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Abstract Assistive mobile robots that autonomously ma-
nipulate objects within everyday settings have the potential
to improve the lives of the elderly, injured, and disabled.
Within this paper, we present the most recent version of
the assistive mobile manipulator EL-E with a focus on the
subsystem that enables the robot to retrieve objects from
and deliver objects to flat surfaces. Once provided with
a 3D location via brief illumination with a laser pointer,
the robot autonomously approaches the location and then
either grasps the nearest object or places an object. We
describe our implementation in detail, while highlighting
design principles and themes, including the use of special-
ized behaviors, task-relevant features, and low-dimensional
representations.

We also present evaluations of EL-E’s performance rela-
tive to common forms of variation. We tested EL-E’s ability
to approach and grasp objects from the 25 object categories
that were ranked most important for robotic retrieval by
motor-impaired patients from the Emory ALS Center. Al-
though reliability varied, EL-E succeeded at least once with
objects from 21 out of 25 of these categories. EL-E also
approached and grasped a cordless telephone on 12 differ-
ent surfaces including floors, tables, and counter tops with
100% success. The same test using a vitamin pill (ca. 15mm
x5mm x5mm) resulted in 58% success.
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1 Introduction

For millions of people on a daily basis, motor impairments
diminish quality of life, reduce independence, and increase
healthcare costs. Assistive mobile robots that autonomously
manipulate objects within everyday settings have the po-
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Fig. 1: The mobile manipulator, EL-E, delivering an object to a table
after the patient briefly illuminated it with a laser pointer (image used
with permission and IRB approval).

tential to improve the lives of the elderly, injured, and dis-
abled by augmenting their abilities with those of a cooper-
ative robot.

Within this paper we present the most recent version of
EL-E (pronounced “Ellie”), an assistive mobile manipula-
tor that we are actively developing to help people with mo-
tor impairments in everyday tasks (Figure 1). People with
motor impairments have consistently placed a high prior-
ity on retrieving objects from the floor and shelves (Stanger
et al, 1994), so a robot capable of performing pick and place
operations within human environments would be valuable.
Moreover, it could serve as a foundation upon which other
forms of assistance could be built.

For this paper, we focus on the subsystem that enables
EL-E to grasp an object from a flat surface, carry it to
a new location, and then place it on a flat surface. The
user designates the location at which to grasp an object
or place a previously grasped object by briefly illuminating
the location with a laser pointer. Since flat planes that are
orthogonal to gravity are common in indoor human envi-
ronments and many objects are found on these planes, we
expect for this capability to be useful.
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Fig. 3: This figure shows the servo tilting the laser range finder to
generate a 3D point cloud.

We describe this subsystem in detail, while highlighting
more general design principles and themes. For example,
we show how EL-E exploits the structure of indoor hu-
man environments with its body and behaviors. We also
emphasize the potential benefits of using specialized be-
haviors and task-relevant features. EL-E performs naviga-
tion and grasping using behaviors that are modular, com-
posable, predictable, and robust. These behaviors use low-
dimensional features such as a 3D location near the object
to be grasped, the edge of the surface that supports the ob-
ject, and a 3 dimensional feature vector that represents the
object for grasping. Similarly, EL-E uses a low-dimensional
action representation that parameterizes overhead grasps
in terms of the gripper’s 2D planar position and 1D wrist
orientation. Rather than using global models of the envi-
ronment, EL-E focuses its perceptual resources on a spa-

tially local volume of interest (VOI). This attention system
contributes to EL-E’s ability to operate in diverse environ-
ments by ignoring non-local information. Instead of using
pre-existing models of specific objects, EL-E segments and
grasps objects without explicit models.

We also present evaluations of EL-E’s performance rel-
ative to common forms of variation, including object geom-
etry, color, material properties, and surface characteristics.
For example, Figure 4 shows EL-E successfully approaching
and grasping a vitamin pill in the unmodified break room
at the Health Systems Institute at Georgia Tech. In addi-
tion to presenting the raw results of our tests, we analyze
the common forms of failure to gain insight into how the
system could be improved.

2 Related Work

Within this section, we give a brief overview of related work
along with comparisons to our system.

2.1 Prior Research with EL-E

We have previously presented results related to EL-E’s user
interface and method of behavior selection (Kemp et al,
2008; Nguyen et al, 2008b). We have also reported results
on a user study in which patients from the Emory ALS!
Center successfully designated objects for EL-E to pick up
(Choi et al, 2008). Additionally, we have published a brief
overview of the original version of EL-E, which included a
small number of tests (7 trials total) (Nguyen et al, 2008a).
Since then, EL-E’s performance has greatly improved and
EL-E has changed substantially both in hardware and soft-
ware. For example, EL-E now uses a tilting laser range
finder (see Figure 3) and no longer has an eye-in-hand cam-
era.

2.2 Robots for Assistive Manipulation

There is a long history of research into assistive robots for

people with motor impairments (Van der Loos and Reinkens-
meyer, 2008). Researchers have developed stationary work-

stations for assistance in offices and factories (Dallaway and

Jackson, 1992; Van der Loos, 1995; Van der Loos et al,

1999), and eating and drinking (Topping and Smith, 1998).

Wheelchair mounted robot arms have provided mobile as-

sistance and are beginning to exhibit more autonomy (Kwee

et al, 1989; Hernandez et al, 2008; Tsui et al, 2008).

1 Amyotrophic lateral sclerosis (ALS), sometimes referred to as
Lou Gehrig’s Disease, is a progressive neurodegenerative disease that
causes people to gradually lose the ability to move.
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Fig. 4: These images are from one of the experiments that we performed to evaluate the performance of the robot (Section 5.1). The robot picks
up a pill from a kitchen counter top after the user briefly illuminates the pill with a laser pointer. The first image shows the starting location
of the robot. The robot approaches the pill in a direction normal to the surface, segments the pill and positions the gripper above the pill. The
gripper then moves down until it makes contact with the surface and picks up the pill.

Mobile manipulators have been a relatively rare form
of assistive robot. The MoVAR and MOVAID projects rep-
resent early work in this area (Van der Loos, 1995; Dario,
1999). Recent research has sought to develop assistive mo-
bile manipulators with autonomy using methods such as
model-based planning and visual servoing (Graf et al, 2004;
Remazeilles et al, 2008).

Unlike other approaches to robotic assistance, an au-
tonomous mobile manipulator could perform tasks inde-
pendently from the patient, would not require donning and
doffing, and would not directly encumber the patient. It
could also assist a wide variety of patients (e.g., a patient
does not need to be missing a limb or using a wheelchair to
benefit).

2.3 Autonomous Mobile Manipulation

There has been a surge of interest in autonomous mobile
manipulation in human environments (Grupen and Brock,
2004; Kemp et al, 2007; Khatib et al, 1999; Brock and
Khatib, 2002; Zllner et al, 2004; Bluethmann et al, 2004;
Waarsing et al, 2001; Inamura et al, 2008; Okada et al, 2005;
Hillenbrand et al, 2004; Kragié et al, 2002).

Most research systems have made use of pre-defined
models of the environment and objects, which the robot
registers to its sensory data, such as in Srinivasa et al (2008)
and Asfour et al (2007).

In contrast to work that uses detailed geometric models
of the environment with planning, EL-E uses sparse, low-
dimensional, task-relevant features with specialized behav-
iors. EL-E uses its sensors to perceive these features when
they are needed. Consequently, EL-E can immediately be-
gin operating in a new environment with new objects, since
neither a map of the environment nor complete geometric

models of the objects are required. This approach is in the
tradition of behavior-based robotics (Brooks et al, 2004).
The work of Connell is especially relevant, since it describes
a mobile manipulator that uses behavior-based control to
collect soda cans from the floor and tables (Connell, 1989).

2.4 Autonomous Grasping of Unmodeled Objects

Autonomous grasping has been an area of research since
the dawn of computer-controlled robots (Ernst, 1962). The
majority of these efforts have focused on grasping modeled
objects, and the use of grasp planning. Methods capable of
grasping unmodeled objects have been less common, but
early examples do exist (Kamon et al, 1996; Sanz et al,
1998).

