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Chapter 2: Pressure and Fluid Statics

Pressure

For a static fluid, the only stress is the normal stress since
by definition a fluid subjected to a shear stress must deform
and undergo motion. Normal stresses are referred to as

pressure p.

For the general case, the stress on a fluid element or at a

point is a tensor

For a static fluid,

Tjj = stress tensor*

I = face
J = direction

| *Tensor: A mathematical object

analogus to but more general than a
vector, represented by an array of
components that are functions of the
coordinates of a space (Oxford)

;=0  i#] shear stresses = 0

Ti=P=Txx =Ty =Tz 1 =

normal stresses =-p

Also shows that p is isotropic, one value at a point which is

independent of direction, a scalar.
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Definition of Pressure:

oF dF
—I|m8A A N/m? = Pa (Pascal)

0A—0
F = normal force acting over A

As already noted, p is a scalar, which can be easily
demonstrated by considering the equilibrium of forces on a
wedge-shaped fluid element

Geometry }—i -
AA=AL Ay | psase
AX =AY cosa Az=Alsina
Az = AL sina 4
I Ax = Al ¢os &
P A COS
>F,=0
PrAA sin o - pyAAsina =0 W =mg
Pn = Px = pVyg
= ’YV
>F,=0 M =% AXAZAY
-prAA cos o + p,AAcosa-W =0
=7 (M COS oc)(M sin a)Ay
AX AZ

— p.AlAycosa + p,AlAy COS o — 72/ Al? cosasin aAy =0
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— P, + P, —%Msina =0
p,=p, forAl—0
Le., Pn=Px=Py=p;

p is single valued at a point and independent of direction.

A body/surface in contact with a static fluid experiences a
force due to p

Note: if p = constant, F, = 0 for a closed body.

Scalar form of Green's Theorem:

.[ fnds = :‘; viav f = constant =>Vf =0
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Pressure Transmission

Pascal's law: in a closed system, a pressure change
produced at one point in the system is transmitted
throughout the entire system.

Absolute Pressure, Gage Pressure, and VVacuum

pg>0
Pa = atmospheric
DA> Pa pressure =
. pg <0 101.325 kPa
Pa < Pa
pa = 0 = absolute
ZEero

For pa>pa, Py = Pa— Pa = gage pressure

For pa<pa, Pvac = -Pg = Pa — Pa = VaCuum pressure
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Pressure VVariation with Elevation

Basic Differential Equation

For a static fluid, pressure varies only with elevation within
the fluid. This can be shown by consideration of
equilibrium of forces on a fluid element

1% order Taylor series
estimate for pressure
variation over dz

Newton's law (momentum principle) applied to a static
fluid

>F=ma=0 for a static fluid

le., ZF=XF, =XF, =0

SF,=0

odxdy — (p + %dz)dxdy _ pgdxdydz =0
y4

op_

=P

Basic equation for pressure variation with elevation
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ZFy:O ZFXZO

pdxdz — (p + f—asdy)dxdz =0 pdydz—(p+ 2—pdx)dydz =0
X

@:0 @:O
oy OX

For a static fluid, the pressure only varies with elevation z
and is constant in horizontal xy planes.

The basic equation for pressure variation with elevation
can be integrated depending on whether p = constant or

p = p(2), i.e., whether the fluid is incompressible (liquid or
low-speed gas) or compressible (high-speed gas) since

g ~ constant

Pressure Variation for a Uniform-Density Fluid

22 =—pg =—Y p = constant for liquid
9] f Ap =—yAz
Z pz_plz_V(Zz_Zl)
D=—yz Alternate forms:

P, +vZ, =P, +YZ, =constant
P +yZ =constant piezometric pressure
p(z=0)=0 gage

i.e., P =—YZ increase linearly with depth
decrease linearly with height

P +2Z =constant  piezometric head

Y
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Oil with a specific gravity of 0.80 forms a layer
0.90 m deep in an open tank that is otherwise filled
with water. The total depth of water and oil is 3 m. What is the gage pressure at
the bottom of the tank?

p+yz=constant
P, +vZ, =P, +VYZ,
) p2=p1+y(21—22)

B S R s _—f_
é oil ® 080m P, =P, =0 ;
7.06 ~+ p, —y,,A7 = 8x9810x 9 = 7.06kPa

»

—_—> Wa;grc 210 m p3 = p2 +YWater (22 - 23)
> T'=10° '
. =7060+9810x2.1
27.7 > DI 4 —27.7kPa

Solution First determine the pressure at the oil—water interface, staying within
the oil, and then caiculate the pressure at the bottom.

