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Abstract

Component-based systems often describe context requirements in terms of explicit inter-component
dependencies. Studying large instances of such systems—such as free and open source software
(FOSS) distributions—in terms of declared dependencies between packages is appealing. It is
however also misleading when the language to express dependencies is as expressive as boolean
formulae, which is often the case. In such settings, a more appropriate notion of component
dependency exists: strong dependency. This paper introduces such notion as a first step towards
modeling semantic, rather then syntactic, inter-component relationships.

Furthermore, a notion of component sensitivity is derived from strong dependencies, with ap-
plications to quality assurance and to the evaluation of upgrade risks. An empirical study of
strong dependencies and sensitivity is presented, in the context of one of the largest, freely
available, component-based system.



FP7-ICT-2007-1 STREP project
April 21st, 2009 MANCOOSI

1 Introduction

Component-based software architectures [21] have the property of being upgradeable piece-wise,
without necessarily touching all the pieces at the same time. The more pieces are affected by a
single upgrade, the higher the impact of the upgrade can be on the usual operations performed
by the overall system; this impact can either be beneficial (if the upgrade works as planned)
or disastrous (if not). Package-based FOSS (Free and Open Source Software) distributions
are possibly the largest-scale examples of component-based architectures, their upgrade effects
are experienced daily by million of users world-wide, and the historical data concerning their
evolution is publicly available.

Within FOSS distributions, software components are managed as packages [6]. Packages are
described with meta-information, which include complex inter-relationships describing the static
requirements to run properly on a target system. Requirements are expressed in terms of
other packages, possibly with restrictions on the desired versions. Both positive requirements
(dependencies) and negative requirements (conflicts) are usually allowed.

Example 1.1. An excerpt of the inter-package relationships of the post fiz Internet mail trans-
port agent in Debian GNU/Linuz' currently reads:

Package: postfix

Version: 2.5.5-1.1

Depends: libc6 (>= 2.7-1), 1libdb4.6, ssl-cert,
libsasl2-2, 1libssl0.9.8 (>= 0.9.8f-5),
debconf (>= 0.5) | debconf-2.0,
netbase, adduser (>= 3.48), dpkg (>= 1.8.3),
lsb-base (>= 3.0-6)

Conflicts: libnss-db (<< 2.2-3), smail,
mail-transport-agent, postfix-tls

Provides: mail-transport-agent, postfix-tls

As this short example shows, inter-package relationships can get quite complex, and there are
plenty of more complex examples to be found in distributions like Debian. In particular, the
language to express package relationships is not as simple as flat lists of component predicates,
but rather a structured language whose syntax and semantics is expressed by conjunctive normal
form (CNF) formulae [17]. In Example 1.1, commas represent logical conjunctions among
predicates, whereas bars (“|”) represent logical disjunctions. Also, indirections by the mean
of so-called wirtual packages can be used to declare feature names over which other packages
can declare relationships; in the example (see: “Provides”) the package declares to provide the
features called postfix-tls and mail-transport-agent.

Within this setting, it is interesting to analyse the dependency graph of all packages shipped
by a mainstream FOSS distribution. This graph is potentially very large as distributions like
Debian are composed of several tens of thousands packages but it is surely smaller than widely
studied graphs such as the World Wide Web graph [1]. It is also more expressive, in the sense
that it contains different types of edges (dependencies and conflicts for example) and allows the
use of disjunctions to express alternative paths. Simple graph encodings of the package universe
have been proposed in the past [14, 16], to study the adherence of the dependency graph to
small-world network laws. In such encodings, inter-package relationships were approximated by
a simple binary relation of direct dependency, which is noted p — ¢ in this paper. Formally,

"Mttp://www.debian.org
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p — ¢ holds whenever package g occurs syntactically in the dependency formula of p. This notion
of direct dependency does not distinguish between ¢ occurring in conjunctive or disjunctive
position, ignoring the semantic difference between conjunctive and disjunctive dependencies, as
well as the presence of conflicts among components.

In this paper we argue that there is a different dependency graph to be studied to grasp mean-
ingful relationships among software components: a graph that represents the semantics of
inter-component relationships, in which an edge between two components is drawn only if the
first cannot be installed without installing the second. We call such a graph the strong de-
pendency graph, argue that it is better suited to study package universes in component-based
architectures, and study its network properties. Finally, we argue that the strong dependency
graph can be used to establish a measure of package “sensitivity” which has several uses, from
distribution wide quality assurance to establishing the potential risks of package upgrades. As a
relevant, yet empirical, case study we build and analyse the strong dependency graph of present
and past FOSS distributions, as well as the corresponding package sensitivity.

The rest of the paper is structured as follows: Section 2 introduces the notion of strong de-
pendency, highlights the differences with plain dependencies and proposes related sensitivity
metrics. Section 3 computes dependencies and sensitivity of components of a large and popular
FOSS distribution. Section 4 gives an efficient algorithm to compute strong dependencies for
large software repositories. Section 5 discusses applications of the proposed metrics for quality
assurance and upgrade risk evaluation. Before concluding, Section 6 discusses related research.

