
Combinatorial Enumeration, Spring 2010
Homework 1 - solutions

1. (a) Find all groups G for which the action of G on itself by left conjugation is
transitive.

(b) Group actions α : G → S(X) and β : H → S(Y ) are isomorphic (α ' β) iff
there is a group isomorphism ϕ : G �→ H and a bijection f : X �→ Y such
that f(g · x) = ϕ(g) · f(x) for all g ∈ G, x ∈ X.

Let α : G → S(X) be a transitive action, x ∈ X, Gx the stabilizer of x under
α, and β : G → S(G/Gx) the action of G on the set of left cosets of Gx by left
multiplication. Prove that α ' β.

Solution:

(a) Let g ∈ G be arbitrary. If this action is transitive, there is h ∈ G such that
h · e = g. But h · e = heh−1 = e, so g = e. Hence the only such group is the
trivial group G = {e}.

(b) Let y ∈ X be arbitrary. Since α is transitive, there is g ∈ G such that g·αx = y.
Define f : X → G/Gx by f(y) = g Gx.

(i) We have g1·αx = g2·αx ⇐⇒ g−1
1 g2·αx = x ⇐⇒ g−1

1 g2 ∈ Gx ⇐⇒ g1Gx =
g2Gx, so f is unambigously defined and injective. It is also surjective, since
g Gx = f(g ·α x) for any g ∈ G.

(ii) Let g ∈ G and y ∈ X be arbitrary, and let h ∈ G be such that h ·α x = y.
Then f(g ·α y) = f(g ·α (h ·α x)) = f(gh ·α x) = ghGx = g ·β hGx =
ϕ(g) ·β f(y) where ϕ = idG, so α ' β.

2. (a) Show that the cycle index polynomial for the standard action of the cyclic
group Cn is given by

PCn(y1, . . . , yn) =
1

n

∑
k |n

ϕ(k)y
n/k
k

where ϕ(k) denotes Euler’s totient function.

(b) Compute the cycle index polynomial PDn(y1, . . . , yn) for the standard action
of the dihedral group Dn.

Solution:

(a) We need to determine the cycle type of rk where 0 ≤ k < n. Let x be a vertex
of the n-gon. The length of the cycle of rk containing x equals the order of
rk ∈ Cn, which is the least ` ≥ 1 such that n divides k`. Hence k` = lcm(n, k),
and ` = lcm(n, k)/k = n/d where d = gcd(n, k). So rk contains d cycles of
length n/d, and contributes yd

n/d to the sum in the cycle index polynomial. For

each divisor d of n, there are ϕ(n/d) elements k ∈ {0, 1, . . . , n− 1} such that
gcd(n, k) = d. Therefore

PCn(y1, . . . , yn) =
1

n

∑
d |n

ϕ
(n

d

)
yd

n/d =
1

n

∑
d |n

ϕ (d) y
n/d
d .



(b) Since |Dn| = 2|Cn|, the contribution of rotations to PDn(y1, . . . , yn) is
(1/2)PCn(y1, . . . , yn). To analyze reflections, distinguish two cases.

i. n even: There are n/2 reflections across median, each having n/2 cycles
of length 2. There are also n/2 reflections across main diagonal, each
having (n − 2)/2 cycles of length 2 and 2 cycles of length 1. Hence the
total contribution of reflections to the sum in the cycle index polynomial
is (n/2)(y

n/2
2 + y2

1y
(n−2)/2
2 ).

ii. n odd: There are n reflections, each having (n − 1)/2 cycles of length 2

and 1 cycle of length 1, contributing ny1y
(n−1)/2
2 to the sum in the cycle

index polynomial.

Since |Dn| = 2n, we thus obtain

PDn(y1, . . . , yn) =
1

2n

∑
d |n

ϕ (d) y
n/d
d +

{
1
4
(y

n/2
2 + y2

1y
(n−2)/2
2 ), n even,

1
2
y1y

(n−1)/2
2 , n odd.

3. (a) A roulette wheel has 37 sectors. In how many different ways can the sectors be
colored if we have 3 colors at our disposal? We consider two colorings different
if one cannot be turned into the other by spinning the wheel.

