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Lianas are one of the most iconic elements of tropical forests and their presence is a major feature of these biomes. Here
we aim to describe and compare the wood of key genera of Fabaceae subfamily Papilionoideae comprising both trees and
lianas. Thirty-eight species from the genera Machaerium, Dalbergia, Clitoria and Dioclea were sampled to establish the
main quantitative features that differentiate lianas and trees, the so-called “Lianescent Vascular Syndrome”. Variance
analyses were carried out to diagnose the anatomical differences between trees and lianas. Whereas most studies focused
on qualitative features, this study focused on a statistical, quantitative comparison of lianas and trees of Papilionoideae,
some not previously analysed anatomically. Our results show that lianas are quantitatively different from trees in having
wider and more frequent vessels, a higher percentage of axial and radial parenchyma relative to fibres, greater ray height
and width and longer fibres, statistically corroborating the “Lianescent Vascular Syndrome”.

ADDITIONAL KEYWORDS: climbers — Clitoria — Dalbergia — Dioclea — Leguminosae — Machaerium — self-
supporting — vessel diameter — vessel density — wood anatomy — xylem.

INTRODUCTION the Tropics (Gentry, 1983, 1991; Putz, 1984; Schnitzer
et al., 2014), contributing 9-35% of the woody species
diversity (Schnitzer & Bongers, 2002, 2011; Schnitzer
et al., 2014). They are an important source of food,
shelter and interconnecting bridges between trees for
tropical fauna; however, they also compete with trees
for space, light, water and nutrients, exerting a strong
selective pressure on tropical trees reducing growth,
fecundity, physiological performance and tree survival
rates (Gentry, 1991; Kurzel et al., 2006; Schnitzer et al.,
2014; Alvarez-Cansino et al., 2015; Dias et al., 2017).
Lianas circumnutate in search of support, and
once a support is found, lianas undergo a rapid
modification in anatomy and morphology, frequently
developing structures that facilitate their ascent
to the canopy, including tendrils, spines, hooks
and adventitious adhesive roots (Darwin, 1867;
*Corresponding author. E-mail clauleme09@gmail.com Isnard & Silk, 2009; Cabanillas & Hurrell, 2012;

Climbing plants, both herbaceous and woody, the
latter being referred to as “lianas”, comprise plants
of unrelated lineages that use external mechanical
supports to ascend towards light. Lianas germinate
in the soil, and their stems grow towards the canopy
using the stems of other species or objects as support
(Putz & Mooney, 1991; Cabanillas & Hurrell, 2012;
Sperotto et al., 2020; Souza-Baena et al., 2021).

The lianescent habit is not restricted to a single
geographical region; however, c. 90% of all liana species
occur in tropical forests (Hegarty, 1989; Schnitzer
et al., 2012, 2014). Lianas have great value as a
functional and structural component interconnecting
treetops in a range of forest ecosystems, particularly in
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Souza-Baena et al., 2018, 2021). A set of anatomical
vascular features has been proposed to distinguish
the wood of lianas from that of self-supporting plants.
These features include the presence of wider and more
frequent vessels for any given stem diameter, a larger
amount of axial parenchyma and higher rays, with a
consequent reduction in the amount of fibres, and the
presence of cambial variants (Schenck, 1892-1893;
Pfeiffer, 1926; Obaton, 1960; Putz, 1980; Metcalfe &
Chalk, 1983; Carlquist, 1991; Gasson & Dobbins,
1991; Carlquist et al., 1993; Fisher & Ewers, 1995;
Angyalossy et al.,2012,2015; Pace & Angyalossy, 2013;
Morris et al., 2016; Gerolamo & Angyalossy, 2017).
The sum of these features was coined the “Lianescent
Vascular Syndrome” by Angyalossy et al. (2015).
However, quantitative analyses comparing trees and
lianas under the same taxonomic groups are rare,
with Bignoniaceae being the sole exception (Gasson
& Dobbins, 1991; Pace & Angyalossy, 2013; Pace
et al., 2015; Gerolamo & Angyalossy, 2017; Gerolamo
et al., 2020). Other studies typically focus on a single
species/genus (Pelissari et al., 2018; Ganthaler et al.,
2019; Chery et al., 2020) or on just one of the habits
[e.g. those of Brandes & Barros (2008), Brandes et al.
(2011), and Tamaio et al. (2011) focused on lianas].