2 Strong dependencies

Component dependencies can be used to compute relevant quality measures of software reposi-
tories, for instance to identify particularly fragile components [7, 13, 15]. It is well known that
small-world networks are resilient to random failures but particularly weak in the presence of
attacks, due to the existence of highly connected hub nodes [2]. To identify the components
whose modification (e.g., removal or upgrade) can have a high potential impact on the stability
of a complex software system, it is natural to look for hubs on which a lot of other components
depend.

In FOSS distributions, as well as many other component-based systems [3, 4], the language used
to express inter-package relationships is expressive enough to cover propositional logic. As a
consequence, considering only plain connectivity—i.e., the possibility of going from one package
to another following dependency arcs—is no longer meaningful to identify hubs. For example,
if p is to be installed and there exists a dependency path from p to ¢, it is not true that ¢ is
always needed for p, and in some cases ¢ may even be incompatible with p.

In other terms, the syntactic connectivity notion does not tell much about the real structure
of dependencies: we need to go further and analyse the semantic connectivity among software
components induced by the explicit dependencies in the graph. That led us to the following
definition.

Definition 2.1 (Strong dependency). Given a repository R, we say that a package p in R
strongly depends on a package q in R, written p =g q, if there exists a healthy installation
of R containing p, and every healthy installation of R containing p also contains q. We write
Spreds(p)r for the set {qlq =r p} of strong predecessors of a package p in R, and Scons(p)r
for the set {q|lp =r q} of strong successors of p in R.

Mancoosi D5.1 Strong Dependencies between Software Components page 3 of 27
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In the following, we will drop the R subscript when the repository is clear from the context.

The notions of repository and healthy installation used here are from [17]; the underlying
intuitions are as follows. A repository is a set of packages, together with dependencies and
conflicts encoded as propositional logic predicates over other packages contained therein; an
installation is a subset of the repository; an installation is said to be healthy when all its
packages have their dependencies satisfied within the installation and dually their conflicts
unsatisfied.

Intuitively, p strongly depends on ¢ with respect to R if it is not possible to install p without
also installing ¢g. Notice that the definition requires p to be installable in R as otherwise it
would vacuously depend on all the packages ¢ in the repository. Due to the complex nature of
dependencies, there can be a huge gap with the syntactic dependency graph as naively extracted
from the metadata.

Example 2.2 (Direct and strong dependencies). In simple cases, conjunctive direct depen-
dencies translate to identical strong dependencies whereas disjunctive ones vanish, as for the
packages of the following repository:

Package: p p a
Depends: q, r / \ /\/\
Package: a q r b c

Depends: b | ¢

We have that p — q,p — r and p = q,p = 1 (because p cannot be installed without either q or
r), and that a — b,a — ¢ whereas a # b,a # ¢ (because a does not forcibly require neither b
nor c¢). In general however, the situation is much more complex, like in the following repository:

Package: p D
Depends: q | r /V\#
Package: r q r

Conflicts: p

Package: q

Notice that p = q in spite of ¢ not being a conjunctive dependency of p, and r is incompatible
with p, despite the fact that p — r.

Proposition 2.3 (Transitivity). If p =r q and ¢ =g r then p =g .
Proof. Trivial from Definition 2.1. O

On top of the strong and direct dependency notions, we can define the corresponding dependency
graphs.

Definition 2.4 (Dependency graphs). The strong dependency graph SG(R) of a repository R
is the directed graph having as vertices the packages in R and as edges all pairs (p,q) such that
p = q. Note that the SG(R) is transitively closed as direct consequence as the transitivity of
the strong dependency relation.

Similarly, the direct dependency graph DG(R) is the directed graph having as vertices the
packages in R and as edges all pairs (p,q) such that p — q.

Mancoosi D5.1 Strong Dependencies between Software Components page 4 of 27
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Figure 1: Some significant configurations in the strong dependency graph

The dependency graphs can be used to formalise, via the notion of impact set, the intuitive
notion of the set of packages which are potentially affected by changes in a given package.

Definition 2.5 (Impact set of a component). Given a repository R and a package p in R, the
impact set of p in R is the set Is(p,R) ={q € R | ¢ = p}.

Similarly, the direct impact set of p is the set Dirls(p,R) ={q € R | ¢ — p}.

While the impact set gives a sound lower bound to the set of packages which can be potentially
affected by a change in a package, the direct impact set offers no similar guarantees. Note
that by Definition 2.1, for all package p, p € Is(p, R). Package sensitivity—a measure of how
sensitive is a package, in terms of how many other packages can be affected by a change in
it—can now be defined as follows.

Definition 2.6 (Sensitivity). The strong sensitivity, or simply sensitivity, of a package p € R
is |Is(p, R)| — 1, i.e., the cardinality of the impact set minus 1.

Similarly, the direct sensitivity is the cardinality of the direct impact set.

The higher the sensitivity of a package p, the higher the minimum number of packages which
will be potentially affected by a change, such as a new bug, introduced in p. We write |p| and
[|Ip|| to denote the direct and strong sensitivity of package p, respectively. The following basic
property of impact sets and sensitivity follows easily from the definitions.

Proposition 2.7 (Inclusion of impact sets). If p =g q then Is(p,R) C Is(q,R). As a conse-
quence, the sensitivity of p in R is smaller than the sensitivity of q in R.

