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Lianas are one of the most iconic elements of tropical forests and their presence is a major feature of these biomes. Here 
we aim to describe and compare the wood of key genera of Fabaceae subfamily Papilionoideae comprising both trees and 
lianas. Thirty-eight species from the genera Machaerium, Dalbergia, Clitoria and Dioclea were sampled to establish the 
main quantitative features that differentiate lianas and trees, the so-called “Lianescent Vascular Syndrome”. Variance 
analyses were carried out to diagnose the anatomical differences between trees and lianas. Whereas most studies focused 
on qualitative features, this study focused on a statistical, quantitative comparison of lianas and trees of Papilionoideae, 
some not previously analysed anatomically. Our results show that lianas are quantitatively different from trees in having 
wider and more frequent vessels, a higher percentage of axial and radial parenchyma relative to fibres, greater ray height 
and width and longer fibres, statistically corroborating the “Lianescent Vascular Syndrome”.

ADDITIONAL KEYWORDS:  climbers – Clitoria – Dalbergia – Dioclea – Leguminosae – Machaerium – self-
supporting – vessel diameter – vessel density – wood anatomy – xylem.

INTRODUCTION

Climbing plants, both herbaceous and woody, the 
latter being referred to as “lianas”, comprise plants 
of unrelated lineages that use external mechanical 
supports to ascend towards light. Lianas germinate 
in the soil, and their stems grow towards the canopy 
using the stems of other species or objects as support 
(Putz & Mooney, 1991; Cabanillas & Hurrell, 2012; 
Sperotto et al., 2020; Souza-Baena et al., 2021).

The lianescent habit is not restricted to a single 
geographical region; however, c. 90% of all liana species 
occur in tropical forests (Hegarty, 1989; Schnitzer 
et al., 2012, 2014). Lianas have great value as a 
functional and structural component interconnecting 
treetops in a range of forest ecosystems, particularly in 

the Tropics (Gentry, 1983, 1991; Putz, 1984; Schnitzer 
et al., 2014), contributing 9–35% of the woody species 
diversity (Schnitzer & Bongers, 2002, 2011; Schnitzer 
et al., 2014). They are an important source of food, 
shelter and interconnecting bridges between trees for 
tropical fauna; however, they also compete with trees 
for space, light, water and nutrients, exerting a strong 
selective pressure on tropical trees reducing growth, 
fecundity, physiological performance and tree survival 
rates (Gentry, 1991; Kurzel et al., 2006; Schnitzer et al., 
2014; Álvarez-Cansino et al., 2015; Dias et al., 2017).

Lianas circumnutate in search of support, and 
once a support is found, lianas undergo a rapid 
modification in anatomy and morphology, frequently 
developing structures that facilitate their ascent 
to the canopy, including tendrils, spines, hooks 
and adventitious adhesive roots (Darwin, 1867; 
Isnard & Silk, 2009; Cabanillas & Hurrell, 2012; 
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Souza-Baena et al., 2018, 2021). A set of anatomical 
vascular features has been proposed to distinguish 
the wood of lianas from that of self-supporting plants. 
These features include the presence of wider and more 
frequent vessels for any given stem diameter, a larger 
amount of axial parenchyma and higher rays, with a 
consequent reduction in the amount of fibres, and the 
presence of cambial variants (Schenck, 1892–1893; 
Pfeiffer, 1926; Obaton, 1960; Putz, 1980; Metcalfe & 
Chalk, 1983; Carlquist, 1991; Gasson & Dobbins, 
1991; Carlquist et al., 1993; Fisher & Ewers, 1995; 
Angyalossy et al., 2012, 2015; Pace & Angyalossy, 2013; 
Morris et al., 2016; Gerolamo & Angyalossy, 2017). 
The sum of these features was coined the “Lianescent 
Vascular Syndrome” by Angyalossy et al. (2015). 
However, quantitative analyses comparing trees and 
lianas under the same taxonomic groups are rare, 
with Bignoniaceae being the sole exception (Gasson 
& Dobbins, 1991; Pace & Angyalossy, 2013; Pace 
et al., 2015; Gerolamo & Angyalossy, 2017; Gerolamo 
et al., 2020). Other studies typically focus on a single 
species/genus (Pelissari et al., 2018; Ganthaler et al., 
2019; Chery et al., 2020) or on just one of the habits 
[e.g. those of Brandes & Barros (2008), Brandes et al. 
(2011), and Tamaio et al. (2011) focused on lianas].