Recently, research has demonstrated that autonomous
grasping of unmodeled objects is feasible via approaches
that take advantage of compliant grippers, tactile sensing,
and machine learning (Dollar and Howe, 2005; Natale and
Torres-Jara, 2006; Saxena et al, 2008a,b). Our grasping ap-
proach is similar in spirit to this work. What distinguishes
our approach is that it does not require training prior to
being used, relies on object segmentation from 3D point
clouds, and uses a straightforward grasp strategy. Unlike
our system, most of this previous work does not address
the problem of navigating up to the unmodeled object be-
fore grasping it.

2.5 Perception for Manipulation

EL-E uses a tilting laser range finder to acquire 3D point
clouds around locations of interest. In contrast to model-
based perception, EL-E’s navigation and grasping behav-
iors segment parts of this point cloud, such as the surface



and objects, and then transforms these segments into low-
dimensional, task-relevant features.

Researchers have previously used visual segmentation
to drive grasping, but these methods have typically relied
on a uniform background and a stationary platform (Platt
et al, 2005; Platt, 2006; Kamon et al, 1996; Dunn and
Segen, 1988; Sanz et al, 1998). Our initial implementation
of EL-E used a non-tilting laser range finder and an eye-in-
hand camera to segment objects for grasping (Nguyen et al,
2008a).

Rusu et al (2008) present algorithms for combining mul-
tiple point clouds of indoor environments and creating se-
mantic maps from this data. In contrast, our approach does
not combine point clouds over time and only processes the
points in a volume of interest (VOI) from which the robot
extracts task-relevant features for a specific behavior.

2.6 Navigation for Manipulation

In our implementation, the robot navigates over relatively
short distances (1.5m to 2m). We have divided the navi-
gation into three distinct divisions detailed in Section 4.3.
This is because the pose from which a range scan is taken
significantly impacts the scan’s usefulness due to the resolu-
tion of the point clouds and occlusion effects. For example,
the scan must be taken very close (ca. 0.3m) to the object
to segment small objects such as pills. Likewise, in order to
reliably segment a surface using our method the scan must
be made relatively close to the surface (ca. 0.6m).

There are prior examples of mobile manipulation sys-
tems that decompose the navigation task for similar rea-
sons. MacKenzie and Arkin (1996) present a behavior-based
system in which the robot can approach a drum and insert
a probe into its bung hole. The bung hole is only visible
when the robot is close to the drum, so it first navigates
with respect to the drum, and then, once the bung hole
is visible, navigates up to it and inserts the probe. Sim-
ilarly, Platt et al (2006) use a three step turn-drive-turn
control policy for a robot approaching and grasping a box.
They show that this multi-step policy is beneficial, since
the variance in the robot’s estimate of the position of the
box decreases as the robot gets closer.

3 The Robot’s Body

The robot EL-E, is a statically stable mobile manipula-
tor (shown in Figure 2) that consists of a 5-DoF Neuron-
ics Katana 6M manipulator, an ERRATIC mobile base by
Videre Design, and a 1-DoF linear actuator that can lift
the manipulator and various sensors from ground level to
90cm above the ground (Nguyen et al, 2008a).

3.1 Exploiting a Symmetry

The degree of freedom provided by the linear actuator is
critical to EL-E’s ability to grasp and place objects on the
floor and tables of different heights. EL-E uses its body to
take advantage of a symmetry in the structure of indoor
human environments by translating the manipulator and
sensors to a canonical height with respect to the surface
of interest. This enables it to use grasping and placing be-
haviors that are invariant to the height of the surface. Our
experiments, described later, demonstrate that the robot
performs well on flat surfaces of different heights. In con-
trast, the performance of the system is not invariant to
other characteristics of the surface, such as how well the
laser range finder segments objects sitting on it.

3.2 The Mobile Base, the Software, and the Sensors

The ERRATIC platform has differential drive steering with
two powered wheels and one passive caster at the back.
We replaced the motors of the ERRATIC platform with
higher torque motors since we exceeded the payload of the
standard motors. All computation is performed on-board
with a single Mac Mini running Ubuntu GNU/Linux. We
wrote most of our software in Python with occasional C++
and make use of a variety of open source packages including
SciPy, Player/Stage, OpenCV and ROS (Robot Operating
System) (Jones et al, 2001; Open Source Computer Vision
Library: Reference Manual, 2001; Quigley et al, 2009).

For this work, EL-E uses three distinct types of sen-
sors. First, it uses a laser pointer interface that consists of
an omni-directional camera with a narrow-band green fil-
ter and a pan/tilt stereo camera. This detects a green laser
spot and estimates its 3D location (Kemp et al, 2008).

Second, EL-E uses a laser range finder (Hokuyo UTM-
30LX) mounted on a servo motor (Robotis Dynamixel RX-
28) at the bottom of the aluminum carriage attached to the
linear actuator. The servo motor tilts the laser range finder
about the horizontal axis (Figure 3). We use this tilting
laser range finder to obtain 3D point clouds of the environ-
ment. The laser range finder has a resolution of 0.25°and
we obtain planar scans at 20Hz. The servo encoders have
a resolution of 0.3°. All point clouds shown in this paper
were obtained from this tilting laser range finder. The tilt-
ing laser range finder was inspired by a similar sensor on
the Personal Robot 2 from Willow Garage (PR2 Technical
Specs, 2008).

Several behaviors use 3D scans from this sensor, see
Figure 5. The robot varies the angular range and rate of
scanning depending on the task. For example, the grasping
behavior uses a scan that results in a range image consist-



ing of 320x200 3D points. This scan takes 24 seconds to
acquire (due to averaging scan lines), has a vertical field of
view (VFOV) of 80°, and a horizontal field of view (HFOV)
of 60°. The behavior that navigates to the edge of the sur-
face uses a 320x133 range image that takes 8 seconds to
acquire (no averaging) with an 80° VFOV and a 40° HFOV.

Third, EL-E senses forces and torques using force-sensing
fingers and a 6-axis force plate. We have replaced the Katana
Sensor Fingers with our own custom fingers (Jain and Kemp,
2008). Each finger is a curved strip of aluminum covered
with elastic foam for passive compliance and connected to
the motor via a six-axis force/torque sensor (ATI Nano25
from ATI Industrial Automation). This enables us to mea-
sure the resultant forces and torques being applied to each
finger independently. In addition to force sensing fingers, we
have mounted the Katana on a 6-axis force plate (HE6X6
from AMTT). The force plate can sense a maximum force
of 89N in the Z direction (vertical) with a resolution of
approximately 0.044N, and sense 44N in the X and Y di-
rections (shear) with a resolution of approximately 0.021N.
In practice, noise lowers the effective resolution. The force
plate allows the robot to sense forces applied to any point
on the Katana arm. We currently use this force plate to
detect collisions between the Katana and the environment.

4 Pick and Place System Description
4.1 Overview

Figure 5 shows a block diagram that illustrates the system.
The input to the robot is a 3D location in the world defined
with respect to the robot’s coordinate frame. For this paper,
the user provides this 3D location to the robot by briefly
illuminating a location with a laser pointer. We have previ-
ously described how EL-E estimates the 3D coordinates for
this illuminated location in an ego-centric frame with an
average error of 10cm (Kemp et al, 2008). Although we use
this laser pointer interface during the experiments in this
paper, any method that provides EL-E with an appropriate
3D location would be sufficient to command the robot. For
example, we have previously conducted tests with a touch
screen interface (Choi et al, 2008). More generally, 3D lo-
cations could be provided by an autonomous perception
system that selects locations based on the robot’s goals.
The robot can perform two tasks, grasp an object from
a flat surface and place an object already in its gripper on
a flat surface. The specific task that the robot performs
depends on the state of the robot (if it has an object in its
gripper or not) and the local context around the 3D location
selected by the user. For example, if the robot’s gripper is
free and the user selects an object on a table or the floor,
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Fig. 5: This figure shows the different behaviors that the robot exe-
cutes to grasp an object from a flat surface or place an object already
in its gripper on a flat surface.

the robot will grasp it. If the user selects a door handle or
an empty location on the floor, the robot will detect that
the volume around the user-selected location does not have
a flat surface and will not execute its grasping behavior.