When analysing a large component base, like Debian’s, which contains about 22’000 compo-
nents, it is important to be able to identify some measure that can be used to easily pinpoint
“Interesting” packages. Sensitivity can be (and actually is, in our tools) used to order packages,
bringing the most sensitive to the forefront. But sensitivity alone is not enough: we do not
want to spend time going through hundreds of packages with similar sensitivity to find the one
which is really important, so we need to keep some of the structure of the strong dependency
graph.

A first step is to group together only those packages that are related by strong dependencies,
but our analysis of the Debian distribution led us to discover that we really need to go further
and distinguish the cases of related components in the strong dependency graph from the cases

2The —1 accounts for the fact that the impact set of a package always contains itself. This way we ensure
that sensitivity 0 preserves the intuitive meaning of “no package potentially affected”.

Mancoosi D5.1 Strong Dependencies between Software Components page 5 of 27
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of unrelated ones: in the picture in figure 1°, configuration lc shows ¢ that clearly dominates
r, as the impact set of r really comes from that of ¢, in configuration 1d, ¢ and r are clearly
equivalent, while in configuration la, ¢ and r are totally unrelated, and in configuration 1b, ¢
strong depends on 7 but ¢ does not generate all the impact set of r.

Yet, the packages ¢ and r all have essentially the same sensitivity values (n or n+ 1) in all the
first three cases (and n + k in the fourth, which can also contribute to the mass of packages
of sensitivity similar to n). To distinguish these different configurations in strong dependency
graphs, we introduce one last notion.

Definition 2.8 (Strong dominance). Given two packages p and q in a repository R, we say
that p strongly dominates q (p =15 q) iff

o Is(p,R) O (Is(q,R)\ Scons(p)), and

e p strongly depends on q

The intuition of strong dominance, is that a package p dominates ¢ if the strong dependency of
p on q explains the impact set of ¢: the packages that ¢ has an impact on are really those that p
has an impact on, plus p. This notion has some similarity in spirit with the standard notion of
dominance used in control flow graphs, but is technically quite different, as strong dependency
graphs are transitive, and have no start node.

Using the transitivity of strong dependencies, the following can be established.

Proposition 2.9. The strong domination relation is a partial pre-order.

Proof. Reflexivity is trivial to check. For transitivity, suppose we have p =75 ¢ and q =, r: first
of all, p strongly depends on r is a direct consequence of the fact that the strong dependency
relation is transitive, so the second condition for p =, 7 is established. For the first condition, we
know that Is(p, R) 2 (Is(q, R)\ Scons(p)) and Is(q, R) D (Is(r, R)\ Scons(q)). By transitivity
of strong dependencies, since p = ¢ = r, we also have that Scons(p) 2 Scons(q) 2 Scons(r).
Then we have easily that Is(p, R) 2 (Is(q, R) \ Scons(p)) 2 (Is(r,R)\ Scons(q)) \ Scons(p) =
Is(r, R) \ Scons(p). O

This pre-order is now able to distinguish among the cases of Figure 1. In Figure 1¢ we have that
q =15 T, but not the converse; in 1d both ¢q =75 r and r =75 ¢ hold, i.e., ¢ and r are equivalent
according to strong domination; in la and 1b no dominance relationship can be established
between ¢ and 7.

It is possible, and actually quite useful, to generalise the strong dominance relation to cover
also the case shown in 1b, where a part of the impact set of the package r is not covered by the
impact set of g, as follows.

Definition 2.10 (Relative strong dominance).
Given two packages p and q in a repository R, we say that p strongly dominates q up to z

(p =7, a) iff

|(Is(g,R)\Scons(p))\Is(p,R)| _
d IIS(p,RZ;\ Pl 100 = 2z, and

e p strongly depends on q

3Edges implied by transitivity are omitted from the diagrams for the sake of clarity.

Mancoosi D5.1 Strong Dependencies between Software Components page 6 of 27
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Figure 2: Evolution of packages, direct, and strong dependencies across Debian releases.

It is easy to see that p =75 ¢ iff p k(}s g, and one can compute in a single pass on the repository
the values z for each pair of packages such that p = ¢, leaving for later the choice of a threshold
value for z. In the case of figure 1b, we have that ¢ dominates r up to k/n x 100.

We have computed strong dominance graphs for state of the art FOSS distributions, obtain-
ing concise visual representations of clusters of packages intertwined by strong dependencies;
Appendix A contains some of those graphs.

3 Strong dependencies in Debian

Due to the different properties of direct and strong dependencies,the two measures of package
sensitivity can differ substantially. To verify that, as well as other properties of the underlying
dependency graphs, we have chosen Debian GNU/Linux as a case study.*The choice is not
casual: Debian is the largest FOSS distribution in terms of number of packages (about 22’000
in the latest stable release) and, to the best of our knowledge, the largest component-based
system freely available for study.

All stable releases of Debian have been considered, from 1994 to February 2009. For each
release the archive section main and in particular the 1386 architecture has been considered;
the choices are justified by the fact that they identify both the most used parts of Debian,” and
that they are the only parts which have been part of all Debian releases and hence can be better
compared across years. The obtained archive parts have been analysed by building both the

4The data presents in this section, as well as what was omitted due to space constraints, are available to
download from http://www.mancoosi.org/data/strongdeps/. The tools used to compute the data are released
under open source licenses and are available from the Subversion repository at https://gforge.info.ucl.ac.
be/svn/mancoosi.

