the light earburetted hydrogen eontributes considerably to the aggregate illuminating effect; a view which is, to a certain extent, confirmed by the faet, that a relatively much larger amount of light is obtained from coal gas when the latter is consumed in a large flame than when it is allowed to burn in a small flame.
Omitting light carburetted hydrogen and earbonic oxide, the remaining carboniferous constituents of coal-gas yield, during combustion from suitable buiners, an amount of light direetly proportionate to the quantity of earbon which they contain iu a given volume.
In order to understand the nature of the combustion of a gas flame, it is neeessary to remember that the flane is freely permeable to the air, and that aeeording to the well known laws of gaseous mixture, the amount of air which mixes with the ignited gases will be inereased, first, by an inerease of the velocity with whieh the gas issues from the orifiee of the burner; and seeondly, by the velocity of the current of air immediately surrounding the flame. It is well known that a highly luminiferous gas may be deprived of all illuminating power either by being made to issue from the hurner with great velocity, or by being burnt in a very rapid current of air produeed by a very tall glass climney.
The foregoing considerations indieate the conditions best adapted for obtaining the maximum illuminating effeet from coal gas. The ehief eondition is the supply of just sueh a volume of air to the gas flame as shall prevent any particles of earbon from escaping unconsumed. Any excess of air over this quantity must dininisla the number of particles of earbon deposited within the ttame, and consequently impair the illuminating effect.

Another eondition is the attainment of the highest possihle temperature within the flane. The first of these eonditions has been more or less perfectly obtained in the different gas burners now in use. The second has been hitherto almost entirely ueglected: the means by whieh it may be attained will be discussed after the burners at present in general use bave been described.

The chief burners now in use are the bat's-wing, fish-tail, argand, hude argand, Winfield's argand, Guise's argand, and Leslie's argand.
The bat's-wing consists of a fine slit cut in an iron nipple, giving a flat fan-like flame.

The fish-tail consists of a similar nipple perforated by two holes, drilled so that the jets of gas are inclined towards each other at an angle of about 60°. A flat film of flame is thns produced, somewhat resembling the tail of a fish. This form of hurner is especially adapted for the consumption of cannel aud other highly illuminating gases.

The argand consists of a hollow annulus (see fig. 482), from the upper surface of which the gas issues tlirough a number of small apertures, whieh are made to vary in diameter from $\frac{1}{3}$ nd of an inch to $\frac{1}{30}$ th of an inch, according to the richness of the gas; the most highly illuminating gases requiring the smallest apertures. The distances of the orifices for coal-gas should be 16 to $\cdot 18$ inch, and for rieh eannel gas 13 inch. If the argand ring has 10 orifices, the diameter of the ceutral opening should be $=\frac{4}{10}$ ths of an inch; if 25 orifices, it should be 1 inch for coal gas; but for oil gas, with 10 orifiees, the central opening should have a diameter of $\frac{1}{2}$ an inch, and for 20 orifices, 1 inch. The pin holes should be of equal size, otherwise the larger ones will eause smoke, as in an argand flame with an uneven wiek.

The bude burner consists of 2 or 3 coneentric argand rings perfurated in the manner just deseribed. It is well adapted for producing a large body of very intense light with a comparatively moderate consumption of gas.

Winfield's argand. - The ehief distinction between this and the ordinary argand burner consists in the introduction of a metallic button above the annulus, so as to cause the internal
 current of air to impinge against the flame. A peculiarity in the shape of the glass chimney, as seen in the figure, produces the same effect upon the onter eurrent of air. See fiy. 483.

Guise's argand contains 26 holes in a ring, the inner diameter of which is 6 inch, and the outer diameter 1.9 inch . Like the Winfield burner, it has a metal button $\frac{1}{2}$ an inch in diameter, and 1 inch ahove the annulus. The glass ebimney, which is cylindrical, is 2 inches in diameter, and 6 inches long.

Leslie's argand consists, as seen in the figure (fig. 485), of a series of fine tubes

arranged in a cirele, hy which a more uniform admixture of air with the gas is cffected. A suffieient current of air for all these argand hurners can only he ohtained by the use of a glass chimney, the rapidity of the current depending upon the height of the chimney. In the Leslie's argand the height of the chimney is especially adapted to the amount of light required, and in order to eonsume gas eeonomically, this point must be attended to in all argand burners.
The following experiments made with different burners, hy three eminent experimenters, upon the gas from three different kinds of coal, show the relative values of thesc burners for the gases produeed from the chief varieties of eoal used for the manufature of gas in this country.
Table I.-Experiments on Wigan Cannel Gas, at different Rates of Consumption, by Mr. Alfred King.

	$\frac{1}{2}$ Foot.	1 Foot.	112 Foot.	2 Feet.	21 Feet.	3 Feet.	$3 \frac{1}{\frac{1}{2} \text { Feet. }}$	4 Feet.	412 Feet.	5 Feet.	51 $\frac{1}{2}$ Feet.
Single Jet:-											
One foot $=$ candles - - -	$2 \cdot 15$	$2 \cdot 6$									
, $=$ grains of sperm -	$258 \cdot 3$	311.8									
Lancashire Fish-tail, No. 0:-											
One foot = candles - -	$1 \cdot 78$	$2 \cdot 18$	$1 \cdot 76$								
" $=$ grains of sperm	214*1	262.5	211.9								
Lancashire Fish-tail, No. 1:-											
One foot = candles - - -	$1 \cdot 76$	$2 \cdot 65$	$2 \cdot 55$	$2 \cdot 53$							
", = grains of sperm	2113	$317 \cdot 9$	306.5	$303 \cdot 7$							
Lancashire Fish-tail, No. $2:-$											
One foot $=$ candles - - -	$2 \cdot 26$	$3 \cdot 11$	$3 \cdot 5$	$3 \cdot 76$	$3 \cdot 79$	$3 \cdot 66$					
, $=$ grains of sperm -	$271 \cdot 2$	$373 \cdot 3$	$420 \cdot 6$	$455 \cdot 7$	455.7	$439 \cdot 4$					
Lancashire Fish-tail, No. 3:-											
One foot $=$ candles - -	$2 \cdot 26$	$3 \cdot 48$	$3 \cdot 86$	4.07	$4 \cdot 07$	$4 \cdot 18$	$4 \cdot 1$	$4 \cdot 3$			
", = grains of sperm	285.5	419:5	$484 \cdot 4$	500.5	566.7	$539 \cdot 9$	$530 \cdot 1$	516.6			
Bat's-wing:-											
One foot $=$ candles - -	1.83	3.01	$3 \cdot 73$	$4 \cdot 1$	$4 \cdot 12$	4.31	$4 \cdot 3$	$4 \cdot 46$	$4 \cdot 32$	$4 \cdot 4$	
. $=$ grains of sperm - -	$220 \cdot 0$	361.6	$448 \cdot 3$	$492 \cdot 3$	494.8	578•1	516.2	$535 \cdot 1$	$519 \cdot 0$	528.9	c
Sixteen-hole Argaud, small holes in ring											
0.82 inch in diameter:- One foot $=$ candles -	- -	0.323	$1 \cdot 02$	$1 \cdot 9$	$2 \cdot 6$	$3 \cdot 27$	$3 \cdot 72$	$3 \cdot 84$	$3 \cdot 96$		
, $=$ grains of sperm - -	- -	38.76	$123 \cdot 3$	$228 \cdot 7$	313.0	$393 \cdot 3$	$446 \cdot 4$	461.7	479.2		
Winfield's 28 -hole Argand, registered July											
25 th, 1848 , with slightly conical chimney:-											
One foot = candles - - .	- -	0.344	$1 \cdot 16$	$2 \cdot 26$	$2 \cdot 71$	$3 \cdot 5$	$3 \cdot 72$	3.84	40		
", = grains of sperm - -	- -	$41 \cdot 27$	$139 \cdot 1$	271.3	$325 \cdot 6$	$420 \cdot 5$	446.4 .	$461 \cdot 7$	481.0		
Winfield's 58-hole lucent Argand, registered											
March 20th, 1845 :-											
One foot $=$ candles - - -	- -	- -	0.318	0.75	$1 \cdot 09$	1.57	$2 \cdot 09$	$2 \cdot 59$	3.07	$3 \cdot 82$	$4 \cdot 5$
,$\quad=$ grains of sperm	- -	- -	$38 \cdot 2$	$87 \cdot 5$	$131 \cdot 8$	188.4	251.1	$311 \cdot 3$	$368 \cdot 9$	$458 \cdot 8$	540.0

Table II.-Results of Experiments on Newcastle Cannel Gas by Mr. A. Wright.

	$\begin{aligned} & 1 \text { Foot } \\ & \text { per } \\ & \text { Hour. } \end{aligned}$	11 Fnot per Hour.	2 Feet per Hour.	2s. Feet per Hour.	3 Feet per Ilour.	3즐 Feet per Hour.	4 Feet per Hour	42 $\frac{2}{\square}$ Feet per
Scotch Fish-tail, No. 1 :One foot = candles $=$ grains of sperm	$\begin{aligned} & 4.75 \\ & 585 \cdot 0 \end{aligned}$	$\begin{gathered} 5 \cdot 02 \\ 602 \cdot 0 \end{gathered}$						
Scotch"Fish-tail, No. 2 :One foot = candles $=$ grains of sperm	$\begin{array}{r} 5 \cdot 05 \\ 606^{\circ} 0 \end{array}$	$\begin{gathered} 5 \cdot 77 \\ 690 \cdot 0 \end{gathered}$	$\begin{array}{r} 5 \bullet 95 \\ 7140 \end{array}$	$\begin{gathered} 5 \cdot 84 \\ 700 \cdot 0 \end{gathered}$	$\begin{array}{r} 5 \cdot 53 \\ 563.0 \end{array}$			
Guise's Argand :One foot = candles " = grains of sperm		$\begin{gathered} 1.08 \\ 129 \cdot 0 \end{gathered}$	$\begin{gathered} 1 \cdot 85 \\ 222^{\circ} 0 \end{gathered}$	$\begin{gathered} 3 \cdot 12 \\ 374 \cdot 0 \end{gathered}$	$\begin{array}{r} 4 \cdot 85 \\ 582: 0 \end{array}$	$\begin{gathered} 4.95 \\ 594 \cdot 0 \end{gathered}$	$\begin{array}{r} 5 \cdot 77 \\ 692 \cdot 0 \end{array}$	$\begin{gathered} 6.74 \\ 808 \cdot 0 \end{gathered}$

Table III. contains the results of Mr. Barlow's experiments on gas produced from a mixture of Pelton, Felling, and Dean's Primrose, all first class Newcastle gas-coals, largely used in London.

The burners employed in these experiments were the following:-
1st. A No. 3 fish-tail, or union jet.
2nd. A No. 5 bat's-wing.
3rd. A common argand, with 15 large holes in a ring 85 inch diameter, and a cylindrical chimney glass 7 inches high.
4th. A Platow's registered argand, with large holes in a ring, 9 inch, with inside and outside cone, and cylindrical chimney glass 8.5 inches high.
5th. A Biznuer's patent No. 3 argand, with 28 nedium sized holes in a ring 75 inch diameter, and cylindrical chimney glass 8.65 inches high.
6 th. A Winfield's registered argand, with 58 medium sized holes in 2 rings of 29 holes in each, the mean diameter being 1 inch, with deflecting buttor inside and gauge below, bellied chimuey glass 8 inches high.

7th. A Leslie's patent argand, with 28 jets in a ring 95 inch diamcter, and chimney glass $3 \cdot 5$ inches high.

8th. A Guise's registered shadowless argand, with 26 large holes in a ring ' 85 inch diameter, and deflecting button, cylindrical chimney glass 6.1 inches high, and glass reflecting cone to outside gallery.

On an average of numerous trials the annexed results were obtained:-
Table III

Burner.	Rate of Consumption per Hour in Cublc Feet.	Value of Cubic Font in Grains of Sperm.	Standard Candles per Cubic Foot.
No. 2	$4 \cdot 9$	289.0	$2 \cdot 4$
, 3	$5 \cdot 5$	343.0	$2 \cdot 85$
" 5	$5 \cdot 5$	374.0	$3 \cdot 11$
" 6	$5 \cdot 5$	$337 * 0$	$2 \cdot 8$
" 8	$5 \cdot 5$	350.0	$2 \cdot 91$
" 1	$5 \cdot 5$	$276{ }^{\circ}$	$2 \cdot 3$
" 2	$5 \cdot 0$	290.0	$2 \cdot 41$
, 3	$5 \cdot 5$	341.0	$2 \cdot 84$
\% 4	5.5	348.0	$2 \cdot 9$
\% 5	$5 \cdot 5$	380.0	$3 \cdot 16$
, 6	$5 \cdot 5$	335.0	$2 \cdot 79$
" 7	$4 \cdot 1$	369.0	$3 \cdot 07$
	$5 \cdot 5$	364.0	3.03

It has been stated that one of the conditions necessary for the production of the maximum illuminating power from a gas flame, is the attainment of the highest possible temperature, and that this condition has been almost entirely neglected in the burners hitherto in use. Dr. Frankland has, however, proved, by some hitherto unpublished experiments, that this condition may be easily secured by employing the waste heat radiating from the gas flame, for heating the air previous to its employment for the combustion of the gas; and that the increased teniperature thus obtained has the effect of greatly increasing the illuminating pnwer of a given volume of the gas. Fig. 486 shows the burner contrived by Dr. Frankland for this purpose. a is a common argand buruer, or better, a Les-

486

lie's argand, furnished with the usual gallery and glass chimney b, c; the latter must be 4 to 6 inelies longer than usual. $d d$ is a circular dise of plate glass, perforated in the eentre, and fixed upon the stem of the burner about $1 \frac{1}{2}$ inches below the gallery by the collar aud serew e. ff is a second glass chimney somewliat conical, ground at its lower edge so as to rest air-tight, or nearly so, upon the plate $d d$; and of such a diametcr as to leave an annular space $\frac{1}{2}$ ineh broad between the two cylinders at $g g$. The cylinder f should be of such a length as to reach the level of the apex of the flame. The action of this burner will now be sufficieutly evident. When lighted, atmospheric air can only reach the flame by passing downwards through the space between the eylinders f and c; it thus eomes into eontact with the intensely leated walls of c and has its temperature raised to about 500° or 600° before it reaches the gas flame. The passage of this f heated air over the upper portion of the argand burner also raises the temperature of the gas considerably bcfore it issues from the burner. Thus the gases taking part in the combustion are highly heated before inflammation, and the temperature of the flame is eonsequently elevated in a corresponding degree. Experiments with this burner prove a great increase in light, due chicfly to the higher temperaturc of the radiating particles of earbon; but, no doubt, partly also to the heat being suffieiently high to cause a deposition of carbon from the light carburctted hydrogen; thus rendering this latter gas a contributor to the total illuminating effect ; whilst, when burnt in the ordinary manner, it merely performs the functions of a diluent. The following are the results of Dr. Frankland's experiments with this burner.

These results show that the new burner, when eompared with the ordinary argand, saves on an average 49 per eent. of gas, when yielding an equal amount of light; and also that it produces a gain of 67 per cent. in light for equal eonsumptions.

Faraday's ventiluting burner. - This admirable contrivance, the invention of Mr. Faraday, eompletely removes all the products of combustion, and prevents
 their admixture with the atmosphere of the apartments in which the gas is consumed. The burner consists of an ordinary argand, fig. $487, u$, fitted with the usual gallery and ehimney b, b. A second wider and taller eylinder, $c c$, résts upon the outer edge of the gallery which eloses at bottom the annular space, $d d$, between the two glass cylinders. cc, is closed at top with a double miea eap e. f is the tube convering the gas to the argand; $g g$ is a wider tube 14 inches in diameter, eommunicating at oncextremity with the annular space between the two glass eylinders, and at the other, either with a flue or the open air. The products of enmbustion from the gas flame are thus compelied to take the direetion indicated by the arrows, and are therefore prevented from contaminating the air of the apartment in which the gas is consumed. h is a ground glass globe enelosing the whole arrangement, and having ouly an opening below for the admission of air to the flame. In order to dispense with the descending tube, to which there
are some objections, Mr. Rutter has constructed a ventilating burner in which the ordinary glass chimney is made to teruinate in a metal tube, through which the products of combustion are couveyed away. Mr. Dixon has also constructed a modification of Faraday's burncr, the peculiarity of which consists in the use of a separate tube bringing air to the flame from the same place, outside the building, to which the produets of the burner are conveyed ; this contrivanee is said to prevent downward draughts through the eseape pipe, and a consequently unsteady flame. Faraday's buruer is iu use at Buckingham Palaec, Windsor Castle, the House of Lords, and in many public buildings.

On the Estimation of the value of Illuminating Gas.

There are two methods in use for estimating the illuninating value of gas, viz. 1st. The photometrie method.
2nd. Chemical analysis.
The photometric method cousists in comparing the intensity of the light emitted by a gas flame, consuming a known volume of gas, with that yielded by some other source of light taken as a standard. The standard employed is usually a spermaceti eandle, burning at the rate of 120 grains of sperm per hour. A spermaceti candle of six to the pound usually burns at a somewhat quicker rate than this; but in all cases the consumption of sperm by the candle during the course of each experiment ought to be earefully ascertained by weighing, and the results obtained corrected to the 120 grain standard. Thus, suppose that during an experiment the consumption of sperm was at the rate of 130 grains per hour, and that the gas flame being tested gave a light equal to 20 sueh candles, and it is required to know the light of this flame in standard 120 grain candles, then -

$$
120: 130:: 20:: 21 \cdot 7,
$$

or, 20 candles burning at the rate of 130 grains per hour, are equal to 21% candles burning at the rate of 120 grains per hour.
'lhere are two methods of estimating the comparative intensity of the light of the gas and candle flames, both founded upon the optical law that the intensity of light diminishes in the inverse ratio of the square of the distance from its somrce. Thus, if a sheet of writing paper be held at the distauce of one foot from a candle, so thatt its surface is perpendicular to a line joiniug the centre of the sheet and the flame, it will be illuminated with a ligbt four times as intense as that which would fall upon a sheet of paper held in the same position at a distance of 2 feet ; whilst at a distance of 3 feet the light would have but $\frac{1}{9}$ th of the intensity which it possessed at 1 foot. One method of estimating the comparative intensity of the gas and candle flames, cousists in placing the two lights and an opaque rod nearly in a straight line, and in such a way as to cause cach light to projeet a shadow of the rod upon a white screen placed at a distance of about 1 foot behind the rod. The two shadows must now he rendered ot equal intensity by moving the candle either nearer to the rod or further from it. The shadows will be of equal intensity when the light falling upon the white screen from both sources is equal ; and if now the respective distances of the eandle and gas flame from the screen be measured, then the square of the distance of the gas flame divided by the square of the distance of the candle will give the illuminating power of the gas in candles. Thus, if equally intense shadows fall upon the sereen when the candle is 3 feet distant and the gas flame 12 feet, the illuminating power of the gas flame will be -

$$
\frac{12^{2}}{3^{2}}=\frac{144}{9}=16 \text { candles. }
$$

This method of estimating the illuminating power of a gas flame, known as tl.e shadow test, is very easy of exeeution, and would appear from the description to be capable of yielding results of considerable accuracy; nevertheless, an unexpected difficulty arises from the great difference in colour of the two shadows; that of the gas being of a bluish brown, whilst that of the candle is of a yellow brown tinge. This difference of tint renders it exceedingly difficult for the observer to ascertain when the two shadows possess equal intensity; and, consequently, the limits of error attending determinations by this test are probably, even in the hands of an experienced operator, never less than 5 per cent., and frequently even as much as 10 per cent. The shadow test has, therefore, been all but superseded by the Bunsen's Photomeler, which consists of a graduated metal or woodeu rod ahout 8 or 10 feet long, and sufficiently strong to be inflexible. At one extremity of this rod is placed the gas along the rod supports a small circular flames, and at right angles to the rod paper screen, at the same hcight as the two thin writing paper, saturated with a sulutis screcn consists of colourless, moderately Vol. I. $\quad 3 \mathrm{~B}$ of spermaceti in spirit of turpentine,
except a spot in the centre, about the size of a slilling, which is to be left untouched by the solution. The spirit of turpentine soon evaporates, and the paper is now ready for use. Being more transparent iu the portion which has been saturated with the spermaceti solution, it becomes a delicate test of equality of light when placed between two lunninous bodies; for if the light of oue of tbe bodies impinge witl greater intensity upon one side of the sereen than the other light does upon the opposite side, the difference in the transparency of the two portions of the screen will become distinctly visible; the spot in the centre appearing comparatively opaque on the less illuminated side. When the screen is brought into such a position between the two sources of light as to render the central spot nearly or quite invisible on both sides, the illuminating effect of both lights at that point may be regarded as equal; and all that now remains to be done is to measure the respective distanees of tbe candle and gas from the screcn, and divide the square of the distanee of the gas by the square of that of the candle; the quotient expresses the illuminating power of the gas in candles. Onc of the most convenient forms of this instrument has been contrived by Mr. Wright, and may be had at 55 , Millbank Street, Westminster. It consists of the following parts : -

488

1. A wooden rod exactly 100 inches long (fig. 48S) from the centres of sockets at its ends, A R.
2. An upright pillar, c.
3. A candle holder, D.
4. A mahogany slide, \mathbf{E}, having a metal soeket, \mathbf{F}, on its top, to hold the cireular frame, G, and a small pointer in its front.
5. A circular metal frame, \mathbf{G}, made to hold a prepared paper.
6. A blackened conical sereen, H, diminishing in size from its centre, where it opens with a hinge towards its ends, with two holes in front.

The long rod is graduated in accordance with the laws of distribution of light, from its centre each way into squares of distances in divisions numbered respectively 1,2 , 3 , \&c., to 36 ; to measure smaller differences than tbose amounting to 1 candle in value, each major division to 9 is subdivided into 10 parts, each, of course, representing $\frac{1}{10}$ th of an increment. From thence to 20 the subdivisions indicate $\frac{1}{2}$. Beyond tbat point no subdivisions are made, becanse the major divisions become so small that, practically, such divisions would be useless.

The manner of fitting the apparatus together will be understood by reference to the annexed sketch.

The pillar, c, is screwed to one end of the shelf, and an experimental meter, \mathbf{l}, plaeed at the other. This latter instrument is for measuring the quantity of gas passing to the burner, and indicating the rate of consumption by observations of one minute, which is accomplished by the construction of its index dial.

This dial has two circles upon its face, with a pointer to each; the outer circle divided into four, and the inner into six parts; and each of these again divided into tenths. Every major division of the outer circle is a cubic foot; and every major division of the inner circle is $\frac{1}{60}$ th of a cubic foot; so that the major divisions on the inner circle each bear the samc proportion to a cubic foot tbat a minute does to an hour. If, therefore, the number of these divisions and tenths of divisions, which the hand passes over in a minute, is observed, it will evidently only be neeessary to read them off as feet and tenths of a foot to obtain the hourly rate of consumption.

Thus, suppose the pointer passes from the upper figure 6 to the fifth minor division beyond the figure 4 , it would read off as $4 \frac{5}{10}$ ths aud $\frac{5}{600}$ ths of a cubic foot in $\frac{1}{60}$ th of an hour. Multiplying these quantities by 60 , we have $\frac{4}{60}$ this $\frac{5}{600}$ ths $\times 60=$ $\frac{2700}{600}$ ths $=4 \frac{1}{2}$ cubic feet, and $\frac{1}{80}$ th $\times 60=1$; so that $4 \frac{1}{2}$ feet and 1 liour are obtained by simply reading off the divisions which had been passed as feet and tenths.

A pillar, J, having a pressure gauge and two cocks at K , one with a micrometer movement, screws on to the top of the meter, and is intended for receiving buruers
when experimenting. The graduated rod is supported in an exactly horizontal position by the pillars C and J , and screwed together by its binding screws.

The caudle socket \boldsymbol{D} is screwed on to the top of c , and the mahogany slide c placed on the rod, with its pointer to the seale, carrying the frane G , containing a preparcd paper, and covcred by the cone n,

The prepared paper is made by coating white blotting-paper witl sperm, so as to render it semi-transparent, leaving a small spot in the centre plain, and therefore opaque. See c in the figure.

All that now remains to render the apparatus ready for experimenting, is to put a piece of caudle into the socket, and consume the gas through a proper burner over the meter, taking care that the centres of the candle-flame, paper, and gas flume, are in one horizontal line, and adopting the precautions previously laid down.
Unfortunately the determination of the exact point of equality of the two lights, is by no means easy, even after considerable practice; and the maximum amount of error to which even the practised operator is liable in such estimations of illuminating power, cannot be set down at less than 5 per cent. It is scarcely necessary to add that all photometric experiments must be conducted in an apartment from which all light from other sources is excluded, and the walls of which are rendered as absorbent as possible, by being coated with a mixture of lampblack and size, or by being hung with black lustreless calico.
Analytical method of estimating the value of illuminating gas. - Frankland has shown that the resources of chemical analysis, place in our hands a method for the determination of the illuminating value of gas considerably more aecurate than the photometric processes just described, although the execution of the uecessary operations requires more skill, and is usually much more troublesome. As the determination of the illuminating power of a sample of gas by the analytical method necessitates most of the operations required for the performance of a complete analysis of coal-gas, we shall here include in our description of the former process the additional details necessary for the latter.

1. Collection of the sample of gas.-In all analytical operations upon gases, it is of the utmost importance, that the latter should be preserved from all admixture with atmospheric air. This can only be done, either by collecting the samples of gas over mercury, or by cnclosing them in hermetically sealed tubes. When the sample of gas is collected at the place wherc the analysis is to be made, the former plan is usually most convenient, but when the sample has to be obtaincd from a locality at some distance from the operator's laboratory, the latter plan is usually adopted. To collect a sample of gas over mercury, attach one end of a piece of vulcanised Indianrubber tube to the gas pipe, and insert into the other extremity a piece of glass tube bent, as shown at A, fig. 489, allow the gas to stream through these tubes for two or three minntes, and then suddenly plunge the open extremity of the glass tube beneath the surface of the mercury in the trough c. Then fill the small gas jar a completely with mercury, taking care to remove all air bubbles from its sides by mcans of a piece of iron wire, and closing its mouth firmly with the thumb, invert it in the trough c, introducing the end of the bent tube A into its open extremity, in such a way as to bring the mouth of A above the level of the surface of the mercury in c. The gas will then
 flow into B, until the level of the mercury in \mathbf{B} metal in the trough. If now, the tube a being is somewhat lower than that of the mercury and brought beneath B, the latter may be rev, a sinall cup be filled with will be thus preserved from any appreciable atmosphoved from the trough, and months.

To collect samples of gas in hermetieally sealed tubes, proeeed as follows : take a piece of glass tube about $\frac{7}{8}$ ths of an inch internal diameter, and 1 foot long; draw it out at both ends before the blowpipc, as shown in fig. 490; attach one extremity, a fig. 491, to a vulcanised Indian-rubber tuhe, communicating with a source of the gas,
and the opposite cxtremity is allowed to hang down perpendicularly from B . tube about three feet long, and whicl this system of tubes for about three minutes, so as to enter gas has streamed through atmospheric air, the flame of a mouth blowpipe is dirccted the complete expulsion of of the glass tube at c, so as to fusc it off. With as much against the narrow portion same operation is performed at the opposite extremity of the tube d, whicll is the hermetically scaled and assumes the appearance shown in fig. 492 . d, which is thus
The gas having been thus carefully collceted, the necess firy.
must be condueted over mercury iu a small wooden pneumatic trough, with plate glass sides, the coustruetion of which is shown in fig. 493. A is a piece of hard well-

491

seasoned wood, 12 inches long and 3 inehes broad, hollowed out, as shown in the figure ; the cavity is $8 \frac{3}{4}$ inches long, $1 \frac{3}{4}$ inehes broad, and $1 \frac{3}{4}$ inches deep. The bottom of this cavity is rounded, with the exception of a portion at one end, where a surface, 1 inch broad, and $1 \frac{1}{2}$ inehes long, is made perfectly flat, a piece of vulcanised Indianrubber, $\frac{1}{0}$ th of an inch thiek, being firmly cemented upon it. Two end pieces, в в, $\frac{3}{4}$ tbs of an inch thick, $3 \frac{1}{4}$ inehes broad, and 5 inches high, are fixed to the block A; these serve below as supports for a, and above as the ends of a wider trough, which is formed by the pieces of plate glass cc, cemented into A and B B. The glass plates cc, are $10 \frac{1}{2}$ inches long, and $1 \frac{7}{8}$ inches high; they are slightly inclined, so that their

lower edges are about $2 \frac{3}{8}$ inches, and their upper edges $2 \frac{7}{8}$ inches apart. This trough stands upon a wooden slab DD, upon which it is held in its place by two strips of wood ee. An upright column F , which is serewed into D , carries the inclined stand G, whiel serves to support the eudiometer during the transferenee of gas. h is a circular inelined slot in 13 , whieh allows of the convenient inelination of the endiometer in the stand c. i is an indentation in whieh the lower end of the eudiometer rests, so as to prevent its falling into the deeper portion of the trough A. When iu use the trough is filled with quicksilver to within an inch of the upper edge of the glass plates C C, about 30 to 35 lbs . of the metal being neeessary for this purpose.
into cubiciometers or measuring tubes, should be aecurately enlibrated and graduated into eubic inches and tenths of a cubie ineh, the tenths being subdivided by the eye
into hundredths, when the volume of gas is read off; this latter division is readily attained by a little praetiee. At each determination of volume, it is neeessary that the gas should either be perfeetly dry, or quite saturated with moisture. The first condition is attained by placing in the gas, for half an hour, a small hall of fused ehloride of caleium, attaehed to a platinum wire *; the seeond condition, by introducing a minute drop of water into the head of the eudiometer, before filling it with quieksilver. The determinations of volume must either be made when the mercury is at the same level inside and outside the eudiometer, or, as is more frequently done, the difference of level must be aceurately measured and allowed for in the subsequent reductiou to a standard pressure. The height of the barometer and the temperature of the surrounding atmosphere must also be observed eaeh time the volume of gas is measured, and proper eorrections made for pressure, temperature, and also the tension of aqueous vapour, if the gas be moist. As tables and rules for these corrections are given in most treatises on ehemistry, they need not be repeated here.

These troublesome corrections and caleulations ean be avoided by employing an instrument lately invented by Dr. Frankland and Mr. Ward, and which not only does a way with the neeessity for a room devoted exelusively to gaseous manipulations, but greatly shortens and simplifies the whole operation. This instrument, whieh is represented by fig. 494, eonsists of the tripod A, furnished with the usual levelling serews, and earrying the vertieal pillar B \quad, to whieh is attached, on the one side, the morable mer. eury trough c, with its rack and pinion $a a$, and on the other, the glass eylinder $\mathbf{D} \mathbf{D}$, with its eontents. This eylinder is 36 inches long, and 4 inehes internal diameter; its lower extremity is firmly cemented into an iron collar c, the under surface of which ean be serewed perfectly watertight upon the braeket plate d by the interposition of a vuleanised eaoutchoue ring. The eireular iron plate d is perforated with three apertures, into which the eaps c, e, e, are serewed, and which communicate below the plate with the \boldsymbol{T} pieee ex. This latter is furnished with a doubleway eoek f, and a single-way coek g, by means of whieh the tubes cemented into the soekets e, e, e, can be made to communieate with each other, or with the exit pipe h at pleasure. $\mathbf{F}, \mathbf{G}, \mathbf{H}$, are three glass tubes, whieh are firmly eemented into the eaps $e, e, e . \quad \mathbf{F}$ and \mathbf{H}, are each from 15 to 20 millimetres internal diameter, and are selected of as nearly the same bore as possible, to avoid a
 difference of capillary aetion. eontinued to any convenient height above the is somewhat wider, and may be with a millimetre seale, and is furnished at top with it is aecurately graduated neek of which a glass stopper, about 2 millimetres a small funnel i, into the

[^44]ground. The tube F terminates at its upper extremity in the capillary tube k, which is carefully cemented into the small steel stopeock l. F has also fused into it at m, two platinum wires, for the passage of the electric spark, After this tube has been firmly cemented into the cap e, its internal volume is aeeurately divided into 10 perfectly equal parts, which is effected without difficulty by first filling it with mereury from the supply tube G , up to its junction with the capillary attachment, and then allowing the mercury to run off through the nozzle k until the highest point of its convex surface stands at the division 10 , previously made so as exactly to coincide with the zero of the milliuretre scale on I; the weight of the merenty thus ruu off is carefully determined, and the tube is again filled as before, and divided into 10 equal parts, by allowing the mercury to r un off in successive tenths of the entire wright, and marking the height of the convexity after each abstraction of metal. By using the proper precautions with regard to temperature, \&c., an exceedingly accurate calibration can, in this way, be accomplished.

The absorption tube I is supported hy the clamp n, and connceted with the capillary tube k, by the stopcock and junction piece $l l^{\prime \prime}, p$, as shown in the figure. When the instrument is thus far complete, it is requisite to ascertain the height of each of the nine upper divisions on the tube, above the lowest or tenth division. This is very accurately effected in a few minutes by carefully levelling the instrument, filling the tube \mathbf{G} with mercury, opering the cock l, and the stoppered funnel i, and placing the cock f in such a position as to cause the tubes F I to communicate with the supply tube \mathbf{G}. On now slightly turning the cock g, the mercury will slowly rise in each of the tubes F and \mathbf{H}; when its convex surface exactly coincides with the ninth division on F, the influx of metal is stopped, and its height in \mathbf{H} accurately observed; as the tenth division on F corresponds with the zero of the scale upon Ir, it is obvious that the number thus read off is the height of the ninth division above that zero point. A similar observation for each of the other divisions upon F completes the iustrumeut.*

Before using the apparatus, the large cylinder D D is filled with water, and the internal walls of the tubes F and H are, once for all, moistened with distilled water, by the introduction of a fow drops into each, through the stopoock l, and the stoppered funnel i. The three tubes being then placed in communication with each other, mercury is poured into G uutil it rises into the cup i, the stopper of which is then firmly closed. When the mercury begins to flow from l, that cock is also closed. The tubes F and H are now apparently filled with mercury, but a minute and imperceptible film of air still exists between the metal and glass; this is effectually got rid of by connecting F and H with the exit tube h, and allowing the mercury to flow out, until a vacuum of several inches in length has been produced in both tubes; on allowing the instrument to remain thus for an hour, the whole of the film of air above mentioned will diffuse itsclf into the vacuum, to be filled up from the supply tube c . These bubbles are of course easily expelled on momentarily opening the cock l and the stopper i whilst G is full of mercury. The absorption tube I being then filled with quicksilver, and attached to l by the screw clamp, the instrument is ready for use.

In illustration of the manner of usiug the apparatus, a complete description of an analysis of coal-gas by this instrument will be given below.

For the analysis of purified coal-gas by means of the mercury trough and eudiometer, the following operations are neccssary:-

I. Estination of Carbonic Acid.

A few cubic inches of the gas are introduced into a short eudiometer, moistened as above descrihed; the volume is accurately noted, with the proper corrections, and a bullet of caustic potash is then passed up through the mercury into the gas: it is allowed to remain for at least one hour; the volume of the gas being again ascertained and subtracted from the first volume gives the amount of carbonic acid which has been absorbed by the potash.

II. Estimation of Oxtgen.

This gas can be very aceurately estimated by Liebig's method, which depends upon the rapid absorption of oxygen by an alkaline solution of pyrogallic acid. To apply this solution, a small test tube is filled with quicksilver, and inverted in the mercury trough; a few drops of a saturated solution of pyrogallic acid in water are thrown up into this tube by meaus of a pipette, and then a similar quantity of a strong solution of potash; a coke bullet attached to a platinum wire is introduced into this liquid, and allowed to saturate itself; it is then withdrawn, aud conveyed carefully

* This instrument may be obtained (rom Mr. Oer ${ }^{r i n g}$, philosophical instrument maker, Store sircet, Tottenham Court Road.
ucluw the surface of the mercury into the endiometer containing the residual gas of experiment No. 1 ; every trace of oxygen will be absorbed in a few minutes, when the bullet must be removed, and the volume being agaiu measured, the diminution from the last reading will represent the amount of oxygen originally present in the gas. It is essential that the coke bullet, after saturation with the alkaline solution of pyrogallic acid, should not come in contact with the air before its introduction into the gas.

III. Estimation of the Luminiferous Constituents.

Various methods have been employed for the estimation of the so-called olefiant gas (luminiferous constituents) contained in coal-gas. The one which has been most generally employed, depends upon the property which is possessed by olefiant gas, and most hydrocarbons, of combining with chlorine, and condensing to an oily liquid : hydrogen and light carburetted hydrogen are both acted upon in a similar manner when a ray even of diffused light is allowed to have access to the mixture; hut the condensation of the olefiant gas and hydrocarbons takes place in perfect darkness, and advantage is therefore taken of this circumstance to observe the amount of condensation which takes place when the mixture is excluded from light. The volume, which disappears during this action of the chlorine, is regarded as indicating the quantity of olefiant gas present in the mixture. There are many sources of error inseparably connected with this method of operating, which render the results unworthy of the slightest confidence; the same remark applies also to the employment of bromine in the place of chlorine; in addition to the circumstance that these determinations must be made over water, which allows a constant diffusion of atmospheric air into the gas, and vice versâ, there is also formed in each case a volatile liquid, the tension of the vapour of which increases the volume of the residual gas; and this increase admits of neither calculatiou nor determination. The only material by which the estimation of the luminiferous constituents can be accurately effected is anhydrous sulphuric acid, which immediately condenses the luminiferous constituents of coal-gas, but has no aetion upon the other ingredients, even when exposed to sunlight. The cstimation is conducted as follows :-A coke bullet, prepared as described above, and attached to a platinum wire, being rendered thoroughly dry by slightly heating it for a few minutes, is quickly immersed in a saturated solution of anhydrous sulphuric acid, in Nordhausen sulphuric acid, and allored to remain in the liquid for one minute; it is then withdrawn, leaving as little superfluous acid adhering to it as possible, quickly plunged beneath the quicksilver in the trough, and introduced into the same portion of dry gas, from which the carbonic acid and oxygen have heen withdrawn by experiments I. and II.; here it is allowed to remain for about two hours, in order to ensure the complete absorption of every trace of hydrocarbons. The residual volume of gas cannot, however, yet bc determined, owing to the presence of some sulphurous acid derived from the decomposition of a portion of the sulphuric acid: this is absorbed in a few minutes by the introduction of a moist bullet of peroxide of manganese, which is readily made by converting powdered peroxide of manganese into a stiff paste with water, rolling it into the shape off a small bullet, and then inserting a bent platinum wire, in such a manner as to prevent its being readily drawn out; the ball should then be put in a warm place, and allowed slowly to dry, it will then become hard, and possess considcrable cohesion, even after being moistened with a drop of water, previous to its introduction into the gas. After half an hour, the bullet of peroxide of manganese may be withdrawn, and replaced by one of caustic potash, to remove the watery vapour introduced with the previous one; at the end of another half-hour, this bullet may be removed, and the volume of the gas at once read off. The difference between this and the previous reading, gives the volume of the luminiferous constituents contained in the gas. This method is very accurate ; in two analyses of the same gas. the percentage of luminiferous constituents seldom varies more than 0.1 or 0.2 per cent.

IV. Estimation of the Non-Lumintferous Constituents.

These are light carburetted hydrogen, hydrogen, carbonic oxide, and nitrogen. The percentages of these gases are ascertained in a graduated eudiometer, about 2 fect in length, and $\frac{3}{1}$ ths of an inch internal diameter; the thickness of the glass being not more than $\frac{1}{2}$ th of an inch. This eudiometer is furnished at its closed end with two platinum wires, fused into the glass, for the transmission of the electric spark. Λ drop of water, about the size of a pin's head, is introduced into the upper part of the cudiometer before it is filled with mercury and inverted into the mercurial trough: this small quantity of water serves to saturate with aqueous vapour the gases subsequently introdueed. About a cuhic inch of the residual gas from the last detcrinination is passed into the eudiometer, and its volume accurately
read off; about 4 cubic inches of pure oxygen are now introduced, and the volume (noist) again determined. The oxygen is best prepared at the moment when it is wanted, ly heating over a spirit or gas flame a little chlorate of potash, in a very small glass retort, allowing of course sufficient time for every trace of atmospheric air to be expelled from the retort before passing the gas into the eudiometer. The open end of the eudiometer must now be pressed firmly upon the thick piece of indiarubber placed at the bottom of the trough, and an electric spark passed through the mixture; if the above proportions have been observed the explosion will be but slight, which is essential if nitrogen be present iu the gas, as this elcment will other. wise be partially converted into nitric acid, and thus vitiate the results. By using a large excess of oxygen, all danger of the bursting of the cudiometer by the force of the explosion is also avoided. The volume after explosion being again determined, a bullet of caustic potash is introduced iuto the gas, and allowed to remain so long as any diminution of volume takes place; this bullet absorbs the carbonic acid that has becn produced by the combustion of the light curburctted hydrogen and carbonic oxide, and also renders the residual gas perfectly dry; the volume read off after this absorption, when deducted from the previous reading, gives the volume of carbonic acid generated by the combustion of the gas.

The residual gas now contains only nitrogen and the excess of oxygen employed. The former is determined by first ascertaining the amount of oxygen present, and then deducting that number from the volume of both gases; fur this purpose a quantity of dry hydrogen, at least three times as great as the residual gas, is introduced, and the volume of the mixture determined ; the explosion is then made as before, and the volume (moist) again recorded: one-third of the contraction caused by this explosion represents the volume of oxygen, and this deducted from the volume of residual gas, after absorption of carbonic acid, gives the amount of nitrogen.

The behaviour of the other three non-luminous gases ou explosion with oxygen enables us readily to find thcir respective amounts by three simple equations, founded upon the quantity of oxygen cousumed, and the amount of carbonic acid generated by the three gases in question. Hydrogen consumes half its own volume of oxygen, and generates no carbouic acid; light carburetted hydrogen consumes twice its volume of oxygen, and generates its own volume of carbonic acid; whilst carbunic oxide consumes half its volume of oxygen, and generates its own volume of carbonic acid. If, therefore, we represent the volume of the mixed gases by A, the amount of oxygen consumed by B, and the quantity of carbonic acid generated by C, and further, the volumes of hydrogen, light carburctted hydrogen, and carbonic oxide respectively by x, y, and z , we have the following equations:-

$$
\begin{array}{r}
x+y+z=A \\
\frac{1}{2} x+2 y+\frac{1}{2} z=B \\
y+z=C
\end{array}
$$

From which the following values for \mathbf{x}, y, and z are derived:-

$$
\begin{aligned}
& x=A-C \\
& y=\frac{2 B-A}{3} \\
& z=C-\frac{2 B-A}{3}
\end{aligned}
$$

V.-Estimation of the valee of the Luminiferous Constituents.

We have now given methods for ascertaining the respective quantities of all the ingredients contained in any specimen of coal-gas, but the results of the above analytical operations afford us no clue to its illuminating power. They give us, it is true, the amount of illuminating hydrocarbons contained in a given volume of the gas, but it will be evident, from what has already becn said respecting the luminiferous powers of these hydrocarbons, that the greater the amount of carbon contained in a given volume, the greater will be the quantity of light produced on their combustion; and therefore, as the number of volumes of carbon vapour contained in one volume of the mixed constituents, condensible by anhydrous sulphuric acid, has been found to vary from 2.54 to 4.36 volumes, it is clear that this amount of earbon vapour must be accurately determined for each specimen of gas, if we wish to ascertain the value of that gas as an illuuinating agent. Fortunately this is easily effected; for if we ascertain the amount of earbonic acid geuerated by 100 volumes of the gas in its original condition,
knowing from the precedius drocarbons, and also the amount of carbonic acid generated by the non-luminiterous gases, we have all the data for calculating the illuminating value of the gas. For this purpose a known volume of the original gas (about one cubic inch) is introdueed
into the explosiou cudiometer, and mixed with about five times its volume of oxygen, the electric spark is passed, and the volume of carbonic acid generated by the explosiou ascertained as above directed. If we now designate the percentage of hydrocarbous absorbed by auhydrous sulphuric acid by A, the volume of carbonic acid generated by 100 volumes of the origiual gas by B, the carbonic aeid formed by the combustion of the non-lnmiuous constituents remaining after the absorption of hydrocarbons from the above quantity of original gas by C , and the volume of carbonic acid generated by the combustion of the luminiferous compouuds (lydrocarbons) by x, we have the following equation:-

$$
x=B-C
$$

and tberefore the amount of carbonic acid geuerated by one volume of the hydrocarbons is represented by

$$
\frac{B-C}{A}
$$

But as one volume of carbon vapour generates one volume of carbonic acid, this formula also expresses the quantity of carbon vapour in one volume of the illuminatiug constituents. For the purpose of comparison, however, it is more convenient to represent the value of these hydrocarbons in their equivalent volume of olefiant gas, one volume of wbich contains two volumes of carbon vapour; for this purpose the last expressiou need only be changed to

$$
\frac{B-C}{2 A}
$$

Thus, if a sample of gas contain 10 per cent. of hydrocarbons, of which one volume contains three volumes of carbon vapour, the quantity of olefiant gas to which this 10 per cent. is equivalent, will be 15 .

By the application of this method we obtain an cxact chemical standard of comparison for the illuminating value of all descriptions of gas; and by a comparison of the arbitrary numbers thus obtained, with the practical results yielded by the same gases when tested by the photometer, much valuable and useful information is gained.

Anulysis of coal-gas with Franklund and Ward's apparatus.-Introduce a few enbic inches of the gas into the tube 1, fig. 494, and transfer it for measurement into F , by opening the cocks $l l^{\prime}$ and plaeing the tube \mathbf{F} in communication with the exit pipe h, the trausference being assisted, if needful, by elevating the trough \mathbf{c}. When the gas, followed by a few drops of mercury, has passed completely into F, the cock l is shut, and f turned, so as to connect \mathbf{F} and H with h. Mercury is allowed to flow out uutil a vacuum of two or three inches in length is formed in \mathbb{H}, and the metal in F is just below one of the divisions; the cock f is then reversed, and mercury very gradually admitted from G, until the highest point in F exactly corresponds with one of the divisions upon that tube; we will assume it to be the sixth division. This adjustment of mercury and the subsequent readings can be very accurately made by means of a small horizontal telescope placed at a distance of about six feet from the cylinder, and sliding upon a vertical rod. The height of the mercury in \mathbf{H} must now be accurately determined, and if from the number thus read off, the height of the sixth division above the zero of the scale on $I I$ be deducted, the remainder will express the true volume of the gas. As the temperature is maintained constant during the entire analysis, no correction on that score has to be made; the atmospheric pressure being altogether excluded from exerting any influence upon the volumes or pressures, no barometrical observations are requisite; and as the tension of aquenus vapour in F is exactly balanced by that in H, the instrument is in this respect also self-correcting. Two or three drops of a strong solution of caustic potash are now introduced into x by means of a bent pipette, and mercury being allowed to flow into F and \boldsymbol{H} by opening the cock g, the gas returns into x through $l l^{\prime}$, and there coming into contact with an extensive surface of caustic potash solution, any carbonic acid that may be present will be absorbed in two or three minutes, and the gas being passed back again into \boldsymbol{H} for remeasurement, taking care to shut l before the caustic potash solution reaches l^{\prime}, the observed diminution in volume gives the amount of carbonic acid present.

The amount of oxygen is determined in like manner by passing up into x a few drops of a saturated solution of pyrogallic acid, which forms with the potash already present pyrogallate of potash. The gas being theu brought back into x, oxygen, if present, will be absorbed in a few minutes. Its amonnt is of course ascertained by-
remeasuring the gas in F .

The next step in the operation consists in estimating the amount of olefiant gas and illuminating hydrocarbons. For this purpose, whilst the gas, thus deprived of oxygen and carbonic acid, is contained in F, the tube x must be removed, thoroughly cleansed and dried, and leeing filled with mercury, uust be again attached to l. The gas must
now be transferred from F to r , and a coke bullet, prepared as above deseribed, being passed up into \mathbf{r}, must be allowed to remain in the gas for one hour. After its removal, a few drops of a strong solution of bichromate of potash must be admitted into x in order to absorb the sulphurous acid and vapours of anhydrous sulphuric acid resulting from the previous operation. The gas is now ready for measurement; it is therefore passed into F , and its volume determined; the diminution which has occurred since the last reading represents the volume of olefiant gas and illuminating hydrocarbons that were present in the gas.

It now only remains to determine the respective amounts of light carburetted hydrogen, earbonic oxide, hydrogen, and nitrogen present in the residual gas. This is cffected as follows:- Λ s much of the residual gas as will occupy about $1 \frac{1}{2}$ inches of its length at atmospheric pressure is retained in F, and its volume accurately determined; the remainder is passed into J, and the latter tube removed, cleansed, filled with mercury, and reattached. A quantity of oxygen equal to about three and a half times that of the combustible gas is now added to the latter, and the volume again determincd; then the mixture having been expanded to about the sixth division, an electric spark is passed through it by means of the wires at m. The contraction resulting from the explosion having been noted, two or thrce drops of caustic potash solution are passed into J, and the gas is then transferred into the same tube. In two minutes the carbonic acid generated by the explosion is perfectly absorbed, and its volume is determined by a fresh measurement of the residual gas. The latter must now be exploded with three times its volume of hydrogen, and the contraction on explosion noted. These operations furnish all the data necessary for ascertaining the relative amounts of light carburetted hydrogen, carbonic oxide, hydrogen, and nitrogen, according to the mode of calculation given above.

Finally, the value of the luminiferous constituents is obtained as before, by exploding about a cubic inch of the original specimen of gas with from four to five times its volume of oxygen, and noting the amount of carbonic acid produced.

On the Manufacture of Coal-Gas.

Coal gas, as usually manufactured, is produced by exposing coal to a bright-red heat in retorts. The gas as it issues from the retort cannot be directly employed for illumination, for it contains vapours of tar and naphtha, as also stean impregnated with carbonate of ammonia and hydrosulphate of sulphide of ammonium. These vapours would readily condense in the pipes through which the gas must be distributed, and would produce obstructions; they must therefore be so far removed by previous cooling, as to be liable to occasion no troublesome condensation at ordinary temperatures. The crude coal-gas contains moreover sulphuretted hydrogen, whose combustion for light would exhale an offensive sulphureous odour, that ought to be avoided as much as possible. Carbonic acid enfeebles the illuminating power of the gas, and should be removed. Tbe disengagement of gas in the retorts is never uniform, but varies at the different stages of the process; for which reason the gas must be received in a gas-holder, where it may experieuce uniform pressure, and be discharged uniformly into the pipes of distribution, in order to ensure a steady discharge of gas, and uniform intensity of light in the burners. A coal-gas apparatus ought therefore to be so constructed as not only to gencrate the gas itself, but to fulfil the above conditions.
In fig. 495, such an apparatus is represented, where the various parts are shown connected with each other in section.
a is the furnace, with its set of cylindrical or elliptical retorts, five in number. From each of these retorts, a tube b proceeds perpendicularly upwards, and then by a curre or saddle-tube, it turns downwards, where it enters a long horizontal cylinder under в, shut at each end with a screw cap, and descends to beneath its middle, so as to dip about an inch into the water contained in it. From one end of this cylinder, the tube d passes downwards, to connect itself with a horizontal tube which cnters into the tar pit or cistern c , by means of the vertical branch f. This branch reaches to near the botton of tbe cylindrical vessel, which sits on the sole of the tar cistern. From the other side of the vertical branch f, the main pipe procecds to the condenser D , and thence by the pipe l, into the purifier E ; from which the gas is immediately transmitted by the pipe p into the gasometer F .

The operation procecds in the following way:- Λ s soon as gas begins to be disengaged from the ignited retort, tar and ammoniacal liquor are deposited in the cylindrical receiver b, and fill it up till the superfluity runs over by the pipe d, the level being constantly preserved at the line shown in the figure. By the same tarry liquid, the orifices of the several pipes b, issuing from the retorts are closed; whereby the gas in the pipe d has its communication cut off from the gas in the retorts. Hence if one of the retorts be opened and emptied, it remains slut off from the rest
of the apparatus. the apparatus. This insulation of the several retorts is the fanction of the pipe
under \mathbf{B}, and therefore the recurved tube b, must he dipped as far under the surface of the tarry liquid as to be in equilibrio with the pressure of the gas upon the waterin the purifier. The tube b is closed at top with a serew eap, which cau be taken off at pleasure, to permit the interior to be cleansed.

Both by the overflow from the reeciver pipe \quad, aud by subsequent condensation in the tube d, tar aud ammoniacal liquor collect progressively in the cistern or pit under \mathbf{c}, by which mingled liquids the lower orifice of the vertical tube f is closed, so that the gas cannot escape into the empty space of this cistern. These liquids flow over the edges of the inncr vessel when it is full, and may, from time to time, be drawn off by the stopcock at the bottom of the cisteru.
Though the gas has, in its progress hitherto, deposited a good deal of its tarry and ammoniacal vapours, yet, in consequence of its high temperature, it still retains a cousiderable portion of them, which must be immediately abstracted, otherwise the tar would pollute the lime in the vessel E , and interfere with its purification. On this account the gas should, at this period of the process, be cooled as much as possible, in order to condense these vapours, and to favour the action of the lime in the purifier e, upon the sulpluretted hydrogen, which is more energetic the lower the temperature of the gas. The coalgas passes, therefore, from the tube f into the tube h of the condenser D , which is placed in an irnn chest g, filled with water, and it deposits more tar and ammoniacal liquor in the nnder part of the cistern at t, t. When these liquids have risen to a certain level, they overflow into the tarpit, as shown in the figure, to be drawn off by the stopcock, as occasion may require.
The refrigerated gas is now conducted into the purifier E , which we will suppose to be filled with milk of lime, made by mix-
 ing 1 part of slaked lime with 25 parts of watcr. The gas, as it enters by the pipe l, depresses the watcr in the wide cylinder n, thence passes under the perforated dise in the under part of that cylinder, and rising up through innumerable small bolcs is distributed thronghout the lime liquid in the vessel m. By contact with the lime on this extended surface, the gas is stripped of its sulphuretted hydrogen and carbonic acid, which are condensed into the sulphide of calcium and carbouate of lime; it now, enters the gasholder F in a purified state, through the pipe $p t$, and occupics the space q. The gasholder pressing with a small uribalanced forec over the counterWeight s, expels it through the main $u u$, in communication with the pipes of dis-
tribution through the buildings or stve tribution through the buildings or strects to be illuminated.

Such are the chief and essential parts of the apparatus used in cvery gas work for the generation, refrigeration, purification, and storage of coal-gas. The construction and mode of working these separate portions of the apparatus vary much, however, in different works, and it will therefore be necessary here to enter more minutely into the details of the four departments of the manufacture just coumerated.

I. Apparatus used in the Generation of Coal-Gas.

Retorts.-The use of this portion of the apparatus is to expose the coal to a high temperature, to exclude atmospheric air, and to deliver the gaseous aud vaporous products of distillation into the refrigeratory portion of the apparatus. The materials composing the retorts should therefore possess the following propertics:-lst, high conducting power for heat; 2nd, rigidity and indestructibility at a high temperature; and 3rd, impermeability to gaseous matter. The materials hitherto used in the construction of retorts are cast-iron, wrought-iron, and earthenware; but none of these materials possess the above qualifications in the high degree that could be wished. Thins cast-iron, though a good conductor of heat, is not perfectly rigid and indestructible. At high temperatures it becomes slightly viscous, and at the same time undergoes rapid oxidation. Wrought-iron is a still better conductor of heat, but its qualities of indestructibility and rigidity are even lower than those of cast-iron; whilst earthenware, though rigid, and indestructible by oxidation, is a very bad conductor of heat, and is moreover very liable to crack from changes of temperature. Very various forms of retort have been employed at different times in order to secure as far as possible, the conditions just enumerated.

Cust-iron retorts.-The chief forms of the cast-iron retorts are: First, the cylindrical,

fig. 498, used in the Manchester Gas Works, 12 inches diamcter, and 6 to 9 feet long; Second, the elliptical, 18 inches by 12 inches, by 6 to 9 feet, fig. 499; Third, the ear shape, fig. 500 , now little used, 2 feet by 9 inches, and of the same length as before ; Fourth, the D-shaped retort, fig. 501, 20 inches wide and 14 inches high. This form of retort is at present far more extensively used than any of the others.

Fig. 502 shows a bed of 5 D -shaped iron retorts. The length is $7 \frac{1}{2}$ fcet, and the transverse area, from one foot to a foot and a half square. The arrows show the direction of the flame and draught.

The charge of coals is most conveniently introduced in a tray of shect-iron, made somewhat like a grocer's scoop, adapted to the size of the retort, which is pushed home to its further end, inverted so as to turn out the conteuts, and then inmediately withdrawn.
All these retorts are set horizontally in the furnace, and they have a flauch cast npon their open end, to which a mouthpiece, A A, fiy. 503 , can lie scenrely bolted. The mouthpicee is provided with a socket, y, for the reception of the stanipipe, and also
with an arrangement by which a lid, c c, can be screwed gas-tight upon the front of the mouthpiece as soon as the charge of coal has been introduced. By applying a luting of lime mortar to that part of the lid which comes into contact with the mouthpiece, a perfectly tight joint is obtaincd.

Sometimes iron retorts are made of double tbe above length, passing completely through the furnace, and being furnished with a lid and staudpipe at each end. Such is the construction of Mr. Croll's and of Lowe's reciprocatiug retorts. These retorts are charged from each end alternately, and there is an arrangement of valves by means of which the gas evolved from the coal recently introduced is made to pass over the incandescent coke of the previous charge, at the opposite eud of the retort. It is highly probable that some advantage is derived from this arrangement during the very early stage of the distillation of the fresh coal; but on the whole, for reasons stated above, the principle is undoubtely bad, for although it enables the manufacturer to produce a larger volume of gas, the quality is so much inferior as to reduce the total illuminating effect obtainable from a given weight of coal.

Wrought-iron retorts.-Mr. King, the eminent engineer of the Liverpool Gas Works, has for many years successfully used retorts of wrought-iron. They are made of thick boiler plates, riveted together, and are of the D shape, $5 \frac{1}{2}$ feet wide, 6 feet long, and 18 inches high at the crown of the arch. About I ton of coal can be worked off in these retorts in 24 hours. Occasionally the bottoms are of cast-iron, wbich materially prevents the great amount of warping to which wrought-iron is subject when exposed to high temperatures.

Earthenware, or clay retorts. - These are usually of the D shape, although they are occasionally made circular or elliptical. Tbeir dimensions are about tbe same as those of the cast iron retorts commonly used, but their walls are necessarily thicker, varying from $2 \frac{1}{2}$ to 4 incbes in thickness; this, added to the circumstance that clay is a very bad conductor of heat, undoubtedly causes the expenditure of a larger amount of fuel in heating these retorts; nevertheless, this disadvantage is, perlaps, less tban might be supposed, since iron retorts soon become coated outside witb a thick layer of oxide of iron, which also greatly hinders the free communication of beat to the iron beneath. Moreover, the lower price and much greater durability of clay retorts, are causing their almost universal adoption in gas works, especially since the removal of pressure by exhausters greatly reduces the amount of leakage to wbich clay retorts are liable.
The following is an extract relating to clay retorts, from the "Reports of Juries" of the great Exhibition of 1851 :
"The use of fire-clay is not of very ancient date, and bas greatly increased witbin the last few years. It is found in England almost exclusively in the coal measures, and from different districts the quality is found to differ considerably. The so-called "Stourbridge clay," is tbe best knowu, and will be alluded to presently; but other kinds are almost, if not quite, as well adapted for the higher purposes of manufacture, being equally free from alkaline earths and iron, the presence of which renders the clay fusible when tbe heat is intense. The proportions of silica and alumina in these clays vary considerably, tbe former amounting sometimes to little more tban 50 per cent., while in others it reaches beyond 70 , the miscellaneous ingredients ranging from less than $\frac{1}{2}$ to upwards of 7 per cent.
"Tbe works of Messrs. Cowen and Co. are among the most extensive in England, and tbey obtaiu their raw material from no less than nine different seams, admitting of great and useful mixture of clay for various purposes.
"After being removed from the mine, the clay is tempered by exposure to the weather, in some cases for years, and is then prepared with extreme care. The objects chiefly made are fire-bricks and gas retorts; the latter being now much used, and preferred to iron for durability.
"These retorts were first made by the present exhibitors in ten pieces (this being twenty years ago), and since then the number of pieces has been reduced successively to four, three, and two pieces, till in 1844 they were enabled to patent a process for making them in one piece, and at the present time they are thus manufactured of dimensions as much as 10 feet long by 3 feet wide in the inside, wbich is, however, more tban double the size of the largest exhibited by tbem.
"Gas retorts of very fair quality are shown by Mr. Ramsay of Neweastle, who has also succeeded extremely well in the manufacture of fire-bricks. The retorts show a little more iron than is desirable, but tbe exhibitor bas been considered worthy of bonourable mention. Retorts of less creditable appearance are exhibited by Messrs. Hickman and Co. of Stourbridge, and Mr. A. Potter of Newcastle. The surface of both these retorts is cracked and undulating. When we consider the high and loug continued temperature to which these objects are exposed, the absolute necessity of attending to every detail in mixing the clay aud moulding the retort will be at once
reeognised, and the apparently slight defeets of some of those sent for exhibition require to be noticed as of real importance.
"Next to England, the finest specimens of fire-clay goods on a large scale are from Belpium : the gas retort sent from Frauce is not remarkable for excellence."
Fig. 504 is an elevation of Mr. Wright's plan for a range of long clay retorts.

Fig. 505 shows the plans and sections of the setting for these retorts.
Retorts, or rather ovens, of fire-brick, the invention of Mr. Spinney, have been long used suecessfully at Exeter, Cheltenham, and other places. They appear to be very durable, and to require little outlay for repairs, but a very large expenditure of fuel is required for heating them. They arc of the D shape, 7 fcet long, 3 feet 2 inches widc, and 14 inches high at the crown of the areh. Each retort reeeives a charge of ${ }^{5}$) or 6 cwt . of Newcastle or Welsh coal cvery 12 hours, and produces gas at the rate of 9000 cubic feet per ton of Welsh, and 10,000 to $12,000 \mathrm{per}$ ton of Nerrcastle coal.

Clegg's revolving wel retort. - This retort, the invention of Mrr. Clcgg, sen., makes the nearest approanh to a truly philosophical apparatus for the generation of gas; in it the coal is exposed to a sudden and uniform leat, in a thin stratum, by which means the
gases are liberated at once, and under the corditions most favourable for the production of a maximum amount of illuminating constituents. Very little tar is produced from this retort.

505

Fig. 506 represents a section of this retort, which is of the D shape, with a very low and flat arch. It is made of wrought-iron hoiler plates riveted together. E is a hopper for holding the coal to he carhonised ; F is a discharging dise; \mathbf{G} is the retort ; II is a wcb on to which the coal is discharged hy the disk F; I I are revolving drums carrying the wrought-iron web $I I ; L L$ are the flues from a lateral furnace by which the retort is heated; m is the exit pipe for the coke, its lower extremity is either closed
hy an airtight door, or is made hy an airtight door, or is made to dip into water.

All the coal must be reduced to fragments about the size of coffee berries, and a 24 hours' charge must be placed at once in the hopper, and secured by a luted cover. The discharging dise has 6 spurs, and is made to revolve uniformly with the drum below it at the rate of 4 revolutions per hour. The aiameter of the hexagonal drums

is so regulated, that the coal, which falls upon the web from the discharging dise, will at one revolution have passed the entire length of the retort. The passage through the retort occupies 15 minutes, which is quite sufficient to expel the whole of the gas from the coal. In each revolution of the dise and drum 745 cubic inches of coal (or 21 lbs.) are distributed over a heated surface of 2016 square inches. 18 cwt . of coal is carbonised in one of these retorts in 24 hours, and the production of gas is equal to 12,000 cubic feet per ton of Neweastle coal. The quality of the gas is also considerably superior to that obtained from the same coal in the ordinary retorts.

Although the first cost of these retorts and accompanying machinery is considerably greater than that of the retorts in ordinary use, yet the destructible parts can be replaced at ahout the same cost as that required to replace the latter. The coke produced is greater in quantity, hut inferior in quality, owing to its more minute state of division. The minor advantages attendant upon this form are, that it occupics less space, requires much less manual labour, and enables the retort-house to be kept perfectly clean, whole-
 some, and free from suffocating vapour. If the principle of this plan could be combined with less complication of details, it would no doubt come into extensive use.

II. The Refrigeratory Apparatus.

From the moment that the gas leaves the retorts it is subjected to cooling influenceswhich graduallyrcduce its temperature, until on leaving the so-called condenser its temperature ought to be only a few degrees higher than thatof the atmosphere,except in winter, when it is advisable to maintain a heat, relatively to the external air, greater thau in summer. The gas leaves the retort by the standpipes, a 4 A, fig. 507, which arc of cast-iron, 5 inches in diameter at their lower extremity, and slightly
tapering upwards. Some of the least volatile products of deeomposition eondense in these pipes, but their proximity to the furnaces, and the eonstant rush of heated gas and vapour through them prevent more than a very slight amount of rcfrigeration. They conduct to the hydraulic main, which is shown at B, fig. 507. It consists of a cylinder running the entire length of the retort house, and fixed at a sufficient height above the mouths of the retorts to protect it from the flame issuing from the latter during the times of eharging and drawing. The diameter varies from 12 to 18 inches, and the recurved extremities of the standpipes (the dippipes) c c c c, pass through it by gas-tight joints, and dip, to the extent of 3 or 4 inches, into the condensed liquids contained in the hydraulic main. The use of this portion of the apparatus is to cut off the communication in the reversc dircetion between the gas beyond the standpipes and the retorts, so as to prevent the former rushing back down the standpipe during the time that the lid of the retort is removed. Being maintained half full of tar it effectually seals the lower ends of the dip-pipes, and prevents any return of gas towards the retorts. The condensed products, consisting chiefly of tar, make their exit from the hydraulic main by the pipe D , which leads them to the tar well. From the hydraulic main the gas passes to the condenser, the offiee of which, as its name implies, is to effect the conderisation of all those vapours whieh could not be retained by the gas at the ordinary atmospheric temperature. The eondenser has received a variety of forms, but the one which appears to unite in the highest degree simplicity and efficiency, is the invention of Mr. Wright, of the Western and Great Central Gas Companies. Its construction is shown in fig. 508. A $\triangle A A$, are 5 double

concentrie cast-iron eylinders, through whieh the gas is made to cireulate in suceession by means of the tiepipes в в в в, whilst the inner cylinders being open above and below, a current of air, set in motion by their heated walls, rushes through them, thus securing both an internal and external refrigeratory action. It will be also scen by a reference to the figure that the heated gas enters these cylinders at the top, taking an opposite direetion to that pursued by the external and internal eurrents of air, and thus securing the most perfect refrigeration, by bringing the gas constantly in proximity to air of increasing coldness. Each eylinder is furnished at bottom with a tar receptacle, \mathbf{c}, for the collection of the condensed products, whieh are earried to the tar well by a pipe not shown in the figure. The details of construction are suffieiently secn froun the drawing, and require no further deseription. It consists of a square chest, q, made of wrougchted at D, fig. 495 (p. 74.) is used.

Vol. I.
its bottom piereed with a row of holes, to receive a series of tubes. To these holcs the upright forr-inch tubes $h h^{2}$ are secured by flanges and serews, and they are connected in pairs at top by the curved or saddle tubes. The said bottom forms the eover of the chest t, which is divided by vertical iron partitious, into half as many compartments as there are tubes.
These partition plates are left open at bottom, so as to place the liquids of each compartuent in communication. Thereby the gas passes up and down the series of tubes, in proceeding from one compartment to another. The condensed liquids descend into the box t, and flow over into the tar cisteru, when they rise above the level t. The tar may be drawn off from time to time by the stopeock. Through the tube k cold water flows into the condenser ehest, and the warm water passes away by a pipe at its upper edge.
The extent of surface which the gas requires for its rcfrigeration before it is admitted into the washing-lime apparatus, depends upon the temperature of the milk of lime, and the quantity of gas generated in a certain time.

It may be assumed as a determination sufficiently exact, that 10 square feet of surface of the condenser can cool a cubic foot of gas per minute to the temperature of the cooling water. For example, suppose a furnace or arch, with 5 retorts of 150 pounds of coale ach, to produce in 5 hours 3000 cubic feet of gas, or 10 cubic fect per minnte, there would be required, for the cooling surface of the condenser, 100 square feet $=10 \times 10$. Suppose 100,000 cubic feet of gas to be produced in 24 hours, for which 8 or 9 such arches must be employed, the condensing surface must contaiu from 800 to 900 square feet.

After the action of the condenser, the gas still retains, chiefly in mechanical suspension, a certain quantity of tarry matter, besides a slight percentage of ammonia. To free it from these, it is passed through a scrubber D (fig. 508), which consists of a tall cylinder filled with bricks, paving stones, or coke, and having an arrangement by which a stream of water can be admitted at top and removed at bottom. The chief use of the water is to remove ammonia from the gas, but as it also dissolves some of the luminiferous hydrocarbons its use is objected to by Mr. Wright, and dry serubbers are now used at the Western Gas Works. It is also considered by the same gentleman, that the detention of a certain percentage of ammonia by the gas, is rather an advantage than otherwise, as it serves in part to neutralise the sulphurous acid which is inevitably produced by the combustion even of the best gas. It must, however, be borne in mind, that the presence of ammonia in gas gives rise to the formation of nitric acid during its combustion.

The exhuuster. - The passage of the gas through the liquid of the hydraulic main, and the other portions of apparatus between the retorts and gasholder, causes a very eonsiderable amonnt of pressure to be thrown back upon the retorts, an effect which is productive of mischief in two ways; in the first place, if there be any fissure or flaw in the retorts, or leakage in the joints, the escape and consequent loss of gas is greatly augmented ; and in the second place, it has been ascertained by Mr. Grafton of Cambridge, that pressure in the retorts causes the decomposition of the illuminating hydrocarbons with greatly increased rapidity. It is, therefore, very desirable to remove nearly the whole of this pressure by mechanical means, and this is now done in all well arranged works, by the use of an apparatus termed an exhauster. Several forms of exhausters are in use, but it will be necessary only to describe that of Mr. J. T. Beale, which has been found by experience to be very effective and economical. It is shown in section in fig. 509. The axle A is reduced at each end, and passes into two cylindrical boxes bored to a larger diameter than the axle at those parts; and in the annular space between the axle and the box antifriction rollers are introduced, their diameter being equal to the width of the annular space; the box at one end is fitted with a stuffing box, throngh whieh the axle passes for the application of the driving power. Upon motion being given to the axle, the sliding pistons $\begin{aligned} & \text { B are }\end{aligned}$ carried with it. These sliding pistons are furnished at their ends with cylindrical pins which projeet and fit into cylindrical holes bored in the guide blocks c c , which fit into annular recesses D in the end plates, and keep the slides in contact with the cylinder. The slides are fitted with metallic packing E, to allow of wear. The axle continuing to revolve, as one slide reaches the outlet and ceases to cxhaust, the other comes into action, and the exhaustion is nnceasing. Thus the pressure upon the rctorts (which is indicated by a gauge) is reduced to about half an inch of water.
III. Apraratus used in tife Puntification of Coall-Gas.

The purificr. - One form of this apparatus, represented at E, fig. 495 (p. 747), is composed of a cylindrical iron vessel, with an airtight cover screwed upou it, through which the cylinder n is also fixed airtight. The bottom of this cylinder spreads out like the brim of a hat, forming a horizo ntal circular partition, whieh is pierced with holes. Throngh a stuffing box, in the cover of this interior cylinder, the vertical axis of the
agitator passes, which is turned by wheel and pinion work, in order to stir up the lime from the bottom of the water in the purifier. The vessel o, serves for introducing fresh milk of lime, as also for letting it off by a stopeock when it has become too foul for further use.

The quantity of lime should be proportioned to the quantity of sulphuretted hydrogen and carbonic acid contained in the gas. Supposing that in good coal gas there is 5 per cent. of thesc gases, about one pound and a half of lime will be requisite for evcry hundred cubic feet of coal gas generated, which amounts to nearly onc-sixtecnth of the weight of coal subjected to decomposition. This quantity of lime mixed with the proper quantity of water will form about a cubic foot of milk of lime. Consequently, the capacity of the purifier, that is, of the interior space filled with liquid, may be taken at four-sevenths of a cubic foot for every hundred cubic feet of gas passing through it in one operation ; or for 175 cubic feet of gas, one cubic foot of liquor. After every operation, that is, after every five or six hours, the purifier must be filled afresh. Suppose that in the course of one operation 20,000 cubic feet of gas pass through the machine, this should be able to contain $\frac{20,000}{175}=114$ cubic feet of milk of lime; whence its diameter should be 7 feet, and the height of the liquid 3 feet. If the capacity of the vessel be less, the lime milk must be more frequently changed.
In some gas works the purifier has the following construction, whercby an uninterrupted influx and efflux of milk of lime takes place. Three single purifiers are so connected together that the second vessel stands higher than the first, and the third than the second; so that the discharge tube of the superior vessel, placed somewhat below its cover, enters into the upper part of the next lower vessel; consequently, should the millk of lime in the third and uppermost vessel rise above its ordinary level, it will flow over into the sccond, and thence in the same way into the first; from which it is let off by the eduction pipe. A tube introduces the gas from the condenser into the first vessel ; another tube does the same thing for the second vessel, \&c.; and the tube of the third vessel conducts the gas into the gasometer. Into the third vessel, milk of lime is constantly made to flow from a cistern upon a higher level. By this arrangement, the gas passing through the several vessels in proportion as it is purificd, comes progressively into contaet with purcr milk of lime, whereby its purikept in continual rotamplete. The agitator c, provided with two stirring paddles, is naturally three times as great as with a single purific gas has here to overcome is

3 c 2

Fig. 496 (p. 747) is a simple form of purifier, which has been found to answer well in practice. Through the cover of the vessel A B , the wide cylinder $e d$ is inserted, having its lower end pierced with numerous holes. Concentric with that eylinder is the narrower one $s z$, bound above with the flange $a b$, but open at top and bottom. The under edge $g h$ of this cylinder descends a few inches below the end $c d$ of the outer one. A bout the middle of the vessel the perforated shelf $m n$ is plaeed. The shaft of the agitator l, passes through a stuffing box upon the top of the vessel. The gas pipe g, proceeding from the condenser, enters through the flange $a b$ in the outer cylinder, while the gaspipe h goes from the cover to the gasholder. A stopcock upon the side, whose orifice of discharge is somewhat higher than the under edge of the outer cylinder, serves to draw off the milk of lime. As the gas enters throngh the pipe g into the space between the two cylinders, it displaces the liquor till it arrives at the holes in the under cdge of the onter cylinder, through which, as well as under the edge, it flows, and then passes up through the apertures of the shelf $m n$ into the milk of lime chamber; the level of which is shown by the dotted line. The stirrer, l, should be turned by wheel work, though it is here shown as put in motion by a winch handle.

In order to judge of the degree of purity of the gas after its transmission through the lime machine, a slender siphon tube provided with a stopcock may have the one end inserted in its cover, and the other dipped into a vessel containing a solution of acetate of lead. Whenever the solution has been rendered turbid by the precipitation of black snlphuret of lead, it should be renewed. The saturated and fetid milk of lime is evaporated in oblong cast-iron troughs placed in the ashpit of the furnaees, and the dried lime is partly employed for luting the apparatus, and partly disposed of for a mortar or manure.

Fig. 510 shows elevations and sections of dry lime purifiers, which may also be used for other forms of dry purification. A is the longitudinal elevation; B ditto section; c transverse elevations ; D ditto section.

Figs. 511 and 512 represent another form of dry purifier, combined with a washer or scrubber, lately patented by Mr. Lees of Manchester. Fig. 511 is an elevation, partly in section of this apparatus, and fig. 512 is another elevation, also partly in section, of the same. a is a hopper, into which the dry lime is fed ; b is a damper, or sliding door, by which the supply of lime can be regulated; c is a shcet metal tube, containing the worm or screw, d the axis of which is supported at one end by the stuffing box e, and at the other end by the bearing f. A slow revolving motion is given to the worm d from the driving shaft g, by means of the bevel wheels h, upright shaft i, wornı j, and worm whecl k, fixed on the axis of the worm.
The lime in the hopper a, is kept in motion by the screw n, which is turned slowly round by the worm g, the worm wheel o and bevel wheels p, one of which is fixed on the screw n. The tube c is open at c^{\prime}, to admit the dry lime from the hopper a, and the worm or screw d, is furnished with cross pieces d^{\prime} to agitate the lime which is gradually moved from the hopper to the other end of the tube c, by the revolving of the worm. Below the tube c is another tube $l ; y$ is a syphon, by which the washing fluid is supplied and conducted to the chamber s, which then flows down the tube l to the chamber r, keeping the level indicated by $j b$. z are two paddles, fixed upon the
circular perforated plates, which are set to an angle, and secured to the shaft m^{\prime}, and are revolved speedily by the strap and pullcys x. These agitators serve to increase

the action of the washing fluid contained in the tube l, by which the gas is washed previous to passing through the dry lime purifier.

The mode of operation is as follows:- the gas to be purified is admitted through the pipe q, to the chamber r, from whence it passes along the tube l, as shown by the arrows, to the chamber s; it then riscs into the chamber t and enters the tube c, along which it passes in the direction shown by the arrows, whence it may be conveyed, through the pipe v, to the gasometer.
It will be apparent, as the gas passes along the tube l, containing the agitators m which are caused to revolve speedily by the motion given by the straps and specd pulleys x, that the washing fluid, which is passing regularly through the siphon y, and running into the chamber s, and along the tube l, into the chamber r, keeping the level as shown by $j b$, is causcd to be revolved into a centrifugal motion round the tube l, hy the two paddles z, placed upon the circular perforated plates, secured upon the shaft m, which are set to an angle, thereby causing a counter-motion from left to right of the tube l, and causing the washing fluid to be wrought into a complcte spray amongst the gas, whereby the heavicr parts of the impurities are carried away more effectually than by any other washers in use.

The gas then enters the chamber t through the tube c, passes along the coils or threads of the worm or screw d, and as the cross picces d^{\prime} are set to an angle, as shown in fig. 512, the lime is raised from the lower to the upper part of the tube c, and then drops down to the gas that is making its way towards the openings c^{2}; consequently, the lime and the gas become most intimately mixed, whereby the lime is made to
ahsorh a much greater proportion of the impurities contained in the gas than is effected by the dry lime purifiers usually employed, in which the line is supported on stationary trays. The lime dropping into the tube c from the hopper a, is worked gradually towards the chamber i, into which it drops. The speed of the serew or worm d, the number of threads upon it, the length and diameter thereof nust be made to suit the quantity of gas to be purificd per hour. The lime which drops into the chamber t, may be removed therefrom through the manhole w. Mr. Lees states that a considerable saving is effected in the lime, owing to each particle or atom beiug kept in motion, and falling repeatedly through the gas in its passage from one end of the tube to the other, and that there is also a great saving in lahour.