The presence of the lianescent habit was reported 
in 133 families by Gentry (1991), scattered across 
angiosperm lineages. They are, however, especially 
frequent in Fabaceae, the second largest family of 
angiosperms in Neotropical forests (Lewis & Owen, 
1989) and often the largest family in number of trees, 
shrubs and lianescent species in floristic surveys 
(Gentry, 1982, 1988, 1991; Hegarty, 1989; Ribeiro et al., 
1994; Gei et al., 2018). Thus, given the importance of 
lianas for tropical forest diversity and the importance 
of Fabaceae in this biome, combined with the lack of 
formal statistical studies comparing trees and lianas 
in this important family and of studies with large 
datasets, we aimed to compare the wood between 
these two plant habits. statistically characterizing 
the “Lianescent Vascular Syndrome”, trees and lianas 
in Machaerium Pers., Dalbergia L.f., Clitoria L. and 
Dioclea Spreng., all belonging to Fabaceae subfamily 
Papilionoideae.

MATERIAL AND METHODS

Thirty-eight species (92 specimens) of Papilionoideae 
were sampled, including 19 trees and 19 lianas. These 
included 22 Machaerium spp. and six Dalbergia spp. 
(Dalbergieae), and six Clitoria spp. and four Dioclea 
spp. (Phaseoleae) (Appendix).

Histological sections were performed according to 
techniques adapted from Johansen (1940) and Sass 

(1951) on samples taken from the outermost region 
of the stem of fully-grown individuals. Transverse 
and longitudinal sections (tangential and radial), 
20–120 μm thick, were stained (Gerlach, 1984). The 
Franklin method for cellular element dissociation was 
used, modified according to Berlyn & Miksche (1976). 
The wood anatomy terminology and recommendations 
for measurements followed the IAWA Committee 
(1989). Since the scope of this article was a statistical 
comparison, full descriptions of species were not given.

Morphological variables present in all species were 
recorded, including percentage of overall parenchyma 
(axial and radial combined), vessel element diameter 
and length and fibre length (all in µm), vessels per 
mm2, ray width (number of cells and µm), ray height 
(µm), rays per mm2 and percentage of fibres. Lianas 
typically have two vessel classes, those that are very 
wide and those that are very narrow. Here, following 
the recommendations of the IAWA Committee (1989) 
for plants with vessel dimorphisms we measured only 
the diameter of wide vessels, which are those that 
contribute to the bulk of water conduction. One to five 
individuals were analysed per species, as listed in the 
Appendix.

The statistical test employed to differentiate lianas 
and trees was analysis of variance (ANOVA). This 
analysis considered ten variables present in all the 
species where the sample unit was each species’ variable 
mean. Variables for which residues did not satisfy the 
requirements of normal distribution (as determined 
by a Lilliefors test) and equal variances were log, 
arcsine or square-root transformed. Differences were 
considered statistically significant when P < 0.05 
and highly significant when P < 0.001. The statistical 
analyses were conducted using Microsoft Excel 97 
SR-2 and Statistic 5.1 for Windows software (Statsoft 
Inc., 1997).

RESULTS

Visually trees and lianas of the studied genera are 
different (Fig. 1). However, the main goal of this 
work was to test if these observed differences were 
statistically significant. Thus, Table 1 summarizes 
the ANOVA results for quantitative wood anatomical 
features of trees and lianas (mean ± standard 
deviation, range). Lianas had highly significant 
differences related to the percentage of fibres, vessels 
and overall parenchyma (axial and radial combined), 
vessel diameter (µm), vessel per mm2, ray width (µm) 
and ray height (µm).

All trees considered, vessels were predominantly 
solitary (55%), with an average diameter of 151 µm, 
vessel element length of 230 µm, frequency of six 
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vessels/mm2, occupying 6% of the total wood area. 
The axial parenchyma was predominantly aliform, 
aliform forming confluences, and in bands, with 
diffuse-in-aggregates (lines or bands) also present. 
Overall, parenchyma occupied 27% of the total 
wood area. The rays were homocellular and/or 
heterocellular and were on average two cells and 
26 µm wide with a height of 29 µm. The fibres had a 

length of 1202 µm, occupying 67% of the total wood 
area (Fig. 1A-C).