% According to the Debian popularity contest, available at http://popcon.debian.org

Mancoosi D5.1 Strong Dependencies between Software Components page 7 of 27


http://www.mancoosi.org/data/strongdeps/
https://gforge.info.ucl.ac.be/svn/mancoosi
https://gforge.info.ucl.ac.be/svn/mancoosi
http://popcon.debian.org

FP7-ICT-2007-1 STREP project
April 21st, 2009 MANCOOSI

direct and strong dependency graphs; while the construction of the former is a trivial exercise,
the implemented efficient way of constructing the latter is discussed in Section 4. To build the
direct dependency graph the Depends and Pre-Depends inter-package relationships have been
considered [12].

Figure 2 shows the resulting evolution of the number of graph nodes and edges across all
Debian releases. The size of the distribution has grown steadily, yet super-linearly, across most
releases [20, 11], but the growth rate has decreased in the past two releases. As expected, strong
and direct sensitivity are not entirely unrelated, given that the former is the semantic view of
the latter, hence they tend to grow together.

More precisely the total number of strong dependencies is higher, in all releases, than the total
number of direct dependencies. A partial explanation comes from the fact that the strong
dependency graph is a transitive closed graph—property inherited by the underlying strong
dependency relationship—whereas the direct dependency graph is not. Performing the transitive
closure of the direct dependency graph however would be meaningless, because the propagation
rules of disjunctive and conjunctive dependencies are not expressible simply in terms of transitive
arcs.

We have studied the apparent correlation between strong and direct dependencies analysing
the respective sensitivity measures for each release. Table 1 confirms the correlation and gives
some statistical data about package sensitivity. The first column is the Spearman p correlation
index,® a commonly used non-parametric correlation index that is not sensible to exceptional
values [8]. An index between 0.5 and 1.0—in all the releases we have p € [0.91,0.94]—is
commonly interpreted as a strong correlation between the two variables. The more common
correlation index r for the same set of data (not shown in the table) gives consistently a value
of 0.55: the huge difference among p and r indicates that the few exceptional values in the data
series have really high weight, and we will see, when looking at some of these exceptional value
that this is indeed the case.

The remaining columns show mean and standard deviation for, respectively, direct sensitivity,
strong sensitivity, and A = ||p|| — |p|. In particular we note an increasingly high standard
deviation in latest Debian releases, which hints that there is an increasing number of peaks.

5The statistical info for the first two rows are possibly not relevant, due to the small size of the two releases.

Table 1: Direct and strong sensitivity across Debian releases: correlation, mean, standard
deviation.

Rel. | p -] |- 1] A

0.92 | 1.00, 02.79 | 1.05, 04.73 | 1.00, 04.00
0.93 | 1.70, 013.91 | 2.90, 025.96 | 1.88, o18.56
0.91 | 1.79, 018.43 | 2.99, ¢32.27 | 1.73, 022.42
0.91 | 1.92, 621.95 | 3.06, 038.24 | 1.69, 025.85
0.93 | 2.29, 026.73 | 4.03, 050.88 | 2.50, 036.56
0.94 | 2.60, 034.92 | 4.93, 064.55 | 2.93, 046.61
0.92 | 3.29, 044.24 | 6.89, 090.47 | 4.88, 068.76
0.92 | 3.99, ¢59.25 | 10.49, ¢131.5 | 8.02, 692.34
0.92 | 5.29, 691.42 | 22.36, 0282.0 | 19.39 , 5:246.4
0.92 | 5.55, 085.10 | 28.23, ¢352.4 | 24.50 , ¢'313.9
0.93 | 5.07, 086.16 | 36.05, 0480.3 | 32.55 , ¢440.1

o
©
w
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OO R ONRFROWN R
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Figure 3: Correlation between strong and direct sensitivity in Debian 5.0 “Lenny”.

Figure 3 shows in more detail the correlation phenomenon for Debian 5.0 “Lenny”, the latest
and largest Debian release. The figure plots strong vs direct dependencies for each package in
the release. In most cases, strong sensitivity is higher than direct sensitivity, yet close: 82.9%
of the packages fall in a standard deviation interval from the mean of A; the next percentile
ranks are 97.4% for two standard deviations, and 99.8% for three. The remaining cases allow
for important exceptions of packages with very high strong sensitivity and very low direct
sensitivity. Such exceptions are extremely relevant: metrics built on direct sensitivity only
would totally overlook packages with a huge potential impact.

3.1 Strong vs direct sensitivity: exceptions

It’s time now to look at some of these exceptional cases to see how relevant they are. Table 2
lists the top 30 packages of Lenny having the largest A.

libc6 is the package shipping the C standard library which is required, directly or not, by
almost all applications written or otherwise linked to the C programming language. About a
half of all the packages in the distribution depends directly on 1ibc6, as can be seen in row 13
of the table, but almost all packages in the archive cannot be installed without it, as the strong
sensitivity of 1ibc6 is 20’126, on a total of 22’311 packages. In this case direct sensitivity does
not inhibit identifying the package as a sensitive one, though, even if it underestimates widely
its importance.