Another form of wet purifier, which might also he advantagenusly used as a seruhber, or as a naphthaliser, has recently been invented by M. Colladon of Geneva, and is now in use in the gas manufaetory of that eity. This apparatus, as shown in vertieal section in fig. 513 , eonsists of a section of a very obtuse cone A^{\prime} the angle of

inclination of which is 164°. Its upper and smaller end is joined to a metal cylinder a, placed on the same axis as A^{\prime}, and about its own diameter in height. At top it is elosed by a east-iron plate K , through which the axle c passes: the latter communicates a rotary motion to the eylinder and eone a and s^{\prime}. It is inclined 8° from the perpendicular. and rests upon the steel point of the centre pin b^{\prime}, whilst at top it earries a pulley by which a eircular motion is communieated to it. $\quad a a$ are a series of metal dises which stand vertieally to the inner surface of the cone A^{\prime}, with spaees of aboutone inelt between them. The discs are arranged concentrically, and have spaces eorresponding to the quantity of gas which has to pass through tbem. They are from 5 to 7 inches long. As the axle c aud cylinder A are not vertical, hut somewbat inelined, one side of the cone A^{\prime} will, during the revolution, be in a nearly horizontal position, whilst the opposite side will he immersed in the liquid to the extent of about 16°. The whole of this mechanism is enelosed in a sheet-iron lid b. The centre pin b is attached by a eross bar to the lower edge of \boldsymbol{b}, whilst the axle c is supported by d, whieh is also attached to $13 . d^{\prime} d^{\prime}$ is a water joint permitting of the free motion of c. The lid B thus contains the whole of the washing apparatus, and it is held in its proper position in the trough c by lateral attachments. D is the inlet pipe opening into the cylinder A, from whieh it has to make its way through the dises $a \operatorname{a}$ to the outlet e. This apparatus gives no sensible pressure, and requires a very small motive power.
Fig. 514 represents an arrangement of four of the dry purifiers shown in fig. 510 , worked hy a eentral valve, as used at the present time in most large gasworks; it is the invention of Mr. Malan, and is described in Mr. Peekston's treatise. A, B, c, v , are the four purifiers conneeted with the central valve e in suel a way as to permit of three of them being at work whilst the fousth is emptied and recharged. The outer ease of the central valve e , is a eylinder of cast- or wrought-iron, 5 to 6 feet in diameter and 3 to 4 feet deep. Its floor reeeives the open ends of 10 pipes condueting the gas from the eondenscr or exhauster to the different purifiers, and theu to the gasholders; the
ends of these pipes projeet upwards to the height of 14 inehes, and the vessel e is filled with water to the height of 12 iuebes, thus leaving the orifiee of the pipes 2 inehes above the water level. This cylinder has a eover which consists of a smaller cylinder, open below and closed above, fitting iuto E , so as to form a water lute. Its interior is divided into 5 chambers, as shown in fig. 515, and when the cover is so far lowered into E as to iumerse the edges of these ehaubers into the water, they each eonneet together a pair of pipes as shown in fig. 514, at E , which exhibits a horizontal seetion through these chambers. The chambered eover being placed in the position shown in fig. 514, the gas takes the following eourse : it enters tbe chamber a^{\prime} by the pipe a a, passes through the pipe marked 1 into the bottom of the purifier c, and after traversing tbe layers of purifying material in c , it returns to ehamber e of the eentral valve by tbe pipe 2 ; thence by pipe 3 , it enters the purifier D , and returns to ehamber d of the valve by pipe No. 4. From tbis ehamber it ean ouly make its exit by pipe No. 5 , wbieh conduets it into B , whenee it returns to ehamber b by pipe No. 6, and from this chamber it finally passes to the gasholder through the exit pipe $b b$. Thus the purifier a is left out of the eireuit for the purpose of re-eharging or revivification ; but wben tbe material in c bas become exhausted, it ean be
 replaeed in the cireuit by A, by slightly raising the cover of E, and turning it rouna so as to bring the ebamber a^{\prime} over pipe 3, and again depressing it to its former position; by this arrangement D, B and A beeome the working purificrs, whilst C will be thrown out of the cireuit. Thus by the aetion of the cantral valve E, each of will
four purifiers can in turn bcexcluded from the eireuit and reeharged or revivified.

IV. Apparatus for the Storage of Coal-Gas.

The gasholder scrves as a magazine for reeeiving the gas when it is purified, and keeping it in store for use. It consists of two essential parts; 1 , of an under eistern, open at the top and filled with water; and 2 , of the upper floating cylinder or chest, whieh is a similar cistern, inverted, and of somewhat smaller dimensions (see r, fig. 495, equal eapaeity it requires leas vessel is the round or cylindrical; both beeause under it own weight or aecidents. Sinee a of metal, and it is least liable to be warped by a given surfaee when its height is equal to its semi-diameter, its dimensions ought to be sueh that when elevated to the bighest point in the water, the height may be equal to the radius of the base. For cxample, let the eapacity of the gasbolder in cubic feet be h, the semi-diameter of its base be x, tbe height out of the water be h; h is $=x=\sqrt[3]{\frac{h}{3 \cdot 14}}$. Tbis height may bc increased by one or two feet, according to its magnitude, to prevent the cbanee of any gas esenping beneath its under edge, when it is raiscd to its higbest elevation in the water.
The size of the gasholder should be proportional to the quantity of gas to be consumed in a eertain time. If 120,000 eubie feet be required, for instanee, in 10 hours feet of gas will be generated in 6 hours. Hence the gasholder in 24 hours, 30,000 eity of at least 70,000 eubie feet, supposing the the gasholder should have a eapaprodueed during the period of eonsumption. If the gasholder has a smaller fect to be it must be supplied from a greater number of retorts during the has a smaller capacity, not advautagcous, as the first heating of the supernumerary retorts is wasteful of fuel

The water cistern is usunlly constructed in this country with cast-iron plates bolted together, and made tight with rust cement.
In cases where the weight of water required to fill suel a cistern might be inconvenient to sustain, it may be made in the form represented in fig. 517 ; which, howcrer, will cost nearly twice as much. Parallel with the side of the cistern, a sceond cylinder c, of the same shape but sonewhat smaller, is fixed in an inverted position to filled with of the first, so as to leave an annular space в в between them, which is fircd with watcr, and in whieh the floating gasholder a plays up and down. The
water must stand above the cover of the inverted cylinder. a and b are the pipes leading the gas in and out. Through an opening in the nasonry upon which the for paritus rests, the space c may be entered, in order to make any requisite repairs.

The water cistern may also be sunk in the ground, and the sides made tight with hydraulic mortar, as is shown in fig. 516, and to make it answer with less water a concentric cylindrical mass of masonry may be built at a distanec of 2 or 3 inches within it.

Every large gasholder must be strengthened interiorly with cross iron rods, to stiffen both its top and bottom. The top is supported by rods stretching obliquely down to the sides, and to the under edge an iron ring is attached, consisting of curved cast-iron bars bolted together; with which the oblique rods are connected by perpendicular ones. Other vertical rods stretch directly from the top to the bottom edge. Upon the periphery of the top, at the end of the rods, several rings are made fast, to whieh the gasholder is suspeuded, by means of a common chain which runs over a pulley at the centre. Upon the other end of the chain there is a counterpoise, which takes off the greater part of the weight of the gasholder, leaving only so much as is requisite for the expulsion of the gas. The inner and outer surfaces of the gasholder should be a few times rubbed over with hot tar, at a few days' interval between each application. The pulley must be made fast to a strong framc.
If the water cistern be formed with masonry, the suspension of the gasholder may be made in the following way:-a A, fig. 516, is a hollow cylinder of cast-iron, standing up through the middle of the gasholder, and which is provided at either end with

another small hollow cylinder c, open at both ends, and passing through the top, with its axis placed in the axis of the gasholder. In the hollow cylinder G , the counterweight moves up and down, with its chain passing over the three pulleys, B, B, B. as shown in fiy. 517 ; E F are the gas pipes made fast to a vertical iron rod. Should the gasholder be made to work withont a counterweight, as we shall presently see, the central cylinder a A serves as a vertical guide.

In proportion as the gasholder sinks in the water of the cistern, it loses so much of its weight as is equal to the weight of the water displaced by the sides of the sinking vessel, so that the gasholder, when entirely immersed, cxercises the least pressure
upon the gas, and when entirely out of the water, it exercises the greatest pressure. Iu order to countcract this inequality of pressure, which, where no governor is used, would occasion an unequal velocity in the efflux of the gas, and of course an unequal intensity of light in its flame, the weight of the chain upon which the gasholder hangs is so adjusted as to be equal, throughout the length of its motion, to one-half of the weight which the gasholder loses by immersion. In this case, the weight which it loses by sinking into the water is replaced by the portion of the chain which, passing the pulley and hanging over, halances so much of the chain upon the side of the counterweight; and the weight which it gains by rising out of the water is counterpoised by the liuls of the chain which, passing over the pulley, add to the amount of the couuterweight. The pressure which the gasholder exercises upon the gas, or that with whieh it forces it through the first main pipe, is usually so regulated as to sustain a columon of from one to two inches of watcr, so that the water will stand in the cistern from one to two inches higher within than without the gasholder. The following computation will place these particulars in a clear light:-

Let the semi-diameter of the gasholder, equal to the vertical extent of its motion into and out of the water, $=x$; let the weight of a foot square of the side of the gasholder, including that of the strengthening hars and ring, which remain plunged under the water, he $=p$; then

1. the weight of the gasholder in its highest position $=3 p \pi x^{2}$;
2. the weight of the sides of the gasholder which play in the water $=2 p x^{2}$;
3. the cubical conteuts of the immersed portion of the gasholder $=\frac{2 p \pi x^{2}}{400}$;
4. its loss of weight in water $=\frac{112}{400} p \pi x^{n}$;
5. the weight of the gasholder in its lowest position $=$

$$
p \pi x^{3}\left(3-\frac{112}{400}\right)=2.72 p \pi x^{2}
$$

6. the weight of n inches height of water $=\frac{56}{12} n \pi x^{2}$;
7. the amount of the counterweight $\left.\left.=\pi x^{2}\right)^{3} p-\frac{56 n}{12}\right)$;
8. the weight of the chaiu for the length $x=\frac{112}{800} p \pi x$.

If we reduce the weight of the gasholder, in its highest and lowest positious, to the lieight of a stratum of water equal to the surface of its top, this height is that of the column of water which would press the gas within the gasometer, were no counterweight employed ; it consists as follows:-
9. for the highest position $=\frac{3 p}{56}$;
10. for the lowest $=\frac{2.72 p}{50}$;

For the case when the height of the gasholder is different from its sem-diameter, let this height $=m x$; then the height of the water level is
11. for the highest position $=p\left(\frac{1+2 m}{56}\right)$;
12. for the lowest $=p\left(\frac{1+1 \cdot 72 m}{6}\right)$;
13. the countcrweight $=\pi x^{2}\left(p(1+2 m)-\frac{56 n}{12}\right)$;
14. the weight of the equalising chain $=\frac{112}{830} p \pi m x^{2}$.

For example, let the diameter of the gasholder be 30 feet, the height 15 (the contents in cuhic feet will he 10,597), $p=4 \mathrm{lbs}$; then the counterweight for a height of $1 \frac{1}{2}$ inch of water pressul. $\mathrm{c}=3532$ lbs. the weight of the chain for a length of 15 feet $=395 \mathrm{lbs}$. Were no counterweight employcd, so that the gasholder pressed with its whole weight upon the gas, then the height of the equivalent column of water in its highest position $=2.56$ inches ; and in its lowest, $2 \cdot 33$. The counterweight may hence be lesscned at pleasure, if the height of the pressing water column, n, he increased. Whe weight of the cqualising or compensating portion of the chain remains the same. Wheu $n=2$ inches, for instancc, the counterweight $=1886 \mathrm{lbs}$.

The veloeity with which the gas passes along the mains for supplying the various jets of light may be further regulated by opening the main eock or slide valve in a greater or less degrec.

Gasholders whose height is greater than their semi-diameter are not only more costly in the construction, but require heavicr counterweights and cquilibration chains.

The above estimate is made on the supposition of the gas in the gasholder being of the same speeific gravity as the atmospherical air, which would be ncarly truc with regard to oil-gas under the ordinary pressure. But coal-gas, whose specific gravity may be taken on an average at about 0.5 , exercises a buoyancy upon the top of the gasholder, which of course diminishes its absolute wcight. Supposing the cubic foot of gas to be $=0.0364 \mathrm{lbs}$., the buoyaney will be $=0.0364 \pi x^{3} \mathrm{lbs}$., a quantity which descrves to be taken into account for large gasometers. Hence,
15. the weight of the gasholder in its highest position $=3 p \pi x^{2}-0 \cdot 1143 x^{3}$;
16. the counterweight $=\pi x^{2}\left(3 p-\frac{56 n}{12}\right)-0 \cdot 1143 x^{2}$;
17. the weight of the chain for the length $x,=\frac{112}{800} p \pi x^{2} \frac{0.1143 x^{3}}{2}$;
18. the height of the water pressure from the highest position, without the counterweight, $=\frac{3 p \pi-0 \cdot 1143 x}{56 \pi}$;
19. the same for the lowest position $=\frac{2 \cdot 72 p}{56}$ in feet

The preceding values of p and x, are,

$$
(16)=3147 ;(17)=304 ;(18)=2 \cdot 44 \text { inches; }(19)=2.33 \text { inches. }
$$

The water columns in the highest and lowest situations of the gasholder here differ about 0.1 of an inch, and this difference becomes still less when p has a smaller value, for example, 3 lbs., or when the diameter of the gasholder is still greater.

It would thus appear that for coal gasholders, in which the-height of the gasholder does not exceed its semi-diameter, and especially when it has a considerable size, neither a compensation chain nor a counterweight is necessary. The only thing requisite, is to preserve the vertical motion of the gasholder by a sufficient number of guide rods or pillars, placed cither within the water cistern or round about it. Should the pressure of the gas in the pipe proceeding from the gasholder be less than in the gasholder itself, this may be regulated by the main valve, or by water valves of various kinds. Or, as is now nsually done, a governor may be introduced between the great gasholder and the main pipe of distribution. With a diameter of 61 feet iu the gasholder, the pressure in the highest and lowest positions is the same.

The gasholders employed in storing up gas until required for use, occupy, upon the old plan, much space, and are atteuded with considerable expense in erecting. The water tank, whether sunk in the ground or raised, must be of equal dimensions with the gasholder, both in breadth and depth. The improved construction which we are about to describe, affords a means of reducing the depth of the tank, dispensing with the bridge of suspension, and of increasing at pleasure the capacity of the gasholder, upon a given base, thus rendering a snall
 apparatus capable, if required, of holding a large quantity of gas, the first cost of which will be considerably less than even a small gasholder constructed upon the ordinary plan.

Mr. Tait, of Mile-End Road, the inventor, has, we believc, becn for some years con${ }^{c}$ nected with gas establishments, and is therefore fully aware of the practical defects or advantages of the different constructions of gasholders now in use. Fig. 518 is a section of Mr. Tait’s improsed contrivance ; $a a$ is the tank, occupied with water; $b b$ two irou columns with pulley wheels on the top, $c c$, chains attached to a ring of iron, $d d$, extcuding round the gasholder, which chains pass over the pulley whecls, and are loaded at their extremitics, for the purpose of balancing the weight of the materials of which the gasholder is composed.

The gasholder is formed by two or three cylinders, sliding one within the other, like the tubes of a telescope; eee is the first or outer cylinder, closed at the top, and having the ring of iron, d, passing round it, by which the whole is suspended ; $f f$ is the second cylinder, sliding frecly within the first, and there may be a third and fourth within these, if necessary.
When there is no gas in the apparatus, all the cylinders are slidden down, and remain, onc within the other, immersed in the tank of water; but when the gas rises, through the water pressing against the top of the gasholder, its buoyancy causes the cylinder e to ascend. Round the lower edge of this cylinder, a groove is formed by the turning in of the plate of iron, and, as it rises, the edge takes hold of the top rim of the cylinder f, which is overlapped for that purpose. The groove at the bottom of the cylinder fills itself with water as it ascends, and, by the rim of the second cylinder falling into it, an airtight hydraulic joint is produced.

Thus, scveral cylinders may be adapted to act in a small tank of water, by sliding onc within the other, with lapped edges forming hydraulic joints, and, by supporting the apparatus in the way shown, the centre of gravity will always be below the points of suspension. A gasholder may be made upon this plac of any diameter, as there will be no need of frame-work or a bridge to support it; and the increasing weight of the apparatus, as the cylinders are raised one after the other, may be counterpoised by loading the cnds of the chaiu c c.

Fiy. 519 is an elevation of a double or telescopic gasholder of a modern and approved form, with part of a tank.

519

The water in the gasholder need not be renewed ; but merely so mueh of it as evaporates or leaks out is to be replaced. Indeed the surface of the water in the cistern gets covered with a stratum of coal oil, a few inches deep, which prevents its evaporation, and allows the gas to be saturated with this volatile substance, so as to increase
its illuminating power. is illuminating power.
is repasholder may be separated from the purifier by an intermediate vessel, such cylindrical vessel of fig. 520, with which the two gas pipes are connected. A is the fier, immersed a few inches deep into the liquid with which the comes from the purithirds filled; b is the gaspipe which leads int with which the vesscl is about twotubc, placed over the bottom of the vesscl, and the gasholder, c is a perpendicular top, through which the liquid is introduced into the vessel, within one-third of the escapes when it overflows the level d. In this tube the liquid stands townch it inner level ligher, in proportion to the pressure of the gas in the gasholder. The
fluid whieh is condensed in the gaspipe, b, and in its prolongation from the gasholder, runs off into the vessel A; and therefore the latter must be laid so low that the
 said tube may have the requisite declivity. A straiglit stopeock may also be attached to the side over the bottom, to draw off any sediment.

The governor: - Although the gasholder is, to a certain extent, a regulator of pressure, yet it is difficult, by its action alonc, to maintain a pressure so steady and uniform as that requircd for the supply of gas consumers. It would be difficult, if not impossible, to alter the pressure upon the mains frequently during a single night, as is now usually done in towns with a large number of street lamps, without the intervention of an apparatus termed a governor. The governor, which oceupies a position between the gasholder and supply mains, is a miniature gasholder A, (see figs. 521, 522, and 523, whieh represent Mr: Wright's improved governor,) the interior of which, however, is nearly filled by the coneentric inlet and outlet pipes \boldsymbol{B} and c. Immediately over the mouth of the inlet pipe, and depending from the roof of the inner cylinder, is a parabolic piston D , which hangs within the eontracted mouth of the inlet pipe c. The interior cylinder is counterpoised by the lever and weights ex. Now, when the pressure of gas in this small

holder inereases, - that is, when the flow of gas through the inlet pipe exceeds that escaping from the outlet,- the inner cylinder rises; but in doing so, it carries with it the parabolie piston \mathbf{D}, and thus contracts the orifiee of the inlet, and eonsequently diminishes the ingress of gas. In this way, by adjusting the weights attached to the

lever of the governor, and by always maintaining a pressure in the gashorder greater than is required in the mains, the gas can be delivered from the governor at any required pressure. In hilly towns, such as Bristol, Bath, Edinburgh, \&e., it is neees-

sary to employ governors at different stages of elevation, in order to produce a tolerably uniform pressure in the different districts. The necessity for this will be obvious when it is stated, that a difference of level of 30 feet affects the pressure of the gas in the mains to the extent of $\frac{2}{10}$ ths of an inch of water.

The gas mains. - The pressure by which the motion of the gas is maintained in the pipes is regulated by the governor. From the magnitude of this pressure, and the quantity of gas whieh in a given time, as an hour, must be transmitted throngh a certain length of pipes, depends the width or the diameter that the latter should have, in order that the motion may not be retarded by the friction which the gas, like
all other fluids, experiences in tubes, whereby the gas might be prevented from issuing with the velocity required for the jets of flame. The velocity of the gas in the main pipe inereases in the ratio of the square root of the pressing column of water upon the gasholder, and therefore by increasing this pressure the gas may be foreed more rapidly along the remoter and smaller ramifications of the pipes. Thus it happeus, however, that the gas will be discharged from the orifices near the gasholder, with superfluous veloeity. It is therefore advisable to lay the pipes in such a manner, that in every point of their length, the veloeity of discharge may be nearly equal. This may be nearly effected as follows:-

From experiment it appears that the magnitude of the friction, or the resistance whielt the air suffers in moving along the pipes, under a like primary pressure, that is for equal initial velocity, varies with the square root of the length. The volume of gas diseharged from the end of a pipe, is directly proportional to the square of its diameter, aud inversely as the square root of its length ; or, calling the length L , the diameter D ,
the cubic feet of gas discharged in an hour k; then $k=\frac{\mathrm{D}^{2}}{\sqrt{\mathrm{~L}}}$. Experiencc likewise shows, that for a pipe 250 feet long, which transmits in an hour 200 eubic feet of gas, one inch is a sufficient diameter.

$$
\text { Consequently, } 200: k:: \frac{1}{145 \sqrt{ } 250}: \frac{\mathrm{D}^{2}}{\sqrt{\mathrm{~L}}} ; \text { and } \mathrm{D}=\frac{\sqrt{k \sqrt{\mathrm{I}_{\mathrm{L}}}}}{455,000}
$$

From this formula the following table of proportion is calculated.

Number of cubic feet per hour.	Length of pipe, in feet.	Diameter, in inches.
50	100	$0 \cdot 40$
250	200	$1 \cdot 00$
500	600	$\underline{1} \cdot 97$
700	1000	$2 \cdot 65$
1000	1000	$3 \cdot 16$
1500	1000	$3 \cdot 87$
2000	1000	4.47
2000	2000	$5 \cdot 32$
2000	4000	6.33
2000	6000	7.00
6000	1000	7.75
6000	2000	9.21
8000	1000	$8 \cdot 95$
8000	2000	16.65

These dimensions are applicable to the case where the body of gas is transmitted through pipes without being let off in its way by burners, that is, to the mains which conduct the gas to the places where it is to be used. If the main sends off branches for burners, then for the same length the diameter may be reduced, or for like diameter the length may be greater. For example, if a pipe of 5.32 inches, which transmits 2000 cubic feet through a length of 2000 feet, gives off, in this space, 1000 cubic feet of gas; then the remainder of the pipe, having the same diameter, can continue to transmit the gas through a length of 2450 feet $=\left(\frac{450,000}{h}\right)^{2}$, with undiminished pressure for the purposes of lighting. Inrersely the diameter should be progressively reduced in proportion to the number of jets sent off in the length of the pipe.
Suppose, for instance, the gasholder to discharge 2000 cubic feet per honr, and the last point of the jets to be at a distance of 4000 feet. Suppose also that from the gasholder to the first point of lighting, the gas proceeds through 1000 feet of close pipe, the diameter of the pipe will be here 4.47 inches; in the second 1000 feet of leugth, suppose the pipe to give off, at equal distanees, 1000 cubic feet of gas, the diametcr in this length (calculated at 1500 cubic feet for 1000 feet long) $=3.87$ inches; iu the third extent of 1000 feet, 600 cubic feet of gas will be given off, and the diameter (reckoning 700 cubic feet for 1000 feet long) will be 2.65 inches; in the fourth and last space (for 200 cubic feet in 1000 feet long) the pipe has a diameter of ouly an inelı and a half, for which, in practiee, a two-inch east-iron pipe is snbstituted; this
being the smallest used in mains, into which branch pipes can be conveniently inserted.

The same relations hold with regard to branch pipes through which the gas is trausnitted into buildings and other places to be illuminated. If such pipes make frequent angular turnings, whereby they retard the motion of the gas, they must be a third or a half larger in diameter. The smallest tubes of distribution are never less than one fourth of an inch in the borc.

Where, from one central gas work, a very great quantity of light is required in particular localities, therc ought to be placed near these spots gasholders of distribution, which being filled daring the slack hours of the day are ready to supply the burners at night without making any considerable demand upon the original main pipc. Suppose the first main be required to supply 8000 cubic feet in the hour, for an illumination of 8 hours, at the distance of 2000 fcct , a pipe $10{ }^{2}$ inches in diameter
would be necessary, but if two or threc would be necessary ; but if two or threc gasholders of distribution, or station gaslolders be had recourse to, into which the gas during the course of 24 lours would flow through the same distance continuously from the central gas works, the quantity required per hour from them would be only one third of $8000=2666^{\circ} 6$ cubic feet ; consequently the diametcr for such a pipe is only 6.15 inches.
All the principal as well as branch pipes, whose interior diameter exceeds an inch and a half, are made of cast-iron from 6 to 8 feet long, with elbow pipes cast in then where it is necessary. These pipe lengths are shown in fig. 524, having at one end a wide socket a, and at the other a nozzle b, which fits the former. After inscrting the one in the other in their proper horizontal position, a coil of hemp, soaked with tar is driveu home at the junction; then a luting of clay is applied at the mouth, within which a ring of lead is cast into the socket, which is driven tight home with a mallet and blunt chisel.

The pipes should be proved by a force pump before being received into the gas works; two or three lengths of them should be joined before laying them down, and they should be placed at least two feet below the surface, to prevent their being affected by changes of temperaturc, which would loosen the joints. The tubes for internal distribution, when of small size, are made of lead, copper, wrought-iron
or tin.
Instead of a stopcock for letting off the gas in regulated quantities from the gasholder, a peculiarly formed water or mercurial valve is usually employed. Fig. 525 shows the mode of construction for a water trap or lute, and is, in fact, merely a gasholder in miniature. CDEF is a square cast-iron vesscl, in the one side of which a pipe A is placed in communication with the gasholder, and in the other, one with the maiu b. The movable cover or lid $\boldsymbol{\pi}$ G I K has a partition, L m, in its middle. If this cover be raised by its counterweight, the gas can pass without impediment from A to B; but if the counterweiglit he diminished so as to let the partition plate L m sink into the water, the comnunication of the two pipes is thereby interrupted. In this casc the water level stands in the compartment \mathbf{a} so much lower than outside of it, and in the compartment B , as is cquivalent to the pressurc in the gasometer ; therefore the pipcs A and b must project thus far above the water. In order to keep the water always at the same height, and to prevent it from flowing into the mouths of these pipes, the rim C D of the outer vesscl starids somewhat lower than the orifices AB; and hence the vessel may be kept always full of water. A B are the terminations of the two iron vessel M. E is an iron vessel of the same form, which is fast in the rectangular up to the level a, and which, by means of the screw G, fhilled with quicksilver G, which presses against its
bottom, and works in the fixed female screw c c, may be moved up or down, so that the vessel m may be immersed more or less into the quicksilver. The vesselm is furnished with a vertieal partition m; the passage of the gas from A to is is therefore obstructed when this partition dips into the quicksiver, and from the gradual depression of the vessel eby its screw, the interval between the quieksilver and the lower edge of the partition, through which the gas must cnter, may be enlarged at pleasure, whereby the pressure of the gas in B may be regulated to auy degree. The transverse section of that interval is
 equal to the area of the pipe, or rather greater; the breadth of the vessel m from A to B amounts to the double of that space, and its length to the mere diameter of A or B . Thic greatest height to which the partition m can rise out of the quicksilver is also equal to the above diameter, and in this case the line a comes to the place of b. The vertical movement of the outer vessel E is securcd by a rectangular rim or hoop which surrounds it, and is made fast to the upper part of the vessel m_{0}. within which guide it moves up and down. Instead of the lever $\mathrm{D} D$, an index with a graduated plate may be employed to turn the screw, and to indicate exactly the magnitude in the opening of the valve.

The metres.-In order to measure the quantity of gas which passes through a pipe for lighting a factory, theatre, \&ce. the gas meter is cmployed, of whose construction a sufficiently precise idea may be formed from the consideration of fig. 527 , which shows the instrument in a seetion perpendicular to its axis.

Within the cylindrical case a, there is a shorter
 cylinder $b b$, shut at both ends, and movable round an axis, which is divided into four compartments, that communicate by the openings d, with the interval between this cylinder and the outer case. The mode in which this cylinder turns round its axis is as follows: - The end of the tube c, which is made fast to the side of the case, and by which the gas enters, carries a pivot or gudgeon, upon which the centre of its prop turns; the other end of the axis runs in the cover, which here forms the side of a superior open vessel, in which, upon the same axis, there is a toothed wheel. 'The vessel is so far filled with water, that the tube c just rises above it, which position is secured by the level of the side vessel. When the gas enters through the tube c, by its pressure upon the partition e it turns the eylinder from right to left upon its axis, till the exterior opening d rises above the watcr, and the gas expands itself in the exterior space, whence it passes off through a tube at top. At cvery revolution a certain volume of gas thus goes through the cylinder, proportional to its known capacity. The wheel on the axis works in other toothed wheels, whence, by means of an index upon a graduated disc or dial, placed at top or in front of the gas meter, the number of cubic feet of gas which pass through this apparatus in a given timc is registered.

Mr. Thomas Edge, of Great Pcter Street, Westminster, has contrived the following meter, of which drawings are annexed.

Fig. 528 is a front view of a three-light meter, the front plate being removed, and some of the parts shown in section.
Fig. 527 is a transverse section of the same. , in the bottom of which is a lever
The gas enters at a into the small chamber B, moving upon its axis and attached valve (part of Mr. Edge's patent improv the present drawing is buoyant. The object of this arrangement is to intercept the passage of the gas into the meter, unless a sufficient quantity of water is in it, that being nccessary to its proper action; the
gas then passes through the inverted siphon or tunncl into the convex eover, whence it passes into the chambers of the drum.
Another of Mr. Edgc's improvements consists in the eutting down of this siphon pipe or tunnel to the proper water level, and connceting the bottom of it to a waste water box, into which any surplus water must fall. The importance of this precaution will be seen on investigating the drum, as an excessive height of the water will materially interfere with the measurement, the quantity of gas delivered per revolution

being considerably less. This, in connection with the lever valve and float, eonfines the rariation of the water levels within sueh uarrow limits, that the measurement may be considered perfectly just on all oceasions. For a description of the dry gas meter,
see Gas Meter.

Arrangement of Gas Works.

Mr. Hedley, an engiueer of great eminence and experience, has kindly furnished the following plans and drawings of gas works and of apparatus of the most approved and modern construction, and on the very largest scale as to extent of business or naanufacture; also plans and drawings of a gas work on a smaller seale, with its corresponding apparatus. In the first, or large work, purification by wet lime, befire deseribed, is used; in the latter, by dry lime.

The large work referred to is ealculated for and is arranged to contain 400 retorts, 12 wet lime pmifiers, and 2 washers; 12 large double or teleseopie gasholders, capable of coal.
The smaller work is calculated for and will contain 40 retorts, 2 dry lime purifiers, and a wash vessel; 2 gasholders capable of storing 50,000 cubie feet of gas; and coal stores sufficient for 1000 tons of coal.
Fig. 530 is the side elevation (front view) of a gas work capable of eontaining 400 retorts, and all their deperidencies.
Fig. 531 is the plau of the retort house, coal stores, tanks, gasholders, \&c., on the largest seale, and most approved form, viz. : A the retort house, 300 feet long, 56 feet each 300 feet long, 30 feet purifiers and conneetions ; L, lime , eondensers, H , cugiue houses: \mathbf{J}, wash vessels; K , N , refuse lime pits; o , meter houses ; minding tub; m , smiths' and fitters' shop; eolumns, valves, and eonneetiois; r, governors ; s, Q, tauks, gasholders, bridges, let pipes; w, house and offices, x, stores.

Fig. 532. Front elevation of gas works on a smaller seale, where dry lime is us"
$\begin{aligned} & 3 \mathrm{D}\end{aligned}$
$\begin{aligned} & \text { VoL. I. }\end{aligned}$

3 1) 2

Fig. 533. Plan of gas works, consisting of, A, retort house; B, retort beds; C, ehimney stack; D, flue; E, hydraulic main; P, coal store; G, lime store; w, washer and purifiers; J, store; K, tar-tank; L, horizontal condenser laid on the ground; x,

inlet pipe, s, outlet pipe; 0 , tanks and gasholders; P, meter and governor; Q, smith's shop; Wh office; s, coke store.
lig. 534. Transverse section and clewation of a bed of five retorts. A, transverse section; B, elevation.

Fiy. 535. Elevation of an upright air condenser, consisting ot live chambers, with a series of 10 -inch pipes.
Fig. 536. Longitudinal section of a bed of 5 D retorts.
Fig. 537. End elevation and plan of air condenser a, end elevation; b, plan.

Fig. 538. Set of three wet lime purifiers and wash vessels in elevation and section, with feed-hends, agitators, valves, and connections, raised for the lime liquor to run, A, section of wash vessel ; B, seetion of purifier ; c, elevation the refuse linie pits, viz. 3 D 3

535

314

A Table of the number of hours: Gus is burnt in euch month, quarter, and year.

'1/me of Burning.	July.	A 1 g g .	Sep.	Oct.	Nov.	Dec.	Jan.	Feld.	Mar.	. 1010	Way.	June	Mid guar	$\left\|\begin{array}{ll} 11 & c \\ 1 \text { IUAY。 } \end{array}\right\|$	Simat	lady	To 1. of year.
O o'clock.																	
From Dusk to 6	-	-	2	31	62	8	65	33	4	-	-	-	-	2	173	10\%	
- 7	-	14	22	62	92	111	! 16	61	31	4	-	-	4	36	24.6	188	
K	-	411	52	93	122	11.2	$1: 7$	89	civ	98	4	-	32	92	357	278	754
9	13	71	N2	124	152	173	168	117	9\%	5.8	29	8	9.5	1618	419	368	$1117 x$
10	4.4	102	112	15.	182	204	1d?	145	12.1	NX	60	38	1 NG	2588	541	45.8	144
11	75	1:33	142	1×6	212	$2 \% 5$	$2 \% 1$	73	1.5	114	31	6 K	277	350	6i3:3	548	1818
12	16	61	172	-17	212	${ }^{21} 66$	251	2011	1815	145	122	9x	: 6	142	725	(\%3, 8	2178
All 11 il hte	217	.107	345	121	473	5.27	$5{ }^{1}$	411	-3R2	! 15	$\because 42$	195	:32	\$6! 1	14\%1	130.5	4327
Morning from 4	-	$1 i$	48	80	110	$1: 37$	$1: 17$	88	71	29	2	-	:30	(i)	327	30%	727
- 5	-	-	18	49	80	1018	106	711	40	3	-	-	3	18	2:3)	216	472
- 6	-	-	-	18	51)	75	75	42	9	-	-	-	-	-	143	127	24i
7	-	-	-	-	211	- 44	4t	14	-	-	-	-	-	-	64	58	12:

Economical and Sanitary Relations of Gas.
In a lecture delivered at the Royal Institu ion in 1853, Dr. Frankland thus estimat's the comparative cost of an amount of light from various sourees equal to that yielded by 20 sperm candles, each burning 120 grains per hour for 10 hours.

The following table exhibits the amouut of carbonic acid and beat produced per hour from the above sources of light, the heat generated by tallow being assumed to be 100 for the purposes of comparison.

Notwithstanding the great economy and convenience attending tbe use of gas, and in a sanitary point of view, the high position which, as an illuminating agent, coalgas of proper composition occupies, its use in dwelling houses is still extensively objected to. The objections are partly well founded and partly groundless. As is evident from the foregoing table, even the worst gases produce, for a given amount of light, less carbonic acid and heat, than either lamps or candles. But then, where gas is used, the consumer is ncver satisfied with a light equal in brilliancy only to that of lamps or candles, and consequently, when three or four times the amount of light is produced from a gas of bad composition, the heat and atmospheric deterioration greatly exceed the corresponding cffects produced by the other means of illumination. There is nevertheless a real objection to the employment of gaslight in apartments, founded upon tbe production of sulphurous acid during its combustion: this sulphurous acid is derived from bisulphuret of carbon, and the organic sulphur compounds, which have already been referred to as incapable of remoral from the gas by the present methods of purification.
Thesc impurities, which are encountered in alnost all coal-gas now used, are the principal if not the only source of the uupleasant symptoms experienced by many sensitive persons in rooms lighted with gas. It is also owing to the sulphurous acid generated during the combustion of these impurities that the uve of gas is found to injure the bindings of books, and impair or destroy the delicate colours of tapestry : Therefore the production of gas free from these noxious suiphur compounds is at the present moment a problem of the highest importance to the gas manufacturer, and one which demands his earnest attention.
The high sanitary position wbich gas takes, with regard to the production of a minimum amount of carbonic acid and heat for a given amount of light, ought to stimulate the manufaeturer to perfect the process, by removing all sulphur compounds,
and attaining the most desirable composition, so that this ccoromical, and if pure, agreeable and sanitary light, may contribute to our donestic comfort to a much greater extent than it has hitherto done.

General Summary

For ligbting London and its suburbs with gas, there were in 1852 :
18 public gas works.
12 do companies.
2,800,000l. capital employed in works, pipes, tanks, gasbolders, apparatus.
450,000 . yearly revenue derived.
134,300 private burncrs supplied to abont 40,000 consumers.
30,400 public or strect do. N.B. about 2650 of tbese are in the city of London.
380 lamplighters employed.
176 gasholders; several of tbem double ones, capable of storing $5,500,000$ cubic feet.
890 tons of coal used in the retorts on the shortest day in 24 hours.
$7,120,000$ cubic feet of gas used in the longest night, 24th December
A bout 2500 persons are employed in the metropolis alone, in this brancb of manufacture.
Between 1822 and 1827 the quantity nearly doubled itself, and that in 5 years.
Between 1827 and 1837 it doubled itself again.
The consumption of coals of all kinds for tbe supply of gas to the metropolis during the ycar ending June, 1852, is almost exactly 408,000 tons, which on an averagc would yield about 4000 millions of cubic feet of gas.

Hydrocarbon Gas.

This title has been given to illuminating gas manufactured according to a patent granted some years ago to Mr. White of Manchester. The process of manufacture consists essentally in the generation of nou-illuminating conbustible gases by the
aetiou of steam upon ehareoal, eoke, or other deoxidising substanees, in a separate retort, and the introduetion of these gases, teehnieally called water-gas, into the retort in which the illuminating gases are being gewerated, and in suell a manner that these latter gases shall be swept out of the retort as rapidly as possible, so as to remove them from the destruetive influence of a high temperature.

The retorts used for the liydroearbon-gas process may be of various shapes and sizes. The settings are similar to those for the ordinary retorts, and any number whieh is neeessary may be plaeed in an oven. They differ only from the ordinary retorts by having a horizontal partition, or diaphragm, east in the eentre, dividing the retort iuto two elambers, and extending to within 12 inehes of the baek. This diaphragm is
 found in practiee to strengthen the sides of the retorts, and thus to add to their durability. The water-gas retorts may be east from the same pattern as the eannel retorts, and may be set in exaetly the same manner. Figs. 539 (p. 777) and 540 represent a setting of two retorts in one oven, and show the same in elevation, transverse seetion, and longitudinal seetion. The retorts here shown have an internal eubieal eapaeity of about 16 feet, and the bed of two is eapable of prodneing about 10,000 eubie feet per diem of hydro-earbon-gas. The temperature at whieh the retorts are worked is about the average. The water-gas is generated in the retort A, in the following manner:- The upper and lower chambers are well filled with eoke or ehareoal, and a very fine stream, or rapid drops, of water flowing from the tap enters the upper ehamber through the siphon pipe, falling into a small steam-generating tube, whieh is plaeed inside to reeeive it, and instantly converts it into steam. The steam, in passing baekwards along the upper ehamber, and forwards along the lower one, beeomes to a great extent deeomposed into hydrogen, earbonie oxide, and earbonie aeid gases. The watergas generated in the retort A , as deseribed above, enters the lower ehamber of the retort B , through the eonneeting pipe c c , east ou the mouthpieee. In the chambers of this retort the illuminating gas is generated, either from eoal, eannel, resin, or other suitable material, and being rapidly earried forward by the eurrent of water-gas, its illuminating prineiples are preserved from the destruetion eaused by prolonged contaet with the ineandeseent surfaees in the retort, whilst at the same time its volume is inereased. When very rieh eannels or other materials are used, two, three, or even four watergas retorts are made to diseharge their gas into the eannel retort.

The hydroearbon proeess has hitherto been applied only to resin, eoals, and eannels. The following is a brief summary of the results of a series of expcriments made by Dr. Frankland on the manufaeture of hydroearbon resin gas. Eaeh hundredweight of resin was dissolved by heat in $7 \frac{1}{2}$ gallons of the resin oil of a former working, and the liquid, whilst still hot, was run into one of the retorts, by means of a siphon tube, in a stream about the thiekness of a erowquill, whilst water-gas, generated in the seeond retort, was admitted, as deseribed above. The mixed gases were then made to stream through the usual form of eondensing apparatus, and were afterwards eompelled to pass sueeessively through wet and dry lime purifiers before they reaehed the gasholder. In order to seeure a uniform mixture of the gas produeed in each experiment, it was allowed to remain at rest in the gasholder for at leust twelve hours before a speeimen was withdrawn for analysis.

In the following tables both the practieal and analytien results are given.
I. Practical Results.

	Average evolutlon of Gas per hour.	Materials Cunsumed.					Phondets Oimtaned.		
		Resin.	Coal.	Charcoat.	Lime.	Water.	Resin Oil.	Gas.	Gas per cwt. of Resin.
1st Experiment	Cub. ft. 930	$\begin{array}{ccc}\text { Cwt. } & \text { qr. } & \text { lb. } \\ 2 & 1 & 17 \frac{1}{2}\end{array}$	Cwt. qr.	16. 10	1 b. 20	1 b 73	Gals. 10.7	Cb. ft . 3340	1388
2nd ,	1000	2118	12	12	20	77	$7 \cdot 8$	3800	1576
3 r d \quad "	- -	20017	12	12	28	85	$4 \cdot 5$	4157	1932
4th "	- -	2007	12	10	28	$62 \frac{1}{2}$	$8 \cdot 75$	3090	1520

Average production of gas per ton of resin - - . 32,080 cubic fect.
Average production of resin oil per ton of resin - - 70.3 gallons.
Illuminating power of average gas before purification, as ascertained by shadow test, $\cdot 75$ cubic feet per hour $=$ light of one short six spermaceti candle.

II. Analytical Results.

Amount of carbon vapour contained in 1 volume of hydrocarbons $=2.8$ volumes.

		Composition of Gas after Purification.				
		1st Exp.	2nd Exp.	3rd Exp.	4th Exp.	Average.
	-	$8 \cdot 27$	$7 \cdot 94$	$7 \cdot 78$	$8 \cdot 53$	$8 \cdot 13$
		$18 \cdot 76$	45.06	22.79	$32 \cdot 25$	8.13 29.71
Light carburetted hydrogenHydrogen -Carbonic oxide		42.03 30.93	37.59	$50 \cdot 27$	43.62	$43 \cdot 38$
		30.93	941	$19 \cdot 16$	$15 \cdot 60$	$18 \cdot 78$
Carbonic oxide		$100 \cdot 00$	100.00	100.00	$100 \cdot 00$	100.00

Specific gravity of average gas before purification $=65886$. " \quad ", after $\quad, \quad=59133$.

This process is especially adapted for the manufacture of gas on a small scale, as in private houses or small manufactories. The necessary operations involve littlc trouble

Dr in emia.
Dr. Frankland has also investigated the hydrocarbon process as applied to coals and cannels, and the following is a tabulated summary of his experimental results.

Summary of Experimental Results.

Namic or Coat.		Cubic fect of Gas per ton.		1llumination power per tonm Sperm Candles.		Gain perton liy Whice's proces.		Gain per cent. by W'hite's process.	
		By ollu process.	$B y$ Whitus proces.	1by old procesb.	13y Whates process.	Quantity of gaa lis cubic fere.	Illuminat. InR jower in aperm caniles.	Qanntily of gas.	Ifumlsutimp power.
Wigan Canmel, Ince Hall		10.900	16,120	4,816	6,448	5,220	1,632	479	339
Wigrn do., Balcarres -	-	10.410	15,500	4,156	5,920	5,060	1,764	48.5	$4 \cdot 1$
Boghead Cannel - -		13,240	38.160	11,340	21,368	24920	9,948	198.2	87 x
Dieto. 2ud experiment			51,720		21,6-8	38,480	9,308	291.-6	$81 \cdot \mathrm{R}$
1, esmatage Cannel		10,620	29,180	7,620	13,123	18,560	6,314	174 s	88.8
Mathill Cammel		3,560	26,400	5,316	11,188	16,840	5,72	$176 \cdot 2$	$10 \mathrm{~N} \cdot 1$
Newcastle do., Rainsey	-	10,300	15,020	5,026	5,616	4,720	620	$45 \cdot 8$	12.3

Table, showing the quantity of Coul or Canuel reqnisite for producing light equal to 1000 Sperm Candles, each burning 10 hours at the rate of 120 g 's. per hour.

Name of Coal.				Weigh of Coal.	
				By old process.	By White's process.
Wigan Cannel (Ince Hall)	-	-	-	$\begin{gathered} \text { lbs. } \\ 465 \cdot 1 \end{gathered}$	$\begin{aligned} & \text { lbs. } \\ & 347 \cdot 4 \end{aligned}$
Wigan Cannel (Balearres)	-	-	-	539.0	$378 \cdot 4$
Boghead Cannel - -	-	-	-	$197 \cdot 5$	1048
Isesmahago Cannel	-	-	-	293.9	160%
Methill Cannel -	-	-	-	$421 \cdot 4$	202.0
Neweastle Cannel -	-	-	-	$445 \cdot 7$	396.7
Neweastle Coal (Pelton)-	-	-	-	$745 \cdot 7$	

Table Showing the quantity of Gas requisite for producing light cqual to 1000 Sperm Candles, each üurning 10 hours at the rate of 120 grs. per hour.

Name of Gas.		Rate of Consumption per hour.	Quantity of Gas.
	Wigan Cannel (Ince Hall)	$\begin{aligned} & \text { Cubic Feet. } \\ & 5 \end{aligned}$	Cubi Feet. 2263
	Ditto by White's proeess	5	2500
	Wigan Cannel (Balcarres) -	5	2512
	Ditto by White's process	5	2618
	Boghead Cannel - - -	3	1168
	Ditto by White's proeess	3	1786
	Ditto ditto, 2nd experiment	5	2500
	Lesmahago Cannel - - -	4	1394
	Ditto by White's proeess	4	2094
	Methill Cannel - - -	5	1798
	Ditto by White's proeess	5	2381
	Neweastle Cannel (Ramsay) -	5	2049
	Ditto by White's proeess	5	2660
	Neweastle Coal (Pelton)- -	位	3356
	Resin Gas by White's process -	$\left\{\begin{array}{c}\text { ealeulated } \\ \text { from analysis }\end{array}\right\}$	3012
	Manchester Gas (June, 1851) -	ditto ditto	3448
	¢ City Company's Gas (July 15, 1851)	5	3846
	O Great Central Company's Gas, do.		3546
	\{ Chartered Company's Gas - do.	\{ $\left.\begin{array}{c}\text { ealeulated } \\ \text { from analysis }\end{array}\right\}$	3320
	Imperial Company's Gas - do.	ditto ditto	4099

Dr. Frankland thus sums up the advantages whieb he eoneeives to result from the application of the hydrocarbon process to eoals and eannels.

1. It greatly increases the produee in gas from a given weight of eoal or cannel, the increase being from 46 to 290 per eent., aeeording to the nature of the material operated upon.
2. It greatly inereases the total illuminating power afforied by a given weight of
coal, the increase amounting to from 12 to 108 per cent., being greatest when coals affording highly illumiuatiug gases are used.
3. It diminishes the quantity of tar formed, by converting a portion of it iuto gases possessing a considerable illuminating power.
4. It enables us profitably to reduce the illuminating power of the gases produced from such uatcrials as Boghcad and Lesmahago cannels, \&c., so as to fit them for burning without smoke and loss of light.

Mr. Barlow has also experimented upon this process of gas making and finds that a very considcrable gain in total illuminating power results from its use.

Mr. Clegg's investigation of this process showed, that whilst Wigan Cannel produces by the ordinary process of gas making about 10,000 cubic fcet of 20 candle gas, per ton ; 16,000 cubic feet of 20 candlc gas, or 26,000 cubic fcet of 12 candle gas, can be made from the same quantity of matcrial by the hydrocarbon process. Also that by the application of the same process to Lesmahago Canncl 36,000 cubic feet of 20 candle gas, or 58,000 cubic feet of 12 candlc gas per ton can be obtained; whilst Boghcad Cannel yields 52,000 cubic feet of 20 candle gas, or 75,000 cubic feet of 12 candle gas. The following table presents in a condensed form Mr. Clegg's results as to comparative cost.

Name of Coal.	Cost of toco ft. of 20 candle gas by old process.	Cost of 1000 ft . of 20 candle gas by hydrocarbon process.	Cost of 1000 ft . of 12 candle gas by hydrocarbon process.
Wigan Cannel at l4s. per ton -	$\begin{array}{lr}\text { s. } & \text { d. } \\ 1 & 93\end{array}$	s. d. $13 \frac{1}{2}$	s. d.
Lesmahago Cannel at			
18s. per ton - -	$25 \frac{1}{2}$	$011 \frac{3}{4}$	$0 \quad 9 \frac{1}{4}$
Boghead Cannel at 20s. per ton -	$2 \quad 4 \frac{1}{2}$	011	$0 \quad 9 \frac{1}{4}$

The principle of the hydrocarbon process is also adoptcd by Messrs. Lowe and Evans in their patent process for the manufacture of gas for illuminating purposes. In carrying out this latter improved manufacture of gas, the patentces pass gas obtained frow any of the sources hereinafter specified, through heated retorts containing cannel coal, coal, lignite, resin, pitch, tar, oil, retinite, or other substance or substances capable of yielding carburetted hydrogen gas : by which means such a combination of rich and poor gases may be produced as will be exactly suited to the purposes of illumination. For this purpose, it is proposed to use retorts, open at both cnds, as shown in the drawing given in fig. 541 , which represents a longitudinal vertical section of the apparatus employed in carrying out this part of the invention. Only one retort is exhibited; but a similar arrangement of retorts may be adopted to that in general use in gas works. a is the retort, set in a suitable furnace for heating the same; and $b b$ are mouthpieces and lides, fitted to both ends of the retort. c is the pipe for carrying off the gaseous products generated in the retort; and d is a pipe for introducing into the retort the gas which is intended to mix with the gaseous products of the substances under distillation in the retort. As soon as the retort is charged with coal or other carbonaceous matter, a cock e, in the pipe d, is opened, which allows the gas to flow into the retort; and it then passes in the direction of the arrows, and mingles with the gas that is evolved from
 the carbonaccous matters contained in the retort: whereby a compound gas is formed, possessing a much higher illuminating power than could have been obtained had the combination taken place after instead of at the time of the gencration of the gas in the retort a. The gas, which is brought to the retort by means of the pipe d, may be forced into the retort, so as to overcome the internal pressure put on the retort by means of the hydraulic main; or, instcad thereof, an cxhauster may he applied to draw off the gas from the retort. Should tar, oil, resin (previously melted), or any liquid lydrocarbon be cmployed for the gencration of the gas, it is to be run into the retort in the way generally adopted for naking oil or resin gas.

The sources from which the patentecs propose to obtain inflammable gases, to be applied as above indicated, arc wood, sawdust in a damp or dry state, spent tanner's bark, and other like substances capable of yielding an inflammable gas. These substances must be put into a red-hot retort, and distilled like coal. The resulting gases may he either purified at once, or passed directly to the retort containing the coal or other carbonaceous materials. As a gencral rulc, however, these gascs are preferred to be stored in gasbolders for use; as, in that case, a more uniform and constant supply to tbe coal retort may be relied on.

A nother source of inflammable gas is from coal of an inferior description, or from peat. These substances having been distilled in a retort, the resulting gas can be then employed as above indicated. It is also proposed to conduct carbonic oxide gas into retorts containing carbonaceous matters under distillation. This gas the patentees obtain from carbonic acid, by passing the latter gas (which may be obtaincd from any convenient source) through a retort or furnace containing red- or white-hot coke. Or, they utilise a portion of the gases generated in furnaces, by collecting these gases and converting the carbonic acid they contain into carhonic oxide, hy passing them through a retort or furnace, as described for treating carbonic acid; or the gases may be couducted directly into retorts, wherein carburetted hydrogen is being gencrated, for the purpose of effecting the desired combination. See Peat.

From the foregoing description, it will be understood, that the object of this part of the invention is to obtain gas of a uniform quality,-that is, possessing a definite amount of illuminating power. Now, it is well known that if the gas be too rich in carbon it will burn with a dull flame, and give off a large amount of smoke; and that, if deficient in carbon, it will burn with a blue flame, and possess very little illuminating power. It is therefore proposed to mix the rich and poor gases, obtained as above described, in such proportions as will be needful to produce a highly illuminating quality of gas. As the proportions will depend entirely on the quality of the gases to be combined, no rule can be laid down for the amount of the gas required to be passed into the retorts, wherein the distillation is proceeding. The mode, however, in which gas burns on issuing from the retort will be a sufficient test for the workmen in attendance.

Wood Gas.

Attempts were first made in France towards the close of the last century to manufacture an illuminating gas from wood. The Thermolamp of Lebon, a woodgas apparatus, then and for some time afterwards excited considerable attention, especially in the districts of Germany, Sweden, and Russia where coals are scarce. This mode of illumination proved however to be a complete failure, owing to the very feeble illuminating power of the gas produced, and as at this time the production of gas from coal was rapidly becoming better known, anything like a regular manufacture of wood-gas never in any case gained a footing. Subsequent trials only confirmed the failure of Lebon, so that it was universally considered impossible to produce a practically useful gas from wood by the usual process of gas manufacture. In the year 1849 Professor Pettenkofer of Munich had occasion to repeat these experiments, and he found that the gases evolved from wood at the temperature at which it carbonises consist almost entirely of carbonic acid, carbonic oxide, and light carburetted hydrogen; olefiant gas and the illuminating hydrocarbons being entirely absent. Such gas was therefore totally unfitted for illuminating purposes.

The temperature of boiling quicksilver, at which coal is not in the slightest degree decomposed, is quite sufficient to carbonise wood completely. If small pieces of wood be placed in a glass retort half filled with mercury and the latter be heated to boiling, a black lustrous charcoal is left in the retort, whilst gas of the following composition is evolved :

If however the gases and vapours produced by the above experiment be heated to a considerably higher temperature than that at which the wood is carbonised, Professor Pcttenkofer found that a very different result is ohtained : the volunc of permanent gas is considerably augmented, whilst such an amount of illuuinating hydrocarbons is produced as to render the gas actually richer in these constituents than coal-gas. Analyses of various samples of such superheated gas gave the following results: -

The illuminating valuc of tbe bydrocarbons was found to be one half greater than that of an equal volume of olcfiant gas.

Varieties of wood differing so much in cbaracter as pine and beech werc found to yield equally good gas. These observations prove that wood-gas is indubitably entitled to rank amongst illuminating agents.

With regard to the apparatus employed various forms have been contrived so as to communicate the nccessary temperature to tbe escaping vapours: it has been however at lengtb found that the ordinary form of retort furnishes the necessary conditions, provided it be not filled more than one third with the charge of wood. 120 lbs. of the latter, thorougbly dried, constitutes the charge for one retort. In $1 \frac{1}{2}$ hours the distillation is complete, the result being, after absorption of carbonic acid, 650 cubic feet of gas, which is perfectly free from all sulphur and ammonia compounds, and possesses, according to the numerous experiments of Liebig and Steinheil, an illuminating power greater than coal-gas in the proportion of $6: 5$
The following analyses show the composition of wood-gas when made on a manufacturing scale. No. 1 is a sample of gas before purification from the works at the Munich Railway Station, and No. 2 is purified gas, as supplied to the town of Bayreutb: -

The specific gravity of the purified wood gas is about $\cdot 700$, and this, coupled with the large percentage of carbonic oxide whicb it contains, renders it necessary to employ burners with much larger perforations than those used for coal-gas; in fact, if wood-gas be consumed at the rate of from 3 to 4 cubic feet per hour from a coalgas burner, it yields scarcely any ligbt at all, whereas if consumed from a fish-tail burner witb wide apertures, its illuminating power cxceeds, as just stated, that of coalgas.

Although the relative cost of wood and coal will prevent the adoption of Professor Pettenkofer's ingenious process in this country; yet, as it can also be applied with like results to peat, there is a high probability that it might be employed with great advantage in Ireland. Its rapid adoption in many German and Swiss towns proves the practicability of the process in districts where wood is cheap.-E. F.

COAL NAPHTHA. See Naphtha (Coar.)
COBALT. Tbis metal being difficult to reduce from its ores, is therefore very little known, and has not hitherto been employed in its simple state in any of the arts; but its oxide has been cxtensively used on account of the rich blue colour which it imparts to glass, and the glazes of porcelain and stonc-ware. The principal ores of cobalt are those designated by mineralogists under the names of arsenical cobalt and gray cobalt. The first contains, in addition to cobalt, some arsenic, iron, nickel, and occasionally silver, \&c. The other is a compound of cobalt with iron, arsenic, sulphur, and nickel. Among the gray cobalts, the ore most esteemed for its purity is that of Tunaberg in Sweden. Arsenate of cobalt is abundantly found at Schneeberg in Saxony, Saalfield in Thuringia, and Riegelsdorf in Hessia. In England it is found in Cumberland and in Cornwall. It is often in regular crystals whicb possess the lustre and colour of polished steel. The specific gravity of cobalt pyrites is 6.36 to 4.66 . The Tunaberg varicty afforded to Klaproth, cobalt, 44 ; arsenic, 55.5 ; sulpbur, 0.5 ; so that it is an arseniuret. Others, however, contain much sulphur as wcll as iron. arsenical fumes.

The ore being picked to separate its stony matters, is pounded fine and passed tbrough a sieve; and is also occasionally waslied. Tbe powder is then spread on the sole of a reverberatory furnace, the flue of which leads into a long horizontal chimney. Here it is exposed to calcination for sevcral hours, to expel the sulphur and arsenic
that may be present ; the former buruing away in sulphurous acid gas, the latter being condensed into the white oxide, or arsenious acid, whence chiefly the market is supplied with this article. This calcining process can never disengare the whole of these volatile ingredients, and there is therefore a point beyond which it is useless to push it; but the small quantities that remain are not injurious to the subsequent operations. 'The roasted ore is sifted auew, reduced to a very fine powder, and then mixed with 2 2 3 parts of very pure silicious sand, to be converted into what is called zaffre. With this product glasses are generally coloured blue, as well as enamels and pottery glaze. In the works where cobalt ores are treated, a blue glass is prepared with the zaffre, which is well known under the name of smalt or azure blue. This azure is made by adding to the zaffre 2 or 3 parts of potash, according to its richness in cobalt, and meltiug the mixture in earthen crucibles. The fused mass is thrown out while hot into water; and is afterwards triturated and levigated in mills mounted for the purpose. There remains at the bottom of the earthen pot a metallic lump, which contains a little cobalt, much nickel, arsenie, iron, \&cc. This is called speiss.

As it is the oxide of cobalt which has the colouring quality, the calcination serves the purpose of oxidisement, as well as of expelling the forcign matters.

A finer cobalt oxide is procured for painting upon hard porcelain, by boiling the cobalt ore in nitric acid, which converts the arsenic into an acid, and combines it with the different metals present in the mineral. These arseniates being unequally soluble in nitric aeid, may be separated in succession by a cautious addition of carbonate of soda or potash ; and the arseniate of cobalt, as the most soluble, remains unaffected. It has a rose colour; and is easily distinguishable, whence the precipitation may be stopped at the proper point. The above solution should be much diluted, and the alkali should be cautiously added with frequent agitation.

The cobalt ores rich in nickel were formerly exposed to slow oxidisement in the air, whereby the iron, cobalt, arsenis, and sulphur get oxygenated by the atmospheric moisture, but the nickel continues in the metallic state. This action of the weather was not extended beyond a year, otherwise the nickel lecame affected, and injured the cobalt blue. For a description of the mode of separating nickel from cobalt now adupted in this country, see Nickel Fig. 542 is a longitudinal section of the furnace
 employed in the metallurgy of cobalt, and fig. 543 a horizoutal section upon a level with the sole of the hearth. It is constructed for wood fuel, and the hearth is composed of fire-bricks or tiles. The rapours and gases disengaged in the roasting, pass off through the flues $a d$, into the channels $b b$. and thence by c into the common vent, or poison chamber. The flues are cleared out by means of openings left at suitable situations iu the brick-work of the chimneys.

The azure manufacture is carried on chiefly in winter, in order that the external cold may favour the more complete condensation of the acids of arsenic. From 3 to 5 cwt . of Schlich (pasty ore) are roasted at one operation, and its bed is laid from 5 to 6 inches thick. After two hours it must be turned over; and the stirring must be repeated cvery half hour, till no more arsenic is observed to exhalc. The proeess being then finished, the ore must be raked out of the furnace, and another charge introduced.
The duration of the roasting is regulated partly by the proportion of sulphur and arsenic present, and partly by the amount of niekel ; which must not be suffered to become oxidised, lest it slould spoil the colour of the smalt. The nickcl ores should he but slightly roasted, so as to convert the nickel into speiss. The roasted oar must be sifted in a safety apparatus. 'The loss of weight in the roasting anounts, upon the average, to 36 per cent. "The roasted ore has a brownish grey hue, and is called suflur in German, and is distributed into different sorts. FF S is the finest sufflor ; FS, fine; OS, ordinary ; and MS, middling. These varietics proceed from various
mixtures of the calcined ores. The roasted ore is gronnd up along with sand, elutriated, aud, when dry, is called zaffre. It is theu mixed with a sufficient quantity of potash for converting the mixture into glass.

Fiys. 544 and 545 represent a round smalt furnace, in two vertical sections, at right angles to each other. The fire-place is vaulted or arched; the flame orifice a, is in the middle of the furnace; b is the feed hole; c, a funnel which serves as an ash-pit, and to supply air; d, openings through which the air arrives at the fuel, the wood being placed upon the vault ; e, knee holes for taking out the scoriæ from the pot bottoms ; f, working orifices, with cast-iron plates g, in front of them. Under these are the additional outlets h. The smoke and flame pass off through the orifices i, which terminate in expanded flues, where the
 sand may be calcined or the wood may be baked. Eight hours are sufficient for one vitrifying operation, during which the glass is stirred about several times in the earthen melting pots.

The preparation of the different shades of blue glass are considered as secrets in the sinelting works; and they are marked with the following letters:-FF F C, the fincst; F C, fine; M C, middling; O C, ordinary. A melting furnace, containing 8 pots of glass, produces in 24 hours, from 24 cwts , of the mixture, 19 cwts. of blue glass, and from $\frac{1}{2}$ to $\frac{3}{4} \mathrm{cwt}$. of scoriæ or speiss
 (speise). The composition of speiss according to Berthier, is,-nickel, $48 \cdot 9$; arsenic, 39.0 ; sulphur, $7 \cdot 8$: copper, $\frac{1}{6} \cdot 6$; cobalt, 3.2 in 100. Nickel, arsenic, and sulphur are its essential constitucnts ; the rest arc accidental and often absent. The freer the cobalt ore is from foreign metals, the finer is the colour, and the deeper is the shade; paler tints are easily obtained by dilution with more glass. The presence of nickel gives a violet tone.
The production of smalt in the Prussian states amounted, in 1830, to $7452 \frac{1}{2} \mathrm{cwts}$; and, in Saxony, to 9697 cwts ; in 1825 , to $12,310 \mathrm{cwts}$.
The following is one process for making smalt. The ore of cobalt is to be reduced to very fine powder, and then roasted with much care. One part, by wcight, is next to be introduced, in successive small portions, into an iron vessel, in which three parts of acid sulphate of potash has been previously fused, at a moderate temperature. The mixture, at first fluid, soon becomes thick and firm, when the fire is to be increased, until the mass is in perfect fusion, and all white vapours have ceased. It is then to be taken out of the crucible with an iron ladle, the crucible is to be recharged with acid sulphate of potash, and the operation continued as before, until the vessel is useless. The fused mass contains sulphate of cobalt, neutral sulphate of potash, and arseniate of iron, with a little cobalt. It is to be pulverised, and boiled in an iron vessel, with water, as long as the powder continues rough to the touch. The white or yellowish white residue, may be allowed to separate from the solution, either by deposition or filtration. Carbonate of potash. free from silica, is then to be added to the solution, and the carbonate of cobalt thrown down is to be separated and well washed, if possible, with warm water ; the same water may be used to wash other portions of the fused mass. The filtered liquid which first passes is a saturated solution of sulphate of potash : being cvaporated to dryness in an iron vessel, it may be reconverted into acid sulphate by fusing it with one-half its weight of sulphuric acid : this salt is then as useful as at first.
The oxide of cobalt thus obtaincd contains no nickel ; so little oxide of iron is present, that infusion of galls does not show its presence; it may contain a little copper,
Vor. I.
if that metal exists in the ore, but it is easily separated by the known methods. Sometimes sulphuretted hydrogen will produce a yellow brown precipitate in the solution of the fused mass; this, however, contains no arsenic, but is either sulphuret of antimony or bismuth, or a mixture of both.

It has been found advantageous to add to the fused mass, sulphate of iron, caleined to redness, and one-tenth of nitre when the residue is arseniate of iron and eontains no arseniate of cobalt. There is then no oeeasion to aet upon the residue a second time for the eobalt in it.

This process is founded on the eireumstanees that the sulphate of eobalt is not deeomposed by a red heat, and that the arseniates of iron and cobalt are insoluble in all neutral liquids. It is quite evident that, to obtain a perfeet result, the execss of aeid in the bisulphate of potash must be completely driven off by the red heat applied.
$202,580 \mathrm{lbs}$. of smalts were imported into the United Kingdom in 1844 , and 125,653 were retained for home consumption.

In 1844, $474,656 \mathrm{lbs}$. of zaffres were imported, and 481,936 are stated to have been retained for home consumption.

In 1856 we imported of cobalt ore, 428 tons, and of oxide of cobalt, 34 tons.
COBALT BLUE, or THENARD'S BLUE is prepared by preeipitating a solution of sulphate or nitrate of eobalt by phosphate of potash, and adding to the resulting gelatinous deposit from three to four times its volume of freshly deposited alumina, obtained by the addition of carbonate of soda to a solution of common alum. This mixture, after being well dried and ealeined in a erueible, affords, when properly ground, a beautiful blue pigment.

COCCULUS INDICUS, or Indian berry, is the fruit of the Menispermum cocculus, a large tree, which grows upon the eoasts of Malabar, Ceylon, \&c. The fruit is blaekish, and of the size of a large pea. It owes its nareotic and poisonous qualitics to the vegeto-alkaline ehemieal prineiple ealled picrotoxia, of which it eontains about one-fiftieth part of its weight. It is sometimes thrown into waters to intoxicate or kill fishes ; and it is said to have been employed to inerease the inebriating qualities of ale or beer. Its use for this purpose is prohibited by act of parliament, under a penalty of 200 l . upon the brewer, and 500 l . upon the seller of the drug.
However, Dr. Pereira states, "I am not acquainted with any official returns of the quantity annually brought over. From a druggist's private books I find that in 1834 above 2500 bags entered-and this probably is mueh below the quantity imported. The greater part is eonsumed for illegal practiees-prineipally for adulterating beer and ale." Morriee, in his treatise on brewing, directs that in the manufacture of porter, three pounds of cocculus indicus should be added to every ten quarterns of malt. "It gives," says he, " an inebriating quality which passes for strength of liquor;" and he adds, "that it prevents the second fermentation in bottled beer, and consequently the bursting of the bottles in warm elimates."

The Editor of this work had a fluid extract, the name of whieh was unknown to the eustom-honse offieers, submitted to him some years since. This was an extract of this deleterious drug, of whieh a very large quantity was then in the London docks.

The powder of the berries mixed with lard is used to destroy pedieuli : henee the Germans call those grains Läusehorner, or lousegrains.

COCHINEAL. (Cochenille, Fr.; Kochenille, Germ.) Coehineal was taken in Europe for a seed, but was proved by Leeuwenhoeek to be an inseet, the female of that species of shield-louse, or coccus, diseovered in Mexico so long ago as 1518. It is brought to us from Mexieo, where the animal lives upon the cactus opuntia or nopal. Two sorts of eochineal are gathered-the wild, from the woods, called by the Spanish name grana silvestra; and the eultivated, or the grana fina, termed also mesteque, from the name of a Mexiean province. The first is smaller, and eovered with a cottony down, which inereases its bulk with a matter useless in dyeing ; it yields, therefore, in equal weight, much less eolour, and is of iuferior price to that of the fine eochincal. But these disadvantages are compensated in some measure to the growers by its being reared more easily and less expensively; partly by the effeet of its down, whieh enables it better to resist rains and storms.

The wild coehineal, when it is bred upon the field nopal, loses in part the tenacity and quantity of its eotton, and aequires a size double of what it lias on the wild opuntias. It may therefore be hoped, that it will be improved by persevering care in the rearing of it, when it will approach more and more to fine coehineal.
The fine cochineal, when well dried and well preserved, should have a grey colour bordering on purple. The grey is owing to the powder which naturally covers it, and of which a little adheres; so also to a waxy fat. The purple shade arises from the colour extracted by the water in whieh they were killed. It is wrinkled with
parallel furrows across its back, which arc intersected in the middle by a longitudinal one; hence, when vicwed by a magnifier, or even a sharp naked cye, especially after being swollen by soaking for a little in water, it is casily distinguished from the factitious, smooth, glistening, black grains, of no value, called East India cochineal, with whieh it is often sbamefully adulterated by certain London merchants. The genuine coehineal has the shape of an cgg, bisected through its long axis, or of a tortoise, being rounded like a sbield upon the back, flat upon the belly, and without wings.

These female insects arc gathered off the leaves of the nopal plant after it has ripened its fruit, a few only beiug left for brood, and are killed, either by a momentary immersion in boiling water, by drying upon heated plates, or in ovens: tbe last become of an ash-grey colour, constituting the silver cochineal, or jaspeada; the second are blackish, called negra, and are most estecmed, being probably driest; the first are reddish brown, and reckoned inferior to the otber two. Tbe dry cochineal being sifted, tbe dust, witb the imperfect insects and fragments which pass through, are sold under tbe name of granillo. Cocbineal keeps for a long time in a dry place. Hellot says tbat he has tried some 130 years old, which produced the same efiect as now cochineal.

We are indebted to MM, Pelletier and Caventou for a chemical investigatiou of coehineal, in which its colouring matter was skilfully eliminated.

Purified sulpburic ether acquired by digestion with it a golden-yellow colour, amounting according to Dr. John to one-tenth of the weight of tbe insect. This infusion left, on evaporation, a fatty wax of the same colour.
Cocbineal, exhausted by ether, was treated with alcohol at $40^{\circ} \mathrm{B}$. After 30 infusions in the digester of M. Cherrcul, the cochincal continucd to retain colour, although the alcobol had ceased to have any effect on it. The first alcoholic liquors were of a red verging on yellow. On cooling, they let fall a granular matter. By spontaneous evaporation, this matter, of a fine red colour, separated, assuming more of the crystalline appearance. These species of crystals dissolved entirely in water, wbich they tinged of a yellowish-red.
This matter has a very brilliant purple-red colour; it adheres strongly to the sides of the vessels; it has a granular and somewhat crystalline aspect, very different, however, from tbose compound crystals alluded to above; it is not altered by the air, nor does it sensibly attract moisture. Exposed to the action of heat, it melts at about the fiftietb degree Centigrade (122° Fahr.). At a highcr temperature it swells up, aud is decomposed with the production of carburetted hydrogen, much oil, and a small quantity of water, very slightly acidulous. No trace of ammonia was found in these products.

Tbe colouring principle of coehincal is very soluble in water. By evaporation, the liquid assumes the appearance of syrup, but never yields crystals. It requires of this matter a proportion almost imponderable to give a perceptible tinge of bright purplish red to a large body of water. Alcohol dissolves this colouring substance, but, as we bave already stated, the more highly it is rectified the less of it does it dissolve. Sulpburic ether does not dissolve tbe colouring principle of cochineal; but weak acids do, possibly owing to tbeir water of dilution. No acid precipitates it in its purc state. This colouring principle, however, appears to be precipitablc by all the acids wben it is accompanied by the animal matter of the cochineal.
The affinity of alumina for the colouring matter is very remarkable. When that eartb, newly precipitated, is put into a watery solution of the colouring principle, this is immediately seized by the alumina. Tbe water becomes colourless, and a fine red lake is obtained, if we operate at the temperature of the atmosphere; but if the liquor has been bot, the colour passes to crimson, and the shade becomes more and more violet, according to the elevation of the temperature, and the continuance of tbe ebullition.
Tbe salts of tin exercise upon the colouring matter of cochineal a remarkable action. The muriatic protoxide of tin forms a very abundant violct precipitate in the liquid. This precipitate verges on crimson, if the salt contains an excess of acid. The muriatic deutoxide of tin produces no precipitate, but changes the colour to scarlet-red. If gelatinous alumina be now added, we obtain a fine rcd precipitate, which does not pass to crimson by boiling.
To tbis colouring principle the name carminic acid has been given. It forms the basis of the beautiful pigment called carmine. A very complete cxaminatiou of the colouring matter of the cochincal insect bas been made by Mr. Warren De la Rue. -See Carmine.
The carmines found in the shops of Paris lave been analysed, and all yielded the same products. They were decomposed by the action of heat, with the diffusion at first of a very strong smell of burning animal matter, and then of sulphur. A white powder
remained, amounting to about onc-tenth of the matter employed, and which was found to be alumina. Other quantities of carmine were treated with a solution of caustic potash which completely dissolved them, with the exception of a fine red powder, not acted on by potaslı and coneentrated aeid, and which was recognised to be red sulphurct of mercury, or vermilion. 'This matter, evidently forcign to the carmine, appears to have been added, in order to increase its weight.

The preceding observations and experiments scem calculated to throw some light on the art of dycing scarlet and crimson. The former is effected by employing a cochineal bath, to which there have been added, in determinate proportions, acidulous tartrate of potash, and nitro-muriatic deutoxide of tin. The effect of these two salts is now well knowu. The former, in eonsequence of its excess of acid, teuds to redden the colour, and to precipitate it along with the animal niatter; the latter acts in the same manner, at first by its excess of acid, then by the oxide of till which falls down also with the carmine and animal matter and is fixed on the wool, with which it las of itself a strong tendency to combine. MM. 1'elletier and Caventou remark, that "to obtaiu a beautiful shade, the muriate of tin ought to be entirely at the maximm of oxidisement ; and it is in reality in this state that it must exist in the solution of tin prepared according to the proportions prescribed in M. Berthollet's treatise on dyciug."

We hence see why, in dyeing scarlet, the employment of alum is carefully avoided, as this salt tends to convert the shade to a crimson. The presence of an alkali would seem less to be feared. The alkali would occasion, no doubt, a crimson-coloured bath; but it would be easy in this case to restore the colour, by using a large quantity of tartar. We should, therefore, procure the advantage of having a bath better charged with colouring matter and animal substance. It is for experience on the large scale to determine this point. As to the earthy salts, they must be carefully avoided.

To obtain crimson, it is sufficient, as we know, to add alum to the cochineal bath, or to boil the scarlet cloth in alum water. It is also proper to diminish the dose of the salt of tin, since it is found to connteract the action of the alum.

The alkalies ought to be rejected as a means of changing scarlet to crimson. In fact, crimsons by this process cannot be permanent colours, as they pass into red by the action of acids.

According to M. Von Grotthuss, carminc may be deprived of its golden shade by ammonia, and subsequent treatment with acetic acid and aleohol. Sinee this fact was made known, MI. Herschel, colour maker at Halle, has prepared a most beautiful carminc.