The presence of the lianescent habit was reported
in 133 families by Gentry (1991), scattered across
angiosperm lineages. They are, however, especially
frequent in Fabaceae, the second largest family of
angiosperms in Neotropical forests (Lewis & Owen,
1989) and often the largest family in number of trees,
shrubs and lianescent species in floristic surveys
(Gentry, 1982, 1988, 1991; Hegarty, 1989; Ribeiro et al.,
1994, Gei et al., 2018). Thus, given the importance of
lianas for tropical forest diversity and the importance
of Fabaceae in this biome, combined with the lack of
formal statistical studies comparing trees and lianas
in this important family and of studies with large
datasets, we aimed to compare the wood between
these two plant habits. statistically characterizing
the “Lianescent Vascular Syndrome”, trees and lianas
in Machaerium Pers., Dalbergia L.f., Clitoria L. and
Dioclea Spreng., all belonging to Fabaceae subfamily
Papilionoideae.

MATERIAL AND METHODS

Thirty-eight species (92 specimens) of Papilionoideae
were sampled, including 19 trees and 19 lianas. These
included 22 Machaerium spp. and six Dalbergia spp.
(Dalbergieae), and six Clitoria spp. and four Dioclea
spp. (Phaseoleae) (Appendix).

Histological sections were performed according to
techniques adapted from Johansen (1940) and Sass

(1951) on samples taken from the outermost region
of the stem of fully-grown individuals. Transverse
and longitudinal sections (tangential and radial),
20-120 pm thick, were stained (Gerlach, 1984). The
Franklin method for cellular element dissociation was
used, modified according to Berlyn & Miksche (1976).
The wood anatomy terminology and recommendations
for measurements followed the TAWA Committee
(1989). Since the scope of this article was a statistical
comparison, full descriptions of species were not given.

Morphological variables present in all species were
recorded, including percentage of overall parenchyma
(axial and radial combined), vessel element diameter
and length and fibre length (all in pm), vessels per
mm?, ray width (number of cells and pm), ray height
(um), rays per mm? and percentage of fibres. Lianas
typically have two vessel classes, those that are very
wide and those that are very narrow. Here, following
the recommendations of the IAWA Committee (1989)
for plants with vessel dimorphisms we measured only
the diameter of wide vessels, which are those that
contribute to the bulk of water conduction. One to five
individuals were analysed per species, as listed in the
Appendix.

The statistical test employed to differentiate lianas
and trees was analysis of variance (ANOVA). This
analysis considered ten variables present in all the
species where the sample unit was each species’variable
mean. Variables for which residues did not satisfy the
requirements of normal distribution (as determined
by a Lilliefors test) and equal variances were log,
arcsine or square-root transformed. Differences were
considered statistically significant when P < 0.05
and highly significant when P < 0.001. The statistical
analyses were conducted using Microsoft Excel 97
SR-2 and Statistic 5.1 for Windows software (Statsoft
Inc., 1997).

RESULTS

Visually trees and lianas of the studied genera are
different (Fig. 1). However, the main goal of this
work was to test if these observed differences were
statistically significant. Thus, Table 1 summarizes
the ANOVA results for quantitative wood anatomical
features of trees and lianas (mean + standard
deviation, range). Lianas had highly significant
differences related to the percentage of fibres, vessels
and overall parenchyma (axial and radial combined),
vessel diameter (um), vessel per mm?2, ray width (um)
and ray height (um).

