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Abstract

The classW of spaces having the homotopy type of a CW complex is not closed under form
of function spaces. In 1959, Milnor proved the fundamental theorem that, given a spaceY ∈W and
a compact Hausdorff spaceX, the spaceYX of continuous functionsX→ Y , endowed with the
compact open topology, belongs toW. P.J. Kahn extended this in 1982, showing thatYX ∈W if X
has finiten-skeleton andπk(Y )= 0, k > n.

Using a different approach, we obtain a further generalization and give interesting exam
function spacesYX ∈W whereX ∈W is not homotopy equivalent to a finite complex, andY ∈W
has infinitely many nontrivial homotopy groups. We also obtain information about some topol
properties that are intimately related to CW homotopy type.

As an application we solve a related problem concerning towers of fibrations between sp
CW homotopy type.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is well known that the classW of topological spaces having the homotopy type o
CW complex is not closed under formation of function spaces. In [13], Milnor has sh
that if a spaceY belongs toW andX is a compact Hausdorff space, the space of continu
functionsYX endowed with the compact open topology also belongs toW .
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In a generalization in [10], Kahn has weakened the compactness assumption for the
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domainX, thereby imposing restrictions on the targetY . He proved that ifX and Y
are connected CW complexes such thatπk(Y ) = 0 for k � n + 1 andX has finiten-
skeleton, then the spaceYX has the homotopy type of a CW complex. He uses an inv
limit approach, reducing the problem to the fact that for a tower of fibrations bet
contractible spaces, the limit space is also contractible.

In Section 2 we extend the result of Kahn, obtaining a sufficient condition on conn
CW complexesX andY for the function spaceYX to have CW homotopy type with n
a priori restrictions on homotopy groups ofY . We present an example of a spaceYX of
CW homotopy type, whereX is not homotopy equivalent to a finite complex, andY has
infinitely many nontrivial homotopy groups.

In Section 3 we restate the result of Section 2 in a sharper version for the case
X is a countable complex, obtaining also some information about topological prop
of YX that are intimately related to CW homotopy type. We show that, roughly, ifX is a
skeleton-finite complex, andHi(X;πj (Y ))= 0 for all large enoughj and all large enoug
i such thati � j , thenYX has CW homotopy type, and is well-pointed for any choice
base-point.

We give an interesting generalization of the main theorem, which implies that fo
countable complexX, and a complexY with πk(Y ) = 0 for k � n + 1, ΩnYX has CW
homotopy type.

As an application of our results we present in Section 4 an explicit counterexamp
clarifies a problem regarding a small error in Theorem B of [5] (as noted in [6]).

The proofs of the main theorems of Sections 2 and 3 are based on an invers
argument, viewingYX as the limit of inverse system{YL}, whereL ranges over finite
subcomplexes ofX and the bonding maps are restriction fibrationsYL2 → YL1. Milnor’s
theorem implies that every space in this system has CW homotopy type, and we inve
conditions under which the limit space has CW type as well. This approach was inspi
the paper of Dydak and Geoghegan [5]. In the proof of Theorem 2.1 we employ a tech
used by Geoghegan in [8].

Our approach differs from that of Kahn in two aspects. First, he viewsYX as the inverse
limit of {YX(n) | n}, whereX(n) denotes then-skeleton ofX. Next, he works in the categor
of compactly generated Hausdorff spaces. In particular, function spaces are endow
the compactly generated refinement of the compact open topology. We use through
compact open topology, and observe in Section 3 that if a Hausdorff spaceZ has CW type,
so hask(Z), wherek denotes the “compact generation” functor, and that for a coun
complexX, the spaceYX has CW type if and only ifk(YX) has CW type. Hence ou
Corollary 2.4 implies Theorem 1.1. of [10], and in the general case not vice versa.

CW COMPLEXES, SIMPLICIAL COMPLEXES AND ANRS. For a topological spaceZ
the following are equivalent:

(i) Z has the homotopy type of a CW complex.
(ii) Z has the homotopy type of a simplicial complex (with the CW topology).
(iii) Z has the homotopy type of a simplicial complex with the metric topology.
(iv) Z has the homotopy type of an absolute neighbourhood retract (ANR) for the cl

metric spaces.
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(See [13], Theorem 2, for details on equivalence of (i), (ii), (iii), and [11], Theorem I.4.1,
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for details on equivalence of (ii) and (iv).) For our purposes (as for homotopy theo
general) the class of CW complexes is the most appropriate, but we will also find u
the equivalence of (i) and (iii).