The officers of Her Majesty's Customs detected some time siuce a system of adulterating cochineal, which had been practised for many years upon a prodigious scale by a mercantile house in London. Dr. Ure stated that he had analysed about 100 samples of such cochineal, from which it appears that the genuine article is moistened with gum watcr, agitated in a box or leather bag, first, with sulphate of baryta in fine powder, afterwards with bonc or ivory black, to give it the appearance of negra cochineal, and then dried. By this means about 12 per cent. of worthless heavy spar is sold at the price of cochincal, to the enrichment of the sophisticators, and the disgrace and injury of British trade and manufactures.
The specific gravity of genuine cochineal is 1.25 ; that of the cochineal loaded with the barytic sulphate, 135 . This was takeu in oil of turpentinc, and reduced to water as unity, becanse the waxy fat of the insects prevents the intimate contact of the latter liquid with them, and the ready expulsion of air from their wrinkled surface. They are not at all acted upon by the oil, but are rapidly altered by watcr, especially when they have been gummed and barytified.
Humboldt states that so long ago as the year 1736, there was imported into Europe from South America cochineal to the value of 15 millions of francs. Its high price had for a long time induced dyers to look out for cheaper substitutes iu dyeing red, and since science has introduced so many improvements in tinctorial processes, both madder and lac have been made to supersede cochincal to a very great extent.
In order to ascertain the value of cochineal for dyeing we must have recourse to comparative experiments. We are indcbted to MM. Robiquet and Anthon for two methods of determining the quality of cochineals, according to the quantity of carmine they contain. The process of M. Robiquet consists in decolourising equal volumes of decoction of different cochincals by chlorine. By using a graduated tubc, the quality of the cochineal is judged of by the quantity of chloriuc employed for decolourising the decoction. The process of M. Antlion is founded on the property whiels the hydrate of alumina possesses of precipitatiug the carmine from the decoction so as to decolourise it entirely. The first process, which is very food in the hands of a skilful chemist, does not appear to us to be a convenient method for the consumer; in the
first place, it is difficult to procure perfectly identical solutions; in the next place, it is impossible to keep them a long time without alteration. We know that ehlorine dissolved iu water reaets, cven in diffused light, ou this liquid; decomposes it, appropriates its elenents, and gives rise to some compounds which possess an actiou quite differeut from that of the chlorine solution in its primitive state. The second proeess seems to us to be preferable, as the proof liquor may he kept a long while withont alteration. A graduated tuhe is also used; each division represents one-huudredth of the colouring matter. 'Thus the quantity of proof liquor added exactly represents the quantity in luundredtls of colouring matter contained in the decoction of cochiueal which has been submitted to cxamination. The following remarks from a practical dyer are valuahle.
"The eolouring matter of cochineal heing soluble in water, I have used this solvent for exlausting the different kinds which I have submitted to examination in the colourimcter. I operated in the following manner:-I took a grain of each of the eochineals to he tried, dried at 1220 Fahr.; I suhmitted them five consecutive times to the action of 200 grains of distilled water at water-hath heat, each time for an hour ; for evcry 200 grains of distilled water I added two drops of a concentrated solution of acid sulplate of alumina and of potash. This addition is neecssary to obtain the decoctions of the different cochineals exactly of the same tint, in order to he able to eomparc the intensity of the tints iu the colourimeter. *
"In order to estimate a cochineal in the colourimeter, two solutions, obtained as described ahove, are taken; some of these solutions are introduced into the colourimetric tubes as far as zero of the scalc, which is equivalent to 100 parts of the superior scale ; these tubes arc placed in the box, and the tint of the liquids enclosed is compared by looking at the two tubes through the eye-hole; the box being placed so that the light falls exactly on the extremity where the tuhes are. If a difference of tint is ohserved hctween the two liquors, water is added to the darkest (which is alway's that of the coehineal taken as type) until the tuhes appear of the same tint. \dagger
"The number of parts of liquor which are contained in the tuhe to which water las heen added is then read off; this number, compared with the volume of the liquor eontaiued in the other tube, a volume which has not becn changed, and is cqual to 100 , indicates the relation hetween the colouring power and the relative quality of the two cochineals. And if, for example, 60 parts of water must be added to the liquor of good cochineal, to bring it to the same tint as the other, the relation of volume of the liquids contained in the tuhes will be in the case as 160 is to 100 , and the relative quality of the cochineals will he represented hy the same relation, since the quality of the samples tricd is in proportion to their colouring power."-(Napier.)
In 1856 we imported cochineal in the quantitics given from the following places : -

	Cwts.		Computed real value.
Holland	- 506	- -	- $x^{10,752}$
Frauce -	421	- -	- 8,941
Mexieo -	- 6,432	- -	- 139,577
Central America	- $\quad 466$	- -	- - 36,634
Peru-	187	- -	9,906
British West Indies	- 134	- -	3,968
Honduras -	- 8,106	- -	- 179,910
Other parts	- 147	- -	13,116
	18,123		£ ${ }^{391,661}$

The exports from Guatemala consist principally of cochineal, the staple and almost the only article of exportation for a numher of years past. It is chiefly produced in Old Guatemala, nine lcagues distant from Guatemala, and also in Amatcllan, ahout six leagues distant. The lising of this insect is suhject to so many accidents and contingencies that it is excessively precarious, and, above all, the weather has a great cffect upon it. Taking all this into consideration it is surprising that attention has not been directed to the cultivation and production of other articles suited to the climate and soil of Guatemala, and less liahle to destruction by unseasonable rains and atmospheric ehanges than cochinoal. It is reasonahly to be feared that, if a longer tilue be suffered to pass, the cochineal of this country cannot compete with that

[^45]of Teneriffe, and other parts of the world, where it is now beginaing to be cultivated with success; and, should this happen, it would tend to diminish the trade of this country with England. The following is a statement of the exports of coelineal frums this colony:-

1888									
1851	-	-	-	-	-	-	-	-	$1,231,610$
1852	-	-	-	-	-	-	-	-	567,000
1853	-	-	-	-	-	-	-	-	312,700
18.54	-	-	-	-	-	-	-	-	$1,757,300$
1855	-	-	-	-	-	-	-	-	$1,204,510$

COCK-METAL. An inferior metal; a mixture of copper and lead used for making cocks. See Alloy.

COCOA. A well known preparation from the seeds (nuclei cacao) of the Thicobroma cacao. It is stated to be made from the fragments of the seed coats mixed with portions of the kernels.

COCOA-NUTS. (Noix de Coco, Fr.; Cocosnusz, Germ.) The cocoa-nut tree (cocos mucifcra) is a native of tropical clinates. It is one of the most important and valuable of the palms. Imports. - Number of Cocoa-nuts, $1,879,388$; computed real value, $£ 11,903$.

COCOA-NUT OIL Cocoa-nut oil is obtained by tmo processes,-one is by pressure, the other by boiling the bruised nut and skimming off the oil as it forms on the surface.

It is a white solid having a peculiar odour. It fuses a little above $70^{\circ} \mathrm{Fahr}$; becomes readily rancid, and dissolves easily in alcoliol. It consists of a solid fat called cocin or cocinine (a combiuation of glycerine and cocinic, or coco-stearic acid), $\mathrm{C}^{27} \mathrm{H}^{26} \mathrm{O}^{3}+2 \mathrm{HO}$; 01, according to Richardson, $\mathrm{C}^{527} \mathrm{H}^{52} \mathrm{O}^{3}+\mathrm{Aq}$, and of a liquid fat or oleive. Cocoa-nut oil is used in the manufacture of soap and candles.

Mr. Soames obtained a patent in September, 1829, for making stearine and elaine by the following process:-
IIe takes the substance called cocon-nat oil, in the state of lard, in which it is imported into this country, and submits it to a strong hydraulic pressure, having made it up in small packages, 3 or 4 inches wide, 2 feet long, and 1 or $1 \frac{1}{2}$ inch thick. These packages are formed by first wrapping up the said substance in a strong linen cloth, of close texture, and then in an outward wrapper of strong sail cloth. The packages are to be placed side by side, in single rows, between the plates of the press, allowing a small space between the packages for the escape of the elaine.

The temperature at which the pressure is begun, should be from about 50° to 55°, or in summer as nearly at this pitch as can be obtained, and the packages of the said substance intended for pressure should be exposed for several hours previously to about the same temperature. When the packages will no longer yield their oil or elaine freely at this temperature, it is to be gradually raised; but it must at no time exceed 65°, and the lower the temperature at which the separation can be effected, the better will be the quality of the oil expressed.

When the packages are sufficiently pressed, that is, when they will give out no more oil, or yield it only in drops at long intervals, the residuum in them is to be taken out and cleansed and purified, which is done by melting it in a well-tinned copper vessel, which is fixed in an outer vcssel, havinga vacant space between, closed at the top, into whichsteam is admitted, and the heat is kept up moderately for a sufficient time to allow the impurities to subside; but if a still higher degree of purity is required, it is necessary to pass it through filters of thiek flannel lined with blotting paper:
Having been thus cleansed or purificd, it is fit for the manufacture of candles, which are made by the ordinary process used in making mould tallow candles. Having thus displosed of the stearine, or what is called the first product, he proceeds with the claiuc or oil expressed from it, and which he calls the second product, as follows: that is to say, he purifies it by an admixture, according to the degree of its apparent foulness, of from 1 to 2 per cent. by weight of the sulphric acid of commerce, of about 1.80 specific gravity, diluted with six times its weight of water. The whole is then to be violently agitated by mechanical means, and he prefers for this purpose the use of a vessel constructed on the prineiple of a common barrel churn. When sufficiently agitated, it will have a dirty whitish appearance, and is then to be drawn off into another vessel, in which it is to be allowed to settle, aud any scum that rises is to be carcfully taken off. In a day or two the impurities will be deposited at the bottom of the oil, which will then become clear, or nearly so, and it is to be filtered through a thick woollen cloth, after which it will be fit for burning in ordinary lamps and for other uses.
The process of scparating the elaine from the stcarine, by pressure, in manner aforesainl, had never before been applied to the substanec ealled cocon-nut oil, and eonsequently no product had heretofore been obtained thereby from that substance fit for
being manufactured into candles in the ordinary way, or for heing refined hy any of the usual modes, so as to hurn in ordinary lamps, both which objects are attained hy this method of preparing or manufacturing the said substance.
Candles well made from the ahove material are a very superior article. The light produced is more brilliant than from the same sized candle madc of tallow; the flame is perfectly colourless, and the wick remains free from cinder, or any degree of foulness during comhustion. See Candles. Elatne. Stearine.
COD. A fish helonging to the family of Gudidre.
In 1854 it was calculated that the take in Scotland of cod and ling amounted to $3,523.269$ individuals, of which $1,385,699$ were from the Shetland Islands. 109,684 cod were cured dried, and 6166 barrels were cured in pickle; whilst 58,042 cod were disposed of fresh, making a total of 167,726 cod cured or fresh, of which large quantity 19,557 cod were exported. In 1852 no less than 102,659 tons of American shipping were employed in this hranch of trade, and the aggregate value of fish exported in the same year amounted to 453,610 dollars. - (Baird, Cyclopadia of the Natural Sciences.)

COD-LIVER OIL. The oil ohtained from the livers of several varieties of the Gadide family; especially from the torsk, Brosmius brosme. It is administered medicinally: it acts mainly as a nutritive body, and the old idea that its medicinal value depended on the iodine it contained is now proved to be false, since it holds no iodiue in composition. Since the demand for cod-liver oil has heen large, it has been extensively adulterated with other fish oils.

CODEINE $\mathrm{C}^{36} \mathrm{H}^{21} \mathrm{NO}^{6}+2 \mathrm{Aq}$. An alkaloid contained in the mother liquid of morphine. It is a powerful and interesting hase, hut is not employed to any great extent in medicine. Its administration is said to he followed in some cases hy violent itching of the skin. It has heen chiefly examined by Anderson.-C. G. W.

CODILLA OF FLAX. The coarsest parts of the fibre sorted out by itself. Sce Flax.

COFFEE Cafè, Fr.; Kaffee, Germ.) The coffee is the seed of a tree of the family rubiacere, and belongs to the Pentandria monogynia of Linnæus. There are several species of the genus, but the only one cultivated is the Coffca Arabica, a native of Upper Ethiopia and Arahia Felix. It rises to the height of 15 or 20 feet; its trunk sends forth opposite hranches in pairs above and at right angles to each other; the leaves resemhle those of the common laurel, although not so dry and thick. From the angle of the lcaf-stalks small groups of white flowers issue, which are like those of the Spanish jasmine. These flowers fade very soon, and are replaced by a kind of fruit not unlike a cherry, which contains a yellow glairy fluid, enveloping two small seeds or herries convex upon one side, flat and furrowed upon the other in the direction of the long axis. These seeds are of a horny or cartilaginous nature ; they are glued together, each being surrounded with a peculiar coriaceous memhrane. They constitute the coffee of commerce.

It was not till towards the end of the 15th ceutury that the coffee tree began to be cultivated in Arahia. Historians usually ascribe the discovery of the use of coffee as a beverage to the superior of a monastery there, who, desirous of preventing the monks from sleeping at their nocturnal services, made them drink the infusion of coffee upon the report of shcpherds, who pretended that their flocks were more lively after browsing on the fruit of that plant. The use of coffee was soon rapidly spread, but it encountercd much opposition on the part of the Turkish government, and hecame the occasion of puhlic assemhlies. Under the reign of Amurath III. the mufti procured a law to shut all the coffee-houses, and this act of suppression was renewed under the minority of Mahomet IV. It was not till 1554, under Solyman the Great, that the drinking of coffee was aecredited in Constantinople; and a century elapsed hefore it was known in London and Paris. Solyman Aga introduced its use into the latter city in 1669, and in 1672 an Armenian estahlished the first café at the fair of Saint Germain.

When coffee became somewhat of a uecessary of life from the influence of habit among the people, all the European powers who had colonies between the tropics projected to form plantations of coffee trees in them. The Dutch were the first who transported the coffee plant from Moka to Batavia, and from Batavia to Amsterdam. In 1714 the magistrates of that city sent a root to Lonis XIV. which he caused to he planted in the Jardin du Roi. This heeame the parent stock of all the French coffee plantations in Martinique.

The most extensivc culture of coffee is still in Arabia Felix, and principally in the kingdom of Yemen, towards the cantons of Aden and Mocha. Although thesc comntries are very hot in the plains, they possess mountains where the air is mild. The coffec is generally grown half-way up on their slopes. When cultivated on the lower grounds it is always surrounded by large trees, which shelter it from the torrid sun, and prevent its fruit from withering before their maturity. The harvest is gathered
at three periods : the most considcrable occurs in May, when the reapers begin by spreading cloths under the treers, then slaking the branches strongly, so as to make the fruit drop, which they collect, and expose upon unats to dry. They then puss over the dricd berries a very heavy roller, to break the envelopes, which are afterwards winnowed away with a fan. The interior bean is again dried before being laid up in store.

In Demerara, Berbice, and some of onr West India islands, where much good coffee is now raised, a different mode of treating the pulpy fruit and curing the beans is adopted. When the cherry-looking berry has assumed a deep-red colour, it is gathered, and immediately subjected to the operations of a mill composed of two wooden rollers, furnished with iron plates, which revolve near a third fixed roller ealled the chops. The berries are fed into a bopper above the rollers, and falling down between them and the chops, they are stripped of their outer skins and pulp, whilc the twin beans are separated from each other. These beans then fall upon a sieve, which allows the skin and the pulp to pass through, while the hard beans accumulate and are progressively slid over the edge into baskets. They are next stecped for a night in water, thoroughly washed in the morning, and afterwards dried in the sun. They are now ready for the peeling mill, a wooden edge wheel turned vertically by a horse yoked to the extremity of its horizontal axis. In travelling over the coffee, it bursts and detaches the coriaceous or parchment-like skin which surrounds each hemispherical bean. It is then freed from the membranes by a winnowing machine, in which four pieces of tin made fast to an axle are caused to revolve with great velocity. Corn fanncrs would answer better than this rude instrument of negro invention. The coffee is finally spread upon mats or tables, picked clean, and packed up for shipment.

The most highly estcemed eoffee is that of Mocha. It has a smaller and a rounder bean; a nore agreeable taste and smell than any other. Its colour is yellow. Next to it in European reputation is the Martinique and Bourbon coffees; the former is larger than the Arabian and more oblong; it is rounded at the ends; its colour is greenish, and it preserves almost always a silver gray pellicle, which comes off in the roasting.

The Bourbon coffee approaches nearest to the Mocha, from which it originally sprung. The Saint Domingo coffee has its two extremities pointed, and is nuch less estecined than the preceding.

The coffee tree flourishes in hilly districts where its root ean be kept dry, while its leaves are refresled with frequent showers. Rocky ground, with rich decomposed mould in the fissures, agrees best with it. Though it would grow, as we have said, to the height of 15 or 20 feet, yet it is usually kept down by pruning to that of 5 feet for increasing the production of the fruit, as well as for the convenience of cropping. It begins to yield fruit the third year, but is not in full bearing till the fifth, docs not thrive beyoud the twenty-fifth, and is useless in general at the thirtieth. In the coffee husbandry the plants should be placed 8 feet apart, as the trees throw out extensive horizontal branches, aud in holes 10 or 12 feet deep to secure a constant supply of moisture.

Coffee has been analysed by a great many chemists, with considerable diversity of results. The best analysis perhaps is that of Schrader. He found that the raw beans distilled with water in a retort communicated to it their flavour and rendered it turbid, whence they seem to contain some volatile oil. On reboiling the beans, filtering, and evaporating the liquor to a syrup, adding a little alcohol till no more matter was precipitated, and then evaporating to dryness, he obtained 17.58 per cent. of a yellowishbrown transparent extract, which constitutes the characteristic part of coffee, though it is not in that state the pure proximate principle, called caffeine. Its most remarkable reaction is its prodncing, with both the protoxide and the peroxide salts of iron, a fine grass green colour, while a dark green precipitate falls, which re-dissolves when an acid is poured into the liquor. It produces on the solution of the salts of copper searcely any effect, till an alkali be added, when a very beautiful grcen colour is produced which may be employed in painting. Coffce beans contain also a resin, and a fatty substance somewhat like suet. According to Robiquet, ether extracts from coffce beans nearly 10 per cent. of resin and fat, but he probably exaggerates the amount. The peculiar substance caffeine contained in the above cxtract is crystallisable. It is remarkable in regard to composition, that after urea and the uric acid, it is among organic produets the richest in azote. It was dissolved and deseribed in 1820 by Rungé. It does not possess alkaline properties. Pfaff obtained only 90 grains of eaffeine from six pounds of coffce beans. 'There is also an acid in raw coffee to which the name of caffeic acid has been given. When distilled to dryness and decomposed, it has the smell of roasted coffce. See Cafferine.

Coffe undergoes important changes in the process of roasting. When it is mastecl to a yellowish brown it loses, according to Cadet, $12 \frac{1}{2}$ per cent. of its weight, and is in this state difiecult to grind. When roasted to a chestnut brown it loses is per cent.;
and when it becomes entirely black, though not at all earbonised, it las lost 23 per cent. Schrader has analysed roasted coffee comparatively with raw coffee, and he found in the first $12 \frac{1}{2}$ per cent. of an extraet of coffee soluble in water and aleohol, which possesses nearly the properties of the extract of the raw coffec, although it has a decper brown colour, and softens more readily in the air. He found also 10.4 of a blackish brown gum; 5.7 of an oxygenated extract, or rather apotheme soluble in alcohol, insoluble in water; 2 of a fatty suhstance and resin; 69 of burnt vegetahle fibre, insoluble. On distilling roasted coffee with water, Schrader obtained a product which contained the aromatic principle of eoffee; it reddened litmus paper, and exhaled a strong and agreeahle odour of roasted coffee. If we roast coffee in a retort, the first portions of the aromatie principle of coffee condense into a yellow liquid in the reeeiver; and these may be added to the coffee roasted in the eommon way, from which this matter has heeu expelled and dissipated iu the air.
Chenevix affirmed that by the roasting of coffee a certain quantity of tannin possessing the property of precipitating gelatine is generated. Cadet made the same ohservation, and found, moreover, that the tannin was most abundant in the lightly roasted coffee, and that there was nearly none of it in eoffee highly roasted. Payssé and Sclirader, on the contrary, state that solution of gelatine does not precipitate either the decoctiou of roasted coffee or the alcoholic extract of this coffee. Rungé likewise asserts that he conld ohtain no precipitate with gelatine; hut he says that ulbumen precipitates from the deeoction of roasted coffee the same kind of tannin as is precipitated from raw coffee by the acetate of lead, and set free from the lead hy sulphuretted hydrogen. With these results my own experiments agree. Gelatine eertainly does not disturb clear infusion of roasted eoffee, hut the salts of irou hlacken it.

Schrader endeavoured to roast separately the different principles of coffee, hut none of them exhaled the aromatie odour of roasted coffee except the horny fibrous matter. He therefore eoncludes that this substance eontrihutes mainly to the characteristic taste of roasted coffee, which canuot he imitated hy any other vegetable matter, and which, as we have seen, should be ascrihed chietly to the altered eaffeic acid. According to Garot, we may extract the caffeine without alteration from roasted coffee by preeipitating its decoction by subacetate of lead, treating the washed precipitate with sulphuretted hydrogen, and evaporating the liquid product to dryness.

To roast coffee rightly we should keep in view the proper ohjeets of this process, which are to develop its aroma, and destroy its toughness, so that it may be readily ground to powder. Too much heat destroys those principles which we slould wish to preserve, and substitutes new ones which have uothing in eomunon with the first, but add a disagreeable empyreumatic taste and smell. If, on the other hand, the rawness or greenuess is not removed hy an adequate heat, it masks the flarour of the heau, and injures the heverage made with it. When well roasted in the sheet iron cylinder set to revolve over a fire, it should have a uniform chocolate colour, a point readily hit by experienced roasters, who uow manage the business very well for the principal coffee dealers both of London and Paris, so far as my judgment cau determine. The development of the proper aroma is a criterion hy which coffee roasters frequently regulate their operations. When it loses more than 20 per cent. of its weight, cottee is, sure to be injured. It should never he gronnd till immediately hefore infusion.
Liebigs views of the process of nutrition have given fresh interest to every analysis of articles of food. A watery infusion of coffee is used in almost every country as a beverage, and yet it is uneertain whether it is an article of nutrition or merely a coudiment. A minute examination of the raw seed, or coffee bean as it is called, must preecde the determination of that disputed point. Caffeine is the principle hest known, being most easily separated from the other substances, resisting most powerfully chemical reageuts, and hy assuming a erystalline state is discoverable in very small quantities.

The constituents of coffee are: 1. Vegelable fibrine, which is the largest constituent, being an elastic horny suhstance, in whieh the other substances are iucorporated. If we dry the heans at the heat of boiling water for several weeks we ean easily reduce them to a fine powder, aud hy washing with ether, and then boiling in alcohol and water, we extract the soluhle matter from the fibrine, which may then be boiled with weak solution of potash, and afterwards weak mmriatic acid, as long as any matter is taken up. The purifieation being completed by boiling in water, the fibriue remains; and when rubbed in a mortar resenbles stareli; when roasted it gives out the odour nearly of wood.
2. Futty matter: the beans digested in ether give out a yellow-eoloured matter, which on evaporation becomes huttery, with an odour of raw eoffee, and amounts to
10 per cent. of the benus.
3. Caffeinc: the ethereal solution contains caffeinc, which may be removed by slaking with a solution of watcr.
4. Leguminc: in addition to an acid which agree in its properties with the acid found in oak and cinchona, wc fiud in the coffee beans legumine similar to that of beans. This leguminc contains sulphur, whieh is the cause of their blackening a silver vessel in which the bcans may be boiled with an alkali. Legumine and caffeine are the only nitrogenous constituents of coffee heans, consequently the only substances which could be nutritious, but they are not soluble in hot water as they exist in roasted eoffee, and therefore it may be reckoned merely an exhilarating beverage.

Roasted coffee affords a much richer infusion to hot water containing a minute quantity of corbonate of soda, and improves the quality of the coffee on the stomaeh, by ucutralising the caffeic aeids.

Coffee, as sold in the shops in its roasted and ground state, is often adulterated with a variety of substances, but ehiefly with ehicory.-See Curcorx.

If tannin exists in roasted coffee, as maintained long ago by Chenevix, and generally admitted siuce, it must be very different from the tannin present in tea, eateehu, kino, oak bark, willow-bark, and other astringent vegetables ; for it is not, like them, precipitated by either gelatine, albumen, or sulphate of quinine. With regard to the action upon the animal cconomy of coffee, tea, and cocoa, which contain onc common chemical principle ealled caffeine or theine, Liebig has lately advanced some ingenious riews, and has, in particular, endeavoured to show that, to persons of sedentary habits in the present refined state of society, they afford eminently useful beverages, which contribute to the formation of the charaeteristic principle of bile. This important seereted fluid, deemed by Liebig to be subservient to the function of respiration, requires for its formation much azotised matter, and that in a state of combination analogous to what exists in eaffeine. The quantity of this prineiple in tea and coffee being only from 2 to 5 per cent., might lead one to suppose that it could have little effect upon the system even of regular drinkers of their infusions; but if the bile contains only one-tenth of solid matter, ealled choleic acid, which contains less than 4 per cent. of azote, then it may be shown that 3 grains of caffeine would impart to 500 grains of bile the azote which nceurs in that crystalline precipitate of bile ealled taurine, which is thrown down from it by mineral acids.

One atom of eaffeine, 9 atoms of oxygen, and 9 of water, being added together, produec the composition of 2 atoms of taurine. Now this is a very simple combination for the living organism to effect; one already paralleled in the gencration of hippuric acid in urine, by the introduction of benzoic acid into the stomach; a physiological discovery made by my son, which is likely to lead to a more successful treatment of some of the most formidable diseases of man, particularly gout and gravel.

If the preeeding views be established, they will justify the instinctive love of mankind for tea, coffee, and cocoa. See Tea.
Our imports of coffee in 1856 were -
Entered for home consumption
Computed real value of total imports

Cofree Roasting and Grinding. The gratefulness of the beverage afforded by this seed depends upon many circumstances, which are seldom all combined. The nature of the soil, the climate, seed, mode of culture, and cure, influence greatly the quality of the fruit. But when all these partieulars concur, and the berry is of the finest sort, and most highly appreciated by the importer, it may be ruincd in the roasting; for if some berries be under and some over done, the whole when ground will yicld an unpalatable infusion. The due point to which the torrefaction should be earried may be determined partly by the colour and partly by the loss of weight, which points, however, are different for each sort of coffee. But perfect equality of nstulation is difficult of attainment with the ordinary eylindrieal machines. Messrs. Law, of London and Edinburgh, had long been dissatisfied with the partial manner in which the cylinder performed its duty, as it geuerally left some part of its conteuts black, some dark brown, and others paler ; results which greatly injure the flavour of the beverage madc with the coffee. Mr. William Law overeane these diffieulties by his invention of the globular roaster, actuated by a compouud motion like that of our carth. This roaster, with its double rotary motion, is heated not over an open fire but in an atmosphere of hot air, through a cast metal easing. The globe is so mounted as to revolve liorizontally, and also from time to time vertieally, wherehy the included beans are tossed about and intermingled in all direetions, aud inequality of torrefaction is seareely possible. The position of the globe in fig. 546 shows it as turned up by a powerful leverage out of the cast iron heater, preparatery to its being emptied and re-charged.

Messrs. Dakin and Co. have patented another kind of apparatus, which consists mainly of steam-chests, upon the upper surface of which the coffee is roasted.

The coffee when equally roasted is finely ground in a mill between horizontal stones, like tbat of a corn-mill, and is tbereby capable of giving out all its virtues to either boiling or cold water.

COIR. The outer coating of the cocoa-nut, often weighing one or two pounds, when stripped off longitudinally, furnishes the fibres called by the native name of Coir, and used for small cables and rigging.

In Eagland these fihres are used in matting and for coarse brush work. Iu Price and Co.'s works they are advantageously employed, placed between iron trays and on the surface of the cocoanut and other concrete oils and fats, and subjccted to great pressure; the liquid oil flows ont leaving solid fats behind. From the abundance, cheapness, and durability of tbis substance it is likely to
 come into more general use, and it is even now very seriously proposed as a material for constructing Ocean Telegraphs, from its lightness and power of resisting sea-water. The qualities of coir for many purposes have been establisbed for ages in the East Indies, Dr. Gilchrist thns deseribes the properties of coir ropes:- "They are particularly elastic and buoyant, floating on the surface of the sea; therefore, when, owing to the strength of the current, a boat misses a ship it is usual to veer out a quantity of coir, having previonsly fastened an oar, or small cask, \&c., to its end. Thus the boat may be easily enahled to haul up to the ship's stern. Were a coir hawser," he adds, "kept on board every ship in the Britisb Marinc, how many lives would probably be saved?"
It is stated that fresh water rots coir in a very short time, corroding it in a surprising degree, whereas salt water absolutely strengthens it, seeming to increase the elasticity. Coir is therefore unfit for running rigging, especially for vessels subject to low latitudes, it being easily snapped in frosty weather.
Nothing can equal the ease wi:h whieh a ship rides at anchor, when her cables are of coir. As the surges approach the bows, the vessel gradually recedes in consequence of the eable yielding to their force; but as soon as they have passed, it contracts again drawing the vessel gradually back to her first position: the lightness of the material adds to this effect, for the cable would float if the anchor did not keep it down. At the present time the forces exerted upon cables and the angles assumed under different circumstances, in paying out submarine tclegraphic cables, have been the suhject of practical attention and theoretieal investigation. Some of the greatest autlioritics have assumed that the fnrces exerted, between the hottom of the sea and the ship's stern, had reference only to forms or waves of the cahles, representing some curve between the vertical and horizontal line, but always concave to tbe water surface. For a curve to exist, in the opposite dircction, was named only as a condition, without evidence of any practical kind to show that it really existed, or called for any attention to investigate it. So long since, however, as 1825, Dr. Gilchrist, among others, had described this very opposite curve of the coir; viz. - of being, when in action as a cable, curved with a concave surface toward the bottom of the sea; a fact well known to the experienced sailors of England, as well as to the natives who employ these coir cahles so extensively on the East Indian coast.
"A hempen cable always makes a curve downwards; betwcen the vessel and the anchor, but a coir cahle makes the curve uppards. Therefore, if a right line werc drawn from the hawse-hole, to the ring of the anchor, it would be something like the axis of a parabolic spindle, of which the cahles would form, or nearly so, the two elliptic segments."

In the employment of materials for ocean telcgraphs, especially for deep sea purposes, the use of iron and the proposal for using coir and other light substances, have caused the telegraphic means to be spoken of as "heavy" or "light" cables. Dr. Allau, of Edinburgh, propuses the ahundant use of eoir to make a light cable, say,
half the weiglit of the lightest hitherto made, the Atlantie eable. Me states that a deep sea eable may be componded to weigh not more than 10 ewt. per mile : while the elieapness, durability in salt water, lightness, and abundant supply, will give it advantages over gutta percla and other substanecs used to form the bulk of the lightest eables hitherto emplayed.

When coeoa-nuts are sawed into two equal parts aeross the grain of the eoir eoating. they form excellent table brushes, causing wood planks to assume a very high polishi by frietion. If the shell should be left, the edges should be perfectly smooth, and then they will not seratel. It is a good mode to strip off the eoir, and, after soaking it in water, to beat it with a leavy wooden mall until the pieees beeome pliant, when they slould be firmly bound together with an iron ring; the ends being levelled, the implement is fit for use ; a little bees' wax, rubbed oeeasionally upon them, adds greatly to the lustre of the furniture; of course the polish is mainly due to strength and rapid aetion producing the friction upon the wood, and other artieles of furuiture.

In India, the coarse bark of the nuts is extensively used to eleanse houses, and washing the clecks of vessels. Coarse stuff, matting, and bagging are made of the fibres, as well as ropes, sails, and cables.

The general preparation is simple; the fibrous husks or coats whieh envelope the eoeoa-nuts, after being for some time soaked in water, become soft; they are then beaten to separate other substanees with whieh they are mixed, which fall away like saw-dust, the strings or fibres being lefl; this is spun into long yarms, woven into saileloth, and twisted into eables, even for large vessels. Cordage thus made is considered preferable, in many respeets, to that brought from Europe, espeeially the advantage of floating in water.

On burning the ligneous envelope of the eoeoa-nut an empyreumatie oil is obtained by the inhabitants of the island of Sumatra, and used by them for staining the teeth; aud a light velvet-like carbon which is found useful in painting.

COKE. (Eng. and Fr.; Abgeschwefelte, Germ.) It is neeessary to distinguish between what is ealled gas-eoke and oven-eoke. The word coke applies, properly, to the latter alone; for in a manufaeturing sense, the former is merels einder. The produetion of good eoke requires a eombination of qualities in coal not very frequently met with; and hence first-rate coking eoals ean be proeured only from certain distriets. The essential requisites are, first, the presence of very little earthy or ineombustible ash; and, secondly, the more or less infusibility of that ash. The presenee of any of the salts of lime is above all objectionable; after which may be elassed siliea and alumina; for the whole of these have a strong tendency to produee a vitrifieation, or slag, upon the bars of the furnace in which the cokc is burnt; and in this way the bars are speedily eorroded or burnt out; whilst the resulting clinker impedes or destroys the draught, by fusing over the interstiees of the bars or air passages. Iron pyrites is a common obstacle to the eoke malker: but it is found in praetiee, that a protracted application of heat in the oven dissipates the whole of the sulphur from the iron, with the produetion of bisulphuret of earbon and metallic earburet of iron, the latter of whieh alone remains in the eoke, and, unless silica be present, has no great disposition to vitrify after oxidation. Where the iron pyrites exists iu large quautities it is separated by the coal washing machines, some of whieh will be deseribed in a general article.-See Washing Machines. One object, therefore, gained by the oven coke mannfaeturer over the gas maker, is the expulsion of the sulphuret of carbon, and eonsequent purificatiou of the residuary eoke, Another, and a still more important consequence of a long sustained and high heat is, the condensation and contraction of the coke into a smaller volume, whieh, therefore, permits the introduetion of a muel greater weight into the same space; an advantage of vast importanee in blast furnaces, and above all, in loeomotive engines, as the repeated introduetiou of freslı charges of coal fuel is thus prevented. Jart of this eondensation is due to the weight of the superinemmbent mass of eoal thrown into the eoke oven, by which (when the coal first begius to eake or fuse together) the partieles are foreed towards cach other, and the eaver-
nous character of cinder got rid of: hut the chief contraction arises, as we have said, from thie natural quality of carbon, which, like alnmina, goes on contracting, the longer and higher the heat to which it is exposed. Hence, good coke cannot be made in a short time, and that used in locomotive engiues is commonly from 48 to 96 , or even 120 hours in the process of manufacture.
The prospects of improvement in coke-makiug point rather to alterations in the oven than in the process. Formerly it was not thought possihle to utilise the heat evolved by the gaseous constituents of the coal ; but now, as an example of the incorrectness of this idea, it may be stated that at the Felling Cliemical Works, 200 tons of salt per week arc made by the waste heat alone, and it is also employed in partially heating the hlast for one of the furuaces. There appears no valid reason why sets of coke ovens might not be so arranged as mutually to compensate for each other, and produce upon one partieular flue a constant and uniform cffect. Contrivances of this kind have been projected,-hut hitherto, we may suppose, without uniform success, as many of our large coke makers still contiuue the old mode of working.
The following figure, 547. represents a shachtofen, or pit-kiln, for coking coals in Germany. a is the lining (chemise), made of fire brieks; the enelosing walls are huilt of the same material ; b, b, is a cast-iron ring covered with a east-iron plate c. The floor of the kiln is massive. The coals are iutroduced, and the coke taken out, through a hole in the side d; during the process it is bricked up, and closed with an iron door. In the surrounding walls are 4 horizontal rows of flues e, e, e, e, which are usually iron pipes; the lowest row is upon a level with the floor of the kiln ; and the others are each respectively one foot and a balf higher than the preceding. Near the top of the shaft there is an iron pipe f, of from 8 to 10 inches in diameter, which allows the incoercible vapours generated in the coking to escape into the condenser, which consists cither of wood or hrick chambers. For kindling the coal, a layer
 of wood is first placed on the bottom of the kiln.
The coking of small coal is performed upon vaulted heartls, somewhat like bakers' ovens, but with still flatter roofs. Of such kilns, several are placed alongside one another, each being an ellipse deviating little from a circle, so that the mouth may project hut a small spacc. The dimensions are such, that from 10 to 12 cuhic feet of coal-culm may be spread in a layer 6 inches deep upon the sole of the furnace. The top of the flat arch of fire brick should he covered with a stratum of loam and sand.
Figs. 548 and 549 represent such a kiln as is mounted at Zabrze, in Upper Silesia, for coking small eoal. Fig. 548 is the ground plan; fig. 549 the vertical section in the line of the long axis of fig. 548. a, is the sand-hed of the hearth, under the brick sole; b, is the roof of large fire-hricks; c, the covering of loam ; d, the top surface of sand; e, the orifice in the front wall, for admission of the culm, and removal of the coke, over the sloping stone f. The flame and vapours pass off above this orifice, through the chimney marked g, or through the aperture h, into a lateral chimney, i, is a bar of iron laid across the front of the door, as a fulcrum to work the iron rake upon. A laycr of coals is first kindled upon the hearth, and when this is in brisk ignition, it is covered with the culm in successive sprinklings. When the coal is sufficiently coked, it is raked out, and quenched with water.

Fig. 550 represents a simple coking meiler, or mound,
 constructed in a circular form round a central chim which small horizontal flues are are covered with culm or slack, and the heap is kindled from certain openings towards the circumference. Fig. 551 represents an ohlong meiler, sometimes made 100 or 150 feet in length, and from 10 to 12 in breadth. The section in the middle of the
figure shows how the lmops are piled up; the wooden stakes are lifted out when the heap is finished, in order to introduce kindlings at various points; and the rest of

551

the meiler is then covered with slack and clay, to protect it from tbe rains. A jet of smoke and flame is seen issuing from its left end.

An excellent range of furnaces for making a superior article of coke, for the service of the locomotive engines of the London and Birmingham Railway Company, has been erected at the Camden Town station; consisting of 18 ovens in two lines, the whole discharging their products of combustion into a horizontal flue, which tcriminates in a chimney-stalk, 115 feet high. Fig. 552 is a ground plan of tbe ellip-

tical ovens, each being 12 feet by 11 internally, and having 3 feet thickness of walls. a, a, is the mouth, $3 \frac{1}{2}$ feet wide outside, and about $2 \frac{3}{4}$ feet within. b, b, are the entrances into the flue; they may be shut more or less completely by horizontal slabs of fire-brick, resting on iron frames, pushed in from behind, to modify the draught of air. Tbe grooves of thesc damper-slabs admit a small stream of air to completc the combustion of the volatilised particles of soot. By this means the smoke is well consumed. The flue c, c, is $2 \frac{1}{2}$ feet higb, by 21 inches wide. The cbimney d, at the level of the flue, is 11 feet in diameter inside, and 17 outside; being built from an elegant design of Robert Stephenson, Esq. e, e, are the keys of the iron hoops. whicb bind the brickwork of the oven. Fig. 553 is a vertical section in the line A, b, of fig. 552, showing, at b, b, and e, e, the entrances of the different ovens into tbe horizontal flue ; the direction of the draught being indicated by the arrows. f, f, is a bed of concrete, upon which the wbole furnace-range is built, the level of the ground being in the middle of tbat bed. g, is a stanchion on which the cranc is mounted; h is a section of the chimney wall, with part of the interior to the left of the strong line. Fig. 554 is a front elevation of two of these elegant cokc ovens; in which the bracing hoops i, i, i, are shown; k, k, are the cast-iron doors, strengtbened outside with diagonal ridges ; each door being $5 \frac{1}{2}$ feet high, by 4 feet wide, and lined internally with fire-bricks. They are raised and lowered by means of chains and counterweights, moved by the crane l.
Each alternatc oven is charged, between 8 and 10 o'clock cvery morning. with $3 \frac{1}{2}$ tons of good coals. A wisp of straw is thrown in on the top of the heap, which takes fire by the radiation from the dome (which is in a state of dull ignition from the preceding operation), and inflames the smoke then rising from the surface, by the reaction of the hot sides and bottom upon the body of the fuel. In this way the smoke is consumed at the very commencement of the process, when it would other-
wise be most ahundant. The coking process is in no respect a species of distillation, but at complete combustion of the volatile principles of the coal. The mass of coals is first kindled at the surface, wherc it is supplied with abundance of atmospheric oxygen; because the doors of the ovens in front, and the throat-vents hehind,

ward order, cannot emit into the atmosphere any more of the above-mentioned gases than the smallest heap.

The coke heing perfectly freed from all fuliginous and volatile matters hy a calcination of upwards of 40 hours, is cooled down to moderate ignition by sliding in the dampers, and sliding up the doors, which had heen partially closed during the latter part of the process. It is now observed to form prismatic concretions, some-

554

what like a columnar mass of hasalt. These are loosened hy iron bars, lifted out upon shovels furnished with long iron shanks, which are poised upon swing chains with hooked ends, and the lumps are thrown upon the pavement, to he extinguished by sprinkling water upon thein from the rose of a watering can; or, they might he transferred into a large chest of shect-iron sct on whecls and then covered up. Good coals, thus treated, yield 80 per cent. of an excellent compact glistening coke; weighing ahout 14 cwt . per chaldron,

The loss of weight in coking in the ordinary ovens is usually reckoned at 25 per cent.; and coal, which thus loses one-fourth in weight, gains one-fourth in hulk.

Labourers who have been long employed at rightly-constructed coke ovens secm to enjoy remarkahly good health.

Mr. Ehenezer Rogers, of Abercarn, in Monmouthshire, has lately introduced a new method of coking, which he thus describes.
"A short time ago a plan was mentioned to the writer as having been used in Westphalia, by which wood was charred in small kihus: as the form of kiln described was cuite new to him, it led him to some reflection as to the principles on which it acted, which were found to be so simple and etfective, that he determined to apply them on a large scale for coking coal. The result has been that in the course of a few months the original idea has been so satisfictorily matured and developed, that instead of coking 6 tons of coal in an oven costing $£ 80,150$ tons of coal are now being coked at onec in a kiln costing less than the former single oven.
"Figs, 555 and 556 are a side elevation and plan of one of the new coking kilns to a suall seale; Fig. 557 is an enlarged transverse section.

"D D are the walls of the kiln, which are provided with horizontal flnes, E, F, which open into the side or bottom of the mass of coal. Connected with each of these flues arc the vertical chimneys, G, H. The dotted lines I I, fig. 556, represent a movable railway, by which the coal may be brought into the kiln and the coke removed from it. In filling the kiln with coal, carc is taken to preserve transverse passages or flues for the air and gases between the corresponding flues E F in the opposite walls. This is cffected by building or constructing the passages at the time with the larger pieces of coal, or else by means of channels or flues permanently formed in the bed of the kiln. When the coal is of different sizes, it is also advantageous to let the size of the pieces diminish towards the top of the mass. The surface of the coal when filled in is covered with small coal, ashes and other suitable material.
"When the kiln is filled the openings k at the ends are built up with bricks, as shown dotted; the kiln is not covered by an arch, but left entirely open at the top The apertures of the flues F and the chimneys G are then closed, as shown in fig. 557, and the coal is ignited through the flues E ; the air then enters the flucs E and passes through the coal, and then ascends the chimneys n, as shown by the arrows. When the eurrent of air has procecded in this direction for some hours, the flues x and chimneys H are closed, and F and G are opened, which reverses the direction of the current of air through the mass. This alternation of the current is repeated as often as may be required. At the same time air descends through the npper surface of the mass of coal. When the mass is well ignited, which takes place in from 24 to 36 hours, the external apertures of the flues E and F are closed, and the chimners G and н opened : the air now enters through the upper surface of the coal only, and descends through the mass of the coal, the products of combustion passing up the chimneys.
"The coking gradually ascends from the bottom of the mass to the top, and can he
easily regulated or equalised by opening or closing wholly or partially the apertures of the flucs or chimneys. The top surface of the coal being kept cool by the descending current of air, the workman is enabled to walk over it during the operation ; lie inserts from time to time at different parts of the surface an iron har, which is easily pushed down until it reaches the mass of coke, by which its further descent is prevented. In this way the workman gauges the depth at which the coking process is taking place, and if he finds it to have progressed higher at one part than at another, he eloses the chimneys communicating with that part, and thus retards the process there, This gauging of the surface is carricd ou without difficulty until the coking process has arrived close to the top. The gases and tarry vapours produced hy the distillalation or comhustion descend through the interstices of the incandescent mass helow. and therc deposit a portion of the carbon contained in them, the residual gases pass. ing up the chimneys. The coke at the lower part of the kiln is effectually protected from the action of the air, hy being surrounded and enveloped in the gases and vapours which descend through it and are non-supporters of combustion.
"When the mass of coal has heen coked up to the top, which takes place in ahout seven days, it is quenched with water, the walls closing the end openings к, are taken down, and the coke is removed. Wheu a portion has heen removed, a movable railway is laid in the kiln, so as to facilitate the removal of the remainder of the coke.
"The flues \mathbf{E} and \mathbf{F} may enter at the hottom of the kiln, or at the sides ahove the hottom, as in fig. 557; in the latter case the space below, up to the level of the hotton of the flues, may he filled with small coal, which hecomes coked by the radiated heat from the iucandescent mass ahove. The transverse passages through the mass are then constructed upou this bed of small coal with the larger lumps of coal, as hefore mentioned. The flues and chimneys need not necessarily be horizontal and vertical; and instead of connecting a separate chimney with each transverse flue, flues may he constructed longitudinally in the walls of the kiln, so as to connect two or more of the transverse flues, which are then regulated hy dampers, conveying the gaseous products from them into chimneys of any convenient height; the arrangement first descrihed, however, and shown in the drawings, is preferred. The gaseous products may be collected, and tar and ammonia and other chenical compounds manufactured from them hy the usual modes. The coking or charring of peat and wood may be effceted in a similar manner to that already described with regard to coal.
" The new kilns have proved entirely successful; they are already in use at some of the largest iron works in the kingdom, and are heing erected at a numher of other works. The great saving in first cost of oven, economy in working and maintenance, increased yield, and improved quality of coke, will probahly soon cause this mode of coking to supersede the others now in use. The kilins are most advantageously made ahout 14 feet in width, and 90 feet in length, and 7 feet 6 inches in height; this size of kiln contains about 150 tons of coal."
From the long experience of this gentleman we are induced to quote yet further from his memoir.
" The process of coking converts the coal into a porous mass; but this is done during the melting of the coal, at which moment the gases in libcrating themselves form very minute huhhles; hut the practical result is the same as in wood coal, allowing a large surface of carbon in a small space to he acted upon hy the blast. As a gencral rule, coke made rapidly has larger pores and is lighter thau coke made slowly ; it accordingly hears less llast, and crumbles too easily in the furnace.
"The process of coking in the ordinary ovens may be thus explained. When the oven is filled with a proper charge, the coal is fircd at the surface by the radiated heat from the roof; cnough air is admitted to consume the gases given off by the coal, and thus a high temperature is maintained in the roof of the oven. The coal is hy this means melted ; and those portions of it which, under the influence of a high temperature, can of themselves form gaseous compounds, are now given off, forming at the moment of their liberation small huhbles or cells; the coke now left is quite this stage of the pross a further supply of air is allowed to have access to it. At columuar structure. When the coke is leftes a pentagonal or five-sided shape, and formed, it becomes harder and coke is left exposed to heat for some time after it is furnace and decrepitate on exposure to the from being less liahle to crush in the

It has been often remarked as a stranc blast. yield of coke; hence all the arrangemge fact, that the hotter the oven the better the ovens. This fact is however the result of of flues to keep up the temperature of the coal is melted as above mentioned, the hydromen well known to chemists. When the carben for each two atoms of hydrogen, forming bicarhuretted hyd up two atoms of this at once escapes, but it has to pass upwards thearhuretted hydrogen gas ($\mathrm{C}^{2} \mathrm{H}^{2}$); is at a higher temperature than the melted coal belowe red hot coke ahove, which VoI. I.
hydrogen gas is exposed to a bright red heat it is decomposed, forming carburetted hydrogen gas $\left(\mathrm{CHI}^{\mathrm{s}}\right)$, and depositing one atom, or onc half of its carbon, in a solid form. Consequently in the process of coking, if the oyen is in good working order and the coke hot enough, the liberated carbon is detained in its passage upwards, and either absorbed by the coke, or crystallised per se upon it. This is simply illustrated by passing ordinary illuminating gas through a tube heated to a bright red heat ; the tube will soon become coated internally and ultimately filled with a carbonaccous deposit produced by the decomposition of the bicarburetted liydrogen contained in the gas.
"It is found that some coal which is too dry or not sufficiently bituminous to coke when put into the oven by itself in lumps, will coke porfectly if crushed small aur well wetted with water and charged in this state. This fact, if followed out, would lead to an examinatiou of the chemical nature of the cffect produced by the watcr, and would point the way to further improvements."
"Charred Coal," as it is callcd, must be regarded as a species of coke. It has been largely employed in lieu of charcoal in the manufacture of tin plates. This preparation is also a discovery of Mr. Ebenezer Rogers, who thus describes its manufacture:

The preparation of the "charred coal" is simple. The coal is first reduced very small, and washed by any of the ordinary means; it is then spread over the bottom of a reverberatory furnace to a depth of about four inches; the bottom of the furnace is first raised to a red heat. When the small coal is thrown over the bottom a great volume of gases is given off, and much ebullition takes place : this ends in the production of a light spongy mass, which is turned over in the furnace and drawn in onc hour and a half. To completely clear off the solphur, water is now freely sprinkled over the mass until all smell of the sulphuretted hydrogen produced ceases. Charred coal has reen hitherto produced on the floor of a coke civen, whilst red hot after drawing the charge of cokc. See Tin Plate Manufacture.

A process has for some time been gaining ground in France known as the "Système Appolt," from its being introduced by two brothers of that name. The coking furnaces employed are vertical, and they arc in compartments. The authors have published a description of their process and a statement of its results, "Curbonisation de la Houille Système Appolt, décrit par les Auteurs, MM. Appolt Frères:" Paris, 1858; to which we must refer our readers.

COLCOTHAR OF VITRIOL (Rouge d ' Angleterre, Fr.; Rothes Eisenoxyd, Germ.), the antiquated name of an oxide of iron. It is the brown-red peroxide of iron, produced by calcining sulphate of iron with a strong heat, levigating the resulting mass, and elutriating it into an impalpable powder. A better way of making it, so as to complete the separation of the acid, is to mix 100 parts of the green sulphate of iron with 42 of common salt, to calcine the mixture, wash away the resulting sulphatc of soda, and levigate the residuum. The sulphuric acid in this case expels the chlorine of the salt in the form of muriatic acid gas, and saturates its alkaline base produced by the chemical reaction; whence an oxide will be obtained frec from acid, much superior to what is commonly found in the shops. The best sort of polishing powder, called jeweller's rouge, or plate powder, is the precipitated oxide of iron prepared by adding solution of soda to solution of copperas, washing, drying, and calcining the powder in shallow vessels with a gentle heat, till it assumes a deep brown-red colour.
COLLIDINE. $\mathrm{C}^{16} \mathrm{H}^{11} \mathrm{~N}$. A volatile base discovered by Anderson in bone oil, and subsequently found in shale naphtha, in the basic fluid obtained by acting on cinchonine with potash, and in common coal naphtha. Its density is 0.921 , and its boiling point, 354°.-(C. G. W.)
COLLODION. M. Malgaigne communicated to the French Medical Journals some remarks on the preparation of gun cotton for surgical purposes. Several French chemists, at the suggestion of M. Malgaignc, attempted to make an ethereal solution of this compound by pursuing the process recommended by Mr. Maynard in the Amcrican Journal of Medical Sciences, but they failed in procuring the cotton in a statc in which it could be dissolved in ether. It appears that these experimentalists had employed a mixture of nitrie and sulphuric acids ; but M. Miallie ascertained, after many trials, using a mixto in a state fitted for solution was much more easily procured by

For the information of our readers we give here a description of M. Miallie's process for its preparation. It appears from the results obtained from this chemist, that cotton in its most explosive form is not the best fitted for making the cthereal solution:-

		Parts by w		
Finely powdered nitrate of potash -	-	-	-	-40
Concentrated sulphuric acid	-	-	-	-
Carded cotton				

Mix the nitrate with the sulphuric acid in a poreelain ressel, tlicn add the cotton, and
agitate the mass for three minutes by the aid of two glass rods. Wash the cotton, without first pressing it, in a large quantity of water, and when all aeidity is removed (indicated by litmus paper), press it firmly in a cloth. Pull it out into a loose mass, and dry it in a stove at a moderate heat.

The eompound thus obtained is not pure fulminating cotton; it always retains a small quantity of sulphuric acid, is less inflammable than gun cotton, and it leaves a carbonaceous residue after explosion. It has, however, in a remarkable dcgree the property of solubility in ether, especially when mixed with a little alcohol, and it forms therewith a very adhesive solution, to which the name of collodion has been applied.

Preparation of Collodion.

Prepared cotton -				Parts by weight.	
Pe	-	-	-	-	-125
Rectififed sulphuric ether	-	-	-	-	-
Rectifed alcohol -	-	-	8		

Put the cotton with the ether into a well-stopped bottle, and shake the mixture for some minutes. Then add the aleohol by degrees, and continue to shake until the whole of the liquid acquires a syrupy consistency. It may be then passed tlirough a cloth, the residue strongly pressed, and the liquid kept in a well securcd bottle.
Collodion thus prepared possesses remarkable adhesive properties. A piece of linen or cotton cloth eovered with it and made to adhere by evaporation to the palm of the hand, will support a weight of twenty or thirty pounds. Its adhesive power is so great that the cloth will commonly be torn before it gives way. The collodion cannot be regarded as a perfect solution of the eotton. It eontains suspended and floating in it a quantity of vegetable fibre, which has eseaped the solvent action of the ether. The liquid portion may be separated from these fibres by a filter, but it is doubtful whether this is an advantage. In the evaporation of the liquid these undissolved fibres by felting with each other appear to give a greater degree of tenacity and resistanee to the dried mass.

For the application of collodion to photography, see Photocraphy.
COLOUR. In Physics, a property of light, producing peculiar impressions through the eye, to which we give the substantive term Colour. Evcry surface, differing in its mechanieal strueture or chemical charaeter, acts differently towards the light falling on it, and aceording to the amount of absorption, or reflection, or refraction, so is the colour of the ray. White is an entire reflection, and bluck a total absorption, of all the rays, and consequently are not colours. Water Colours will be distinetly named under their several heads. The following valuable table has been corrected with much eare, after a vcry extended series of experiments.

A Table of Oil Painters' Colours, with Notices of their Chemical and Artistical Properties, by William Linton, Associate Juror for the Examination of the Colours sent from various Parts of the World to the Great Exhibition of 1851.

	Colours.	Chemical Desimation and Preparation.	Artistical Properties and Durability.	Additional Colours,-with Remarks.
	Flake White.	Carbonate of Lead, with an excess of Oxide. Plates of lead, exposed to the action of vine. gar-steam in beds of fermenting tan.	The best White extant for Oil or Resin vehicles when pure, which is generally ascertained by its exceeding whiteness and opacity. Its usual adulterations are Sulphate of Barytes, Chalk, Pipe-clay, \&c., all of which are partially transparent, and consequently appear darker in unctuous or resinous vehicles. It has no injurious action upon Vegetable and other colours, as some havc conjectured. It is perfectly soluble in diluted Nitric or Acetic Acid when free from Pipeclay or Sulplate of $\mathrm{Ba}-$ rytes. It is hlackened by the foul gases common to inost domestic atmospheres, and is more secure in a rapidly drying and protective vehicle. 3 F 2	There are other Whites of Lead, varying in body and brilliancy, and equally obnoxious to the action of mephitic vapours ; as Krems, Roman, and Venetian Whiles, and Sulphate of Lead. The Whites of Bismuth, Pearl, and Antimony are injured by llght as wcll as by mephitic vapours. Those of Zinc, Tin, and Barytes, although they are comparatively secure against the foul gases, are too feeblo in body to be satisfactory in Pattuous or resinous vehicles. a denser preparation, forms an admirable substratum for works in which a powerful impasto is desired.

Additional Culours,-with Remarks.
Thereareother Mineral Yellows, but they are all inore or liss objectionable. 'The Chromates of Lectl, like all preparations of that metal, are blackened by the foul gases. The unitud oxides nf focat and Anthony firmish Nuples Yellow, a colnur readlly aflected by Salphuretted Hydrogen and other foul gases, as well as by light, and by a inoist steel spatulin. Turpith Mineral or Subsilplate of Mercury is rapldy blackened by light, and by the foul airs. Orpiment, or King's Ycllow (Arsenic and Sulphur), is equally destructible; also Patent Yelloun (lead and Salt heated violently).
The Zinc Yellows, of which many have been published, are too deficient in body for oil. Chromate of Cadmium and Oxide of Uranium are fueble in body and seriously injured by mephiticairs, and Chromate of Mercury and Oxide of Ce rium are destroyed by thein. Madder Yellow, like Madder Red, is dissipated by light. Chromate of Barytes (Lemon Yellow) is too feeble in body in Oil. Massicot blackens with foul air; so do Chrome Yellow, and Chrome Orange, and Jaune Mineral, bcing preparations of lead. Besides the European Ochres, may be noticed a great varicty, of almost every conceivable tint, of Red, Orange ycllow, and Purple, from Hindostan, Canada, and Trinidad, which were in the Great Exhibition of 1851. They are perfectly durable.
Palladium Yellow is better avoided, so is Golden Sul. phuret of Antimony. Chromate of Tin darkens in oil, and Platinum Yellow is worthless. Gamboge (vegetable) hleaches in the light. Brown-pink, and others of the same class are also evanescent in their layers. The Vegetable Yellows are not to be depended upon. They soon disappear when applied in delicate tints or thin glazings, especially if subjected to the action of the solar rays.

There are other Mineral Reds which are darable, but they are of inferior quality, and are not needed. Native Cinnabar is inferior in every respect to Vermilion. Venetian Red is an interior representative of \ln dian Red, and Colcolhar astill coarser one. Red Lead blackens in oil; and Iodide of Mercury has no claim to durability. lied Precipitate is worthless. Phosphate of Cobalt (a Piuk Silicate) wants body, and darkens in oil, Mineral Lake (Tin and Chromium) is too fectle in body. Lilae and Crimson Silicates, from Gold, have not body enough for oil painting.
Among Vegetable Reds, the Madders have the best reputatation for standing. All veget. able colours, however, should be lonked upon with suspiciou when used in thin glazings.

Abstract

Additional Colours,-with Remarks. There are other Mineral Blaes, but they are better avoided? The Silicate of Cobalt and Potassa make Cobalt Blup; and the Oxide of Cobalt and Potassa make Smalt: both fecble pigments. Verditer and all the Copper Blates turn Green, and darken in oil. A Blue Frit, a Sllicate of Copper (Alexandrian Blue), brought by Mr. Layard from Nineveh, which has retained its colour for probahly 4000 years. turned black when mixed with oil. The permanence of Vitreous (called Silica) colours, when lerigated tor pigments, is a delusion. They are subject to all the changes and affinities of the sulstances which compnse them. Prussian Blue is liable to change, Indigo fades in the light.

There are other Mineral Greens.

 Those from the Artificial Uitramarine process, thongh durible, are wanting in botly ant ricloness. The Phosphates, Car honates (Malachite), Disulphates, and Acetates of Copper. witlı Mineral, Verditcr, and Verdigris Greens,are blackencd by foul gases, and deoxidisct or darkened by oil. Nickel Green also darkens and blackens in oil. Scheele's Green (Vert Métis), Arsenite of Copper, darkens in oil and foul air. Zinc or Cobalt Green (linuman's Grcen) is permanent, but inferior in body and colour to the Green of Chromium.There are other Browns, but many of them are less durable. Madder Brown, like all the other Madders, is liable to fade. Ivory and Bone Browns are not so permanent as the blacks of those substances. Catechu Brown, rich and transparent, is subject to fly when laid on thinly. Manganese Brown is semi-opaque, bttt a good drier. Prussian Brown (Ferrocyanide of Copper) is affecter by foul gas, and destroyed by Alkaties. Calcinet Prussian Blue is a fine Brown, but troublesome to prrpare. The peaty Browns, probably from thicir vegetable coluruing mattcr, have a slight tendency to become paler whell ased very thinly, and exposed to strong light.

There are other perminent Blacks, as Bone-black (Burnt Bones), Lainp-black (pure Carbon), the Soot of Burnt Resin and Turpontine. Manganeseblack, at nitive product, and a gool drier (Peroxide of Manganese). There are also Black Oclires, native earths, but tliey are not required.

COLOURING MATTERS. The eolonr of any object, either natural or artificial, owes its origin to the cffect produced on it by the rays of light. This effect is either due to the mass or substance of the body itself, as may be scen in the colours of metals and many shells, or it arises from the presence of some forcign substance or substances not absolutely essential to it, and which may in many cases be separated and removed from it. It is in spcaking of these foreign substances which are often found colouring natural objects, or which are employed in the arts for the purpose of imparting colours to various materials, that we generally make use of the term colouring matter. By chemists, however, the term is only applied to organic bodies and not to mincral substances, such as oxide of iron, cinnabar, ultramarine, \&e., which, though they are employed as pigments in the arts, differ very widely in their properties from one another and from colouring matters in the narrower sense of the word. Colouring matters may be defined to be substances produced in animal or vegetable organisms, or easily formed there by processes occurring in nature (such as oxidation or fermentation), and which are either themselves coloured or give coloured eompounds with bases or with animal or vegetable fibre. According to this definition, bodies like carbazotic acid and murexide, which are formed by complieated processes such as never occur in nature, are excluded, though they resemble true colouring matters in many of their properties, such as that of giving iutensely coloured compound bases. Whether, however, even after accepting the above definition, colouring matters can be considered as constituting a natural class of organic bodies, such as the fats, resins, \&c., must still remain doubtful, though moderu research tends to prove that these substances are related to one another by other properties besides the accidental one of colour, and will probably be found eventually to belong in reality to one natural class.

Colouring matters oecur in all the organs of plants, in the root, wood, bark, leaves, flowers and fruit; in the skin, hair, feathers, blood, and various secretions of animals; in inseets, for example, in various species of coccus; and in mollusea, such as the murex. Indeed there are very few plants or animals whose organs do not produce some kind of colouring matter. It is renarkable, however, that tbe colours which are most frequently presented to our view, such as those of the leaves and flowers of plants and the blood of animals, are produced by colouring matters with which we arc but very little acquainted, the colouring matters used in the arts, and which have been examined with most care, being derived chiefly from less conspicuous organs, such as the roots and stems of plants. In almost all cases the preparation of eolouring matters in a state of purity presents great difficuities, so that it may even be said that very few are known in tbat state.

Some colouring matters bear a great resemblance to the so called extractive matters, others to resins. Hence they have been divided into extractive and resinous colouring matters. These resemblances are however of no great importance. The principal colouring matters possess such peculiar properties that they must be considered as bodies altogether sui generis.

As regards their most prominent physical charactcristic, colouring matters are divided into three principal classes; viz, the red, yellow, and blue, the last class comprising the smallest number. Only one true green colouring matter occurs in nature, viz., chlorophyll, the substance to which the green colour of leaves is owing.* Black and brown colouring matters are also uncommon, the black aud brown colours obtained iu the arts from animals or vegetables being (with the exception of sepia and a few others) compounds of colouring matters with bases. The colours of natural objects are often due to the presence of more than one colouring matter. This may easily be scen in the petals of some flowers. If. for instance, the petals of the orangecoloured variety of the Tropcolum majus be treated with boiling water, a colouring matter is extracted which imparts to the water a purple colour. The petals now appear yellow, and if they be treated witb boiling spirits of wine, a yellow colouring matter is extracted, and they then become white. When the purple colouring matter is absent the flowers arc yellow; when, on the contrary, it is present in greater abundance, they assume different shades of brown. Precisely the sane pheuoucna are observed in treating the petals of the brown Calceolaria successively with boiling water and spirits of wine. In many cases colouring matters exhibit, when in au uncombined state, an entirely different colour from what they do when they enter into a state of combination. The eolouring matter of litmus, for instance, is, when uncombined, red, but its compounds with alkalies are blue. The alkaline compounds of alizarine are of a rich violet colour, while the substance itself is reddish-yellow. Many yellow colouring matters become brown by the action of alkalies, and the blue

* Another green colouring matter, derived from different species of fhamnies, has lately been described under the name of "Chlnese Grean." It is stated
colouring matters of flowers generally turn green when exposed to the same iufluence. The elassification of colouring matters, according to colour, is therefore purely artificial. The terms red, yellow, and blue colouring matter, mercly signify that the substauee itself possesses one of these colonrs, or that most of its compounds are respeetively red, yellow, or blue. In almost all cases, even when tbe eolour is not entircly cranged by combination with other bodies, its intensity is much inereased thereby, substances of a pale yellow colour beeoming of a deep yellow, aud so on.

Colouring matters consist, like most other orgauic substances, eitber of earbon, hydrogen, and oxygen, or of those elements in addition to nitrogen. Tbe exact relative proportions of these constituents, however, is known in very few eases, and in still fewer instanees have the chemical formule of the compounds been established with any approach to eertainty. This proeceds on the one hand from the small quantities of these substances usually present in the organs of plants and animals, and the diffieulty of obtaining sufficient quantities for examination in a state of purity, and on the other hand from the eircumstance of their possessing a very eomplex chemical constitution and high atomic weight.

Only a small number of colouring matters are capable of assuming a erystalline form; the greater number, espeeially the so called resinous ones, being perfectly amorphous. A mong those whieh have heen obtained in a crystalline form, may be mentioned alizarine, indigo-blue, quercitrine, morine, luteoline, chrysophan, and rutine. It is probable, however, that when improved methods have been diseovered of preparing colouring matters, and of separatiug them from the impurities with which they are so often associated, many which are now supposed to be amorphous will be found to he capable of erystallising.

Very little is known concerning the actiou of light on colouring matters and their eompounds. It is well known that these bodies when exposed to the rays of the sun, especially when deposited in thin layers on or in fabrics made of animal or vegetable materials, lose much of the intensity of their colour, and sometimes even disappear entirely, that is, they are converted into colourless bodies. But whetber this proeess depends on a plysical action induced by the lighlt, or whether, as is more prohable, it consists in promoting the decomposing action of oxygen and moisture on them, is uncertain. The most stable eolouring matters, such as iudigo-bluc and alizarine in its compounds, are not insensihle to the aetion of light. Others, such as carthamine from safflower, disappear rapidly when exposed to its influence. Colours produced by a mixture of two colouring matters are often found to resist the action of light better than those obtained from one alone. In one case, viz, that of Tyrian purple, the action of light seems to be absolutely cssential to the formation of the colouring matter. The leaves of plants also remain colourless if the plants are grown in darkness, thongh in this case the formation of the green colouring matter is probably not due to the direct ehemical aetion of the light.

The aetion of heat on colouring matters varies very much according to the nature of the latter and the method of applying the heat. \dot{A} moderate degree of heat often changes the hue of a colouring matter and its compounds, the original colour being restored on cooling, an effect which is probably due to physical causes. Sometimes this effect is, without doubt owing to the loss of water. Alizarine, for instanee, crystallised from alcohol, when heated to $212^{\circ} \mathrm{F}$. loses its water of crystallisation, its eolour changing at the same time from reddish-yellow to red. At a still higber temperaturc most colouring matters are entirely decomposed, the produets of decomposition being those usually afforded by organic matters, such as water, earbonic acid, carburetted hydrogen, empyreumatic oils, and, if the substance contains nitrogen, ammonia, or organic bases such as aniline. A few colouring matters, as for example alizarine, rubiacine, indigo-blue, and indigo-red, if carefully heated, may be volatilised without clauge, aud yield beautifully erystallised sublimates, though a portion of the substanee is sometimes decomposed, giving carbon and empyreumatic products.
Colouring matters, like most other organic substances, uudergo decomposition with more or less faeility when exposed to the action of oxygen; and the process may, indeed, be more easily traced, in their case, as it is always accompanied by a eliange of hue. Its cffects may be daily observed in the colours of natural objects belonging to tbe organic world. Flowers, in many cases, lose a portion of their colour before fading. The leaves of plants, before they fall, lose their green eolour and become red or yellow. The colour of venous blood changes, when exposed to the air, from dark red to light red. When exposed to the action of oxygen, blue and red eolouring matters generally become yellow or brown; but the proeess seldom ends here: it eontinues until the colour is quite destroyed; that is, until the substance is converted into a colourless compound. This may be easily seen wben a fabric, dyed of some fugitive colour, is exposed to the air. The intensity of the colour diminishes, in the first instance; it then ehanges in lue, and, finally, disappears entirely. Indeed, the whole process of bleaching in the
air depends on the coucurrent action of oxygen, light, and moisture. The precise nature of the chemical changes which colouring matters undergo, during this process of oxidation, is unknown. No doubt, it consists, generally speaking, in the removal of a portion of their carbon and hydrogen, in the shape of carbonic acid and water, and the conversion of the chief mass of the substanee into a more stable compound, capable of resisting the further action of oxygen. But this statement conveys very little information to the chemist, who, in order to ascertuin the nature of a process of decomposition, requires to know exactly all its products, and to compare their composition with that of the snbstances from which they are derived. The indeterminate and uninteresting nature of the bodies into which most colouring matters are converted by oxidation, has probably deterred chemists from their examination. The action of oxygen on colouring matters varies according to their nature and the manner in which the oxygen is applied, and it is the degree of resistance which they are capable of opposing to its action that chiefly determines the stability of the colours produced by their means in the arts. Indigo-blue shows no tendency to be decomposed by gaseous oxygen at ordinary temperatures; it is only when the latter is presented in a concentrated form, as in nitric or chromic acid, or in a nascent state, as in a solution of ferridcyanide of potassium containing caustic potash, that it undergoes decomposition. When, however, indigo-blue enters into combination witb sulpburic acid, it is decomposed by means of oxygen with as mucb facility as some of tbe least stable of this class of bodies. Some colouring matters are capable of resisting the action of oxygen even in its most concentrated form. Of this kind are rubianine and rubiacine, which, when treated with boiling nitric acid, merely dissolve in the liquid and crystallise out again, when the latter is allowed to cool. The action of atmospheric oxygen on colouring matters is generally promoted by alkalies, and retarded in the presence of acids. A watery solution of bematine, wben mixed with an excess of caustie alkal, becomes of a beantiful purple; but the colour, when exposed to the air, almost innmediately turns brown, the hematine being then completely changed. It is almost needless to observe, that the bodies into which colouring matters are converted by oxidation, are incapable, under any circumstances, of returning to tbeir original state.

The action of reducing agents, that is of bodies having a great affinity for oxygen, on some colouring matters, is very peculiar. If indigo-blue, suspended in water, be placed in contact with protoxide of iron. protoxide of tin, or an alkaline sulphuret, sulphite or phosphite, or grape sugar, or, in short, any easily oxidisable body, an cxcess of some alkali or alkaline earth being present at the same time, it dissolves, forming a pale yellow solution without a trace of blue. This solntion contains, in combination with the alkali or alkaline earth, a perfectly white substance, to which the name of reduced indigo has been applied. When an cxcess of acid is added to the solution, it is precipitated in white flocks. By exposure to the air, either by itself or in a state of solution, reduced indigo rapidly attracts oxygen, and is reconverted into indigo-blne. Hence the surface of the solutions, if left to stand in uncovered vessels, becomes covered with a blue film of regenerated indigo-blue. It was for a long time supposed that reduced indigo was simply deoxidised indigo-blue, and that the process consisted unerely in the indigo-blue parting with a portion of its oxygen, which was taken up again on exposure to the air. It has, however, been discovered that in every case water is decomposed during the process of reduction which indigo-blue undergoes, the oxygen of the water combining with the reducing agent, and the hydrogen uniting witb the indigo-blue, water being again formed when reduced indigo comes in contact with oxygen. Reduced indigo is therefore not a body containing less oxygen that indigo-blue, but is a compound of the latter with hydrogen. There are several red colouring matters which possess the same property, that of being con verted into colourless compounds by the simultaneous aetion of reducing agents and alkalies, and of returning to their original state when exposed to the action of oxygen. There can be little doubt tbat the process consists, in all cases, in the colouring matter combining with hydrogen and parting with it again when the hydruret comes in contact with oxygen.

The action of cblorine on colouring matters is very similar to that of oxygen, though, in general, chlorine acts more energetically. The first effect produced by chlorine, whether it be applied as free chloriue, or iu a state of combinatiou with au alkali, or alkaline earth as an hy pochlorite, usually consists in a change of colour. Blue and red colouring matters generally become yellow. By the coutinued action of chlorine all trace of colour clisappears, and the final result is the formation of a perfectly white substance, which is usually more ensily soluble in water and other menstrua than that from which it was formed. Since it is most commonly by means of chlorine or its compounds that colouring matters are destroyed or got rid of in the arts, as in bleaching fabrics and discharging colours, the process of decomposition which they undergo by means of chlorine has attracted a good deal of attention, and the na mre of the chemical changes, which take place in the course of it, has often been urade a subject of dispute,
though the matter is one possessing more of a theoretical than a practicul interest. It is a well known fact that many organic hodics are decomposed wben they are brought into contact, in a dry state, with dry chlorine gas. The decomposition consists in the elimination of a portion of the lydrogen of the substance and its substitutien by chlorine. When water is present at the same time, the decomposition is, however, not so simple. It is well known that cblorine decomposes water, combining with the hydrogen of the latter and sctting its oxygen at liberty, and it has been asserted, that iu the bleaching of colouring matters by means of cblorine when moisture is usually present, this always takes place in the first instance, and that it is in fact the oxygen which effects their destruction, not the chlorine. This appears, indeed, to be the case occasionally. Rubian, for instance. the body from which alizarine is derived, gives, when deconposed with chloride of lime, phthalic acid, a beautifully crystallised substance, containing no chlorine, which is also produced by the action of nitric acid on rubiau, and is, therefore, truly a product of oxidation. In many cases, however, it is certain that the chlorine itself also enters into the composition of the new bodies produced by its action on colouring matters. When, for instance, cblorine acts on indigo-hlue, chlorisatine is formed, which is indigo-blue, in which one aton of hydrogen is replaced by one of chlorine, plus two atoms of oxygen, the latter being derived from the decomposition of water.
The behaviour of colouring matters towards water and other solvents is very various. Some colouring matters, such as those of logwood and brazilwood, are very casily soluble in water. Otbers, sucb as the colouring matters of madder and quercitron bark, are only sparingly solublc in water. Many, especially the so-called resinous ones, are insoluble in water, but more or less soluble in alcobol and etber, or alkaline liquids. A few, such as indigo-blue, are almost insoluhle in all menstrua, and can only be made to dissolve by converting them, by means of reducing agents, into other bodies soluble in alkalies. Those wbich are soluble in water, are, generally speaking, of the greatest importance in the arts, since tbey admit of more ready application, when they possess this property.

Tbe behaviour of colouring matters towards acids, is often very characteristic. Most colouring matters are completely decomposed by nitric, chloric, manganic, and chrounic acids in consequence of the large proportion of oxygen which these acids contain. With many colouring matters tbe decomposition takes place even at the ordinary temperature ; with others, it only commences when the acid is warmed, especially if the latter be applied in a state of considerable dilution. Concentrated sulphuric acid also destroys most colouring matters, especially if the acid be heated. It scems to act by depriving them of the elcments of water, aud thereby converting them into substances containing more carbon thau before, as may be inferred from the dark almost black colour which they acquire. At the same time the acid generally loses a portion of its oxygen, since sulphurous acid is almost always cvolved on heating. Some colouring matters, sucb as alizarine, arc not decomposed by concentrated sulphuric acid even when the latter is raised to the boiling point ; they mercly dissolve, forming solutions of various colours, from whicb they are precipitated unchanged, on the additiou of water, when they are insoluble or not easily soluble in the latter. Others, again, like indigo-blue, dissolve in concentrated or fuming sulphuric acid, without heing decomposed, and at the same time enter into combination with the acid, forming true double acids. which are easily soluble in water and combine as such with bases. Many colouring matters undergo a change of colour when exposed to the action of acids, the original colour being restored by the addition of an excess of alkali, and this property is made use of for the detcetion of acids and alkalics. The colour of an infusion of litmus, for instance, is changed by acids from hlue to red, and the bluc colour is restored by alkalies. An infusion of the petals of tbe purple dahlia or of the violet becomes red on the addition of acids, and tbis red colour changes again to purple or blue with alkalies, an excess of alkali making it green. The yellow colour of rutine becomes deeper with stroug acids. In most cases, this alteration of colour depends on a very simple chemical change. Litmus, for example, in the state in whicb it occurs in commerce, consists of a red colouring matter in combination with ammonia, the compound being blue. By the addition of an acid, tbe ammonia is removed, and the uncombined red colouring matter makes its appearance. Ammonia and most alkalies remove the excess of acid, and, by combining with the red colouring matter, restore the blue colour. When a colouring matter, like alizarine, is only sparingly soluble in water, its soluhility is gencrally diminished in tbe presence of a strong acid. Hence, by adding acid to the watery solution, a portion of the colouring matter is usually precipitated. It is very seldom that colouring matters are really found to enter into combination with acids. Indeed, only one, viz. berberinc, is capable of acting the part of a truc base, and forming definite compounds with acids. Some acids, such as sulphurous and hydrosulphuric acids, do certainly seem to connbine with some colouring
matters and form with them compounds, in which the colour is completely disguised, and apparently destroyed. If a red rose be suspended in an atmosphere of sulphurous acid it becomes white, but the red colour may be restored by neutralising the acid with some alkali. On this property of sulphurous acid depends the process of bleaching woollen fabrics by means of burning sulphur: In this case the colouring matter is not destroyed but only disguised by its combination with the acid.

Most colouring matters are capable of combining with bases. Indecd, their affinity for the latter, is gencrally so narked that they may be eonsidered as belonging to the class of weak acids. Like all other weak acids they form, with bases, compounds of a very indefinite composition, so much so that the same compound, prepared on two differcut occasions, is often found to be differently constituted. Hence the great difficulty experienced by chemists in detcrmining the atomic weight of colouring matters. There are very few of the latter for which scveral formulæ, all equally probable, may not be given, if the compounds with bases be employed for their determination. The compounds of colouring matters witb bases hardly cver crystallisc. Those with alkalies are mostly soluble in water and amorphous; those with the alkalinc earths, lime and baryta, are sometimes soluble, sometimes insoluble; those with the carths and metallic oxides are almost always insoluble in water. The compounds with alkalies are obtained by dissolving the colouring matter in water to which a little alkali is added, and evaporating to dryness, an operation which must be carefully conducted if the colonring matter is one easily affected by oxygen. The insoluble eompounds, with earths and metallic oxides, are obtained either by double decomposition of a soluble compound with a soluble salt of the respective base, or by adding to a solution of the colouring matter, in water or any other menstruum, a salt of the base containing some weak acid, such as acetic acid. It is remarkable that of all bases none show so much affinity for colonring matters as alumina, peroxide of iron, and peroxide of tin, bodies which ocenpy an intermediate position between acids and bases. If a solution of any colouring matter be agitated with a sufficient quantity of the lydratcs of any of these bases, the solution becomes decolourised, the whole of the colouring matter combining with the base and forming a coloured compound. It is accordingly these bases that are chiefly employed in dycing, for the purpose of fixing colouring matters ou particular portions of the fabric to be dyed. When used for this purpose they are called mordants. Their compounds witb colouring matters are denominated lakes, and are employed as pigments by painters Tbe colours of the compounds usually differ, eitber in kind or degrce, from those of the colouring matters themselves. Red colouring matters often form bluc compounds, yellow ones sometimes give red or purple compounds. The compounds with peroxide of iron arc nsually distinguished by tbe intensity of their colour. When a colouring matter gives with alumina and oxide of tin red compounds, its compound with peroxide of iron is usually purple or black; and when the former are yellow, the latter is commonly olive or brown. Almost all the compounds of colouring matters with bases are decomposed by strong aeids, such as sulphuric, muriatic, nitrie, oxalic, and tartaric acids, and even acetic acid is not without effect on some of these compounds. The compounds with earths and metallic oxides are also decomposed, sometimes, by alkalies. A solution of soap is sufficient to produce this effect in many eases, and dyes are thercfore often tested by means of a solution of soap in order to ascertain tbe degree of permanence which they possess.