&+z5*£~2~+21
Y Y

where p; is the pressure at free surface of oil, z; is the elevation of free surface
of oil, p; is the pressure at interface between oil and water, and z, is the elevation
at interface between oil and water. For this example, p; = 0, ¥ = 0.80 X
9810 N/m’, zy == 3 m, and z, = 2.10 m. Therefore, ;

P2 =090 m X 0.80 X 9810 N/m’ = 7.06 kPa gage

Now obtain p; from

'83“‘ o g = ‘g‘}" b 23
*
where p; has already been calculated and y == 9810 N/m’.

7060
Py = 9830(353-;5 + 2.10) = 27.7 kPa gage - !
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Pressure VVariation for Compressible Fluids:

Basic equation for pressure variation with elevation

d
d—p=—7=—7(p,2)=—pg
z

Pressure variation equation can be integrated for y(p,z)
known. For example, here we solve for the pressure in the
atmosphere assuming p(p,T) given from ideal gas law, T(z)
known, and g = g(2).

p=pRT R = gas constant = 287 J/kg -°K  dry air
p, T in absolute scale

dp _ pg

dz RT

dp -g dz

which can be integrated for T(z) known
p R T()
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Pressure Variation in the Troposphere

T=Te—a(z-2) linear decrease

To=T(z0) where p = po(z,) known
o = lapse rate = 6.5 °K/km

dp_ g dz =T, —a(z-2,)

p  RI[T,—-a(z-2,)] dz'= adz

Inp=-2In[T, —a(z—2z,)] + constant

oR

use reference condition Zo = garth surface

Inp, = I T, + constant P, = 101.3 kPa

aR
T =15°C
solve for constant o = 6.5 °K/km
T —o(z—-z
P -9 Lo (2-2,)
P, oR T,

P _ |:To _ OL(Z - Zo)}g/aR
Po T

0

I.e., p decreases for increasing z
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Pressure VVariation in the Stratosphere

T=T,=-55°C
dp__gadz
p R T,

g

Inp=———2z + constant
RT,

use reference condition to find constant

ﬂ _ e—(z—zo)g/RTS
Po

P=DP, exp[—(z - Zo)g / RTS]

I.e., p decreases exponentially for increasing z.
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Pressure Measurements

Pressure is an important variable in fluid mechanics and
many instruments have been devised for its measurement.
Many devices are based on hydrostatics such as barometers
and manometers, i.e., determine pressure through
measurement of a column (or columns) of a liquid using
the pressure variation with elevation equation for an
incompressible fluid.

Differential ~ L v — |

manometer Y L

More modern devices include Bourdon-Tube Gage
(mechanical device based on deflection of a spring) and
pressure transducers (based on deflection of a flexible
diaphragm/membrane). The deflection can be monitored
by a strain gage such that voltage output is oc Ap across
diaphragm, which enables electronic data acqmsmon with
computers.

>

Bourdon-tube

i o /‘/SH \\‘. C)
Bourdon-Tube \ N U -

Gage

In this course we will use both manometers and pressure
transducers in EFD labs 2 and 3.
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Manometry

1. Barometer
pv + ’Yth = Patm YHg = 13.6 kN/m3

Patm = YHgh py.~ 0 i.e., vapor pressure Hg
nearly zero at normal T
h~76cm
Pam ~ 101 kPa (or 14.6 psia)

Note: Pam 1S relative to absolute zero, i.e., absolute
pressure. Pam = Pam(lOcation, weather)

Consider why water barometer is impractical
YthHg = yHZOh H,0 YH20 = 9.80 kN/m3

h,,=2%h, =S h, =136x77=1047.2cm=34 ft

H,0
7/Hzo
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2. Piezometer

patm + Yh - ppipe - p abSOIUte

p=vh gage

Simple but impractical for large p and vacuum pressures
(i.e., Pabs < Pam)- Also for small p and small d, due to large
surface tension effects, which could be corrected using
Ah=4c/yd, but accuracy may be problem if p/y = Ah.

3. U-tube or differential manometer

Y
1 v

5 — 1 patm
R
Yn{manometer liquid)
P1+ YmAh — Y1 =g P1 = Patm
P4 = ymAh —y1 gage

= Yw[SmAh =S 1]
for gases S << S, and can be neglected, i.e., can neglect Ap
in gas compared to Ap in liquid in determining ps= Ppipe-



yYAR
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Example:
Air at 20 °C is in pipe with a water manometer. For given
conditions compute gage pressure in pipe.