The robot has real-time error detection for every behav-
ior. While navigating, it uses the tilting laser range finder as
a safety screen. It tilts the laser range finder to look down
and in front for obstacle detection (Section 4.6.2). While
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Fig. 6: (Color online) Left: This figure shows the output of the plane detection and segmentation algorithm. The grey, blue and red points are

those that are above the surface, part of the surface and below the surface respectively. The yellow lines represent the boundary of the volume
of interest around the user-selected location (green dot). Right: This histogram is for the part of the point cloud shown on the left that is
inside the volume of interest (inside the yellow box). The X-axis is the z-coordinate of points relative to the laser range finder and the Y-axis
is the number of points. Each bin represents a z-coordinate range of 2.5mm. The value of a bin is the number of points in the point cloud with
a z-coordinate within the range of the bin. nmaz is the value of the maximum bin and we use the line y = nmaz/5 to find the top end of the

surface as described in Section 4.2.1.

moving the manipulator, the robot monitors the force sens-
ing fingers and the force plate and stops if it detects a colli-
sion with the environment. We assume that stopping in case
of a collision or near collision is an appropriate behavior.
Also, each behavior reports if it was completed successfully
or not. For example, the grasp behavior reports if the grasp
succeeded or not. If a behavior does not complete success-
fully, the robot falls back into a state where it waits for the
user to select a location in the world.

4.1.1 Synopsis of a System Run Through

We now briefly describe the different steps that the robot
goes through to grasp or place an object at the location
selected by the user, see Figure 5. The robot uses the 3D
coordinate of the selected location to move closer to the
location, moves the laser range finder 20cm above the user-
selected location and takes a 3D scan with the tilting laser
range finder. It uses a subset of this scan around the user-
selected location to detect a flat surface and approaches the
user-selected location in a direction normal to the boundary
of this surface (Sections 4.2.1 and 4.3).

Once the robot is close to the flat surface, it takes an-
other 3D scan and uses that to refine its estimate of the
height of the surface and to decide whether the user se-
lected a point on a flat surface or not (Section 4.4.3). For
this paper, if the user-selected location is not on a flat sur-
face (e.g. the user selected a door handle, a light switch
etc.), the robot does not execute the grasping or object
placement behavior and goes back into a state in which it
waits for the user to select a new location.

If the user-selected location is on a flat surface, the robot
either places the object in its gripper on the surface, or at-
tempts to grasp the object closest to the user-selected loca-
tion with its empty gripper. The robot then navigates such
that the user-selected location is within the workspace of
its grasping or placing behavior. The robot makes another
3D scan to determine if the behavior can operate without
a collision, and, in the case of grasping, segments the ob-
ject to be grasped. Finally, the robot executes either the
grasping or placing behavior.

4.2 Directed, Segmentation-Based Perception

Each of the behaviors starts with raw sensor data (point
cloud consisting of ~ 42,000 to 64,000 3D points) and re-
duces it to low-dimensional, task-relevant features (2 to
3 dimensional feature vectors). This reduction happens in
three distinct steps.

First, each behavior has an associated volume of interest
(VOI) that selects a subset of the point cloud. The robot fo-
cuses its perceptual resources on this spatially local volume
and ignores the rest. Second, the behaviors use a mid-level
representation that segments points in the VOI into a sin-
gle flat surface and, possibly, a number of objects (usually
fewer than 10). Third, each behavior transforms this mid-
level representation into features that are specialized to the
behavior’s task (2 to 4 dimensions).

Below, we describe how the mid-level, segmentation-
based representation is created.



Fig. 7: (Color online) This figure shows the output of the segmentation algorithm. The left image shows the relative position of the actuated
laser range finder and the objects. The middle image shows the output of the plane finding algorithm (red, blue and dark grey correspond to
points below, on and above the flat surface). The segmented objects are shown in the image on the right. Points outside the volume of interest

are shown in light grey.

4.2.1 Detecting and Segmenting the Surface

Both navigation and grasping rely on being able to detect
and segment the surface (e.g., table top or counter top)
relative to which the robot’s actions will be performed. In
this section we describe our algorithm for finding this sur-
face in the volume of interest. The input to this algorithm is
a 3D point cloud around the user-selected location (using
the tilting laser range finder). Figure 6 shows the output
of the algorithm. Our algorithm assumes that the surface
is flat, approximately orthogonal to gravity within the vol-
ume of interest, and is represented by a significant number
of points in the 3D point cloud.

To estimate the height of the flat surface within the vol-
ume of interest, the algorithm first quantizes the z-coordinate
(parallel to gravity) within the volume of interest in inter-
vals of 2.5mm and creates a histogram where the i*" bin
represents a z-coordinate bound of [z; — 1.25 x 1073, 2; +
1.25 x 1073) (2; is the i'" quantized z-coordinate, in me-
ters). The bin’s value is the number of points in the point
cloud that fall within the associated range of z. Figure 6
shows the point cloud from a 3D scan of a table and the
histogram for the part of the point cloud within the VOI.

Let nypq: be the maximum number of points in a single
bin, bin.,,q, be the bin with n,,., points, and 2,4, be the
quantized z-coordinate for bin,,q.. The surface segmenta-
tion algorithm assumes that bin,,., is part of the flat sur-
face. Starting at bing,., it searches over increasing height
and looks for a bin with the number of points < n,,44/5.
The algorithm uses this as an estimate for the maximum
height at which points will be classified as being part of the
flat surface. The blue horizontal line in the histogram of
Figure 6 is the line y = npqz/5.

Using a constant factor times n,,q, to decide which
points to categorize as surface points is approximately the
same as assuming that the distribution of the z-coordinate

of points of the surface is Gaussian and moving a constant
Mahalanobis distance up in height from the mean.

4.2.2 Segmenting Objects Sitting on the Surface

We now describe our algorithm to segment the objects sit-
ting on the flat surface and within the volume of interest.
The object segmentation algorithm first finds the surface
(Section 4.2.1) and removes all points from the point cloud
that are below or part of the surface.

It then converts the remaining point cloud into a 3D oc-
cupancy grid. The resolution of the grid is 1lcm in the X and
Y directions (parallel to the ground) and 0.25c¢m in the Z di-
rection (vertical). The algorithm clusters the grid cells into
objects by performing a 3D connected components labeling
with 26-connectivity. This connected component labeling
of the occupancy grid cells is comparable to agglomerative
clustering of the point cloud above the surface.

It is worth noting that the assumptions about the sur-
face play an important role in this process. If the algorithm
did not remove the points associated with the surface, all
of the objects would be connected together. The assump-
tion about the existence of a surface upon which objects
are sitting enables the segmentation algorithm to infer that
the surface is distinct from the objects. Some uncommon
situations will violate this assumption. For example, some-
thing may be bolted or glued onto a table. In these unlikely
situations, the robot will detect a problem while trying to
grasp the object using its force sensors.

After segmenting the objects, the algorithm finds the
direction of maximum variance for each object and rejects
objects with a length along the direction of maximum vari-
ance less than lcm (noise from the flat surface) or greater
than 50cm (too large to grasp). Note that this threshold
of 1cm limits the ability of the robot to perceive especially
small objects, such as pills. Figure 7 shows an example of
the output from this segmentation algorithm.



4.3 Navigation

The navigation behaviors attempt to move the robot such
that the grasping location for the object sitting on a surface
is within the workspace of the grasping behavior (shown in
Figure 8). Due to the resolution of the point clouds from the
tilting laser range finder and occlusion effects, the pose from
which a range scan is taken significantly impacts the scan’s
usefulness. For example, the scan must be taken very close
(ca. 0.3m) to the object in order to segment small objects
such as pills. Likewise, in order to reliably detect a surface
the scan must be made relatively close to the surface (ca.
0.6 m).