No property is so characteristic of colonring matters, as a class, as their behavionr towards bodies of a porous nature, such as charcoal. If a watery solution of a colouring matter he agitated witb charcoal, animal chareoal being best adapted for the purpose, the colouring natter is in general eutirely removed from the solution and absorbed by the charcoal. The combination which takes place under these circumstances is probably not due to any chemical affinity, but is rather an effect of the so-called attraetion of surface, which we often see exerted by bodies of a porous nature, such as charcoal and spongy platinum, and whicli enables the latter to absorb such large quantities of gases of various kinds. That the compound is indced morc of a physical than a ehemieal nature seems to be proved by tbe circumstance that somctimes the eolouring matteris scparated from its combination with the charcoal by means of boiling alcohol, an agent which can hardly be supposed to cxert a stronger chemical affinity than water. It is this property of colouring matters which is made use of by chemists to decolourise solutions, and by sugar manufacturers to purify their sugar. The attraction manifested by coloning matters for animal or vegetable fibre is probably also a phenomenon of the same nature, caused by the porous condition of the latter, and the porterfna affinity of the so-called mordants for colouring matters, may, perhaps, be in part acconnted for by their state of mechanical division being different from that of other bases. Colouring matters, however, vary much from one another in their bebaviour towards animal or regetable fibre. Some, such as indigo-bluc, and the colouring matters of safflower and turmeric, are capable of combining directly with the latter and imparting to them
colours of great intensity. Others are only slightly attracted by them and consequently impart only feeble tiuts; they therefore rcquirc, when they arc cmployed in the arts for the purpose of dyeing, the interposition of an earthy or metallic hase. To the first class Bancroft applied the term substantive colouring mattcrs, to the second that of adjective colouring matters.
One of the most interesting questions connected with the history of colouring matters is that in regard to the original state in which these suhstanees exist in the animal and vegetable organisms from which they are derived. It has been known for a long time that many dye-stuffs, such as indigo and archil, do not cxist ready formed in the plants from which they are obtained, and that a loug and often difficult process of preparation is required iu order to eliminate them. The plants which yield indigo exhihit, while they are growing, no trace of hlue colour. The colouring matter only makes its appearance after the juice of the plant has undergone a process of fermentation. The lichens employed in the preparation of arehil and litmus are colourless, or at most light hown, but hy steeping them in liquids contaiuing ammonia and lime a colouring matter of an intense red is gradually generated, which remains dissolved in the alkaline liquid. Other phenomena of a similar nature might be mentioned, as for instance the formation of the so-called Tyrian purple from the juice of a shell-fish, and new oncs are from time to time heing discovered. In order to explain these phenomena various hypotheses have been resorted to. It was supposed, for instance, that the indigoferæ contained white or reduced indigo, and bence were devoid of colour, and that the process of preparing indigo-blue consisted simply in oxidising the white indigo, which was for this reason denominated indigogene, hy some chemists. The same assumption was made in regard to other colouring matters, all of which were supposed to exist originally in a de-oxidised and colourless state. In regard to indigo, however, the hypothesis is disproved at once hy the fact that reduced indigo is ouly soluhle in alkaline liquids, and that the juice of the indigo hearing plants is always acid. In regard to the other colouring matters it seems also to be quite untenahle. The first person to throw some light on this ohscure department of organic chemistry was Rohiquet. This distinguished chemist succeeded in obtaining from liehens in their colourless state a heautifully erystallised, colourless suhstance soluhle in water, having a swect taste, and consisting of carbon, hydrogen, and oxygen. This substance he denominated orcine. By the combined aetion of ammonia and oxygen, he found it to he converted into a red colouring matter, containing nitrogen, and insoluhle in water, which was in fact identical with the colouring matter of archil. This beautiful discovery furnished chemists with a sinple explanation for the curious phenomena observed in the formation of this and other colouring matters, and it was soon followed hy others. Hecren and Kane obtaiued from various lichens other colourless substances of similar properties, and it was shown hy Schunck that orcinc is not even the first link in the chain, but is itself formed from another body, lecanorine, which, by the action of alkalies, yields orcine and carhonic acid, just as sugar hy fermentation gives alcohol and carbonic acid. In like manner, it was discovered hy Erdmann that the colouring matter of logwood is formed by the simultaneous action of oxygen and alkalies from a crystallised colourless suhstance, hematoxyline, which is the original substance existing in the wood of the tree, and is like the others, not itself, strictly speaking, a colouring matter, hut a suhstance which gives rise to the formation of one.

There is, however, another class of phenomena connected with the formation of colouring matters, entirely different from that just referred to. It was discovered by Robiquet that if madder he treated for some time with sulphuric acid, and the acid be afterwards completely removed, the madder is found to have acquired a much greater tinctorial power than before. This fact was explained hy some chemists by supposing that the sulphuric acid had combined with or destroyed some substance or substances, contained in the madder which had previously hindered the colouring matter from exerting its full power in dyeing, such as lime, sugar, woody fihre, \&c. By others it was suspected that an actual formation of colouring matter took plaee during the process, and this suspicion has been verified hy recent researches. Sehunck succeeded in preparing from madder a substanee resemhling gum, very soluhle in water, amorphous, and having a very bitter taste, like madder itself, and to which he gave the name of rubian. This suhslance, though not colourless, is incapahle of comhining with mordants, like most colouring matters. When, however, it is acted on by strong acids, such as sulphuric or muriatic aeid, it is completcly decomposed, and gives rise to a number of products, the most important of which is alizarine, one of the colouring matters of madder itsclf. Among the other products are a yellow crystallised eolouring matter, rubianine, two amorphous red colouring matters resembling resins, rubiretine and veruntine, and lastly, grape sugar. When suhjected to fermentation, the same products are formed, with the exception of rubianine, which is replaced by a ycllow colouring matter of similar properties. This process of decomposition evidently belongs to
that numerous elass called by some chemists "catalytic," in whieh the deeomposing agent does not act, as far as we know, in virtue of its ehemical alfinities. It is evident, then, that when madder is acted on by sulphuric acid an actual formation of eolouring matter takes place, and it is even probable that the whole of the colouring matter found in madder in its usual state was originally formed from rubian, by a process of slow fermentation, the portion of the latter still remaining undeeomposed being that which is acted on when acids are applied to madder. From the Isatis tinctoria or common woad plant, Schunck, in like manner, extracted an amorphous substance, easily soluble in water, called by him indican, and which, by the action of strong aeids, is decomposed into indigo-blue, indigo-red, sugar, and other products, among which are also several resinous colouring matters. Looking at them from this point of view, colouring matters may be divided into two elasses, viz., first, such as are formed from other substances, not themselves eolouring matters, by the aetion of oxygen and alkalies; and, secondly, such as are formed from other substances by means either of ferments or strong aeids, without the intervention of oxygen. To the first class belong the colouring matters of arehil, litmus, and logwood; they yield eomparatively fugitive dyes, and are usually deeomposed by allowing the very process to whieh they owe their formation to continue. To the second class belong indigobluc, indigo-red, and alizarine, bodies which show a remarkable degree of stability for organic eompounds. More extended research will probably show that many other colouliug matters are formed either in one manner or the o'her, which will probably afford us the means of arriving at a rational mode of classifying these bodies, and of distinguishing them as a class from others. - E. S.
COLOPHANY. Black resin, the solid residuum of the distillation of turpentine, when all the oil has been worked off.

COLUMBIUM. A peculiar metal extracted from a rare mineral brought from Haddam in Connecticut. It is also called Tantalium, from the mineral tantalite and yttrotantalite. found in Swedeu. It has hitherto no application to the arts. It combines with two suecessive doses of oxygen ; by the second it beeomes an acid.

COLZA, is a variety of cabbage, - the Brassica oleracea. - whose seeds afford by pressure an oil much employed in France and Belgium for burning in lamps, and for many other purposes. This plant requires a rich but light soil ; it does not succeed upon either sandy or clay lands. The ground for it must he deeply ploughed and well dunged. It should be sown in July, and be afterwards replanted in a riehly manured field. In October it is to be planted out in beds, 15 or 18 inches apart. Colza may also be sowed in furrows 8 or 10 inches asunder.

Land which has been just cropped for wheat is that usually destined to eolza; it may be fresh dunged with advantage. The harvest takes place in July, with a sickle, a little before the seeds arc eompletely ripc, lest they should drop off. As the seed is productive of oil, however, only in proportion to its ripeness, the eut plants are allowed to eomplete their maturation, by laying them in heaps under airy sheds, or placing them in a stack, and thatching it with straw.

The cabbage stalks are thrashed with flails, the seeds are winnowed, sifted, and spread ont in the air to dry; then packed away in sacks, in order to be subjected to the oil mill at the beginniog of winter. The oil-cake is a very agreeable food to cattle; it serves to fatten them, and is reckoned to defray the cost of the mill.

When proper mauure was not applied, it was reported that eolza imporcrished the soil very much, as do, indeed, all the plants cultivated for the sake of their oleaginous seeds. 'The same soil must not, thercfore, be come back upon again for six years, if fine erops be desired. The double ploughing whieh it requires effectually cleans the ground.

The colza or wild cabbage itself is a plant of sufficient interest to call special attention to its properties. Besides yielding an oil which gives a brilliant light for the lamps of lighthouses, its seed has other properties that should induce the plant to be in favour with agriculturists, emigrants, and eolonists. The recent accounts, according to Du Bow, state "it to be admirably adapted for eattle as food; that the sceds after the oil is expressed yicld a cake highly prized for fattening cattle, and as manure." "There is a spring variety which will succecd in almost any part of the United States, and will ultimately become an article of great importance."

The real history of this valuable plaot seems to be this. The Abbe de Commerell, in a letter to Dr. Lettsom, dated from Paris at the Abbey of St. Victor, 1789, calls especial attention to the colza which he had eultivated for some time in the neighbourhood of Paris," and last ycar under the inspeetion of the Royal Society of Agrieulturc. The severe winter just expericnced, which had destroyed great abundauec of turnips and cole, had not done the least injury to my plants, which is a proof of resisting the severest cold." The following deseription of the plant may lead to its adoption as sourers of oil and food. To induce this we may refer to the original communieation,
now of course sufficiently rare: it is entitled - "Mémoire sur la culture l'usage et les avantuges du Choux à à faucher, par M. l'Abbé de Commercll, à Paris," 1789. He states he found the plant in Geruany, where it was only used for seed; that there are three distiuct varieties, known by the colours of the "nerves" of the leaves - violet, yellow, and green. He gives preference to the violet, "il est plus aboudant, plus sapide et resiste mieux à l'impression du froid et à la rigueur des hivers." He adds that he presents to the Royal Society (Agric. de Paris) the plants which had resisted the cold of the preceding winter, "the most rigorous of which mention is made in our anuals."

Again Commerell says : "This plant is a kind of wild cabbage that may he cut four or six times in the year it is sown ; each cut is as plentiful as trefoil or lucerue: we leave it afterwards for the winter. About the month of February it shoots up, and the leaves of it may be cut; but in the month of April it hegins to grow up, send off stalks, and bears its seed, which may he gathered in June. The first year this wild cahbage does not send stalks; its leaves appear to rise out of the ground, and thus it may he cut like grass ; it may also he dried for huy. Its leaves extend to 10, 12, and 15 inches in length and 6 to 8 broad, which have not the bitter aud herhaceous taste of other cabbages. It is a pulse very agreeable for man during the whole year; and a fodder equally as good as plentiful for all kinds of cattle. The milk of cows does not acquire a had taste, nor do the cows get tired of it."
"This planthears unore and larger sized seed than turnips or cole, and the oil which I have extracted from it cold is very superior as food for man to that from poppy or cole, and is equal to the common oil of olives in the opinion of good judges. I give the name of the mowing cabbage to this plant. If you will make a trial of it," he adds to Dr. Lettsom, "you will have every reason to be satisfied, for this cabhage yields one third more oil than turnips in proportion to the equal quantity of ground, aud we may sow it in spring or in autumu."

When Commerell wrote the trials were limited for want of seed, hut it now appears to he well worthy the attention of agriculturists, as a plant whose rapid growth and geueral favour, may remedy the scarcity of other crops more in use. At the end of sixty years the production of the oil alone forms a cousiderahle article of the trade of France, Bclgium, England, and America.

To mining districts, to manufacturers, and others in remote localities, the valuable properties of this plant and seed, as sources of oil, food, and manure, are commended. Even six crops a year are said to have heen taken. Thus the hitterness of famine hy the fuilure of other crops might he mitigated; and as the oils of seeds are now confusedly mixed together in commercial transactions, we have thought the usefulness of this plant should he more generally known hy references to those qualites recorded on its original cultivation,

Colza oil is now extensively used for burniug in lamps and for luhrieating machirery. The Carcel, Moderator, and other lamps are contrived to give a continuous supply of oil to the wick, and hy a rapid draught of air hrilliant combnstion of the oil is maintained without smoke.

In the lighthouses of France and England it has been employed with satisfaction, so as to replace the use of sperm oil ; the preference has hcen given on the grounds of greater hrilliancy, a steadier flame, the wick being less charred, and the advantage of economy in price.
The corporation of the Trinity House and the late Mr. Hume took great interest in the question of the relative merits of colza, rape, and seed oils, as compared with sperm oil, and in 1845 referred the investigation of the power and qualities of the light from this description of oil, to Professor Faraday. He reported "that he was much struck with the steadiness of the flame, hurning 12 or 14 hours without being touched ;" "taking above 100 experiments, the light eame out as one and a half for the seed oil to one of the sperm ; the quantity of oil heing used in the same proportion;" and he concludes by stating his "confidence in the results."
The advantages then were, less trouhle, for the lamps with sperm had to he retrimmed, and the same lamp with seed oil gave more light, and the cost then was as 3s. 9d. per gallon seed oil, against $6 s .4 d$. imperial gallon of sperm.
Those interested should consult returns, ordered by the House of Commons, "Lighthouses, on the motion of Mr. Hume, 'On the substitution of Rape seed oil for Sperm oil, and the saving aceruing therefrom.' 17 th Feb. 1857; No. 75; 18th March, 1857, 196 and 196 I."
In the Supplementary Returns laid before the House of Commons by the Commissioners of the Northern Lights, there is the following report of Alan Stevenson, Esq., their Engineer : -
"In the last annual report on the state of the lighthonses, I directed the attention of the Board to the propriety of making trial, at several stations, of the patent cnlzà or rape seed oil, as prepared hy Messrs. Briggs and Garford, of Bishopsgate Street.

These trials have now been made during the montlis of January and February; at three eatoptrie and three dioptric lights, and the results have fiom time to time been made known to me by the light-keepers, aceording to instructions issued to them, as oeeasion seemed to require. The substantial agrement of all the reports as to the qualities of the oil renders it needless to euter into any details as to the slight varying eireuustanees of eaeh ease; and I have therefore great satisfaction in briefly stating, as follows, the very favourable conelusion at whieh I have arrived : -
" 1 . The eulzà oil possesses the advantage of remaining fluid at temperatures whieb thieken the spermaectio oil.
" 2. The culzà oil burns both in the Fresnel lamp and the single argand burner, with a thiek wiek, during seventeen hours, without requiring any coaling of the wiek, or any adjustment of the damper ; and the flame seems to be more steady and free from fliekering than that from spermaeeti oil.
" 3. There seems (most probably owing to the greater steadiness of the flame) to be less breakage of glass chimneys with the eulzà than with the spermaeeti oil."
The above firm, who from thirty years' experienee in the trade, were enabled to induee the Trinity Corporation to give this oil a fair and extended trial, state that "for manufacturing purposes it is equally useful ; it is admitted by practieal men to be the best known oil for maehinery; equal to Gallipoli; and teehnieally it possesses more 'body,' though perfeetly free from gummy matter." On this point, the following letter has due weight:-
"Admirally, 9 th December, 1845. - Messrs. Briggs and Garford, - "Referring to your letter of the first of August last, I have to aequaint you, in pursuanee of the directions of the Lords Commisioners of the Admiralty, that the officers of Woolwieh yard have tried your vegetable oil, and find it to be equal to the best Gallipoli."
"It is very hardy; and while sperm, Gallipoli, nut, or lard oils are rendered useless by the slightest exposure to frost, the patent oil will with ordinary eare, retain its brillianey : this has been acknowledged as a very important quality to railway and steam boat companies."
It should be here stated that the terms rape oils, seed oils, colza, or eulzà are all now hlended together, and, however mueh this may be regretted, yet it does not seem easy to keep distinetness in the general usages of oil, for the eustoms returns elass all under one head,-rape oil.
A number of British and colonial seed-bearing plants appears to be now employed for the sake of their oils, although, on aceount of the mueilaginnus matter contained in many of the oils, they are far inferior to the eolza whieh they are employed to adulterate--T. J. P.

Of the importanee of the trade some estimate may be formed by the following entry :-The importations of seed oils in 1856 and 1857, from European states was -

COMB. The name of an instrument which is employed to dis angle, and lay parallel and smooth the hairs of man, horses, and other animals. They are made of thin plates, either plane or eurved, of wood, horn, tortoise-shell, ivory, bone, or metal, cut upon one or both sides or edges with a series of somewhat long teeth, not far apart.
Two saws mounted on the same spindle are used in eutting the teeth of eombs, which may be eonsidered as a species of grooving process; one saw is in this ease larger in diameter than the other and euts one tooth to its full depth, whilst the smaller saw, separated by a washer as thiek as the required teeth, euts the suceeeding tooth part way down.

A few years baek, Messrs Pow and Lyne invented an ingenious machine for sawing boxwood or ivory combs. The plate of ivory or box wood is fixed in a elamp suspended on two pivots parallel with the saw spindle, whieh has only one saw. By the recolution of the handle a eam first depresses the ivory on the revolving saw, euts one noteh, and quiekly raises it again; the handle in completing its eireuit shifts the slide that earries the suspended elamp to the right, by means of a serew and ratchet movement. The teeth are eut with great exaetness, and as quiekly as the handle can be turned; they vary from about thirty to eighty teeth in one ineh, aud such is the delieaey of some of the saws, that even 100 teeth may be eut in one inelh of ivory.

COMBINING NUMBERS-CHEMICAL COMBINATION. 815

The saw runs through a cleft in a small piece of ivory, fixed vertically or radially to the saw, to act as the ordiuary stops, and prevent its flexure or displacement sideways. Two combs are usually laid one over the other and cut at once ; occasionally the machiue has two saws, aud cuts four combs at once.
In the manufacture of tortoise-shell combs, very much ingenuity is displayed in soldering the back of a large comb to that picce which is formed into teeth. The two parts are filed to correspond ; they are surrounded by picces of linen, aud inscrted between metal moulds, conuected at their extremities by metal screws and nuts; the interval between the halves of the mould being occasionally eurved to the sweep required in the comb; sometimes also the outer faces of the mould are curved to the particular form of those combs in which the back is curled round, so as to form an angle with the teeth. Thus arranged it is placed in hoiliug water. The joints when properly made cannot be detected, either by the want of transparency or polish. Much skill is employed in turning to economical account the flexibility of tortoiseshell in its heated state : for example, the teeth of the larger descriptions of comb are parted, or cut one out of the other with a thin frame saw ; then the shell, equal in size to two combs with their teeth interlaced, is bent like an arch in the direction of the length of the teeth. The shell is then flattened, the points are separated with a narrow ehisel or pricker, and the two combs are finished whilst flat, with coarse siugle eut files, and triangular scrapers ; and lastly, they are warmed, and bent on the knee over a wooden mould by meaus of a strap passed round the foot, in the manner a shoemaker fixes a shoe last. Smaller combs of horn and tortoise-shell are parted whilst flat, by an ingenious machine with two chisel-formed cutters, placed obliquely, so that every cut produces one tooth, the repetition of which completes the formation of the comb.

Mr. Rogers's comb-cutting maehine is described in the Transactions of the Society of Arts, vol. xlix., part 2, page 150. It has been since remodelled and improved by Mr. Kelly. This is an example of slender chisel-like punches. The punch or chiscl is in two parts, slightly inclined and curved at the ends to agree in form with the outline of oue tooth of the comb, the cutter is attached to the cnd of a jointed arm, moved up and down by a crank, so as to penetrate almost through the material, and the uncut portion is so very thin that it.splits through at each stroke and leaves the two combs detached.

The combmaker's double saw is called a "stadda," and has two blades contrived so as to give with great facility and exactness the intervals between the teeth of combs, from the eoarsest to those having from forty to forty-five tceth to the inch. The gage-saw or gage-vil is used to make the teeth square and of one depth. The saw is frequently made with a loose back, like that of ordinary bach-saws, but much wider, so that for teeth $\frac{1}{2} \frac{5}{8} \frac{3}{4}$ inch long, it may shield all the blade except $\frac{1}{2} \frac{5}{8} \frac{3}{4}$ inch of its width respectively, and the saw is applied until the back prevents its further progress. Sometimes the blade has teeth on both edges, and is fixed betwen two parallel slips of steel connected beyond the ends of the saw blade by two small thumbscrews. After the teeth of combs are cut they are smoothed and polished with files, and by rubbing them with pumice stonc and tripoli.-Holtzap.ffel.
COMBINING NUMBERS AND CHEMICAL COMBINATION. - Constancy of composition is one of the most cssential characters of chemical eompounds; by which is meant that any particular body, under whatever circumstances it may have been produced, consists invariably of the same elements in identically the same proportion; the converse of this is not, howcyer, necessarily true, that the same elements in the same proportion always produce the same body. (See Isomerism).
But not only is there a fixity in the proportion of the constitnents of a compound ; but also, if any one of the elements be taken, it is found to unite with the other elements in a proportion which is either invariable, or ehanges only hy some very simple multiple.
The numbers cxpressing the combining proportions of the elements are only relative. In England it is usual to take hydrogen as the starting point, and to call that number the combining number of any other element which expresses the proportion in whieh it unites with one part by weight of hydrogen; and these numbers are now becoming adopted on the Continent, although in France the combining numbers are still referred to oxygen, which is taken as 100 . It is obvious that, whichever system is used, the numbers have the same value relatively to each uther.

These combining numbers would hare but little value if they expressed nothing more than the proportion in which the elements combine with that hody arbitrarily fixed as the standard; but they also represent the proportions in which they unite among themselves in the event of union taking place. Thus, not ouly do 8 parts of oxygen unite with oue of hydrogen, but also 8 parts of oxygen uuite with 39 of potassium, 23 of sodium, 100 of mercury, 108 of silver, \&cc. It is in virtuc of this law that the combining proportions of mauy of the elements have been ascertained. Some of them do not combine with hydrogen at all, and in such cases the quantity which unites with 8 parts of oxygen, or 16 of sulphur, \&cc. has to be ascertained. (See Equivalents.)-H. M. IV.

COMBUSTIBLE. (Eng. and Fr.; Breunstuff, Germ.) Any substance which, exposed in the air to a certain temperature, consumes with the emission of heat and light. All such combustibles as are eheap enough for common use go under the name of Fuel ; which see. Every combustible requires a peculiar pitcl of temperature to be kindled, called its accendille point. Thus phosphorus, sulphiur, hydrogen, carburetted hydrogen, carbon, each takes fire at suecessively higher heats.
COMBUSTLBLE SUGAR. When sugar is acted on by a mixture of nitric and sulphuric acids, a peculiar substance is produced, having a close resemblance to common resin, not only in its appearance and physical characters, but also in regard to its solubility in alcohol, ether, volatile oils, \&c., and insolubility in water. This substance is, however, extremely inflammable and explosive, and possesses many of the properties ascribed to the cclebrated Greek fire. Its affinity for alcolol and ether is so great that water will not remove these fluids from it. "Not having yet succeeded in producing with it any definite basic compound which would enable me to control my results, I have not attempted its analysis. The only purposes to which I have applied it are to the formation of fusees for shells, and to the preservation of gunpowder and pyrotechnical articles from damp and moisture. As a fusee, it is easily lighted, bu ns with great regularity, and appears absolutely incapable of being extinguished, circumstalices which would render it of great use in ricochet practice. As a means of preventing the mischievous effect of damp and moisture on gunpowder it is of great value. The best mode of application is to plunge the gunpowder for a few seconds into an alcoholic or ethereal solution of the sugar compound, then withdraw it and allow it to dry at a gentle heat, say 120° Fahr., though there is no danger of an explosion at 212°. In this way the gunpowder is covered by a coat of varnish easy of ignition and insoluble in water, which cannot therefore penetrate to the gunpowder, the explosive nature of which is rather augmented than diminished by this treatment. An ethereal solution of guncotton does not answer so well for this purpose, nor is it so manageable. I have not ascertained how far this new substance is useful in retaining the edges of wounds in approximation, but its alcoholic solution merits a trial. The following is the method which I have found most successful in the manufacture of this compound.
"Mix together sixteen parts of eonecntrated sulpharic acid and eight parts of nitric acid, snecific gravity 1.50 ; place the mixture in cold water, and when the temperature has fallen to 60° or less, stir in one part of finely-powdered sugar, which will become pasty in a few seconds, and is then to be removed and plunged in cold water, when more sugar may then be added to the acid mixture, and removed as before. The compound is to be washed in water and dissolved in alcohol, to which a solution of carbonate of potash must be added in excess, so as to precipitate the substance, and neutralise its uncombined acid. After careful washing with water it is again to be dissolved in alcohol or ether, and cautionsly evaporated to dryness by a steam heat, which must be continued for some time, so as entirely to expel the alcohol or ether. The residuary matter should have the transparency aud general character of common resin."-Ure.

COMBUSTION. (Eng. and Fr. ; Verbremung, Germ.) The phenomena of the development of light and heat from any body, as from charcoal combining with the oxygen of the air, from phosphorus combining with iodine, and from some of the metals combining with chlorine. Combustion may be exerted with very various degrees of enerwy. We have a low combustion of ten established in masses of vegetable matter; as in hay-stacks, or in heaps of damp sawdust. In these cases, the changes going on are the same in character, only varying in degree, as those presented by an ordinary fire, or by a burning taper-oxygen is combining with carbon to form carbonic acid. The leat thus produced (the process has been termed by Liebig Eremaeausis), increasing in force, gives risc eventually to visible combustion.
Cases of spontaneous combustion are by no means uncommon. Some years since, the editor investigated the conditions under which H. M. slips, the "Imogen " and "Talavera" were burnt in Devonport Dockyard, and he was enabled to trace the fire to a large bin, in which there had been allowed to accumulate a mass of oiled oakum, pieces of old flannel covered with anti-attrition, sawdust, shavings, and the sweepings of the painter's, wheelwright's, and some other shops.

The subject of combustion belongs to Ure's Dictionary of Chemistry, where it will be fully treated.

CONCRETE. The name given by architects to a conpact mass of pebbles, sand, and lime, cemented together in order to form the foundation of buildings. Semple says that the best proportions are 80 parts of pebbles, each about 7 or 8 oz . in weight, 40 parts sharp river sand, and 10 of lime; the last is to be mixed with water to a thinnish consistence, and grouted in. It has been found that Thames ballast, as taken from the bed of the river, consists of nearly 2 parts of pebbles to 1 of
sand, and therefore answers exceedingly well for making eonerete, with from one-seventh to one-eighth part of lime. The best mode of making conerete, according to Mr. Godwin, is to mix lime, previously ground, with the ballast in a dry state; sufficient water is now thrown over it to effect a perfeet mixture; after which it should he turned over at least twice with shovels, or oftener ; then put into harrows, and wheeled away for use instantly. It is generally found advisable to employ two sets of men to perform this operation, with three sets in each set, and they repeating the proeess, turn over the concrete to the barrow-men. After heing put into the harrows, it should be at once wheeled up planks so raised as to give it a fall of some yards, and thrown into the foundation, hy which means the particles are driven closer together, and greater solidity is given to the whole mass. Soon after heing thrown in, the mixture is ohserved usually to he in commotion, and mueh heat is evolved, with a copious emission of vapour. The barrow-load of concrete in the fall spreading over the ground will form generally a stratum of from 7 to 9 inehes thick, whieh should be allowed to set hefore throwing in a second.

Another method of making eoncrete, is first to cover the foundation with a certain quantity of water, and then to throw in the dry mixture of hallast and lime. It is next turned and levelled with shovels; after whieh more water is pumped in and the operation is repeated. The former method is undouhtedly preferahle. In some cases it has heen found necessary to mix the ingredients in a pug-mill, as in mixing clay, $\& c$., for hricks. For the preparation of a eoncrete foundation, as the hardening should he rapid, no more water should be used than is ahsolutely necessary to effect a perfeet mixture of the ingredients. Hot water accelerates the induration. There is about one-fifth contraction in volume in the concrete, in reference to the bulk of its ingredients. To form a cuhical yard of concrete, ahout 30 ft . cuhe of hallast of $3 \frac{1}{2} \mathrm{ft}$. eube of ground lime must be employed, with a sufficient quantity of water.

Several other methods have been adopted hy huilders and engineers: these, however, involve the same prineiples and general condition; a detail of them is, therefore, unnecessary in this work. The reader desiring information, is referred to works especially devoted to engineering and huilding.

CONGELATION. (Eng. and Fr. ; Gefrierung, Germ.) The aet of freezing liquids. The processes employed are ehiefly ehemical, hut some are mechanical. These will have further attention under the heads Freezing Mixtures, Ice, Ice Manufacture.

CONIINE. $\mathrm{C}^{18} \mathrm{H}^{15} \mathrm{~N}$. A volatile base found in hemloek. Conium maculatum. It is supposed to be the eause of the poisonous properties of that plant. Coniine has recently been shown, hy the interesting researehes of Wertheim, to he a product of deeomposition of conhydrine, a new hase diseovered hy him. Conhydrine becomes converted into coniiue hy the loss of two equivalents of water. It has heen asserted by Kekulé and Von Planta, that hemlock contains two or more homologous bases.C. G. W.

COOLiNG FLUIDS. See Refrigeratory.

COPAL, a resin which exudes spontaneously from two trees, the Rhus copallinum, and the Elcocarpus copalifer, the first of which grows in America, and the seeoud in the East Indies. A third speeies is said to grow on the banks of some rivers, and near the coasts, of Guinea.

Much information has heen reeeived of late years from various sources concerning this somewhat ill-understood product. It is now known that there are three different kinds of copal in commerce, but nothing is known of their distinguishing characteristics. We have East Indian and West Indian copal, and, under the latter name, two very different substances. The East Indian, ealled also African, is more colourless, soft, and transparent, than the others ; it forms a fine surface, and when heated emits an agreeable odour. It furnishes the finest varnish; fresh essence of turpentine dissolves it completely, but not old. Essence digested upon sulphur will dissolve double its own weight, without letting any fall. Fresh rectified oil of rosemary will dissolve it in any proportion, hut if the oil is thickened hy age it serves only to swell this copal.

When cautiously melted, it may he then dissolved in good essence of turpentine in any proportion, producing a fine varnish of little eolour.
A good varnish may he made by dissolving 1 part of eopal, 1 of essence of rosemary, with from 2 to 3 of pure alcolnol. This varnish should be applied hot, and when cold, hecomes very hard and durable.
The West Indian speeies, or American, eomes to us not in lumps of a globular form, but in small flat fragments, which are hard, rough, and without taste or smell. It is usually yellow, and never colourless like the other. Insects are very rarely found in it. It comes from the Antilles, Mexieo, and Nortl1 Ameriea. It will not dissolve in essenee of
Vol. I.
'The third kind of copal, known also as West Indian, was formerly sold as a product of the East lndies. It is found in fragiuents of a coucavo-convex form, the onter covering of which appears to lave been removed. It contains many insects. When rubbed it emits an aromatic odour. It gives out much ethereous and empyreumatic oil when molted. It forms a soft varuish, whiel dries slowly.

Fusel oil, or amyle spirit, has been lately used as a solveut of the hard copal; but it does not dry into a very solid varnish.

Annexed is an account of the inport of copal, in the undernentioued years :-

COPPER is one of the metals most anciently known. It was named from the island of Cyprus, where it was extensively mined and smelted by the Greeks. It has a reddish-brown colour inclining to yellow; a faint but nauscous and disagrecable taste; and when rubbed between the fingers imparts a sinell somerwhat analogous to its taste. Its specific gravity is from 8.8 to 8.9 . It is much more malleable than it is ductile; so that far finer leaves may be obtained from it than wire. It melts at the 27th degree of Wedgewood's pyrometer, and at a higher temperature it cvaporates in fumes which tinge flame of a bluish green. By exposure to heat with access of air, it is rapidly converted into black scales of peroxide. In tenacity it yields to irou; but considerably surpasses gold, silver, and platinum, in this respect.

In mineralogy, the genus eopper includes about 13 different species, and cach of these contains a great many varieties. These ores do not possess any one general exterior character by which they may be recognised; but they are readily distinguished by chemical reagents. Water of ammonia digested upon any of the cupreous ores in a pulverised state, after they have been calcined either alone or with nitre, assunies an intense blue colour, indicative of copper. The richest of the ordinary ores appear under two aspects; the first class has a metallic lustre, a copper red, brass yellow, iron grey, or blackish grey colour, sometimes inclining to blue; the second is without metallic appearance, has a red culour, verging upon purple, blue, or green, the last tint being the most usual. Few copper ores are to be met with, indeed, which do not betray the presence of this metal by more or less of a greenish film.
Dr. Scherer, of Freyberg, has arranged the ores of copper as follows:-

	Kupferglanz (Kupferglaserz), $\mathrm{Cu}^{2} \mathrm{~S}$					
	Kupferkies, Copper pyrites, $\mathrm{Cu}^{2} \mathrm{~S}$,					4.8
	Buntkupfererz, $3 \mathrm{Cu}^{2} \mathrm{~S}, \mathrm{Fe}^{2} \mathrm{~S}^{3}$					55.7
	Fahlerz, $4\left(\mathrm{Cu}^{2} \mathrm{~S}, \mathrm{FeS}, \mathrm{ZnS}, \mathrm{AgS}\right)$ (Sb					
	Rothkupfererz, $\mathrm{Cu}^{2} \mathrm{O}$					88.5
	Malachit, $2 \mathrm{CnO}, \mathrm{CO}^{2}+\mathrm{HO}$					
	Kupferlasur, $2\left(\mathrm{CuO}, \mathrm{CO}^{2}\right)+\mathrm{CuO}, \mathrm{HO}$					

Both Fahlerz and Buntknpfererz vary greatly in their proportion of copper. Fahlerz is very difficult to convert into pure copper by smelting, on account of the presence of antinoony and arsenic. Kupferglanz is a disulphide of copper. Buntkupfererz is purple or variegated copper ore. Rothkupfererz is the red oxide of copper. Kupferlasur is blue carbonate of copper.

Pure copper may bc. obtained in the solid state either by the reduction of the pure oxide by a stream of hydrogen gas passed over it in an ignited tube, or by the Electrotype process. See Electro-metallurgy.

1. Nutive Copper occurs in crystals, branches and filaments, its most common locality being in primitive rocks. It is found abundantly in Siberia, at the mines of Tourinski, in those of Hungary, of Fundo- Moldavia in Gallicia, of Fahlun in Sweden, in Cornwall, and in very large quantities in the mines of Lake Superior U.S. of America, \&c. The gangues of native copper are granite, gneiss, mica-slate, clay-slate, quartz, carbonate or fluate of lime, sulphate of barytes, amygdaloidal trap. \&c. The most remarkable masses of native copper hitherto discovered are those found in the mines of Lake Superior, some of which have exceeded 150 tons in weight.
2. Sulphide or Sulphuret of Copper. The texture of this ore is compact: its fracture conchoidal; surface sometimes dull; colour, iron black or lead gray, often bluish, iridescent, or reddish from a mixture of oxide. It is easily melted even by the heat of a candle; but is more difficult of reduction than protoxide. This ore yields to the knife, assuming a metallic lustre when cut. Its density varies from 48 to $5 \cdot 34$. Its composition according to Klaproth is 78.5 copper, 18.5 sulphur, with a little iron and silica. Its theoretical constitution is 80 copper, 20 sulphur $=100$; wh nee $78 \cdot 5$ of metal should be associated with $19 \cdot 6$ of sulphur. This is, therefore, one of the richest ores, and forms very iuportant veins. It is to be found in all consider:ible
copper districts; in Siberia, Saxony, Sweden, and especially Cornwall, where the finest erystals occur.
3. Copper Pyrites, resembles in its metallic yellow hue, sulphide of iron; but the latter is less palc, harder, and strikes firc casily with steel. It sometimes presents thic most lively rainbow colours. Its specific gravity is $4 \cdot 3$. It generally contains a gond deal of iron, as the following analysis will show : copper 30 , sulphur 37 , iron 33 , in 100 parts. According to Hisinger, the Swedish pyrites contains 6.3 of copper, 12 of iron, and 25 of sulphur. These ores occur in vast masses and extended veins, in primitive and transition districts; and are commonly accompanied with grey copper, sulphide of iron, sparry iron, sulphides of lead and zinc.
4. Grey Copper las a steel-grey colour, more or less deep, either shining or dull; fracture uneven; a distinct metallic lustre; difficult of fusion at the blowpipe; it communicates to glass of borax a yellowish-red colour. Its density in crystals is $4 \cdot 86$. Its composition is very variable; consisting essentially of copper, iron, antimony, and sulphur. The exploration of this ore is frequently profitable in consequence of the silver which it contains. It occurs in primitive mountains; and is often accompanied by red silver ore, copper pyrites, and crystallised quartz.
5. Subo.xide of Copper or red oxide of Copper: its colour is a deep red, sometimes very lively, especially when bruised. It is friable, difficult of fusion at the blowpipe, reducible on burning charcoal, soluble with effervescence in nitric acid, forming a green liquid. Its constitution, when pure, is $88 \cdot 9$ copper, $11 \cdot 1$ oxygen $=100$.
6. Black oxide of Copper is of a velvet black, inclining sometimes to brown or blue; and acquires the metallic lustre on being rubbed. It is infusible at the blowpipe. Its composition is, copper 80, oxygen 20; being a true protoxide.
7. Hydrosilicate of Copper consists essentially of oxide of copper, silica, and water. Its colour is green; and its fracture is conchoidal, with a resinous lustre, like most minerals containing water. Its specific gravity is 2.73 . It is infusible at the blowpipe alone, but melts easily with borax.
8. Dioptase Copper, or Emerald Malachite; a beautiful but rare cupreous mineral, consisting of oxide of copper, carbonate of lime, silica, and water in varying proportions.
9. Carbonate of Copper, Malachite; is of a blue or green colour. The former variety often occurs in beautiful crystals.
10. Sulphate of Copper, Blue Vitriol, is similar to the artificial salt of the laboratory. The blue water which flows from certain copper mines, is a solution of this salt. The copper is easily procured in the metallic state by plunging into it pieces of iron.
11. Phosphate of Copper is of an emerald grcen, or verdigris colour, with some spots of black. It presents fibrous or tuberculous masses with a silky lustre in the fracture. It dissolves in nitric acid without effervescence, forming a blue liquid: melts at the blowpipe, and is reducible on charcoal, with the aid of a little grease, into a metallic globule. Its powder does not colour flame green, like the powder of chloride of copper.
12. Chloride of Copper, is green of various shades; its powder imparts to flame a remarkable blue and green colour. It dissolves iu nitric acid without effervescence; and is easily reduced before the blowpipe. Its density is 35 . By Klaproth's analysis it consists of:-

Chlorine	-	-	-	-	-	-	-15.90
Copper	-	-	-	-	-	-	-14.22
Oxide of Coppcr	-	-	-	-	-	-	-5422
Water	-	14.16					
Impurities	-	-	-	-	-	-	-1.50
100.00							

13. Arseniate of Copper. It ocenrs frequently in crystals. Before the blowpipe it melts, exhaling fumes of a garlic odour, and affords metallic globules when in contact with charcoal.

We shall here give a brief account of two cupreous formations, interesting in a geological point of view; that of the copper slates of Mansfeldt, and of the copper veins of Cornwall.

The curious strata of bituminous schist in the first of these localities, are among the most ancient of any containing the exuviæ of organised bodies not testaceous. From among their tabular slabs the vast multitudes of fossil fish are extracted which have rendered the cantons of Mansfeldt, Eisleben, Ilmenau, and other places in Thuringia and Voigtland so celebratcd. Many of the fish are transformed into copper pyrites. Here, also, have been found the fossil remains of the lizard family, ealled Momitors.

Such is the influence of a wise administration upon the prosperity of these mines.that a thin layer of slate in this formation, of which 100 pounds commonly contain but one
pound and a half of copper, oceasionally argentiferons, has been for several centuries the object of smelting works of the greatest importance to the adjoining country.
The frequent derangements which this deposit experienees, led, at an early period, skillinl directors of the ander-ground operations to study the order of super-position of the accompanying rocks. From their observations, resulted a system of facts which has served to guide miners, not only in the country of Mansfeldt, but over a great portion of Germany, and in other countries where the same series of rocks, forming the envelope of the cupreous schists, are found to occur in the same order of superposition.

Of the English Copper Veins. - The deposits of copper in Cornwall oceur as veins in granite, or in the schistose rocks which surrouud and cover it; and bence, the Cornish mincrs work mostly in the granite and clay-slate; tbe former of which, when metalliferons, is usually in a coarse and often a disintegrated state : this they call growan, the latter killus.
Copper veins arc abundant in killas and more rare in granitc; but most numerous near the line of junction of the two rocks. The different kinds of nineral veins in Cornwall may be classed as follows:-

1. Veins of clvan ; clvan courses, or elvan channels.
2. Tin veins, or tin lodes.
3. Copper veins generally running east and west.
4. Second system of copper veins, or contra lodes.
5. Crossing veins; cross courses.
6. Clay veins called Cross-Flookans or Slides.

The width of these veins does not often exceed 6 feet, though occasional enlargements to the extent of 12 or more feet sometimes take place. Their length is uuknown, but one explored in the United Mines has been traced over an extent of seven milcs. The gangue of these vcins is generally quartz, either pure, or mixed with green particles analogous to chlorite. They contain iron pyrites, blende, sulphide, and several other compounds of copper, such as the carbonate, phosphate, arseniate, chloride, \&ce The most part of the copper lodes are accompanicd by small argillaccous veins, cailed by the miners flookuns of the lode. These are often found on both sides of the vein, so as to form cheeks or walls.

When two veins intersect each other, the direction of the one thrown out becomes an object of interest to the miner. In Saxony it is regarded as a general fact that the rejected portion is always on the side of the obtuse angle; this also holds generally in Cornwall, and the more obtuse the angle of incidence, tbe more considerabie the heave.

The great copper vein of Carharack, in the parish of Gwennap, is an instructive example of intersection. The width of this vein is 8 feet; it runs nearly from east to west, and dips towards the north at an inclination of 2 feet in a fatbom. Its upper part is in the killas, its lower in granite. This vein has suffered two intersections; the first results from encountering the vein called Steven's flookan, which runs from north-east to south-west, throwing it out several fathoms. The second has been caused by another vein, almost at light angles to the first, and which has heaved it 20 fathoms to the right. The throw of the vein occurs, therefore, in one case to the right, and in the other to the left; but in both instances, it is to the side of the obtuse angle. This disposition is very singular; for one portion of the vein appears to have ascended, while another has sunk. Sec Faulis.

The copper mines of the isle of Anglesea, those of North Wales, of Westmorelaud, the adjacent parts of Lancashire and Cumberland, of the south-west of Scotland, of the Isle of Man, and of the south-east of Ireland, also occur in primitive or transition rocks. The ores lie sometimes in masses, but more frequently in veins. The minc of Ecton in Stafforlshite, and that of Cross-gill-burn, near Alston-moor in Cumberland, occur in transition or mountain limestone.

The copper ores extracted both from the granitic and schistose localities, as well as from the calcareous, are uniformly copper pyrites more or less mixed with mundic; the red oxide, carbunate, arseniate, phosphate, and chloride of copper, arc very rare in these districts.

The working of copper-miues in the isle of Anglesca may be traced to a very remote era. If appears that the Romans were acquainted with the Anlwch miuc near Holyhead; but it was worked with little activity till about 70 years since. This deposit lies in a greenish clay slate, passing into tale slate; a rock associated with serpentine and euphotide. The veins of copper are from one to two yards thick; and converge towards a point where their union forms a considerable mass of ore. On this the mine was first commenced by an open excavation, which is now npwards of 300 feet deep, and appears from above like a vast fuunel. Galleries are formed at different levels upon the flanks of the excavation to follow the several smaller veins, which run in all directions, and diverge from a common centre like so mauy radii.

The ore reeeives in these galleries a kind of sorting, and is raised by means of havd windlasses, to the summit of a hill, where it is cleaned by breaking and jiggiug.
The water is so scanty in this mine that it is pumped up by a small steamengine. A great proportion of it is elarged with sulphate of enpper. It is conveyed into reservoirs eontaining pieees of old iron; the sulphate is thas decomposed into copper of cementation. The Anglesea ore is poor, yielding only fiom 2 to 3 per cent. of eopper; a portion of its sulphur is eollected in roasting the ore.

The enpper mines, now so important, werc so little worked until a recent period, that in 1799 wc arc told in a Report on the Cornish mines, "it was not until the beginning of the last eentury that copper was discovered in Britain." This is not correct, for in 1250 a eopper mine was worked near Kcswick, in Cumberland. Edward III. granted an indenture to John Ballanter and Walter Bolbolter, for working all " mines of gold, silver, and copper;" but that the quantity found was very suall is proved from the fact that Acts of Parlianent were passed in the reigns of Henry VIII. and Edward VI. to prevent the exportation of brass and eopper, "lest there should not be metal cnough left in the kingdom, fit for making guns and other engines of war, and for household utensils:" and in 1665 the calamine works were eucouraged by the Government, as "the continuing these works in England will occasion plenty of rough eopper to be brought in."

At the end of the seventeenth century, some " gentlemen from Bristol made it their business to inspect the Cornish mines, and bought the copper ore for $2 l .10 s$. per ton, and scarec ever more than $4 l$. a ton."

In 1700, one Mr. John Costor introdueed an hydraulic engine into Cornwall, by whieh he suceeeded in draining the mines, and "he taught the people of Cornwall also a better way of assaying and dressing the ore."

The value and importance of copper mines sinee that period has been regularly increasing.

Mechanical Preparation of the Copper Ores in Cormurll. - The ore reecives a first sorting, the object of which is to separate all the pieecs larger than a walnut; after whieh the whole is sorted into lots, aceording to their relative richness. The fragments of poor ore are sometimes pounded in stamps, so that the metallie portions may be separated by washing.

The rich ore is either broken into small bits, with a flat benter, or by means of a crushing-mill. The ore to be brokeu by the bucking iron is placed upou plates of east-iron; eaeh about 16 inches square and $1 \frac{1}{2}$ inch thick. These plates arc sct towards the edge of a small mound about a yard high, eonstructed with dry stones rammed with earth. The upper surface of this mound is a littlc inclined fron behind forwards. The work is performed by women, eaeh furnished with a buckiugiron : the ore is placed in front of them beyond the plates; they brak it, and strew it at their fect, whence it is removed and disposed of as may be subsequently required.
The erushing-mill has of late years been brought to a great degree of perfection, and is almost universally made use of for pulverising certain descriptions of ore. For a deseription of this apparatus, see Grinding and Crushing Apparatus.
Stamping-mills are less frequently employed than erushers for the reduction of copper ores. At the Devon Great Consols Mines, the concentration of the crushed copper ores is effected in the following mauner: - From the crushing-mill the stuff is earried by a stream of water into a series of revolving separating sieves, where it is divided into fragments of $\frac{1}{20}$ th inch, $\frac{1}{12}$ th incl, and $\frac{1}{10}$ th inch diamcter, besides the eoarser partieles which escape at the lower end of the sieves. The slimes flow over a small water-wheel called a separator, in the buckets of which the coarser portions settle, and are from thence washed out by means of jets of water into a round buddle, whilst the finer particles are retained in suspension, and are carried off into a series of slime-pits, where they are allowed to settle.
The work produced by the round buddle is of three sorts; that nearest the circumferenec is the least charged with iron pyrites, or any other heavy material, but still contains a certain portion of ore, this is again buddled, when a portion of its tail is thrown away, and after submitting the remainder to a buddling operation, and separating the waste, it is jigged in a fine sieve, and rendered merehantable.
The other portions of the first buddle are rebuddled, and after scparating the waste, the orey matters are introduced into sizing eisterns, from which the finer particles are, made to flow over into a huddle, from whence a considerable portion goes direetly to market. That whieh requires further manipulation is again buddled until thoroughly
cleansed. downward with a current of water the stuff introduced into the sizing cisterus pass the streain, the orcy niatter is separated, lye, and after repeated projections against pure state.

The stuff falling from the lower extremitics of the separating sicves is received
into bins and subscquently cleansed, each of the three sizes is jigged, and in proportion as the worthless matters are separated, they are scraped off and removed. Those portions of the stuff that require further treatment are taken from the sieves, washed down from behind the hutches, and treatcd by tyes, until all the valuable portions have been extrated.

In this way vein stuff that originally contained but $1 \frac{1}{2}$ per cent of copper is so concentrated, as to afford a metallic yicld of 10 per cent., whilst by means of sizing-sieves, dressing-wheels, jigging-machines, and round-buddles, \&cc., from 40 to 50 tous of stuff are claborated per day of 9 hours, at a cost of $12 s$. per ton of dressed ore.

Captain Richards, the agent of these mines, has also introduced considerable improvenients in the slime-dressing department. The proper sizing of slime is as necessary as in the case of rougher work, and in order to effect this, he has arranged a slime-pit, which answers this purpose exceedingly well. This pit has the form of an inverted cone, and receives the slimes from the slime-separator, in an equally divided stream. The surface of this apparatus being perfectly levcl, and the water passing through it at a very slow rate, all the valuable matters are deposited at the bottom. If slime be valuable in the mass, it can cvidently be more economically treated by a direct subdivision into fine and coarser work; since a stream of water, acting on a mixture of this kind, will necessarily carry off an undue proportion of the former in freeing the latter from the waste with which it is contaminated.

The ordinary slime-pit is of a rectangular form, with vertical sides, and flat bottom. The water enters it at one of the ends by a narrow channel, and leaves it at the other. A strong central current is thus produced through the pit, which not only carries with it a portion of valuable slime, but also produces eddies and creates currents towards the edges of the pit, and thus retains matters which should have been rejected. The slime-pits at Devon Consols are connected with sets of Brunton's machines, which are thus kept regularly supplied hy means of a launder from the apex of the inverted cone, through which the flow is regulated by means of a plugvalve and screw.

A waggon cistern is placed under each frame for receiving the work, which is removed when necessary, and placed in a packing-kieve. This is packed by machinery, set in motion by a small water-wheel. The waste resulting from this operation is either entirely rejected, or partially reworked on Brunton's machines, whilst the orey matters contained in the kieve, are removed by a waggon to the orehouse where they are discharged.
Cornwall being destitute of coal, the whole of the copper ore which it produces is sent for smelting to South Wales.
The furnaces employed are of the reverberatory construction; they vary in their dimensions and in the number of their openings according to the operations for which they were intended. Therc are 5 of them:-1. The calcining furnace, or calciner; 2. The melting furnace; 3. The roasting furnace, or roaster ; 4. The refining furnace; 5. The heating or igniting furnace.

1. The Calcining Furnace rests upon a vault, c , into which the ore is raked down after being calcined; it is built with bricks, and bound by iron bars, as shown in the elevation, fig. 558. The hearth, в в, figs. 559 and 560 , is placed upon a level with

the lower horizontal binding bar, and has nearly the form of an cllipse, truncated at the two extremities of its greater axis. It is horizontal, bedded with fire-bricks set on cdge, so that it may be removed and repaired without disturbing the arch upon which it reposes. Holes, not visible in the figure, are left in the sole before each1 door $c c$, through which the roasted ore is let fall into the subjacent vault. The dimensions of the hearth b B, vary from 17 to 19 feet in length, and from 14 to 16 in briadth. The fire-phace A, fig. 560 , is from $4 \frac{1}{2}$ to 5 feet long, aud 3 feet wide. The
hridge or low wall b, fiy. 561 , which separates the fire-place from the hearth, is 2 feet thick, and in Messrs. Vivians' smelting-works is hollow, as slown in the figure, and conmunicates at its two ends with the atmosphere, in order to conduct a supply of fresh air to the hearth of the furnace. This judicious contrivance will he described in cxplaining the rousting operation. The arched roof of the furnace slopes down from the bridge to the beginning of the chimney f, fig. 558,560 , its hcight ahove the hearth being at the first point ahout 26 inches, and from 8 to 12 at the second.

Such calcining furnaces have 5 doors, $c c c c$, fig. 560 , and one for the fire-place, as shown at the right hand in fig. 558; 4 are for working the ore upon the reverberatory hearth. These openings are 12 inches square, and are hound with iron frames. The chimney is about 22 feet high, and is placed at onc angle of the hearth, as at $f, f i g .560$, being joined by an inclined flue to the furnace.

For charging it with ore, two hoppers e e, are usually placed ahove the upper part of the rault, in a linc with the doors ; they are formed of four plates of iron, supported in an iron frame. Beneath each is an orifice for letting the ore down into the hearth.

These furnaces serve for calcining the ore, and matts: for the lattcr purpose, iudeed, furnaces of two stories are sometimes cmployed, as represcuted in fig. 564. The dimensions of each floor in this case are a little less than the preceding. Two doors, $c c$, correspond to each hearth, and the workmen, while employed at the upper story, stand upon a raised movablc platform.
2. Melting Furnace, figs. 562 and 563 . -The form of the hearth is, in this case, also elliptical, hut the dimensions are smatler than in the calcining turnace. The length does not exceed 11 or $11 \frac{1}{2}$ feet, and the breadih varies from 7 to 8. The fire-place is, however, larger in proportion, its length being from $3 \frac{1}{2}$ to 4 feet, and its hreadth from 3 to $3 \frac{1}{2}$; this size heing requisite to produce the high temperature of the furnace. It has fewer openings, therc being commonly three; one to the fire-place at D , a second one, o, in the side, kept gencrally shut, and used only wheu incrustations need to he scraped off the hearth, of when the furnace is to he entered for repairs; and the third or working door, c , placed on the front of the furnace heneath the chimney. Through it, the scorix are raked out, and the melted matters stirred and puddled, \&e.
The hcarth is bedded with infusible sand, and slopes siightly towards the side door, to facilitate the discharge of the metal. Above this door is a hole in the wall of the
 chiuncy (fiy. 563) for letting the metal escapc. An iron gntter, o, leads it into a pit, κ, botomed with an iron receiving-pot, which may be lifted out by a cranc. The pit, s, is filled with water, aud the metal bceomes granulated as it falls into the receiver. These melting furnaces are surmounted hy a hopper l, as shown fig. 562.

Melting furnaces are sometimes also used for calcination. Some of those near Swansca, serve this doulle purpose; they are composed of 3 floors ($f y .564$). The floor A, is destined for melting the calcined ore; the other two, в, с, serve for calcination. The heat heing less powerful, upon the upper sole \mathbf{c}, the ore gets dried upon it, and begins to he calcined-a process completed on the next floor. Square holcs, d, left in the hearths b and c, put them in communication with each other, and with the lower one A; these perforations are shut during the operation hy a sheet of iron, removable at pleasure.

The hearths в and c, are madc of hricks ; these are horizontal at the top and slightly vaulted bencath; they are two hricks thick, and their dimensions larger than those of the inferior hearth, as they extend above the fire-place. On the floors destined for calcination the furnace has two doors on one of its sides: on the lower story there are also two ; hut they are differently placed. The first, beiug in the front of the furnace, serves for drawing off the scorix, for working the metal, \&c ; and the second, upon the side, admits the _workmen to make necessary repairs. Below this door is placed the discharze or tap-hole, which communicates by a cast.iron gutter with a pit filled with water. The dimensions of this furnace in length and breadth are nearly the same as those of the melting furnace ahove describcd; the total height is nearly 12 feet. It is charged hy means either of one or two hoppers.
3. Rocsting Furnace - The furnaces employed for this purpose are in general similar to the calciners; but in the smelting-works of Messis. Vivian, the furuaces above
alluded to, present a peruliar construction ; this is for the purpose of introducing a continuous current of air upon the metal, in order to facilitate its oxidation. This proeess was originally invented by Mr. Sheffield, whedisposed of his patent right to Messrs. Vivian.

The air is admitted by a channel through the middle of the firc-bridge, which extends all its length; it communicates with the atmosphere at its two extremitics, whilst square holes, left at right angles to this channel, conduct the air into the furnace. This very simple construction produces a powerful effect in the roasting. It not only promotes the oxidation of the metals, but burns the smoke, and assists in the vaporisation of the sulphur' ; while by keeping the bridge cool it preserves it from wasting, and secures uniformity of temperature to the hearth.
4. Refining F'urnace.-In this, as in the melting furnace, the side slopes towards the front door instend of the side doors, because in the refining furnace the copper colleets in a cavity formed in the hearth near the front door, from which it is lifted out by ladles; whereas, in the melting furnaces, the metal is run out by a tap-hole in the side. The :ole is laid with sand; but the roof is higher than in the inelting furnace, being from 32 to 36 inches in height. If the top arch were too much depressed, there might be produced upon the surface of the metal a layer of oxide very prejudicial to the quality of the copper. In that case, when the metal is run out, its surface solidifies and cracks, while the melted copper beneath breaks through and spreads irregularly over the cake. This accident, called the rising of the copper, prevents it from being laminated, and requires it to be exposed to a fresh refining process, when lead must be added to renove the oxide of copper. This is the only occasion upon which the addition of lead is proper in refining copper. When the metal to be refined is mixed with others, particularly with tin, as in extracting copper from old bells, then very wide furnaces must be employed, to expose the metallic bath on a great surface, and in a thin stratum, to the oxidising action of the air.

The door, on the side of the refining furnace, is very large, and shuts with a framed briek door, balanced by a counter-weight.
5. Heating Furnuces, being destined to heat the pigs or bars of copper to be laminated, as well as the copper sheets themselves, are made much longer in proportion to their breadth. Their hearth is horizontal, the vault nut much depressed; they have only one door, placed upon the side, but which extends nearly the whole length of the furnace; this door may be raised by meuns of a counter-weight, in the same way as in the furnaces for the fabrication of sheet-iron and brass.

Series of Operations to which the Ore is subjected.

The ores which are smelted in the Swansea works are cupreous pyrites, more or less mingled with gangue (vein-stone). This pyrites is composed of nearly equal proportions of sulphide of copper and sulphide of iron.

The earthy matters which accompany the pyrites are usually siliceous, though in some mines the mineral is mixed with clay or fluor-spar. Along with these substances, tin and arsenical pyrites occasionally occur with the copper ; and though these two metals are not chemically combiued, yet they cannot be entircly separated by mechanical preparation. The constituent parts of the ore prepared for smelting are, thereforc, copper, iron, and sulphur, with earthy matters, and, in some cases, tin and arsenic. The different ores are mixed in such proportions that the average metallic contents may amount to 8 per cent. The smelting process consists in alternate roastings and fusions.

In the roasting operation the volatile substances are mostly disengaged in the gaseons state, while the metals that possess a strong affinity for oxygen become oxidised. In the fusion the earthy substances combine with these oxides, and form glassy scoriæ or slags, which float upon the surface of the melted netal.

These calcinations and fusions take place in the following order:-

1. Calcination of the ore. 2. Fusion of the calcined ore. 3. Calcination of coarse metal. 4. Melting the calcined coarse metal. 5. Calcination of fine metal (second matt). 6. Melting calcined fine metul. 7. Roasting coarse copper. In some sueltingworks, this roasting is repeated four times; in which case a calcination and a melting are omitted. In other works, however, a saving is made without increasing the number of roastings. 8. Refining or toughening the copper.

Besides these operations which constitute the treatment of copper properly speaking, two others are sometimes performed, in which ouly the seorix are smelted. These may be designated by the letters a and b. a is the re-melting of a portion of the scorix of the sccond process, which contain some metallic grauulations. b is a particular melting of the scoriæ of the fourth operation. This fision is intended to
concentrate the particles of copper in the scoriæ, and is not practised in all smeltingworks.
First Operation. Calcination of the Ore.-The different ores, on arriving from Corawall and other localities where they are mined, are discharged in continuous cargoes at the smclting works, in such a way, that by taking out a portion from sevcral heaps at a time, a tolerably uniform mixture is obtaincd; which is very essential, since the ores, being different in quality and contents, act as fluxes for cach other. The mixed ore is transported to the works in wooden measures each holding a hun-dred-weight. The workmen entrusted with the calcination convey the ore into the hoppers of the calcining furnace, whence it falls into the hearth ; other workmen spread it uniformly on the surface with iron rakes. The charge of a furnace is from 3 tons to $3 \frac{1}{2}$ tons. Fire is applied and gradually increased, till towards the end of the opcration, the temperature is as high as the ore can support without melting or agglutinating. To prevent this rumning together, and to aid the extrication of the sulphur, the surfaces are renewed, by stirring up the orc at the end of cvery hour. The calcination is usually completed at the end of 12 hours, when the ore is raked into the arch under the sole of the furnace, and when cold enough to be muved, is taken out of the arch, and conveyed to the calcincd heap.

The ore in this process scarcely changes weight, having gained by oxidation nearly as much as it has lost in sulphur and arsenic ; and if the roasting has bcen rightly managed, the ore is in a black powder, owing to the oxides present.

Second Operation. Fusion of the calcined Ore. - The calcined ore is likewise given to the smelters in measures containing a hundred-weight. They throw it into hoppers, and after it has fallen on the hearth, spread it uniformly. They then let down the door, and lute it tightly. In this fusion there are added about 2 cwt . of scorixe proceeding from the melting of the calcined matt, to be afterwards described. The object of this addition is not only to extract the copper that these scoriæ may contain, but also to incrcase the fusibility of the mixture. Sometimes, when the composition of the ore requires it, lime, sand, or fluor-spar is added, more particularly the latter.

The furnace being charged, fire is applied, and the sole care of the founder is to keep up the heat so as to have a perfect fusion ; the workman then opens the door, and stirs about the liquid mass to complete the scparation of the metal (or rather of the matt) from the scoriæ, as well as to hinder the melted matter from sticking to the sole. The furnace being ready, that is, the fusion being perfcct, the founder takes out the scoriæ by the front door, by means of a rake. When the matt is thus freed from the scorix, a second charge of calcined ore is introduced to increase the metallic bath; which second fusion is executed like the first. New charges of roasted ore arc put in till the matt collected on the hearth rises to a level with the door-way, which happens commonly after the third charge. The tap hole is now opened and the matt flows out into a pit filled with water, where it is granulated and collects in the pan placed at the bottom. The granulated matt is next conveyed into the matt warchouse. The oxidation with which the grains get covered by the action of water, does not allow the proper shade of the matt or coarse metal to be distinguished; but in the bits which stick in the gutter, it is seen to be of a steel grey colour. Its fracture is compact, and its lustre metallic. The scoriæ often contain metallic grains; they are broken and picked with care. All the portions which include metallic particles are re-melted in an accessory process.
In this operation, the copper is concentrated by the separation of a great part of the matters with which it was combined. The granulated matt produced contains in general 33 per cent. of copper ; it is therefore four times richer than the ore; and its mass is consequently diminished in that proportion. Its constituents are principally copper, irou, and sulphur.
The most important point in the fusion just described, is to make a fusible mixture of the earths and oxides, so that the matt of copper may, on account of its greater specific gravity, sink below and separate exactly from the slag. This is attained by means of metallic oxides contained in the scorix of the fourth operation, of which 2 cwt . were added to the charge. These consist almost entirely of oxide of iron. When the ores are very difficult to melt, about half a hundred-weight of fluor-spar is added; but this must be done with precaution, for fcar of too much increasing the scorix.

The work procceds day and night. Five charges are commonly put throngh in the coursc of 24 hours; but when all circumstances are favourable, that is to say, when the ore is fusible, when the fuel is of the first quality, and the furnace in good condition, even six charges a day have becn despatched.

The charge is a ton and a half of calcincd orc, so that a smelting furnace nearly corresponds to a calcining furnace; the latter turning out 7 tons of calcined ore in 24 hours.

The workmen are paid by the ton.

Third Opcration. Calcination of coarsc Mctal. - The objeet of this operation is principally to oxidise the iron, which is more easily accomplished than in the first ealeining, beeause the netal is now disengaged from the earthy substanees, whieh sereeued it from the ation of the air.

This calcination is exceuted in the furnace already represented in fiys. $562,563,564$, page 823 , exaetly in the same way as the ore was ealeined. The metal must be perpetually stirred, to expose all its surfaces to the aetion of the hot air, and to hinder clotting together. The operation lasts 24 hours; during the first 6 , the fire should be very moderate, and gradually inereased to the end of the ealeination. The eharge is, like that of the first, $3 \frac{1}{2}$ tons.

Fourth Operation. Melting the calcined coarse Metal. - In the fusion of this first caleined matt, some seorix of the latter operations must be added, whieh are very rich in oxide of copper, and some erusts from the hearth, which are likerrise impregnated with it. The proportion of these suhstances varies aceording to the quality of the ealeined matt.

In this seeond fusion, the oxide of eopper eontained in the scorix is redueed hy the affinity of the sulphur, one portion of whieh passes to the state of aeid, while the other forms a suhsulphide with the free copper. The matt commonly eontains a sufficient quantity of sulphur to reduce the oxide of copper completely; but if not, whieh may happen if the ealeination of the matt has been pushed too far, a small quantity of unealcined matt must he introduced, which, by furnishing sulphur, diminishes the richness of the seorire, and facilitates the fusion.

The seorix are taken out by the front door hy means of a rake. They have a great specifie gravity; are hrilliant with a metallic lustre, very crystalline, and present, in the eavities, erystals like those of pyroxene; they hreak easily into very sharp-edged fragments, and contain no granulated metal in the interior ; hut it sometimes ceeurs, on aecount of the small thicknesses of the stratum of seoriæ, that these carry off with them, when withdrawn, some metallie partieles.

These scoriz, as we have already stated (under Fusion of the roasted Ore), are in general melted with it. In some eases, however, a special melting is assigned to them.

The matt ohtained in this seeond fusion is either run out into water like the first, or moulded into pigs (ingots), aecording to the mode of treatment which it is to undergo. This matt, termed by the smelters fine metal when it is granulated, and blue metal when it is in pigs, is of a light grey eolour, eompaet, and bluish at the surfaee, and contains about 60 per cent. of copper.
(b.) Particular Fusion of the Scorice of the fourth Operation.-In re-melting these seorix, the object is to procure the copper which they contain. To effect this fusion, the seorix are mixed with pulverised coal, or other carbonaceous matters. The copper and several other metals are deoxidised, and furnish a white and brittle alloy. The scoriæ resulting from this melting are in part employed in the first melting, and in part thrown away. They are erystalline, and often present erystals in the cavities, which appear to helong to hisilicate of iron. They have a metallic lustre and break into very sharpedged fragments. The white metal is melted again, and then united to the produet of the second fusion.

Fifth Operation. Calcination of the second Matt, or fine Metal. - This is executed in preeisely the same way as that of the first matt. It lasts 24 hours; and the eharge is usually 3 tons.

Sixth Operation. Melting of the calcined fine Metal.-This fusion is conducted like that of the first matt. The blaek, or coarse copper, whieh it produces, contains from 70 to 80 per cent. of pure metal ; it is run into ingots, in order to undergo the operation of roasting.

The scorix are rieh in eopper ; they are added to the fusion of the caleined coarse metal of the fourth operation.

In many smelting honses, the fifth and sixth operations have of late years heen omitted. The second matt is run into pigs, under the name of bluc mctal, to be iumiediately exposed to roasting.
The disposition of the eanal $c c$, fig. 564, which introduees a continnons eurrent of air to the hearth of the furnace, aecelerates and faeilitates the calcination of the matt; an advantage whieh has simplified the treatment, by diminishing the number of caleinations.

Seventh Opcration. Roasting of the coarse Copper, the product of the sixth Operation. -The chief object of this operation is oxidation ; it is performed either in an ordinary roasting furnaee, or in one similar to fig. 564, which admits a constant current of air. The pigs of metal derived from the preeeding melting are exposed, on the hearth of the furnace, to the action of the air, which oxidises the iron and other forcign metals witl which the copper is still contaminated. The duration of the roasting varies from 12 to 24 hours, according to the degree of purity of the crude copper. The temperature
should be graduated in order that the oxidation may be complete, and that the volatile substances which the copper still retains may escape in the gaseous form. The fusion must take place only towards the end of the operation.

The charge varies from a ton and a quarter to a ton and a half. The metal ohtained is run out into moulds of sand. It is covered with hlack hlisters, like cementation steel; whence it has got the name of hlistered copper. In the interior of these pigs the copper presents a porous texture, occasioucd hy the ehullition produced by the escape of gases during the moulding. The copper heing now almost entirely freed from sulphur, iron, and the other suhstances with which it was combined, is in a fit state to be refined. This operation affords scoriæ, which are very heavy, and contain a great deal of oxide of copper, and sometimes even metallic copper.

These scorix, as well as those of the third melting and the refining, are added to the second fusion, as we have already stated, in descrihing the fourth operation.

In some works, the roasting is several times repeated upon the blue metal, in order to hring it to a state fit for refining. We shall subsequently notice this modification of the treatment.
Eighth Operation. Refining or Toughening.-The pigs of copper intended for refining are placed on the sole of the refining furnace through the door in the side. A slight heat is first given, to finish the roasting or oxidation, in case this operation has not already been pushed suffeiently far. The fire is to be increased by slow degrces, so that, hy the eud of six hours, the copper may begin to flow. When all the metal is melted, and the heat is very considerahle, the workman lifts the door in the front, and withdraws with a rake the few scorix which may cover the copper hath. These are red, lamellated, very heavy, and closely resemble protoxide of copper.
The refiner then takes an assay with a small ladle, and when it cools, breaks it in a vice, to aseertain the state of the copper. From the appearance of the assay, the aspect of the hath, the state of the fire, \&c., he judges if he may proceed to the toughening, and what quantity of wooden spars and wood-charcoal he must add to render the metal malleable, or, in the language of the smelters, hring it to the proper pitch. When the operation of refining hegins, the copper is dry or hrittle, and of a deep red colour approaching to purple. Its grain is coarse, open, and somewhat crystalline.
To execute the refining, the surface of the metal is covered with wood-charcoal, and stirred with a spar or rod of birch or other wood. The gases which eseape from the wood occasion a hrisk effervescence. More wood-charcoal is from time to time added, so that the surface of the metal may be always covered with it, and the stirring is continued until the operation of refining is finished; a circumstance iudicated hy assays taken in succession. The grain of the copper hecomes finer by degrees, and its colour gradually hrightens. When the grain is extremely fine, or close, when the trial-pieces, half cut through and then broken, present a silky fracture, and the eopper is of a fine light red, the refiner considers the operation to he completed; hut he verifies still further the purity of the copper, by trying its malleability. For this purpose, he takes out a sample in a small ladle, and pours it into a mould. When the copper is solidified, hut still red-hot, he forges it. If it is soft under the hammer, and does not crack on the edges, the refiner is satisfied with its ductility, and pronounces it to he in its proper state. He then orders the workmen to mould it: they lift the copper out of the furnace in large iron ladles lined with clay, and pour it into moulds of a size suitahle to the demands of commerce. The ordinary dimensions of the ingots or pigs are 12 inches broad, 18 long, and from 2 to $2 \frac{1}{2}$ thick.
The period of the refining process is 20 hours. In the first six, the metal heats and suffers a kind of roasting; at the end of this time it melts. It takes four hours to reach the point at which the refining, properly speaking, begins; and this last part of the process lasts about four hours. Finally, six hours are required to arrange the moulds, cast the ingots, and allow the furnace to cool.
The charge of copper in the refining process depends upon the dimensions of the furnace. In different works the charge varies from 3 to 5 tons.
When the copper offers difficulties in refining, a few pounds of lead are added to it. This metal, hy the facility with which it scorifies, acts as a purifier, aiding the oxidation of the iron and other metals that may he present. The lead ought to he added immediately after removing the door to skim the surfacc. The copper should be constantly stirred to expose the greatest possible surface to the action of the air, and to produce the complcte oxidatiou of the lead; since the smallest quantity of this metal in copper causes a difficulty in the lamination; i.e., the scale of oxide does not come clean from the surfaee of the sheets.

The operation of refiuing copper is delicate, and requires, upon the part of the workmen, great skill and attention to give the metal its proper ductility. Its surface ought to be entirely covered with wood-charcoal; without this precaution, the refining of the metal would go buck, as the workmen say, duriug the long interval which
elapses in moulding; whenever this accident happens, it must be stirred aucw with the wooden pole.

Too long employment of the pole eauses the eopper to become more brittle than it was prior to the commeneement of the refining; that is, when it was dry. Its colour is now of a very brilliant ycllowish red, and its fracture fibrons. When this oceurs, the refiuing, as the workmen say, has gone too far, and the refiner removes the clareoal from the top of the melted metal; he opens the side door, to expose the copper to the action of the air, and it then resumes its mallcable eondition.

The theory of refining may be thus explained:-We may conelude that the eopper in the dry state before refining, is eombined with a small portion of oxygen, or, in other words, that a small portion of oxide of copper is diffused through the mass, or conlhiued with it; and that this proportion of oxygen is expelled by the deoxidising action of the wood and ehareoal, whereby the metal becomes malleable. 2. That when the refining proeess is earried too far, the copper gets eombincd with a little earhon. Thus eopper, like iron, is brittle when eombined with oxygen or carbon; and bceomes malleable only when freed entirely from these substanees.

It is remarkable, that copper, in the dry stute, has a strong action upon iron; and that the tools employed in stirring the liquid metal bccome glistening, like those used in a farrier's forge. The iron of the tools consumes more rapidly at this time thau when the copper has acquired its malleable state. The metal requires, also, when $d r y$, more time to become solid, or cool, than when it is refined; a circumstance depending, probably, upon the difference in fusibility of the eopper in the two statcs, and whieh seems to indicate the presence of oxygen.

When the proper refining puint has been passed, another very remarkable circumstanee has been observed; namely, that the surface of the eopper oxidises less easily; and that it is uncommonly brilliant; reflecting clearly the bricks of tbe furnace vault. This fact is favourable to the idea suggested above, that the metal is in that ease combined with a small quantity of earbon; which absorbs the oxygen of the air, and thus proteets the metal from its action.

Cupper is brought into the market in different forms, according to the purposes whieh it is to serve. That whieh is to be employed in the manufacture of brass is granulated. In this eondition it presents more surface to the action of zinc, and combines with it more readily. To produce this granulation, the metal is poured into a large ladle, piereed with holes and placed above a cistern filled with water, which must be hot or eold, aeeording to the form of the grains required. When it is hot. round grains are obtained analogous to lead shot; and the copper in this state is called beun shot. When the melted copper falls into cold water perpetually renewed, the granulations are irregular, thin, and ramified; eonstituting feathered shot. The bean shot is the form employed in brass making.

Copper is also made into small ingots, about six ounces in weiglit. These are intended for exportation to the East Indies, and are known in eommeree by the name of Japan enpper. Whenever these little pieees are solidified, they are thrown, while hot, into cold water. This immersion slightly oxidises the surfaee of the eopper, and gives it a fine red colour.

Lastly, copper is often redueed into sheets, for the sheathing of ships, and many other purposes.

The eylinders for rolling eopper into sheets are usually 3 feet long, and 15 inches in diameter. They are uniform. The upper roller may be approached to the under one by a screw, so that the cylinders are brought closer iu proportion as the slicet is made thinner.

The ingots of copper are laid upon the sole of a reverberatory furnace to be heated; they are placed alongside each other, and are formed into piles in a cross-like arrangement, so that the hot air may pass freely round them all. The door of the firnace is shut, and the workman looks in through a peep-hole from time to time, to see if they have taken the requisite temperature; namely, a dull red. The copper is now passed between the cylinders; but although this metal is very malleable, the ingots cannot be redueed to sheets without being several times heated; because the copper cools, and aequires, by eompression, a texture whieh stops the further progress of lamination. See Annealing.

These sueeessive heatings are given in the furnace above indicated; though, when the sheets are to have a very great size, firnaces somewhat ditferent are had reeourse to. They are from 12 to 15 feet long, and 5 fuet wide. See Brass.
The copper, by suecessive heating and lamination, gets eovered with a coating of oxide, which is removed by stceping the sheets for a few days iu a pit filled wilh urine; they are then put upon the sole of the heating furnacc. Ammonia is formed, which acts on the eopper oxide, and lays bare the metallic surface. 'Ihe sheets are next rubbed with a pieee of wood, then plunged, while still hot, into water, to make
the oxide scalc off; and arc lastly passed cold through the rolling press to smooth them. They are now cut square, and packed up for home sale or exportation.

The following estimate was given by MM. Dufrenoy and Elie de Beaumont of the expensc of manufacturing a ton of copper at the time of tbeir visit to South Walcs in 1822.

$$
\begin{aligned}
& 12 \frac{1}{\frac{1}{2}} \text { tons of ore, yielding } 8 \frac{1}{2} \text { per cent. of copper } \\
& 20 \\
& 20 \\
& \text { tons of coals }- \\
& \text { Workmen's wages, rent, repairs, } \\
& \hline
\end{aligned}
$$

The exhalations from the copper smelting-works are exceedingly detrimental to both vegetable and animal life. Tbey consist of sulphurous acid, sulphuric acid, arsenic and arsenious acids, various acid and fluoric vapours, with solid particles mechanically swept away into the air.
The following figures represent certain modifications of the copper calcining and smelting copper furnaces of Swansea.
Fig. 565 is the section of the roasting furnace lengthwise; fig: 566 the ground plan; in which a, is the fire door; b, the grate; c, the firebridge; d, the chimney; $e e$, apertures on each of the long sides of tbe furnace, through which tbe ore is spread, and turned over; $f f$, iron hoppers; $g g$, openings in the vaulted roof; h the hearth-sole; $i i$, holes in this; h, a vaulted space under the hearth. The hearth has a suitable oval slape, and is covered with a flat arch. Its length is 16 feet. breadth 133_{2}^{1}, mean height 2 feet.

Fig. 567 is a longitudinal section of the melting furnace; fig. 568 the ground plan, n which a, is the fire-door ; b, tbe grate; ; the fire-bridge; d, the chimney; e, the ide openings; f, the working door; g, he raking-out hole; h, iron spouts, which conduct the melted metal into pits filled with water.

The melting furnace is altogether smaller; but its firing hearth is considerably larger tban in the roasting furnace. The long axis of the oval hearth is 14 fect; its short axis 10 feet; its mean height 2 feet.

Nupier's Process for smelting Copper Ores.-As the copper ores of this country often contain small portions of other metals, such as tin, antimony, arsenic, \&c., which are found to deteriorate the copper, Mr. Napier's process has in view
 to remove these metals, and at the s smelting process.

The first two operatious, that of ealeining and fusing the ore, are the same as the ordinary process; but the produet of this last fusion-viz., the coarse metal-is again fused with a little sulphate of soda and eoal mixed. And whenever this becomes solid, after tapping the furnaee, it is thrown into a pit of water, where it immediately falls into an impalpable powder; the water boils, and then contains eaustic soda and sulphide of sodium, dissolving from the powder those metals that deteriorate the copper, the ley is let off, and the powder washed by allowing water to run through it. The powder is then put into a caleining furnace, and ealeined until all sulphur is driven off, whieh is easily done from the finely divided state of the mass. This ealcined powder is now removed to a fusing furnace, and mixed with ores containing no sulphur, such as carbonates and oxides, and a little ground coal, and the whole fused; the result of this fusion is metallie copper and sharp slag - that is, a scoria containing much protosilicate of iron, which is used as a flux in the first fasion of the ealeined ore, so that any small trace of eopper which the slag may contain is thus recovered.