All lianas considered, vessel dimorphism was present 
(wide vessels accompanied by narrow vessels), with 
vessels predominantly in groups (40% solitary), wide 
vessels with an average of diameter of 289 µm, vessel 
element length of 271 µm, frequency of 17 vessels/mm2 
and the vessels occupied 25% of the total wood area. 

Figure 1. Transverse wood sections of trees and lianas. Trees (A-C): axial parenchyma aliform (A, arrow), aliform forming 
short confluences (A), in bands (C, P) and diffuse-in-aggregates. Lianas (D-F): axial parenchyma mainly in bands (P), 
vessel dimorphism [wide vessels (V) accompanied by narrow vessels – arrow] and fibres in a smaller percentage of the 
total secondary xylem area (F). A, Machaerium incorruptible, tree. B, Dalbergia retura, tree. C, Clitoria arborea, tree. D, 
Machaerium ferox, liana. E, Dalbergia monetaria, liana. F, Clitoria arborescens, liana.
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The axial parenchyma was mainly banded, and the 
overall parenchyma (axial and radial) occupied 56% 
of the total wood area. The rays varied from homo- to 
heterocellular and were on average three cells and 
45 µm wide, with a height of 917 µm. The fibres had a 
length of 1723 µm and occupied 20% of the total wood 
area (Fig. 1D-F).

DISCUSSION

Whereas most comparative studies between trees 
and lianas have focused on qualitative data or the 
quantitative data for single taxa or a single habit, this 
study innovates by showing statistically how lianas and 
trees of one of the most abundant Neotropical families, 
Fabaceae, are statistically different. Bignoniaceae are 
the only family previously thoroughly investigated 
in this matter (Gasson & Dobbins, 1991; Pace et al., 
2015; Gerolamo & Angyalossy, 2017; Gerolamo et al., 
2020). Statistical support for the “Lianescent Vascular 
Syndrome” (Angyalossy et al., 2015) was found in 
this study, with a lower percentage of fibres, higher 
percentage of vessels, parenchyma (axial and radial); 
wider and more frequent vessels, wider and taller rays 
and longer fibres.

Differences between liana and tree wood types 
probably reflect known different functional roles 
related to water conductivity, storage and mechanical 
support for the plant (Baas et al., 2004; Pratt et al., 
2007; Carlquist, 2013; Ziemińska, 2018). Thus, xylem is 
subject to adaptive selection and diverse arrangements 
of cell types can be configured for the plant to assume 
a safety-efficiency trade-off (Bittencourt et al., 2016; 
Ganthaler et al., 2019).

For the vessel dimensions, our results show the same 
trend of increased vessel diameter and/or frequency in 

the lianas. It corroborates with the conductive ability of 
lianas as observed in other lineages of eudicots, outside 
core eudicots [Menispermaceae (Mennega, 1982)] 
and among core rosids [Euphorbiaceae, Celastraceae 
(Mennega, 1997); Sapindaceae (Klaassen, 1999; 
Ménard et al., 2009; Tamaio, 2011; Pelissari et al., 
2018)] and asterids [Bignoniaceae (Gasson & Dobbins, 
1991; Pace et al., 2015; Gerolamo & Angyalossy, 2017)] 
of core eudicots, as well as in entire floras (Baas & 
Schweingruber, 1987; Gartner et al., 1990; Ewers 
et al., 1990; Gutierrez et al., 2009). The width of the 
vessels and tracheids in plants has been showed to be 
correlated to the total plant length; therefore, taller 
plants have wider vessels (Olson et al., 2014). Lianas 
are among the longest in the plant kingdom, which 
would explain their extremely wide vessels (Field 
et al., 2012; Rosell & Olson, 2014; Angyalossy et al., 
2015). These wider vessels combined with their higher 
frequency in lianas promote a greater water-carrying 
capacity in these plants (Ganthaler et al., 2019). It 
has been shown experimentally that larger diameter 
vessels in lianas offer less friction and conduct more 
water when compared to the same tissue area for tree 
species, making the lianas efficient in water conduction 
and capable of supporting leaf biomass comparable to 
that of the larger trees in tropical forests (Ewers & 
Fisher, 1989; Jacobsen et al., 2012; Rosell & Olson, 
2014; Carvalho et al., 2015). Under the same climatic 
conditions, vessels twice as wide in diameter will carry 
16 times more water (Ewers & Fisher, 1989; Tyree & 
Zimmermann, 2002), and this greater efficiency in 
water conduction should compensate for the limited 
transverse area of the liana stem.