On the other hand, the class of ANRs enjoys some nice topological properties th
class of CW complexes does not; for example, it is closed under formation of Car
products and loop spaces.

Indeed, as has been pointed out by the referee (see also Milnor [13], Corollary 2),
“ANR version” the following weaker form of Milnor’s theorem is an immediate coroll
of the exponential law (see Mardešić and Segal [11], Theorem I.3.4): LetY be an ANR
andX a compact metric space. ThenYX is an ANR.

Conventions and notation. We work with specific CW decompositions of the dom
complexX, and formulate the theorems accordingly. Since homotopy equivalencesX 	X′
and Y 	 Y ′ induce a homotopy equivalenceYX 	 Y ′X

′
(see Theorem 6.2.25 of [12

for a proof), everything can be interpreted in a homotopy invariant form. The stan
conditions on the domain complexX are finiteness of each skeletonX(k) and finiteness o
a single skeletonX(n). We refer the reader to the papers of Wall [18,19] for an algeb
characterization of spaces having the homotopy type of such complexes.

Since we are discussing spaces of CW homotopy type, we distinguish strictly be
homotopy equivalent andweakly homotopy equivalent, shortly just equivalent and wea
equivalent, respectively. Occasionaly we shorten ‘homotopy type’ to ‘type’.

The term fibration is used for a Hurewicz fibration, that is a (not necessarily surje
map with the homotopy lifting property with respect to all spaces.

We use the following notation.

YX the space of continuous functionsX → Y , endowed with the compact ope
topology,

Cg(L) the path component ofYL that containsg|L :L→ Y , whereL is a subcomplex o
Y andg :X→ Y is a map,

X(K) the smallest subcomplex of the CW complexX that containsK.

2. A sufficient condition for the function space Y X to have CW homotopy type

The main result of this section is the following

Theorem 2.1. Let X and Y be connected CW complexes, and let g :X→ Y be a map.
Suppose there exists a finite subcomplex T of X with the following properties

(i) X(1) ⊂ T ,
(ii) every subcomplexL�X containing T is contained in a subcomplexL′ such that L′/L

is finite and

Hi
(
L′, T ; (g|L′)#πj (Y )

)= 0 for all j � 2 and all i � j,
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where the cohomology is taken with local coefficients, (g|L′)#πj (Y ) being the

the
e for

pact
Zπ1(L
′)-module obtained by restriction (g|L′)# :π1(L

′)→ π1(Y ).

Then the path component C of g in YX is open and closed in YX , and is homotopy
equivalent to the path component of g|T in YT , hence has the homotopy type of a CW
complex.

Addendum. If Y is simply connected, then condition (i) of Theorem 2.1may be omitted.

Corollary 2.2. If the conditions of the theorem are satisfied for all maps g :X→ Y , then
YX is homotopy equivalent to the union of some path components of YT , hence has the
type of a CW complex.

Corollary 2.3. If X has no 1-cells (or T can be so chosen that π1(T ) is trivial), or if Y
is a simple space, the cohomology in property (ii) of the theorem is the usual cohomology
Hi(L′, T ;πj(Y )), independently of the map g :X→ Y . If the condition of the theorem is
satisfied, the conclusion applies to all path components of YX which is again homotopy
equivalent to the union of some path components of YT .

Corollary 2.4. If X is homotopy equivalent to a connected CW complex with finite n-
skeleton, and Y is homotopy equivalent to a connected CW complex with πk(Y ) trivial for
k � n+ 1, then YX belongs to W .

Remark 2.5. Corollary 2.4 corresponds to the result of Kahn [10, Theorem 1.1] for
compact open topology. Note that Corollary 2.4 implies Theorem 1.1 of [10], sinc
Hausdorff spacesZ1,Z2, Z1	Z2 impliesk(Z1)	 k(Z2). See also Corollary 3.5.