“w

e 1 =140 cm

Ah=70cm

p=7 gage (i.e, p1=0)

ks Pressure same at 2&3 since
same elevation & Pascal’s

i+ yAh =pg step-by-step method | Jaw: in closed system

P3 - Yairl = Pa pressure change produce at
one part transmitted
throughout entire system

P1 + YAD - vair 1 = Py complete circuit method
yAh - Yairl = Pa gage

Ywaer(20°C) = 9790 N/m®> = ps3 = yAh = 6853 Pa [N/m?]
Yair = PY
pabs

~p  (ps+psn)  6853+101300
PTRT R(°C+273) 287(20+273)
°K
vair = 1.286 x 9.81m/s® = 12.62 N/m°

=1.286 kg/m?*

NOte Yair << Ywater
Ps = P3 - Yairl = 6853 —\12.63 x 1.4 = 6835 Pa
17.668
If neglect effect of air column ps = 6853 Pa
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A differential manometer determines the difference in
pressures at two points and @) when the actual pressure
at anv point in the svstem cannot be determined.

&

2
/ R

X

p1+yf€1—ymAh — (EZ—Ah) = p2
pl_p2 :Yf (62 _€1)+('Ym _Y-I: )Ah

[&Mlj_[&%jz[v_m_ jAh
Vs 04 0Ei

— _/

difference in piezometric head

*if fluid isa gas vf<<ym: p1— P2 =ymAh

% if fluid is liquid & pipe horizontal £, = £ :
P1—P2 = (Ym- vr) Ah
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Hydrostatic Forces on Plane Surfaces

For a static fluid, the shear stress is zero and the only stress
Is the normal stress, i.e., pressure p. Recall thatpisa
scalar, which when in contact with a solid surface exerts a
normal force towards the surface.

§ A% =-padk

3 ~

I:p - —prdA
A

For a plane surface n = constant such that we can
separately consider the magnitude and line of action of F,.

£y =~ pon
A

Line of action is towards and normal to A through the
center of pressure (Xcp, Yep)-
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Unless otherwise stated, throughout the chapter assume pam
acts at liquid surface. Also, we will use gage pressure so
that p = 0 at the liquid surface.

Horizontal Surfaces
\/

horizontal surface with area A

TITTTT4TT10t 111 p=constant

F=[pdA=pA

Line of action is through centroid of A,
1.e., (Xeps Yep) = (x, y)
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Inclined Surfaces T
gl |z

pRYFSIRG

c<x b
(X,y) = centroid of A
FIGURE 3. 10
g s g (XeoYen) = center of pressure
Distribution of

hydrostatic pressure on
plane surface.

’ d
ap __
dz !
Ap = —yAZ

View C-C

P —Po=-y(z—20) Wwhere pp=0& z,=0

p =-yzand y-sino = -z
p =vyy-sina

dF = pdA =yy sin a dA
H_J
P
F=[pdA =ysino[ydA
A A

H_J

YA
F=vysinayA

—
p= pressure at centroid of A

v and sin o are constants

_ 1
=~ [vdA
y AIy

1%t moment of area
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F=pA

Magnitude of resultant hydrostatic force on plane surface is
product of pressure at centroid of area and area of surface.

Center of Pressure

Center of pressure is in general below centroid since
pressure increases with depth. Center of pressure is
determined by equating the moments of the resultant and
distributed forces about any arbitrary axis.

Determine y,, by taking moments about horizontal axis 0-0

Yol = ide
[ypdA
A
[y(yysin o)dA
A
= ysina[y*dA
&

I, = 2" moment of area about 0-0
= moment of inertia

transfer equation: 1, =y A+1

I = moment of inertia with respect to horizontal
centroidal axis
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Yoo F =ysina(y’ A+l)
R . _2 —_
Yep (PA) =ysina(y A+l)

Yoy Sin aL YA = ysin a(y°A+1)

Yep is below centroid by 1/yA
Yoo — Y for large y

For p,# 0, y must be measured from an equivalent free
surface located po/y above .
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Determine X, by taking moment about y axis