A liana conducting system composed of vessels of 
wider diameter guarantees greater water conduction 
efficiency. However, these characteristics make the 
system vulnerable to embolism, representing a huge 

Table 1. Analysis of variance summary for quantitative wood anatomical features of trees and lianas (mean ± standard 
deviation, range)

Features/ variables Trees Lianas P

Fibres (percentage) 67 ± 7 (57–81) 20 ± 15 (4–61) 0.000**
Vessels (percentage)1 6 ± 4 (2–14) 25 ± 17 (6–79) 0.000**
Axial parenchyma (percentage)2 27 ± 8 (15–42) 56 ± 14 (17–72) 0.000**
Vessel length (μm) 230 ± 43 (169–315) 271 ± 78 (135–425) 0.074
Vessel diameter (μm) 151 ± 48 (64–210) 289 ± 86 (114–437) 0.000**
Vessel frequency (per mm2)1 6 ± 6 (2–23) 17 ± 14 (3–60) 0.000**
Ray width (μm)3 26 ± 1 (14–64) 45 ± 23 (17–81) 0.009**
Ray width (number of cells)1 2 ± 1 (1–4) 3 ± 1 (1–5) 0.041*
Ray height (μm)1 291 ± 293 (105–1116) 917 ± 856 (83–2686) 0.012**
Fibre length (μm) 1202 ± 355 (685–1866) 1723 ± 741 (671–3302) 0.017*

Variables transformed to logarithm1, arcsine2 or square root3.
* = Significant difference.
** = Highly significant difference.
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loss to the plant water system (Tyree & Zimmermann, 
2002; Hacke et al., 2006). On the other hand, smaller 
vessel diameter with the addition of intervascular pit 
structure more frequently guarantees greater safety in 
conduction, since these together reduce the chance of 
rupture of the water column when bubbles are formed, 
as those that do form are smaller and dissolve more 
easily (Ewers, 1985; Tyree & Zimmermann, 2002; Lens 
et al., 2011; Li et al., 2016), and in lianas the occurrence 
of narrow vessels side by side with wide vessels is 
ubiquitous (Carlquist, 1985; Angyalossy et al., 2015), a 
phenomenon called “vessel dimorphism” by Carlquist 
(1981). Carlquist (1985) reported that many lianas 
occur in areas where freezing and extreme drought 
are either absent or moderate, and most occur in 
wetlands where water stress and freezing never occur. 
Global studies on liana abundance in forests, on the 
other hand, showed that lianas endure longer drought 
periods better than trees, something that would 
explain their increase in recent years [(Schnitzer, 
2005; Schnitzer & Bongers, 2011); but see Gerolamo 
et al. (2018) for contrasting results]. It is likely that 
behind this higher endurance, the larger amount of 
parenchyma in lianas plays a pivotal role, since it has 
been proposed that vessel-associated parenchyma can 
prevent and repair events of embolism (Braun, 1984; 
Salleo et al., 2004, 2009; Morris & Jansen, 2016; Morris 
et al., 2016, 2018a, b).

Lianas seem to expend more energy in elongation 
than in growth in diameter of the stem. Studies 
on cambial seasonality and dendrochronology of 
lianas have shown that they form annual growth 
rings (Brandes et al., 2011), although with a shorter 
cambial activity span than trees growing in the same 
environment (Lima et al., 2010), and therefore less 
wood is formed. The reduced diameter of the stem 
is compensated by an external mechanical support 
used by the plant to reach the canopy. In this way, 
the cylinder is modified and more efficient in water 
conduction, presenting more conducting (vessels) 
than supporting cells (fibres), something that had 
been already suggested qualitatively and is here 
statistically corroborated for Fabaceae.