All trees considered, vessels were predominantly
solitary (65%), with an average diameter of 151 pm,
vessel element length of 230 pm, frequency of six
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Figure 1. Transverse wood sections of trees and lianas. Trees (A-C): axial parenchyma aliform (A, arrow), aliform forming
short confluences (A), in bands (C, P) and diffuse-in-aggregates. Lianas (D-F): axial parenchyma mainly in bands (P),
vessel dimorphism [wide vessels (V) accompanied by narrow vessels — arrow] and fibres in a smaller percentage of the
total secondary xylem area (F). A, Machaerium incorruptible, tree. B, Dalbergia retura, tree. C, Clitoria arborea, tree. D,
Machaerium ferox, liana. E, Dalbergia monetaria, liana. F, Clitoria arborescens, liana.

vessels/mm?, occupying 6% of the total wood area.
The axial parenchyma was predominantly aliform,
aliform forming confluences, and in bands, with
diffuse-in-aggregates (lines or bands) also present.
Overall, parenchyma occupied 27% of the total
wood area. The rays were homocellular and/or
heterocellular and were on average two cells and
26 ym wide with a height of 29 pm. The fibres had a

length of 1202 pm, occupying 67% of the total wood
area (Fig. 1A-C).

Alllianas considered, vessel dimorphism was present
(wide vessels accompanied by narrow vessels), with
vessels predominantly in groups (40% solitary), wide
vessels with an average of diameter of 289 nm, vessel
element length of 271 pm, frequency of 17 vessels/mm?
and the vessels occupied 25% of the total wood area.
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Table 1. Analysis of variance summary for quantitative wood anatomical features of trees and lianas (mean + standard

deviation, range)

Features/ variables Trees

Fibres (percentage)

Vessels (percentage)?

Axial parenchyma (percentage)?
Vessel length (um)

67 =7 (57-81)
6 +4(2-14)
27 + 8 (15-42)
230 + 43 (169-315)

Lianas P
20 + 15 (4-61) 0.000%*
25 + 17 (6-79) 0.000%*
56 = 14 (17-72) 0.000%*

271 + 78 (135-425) 0.074

Vessel diameter (pm) 151 + 48 (64-210) 289 + 86 (114-437) 0.000%*
Vessel frequency (per mm?)! 6 = 6 (2-23) 17 + 14 (3-60) 0.000%*
Ray width (um)? 26 = 1(14-64) 45 + 23 (17-81) 0.009%*
Ray width (number of cells)! 2+1(1-4) 3+1(1-5) 0.041*
Ray height (um)* 291 + 293 (105-1116) 917 + 856 (83—-2686) 0.012%*
Fibre length (um) 1202 + 355 (685-1866) 1723 + 741 (671-3302) 0.017%*

Variables transformed to logarithm?, arcsine? or square root?.
* = Significant difference.
** = Highly significant difference.

The axial parenchyma was mainly banded, and the
overall parenchyma (axial and radial) occupied 56%
of the total wood area. The rays varied from homo- to
heterocellular and were on average three cells and
45 pym wide, with a height of 917 nm. The fibres had a
length of 1723 pm and occupied 20% of the total wood
area (Fig. 1D-F).

DISCUSSION

Whereas most comparative studies between trees
and lianas have focused on qualitative data or the
quantitative data for single taxa or a single habit, this
study innovates by showing statistically how lianas and
trees of one of the most abundant Neotropical families,
Fabaceae, are statistically different. Bignoniaceae are
the only family previously thoroughly investigated
in this matter (Gasson & Dobbins, 1991; Pace et al.,
2015; Gerolamo & Angyalossy, 2017; Gerolamo et al.,
2020). Statistical support for the “Lianescent Vascular
Syndrome” (Angyalossy et al., 2015) was found in
this study, with a lower percentage of fibres, higher
percentage of vessels, parenchyma (axial and radial);
wider and more frequent vessels, wider and taller rays
and longer fibres.

Differences between liana and tree wood types
probably reflect known different functional roles
related to water conductivity, storage and mechanical
support for the plant (Baas et al., 2004; Pratt et al.,
2007; Carlquist, 2013; Zieminska, 2018). Thus, xylem is
subject to adaptive selection and diverse arrangements
of cell types can be configured for the plant to assume
a safety-efficiency trade-off (Bittencourt et al., 2016;
Ganthaler et al., 2019).