The copper got from this fusion is refined in the ordinary way, and is very pure.
When the copper ores eontain tin to the extent of from $\frac{1}{2}$ per eent. to 2 per eent., which many of them are found to do, Mr. Napier proposes to extraet this tin, and make it valuable by a process which has also been the subject of a patent. The ore is first ground and calcined, till the amount of sulphur is a little under one-fourth of the copper present, the ore is then fused with a little coal. The result of this fusion, besides the scoria, is a regulus eomposed of sulphur, copper, and iron, and under this is a coarse alloy of copper, tin, and iron, called white metal. This alloy is ground fine, and calcined to oxidise the metals, whieh are then fused in an iron pot with caustie soda, whieh combines with the tin and leaves the eopper. The oxide of copper is now fused with the regulus. The stannate of soda is dissolved in water, and the tin precipitated by slaked lime, which is dried and fused with carbonaceous matters and a little sand, and metallic tin obtained ; the caustie soda solution is evaporated to dryness and used over again. This process is well adapted for very poor eopper ores that are mixed with tin, or poor tin ores mixed with eopper.
Process entployed at Chessy.*- The principal ore smelted at Chessy was the azure copper, which was discovered by aecident in 1812. Red copper ore, also, came into operation there after 1825. The average metallic contents of the richest azure ore was from 33 to 36 per cent.; of the poorer, from 20 to 24 . The red ore contained from 40 to 67 parts in 100. The ore was sorted to an average of 27 per cent. of metal, to whieh 20 per eent. of limestone was added; whenee the einder will amount to 50 per cent. of the ore. A few per cents. of red copper slag, with some quieklime and guhrslag, was added to each eharge, which eonsisted of 200 pounds of the above mixture, and 150 pounds of eoke. When the furnace (fourneau à manche, see the Seoteh smelting hearth, under LEAD) is in good action, from 10 to 14 such eharges ean be worked in 12 hours. When the crueible is full of metal at the end of this period, during whieh the cinder has been frequently raked off, the blast is stopped, and the matt floating over the metal being sprinkled with water and taken off, leaves the black copper to be treated in a similar way, and couverted into rosettes. The refining of this blaek copper was performed in a kind of reverberatory furnace.

The cinders produeed in this reduction process were either vitreous and light blue, whieh were most abundant; cellular, black, imperfectly fused from excess of lime; or, lastly, red, dense, blistery, from defeet of lime, from too mueh heat, and the passage of protoxide into the cinders. They consisted of silicate of alumina, of lime, protoxide of iron; the red contained some silicate of copper.
The copper-refining furnace at Chessy was of the kind called Spleissofen (split hearth) by the Germans. Fig. 569 is a section lengthwise on the dotted line a b of fig. 570 , which is the ground plan.
The fonndation-walls were made of gneiss; the areh, the fire-bridge, and the chimney, of fire-bricks. The hearth, a, was formed of a dense mixture of coal-dust, upon a bottom of well-beat clay, b, which reposed upon a bed of briek-work, c. Beneath this there was a slag bottom, d; e is the upper, and f the under diseharge hole. The liearth was cgg-shaped; the longer axis being 8 fect, the shorter 6.1. feet; in the middle it was 10 inches decp, and furnished with the outlets, $g g$, which lead to each of the Spleiss-hearths. $h \mathrm{~h}$, fig. 570 . These outlets were eontracted with fire-bricks, i, till the proper period of the diseharge. The two hearths were placed in communication by a canal, k; they were $3 \frac{1}{2}$ feet in diametcr, 16 inches deep; floored with well-beat coal-ashes, and received about 27 cwt . for a charge.
l is the grate; m, the fire-bridge; n, the boshes in which the tuyires lie; 0 , the chimney ; p, the working door through which the slags may be drawn off. Abovo

[^46] by a humid process.
this was a small ehimney, to earry off the flame and smoke whenever the door was opened.
The smelting post or eharge, to bc purified at onee, eonsisted of 60 ewt . of blaek eopper, to which a little granular copper and eopper of eementation were added; the eonsumption of pit-eoal amounted to 36 ewt. As soon as the copper was melted, the hellows were set a-going, and the surface of the metal soon heeame covered with a moderately thiek layer of einder, whieh was drawn off. This was the first skimming or décrassage. By and by, a seeond layer of einder formed, whieh was in like manner removed; and this skimming was repeated, to allow the blast to aet upon fresh metallie surfaees.
 After 4 or 5 hours, no more slag appeared, and then the fire was inereased. The melted mass now began to boil or work (travailler), and eontinued so to do for

about $\frac{3}{3}$ of an hour, or an hour, after whieh the motion ceased, though the fire was kept up. The gahrproof was now taken; hut the metal was seldom fine in less than $\frac{3}{7}$ of an hour after the boil was over. Whenever the metal was run off by the tap-hole into the two hasins, $h h$, ealled split-hearthe, a reddish vapour or mist arose from its surface, composed of an infinite number of minute globules, whieh revolved with astonishing veloeity upon their axes, eonstituting what the Germans ealled spratzen (eraekling) of the eopper. They were composed of a nueleus of metal, covered with a bilm of protoxide, and were used as sand for strewing upon manuseript. The eopper was separated, as usual, hy sprinkling water upon the surface of the melted metal, in the state of rosettes, which were immediately immersed in a stream of water. This refining proeess lasted about 16 or 17 hours ; the skimmings weighed abut 50 ewt. ; the refuse was from 15 to 17 per eent.; the loss from 2 to 3 per eent.
The gahrslag amounted to 11 ewt.

The refining of the eliquated copper (ealled darrlinge) from which the silver has been sweated out by means of lead, can be performed only in small hearths. The following is the representation of such a furnace, called in German Kupfergalirlcerd. Fig. 571 is the section lengthwise; fig. 572 is the section across ; and fig. 573 is

the ground plan, in which a is the hearth-hollow; b, a massive wall; c, the mass out of which the hearth is formed; d, cast-irou plates covering the hearth; e, opening for running off the liquid slag ; f, a small wall; g, iron curb for keeping the coals together.

The hearth being heated with a bed of charcoal, $\frac{3}{4} \mathrm{cwt}$. of darrlinge are laid over it and covered with more fuel: whenever this charge is melted, another layer of the coal and darrlinge is introduced, and thus in succession till the hearth becomes full or contains from $2 \frac{1}{4}$ to $2 \frac{1}{2} \mathrm{cwt}$. In Neustadt $7 \frac{1}{2} \mathrm{cwt}$. of darrlinge have been refined in one furnace, from which 5 cwt . of gahrkupfer has been obtained. The blast oxidises the foreign metals, namely, the lead, nickel, cobalt, and iron, with a little copper, forming the galurslay; which is, at first, rich in lead oxide and poor in copper oxide; but, at the end, this is reversed. The slag, at first blackish, assumes progressively a copper-red tint. The slag flows off spontaneously along the channel e, from the surface of the hearth. The galire is tested by means of a proof rod of iron, called Galireisen, thrust through the tuyeirc into the melted copper, then drawn out and plunged in cold water. As soon as the galirspan (scale of copper) appears brownish-red on the outside, and copper-red within, so thin that it seems like a net-work, and so deficient in tenacity that it cannot be bent without breaking, the refining is finished. The blast is then stopped; the coals covering the surface, as also the cinders, must be raked off the copper, after being left to cool. 'The surface is now further cooled by sprinkling water upon it, and the thick cake of congealed metal (rondelle) is lifted off with tongs, a process called sclleissen (slicing), or scleibcureissen (shaving), which is continued till the last convex cake at the boftom of the furnace, styled the kingspiece, is withdrawn. These rondelles are immediately immersed in cold water, to prevent the oxidation of the copper; whereupon the metal becomes of a cochineal-red colour, and gets covered with a thin film of protoxide. Its under surface is studded over with points and hooks, the result of tearing the congealed disc from the liquid metal. Such cakes are called rosette coppcr. When the metal is pure and free from oxide, these cakes may be obtained very thin, $\frac{1}{2}$ th of an inch, for example.

The refining of $2 \frac{1}{2} \mathrm{cwts}$. of darvinge takes $\frac{3}{4}$ of an hour, and yields $1 \frac{1}{2} \mathrm{cwts}$. of gahr copper in 36 rosettes, as also some gahrslag. Gahr copper gencrally contains from $1 \frac{1}{2}$ to $2 \frac{1}{2}$ per cerit. of lead, along with a little nickle, silver, irnn, and aluminium.

Smelting of the Mansfeld Copper Schist, or bituminous Mergelschiefer. - The cupreous ore is first roasted in large heaps of 2000 cwts., interstratified with brush-wood, and with some slates rich in bituminous matter mixed with the others. These heaps are 3 clls high, and go on burning 15 weeks in fair and 20 in rainy weather. The bitumen is decomposed; the sulphur is dissipated chiefly in the form of sulphurous acid ; the metal gets partially oxidised, particularly the iron, which is a very desirable circumstance for the production of a good smelting slag. The calcined ore is diminished $\frac{1}{10}$ th in bulk and $\frac{1}{8}$ th in weight; becoming of a friable texture and a dirty yellow colour. The smclting furnaces are cupolas (Scluaclitofen), 14 to 18 feet high; the fuel is partly wood-charcoal, partly coke from the Berlin gas-works and Silesia. The blast is given by a cylinder recently substituted for the old barbarous Blascbülgen, or wooden bellows of the houschold form.

The cupreons slate is sorted, according to its composition, into slate of lime, clay, iron, \&e.; by a mixture of which the smelting is facilitated. For example, 1 post or charge may consist of 20 cwts . of the ferruginous slate, 14 of the calcareous, 6 of the argillaceous, with 3 of fluor-spar, 3 of rich copper slags, and other refuse matters. The nozzle at the tuyere is lengthencd 6 or 8 inches, to place the melting heat near the centre of the furuace. In 15 hours 1 fuder of 48 ewt . of the above inixture may be smelted, whereby 4 to 5 cwts . of matt (crude copper, called Kupferstein in Germany) aud a large body of slags are obtained. The matt contains from 30 to 40 per cent. of copper, and from 2 to 4 loths (1 to 2 oz .) of silver. The slags contain at times $\frac{1}{10}$ th thcir weight of copper.

The matt is composed of the sulphides of copper, iron, silver, zinc, along with some arsenical cobalt and nickel. The slaty slag is raked off the surface of the melted matt from time to time. The former is either, after being roasted 6 successive times, smelted into black copper, or it is subjected to the following concentration process. It is broken to pieces, roasted by brushwood and coals 3 several times in brickwalled kilns, containing 60 cwts , and turned over after each calcination; a process of 4 weeks' duration. The thrice roasted mass, called spurrost, being melted in the cupola, fiy. 574, with ore-cinder, yiclds the spurstein, or coneentrated matt. From 30 to 40 cwts . of spurrost are smelted in 24 hours; and from 48 to 60 per cent. of spurstein are obtained, the slag from the slate smelting being employed as a flux. The spurstein contains from 50 to 60 per cent. of copper, combined with the sulphides of copper, of iron, and silver.

The spurstein is now mixed with dïnnstein (a sulphide of eopper and irnon produced in the original smelting) roasted 6 successive times, in quantities of 60 cwt ., with brushwood and charcoal; a process which requires from 7 to 8 weeks. The product of this six-fold caleination is the Gahrröst of the Gcrmans; it has a colour like red copper orc, varying from hlue grey to cochineal-red, with a granular fracture; and may lee immediately reduced into metallic copper, which process is called kupfermachen. But before smelting the mass, it is lixiviated with water, to extract from it the soluble sulphate, which is concentrated in leaden pans, and crystalliscd.

The lixiviated galurröst mixed with from $\frac{1}{4}$ to $\frac{1}{5}$ of the lixiviated dünnstcinrost, and $\frac{1}{6}$ to $\frac{1}{10}$ of the copper slate slag, are smelted with charcoal or coke fuel in the course of 24 hours, in a mass of 60 or 80 cwts . The product is black copper, to the annount of ahout $\frac{1}{4}$ the weight, and $\frac{1}{6}$ of dïnnstein, or thin matt. This black copper contains in the cwt. from 12 to 20 lotls (6 to 10 oz.) of silver. The dünnstein consists of from 60 to 70 per cent. of copper combined witl sulphur. sulphide of iron, and arsenic ; and when thrice roasted, yields a portion of metal. The black copper lics undermost in the crucible of the furnace, above it is the dïnnstein, covered with the stone slag, or copper cinder, resulting from the slate-smelting: The slags being raked off, and the crucible sutficiently full, the eye or nozzle hole is shut, the diinnstein removed by cooling the surface and breaking the crust, which is about $\frac{f}{f}$ to $\frac{1}{2}$ inch thick. The same method is adopted for taking out the black copper in successive layers. For the desilvering of this, and similar blaek coppers, sec Silver.
Fig. 574 is a vertieal section through the tuyère in, the dotted line A B of fig. 576 . Fig. 575 is a vertical section through the dotted line $\mathbf{c} \mathrm{D}$ of fig. 577 . a is the shaft of the furnace; b, the rest, $c c$, the tuyires; d, the solc or hearth-stone, which has a slope of 3 inehes towards the front wall ; $c c$, \&ce., casing walls of fire brieks; $f f, \& c \mathrm{c}$., filling-up walls built of rubbish stones ; gg, a mass through which
 the heat is slowly conducted; $h h$, the two holes through onc or other of whicls alternately the product of the smelting process is run off into the forc-hearth. Beneath
Vor. I.
$\begin{aligned} & \text {. }\end{aligned}$
the hearth-sole there is a solid body of loam ; and the fure-henth is forned whin a mixture of coal-dust and clay ; k is the discharge ontlet for moisture. Fig. 576 is a horizontal section of the furnace through the jole or eye, on the dotted line E F of fig. 574 ; fig. 577 , a horizontal section of the shaft of the furnace through the form along the dotted line cu of figs. 574 and 575 . The height of the shaft, from the line EF to the top, is 14 feet; from e to $\mathrm{G}, 25$ inches; from c to the line below b, 2 feet; from that line to the line opposite $g g, 2$ feet. The width at the line $g g$ is 3 fect 3 inches, and at $c, 26$ inches. The basins, $i i$, fig. 576 , are 3 feet in diameter, and 20 inches deep.

The refining of copper is said to be well exccuted at Seville, in Spain; and, therefore, some accouut of the mode of operating there may perhaps be acceptable.

The first object is to evaporate in a reverberatory furnace all the volatile substances, such as sulphur, arsenic, antimony, \&c., which may be associated with the copper; and the second, to oxidise and convert into scorix the fixed substances, such as iron, lead, \&c., with the least possible expense and waste. The minute quantitics of gold and silver which resist oxidation cannot be in any way injurious to the copper. The hearth is usually made of refractory sand and clay with ground charcoal, each mixed in cqual volumes, and worked up into a doughy consistence with water. This composition is beat firmly into the furnace bottom. But a quartzose hearth, such as a bed of fire-sandstone, is found to answer better, and to be far more durable.

Before kindling the furnace, its inner surface is smeared with a mixture of fireclay and water.

The cast pigs, or blocks of crude copper, are piled upon the hearth, each successive layer crossing at right angles that which is beneath it, in order that the flame may have access to play upon the surface of the hearth, and to heat it to a proper pitch for making the metal flow.

The weight of the charge should he proportioual to the capacity of the furnace, and such that the level of the metallic bath may be about an inch above the nozzle of the bellows; for, were it higher, it would obstruct its operation, and, if too low, the stream of air would strike but imperfectly the surface of the metal, aud fail to effect, or would at least retard, the refiuing process, by leaving the oxidation and volatilisation of the foreign metals incomplete.

As the scorix form upon the surface, they are drawn off with an iron rabble fixed to the end of a wooden rod.

Soon after the copper is melted, charcoal is kindled in three iron basins lined with loam, placed alongside the furnace, to prepare them for receiving their charge of copper, which is to be converted in them, into rosettes.

The bellows are not long in action before the bath assumes a boiling appearance; some drops rise up to the roof, others escape by the door, aud fall in a shower of minute spherical globules. This phenomenon proves that the process is going ou well; and, when it ceases, the operation is nearly completed. A small proof of copper, of the form of a watch-case, and therefore called montre, is taken out from time to time upon the round end of a polished iron rod, previously heated. This rod is dipped 2 or 3 inches into the batb, then withdrawn and immersed in cold water. The copper cap is detached from the iron rod by a few blows of a hammer, aud judgment is formed from its thickness, colour, and polish, as to the degree of purity which the copper has acquired. These watches need not be drawn till the small rain, above spoken of, has ceased to fall. At the end of about 11 hours of firing, the numerous small holes observable in the first watch samples begin to disappear; the outer surface passes from a bright red to a darker hue, the inner one becomes of a more uniform colour, and always less and less marked with yellowish spots. It has acquired the greatest pitch of purity that the process can bestow when the watches become of a dark crimson colour.
Care must be taken to stop this refining process at the proper time; for, by unduly prolouging it, a small quantity of cupreous oxide would be formed, whicb, finding uothing to reduce it, would render the whole body of the copper hard, brittle, and incapable of lamination.
The tuyère being closed, the hasins must be emptied of their burning charcoal, and the melted copper allowed to flow into them through the tap-hole, which is then stopped with loam. Whenever the surface is covered with a solid crust, it is sprinkled with water; and as soon as the crust is about $1 \frac{1}{2}$ inch thick it is raised upon hooks above the basin, to drain off any drops, and then carried from the furnace. If these cakes, or rosettes, be suddenly cooled by plunging them immediately into water, they assume a finc red colour, from the formation of a film of oxide.
Each refining operation produces, in about 12 hours, $1 \frac{7}{10}$ ths ton of copper, with the consumption of about ths of a ton of dry wood.

Care should be taken that the copper cake, or rosette, be perfectly solidified before plunging it into water, otherwise a very dangerous explosion might ensue. On the other hand, the cake should not be allowed to cool too long, lest it get oxidised upon the surface, and lose those fine red, purple, and yellow shades, due to a film of the suboxide, which many dealers admire.
When antimony or oxide of eopper are combined with copper, they occasion the appearance of mieaceous scales in the fractured faces. Such metal is hard, brittle, yellowish within, and ean be neither laminated nor wire-drawn. These defects are not owing to arsenic, as was formerly imagined; but, most probably, to antimony in the lead, which is sometimes used in refining copper. They are more easily prevented than remedied.

According to M. Frèrejean, proprictor of the great copper works of Vienne, in Dauphiny, too low a temperature, or too much charcoal, gives to the metal a cubical strueture, or that of divergent rays; in either of which states it wants tenacity. Toio high a temperature, or too rapid a supply of oxygen, gives it a brick-red colour, a radiated crystallisation without lustre, or a very fine grain of indeterminate form ; the last structure being unsuitable for copper that is to be worked under the hammer or in the rolling-mill. The form which indicates most tenacity is radiated with minute fibres glistening in mass. Melted copper will sometimes pass successively through these three states in the space of ten minutes.
Fig. 578 represents a roasting mound of copper pyrites in the Lower Harz, near Goslar, where a portion of the sulphur is collected. It is a vertical section of a truncated quadrangular pyramid. A layer of wooden billets is arranged at the base of the pyramid in the line a a.
c, a wooden ehimney, which stands in the centre of the mound with a small pile of eharcoal at its bottom, $\mathrm{c} ; d d$ are large lumps of ore surrounded by smaller pieces; $f f$,

the figure.
The fire is applied through the chimney, c ; the charcoal at its bottom, c; the pile, $d d$, is kindled, and the sulphurous ores are raised to such a high temperature as to expel the sulphur in the state of vapour.

In the Lower Harz a roasting mound continues burning during four months. Some days after it is kindled the sulphur begins to exhale, and is condensed by the air at the upper surface of the pyramid. When this seems impregnated with it, small basins are excavated, in which some liquid sulphur collects; it is removed from time to time with iron ladles, and thrown into water, where it solidifies. It is then refined and cast into roll brimstone.

A similar roasting mound contains, in the Lower Harz, from 100 to 110 tons of ore, and 730 cubic feet of wood. It yields in four months about one ton and a half of sulphur from copper pyrites. Lead ore is treated in the same way, but it furnishes less sulphur.
There are usually from 4 to 5 roasting heaps in aetion at onee for each smelting works of the Lower Harz. After the first roasting two heaps are united to form a third, whieh is calcined anew, under a shed ; the ores are then stirred up and roasted for the third time, whence a crude mixture is procured for the smelting-house.
The most favourable seasons for roasting in the open air are spring and autumn; the best weather is a light wind accompanied with gentle rain. When the wind or rain obstruct the operation, this inconvenience is remedied by planks distributed round the upper surface of the truncated pyramid over the sulphur basins.
The Process of extracting Copper from Ores, at the Mines in the Riotinto District, Province of Huelva, Spain, by what is termed "Artificial Cementation."

(Translated from the newspaper "Minero Español" for January 23, 1858.)

This method, which was first applied here by Don Fclipe Prieto, a mine proprieto of Seville, in the year 1845, is the only one employed in the present day in the copper mines of that district.

The operation begins with the calcination of the ores, previously redueed to small pieces; piles or heaps of these ores (sometimes in the form of cones) are made on beds of stubble firc-wood of about a yard thick; each pile is made up with from 400 to 50 tons of mineral, and allowed to burn for six months; the smoke destroying
all vegetation within its reach

The ores, after being thas hurnt or caleined, are thrown into wooden tronghs let into the gromm, about 6 yards long, 4 wide, and $1 \frac{1}{2}$ deepl, called "dissolvers." In each of these trourhs, or cisterns, are plated abow twelve tons of catcined ore, and the trongh is then fillecl with water; which water is, atter remaining in contact with the ores for forty-eight hours, drained off into a similar trongh placed at a lower level, and called a "depositor." The ores remaining in the dissolver are covered by a second quantity of water, left on, this time, for three days; and the process repeated four time's successively, the water being always drained off into the same depositor.

From the depositors the water flows on to another set of troughs called "pilones," into which is placed a quantity of pig iron, broken into picees of about the size of bricks, and piled loosely together that the vitriol in the water may better aet on its whole surface. Each of these troughs (pilones) will hold from 12 to 18 tons of pig iron (wrought iron answers the purpose as well, but it is much more expensive); and, as expericnee has demonstrated that a slow continnous movement in the water hastens the process, a man is employed for the purpose of agitating it, until all the copper suspended in the vitriol water is deposited, which, in summer, is effected in about 2 days, and in from 3 to 5 days in winter. After the water has been renewed four or five times, and the agitation process repeated, the seates of copper deposited on the iron, as well as that in the form of coarse grains of sand found in the botton of the trough, are collected together, washed, and melted, when it is found to produce from 65 to 70 per cent. of pure copper.

From the remains of the first washings of the above eopper seales, \&ce, another quality is obtained, worth about 50 per ceut. for copper, which is mixed with the after washings, yielding about 10 per cent. of copper, and passed on to the smelting furnace.

The method is very defective. Mincrals containing 5 per cent. of copper, treated by this system of reduction, will scarecly give a produce of 2 per cent. of that metal. It is, however, the only known method that can be profitably employed in the Riotinto district.
[Note by the Translutor. - The average produce of the copper ores of the Riotinto district by this process is under $1 \frac{1}{2}$ per ceut. The following quantities, put into English measure, are taken from the returns of the Government mines at Riotinto, published in the "Revista Mincra:"-

The produce of some of the mines of the district is nnder 1 per ecnt. Λ quantity of the richest of the copper ores produced by the mines in the Riotinto district in the year 1857 have been shipped from Huelva, a port near Seville, for Ncwcastle, in England; and it has been reported here that the value of the sulphur saved in the process of reduetion has contributed largely towards paying the smelting expenses, - S. H.]
The Process of extracting Copper from the Water then Arains out of the Mine, at Riotinto, called the "System of Nitural Cementation" (Precipitation).
(Translated from the "Minero Espaniol" for Jamary 28,1858 .)
The mine worked by the Spanish government at Riutinto is formed in a mass of iron pyrites containing copper ; and its immense labyrinth of exeavations are kuown to extend over a length of 500 yards and a width of 100 yards (and probably to a mueh greater extent) ; the earliest of which workings must date back to very remote imes; for in the different exeavations are still to be fomd the impressions of hands, evidently guided by the seience of the ancients, middle ages, and of more modern times.

The sixth, or lowest level in the mine, where all the operations of the present day are carried on, is 80 yards deep (from the top of the hill in which the lode is fomd),
and it is from this level that the mine is (natmally) drained by an adit. From the loof, at the extreme end of a gallery at this level, flows, from au anknown souree, a strean of water rieh in copper, which, together with the drainage fron other points of the unine, is directed throngl a chamel to the adit "San Roque," that empties its waters at the foot of the hill, where the eopper is extraeted.

Au able engineer has thus explained the phenomena of " natmeal cementation : ""The natural ventilation through the open excavations of this mine, combined with the humidity of the ground, prodnces a natural decompesition of the materials composing the lode or vein, and thereby forming sulphates of iron and eopper, which the water is eontinually dissolving aud carrying off, thus forming the substauce of this ' natural ecuentation.'"

This said adit "San Roque," which empties its waters on the south side of the hill, has placed in it two wooden launders, or channels, about 12 inehes wide and 15 inches deep, and (in the year 1853) 400 yards long; in the bottom of these launders is placed pieecs of pig iron, aud to this iron adhere the partieles of eopper which the slowly flowiug water eontained in solution. In ten days the iron beeomes coated with eopper, so pure as to be worth 80 per eent. for fine copper, aud so strongly formed in seales as to resist to a ecrtain exteut the action of a file, and give a strong metallic sound ou being struck with a hammer. At the expiration of ten days, or earlier, the seales of eopper so formed on the iron are removed, that the surface of the iron may be again exposed to the action of the mineral water; aud the process repeated to the entire extinction of the iron. The copper thus obtained passes at once to the refining furnace.

Since 1853 it has beeu discovered that the water esesping from the launders in the adit, 400 yards long, still contained copper, and they have been lengtlieued to nearly 1000 yards with good effeet.
[Note by the Translator. - The "Revista Minera" (a mining review), published by the enginecrs of the Government School of Mines, in Madrid, gives returns of the government mines at Riotinto for the year 1856 ; wherein it is stated that the quantity of copper taken out of this mineral water, by "natural eementation," amounted, for the year; to $206 \frac{1}{2}$ tons. - S.H.]

The following proeesses for the humid treatment of eopper ores are described by Messrs. Phillips and Darlington * :
Linz Copper Process.-"At Linz on the Rhine, aud sone other localities in Germany, the poorer sulphides of eopper, containing from 2 to 5 per cent. of that metal, are treated by the following process:-
" The ores coming directly from the mine, and without any preliminary dressing, are first roasted in a double-soled furnace, and then taken to a series of tanks sunk in the ground, and lined with basalt. These tanks are also provided with a double bottom, likewise formed of basalt, so arranged as to make a sort of permeable dia. ploragm, and on this is plaeed the roasted ore, taking eare that the coarser fragments are charged first, whilst the finer partieles are laid upon them.
"The eavity thus formed between the bottom of the tank and the diaphragm, or false bottom, is conneeted, by means of proper flues, with a series of oblong retorts, through eaeh of which a current of air is made to pass from a ventilator, or a pair of large bellows, set in ulotion by stean or water power.
" In order to use this appuratus, a quantity of ore is roasted in the reverberatory furnace, and subsequently placed in the tanks, takiug care that the first layer shall be iu a coarser state of division than those which succeed it.
"The retorts - which are formed of fire tiles, and about 6 inehes in height by 1 foot in width and 6 feet in length - are now brought to a red heat, chalrged will blende, and the blast applied.
"The sulphurous aeid thus formed is foreed by the draught through the flues, where it beeomes mixed with nitrous fumes, obtained from a mixture of witrate of soda and sulphuric acid, and ultimately passes into the ehambers beneath the diaphragms on which are laid the roasted ores, whieh must be previously dauped lyy the addition of at little water, of which a sinall quantity is also plaeed in the bottoms of the tanks. The sulphuric aeid thus generated attacks the oxide of copper formed during the preliminary roasting, giving rise to the productiou of sulphate of eopper, which percolales through the basaltie diaphragin into the reservoir beneath.
"The liquors whieh thins accumulate are from time to time distributed over the surface of the ore, and the operation repcated until the greater portion of the copper has been extracted, when, by shifing the damper, the gases are conducted into anotler tauk similaly arrauged. The liquors from the first basin are now punpod

[^47]into the second, and the operation continned until the ores which it contrins have ceased to be acted on by the acid. When sufficiently saturated, the liquors are drawn off into convenient tronghs, and the copper precipitated by means of serap iron. The sulphate of iron thus formed is subsequently erystaHised out, and packed into casks for sale.
"On removing the attacked ores from the tank, the finer or upper portions are thrown away as entirely exhausted, nearly the whole of the copper having been removed from them, whilst the coarser fragments are crushed and re-roasted, and finally form the upper stratum in a subsequent operation.
"It has been found that, by operating in this way, ores yielding only 1 per cent. of copper may be treated with considerable advantage since the sulphate of iron produced, and the increased value of the roasted blende, are alone sufficient to cover the expenses of the operation.
"By this process, 3 cwts. of coal are said to be required to roast one toll of ore, whilst the same quantity of blende is roasted by an expenditure of 4 cwts . of fuel."

Treatment of Copper Ores by Hydrochloric Acid.-"At a short distance from the village of Twista, in the Waldeck, several considerable bands of sandstone, more or less impregnated with green carbonate of copper, have been long known to exist. Altbough varying considerahly in its produce, this ore, on the average, yields 2 per cent. of copper, and was formerly raised and smelted in large quantities; but this method of treatment not having apparently produced satisfactory results, the operations were ultimately abandoned.
"The insoluble nature of the granular quartzitic gangue with which the copper is associated, suggested, some two years since, to Mr. Rhodius, of the Linz Metallurgic Works, the possibility of treating these ores by means of hydrochioric acid, and a targe establishment for this purpose has ultimately been the result.
"These works consist of a crushing mill, for the reduction of the cupreous sandstone to a small sizc, 16 dissolving tubs, and a considerable number of tanks and reservoirs for the reception of the copper liquors and the precipitation of the metal by means of serap iron. Each of the 16 dissolving tubs is 13 feet in diameter, and 4 feet in depth, and furnished with a large wooden revolving agitator, set in motion by a run of overhead shafting in connection with a powerful water wheel. This arrangement admits of the daily treatment of 20 tons of ore, and the conscquent production of from 7 to 8 cwts . of copper. Each operation is completed in 24 hours, the tiquor being removed from the tanks to the precipitating trough by the aid of wooden pumps. The ore is stoped and brought into the works at 4s. per ton.
"The acid employed at Twista is obtaiued from the alkali works in the neighbourhood of Frankfort, contains 16 per cent. of real acid, and costs, delivered at the works, 2 s . per 100 lbs . Each ton of sandstone treated requires 400 lbs of acid, which is diluted with water down to 10 per cent. before being added to the ore. Every ton of copper precipitated requires $1 \frac{1}{4}$ ton of scrap iron, at 41.5 s . per ton.
"These works yielded during the last year 120 tons of metallic copper, and afforded a net profit of nearly 50 per cent. The residues from the washing vats, run off after the operation, contain but $\frac{1}{10}$ th per cent. of copper.
" It is probable that this extremely simple process of treating the poorer carbonates and oxides of copper may be practicable in many otber localities; but in order to be enabled to do so with advantage, it is necessary that the ore should be obtainable in large quantities at a cheap rate, and that it should contain but fittle fime or any other substance than the ores of copper soluble in dilute hydrochtoric acid. It is also essential that the mine should be in the vicinity of afkali works, in order that a supply of acid may be obtaiued at a cbeap rate, and also that scrap iron be procurable in sufficient quantities and at a moderate price."

Assay of Copper Ores.

The ores of this metal are exceeding numerous, but may be comprehended under three classes:-
The first class includes those ores which contain, with the exception of iron, no metal except coppcr, and are free from arsenic and sulphur.
The second cluss comprehends those ores which contain no other metal than copper and iron, but in which a greater or tess proportion of sulphur is preseut.

The third class consists of such ores as contain other metals iu addition to iron and copper, together with sulphur or arsenic, or both.
The apparatus best adapted for the assay of copper ores is a wind furnace, about 16 inches in depth, and of whioh the width may be 8 iuches, and the tength 10 inches. This must be supplied with good hard coke, broken into fragmeuts of about the size of a small orange.

Ores of the first class. - When these are moderately rich, their assay offers no difficulty, and nsuanly affords satisfactory results. The sample, after being ground in a
mortar and well mixed to insure uniformity of composition, is intmately blended with three times its weight of black flux. The whole is now introduced into a erucible, of which it should not occupy above onc-third the capacity, in order to avoid loss from the subsequent swelling of the pasty mass when heated; and on the top is uniformly spread a thiu layer of carbouate of soda.
The crucible and its contents arc now placed in the furnacc, previously heated to redncss, and the pot is allowed to remain uncovered until the ore and flux have bccome reduced to a state of tranquil fusion. This will take place in the course of about a quarter of an hour, and the crucible is then closed by a cover, and the damper opencd so as to subject the assay, during another quarter of an hour, to the highest temperature of the furnace. The crucible is then removed from the firc, and the metallic button obtained, either by rapid pouring into a mould or by allowiug the pot to cool, and then breaking it.
The metallic "prill" thus obtained may subsequently, if nccessary, be refined according to the Cornish process, to bc hereafter described.

Ores of the second class.-The most common ores of this class are copper pyrites and other sulphides.

Fusion for Regulus.-This process consists in fusing the ores with fluxes capable of removing a portion of its sulphur, and eliminating siliceous and earthy impurities, These conditions are well fulfilled by a mixture of nitre and borax, since, with a proper proportion of these reagents, all the ores belonging to this class are fused with the formation of a vitreous slag and a well-formed buttou of regulus. When the contents of the crucible have been completely fused, they must be rapidly poured into an iron or bell-metal mould of a conical form.

The separation of the regulus from the scoriæ must be carcfully effected by the use of a small chisel-edged hammer, a sheet of paper being placed under the button to prevent loss.

Rousting.-To ohtain the pure metal from the sulphides of copper, it is necessary that the sulphur, \&c., should be removed by roasting before reducing the copper present to the metallic state.

When rich ores, producing from 20 to 35 per cent. of metallic copper, are operated on, the roasting and subsequent reduction may be made directly on the mineral. When, however, poor ores, such as those of Cornwall, containing from 6 to 10 per cent., are to be treated, it is far better to commence by obtaiuing a button of regulus as above.
The calcination of the rich ore or regulus is conducted in the same crucible in which the subsequent fusion with reducing agents is to take place; and at the commencement of the operation care must be taken not to cause the agglutination of the ore, or pulverised button, by the application of too high a temperature. In order to succeed in cffecting this object, the ore or regulus must be first finely powdered in an iron mortar, and then put into an earthen crucible, which is to be placed in a sloping position on the ignited coke with which the furnace is filled, the draught at the same time being partially cut off by the damper.

A moderate hcat is thus obtained, and the mixture is coutinually stirred by means of a slight iron rod, so that each particle may in its turn be exposed to the oxidising influences of the atmosphere. When a large portion of the sulphur, \&c., has heen driven off, the contents of the crucible becomes less fusible, and may without inconvenience be heated to redness. At this stage, it is often found advantageous to heat the partially roasted mass to full redncss, since by this means the sulphides and sulphates ljecome reduced to the state of oxides by their mutual reaction on each other.
As soon as the smell of sulphur can no longer be observed, and the roasting process is consequently in an advanced state, the heat should for some minutes be increased to whiteness, in order to decompose the sulphates, after which the crucible may be withdrawn and allowed to cool.
Reduction.-To obtain the copper from the roasted ore or matt, it may he mixed with one-fourth its weight of lime, from 10 to 20 per cent. (according to the produce of the ore) of finely powdered charcoal, from 1 to $1 \frac{1}{2}$ times its weight of soda ash or pearl ash, and a littlc borax. When this has been well mixed, it is placed in the crucible in which tbe roasting of the ore, or regulus, has been conducted, and covercd with a thin stratum of fused borax.
In lieu of powdered charcoal, from 15 to 20 per cent. of crudc tartar is sometimes employed.
The crucible is now placed in the fire and strongly heated for ahout a quarter of an hour, at the expiration of which time, the bubbling of the assay will have ceascd, and it must then be closed by an earthen cover, and for a short time heated ncarly to whitencss.
The prill may be obtained either by rapidly pouring into a suitable mould or by
allowing the pot to cool, and then breaking it. If required, the resulting bution may be refined by the Cornish method.

Ores of the third class.-Minerals belonging to this class must be treated like those of the second, excepting that the preliminary roasting shond, from their greater fusibility, be conlueted at a lower temperature. The button olained from the calcined ore, or regulus, will in this ease consist of an alloy of copper and other metals instad of, as in the former instanees, being nearly pure copper.

If an ore contains lead, the roasting must at first be conducted witls the greatest preaution, sinee it is extremely diflicult so to monderate the heat as to cause at the same time the climination of the arscnic aud sulphar, and avoid the agglutimation of the mass.
The assay of ores belonging to this class should in all cases be commenced by a fusion for matt.
The refining of the button obtaincd from sueh assays may be effeeted either by the Cornish method, or by the hunnd process, to be hereafter described.
Cornish Method of conducting an Assay.-A portion of the pounded and sifted ore is first burnt on a shovel, and ceamined as to its supposed richness and the amount of sulplur, arsenic, and other impuritics it may eontain. A little practice in this operation will enable the operator to judge with considerable aecuracy of the quantity of nitre necessary in order to obtain a good regulus.
Two hundred grains of the mixed ore are now wcighed out and earefully mixid with a flux cousisting of nitre, borax, lime, and fluor-spar, and the fusion for matt or regulus is begun. The quantity of nitre used will of course vary with the amount of sulphur and arsenie present; but the other ingredients are commonly employed in the following proportious:-Borax, 5 dwts ; lime, $1 \frac{1}{2}$ ladleful ; fluor spar, 1 ladleful.* After being placed in the crucible, the whole is generally covered by a thin stratum of common salt. After remaining in the fire for about a quarter of an hour, the fusion will be found complete, and the contents of the pot may be poured into a suitable iron mould. The button of regulus is now examined, iu order to determine whether a suitable proportion of nitre has been used. If the right quantity has been employed, the button, when broken, should present a granular fraeture, and yield from " 8 to 10 for 20 " for copper, i.e. from 40 to 50 per cent. However rank a sample may be, it should never be mixed with above 9 or $9 \frac{1}{2}$ dwts. of nitre; and if the amount of sulphur be small, 3 dwts . are often sufficient. The grey sulphides, the red and black oxides, and carbonates, have sulphur added to then for the purpose of obtaining a regulus.

Highly sulphurised samples, requiriug above $9 \frac{1}{2} d w t s$. of nitrc, are sometimes treated in a different way.

In this case the ores are first carefully roasted, and afterwards fused with about 5 dwts . of nitre, 9 dwts . of tartar, and 3 dwts . of borax.
The roasting of the regulus thus obtained is performed in a smaller erucible than that used in the fusion for matt. During the first quarter of an hour, a very low temperature is sufficient. The heat is then increased to full redness, and the assay allowed to remain or the fire for a further period of about 20 minutes. During the first 15 minutes it should be kept constantly stirred with a slender iron rod; but afterwards, an occasional stirring will be found sufficicnt. When nearly the whole of the sulphur and arsenic has been expelled, the temperature must be raised nearly to whiteness during a few minutes, and the assay then withdrawn and allowed to cool. The fusion for copper is effected in the same crucible in which the roasting has been carried on.
The quantity of flux to be used for this purpose raries in accordance with the weight of the button of regulus obtaincd. A mixture of 2 dwts . of nitre, $7 \frac{1}{2} \mathrm{dwts}$. of tartar, and $1 \frac{1}{2} d w t$. of borax, is sufficient for the reduction of a caleined reguias that, previous to roasting, weighed from 45 to 50 grains. In the case of a button weighing from 90 to 100 grains, $3 \frac{1}{2}$ dwts. of nitre, 9 dwts. of tartar, and 2 dwts . of borax, should be employed. These quantities are, however, scldom weighed, since a little practiec renders it easy to guess, with a sufficient degree of accuracy, the neeessary amounts.

The prill of copper thus obtained is seldom finc, and consequently requires purification.

A erucible is heated to reduess in the furnace, the metallic button is taken frons the mould and thrown into it, and some refining flux and salt are plaeed in a scoop for immediate use. \dagger In a few minutes, the fusion of the prill is effected. The crucible is now taken from the firc by a pair of tongs, the contents of the sconp introdueed. and a gentle agitation given to it ; an appearance similar to the brigliteniug of silver

* The lade used for this purpose is three-quarters of an inch in diameter and half an inch in depth.
+ The relining tlux consists of two parts of nitre and one of whitu tartar lused together, and subscquently pounded.
on the cupel now takes place, and the crucible is returned to the fire for whout four minutes.
The crucible is now removed, and its contents rapidly poured into a mould. The button thus obtained will cousist of pure copper, and present a slight depression on its upper surface.
The slags from the reducing and refining operations are subsequently fused with a eouple of spoonfuls of crude tartar, and the prill thus obtained weighed with the larger button.

Humid Method of assaying Copper Ores.-In some localities, and particularly in the Uuited States of America, the assay of copper ores is performed hy the humid process. The whole of the ores belouging to the tbree different classes may be estimated iu this way.

A weighed quantity: of the pulverised ore is introduced into a loug-neeked flask of lard German glass, and slightly moistened with water. Nitric acid is now added, aud the flask exposed to the heat of a saud batb. A little hydrochloric acid is subsequently introduced, and tbe attack continued until tbe residue, if any remains, appears to be free from all metallic stains.

The contents of the flask must be transferred to a poreclain evaporating dish, and evaporated to dryness, taking care, by means of frcquent stirring, to prevent the mass from spirting. Tbe whole must now be removed from tbe sand batb and allowed to cool, a little bydrocbloric acid subsequently added, and, afterwards, some distilled water. The contents of the basin must then be made to boil, and, whilst still bot, filtered into a beaker. A piece of bright wrought iron, about two inches in length, three-quarters of an incb in width, and a quarter of an incb in thickness, is now introduced, and the liquor gently heated on the sand bath until the whole of the copper has been tbrown down. The liquor is now removed by means of a glass sipbon, and the metallic copper freed from all adhering chlorides, by means of repcated wasbings witb hot water, and tben dried iu a water batb, and weigbed.
In case the mineral operated on sbould contain tin or antimony, very minute traces only of tbese metals will be found with tbe precipitated copper. When lead is present, it is best to add a few drops of sulpburic acid during the process of the attack; by this means the lead will be precipitated as sulpbate of lead, and be removed by filtration. The results obtained by this process are somewhat higher than afforded by the fire assay.-J. A. P.
Copper forms the basis of a greater number of important ALLoys than any other metal. Witb zine it forms brass in all its varictics. See Brass.
Bronze and bell-metal are alloys of copper and tin. Tbis compound is prepared in crucibles when only small quantities are required; but in reverberatory hearths, when statues, bells, or cannons are to be cast. The metals must be protected as mucb as possible during their combination from contact of air by a layer of pounded charcoal, otherwise two evils would result, waste of the copper by combustion, and a rapid oxidation of the tin, so as to cbange the proportions and alter the properties of the alloy. The fused materials ought to be well mixed by stirring, to give uniformity to the compound. Sce Bronze.
By an analysis of M. Bertbier, the bells of the pendules, or ornamental clocks, made in Paris, are found to be composed of copper $72 \cdot 00$, tin $26^{\circ} 56$, iron $1 \cdot 44$, in 100 parts.

An alloy of 100 of copper and 14 of tin is said by M. Dussanssy to furnisb tools, whicb, bardened and sbarpened in tbe manner of the ancients, afford an edge nearly equal to tbat of steel (?).

Cymbals, gongs, and the tamtam of the Chinesc are made of an alloy of 100 of copper with about 25 of tin. To give this compound tbe sonornus property in the bigbest degree, it must be subjected to sudden refrigeration. M. D'Arcet, to whom tbis discovery is due, recommends to ignite the piece after it is cast, and to plunge it immediately into cold water. The sudden cooling gives the particles of the alloy such a disposition that, with a regulated pressure by skilful hammering, they may be made to slide over each otber, and remain permanently in tbeir new position. When by this means the instrument has received its intended form, it is to be heated and allowed to cool slowly in the air. The particles now take a different arrangement from what they would have done by sudden refrigeration; for instead of being ductile they possess such an elasticity, that, on being displaced by a slight compression, they return to their primary positiou after a series of extremely rapid vibrations; whence a very powerful sound is emitted. Bronze, hell-metal, and probably all other alloys of tin witb copper, present the same peculiarities.

The bronze-founder should study to obtain a rapid fusion, in order to avoid the eauses of waste indicated ahove. Reverberatory furnaces have been long adopted for this operation; and anong these, the elliplical are the best. The furnaces with
spheroidal domes are used by the bell-founders, beeause, their alloy being more fitsible, a more moderate heat is required; howevei, as the rapidity of the process is aiways a matter of consequence, they also would find advantage in employing the elliptical hearths. Coal is now universally preferted for fuel.

The process of coating copper with tin exemplifies the strong affinity between the two metals. The copper surfaec to be tinned is first cleared with a smootl sandstonc ; it is then heatcd and rubbed over with a little salammoniac, till it be perfectly clean and bright ; the tin, along with some pounded resin, is now placed on the eopper, which is made so hot as to melt the tin, and allow of its being spread over the surface with a dossil or pad of tow. The layer thus fixed on the copper is exceedingly thin; Bayen found that a copper pan, 9 inches in diameter and $3 \frac{1}{4}$ inches deep, being weighed immediately before and after tinning, becante only 21 grains heavier. Now as the area tinned, ineluding the bottom, amounted to 155 square inches, 1 grain of tin had been spread over nearly $7 \frac{1}{2}$ square inches; or only 20 grains over every squarc foot.
Copper and Arsenic form a white-eoloured alloy, sometimes used for the scales of thermometers and barometers; for dials, candlesticks, \&c. To form this compound, successive layers of copper clippings and white arsenic are put into an earthen crucible; which is then covered with sea salt, closed with a lid, and gradually heated to redness. If 2 parts of arsenic have been used with 5 of copper, the resulting compound commonly contains one-tenth of its weight of metallic arsenic. It is white, slightly ductile, denser, and more fusible than copper, and without action on oxygen at ordinary temperatures; but, at higher heats, it is decomposed with the exhalation of arsenious acid. The white copper of the Chinese consists of $40^{\circ} 4$ copper; 31.6 nickel; $25 \cdot 4$ zinc; and 2.6 iron. This alloy is nearly silver white; it is very sonorous, well polished, malleable at common temperatures, and even at a cherry red, but very brittle at a red-white heat. When heated with contact of air, it oxidises, burning with a white flame. Its speeific gravity is $8 \cdot 432$. When worked with great care, it may be reduced to thin leaves and wires as small as a needle. See German Silyer, infrà.

Tutenag, formerly confounded with white copper, is a different composition from the above. Keir says it is composed of copper, zinc, and iron; and Dick describes it as a short metal, of a greyish colour, and scarcely sonorous. The Chinese export it, in large quantities, to India.
M. Pelouze states that an alloy of equal parts of copper and nickel is greatly preferable to an alloy which contains alsn zine. Even 2 of copper and 1 of nickel form a valuable alloy.

The chemical preparations of copper which constitute distinct manufactures are Roman vitriol; for which, see Copper, Sulphate of, and Prrites. - Scheele's green and Sciweinurth green, Verditer, Verdigris.

During a term of about 30 years, 220 mines have sold their ores at the public sales. The following Table, from "Records of Mining and Metallurgy," by Messrs. Phillips and Darlington, represents the progress of copper mining from 1726 to 1855 : -

Copper Ore raised and sold in Cornwall and Devon in decennial Periods for 126 Years-from 1725 to 1855.

Date.	Tonnage of Ore.	Tonnage of Copper.	Amount.	Average annual Amount.	$\begin{gathered} \text { A verage } \\ \text { annual } \\ \text { Tonnaze of } \\ \text { Ore. } \end{gathered}$	A verage Produce.	Price per Ton of Copper Ore.	Inc. of Copper Ore.
1726 to 1735	Tons. $64,800$	Tons.	$\stackrel{£}{473.500}$	$\stackrel{\mathfrak{f}}{47,350}$	$\begin{aligned} & \text { Tons. } \\ & 6,480 \end{aligned}$	-	$\begin{array}{llll}\text { f } & \text { s. } & \text { d. } \\ 7 & 15 & 10\end{array}$	1.00
1736 to 1745	75,520	-	560,106	56,010	7,552	-	$7 \quad 86$	$1 \cdot 16$
1745 to 175.5	98,7!0	-	731,457	73,145	9,879	-	$\begin{array}{lll}7 & 8 & 0\end{array}$	1.52
1756 to 1765	169,699	-	1,243,045	124,304	161,970	-	$7 \quad 66$	$2 \cdot 61$
1766 to 1775	264,273	-	1,778.337	177,833	26,427	-	$\begin{array}{llll}6 & 14 & 6\end{array}$	$4 \cdot 10$
1776 to 1785	304,133	36,496	1,827.006	182,700	30,413	12	$6 \quad 0 \quad 2$	$4 \cdot 69$
1786 to 1795	229,169	-	1,359.724					
1796 to 1805	564,037	53,588	5,003,191	500,319	56,403	$9 \frac{1}{2}$	$\begin{array}{lll}8 & 17 & 4\end{array}$	$8 \cdot 70$
1806 to 1815	726,308	62,550	6,056,260	605,626	72,630	8 \%	869	11.20
	926,271	75.986	6, $044,6 \geq 27$	604,462	92,627	$8 \frac{3}{10}$	6 5 106	14.29
1826 to 1835	1,352,313	108.801	8,088,220	808,822	135,231	8	${ }_{5}^{5} \quad 190$	20.86
183 f to 1845	1,486.840	111,770	8,547.059	854.705	148,840	$7{ }^{7}$	$\begin{array}{llll}5 & 15 & 11\end{array}$	22.94
1846 to 1855	1,622,152	123,259	9,251,916	925,191	162,215	$7 \frac{1}{1}$	$5 \quad 140$	$25 \cdot 03$
126 jears	7,884,305		50,964,388				693	
70 years		572,450				8\%		

The Produce of Copper in the United Kingdom for Four Years，ending 1857．

	Copper Ore．				Fine Copper obtained．			
	1854.	1855.	1856.	1857.	1854.	1855.	1856.	1857.
Encland and Wales． Coriwall	Tons． 173.033	Tons．	Tons．	Tons．	Tons．	$\begin{gathered} \text { Tons. } \\ 10,317 \end{gathered}$	$\begin{aligned} & \text { Tons. } \\ & 10,731 \end{aligned}$	Tons． $9.74!$
Devon－－	31.82 ，	34，024	42.024	37，809	2，1：1	2，261	2，802	2，311
Cumberliud	3，185	3，504	3，917	3，516	213	234	261	215
Anglesey－－		2，552	2，400	9，476	－	197	160	450
Caprnarvon	201	1，673	1，565	1，804	46	112	104	44
Cardigan－－－	76	104	162	135	7	10	11	11
ladıor of－－－	a	162	104 31	－ 260	2 3	11	7 4	－ 17
Tutal for England and Wales－	188.393	203．188	214，356	207．3：4	12.251	13，142	14，078	12.798
Estimated value－	${\underset{f}{f}}^{f}$	$1,324,309$	$1,293,827$	$\underset{1,226,672}{f}$	$1,5 \stackrel{£}{8}$	$1,680^{巳} 620$	$\stackrel{f}{f}$	$\frac{£}{1,384,95:}$
Cork－Irelano．	Tons．${ }_{\text {5，}}$	$\begin{array}{r} \text { Tons } \\ 5,530 \end{array}$	Tons． 6，149	Tons．	Tons． $50!$	Tons． 545	Tons． 613	Tons．
Tipperary－	714	475	443	－	112	81	80	
Waterford－－	4，421：	4.343	3，987	－	435	449	399	－
Wicklow	1，357	2，033	97：3	－	71	8 l ．	61	－
Galway		－	32	－	－	－		－
Total for Irelaud－	12，381	11，540	11．5．40	12，640	1，126	1，156；	1，154	1，428
Estimated value－	$\underset{12 \times, 0.52}{\overbrace{0}^{2}}$	$125,980$	$\stackrel{\mathfrak{E}}{115,393}$	$\stackrel{f}{101,500}$	$\stackrel{f}{140,750}$	16	$14!, 942$	$\frac{£}{176,872}$
Copper ores purchased by private contract from			Tons．	\％ons．	Tons．	Tons．	Tons．	Tons．
sundry districts not in－ cluded in the above	97.815	104941	135．37：	116052	6，52：3	6，996	9，025	4，012
Estimated value	$13: 1,250$	190.100	$\underset{335,296}{f}$	$\begin{gathered} \stackrel{2}{2}_{23.749} \end{gathered}$	$\stackrel{£}{815,375}$	$\stackrel{\stackrel{e}{2}}{99,831}$	$\underset{\substack{\text { 巳 } \\ 1,110,075}}{ }$	$\frac{£}{4!7,4!8}$
Tutal for Englitnd，Wales， and lrelind－	Tons． 2：17，977	$\begin{aligned} & \text { Toins. } \\ & 330,509 \end{aligned}$	Tons． 361,321	$\begin{aligned} & \text { Tons. } \\ & 218,689 \end{aligned}$	$\begin{aligned} & \text { Tons. } \\ & 19,899 \end{aligned}$	Tons． 21.294	Tons． $24,257$	$\begin{aligned} & \text { Tons. } \\ & 18,238 \end{aligned}$
Estimated value $=$	$\frac{£^{£}}{1,483,806}$	$\begin{gathered} \underset{1,640,389}{2} \end{gathered}$	$\frac{£}{1,744,516}$	$\begin{gathered} \pm \\ 1,560,922 \end{gathered}$	$\frac{巳^{e}}{2,487,375}$	$\frac{£}{3,042,87 i}$	$\frac{巳}{2,983,611}$	$\frac{f}{2,079,323}$

Imports and Exports of Copper Ore and Regulus，wrought and unwrought Copper und declured Value of Brass and Copper Manufactunes，for 15 Years，ending 1855 ：－

Coppering Iron and Zinc.-The great advantages which would arise foom perfecting a plam by which the easily oxidisuble metals, such as iron and zine, could be coated with copper at a cheap, rate, induced Messrs, thlser and lhilip, of berlin, to undertake a series of experiments, to ascertain if such conld not be effected more cennomially than hy employing eyanide of potassimm; and in this they have been stecessful. lion coming iron the article mast be well cleancol in min or soft water, and mbhed hefore immersing it in the solution, which may be cither chloride of potassiun, chloride of sodium, with a little caustic ammonia added, or tartrate of potash, with a small portion of carbonate of potash. At the extremity of the wire, in conncetion with the copper, or negative pole of the battery, is fixed a thin flattencol copper plate, and the article to be coated is attacled to the wire from the zine, or positive pole, and both are then immersed in the exciting solntion, the copper plate only partially. The liquid should be kept at a temperature of from 15° to 20° C., and the success of the operation depends greatly on the strength and uniformity of the galvanic current. When the chlorides are employed, the coating is of a dark, natural copper colour; and with tartrate of potash, it assuncs a red tinge, similar to the red oxide of copper. When sufficiently covered, the article is rubled in sawdust, and exposed to a current of warm air to dry, when they will take a fine polish, and resist all atmospheric influence. In coating zine with copper, the sime general principles will apply as for iron, only observing that, in proportion to the size of the article, the galvanic current must be less powerful for zinc. The surfaces must be perfectly smooth, and for this reason it is well to rub them thoroughly with fiue sand, and polish with a brush.

Copper Medals and Medallions may be readily made in the following way :Let hlack oxide of copper, in fine powder, be reduced to the metallic state, by exposing it to a stream of hydrogen, in a gun-barrel, heated barely to redness. The metallic powder thus obtained is to be sifted, through crape, upon the surface of the mould, to the thickness of $\frac{1}{4}$ th or $\frac{1}{3} \mathrm{rd}$ of an inch, and is theu to be strongly pressed upon it, first by the hand, and lastly by percussion with a hammer. The impression thms formed is bcautiful; but it acquires much more solidity by exposure to a red heat, out of contact with air. Such medals are said to have more tenacity than melted copper, and to be sharply defined.

Copper, Purifying. - Copper may be purified by melting 100 parts of it with 10 parts of copper scales (black oxide), along with 10 parts of ground bottle glass or other flux. Mr. Thompson, who received a gold medal from the Society of Arts for this invention, says, that after the copper has been kept in fusiou for half an hour, it will be found at the bottom of the crucible perfectly pure; while the iron, lead, arsenic, \&c., with which this metal is usually contaminated, will be oxidised by the scales, and will dissolve in the flux, or be volatilised. Thus he has obtained perfectly pure copper from brass, bell-metal, gun-metal, and several other alloys, coutaining from 4 up to 50 per cent. of iron, lead, antimouy, bismuth, arsenic, \&c. 'The scales of copper are cheap, being the product of every large manufactory where that metal is worked. Copper, Acetate of. See Verdigris.
Copper Nitrate of, prepared by dissolving copper in moderately strong nitric acid, and evaporating to crystallisation. Its formula is $\mathrm{CuO}, \mathrm{NO}^{5}$. This salt is used to produce a fine green in fireworks.

Copper, Sulpifate of, called in commerce Blue Vitriol. Blue Syone. Blue Copperas. - This salt is frequently prepared by roasting copper pyrites with free access of air. It is also obtained by heating old copper with sulphur, by which a subsulphide of copper is produced; this is converted into sulphate, by roasting in contact with air. Large quantities of sulphate of copper are obtained in the process of silver refining. See Pyrites and Shlerer.

COprolites, or Fossil Manure.-These curious organic remains are found near the outcrops of the Upper Grcen Sand. Atteution was first directed to them by Professor Henslow, and subsequently by Dr. Buckland. Under Manules, Abtificial, will be found some further description of these organic remaius. Dr. Ure, to show the comparative value of the different substances coutaining the phosphates aud that of guano, has given the following analysis:-

Analysis of Guano from Peru.

Urate and salts of ammonia	-	-	-	-	-	34.05
Various phosphates	-	-	-	-	-	37.04
Carbonate of lime	-	-	-	-	-	1.65
Soda and potash	-	-	-	-	-	-

Comparative Analysis of Bones.

The following two samples from the const of Suffolk were fonnd to consist of 一

Water with a little organic matter	$\begin{gathered} \text { I. } \\ 4 \cdot 00 \end{gathered}$	$\begin{gathered} \text { II. } \\ 3 \cdot 560 \end{gathered}$
Salts soluble in water (chloride of sodinm and snlphate of soda)	traces	traces
Carbonate of lime . - -	$10 \cdot 280$	$8 \cdot 959$
do. magnesia	a trace	a trace
Sulphate of lime	distinct traces	0.611
Phosphate of lime ($3 \mathrm{CaO}, \mathrm{PO}^{5}$) do. magnesia	$70 \cdot 920=\mathrm{PO}^{5} 32 \cdot 765$ traces only	$69 \cdot 099=\mathrm{PO}^{5} 31 \cdot 924$
Perphosphatc of iron ($2 \mathrm{Fe}^{2} \mathrm{O}^{3}, 3 \mathrm{PO}^{5}$)	$6 \cdot 850=\mathrm{PO}^{5} 3 \cdot 244$	$8 \cdot 616=\mathrm{PO}^{5} \quad 4.081$
Phosphate of alumina ($2 \mathrm{Al}^{2} \mathrm{O}^{3}, 3 \mathrm{PO}^{5}$)	$1 \cdot 550=\mathrm{PO}^{5} 0 \cdot 870$	$2 \cdot 026=\mathrm{PO}^{5} 1 \cdot 158$
Oxide of manganesc	traces	traces
Flnoride of calcium	0608	0.804
Silicic acid coloured red by a little		
undccomposed silicate of iron	$5 \cdot 792$	6.309
-	$100 \cdot 000=\mathrm{PO}^{5} 36.889$	$100 \cdot 000=\mathrm{PO}^{5} 37 \cdot 16$

I. Fifty grains of the first specimen, in fine powder, when burnt with potash lime, furnished 0.20 gr . of plantino-chloride of ammonium, which is equivalent to 0.0254 per cent. of nitrogen.

In an excellent paper "On the Phosphoric Strata of the Chalk Formations," published in the first number of the Jonrnal of the Royal Agricultural Soeiety of England for last year, Mr. Way obscrves, that he has found the coprolites from this district to contain from 52 to 54 per cent. of bone-carth phosphate; and that Dr. Gilbert had informed him, that in several analyses which he had made of samples taken from several tons of the ground coprolites, he had found the proportion of phosphate of lime to vary between 55 and 57 pcr cent. Mr. Nesbit (Quart. Journ. of Chem. Soc. Part III. p. 235) found from $22 \cdot 30$ to 28.74 per cent. of phosphoric acid, which is equivalent to from 48.31 to 59.07 of tribasic phosphate, in those from the tertiary dcposits of this county.
II. This one was brought from the sanic part of the coast as the preceding; but differed from them in its irregularity of form, and in exhibiting imperfect evidences of a bony structure. The specific gravity it was found impossible to determinc, on account of the numerous air cavities it contained.

Analysis showed it to possess the following percentage composition:-

The proportion of nitrogen in this spenimen was not estimated.
III. This enprolite was disenvered in the lias strata of Lyme Regis.

It was rather large, being above 9 oz, in weight, was of a greyish colour, and when broken exhibited some traces of a crystalline structare. It was considerably softer than either of the preceding, and furnished a greyish-white powder. Many scales of different extinct fishes, and other organic remains, were to be perceived on the external surface; the greater proportion of them appeared to belong to a species of fish which is known to ichthyologists by the name of Pholidophorus limbatus. Its speeifie gravity was about $2 \cdot 644$ or $2 \cdot 700$, and tbe composition per cent. was as follows :-

Water driven off at from 300° to $350^{\circ} \mathrm{F}$. - - - -
Water and organie matters expelled at a red heat -
Cbloride of sodium, with some sul-

phate of soda	-	traces	traees	traees
Carbonate of lime		23640	23.708	$23 \cdot 6740$
do. of magnesia		none	none	none
Sulphate of lime		1.740	1.801	1.7705
Phosphate of do. (tribasie) do. magnesia		$\begin{aligned} & 60 \cdot 726 \\ & \text { a little } \end{aligned}$	$\begin{aligned} & 60.813 \\ & \text { a little } \end{aligned}$	$\begin{aligned} & 60.7695=\mathrm{PO}^{5} 28.047 \\ & \text { a littlc } \end{aligned}$
Perphosphate of iron	- -	3.980	4-135	$4 \cdot 0575=$ PO $^{5} \quad 1.922$
Phosphate of alumina	- -	a little	a little	a little
Peroxide of iron	- -	$2 \cdot 094$	1.894	1.9940
Alumina	- -	ne	on	none
Silieie acid, with fluoride of ealeium		1.580	1:525	1.5525
		$100 \cdot 000$	$100 \cdot 000$	0.000

The proportion of nitrogen in this speeimen was ratber large, being 0.0826 per eent. -Thornton J. Herapath.
M. de Molon writes (L'Institut, Feb. 1848), that in the course of tbe year 1857, in the eighteen departments of France, they employed as manure 2,250,000 kilogrammes (of $2 \cdot 204$ avoirdupoise pounds) of fossil phosphate of lime; and after eollecting reports of the results obtained, its employment has been generally considered as an advantage. But for obtaining all the good effects which attend the use of tbis substanee, it appears to him that it ought to be employed in the following different eonditions upon different soils :-

1st. In argillaeeous, sehistose, granitie, and silieeous soils, rieh in organie detritus, in the natural state in powder.
2nd. In the same earths when they are poor in organie matter; above all, if they have been eultivated for a long time, or if they have been treated with lime; in the state of powder, mixed with fermentible animal matter.
3rd. In calcareous soils, and partieularly eretaceous ones, in the state of powder, treated by 20 to 25 per cent. of hydroeklorie acid, and the addition of organic matter. COPYING. A new and important quality of writing-inks was introduced by the indefatigable James Watt, in 1780, who in that year took out a patent for copying letters and other written doeuments by pressure. The modus operandi being to bave mixed with tbe ink some saecbarine or gummy matter, wbieb should prevent its entire absorption into the paper, and thus render tbe writing capable of baving a copy taken from it wben pressed against a damp sheet of common tissue paper. But altbough this process was very imperfect, the writing generally being mueh besmeared by the damping, and the copies, in many eases, only capable of being read witb great diffieulty, it was not for seventy-seven years after the invention of Watt that any improvement in-such inks was attempted. The firm of Underwood and Burt patented a metbod of taking copies by the action of a ehemically prepared paper, in a chemical ink, by whieh, not only are far superior eopies taken, and the original not at all damaged, but many eopies may be taken at one time from a single document. Printed matter may also be copied at the same time, on the same beautiful prineiple. We give the speeification of Mr. Underwood:-
"But while the means employed for produeing the desired cffeets may be varied, I prefer the following for general use:-I damp the paper, parchment, or other material whieh I desire to eopy upon, with a solution of 200 grains of the yellow or neutral cbromate of potash dissolved in 1 gallon of distilled water, and either use it immedi-

* In the first of these analyses, the phosphoric acid was estimated by M. Schulzc's method, as werphosphate of iron; in the second, as phosphate of lead.
ately, or dry it and subsequently damp it with water as it is required for use. I then preparc the material which I use for producing the characters or marks, and which may be called copying ink, by simply dissolving (in a water bath) pure extract of \log wood in distilled water; or, for printing, I use a varnish or other similar material solnble in water, aud dust or throw over it powdered extract of logwood. If I desirc to take twenty copies from an original, I use about six pounds of the pure extract of logwood to a gallon of distilled water; but a larger number of copies may be taken by dusting or throwing over the original, hefore the ink has thoroughly dried, a powder composed of five parts of powdered extract of logwood, one part of powdered gum arahic, and one part of powdered tragacanth. When I desire to print from an original, in producing which I have used ink prepared as before described, I proceed by damping six sheets of paper, prepared as hefore descrihed, and having takeri off all superfluous moisture with good hlotting paper, I place the original upon the upper sheet and press the whole for ahout half a minute in a copying press; I then remove the original, aud in its place put six other sheets of the prepared paper in a danip state, and suhject the whole to pressure for about a quarter of an hour. I then take five other prepared sheets in a damp state, and having laid the original upon them, press them together for ahout two ininutes, then replace the original hy three other prepared and damped sheets, and press the whole together for ahout a quarter of an hour. The extract of logwood so acts upon the neutral chromate of potash that I thus obtain twenty good clear fac-similes of the original matter or design."
They have also produced an Indian ink on the same principle, which, when used in the preparation of architectural plans, maps, \&c., will give one or more clear copies of even the finest lines. The only point to he ohserved in the taking of such copies, is that as they are done to a scale, they must he kept pressed in close contact with the original, till they are perfectly dry, hecause if not they will shrink in drying, aud the scale he spoilt.

The most complete information on this subject, and that of inks generally, is to he found in a memoir read before the Society of Arts, on the 15 th December, hy Mr. John Underwood.

COQUILLA NUTS. These nuts are produced in the Brazils by the Attalea funiferc. They are suitable for a great variety of small ornamental works, and arc manufactured into the knobs of umbrellas and parasols.

CORAL (Corail, Fr. ; Koralle, Germ.) is a calcareons suhstance, formed by a specics of sea polypus, which construct in concert immense ramified habitations, consisting of an assemblage of small cells, each the ahode of an animal. The coral is, therefore, a real polypary, which resemhles a tree stripped of its leaves. It has no roots, but a foot not unlike a hemispherical skull-cap, which applies closely to ever'y point of the surface upon which it stands, and is therefore difficult to detach. It merely serves as a hasis or support to the coral, hut contrihutes in no manner to its growth, like the root of an ordinary tree, for detached pieces have often heen found at the hottom of the sea in a state of increase and reproduction. From the above base a stem, usually single, proceeds, which seldom surpasses an inch in diameter, and from it a small number of branches ramify in very irregular directions, which are studded over with cells, each containing au insect. The polypi, when they extend their arms, feelers, or tentacula, resemhle flowers, whence, as well as from the form of the coral, they were classed among vegetable productions. They are now styled zoophites by the writers upon Natural History.
The finest coral is found in the Meditcrranean. It is fished for on the coasts of Provence, and constitutes a considerable hranch of the trade at Marseilles. The coral is attached to the submarine rocks, as a tree is by the roots, hut the hranches, instead of growing upwards, shoot downwards towards the hottom of the sea; a conformation favourahle to breaking them off and bringing them up. For this kind of fishing, eight men, who are excellent divers, equip a felucea or small hoat, called commonly a coralline. They carry with them a large wooden cross, with strong, equal, and long arms, each beariug a stout bag-net. They attach a strong rope to the middle of the cross, and let it down horizontally into the sea, having loaded its centre with a weight sufficient to sink it. 'The diver follows the cross, pushes one arm of it after another into the hollows of the rocks, so as to entangle the coral in the nets; then his comrades in the boat pull up the cross and its accompaniments.

Coral fishing is nearly as dangerous as pearl fishing, on account of the number of sharks which frequent the seas where it is carried on. One would think the divinghell in its now very practicahle state might be employcd with great advantage for
both purposes.

Coral is mos whitc. The red of a fine red colour, but occasionally it is flesh-coloured, yellow, or ments. It is worked up like precions stones. Secklace, crosses, and other female ornaments. It is worked up like precious stones. See Laflidary.

CORDAGE; (Corlage, Fre; Tunwerk, Germ.) Corlage may be, and is, made of a great varicty of materials. In Europe, however, it is inostly formed of hemp, although now, much cordage is uade of Coir. See Sorr.

Professor Robinson proposed the following rule for determining the strength of cordage. Square the circumference of a rope in inches; onc-fifth of the product will be the number of tons' weight which it will bear: this is, however, uncertain.

Our importutions of cordage, in 1857, were from

Russia	Cwts.	Computed real valuc -				$\stackrel{2}{2}$
Holland	499					967
Spain	2,751)	,"	"	-		5,328
United States	178	"	"	-		345
British East Indies -	695	"	"	-		1,347
British North America	250	"	"	-		484
Other parts	495	"	"	-		958
	8,605					16,6\%2

While our Exports amounted to
Cwts.
$\left.\begin{array}{ll}\text { British Manufacture } \\ \text { Foreign and Colonial Manufacture } & - \\ \text { Cwts. } \\ \text { 120,393 } \\ 5,263\end{array}\right\} 125,656$;
the declared and computed values being $£ 257,122$.
CORK (Liège, Fr. ; Kork, Germ.) is the bark of the Quercus liber, Linn., a species of oak-trec, which grows abundantly in the southern provinces of France, Italy, and Spain. The bark is taken off by making coronal incisions above and below the portions to be removed; vertical incisions are then made from one of these circles to another, whereby the bark may be easily detached. It is steeped in water to soften it, in order to be flattened by pressure under heavy stoncs, and next dricd at a fire which blackens its surface. The corks are bound up in bales and sent into the market.

Therc are two sorts of cork, the white and the black ; the former grows in France and the latter in Spain. The cakes of the white are usually more beautiful, more smooth, lighter, freer from knots and cracks, of a finer grain, of a yellowish-grey colour on both sides, and cut more smoothly than the black. When this cork is burnt in close vessels it forms the pigment called Spanish black.

This substance is employed to fabricate not only bottle corks but small architcctural and geognostic models, which are very convenient from their lightness and solidity.

The cork-cutters divide the boards of corls first into narrow fillets, which they afterwards subdivide into short parallelopipeds, and then round these into the proper conical or cylindrical shape. The bench before which they work is a square table, where four workmen are sented, one at every side, the table being furnishcd with a ledge to prevent the corks from falling over. The cork-cutter's knife is a broad blade, very thin, and fine cdged. It is whetted from time to time upon a fine-graincd dry whetstone. The workman ought not to draw his knifc cdge over the cork, for lic would thns make misses, and might cut himsclf, but rather the cork over the knifcedge. He should seize the knifc with his left haud, rest the back of it upon the cdge of the table, into one of the untches made to prevent it from slipping, and mercly turn its edge sometimes upright and sometimes to one side. Then holding the squared picce of cork by its two ends, between his finger aud his thumb, he presents it in the direction of its length to the cdge; the cork is now smoothly cut into a rounded form by being dexterously turued in the haud. He next cuts off the two ends, when the cork is finished and thrown into the proper basket alongside, to be afterwards sorted by women or boys.
Of late years a much thicker kind of cork boards have been imported from Catalonia, from which longer and better corks may be madc. In the art of corkcutting the French surpass the English, as any one may couvince limself by comparing the corks of their champague bottles with those made in this country.
Cork, on account of its buoyancy in water, is extensively cmployed for making floats to fishermen's nets, and in the construction of lifc-boats. Its inperrmeability to water has led to its employment for inner soles to shocs.

When cork is rasped into powder, and snbjected to chemical solvents, such as alcohol, \&c., it leaves 70 per cent. of an insoluble substance, called subcrinc. When it is treated with uitric acid, it yields the following remarkable prodncts:- White
fibrous matter 0.18 , resin $14 \cdot \hbar 2$, oxalic acid $16 \cdot 00$, suberic acid (peculiar acid of cork) $14 \cdot 5$, in 100 parts.

A patent was obtained some years ago for machine cork-cutting. The cutting of the cork into slips is effected by fixing it upon the sliding bed of an enginc. and bringing it, by a progressive motion, under the action of a circular knife, by which it is cut into slips of equal widths. The nature or constructlon of a machine to be used for this purpose may be easily conceived, as it possesses no new mechanical feature, except in its application to cutting cork. The motion communicated to the knife by haud, steam, horse, or other power, moves at the sane time the bed also which carries the cork to be cut.

The second part of the invention, viz., that for separating the cork into square pieccs, after it has been cut into slips as above, is effected by a moving bed as before, upon which the slips are to be placed and submitted to the action of a cutting lever, which may be regulated to cliop the cork into picces of any given length.

The third part of the invention, viz., that for rounding or finishing the corks, consists of an engine to which is attached a circular knife that turns vertically, and a carriage or frame upon its side that revolves on its axle horizontally.

The carriage or frame contains several pairs of clamps intended respectively to hold a piece of the square cut cork by pressing it at the ends, and carrying it lengthways perpendicularly ; which clamps are contrived to have a spindle motion, by means of a pinion at the lower end of their axles, working into a spur-wheel.
The machinery, thus arranged, is put in motion by means of bands and drumwhecls, or any other contrivance which may be found most eligible; and at the same time that the circular knife revolves vertically, the frame containing the clamps with the pieces of cork, turns horizontally, bringing the corks, one by one, up to the edge of the knife, when, to render each piece of cork cylindrical, the clamps, as above described, revolve upon their axes, independently of their carriage, by whicli means the whole circumference of the cork is brought under the action of the knife, the superfluous parts are uniformly pared off, and the cork finished smooth and cylindrical.

Imports of Cork in 1856-1857: -

COROMANDEL WOOD. The wood of the Dyospyros hirsuta.

CORROSIVE SUBLIMATE, Mercury, Chloride of, or Protochloride (Deutochlorure

 de mercure, Fr. ; Aetzendes quecksilber sublimat, Germ.), is made by subliming a mixture of $2 \frac{1}{2}$ parts of sulphate of oxide of mercury, and 1 part of sea-salt, in a stoneware cucurbit. The sublimate rises in vapour, and encrusts the globular glass capital with a white mass of small prismatic needles. Its specific gravity is 6.225 . Its taste is acrid, stypto-metallic, and exceedingly unpleasant. It is soluble in 16 parts of water, at the ordinary temperature, and in less than 3 times its weight. It dissolves in $2 \frac{1}{4}$ times its weight of cold alcohol. It is a very dcadly poison. Raw white of egg swallowed in profusion is the best antidote. A solution of corrosive sublimate has been long employed for preserving soft anatomical preparations. By this means the corpse of Colonel Morland was embalmed, in order to be brought from the seat of war to Paris. His features remained unaltered, only lis skin was brown, and his body was so hard as to sound like a piece of wood when struck with a hammer.In the work upon the dry rot, published by Mr. Knowles, scerctary of the committee of inspectors of the navy, in 1821, corrosive sublimate is cnumerated among the chemical substances which had been preseribed for preventing the dry rot in timber ; and it is well known that Sir H. Davy had, several years before that date, used and recommended to the Admiralty and Navy Board corrosive sublimate as an anti-dryrot application. It has been siuce extensively employed by a joint-stock company for

VOI. I.
3 I

The preservative liquid known as Goadlyy's solution, which is employed for preserving wood and anatomical preparations, is composed as follows:- Bay salt, 4 oz ; alum, 2 oz ; corrosive suhlinate, 2 grains; water, 2 pints.

The composition of eorrosive sublimate is -

Mercury	-	100°	73.86 Chlorine 135.14	
		$100 \cdot 00$	H. M. N.	

Sce Mercury.
CORRUGATED IRON. A process has been introduced for giving strength to sheetiron, by bending it into folds or wrinkles ; the iron so treated is thus named.

The iron shed at the London Terminus of the Eastern Counties Railway, constructed of corrugated iron, has been described by Mr. W. Evill, jun. The entire length is 216 fcet, aud consists of three roofs, the centre of 36 fect span, rising 9 feet, and the side-roofs 20 fcet 6 inches, with a rise of 4 feet.

The corrugated wrought iron is composed of sheets No. 16 wire gaugc, or in th of an inch in thickness; the weight per foot is 3 lbs ; the whole weight of the centre roof of 10,235 superficial fect being scareely $13 \frac{3}{4}$ tons, and the side-roofs, of 5,405 square feet, weigh $7 \frac{1}{f}$ tons.

The whole roof was erected by Messrs. Walker and Sons, Bermondsey, the holders of Palmer's patent, at a charge of 6l. 10)s. per 100 superficial feet, including fixing, and the whole roofs cost $1365 l$, and might now be erected for half the cost, the patent having expired, aud increased facilitics existing.

Many corrugated roofs have been erected : one at St. Katherine's Dock. At the entrance of the London Docks there is onc 40 feet span and 225 feet long. On the London, Birmingham, Great Western. and other railways they have been employed.

Iron appears to have great strength given to it by this change of form; a single shect, so thin as to be unable to bear its own vertical position, will bear 700 lbs . after corrugation, without bending.

Cast-iron has been corrugated. Mr. Palmer has patented this form, and at Swansea a bridge of three arches, one of 50 and two of 48 feet span, has been erected.
CORUNDUM. This mineral species includes sapphire, corundum stone, and emery. It consists of pure alumina coloured by admixture with oxide of iron.

	Blue Sapphire, Chima.		Corundun, Beng:l.	limery, Navos.
Aluınina -	98.5	840	$89 \cdot 5$	86.0
Lime - -	$0 \cdot 5$	$\cdot 0$	1.0	30
Silica - -	0.0	$\cdot 5$	55	$3 \cdot 0$
Oxide of iron	$1 \cdot 0$	$7 \cdot 5$	$1 \cdot 2.5$	$4 \cdot 0$
	100.0 Klapr.	980 Cken.	98.2 Temant.	96.0 Tennant.

The perfeetly white crystals of sapphirc are pure alumina.
There are two varieties of the perfect corundum; the sapphire so called, and the oriental ruby; of which the latter has a rather less specific gravity, being 39 agaiust $3 \cdot 97$. Their form is a slightly acute rlomboid, which possesses donble refraction, and is inferior in hardness only to the diamond. The sapphire oecurs also in 6 -sided prisms.