Now consider row 1 of Table 2: gcc-4.3-base, which is a package without which 1ibc6 cannot
be installed. It is the package with the largest A, having direct sensitivity of only 43 and
strong sensitivity of 20°128. Ranking its sensitivity with the direct metric would have led
to completely miss its importance: a bug into it can potentially affect all packages in the

Mancoosi D5.1 Strong Dependencies between Software Components page 9 of 27
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Table 2: Packages from Debian 5.0, sorted by the difference between strong and direct impact
sets.

i Package |p| pll | llpll = Ip|
1| gcc-4.3-base 43 | 20128 20085
2 | 1ibgccl 3011 | 20126 17115
3 | libselinux1 50 | 14121 14071
4 | 1zma 4 | 13534 13530
5 | coreutils 17 | 13454 13437
6 | dpkg 55 | 13450 13395
7 | libattril 110 | 13489 13379
8 | libacl1 113 | 13467 13354
9 | perl-base 299 | 13310 13011
10 | 1ibstdc++6 2786 | 14964 12178
11 | libncursesb 572 | 11017 10445
12 | debconf 1512 | 11387 9875
13 | 1ibc6 10442 | 20126 9684
14 | 1ibdb4.6 103 | 9640 9537
15 | zlibig 1640 | 10945 9305
16 | debianutils 86 | 8204 8118
17 | 1ibgdbm3 68 | 8148 8080
18 | sed 11 | 8008 7997
19 | ncurses-bin 1 7721 7720
20 | perl-modules 214 | 7898 7684
21 | 1sb-base 211 | 7720 7509
22 | 1ibxdmcp6 15| 6782 6767
23 | 1libxau6 42 | 6795 6753
24 | 1libx11-data 1| 6693 6692
25 | 1ibxcb-x1ib0 3| 6695 6692
26 | 1ibxcb1l 87 | 6778 6691
27 | x11-common 137 | 6317 6180
28 | perl 2169 | 7898 5729
29 | libmagicl 28 | 5585 5557
30 | 1ibpcre3 164 | 5668 5504

distribution. Note however that gcc-4.3-base is not a direct dependency of 1ibc6, showing
once more that to grasp this kind of inter-package relationships the semantics, rather than the
syntax, of dependencies must be put into play.

In the second row, libgccl shows a similar pattern, being this time a direct dependency of
libc6. The third row and many others in the table show more complex patterns. Ordering
packages only according to sensitivity might lead to oversee other important characteristic. Pos-
sibly the most extreme cases are those of ncurses-bin and 1libx11-data, which are mentioned
just once in all the explicit dependencies, and yet are really necessary for several thousand other
packages.

We believe this is sufficiently conclusive evidence to totally dismiss, from now on, any analysis
based on the syntactic, direct dependency graph, when considering component based systems
with complex dependency languages.

Mancoosi D5.1 Strong Dependencies between Software Components page 10 of 27
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Figure 4: Dominance relations among the topmost 20 sensitive packages

3.2 Using strong dominance to cluster data

Now we turn to the problem of presenting the sensitiveness information in a relevant way to a
Quality Assurance team: we could simply print a list of package names, ordered by their sensi-
tiveness; this would give a result quite similar to that of table 2 above, just dropping the first
and fourth column. A smart Debian maintainer will surely spot the fact that gcc-4.2-base,
libgccl and 1ibc6 are related and would look at them together, but it would be difficult to
see relationships among the other packages in the list, even if we can see that many packages
have impact sets of similar size.

Here is where our definition of relative strong dominance comes into play, allowing to build
meaningful clusters that provide sensible information to the maintainers: Figure 4 shows the
graph of relative strong domination between the first 20 packages of Table 2. Bold edges show
strong domination as defined in Definition 2.8. Normal edges show relative domination, where
the install sets of the two packages almost fully overlap, apart from a few packages (edges are
labelled with the percentage z of Definition 2.10).

This figure shows clearly that it is possible to isolate five clusters of related packages with similar
sensitivity values; some of them may look surprising at first sight to a Debian maintainer, and
evident after a little time spent exploring the package metadata: this actually confirms the real
value of this way of presenting data.

3.3 Debian is a small world

We expected the strong dependency graph to retain the small world characteristics previously
established for the direct dependency graph [14], but this required some extra effort to get
sensible results: indeed, computing clustering coefficients and other similar measures on the
strong dependency graph will yield very different values (as the strong dependency graph is
transitive), so we first built a detransitivised version of the strong dependency graph, and
computed the usual small world measures on it.

Note that, since the strong dependency graph contains some cycles, the graph obtained by
detransitivising it is not unique. The differences are however minor enough to not alter the
overall results.

The clustering coefficient and average path length of the detransitivised graph are, though
slightly smaller, well within the range of small-world networks. More than half the edges of
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the syntactic graph have disappeared, but this has not significantly affected either the graph
clustering or the path length. The relevant statistics are summarised in Table 3.3.

Some further notes from Table 3.3. First, both graphs contain one enormous (weakly connected)
component, next to which all other components are of insignificant size (for the direct graph,
there are 1’480 remaining packages in 1’424 components, which would make their average size
just above 1; the ratio is similar for the strong graph). Second, when we look at the density
of both graphs (the number of edges in the graph divided by the maximum possible number of
edges), we see that both graphs are extremely sparse.