XpF = [xdF
A
[ XpdA
A

Xgp (YYSIN 0A) = [X(yysin a)dA
A

chglA: [xydA
AH_J

l,y = product of inertia
= |y +XyA transfer equation
X YA = lxy +XYyA
+X

Xep =

&

For plane surfaces with symmetry about an axis normal to
O'O, IXy :O and ch = X.
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A=ba
3
1
" = TEMB
2 1
i l,, = ﬁdb;
1,.=0
(b) Circle
=R ab ba’
= fe—d—f 4=% L= %
1, = 0.10988" | Iy = 55~ 2d)
1, =039278* <
iR : I a
'. Al 3-‘- ' no ,," ‘.'5,,_ N §
e R—rbe——] o _bed_| |
b |
(¢} Semicircle (d) Triangle
A= lif
1. =1, =0.05488R"
1, =-0.01647R°
y % A=bL A = 7R2
" qu R4
jE
: 5 [,\'y =0 1.\-)- =0
:
b o1 b [
2 2
(a) (b)
]
/I bL 2
PN = =3 A=t
/ 3
Y 5 |
P [ I, = 0.10976R*
X Y Y736 il
| L b(b—2s)L> i
/ 3 I.r_v = 72
1 Sl \ ﬂ
EZER T
2 | 2

(d)
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Hydrostatic Forces on Curved Surfaces

z 157. Free surface
AR
B W
A,
kg
My D
. 3 p=vh
‘x F=—[pndA h = distance below
A
free surface
Horizontal Components (x and y components)
F.=F-1=—[pn-idA
A %(_J

T dA, = projection of ndA onto

=— [pdA, vertical plane to x-direction
A

dA, =n-jdA

= projection ndA
onto vertical plane to
y-direction

Therefore, the horizontal components can be determined by
some methods developed for submerged plane surfaces.
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The horizontal component of force acting on a curved
surface is equal to the force acting on a vertical projection
of that surface including both magnitude and line of action.
Vertical Components

F,=F-k=—[pn-kdA
A

2 D
=— [pdA, p=yh
AWa A,
= h=distance
- 1
= below free
o surface
V4
i T =y [hdA, =yV
AZ
= weight of
" fluid above
surface A

The vertical component of force acting on a curved surface
Is equal to the net weight of the column of fluid above the
curved surface with line of action through the centroid of
that fluid volume.
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- Example: Drum Gate

Pressure Diagram

p = yh = yR(1-cos0)

n=-sin0i+cosOk

dA = ¢ Rd6 : Area p acts over (Note: Rd8 = arc length)

F_—ij(l cose)( sme|+cosek)€Rd6

~— —

B n dA

F-i=F, =+y/R? j(l cos0)sin 6d6

T

= yfRz[—cose+%cos2e = 2y/R?

0
= (YR)(2R / ) = same force as that on projection of
p A area onto vertical plane

F, =—y/R2](1—cos6)cos6do
0

=—y€R2{S e_Q_sm 20"
2 4

0

— yfRzg—yf(nF; ] a2

= net weight of water above surface



57:020 Fluid Mechanics
Professor Fred Stern Fall 2013

Chapter 2
26

Another approach:

1
F=y( R -ZR’
iRt

T

-y R21-"

’ [ 4}

F, =90 +F
F=F-F
y L aR?
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Buoyancy

Archimedes Principle

AV

I:B - |:v2_ |:vl

= fluid weight above Surface 2 (ABC)
— fluid weight above Surface 1 (ADC)

= fluid weight equivalent to body volume M

Fg = pgV¥ M = submerged volume

Line of action is through centroid of ¥ = center of
buoyancy

Net Horizontal forces are zero since
Feap = Fecp
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Hydrometry

A hydrometer uses the buoyancy principle to determine
specific weights of liquids.

S= 31y, v 8ewe

Stem 2 Cyoss sebim
L?&M s & T Gl

Bulb' F«* WV o ‘ Pee ‘ -
w‘ E

W»&«»*."gmwj\ W‘Qs By g/h;_/\ X‘.(.”

T=%e ¥
S= é‘l“'/k‘w
Fg = 'YW¥0
W = mg = vV = SyuM = Syw(Mo— AM) = Sy (M, — aAh)
16 M
a = cross section area stem

Fs = W at equilibrium: Ah = stem height above waterline

M /S =M, — aAh

aAh = M, — ¥,/S

Ah = %-(1—3 =Ah(S); Calibrate scale using fluids of

known S

S= i: S(Ah); Convert scale to directly read S

\, —aAh
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Example (apparent weight)

King Hiero ordered a new crown to be made from pure
gold. When he received the crown he suspected that other
metals had been used in its construction. Archimedes
discovered that the crown required a force of 4.7# to
suspend it when immersed in water, and that it displaced
18.9 in® of water. He concluded that the crown was not
pure gold. Do you agree?