Corundum, or Corone, is the Indian name for the mineral called also Adamantine spar. In Canton the Chinese specimens have a grey colour, the edges of thin pieces being transparent; the variety from India is whiter, and this is called corundum. The extreme harduess of this substance. scratching every thing except diamond, renders it remarkably valuable to lapidaries and seal cutters. It is but little barder than the ruby, sapphire, or oriental tnpaz. It is far superior to emery, especially for grinding, as it adheres like diamond dust. It is used tbroughout ludia and Chiua for polishing stoncs, \&cc.

COSTEANING, a mining term, from the old Cornish Colhas stean, fallen or dropped tiu. It signifies the practice of sinking pis in search of loles across the line of direction which the tin lodes usually traverse in Cornwall.

COTTON DYEING. See Dreing.
COTTON FACTORY. See Factory.
COTTON AND COTTON MINUFACTURE. (Filature de Coton, Fr. ; Benmwollenspinneric, Germ.) Cotton is a filamentous down, which invests the seeds of the
plant called gossupium by Jinnxus, and placed by him in the class monadelphia and order monandria, but belonging to the uatural family of malvaceec. It has a cup-shaped calyx, obtusely five-toothed, inelosed in a thrce-cleft exterior calyx ; the leaflets are united at their base, of a heart shape and toothed ; stigmas thrce to five; capsule threc to fivecelled and many-seeded; seeds bearing a downy wool. Thirteen species arc deseribed by Decaudollc, but their characters are very uncertain, and no botanist can assign to a definite species of the plant the very dissimilar staples of the cotton filaments found in commercc. The leaves are generally palmate and hairy; and the blossoms are large, and of a beautiful yellow. The gossypium religiosum of I'ranquebar las white blossoms in some of its varieties, to which, probably, the white cotton of Rome, cultivated in the Jardin des Plantes at Paris, belongs. The filaments differ in length, flexibility, tenacity, and thickness, in different cottons, whence the great difference of their value to the cotton-spinner, as the prices currcrit in the market show. Thus, at Liverpool, on the 3rd of September, 1858, the following values were assigned to the following cottons: -

Sea-island		-			${ }_{1}$	${ }_{0}$.		
Demerara and	Berbice	-	-	-	- 0			
Pernambuco		-	-	-	-0	8		
Egyptian	- -	-	-	-		$7 \frac{1}{1}$		
New Orleans	- -	-	-	-	- 0	$4 \frac{1}{2}$		
Bahia -	-	-	-	-	- 0	$7 \frac{3}{3}$		
Upland Georgia	a	-	-	-		5		
West Indian	-	-	-			51		
Surat	-	-		-	- 0	$4 \frac{1}{8}$		
Madras	- -	-			- 0	$4 \frac{1}{4}$		
Bengal	-	-	-	-	- 0	$3 \frac{1}{2}$		

The filaments of cotton, when examined with a good microscope, are seen to be more or less ribbon-like, and twisted; having a breadth varying front $\frac{1}{800}$ of an inch in the strongest Smyrna or candle wick cotton of the Levant, to $\frac{\text { e }}{2500}$ of an inch in the fiuest Sea-island.
The main distinction between cottons in the pod, is that of the blaek sceded and the green sceded; for the former part with their downy wool very readily to a pair of simple rollers, made to revolve nearly in contact, by the power of the human arm ; while the latter retain the wool with much force, and require to be ginned, as the operation is called, by a powerful revolving circular saw-mechanism, usually driven by horse or water power.

Fig. 579, a b, is a roller, about 9 inches in diametcr, which revolves in the direction of the arrow. This cylinder consists of a parallel series of ohlique pointed circular saws made fast to one axis, and parted from each other by wooden rings nearly onc inch and a half in thickness. Abore the cylinder is a kind of hopper e F, into which the ginner throws the seed cotton, which falls upon a grating, up through which small segments of the sawtceth project, so as to lay hold of the fibres in their
 revolution and pull them through, while the seeds being thus separated, roll down the slope of the grid, to be discharged from the spout I K. M is a cylindrical brush placed below the grating, which revolves against the saw teeth, so as to clear them of the adhering eotton tilaments.

Fig. 580 is F. A. Calvert's patent toothed roller cotton gin.
a is a perspective view, b is a scctional vicw. A is the box to bold seed cotton ready to be ginned; B is the top of the hopper ; \mathbf{c} is the fluted guard; \mathbf{D} is the fine toothed roller; E the brush; F is the discharge pipe; and G is a suitable block on which the machine stands.
N.B. Over the handlc in fig. a there is shown an arrow, indicating the direction of the motion. The handle should not be driven less than fifty turns per minute. The seed cotton should be fed into the hopper in small portions, and regularly throughout its whole lengtl, at the same time care should be taken that a large quantity does not collect, as it will retard the operation. This gin is made from six inches to five feet wide; two persons can drive, with ease, a giu of this kind three fect wide, producing 200 lbs . of cleaned cotton per day, at the speed above stated. When driven by steam or water-power at the rate of 200 revolutions per minute, it will clean 400 lbs. cach foot in length per day. It is well adapted for all classes of colton, particu-
karly fast seed cotton, which has been valued at one penny per pound more when done on this gin than when done on the saw gin. It will be seen that there is no band or belt employed, hence the machinc requires small power compared with other machincs for like purposes.

After the cotton wool is thus separated from the sceds, it is packed in large canvas bags, commonly with the aid of a screw or hydraulic press, into a very dense balc, for the convenicnce of transport. Each of the Amcrican hags contains alout 500 lbs of cotton wool. When this cotton is delivered to the manufacturer, it is so foul and

floeky, that he must clean and disentangle it with the utmost care, before he can sulject it to the carding operation.

The willow, which was originally a cylindrieal willow baskct, whence its nane, but is now a box made of wood or iron, with revolving iron spikes, is the first apparatus to which cotton wool is exposed, after it has hcen opened up. picked, and sorted hy hand or a rake, in what is called a bing. The willow exprcises a winnowing action, loosens the large flocks, and shakes out much of the dirt contained in them. The frame of the willow is about 4 fcet wide, and turns with its spikes at the rapid rate of 400 revolutions per minutc, whereby it tosses the cotton ahout with great violence. The heavy impurities fall down through the grid bottom. It is cxposed, however. for only a few minutes to the action of this machine. For faetories which work up chiefly the coarser and fouler cottons of India, and Upland Georgia, the conieal selfacting willow, as constructed by Mr. Lillie at Manchester, is employed. In it, the cotton is put in at the narrow ond of the truncated cone, which being spiked, and revolving rapidly within a nearly coneentric case upon a horizontal axis wafts it on towards the wide end, while its impurities are partly shaken out through the grid or perforated hottom, and partly sucked up through revolving squirrel wire cages, hy the centrifugal action of a fan. The cone of this huge machine makes from 400 to 600 turns per minute, and will clean 7200 pounds, or 24 hags, in a day.

After shaking out the grosser impurities by the willow, the cotton spinner proeceds to scparate each individual filament of cotton wool from its fellow, so as to prepare it for carding, and to frec it from every particle of foreign matter, whether lighter or heavier than itself. This sccond operation is performed by what arc called batting (beating), scutching, and blowing machines, which are all now much the same, whatever difference of signification the name may have. Indeed, cach maehinc not only beats and scutches, but blows
Fig. 581, the scutchcr, or opening machine, though usually preceded by the willow. is often the first machine in a mill through which the cotton is passed, and serves, as its name implies, to open the matted locks of cotton and separate its fibres, and at the
same time to remove a large percentage of the seed and dirt which may have becn packed with it.
The cotton is placed upon the travelling creepcr marked a, which is made of a number of narrow slips, or laths, of wood, screwed to three cndless bands of leather, the pivots of which are marked b and c. Motion is given to the roller e, by a wheel on the cnd of the feed roller, thus causing the creeper to advance, carrying with it the cotton to the feeding rollers d; these revolving slowly pass the cotton to the second smaller pair of fluted rollers, which serve it to the beater.
The top feeding rollers are weighted by levers and weights e e, and hold the cottou sufficiently tight for the beater to act upon it.

The beater is placed inside the machine at f, and extends quite across its breadth, its shaft or axis being shown with the speed fully upon it at g. The form of the beater varies, but we give the following as an example :-On a shaft are placed four or five spiders, each having three or four arms; to the ends of these arms are attached steel blades, which pass along the whole length of the beater; two of the arms being shorter than the other arms of the spider, allow two of the blades to contain a double row of spikes in each, the points of the spikes being at the same distance from the axis as the other two blades. As the beater revolves about 800 turns per minute, the blades and spikes strike the cotton with considerable force as it is passed from the feeding rollers, and thus free it from many of its impurities.

Immediately under the feed rollers and beater, are placed a number of wedge shaped bars, which form a semi-circular grid, through the narrow openings of which the dirt and seeds fall to the floor, their removal being effected through the doors in the framing. To prevent the cotton passing with the dirt through the grid, a current of air to draw tbe cotton from tbe beater to the cage, is produced by an exhaust fan (its axis being shown at h) receiving its motion from a pulley on the beater shaft. The projection i on the framing forms a pipe, through which the fan draws the air from the beater, passing on its way through a large revolving cage or cylinder, the periphery of which is formed of sheets of perforated metal, or wire gauze. Its axis is shown at K .

From the cage the cotton is delivered by a second travelling creeper and falls into a receptacle, from which it is weighed and made ready for the operations of the lap machine.

Fig. 583 exhibits a longitudinal section of another kind of blowing enginc. The machine is about 18 or 19 feet long, and three feet across within the case. The whole frame is madc of cast-iron, forming a close box, which has merely openings for introducing the raw cotton wool, for taking out the cleansed wool, and removing the dust as it collects at the bottom. These doors are shut during the operation of the machine, but may be opened at pleasurc, to allow the interior to be inspected and repaired.
The introduction of the cotton is effected by means of an endless cloth or double apron, which moves in the direction of the arrow $a a$, at the left end of the figure,
by passing round the continually revolving rollers at b and c. The two rollers at e, veing the ones which immediately introduce the cotton into the jaws, as it were,
 The loatling arm, or revolving diameter, $f e$, turns in the direction of the arrow, and strikes the flocks violently as they enter so as to throw down any heavy particles upon the iron grating or grid at n, while the light cotton filaments arc wafted onwards with the wind, from the rotation of the scutcher in the direction of arrow a^{\prime}, along the second travelling apron, upon which the squirrel cage cylinder presses, and applies the cotton in the form of a lap. Above the cylindric cage h, which turns in the direction of its arrow, there is a pipe k, the continuation of the case i. This pipe, though broken off in the figure, communicates by a brauch pipe with an air-sucking fan ventilator, not seen in this figure, but like the ordinary fans. The cage h, by its rotation, presses down, as we have said, the half-cleaned cotton upon the cloth a^{\prime}, which carrics it forward to the second scutcher f^{\prime}, by the second set of feed rqllers e^{\prime}. The second scutcher throws down the heavy dust upon the second grid n^{\prime}, through which it falls upon the bottom of the case. The first scutcher makes about 1350 strokes of each of its two arms in a minute ; the second, 10.420. The feed rollers for each are fluted. The feed cloth is either sustained by a board, or is made of parallel spars of wood, to sccure it against bagging, which would render the delivery of the cotton irregular. The feed rollers make 8 turns in a minute, and as their diameter is $1 \frac{1}{2}$ inch, they will introduce 8 times their circumference, or 37.7 inches of the cotton spread upon the apron in that time. Upon every 12th part of an inch of the cotton, therefore, nearly 3 blows of the scutcher arm will be applied. The second feed rollers move relatively with more slowness, so that for every 2.4 blows of the scutcher, only one twelfth of an inch of cotton wool is presented.

The fan is enclosed in a cylindrical case. The wings of vanes revolve from 120 to 150 times in the minute ; and while they throw the air out with nearly this velocity at their excentric ontlet in the circumference, they cause it to enter with equal velocity, at the centre. With this centre the squirrcl cage is connected by a pipe, as above stated. The sound filaments of the cotton are arrested by the sieve surface of the cylindric cage, aud nothing but the broken fragments and the light dust can pass through.
The cotton wool in the blowing machine is wafted by the second scutcher into the space $x w w$, provided with a fine grid bottom; or it is sometimes wound up there by rollers into a lap.
In fig. 583 an additional ventilator is introduced bencath at $m 00$, to aid the action of the scutchers in blowing the cotton onwards into the oblong trough a. The outlet of that fan is at t; and it draws in the air at its axis $q . \quad u$ and v, are two doors or lids for removing the cleaned cotton wool. This last fan is suppressed in many blowing machines, as the scutching arms supply a sufficient stream of air. The dotted lines show how the motion is transmitted from the first wover at s, to the
various parts of the machine. $6^{\prime} 6^{\prime}$ represent the bands leading to the main shafting of the mill. A machinc of this kind can clean fully 1500 pounds of short-stapled cotton wool in a day, with the superintendence of one operative, usually a young woman, to distribute the cotton upon the first fecd cloth.
The second blowing machinc is usually called a lap machine, because, after blowing and scutchiug the cotton, as above described, it crentually coils the flecee upon a wooden roller at the deliveriug end of the apparatus. It is sometimes also called a spreading machine. A section of it is shown in fig 584. The breadth of this machine is about 3 fect, as the lap formed is prepared for the usual breadth of the breaker cards, namely 3 feet. Where the cards are only 18 inches broad, the lap machine is also made of the same breadth. In the figure we see the feed-cloth, the scutching beater, the squirrcl suction and spreading cage, and the rollers for coiling up the lap. The lever shown below is for removing the pressure weight from the axis of the lap rollers, when a full one is to be removed, and replaced by an empty onc. m, at the top, is the commencement of the pipe which leads to the suction fan, or ventilator. The thickness of the lap in this machine must be niccly regulated, as it determines, in a great measurc, the grist of the card ends, and even the rovings. In 60 hours such a lap machine will prepare 9000 lbs. of cotton.

Fig. 585 is the first scutching machine, now never seen except in the oldest factories. A B is the fced cloth; G ت two scutcher frames.

Carding is the next operation in a cotton factory. Cards are destined to disentangle the individual filaments frou each other, and to lay them lengthwise, instead of being doubled up and convoluted, as they usually are. in leaving the blowing and lap machines. Carding consists in the mutual action of two opposite surfaces, which are studded thick with oblique angled hooks. The wires of which these hooks are made must be very hard drawn in order to render them stiff and elastic. The middle part of the figures shows one of the staples or double teeth, the structure of which has becu partly explained under Card. Suppose $a ;$ fig. 586 , to be a piece of a card fillet, and b to be another piece, each being made fast with pins to a board ; the tecth of these two cards are set in opposite directions, but are very ncar together, and parallel. Now suppose a flock or tuft of cotion placed between two such bristling surfaces. Let a be moved in the direction of its arrow, and let b be moved in the opposite direction, or even let it remain at rest. Every filament of the cotton will be laid hold of hy each
set of tecth, when their surfaces are thus drawn over each other ; the tecth of u will pull them in a forward direction, while those of b will tend to retain then, or to pull

thell backwards. The loops or doublings will, by both movements, be opened or drawn out, so that the flocks will be converted into rows of parallel filaments, lying

alongside or before each other. Each tooth will secure to itself one or morc of them, and by the friction of its sides as well as the hooks of its points, will draw them to their utmost elongation. Thongh one stroke of the opposite cards be inadequate to produce this equable arrangement, yet many repeated strokes must infallibly accomplish the end in view, of laying the fibres parallcl.

Let us suppose this end effected, and that all the fibres have been transferred to the card u, a transverse stroke of b will draw over to it a certain number of them, and indced at each stroke thcre will be a new partition between the two cards, with increased parallelism, but still each card will retain a great deal of the cotton. To make one card strip another, the teeth of one of them must be placed in a reverse position, as shown in fig. 587.

If a be now drawn in the direction of its arrow along the face of b, it will inevitably comb out all, or almost all, the filaments from it, since the hooks of b have, in this position, no power of retaining them. Even the doubled fibres or loops will slip over the sloping point of b, in obedience to the traction of a. By considering these two relative positions of the cards, which take place in haud cards simply by reversing one of them, any person will be able to understand the play of a cylinder card against its flat top, or against another cylinder card, the respective teeth being in what we may call the teasing position of fig. 586 ; and also the play of a cylinder card against the doffer cylinder, in what may be called the stripping position of fig. 587.

Cylinder cards, so essential to the continuity and despatch of cotton factory labour, were the ingenious invention of Lewis Paul of Northampton, but were greatly improved and brought into nearly their present operative state by Sir Richard Arkwright. A carding engine consists of one or more cylinders, covered with cardleather (sometimes card-cloth), and a set of plain surfaces similarly covered, made to work against each other, but so that their points do not come into absolute contact. Some cards consist entirely of cylinders, the central main cylinder being surrounded by a series of smaller ones called urchins or squirrels. These are used solely for preparing the coarser stapled cotton, and sheep's wool for the wool spinner.

Fig. 588 represents a card of excellent construction, which may be called a breaker and finisher, as it is capable of working up the fleece roll of the lapping machine directly into a card-end or riband fit for the drawing machine. In fine spinving mills there are always, howevcr, two cards; one coarser, called a breaker, which turns off thic cotton in a broad fleece of extreme thinness, which constitutes the material presented to the finisher card, which has teeth of a finer construction.
a is one of the two upright slots, which are fixed at each side of the engine for receiving the iron gudgeons of the wooden rollers round which the fleece of the lapping machine is rolled. The circumference of this coil rests upon a roller b, which is made to turn slowly in such a direction as to aid the unfolding of the lap by the fluted cylinders e. The lap proceeds along the table seen beneath the letter c, in its progress
to the fluted rollers, whieh are $1 \frac{1}{d}$ inches in diameter, and have 28 flutings in their circuunference. g is a weight which hangs upon the axis of the upper roller, and causes

it to press upon the under one: f is the main card cylinder; $g g g$, the arch formed by the flat top cards; h, the small card cylinder for stripping off the cotton, and therefore called the doftcr, as we have said; i, the doffer-knife or comb for stripping the fleecy web from the doffer; $k l q m$, the lever mechanism for moving these parts. At d there is a door for permitting the tenter to have access to the interior of the engine, and to remove whatever dirt, \&c. may happen to fall into it. In fig. 589 we sec the manner of

589

fixing the flat tops $g g$ over the cylinder; and for making the matter clearer, three of the tops arc removed. Upon the arched cast-iron side of the frame, a row of strong iron pins k are made fast in the middle line; and each top piece has, at each of jts ends, a hole, which fits down upon two such opposite pins. $l l$ are screws whose heads serve as supports to the tops, by coming into contact with the bottom of the holes, which are not of course bored through the wood of the tops. By turning the heads of these screws a little the one way or the other, the pins may be lengthened or shortened in any degree, so as to set the tops very truly in adjustment with the cylinder teeth revolving beneath them. l^{\prime} is the small runner or urchin, and i^{\prime} the large runner; both of which are spirally covered from end to end with narrow card fillets, in the same manner as the doffer. The main cylinder is on the contrary covered with card cloth, in strips laid on parallel to its axis, with iuterjacent parallel smonth leather borders. The teeth of these several cards are set as represented in the figure, and their cylinders revolve as the arrows indicate. The runners as well as the doffer cylinder may be set nearer to or further from the cylinder f; but the screws
intended for this adjustment are ouitted in the drawings, to avoid eonfusion of the
lines.
The eard-end or flecee taken off the doffer h by the erank and comb meehanism $i k m$ passes through the tin plate or brass funnel n, fiy. $5 \$ 8$, whereby it is hemmed in and eontracted into a ribaud, whiel is then passed through between a pair of drawing rollers o. It is next reeeived by the rollers $u v$, whieh earry it off with equal velocity, and let it fall into the tin eans plaeed below, or eonduct it over a frietion pulley, to be wound along with many other card-ends upon a lap roller or large bobbin. The latter meehanism is not shown in this figure. A sloping eurved tin or brass plate, ehanneled or ridged along its surfaee, eonducts the eard ribands separately ; there are two smooth iron rollers for condensing the several ribands, and a wooden pin round which the ribands are lapped, resting between two leather-eovered rollers, one of which reeeives motion from mill gearing, and imparts it by frietion to the lap roller over it. The iron ends of the lap roller lie in upright slots, which allow them freedom to rise as the roller gets filled with fleeee.
The two pairs of rollers at o, effeet the extension of the eard-end, and reduce its size, The under rollers are made of iron and fluted; the upper ones are also made of iron, but they are eovered with a eoat of leather, nieely glued on over a eoat of flannel, which two eoats render them both smooth and elastic. Two weights, w, press the upper eylinder steadily down upon the under ones. Between the first and second pair there is a eertain interval, whieh should be proportioned to the length of the cotton staple. The seeond, or that furthest from the funnel, revolves with greater velocity than the first, aud therefore turns out a greater length of riband than it reeeives from its fellow; the consequence is a corresponding extension of the riband in the interval between the two pairs of rollers.

The motions of the several parts of the engine are effeeted in the following way. The band, $p p$, fig. 589 , which comes down from the pulley upon the main shaft near the ceiling of the work-room, drives, by means of the pulley q, the eylinder f, fig. 588 , with a veloeity of from 120 to 140 revolutions in a minute. From another pulley, r, on tho axis of the eylinder, the axis of t is driven by the band s working round the pulley t on its end. This shaft drives the erank and lever meehanism of the stripper knife i. A third pulley of the same size as r is fixed just within the frame to the other end of the eylinder, and from it a erossed or close band r^{\prime} goes to a pulley upon the small runner h^{\prime}, to give this its rapid rotation. Upon the opposite end of the engine in fig. 588, these wheels and pulleys are marked with dotted lines. Here we may observe, first, a pulley y upon the eylinder, and a pulley a^{\prime}, whieh receives motion from it by means of the band z. The axis of a^{\prime}, earries in front a pinion m^{\prime}, which sets in motion the wheel n^{\prime}. The latter imparts motion, by means of a pinion and intermediate wheel o^{\prime}, to the wheel h on the doffer, and consequently to that eylinder on the one hand; and it turns, by the earrier wheel p^{\prime}, a wheel x, whose axis is marked also with x in fiy. 589, upon the other hand. The axis of $\cdot x^{\prime}, f i g$. 588, earries, towards the middle of the engine, a very broad wheel, which is represented by a small dotted eirele. The toothed wheel v of the smooth roller v^{\prime}, fig. 588, and the two toothed wheels 00 , fig. 589, of the under rollers oo, fig. 588, work into that broar wheel. The wheel of the seeond or delivery fluted roller is seen to be smaller than that of the first, by which means the differenee of their veloeities is obtained. The large runner i is driven from the main eylinder pulley, by means of the band s^{\prime}, and the pulley u^{\prime}, fig. 588. The said band is erossed twiee, and is kept in tension by the pulley t ', round which it passes. The motion of the fluted rollers e, which feed in the cotton fleeee, is effected by means of a bevel wheel b^{\prime} on the end of the doffer, which works in a similar wheel c^{\prime} on the oblique axis d^{\prime} (dotted lines aeross the drum) of the pinion e^{\prime} upon the lower end of the same axis which turns the wheel f^{\prime}, upou the under feed roller.

Eaeh of the feed rollers, fig. 589, bears a pinion $e e$ at one end, so that the upper roller turns round with the under one. The roller $b, f i g .588$, is set in motion by meaus of its wheel x^{\prime}; which is driven by a wheel v^{\prime} on the other end of the under feed roller, through the intervention of the large earrier wheel w^{\prime}. The original or first motion of b must be as quiek as that of the fluted feed rollers e, in order that the former may uneoil as much lap as the latter ean pass on.

The annexed table exhibits the proper veloeities of the different eylinders and rollers of the earding engine, which, however, are not invariable, but may be modified aceording to eireumstances, by ehanging the pinions e^{\prime}, fig. 588, and w^{\prime}, aeeording to the quality or length of the cotton staple. The velocities stated in the table will be obtained when the pulley a^{\prime}, fig. 588, is made greater than y in the proportiou of 3 to 2, and the wheels and pinions have the following number of teeth: $m^{\prime}, 18 ; n^{\prime} .50$; its pinion, $18 ; h, 128 ; x, 24$; the broad wheel upon the shaft of $x, 37$ teeth; the wheel o of the first flutech roller, 35 ; and that of the second, $21 ; v, 41 ; b^{\prime}$ and $e^{\prime}, 54 ; e^{\prime}, 10 ; f^{\prime \prime}, 63$.

Names of the parts.	Diameter in inches.	Circumference in inches.	Revolntions in one minute.	Ve.ocity.
Main cylinder f -	35	$109 \cdot 9$	130°	142.87
Doffer h - -	14	$43 \cdot 96$	$4 \cdot 38$	$192 \cdot 5$
Runner or urchin i^{\prime} -	$6 \cdot 25$	1962	$5 \cdot$	981
Ditto h^{\prime} - -	$3 \cdot 5$	11.	470	5170°
Fluted feed roller e -	1•167	3.664	$0 \cdot 696$	$2 \cdot 55$
First drawing roller 0 -	1.	$3 \cdot 14$	68.71	$215 \cdot 75$
Second ditto - -	$1 \cdot 167$	$3 \cdot 664$	11452	419.6
Smooth delivery roller v	$2 \cdot 5$	$7 \cdot 85$	$5 \cdot 1 \cdot 66$	$429 \cdot 08$

The operation of the runners, h^{\prime} and i^{\prime}, becomes very plain on comparing their speed with one another and with that of the main cylinder, and taking into account the dircction of the card teeth. The cotton wool, taken off from the feed-rollers by the cylinder, is caught by the opposite teeth of the large runner i^{\prime}, which, on account of its slower surface rotation (98 inches per minute) may be considered to be at rest with reference to the cylinder, and therefore, by holding the cotton in its teeth, will commence its carding. The small runner h^{\prime}, in consequence of its greater surface velocity (5170 inches per minute) will comb the cotton-wool back out of the teeth of the large runner, but it will give it up in its turn to the swifter teeth of the cylinder, which, in carrying it forwards, encounters the teeth of the top cards, and delivers up the filaments to their keeping for some time. We thus see how essential the runners are to the perfection as well as to the acceleration of the carding process for ordinary cotton wool, though for the slenderer and longer filaments of the sea-island kind they are not so well adapted. In cleaning the carding-engines the little runner must be looked to every time that the drum is examined. The large runner and the doffer require to be cleaned together. The quantity of cotton spread upon the feed-clotl, the velocity of it , and of the drawing-rollers, must all be carefully adjusted to the grist of the yarn intended to be spun.

Suppose the sizes and velocities to be as represented in the preceding table, that the engine is a double card 36 inches broad, and that it is furnished with a lap from the lapmachine of which 30 feet in length weigh 5 lbs . ; in one minute the surface of the feedrollers, e, passes $2 \cdot 55$ inches of that lap onwards; in the same time the main cylinder f will work it off. To card the whole 30 fect, therefore, 141 minutes, or 2 hours and 21 minutes will be required. In this time the circumference of the rollers, $u v$, moves through a space of $141 \times 429.08 \mathrm{in} .=5042 \mathrm{ft}$., and delivers a card-end of that length, weighing 5 lbs minus 6 percent. for waste, that is 4 lbs . $11 \frac{1}{2} \mathrm{oz}$. One pound will form a riband 1072 feet long, being, according to the English mode of counting, about number $\frac{1}{3}$, or 0.357 . . The extension of the cotton-fleece to this degrce proceeds as follows: - In the 141 minutes which the feed-rollers take to introduce the 30 feet of lap, the doffer h makes 617.58 rcvolutions, and the comb, or doffer knife i, detaches from tie doffer teeth a thin fleecy web of 2262 fcet in length. The first drawing pair of fluted rollers, by its quick motion, with the aid of the funnel m, converts this fleece into a riband 2535 feet long. The second pair of the fluted rollers extends this riband to 4390 feet, since their surface velocity is greater than the first pair in that proportion. The slight elongation (of only 112 feet, or abont $\frac{1}{74}$) which takes place between the delivery fluted rollers and the smooth cylinders, $u v$, serves merely to keep the card-end steadily upon the stretch without folding. Fig. 590 is a plan of the card and the fleece, where \bar{n} is the cylinder, n is the funnel, u the pressing rollers, and h^{\prime} the cardends in the can.

Fiys. 591, 592 represent skeletons of the old cards to facilitate the comprehension of these complex machines. Fig. 591 is a plan; F is the main cylinder ; Mm is the doffer knife or comb; \boldsymbol{a}, the carded fleece hemmed in by the funncl a, pressed between the rollers b, and then falling in narrow fillets into its can. Fig. 592, к l are the feed rollers ; Ab, the main cylinder ; c d, the tops ; ef, the doffer card ; m N, the doffer knife ; d, b, c, the card-end passing between compressing rollers into the can a.

Fig. 593 is a carding-engine without top flats, being cntirely covered with rollers and clearers; it is suitable for all counts under forties and will card for 600 lbs . of twenties per week of 60 hours.

It is made by Hetherington and Sons, Manehester, entirely of iron, and may be looked upon as a very complete enginc.

Fig. 594 represents the combing machine, as seen at work in the mills of Thomas Bazley, Esq., M. P., Manchester, and other fine spinning concerns. The introduction of this beautiful machinc, manufacturcd by Messrs. Hetherington and Sons, Manchester, having produced a complete revolution in the preparation of fine yarns, we give a brief history of its invention prior to describing it in detail.

About the year 1844, Mr. Jcan Jacques Bourcart, one of the partners of the eminent firm of Mcssrs. Nicolas Schlumberger \& Co., of Guebwiller, in the department du Haut Rhin in the kingdom of France, offered a prize of a considcrable sum of money to any person who should invent a machine that would supersede the carding engine in the treatment of the fibres of cotton, suitable for fine numbers, such machine to be frec from the objections urged against the carding engine of breaking the fibres of the cotton, and delivering them in the staple or hook form; and besides this, it was to possess the peculiar property of separating the long fibres from the short ones; and after laying the long fibres parallel to each other, pass them out of the machine in a perfectly cleaned state in the form of a sliver ready for the drawing trame.

In a short time after this announcement Mr. Bourcart was waited upon by Mr. Josaé Heilmann, of Mulhansen, in the department du Hant Rhin in the kingdom of France, machine maker, who informed him that he claimed the prize. Mr. Heilmann feeling satisfied that his invention was a valuable one, made application for a patent in England, which patent was sealed on the 25th of February, 1846.

'The specification of Mr. Heilmann's invention is very clear and concisc, and a single extract from it will be sufficient to convey to the mind of the practical spinner the nature and object of his invention. He says, "My invention consists, secondly, in a new combination of machinery for the purpose of combing cotton, as well as wool and other fibrous materials, into which machine the fibres as they come from the dressingmachine are introduced in a lap sliver or flecce, which is broken asunder, and thic
fibres are combed at cach end, and the long and short fibres are separated, the loug ones leing united in one sliver, the short ones in another, and they are passed ont of the machine thus separated ready for drawing roving, and other subsequent operations."
Mr. Heimann did not live long enongh to reap the reward of his genius for inventing this and other important machines, and his son, Jean Jacques Heiluann, was under the necessity of loringing an action for the infringement of the conbing nachine patent against certain partics in Yorkshire; the trial took place before the Lord Chief Justice of the Quecn's Bench and a special jury at the Guildhall, London, on the 27 th and 28 th of Fcbruary, 1852, which resulted in a verdict for the plaintiff, therehy establishing the validity of the patent. Since that period a considerable number of machincs have been set to work in this country ; and although several patents have been taken out for certain improvements introduced into these machines, still the eombination of a delivering, combing, and drawing apparatus, and their mode of action, is retained, as will be seen in the following description of Cross Section of Combing Muchine, fig. 594.
1 is the lap of cotton resting upon the two wooden rollcrs $2,2 a$. When motion is given to these rollers, they cause the lap to unwind and deliver the sheet of cotton down the inclined conductor 3 , and betwcen the fluted steel feeding roller 4, and the leather-covered pressure roller $4 a$; to these rollcrs an intermittent motion is given by means of a star wheel; they make $\frac{1}{10}$ of a revolution to one revolution of the cylinder 6 , this motion being effected during the time the cushion plate $5 a$ is forward, and the nipping plate 5 is lifted from it. The cushion plate $5 a$ is hung upon the centre $5 b$, and the nipping plate upon the shaft $5 c$, and this shaft receives motion from a cam at the end of the machine through the lever 5 e, the connecting rod $13 d$, lever $13 c$, and shaft 136 ,-the parts being so arranged that the eushion plate $5 a$ is pressed backward by the nipping plate 5 , but as soon as the pressure is removed it is drawn forward by a spring until it arrives at the strap. Besides this movement, the nipping plate is caused to move on its own axis, which cnables it to quit contact with the cushion, while the cotton is being fed in between them.
In the engraving (fig.594) the cushion $5 a$ is represented as thrown back by the nipping plate 5 , and while in this position the cotton is held between them, until the combs on the cylinder pass betwecn the fibres of cotton which protrude, and remiove from them all impurities and the fibres which are too short to be held by the nipper. The combing cylinder $6 a$ is attached to the shaft, or axis 6 , by which it is caused to revolve. The periphery of this cylinder is divided into four unequal parts by the combs $6 b$ on one side, and the fluted segment $6 c$ on the other side; the spaccs between them being plain to allow time for the nipper and leather detaching roller $8 u$ to change their positions.

The combs on the cylinder are made with teeth at various distances, the coarser ones taking the lead, and finer teeth following, the last combs having more than 80 tecth in a lineal inch. All impurity or waste mixed with the fibres held by the nipper is carried away by these combs, which at every revolution are cleaned by the cylindrical brush $10 a$, stripping the waste from them, aud depositing it upon the travelling crecper lla, formed of wired cloth, which carries it down until the doffing knife, or steel blade 12 removes it in the usual manner; it then drops into a waste box, and is afterwards worked into coarser yarns. A cylinder covered with wired cloth is sometimes used instead of the traveling creeper, and acts in a similar way.

As soou as the combs have all passed the fibres held by the nipper, the cushion plate $5 a$ is drawn forward, and the nipper plate 5 is lifted from it, and thus releases the fleece; the fluted segment $6 c$ on the cylinder is at the same time passing immediately under the cushion plate 5π, the ends of the combed fibres lying upon it, and as the leather detaching roller $8 u$ has been lowercd into contaet with the fluted scgment, they are then drawn forward; but as it is nccessary to prevent any fibres passing that have not been properly cleaned or combed, the top comb 7 is placed betwcen the nipper and the roller, and as this comb falis and penetrates the fleece just in front of the part uncombed by the cylindrical combs it preveuts any waste from being drawn forward with the tail end of the clean fibres.

The leather detaching roller $8 a$, in addition to its occasional contact with the fluted segment $6 c$, is always in contact with the fluted stecl detaching roller s. and participates in its movements.

These rollers are stationar'y while the cylinder combs are cleaning the fibres projecting from the nipper, but as soon as that operation is eompleted, they are put into
motion, and make part of a revolntion backward, taking hack with them the fibres previonsly coubed, but takern out of the way to allow the cylinder combs to pass, in order for the next fibres coming forward to be joined or pieced to them, so as to form a continuous sliver or ribbon. As soon as the backward movement is completed, the leather-detaching roller $8 a$ is made to approach the cylinder by the lever $8 f$, which receives motion from a cam at the end of the machine, through the lever $8 d$, connecting rod $8 e$, lever 14c, and shaft 146 . Before, however, it comes in contact with the fluted segment $6 c$, the movement of the fluted roller is reversed, and it is cansed to turn forward, produeing a corresponding movement of the detaching roller $8 a$, the speed being so arranged that, bcforc they are allow cd to touch each other, the peripheries of the fluted segment $6 c$ and the roller $8 a$ travel with an equal velocity. At this stage, the ends of the fibres cleaned by the cylinder combs and projecting from the nipper, are resting upon the fluted segment; and the roller $8 a$, in coming in contact with it, presses upon those fibres, and immediately draws them forward; the front ends are then lifted by the leather roller and placed on the top of those fibres previonsly cleaned, and brought back to receive them. The pressure of the rollers 8 and $8 a$ completes the piecing of the fibres; the motion of the rollers being continued until the tail end of the fibres is drawn through the top comh, and a length of fibres is delivered to the callender rollers, sufficient slaek being left between to allow for the next backward movement. The roller δu is then raised from the fluted segment and ceases to revolve.
From the callender rollers, the combed cotton passes along the front plate or conductor, where it joins the slivers from the other five heads of the machine, and with them passes through the drawing head, and is then deposited in a can rcady to be removed to the drawing frame.
The movenents above deserihed being neccssary for each beat of the combing machinc. they must all recur each second of time, or sixty times each miuute.

Recapitulation.-The combing maehine is fed or supplied from 6 laps of cotton (each lap being formed from about 18 slivers from the breaker carding engines, and donbled into a lap in the lap machine). Each lap is 8 inches wide and about 12 inehes diameter when full.
The following deseription of the manner in which the combing machine works is confined to one head supplicd by 1 lap, as each of the 6 beads shown in fig. 594 is exactly like the others.
The lap of cotton having been placed on a pair of revolving lap rollers, the fleece, or sheet of cotton, is conducted down an inclined guide to a fluted stecl feeding roller, which places the cotton between the open jaws of an iron uipper. The nipper is then closed and made to approach the comb cylinder, by means of a cam, where it holds the fibres in such a position that the combs of the revolving cylinder pass between and remove from the fibres all impurities and short or broken cotton, which are afterwards worked up into yarns of a coarser quality.

As soon as the combs have all passed through the cotton, the nipper recedes from the cylinder, and as soon as it has reached the proper distance, opens its jaws, and allows the partially combed fibres to be drawn out of the fleece, by meaus of a leather-covered roller, which works for this purpose in contact with the fluted segment on the comb cylinder, and with the fluted steel detaching roller. The drawing out of these fibres causes the ends of those fibres which were before held in the nipper to pass. between the tceth of a fine top comb, thus completing the combing of each separate fibre. Previous to the movement for drawing out the fibres from the uncombed fleece, the detaching roller has made a partial revolution backwards, and taken with it the combed cotton previously delivered, in order to piece to it the fibres just combed.
The machine is so arranged that the forward movement of the detaching roller overlaps the ends, and brings out the cotton in a continuous sliver to the front of the machine, where it joins the other five slivers which have been simultaneously produced on the other heads of the machine. The united slivers then pass through the drawing head to the next operation - the drawing frame.
The drawing and doubling are the next process. The ends, as they come from the cards, are excecdingly tender and loose, but the filaments of the cotton are not as yct laid so parallel with each other as they need to be for machine spinning. Beforc any degree of torsion therefore be communieated, a previons process is required to give the filaments a level arrangement in the ribands. The drawing out and doubling accomplish this purpose, and in a manner cqually simple and certain. The means employcd are drawing-rollers, whose construction must here be fully explained, as it is employed in all the following machines; one example of their use occurred, indeed, in treating of the cards.

COTTON MANUFACTURE.

Let a and l, fiy. 595 , represent the section of two rollers lying over eaeh other, which toueh with a regulated pressure, and turn in contact upon their axes in the direction slown by the arrows. These rollers will lay hold of tlu fleecy riband presented to them at a, draw it through between them, and deliver it quite nnelianged. The length of the pieee passed through in a given time will be equal to the space which a point upon the eircumference of the rollce would have percursed in the same time; that is, equal to the periphery of one of the rollers multiplied by the number of its entire revolutions. The same thing holds with regard to the transmission of the riband through between a second pair of rollers, c, d, and a third, e, f. Thus the said riband issues from the third pair exaetly the same as it entered at a, provided the surface speed of all the rollers be the same. But if the surface speed of c and d be greater than that of a and b, then the first-named pair will deliver a greater leugth of riband than the last receives and transmits to it. The consequence ean be nothing else in these circumstances than a regulated drawing or elongation of the riband in the interval betwixt a, b, and c, d, and a enndensation of the filaments as they glide over each other, to assume a straight parallel direction. In like manner the drawing may be repeated by giving the rollers e, f a greater surface speed than that of the rollers c and d. This inerease of veloeity may be produced, either by enlarging the diameter, or by increasing the number of turns in the same time, or finally by both methods conjoined. In general the draw-ing-machine is so adjusted, that the chief elongation takes place between the seeond and third pair of rollers, while that between the first and seeond is but slight and preparatory. It is obvious, besides, that the speed of the middle pair of rollers ean have no influence upon the amount of the extension, provided the speed of the first and third pair remains unchanged. The rollers, a, b, and c, d, maintain towards eaeh other continually the same position, but they may be removed with their frame-work, more or less, from the third pair, e, f, aecording as the length of the cotton staple may require. The distance of the middle point from b and d, or its line of eontaet with the upper roller, is, onee for all, so calculated, that it shall exceed the length of the eotton filaments, and thereby that these filaments are never in danger of being torn asunder by the second pulling them while the first holds them fast. Between d and f, where the greatest extension takes place, the distance must be as small as it ean be without risk of tearing them in that way; for thus will the uniformity of the drawing be promoted. If the distanee between d and f, be very great, a riband passing through will beeome thinner, or perhaps break in the middle; whenee we see that the drawing is more equable, the shorter is the portion submitted to extension at a time, and the nearer the rollers are to each other, supposing them always distant enough not to tear the staple.

The under rollers b, d, f are made of iron, and, to enable them to lay firmer hold of the filaments, their surfaces are fluted with triangular ehannels parallel to their axes. The upper rollers, a, c, e, are also made of iron, but they are smooth, and covered with a double coating, which gives them a certain degree of softness and elastieity. A coat of flannel is first applied by sewing or gluing the ends, and then a coat of leather in the same way. The junetion edges of the leather are eut slanting, so that when joined by the glue (made of isinglass dissolved in ale) the surfaee of the roller may be smoothly eylindrical. The top rollers are sometimes called the prcssers, beeause they press by means of weights upon the under ones. These weights are suspended to the slight rods $k^{\prime} k$; of which the former operates on the roller e alone, the latter on the two rollers a and c together. For this purpose the former is hung to a c shaped eurve, i, whose upper hook embraces the roller e; the latter to a brass saddle, h, whieh rests upon a and c. A bar of hard wood, g, whose under surfaee is eovered with flannel, rests, with merely its own weight, upon the top rollers, and strips off all the loose hanging filaments. Similar bars with the same view are made to bear up under the fluted rollers b, d, f, and press against them by a weight acting through a eord passing over a pulley. Instead of the upper dust-eovers, light wooden rollers eovered with flannel are oecasionally applied.

Were the drawing of a riband continued till all its fibres acquired the desired degree of parallelism, it would be apt, from exeessive attenuation, to tear aeross, and thereby to defeat the purpose of the spinner. 'The dilemma is got rid of in a very simple way, namely, by laying several ribands together at every repetition of the process, and ineorporating them by the pressure of the rollers. The practice is ealled doubling. It is an exact imitation of what takes place when we draw a tuft of enton wool between our fingers and thumb in order to ascertain the length of the staple, and replaee the drawn filaments over each other, and thus draw them forth again and again, till they are all parallel and of nearly equal length. The doubling las another advautage,
that of eausiug the inequalities of thickness in the ribands to disappear, by applying their thicker to their thimer portions, and thereby producing uniformity of substanee.
The drawing fraule, as shown in section in figs. 595, 597, and in a back view in fig. 596, will require, ufter the ahove details, little further explanation. Il are the weights

which press down the top rollers upon the under oncs, by means of the rods $k h^{\prime}$ and hook i. Each fluted roller is, as shown at f, fig. 597, provided in the middle of its length with a thinner smooth part called the nech, whrreby it is really divided into two fluted portions, represented by $e e$ in the figure. Upon this middle neck in the pressure rollers, the hook i, and the saddle h immediately bear, as shown in the former fig. 595. The card-ends, to the number probahly of six, are introdnced to the drawing fiame either from tin cans, placed at ee, fig. 597, and A, fig, 596. or from lap-bobhins; and, ufter passiug through it, the ribands or slivers are received either into similar tin cans as g, or upon other lap-hobbins upon the other side. These appendages may be readily conceived, and are therefore not exhibited in all the drawings. Three of the slivers being laid together, are again introduced to the one fluted portion $a b, f i g .595$, and three other slivers to the other portion. The sloping eurved tin or brass plate s, fily. 596 , with its guide pins t, serves to conduct the slivers to the rollers. When the two threefold slivers have passed tbrough between the three pairs of rollers, and been hereby properly drawn, they run towards each other in an oblique direction, behind the last roller pair ef, fig. 595, and unite, on issuing through the conical funnel m, fiy. 596, into a single riband or spongy sliver; which is immediately earried off with equable velocity hy two smooth cast-iron rollers, $u 0$, figs. 596 and 597 , and either dropped into a ean, or wound upon a large bohhin. The surface speed of these rollers is made a trifle greater thau that of the delivery drawing rollers, in order to keep the portion of sliver between them always in an extended state. Four fluted drawing portions are usually mounted in one drawing frame, which are set a-going or at rest together. To save all unnceessary carrying of the cans from the hack to the front of the frame, the drawing heads are so placed, that the first and third discharge their slivers at the one side, and the second and fourth at the other. By this arrangement, the caus filled behind one head, are direetly pushed aside in front of the next drawing head; by which alternate distribution the work gocs on without interruption.

The fast pulley u, fig. 597, hy which the whole machine is driven, derives its motion from the main shaft of the mill by means of the band w. The similar pulley z, which sits loose upon the axis, and turns independently of it, is ealled the loose pulley; both together being technieally styled riggers. When the operative desires to stop the machine, he transfers the band from the fast to the loose pulley by means of a lever hearing a fork at its end, which embraces the band. Upon y, four pulleys sueh as x are fixed, each of which sets in motion a drawing head, by means of a hand like w going round the pulleys x and u. On account of the inverted position of the hearls, which requires the motion of u to be inverted, the bands of the first and third heads are open, but those of the seeond and fourth are crossed. Every licad is provided with a loose pulley v, as well as the fast pulley u, in order to make the one stop or move without affecting the others. The slaft of the pulley u is the prolonged shaft of the backmost fluted roller f. It carries besides a small pulley q, which, hy means of the hand r, and the pulley p, fig. 596 , sets in motion the undermost condensing roller o. 'I'he niper roller n, presses with its whole weiglit upon it, and therefore turns by frietion.

Vor, 1.

The toothed wheel-work, by which the motions are commmieated from the baekmost tluted roller to the middle and front ones, are seen in fig. 597.

The wheel fi, fig. 595, of 20 teeth, works in a 44 -loothed earrier-wheel, on whose axis there are two smaller wheels; 2 with 26 teeth, aud 1 with 22 teetl. The wheeld, fiy. 597 , of the middle roller, and the wheel b of the front roller, are set in motion by other carrier wheels; the first has 27 teeth, and tbe last 40 . For every revolution of b, the roller d makes nearly $1 \frac{3}{4}$ turns, and the roller $f, 4$ revolutions. The top rollers revolve as we lave stated, simply by the frietion of contact with the lower ones. Nowsuppose the diameter of the rollers b and d to be 1 ineh or 12 lines, that of $f, 1 \frac{1}{d}$ ineh, or 15 lines, the surface veloeities of the thrce pairs of rollers in the series will be as $1,1 \frac{3}{4}$, and 5 . Every inch of the cotton sliver will be therefore extended hetween the first and second pairs of rollers into $1 \frac{3}{4}$ inches, and between the seeond and third or delivery pair into 5 inches; and after the sliver has passed through all tbe four drawing beads, its length will be iuereased 625 times $=5 \times 5 \times 5 \times 5$.

T'be further the drawing proeess is pushed, the more perfectly will its object be aecomplisbed : namely the parallelism of the filaments. The fineness of the appearanee of the sliver after the last draught depends upon the number of doublings conjointly with the original fineness and number of drawings. The degree of extension may be inereased or diminished, by changing the wheels in fiy. 403 , for others with a different number of teeth. Thus the grist or fineness of the sliver may be modified in any desired degree; for, wheu the subsequent processes of the mill remain the same, the finer the drawings the finer will be the yarn. For spinning eourse numbers or low counts for example, six eard-ends are usually transmitted througb the first drawing head, and converted into one riband. Six such ribands again form one in the second draught ; six of these aoain go together into the third sliver; and this sliver passes five-fold through the last draught. By this combination 1080 of the original card-ends are united in the finished drawn eliver $=6 \times 6 \times 6 \times 5$. The fineness of the sliver is, however, in consequenee of these doubling*, not inereased but rather diminished. For, by tbe drawing, the eard-end has been nade 625 times longer, and so mueh smaller; by the doubling alone it would have become 1080 times thicker; therefore the original grist is to the present as 1 , to the fraetion $\frac{6.25}{1030}$; that is, supposing 1072 feet of the riband delivered by the card to weigh one pound, 625 feet, the sliver of the last drawing, will also weigh a pound, which correspouds in fineness to number 0.24 , or nearly $\frac{1}{4}$.

The rearmost or last drawing roller has a cireumfer nee of nearly 4 inches, and makes about 150 revolutions per minute; hence eaeh of these drawing heads may turn off 35,000 feet of sliver in 12 bours.

Fig. 598 is a drawing frame, by Hetherington \& Sons, similar in prineiple of aetion to fiy. 597 just deseribed, but containing all the latest inprovements, i.e. greater

strength of materials; a stop motion to stop the frame, when a sliver breaks; a roller plate to prevent roller laps. The eoiler motion, by means of whiel the sliver is placed in the can in cireles overlapping eaeh other on the prineiple deseribed iu fiy. 599 , the ean roving frame ; 4 rows of draught rollers instead of 3 ; and lastly, an apparatus for lifting all the roller weights from off the rollers at any time when the frante may be stopped.
The loss whieli the cotton suffers in the drawing frame is quite ineonsiderable. It consists of those filments whieh remain upon tbe drawing rollers, and collcet, in a great
measure, upon the flannel facing of the top and bottom cleaner bars. It is thrown anoug the top cleanings of the cardiug engine. When from some defectin the rollers, or negligence in piecing the running slivers, remarkably irregular portions occur in the ribands, these must be torn off, and returued to the lap machine to be carded anew.
The fitth operation may be called the first spinning process, as in it the cotton sliver receives a twist; whether the twist be permanent, as in the bobbin and fly frame, or be undone immediately, as in the tube-roving machine. In fact, the elongated slivers of parallel filaments could bear little further extension without breaking asunder, unless than to fulfil the purpose of together. The twisting should positively go no further way of the future attenuation into level thread. The combination of dravin twisting is what mainly characterises the spinning processes, aud with this fifth tion therefore commences the formation of yarn. As however a sudden extensionathe wished-for fineness is not practicable, the draught is thrice repeated in machine spinning, and after each draught a new portion of torsion is given to the yarn, till at last it possesses the degree of fineness and twist proportioned to its use.
The stubbing frame ($f i g .599$) is the first machine which puts twist into the sliver, and preparcs it for the roving frame, which in its principle it precisely resembles.

The preliminary spinning process is called roving. At first the torsion is slight in proportion to the extension, since the solidity of the still coarse sliver needs that cohesive aid only in a small degree, and looseness of texture mnst be maintained to facilitate to the utmost the further elongation.
Fig. 600 is a section of the can roving frame, the ingenious invention of Ark. wright, which till within these 40 years was the principal machine for communicating the incipent torsion to the spongy cord furnished by the drawing heads. It differs from that frame. in nothing but the twisting mechanism; and consists of two pairs of drawing rollers, a and b, between which the sliver is extended in the usual way; c are brushes for cleaning the rollers; and d is the weight which presses the upper set upon the lower. The wiping covers (not shown here, rest upon ab. The surfice speed of the posterior or sccond pair of rollers is 3,4 , or 5 times greater than that of the front or receiving pair, according to the desired degree of attenuation. Two drawn slivers were gencrally united into one by this machine, as is shown in the figure, where they are scen couning from the two cansee, to be brought together by the pressure rollers, before they reach the drawing rollers $a b$. The sliver as it escapes from these rollers, is conducted into the revolving conical lantern g, throngh the funnel
f at its top. This lantern-can reeeives its motion by ineans of acord passing over a pulley h, placed a little way above the step on which it turns. The motion is steadied
 embraced liy a brass busk. Such a machine generallyeontained four drawing heads, each mounted with two lanterns; in whose side there was a door for taking out the eonical coil of roving.

The motion imparted to the back roller by the band pulley or rigger m, was eonveyed to the front one by toothed wheel-work.

The vertieal guide pulley at bottom n, served to lead the driving band deseending from the top of the frame round the horizontal whorl or pulley upon the under end of the lantern. The operation of this can frame was pleasing to behold; as the centrifugal foree served both to distribute the soft cord in a regular coil, and also to condense a great deal of it most gently within a moderate space. Whenever the lantern was filled, the tender earried the roving to a simple machine, where it was wound upou bobbins by hand. Notwithstanding every eare in this transfer, the delieate texture was very apt to be seriously injured, so as to eause corresponding injuries in every subsequent operatiou, and in the finished yarn. Messrs. Higgins, of Salford, had the singular merit as we have said, of superseding that beautiful but defective mechanism, which had held a prominent place in all cotton mills from almost the infancy of the factory system, by the following apparatus.

The Bubbin and Fly frame is now the great roving machine of the cotton manufacture; to which may be added, for coarse spinning, the tube roving frame. Of such a eomplicated maehine as the boblin and fly frame, it is not possible to give an adequately detailed deseription in the space due to the subjeet in this Dietionary. Its meehanieal combinations are however so admirable as to require such an aecount as will make its functions intelligible by the geueral render.

Fig. 601 cxlibits a back view of this maeline; and fig. 602 a section of some of the parts not very visible in the former figure. The back of the machine is the side at which the eotton is introdueed between the drawing rollers.
The cans. filled with slivers at the drawing frame, are placed in the sitnation marked B, fig. 601, in rows parallel with the length of the machine. The sliver of eaeh B, fig. 601, in rows parallel with the length of the maehne.
ean or the united slivers of two contiguous cans are conducted upards along the

COTTON MANUFACTURE.

surface of a sloping board f, and through an ironstaple or guide e, hetwixt the usual triple pair of drawing roliers, the first of which is indicated hy $a b$. In fiy. 600 , for the purpose of simplifying the figure, the greater part of these rollers and their subordinate parts are omitted. After the slivers have heen sufficiently extended and attenuated between the rollers, they procecd forwards, towards the spindles $i i$, where they receive the twist, and are wound upon the bobbins h. The machine delineated contains thirty spindles, hut many bobbin and fly frames contain double or even four times that number. Only a few of the spindles are shown in fiy. 601, for fear of confusing the engraving.
With regard to the drawing functions of this machine, we have already given abundant explanation, so far as the properties and operation of the rollers are concerned. The frame-work of this part of the machine, called the roller beam, is a cast iron hench, upon which nine hearers c, are mounted for carrying the rollers. The fluted rollers $a{ }^{a} a$, fig. 603, are constructed in four pieces for the whole length, which are parted from each other hy thinner smooth cy-
 lindric portions z, called necks. Seven such partings for four rollers, and one parting for two rollers, constitute together the 30 fluted rollers of which the whole series consists. The coupling of these roller subdivisions into one cylinder, is secured hy the square holes x, and square pins y, fiy. 603, which fit into the holes of the adjoining suhdivision. The top or pressure rollers b, are twofold over the whole set; and the wcighted saddle presses upon the neck w, which connects every pair, as was

603
 already explained under fig. 596. These weights, g g. fig. 602, are applied in this as in the drawing frame; d, are the hars faced with flannel for cleaning the top rollers. A similar har is applied beneath the rollers, to keep the flutings clean.
The structure and operation of the spindles i may he best understood hy examining the section fig. 604. They are made of steel, arc cylindrical from the top down to u^{2}, but from this part down to the steel tipt rounded points they are conical. Upon this conical portion there is a pulley, k, furnished with two grooves in its circumference, in which the cord runs that causes the spindle to revolve. The wooden bohhin h, is slid upon the cylindrical part, which must move freely upon it, as will be presently explained. To the hohbin another two-grooved pulley or whorl g is made fast hy means of a pin r, which passes through it ; hy removing this pin, the hohhin can be instartly taken off the spindle. The upper end of the spindle hears a fork $s t$, which may he taken off at pleasure hy means of its left-handed screw ; this fork or flyer, has a funnel-formed hole at v. One arm of the fork is a tube s, u, open at top and hottom ; the leg t, is added merely as a counterpoise to the other. In fig. 602, for the sake of clearness, the forks or flyers of the two spindles here represcnted arc left out; and in fig. 601 only onc is portrayed for the same reason, It is likewise manifest from a comparison of these two figures that the spindles are alternately placed in two rows, so that each spindle of the back range stands opposite the interval hetween two in the front range. The object of this distribution is economy of space, as the machine would need to he greatly longer if the spindles stood all in one line. If we suppose the spindles and hobhins (both of which have independent motions) to revolve simultaneously and in the same direction, their operation will he as follows: The sliver properly drawn hy the fluted rollers, enters the opening of the funnel v, proceeds thence downwards through the hole in the arin of the fork, runs along its tube u, s, and then winds round the hobhin. This path is marked in fig. 604 by a dotted line.

The rovolution of the spindles in the above circumstances

effects the twisting of the sliver into a soft cord; and the flyer s, t, or particu-
lally its tubular arm s, lays this cord upon the hobbin. Were the speed of the bobbins equal to that of the spindles, that is, did the bohbin and spindle make the same number of turns in the same time, the process would be limited to mere twisting. But the bobhin anticipates the flycrs attle, that is, it makes in a given time a sonicwhat greater number of revolutions than the spindle, and therely effects the continuous winding of the cord upon itself. Suppose the hohbin to make 40 revolutions, while the spindle completes only $30 ; 30$ of thesc revolutions of the bobbin will he inoperative towards the winding-on, because the flyers follow at that rate, so that the cord or twisted sliver will only be coiled 10 times round the bohbin, and the result as to the winding-on will be the same as if the spindle had stood still, and the hobbin had madc $40-30=10$ turns. The 30 turns of the spindles serve, thercfore, merely the purpose of communicating twist.

The mounting and opcration of the spindles a:c obviously the same as they arc upon the household flax whicel. In the bobbin and fly frame there are some circumstances which render the construction and the winding-on somewhat difficult, and the mechanism not a little complicated. It may be remarked in the first place, that as the cord is wound on, the diameter of the bobbin increases very rapidly, and therefore every turn made round it causes a greater length of roving to be taken up in succession. Were the motions of the bobbins to continuc unchanged in this predicament, the inereased velocity of the winding-on would require an increased degree of extension or it would occasion the rupture of the cord, because the front fluted rollers move with uniform speed, and therefore deliver always the same length of sliver in the same time. It is therefore necessary to diminish the velocity of the bobbins, or the number of their turns, in the same proportion as their diameter increases, in order that the primary velocity may remain unchanged. Moreover it is requisite for the proper distribution of the cord upon tbe bobbin, and the regular increase of its diameter, that two of its successive convolutions should not be applicd over each other, but that they should be laid close side hy side. This object is attained by the up and down sliding motion of the bobbin upon the spindle, to the same cxtent as the length of the bobbin barrel. This up and down notion must become progressively slower since it inereases tbe diameter of the bobbin at cach range, by a quantity equal to the diametcr of the sliver. What has now been stated generally, will become more intelligible by an example.

Let it be assumed that the drawing rollers deliver, in 10 seconds, 45 inches of roving, and that this length receives 30 twists. The spindles must, in consequence, make 30 revolutions in 10 scconds, and the bobbins must turn with such speed, tbat they wind up the 45 inches in 10 seconds. The diameter of the bohbin barrels being $1 \frac{1}{2}$ inches, their circumference of course $4 \frac{1}{2}$ inches, they must make 10 revolutions more in the same time than the spindles. The effective speed of the bobhins will be thus $30+10=40$ turns in 10 seconds. Should the bobbins increase to 3 inches diameter, by the winding-on of the sliver, they will take np 9 inches at each turn, and consequently 45 inches in 5 turns. Their speed should therefore be reduced to $30+5=35$ turns in 10 seconds. In general, the excess in number of revolutions which the bobbins must make over tbe spindles is inversely as the diameter of the bobbins. Tbe speed of the bobbins must remain uniform during the period of one ascent or descent upon their spindle, and must diminish at the instant of cbanging the dircetion of the up and down motion; because a frcsh range of convolutions then begins with a greater diameter. When, for example, 30 coils of the sliver or rove are laid in one length of the bobhin barrel, the bobbin must complete its vertical movement up or down, witbin 30 seconds in the first case above mentioned, and within 60 seconds in the second case.

The motions of the drawing rollers, the spindles, and bobbins are produced in the following manner:-A shaft c^{\prime}, figs. 601 and 602, extending the wbole length of the machine, and mounted with a fly-whecl d^{\prime}, is set in motion by a band from the running pulley upon the shaft of the mill, which actuates the pulley a^{\prime}. b^{\prime} is the loose pulley upon which the band is shifted when the machine is set at rest Within tbe pulley a^{\prime}, but on the outsidc of the frame, the shaft c^{t} carries a tootbed wheel b^{2}, witb 50 teeth, which by means of the intermediate wbeel c^{2} turns tbe whecl d^{2} upon the prolonged shaft of the backmost fluted roller ($m^{2}, f i y .602$). This wheel, d^{2}, has usually $5+$ teeth : hut it may be cbanged when the roove is to reecive more or less twist; for as the spindles revolve with uniform velocity, they communicate the more torsion the less length of sliver is delivered by the rollers in a given timc. Upon the same shaft with d^{\prime}, a pinion, e^{2}, of 32 tecth is fixed, which works in a wheel, f^{2}, of 72 teeth. Within the frame a change pinion, g^{2}, is made fast to the shaft of f^{2}. This pinion, which has usually from 24 to 28 tecth, regulates the drawing, and thereby the fineness or number of the roving. It works in a 48 -toothed wheel, h^{2}, upon the cnd of the backnost fluted roller a, fig. 602. The other extremity of the same roller, or, properly speaking, line of
rollers, carrics a pinion, t^{2}, furnished with 26 teeth, which, by means of the broad intermediate wheel k^{2}, sets in motion the pinion l^{2} of 22 tecth upon the middle roller. When the diameter of all the drawing rollers is the same, suppose 1 inch, their proportional veloeities will be, with the above number of teeth in the wheel work, if q^{v} have 2t teeth, as $1: 1 \cdot 18: 4 \cdot 5$; and the drawn sliver will have $4 \frac{1}{2}$ times its original iength. The front or delivery roller of the drawing frame is of late years usually made $1 \frac{1}{4}$ or $1 \frac{3}{3}$ inehes in diameter. If 62.5 feet of the sliver from the drawing frame weighed one pound, 2790 feet of the roving will now go to this weight, and the number will be $1 \cdot 12$; that is, 1 h .nk and 12 hundredths to the pound. The front pair of fluted rollers makes about 90 revolutions, and delivers $282 \cdot 6$ inehes of roving in the minute, when of one ineh diameter.

The spindles i (figs. 601 and 602) rest with their lower ends in steps, l, whieh are fixed in an imnovable beam or bar m. 'To protect it from dust and cotton filaments, this beam is firnished with a wooden eover n, in which there are small holes for the passage of the spindles right over the steps. In fig. 602, two of the eight covers n, whicl e(s)mpose the whole range m, are removed to let the steps be seen. The eylindrical part of each spindle passes through a brass ring o; and all these 30 rings, whose eentres must be vertieally over the steps l, are made fast to the eopping beam p. This beam is so ealled, beeause it is destined not merely to keep the spindles upright by the rings attached to it , but, at the same time, to raise and lower along the spindles tbe bobbins which rest on these rings; for whieh purpose the two raeks, or toothed bars, $m^{2} m^{2}$, made fast to it, are desigued, as will be presently explained. To effeet the revolution of the spindles, there are attaehed to the main shaft c two whorls or pulleys, $e^{\prime} f^{\prime}$, each bearing four grooves of equal diameter. Eath of these pulleys puts one half of the spindles in motion, by means of a cord, whieh after going round the whorls k, turns four times about the pulleys of the shaft c^{\prime}. Two guide pulleys, h^{\prime}, eael four-grooved, and two others, i^{\prime}, with a single groove, which turn independently of the others upou the above shaft, serve to give the whorl eords the proper direction, as well ns to keep then tight. The spindles revolve 200 times or thereby in the minute ; and therefore impart two turns or twists to every three inehes of the roving.

The revolution of the bobbins is independent of that of the spindles, although it likewise proceeds from the shaft c^{\prime}, and differs from it by being a continually retarded motion. Tbe simplest merhod of effeeting this motion, is by means of the wooden or tin plate eone k^{\prime}, which revolves equally with the slaft c^{\prime}, and at the same time slides along it.

The manner in which this operates is shown in section in fiy. 605. Here we perceive the rod q^{2}, whieh extends from the base towards the narrow end of the truncated

cone, and y^{2} a forked bearcr or carrier made fast to the shaft c^{\prime} by a screw, which eompels the eone by means of that rod to ney the, movement of c^{\prime}. In the large end of the eone there is an aperturc, through whieh the bcarer can be got at. The smaller end earries nutside a projection o^{2}, provided with a groove, whieh is emhraced by the forked end of the rod $q^{\prime}, f i g .605$, that serves to shove the cone along upon the shaft c^{\prime}. Directly under the cone, there is an upright round pillar p^{\prime}, upon which the holder o^{\prime} of the two gnide pulleys $l^{\prime \prime}$, is adjustable, A bar r^{2} plaeed alongside of the holder, prevents its turning round, but allows it to slide aloug p^{\prime} by friction. The weight of the
holder and the pulley is sufficient to distend the cndless band n^{\prime}, which runs from the cone k^{\prime}, through mader the pulley $l^{\prime \prime}$, and round the small drum m^{\prime} on the shaft s^{2}. A pulley or whorl f^{2} with four grooves, is made fast by means of a tube to this slaft, and slides along it backwards and forwards, without cevereasing to follow its revolutions. 'The shaft possesses for this purpose a long fork, and the interior of the tube a corresponding tongue or catcl. Therc is besides upon the tuhe beneath the pulley, at u^{2}, a groove that goes round it, in which the staple or forked end of an arm like v^{2}, fig. 601 , made fast to the copping bcam p, catches. By the up and down movement of that heam, the pulley t^{2} takes along with it the arm that embraces the tubc, which therefore rises and falls equally with the bohbins h^{\prime}, and their pulleys or whorls q. This is requisite, since the bobbins are made to revolve by the pullcys t^{2} by means of 2 endless cords or bands.

The inost intricate part of the mechanism is the adjustment, hy which the revolution of the hobbins is continually retarded, and their up and down, or copping motion, along the spindles, is also retarded in like proportion. The vertical pulley f (towards the left end of the shaft c^{\prime}), has at its right side a somewhat larger disc or sheave, g^{\prime}, with a perfectly uniform, hut not a very smooth surface. Upon this sheave, a smaller horizontal pulley x^{\prime} ruhs, whosc upper face is covered with leather to increase the friction. The under end of the shaft y^{z} of the pulley x^{\prime} turns in a step, which is so connected with the arm v^{\prime} of the large hent lever $t^{\prime} v^{\prime}$, that it always stands horizontally, whatever direction the arms of that lever may assume. The shaft y^{2} is steadied at top by an annular holder or hush, which embraces the fast arm x^{2} with its forked end. Upon is opposite side, this arm carries a pulley y^{2}, upon which a cord goes, that is made fast to the holder of the shaft y^{2}, and loaded with the weight z^{\prime}. The weight presses the pulley x^{\prime} against the surface of g^{\prime}, in such wise as to effect the degree of friction nccessary in order that the revolution of g^{\prime} may produce an uniuterrupted revolution in x^{\prime}. A pinion w^{\prime}, whose length must be equal at least to the semi-diameter of the sheave g^{\prime}, is placed upon the under end of the shaft y^{2}. It has 22 teeth, and takesinto a 62 -toothed horizontal wheel z^{2}. Upon the upper end of this wheel the conical pinion a^{3} is made fast, which may he changed for changing the speed, hut usnally has from 28 to 30 teeth, By this pinion the conical wheel b^{3} is turned, which has 30 teeth, and whose shaft is c^{3}. This shaft carries upon its opposite end a six-leaved pinion, d^{3}, which takes into the calender wheel f^{3}, formed with cogs like a trundle, upon the long shaft e^{3}. In fig. 607 the wheel f^{3} is exhibited with its pinion d^{3}. Here we may remark that in the circumference of the wheel there is a vacant placc, g^{3}, void of teeth. When hy the motion of the whecl, the pinion comes opposite to this opening, it turns round ahout the last tooth of the wheel, falls into the inside of the toothed circle marked by the dotted lines, and thus gives now an inverse movement to the whecl $f^{\prime 3}$, while itself revolves always in the same direction. This reverse motion continues till the opening g^{3} comes once more

opposite to the pinion, when this turns round about the last tooth of that side, and hegins again to work in the exterior teeth. Thus, hy the uniform motion of d^{3} and its dependent parts, the wheel f^{3}, with its shaft e^{3}, revolves alternately to the right hand and the left. That this result may ensue, the shaft c^{3} of the pinion must be ahle to slide endwise, without losing its hold of a^{3} and b^{3}. This adjustment is effected by placing the end of the said shaft, nearcst b^{3}, in a hox or holder l^{3}, in which it can tirn, and which forms a vertical tube to this box, as a downward prolongation which is fixed to the tail cf the conical pinion a^{3}. Fig. 608 shows this construction in scetion upon an enlarged scalc. The sccond hearer of the shaft nearest d^{3}, must possess likewise the means of lateral motion. When therefore the pinion d^{3} shifts through the opening of the wheel f^{3} outwards or inwards, its shaft c^{5}, makes a corresponding small angular motion on the pivot of a^{3}, hy means of the tube $i^{3} ; a^{3}$ and b^{3} remain thereby completcly in gear with one another.

The above-described alternate revolutions of the wheel f^{3} serve to produce the up
and down motions of the bobbins. 'I he shaft e^{3} has for this pur ose two piuions, $u^{2} n^{2}$, which work in the rack teeth $m^{2} m^{2}$ of the copping rail p, and thus alternately raise and sink it with the bobbins which rest upon it. The weight of the copping beam aud all its dependent part, is poised by two counterwcights m^{1}, whose cords run over the pulleys $0^{4} 0^{4} 0^{4}$, fig. 601, and have their ends made fast to the frame, so as to make the upward motion as easy as the downward. The two upper pulleys out of the three of cach weight are fixed to the frame; the under one, round which the cord first runs, is attached to the copping beam, rising and falling along with it.
As long as the friction dise x^{\prime} remains at the same height, the pulley g^{\prime} derives its motion from the same circle of the said disc, and the up and down motion of the copping beam is also uniform. But when that dise ascends so as to describe with its edge a small circle upon the face of g^{\prime}, its motion must become proportionally more slow. This is the method or principle of retarding the copping motions of the bobbins. It has been shown, however, that the rotation of the bobbins should be also retarded in a progressive manner. This object is effected by means of the cone h^{\prime}, which, as the band $u!$ progressively approaches towards its smaller diameter, drives the pulleys or whorls q of the bobbins with decreasing speed, though itself moves uniformly quick with the shaft c^{\prime}. To effect this variation, the cone is shifted lengthwise along its shaft, while the band running upon it remains contiuually in the same vertical plane, and is kept distended by the weight of the pulley 0^{\prime}. The following mechanism serves to shift the cone, which may be best understood by the aid of the figures 609,610 , and 606 . A long cast iron bar m^{3},

Which bears two horizontal projecting puppets, $0^{3} 0^{3}$, is made fast to the front upright face of the copping beam A. Through the above puppets a cylindrical rod n^{3} passes freely, which is left out in fig. 606, that the parts lying behind it may be better scen. Upon this rod there is a kind of fork, $p^{3} p^{3}$, to which the alternating rack bars q^{3} arc made fast. The teeth of these racks are at uncqual distances from each other, aud arc so arranged, that each tooth of the under side corresponds to the space between two teeth in the upper side. Their number depends upon the number of coils of roving that may be required to fill a bobbin ; and consists in the usual machines of from 20 to 22. The rod n^{3} may be shifted in the puppet o^{3}, like the fork p^{3} of the rack-rod, upon the rod n^{3} and along the surface of m^{3}, where two wings $u^{3} u^{3}$ are placed to keep the fork in a straight direction. Upon the bar m^{3}, there are the pivots or fulcra of two stop catches $w^{3} x^{3}$, of which the uppermost presses merely by its own wcight, but the undermost by means of a counterweight y^{3}, against the rack, and causes them thus to fall in between the teeth. In fig. 610, v^{3} shows the pivot of the catch or detent w^{3} by itself, the detent itself being omitted, to render the construction plainer. A pushing rod l^{3}, upon which there is a pin above at s^{3}, that passes behind the rack rod, between this and the bar m^{3}, has for its object to remove at pleasure the one or the other of the tiro catches; the upper, when the upper end of the rod pushes against it ; the under, by means of the above mentioned pin s^{3}. Both the catches are never raised at once, but either the under or the upper holds the rack bar fast by pressing against one of the teeth. The vertical motion up or down, which the rod l^{3} must take to effect the lifting of the catches, is given to it from the copping beam p; since upon it a horizontal arm v^{2}, fig. 610 , is fixed, that lays hold of that rod. Upon the pushing rod are two rings h^{3} and k^{3}, each made fast by a screw. When the copping beam is in the act of going up, the arm v^{3} at the end of this movement pushes against the ring h^{3}, raises up the rod l^{3}, and thus removes the catch w^{3}, fig. 606 , from the tecth of the rod q^{3}, before which it lies flat. At the descent of the copping rail, v^{2} mects the ring l^{3}, when the motion in this dircetion is nearly completed, draws down the rod l^{3} a little, by means of the same, and thereby cffects the removal of the catch x^{3}, fig. 610 , from the rod q^{3}. Every tinic that one of the catches is lifted, the rack recovers its freedom to advance a

COTTON MANUFACTURE.

little bit in the direction of the arrow ; so far, nanely, till the other catch lays hold upon the tooth that next meets it. The reason is thus manifest wly the teeth of the upper and under sides of the bar q^{3} are not right opposite to eacla other, but in an alternate position.
From the raek-bar, the sliding of the cone k^{\prime}, and the raising of the slaft y^{2}, eacli by minute steps at a time, is produced as follows : -
A large reetangular lever t^{\prime}, v^{1}, whose ecotre of motion is at p^{4}, lasa at the upper end of its long arm ℓ^{\prime}, a long slot through which a stud r^{3} upon the rack q^{3} goes (figs. Gu6, 609,610,) so that the lever must follow the motions of the raek bar. The end of the short arm of the lever hears, as already mentioned, the step of the shaft y^{2}; hence the frietion dise a^{1} will be raised in proportion as the rack bar advanecs, and will come ncarer to the middle point of g^{1}; eonsequently, its revolution and the shifting of the loobbins will hecome slower. Upon the eylindrieal rod n^{3}, the pieee $s^{1} s^{1}$ furnished with a long slot is made fast, by means of a tuhe z^{7} (fig. 606), and a serew. A fork $u u$, which by means of the serew nut u^{4} is made fast in the slot, cmhraces the arm t^{\prime} of the bent lever ; and a tube r^{\prime} riveted to the surface of s^{\prime}, is destined to take up the draw rod q^{\prime} of the cone k^{1}, fig. 606. A weight f^{4}, whose cord b^{\prime} is made fast to the cylindrical rod n^{3} endeavours to draw this rod continually in the direction of the arrow. In consequenee of this arrangement, every time that the pushing bar l^{3} lifts up one of the eatelics, the cone k^{\prime}, the lever $t^{\prime} v^{\prime}$, and hy it the rack har q^{t}, are set in motion. It is obvious that the motion of the cone may be made greater or less, aceording as the fork $u u$ is fixed further up or down iu the slot of s^{\prime}.
The numher of the teeth upon the bar q^{3}, is so ordered, that the bohhins are quite full when the last tooth has reached the eatch and is released by it. The rack lar, becing restrained by nothing, immediately slides on wards, in eovsequenee of the traction of the weight f^{4}, and hrings the machine to repose hy this very movement, for which purpose the following eonstruetion is employed. A reetangular lever whieh has its centre of motion in g^{\prime} is attached to the side face of the heam A, and has at the end of its horizontal arm a pulley d^{4}, over which the cord b^{4} of the counterweight f^{4} is passed. The end of the perpendieular arm is forked, and emhraces the long and thin rod l^{\prime}, to whose opposite end the fork l^{\prime} is made fast. Through this fork the band whieh puts the maehine in motion passes down to the pulley a^{1}. With the hent lever another rod c^{4} is connected at h^{4}, whieh lies upon the puppet e^{3} with a slot at e^{4}, and hereby keeps the lever g^{4} in its upright position, notwithstanding the weight f^{4}. In the moment when, as ahove stated, the rack bar q^{3} becomes free, the arm p^{3} of its fork pushes in its rapid advanee against the under oblique side of e^{4}, raises this rod, and thereby sets the lever g^{4} free, whose upright arm hends down by the traction of the weight, drives the rod k^{\prime} before it into the ring ${ }^{4}$ fastened to it, and thus hy mcans of the fork l^{4} shifts the band upon the loose pulley b^{1}. But the maehine may he brought to repose or put out of gear at any time merely hy shifting the rod k^{4} with the hand.
The operation of the hohbin and fly frame may he fully understood from the preeeding deseription. A few observations remain to he made upon the cone k^{\prime}, the raek-bar q^{3}, and the speed of the work.

When we know the diameter of the empty hobbins, and how many turns they should make in a given time in order to wind-on the sliver delivered hy the fluted rollers and the spindles; when we consider the diameters of the spindle pulleys q, and t^{2}, as also the drum $m^{1}, f i g$. 606, we may easily find the diameter which the cone must have for producing that number of turns. This is the diameter for the greatest periphery of the hase. The diameter of the smaller is ohtained in the same way, when the diameter of the hohhins hefore the last winding-on, as well as the numher of turns neeessary in a giren time, are known.
A hohhin and fly-frame of thc construction just described delivers from each spindle in a day from 6 to 8. lbs of roving of the fineness of $1 \frac{1}{2}$ English counts. One person ean superintend two frames, piece the broken slivers, and replace the full bobhins by emply ones. The loss of eotton wool in this maehine consists in the portions earried off from the torn slivers, and must he returned to the lapping maehine.