4 Efficient computation

It is not evident that strong dependencies as defined in Section 2 are actually tractable in
practise: from previous results [17, 5] it is known that checking installability of a package (or
co-installability of a set of packages) is an NP-complete problem. Even if in practise checking
installability turns out to be tractable on real-world problem instances, the sheer number of
instances that computing strong dependencies may require in general makes the problem in prin-
ciple much harder. We start by observing that the problem of determining strong dependencies
is decidable.

Proposition 4.1 (Decidability). Strong dependencies for packages in a finite repository R are
computable.

Proof. Since R is finite, the set of all installations is also finite. Among these installations,
finding the healthy one is just a matter of verifying locally the dependency relations. Then, for
each p and g, it is enough to check all healthy installations to see whether ¢ is present whenever
p is. O

If we want to know if a particular packages p strongly depends on ¢ in a repository R however,
the argument used in the proof of decidability leads to an algorithm that has exponential worst-
case complexity in the size n of a repository R. One possible algorithm to find all strong
dependencies in a repository R is as follows.
Require: R # ()

strongdeps « ()

for all p,q € R do

if strong dependency(p,q, R) then

Table 3: Small-world characteristics for Debian 5.0.

Direct dependency graph | Strong depedency graph
Vertices 22 311 22 311
Edges 107 796 40 074
Average degree 4.83 1.80
Clustering coeff. 0.41 0.39
Average distance 3.18 2.86
Components (WCCs) 1425 2809
Largest WCC 20 831 19 200
Density 0.00022 0.000081
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strongdeps « strongdeps U {p, ¢}
end if
end for
return strongdeps

Where the function strong dependency uses a SAT solver to check whether it is possible to
install p without installing ¢ (in repository R). This algorithm requires checking n? SAT in-
stances, which is unfeasible with n & 22/000. We need to look for an optimised approach; the
following remark is the key observation.

Remark 4.2 (Reducing the search space). All packages q on which a given package p strongly
depends are included in any installation of p. Furthermore, if a package p conjunctively depends
on a package q, then q is a strong dependency of p.

This leads to the following improved algorithm that strongly relies on the notion of installation
sets and the property of transitivity of strong dependencies.

for all p € R do
strongdeps < strongdeps U conj_dependencies(p, R)
end for
for all p € R do
S « install(p, R)
for all ¢ € S do
if (p,q) & strongdeps A strong dependency(p, ¢, R) then
strongdeps < strongdeps U {p, ¢}
end if
end for
end for
return strongdeps

The function conj.dependencies(q, R) returns all packages in R that are connected to ¢, con-
sidering only conjunctive paths. We add to the strongdeps set all couples (p, q) such that there
exists a conjunctive path between p and ¢, and then for all remaining packages in the install set
of p, we check if there is a strong dependency using the SAT solver.

On one hand, the analysis of the structure of the repositories shows that it is in practice possible
to find installation sets that are quite small. Considering only the installation set for a given
package drastically reduces the number of calls to the SAT solver. On the other hand, since the
large majority of strong dependencies can be derived directly from conjunctive dependencies,
building the graph of conjunctive dependencies beforehand can further reduce the computation
time.

In our experiments, calculating the strong dependency graph and sensitivity index for about
22/000 packages takes about 5 minutes on a modern commodity Unix workstation.”

5 Applications

The given notions of strong dependency, impact set, sensitivity, and strong dominance can
be used to address issues showing up in the maintenance of large component repositories. In

"Intel Xeon 3 GHz processor, 3 Gb of memory
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particular, we have identified two areas of application: repository-wide Quality Assurance (QA)
and upgrade risk evaluation for user machines.

Quality Assurance FOSS distribution the size of Debian are not easily inspectable by hand,
without specific tools. The work of release managers in such scenario is about maintaining a
coherent package repository, i.e., in which each package is installable in at least one healthy
installation. Such repositories are usually not built from scratch, but rather evolve from an
unstable state to a stable one which is periodically released as the new major release of the
distribution. Day to day maintenance of the repository includes actions such as adding packages
to the repository (e.g., newly packaged software, or new releases) as well as removing them
(e.g., superseded softwares or sub-standard quality packages which are not considered suitable
for releasing). Quality assurance is meant to spot repository-wide incompatibilities or sub-
standard quality packages, according to various criteria.

In such ecosystems, removing a package can have non-local effects which are not evident by just
looking at the direct dependencies of the involved packages. For instance, removing a package
p such that several packages depends on p | ¢ might be appropriate only if ¢ is installable in
the archive. The strong dependency graph can be used to detect similar cases efficiently. Once
the graph has been computed—and Section 4 showed that the cost is affordable even for large
distributions—detecting if a package is removable in isolation reduces to check whether its node
has inbound edges or not. If really needed, following inbound edges can help building sets of
packages removable as a whole.

In the same context, sensitivity can be used to decide when to freeze packages during the
release process (decision currently delegated to folklore): the higher the sensitivity, the sooner a
package should be frozen. Sensitivity can also be used to activate heuristic warnings in archive
management tools when apparently innocuous packages are acted upon: attempting to remove
or otherwise alter gcc-4.3-base at the end of the Lenny release process (see Table 2) would have
surely been an error, in spite of the few packages mentioning it directly in their dependencies.

Upgrade risk evaluation System administrators of machines running FOSS distributions
would like to be able to judge the risks of a certain upgrade. Risk evaluation not necessarily
in the sense of deciding whether or not to perform an upgrade—not performing one is often
not an option, due to the frequent case of upgrades that fix security vulnerability. Upgrade
risk evaluation is important to allocate suitable time slots to deploy upgrade plans proposed by
package managers: the riskier the upgrade, the longer the time slot that should be planned for
it.

