

CS5460/6460: Operating Systems

Lecture 6: Interrupts and Exceptions

Several slides in this lecture use slides
developed by Don Porter

Anton Burtsev
January, 2014

Why do we need interrupts?

 Remember:
hardware interface is designed to help OS

Why do we need interrupts?

● Fix an abnormal condition
● Page not mapped in memory

● Notifications from external devices
● Network packet received

● Preemptive scheduling
● Timer interrupt

● Secure interface between OS and applications
● System calls

Two types

Synchronous
● Exceptions – react to an abnormal condition

● Map the swapped out page back to memory
● Invoke a system call
● Intel distinguishes 3 types: faults, traps, aborts

Asynchronous
● Interrupts – preempt normal execution

● Notify that something has happened (new packet, disk
I/O completed, timer tick, notification from another CPU)

Handling interrupts and exceptions

● Same procedure
● Stop execution of the current program
● Start execution of a handler
● Processor accesses the handler through an entry in the

Interrupt Descriptor Table (IDT)

● Each interrupt is defined by a number
● E.g., 14 is pagefault, 3 debug
● This number is an index into the interrupt table (IDT)

CPUCPU

Memory

Interrupt descriptor

Interrupt descriptor

Interrupt descriptor

● Interrupt gate disables
interrupts
● Clears the IF flag in

EFLAGS register

● Trap gate doesn't
● IF flag is unchanged

x86 interrupt table

0 255

…

31

… …

47

Reserved for
the CPU

Software Configurable

Device IRQs 128 = Linux
System Call

Interrupts

● Each type of interrupt is assigned an index from 0—255.

● 0—31 are for processor interrupts fixed by Intel
● E.g., 14 is always for page faults

● 32—255 are software configured

● 32—47 are often for device interrupts (IRQs)
● Most device’s IRQ line can be configured

● Look up APICs for more info (Ch 4 of Bovet and Cesati)

● 0x80 issues system call in Linux (more on this later)

Sources

● Interrupts
● External

– Through CPU pins connected to APIC
● Software generated with INT n instruction

● Exceptions
● Processor generated, when CPU detects an error in

the program
– Fault, trap, abort

● Software generated with INTO, INT 3, BOUND

Software interrupts

● The INT n instruction allows software to raise an interrupt

● 0x80 is just a Linux convention

● You could change it to use 0x81!

● There are a lot of spare indexes

● OS sets ring level required to raise an interrupt

● Generally, user programs can’t issue an int 14 (page fault manually)

● An unauthorized int instruction causes a general protection fault
● Interrupt 13

Disabling interrupts

● Delivery of maskable interrupts can be disabled
with IF (interrupt flag) in EFLAGS register

● Exceptions
● Non-maskable interrupts (see next slide)
● INT n – cannot be masked as it is synchronous

Nonmaskable interrupts (NMI)

● Delivered even if IF is clear, e.g. interrupts
disabled
● CPU blocks subsequent NMI interrupts until IRET

● Sources
● External hardware asserts the NMI pin
● Processor receives a message on the system bus,

or the APIC serial bus with NMI delivery mode

● Delivered via vector #2

Processing of interrupt (same PL)

1.Push the current contents of the EFLAGS, CS, and EIP
registers (in that order) on the stack

2.Push an error code (if appropriate) on the stack

3.Load the segment selector for the new code segment and
the new instruction pointer (from the interrupt gate or trap
gate) into the CS and EIP registers

4.If the call is through an interrupt gate, clear the IF flag in
the EFLAGS register

5.Begin execution of the handler

1.Save ESP and SS in a CPU-internal register

2.Load SS and ESP from TSS

3.Push user SS, user ESP, user EFLAGS, user
CS, user EIP onto new stack (kernel stack)

4.Set CS and EIP from IDT descriptor's segment
selector and offset

5.If the call is through an interrupt gate clear
some EFLAGS bits

6.Begin execution of a handler

Processing of interrupt (cross PL)

Task State Segment

● Another magic control block

● Pointed to by special task register (TR)

– Selector
– Actually stored in the GDT

● Hardware-specified layout

● Lots of fields for rarely-used features

● Two features we care about in a modern OS:

● Location of kernel stack (fields SS/ESP)

● I/O Port privileges (more in a later lecture)

Interrupt handlers

● Just plain old code in the kernel

● The IDT stores a pointer to the right handler routine

Return from an interrupt

● Starts with IRET

1.Restore the CS and EIP registers to their values
prior to the interrupt or exception

2.Restore EFLAGS

3.Restore SS and ESP to their values prior to
interrupt
– This results in a stack switch

4.Resume execution of interrupted procedure

Short overview of QEMU

What needs to be emulated?

● CPU and memory
● Register state
● Memory state

● Memory management unit
● Page tables, segments

● Platform
● Interrupt controller, timer, buses

● BIOS
● Peripheral devices

● Disk, network interface, serial line

x86 is not virtualizable

● Some instructions (sensitive) read or update
the state of virtual machine and don't trap (non-
privileged)
● 17 sensitive, non-privileged instructions [Robin et al

2000]

x86 is not virtualizable (II)

● Examples
● popf updates interrupt flag (IF)

– Impossible to detect when guest disables interrupts

● push %cs can read code segment selector (%cs)
and learn its CPL
– Guest gets confused

Solution space

● Parse the instruction stream and detect all sensitive
instructions dynamically
● Interpretation (BOCHS, JSLinux)
● Binary translation (VMWare, QEMU)

● Change the operating system
● Paravirtualization (Xen, L4, Denali, Hyper-V)

● Make all sensitive instructions privileged!
● Hardware supported virtualization (Xen, KVM, VMWare)

– Intel VT-x, AMD SVM

Thank you.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