The fine bobbin and fly frame does not differ essentially from the preeeding machine. The rovings from the eoarse bohbin and fly frame are plaeed in their hohhins in a frame ealled the creel, hehind and ahove the roller heam, two bohbins being allowed for one fluted portion of the rollers. These rovings are united into one, so as to increase the uniformity of the slivers.
The invention of the beautiful maehine ahove deseribed is due to Messrs. Higgins of Manehester, and as inproved by Henry Houldsworth, Esq, it may be considered the most ingeniously combined apparatus in the whole range of productive industry.
In the fine roving frame the sliver is twisted in the contrary direetion to that of the coarsc roving frame. For this reasun the position of the eone is reversed, so as to proseat in suceession to the band or strap, dianeters continually greater, in order that the rotation of the bobbins may be aecelerated in proportion as their size is incereased,
because here the flyer and the bohhin turn in the same dircction, and the winding-on is effected by the precession of the bobbin; but if the winding-on tnok place by its falling hehind, as in the coarse bobbin and fly frame, that is, if the fiyer turned less quickly than the bohbin, the rotatory speed of the bobbin would be uniformly retarded; iu which casc the cone wonld be disposed as in the coarsc frame.
When by any means whatcver an uniform length of thread is delivered by the rellers in a given time, the bobbin must wind it up as it is given out, and must therefore turn with a speed decreasing with the increase of its diameter by successive layers of thread. Hence proceeds the proposition, that the velocity of the bobbin must be in the inverse ratio of its diameter, as already explained.

With respect to the bobbin and fly frame, the twist is given to the sliver by means of a spindle or flyer which turns in the same direction with the bobbin, but quicker or slower than it, which cstablishes two predicaments. The first case is where the flyer turns faster than the bobhin. Here the winding-on goes in advance, as in tbe coarse roving frame, or as in tbrostle spinning, where the yarn is wound on merely in consequence of the friction of the lower disc or washer of the bobbin upon the copping rail, and of the drag of the yarn. The second case is where the flyer revolves more slowly than the hobbin. Here the winding goes on in arrear, and as the bobbin turns faster, it must receive a peculiar motion, which is uniformly retarded in the ratio of its increase of diameter. This is the case witb the fine bobbin and fly frame. When the cone is placed as in fig. 601, the winding-on, in either the coarse or fine frame, results from the difference, whether greater or less, between the rotatory speed of the flyer and bobbin.
The motion of the bobbiu and spindle is simultaneous, and takes place in the same direction, with a difference varying more or less with the varying diameters of the bobbins. To render the matter still clearer, suppose for a moment the spindle to bc motiouless, then the bobbin must revolve with such a speed as tolap-on the roving as fast as the rollers deliver it. The sliver comes forward uniformly; but the bobbin, by its increase of diameter, must revolve with a speed progressively slower. Now, suppose the spindle set a-whirling, it is obvious that the bobbin must add to the movement requisite for winding-on the sliver, that of the spindle in the case of winding-on in arrear, or when it follows the flyers, and subtract its own motion from the twisting motion of the spindles in the case of winding-on in advance, that is, when the bobbin precedes or turns faster than the flyers; for the diameter of the bobbin being $1 \frac{1}{2}$ inch, 10 turns will take up 45 inches. Deducting tbese ten turns from the 30 made by the spindle in the same time, there will remain for tbe effective movement of the hobbin only 20 turns; or when the diameter of the bobbin becomes 3 inches, 5 turns will take up the 45 inches, if the spindle he at rest; but if it makes 30 turns in the time, the effective velocity of the bobbin will be 25 turns, $=30-5$. Hence in the fine bobbin and fly frame, the number of turns of the spindle, minus the number of turns made by the bobbin in equal times, is in the inverse ratio of the diamcter of the bobbin. We thus perceive, that in the coarse frame the bobbin should move faster than the spindle, and that its speed should always diminish; whilst in the fine frame the bobbin should move slower than the spindle, but its speed should always increase. It is easy to conceive, therefore, why tbe cones are placed in reverse directions in the two machines. Not that this inversion is indispensably necessary ; the cone of the fine roving frame might, in fact, be placed like that of the coarse roving frame; but as tbe torsion of the roving becomes now considerable, and as on that account the bobbin would need to move still faster, which would consume a greater quantity of the moving power, it has been deemed more economical to give its movement an opposite direction.

We mentioned that the twist of the sliver in the fine roving frame was the reverse of that in tbe coarse; this is a habit of the spinners, for which no good reason has been given.

The divisions of the rack-bar, and the successive diameters of the cone, must be nicely adjusted to each other. The first thing to determine is how much tbe rack should advance for every layer or range of roving applied to the bobbin, in order that the cone may occupy such a place that the strap which regulates the pulley barrel may be at the proper diameter, and thus fulfil every condition. The extent of this progressive movement of the rack depends upon the greater or less taper of the cone, and the increase which the diameter of the bobbin receives witb every transverse, that is, every layer of roving laid on. But care should be taken not to taper the cone too rapidly, especially in the fine roving frame, because in its progress towards the smaller cnd the strap would not slide with certainty and casc. We bave already shown that the number of effective turns of the bobbin is, inversely, as the diameter of the bobbin, or directly, as the successive diameters of the different points of the cone.
H. Houldsworth, Esq., has introduced a capital improvement into the bobbin and fly frame, by his differential or equation-box mechanism, and by his spring fingers, wbich, by pressiug the soft sliver upon the bobbin, cause at least a double quantity to
he wound upon its harrel, With the description of his patent equation-hox, we shall conelude the deseription of the bohbin and fly frame:

Fig. 611 represents a portion of a fly frame with Mr. Houldsworth's invention. a a a are the front drawing rollers, turning upon beatings in the top of the maehine, and worked hy a train of toothed wheels, in the way that drawing rollers are usually aetuated.

From the drawing rollers, the filaments of eotton or other material, $l u$, are brought down to, and passed through the arms of the flyers $c c$, mounted on the tops of the spindles $d d$, whieh spindles also earry the loose bobbins $e c$. In the ordinary mode of eonstrueting sueh maehines, the spindles are turned by eords or bands passing from a rotatory drum round their respeetive pulleys or whorls f, and the loose bobbins e, turn with them by the frietion of their slight contaet to the spindle, as before said; in the improved machine, however, the movements of the spindles and the bobbins are independent and distinct from each other, being aetuated from different sourees.

The main shaft of the engine g, turned by a band and rigger a as usual, communicates motion by a train of wheels h, throngh the shaft i, to the drawing rollers at the reverse end of the machine, and eauses them to deliver the filaments to be twisted. Upon the main shaft g, is mounted a eylindrieal hollow box or drum-pulley, whenee one cord passes to drive the whorls and spindles f and d, and another to drive the bobbins c.

This eylindrieal box pulley is made in two parts, k and l, and slipped upon the axle with a toothed wheel m, intervening between them. The box and wheel are shown detaehed in fig. 612, and partly in seetion at fig. 613. That portion of the box with

its pulley marked l, is fixed to the shaft g; but the other part of the box and its pulley k, and the toothed wheel m, slide loosely round upon the shaft g, and when brought in contaet and confined by a fixed collar n, as in the machine shown at fig. 611 , they constitute two distinet pulleys, one being intended to aetuate the spindles, and the other the bobbins.

In the web of the wheel m, a small bevel pinion o, is mounted upon an axle standing at right angles to the shaft g, whieh pinion is intended to take into the two bevel pinions p and q, respeetively fixed npon bosses, embraeing the shaft in the interior of the boxes k and l. Now it being remembered that the pinion q, and its box l, are fixed to the shaft g, and turu with it, if the loose wheel m be independently turned upon the shaft with a different veloeity, its pinion o, taking into q, will be made to revolve upon its axle, and to drive the pinion p and pulley box k, in the same direetion as the wheel m; and this rotatory movement of the box k and wheel m, may be faster or slower that the shaft g, and box l, aecording to the veloeity with which the wheel m is turned.

Having explained the eonstruetion of the hox pulleys h and l, which are the peculiar features of novelty elaimed under this patent, their ofliee and advantage will be seen deseribing the general novements of the machine.

The main shaft g, being turned by the band and rigger A, as above said, the train of wheels h, conneeted with it, drives the shaft i, which at its reverse end has a pinion (not seen in the fignres) that netuates the whole series of drawing rollers a. Upon the shaft i there is a sliding pulley r, earrying a band s, which passes down to a tension pulley t, and is kept distended by a weight. This band s, in its deseent, eomes in contact with the surface of the cone u, and eauses the cone to revolve by the frietion of the band running against it. The pulley r is progressively slidden along the shaft i, by means of a raek and weight not shown, but well understood as eommon in this kind of maehines, and whieh movement of the pulley is for the purpose of progressively

shifting the band s from the smaller to the larger diameter of the cone, in order that the speed of its rotation may gradually diminish as the bobbins fill by the winding-on of the yarns.

At the end of the axle of the cone u a surall piniou v is fixed, which takes into the teeth of the loose wheel m, aud as the eone turns, drives the wheel m round upon the slaft η, with a speed dependent always upou the rapidity of the rotation of the coue. Now the box pulley l, being fixed to the main shaft g, turns with one uniform speed, and by cords passing from it over guides to the whorls f, drives all the spindles and flyers, which twist the yarns with one continued uniform veloeity; but the box pulley h, being loose upon the shaft, and actuated by the bevel pinions within, as described, is made to revolve by the rotation of the wheel m, independent of the shaft, and with a different speed froun the pulley box l; eords passing from this pulley box l, over guides to small pulleys under the bobbins, eommunicate the motion, whatever it may be, of the pulley box k, to the bobbins, and eause them toturn, and to take up or wind the yarn with a speed derived from this sourec, independent of, and different from, the speed of the spinulle and flyer whieh twist the yarn.
It will now be pereeived, that these parts being all adjusted to aecommodate the taking up movements to the twisting or spinning of any partieular quality of yarn intended to be produced, any rariations betweeu the velocities of the spinning and taking up, which another quality of yarn may require, can easily be effected by merely eluanging the pinion v for one with a different number of teeth, which will cause the wheel m, and the pulley box k, to drive the bobbins fister or slower, as would be required in winding-on fine or coarse yarn, the speed of the twisting or spinning being the same.

The rovings or spongy coids, of greater or less tenuity, made on the bobbin and fly, or tube roving frame, are either spun immediately into firm eohesive yarn, or receive a further preparative process in the stretehing frame, whieh is, in fact, merely a mulejenny, without the seeond draught and second speed, and therefore need not be described at present, as it will be in its place afterwards.

Fig. 614 shows the latest eonstruction of a bobbin and fly frame, as made by Messrs. Higgins and Sons, of Manchester. As the principle of aetion is similar to that already described it only needs to add that many improvements have been introduced by the makers, as will be seen on reference to the engraving. I represents a front view of the frame; 2 a view of the back of the frame; 3 shows the driving pulley and gearing end; and 4 the same end witl the iron easing removed, so as to exhibit the works inside.

The spindles and bobbins being now driven by gearing instead of by bands as formerly, and greater strength of materials being introduced throughout the frame, it is capable of producing a better quality with an inereased quantity of rovings than was possible formerly.

Fig. 615 also represents a similar frame for rovings, made by Hetherington and Sons. Its aetion is the same as that already deseribed.

The finishing machines of a eotton mill, whieh spin the eohesive yarn, are of two classes ; 1 , the water-twist or throstle, in whieh the twisting and winding are performed simultaneously upon progressive portions of the roving; and, 2 , the mulc, in whiel the thread is drawn out and stretehed, with little twist, till a eertain length of about 5 feet is extended, then the torsion is eompleted, and the finished thread is immediately wound upon the spindles into double eonieal coils ealled eops.
The water-twist frame, so called by its inventor, Sir R. Arkwright, heeause it was first driven by water, is now gencrally superseded by the throstle frame, in whiel the
mechanical spinning fingers，so to speak，are essentially the same，but the mode of communicating the motion of the mill gearing to them is somewhat different．Fig． 616 exhibits a vertical section of the throstle．This machine is double，possessing npon each side of its frame，a row of spindles with all their subsidiary parts．The bohbins filled with rovings from the bobbin and $⿴ 囗 十 y$ ，or the tube frame，are set up in the creel $a a$ ，in two ranges．b, c, d ，are the three usual pairs of drawing rollers through which the yarn is attenuated to the proper degree of fineness，upon the prin－ ciples already explained．At its escape from the frout rollers，crery thread runs through a guide eyelet e of wirc，which gives it the vertical direction down towards the spindles f, g ．The spindles，which perform at ouce and uninterruptedly the twist－ iug and winding－on of the thread delivered by the rollers，are nsually made of stcel， and tempered at their lower ends They stand at g in steps，pass at ν through a brass bush or collar which keeps them upright，and revolve with renarkable speed upon their axes．The bobhins h ，destined to take up the yarn as it is spun，are stuck loosely upou the spindles，and rest independently of the rotation of the spindles upou the coppiug－beam l ，with a leather washer between．Upon the top of the spindles，an iron wire fork，called a fly or flyer，i, k ，is made fast by a left－hand screw，and has one of its forks turned round at the end into al little ring．The branch of the flyer at f is tubular，to allow the thread to pass through，and to escape by a little hole at its side， in order to reach the eyelet at the end of that fork．From this eyelet i ，it proceeds directly to the bobbin．By the twirling of the spindle，the twisting of the portion of thread between the front roller d ，and the nozzle f ，is effected．The winding．on takes place in the following way：－Since the bobbin has no other connection with the spindle than that of the thread，it would but for it remain entirely motionless，relatively to the spindle．But the bobbin is pulled after it by the thread，so that it must follow the rotation of the spindle and fly．When we consider that the thread is pinched by the front roller d ，and is thereby kept fully upon the stretch，we perceive tbat the rotation of the bobbin must be the result．Suppose now the tension to be suspended for an instant，while the rollers d deliver，for example，one inch of yarn．The incrtia or weight of the bobbin，and its friction upon the copping beam l ，by means of the leather washer，will，under this circumstance，cause the hobbin to hang back in a state of rest，till the said inch of yarn be wound on by the whirling of the fly i ，and the former tension be restored．The delivery of the yarn by the drawing rollers，how－ ever，does not take place，inch after inch，by starts，but at a certain continuous rate ； whence results a continuous retardation or loitering，so to speak，of the bobbins behind the spindles，just to such an amount that the delivered yaru is wound up at the sane time during the rotation．

This process in spinning is essentially the same as what occurs in the fine bobbin and fly frame，but is here simplified，as the retardation regulates itself according to the diameter of the bobbin by the drag of the thread．In the fly frame the employment of this tensiou is impossible，because the roving has too little cohesion to bear the strain ；and hence it is necessary to give the bobbins that independent movement of rotation which so complicates this machine．

The up and down motion of the bobbins along the spindles，which is required for the equal distribution of the yarn，and must have the same range as the length of the bobbin barrels，is performed by the following mechanism．Every copping rail l ，is made fast to a bar m ，and this，which slides in a vertical groove or slot at the end of the frame，is connected by a rod n ，with an equal－armed，movable lever o．The rod p carries a weight r ，suspended from this lever；another rod q ，conncets the great lever o ，with a smaller one s, t ，upou which a heart－shaped dise or pulley u ，works from below at t ．By the rotation of the dise u ，the arm t ，being pressed constantly dowu upon it by the reaction，the weight r must alternately rise and fall；and thus the cop－ ping rail l must obviously move with the bobbins h up and down；the bobbins upou oue side of the frame rising，as those upon the other sink．Strictly considered，this copping motion should become slower as the winding－on proceeds，as in the fly－roving frame；but，on account of the smallness of the finished thread，this construction，which would render the machine complicated，is without inconvenience neglected，with the result merely that the coils of the yarn are successively more sparsely laid on，as the diameter of the bobbin increases．

The movement of the whole machine proceeds from the shaft of a horizontal drum， which drives the spindles by neans of thc endless bands $x x$ ．Each spindle is mounted with a small pulley or wharf w ，at its lower part，and a particular baud，which gocs round that wharf or whorl，and the drum y ．The bands are not drawn tense，but hang down in a somewhat slanting direction，being kept distended only by their own weight．Thus every spindle，when its thread breaks，can readily be stopt alone，by applying a slight pressure with the band or knec，the band meanwhile gliding loosely
round the whorl round the whorl．

The veloeitics of rotation of the three drawing rollers are, acenrding to this arrangement, in the proportion of $1: 1 \frac{1}{2}: 8$; and as their diameters are the same, namely, one ineh, the elongation of the yarn in spinning is eight-fold. lf, for example, the roving was of the number $4 \frac{1}{2}$, the yarn would beeome No. 36 . The extension of the thread may be ehanged by ehanging the wheels of the drawing rollers. To perceive the power of this clange, let us put, for example, in the place of the 18 -toothed wheel of the back rollers, a wheel with 16 teeth; we shall find that the elongation will amount, in that ease, only to $7 \frac{1}{2}$ times, whenee the number of the yarn would eome out $32=7 \frac{1}{2} \times 4 \frac{1}{2}$. The extension by the throstle is extremely varions; it amounts, in some cases, to only 4 times; at others to 10,12 , or even 15.

The copping motion of the bobbins is produeed in eonseqnenee of a bevel pinion working in a small bevel wheel upon an upright shaft ; while this wheel gives a slow motion by means of a worm serew to the wheel of the heart-shaped pulley u, fig. 616 .

The driving pulley makes about 600 turns in a minute; and as the diameter of the drum y, fig. 616, is six times the diameter of the spindle wharves w, it will

616
 give 3600 turus to the spindle in that time. If the pulley be driven faster, for example, 700 times in a minute, it will increase the revolutions of the spindles to 4200 . 'The degree of twist whieh will be thereby inparted to the yarn, depends, with like speed of spindles, upon the rate at which the soft yarn is delivered by the drawing rollers; for the quicker this delivery, tbe quicker is the winding-on, and the less twist goes into a given length of yarn. lf, for example, the front rollers d, turn 24 times in a minute, giving out of course 72 inches of yarn in this time, upon which the 3600 revolutions of the spindle are expended, there will be 50 twists to every inch of yarn, By changing the wheel-work of fig. 615 , or by sticking greater or smaller wbarves upon the spindles, the proportion between their veloeity and that of the drawing rollers, and thence the degree of twist, can be modified at pleasure.
The number of spindles in a throstlc frame 12 feet long, is about 60 on each side. The drawing rollers are coupled together as in the bobbin and fly frame, so that each row forms one continuous cylinder. There is a complete roller beam on each side; each of the rollers of the front row is pressed by its top rollers with a weight of ten or twelve pounds; but those of the middle and back rows bear weights of only onc pound. In the throstles, there is a guide bar whieh traverses a small way horizontally to the

left and right, in front of the roller beam, to lead the thread along different points of the rollers, and thus prevent the leather of the top ones from being grooved by its coustant pressure in one line.

For the serviee of 240 spindles, in two double frames, one young woman, and an assistant piecer are sufficient. They mend tbe broken ends, and replace the empty hobbins in the ereel with full ones, and the full bobbins of the throstle by enipty ones. The average quantity of yarn turned off in a week of 69 hours is about 24 hauks per spiudle of 30's twist. 'Throstle yarn is of a firm wiry quality, adapted to the warps
of fustians and other strong stuffs, as well as to the manufacture of stockings and serwing thread.

There are many modifications of the throstle system besides the one above described; the most celehrated of which are Danforth's, called the American throstle, Montgomery's, and Gore's. We must refer for an account of them to Morris on "The Cotton Manufacture of Great Britain," where they are minutely described and illustrated with accurate figures.

Fig. 617 is a view of one of the most improved forms of the throstle frame by Messrs. Hetherington and Sons, Manchester.
Mule-spinning.-The general principles of the mule have heen already stated. This machine is so named because it is the offspring, so to speak, of two older machines, the jenny and the water-frame. A mule is mounted with from 240 to 1000 spindles, and spins of course as many threads.

Fig. 618 represents the original jenny of Hargreaves, by which one person was enabled to spin from 16 to 40 threads at once. The soft cords of rovings wound in double conical cops upon skewers were placed in the inclined frame atc ; the spindles for first twisting and then winding-on the spun yarn were set upright in steps and hushes at A, heing furnished near their lower ends with whorls, and endless cords, which were driven hy passing round the long-revolving drum of tin plate, E. \mathbf{D} is the clasp or clove, having a handle
 for lifting its upper jaw a little way, in order to allow a few inches of the soft roving to be introduced. The compound clove \mathbf{D} heing now pushed forward upou its friction wheels to A, was next gradually drawn backward, while the spindles were made to revolve with proper speed hy the right hand of the operative turning the flywheel в. Whenever one stretch was thereby spun, the clove frame was slid home towards A; the spindles being simultancously whirled slowly to take up the yarn, which was laid on in a conical cop hy the due depression of the faller wire at A, with the spinner's left hand.

Fig. 619 is a diagram of Arkwright's nriginal uater-frame spinning machine, callcd afterwards the water twist frame. The rovings mounted upon hobhins in the creel A A, have their ends led through hetween

619
 the three sets of twin rollers helow $\mathbf{B} \mathbf{b}$, thence down throngh the eyelet hooks upon the end of the flyers of the spindles c , and finally attached to their bobbins. The spindles being driven

Yol. I.
by the band D D upon their lower part, eontinuously twist and wind the finisled yarn upon the bobbins; constituting the first unremitting automatie maehine for spinning whieh the world ever saw.
Contrast with the above admirable system, the primitive eotton wheel of India, as represonted in the annexed figure, 620. By the aid of meehanieal fingers,
 one Englisliman at his mule ean turn off daily more yarn and of far finer quality than 200 of the most diligent spinsters of Hindostan.

Fig. 621 is a transverse seetion of the mule, in whieh its prineipal parts are shown.

The maehine consists of two main parts; a fixed one eorresponding in some measure to the water frame or throstle, and a movable one eorresponding to the jenny. The first eontains in a suitable frame the drawing roller-beam and the ehief moving maehinery; tbe seeond is ealled the earriage, in whieh the remainder of the moving meehanism and the spindles are mounted.
The frame of the fixed part consists of two upright sides, and two or more intermediate parallel bearings, upon whieh the horizontal roller beam a, the basis of the drawing rollers is supported. b, c, d are the three ranges of fluted iron rollers; e, f, g are the upper iron rollers eovered with leather; h, the wooden wiper-rollers eovered with flannel, whieh being oeeasionally rnbbed with ehalk, imparts some of it to the pressure rollers beneath, so as to prevent the eotton filaments adhering to them. The rollers are made throughont

number of these bobbins is equal to the number of spindles in the mule, and twice as great as the number of fluted portions of the rollers; for two threads are assigned to cach portion.
The earriage eonsists of two east-iron side pieces, and several east-iron intermediate similar picces, such as f^{2}, whiel altogether are made fast to the planks b^{2}, c^{2}, d^{2}. The top is covered in with the plank k^{4}. The carriage runs by means of its cast-iron grooved wheels, upon the cast-iron railway l, which is fixed level on the floor.
The spindles stand upon the carriage in a frame, which consists of two slant rails x^{2}, x^{2}, conneeted by two slender rods y^{2}, and whieh frame may be set more or less obliquely. The lower rail carries the brass steps for the points of the spindles ℓ^{2}; upou the upper rail brass slips are fixed pierced with holes through which the tops of the spindles play. The spindles are as usual made of steel, perfectly straight, turned truly round, and are all arranged in one plane. To eaeh of them a small wooden or east-iron whorl g^{2} is made fast. They are distributed into groups of 24 , aud the whorls are arranged at sueh different heights, that only two of them in each group are upon a level with each other. A small brass head l^{2}, which every spindle has beneath the upper slant rail of the frame x^{2}, prevents their sitting down into the step during their rotation, or sliding off their cop of yarn.
c^{3} are drums, mounted in the carriage in a plane at right angles to the plaue in which the spiudles are placed. At top they have a double groore for a cord to run in, and the motion whieh they receive from the great fly wheel, or rim of the mule (not visible in this view) they impart to the spindles. Such a drum is assigned to every 24 spindles; and therefore a mule of 480 spindles contains 20 drums. In the middle of the earriage is seen the horizontal pulley k^{3}, furnished with three grooves which stands in a line with the drums c^{3}.

The motion is given to the drums c^{3}, upon the right hand half of the earriage, by a single endless band or eord which proeeeds from the middle groove of the pulley k^{3}. The rotation of the spindles is produeed by a slender eord, of whieh there are 12 upon each drum c^{3}; because every such cord goes round the drum, and also every two wharves which stand at the same level upon the spindles. It is obvious that the drums, and consequently the spindles, must continue to revolve as long as the main rim of the mule is turned, whether the carriage be at rest or in motion upon its railway.
If we suppose the carriage to be run in to its standing point, or to be pushed home to the spot from which it starts in spinning, its back plant d^{2} will strike the post q^{3} upon the fixed frame, and the points of the spindles will be close in front of the roller beam. The rollers now begin to turn and to deliver threads, which receive immediately a portion of their twist from the spindles; the carriage retires from the roller beam with somewhat greater speed than the surface speed of the front rollers, whereby the threads receive a certain degrec of stretching, which affeets most their thicker and less twisted portions and thercby contributes greatly to the levelness of the yarn. When the carriage has run out to the end of its course, or has eompleted a stretch, the fluted rollers suddenly cease to revolve (and sometimes even beforehand, when a sccond stretch is to be made), but the spindles continue to whirl till the fully extended threads have received the proper second or after-twist. Then the earriage must be put up, or run back towards the rollers, and the threads must be wound upon the spindles.

This is the order of movements which belong to the mule. It has been shown how the rotation of the spindles is produced.

For winding-on the yarn the carriage has a peculiar apparatus, whiel we shall now describe. In front of it, through the whole extent to the right hand as well as the left, a slender iron rod, d^{5}, runs horizontally along, in a line somewhat higher than the middle of the eoping portion of the spindles, and is supported by several props, such as e^{5}. Upon each end of the two rods, d^{5}, there is an arm, g^{5}; and betwixt these arms an iron wire, ealled the eopping wire, f^{5}, is stretched, parallel with the rod d^{5}. For the support of this wire, there are several slender bent arms h^{5} extended from the rod d^{5} at several points betwixt the straight arms g^{5} : The rod d^{5} has, besides, a wooden handle at the place opposite to where the spinner stands, by whieh it can be readily grasped. This movement is applied at the left division of the machine, and it is communicated to the right by an apparatus which resembles a crane's bill. The two arms, 9^{5}, in the middle of the machine, project over the rods d^{5}, and are eonneeted by hinges with two vertical rods j^{5}, which liang together downwards in like manner with two arms i^{5}, proeeeding from a horizontal axis k^{5}.
By means of that apparatus the yarn is wound upon the spindles in the following manner. As long as the stretehing and twisting go on, the threads form an obtuse angle with the spindles, and thereby slide eontinually over their smooth rounded tips during their rcvolution, without the possibility of eoiling upon them. When, however, the spinning process is completed, the spinner scizes the earriage with his left hand and pushes it back towards the roller beam, while with his right hand he turns
round the handle of the rim or fly wheel, and consequently the spindles. At the same time, by means of the handle upou the rod d^{3}, he moves the enpping-wire f^{3}, so that it presses down all the threads at onee, and places them in a direction nearly perpendieular to the spindes; as shown by the dotted line y^{5}. That this movenent of the copping wire, however, may take place without injury to the yarn, it is necessary to turn the rim beforehand a little in the opposite direction, so that the threads inay get uncoiled from the upper part of the spindles, and become slack; an operation called in technieal language the backing off. The range upon which the threads should be wound, in order to form a conical cop upon the spirdle, is hit by depressing the copping wire to various angles, nicely graduated by an experienced eye. This faller wire alone is not, however, sufficient for the purpose of windingon a seemly cop, as there are always some loose threads which it cannot reach without breaking others.

Another wire ealled the counter-faller, l^{5}, must be applied under the threads. It may be raised to an elevation limited by the angular piece p^{5}; and is enunterpoised by a very light weight m^{5}, applied through the bent lever n^{5}, which turns upon the fulerum b^{5}. This wire, whieh applies but a gentle pressure, gives tension to all the threads, and brings them regularly into the height and range of the faller f^{5}. This wire must be raised once more, whenever the carriage approaches the roller beam. At this instant a new streteh commences ; the rollers begin again to revolve, and the carriage resumes its former course. These motions are performed by the automatic machinery.

There is a little eccentric pulley mechanism for moving the guide beam to and fro with the soft yarns, as they enter between the back rollers. On the right hand end of the back roller shaft, a worm serew is formed which works into the oblique teeth of a pinion attached to the end of the guide beam, in which there is a series of boles for the passage of the threads, two threads being assigned to each fluted roller. In the flat dise of the pinion, an eceentrie piu stands up which takes into the jointed lever upon the end of the guide beam, and as it revolves, pushes that beam alternately to the left and the right by a space equal to its cecentrieity. This motion is exceedingly slow, sinee for each revolution of the back roller, the pinion advanees only by one tooth out of the 33 which are cut in its cireumference.

After counting the number of teeth in the different wheels and pinions of the mule, or measuring their relative diameters, it is easy to compute the extension and t wist of the yarns; and when the last fineness is given to aseertain their marketable value. Let the ratio of speed between the three draming rollers be $1: 1 \frac{3}{22}: 7 \frac{1}{2}$; and the diameter of the baek and middle roller three quarters of an inch: that of the front roller one ineh; in which case the drawing is thereby increased $1 \frac{1}{3}$ times, aud $7 \frac{1}{2} \times 1 \frac{1}{3}=10$. If the rovings in the creel bobbins have been No. 4, the yarn, after passing through the rollers, will be No. 40. By altering the change pinion (not visible in this view) the fineness may be changed within certain limits, by altering the relative speed of the rollers. For one revolution of the great rim or fly wheel of the mule, the front roller makes about 6 -tenths of a turn, and delivers therefore $22 \cdot 6$ lines or 12 ths of an inch of yarn, which, in consequence of the tenfold draught through the rollers, corresponds to 2.26 lines of roving fed in at the back rollers. The spindles or their whorls make about 66 revolutions for one turn of the rim. The pulleys or grooved wheels on which the earriage runs, perform $0 \cdot 107$ part of a turn while the rim makes one revolution, and move the carriage 24.1 lines upon its rails, the wheels being 6 inches in diameter.

The $22 \cdot 6$ lines of soft yarn delivered by the front rollers, will be stretched $1 \frac{1}{2}$ lines by the carriage advancing $24^{\circ} 1$ lines in the same time. Let the length of the railway, or of each streteh be 5 feet, the carriage will complete its course after 30 revolutions of the rim wheel, and the 5 feet length of yarn (of which $56 \frac{1}{2}$ inches issue from the drawing rollers, and $3 \frac{1}{2}$ inches proceed from the stretehing) is, by the simultaneous whirling of the spindles, twisted 1980 times, being at the rate of 33 twists for every inch. The seeond twist, which the threads receive after the earriage has come to repose, is regulated according to the quality of the cotton wool, and the purpose for whieh the yarn is spun. For warp yarn of No. 40 or 50 , for example, 6 or 8 turns of the rim wheel, that is, from 396 to 528 whirls of the spindles for the whole streteh, therefore from 7 to 9 twists per ineh, will be sufficient. The finished yarn thus reeeives from 40 to 42 twists per inch.
One spinner attends to two mules, which face each other, so that he needs merely turn round in the spot where he stands, to find himself in the proper positiou for the other mule. For this reason the rim wheel and handle, by which he operates, are not placed in the middle of the length of the machine, but about two-fifths of the spindles are to the right hand and three-fifths to the left; the rim wheel being towards his right hand. The earriage of the one mule is in the act of going out and spinning, while that of the other is finishing its twist, and being put up by the spinner.
The quantity of yarn manufactured ly a mule in a given time, depends dircetly
upon the number of the spindles, and upou the time taken to complete every streteh of the carriage. Many eireumstances have an indirect influence upon that quantity, and particularly the degree of skill possessed by the spinner. The better the machine, the steadier and softer all its parts revolve, the better and more abundant is its production. When the toothed wheels do not work truly into their pinions, when the spindles sbake in their bushes, or are not aecuratcly made, many threads break, and the work is much injured and retarded. The better the staple of the eotton wool, and the more careful has been its preparation in the carding, drawing, and roving processes, the morc easy and excellent the spinuing will become : warmth, dryness, cold, and moisture bave great influence on the ductility, so to speak, of cotton. A temperature of $65^{\circ} \mathrm{F}$., with an atmosphere not too arid, is found most suitable to the operations of a spinning mill. The finer the yarn, the slower is the spinning. For numbers from 20 to 36 , from 2 to 3 stretches of warp may be made in a miuute, and nearly 3 stretches of weft; for numbers above 50 up to 100 , about 2 stretches; and for numbers from 100 to 150 one stretch in the minute. Still finer yarns are spun more slowly, which is not wonderful, since in tbe fine spinning mills of England, the mules usually contain upwards of 500 spindles eaeb, in order that one operative may manage a great number of them, and thereby earn such high wages as shall fully remunerate his assiduity and skill.

In spiuning fine numbers. the seeond speed is given before the earriage is run out to the end of its railway; during whicb coursc of about 6 inches, it is made to move very slowly. This is called the second streteh, and is of use in making the yarn level by drawing down the thicker parts of it, which take on the twist less readily than tbe thinner, and therefore remain soft and more extensible. The stretch may therefore be divided into three stages. The carriage first moves steadily out for about 4 feet, while tbe drawing rollers and spindles are in full play; now the rollers stop, but the spindles go on whirling with aeeelerated speed, and the carriage advances slowly, about 6 inches more; then it also comes to rest, while the spindles continue to revolve for a little longer, to give the final degree of twist. Tbe acceleration of the spindles in the second and third stages, which has no other objeet but to save time, is effected by a mechanism called the counter, which slifts the driving hand, at the proper time, upon the loose pulley, and, moreover, a second band, which had, till now, lain upon its loose pulley, upon a small driving pulley of the rim-shaft. At length, both bands are shifted upon their loose pulleys, and the mule comes to a state of quieseence.

The self-acting mule, or the mon man, as it has been ealled in Lancashire, is an invention to which the combinations among the operative spinners obliged the masters to have reeourse. It now spius good yarn up to 40 's with great uniformity and promptitude, and requires only juvenile hands to conduct it, to piece the broken yarns, to replace the bobbins of rovings in the creel, and to remove the fiuished eops from the spindles.

Tbe self-acting mules were first constructed, we believe, by Messrs. Eaton, formerly of Manchester, who mounted ten or twelve of them in that town, four at Wiln, in Derbyshire, and a few in France. From their great eomplexity and small productiveness, the whole were soon relinquished, except those at Wiln. M. de Jong obtained two patents for self-acting mules, and put twelve of them in operation in a mill at Warrington, of which he was part proprietor; but with an unsuccessful result.
Tbe first approximation to a suecessful accomphshment of the objects in view, was an invention of a self-aeting mule, by Mr. Roberts, of Manchester ; one of the principal points of which was the mode of governing the winding-on of the yarn into the form of a eop; the entire novelty and great ingenuity of which invention was universally admitted, and proved the main stcp to tbe final accomplishment of what had so long been a desideratum. For tbis invention a patent was obtained in 1825, and several headstoeks upon the principle were made, which are still working successfully.

In 1830, Mr. Roherts obtained a patent for the invention of certain improvements; and by a combination of both his inventions, he produced a self-acting mule, which is generally admitted to have exceeded the most sanguine expectations, and which has beeu extensively adopted. There are, probably, at present, upwards of half a million of spindles of Messrs. Sbarp, Roberts, and Co.'s construction, at work in the United Kingdom, and giving great satisfaction to their possessors. The advautages of these self-aetors are the following:-

The saving of a spinner's wages to each pair of mules, piceers only being required, as one overlooker is sufficient to manage six or eight pairs of mules. The produetion of a greater quantity of yarn, in the ratio from 15 to 20 per cent. The yarn possesses a more uniform degree of twist, and is not liable to be strained during the spinning, or in winding-nn, to form the cop; consequently fewer threads are brokeu in these proeesses, and the yan from having fewer piceings is more regular.

The eops are made firmer, of better shape, and with undeviating uniformity ; and, from being more regularly and firmly wound, eontain from one third to one half nore yarn than cops of equal bulk wound by hand; they ware cousequently less liable to injury in packing or iu carriage, and the expense of packages and freight (when clarged by measurement) is considerably reduced.

From the cops being more regularly and firmly wound, combined with their superior formation, the yarn intended for warps less frequently breaks in winding or reeling, consequently there is a considerable saving of waste in those processes.
Secondly, the advantages conneeted with weaving.
The cops being more regularly and firmly wound, the yarn, when used as weft, seldom breaks in weaving; and as the cops also contain a greater quantity of weft, there are fewer bottoms, consequently there is a very material saving of waste in the process of weaving.

From those combined cireumstances, the quality of the cloth is improved, by being more free from defects caused by the breakage of the warp or weft, as well as the selvages being more regular.

The looms can also be worked at greater speed; and, from there being fewer stoppages, a greater quantity of cloth may be produced.

That the advantages thus enumerated, as derivable from the use of self-acting mulcs, have not been overrated, but, in many instances, have been considerably exceeded, I have, by extensive personal inquiry and observation, had ample opportunity of assertaining.

Statement of the quantity of yarn produced on Messrs. Sharp, Roberts, and Co.'s self-acting mules, in twelve working hours, including the usual stoppages connected with spinning, estimated on the average of upwards of twenty mills :-

Of the intermediate numbers the quantities are proportionate.
The following are particulars of the results of trials made by Messrs. Sharp, Roberts, and Co., at various mills, to ascertain the comparative power required to work self-acting mules, in reference to hand-mules, during the spinning, up to the period of backing-off: -

At what Mill, and the Deseription of Mule.	No. and kind of Yarn.	Diameter of Pulley or Rim Wheel.		Required Force for Motion.	Total Force Employed in Spinning.
Messrs. Birley and Kirk.	Weft.	Ins.		$l b s$.	lbs.
Self-acting mule, 360 sps -	30 to 34	12	58	30	5463
* Hand mule, 180 sps.	ditto	15	36	26	$\times 2=7338\}$
Messrs. Leech and Vandrey.	Twist.				
\dagger Self-aeting mule, 324 sps .	36	12	70	36	7912
Hand mules, 324 sps. -	36	29	58	$16 \frac{1}{2}$	7273
Messrs. Duckworth \& Co.	Twist.				
Self-acting mule, 324 sps.	40	12	62		6421
Hand-mule, 324 sps. -	40	47	36	151	6646

The mode adopted to make the trials was as follows, viz. :
A foree, indicated by weight in pounds, was applied to the strap working upon the driving-pulley of the respective mules, sufficient to maintain the motion of the mule whilst spinning, which weight, being multiplied by the length of strap delivered by each revolution of the pulley, and again by the number of revolutions made by the pulley whilst spinning, gave the total force in pounds applied to the respective mules (3.14 ft . in circumference), such pulley making 58 revolutions during the spinning as above, and that it required a foree equal to 30 lbs. weight to maintain the motion of the mule, then 33 lbs. $\times 3.13$ feet circumference of pulley $\times 58$ revolutions in spin$\mathrm{ning}=5 \cdot 463 \mathrm{lbs}$. of force employed during the spinning, to the period of backing-off.

Mr. James Smith, of Deanstone cotton works in Seotland, obtained a patent for the

* The trlal was disadvantageous for the hand mules, being two for 360 spindles.
† The trial was disadvantageous for the self-acting mules, being driven by a very short and IIght vertieal strap, the hand-mule having a long horizontal strap.
inveution of a self-actor, in February, 1834. He did not perform the backing-off by reversing the rotation of the spindle, as in common mules, or as in Mr. Roberts's, but by elevating the counterfaller wire, which, being below the ends of the yarn or thread, along the whole extent of the carriage, thereby pulls off or strips the spiral coils at the point of the spindle, instead of unwinding them, as of old. This movement he considered to be of great importance towards simplifying the machinery for rendering the mule self-acting; and the particular way in which he brought the stripper into action is no doubt iugenious, but it has been supposed by many to strain the yarn. He claimed as his invention the application and adaptation of a mangle wheel or mangle raek to the mule, for effecting certain successive movements, either separately or in conjunction; he clained that arrangement of the carriages of a pair of mules, by which the stretch is caused to take place over part of the same ground by both carriages, and thereby the space required for the working of the pair of mules is greatly diminished; and he also claimed the application of a weight spring, or friction, for balancing the tension of the ends of the threads.

A patent was granted, in April, 1835, to Mr. Joseph Whitworth, engineer in Manchester, for some ingenions modifications of the mechanism of the mule, subservient to automatic purposes. His maehinery is designed, first, to traverse the carriage in and out, by means of screws or worm-shafts, which are placed so as to keep the carriage parallel to the drawing rollers, and prevent the neeessity of squaring bands, hitherto universally employed; secondly, his invention consists in an improved manner of working the drums of a self-acting mule by gear; thirdly, in the means of effecting the backing-off; fourthly, in the mechanism for working the faller-wire in building the cops; and fifthly, in the apparatus for effecting the winding of the yarns upon the spindles. As regards the throstles and doubling frames, his improvements apply, first, to the peculiar method of constructing and adapting the flyers and spindles, and producing the drag; and, secondly, to the arraugement of the other parts of the doubling machinery.

The Self-acting Mule.-In a previous edition of this work mention was made of the patent self-acting mules of Mr. Roberts, of Manchester, and of Mr. Smith, of Deanstone. Since the period when that notice was written a great number of patents have been obtained for improvements on the original patents, by Mr. Potter, of Manchester, Messrs. Higgius and Whitworth, of Salford, Mr. Montgomery, of Johnstone, Messrs. Craig aud Sharp, of Glasgow, and many others.

Mr. Roberts's self-acting mule, which was practically the first introduced, has maintained its ground against all competitors, and is still the mule which is most extensively used and approved in the cotton trade.

As might be expected, it has undergone a variety of improvements and alterations by the various machine workers who have made it since the expiration of the patent, but by none more than by Messrs. Parr, Curtis, \& Madely, of Manchester, who have devoted a large amount of time and expense in its perfection.

They are the proprietors of six patents for this mule, the invention of Mr. Curtis, of the manager Mr. Lakin, and of Messrs. Rhodes \& Wain, the combination of which has enabled that firm to produce a very superior self-acting mule, and given them a decided lead as makers.
The following are some of the principal inprovements they have effected: viz, substituting a catch box with an excentric box, in lieu of a cam shaft, to produce the required changes ; an improved arrangement of the faller motion, which causes the fallers to act more easily upon the yarn, and not producing a recoil in them when the "backing-off" takes place, thus preventing "snarls" and injury to the yarn; in applying a spiral spring for the purpose of bringing the backing-off cones into contact, by which the operation of "backing-off" can be performed with the greatest precision. The backing-off movement is also made to stop itself, and to cause the change to be made which affeets the putting-up of the carriage, which it does in less time than if an independent motion was employed. They have also an arrangement for driving the back, or drawing-out, shaft by gearing in sueh a manner that in the event of an obstruction coming in the way of the carriage going out, the motion ceases and prevents the mule being injured.
By means of a frictiou motion, the object of whicb is to take the carriage in to the rollers, the earriage will at once stop in the event of any obstruction presenting itself. For the want of an arrangement of this nature, lives have been lost and limbs injured, when careless boys have been cleaning the carriage whilst in motion, and have been caught betwecin it and the roller beam, and thus killed or injured.
Another inprovement consists in connecting the drawing-out shaft and the quadrant pinion shaft by gearing, instead of by hands, thereby producing a more perfect winding on, as the quadrant is moved the same distance at cach streteh of the carriage. They have also uade a different arrangement of the headstock - or self-
acting portion of the mule - eausing its height to be much reduced, which makes it more steady, offers less obstruetion to the light, enables the spinner to see all the spindles from any part of the mule, and allows a larger driving strap, or belt, to be used, which in low rooms is of considerable inmportanee. The result of these various improvements is the production of one of the most perfect spinning machines now in the trade.

For spinning very eoarse numbers, say 6 's, they have patented an arrangement, by which the rotation of the spindles can be stopped, and the operation of backing-off performed, during the going out of the carriage, thus effecting a considerable saving of time.

Some of their mules are working in the mills of Messrs. Thomas Mason $\mathbb{\&}$ Son, Ashton-under-Lync, and are making five to five and a half draws per minute, the length of the stretch being 67 inches; a speed and length of stretch never previously attained.

The following is a description of one of those excellent mulcs:-
Fig. 622 is a plan view, fig. 623 a tranverse section, and fig. 624 an end view of so much of a mule as is requisite for its illustration here.

As there are many parts which are common to all mules, most of which have been previously described in the notice of the hand mule, we shall therefore only notice the more prominent portions of the self-acting part of the mule. Among such parts are, the framing of the headstock \mathbf{A}; the carriage \mathbf{B}; the rovings C ; the supports D ,

of the roller heam E ; the fluted rollers a; the top rollers a^{1}; the spindles b; the carriage whecls b^{1}; the slips, or rails, b^{2}, on which they move; the faller wire b^{3}; the counter-faller wire b^{4}. The following are the parts chiefly connected with the self-acting portion of the mule. The fast pulley F, the loose pulley $\mathbf{F}^{\mathbf{1}}$, the bevels \mathbf{F}^{2} and F^{3}, which give motion to the fluted rollers : the hack, or drawing-out shaft c , wheels G^{1} and G^{2}, by which throngh the shaft G^{3} and whecls G^{4} and G^{5}, motion is communicated to the pinion \mathbf{G}^{6} on the shaft \mathbf{G}^{8}, and thence to the quadrant \mathbf{G}^{7}. The scroll shaft H, the scrolls H^{1} and H^{2}, the catch hox H^{6}, for giving motion through the bevel wheels H^{3} and H^{4} to the scroll shaft. Drawing-in cord H^{5}. Screw in radial arm I, nut on same I^{1}, winding-on chain I^{2}, winding-on band I^{3}, drawing-out cord I^{4}. Pinion x^{5} on front roller shaft, to give motion through the wheels $\mathrm{I}^{6}, \mathrm{I}^{7}$, and x^{8}, to drawing-out shaft G. Pinion J, and wheels J^{1}, J^{8}, aud J^{3} for giving motion to shaft J^{4}, pinion J^{5}, giving motion to hacking-off whecl J^{6}. On the change shaft K is keyed a pinion which gears with the wheel J^{6}, and receives motion therefrom. One half of the catch-box k^{1} is fast to one end of a long hollow shaft on which are two cams, one of which is used to put the front drawing roller eatch-box m into and out of contact, the other is used for the purpose of traversing the driving strap on or off the fast-pulley F as requircd. The othcr half of the catch-box K^{\prime} is placed on the shaft $\mathbf{к}$, a key fast on which passes through the boss of the catch-box, and causes it to be carried round by the shaft as it rotates. Though carried round with the shaft, it is at liberty to move lengthwise, so as to allow it to he put into and out of contact with the other half when required. The spiral spring κ^{2} is also placed on the shaft k , and continually bears against the end of the catch-box next to it, and endeavours to put it in eontaet with the other, which it does when per-
mitted and the changes are required, The change lever κ^{9} moves on a stud which passes througli its boss $a^{2}:$ near which end of this lever are the adjustable pieces a. When the machinc is put in motion, supposing the carriage to be coming out, the driving strap is for the most part on the fast pulley F when motion is given through the bevel wheels F^{2} and r^{3} to the drawing rollers a, which will then draw the rovings c off the bobbins, and deliver the slivers so drawn at the front of the rollers, and the same being fast to the spindles, as the carriage is drawn out the slivers are taken out also, and as the spindles at this tinc are turned round at a quick rate (say 6,000 revolutions per minute), they give twist to the slivers and convert them into yarn or twisted threads. Motion is communieated to the spindles from the rim pullcy F^{4}, through the rim band F^{5}, which passes from the rim pulley to a grooved pulley on the tin roller shaft, round which it passes and thence round the grooved pulley F^{6} back to the rim pulley, thus forming an endless band. It will be seen that the rim band pulley and the other pulleys, over or round which the rim band passes, are formed with double grooves, and the band being passed round each, it forms a double band, which is found of great advantage, as it will work with a slacker band than if only one groove was used ; there is eonsequently less strain on the band, and it is longer. A string or cord passes round the tin roller to a wharve on each spindle, round which it passes, and theuce back to the tin roller, and thus, when the tin roller receives motion from the rim band, it gives motion to the spindles. The carriage is caused to move outwards by means of the cord x, one end of which is attached to a ratchet pulley fixed on the carriage cross, or square $\mathbf{L}^{\frac{1}{l}}$, and is then passcd over the spiral grooved pulley L^{2} fast on the drawing out shaft G , and passes thence under the guide pulley x^{3} round the pulley x^{4} to another ratchet pulley, also on the carriage square where the other end is then fastened. The cord receives motion from the pulley x^{2}, round which it passes and communicates the motion it receives to the carriage, the carriage wheels b^{1} moving freely on the slips b^{2}.

When the carriage has completed its outward run, the bowl a^{4} on the counter faller shaft comes against the piece a^{3}, depresses it and the end of the lever k^{3} to which it is attached, and raises the other end, and with it the slide c, on which are two inclines. A round pin (not seen) passes through the boss of the catch-box next to the slide, and bears against the sliding half of the eatch-box, and holds it out of contact.

When the slide c is raised, the part of the incline which bore against the pin and kept the catch-box from bcing in contact is withdrawn, on which the spring puts them in contact, and motion is given to the hollow shaft, and the cams thereon; one of which eauses the catch-box m to be taken out of contact when motion ceases to be given to the drawing rollers and to the going out of the carriage; and the other causes the driving strap to be traversed off from the fast pulley on to the loose one when motion ceases to be given to the rim pulley and thence to the spindles. The inclines on the slide are so formed that, by the time the shaft has made half a revolution, they act on the pin and cause it to put the eateh-box out of contact. The next operation is the backing-off or uncoiling the threads coiled on the spindle above the cop, which is effected by causing the backing-off cones attached to the wheel J^{6} to be put into contact with one formed in the interior of the fast pulley F, when a reverse motion will be given to the rim pulley and thence to the tin roller aud the spindles.

The backing-off cones are put into contact by means of a spiral spring, which, when the strap fork is moved to traverse the strap on to the loose pulley, it is allowed to do. Simultaneously with the backing-off the putting down of the faller wire takes place, which is effected through the reverse motion of the tin roller shaft, which causes the catch c^{1} to take into a tooth of the ratchet wheel c^{2}, when they will move together, and with them the plate c^{3}, to a stud in which one end of the chain c^{4} is fastened, the other end of which is attached to the outer end of the finger c^{5}, fast on the faller shaft. When this chain is drawn forward by the plate, it draws down the end of the figure c^{5} to which it is attached, and thereby partially turns the faller shaft and depresses the faller wire b^{3}, and, at the same time, raises the lever c^{5}, the lower part of which bears against a bowl attached to a lever which rests on the builder rail c^{6}. As soon as the lever c^{5} is raised sufficiently high to allow. the lower end to pass over, instead of bearing against the bowl, it is drawn forward by a spiral spring, which causes the backing-off cones to be taken out of contact, when the backing-off ceases, and the operations of ruuning the carriage in and winding the yarn on to the spindles must take place. When the cones are taken ont of contact the lower end of the lever N is withdrawn from being over the top of the lever N^{1}, leaving that lever at liberty to turn, and the catcli-box H^{6} thereupon drops into gear, and motion is communicated to the scrolls μ^{1} and 11^{2}, and to the
cords H^{3} aud H^{7}. The cord H^{3} is at one end attached to the scroll II^{1}, and passes thence round the pullcy \boldsymbol{H}^{8} to the ratchet pulley \boldsymbol{H}^{3} fixed to the back of the carriage square. The cord H^{7} is at one end attached to the scroll \mathbf{H}^{2}, and passes thence round the pulley \mathbf{H}^{10} to the ratchet pulley \mathbf{H}^{11} fixed to the front of the carriage square. It will thus be seen that the carriage is held in one direction by one band, and in another by the other band, and that it can only be moved in either direction by the one scroll giving off as much cord as the other winds on. When the catch-box \mathbf{H}^{6} drops in gear, the scroll H^{1} winds the cord H^{5} on and draws the carriage in. It will thus be seen that the carriage is drawn out by means of the back or drawing-out shaft G , and is drawn in by the scroll m^{2}. The winding on of the thread in the form of a cop is effected by means of Mr. Roberts's ingenious application of the quadrant or radial arm G^{7}, screw I , aud winding-on chain I^{2} and band I^{3}. The chain I^{2} is at one end attached to the nut 1^{1} and at the other to the band x^{3}. During the coming out of the carriage the drawing-out shaft through the means of the wheels $\mathbf{G}^{1}, \mathbf{G}^{2}$ G^{4}, and G^{5}, shafts a^{3} and G^{3}, and pinion G^{6}, moves the quadrant which, by the time the carriage is quite out, will have been moved outwards a little past the perpendicular. The chain is wound on to the barrel by means of the cord o, which being fixed and lapped round the barrel as the carriage moves outward causes it to turn. On the barrel is a spur wheel which gears into a spur pinion on the tin roller shaft (these wheels being under the frame side are not seen in the drawing). The spur pinion is loose on the tin roller shaft, and as the carriage comes out it turns loosely thereon, but as the carriage goes in the chain x^{2} turns the barrel round, and with it the spur pinion. A catch on a stud fixed in the side of the pinion, at that time taking into a tooth of the ratchet wheel i fast on the tin roller shaft, the motion of the spur pinion is communicated to the tin roller shaft, and thence to the spindles, causing the thread or yarn spun during the coming out of the carriage to be wound on the spindles, in the form of the cop, while the carriage goes in. At the com-

625

mencement of the formation of a set of cops, when the yarn is being wound on the bare spindles, the spindles require to have a greater number of turns given to them
than they do when the cop bottom is formed ; to produce this variation the following means are employed. At the commencenent of cach set, the serew in the radial arm is turned so as to turn the nut I^{\prime} to the bottom of the serew, where it is near to the shaft on which the quadrant moves; consequently little or no inotion is given to the claain, and the carriage, as it goes in, eauses the clain to be drawn off the band. As the formation of the cop bottom proeceds, the serew is turned and the nut is raised ; by which means a less quantity of chain is drawn off the barrel ; the chain, at the point of attachmeut gradually following the carriage as it goes in.

During the going in of the carriage the quadrant is drawn down or made to follow the carriage by the chain pulling it, the specd at which it is allowed to descend is regnlated by the motion of the carriage; the quadrant, during the going in of the carriage, through the pinion G^{6}, shafts G^{3} and $\mathrm{G}^{\mathbf{s}}$, and whecls, $\mathrm{G}^{1}, \mathrm{G}^{2}, \mathrm{G}^{1}$, and G^{3} driving the drawing-out shaft.

When thic carriage has completed its inward run, the bowl A^{4} comes in contact with the picce A^{8}, and depresses it and the end of the lever R^{3} to which it is attached, and also the slide c, which then allows the catch box K^{\prime} to bc put in contact, and causes the cam shaft to make another half revolution. During this half revolution of the cam shaft, the cams cause the catch box M to be put in contact, and the driving strap to be traversed on to the fast pulley, and, by the latter movement, the catch box H^{8} is taken out of gear and the winding-in motion of the scrolls ceases, and the carriage will again commence its outward run, and with it the spinniug of the thread.

Fig. 625 is a view of a bectling machine, madc by Mr Jackson. of Bolton, for the firm of Messis. Bridson, Son, and Co., of that town. A is the bectling roller, and B, c, are the rolls of clotl which are to receive the peculiar finish, which bectling alone can give to cotton cloths.

Although this is a very simple machine, yet it is questionable if it or any other modern invention can effectually take the place of the old fashioned but useful upright wooden beetle.

See Lace-Maring, Singeing, Textile Fabric, Thread Manufacture, and Weaving.

We extract the following from the Circular of Hermann Cox and Co., dated 19th July, 1852.

> Exports from 1st January to 5th May, as follows :

		1852.	1851.
Exportations of Yarn -	-	$50,399,189 \mathrm{lbs}$.	$42,630.812 \mathrm{lbs}$.
$"$	Manufactured		

Consequently a considerable surplus on both over 1851 ; the official return till 5 th J unc, again shows an increase, viz.

The following is a return of exports from Hull, from 1st January till 30th June:

		Twist.	Other Yarn.	Manufactured Cocton Goods	Raw Cotton.
1852	-	33,182 bales	12,115 bales	11,536 bales	65,186 bales
1851	-	31,601	9,634	11,347	35,054

The following extracts from the circular of Messrs. Learing \& Co. present so complete a view of the state of the cotton trade at this date, that they are now and will continue of much interest and importance : -

$$
\text { " Mobile, September 1st, } 1858 .
$$

"The close of the commercial ycar, ending the 31st of August, gives the total receipt of cotton at all the American ports as $3,113,962$ balcs, against $2,939,679$ bales of the year previous. Of the past ycar's rcceipts England took 1,809,966 balcs, the rest of Europe 780,489 bales, while the United States bought 595,562 balcs. This shows an increase to Great Britain, a falling off in the exportations to the Contincnt and other parts, and a diminished consumption in the United States.
"It is important to remark, that this falling off in the exportation to the Continent of Europe, and also the home consunption, does not necessarily involve any actual diminution in consumption ; because, what the Continent of Europe. failed to take direct of the raw material, will be represented by increased re-exports from liverpool, and increased demands for yarns from the Englisli spinner; and what the United States failed to buy and work np, has been bought and will be worked up by
others. Consequently, although on the surface a falling off in consumption may appear as in regard to the Continent and America, the demand will be supplied through other clannels in a proportionately increased ratio.
"Added to this established consumption, is the natural iucreasc throughout the world in excess of supply. The opening up of China, and the mutiny in India, which, by interrupting not only the growth of cotton there, but also the weaving industry of the uatives, has increased the demand for yarns and cloths from England, conspirc to add to the demand for our staple. The last large receipts of Surats from India occurred during the blockade of the Chinese ports; consequently the exports from Bombay, usually sent to China, were, by this cause, thrown upon the Liverpool market, induced also by the attraction of high priees.
" The universal prevalence of tbe panic, the long continued prostration in trade, and the working of short time, have reduced the stocks of goods everywhere; and this special feature is met in the markets of the raw material with a similar exhaustion. Tbe reports in regard to the growing crop are conflicting. What with tbe certain effect of the floods in tbe Mississippi Valley, and the information from various sources in regard to the injury the young plant is receiving, serious apprehensions are entertained of anotber comparatively short crop. It is wortby of remark that conflicting interests generally takc opposite views in regard to the future prospects of the growing crop. The hopes and apprehensions of the buyer and seller, combined with the natural disposition to embrace that view which is dictated by self-interest, must continue to characterise all tbe reports upon cotton, either from Europe or tbis side. But it is well for our European friends to have clearly bcfore them the utmost cotton crop America can yield under tbe best possible conditions embraced in a wide area under cultivation, an carly spring, a good stand in the field, a propitious summer, and a favourable autumn. Accepting these rare couditions as embraced within any one year, it is simply impossible for the United States to produce for commercial purposes, with tbe present supply of labour, beyond a certaiu amount of cotton. As tbe best standard by which to arrive at this capacity for 'utmost production' in America, we select the year 1855-56. Tbe commercial crop that season was $3,527,845$ bales, from which must be deducted for cotton remaining over from the year previous, on hand in the iuterior, or in stock on tbe sca-board, say 250,000 bales. Tbis leaves as the 'hctual' or 'new' crop of $1855-56$ the reduced amount of $3,277,845$ bales. The season here taken, will be remembered as the most favourable ever known to a large production. It was also stimulated in its growth by previously ruling high prices. Accepting as correct the geuerally received data that the negro labour force in tbe cotton states increases at tbe rate of five per cent. per annum, would give fifteen per cent. increase for the three years, from 1856 to 1858-59. This increase of labour thrown into the cotton yield would seem to indicatc $3,760,000$ bales (more or less) as the utmost possible capacity of production for the year ending 1st Scptember, 1859. In explanation, it is worthy of remark that the increase upon the increase, which we bave not estimated, in the three years, would make the production even larger. Yet we see in the succeeding years a falling off from the production of 1855-56 instcad of an advance. The total commercial crop of $1856-57$ was only 2,939,519 bales, while tbe season just closed gives the limited yield of $3,113,962$ bales.
"The production of cotton in America is not therefore limited by soil. It is a question of labour, the negroes being alnost exclusively the producers. Now a negro can only 'pick' so many pounds of cotton a day, and no more. Tbere is a certain number of negroes; and these cannot be added to otherwise tban by the natural increaso of population already estimated. They caunot be increased by immigration. The cotton picking season - that is, the cotton harvest - cannot extend beyond a certain number of days. Estimating, therefore, the largest number of negro labourers, the greatest amount of cotton per day to the hand, and the longest possible extension of the harvest or picking season, and wc have the utmost possible production of the new crop. As before stated the cotton year of $1855-56$ presented all these favourable characteristics. Since then, the crop has becn reduced in exact proportion as either of these features were affected. In illustration, the following statement is instructive.
"In 1844 the first receipt of 'new Cotton' on the sea board was on the 23rd of July, the receipts at Ncw Orleans on the 1st of September being 5,720 bales. The crop that year was considered large, being $2,394,503$ bales.
"In 1846 the first receipt of 'new cotton' was on the 7th of August, aud the receipts at New Orleans on the 1st of September only 140 bales! Here notice the falling off in tbe total crop that year, the same being only $1,778,651$ bales.
"In 1848 we have a receipt on the 1st of September at New Orlcans of 2,864 bales, and a total crop of $2,728,596$ bales.
"In 1849 (the succeeding year) wo find the receipts at New Orleans on the 1st of

September to be only 477 bales, and the erop for that year falling off to 2,096,706 bales!
"In 1851 we find an unusually carly receipt of thie 'first bale,' and a receipt of new eotton at New Orleans on the 1st of September of over 3,000 bales! 'The erop, that year was the largest ever grown up to that period, being over 3,000,000 bales!
"In 1852 (the suceeeding year) we find the receipts at New Orleans on the lst of September to be $5,0: 7$ bales, being the largest receipt ever known up to that time; followed in exaet ratio by the largest crop ever grown, being $3,262,882$ bales.
"In 1853 we have a late receipt, followed by a diminished erop.
"In 1854 we have another small receipt on the lst of September, with a small total erop. "In 1855 we find an unusually early receipt of cotton, with the receipts at New Orleans on the lst of September amounting to the unexampled figure of 23,382 bales! An inereased erop follows this early heavy receipt, being over $3,500,000$ bales.
"In 1856 (the next year) the receipts at New Orleans on the lst of September were only 1,166 bales, and the erop, true to the principle of Labour, on whieh it depends so much, fell to $2,933,781$ bales.
"In 1857 the receipts on the lst of September of new cotton at New Orleans was only 33 bales, followed by a short erop.
"In this year the receipts up to date at New Orleans figure up $4,83 \pm$ bales, embracing, of course, the flooded distriets.
"Referring to our annual tabular statement, it will be found that the ratio of inerease in eonsumption keeps pace with inerease of production, if indeed it does not execed

Growth and Consumption of the United States.

Years.	New Orleans.	Florida.	Alabamha.	Texas.	Georgia.	South Carolina.	North Carolina.	Virginia.	Total Growth of United States.	Consumed and is Spinners' hands.
1839-40	953,672	136,257	445,725		292,693	313,194	9,394	26,900	2,177,835	79
1840-41	814,680	93,552	320,701	- -	148,947	227,400	7,865	21,800	1,634,945	297,288
1841-42	727,658	114,416	318,315	- -	232,271	260,164	9,737	21,013	1,683,574	267,850
1842-43	1,060,246	161,088	481,714	- -	299,491	351,658	9,039	15,639	2,378,875	325, 129
1843-44	832,172	145,562	467,990	- -	255,597	304,870	8,618	15,600	$2,030,409$	346,744
1844-45	929,126	118,693	517,196		295,440	426,361	12,487	25,200	2,394,503	389,006
1845-46	1,037,144	141,184	421,966	27,008	194.911	251,405	10,637	16,282	2,100,537	422,597
1846-47	705,979	127,852	323,462	9,317	242,789	350,210	6,061	13,991	1,778,651	427,967
1847-48	1,190,733	153,776	436,336	39,742	254,825	261,752	1,518	8,952	2,347,634	531,772
1848-49	1,093,790	200,186	518,706	38,827	391,372	458,117	10,041	17,550	2,728,596	518,039
1849-50	781,886	181,344	350,952	31,263	343,635	384,265	11,861	11,500	2,096,706	487,769
1850-51	933,369	181,204	451,748	45,820	322,376	387,075	12,928	20,737	2,355,257	404,108
1851-52	1,373,464	188,499	549,449	64,052	325,714	476,614	16,242	20,99:	3,015,029	603,029
1852-53	1,580,875	179,476	545,029	85,790	349,490	463,203	16,496	-35.523	3,262,882	671,009
1853-54	1,316,925	155,444	538,684	110,325	316,005	416,754	11,524	34.366	2,930,027	610,571
1854-55	1,232,644	136,597	454,595	80,737	378.694	499, 272	26,139	38,661	2,847,339	593,584
1855-56	1,661,4:33	144,404	659,738	116,078	389,445	485,976	27,098	34,673	3,517,845	
1856-57	1,435,000	136,344	503,177	89,882	322,111	397,331	27,147	28,527	2,939,519	
1857-58	1,576,409	122,351	522,364	145,286	282,973	406,251	23,999	34,329	3,113,962	

Stock in Ports, and Price of "Middling" New Orleans, at the Close of each Year.

Years.	Amerlcan.	Brazil.	East Indies.	West Indies.	Esyptian,	Total.	Equal to W'eek's Consumption.	Price of Midlling, 31 st Dec.
1840	305,000	23,700	98,5n0	14,300	22,500	Bales. 464,000	19	${ }_{6}^{\text {d. }}$
1841	279,600	46,100	157,600	24,700	31,400	539,400	24	$5 \frac{1}{2}$
1842	283,400	58,700	179,900	20,200	22,200	564.400	25	47
1843	483,200	68,300	193,200	12,200	28,800	783,700	29	$5 \frac{1}{6}$
1844	544,900	62,700	239,200	13,710	41,400	901,900	33	4 $\frac{1}{6}$
1845	693,100	52,300	241,000	6,100	67,900	1,060,400	35	4
1846	302,800	23,700	157,400	4,500	57,400	545,800	18	71
1847	239,200	59.300	125,100	2,200	26,100	451,900	20	4
1848	273,300	68,700	137,200	2,600	16.800	498,600	18	4
1849	316.400	95,200	107,800	2,000	38,000	559,400	18	$6 \frac{1}{7}$
1850	273.900	68,700	143,400	1,300	35,100	522,400	18	7 ${ }^{\text {7 }}$
18.51	245,800	49,500	172,000	1,300	25,900	494,500	15	4.
1852	:360,700	54,600	133,100	5,800	113,200	657,400	18	5
1853	308,900	48,900	270,600	4,000	85,100	717.500	20	$6 \frac{1}{8}$
$18 \mathrm{K4}$	311,800	47,500	204,000	4,000	59,000	626.300	17	5
18.5	236,300	63,100	133,100	3,500	50,500	486,Fino	12 8	$5 \frac{3}{7}$
18.56	178,130	27,170	99,480	700	27,170	332,740 452,550	12	6
1857	202,430	36,180	191,330	5,020	17,5 0	452,550	12	64

Import into Great Britain, and Quantity taken for Export and Home Consumption.

Years.	Import.							Export.	Consumption.	Werkly Consumption.					
	American.	Brazil.	East India.	$\begin{aligned} & \text { Egyptian, } \\ & \& \text { cc. } \end{aligned}$	West Indies.	Total.	Average Weight of Import.			American.	Brazil.	Egyptian, sc.	East India.	Demerira, Indies, \& c .	$\begin{aligned} & \text { Total, } \\ & \text { Weekly. } \end{aligned}$
	37,500	85,300	216,300	38,000	22,300	$\begin{aligned} & \text { Bales. } \\ & 1,599,500 \end{aligned}$	$\begin{aligned} & \text { Lbs. } \\ & 365 \end{aligned}$	$\begin{gathered} \text { Bales. } \\ 119,700 \end{gathered}$	$\begin{gathered} \text { Bales. } \\ 1,251,300 \end{gathered}$	19,592	1,444	540	2,227	260	$\begin{aligned} & \text { Bales. } \\ & 24,063 \end{aligned}$
	902,432	94,29	273	40,720	32,935	1,344,022	365	116,300	1,192,300	17,575	1,344	608	2,996	406	22,929
1842	1,013,314	87,090	255,437	19,681	17	1,392,89	37	134,40	1,160,400	17,178	1,340	544	2,940	313	22,315
18	1,396,83	98,697	182,065	48,809	17,687	1,744,097	382	120,200	1,367,800	21,355	1,496	744	2,237	462	26,294
	1,246,92	112,86	237,596	66,721	17,474	1,681,584	383	136,800	1,428,600	21,654	2,146	1,054	2,319	300	27,473
	1,499,600	110,200	155,100	82,000	8,80	1,855,700	386	122,880	1,574,400	24,804	2,192	1,062	1,888	331	30,277
1845 1846	-991,000	84,200	94,700	60	13	1,243,50	386	194,200	1,585,960	24,623	2,048	1,338	2,189	300	30,498
1846	874,100	110,200	222,800	20,700		1,232,700	377	221,800	1,157,800	16,683	1,258	994	3,194	136	22,265
	1,375,400	100,200	227,500	29,000	7,900	1,740,000	395	189,600	1,463,700	22,875	1,419	725	2,077	150	28,146
	1,477.700	163	182,200	72,600	9,100	1,905,400	396	254,200	1,590,400	24,688	2,260	969	2,442	187	30,546
1849 1850	1,184,200	171,080	30	79	5,700	1,749,930	302	271,800	1,514,500	20,767	3,310	1,542	3,385	121	29,125
1850	1,393,700	108,700	328,800	67,400		1,903,5	399	268,500	1,662,900	24.316	2,421	1,458	3,686	98	31,979
1851	1,393,700	144,200	221,400	189,900	12,800	2,357,500	392	282,8	1,861,800	28,202	2,404	1,877	3,162	159	35,804
1852	1,789,200	144,200	221,400 485,300	105,400	9,100	2,264,200	398	350,200			2,325	2,425	3,804	188	36,613
1853	1,532,000	132,400 106,900	485,300 308,300	105,400 81,100	9,100 10,400	2,264,200	398 408	350,200 316,600	1,903,900	27,87 29,225	1,925	2,100	3,996	198	3T,444
1854	1,665,800	106,90	308,300	81,100 114,800	10,400 8,900	2,172,500 2,278,100	408 396	316,600 316,900	1,947,100	29,225 30,356	1,925	2,100	3,996 5,351	181	$40,404$
1855	1,623,600	134,700	396,100	114,80	8,900	2,278,100	396 406	316,900 358,670	2,101,000 2,204,044	30,356 31,574	2,192	2,321 5,221	5,351 2,477	263	$42,385$
1856	1,758,208	122,311	463,932	113,111	11,400	2,468,982	406	358,670	2,204,044	$31,574$	2,850	5,221	2,477	$\begin{aligned} & 263 \\ & 136 \end{aligned}$	
1857	1,479,610	168,349	680,466	75,598	11,467	2,415,481	404	337,200	2,028,515	27,071	2,956	7,079	1,768	136	39,010

Price of Collon，at Liverpool，at the close of cach Year．

Description．	1810.	1841.	18．12．	1843.	18.44.	1845.	18.16.	1847.	1848.
Sea Island	$\frac{d .}{20} \text { @ } 36$	$\begin{array}{ll} d . & d . \\ 24 & 28 \end{array}$	$\begin{aligned} & c l . \\ & 24 \end{aligned}$						
Stained dltto	20（a）			$10 \frac{1}{2} @ 20$	10＠20	10t＠20	12＠24	7 ＠ 20	7 （1） 16
Uplund－	6盛 7 7	$7 \quad 7 \frac{3}{4}$	$6 \div$	450	$3 \frac{1}{4} \quad 4 \frac{3}{4}$	$3{ }^{31} 4{ }^{8}$	$6{ }_{6}^{12} 11$		
Mobile－	－－	－-	＊	$4{ }^{4}$	31 ${ }^{\frac{1}{4}}$	$\begin{array}{ll}38 & 4 \frac{3}{4} \\ 3\end{array}$	$\begin{array}{ll}6 \frac{1}{4} & 7 \frac{3}{4} \\ 6 \frac{1}{4} & 7\end{array}$	$\begin{array}{ll} 4 \\ 4 & 51 \\ 4 \end{array}$	$3 \begin{aligned} & 3 \\ & 3 \end{aligned}$
New O．leans	$\begin{array}{cc}8 \frac{1}{1} & 9 \\ 94 & 108\end{array}$	$8 \frac{1}{4} \quad 81$	㔼 9	${ }^{1 \frac{1}{4}}$	30 ${ }^{3}$	31 61	$\begin{array}{ll} 6 \frac{2}{4} & 7 \frac{2}{3} \\ 6,3 & 9 \frac{1}{0} \end{array}$	$4{ }^{4} 8$	31 $4 \frac{4}{21}$
Bathia ${ }^{\text {a }}$ Maceio	$\begin{array}{cc}9 \frac{1}{4} & 10 \frac{1}{4} \\ -9 & -\end{array}$	$8 \frac{1}{4} 10$	$\begin{array}{ll}7 \frac{3}{4} & 8 \% \\ -\end{array}$	$5{ }^{5}$	$4 \frac{18}{4} 5$	$5 \frac{3}{4}$ Cif	$7 \frac{1}{3}$ 82	67^{2}	4， 5 年
Marauham－	$9 \quad 10$	$7 \frac{3}{4} \quad 93$	$6 \frac{8}{4} \quad 7 \frac{3}{13}$	$\begin{array}{ll} 5 \frac{3}{3} & 6 \frac{1}{4} \\ 5 & 6 \frac{1}{1} \end{array}$	$4{ }^{\frac{3}{4}}$	$5 \frac{8}{4}$	71	$5 \frac{1}{4} \quad 6$	4it 5
Peruvlan	－ 10	14	${ }^{6}$	$\begin{array}{ll} 5 \frac{1}{4} & 6 \frac{1}{4} \\ 5 \end{array}$		$\begin{array}{ll} 4 & 6 \\ 4 \frac{3}{1} & 5 \frac{1}{3} \end{array}$	$6 \frac{3}{7}$ 81	4is 0	$4{ }^{4}$
Egyptian	1114	$9712 \frac{1}{4}$	$8 \quad 10 \frac{1}{31}$			$4 \frac{4}{4} \quad 5$	67 8		$4 \frac{3}{4} \quad 5 \frac{3}{3}$
Demerara，\＆c．－	1113	101） 12	$8 \frac{1}{2} 10 \frac{10}{4}$			5－	$7 \frac{103}{7}$	$5{ }^{5} 18$	
Common W．In．	－－	－－		$4 \frac{5}{3}$	$\overline{4} \frac{1}{2} \quad 5 \frac{\pi}{x}$	$\overline{4} \quad \overline{5}$	$\begin{array}{rr} 7 & 10 \frac{1}{7} \\ 68 \end{array}$	$5 \frac{8}{4}$	
Laguira，\＆c．	－－	－ 1		$\begin{array}{ll} 3 \frac{3}{3} \\ 4 \frac{5}{6} & 5 \frac{1}{6} \end{array}$		$\begin{array}{ll} 4 & 5 \\ 4 & 4 \frac{1}{4} \end{array}$	$\begin{array}{ll} 6 \frac{1}{2} & 85 \\ 01 & 7 \end{array}$	$4{ }^{3} 6$	
Carthagena	－－	－ 1		$\begin{array}{ll} 4 \frac{9}{4} & 5 \frac{1}{4} \\ 3 \frac{1}{4} \end{array}$		$\begin{array}{ll} 4 & 4 \frac{1}{4} \\ 3 \frac{1}{2} & 3! \end{array}$	6震	$4 \frac{4}{4} \quad 4$	$3 \frac{1}{2}$
Smyrna－	－－		－－	$4{ }^{4}$		31	$4 \frac{5}{4} \quad 5 \frac{1}{4}$		2 年 3 年
Surat－	$5 \frac{3}{4} \quad 6 \frac{1}{4}$		$4 \frac{3}{4}$	3		3			
Bengal－	4 －				$2{ }^{2}$ 2 ${ }^{2}$		5	$2 \frac{3}{4} \quad 4$	
Madras－	－－			31 $4 \frac{1}{2}$	29 $2 \frac{4}{4}$ 3	$2 \frac{1}{2}$ 3 ${ }^{\frac{3}{4}}$	3	$3 \quad 3 \frac{3}{3}$	$2 \frac{2}{3} \quad 3$
Description．	1849.	1850.	1851.	1852.	1853.	1854.	1855.	1856.	185
Sea Islind			d．${ }^{\text {d }}$	d．d．	d．d．	d．d．			
Stained ditto			101＠24	$16 @ 30$	91＠34	8 ＠ 32	71＠ 32	101（1） 32	$\begin{aligned} & d . \\ & 23 \end{aligned}$
Upland－	$5 \frac{5}{4} \quad 6 \frac{3}{4}$	$7 \quad 8$		$5{ }^{\frac{1}{3}} 111$	$4{ }^{4} 10$			6 9신	$5 \quad 8 \frac{1}{2}$
Moblle－	$5{ }^{\frac{3}{4}}$ 6 ${ }^{\frac{5}{8}}$	$7 \quad 8 \frac{1}{4}$	4		6	3	$4 \frac{1}{1} \quad 6 \frac{1}{4}$	68	46
New Orleans	$5 \frac{8}{\frac{3}{8}} 8^{8}$	$7 \quad 9 \frac{1}{4}$	4 6 ${ }^{4}$		4 4 6	3年	$4 \frac{1}{2} \quad 6$	6 6	$6{ }^{4}$
Pernambuco	$6 \frac{1}{8}$	$8 \frac{1}{4} \quad 9^{4}$	$5 \frac{3}{4} \quad 7^{\frac{3}{4}}$		${ }^{6}{ }^{\frac{1}{4}}$		$4 \frac{13}{3} \quad 7 \frac{1}{4}$	6 83	$7 \frac{1}{4}$
Bahia \＆Maceio	66_{8}^{81}［61	$8{ }^{81}$	$5 \frac{3}{8} \quad 6 \frac{1}{6}$	$6 \frac{1}{6}$ 6 ${ }^{\frac{1}{4}}$	$6{ }^{6 \frac{1}{4}}$	$\begin{array}{ll} 6 & 8 \\ 5 \frac{7}{8} & 6 \frac{1}{2} \end{array}$		73	6 ${ }^{\frac{2}{4}} \quad 7 \frac{7}{3}$
Maranham	$6 \quad 6 \frac{3}{4}$	$7 \frac{1}{2} \quad 9 \frac{1}{8}$	$4 \frac{1}{2} \quad 7 \frac{1}{4}$	$5 \frac{7}{7}$	$5 \frac{3}{4} 8$	$5^{\frac{3}{8}}$	$5{ }^{5} 5$	$\begin{array}{ll}7 \frac{1}{4} & 7 \frac{1}{3} \\ 7\end{array}$	$5{ }^{\text {57 }}$ 6 ${ }^{\text {d }}$
Peruvian	－－	－${ }^{-1}$	－		5－8		5	$\begin{array}{ll}7 \frac{1}{4} & 8 \frac{1}{4} \\ 7 \\ 7 & 7 \frac{3}{3} \\ \end{array}$	$6 \frac{1}{4} \quad 7 \frac{3}{4}$
Egyptian	69	$7 \frac{3}{4} \quad 11$	$5 \quad 9$	$5 \frac{1}{4} 13$	$5 \frac{13}{3}$			$6^{7 \frac{2}{4}} \quad 11^{\frac{3}{4}}$	6i ${ }^{\frac{1}{2}}$
Demerava，\＆c．－	$5 \frac{3}{4} \quad 7 \frac{1}{4}$	$7{ }^{7}$	$5 \frac{1}{1}$	5	${ }^{6} 111$		${ }^{51}$	$66^{6 \frac{3}{3}} 1011$	$7 \quad 9 \frac{1}{2}$
Common W．In．	$5 \frac{1}{9} \quad 6 \frac{1}{4}$	$7{ }^{7} 19$	$4 \frac{3}{4}$－ 6	$5 \frac{1}{4}$	51 9		$5{ }_{5}^{5 \frac{3}{4}}$	$6 \frac{1}{4} \frac{9}{9}$	$6 \quad 9$
Laguira，\＆c．	6 9 $6 \frac{1}{4}$	$7 \frac{78}{7}$ 7	$4{ }^{4 \frac{3}{4}}$	$5 \frac{1}{4} 5$	$5 \frac{1}{2}$	$\begin{array}{ll}5 \frac{8}{4} & 5 \frac{3}{4}\end{array}$	51	$\begin{array}{ll}6 \frac{1}{4} & 9 \\ 7\end{array}$	$5{ }^{5} 5 \quad 6 \frac{1}{4}$
Carthagena	$4 \frac{1}{4}$ ） $5 \frac{1}{4}$	$5 \frac{1}{4}$ 6	$3{ }^{3}$	$3{ }^{31} 3^{\frac{1}{3}}$	$2 \frac{3}{4} \quad 3 \frac{2}{2}$	$2{ }^{\frac{3}{4}} \quad 3 \frac{1}{4}$	$3{ }^{5 \frac{1}{2}}$		5－3 ${ }^{\frac{3}{4}} 40$
Smyrua－	－－	－	$3 \frac{3}{4} \quad 4 \frac{1}{1}$	$4{ }^{8}$	$2{ }_{2}$	24	${ }^{3} \mathrm{C}$	${ }^{-1} 4$	$3 \frac{4}{4}$ $=$ $4 \frac{1}{8}$
Surat	5	$4 \frac{3}{4} \quad 6 \frac{1}{4}$	$2{ }^{2} \frac{1}{8} \frac{1}{4}$	37	$2 \frac{1}{2} \quad 4 \frac{3}{4}$	$2 \frac{1}{2} \quad 4 \frac{1}{4}$			
Bengal－	－－	$4{ }^{4}$	$2{ }^{\frac{\pi}{4}}$	$3 \frac{1}{31}$	－ 23	$2 \frac{1}{2} \quad 3 \frac{1}{4}$	$3{ }^{3}$	$4 \frac{3}{4} \times 15$	
Minlras－	4185	$4 \frac{3}{4} \quad 6 \frac{1}{2}$	$2 \frac{3}{4} 1$	$3 \frac{3}{\frac{3}{4}} \quad 4 \frac{3}{4}$	$2{ }^{2 \frac{3}{4}} 4$	$2{ }^{2} 814$	$\begin{array}{ll}3 & 3 \frac{3}{4} \\ 4\end{array}$	$\begin{array}{ll}4 \frac{1}{3} & 4 \frac{3}{8} \\ 4 \frac{5}{4} & \\ \end{array}$	$\begin{array}{ll}3 \frac{1}{2} & 3 \frac{3}{4} \\ 3 \frac{1}{4} & 5\end{array}$