At different times during the overall navigation pro-
cess, EL-E navigates to the location selected by the user
(Coarse Navigation, Section 4.3.1), navigates with respect
to the boundary of the surface (Medium Navigation, Sec-
tion 4.3.2), and navigates with respect to the object to be
grasped (Fine Navigation, Section 4.3.3).

In each of these three cases, the navigation behavior re-
duces the raw sensory data from the world into a behavior-
specific low-dimensional representation (a 3D location, a
3D location with an orientation, etc.). As it moves, EL-E
uses wheel odometry to update the estimated pose of these
static features in its ego-centric reference frame. This is
sufficiently accurate, given the short distances over which
EL-E currently navigates.

It is important to note that for this implementation each
of these three navigation behaviors uses a simple turn, move
straight ahead, turn method of navigation. However, any
navigation method could potentially be substituted into
each of these behaviors without altering the overall struc-
ture. For example, a path planar could be used to move the
robot with respect to the user-selected location. The three
divisions in navigation are not due to the way the robot
moves, but rather result from the robot’s sensing methods.
For our current implementation, obtaining effective scans
requires that the robot remain stationary. Even more sig-
nificantly, the scans must be made from a favorable pose
with respect to the volume of interest, so as to support the
robot’s next action.

4.8.1 Coarse Navigation: Navigation to the User-selected
Location

The aim of Coarse Navigation is to move the robot to
around 0.5m from the flat surface or 0.5m from the user-
selected location, whichever condition stops the robot first.
The robot turns to face the user-selected location, takes a
3D scan, removes points belonging to the ground plane, and
then estimates how far forward it can go without colliding
with an obstacle. Often this distance will correspond with

how far the robot can go before it collides with the surface.
The volume of interest in this case has a width and height
equal to the width and height of the robot and extends
forward until the user-selected location.

The robot moves in a straight line towards the user-
selected location and stops when it is 0.5m away from the
closest obstacle. If it stops around 0.5m from the surface of
interest, then the surface detection and segmentation algo-
rithm is more likely to work due to improved resolution.

Low-dimensional, Task-relevant Features: Coarse naviga-
tion uses the user-selected location, and the location of the
closest obstacle.

4.8.2 Medium Navigation: Navigation to the Edge of the
Surface

After Coarse Navigation, the robot is close enough to the
horizontal surface to segment the flat surface (Section 4.2.1)
but is not close enough to the user-selected location to re-
liably segment objects of different sizes sitting on the flat
surface. Medium Navigation approaches the user-selected
location along a direction determined using a heuristic that
tries to increase the chance that the object will be within
the workspace of the grasping behavior.

Medium Navigation approaches the user-selected loca-
tion along the vector between the user-selected location and
the point on the front edge of the surface closest to the
user-selected location. It assumes that the object is close
to the user-selected location. This choice of approach direc-
tion achieves two goals. First, along this angular direction
the user-selected location is in the center of the manipula-
tor workspace, which increases the chance that the object
will also be within the workspace. Second, the approach
direction usually allows the robot to get close to the user-
selected location without colliding with the edge of the ta-
ble. This increases the chance that the robot will be able to
get close enough to the user-selected location to place the
object within the workspace of the grasping behavior.

Algorithm to Determine Approach Direction We now de-
scribe our algorithm to determine an approach direction
(vector between the user-selected location and the point
on the boundary of the surface that is closest to the user-
selected location).

The first step is to segment out the flat surface. To do
this, the algorithm first finds the height of the flat surface
using the method described in Section 4.2.1. Let 2, be the
z-coordinate of the top of the flat surface in the point cloud
(in meters). The algorithm takes all the points whose z-
coordinates lie in the range [zop —0.02, 240p), Projects them
into 2D by removing the z-coordinate and then converts this
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Fig. 8: (Color online) Left: This figure shows the workspace of the overhead grasp behavior. In the radial direction it ranges from 10cm to 35cm
from the manipulator. The angular limits are imposed by the field of view of the laser range finder which is currently -45° and 45°, due to the
design of the carriage. Right: This figure shows how the robot selects the direction to approach a flat surface. The green dot is the user-selected
location and the cube defined by the yellow lines shows the volume of interest around the user-selected location. The dark grey points are those
which are within the volume of interest. The pink dots are samples on the boundary of the surface, the yellow dot is the point on the boundary
closest to the user-selected location and the approach direction is shown as a red line. The desired position of the robot (distance of 40cm from

the yellow dot along the approach direction) is shown as a blue dot.

2D point cloud into a 2D occupancy grid. It finds objects
in this grid using connected component labeling with 8-
connectivity and selects the largest object (maximum num-
ber of cells) as the flat surface.

Then, the algorithm finds the points on the boundary of
the surface using 2D binary erosion followed by subtraction.
To find points which are in the line of sight of the robot,
it first converts the boundary points into polar coordinates
(r, 8). Then, it create bins which each represent an angular
range of 1°and bins all the boundary points using their
coordinate. For each bin, the algorithm selects the point
with the minimum r as a representative point on the front
edge of the surface. This gives a set of points on the front
edge of the surface. The algorithm uses the point from this
set that is closest to the user-selected location to determine
the approach direction for the surface. Figure 8 shows the
result of this algorithm on a 3D scan.

Since the algorithm determines the approach direction
using discrete samples along the front edge, if the user-
selected location is close to the front edge, there can be
a significant error is the estimated approach direction. To
avoid this, in the special case that the user-selected location
is less that 5ecm from the front edge of the surface, the
algorithm uses a potential field from the samples on the
front edge to push the user-selected location away from the
front edge.

Mowing to the Goal The robot moves in a straight line to-
wards a point 40cm from the edge of the surface in the
desired approach direction (blue dot in Figure 8). Once it
reaches this point, it turns to face the user-selected location

(tracked using wheel odometry). If the robot detects an ob-
stacle in this straight-line path, it stops the straight line mo-
tion, turns to face the user-selected location and proceeds
to the Fine Navigation behavior. We chose a distance of
40cm from the surface edge because it leaves enough space
between the robot and the surface edge for the robot to
rotate without danger of colliding with the surface.

Low-dimensional, Task-relevant Features: Medium Naviga-
tion uses a point 40cm from the edge of the surface in the
desired approach direction and the user-selected location.

4.8.8 Fine Navigation: Navigation to the Object

The Medium Navigation behavior typically results in the
robot being 40cm from the edge of the surface and fac-
ing normal to the surface’s boundary. Fine Navigation at-
tempts to move the robot such that the object is within the
workspace of the manipulator.

The robot first moves closer to the user-selected location
until it is 40cm from away from it (as opposed to 40cm from
the edge of the surface — from Medium Navigation). The
robot raises the tilting laser range finder 20cm above the
surface, takes a 3D scan, and segments the objects sitting
on the surface within the VOI around the user-selected lo-
cation. It then selects the object closest to the user-selected
location as the object to be grasped.

Let perose be the location (2D coordinate) on the object
to be grasped that is closest to the robot. The robot navi-
gates such that the manipulator is 17cm from pejose and is
oriented towards pejose. This is a heuristic to increase the
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Fig. 9: (Color online) This figure shows the robot performing an overhead grasp to pick up a TV remote. It takes a 3D laser scan around the
object and segments out the object. The blue dot in the second image is the centroid of the segmented object (red), the direction of maximum
variance is the black line and the commanded orientation of the fingers is shown as the green line. The manipulator then moves the gripper
above the object with the fingers oriented perpendicular to the direction of maximum variance. Finally, it descends down on the object, grasps

it, and lifts it up.

chance that the grasp location on the object will be within
the workspace of the manipulator (Figure 8). The robot
now executes the grasping behavior.