The general principle we propose is that a package that is not strongly depended upon by other
packages is relatively safe to upgrade; conversely, a package that is needed by many packages
on the system might need some safety measures in case of problems (backup servers, ...).
However this measure should be computed in relation to the actual user installation and not as
an absolute value with respect to the distribution such as plain impact sets. Once the strong
dependency graph of a user installation has been computed, the legacy package manager can be
used to find upgrade plans as usual. On that plan the overall upgrade sensitivity can then be
computed by summing up the size of the installation impact sets of all packages touched by the
proposed plan; where the installation impact set of a package p is defined as the intersection of
the strong impact set with the local installation.

The strong dependency graph used for risk evaluation must be the one corresponding to the
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distribution snapshot which was known before planning the upgrade. This is because we want
to evaluate the risks with respect to the current installation, not to a future potential one in
which package sensitivity can have changed. The maintenance of such graph on user machines
is straightforward and can be postponed to after upgrade runs have been completed, in order
to be ready for future upgrades.

Note that in this way, what is computed is an under approximation of the upgrade risk measure.
For example consider the following scenario: a package p having Depends: q | r, and a healthy
installation I = {p,q}. The direct dependencies of p entail no strong dependency, but in the
given installation ¢ has been “chosen” to solve p dependencies. Even if p & Is(q, R) NI, an up-
grade of ¢ in that specific installation has potentially an impact on p. The under approximation
is nevertheless sound—i.e., all packages in the installation impact set are installed.

Release upgrades A particular case of upgrade are the so called release upgrades (or distri-
bution upgrades) which are performed periodically to switch from an older stable release of a
given distribution to a newer one. The relevance of such upgrades is that they usually affect
almost all of the packages present in user installation. Such kind of upgrades are usually already
performed wisely by system administrators devoting large enough time slots.

During release upgrades system administrators are often faced with the choice of whether to
switch to a new major version of some available software or to stay with an older, legacy
one. For instance, one can have the choice to switch to the Apache Web server 2.x series,
or to stay with Apache 1.x. The upgrade is not forced by strict package versioning by either
offering packages with different names (e.g. apachel vs apache2 in Debian and its derivatives)
or by avoiding explicit conflicts among the two set of versions (as it happens in RPM-based
distributions). The choice is currently not technically well assisted: if apache?2 is tentatively
chosen, the package manager will propose to upgrade all involved packages to the most recent
version without highlighting which upgrades are mandatory to fulfil dependencies and which
are not.

While this is a deficiency of state of the art solving algorithms [22], strong dependencies offer a
cheap technical device to work around the problem with current solvers. It is enough to compute
the strong dependency graph of both distributions and, in particular, the strong dependencies of
the two (or more) involved packages. Then, by taking the difference of the strong dependencies
in the new and in the old graph, the list of package which must be forcibly upgraded to do
the switch is obtained. All such forced upgrades can then be presented to the administrator to
better guide her or his choice.

Architecture visualization and monitoring As the KDE cluster in Figure 9 shows, there
are cases where the distributed development of a universe of components can lead to partially
overlapping, duplicated components, which mangle the global architecture of the distribution;
strong dominator graphs extract significant information from the huge dependency graph, and
help identify in a very visual way the areas that need to be analysed in detail; it is natural to
try and improve this line of research by coupling the information found via strong dominators
to other information available on the software components, like the developer team members,
or the upstream source code.
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6 Related works

We have identified several interesting articles dealing with issues related to the topics we address.
In the area of complex networks, [14, 16] used FOSS distributions as case studies. The former is
the closest to our focus, as it studies the network structure obtained from Debian inter-package
relationships, showing that it is small-world, as the node connectivity follows a near power-law
distribution. However, the analysis is performed on the direct dependency graph, which we
have shown misses the real nature of dependencies.

We could not get more information on how the data of [14] has been computed, as the snapshot
of Debian used there comes from late 2004, and is no longer available in the Debian archives;
based on the figures presented in the paper, and our analysis of the closest Debian stable
distribution, we conclude that their analysis dropped all information about Conflicts and
Pre-Depends. As a consequence, the figures produced for what is called in the paper “the 20
most highly depended upon packages” falls extremely short of reality: 1ibc6 is crucial for 3
times more packages than what is reported, and other critical packages such as gcc-4.3-base
are entirely missed.

In the area of quality assurance for large software projects, many authors correlate component
dependencies and past failure rates in order to predict future failures [24, 18, 19]. The under-
lying hypothesis is that software “fault-proneness” of a component is correlated to changes in
components that are tightly related to it. In particular if a component A has many dependencies
on a component B and the latter changes a lot between versions, one might expect that errors
propagates through the network reducing the reliability of A. A related interesting statistical
model to predict failures over time is the “weighted time damp model” that correlates most
recent changes to software fault-proneness [9]. Social network methods [10] were also used to
validate and predict the list of sensitive components in the Windows platform [24].