We shall make use of the following “strong form” of the exponential law for the com
open topology (see [4]).

Lemma 2.6. The exponential law YL×B ≈ (YL)B holds true if the product L × B is
compactly generated and L is Hausdorff.

For the sake of brevity, we adopt the following

Notation.

(i) For L1 � L2, we denote the restriction fibration RL1,L2 :YL2 → YL1. Note that
R(Cg(L2))= Cg(L1).

(ii) We denote the cohomological condition of Theorem 2.1as

Hi
(
L′, T ; (g|L′)#πj (Y )

)= 0, ∀j � 2, ∀i � j. (WEg(L′))

(The subcomplex T of X is assumed fixed.) The letters WE stand for “weak
equivalence”; see Lemma 2.7.
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Lemma 2.7. Consider the restriction fibration YL′ R→ YT . The property WEg(L′) implies
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that R|Cg(L′) :Cg(L
′) → Cg(T ) is a weak homotopy equivalence and R−1(Cg(T )) =

Cg(L
′). The latter implies that Cg(L

′) is both open and closed in YL′ .

Proof. Denote byF the fibre overg|T of YL′ → YT . We claim thatπk(F,g|L′) is
trivial, for all k � 0. By Lemma 2.6 a loop(Sk,∗)→ (F,g|L′) corresponds to a ma
φ :Sk × L′ → Y . To prove the claim we have to extendφ overBk+1×L′, the restriction
to Bk+1 × T being g ◦ prT . If T contains the 1-skeleton ofX, then the subcomple
Bk+1× T ∪ Sk ×L′ contains the 2-skeleton ofBk+1×L′, for anyk � 0, so in this caseφ
is already 2-extended. All further obstructions vanish. As regards the addendum to
rem 2.1, we note that ifπ1(Y )= 0, thenφ can be 2-extended with no conditions onT . ✷

We begin with a technical lemma.

Lemma 2.8. Assume p :E→ B is a fibration and π :E→ B is a homotopy equivalence.
Let M(π) denote the mapping cylinder of π . If r :M(π)→B is a map such that r|E×1= p,
then there exist a map s :B→E such that p ◦ s = r|B and a homotopy h :E× I →E be-
tween the composite s ◦ π and idE such that p ◦ h= r ◦ q where q :E × I + B→M(π)

is the quotient map.
If, in addition, π(e0) = b0 and r(b0) = p(e0) where {e0} ↪→ E and {b0} ↪→ B are

closed cofibrations, then it can be arranged that s(b0) = e0 with the homotopy being
rel{e0}.

Remark. If p :E→ B is a fibration and a homotopy equivalence, then takingπ to bep
and r the standard retractionM(p)→ B, we obtain a right inverses for p and a fibre-
preserving homotopy betweens ◦ p and the identity map.

Proof. Consider the following diagram

E × 1

	

idE
E

p

M(π)
r

B

The inclusionE × 1 ↪→M(π) is both a closed cofibration and a homotopy equivale
hence Theorem 3 of [17] may be applied to obtain the filling which yields both a ms
and a homotopyh as claimed.

For the second part of the lemma, one quickly checks that the inclusionq(E×1∪{e0}×
I) ↪→ M(π) is a closed cofibration (and a homotopy equivalence). Making an obv
replacement in the above diagram, we conclude the proof.✷

We are now ready to prove the theorem.

Proof of Theorem 2.1. Keeping the mapg fixed, write C(L) instead ofCg(L) and
WE(L) instead ofWEg(L). SinceT is finite,YT ∈W by Milnor’s theorem. HenceC(T )
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is both open and closed inYT , andC(T ) ∈W . The assumptions implyWE(X), hence
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R−1
T ,X(C(T ))= C(X), andC(X) is open and closed inYX. Define

Λ = {
(L,E,h) | T � L�X,E :C(T )→C(L);

RT,L ◦E = idC(T ), h :E ◦RT,L 	 idC(L)
}
.