If the object segmentation algorithm does not detect an
object within the volume of interest, the robot navigates
until it is 17cm from the user-selected location before exe-
cuting the grasping behavior. The object (which we assume
is close to the user-selected location) should now be closer
to the robot, and the robot has another chance to segment
the object in the grasping behavior.

At any time during this behavior, the robot’s safety
screen (Section 4.6.2) will detect if the robot is about to
collide with the surface and stop the robot. Consequently,
the robot moves close to its navigation goals without the
risk of collision.

Low-dimensional, Task-relevant Features: Fine Navigation
uses the user-selected location and a 2D location corre-
sponding to the location on the object to be grasped that
is closest to the robot.

4.4 Grasping

The navigation behaviors attempt to move the robot such
that the object is within the workspace of the grasping be-
havior. The grasping behavior raises the tilting laser range
finder above the surface on which the objects are sitting,
takes a scan of the surface and the objects, segments the
objects, attempts to find a suitable location and orientation
for grasping, and tries to grasp the object. The grasping be-
havior does not move the mobile base, which ensures that
the coordinate frame of the 3D point cloud and the manip-
ulator are fixed relative to each other.

4.4.1 Overhead Grasp

The input to the overhead grasp behavior is the planar posi-
tion of the gripper, which should place the gripper above the
location to grasp, and the orientation of the wrist, whose
rotational axis is parallel to gravity. The overhead grasp
behavior assumes that the object to be grasped is sitting
on the surface and has a height less than 20cm. The gripper
starts at a constant height of 20cm above the estimated flat
surface and descends until the robot detects contact or it
has descended too far. Figure 9 shows the different stages
that the robot goes through to perform an overhead grasp.

The robot first moves such that the gripper is directly
above the grasping location and in the desired orientation.
It then lowers the gripper down towards the object and the
flat surface until either the IR sensor in the palm detects
an object between the fingers, the force plate detects a con-
tact between the manipulator and the object, or the force
sensing fingers make contact with the surface (detected by
a force greater than 1.0N in the vertical direction).

The robot then closes the gripper until it presses against
the object or the surface, lifts up by a small amount and
again closes the gripper. It repeats this close and raise ac-
tion until either of the two fingers senses a force > 8N or
the gripper closes to a minimum angle. We have chosen the
minimum angle such that the gap between the two fingers
is very small, but the fingers are not in contact with each
other. This is important for detecting if the grasp was suc-
cessful or not. The manipulator then moves the gripper up
by 10cm and checks if it has an object in its grasp or not.

The robot uses the force sensing fingers to determine
if there is an object in its grasp. If both the force sensing
fingers sense a force less than 1.5N the overhead grasp be-
havior estimates that the gripper is not grasping an object
and reports a grasping failure. As our tests show later in
this paper, this method enabled EL-E to correctly detect
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(a) TV remote

(b) Bowl

Fig. 10: (Color online) This figure shows the output of the algorithm
for selecting the position and orientation for grasping. The robot will
try to grasp a TV remote at the centroid with the fingers oriented
perpendicular to the direction of maximum variance (black line). For
the bowl, it will try an overhead grasp at a raised point on the object
that is close to the manipulator. In this case, it will orient the fingers
along the line joining the grasp position and the centroid of the seg-
mented object. The blue dot and green line indicate the commanded
position of the gripper and orientation of the fingers respectively.

grasping success or failure with all objects except the dollar
bill, which was too thin to result in a detectable force.

4.4.2 Deciding How to Grasp

The grasping behavior uses the point cloud associated with
a segmented object to compute a low-dimensional, task-
relevant feature vector (2D position and a 1D orientation)
to command the overhead grasp.

After segmenting the object to be grasped using the al-
gorithm described in Section 4.2.2; the grasping behavior
creates a 2D binary image from the view-point of a virtual
orthographic camera looking straight down at the object.
This corresponds with the gripper’s view-point during an
overhead grasp. The binary image is constructed by con-
verting the 3D points to 2D by removing the z-coordinate,
and discretizing them using an occupancy grid in 2D (with
a resolution of lcm). The grasping behavior finds the cen-
troid, the axes of maximum and minimum variance, and
their associated variances for the object in this 2D binary
image.

If the size of the object along the direction of minimum
variance is less than the distance between the fingers of
the gripper (12cm), the robot will attempt to grasp the
object at the centroid of the 2D projection with the fingers
oriented perpendicular to the axis of maximum variation.

Since the object is small enough (along the direction
of minimum variation) to fit within the gripper, both the
fingers should make contact with some part of the object
as the gripper closes (assuming that the object slides on
the flat surface). Grasping at the centroid is a rough ap-
proximation to grasping at the center of mass of an object,
which can reduce the torque due to the weight of the object

about the line joining the two fingers of the gripper. Ori-
enting perpendicular to the direction of maximum variance
also increases the chance that the fingers will make contact
with the object given an error in the position of the gripper.

If the size of the object along the direction of minimum
variance is greater than 12cm, the robot tries an overhead
grasp at a raised point on the object that is close to the
robot. The grasping behavior finds the point on the object
with the maximum height above the flat surface. It then se-
lects the location for the overhead grasp by finding the point
closest to the manipulator from the set of points on the ob-
ject which are less than bmm below the point of maximum
height. The grasping behavior determines the orientation
of the fingers by the angle of the vector joining the centroid
of the segmented object to the grasping location.

Figure 10 shows the output of the algorithm that decides
how to grasp an object for a TV remote and a bowl. One
can construct objects for which this method will not provide
a successful location at which to grasp. However, as we
demonstrate later, this method can succeed with important
everyday objects.

Low-dimensional, Task-relevant Features: The grasping be-
havior uses the 2D centroid of the object, the axis of maxi-
mum variance, the axis of minimum variance, and the asso-
ciated variances. If the object’s minimum variance is greater
than a threshold, it also uses a tall location on the object
near the robot.

4.4.8 Preconditions for Grasping

The robot only executes the grasping behavior if it esti-
mates that the following two pre-conditions are met. First,
the volume of interest around the user-selected location
must contain a flat surface (e.g., the user did not point
at a door or a light switch). Second, the volume that the
manipulator will sweep out during the grasping behavior
must be empty.

A Flat Surface is Near the User-selected Location The robot
assumes that the user has selected a location on a flat sur-
face if the estimated flat surface within the volume of in-
terest (VOI) occupies a large area parallel to the ground.
The robot finds the top of the estimated flat surface
using the method described in Section 4.2.1. Let 2, be
the z-coordinate of the top of the flat surface in the point
cloud (in meters). The robot takes all the points whose
z-coordinates lie in the range [zi0p — 0.1m, 240p + 0.1m],
projects them into 2D by removing the z-coordinate, and
then converts this 2D point cloud into a 2D occupancy
grid. The width and height of this occupancy grid matches
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Fig. 11: (Color online) This figure shows the point cloud (grey and
black) and an approximate volume that the manipulator will sweep
out if it executes an overhead grasp (yellow). The points within the
volume that the manipulator is likely to collide with are shown in
black. In this example, the robot detects that an overhead grasp could
result in a collision and does not execute the behavior.

a cross-section of the volume of interest parallel to the
ground.

If the number of occupied cells in this 2D grid is greater
than 1/4%" the total number of cells, the robot assumes
that it is looking at a flat surface. This method of classifi-
cation is similar to requiring that the area of the estimated
flat surface within the VOI be greater than 1/4*" the area
of cross-section of the volume of interest parallel to the
ground, or greater than 400cm?.

Checking for an Owverhead Collision Before attempting an
overhead grasp, the robot checks if the trajectory for the
grasp is likely to be collision free. It takes a scan of the re-
gion above and around the user-selected location, converts
the point cloud into an occupancy grid for the volume that
the manipulator will sweep out during the grasp and checks
if this volume is empty. We approximate the volume that
the manipulator will sweep out as a cuboid of height equal
to the maximum height of the manipulator during an over-
head grasp and width 20cm (the width of the open gripper).
The length of the cuboid is the distance between the grasp-
ing point and the base of the manipulator plus 10cm (half
the width of the open gripper).