For the vessel dimensions, our results show the same
trend of increased vessel diameter and/or frequency in

the lianas. It corroborates with the conductive ability of
lianas as observed in other lineages of eudicots, outside
core eudicots [Menispermaceae (Mennega, 1982)]
and among core rosids [Euphorbiaceae, Celastraceae
(Mennega, 1997); Sapindaceae (Klaassen, 1999;
Ménard et al., 2009; Tamaio, 2011; Pelissari et al.,
2018)] and asterids [Bignoniaceae (Gasson & Dobbins,
1991; Pace et al., 2015; Gerolamo & Angyalossy, 2017)]
of core eudicots, as well as in entire floras (Baas &
Schweingruber, 1987; Gartner et al., 1990; Ewers
et al., 1990; Gutierrez et al., 2009). The width of the
vessels and tracheids in plants has been showed to be
correlated to the total plant length; therefore, taller
plants have wider vessels (Olson et al., 2014). Lianas
are among the longest in the plant kingdom, which
would explain their extremely wide vessels (Field
et al., 2012; Rosell & Olson, 2014; Angyalossy et al.,
2015). These wider vessels combined with their higher
frequency in lianas promote a greater water-carrying
capacity in these plants (Ganthaler et al., 2019). It
has been shown experimentally that larger diameter
vessels in lianas offer less friction and conduct more
water when compared to the same tissue area for tree
species, making the lianas efficient in water conduction
and capable of supporting leaf biomass comparable to
that of the larger trees in tropical forests (Ewers &
Fisher, 1989; Jacobsen et al., 2012; Rosell & Olson,
2014; Carvalho et al., 2015). Under the same climatic
conditions, vessels twice as wide in diameter will carry
16 times more water (Ewers & Fisher, 1989; Tyree &
Zimmermann, 2002), and this greater efficiency in
water conduction should compensate for the limited
transverse area of the liana stem.

A liana conducting system composed of vessels of
wider diameter guarantees greater water conduction
efficiency. However, these characteristics make the
system vulnerable to embolism, representing a huge
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loss to the plant water system (Tyree & Zimmermann,
2002; Hacke et al., 2006). On the other hand, smaller
vessel diameter with the addition of intervascular pit
structure more frequently guarantees greater safety in
conduction, since these together reduce the chance of
rupture of the water column when bubbles are formed,
as those that do form are smaller and dissolve more
easily (Ewers, 1985; Tyree & Zimmermann, 2002; Lens
etal.,2011;Liet al.,2016), and in lianas the occurrence
of narrow vessels side by side with wide vessels is
ubiquitous (Carlquist, 1985; Angyalossy et al., 2015), a
phenomenon called “vessel dimorphism” by Carlquist
(1981). Carlquist (1985) reported that many lianas
occur in areas where freezing and extreme drought
are either absent or moderate, and most occur in
wetlands where water stress and freezing never occur.
Global studies on liana abundance in forests, on the
other hand, showed that lianas endure longer drought
periods better than trees, something that would
explain their increase in recent years [(Schnitzer,
2005; Schnitzer & Bongers, 2011); but see Gerolamo
et al. (2018) for contrasting results]. It is likely that
behind this higher endurance, the larger amount of
parenchyma in lianas plays a pivotal role, since it has
been proposed that vessel-associated parenchyma can
prevent and repair events of embolism (Braun, 1984;
Salleo et al., 2004, 2009; Morris & Jansen, 2016; Morris
et al.,2016, 2018a, b).

Lianas seem to expend more energy in elongation
than in growth in diameter of the stem. Studies
on cambial seasonality and dendrochronology of
lianas have shown that they form annual growth
rings (Brandes et al., 2011), although with a shorter
cambial activity span than trees growing in the same
environment (Lima et al., 2010), and therefore less
wood is formed. The reduced diameter of the stem
is compensated by an external mechanical support
used by the plant to reach the canopy. In this way,
the cylinder is modified and more efficient in water
conduction, presenting more conducting (vessels)
than supporting cells (fibres), something that had
been already suggested qualitatively and is here
statistically corroborated for Fabaceae.