Note that by definition, for(L,E,h) ∈Λ, C(T )	 C(L) ∈W .
OrderΛ by setting(L1,E1, h1)≺ (L2,E2, h2) if L1 � L2, and the following coherenc

conditions hold:

RL1,L2 ◦E2=E1, (∗)

RL1,L2 ◦ h2= h1 ◦ (RL1,L2 × idI ). (∗∗)

This is evidently a partial ordering.
Let S = {(Lα,Eα,hα) |α} be a nonempty totally ordered subset ofΛ. We claim that

there exists an upper bound forS. Let L =⋃
α Lα . Form an inverse system{C(Lα) |α}

where the bond forLα � Lβ is the restriction mapRLα,Lβ . One verifies readily that th
inverse limit equalsC = {f :L→ Y |f |Lα = RLα,L(f ) ∈ C(Lα), ∀α} with the natural
projectionsRLα,L :C→ C(Lα).

The system of mapsEα :C(T )→ C(Lα) defines a mapE :C(T )→ C with Eα =
RLα,LE by virtue of (∗). In particular,RT,LE = idC(T ). Furthermore, by virtue of (∗∗)
the system of homotopieshα ◦ (RLα,L × idI ) :C × I → C(Lα) defines a homotop
h :C×I → C such thath :ERT,L 	 idC andRLα,L ◦h= hα ◦ (RLα,L× idI ). This exhibits
C as homotopy equivalent toC(T ). ThereforeC must be path connected and since
containsC(L), it follows thatC = C(L). Hence(L,E,h) is an upper bound forS.

Let now (L,E,h) be a maximal element ofΛ. If L �= X, then there exists a celle
of X − L. By assumption (ii) of Theorem 2.1 there exists a subcomplexL′ containing
L ∪ X(e) such thatL′/(L ∪ X(e)) is finite andWE(L′) holds. ThenC(L′)→ C(T ) is
a weak equivalence, by Lemma 2.7. WriteL′ = L ∪M whereM is a finite subcomplex
SinceC(L)→ C(T ) is an equivalence,C(L ∪M)→ C(L) must be a weak equivalenc
SinceR−1

T ,L∪M(C(T )) = C(L ∪ M), it follows that R−1
L,L∪M(C(L)) = C(L ∪ M). This

implies thatC(L ∪ M) is a topological pull-back ofC(M) → C(L ∩ M) ← C(L).
ThereforeC(M)→ C(L ∩M) is a weak equivalence, hence by Whitehead’s theorem
equivalence, since by Milnor’s theorem,C(M),C(L ∩M) ∈W . We apply (the remark
after) Lemma 2.8 to obtain a right inverseε for RL∩M,M :C(M)→ C(L∩M) and a fibre-
preserving homotopyχ : ε ◦ RL∩M,M 	 idC(M). Then the mape :C(L)→ C(L ∪ M),
ϕ �→ ϕ � ε(ϕ|L∩M), is a right inverse forRL,L∪M , andC(L ∪M) × I → C(L ∪M),
(φ, t) �→ φ|L � χ(φ|M, t), is a (fibre-preserving) homotopy betweene ◦ RL,L∪M and
idC(L∪M). HenceC(L ∪M)→ C(L) is a homotopy equivalence.

Denote byM(E ◦RT,L∪M) andM(RT,L) the mapping cylinders ofE ◦RT,L∪M : C(L∪
M)→C(L) andRT,L :C(L)→C(T ), respectively. Note thatE ◦RT,L∪M is a homotopy
equivalence. Letr :M(RL,L∪M)→ C(L) be the composite of the mapM(E ◦RT,L∪M)→
M(RT,L) induced byRL,L∪M × idI +RT,L and the mapM(RT,L)→ C(L) induced by
h + E. SinceRT,L ◦ E = id, r is well defined. Sincer|C(L∪M)×1 = h1 ◦ RL,L∪M =
RL,L∪M , we may appeal again to Lemma 2.8 to obtain a mapu :C(L)→ C(L ∪M) such
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thatRL,L∪M ◦ u = E ◦ RT,L and a homotopyH :C(L ∪M)× I → C(L ∪M) between
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u ◦E ◦RT,L∪M and the identity such thatRL,L∪M ◦H = h ◦ (RL,L∪M × idI ).
The equalityRL,L∪M ◦u=E ◦RT,L implies also thatRT,L∪M ◦ (u ◦E)= idC(T ). This