Price of Water and Mule Twist，in Manchester，on the 31 st of December in each Year．

	No．	1810	1841	1842	1813	1814	1845	1846	1817	1848	1849	$: 850$	1851	1852	1853	1854	1855	1856	1857
Mule Twist．${ }^{\text {a }}$																			
	的 $\left.\begin{array}{c}8 \\ 8 \\ 10\end{array}\right\}$	$8 \frac{1}{4}$	$7 \frac{1}{4}$	$6 \frac{1}{2}$	$6 \frac{8}{4}$	$6 \frac{1}{3}$	$6 \frac{5}{8}$	$8 \frac{1}{4}$	6	$5 \frac{1}{4}$	$6 \frac{3}{4}$	8 $\frac{1}{2}$	6 $\frac{1}{2}$	6尔	$6 \frac{3}{4}$	$6 \frac{3}{2}$	$6 \frac{1}{4}$	73	7
$\begin{aligned} & \text { Common } \\ & \text { Seconds } \end{aligned}$	12 20	$8 \frac{1}{4}$	81	$7{ }^{\frac{3}{4}}$	$7 \frac{3}{4}$	8	$7 \frac{7}{8}$	9			$7 \frac{3}{4}$				$8 \frac{1}{4}$				
	30	$10 \frac{1}{4}$	9	$9{ }^{\frac{1}{4}}$	9	9	8훈	${ }_{10}^{9}$	8	6年	${ }^{9} 9$	10	$\begin{array}{\|c\|} 7 \frac{1}{3} \\ 8 \frac{3}{1} \\ \hline \end{array}$	$\begin{aligned} & 8 \\ & 9 \frac{3}{4} \end{aligned}$	9 $9 \frac{2}{4}$	$7 \frac{2}{3}$ $8 \frac{3}{3}$	$8{ }^{\text {年 }}$	91012	8
	40	14	13	123	123	1212	128	14^{8}	11 $\frac{1}{2}$	$9 \frac{1}{2}$	123	13	$10 \frac{1}{4}$	$11 \frac{1}{2}$		11		$12 \frac{1}{2}$	122 ${ }^{\frac{2}{2}}$
	10	9	$8 \frac{1}{2}$	$7 \frac{3}{3}$	73	7 $\frac{1}{2}$	71	9 $\frac{1}{4}$	$6 \frac{3}{3}$	$5 \frac{3}{4}$	$7{ }^{\frac{1}{4}}$	9	7	$7 \frac{1}{8}$	74	$6 \frac{3}{4}$	$6 \frac{3}{2}$	81 $\frac{1}{4}$	7 $\frac{1}{2}$
$\begin{aligned} & \text { Best } \\ & \text { Seconds } \end{aligned}$	$\binom{12}{20}$	101	913	101	9	$8 \frac{1}{2}$	83	102	719	63	8！$\frac{1}{4}$	1012	8	81	8年	$7 \frac{3}{4}$	$8 \frac{3}{4}$	93	$8 \frac{1}{2}$
	30	13^{2}	12	13	12	10	$9{ }^{\frac{3}{3}}$	$11 \frac{3}{8}$	9	$7{ }^{\frac{1}{2}}$	$9 \frac{1}{2}$	11	913	$10^{\frac{2}{2}}$	$10 \frac{2}{2}$	91	$9 \frac{1}{4}$	11^{4}	$9{ }^{9 \frac{1}{2}}$
	40		$15 \frac{3}{8}$		151	132	$13 \frac{3}{3}$	$15 \frac{1}{1}$	$12 \frac{2}{2}$			$13 \frac{1}{2}$	$11 \frac{1}{4}$		$12 \frac{1}{3}$	$11 \frac{1}{8}$		13	$13^{\frac{1}{2}}$
Water Twist．																			
	6 8	8	$6 \frac{1}{4}$	$6{ }^{\frac{3}{4}}$	63	$6 \frac{2}{2}$	6昆		$5 \frac{3}{3}$	5	$6 \frac{1}{2}$				$5 \frac{1}{2}$				
	$1 \begin{aligned} & 10 \\ & 12\end{aligned}$	8	$6 \frac{1}{4}$	$6 \frac{1}{4}$	63	$6 \frac{2}{2}$	$6 \frac{1}{8}$	$7 \frac{1}{8}$	5	5	6	$8 \frac{1}{4}$	$5 \frac{1}{4}$	5年	5	$5 \frac{1}{4}$	$5 \frac{1}{81}$	$6 \frac{3}{2}$	$6 \frac{7}{4}$
Common Seconds	20	9	$8 \frac{3}{4}$	$7 \frac{1}{4}$	$7 \frac{18}{}$	7 $\frac{1}{2}$	78	$8 \frac{7}{8}$	$6 \frac{3}{4}$	6	$7 \frac{1}{2}$	912	$6 \frac{3}{4}$	$7{ }^{3}$	71	$6 \frac{1}{2}$	$6 \frac{3}{4}$	8	7
	30	103	$9^{\frac{1}{4}}$	$8 \frac{1}{2}$	$8 \frac{1}{3}$	$8 \frac{3}{1}$	$8 \frac{5}{6}$	10^{8}	$7 \frac{1}{1}$	6 ${ }^{\frac{1}{2}}$	$8 \frac{1}{2}$	$10 \frac{3}{4}$	$7 \frac{1}{2}$	81	$8 \frac{1}{3}$	72 ${ }^{\frac{1}{2}}$	8	98	$7 \frac{3}{4}$
	40	$10 \frac{1}{2}$	$9 \frac{1}{2}$	911	9	9）${ }^{\frac{3}{8}}$	$9{ }^{5}$	101	73	$7 \frac{1}{4}$	${ }^{93}{ }^{\frac{1}{2}}$	$12 \frac{1}{4}$	8	$9 \frac{1}{4}$	${ }^{98}$	$8 \frac{1}{6}$	$8{ }^{87}$	10\％	9
	50	12	11	11	102	11	$10 \frac{7}{4}$	$12 \frac{1}{4}$	$8 \frac{3}{4}$	$8 \frac{1}{4}$	$10 \frac{3}{4}$	$13: 3$	93	11	11	10	10	115	103
	6i0	14．${ }^{\frac{1}{7}}$	122	12	122	135	$12 \frac{8}{8}$	$13 \frac{1}{6}$	10	$9 \frac{1}{4}$	$12 \frac{1}{4}$	15	103	122	12	11	11	124	11°
	70	$16 \frac{1}{8}$	15	13，	143	16	147	$15 \frac{5}{7}$	12	11	$13 \frac{1}{2}$	$17 \frac{1}{4}$	123	14	142	13	13	$14 \frac{1}{8}$	12
	80	$18 \frac{1}{9}$	17	151 $\frac{1}{2}$	161	183	$18 \frac{1}{4}$	$19^{\frac{3}{6}}$	14흠	13	17	1913	141	161	17	$15 \frac{1}{2}$	15	16	16
Seconds ．	$\left.\begin{array}{l}6 \\ 8 \\ 10\end{array}\right\}$														6				
	$10\}$	9	$7 \frac{3}{4}$	71	$7 \frac{1}{2}$	7 $\frac{1}{2}$	$7 \frac{3}{4}$	91	$6 \frac{3}{4}$	5 娄	7	$8 \frac{3}{4}$	$5 \frac{3}{3}$	$6 \frac{1}{4}$	6	$5 \frac{3}{2}$	6	$7 \frac{1}{4}$	$6 \frac{3}{1}$
	$\left(\begin{array}{l}12 \\ 20\end{array}\right.$						8		7\％	6裼	8	10	$7 \frac{1}{4}$	81	$7 \frac{3}{4}$	7	7\％	81	$7 \frac{1}{3}$
	30	$12^{9 \frac{3}{4}}$	10	91	$10^{\frac{1}{2}}$	9귤	$9 \frac{5}{8}$	111	$8 \frac{1}{4}$	7	9	$111 \frac{1}{4}$	8	$9 \frac{1}{4}$	$8 \frac{3}{3}$	8	$8{ }^{3}$	10°	8
	40	12 L	$11 \frac{1}{2}$	$10 \frac{1}{4}$	11\％	10^{2}	$10^{\frac{8}{8}}$	113	9	$7 \frac{1}{7}$	10	$12 \frac{1}{4}$	$8 \frac{1}{2}$	10^{10}	！ 11	8	$9{ }^{\text {P }}$	11	104
	50	$13 \frac{1}{2}$	12^{2}	12	118	12	$11 \frac{3}{4}$	$13 \frac{1}{4}$	11	$8{ }^{1}$	$111 \frac{1}{4}$	$14 \frac{1}{4}$	10	10	113	$10 \frac{3}{3}$	101	113	11
	60	16	16	15	$14 \frac{1}{4}$	$16 \frac{1}{2}$	$13 \frac{1}{3}$	15，${ }^{\frac{1}{4}}$	13	10^{*}	123 ${ }^{\frac{3}{4}}$	16	113	13	123	11.	11.	123	11 d
	70	188	18	17	17\％	181	$16{ }^{\frac{3}{4}}$	$18 \frac{3}{3}$	14 $\frac{1}{8}$	12	14	173	13	15	14	133	13.3	15^{2}	14．
	80	21	201	19	$19 \frac{1}{2}$	20.	21.	227	16	114	118	20	1.58	17	173	16	15	163	1 1fi

The Growth, Consumption, and Export of Cotton from the Unied Siates during the lust Fificen Years.

Years.	Crop of the United States.	Consumption in the United States.	Exported to				
			Great Britain.	France.	North of Europe.	Other F . Countrics	Total.
184.1-45	2,394.503	389.006	. $1,439,306$	3.59 .357	134,501	150,592	2,08.3,756
1845-46	$\underline{0,100.537}$	422.597	1,102,369	359,703	86,692	118,023	1,666,792
1846-47	1,778.6.3]	427.597	830,n09	241,48i	75,689	93,148	1,241,222
1847-48	2,347,634	616,044	1,324,265	279,172	100,348	134.476	1,858,261
18.18-49	2,728,596	612,285	1,537,901	368,259	165,45K	156,226	2.227,844
1819-41)	-,196,706	613,498	1,106,771	289,697	72,256	121.601	1,5591,1.55
1850-51	2,355,257	485,614	1,41R.265	301,358	129,492	139.595	1,948,710
185,1-52	3,015,029	699,603	1,668,749	421,375	168,875	184,9447	2,443, 6.15
1452_53	3.262,882	803,725	1,736,850	426,78	171,176	19:3,636	2,528,490
1853-54	$2.93010,027$	737,236	1,603,750	374,058	16̄̄, 172	176,168	2,319,144
18544-55	2,447,339	706,412	1,549,716	409,931	135, 200	149.367	2,244,209
18.55-56	$3.527,845$	770,739	1,921,386	480,637	304,005	243,578	2,954,606
185fi-57	2,939,519	819,936	1,428,870	413,357	24.5,798	161,632	2,2 $2,6,6.7$
1857-58	3,113,962	595,562	1,809,968	384,002	215,145	181,342	2,589,968

Cotton Crop of the United Stutes.

CRANES.

COTTON (GUN). Sce Gun Cotron.

COUR'T PI.ASTER is a considerable object of manufacture. Silk, sarcenet, fine muslin and prepared skins, usually receive preparations of isinglass or paste, to be again covered by spiritous solutions of gun resins; in some cases flour-paste and isinglass alone are employed, in others isinglass in spirit of wine on oiled silk. It is made as follows (according to Dr. Paris) :

Black silk is strained and brushed over ten or twelve times with the following preparation :- Dissolve $\frac{1}{2}$ an ounce of balsam of benzoin in 6 ounces of reetified spirits of wine; and in a scparate vessel dissolve 1 ounce of isinglass in as little watcr as may be. Strain each solution, mix them, and let the mixture rest, so that any undissolved parts may subside ; when the clear liquid is cold it will form a jelly, which must be warmed before it is applied to the silk. When the silk coated with it is quite dry it must be finished off with a coat of a solution of four ounecs of Chian turpentinc in 6 ounces of tincture of benzoin, to prevent its eracking. The application of collodion has tended to limit the uses of this manufacturc. Gold-beaters'-skin or prepared membrane are coated with isinglass, and this again with solutions of gutta-pcreha or eaoutchonc in chloroform or other solvents. Court plasters arc also prepared transparent, fleshcoloured, \&c. \&c.

COW DUNG, employed in the proccsses of dunging in Calico Printing, which see.
COW DUNG SUBSTITUTE. Sulphate, carbonate, and phosphate of lime and soda. Sec Calico Printing.

CRANES, Tubular. Among the many applications of the hollow-girder system, this is one of the most ingenious.

633

Fig. 626 is a vertical scetion of a crane, constructed according to a recent invention, and calculatal for lifting or hoisting weights up to about 8 tons. Fig. 627, is int
elevation of the same ; figs. $628,629,630$, and 631 , are cross sections, on the lines $a b$, $c d, e f, g h$; and $f i g .632$, a transverse vertical section on the line $i k$. A A is the jib, which in its general outline, is of a crane neck form, but rectangular in its crossscction, as particularly shown in figs. 629, 630, and 631. The four sides are formcd of metal plates, firmly riveted together. Along the edges the connection of the plates is effected by means of pieces of angle iron. The comnections of the plates at a plate, which covers or overlaps the ends of the two plates to be joined; the rivets at this part are disposed as represented in fig. 633 (a plan of the top plates), and known as "chain riveting"; в в is the pillar, which is firmly secured by a base plate p, to a stone foundation B ; and fits at top into a cup-shaped bearing c , which is so firmly secured to the side plates of the jib, at or near to the point where the curvature commences, and on which bearing the jib is free to revolve. Fig. 632 is a transverse vertical section of the lower part of the jib, showing the manner of fitting the bearings for the chain-barrel (which is placed in the interior), and the spindles and shafts of the wheel gearing, by which the power is applied there to D , is the chain pulley, which is inserted in an aperture formed in the top of the jib. The chain passing over this pulley enters the interior of the crane, and is continued down to the chain barrel. E is a pulley or roller, which is interposed about half-way betweeu the chainpulley and the chain-barrel, for the purpose of preventing the chain rubbing against the plates. Fig. 634 is a plan of the lower plates.

Fig. 635 is a vertical section of another crane constructed upon the same principle as that just described, but calculated for lifting much greater weights (say 20 tons);
it differs in laving the lower or concave side ΛA, of the jib strengthencd by means of three additional plates is 13 is , whereby the interior is divided into one large and three smaller cells, as shown in figs. 636 aud 637, which are cross sections upon the lines $a b$, and c d of fig. 635. This arrangement of the cells to strengthen the lower or concave side is advisable, in order to obtain sullicient resistance to the compression exerted by the load lifted, without unncesssarily increasing the weight of the other parts. The tension excrted upon the upper or convex plates does not require so much materials to withstand it; c , is the toc of the jib, which rests in a step formed in the bot. tom of the cylindrical castings D , which is built into the masonry forming the basis of the machine. E e are two of a set of pulleys, which arc mounted between two rings F F, and scrve as anti-friction rollers for the upper bearing of the jib. The lowermost of the rings \mathbf{F} F, rests upon a set of rollers $\mathbf{G} \mathbf{G}$, which are fitted into the top of the casting D , so that as the jib is turned round, the rings FF , and the anti-friction rollers which they carry, have perfect freedom to move along with it ; \boldsymbol{H} is a platform, upon which the persons working the machinc may stand, and which supports a column I , within which therc is mounted a spindle K , the lower end of which has keyed to it a pinion L , which gears into a circular rack mm , bolted to the top of the cylindrical casing D. N is a worm-wheel keyed to the top of the spindle \mathbf{r}, into which an endless screw, worked by a hand-wheel, is geared, so that, by turning the hand-wheel, the jib of the crane is made to move round in any requircd direction, o is the chain-barrel ; p the chain-whecl; r r pullcys or rollers which support the chain, and prevent its rubbing against the plates of the jib.

In the cranes and hoisting machines described, the chain barrels are inclosed within the jib, and the spindles of the wheel-gearing are also inside; and this is the dispositiou of these parts preferred; but it will be obrious that they may be also placed outside of the jil, in a manner similarly to that generally followed in the coustruction of ordinary cranes. - See Hydradlic Cranes.

CRAPE. (Crépe, Fr.; Krepp, Germ.) A transparent textile fabric, somewhat like gauze, made of raw silk, gummed, and twisted at the mill. It is woven with any crossing or twecl. When dyed black, it is worn by ladies as a mourning dress. Crapes are crisped (crépes) or smooth; the former being double, are used in close monrning; the latter in less deep. The silk destined for the first is spun harder than fir the second; since the degree of twist, particularly for the warp, determines the degrce of crisping which it assumes after being taken from the loom. It is for this purpose steeped in clear water, and rubbed with prepared wax. Crapes are all woven and dyed with the silk in the raw state. They are finished with a stiffening of gum water. White crape is appropriated to young unmarried females, and to virgins on taking tbe veil in nunneries.

Crape is a Bolognese invention, but has been long manufactured with superior excellence at Lyons in France, and Norwich in England. There is now a large manufactory of it at Yarmouth, by power-loom machinery.

There is another kind of stuff, called crépon, made either of fine wool, or of wool and silk, of which the warp is twisted much harder than the weft. 'X'he crépons of Naples consist altogether of silk.
CRAYONS. (Eng. and Fr.; Pustelstifte, Germ.) Slender, soft, and somewhat friable cylinders, variously coloured for delineating figures upon paper, usually called chalk drawings. Red, green, brown, and other coloured crayons, are made with fine pipe or china clay paste, intimately mixed with earthy or metallic pigments, or in general with body or surface colours, then moulded and dricd. - See Drawing Chalks.
cream of tartar. The Bitartrate of Potash, which see.
CREATINE (Syn. Kreatine), $\mathrm{C}^{5} \mathrm{H}^{9} \mathrm{~N}^{3} \mathrm{O}^{4}+2 \mathrm{HO} . \Lambda$ base existing in the juice of flesh and in urine along with creatinine. It was discovered by Chevreul, but chiefly investigated by Liebig.

CREATININE (Syn. Kreatininc), $\mathrm{C}^{8} \mathrm{H}^{2} \mathrm{~N}^{3} \mathrm{O}^{2}$. A base produced from ereatine by the loss of two atoms of water.-C. G. W.

Creosote. See Kreosote.
CRESYLIC ACID, $\mathrm{C}^{14} \mathrm{H}^{8} \mathrm{O}^{2}-$ A homologue of carbolic acid. See Carbolic Acrd and Kreosote. - C. G. W,

CROSS-FLUCKANS or FLOOKANS. The rame given by the Cormish miners to clay veins of more ancient formation.

CROWN GLASS. Sec Glass.
CRUCIBLES (Creusets, Fr. ; Schmelztiegel, Germ.) are small conical vessels, narrower at the bottom than the mouth, for reducing ores in docimasy by the dry analysis, for fusing mixtures of earthy and other substances, for melting metals, and compounding metallic alloys. They ought to be refraetory in the strongest heats, not readily acted upon by the substances ignited in them, not porous to liquids, and capable
of bearing cousiderable alternations of temperature without cracking; on which aecount they should not be made too thick. - See Melting Pots.
crushing and grinding machinery. See Grinding and Crusming Machinery.
CRYOLITE. Tbe mineral from which the metal Aluminium is obtained with the greatest faeility. See Aluminiom.
It derives it name from kpuos ice,-from the circumstance of its being fusible in the flame of a candle. Its composition is-aluminium 13.00 ; sodium $32 \cdot 8$; fluorine $54 \cdot 2$.
It was discovered at Arksutfiord in West Greenland. by Giesécke, associated in gneiss with galena, pyrites, and spathic iron. It is now obtained in large quantities.
CRYPTIDINE, $\mathrm{C}^{32} \mathrm{H}^{11} \mathrm{~N}$. A volatile base homologous with chinoliue, found by Greville Willians in the less volatile portion of cual tar.-C. G. W.
CRISTAL. A crystal is a body wbich has assumed a certain geometric form. It is produeed by nature, and may be obtained by art.
Tbe ancients believed quartz to be water converted into a solid by intense cold, and hence they called that mineral crystal.from криoтa入лos, ice. This belief still lingers, many persons thinking that roch crystal is, in fact, congealed water. The term crystal is now applied to all solid bodies which assume certain regular forms. A crystal is any solid bounded by plane surfaces symmetrically arranged. Each mincral has its own mode of crystalisation, by which it may be distinguished, and also its own peculiarity of internal structure.

We may have a mineral in a considerable variety of external forms, as pyrites, in cubes, octohedrons, dodecahedrons, \&c. ; but tbese are all resolvable into a simple siagle type - tbe cube. Thus gulena, whatever external form it may assume, has au internal cubical strueturc. Fluor spar, usually occurring in cubical forms, may be eleaved into a regular octohedron. A little reflection, will cnable the studeut to see that nature in her simple arrangements naintains an unvarying internal type, upon which she builds up her varying and beautiful geometric forms. There are certain imaginary lines which are called the axcs of the crystal : these may be
Rectangular and equal, as in the cube.
Rectangular and one unequal, as iu the right square prism.
Riectangular and threc unequal, as in the right rectangular prism.
The three axes unequal, vertical inclined to one of the luteral, at right angles to the other, tico lateral at right angles with onc another, as iu the oblique rhombic prism.

The three axes unequal and all the intersections oblique, as in the oblique rectangular. prism.

Three equal lateral axcs intersecting at angles of 60° and a vertical axis of varying length at right ungles with the lateral, as in the hexagonal prism.
Upon these simple arrangements of tbe axial lines all the crystalline forms depend, the partieles of matter arrauging themselves around these axes according to some law of polarity which bas not yet been developed.
CRYSTAL. A name given to Flint Glass, which see.
CUDBEAR. This colouring matter was first made an article of trade by Dr. Cutbbert Gordon, from whom it derived its name ; and was originally manufactured on a great scale by Mr. G. Maekintosb, at Glasgoir, nearly 80 years ago.
It is prepared in the same manncr as archil, from the same varieties of lichen (see Ancul); only, towards the end of the process, the substance is dried in the air, and is then ground to a very fine powder. See Litmus.
CULM, a term applied to anthracite or stone coai in some districts. See $\Lambda_{\text {nthra }}$ cite.

CUMLDINE, $\mathrm{C}^{18} \mathrm{H}^{13} \mathrm{~N}$. An alkali homologous with aniline, formed by Nicholson by the aetion of reducing agents on nitrocumole. Its density is 0.9526 , and its boiling point 437° - C. G. W.

CUMOLE, $\mathrm{C}^{18} \mathrm{H}^{12}$ (Syn. Cumène), Hydruret of Cumenyle. A hydrocarbon found in coal naphtha; it is also produced by tbe destructive distillation of cunninic acid witb caustic baryta. See Naphtha, Coal, and Carburetted Hydrogen.-C. G. W.

Cupellation. See Assiying and Silver Refining.
CURARINE. An alkaloid existing in a black resinous matter called curari, used by the Americau Indians for poisoning their arrows. It is singular that while the curari poison is absolutely fatal when introduced, even in small doses, into a wound, it is inert when swallowed. Its compnsition is unkurwn, bnt it appears to be produced from one of the Strychere.- C. G. W.

CURCUMA ANGUSTIFOLIA. The narrow leared Turmeric. (East Indian Arrow Root.) This plant is found in the forests, extending from tbe banks of the Looa to Nagpore. At Bhagulpore the root is dug up and rubbed on a slone or bed
in a nortar, and afterwards rubbed in water with the hand and strained through a cloth; the fecula having subsided, the water is poured off, and the tikor (feeula) dried for use. The East Indian arrow root is a fine white- powder, readily distinguishable, both by the eye and the toueh, from West Indian arrow root. 'To the eye it somewhat resembles a finely powdercd salt (as bicarbonate of soda or Rochelle salt). When pinched or pressed by the fingers, it wauts the firmness so eharactexistic of West Indian arrow root, and it does not erepitate to the same extent when rubbed between the fingers.-Pereira.

At Travaneore this starch forms a large portion of the dict of the inhabitants.
CURLING STONE. A stone used in Scotland in playing the natioual game of curling, whieh is practised upon the ice during the winter. The stone is made of some hard primary roek. That of Ailsa Craig, in the Firth of Clyde, is very eelebrated. Ailsa Craig consists of a single rock of greyish eonupact felspar, with small grains of quartz, and very minute particles of hornblende.- Bristow.

CURRYING OF LEATHER, (Corroyer, Fr. ; Zurichten, Germ.,) is the art of dressing skins after they are tanned, in order to render them fit for the purposes of the shoe-maker, coach-maker, harness-maker, $\&$ e. - See Leather, Cerrying of.

CUTLERY. (Coutcllerie Fr. ; Messerschmidwaare, Germ.) Three kinds of steel are made use of in the manufacture of different articles of cutlery, viz., common steel, shear steel, and east steel. Shear steel is exeeedingly plastie and tough. All the edge tools whieh require great tenacity without great hardness are made of it, such as table knives, scythes, plane-irons, \&e.

Cast steel is formed by melting blistered steel in covered crucibles, with bottle glass, and pouring it into east-iron moulds, so as to form it into ingots: these ingots are then taken to the tilt, and drawn into rods of suitable dimensions. No other than east steel can assume a very fine polish, and hence all the finer articles of cutlery are made of it, such as the best seissors, penknives, razors, \&e.

Formerly cast steel eould be worked only at a very low heat ; it can now be made so as to be welded to iron with the greatest ease. Its use is consequently cxtcnded to making very superior kinds of chisels, plane-irons, table-knives, \&c.

Forging of table knives.-Two men are generally employed in the forging of table knives; one ealled the foreman or maker, and the other the striker.

The steel called common steel is employed in making the very common artieles; but for the greatest part of table knives which require a surface free from flaws, shear steel and east steel are generally preferred. That part of the knife termed the blade is first rudely formed and cut off. It is next welded to a rod of iron about $\frac{1}{2}$ ineh square, in such a manner as to leave as little of the iron part of the blade exposed as possible. A suffieient quantity of the iron now attached to the blade is taken off from the rod to form the bolster or shoulder, and the tang.

In order to make the bolster of a given size, and to give it at the same time shape and neatness, it is introduced into a die, and a swage placed over it; the swage has a few smart blows given it by the striker. This die and swage are, by the workmen, called prints.

After the tangs and bolster are finished, the blade is heated a seeond time, and the foreman gives it its proper anvil finish : this operation is termed smithing. The blade is now heated red hot, and plunged perpendicularly into cold water. By this means it becomes hardened. It requires to be tempered regularly down to a blue colour : in whieh state it is ready for the grinder.

Mr. Brownill's method of securing the handles upon table knives and forks, is, by lengthening the tangs, so as to pass them completely through the handle, the ends of which are to be tinned after the ordinary mode of tinning iron; and, when passed through the handle, the end of the tang is to be spread by beating, or a small hole drilled through it, and a pin passed to hold it upon the handle. After this, eaps of metal, either copper plated, or silver, are to be soldered on the projecting end of the tang, and while the soldcr is in a fluid state, the cap is to be pressed upon the end of the handle and held there until the solder is fixed, when the whole is to be cooled by being immersed in cold water.
Mr. Thomason's patent improvements consist in the adaptation of steel edges to the blades of gold and silver knives. These steel edges are to be attaehed to the other metal, of whatever quality it may be, of which the knife, \&cc., is made, by means of solder, in the ordinary node of effecting that process. After the edge of stecl is thus attached to the gold, silver, \&c.., it is to be ground, polished, and tenpered by immersion in cold water, or oil, after being heated. This process being finished, the other parts of the knife are then wrought and ornamented by the eugraver or chaser, as usual.

A patent was oblained in 1827, by Mr. Sinith of Sheffeld, for rolling out knives at one opreration.

In the ordinary mode of making knives, a sheet of steel being provided, the blades are eut out of the sheet, and the backs, sloulders, and tangs, of wrought iron, are attached to the steel blades, by welding at the forge. The knife is then ground to the proper shape, and the blade polished and hardened.
Instead of this welding process, the patentee proposes to make the linives entirely of steel, and to form them by rolling in a hcated state between massive rollers; the shoulders or bolsters, and the taugs for the handles being produced by suitable recesses in the peripheries of the rollers; just as railway rails are formed. When the knife is to be made with what is called a scale tang, that is, a broad flat tang, to which the handle is to be attached in two pieces, riveted on the sides of the tang, the rollers are then only to have recesses cut in them, in a direction parallel to the axis for forming the bolster.
The plate of steel having been heated, is to be pressed between the two rollers, by which the blades and the parts for the scale tangs will be pressed out flat and thin, and those parts which pass between the grooves or recess will be left thick or protuberant, forming the bolster for the shoulder of the blade. But if the tangs are to be round iu order to be fixed into single handles, then it will be necessary also to form trausverse grooves in the rollers, that is, at right angles to those which give shape to the bolsters, the transverse grooves corresponding in length to the longth of the inteuded tang. When the plates of steel have been thus rolled, forming three or more knives in a breadth, the several knives are to be cut out by the ordinary mode of what is called slitting, and the blades and shoulders ground, hardened, and polished in the usual way.

Forks are generally a distinct branch of manufacture from that of knives, and are purchased of the fork makers by the manufacturers of table knives, in a state fit for receiving the handles.
The rods of steel from which the forks arc made, are about ${ }_{8}^{3}$ ths of an inch square. The tang aud shank of the fork are first roughly formed. The fork is then cut off, leaving at one end about I inch of the square part of the steel. This part is afterwards drawn out flat to about the length of the prongs. The shank and tang are now heated, and a proper form given to them by means of a die and swage. The prongs are afterwards formed at one blow by means of the stamp; this nachiue is very similar to that used in driving piles, but it is worked by one man. It consists of a large anvil fixed in a block of stone nearly on a level with the ground. To this anvil are attached two rods of iron of considerable thickness, fixed 12 inches asunder, perpendicularly to the anvil, and diagonally to each other. These are fastened to the ceiling The hammer or staup, about 100 lbs . in weight, having a groove upon either side corresponding to the angles of the upright rods, is made to slide freely through its limited range, being conducted by its two iron supporters. A rope is attached to the hammer, which goes over a pulley on the floor of the room above, and comes down to the person who works the stamp : two corresponding dies are attached, one to the hammer, and the other to the anvil. That part of the fork intended to form the prongs, is heated to a pretty white heat and placed in the lower die, and the hammer containing the other die is made to fall upon it from a height of about 7 or 8 feet. This forns the prongs and the middle part of the fork, leaving a very thin substance of steel between each prong, which is afterwards cut out with an appropriate instrument called a fiy-press. The forks are now annealed by surrounding a large mass of them with hot coals, so that the whole shall become red hot. The fire is suffered gradually to die out, and the forks to cool without being disturbed. This prueess is intended to soften, and by that means to prepare them for filing. The inside of the prongs are then filed, after which they are bent into their proper form and hardened. When hardened, which is effected by heating them red-hot and plunging them into cold water, they are tempered by exposing them to the degrec of heat at which grease inflames.

Penknives are generally forged by a single hand, with the hammer and the anvil simply.

The hammer in this trade is generally light, not exceeding $3 \frac{1}{2} \mathrm{lbs}$. The brcadth of the face, or the striking part, is about one inch; if broader, it would not be convenient for striking so sinall an object. The principal anvil is about 5 inches, and 10 upou the face, and is provided with a groove into which a smaller anvil is wedged. The smaller anvil is about 2 incles square upon the face. The blade of the knife is first drawn out at the end of the rod of stecl, and as much more is cut off along with it as is thought necessary to form the joint. The blade is then taken iu a pair of tongs, and heated a second time to finish the joint part, and at the same tiunc to form a temporary tang for the purpose cf driving into a small haft used by the grinder. Another heat is taken to give the blade a proper finish. The small recess
called the nail hole, used in opening the lenife, is made whilc it is still hot by means of a chisel, which is round on one side, and flat upon the other.

Penkuives are hardened by heating the blade red hot, and dipping them in:o water up to the shoulder. They are tempered by setting them side hy side, witb the hack downwards upon a flat iron plate laid upon the fire, where they are allowed to remain tiil they are of a brown or purple colour.

The blades of pocket knives, and all that come uader the denomination of spring knives, are made in the same way.

The forging of razors is performed by a foreman and striker, as in making table knives.

They are generally made of cast steel. The rods, as they come from the tilt, are about $\frac{1}{2}$ inch broad, and of a thickness sufficient for the back of a razor.

There is nothing peculiar in the tools made use of in forging razors: the anvil is a little rounded at the sides, which affords the opportunity of making the edge thinner, and saves an immense labour to the grinder.

Razors are hardened and tempered in a similar manner to penknives. They are, however, left harder, being only let down to yellow or brown colour.

The forging of scissors is wholly performed by the hammer, and all the sizes are made by a single hand. The anvil of the scissor-maker weighs about $1 \frac{1}{2} \mathrm{cwt}$.; it measures, on the face, about 4 by 11 inches. It is provided with two gates or grooves for the reception of various little indented tools termed by the workmen bosses : one of thesc bosses is employed to give proper figure to the shank of the scissors; another for forming that part which has to make the joint; aud a third is made use of for giving a proper figure to the upper side of the blade. There is also another anvil placed on the same block, containing two or three tools called beak-irons, each consisting of an upright stem about 6 inches high, at the top of which a horizontal heak projects; one of these beaks is conical, and is used for extending the bow of the scissors ; the other is a segment of a cylinder with the round side upwards, containing a recess for giving a proper shape and smoothness to the iuside of the bow.

The shank of the scissors is first formed by means of one of the bosses, above described, leaving as much steel at the end as will form the blade. A hole is then punched about $\frac{1}{4}$ inch in width, a little above the shank. The blade is drawn out and finished, and the scissors separated from the rod a little above the ho!e. It is heated a third time, and the small hole above mentioned is extended upon the beak-irons so as to form the bow. This finishes the forging of scissors. They are promiscuously made in this way, without any other guide than the eye, having no regard to their being in pairs. They are next annealed for the purpose of filling such parts of them as cannot be ground, and afterwards paired.

The very large scissors are made partly of iron, the blades being of steel.
After the forging, the bow and joints, aud such slaanks as cannot be ground, are filed. The rivet hole is then bored, through which they are to be screwed or riveted together. This common kind of scissors is only hardened up to the joint. They are tempered down to a purple or bluc colour. In this state they are taken to the grinder.

Grinding and polishing of cutlery. The various processes which come under this denomination are performed by machinery, moving in general hy the power of the steam-engine or water-wheel.

Grinding wheels or grinding mills are divided into a number of separate rooms; every room contains six places called troughs; each trough consists of a convenience for running a grindstone and a polisher at the same time, which is generally occupied by a mau and a boy.

The business of the grinder is generally divided into three stages, viz. grinding, glazing, and polishing.

The grinding is performed upon stones of various qualities and sizes, depending on the articles to be ground. Those exposing much flat surface, such as saws, fenders, \&c., require stones of great diameter, while razors, whose surface is concave, require to be ground upon stones of very small dimensions. Those articles which require a certain temper, which is the case with most cutting instruments, are mostly ground on a wet stone; for which purpose the stone hangs within the iron trough, filled with water to such a height that its surface may just touch the face of the stone.

Glazing is a process following that of grinding : it consists in giving that degree of lustre and smoothness to an article which can be effected by meaus of emery of various degrees of fineness. The tool on which the glazing is performed, is termed a glazer. It consists of a circular piece of wood, formed of a number of picces in such a manner that its edge or face may always present the endway of the wood. Were it made otherwise, the contraction of the parts would destroy its circular figure. It is fixed upon an iron axis similar to that of the stone. Some glazers are covered on the
face with leather, others with metal, consisting of an alloy of lead and tin; the latter are termed eaps. In others, the wooden surface above is made use of. Some of the leather-faced glazers, such as are used for forks, table knives, edge tools, and all the coarser polished articles, are first coated with a solution of glue, and then covered with emery. The surfaees of the others arc prepared for use by first turning the facc very true, then filling it with small notehes by means of a sharp-ended hammer, and lastly filling up the interstices with a compound of tallow and emery.

The pulley of the glazer is so much less than that of the stone, that its veloeity is more than double, having in general a surface-speed of 1500 feet in a second.

The process of polishing eonsists in giving the most perfect polish to the different articles. Nothing is subjected to this operation but what is made of cast steel, and has been previously hardened and tempercd.

The polisher consists of a circular piece of wood covered with buff leather, the surface of which is covered from time to time, while in use, with the crocus of iron, called also colcothar of vitriol.

The polisber requircs to run at a speed much short of that of the stone, or the glazer. Whatever may be its diameter, the surface must not move at a rate exceeding 70 or 80 feet in a seeond.

CYANATES. The combinations of the various hases with cyanie aeid ($\mathrm{C}^{2} \mathrm{HNO}^{2}$). The eyanate of potash, $\mathrm{C}^{2} \mathrm{NKO}^{2}$ is employed for the preparation of artificial urea. There are two modes of preparing cyanate of potash, both of whieh yield a good product. The first is that of Clemm, the second of Liebig. 1. 8 parts of ferrocyanide of potassium and 3 parts of carbonate of potash are intimately mixed and fused, care being taken not to urge the heat too much. The fluid mass is allowed to fall somewhat in temperature, but not to such an extent as to solidify; 15 parts of red lead are then added by small portions. The crucible is now to be rcheated with stirring, then removed, and the contents poured on to a clean iron plate. 2. The cyanide of potassium of commerce (prepared by the method described in the article under that head) is to be melted in an iron crucible or ladle, and $3 \frac{1}{2}$ parts of dry litharge in fine powder are to be added with eonstant stirring. When the lead has all collected at the bottom, the whole is poured on to an iron plate. The mass obtained by either of the above processes is to be reduced to powder, and boiled with repeated quantities of alcohol, until no more cyanate is extracted. This may be known when the alcohol filtered from the residue no longer yields crystals of cyanate in cooling. -C. G. IV.

CYANHyDRIC ACID. See Hydrocyantc Acin.
CYANIDES. The combinations of cyanogen with metals or other bodies. It has been reinarked in the article Hydiocyanic Acid that cyanogen, C:N, is a eompound salt radical, analogous to the halogens chlorine, iodine, and bromine. Like the latter it unites with metals without the intervention of oxygen, and with hydrogen to form a hydracid corresponding to the hydrochlorie, hydriodic, and hydrobromic acids. The cyanides are both an important and interesting class of salts. The most important is the cyanide of potassium. The latter is formed under a great variety of circumstances, especially where earbonate of potash is heated in contact with carbonaeeous matters. The nitrogen to form the cyauide in the greater number of instances is principally, and in a few entirely, derived from the atmosphere. Many chemists have experimented on this subject, and their results are by no means in harmony; but thins much is certain, that suceess or failure depends solely upon the circumstances under which the experiments are conducted. It has been shown that, when carbonate of potash mixed with charcoal prepared from sugar (see CARBON) is exposed to a very high temperature in a current of nitrogen gas, the potash in the carburet is, at times, absolutely converted into cyanide, not a traee of carhonic acid renaining. Experiments of this class, when made with animal charcoal or eoal, are less conclusive because those matters contain nitrogen. But even then the amount of cyanogen found is out of proportion to the quantity of nitrogen in the coal or other carbonaceous matters. In faet it would seem that the presence of a certain quantity of nitrogen in the coal, \&c., exercises a predisposing tendeney on the nitrogen of the air so as to induce its combination with carbon with greater facility than would be the case if pure carhon were employed. Cyanide of potassium has bcen found on more than one occasion oozing from apertures in iron smelting furnaees. In faet it is produced in such abundance at one furnace in Styria as to send into the market for sale to electro-platers. Cyanide of potassium is largely prepared for the use of electro-platers and gilders. The proportions of the materials used are those of Liebig, who first made known the proecss. The modes of munipulation, however, differ in the details in all laboratories. The following method can be reeommended from the experience of the author of this artiele as giving a white and good product. It can, moreover, be worked on a very large scale. The ferrocyanide of potassium
and salt of tartar are to be separately dried, pulverised, and sifted through cane sicves, The salt of tartar must be frec from sulplates. To 8 parts of dry ferrocyanide of potassium 3 of dry salt of tartar are to be added, and the two are to be incorporated by sifting. A large and strong iron pot is then to be suspended by a clain froms a crane in such a position that it can be lowered into the furnace and raised with ease ; there must also be an arrangement to enable the pot to be arrested at any desired height. 'The pot being heated to redncss, the mixture is to be thrown iu by small portions until the vessel is lialf full; the heat boing allowed to rise gradually until the whole flows pretty quietly. During the fusion the contents are to be stirred with a clean iron rod to promote the aggregation of the spongy sediment. As soon as the rod, on being dipped into the fused mass and removed, brings with it a pure white porcelain like produet, the operation may be regarded as terminated, and the pot is to be raised from the firc by means of the crane and sling in a slightly inclined position. One of the operators now lolds a large clean iron ladle under the edge of the pot, while another elcvatcs the latter with the aid of tongs, so that the ladle becomes filled. The contents of the first ladle arc then pourcd off into another held by the assistant who tilted the pot. The latter then pours the contents of his ladle into a large shallow and brilliantly clean brass basin standing in another containing a little water so as to cool the fused cyanide rapidly. Extreme carc must be taken to prevent even the smallest drop of watcr from finding its way into the brass vessel, because on the hot cyanide coming in contact with it an explosion would occur, scattering it in every direction to the great danger of the persons in the vicinity. The two ladles are to be kept very hot, by being held over the fire until wanted, in order to prevent the cyanide from chilling until it is poured into the brass basin. The latter should be about 18 inches in diameter and $1 \frac{1}{2}$ decp. It should be quite flat bottomed. The object of so many pourings off is to prevent any of the sediment from finding its way into the product, and thus causing black specks in it. The pot on being emptied as far as convenient, is to have the sediment removed and a fresh charge inserted. As soon as the coke of cyanide is cool, it is to be broken up into moderate sized pieces and placed in dry and well closed jars.
The cyanide of potassium possesses great points of interest for the technical and theoretical chemist. It is the salt from which an immense number of compounds of importance may be obtained. Very large quantities are made for the purpose of preparing the auro- and argento- cyanides of potassium for the electro-platers andgilders.

Auro-cyanide of potassium is capable of being formed in several ways. The following are convenient processes. The selection of a mode of preparing it will depend upon the circumstances under which the operation is situated. 1. By the battery. This process is perhaps the most generally convenient and economical for the electro-gilder. A bath is prepared by dissolving the best commercial cyanide of potassium in good filtered or distilled water. The best salt is that sold under the name of "gold cyanide." A Daniell's battery of moderate size being charged, two plates of gold arc attached to wires and connected with it. The larger, which is to be dissolved, is attached to the positive, and the smaller, which need be but the size of a flattened wire, to the negative pole. The action of the battery is kept up until the desired amount is dissolved. It is easy to remove the plate used, dry and weigh it at intervals so as to know the proper time to stop the operation. 2. Teroxide of gold (prepared with magnesia) is to be dissolved in a solution of cyanide of potassium.

Argento-cyanide of potassium. This solution is easily prepared for the clectroplater by the following process. Metallic silver is dissolved in nitric acid and the solution evaporated to dryness. The residue is dissolved in distilled water and filtered. To the solution cyanide of potassium, dissolved in distilled water, is added as long as precipitation takes place, but no longer. The precipitate is filtered off on calico strainers, and well washed with distilled water. It is then to bc dissolved in solution of cyanide of potassium and diluted to the desired strength. The solution is frequently dark coloured at first, but it becomes colourless in a few hours, and should then be filtered from a small black precipitate which will be obtained. Many operators neglect the filtration and washing of the precipitated cyanide of silver, and merely continue the addition of the solution of cyanide of potassium to the nitrate of silver until the precipitate at first formed is re-dissolved. The first method is however to be preferred. Some, instead of precipitating with cyanide of potassium, do so with solution of conmmon salt, and then, after washing off the precipitated chloride of silver, dissolve it in cyanide of potassium. Argentocyanide of potassium can also be prepared with the battery by the process mentioned under auro-cyanide of potassium ; this method is so convenient where the propere apparatus is at hand, that few professional clectro-platers would use any other method.

Diguerreotype artists who silver their plates, or rather, re-silver them, would find the battery process too cumbersome, and should, thercfore, use a solution of argeuto-cyanide of potassium prepared by the first inethod.
In order to suspend Daguerreotype plates in the bath, the little contrivance figured in the margin, fig. 637*, will be found most convenient. It merely consists of pieces of copper wire twisted togetber and formed into a grapnell at the lower end. It acts like a spring; and bolds the plates so firmly that there is no fear of its falling out even if the apparatus be subjected to severe vibration.-C. G. W.
cYanides (FERRO). See Ferrocyanides.
CYANIDE OF POTASSIUM, See Cyanides.
CYANOGEN, $\mathrm{C}^{2} \mathrm{~N}$. A compound salt radical, analogous in its character to chlorine and the other balogens. It was the first body discovered possessing the characters of a compound radical, and the investigations made upon it and its derivations have thrown more light upon the constitution and proper mode of classifying organic substances than any other researches whatever. In consequence of its acting in all its compounds as if it were a simple body or element, chemists generally have acquired the habit of designating it by the symbol Cy . Like tbe haloids it combines with hydrogen to form an acid, and with metals, without the necessity for the presence of oxygen. For a few illustrations of its analogies with chlorine, \&c., see Hydrocyanic Acid. In the article Cyanides several of the conditions under whicb it is formed have also been pointed ont. Tbe modern French chemists of the school of Gerhardt very justly regard cyanogen in tbe light of a double molecule, thus, Cy Cy, or $\mathrm{C}^{4} \mathrm{~N}^{3}$. Tbe reason of this is because most of the phenomena of organic chemistry are more easily explained by the use of four-volume formulx than any others. This latter mode of condensation has been shown by M. Wortz, in bis admirahle work on the compound radicals, to undoubtcdly exist in the case of radicals belonging to the strict bydrogen type, not as ethyle and its homologues; and numerous theoretical and experimental results are in favour of the supposition that ali radicals in tbe free state are binary groups.

If we assume tbe truth of the above hypothesis, we shall regard cyanogen in the free state as a cyanide of cyanogen, analogous to hydrocyanic acid, which is a cyanide of bydrogen.
Cyanogen may very conveniently be prepared by heating cyanide of mercury in a retort of hard glass. A considcrable quantity of the gas is given off, but a portion remains behind in the state of paracyanogen. The latter substance is a black matter, the constitution of which is by no means understood. It bas, however, the same composition in the hundred parts as cyanogen itself, and is therefore isomeric with it.

Cyanogen is a colourless combustible gas witb a sharp odour. Its density is 1.81. Hauy requires for two volumes $1 \cdot 80$. If cooled to a temperature of between -13° and $-22^{\circ} \mathrm{F}$., it liqucfies into a transparent, colourless, and very inobile fluid having a specific gravity of 0.866 . A little below 22° the fluid congeals to a mass resembling ice. The flame of cyanogen is of a pale purple or peach blossom colour.

Some of the properties of cyanogen are very remarkable, and quite distinct from those of the true halogens. For instance, it combines directly with aniline to produce a body having basic propertics. Tbe latter is called cyaniline, and is formed by the coalescence of two molecules of cyanogen with two of aniline, the resulting formula being, consequently, $\mathrm{C}^{28} \mathrm{H}^{14} \mathrm{~N}^{4}$. There are a variety of singular compounds produced by the action of cyanogen and its halogen compounds upon aniline; they have been studied with remarkable skill by Hofmann.-C. G. W.

CYDER (Cidre, Fr. ; Apfelwein, Gerin.) ; the vinous fermented juice of the apple. Tbe ancients were acquainted with cyder and perry, as we learn from the following passage of Pliny the naturalist : "Wine is made from the Syrian pod, from pears and apples of every kind." (Book xiv. chap. 19.) The term cyder or cidre in French, at first written sidre, is derived from the latin word sicera, which denoted all other fermented liquors cxcept grape wine. Cyder seems to have been brought into Normandy hy the Moors of Biscay, who had preserved the usc of it after coming into that country from Africa. It was afterwards spread through some other provinces of France, whence it was introduced into England, Germany, and Russia. It is supposed that tbe first growths of Normandy afford still the best specimens of cyder. Devonshire and Herefordsbire are the countics of England most famous for this beverage.

Strong and somewhat elevated ground, rather dry, and not exposed to the air of the sea, or to ligb winds, are the best sitnations for the growth of the cyder apple. The fruit should be gathered in dry weather. The juice of apples is composed of a great deal of water ; a little sugar analogous to that of the grape; a matter capable of
cansing fermentation with contact of air; a pretty large proportion of mucilage, with malic acid, acetic acid, and an azotised matter in a very small quantity. The seeds contain a bitter substance and a little essential nil ; the pure parenchyma or cellular membrane constitutes not more than two per cent. of the whole. After the apples are gathered, they are left in the harn-loft for fifteen days or upwards to mellow; some of them in this case, howerer, become soft and brown. This degree of maturation diminishes their mucilage, and developes alenhol and carbonic acid ; in consequence of which the cyder suffers no injury. There is always, however, a little loss; and if this ripening goes a little further it is very apt to do harm, notwithstanding the vulgar prejudice of the conntry people to the contrary. Too much care, indeed, cannot be taken to separate the sound from the spoiled apples; for the latter merely furnish an acid leaven, give a disagreeable taste to the juice, and hinder the cyder from fining, by leaving in it a certain portion of the parenchynia, which the gelatinous matter or the fermentation has diffused through it. Unripe apples should be separated from the ripe also, for they possess ton little saccharum to be properly susceptible of the vinous fermentation.

Where cyder-making is scientifically practised, it is prepared by crushing the apples in a mill with revolving edge-stones, turned in a circular stone cistern by one or two horses. When the fruit is half mashed, about one-fifth of its weight of river water is added.

In some places a mill composed of two cast-iron fluted cylinders placed parallel to cach other under the bottom of a hopper, is employed for crushing the apples. One of the cylinders is turned by a winch, and communicates its motion in the opposite direction by means of the flutings working into each other. Each portion of the fruit must be passed thrice through this rude mill in order to be sufficiently mashed; and the same quantity of water must be added as in the edge stone mill.

After the apples are crushed they are usually put into a large tub or tun for 12 or 24 hours. This steeping aids the separation of the juice, because the fermentative motion which takes place in the mass breaks down the cellular membranes; but there is always a loss of alcohol carried off by the carbonie acid disengaged, while the skins and seeds develope a disagreeable taste in the liquid. The vatting might be suppressed if the apples were so comminuted as to give out their juice more readily.

After the vatting, the mashed fruit is carried to the press and put upon a square wicker frame or into a hair bag, sometimes between layers of straw, and exposed stratum super stratum to strong pressure till what is called a cheese or cake is formed. The mass is to be allowed to drain for some time before applying pressure, which ought to be very gradually increased. The juice which exudes with the least pressure affords the best cyder; that which flows towards the end acquires a disagreeable taste from the seeds and the skins. The must is put into casks with large bungholes, where it soon begins to exhibit a tumultuous fermentation. The cask must be eompletely filled, in order that all the light bodies suspended in the liquid when floated to the top by the carbonic acid may flow over with the froth; this means of clearing cyder is particularly necessary with the weak kinds, because it cannot be expected that these matters in suspension will fall to the bottom of the casks after the motion has ceased. In almost every circumstance besides, when no saccharine matter has been added to the must, that kind of yeast which rises to the top must be separated, lest by precipitation it may excite an acid fermentation in the cyder. The casks are raised upon gauntrees or stillinns, in order to place flat tubs below them to receive the liquor which flows over with the froth. At the end of 2 or 3 days for weak ey ders, which are to be drunk somewhat sweet, of 6 or 10 days or more for stronger cyders, with variations for the state of the weather, the fermentation will be sufficiently adranced, and the cyder may be racked off into other casks. Spirit puncheons preserve cyder better than any other, but in all cases the casks should he well seasoned and washed. Sometimes a sulphur match is burned in them before introducing the cyder, a precaution to be generally recommended, as it suspends the activity of the fermentation, and prevents the formation of vinegar.
The cyder procured by the first expression is called cyder without water. The cake remaining in the press is taken out, divided into small pieces, and mashed anew, adding about half the weight of water, when the whole is carried back to the press and treated as above deseribed. The liquor thus obtained furnishes a weaker eyder which will not keep, and therefore must be drunk sonn.

The cake is once more mashed up with water, and squeezed, when it yields a liquor which may be used instead of water for moistening fresh ground apples.
The processes above described, although they have been long practised, and have therefore the stamp of ancestral wisdom, are extremely defectivc. Were the apples ground with a proper rotatory rasp which would tear all their cells assulere, and the luash put through the liydraulic press in bags between lurdles of wicker-werk, the

CYMOLE, - CYMOPHANE.

juice would be obtained in a state of perfcetion fit to make a cyder superior to many wines. An experimental process of this kind has becn actually cxecuted in France upon a considerable sealc, with the best results. The juice had the finc flavour of the apple, was fermented by itself without any previous fermentation in the mash, and afforded an excellent strong cyder which kept well.

When the must of the apples is weak or sour, good cyder cannot be made from it without the addition of some saccharine matter. The syrup into which potato farina is convertible by diastase (saccharine ferment, sce Starcer and Sugar), would answer well for eariching poor apple juice.

The value of apples to produce this beverage of good quality is proportionate to the specific gravity of their juice. M. Couverchel has given the following table, illustrative of that proposition :-

Cyder apples may be distributed into three classes, the swect, the bitter, and the sour. The second are the best; they afford a denser juice, richer in sugar, which clarifies well, and when fermented keeps a long time; the juice of sweet apples is difficult to clarify; but that of the sour ones makes bad cyder. Latc apples are in general to be preferred. With regard to the proper soil for raising apple trees, the reader may consult with advantage an able essay upon "The Cultivation of Orchards and the making of Cyder and Perry," by Frederick Falkner, Esq., in the fourth volume of the Royal Agricultural Journal. He adverts judiciously to the necessity of the presence of alkaline and carthy bases in the soils of all deciduous trees, and especially of such as produce acid fruits.

CYMOLE. $\mathrm{C}^{21} \mathrm{H}^{44}$. Syn. Camphogen. A hydrocarbon found in oil of cuminine in coal naphtha. See Carburetted Hydrogen.

CYMOPHANE. A variety of Chrysoberyl, which exhibits a peculiar milky or opalescent appearance. When cut en caborhon, it shows a white floating band of light, and is much prized as a ring stone.-H. W. B.

LONDON

PRINTBD BY SPOTTISWOODE AND CO,

NHW-STREET EQUARE

CRITICAL OPINIONS OF THE PRESENT EDITION.

"A New Edition of this work in monthly parts, of which three have appeared, claims the attention of every educated man; and, from the wellknown character of Dr. Ure's works, requires but little to he said ahout it. Merely informing our readers that such a work is published, is, we consider, all that is required in this case, as it is a work of reference which they should all possess. We must add that the present edition has heen carefully revised to meet the advances made in inventive improvements; aud new facts in science since the date of the last edition are introduced. We strongly recommend both the philosopher and the practical man to give Dr. Ure's book a place in his library."

Civil Engineer.

"THIS new edition of Ure's Dictionar'y is a work much wanted in these

 days. Mr. Robert Hunt's reputation is a guarantee for the careful editorship. The list of contrihutors to the various departments is also satisfactory. The writing of good articles for cyclopedias and dictionaries does not hring any high resounding reputation generally; but such writers may take to their hearts in compensation this truth, that what they write, if well done, is of far more henefit to mankind than ten popular novels. The first two parts are good-the diagrams and illustrations are carefully done; and although the alphabet has only reached as far as Bor we have a confident hope that it will reach Z with credit to all concerned in writing the Dictionary, and with great profit to its readers."Globe.
" $\mathrm{W}^{\text {E have already directed attention }}$ to this admirable re-issue of onc of the most valuable standard works of the age, and we may therefore content ourselves with reporting that the sccoud - part exhibits no diminution in the excellent features which characterised its preclecessor. At the present day fewr men can dispense with a tolerably complete acquaintance with the subject of which this book so ably treats ; and, while the practical inquirer will find iu its pages all the minute details of which he may stand in need, brought down to the latest point attained by the development of modern discovery and mechanical improvement, the general reader will gather from it an abundant harvest of deeply interesting information, rendered thorouglly comprehensible by wellexecuted illustrations, and be enabled to familiarise himself with the marvels which have becn wrought by human ingenuity and perseverance. The names of the contributors to this new edition furnish an ample guarantee for the renlisation of the ohjects sct forth in the prospectus, and we cannot doubt that the puhlic will avail themsclves extcusively of the facility afforded by its mode of publication for becoming possessors of a work of such sterling wortb."

Morning Post.
"WV have before us the first two parts of a new edition of this staudard work, which is now in course of publication under the editorship of Mr. Robert Hunt, a gentleman well and favourably known in the world of science. That thc original work stood high in the estssm of those for whom it was particularly iatended is most plain, from several editions having soon bssn exhausted. A carsful inspection of ths re-issue, so far as it has appeared, promises wsll. The advance of science bas hasn of late years so The advance of science bas hssn of in sach of ths departmeuts of which this worls rapid in sach of ths departmeuts of which this wors
is ths exponent as to render, in Vsry many cases, the nccessity of the former treatises heing almost wholly rewrittsn; and further, of ths introduction of many new articles, treating for ths first tims on the more recsnt offeprings of science, so far as it relates to this thres important branches treatsd of in this work. Both thiss prime ohjects seem to be satisfactorily and stsadily pursued, and we are glad to find ths editor has associatsd with himself a corps of colloborateurs, each holding a distinguished position in his own branch of scientific research, and comprisiag many names well known and bighly honoured in this city and its surrounding district. The present edition assumes almost the appearance of a new base on the original plan. It will, of course, be much expauded In dimensions, forming, when completed, three goodly volumes, and embracing well-digested information upon every subject comprised in its wide scope. The wood engravings, which are profusely scattered through the test, are well and accnrately executed. We can safely commend this work to all who are interested in the important branchos of trade and commerce which it comprehends."

Manofeeter Counier.

URE'S DICTIONARY has long

 authority, and the best work of reference on the subject of which it treats. Of a work of established reputation, new editions will be required from time to time; andl each must he revised and enlarged, that it may represent the advance in Art and Science. Such revision is no light ;undertaking. The comprehensive character of the work makes it a task beyond the powers of any individual, for where shall the man be found with that thorough and equal mastery of the realm of practical science which shall enable him to instruct perfectly in all the details of every subject, without the partiality which may tempt him to give undue prominence to some favourite pursuit. If, therefore, ths revision is to bs exscutsd satisfactorily, it must bs the work of many hands, in fact of leading and practical men in each department. This advantage, it appears, has heen secured for the present cdition of Ure's Distionary. Forty-seven eminent cdition of Ure's in the list of conlributors, including some of the most distinguished in their sevsral spheres; and ths general Editor is well known among us, and may be claimed as one of ourselves. In him, and in his coadjutors, the public have a guarantee that this new edition will maintain, and even increase, the well-earned reputation of the work. On the subject of most interest to ourselvcs as Cornishmen and Miners, we obtain the assistance of John Darlington, mining engineer and author; Herbert Mackworth, inspector of mines ; Robert Oxland, author; Andrew Ramsay, Professor of 'Geolort in the Government School of Mines; besides other dis. tinguisbed as practical geologists and metallinrgists work, therefore, will have an especial valuo and ints. The Cornwall. The first part, now before us, we hnve read with attention, and with much satisfaction. It is written throughout in a simple and easy style, generally intclligible to ordinary readers, and eminently of a popular gible to ordinary readers, and eminently of a popularcharacter all persons interested in science and the arts."

Royal Cornwall Gazette.

Critical Opinions of the Present Edition.

6 BOOK the value of which cannot be exaggerated." Scottisu Press.
" THE position which Dr. Ure's Dictionary of Arts, Mranufactures, and Mines speedily acquired and maintained proves that it was a work of great value and utility. But rapid progress is making in the subjects it treats; and the few years which have elapsed since the third edition appeared, have created muab new matter which ought to have a place in such a work. It caonot, therefore, but be a matter of satisfaction that a new edition is now in course of publication, illustrated with nearly two thousand engravings on wood; and with the greater part of the matter rewritteo. Under the able editing of ths learned and experienced Keeper of Mining Records, we doubt not this new edition will be all that coull be desired."

Leeds Inteldiaencer.
" THE well-known Dictionary of Dr. Andrew Ure has occupied a unique place in English literature of the useful arts and applied sciences. The author was a sound chemist, familiar with the processes by which the powers and principles of science are made subservient to the wants of man. Moreover, his practical turn of mind, and especially his large practice as a consulting chemist, in which capacity he was for a great part of his life constantly referred to by manufacturers, inventors, and dealers in the raw materials of industry, kept him well acquainted with the progress of the arts. The lucid style which he acquired parly, and never lost, supplied the only further qualificatioo required of the author of a scientific and practical work of reference. Dr. . ver, has been for some time dead: increased manulacturing activity makes new demands 00 inventive skill, machinery is rendered more effective, materials are economised, and the cost of production is reduced. The technological encyclopredia of ten years ago, therefore, is not sufficient for the purposes of to-llay, and a new edition of Ure's Dictionary is demanded. The proprietors of the work appear to us to have taken the wisest and most liberal course tbat was open to them in placing the editorship in the bands of a gentleman possessing the confidence of men of science and art, and giving him the assistance of competent gentlemen, who have been engagid to furnish articles on special branches of industry which they have made subjects of study.
"The editor states that all which was really valuable in the last edition has been retained. 'Changes have, however, been so numerous in every department of the arts and manufactures, and these have becn made with so much ravidity, that it bas been neceseary to rewrite more than two-thirds of tbe work. The objects which have been steadily kept in view are the following:-To furnish a work of reference on all points coonected with the subjects work of in its design which should be of the most reliable character. To give to the scientific student and the public the most exact details of those manufactures which ovolve the application of the discoveries of either physics or chemistry. To include so much of science as may render tbe philosophy of manufacture at once intelligible, and enable the technical man to appreciatc the value o abstruse research. To include such commercial information as may guile the manufacturer, and fairly represent the history and the value of sucb forcign and colonial productions as are imported in the raw condition. To preseot to the public, without much elaboratioo, a suffipresently copious description of the arts we cultivate, of the manufactures for which we arc distinguished, and of those mining and metallurgical operations wbich are so pre-eminently of native growth, including at the same pre-eminentilently detalled account of the industries of other states.' Tlise two parts which have already appeared well suatain these professlons, and assure the public that this most useful work will be expcuted with all the aid the highest practical and scientific ability. Dathy News.

"MESSRS. Longman and Ca are now publishing a new and entircly rewritten edition of this favourite work. Few men were.more familiar with the applications of science, and the details of all those arts and manufactures which involve the discoverics of chemistry, than the late Dr. Ure. Perhaps no mao was more frequently consulted on questions of patent right, or coocerned in experimpnts, which had for their objects the removal of difficulties in the processes whleh the laboratory had given to the manufactory. With these advantages supersdded to kucl ns bclong naturally to n comprehensive mind, trained with much industry in habits of close observation, it could scarcely be otherwise than that a work of a teclinological character produced by such a man should be of a high standard of excellence; nevertheless a carcful examinatioo of the work, after tbe death of Dr. Ure, proved that the shackles ol agc had, to some extent, prevented his following all the applications of science which have been made with snch rnpid strides within tbe last few years. The publishers therefore determined to commit the work to a thoroughly competent editor, Mr. Robert Hunt, the Keeper of Mining Records, \&c., and first-rate authorities have beeo engaged to furnish the articles on thone special industries which they have made the objects of study. To effect the objects which have been steadily kept io view, it has become necessary to enlarge tbe publication from two to three volumes, and thus space is afforded for the introduction of a great number of tech.ical and other important terms, and of numerous new and interesting processes which could not be included new and interesting processes which could not be included in former editions. no work is now appearing in monthly parts, and, no doubt, many of our readers wil gladly a vail themselves of the opportunity to possess themselves of a really valuable work of reference oo
manufacturing industry."
"TI is with the greatest satisfaction
that we receive the first part of a new edition of the late Dr. Ure's great work, and our satisfaction is heightened by an examination of its contents. Mr. Robert Hunt is exceedingly well fitted to be its ganeral editor, and be has associated with him a staff of yentlemen thoroughly competent to help him with the details of his grcat undcrtaking. No one can know better than ourselves how invaluable Dr. Ure's volumes have been to manufanturers and men of science generally; hut it must be acknowlerlged that of late years the progress of science had carried us beyond it in many respects, an 1 n new edition, bringing its articles up to date, was greatly nerded. The first part proves that the need is being most satisfactorils supplied. The 192 pages of this part carry us only to the article Artesitin Wells, which was renched on the 87 th page of the edition of 1853; so that the new matter is more phan twice as voluminous as the old. This arises, to a great than twice as voluminous as the entirely new articles ; but extent, is the result of the extension of the former arti les with modern matter. Among the inany new artieles clcs with modern matter, Amos on Acidimetry, 2 on the in mine 1 on 4 on Alumition, it on Chloride A1r engine, $2 \frac{1}{2}$ on Alge, 4 on Alourios material named of Antmonn, ano the cstended Arnatto, Amotto, or Amotto. Anong the catended articles the principal are, that on Acctic Acill, Whinch is extended from 12 to 19 pages, others on Alcohol and Alcoholometry, enlarged from 13 to 23 pnges; on Aldehyde, from 7 lines to a page on Alkali and Alkalimetry, frum 13 to 18 pages ; on Alluy, from 4 to 11 pages; on Alum from $8 \frac{1}{2}$ to 18 pages; on Amalgam, from 2 lives tn a page on Ammonir, from 1 to 10 pages; on Anchor, from 4 to 9 pages; on Aviline, from 10 lines to 2 pages; on Anthracite from 20 lioes to 3 pages; on Antimony, from 1 to $9 \frac{1}{2}$ pages aod on Arsenic and its compounds, from $4 \frac{1}{2}$ to 8 pages We give these details to show the comprehensive manne in which the nesp edition is being revised. Nor is any ex pense spared in the getting up of the new edition. The new poodcuts, which are numerous, are exceedingly well en graved, and both the paper and the typenre superior to those graved, and edition. We find great reason to helieve nlso, from a careful examioatioo of this part, that perfect impartiality will be observed in the new and the rewritten partiality The chief Editor bimself, Mr. Hunt, has no articles. we observe to remove from the article on Acti scrupled, we complimentary to himself, which formerly appcared in it. Agnin, in the article on Anchors we find appcared foir and hoost account of the various improvement whicb have been proposed in anchors from time to time The edition is to be completed in fourteen parts, published The editioo formiog thris volumes. Encli part will be most valuable in itself, and manufact,
will be glad to secnre each as it appears Mane' Maoaztive.

Abstract

[^0]: Mining Record Office, Muscum of Practical Gcology:
 August 1860.

[^1]: * Numbers, vi. 3.
 \dagger De natura mulicbri.
 § Investigation of Perlection.
 If Weatendorf, Diss. de opt. acet. conc. \&ic. Gottenburg, 1772.
 \$/ Lowitz, Aligeni. Journal von Likerer, III. too.

[^2]: * Comptes rendus, xix. 611.
 \ddagger Mohr, Ann. der Chein. Und l'har. xxxi. 227.

[^3]: - Comptes rendus. xxxiv. 755.

[^4]: *his substanee has been supposed by some to be a fungus, and has been described by Mulder under the name of Mycosederm Aceti.

[^5]: * I'olytech. Centralblat, 1852, 1. 395.

[^6]: * In most cases where, in commercial languagc, mention is made of real acctic acid, the hypothetical compound $\mathrm{C}^{4} \mathrm{H}^{3} \mathrm{O}^{3}$ is meant: but it would be better in future always to give the per-centage of acetic acid $\mathrm{C}^{4} \mathrm{H}^{4} \mathrm{O}^{4}$ - for the body $\mathrm{C}^{4} \mathrm{H}^{3} \mathrm{O}^{3}$ is altogether hypothetical-never having yet been discovered. See the remarks on Anhydrous Acetic Acid at the commencement of this article.- II. M. W.
 \dagger Quarterly Journal of Sclence, vi. 255.

[^7]: * The directions given by M. Violette for the preparation of Saccharate of Lhme are as follow :Digest in the cold 50 grammes of slaked caustic lime in 1 litre of water containhg 100 grammes of sugar.

[^8]: * The methods of estimatlog the amount of hydrosulphuric acid (sulphuretted hydrogen) and of metallic sulphurcts in mineral waters, \&c., will be lound under the head Sulfiymionerry.

[^9]: Vol. I.

[^10]: * Chemical Technology, by Dr. F. Knapp: cdited by Messrs. Ronalds and Richardson. Vol. iii. 198.
 + On the P'reparation of Absolutc Alcohol, and the Composition of Proof Spirit. Sec Memofrs of the Chemical Soriety, vol iii. p. 447.
 \ddagger Soemmering. "Denkschriften d. K. Aknd. d. Wissenchaften zul Muschen," 1711 to 1824.

[^11]: * Memoirs of the Chemical Society, vol. iii. p. 454.

[^12]: * By specific gravity

[^13]: Some difference of opinion appears to exlst whether Choroform can be obtained pure from methy-

[^14]: * The Chemistry of Wine, by G. J. Muider, edited by H. Bence Jones, M.i).
 † Brando's Manuai of Chemistry ; aiso Philosophical Trans., 1811.

[^15]: * Comptes Rendus, xxvil. 418.
 + On the Acidity, Sweetness, and Strength of different Wines, by II. Bence Jones, M.D., F.R.S., Procecdings of the hoyal Institution, February, 1854.

[^16]: * Pereira, Materia Medica, vol ii. p. 1948.

[^17]: * Anhydrous, or dry, neutral carbonatc of sola may be obtalned by keeping a certan quantity of pure bicarbonate of soda for a short time, at a dull red heat, in a platinum crucible: the bicarbonate is converted into lits neutral carbonate, of course free from water.

[^18]: * In the impossibiity of estimating exactly the loss by calcination, and the quantity of oxide of potassium in the caustic statc (hydratc of potasil), we have reduced the potasin to tio state of carbonate,
 to make comparison morc casy.

 Vol. 1.

[^19]: * Encyclopedia Britannica, Art. Strangti, and Introduction ad Philoso Naturx.

[^20]: * Chemical Society's Quarterly Journal, vi. 216.

[^21]: * Poggendorl's Anualen, xi. 146.
 \ddagger Coinptes liendus, xxxvili. 279.
 \dagger Ann. Ch. et Pharm., liii. 422.
 || Record of Mining and Metallurgy, Phillips and Darlington.

[^22]: * Pogg. Ann. xcii. G48.
 \dagger Comptes Rendus, xxxix. 321 .
 \ddagger Phil, Mag. vil. 207.

[^23]: * Phil Mag. x. 143.
 \ddagger Journal pr. Chem. Ixvii. 494.

 1) Comptes Rendus, xili. 925.
 ** Phil. Mag. x. 245.
[^24]: + Journal pr. Chem. Ixvii. 493.
 C. and J. Tissier, Comples Rendus, xliii. 885.

 शf Proceedings of the Royai Institution, March 14, 1856.

[^25]: * The present price of Aluminium In London is 5s. peronnce, whilst only in March, 1856, just after M. Deville's experiments had been made, it cost 34 . per ounce.
 + It is calculated that more than a million sterliug is ammally expended in the metropolis on the paint necessary to protect the irou-work from decay.-Rce. J. Barlow.
 \ddagger Grahani's Efements of Chemistry, i. 605.

[^26]: * Pharm. Journ. xiii. 114.
 k 2

[^27]: * Pharm. Journal, xiii. 64.

[^28]: * Consult Prestwich, Water-bearing Strata of tho Country around London; Mylne's Sections of the London Strata; M. Garnier's Traite sur les P'uits Artésiens; Swindell, liudimentary Treations on Well.
 digeing, Boring, \&

[^29]: * Griepenkerl.
 \dagger Gricpenkerl. $\ddagger \mathrm{A}$ Maller.
 \& Way. || Hubert.
 - Wiay.

[^30]: * The most useful works on this subjeet are, - Chaudet, "L'Art de PEssaycur;" the work of Gayby Vergnaud, Paris, 1836 (axt; "Manuel complet de P' Essayeur," par Vauquelin and D'Arcet, ectited mannischen Problerkunst" (ast useful little work); Bodemann, "Anleitung, zur Berg- und Hutten mannisehen Problerkunst," Clausthal, 1815 ; (and, berhaps the best of them all) thic " und Hutten-
 Hallindbock voor Essaljeurs Goud und Zilversmeden "by Stratingh, Gronlugen, 1821 ,

[^31]: * Hetwing (Society for diffuing Useful Knowledge), p. 156.

[^32]: - Nat. Hist. xxxv., 57, \&c.

[^33]: Vol. I.

[^34]: D D

[^35]: The substanees whieh are now almost exelusively employed for adulterating bread

[^36]: * Communication of M. Mège Mouriès to the Académie des Sciences, January, 1858.

[^37]: * e signifies earthy; o o, coarse erystalline; $\mathrm{v} \mathbf{c}$, fine crystalline; c , eonchoidal; v , vitreous; $\mathrm{v} \mathbf{c}$, + tll tomber c , tabuar erystalline.
 † All these alloys are found oeeasionally in bells and specula with mixtures of Zn and Pb .

[^38]: ＊The stream cables mas be of iron，of proportionate sizes．

[^39]: England, by Thomas Hancock. Origin and Progress of Caoutchouc or Indian Rubber manufactured in
 (iun Elastic and its Varietics, with i detailed Aman and Co., $8 \mathrm{vo} . \mathrm{pp} .283$ (plates).
 Discovery of Vulcanisation; by Charles Goodycar. Account of its Applications and Uses, and of tho 2 vols. 8vo. pp. 24f, 379 (plates).

[^40]: green dye which the colour dealers

[^41]: *For the typical representation of the mixed and composed ethers, set the article Erner.

[^42]: * Mr. Calvert forms a mixture of $5 \frac{1}{4}$ equivalents of burnt lime for 1 equivalent of caustic potash, and passus a current of chlorine through the hot mixture. Under these conditions chloride of calcium and clilorate of potash are produced, and the quantity of the latter is stated to be very nearly the theoretical
 amount.

[^43]: (1) from St. Domingo, analysed by Berthier; (2) from Röraas, in Norway, analysed by Von Kobell; (3) from Baltimore, analysed by Segbert; (4) crystallised, from Baltimore, analysed by Abich ; (5) analysed by Klaproth.

[^44]: * These balls, which should be of the size of a large pea, are required constider in gases; they are readily prepired, when the substance of which required constantly in operations upon chloride of calcillm or craustic potash, by melting these materials in a crucibled is fusible by heat, as cold the ball strached to the which the curved end of a platinum wre has bean thell pouring them the inculd containing the the wirc is readily removed from the mould. Coke bullets ared; when quite powdered, and then exposing the wire with a inixture of two pratts of coke bullets are made by filling quaricr of ans hour.

[^45]: * Care must be taken not to add to the water, which scrves to extract the colouring matter from the different cochincals, more than the requlsite quantity of acid sulphate of alumina and solutlon of + For diluting the lifuors the same water must always colouring matter in the state of take. colouring matter of the cochineals under examination, otherwise the darkest has served to extract the violet, as water was alded to it, to bring back the tint to the degreo of intensity as that would pass into to which it is compared.

[^46]: * The Chessy Mines have been some years abandoned, but the refuse ores are being at present worked

[^47]: * Records of Mining and Metallurgy, 1.382.