Fabaceae subfamily Papilionoideae are known for
having abundant axial parenchyma. However, here we
also found that parenchyma is more abundant in lianas
than in trees. The same trend has been suggested for
other taxa (Carlquist, 1995, 1996) and revealed in a
global analysis of parenchyma abundance (Morris
et al., 2016). Since lianas use external mechanical
support, parenchyma is considered as an alternative
tissue to occupy the place of fibres (Carlquist, 1988;
Gasson & Dobbins, 1991; Ewers et al., 1991), an
anatomical case of homeosis (sensu Sattler, 1988),
since the space occupied by fibres in the ancestral
plant is substituted by another cell type in the

descendant. In fact, we found a clear increase in axial
and ray parenchyma in liana stems. Higher and wider
rays and more abundant axial parenchyma have been
shown to increase the ability of lianas to withstand
torsions, making their stems more flexible (Rowe &
Speck, 1996; Gallenmiiller et al., 2001; Rowe et al.,
2004). Other known functions of the more abundant
parenchyma are related to injury repair (Dobbins &
Fisher, 1986; Fisher & Ewers, 1989), the protection
of conducting elements from events of cavitation,
probably acting in embolism repair by the presence of
vessel-associated parenchyma (Braun, 1984; Carlquist,
1988; Ewers & Fisher, 1989; Salleo et al., 2004, 2009;
Clearwater & Goldstein, 2005; Morris & Jansen, 2016;
Morris et al., 2018a, b), in avoiding pathogen entrance
by the formation of tyloses and gum secretion in cases
of pathogen attack, and in the formation of heartwood
(Chattaway, 1949; De Micco et al., 2016).

Here it was observed that liana fibres were longer
than those of trees, with significant differences in
the analysis of variance. Although Mennega (1982,
1997) recorded shorter fibre tracheids in lianas
in Menispermaceae and Celastraceae, there is
currently no hypothesis for the influence of fibre
length influencing mechanical attributes. Here, we
saw that vessel elements were slightly longer in the
lianas (although not statistically significant), and this
difference, although small, probably also reflects the
convergence for longer fusiform cambial initials in the
lianas.

CONCLUSIONS

Our results describe statistically the features of
the “Lianescent Vascular Syndrome” for four of the
most representative lianescent Neotropical genera
of Fabaceae, Machaerium, Dalbergia, Clitoria and
Dioclea, representatives of Papilionoideae tribes
Dalbergieae and Phaseoleae. Our paper brings a
quantitative view adding to the qualitative approach
for the study of lianas, and evidence that the wood
of lianas has statistically wider, and more abundant
vessels, more axial and ray parenchyma and longer
fibres, a case of evolutionary convergence. We expect
that similar statistical significance is to be found in
other lianescent lineages, evidencing the convergent
evolution of wood anatomy and habit.
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APPENDIX

Information on analysed samples of Machaerium Pers.,
Dalbergia L.f., Clitoria L. and Dioclea Spreng. including
species/taxa, voucher information (wood collection
and/collector-herbarium number), geographical origin,
habit and circumference of the stem in centimetres.
The Wood Collections cited are: Naturalis Biodiversity
Center (Uw), Leiden, The Netherlands; Forest Products
Laboratory Wood Collection and Samuel J. Record
Memorial (MADw and SJRw), Madison, Wisconsin,
USA,; Dr. Calvino Mainieri Xylarium at the Institute
of Technological Research, Sao Paulo, Brazil (BCTw),
the Reserva Natural Vale Herbarium, Brazil, and the
Royal Botanic Gardens Xylarium, Kew (Kw), England.

Machaerium aculeatum Raddi: BCTw 1577/
Hoehne-236, Brazil, tree, > 15 cm. BCTw 1619/-, Brazil,
tree, > 15 cm. Machaerium acutifolium Vogel: Uw
13591/Lindeman e Haas-2204, Brazil, tree, > 15 cm.
BCTw 12692/- PR-Brazil, tree, > 15 cm. Machaerium
affine Benth.: Uw 30672/Jansen et al.-538, Guyana,
tree, > 15 cm. Machaerium angustifolium Vogel:
SJRw 23827/Hoehne-28802, Brazil, tree, > 15 cm; STRw
1797/Curran50-1915, Brazil, tree, > 15 cm; MADw
13156/Maguire, Brazil, tree, > 15 cm. Machaerium
biovulatum Micheli: MADw 31637/ Maguire, Brazil,
tree, > 15 cm. Machaerium capote Dugand: MADw
24884/Darien Holdridge-6284, Panama, tree, > 15 cm.