shows(L,E,h) ≺ (L ∪M,u ◦E,H) ∈Λ which impliesX(e)�M � L, by maximality.
The contradiction completes the proof of Theorem 2.1.✷
Example 1. Here we illustrate the reason for the complicated statement of Theorem
LetX =K(Z2,1)=RP∞ and letZ be a simply connected CW complex of finite type. S
Y := Z(l), the localization ofZ with respect to a nonempty setl of odd primes. Note tha
Y may have infinitely many nontrivial homotopy groups (for instance ifZ is any simply
connected finite complex that is not contractible).

By Theorem 2.1,YX has the homotopy type of a CW complex (namely,Y ). To
see this, takeT = {∗} and for each finiteL � RP∞ let L′ be RP 2m for somem
such thatL � RP 2m. SinceY is l-local, andRP 2m is 2-local while 2/∈ l, evidently
Hi(RP 2m,T ;πj(Y ))= H̃ i(RP 2m;πj(Y ))= 0 for all i, j . This impliesWE(RP 2m).

On the other hand, it isnot true thatWE(RP 2m+1); since H̃2m+1(RP
2m+1) ∼= Z,

andπj (Y ) �= 0 for infinitely manyj , alsoH 2m+1(RP 2m+1,∗;πj(Y )) �= 0 for infinitely
many j . Even more, while it follows from Theorem 2.1 that the evaluation fibra
YX → Y , and the fibrationsYX → YRP 2m

are homotopy equivalences,YRP 2m+1
is not

equivalent toYRP 2m 	 Y . This follows easily by considering the fibrationYRP 2m+1 →
YRP 2m

. The fibre over the constant map is homeomorphic to the space of pointed
(RP 2m+1/RP 2m,∗)→ (Y,∗), that is(Y,∗)(S2m+1,∗), and this is clearly not contractible
Y has infinitely many nontrivial homotopy groups.

Therefore it is essential that the appropriate complexL′ be chosen so as to meet t
requirement (ii) of Theorem 2.1. We exploit this in Example 3.

3. Countable domain

If X is a countable complex, then the assumptions of Theorem 2.1 may be s
relaxed, and the conclusions somewhat strengthened. Moreover, the proof m
simplified to a large extent. The improved theorem reads as follows.

Theorem 3.1. Assume X is a connected countable CW complex. Let Y be any connected
CW complex, and let g :X→ Y be a map. Suppose there exists a filtration T = L0 � L1 �
L2 � · · · for X consisting of finite subcomplexes of X such that X(1) ⊂ T and

Hi
(
Ln,Ln−1; (g|Ln)

#πj (Y )
)= 0

for all j � 2 and all i � j . Then the path component C of g is open and closed in YX , and
is homotopy equivalent to the path component of g|T in YT .

Furthermore, if f is any map in C, then the inclusions {f } ↪→ C and {f } ↪→ YX are
cofibrations.

Addendum. If Y is simply connected, it is not necessary that T contain the 1-skeleton
of X.
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We begin with some lemmas.
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Recall that a topological spaceZ is called locally equiconnected if there exist
neighbourhoodV of the diagonal∆ in Z×Z and a homotopyλ :V × I → Z such that

λ(z,w,0)= z, λ(z,w,1)=w, λ(z, z, t)= z, ∀z,w, t.

Lemma 3.2. If T is a finite, and Y an arbitrary CW complex, then YT is locally equi-
connected.

Proof. See Milnor [13, Proof of Lemma 3]. ✷
Lemma 3.3. If Z is a perfectly normal locally equiconnected space, then, for every point
z ∈ Z, the inclusion {z} ↪→ Z is a closed cofibration.

Proof. By Strøm [17], a closed inclusionA ↪→ Z is a cofibration if and only if there exis
a neighbourhoodU of A which deforms relA in Z to A, and a functionα :Z→ I such
thatA= α−1(0) andα|Z−U = 1.