Our work differs for two main reasons. First, the source of dependency information is quite
different. While dependency analysing for software components is inferred from the source
code, the dependency information in software distributions are formally declared and can be
assumed to be, on the average, trustworthy as reviewed by the package maintainer. Second,
FOSS distributions still lack the needed data to correlate upgrade disasters with dependencies
and hence to create statistical models that allow to predict future upgrade disasters. In more
detail, the FOSS ecosystem is really fond of public bug tracker systems, but generally lacks
explicit logging of upgrade attempts and a way to associate specific bugs to them. One of
the goal of the Mancoosi® project—in which the authors are involved—is to create a corpus of
upgrade problems which will be a first step in this direction.

The key idea behind the notion of sensitivity can be seen as a direct application of the evaluation
of “disease spreading speed” in small world networks [23]: the higher the sensitivity, the larger
the impact sets, the higher the (potential) bug spreading speed. The semantic definition of
impact sets is crucial in this analysis: using the direct dependency graph would give no guarantee
about which components will be effectively installed and therefor help bug spreading.

Shttp://www.mancoosi.org
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7 Conclusion and future work

This paper has introduced the novel notions of strong dependencies between software compo-
nents, and of sensitivity as a measure of how many other components rely on its availability;
and we have introduced strong dominance as a means of ordering and grouping components
with similar sensitivity into meaningful clusters. We have shown concretely on a large scale real
world example that such notions are better suited to describe true inter-component relation-
ships than previous studies, which were solely based on the analysis of the syntactic (or direct)
dependency graph. The main applications of these new notions are tools for quality assurance
in large component ecosystems and upgrade risk evaluation.

The new notions have been tested on one of the largest known component-based system: Debian
GNU/Linux, a popular FOSS distribution. Historical analysis of Debian strong and direct
dependency graphs have been performed. Empirical evidence shows that, while the two notions
are generally correlated, there are several components on which they give huge differences,
with direct dependencies entirely missing key components that are rightly identified by strong
dependencies. We believe the case shown in this paper is strong enough to totally dismiss, in
the future, measures built on direct dependencies as soon as the dependency language is as
expressive as the one used for FOSS distributions.

We hence strongly advocate the evaluating of sensitivity on top of strong dependencies, and
we have shown clearly how clustering components according to the notion of strong dominance
allows to build a meaningful presentation of data, and uncover deep relationships among com-
ponents in a repository.

Despite the theoretical complexity of the problem, and the sheer size of modern component
repositories, we have succeeded in designing a simple optimised algorithm for computing strong
dependencies that performs very well on real world instances, making all the measures proposed
in this paper not only meaningful, but actually feasible.

Previous studies on network properties—such as small world characteristics—have been redone
on the Debian strong dependency graph, showing that it stays small world.

Future works is planned in various directions. First of all the notion of installation impact set
needs to be refined. While it is clear that the strong impact set is an under approximation of
it, it is not clear how to further refine it. On one hand we want to get closer to the actual set of
potentially affected packages on a given machine. On the other it is not clear, for a package p
depending on ¢ | r to which extent both packages should be considered as potentially impacted by
a bug in p. It appears to be a limitation in the expressiveness of the dependency language which
does not state an order between ¢ and r, but needs further investigation. Interestingly enough,
the implicit syntactic order “p before ¢” is already taken into account by some distribution tools
such as build daemons and is hence worth modelling.

Distributions like Debian use a staged release strategy, in which two repositories are maintained:
an “unstable” and a “testing” one. Packages get uploaded to unstable and migrate to testing
when they satisfy some quality assurance criteria, including the goal of maintaining testing de-
void of uninstallable packages. Current modelling of the problem is scarce and implementations
rely on empirical package-by-package migration attempts. We believe that the notion of strong
dependency and the clusters entailed by strong dominance can help in identifying clusters of
packages which should forcibly migrate together.
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A Case Study: Evaluation of debian structure

The strong dominance graph can be used to extract and visualize cluster of components with
similar sensitivity that are hidden when looking directly at the much bigger direct (or strong)
dependency graph. To showcase this application of strong dominance, we present the corre-
sponding graphs for various Debian releases (see Figures 5, 6, 7, 8, and 10). In Figure 9 we
highlight the structure of the KDE cluster in Debian 3.1.

Early releases (Figure 5) have small dominance graphs hinting that the Debian distribution was
composed, back then, by a small number of loosely coupled package clusters. From Debian 2.2
a growth of the strong dominance graph can be observed.

The following graphs are generate removing all non-trivial (i.e., strictly larger than 2 compo-
nents) strong dominance clusters and with a fuzzy index of 5%. All images are embedded in the
electronic format of this document in vectorial format allowing to “zoom in” the otherwise huge
graph. The source files (in sgv and dot format) can be retrieved from the mancoosi website at
http://www.mancoosi.org.
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Figure 5: Strong dominance graphs for Debian 0.93R6, 1.1, 1.2, 1.3.1, 2.0, 2.1
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Figure 6: Strong dominance graphs for Debian 2.2, 3.0
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Figure 9: The Figure shows the cluster of packages associated to the KDE suite in the strong
dominator graph for Debian Sarge. We can immediately spot the package kde-amusements,
that is partially overlapping kde-games and kdeedu: this is an architectural issue, that has
been fixed in later Debian versions.
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Figure 10: Strong dominance graph for Debian 5.0. The two bigger clusters are related to
packages coming from the GNOME and KDE desktop environments.
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