/‘ 9 4‘3\,],\* ’*’Y)—«—tw%
/ Fy /
7 ;%
S W 4
77 7 7

ZFvert:O:Wa"'Fb_Wzojwa:W_Fb:(yc'YW))"[

:Yc\#; Fb = YW¥
W YRERRY.
Och:—Va+YW= avw
4.7+62.4x18.9/1728
= = 492.1 =
Ye 18.9/1728 Ped

= pc = 15.3 slugs/ft’

~ psteer @Nd since gold is heavier than steel the crown
can not be pure gold
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Stability of Immersed and Floating Bodies

Here we’ll consider transverse stability. In actual

applications both transverse and longitudinal stability are
Important.

Immersed Bodies

Center of
buoyancy

FIGURE 3.15
Conditions of stability
for immersed bodies. Weight

{a) Stable. (b} Neutral.
(c) Unstable. {a} {b} {e)

Stable Neutral Unstable

Static equilibrium requires: > F, =0 and > M =0

>.M = 0 requires that the centers of gravity and buoyancy
coincide, i.e., C = G and body is neutrally stable

If C is above G, then the body is stable (righting moment
when heeled)

If G is above C, then the body is unstable (heeling moment
when heeled)
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Floating Bodies

For a floating body the situation is slightly more
complicated since the center of buoyancy will generally
shift when the body is rotated depending upon the shape of
the body and the position in which it is floating.

Positive GM Negative GM

The center of buoyancy (centroid of the displaced volume)
shifts laterally to the right for the case shown because part
of the original buoyant volume AOB is transferred to a new
buoyant volume EOD.

The point of intersection of the lines of action of the
buoyant force before and after heel is called the metacenter
M and the distance GM is called the metacentric height. If
GM is positive, that is, if M is above G, then the ship is
stable; however, if GM is negative, the ship is unstable.
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Floating Bodies )
[
o = small heel angle 2{ I 2NN
x =CC' = lateral displacement /.o & Q/ *
of C iy : S
C = center of buoyancy "
i.e., centroid of displaced ,,M
volume VM i B

Solve for GM: find x using

(1) basic definition for centroid of \; and TSy S

(2) trigonometry o
Fig. 3.17

(1) Basic definition of centroid of volume ¥/

XV = [xdV =Y x,A¥. moment about centerplane

XV = moment V before heel — moment of Maog
— —~— — + moment of Meop
= 0 due to symmetry of
original V about y axis
I.e., ship centerplane

XM=— [ (=X)dV"+ [ Xd¥v tan a = y/X
AOB EOD
dM =ydA = x tan a dA

XM= | x2 tan o dA+ [ x2tan adA
AOB EOD
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XV = tan o X “dA
ship waterplane area

— _/
~

moment of inertia of ship waterplane
about z axis O-0: i.e., lpo

loo = moment of inertia of waterplane
area about centerplane axis

(2) Trigonometry
cC'=x = B *oo _cpmang
CM = |oo/¥
GM=CM-CG
GM = IO—O—CG
V
GM>0 Stable

GM<O0 Unstable
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Fluids in Rigid-Body Motion

For fluids in motion, the pressure variation is no longer
hydrostatic and 1s determined from application of Newton’s
2" Law to a fluid element.

_ S _
. ?u. f%k T*" b &pﬁ*
y Mo 3 7
(f = D) dyh® —'_v | -(\"'7‘*\“' 2 (e-Txx) A"l 0\3('“:

\b W= - ok |

Tjj = VISCOUS stresses net surface force in X
direction
p = pressure 5

— - - T a
Ma = inertia force X =|- P, Ot , Toyx, Oy |,
W = weight (body force) oX OX oy 0z
Newton’s 2™ Law PTESsUre VISCOUS

Ma=2F=Fg+Fs
per unit volume (= M) pa=f, +f;

The acceleration of fluid particle
Dt ot
f, = body force = —pgk

fs = surface force = f, + f,




57:020 Fluid Mechanics Chapter 2
Professor Fred Stern Fall 2013 35

f, = surface force due top = -Vp
fv = surface force due to viscous stresses t;;

Neglected in this chapter and
= f ] +f + included later in Chapter 6
— —p S—v .
when deriving complete
Navier-Stokes equations

=—pgk—Vp
inertia force = body force due + surface force due to
to gravity pressure gradients