It follows immediately from the definition of local equiconnectedness that each poz
has a neighbourhood that deforms relz in Z to z. Since in a perfectly normal space eve
closed set is aGδ , we obtain the functionα :Z→ I with the desired properties using th
Urysohn lemma. ✷
Lemma 3.4. Let X be a countable, and Y an arbitrary CW complex. Then

(i) the space YX is paracompact and perfectly normal, and
(ii) YX is homotopy equivalent to a first countable space, from which it follows that the

natural map k(YX)→ YX is a homotopy equivalence.

Proof. For (i), we note thatX may be formed as an expanding union of comp
subcomplexes. Therefore by Cauty [3],YX is stratifiable. This implies that it i
paracompact and perfectly normal.

We turn to (ii) by taking first a simplicial complexZ, equipped with the metric topolog
that is homotopy equivalent toY . ThenZX is homotopy equivalent toYX . SinceZ is
metrizable,ZX has a basis consisting of sets of typeU(f,K, ε) = {g |dK(f,g) < ε}
whered is a metric forZ andK is a compact subset ofX. Note that forf ∈ ZX the sets
U(f,L, 1

n
) whereL is a finite subcomplex ofX, andn ∈ N, form a countable local bas

for f . HenceZX is first countable. (It can be easily shown thatZX is metrizable but we
will not use this.) In particular, it is compactly generated (see [16]). Because the fun
spaces involved are Hausdorff,YX 	 ZX impliesk(YX)	 k(ZX). Sincek(ZX)= ZX , it
follows thatk(YX)	 YX. ✷
Corollary 3.5 (of Lemma 3.4(ii)).If X has the homotopy type of a connected countable
CW complex, and Y ∈W is a Hausdorff space, then YX has CW type if and only if k(YX)

has CW type.
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Proof of Theorem 3.1. From the long exact sequence of the triple for cohomology with
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local coefficients (see, for example, [15]) it follows by induction that

Hi
(
Ln,T ; (g|Ln)

#πj (Y )
)= 0 for all j � 2 and alli � j.

The generalization of Milnor’s theorem on the cohomology of an expanding union to
coefficients (see [20], Theorem 2.10∗) yields an exact sequence

0→ lim←−
1Hi−1(Ln,T ;Gn)→Hi(X,T ;G)→ lim←−H

i(Ln,T ;Gn)→ 0,

whereGn = (g|Ln)
#πj (Y ) andG= g#πj (Y ). This shows thatHi(X,T ;g#πj (Y ))= 0 for

all j � 2 and alli � j . Hence the path componentC of g is open and closed inYX by
Lemma 2.7.

We associate to the filtrationT � L1 � L2 � · · · an inverse sequence of fibratio
· · · → C(L2)→ C(L1)→ C(T ) in which every space has the homotopy type of a C
complex by Milnor’s theorem. By Lemma 2.7 and Whitehead’s theorem, every fibr
in the sequence is also a homotopy equivalence. Assume the notation of the proof o
orem 2.1. Using the same technique as in the last two paragraphs of the mentione
(the “induction step” in the Zorn lemma argument), we can inductively construct sec
En :C(T )→ C(Ln) and homotopieshn :C(Ln) × I → C(Ln) betweenEn ◦ RT,Ln and
idC(Ln) that satisfy the coherence conditions(∗) and(∗∗). The coherence conditions imp
the existence of a mapE :C(T )→ C(X) and a homotopyh :C(X)× I → C(X) by the
existence part of the universal property of inverse limit. By uniqueness,E is a section of
the restriction fibrationRT,X :C(X)→ C(T ), andh is a homotopy betweenE ◦RT,X and
idC(X).

To prove the second part of the theorem, fix a functionf ∈ C(X). SinceY is a CW
complex, it is locally equiconnected (see [7]). Because theLn are finite, the space
YLn are also locally equiconnected, by Lemma 3.2. By Lemma 3.4, the spaceYLn

are perfectly normal, hence by Lemma 3.3, the inclusions{f |Ln} ↪→ YLn and therefore
{f |Ln} ↪→ C(Ln) are closed cofibrations.