Fabaceae subfamily Papilionoideae are known for 
having abundant axial parenchyma. However, here we 
also found that parenchyma is more abundant in lianas 
than in trees. The same trend has been suggested for 
other taxa (Carlquist, 1995, 1996) and revealed in a 
global analysis of parenchyma abundance (Morris 
et al., 2016). Since lianas use external mechanical 
support, parenchyma is considered as an alternative 
tissue to occupy the place of fibres (Carlquist, 1988; 
Gasson & Dobbins, 1991; Ewers et al., 1991), an 
anatomical case of homeosis (sensu Sattler, 1988), 
since the space occupied by fibres in the ancestral 
plant is substituted by another cell type in the 

descendant. In fact, we found a clear increase in axial 
and ray parenchyma in liana stems. Higher and wider 
rays and more abundant axial parenchyma have been 
shown to increase the ability of lianas to withstand 
torsions, making their stems more flexible (Rowe & 
Speck, 1996; Gallenmüller et al., 2001; Rowe et al., 
2004). Other known functions of the more abundant 
parenchyma are related to injury repair (Dobbins & 
Fisher, 1986; Fisher & Ewers, 1989), the protection 
of conducting elements from events of cavitation, 
probably acting in embolism repair by the presence of 
vessel-associated parenchyma (Braun, 1984; Carlquist, 
1988; Ewers & Fisher, 1989; Salleo et al., 2004, 2009; 
Clearwater & Goldstein, 2005; Morris & Jansen, 2016; 
Morris et al., 2018a, b), in avoiding pathogen entrance 
by the formation of tyloses and gum secretion in cases 
of pathogen attack, and in the formation of heartwood 
(Chattaway, 1949; De Micco et al., 2016).

Here it was observed that liana fibres were longer 
than those of trees, with significant differences in 
the analysis of variance. Although Mennega (1982, 
1997) recorded shorter fibre tracheids in lianas 
in Menispermaceae and Celastraceae, there is 
currently no hypothesis for the influence of fibre 
length influencing mechanical attributes. Here, we 
saw that vessel elements were slightly longer in the 
lianas (although not statistically significant), and this 
difference, although small, probably also reflects the 
convergence for longer fusiform cambial initials in the 
lianas.

CONCLUSIONS

Our results describe statistically the features of 
the “Lianescent Vascular Syndrome” for four of the 
most representative lianescent Neotropical genera 
of Fabaceae, Machaerium, Dalbergia, Clitoria and 
Dioclea, representatives of Papilionoideae tribes 
Dalbergieae and Phaseoleae. Our paper brings a 
quantitative view adding to the qualitative approach 
for the study of lianas, and evidence that the wood 
of lianas has statistically wider, and more abundant 
vessels, more axial and ray parenchyma and longer 
fibres, a case of evolutionary convergence. We expect 
that similar statistical significance is to be found in 
other lianescent lineages, evidencing the convergent 
evolution of wood anatomy and habit.
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APPENDIX

Information on analysed samples of Machaerium Pers., 
Dalbergia L.f., Clitoria L. and Dioclea Spreng. including 
species/taxa, voucher information (wood collection 
and/collector-herbarium number), geographical origin, 
habit and circumference of the stem in centimetres. 
The Wood Collections cited are: Naturalis Biodiversity 
Center (Uw), Leiden, The Netherlands; Forest Products 
Laboratory Wood Collection and Samuel J. Record 
Memorial (MADw and SJRw), Madison, Wisconsin, 
USA; Dr. Calvino Mainieri Xylarium at the Institute 
of Technological Research, São Paulo, Brazil (BCTw), 
the Reserva Natural Vale Herbarium, Brazil, and the 
Royal Botanic Gardens Xylarium, Kew (Kw), England.

Machaerium aculeatum Raddi: BCTw 1577/
Hoehne-236, Brazil, tree, > 15 cm. BCTw 1619/-, Brazil, 
tree, > 15 cm. Machaerium acutifolium Vogel: Uw 
13591/Lindeman e Haas-2204, Brazil, tree, > 15 cm. 
BCTw 12692/- PR-Brazil, tree, > 15 cm. Machaerium 
affine Benth.: Uw 30672/Jansen et al.-538, Guyana, 
tree, > 15 cm. Machaerium angustifolium Vogel: 
SJRw 23827/Hoehne-28802, Brazil, tree, > 15 cm; SJRw 
1797/Curran50-1915, Brazil, tree, > 15 cm; MADw 
13156/Maguire, Brazil, tree, > 15 cm. Machaerium 
biovulatum Micheli: MADw 31637/Maguire, Brazil, 
tree, > 15 cm. Machaerium capote Dugand: MADw 
24884/Darien Holdridge-6284, Panamá, tree, > 15 cm. 