Figure 11 shows the point cloud (grey points) and an
approximate volume that the manipulator will sweep out
(yellow cuboid) if the user-selected location is under a table.
For this example, the intersection of the point cloud and the
sweeping volume is not empty and the robot detects that
an overhead grasp could result in a collision.

4.5 Object Placement

To place an object on a flat surface, the robot uses the same
Coarse Navigation and Medium Navigation behaviors. In
contrast to object grasping, the Fine Navigation behavior

continues to approach the user-selected location rather than
a segmented object. Also, if the user-selected location is less
than 10cm behind the edge of the flat surface, the robot
modifies the selected location’s coordinates such that it is
10cm behind the edge of the table. This ensures that the
robot does not place the object too close to the edge of the
table, which can result in the object falling off.

EL-E then places the object at the (possibly modified)
user-selected location. To place the object on the table, the
manipulator moves the object above the desired point and
then lowers it onto the surface. It detects the surface by a
force (> 2N) in the vertical direction using the force sensing
fingers. If the robot moves the object below the estimated
height of the flat surface, and does not feel a force in the
vertical direction, it detects an object placement failure. In
this case, the robot will keep the object in its gripper and
return to the state in which it waits for the user to select a
location in the world.

Before executing the object placement behavior, the
robot checks for the same pre-conditions as the grasping be-
havior. It checks for a flat surface around the user-selected
location and a collision-free overhead placement using the
methods described in Section 4.4.3.

Low-dimensional, Task-relevant Features: Object placement
uses the user-selected location.

4.6 Real-time Monitoring

Each behavior has associated real-time monitoring to im-
prove safety and detect errors. This is especially important
in dynamic, unstructured environments, such as the home.
The two most significant forms of monitoring involve us-
ing the laser range finder to form a safety screen that can
detect when obstacles get close to EL-E’s body, and using
the force plate and force-sensing fingers to detect collisions
with EL-E’s arm.

4.6.1 Complementing Task-Relevant Sensing

Real-time monitoring complements EL-E’s behaviors and
enables EL-E to safely focus on the parts of the world that
are most relevant to the current task. For example, when
grasping an object, EL-E only pays attention to a small vol-
ume of the world centered around the object to be grasped.
This implicitly makes the assumption that the rest of the
world does not matter to this task. In other words, it as-
sumes that the task is invariant to everything outside of
this volume. This assumption helps EL-E generalize its ca-
pabilities to new environments, since only the contents of
the volume need to meet EL-E’s criteria for action.
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UTM tilted to
look down

Fig. 12: The left image shows our current implementation using a laser
range finder for real-time obstacle detection in the form of a safety
screen. The figure on the right shows a sketch of our plans for a new
actuated laser range finder that can pan and tilt in order to improve
the coverage of the safety screen.

Of course, this assumption does not always hold true.
For instance, a person could start out behind the robot, but
interfere once the grasping behavior has started to move
the arm. Since situations like this which violate EL-E’s as-
sumptions can happen, it is important to have real-time
monitoring that can detect problems and signal for EL-E
to stop and reassess the situation.

4.6.2 Obstacle Detection Using a Safety Screen

When EL-E moves, it lifts the actuated laser range finder to
a height of approximately 90cm off the ground and tilts it
down. In this way EL-E can detect obstacles, such as table
tops and people, that get close to its body. This helps ensure
that EL-E does not unintentionally collide with something.
We refer to this as a safety screen. For future versions of
EL-E, we plan to place an actuated laser range finder that
can pan and tilt at the top of EL-E. This will enable EL-
E to monitor for potential collisions over its entire body,
regardless of the direction in which it is moving, see Figure
12. For now, EL-E lifts its carriage to approximate this
sensor configuration.

As it moves, EL-E detects points in the laser scan above
and below ground level. It can detect obstacles greater than
2cm in height. The height of the laser range finder (90cm)
is greater than the height of the surfaces we used in our
evaluation, including a relatively high counter top.

This method also allows the robot to detect if it tilts
backwards (for example if it goes over a thick cable). Like-
wise it could be used to detect a descending flight of stairs
as points in the scan below ground level. This method of

obstacle detection is similar in spirit to the sensor configu-
ration and obstacle detection algorithms used by teams in
the DARPA Grand Challenge and Urban Challenge (Thrun
et al, 2006; Urmson et al, 2008).

4.6.8 Collision Detection Using Force Sensing

The manipulation behaviors (grasping and placing) moni-
tor the force plate and the force sensing fingers to detect
collisions between the manipulator and the environment.
The system reports a collision with the force sensing fin-
gers when a change in the magnitude of the measured force
exceeds a threshold (2.5N).

Detecting collisions with the force plate is harder be-
cause the forces and torques measured by the force plate
depend on the configuration and motion of the manipula-
tor. Rather than modeling the kinematics and dynamics of
the arm explicitly, we use a data-driven approach, which is
feasible because of the low-dimensional grasping behavior.

The overhead grasp and placement behaviors are pa-
rameterized by the 2D position and 1D orientation of the
gripper. For this form of collision detection, the orientation
of the gripper can be ignored leaving only two parame-
ters. We performed a large number of collision-free over-
head grasps covering the workspace of the grasping behav-
ior and recorded the forces and torques for different configu-
rations of the manipulator. Then, during normal operation,
the robot looks up the stored configuration of the arm that
is closest to the current arm configuration. It then find the
difference between the collision-free forces and torques as-
sociated with this nearest neighbor configuration, and com-
pares them to the currently measured forces and torques. If
the difference is above a threshold of 4N or 2Nm, the robot
declares a collision.

As we will revisit in the discussion, we believe this is
an important example of the value of specialized behav-
iors that use low-dimensional, task-relevant parameters. It
allows for efficient data-driven approaches and generally
makes the robot more predictable.

5 Evaluation

In this section we evaluate the performance of the robot rel-
ative to variation in the environment and objects. First, we
show the results of grasping two objects (a cordless phone
and a pill) from 12 different flat surfaces (Section 5.1).
Then, in Section 5.2, we evaluate the performance of the
robot in approaching and grasping objects from the 25 ob-
ject categories that were ranked most important for robotic
retrieval by motor-impaired patients from the Emory ALS
Center (Choi et al, 2009b,c). We tested these objects on two
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surfaces, a carpeted floor and a table. We also present the
performance of the grasp behavior in isolation for multiple
trials with the same object on one surface.

We show results from an object grasping and placement
experiment in Section 5.3. Finally, in Section 5.4, we ana-
lyze the common forms of failure to gain insight about the
limitations of the current system.

5.1 Grasping Objects from 12 Different Surfaces

We evaluated the performance of the complete system on
the following 12 distinct surfaces: two types of floor (car-
peted and tiled), five different rectangular tables, a table
with a curved edge, two circular tables, a kitchen counter
top and the flat top of a set of drawers. We selected two ob-
jects, a cordless phone and a pill and performed two grasp-
ing trials for every surface, one for each object for a total of
24 trials on 12 different surfaces. We carried out these trials
in three different rooms: the main room of the Healthcare
Robotics Lab and a conference room and break room at the
Health Systems Institute.

Table 1 shows the two objects, the 12 different flat sur-
faces and the performance of the robot. We started the
robot around 1.5m away from the object in different start-
ing orientations. A trial was deemed successful if the robot
navigated to the surface and grasped the object. We varied
the orientation of the cordless phone and the pill across the
trials. We also varied the distance between the objects and
the front edge of the flat surface between 5cm and 15cm.

We report the height of the different surfaces measured
using a tape measure and the height estimated by the robot’s
surface detection algorithm. We present the results of these
experiments in Table 1. The robot approached and grasped
the phone from all 12 surfaces (100% success). It navigated
to the pill and grasped it from 7 surfaces (58% success). For
the five failures, the segmentation algorithm failed to seg-
ment the pill from the flat surface. The robot did navigate
successfully to the user-selected location in the five fail-
ure cases. The surface detection and approach algorithms
worked correctly in all 24 trials (100% success). The aver-
age of the absolute difference between the measured height
and estimated height for the 24 trials was 7.1mm.