If in the above inductive construction we apply Lemma 2.8 (which gives the mapEn,
and homotopieshn) in full, we may assume thatEn mapsf |T to f |Ln and the homotopy
hn is rel{f |Ln}. ThereforeE(f |T )= f and the homotopyh is rel{f }. Since{f |T } ↪→ YT

is a cofibration, there exists a neighbourhoodU of f |T which deforms inC(T ) to {f |T }
rel{f |T }. Denote this deformation byk and definẽU =R−1

T ,X(U)⊂ C(X). The composite

E ◦ k ◦ (RT,X × idI ) : Ũ × I → C(X) is a homotopy rel{f } betweenE ◦ RT,X|Ũ and the
constant map tof . If we concatenate this homotopy withh|Ũ×I we get a deformation in
C(X) of Ũ to {f } rel{f }. We conclude as in the proof of Lemma 3.3, noting thatYX is
perfectly normal by Lemma 3.4.

Hence{f } ↪→ C(X) and{f } ↪→ YX are closed cofibrations.✷
Example 2 (Example 1 enhanced). LetX be a skeleton-finite complex with a minimal ce
decomposition in the sense of Hatcher [9, 4.C]. This implies the existence of a filt
L1 � L2 � · · · for X consisting of finite subcomplexes, such that for eachn ∈ N, the
inclusion induced morphismsHk(Ln)→Hk(X) are bijective fork � n and zero fork > n.

Assume thatY is a simple space, and that there exist ani0 ∈ N and aj0 � 2, so
that for all j � j0 and all i with i0 � i � j , Hi(X;πj (Y )) = 0. Let N = max{i0, j0}.
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Then the restriction fibrationYX → YLN is a homotopy equivalence onto the union
3.1 is

eo-
uestion

ce

.
y
map of

a

ental
of some path components. The filtration that satisfies the conditions of Theorem
T = LN � LN+1 � · · · .

Note that this example includes the case whereX =K(G,n), for a finite groupG, and
G⊗ πk(Y )= 0 for all large enoughk.

In particular, letX = K(G,n) whereG is a finitep-group, and letY be any (simply
connected) finite complex. Then, for any subsetl of primes different fromp, the function
spaceYX

(l)
of maps fromX to the l-localization ofY , has the homotopy type of a CW

complex.

In the following proposition we show that if the cohomological conditions of Th
rem 3.1 are suitably weakened, then an iterated loop space of the function space in q
has CW homotopy type.

Proposition 3.6. Let X and Y be connected CW complexes with X countable and X(0)

a point, and let g :X→ Y be a map. Let r � 1. Suppose there exists a filtration L0 � L1 �
L2 � · · · for X consisting of finite subcomplexes of X such that

Hi
(
Ln,Ln−1; (g|Ln)

#πj (Y )
)= 0

for all j � 2, all i � j − r , and all n. Then for each path component E of the iterated loop
space Ωr−1(YX,g) there exists a fibration D→E with discrete fibre, and the total space
D having the homotopy type of a CW complex.

In particular, Ωr(YX,g) has CW type.

Proof. Fix a numbern and denote byF the fibre of the restriction fibrationYLn → YLn−1.
The hypotheses implyπk(F,g) = 0 for k � r (see the proof of Lemma 2.7). Hen
the morphismπi(Ωr−1(C(Ln), g))→ πi(Ω

r−1(C(Ln−1), g)) is bijective for i � 2, and
injective fori = 1.

(Note that ifr = 1,Ωr−1(C(Ln), g)= C(Ln)= Cg(Ln) in the notation of Theorem 2.1
If r > 1, then since all path-components ofΩ(C(Ln), g) are homotopy equivalent, we ma
assume that all further loop space iterations are taken with respect to the constant
the previous one.)

The spaceΩr−1(C(L0), g) has the homotopy type of a CW complexW . Let Z be a
universal covering space ofW . Denote byZ0 the pull-back ofΩr−1(C(L0), g)→W ←
Z. Thenq0 :Z0 → Ωr−1(C(L0), g) is a covering space andπ1(Z0) = 0 (for each path
component).