(b) Same as above, but now we count only those colorings in which each of the 3
colors is actually used.

(c) How many different necklaces containing 30 glass beads can be made if we
have beads of 2 different colors? Two necklaces are considered different if one
cannot be turned into the other by rotating it and/or turning it over.

Solution:

(a) We are counting colorings under the standard action of C37. The cycle index
polynomial is (see 2(a))

PC37(y1, y2, . . . , y37) =
1

37

(
y37

1 + 36 y37

)
,

so by the RPT the answer is

PC37(3, 3, . . . , 3) =
337 + 108

37
= 12 169 835 294 351 283.

(b) Denote by Ai the set of colorings which are missing color i. Then the set of col-
orings not missing any of the m colors is

⋂m
i=1 Ac

i , where Ac
i is the complement

of Ai. By the inclusion-exclusion principle and the RPT, we obtain

|
m⋂

i=1

Ac
i | =

m∑
k=0

(−1)m−k

(
m

k

)
Pα(k, k, . . . , k).

So the answer is

3∑
k=0

(−1)3−k

(
3

k

)
PC37(k, k, . . . , k) = 12 169 824 150 652 350.



(c) We are counting colorings under the standard action of D30. The cycle index
polynomial is (see 2(b))

PD30(y1, y2, . . . , y30) =
1

60

(
y30

1 + 15y2
1y

14
2 + 16y15

2 + 2y10
3 + 4y6

5 + 2y5
6 + 4y3

10 + 8y2
15 + 8y30

)
,

so by the RPT the answer is

PD30(2, 2, . . . , 2) = 17 920 860.

4. A matching in a graph is a set of mutually nonadjacent edges. Determine the
number mn of matchings in the complete graph Kn embedded in the plane as a
regular n-gon with all its diagonals, inequivalent under rotations (i.e., the standard
action of the cyclic group Cn). For example, K4 (drawn as a square with both
diagonals) has five inequivalent matchings: the empty matching, a single side, a
single diagonal, two parallel sides, both diagonals. The first few numbers mn are:

n 1 2 3 4 5 6 7 8 9 10
mn 1 2 2 5 6 18 34 108 294 984

Solution:

By the CFL,

mn =
1

n

∑
g∈Cn

|Fix g|

where Fix g is the set of matchings in Kn fixed by g. In how many ways can we
construct a matching M fixed by rk? Denote by G the cyclic subgroup of Cn

generated by rk. As we saw in 2(a), the action of G partitions the vertices of Kn

into d = gcd(n, k) orbits of size n/d. Denote by R a set of d consecutive vertices.
Since R contains one representative from each orbit, it suffices to define M on R,
then extend it by rotational symmetry. A vertex in R can be safely matched to any
vertex in another orbit. It cannot be matched to a vertex in its own orbit, unless
it is its antipode, which can only happen if n is even and d divides n/2. Hence we
can construct M in three stages:

1. Select 2j of the orbits and match them in pairs. This can be done in(
d
2j

)
(2j − 1)!! ways.

2. For each pair of matched orbits {O1,O2}, select one of the n/d vertices in
O2 that will be matched with the vertex in O1∩R. Since there are j pairs of orbits,
this can be done in (n/d)j ways.

3. For each of the unmatched d− 2j orbits O, there are

t(n, d) =

{
2, if 2d |n,
1, otherwise

(1)

options of either matching the vertex in O∩R to its antipodal vertex in O, or not.



Here 2j can have any even value between 0 and d, so

|Fix rk| =
∑

0≤2j≤d

(
d

2j

)
(2j − 1)!!

(n

d

)j

t(n, d)d−2j

where d = gcd(n, k). As in 2(a), for each divisor d of n there are ϕ(n/d) values
k ∈ {0, 1, . . . , n− 1} such that gcd(n, k) = d. Hence the answer is

mn =
1

n

∑
d|n

ϕ
(n

d

) ∑
0≤2j≤d

(
d

2j

)
(2j − 1)!!

(n

d

)j

t(n, d)d−2j

with t(n, d) as given in (1).