5.2 Grasping Multiple Objects from Two Flat Surfaces

We have proposed a prioritized list of 43 objects for the
evaluation of assistive mobile manipulation systems oper-
ating in domestic settings (Choi et al, 2009b). We compiled
this list by conducting a survey of 25 patients with ALS.
Since this survey was contemporaneous, for this work we

Table 2: Multiple grasping trials for an object on one surface.

Object Segmentation
Pill 6/6 (100%)
Plastic Fork 6/6 (100%)

Grasp
6/6 (100%)
4/6 (66.7%)

This table shows the result of grasping for multiple trials with a
plastic fork and a pill on a table on which we could segment the pill
(see Table 1). We placed the objects within the workspace of the
grasping behavior, while varying their position and orientation.

used a list of objects compiled from a survey of 15 patients,
available as a technical report (Choi et al, 2009c).

We evaluated the performance of the robot on those ob-
jects which the ALS patients reported on average as being
slightly important, important and very important for an
assistive mobile manipulation system to be able to retrieve.
This corresponds to the top 25 out of the ranked list of 43
everyday objects. An object from each of the 25 object cat-
egories is shown in Figure 13. The set of the top 25 object
categories from the survey with 15 patients is identical to
the survey of 25 patients, with the exception of credit card
replacing straw in the list compiled from the survey of 25
patients.

We tested the navigation and overhead grasping behav-
iors for the floor and a table. For some categories, we per-
formed trials with multiple representative objects. For ex-
ample, we tested with transparent as well as opaque cups
and bottles. We also performed multiple trials for some ob-
jects which had two sides with different characteristics (e.g.
the cell-phone had one face that was shiny and one that
was dull, the TV remote had one face that was black and
the other metallic). As we discuss in Section 5.4, material
properties play an important role in the success of our seg-
mentation algorithm. We ran trials for the transparent cup
and bottle, table knife, fork, spoon, keys, dollar bill, book,
slipper and mail on one surface only (floor).

In each trial, the robot started around 1.5 meters away
from the object. The experimenter briefly shined a green
laser pointer on the object and the task for the robot was
to navigate up to the object and pick it up. For objects with
a well-defined major axis. The distance between the object
and the front edge of the table was between bcm and 15cm.

As shown in Figure 13, the robot grasped an object from
every category at least once, except plates, books, table
knives and mail. EL-E’s grasping strategy can be successful
on compliant objects, such as the hand towel and slipper.
In contrast, these objects could be difficult to grasp using
a traditional grasp planner that requires an explicit model
of the object. Most grasp planning has focused on rigid
objects.

Table 3 shows the results of the experiments for objects
belonging to the 25 different categories. The third column
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Table 1: Grasping two objects from 12 different surfaces.

y y

v v v
: v v v X v
Estimated 0.008 0.695 0.387 0.383 0.733 0.568
height(m) 0.008 0.698 0.390 0.384 0.730 0.570
Measured
height(m) 0.000 0.715 0.400 0.385 0.735 0.570

y y

v v v
- y Y x Y x
Estimated 0.721 0.741 0.743 0.632 0.851 -0.002
height(m) 0.720 0.738 0.746 0.630 0.852 -0.004
Measured
height(m) 0.730 0.750 0.735 0.630 0.860 0.000

This table shows the performance of the robot in 24 trials for two objects on 12 different surfaces. A trial was successful if the robot navigated
to the surface and grasped the object. The estimated height is the height of the surface as reported by the robot’s surface detection algorithm
for each trial. The first row reports the estimated height for trials with the phone and the second row is for trials with the pill. Measured
height is the height we measured using a tape measure. The robot navigated to and grasped the phone from all 12 surfaces (100% success). It
navigated to the pill and grasped it from 7 surfaces (58% success). For the five failures, the segmentation algorithm failed to segment the pill
from the flat surface. The robot navigated successfully to the user-selected location in the five failure cases. The surface detection and
approach algorithms worked correctly in all 24 trials (100% success). The average of the absolute difference between the measured height and

estimated height for the 24 trials was 7.1mm.

shows that the overhead grasp behavior has a high success
rate with objects that the segmentation algorithm can seg-
ment from the flat surface. The second column shows that
the segmentation algorithm can fail on thin, transparent or
reflective objects. We discuss the types of failure in detail
in Section 5.4.

Table 2 shows the results of multiple grasping trials for
two objects (a plastic fork and a pill) on one table. It shows
that the grasping performance for a pill can be consistent on
a given surface (6 successes out of 6 trials). In contrast, the
robot grasped the fork successfully 4 out of 6 times, though

the object segmentation algorithm returned a good position
and orientation for all 6 trials. This happened because flat
and thin objects can twist when the gripper applies a force
on them, causing them to slip out of the two-fingered grasp.

5.3 Object Placement

To evaluate the object placement behavior we placed three
objects (a TV remote, a toothbrush and a bowl) on a ta-
ble and put tape on two tables to mark the desired object



16

3) Pill bottle

16) Hand towel 17) Book

\

19) Mail 20) Straw 21) Keys 22) Table knife 23) Slipper 24) Pencil 25) Medicine box

Fig. 13: This figure shows the 25 objects that we used to evaluate the performance of the robot. They are ordered by the importance ascribed
to them by ALS patients (Choi et al, 2009¢). The objects that the robot is shown grasping are the objects that the robot successfully navigated
to, segmented, and grasped at least once during our experiments. Except for the fork, all of these photos were taken during the experiment
described in Table 3. The fork picture is from an independent test of EL-E’s ability to approach, segment, and grasp the fork. Although EL-E

did not recognize that it had succeeded when grasping the dollar bill, we have counted it as a success here.

Fig. 14: (Color online) This figure shows the object placement experiment. The first image shows the three objects (T'V remote, toothbrush
and bowl) and the desired placement points (red circles). The second image shows the robot grasping the toothbrush, and the remaining three

images show the robot placing the toothbrush, the TV remote, and the bowl.
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Table 3: Grasping different objects from two surfaces.

Object

Object Segmentation

Approach Grasp

Carpeted Floor

TV remote (black face up)
TV remote (metallic face up)
Pill

Pill bottle

Glasses

Cordless phone
Toothbrush

Plastic spoon

Bottle

Toothpaste

Cup

Bowl

Soap

Cellphone (dull face up)
Cellphone (shiny face up)
Hand towel

Straw

Keys

Slipper

Pencil

Medicine box

AN N N N N N N N N N N N N N N NN NN
AN N N N N N N N N N N N Y N N N NN

S N N N N N N N N N N N NN N NENENENEN

Slipper X
Dollar bill X
Plastic fork X
Book X
Mail X
Table knife X
Transparent Bottle X
Transparent Cup X
Plastic spoon X
29/30 25/29 21/25
96.7% 86.2% 84.0%
Table
TV remote (black face up) v v v
Pill bottle v v v
Cordless phone Vv v v
Bottle v v v
Toothpaste v v v
Cup v v v
Bowl v v v
Soap v v v
Cellphone (dull face up) v v v
Hand towel v v v
Medicine box v v v
TV remote (metallic face up) v X
Cellphone (shiny face up) v X
Straw v X
Toothbrush v X
Pencil v X
Pill v X
Glasses v X
18/18 11/18 11/11
100% 61.1% 100%

This table shows the results of grasping experiments for the top 25
objects. Approach was deemed successful if the robot navigated such
that the object was within the workspace of the grasping behavior.
Object segmentation was deemed successful if the robot segmented
out the desired object from the flat surface. A grasp was deemed
successful if the robot picked up the object and detected that the
grasp was successful.