SJRw 55086/Stern et al. 890, Panamá, tree, > 15 cm. 
SJRw 29609/D. Dugand-136, Colombia, tree, > 15 cm. 
Machaerium ferox (Benth.) Ducke: Uw 23138/
Heyde 1976-455, Suriname, liana, 12 cm. Uw 17084/
Maguire et al.-51483, Brazil. Liana, 10.5 cm. Uw 
33425/Ursem e Potters-132, Suriname, liana, 15 cm. 
Machaerium floribundum Benth.: SJRw 52677/
Maguire-42652, Venezuela, liana, 12 cm. MADw 21597/
Maguire-51936, Brazil, tree, > 15 cm. Uw 9662/Pires 
1961–51936, Brazil, liana, > 15 cm. Machaerium 
hoehneanum Ducke: Xylarium of the University 
of São Paulo (SPFw)/Dias-Leme 1995-CDL45, Brazil, 
liana, 12 cm. SPFw/Dias-Leme 1995-CDL69, Brazil, 
liana, 8.5 cm. SPFw/Dias-Leme 1995-CDL85, Brazil, 
liana, 9 cm. Machaerium incorruptibile (Vell.) 
Benth.: MADw1 3147/ Maguire, Brazil, tree, > 15cm. 
SJRw 39525/ Hutchison, Brazil, tree, > 15 cm. BCTw 
11550/Mattos Filho-SBG-2166, Brazil, tree, > 15 cm. 
Machaerium inundatum (Benth.) Ducke: Uw 
3877/Lindeman ‘53-’55–5608, Suriname, liana 10.5 cm. 
Uw 26435/Lindeman ‘53-’55-L6409, Suriname, tree, > 
15 cm. Machaerium legale (Vell.) Benth.: BCTw 
11548/Mattos Filho-SBG2216, Brazil, tree, > 15 cm. 
Machaerium leucopterum Vogel: BCTw 11549/
Kuhlmann, Brazil, tree, > 15 cm. BCTw 11006/-, 
ES-Brazil, > 15 cm. Machaerium macrophyllum 
Benth.: Uw 11308/Van Donselaar 1966–2378, 
Suriname, liana, 11 cm. Uw 11985/Van Donselaar 
1965–3066, Suriname, liana, 13 cm. Uw 23329/-, liana, 
13.5 cm. Machaerium madeirense Pittier: Uw 
21821/Lindeman – Stoffers-450, Suriname, liana, 4 cm. 
Uw 22772/Lindeman e Heyde-141, Suriname, liana, 
14 cm. Uw 12123/ Van Dorselaar 1966–3501, Suriname, 
liana, 12 cm. Machaerium multifoliolatum Ducke: 
SPFw 826/Dias-Leme 1995-CDL15, AM-Brazil, liana, 
13 cm. SPFw 827/Dias-Leme 1995-CDL51, AM-Brazil, 
liana, 10.5 cm. SPFw 828/Dias-Leme 1995-CDL87, 
AM-Brazil, liana, 7 cm. Machaerium ovalifolium 
Rudd: BCTw 18474/Herbário CVRD cod.068, Brazil, 
tree, > 15 cm. Machaerium pedicellatum Vogel: 
BCTw 11005/-, tree, > 15 cm. BCTw 6352/Kuhlmann 
SBG1353, Brazil, tree, > 15 cm. BCTw 6352/Kuhlmann 
SBG1353, Brazil. Tree, > 15 cm. Machaerium 
polyphyllum (Poir.) Benth.: Uw 13853, liana, 
10 cm. Machaerium robiniifolium (DC.) Vogel: 
Uw 17598/Steyermark-86545, Venezuela, tree, > 
15 cm. Uw 35331/Williams-W10977, Venezuela, tree, 
> 15 cm. Uw 35240/Williams-W10326, Venezuela, tree, 
> 15 cm. Machaerium scleroxylon Tul.: Uw 13689/
Lindeman e Haas-2345, PR-Brazil, tree, > 15 cm. 
Uw 13507/Lindeman e Haas-2102, PR-Brazil, tree, > 
15 cm. Uw 13465/Lindeman e Haas-2027, PR-Brazil, 
tree, 9 cm. BCTw 8592/Mattos Filho, MG-Brazil, tree, 
> 15 cm. Machaerium villosum Vogel: BCTw 1599/
Navarro, SP-Brazil, tree, > 15 cm. BCTw 4452/-, tree, > 
15 cm. BCTw 1590/Navarro, SP-Brazil, tree, > 15 cm. 
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Dalbergia glauca Wall: Uw 1587/Heyde 1976-454, 
Suriname, liana, 6.5 cm. Uw 22863/Lindeman e Heyde-
302, Suriname, liana, 8.5 cm. Dalbergia inundata 
Benth.: Uw 32570/Maas et al.-7609, Guyana, liana, 
9.5 cm. Uw 7546/Krukoff, 1961- 6671, Brazil, liana, 
> 15 cm. Uw 7861/Krukoff, 1961–6195, Brazil, tree, 
14 cm. Dalbergia monetaria L.f.: Uw 3918/lind 
‘53-’55, 5710, Suriname, liana, 2.5 cm. Uw 11300/via 
Donselaar 1965–2370, Suriname, liana, 12 cm. Uw 
12138/via Donselaar 1966–3744, Suriname, liana, 
11 cm. Dalbergia nigra (Vell.) Benth.: Uw 23538/via 
Reinbek BFA-6229, Brazil, tree, > 15 cm. Uw 23006/via 
Reinbek BFA-13201, Brazil, tree, > 15 cm. Dalbergia 
paniculata Roxb.: Kew 6286/via Km Bhat, Kerala, 
India, tree, > 15 cm. Kew 21254/Forest India 40 India, 
tree, > 15 cm. Uw 3283/via Km Bhat, Kerala Forest India 
40, India, tree, > 15 cm. Dalbergia retusa Hemsl.: 
Uw 11080/USW9, Panamá, tree, > 15 cm. Uw 7018/U.
Smiths. Nat. herb. -678561–2, Panamá, tree, > 5 cm. 
Clitoria arborea Benth.: Uw 19911/Krukoff-5335, 
Brazil, tree, > 15 cm. Uw 20996/Maguire et al.-51990, 
Brazil, tree, > 15 cm. Uw 16124/Krukof-6125, Brazil, 
tree, > 15 cm. Uw 7499/Krukof, 8208, Brazil, tree, > 
15 cm. Uw 20150/-. Clitoria arborescens R.Br.: 