SJRw 55086/Stern et al. 890, Panama, tree, > 15 cm.
SJRw 29609/D. Dugand-136, Colombia, tree, > 15 cm.
Machaerium ferox (Benth.) Ducke: Uw 23138/
Heyde 1976-455, Suriname, liana, 12 cm. Uw 17084/
Maguire et al.-51483, Brazil. Liana, 10.5 cm. Uw
33425/Ursem e Potters-132, Suriname, liana, 15 cm.
Machaerium floribundum Benth.: SIRw 52677/
Maguire-42652, Venezuela, liana, 12 cm. MADw 21597/
Maguire-51936, Brazil, tree, > 15 cm. Uw 9662/Pires
1961-51936, Brazil, liana, > 15 cm. Machaerium
hoehneanum Ducke: Xylarium of the University
of Sao Paulo (SPFw)/Dias-Leme 1995-CDL45, Brazil,
liana, 12 cm. SPFw/Dias-Leme 1995-CDL69, Brazil,
liana, 8.5 cm. SPFw/Dias-Leme 1995-CDLS85, Brazil,
liana, 9 cm. Machaerium incorruptibile (Vell.)
Benth.: MADw1 3147/ Maguire, Brazil, tree, > 15cm.
SJRw 39525/ Hutchison, Brazil, tree, > 15 cm. BCTw
11550/Mattos Filho-SBG-2166, Brazil, tree, > 15 cm.
Machaerium inundatum (Benth.) Ducke: Uw
3877/Lindeman ‘63-’55-5608, Suriname, liana 10.5 cm.
Uw 26435/Lindeman ‘563-’55-1.6409, Suriname, tree, >
15 cm. Machaerium legale (Vell.) Benth.: BCTw
11548/Mattos Filho-SBG2216, Brazil, tree, > 15 cm.
Machaerium leucopterum Vogel: BCTw 11549/
Kuhlmann, Brazil, tree, > 15 cm. BCTw 11006/-,
ES-Brazil, > 15 cm. Machaerium macrophyllum
Benth.: Uw 11308/Van Donselaar 1966-2378,
Suriname, liana, 11 cm. Uw 11985/Van Donselaar
1965-3066, Suriname, liana, 13 cm. Uw 23329/-, liana,
13.5 cm. Machaerium madeirense Pittier: Uw
21821/Lindeman — Stoffers-450, Suriname, liana, 4 cm.
Uw 22772/Lindeman e Heyde-141, Suriname, liana,
14 em. Uw 12123/ Van Dorselaar 1966—3501, Suriname,
liana, 12 cm. Machaerium multifoliolatum Ducke:
SPFw 826/Dias-Leme 1995-CDL15, AM-Brazil, liana,
13 cm. SPFw 827/Dias-Leme 1995-CDL51, AM-Brazil,
liana, 10.5 cm. SPFw 828/Dias-Leme 1995-CDL87,
AM-Brazil, liana, 7 cm. Machaerium ovalifolium
Rudd: BCTw 18474/Herbario CVRD cod.068, Brazil,
tree, > 15 cm. Machaerium pedicellatum Vogel:
BCTw 11005/-, tree, > 15 cm. BCTw 6352/Kuhlmann
SBG1353, Brazil, tree, > 15 cm. BCTw 6352/Kuhlmann
SBG1353, Brazil. Tree, > 15 cm. Machaerium
polyphyllum (Poir.) Benth.: Uw 13853, liana,
10 cm. Machaerium robiniifolium (DC.) Vogel:
Uw 17598/Steyermark-86545, Venezuela, tree, >
15 cm. Uw 35331/Williams-W10977, Venezuela, tree,
> 15 cm. Uw 35240/Williams-W10326, Venezuela, tree,
> 15 cm. Machaerium scleroxylon Tul.: Uw 13689/
Lindeman e Haas-2345, PR-Brazil, tree, > 15 cm.
Uw 13507/Lindeman e Haas-2102, PR-Brazil, tree, >
15 cm. Uw 13465/Lindeman e Haas-2027, PR-Brazil,
tree, 9 cm. BCTw 8592/Mattos Filho, MG-Brazil, tree,
> 15 cm. Machaerium villosum Vogel: BCTw 1599/
Navarro, SP-Brazil, tree, > 15 cm. BCTw 4452/-, tree, >
15 em. BCTw 1590/Navarro, SP-Brazil, tree, > 15 cm.
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Dalbergia glauca Wall: Uw 1587/Heyde 1976-454,
Suriname, liana, 6.5 cm. Uw 22863/Lindeman e Heyde-
302, Suriname, liana, 8.5 cm. Dalbergia inundata
Benth.: Uw 32570/Maas et al.-7609, Guyana, liana,
9.5 cm. Uw 7546/Krukoff, 1961- 6671, Brazil, liana,
> 15 cm. Uw 7861/Krukoff, 1961-6195, Brazil, tree,
14 cm. Dalbergia monetaria L.f.: Uw 3918/lind
‘63-’55, 5710, Suriname, liana, 2.5 cm. Uw 11300/via
Donselaar 1965-2370, Suriname, liana, 12 cm. Uw
12138/via Donselaar 1966-3744, Suriname, liana,
11 cm. Dalbergia nigra (Vell.) Benth.: Uw 23538/via
Reinbek BFA-6229, Brazil, tree, > 15 cm. Uw 23006/via
Reinbek BFA-13201, Brazil, tree, > 15 cm. Dalbergia
paniculata Roxb.: Kew 6286/via Km Bhat, Kerala,
India, tree, > 15 cm. Kew 21254/Forest India 40 India,
tree,> 15 cm. Uw 3283/via Km Bhat, Kerala Forest India
40, India, tree, > 15 cm. Dalbergia retusa Hemsl.:
Uw 11080/USW9, Panama, tree, > 15 cm. Uw 7018/U.
Smiths. Nat. herb. -678561-2, Panama, tree, > 5 cm.
Clitoria arborea Benth.: Uw 19911/Krukoff-5335,
Brazil, tree, > 15 cm. Uw 20996/Maguire et al.-51990,
Brazil, tree, > 15 cm. Uw 16124/Krukof-6125, Brazil,
tree, > 15 cm. Uw 7499/Krukof, 8208, Brazil, tree, >
15 cm. Uw 20150/-. Clitoria arborescens R.Br.:

Uw 22849/Lindeman e Heyde-272, Suriname, liana,
9.5 cm. Uw 22754/Lindeman e Heyde-119a, Suriname,
liana, 8 cm. Uw 13875/Pulle-467, Suriname, liana,
6.5 cm. Clitoria brachycalyx Harms: Uw 21640/
Smith-3128, Guyana, tree, > 15 cm. Uw 30476/Jansen-
Jacobs et al.-80, Guyana, tree, 9 cm. Uw 33881/Jansen-
Jacobs et al.-2984, Guyana, tree, 6 cm. Clitoria
dendrina Pittier: Uw 35471/Williams-11638,
Venezuela, tree, 14 cm. Clitoria javitensis (Kunth)
Benth.: Uw 31268/Schumke-4339, Peru, liana, 8.5 cm.
Uw 31281/Schumke-4926, Peru, liana, 5 cm. Clitoria
pendens Fantz: Uw 2028/Florschiitz-1344, Suriname,
liana, 7 cm. Dioclea macrocarpa Huber: Uw 13892/
Boschwchem-3870, Suriname, liana, 2.5 cm. Uw
30163/Stoffers et al.-SG327, Guyana, liana, 6 cm. Uw
9705a/-, liana, 8 cm. Dioclea megacarpa Rolfe: Uw
22751/Lindeman and Heyde-303, Suriname, liana,
8 cm. Dioclea scabra (Rich.) Maxwell: Uw 23186/
Heyde-533, Suriname, liana, 3.5 cm. Uw 23309/
Heyde, 697, Suriname, liana, 5 cm. Uw 33395/Ursem e
Potters-30, Suriname, liana, 2.5 cm. Dioclea virgata
(Rich.) Amshoff: Uw 22886/Lindeman and Heyde-
340, Suriname, liana, 4 cm. Uw 32209/Jansen and
Jacobs-1075, Guyana, liana, 4.5 cm.
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