We performed multiple trials for some objects which had two sides
with different characteristics (e.g. the cell-phone had one face that
was shiny and one that was dull, the TV remote had one face that
was black and the other metallic). We ran trials for the transparent
cup and bottle, table knife, fork, spoon, keys, dollar bill, book,
slipper and mail on one surface only (floor).

placement locations. The experimental setup is shown in
Figure 14. The task for the robot was to grasp the object
selected using a laser pointer from the table and then place
it at the desired location, which was also selected with the
laser pointer. The robot successfully grasped and placed the
three objects in series without error.

Figure 14 shows the robot placing the objects at the
desired locations. The tape mark for the toothbrush was
very close to the edge of the table, so the robot placed the
object 10cm behind the front edge.

5.4 Failure Analysis

We will now look more carefully at the types of failures
across the various tests we conducted.

5.4.1 Segmentation Failure

All of the behaviors rely on accurate detection and segmen-
tation of the surface and the object of interest. We have
found that this can fail for a variety of reasons.

Material Properties The laser range finder does not detect
reflective objects such as metal spoons, forks and knives
when viewed at an angle, and these objects tend to leave a
hole in the point cloud. For transparent objects like glasses,
transparent cups, and bottles the laser range finder returns
an incorrect range. We believe that this is due to reflection
and transmission of the IR laser. These perceptual failures
cause the segmentation algorithm to either not detect the
object at all, or to incorrectly estimate the object’s position
and orientation. Given these issues, we would expect for
the robot to also perform poorly with surfaces made from
comparable materials.

Geometric Properties The segmentation algorithm cannot
segment flat and thin objects like mail and plastic knives
that are sitting flat against the surface. Furthermore, point
clouds for other small and thin objects vary from surface
to surface. This is evidenced by the robot segmenting out
objects like the pill, pencil, straw, glasses, plastic spoons,
forks, and toothbrushes on the floor but not the table, re-
sulting in the robot only succeeding on the floor.

We do not know the root cause of this difference, al-
though it appears to relate to variations in the raw sen-
sor readings. A qualitative inspection of the scans indicates
that some small and thin object are not visible on some
surfaces (e.g. the vitamin pill on some tables).
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Fig. 15: (Color online) This figure shows the output of the object
segmentation algorithm (bottom row) as the distance between the two
objects is decreased from 6cm to 2cm to lem (left to right). When the
distance between the objects equals the horizontal resolution of the
occupancy grid (lem) the segmentation algorithm merges the soap
and the medicine box into one object (shown in yellow).

Clutter In Figure 15, we show an example of the perfor-
mance of the object segmentation algorithm as the distance
between two objects (medicine box and soap) is decreased
from 6cm to lecm. The object segmentation algorithm de-
tects two objects when the distance between them is 6cm
and 2cm. But, when we reduced the distance to lem (the
horizontal resolution of the occupancy grid), the object seg-
mentation algorithm merged the two objects into one. Ex-
treme clutter can also interfere with the detection and seg-
mentation of a surface, since these methods rely on many
samples from the top of the 3D surface and clutter can
reduce the number of samples due to occlusion.

5.4.2 Grasping

A second type of failure occurred due to the grasping strat-
egy. The robot cannot grasp objects like books and plates
that are too large to fit within the two fingered gripper and
do not have an edge that the robot can grasp (like bowls).
Thin and rigid objects like spoons and forks can sometimes
twist and slip out of the grasp when the fingers apply a
force on them. Finally, though the robot could segment and
grasp a used dollar bill from the floor in the configurations
we tested, it did not detect there was a dollar bill in its
gripper and thus it declared a grasp failure.

We did not formally test the performance of the system
in clutter beyond the crowding shown in the object place-
ment test. The mechanical impact of clutter is exacerbated
by the current system, since EL-E does not pre-shape its fin-
gers. Instead, it always descends down on an object with the
gripper open as wide as possible. We expect that without
sufficient distance between the objects, the overhead grasp
behavior would descend and collide with objects other than
the object of interest.

6 Discussion

Currently, there are no clear answers about how to create
general purpose autonomous mobile manipulators that per-
form useful tasks in dynamic, unstructured settings. Our
approach focuses on the use of specialized behaviors that
make use of low-dimensional, task-relevant features. This is
similar in spirit to work by other researchers (Katz et al,
2008; Ciocarlie et al, 2007; Jenkins, 2008).

Biological systems offer very good examples of autonomous

mobile manipulators. Insects and animals often use special-
ized perceptual features as input to specialized behaviors
(Goodenough et al, 1993; N. Cowan, 2006), and evidence
indicates that some seemingly complex human actions may
be explained by control in a low-dimensional task space
derived from high-dimensional sensor and muscle spaces
(Ting, 2007). Although success in biological control does
not imply that robots should use similar methods, we be-
lieve that similar methods offer many benefits to robots.

First, ignoring irrelevant sensory information enables a
robot to generalize its capabilities to new situations and
focus its perceptual resources on what is important. For
example, EL-E is able to operate in diverse environments
partly because each of its behaviors only focuses on a vol-
ume of interest (VOI) tailored to its needs. In our current
implementation, the VOI is centered around a 3D location
provided by the human user, but it could plausibly be pro-
vided by an autonomous perception system, such as those
found in Meger et al (2008) and Rusu et al (2008).

Second, due to their low complexity, specialized behav-
iors are more predictable and easier to characterize and
monitor for unexpected situations. For example, the low-
dimensional parameterization of the overhead grasp behav-
ior enables the robot to easily monitor for collisions, see
Section 4.6.3. Also, we were able to easily characterize the
workspace of the overhead grasp behavior so that it could
be composed with the navigation behavior.

Third, the use of specialized behaviors naturally leads to
modularity and extensibility. Although the overhead grasp
behavior works well for objects sitting on flat surfaces that
are unobstructed from above, there are situations where it
would not be suitable, such as grasping objects from a shelf,
grasping large objects like books and plates, and thin and
flat objects such as mail and dollar bills. We have shown
that it is relatively straightforward to select between two
types of grasp locations (e.g., middle of an object versus
the edge of a bowl), and to define pre-conditions to deter-
mine whether the overhead grasp behavior is appropriate
or not. We believe that the grasping behavior can be ex-
tended by adding specialized behaviors that grasp objects
from the front, grasp thin objects, and handle other spe-
cialized cases not covered by the existing behaviors. An
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appropriate behavior could then be selected based on var-
ious feature detectors and pre-conditions. We believe that
by using a few specialized behaviors, the robot can handle
large variations in the environment. We hope to explore this
in future work. In order to expand EL-E’s capabilities be-
yond object grasping, we have already developed additional
behaviors that deliver an object to a person or open a door
(Choi et al, 2009a; Jain and Kemp, 2008).

Another point we wish to emphasize is that relatively
simple behaviors can sometimes perform well over a large
set of situations. A simple behavior and mechanism does
not imply narrow functionality relative to the common sit-
uations found in the real world. We believe the performance
of our grasping behavior provides evidence of this, and also
points to the importance of strong empiricism. At this time,
only experiments in the real world can convincingly test the
performance of an autonomous mobile manipulator with re-
spect to true task variation. Without building and testing
complete systems, we are unlikely to be able to determine
where the most pressing challenges lie.

Clearly, there are still significant limitations to our sys-
tem. For example, our grasping behavior would be obliv-
ious to the risks of grasping a cup filled with liquid, and
the robot only navigates over short distances. Nonetheless,
we believe that these issues can be handled by building
on the current system and that the use of behaviors with
pre-conditions, real-time monitoring, and post-conditions
will help keep the system extensible (by post-conditions we
mean that a behavior can detect whether it was successful
or not). Post-conditions are especially important, because
we believe that a key to robustness is knowing when to try
again, possibly with a different behavior.

7 Conclusion

We have presented our progress towards the creation of an
assistive robot that can autonomously pick and place ob-
jects in the home. Significant challenges remain, including
navigating and grasping within real homes, which are likely
to have significant clutter, overcoming sensor limitations,
operating at faster speeds, increasing overall reliability, and
expanding the set of objects that can be grasped. We hope
to address these issues in future work.
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