Uw 22849/Lindeman e Heyde-272, Suriname, liana, 
9.5 cm. Uw 22754/Lindeman e Heyde-119a, Suriname, 
liana, 8 cm. Uw 13875/Pulle-467, Suriname, liana, 
6.5 cm. Clitoria brachycalyx Harms: Uw 21640/
Smith-3128, Guyana, tree, > 15 cm. Uw 30476/Jansen-
Jacobs et al.-80, Guyana, tree, 9 cm. Uw 33881/Jansen-
Jacobs et al.-2984, Guyana, tree, 6 cm. Clitoria 
dendrina Pittier: Uw 35471/Williams-11638, 
Venezuela, tree, 14 cm. Clitoria javitensis (Kunth) 
Benth.: Uw 31268/Schumke-4339, Peru, liana, 8.5 cm. 
Uw 31281/Schumke-4926, Peru, liana, 5 cm. Clitoria 
pendens Fantz: Uw 2028/Florschiitz-1344, Suriname, 
liana, 7 cm. Dioclea macrocarpa Huber: Uw 13892/
Boschwchem-3870, Suriname, liana, 2.5 cm. Uw 
30163/Stoffers et al.-SG327, Guyana, liana, 6 cm. Uw 
9705a/-, liana, 8 cm. Dioclea megacarpa Rolfe: Uw 
22751/Lindeman and Heyde-303, Suriname, liana, 
8 cm. Dioclea scabra (Rich.) Maxwell: Uw 23186/
Heyde-533, Suriname, liana, 3.5 cm. Uw 23309/
Heyde, 697, Suriname, liana, 5 cm. Uw 33395/Ursem e 
Potters-30, Suriname, liana, 2.5 cm. Dioclea virgata 
(Rich.) Amshoff: Uw 22886/Lindeman and Heyde-
340, Suriname, liana, 4 cm. Uw 32209/Jansen and 
Jacobs-1075, Guyana, liana, 4.5 cm.
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