Where for general fluid motion, i.e. relative motion
between fluid particles:

a= DV = N +V-VW ] L
-~ Dt ot — substantial derivative
g)(:Ccaélleration gggg?ecré\'ﬁon
Du_ op
Dt OX
9, ou  ou aul_ op
pl —+U—+V—+W =——
ot X oY oz OX
Dv 0
y. -2
Dt oy
av oV oV oV op
—4+U—4+V—+W— |=——
at OX oy 0z oy
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Dw op o Note: for V=0
- = _— = + - A
- = 0z az(p 7) Vp = —pgk
W g W W W __ﬁ(er 7) P_P_y
Ao "ox oy ez a7 ox oy
op
o . o —=—Pg=-Y
But in this chapter rigid body motion, i.e., no oz

relative motion between fluid particles
pa=-V(p+7yz) Euler’s equation for inviscid flow

VV=0 Continuity equation for
incompressible flow (See Chapter 6)

4 equations in four unknowns V and p

For rigid body translation: a = al +ak
For rigid body rotating: a=-rQ’,

If a=0, the motion equation reduces to hydrostatic
equation:

P _o_,
oxXx oy
0
»__,

0z
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Examples of Pressure Variation From Acceleration

Uniform Linear Acceleration:
pa =—pgk—Vp
vp=-pla+gk)=plg—a)  g=-gk

Vp=—pla,i+(g+a, k]| a=a,l+a,k
op op

= _pa F=_p(g+a
=P =plgra;)
op_

8X_ pax

1. a,<0 p increase in +x
2.a,>0 p decrease in +x
op

T —_p(g+a

- =rlg+a,)

1.8,>0 p decrease in +z

2.8,<0 and ‘a‘z‘ <0 pdecrease in +z but slower than g

3. 8,<0 and ‘a‘z‘ >0 pincrease in +z
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§=unit vector in direction of Vp
=Vp/|vp]

_ —la,i+(g+a, k|

- +gra,y]”

A = unit vector in direction of p =

n "
= 8§x] ijkijk
SX ] JK1) \L o Vp
—aXR+(g+aZ)? by definition lines
- , o T2 of constant p are
[ax +(g+a,) ]1 normal to Vp

0 =tan™ a, / (g + a,) = angle between A and x

d R /2
d—p=Vp-S=p[a§+(9+az)2]l > pg
S N - J

p = pGs + constant = Pgage = PGS
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Rigid Body Rotation:

Consider a cylindrical tank of liquid rotating at a constant

rate Q = Qk
z %.ﬂ.‘
(N
\ v“’)‘rﬂ— { -/Xv_ 00" (Lk'aj\ vorver
Shit\ —esatin, A . (I‘
\/_/g-} ﬂ»»*"’k
‘/}ﬁ\’:_‘_;/'( :QX(ero) B
o SR : -
g centripetal acceleration
= —rQ%
/ I :
V*
5 V= els —T'Jkea = - r
r
o 10 0
Vp = —a V=—=g +-—6,+—~8
P=p(g-2) o rop * oz ?
= —pgk +prQ%e, grad in cylindrical
coordinates
. op 2 op op
l.e., —=prQ — == — =
o ' w7 o0
C (r) pressure distribution is hydrostatic in z direction

V
p= ngQZ —pgz + constant -~ 42— — =constant

Pz =-pg
p=-pgz + C(1) + ¢

2

P
Y 29
V =rQ)
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The constant is determined by specifying the pressure at
one point; say, p = p, at (r, z) = (0, 0)

1
P=Po—pYZ + ErZQZP
Note: pressure is linear in z and parabolic inr

Curves of constant pressure are given by

Z= + —a+br?

which are paraboloids of revolution, concave upward, with
their minimum point on the axis of rotation

Free surface is found by requiring volume of liquid to be
constant (before and after rotation)

The unit vector in the direction of Vpis =2

& —pg|A<+prQZér T
) ( 2)2 1/2 Av e
[(pg) +(prQ } ﬂ“\z
<
tan6 = % = —% slope of §
r r

2
e, r= Clexp(— —Zj equation of Vp surfaces
g
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Fig. 2.23 Experimental demonstration with buoyant streamers of the fluid force field in
rigid-body rotation: (top) fluid at rest (streamers hang vertically upward); (bottom) rigid-
body rotation (streamers are aligned with the direction of maximum pressure gradient).
(From Ref. 5. Courtesy of R. lan Fletcher.)

94 PRESSURE DISTRIBUTION IN A FLUID