If the covering spaceZn−1→Ωr−1(C(Ln−1), g) has already been constructed, form
pull-back

Zn Zn−1

Ωr−1(C(Ln), g) Ωr−1(C(Ln−1), g)

Note that sinceZn→Ωr−1(C(Ln−1), g) is a covering space with CW type base,Zn has
CW type as well, and since the fibre of the bottom row fibration has trivial fundam
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group (on each path-component), it follows thatπ1(Zn) is trivial, andπk(Zn)→ πk(Zn−1)

y

on

e

is an isomorphism for allk � 1.
Proceeding inductively we obtain a commutative ladder

Z∞ . . . Z2 Z1 Z0

W∞ . . . Ωr−1C(L2) Ωr−1C(L1) Ωr−1C(L0)

where each square is a pull-back square, all horizontal arrows are fibrations, andZ∞,W∞
denote the inverse limits of the respective rows. Of courseW∞ equalsΩr−1C(X).

By construction, the following is also a pull-back square.

Z∞ Z0

W∞ Ωr−1C(L0)

Pick a path componentE of W∞. There exists a path-componentD of Z∞ coveringE. If
we denote byDn the image ofD in Zn, thenDn+1 →Dn is a fibration and a homotop
equivalence for eachn. Hence the limit space of{Dn} is homotopy equivalent toD0 (see
also Theorem B of [5], and [8]), therefore is path connected, and since it containsD, it
must equalD. This shows thatD has the homotopy type of a CW complex.

SinceD → E is a fibration with discrete fibre and CW type total space,ΩE =
Ωr(YX,g) has CW type (see Schön [14]).✷
Corollary 3.7. If the skeleton X(n−r) of a countable complex X is compact, and πk(Y )= 0
for k � n+1, then ΩrYX has the homotopy type of a CW complex (for any path component
of YX).

We note that the above corollary holds also without the countability assumptionX,
by a modification of the proof of Theorem 2.1.

We apply Proposition 3.6 and the corollary to the following

Proposition 3.8. Let X be a connected countable CW complex, and Y a connected
CW complex with πk(Y ) nontrivial for at most finitely many k. Then the following are
equivalent.

(i) The space YX has the type of a locally equiconnected space,
(ii) the space YX has the type of a CW complex.

Proof. We need only prove that (i) implies (ii). LetYX be homotopy equivalent to th
locally equiconnected spaceZ. ThenΩkZ is locally equiconnected for eachk � 0 and
each path component ofZ (see Lemma 3.2). In particular, every spaceΩkZ is semilocally
contractible. SinceΩkZ is homotopy equivalent toΩkYX, it follows that ΩkYX is
semilocally contractible, for eachk. In particular, all path components of everyΩkYX

are open.



302 J. Smrekar / Topology and its Applications 130 (2003) 291–304

Furthermore, note thatΩkYX may be viewed as a certain (closed) subset of the space

t
d
[1].

e this,

.
ut

given
ere a
YX×I k , which is paracompact and perfectly normal, by Lemma 3.2. Hence so isΩkYX .
If n is the largest integer for whichπn(Y ) �= 0, it follows from Proposition 3.6 tha

Ωn(YX,g) has CW homotopy type, for allg. SinceΩn−1(YX,g) is paracompact an
semilocally contractible, it has the homotopy type of a CW complex by Allaud
Proceeding inductively we conclude thatYX has the homotopy type of a CW complex.✷
Remark. If Y has the homotopy type ofΩW whereW is a countable complex, thenYX

has the type of a locally equiconnected space if it is semilocally contractible. To se
note that by a theorem of Milnor,ΩW has the type of a topological groupG. ThenGX is
also a topological group. IfYX is semilocally contractible, so isGX , and it follows by [2],
Theorem 2.3. thatGX is actually locally equiconnected.

4. An application

We recall the following Theorem B of [5]. Let· · · → Z3
p3→ Z2

p2→ Z1 be an inverse
sequence of Hurewicz fibrations, where each spaceZn has the homotopy type of a CW
complex, and for allN , all but finitely many of the fibrationspn haveN -connected fibres
Then the inverse limitZ∞ has the homotopy type of a CW complex if and only if all b
finitely many of thepn are homotopy equivalences.

The authors of [5] have remarked in [6] that the proof of the above theorem (as
in [5]) has a gap, and that it is not clear whether the theorem is true. We give h
counterexample.

Lemma 4.1. Let d,n be natural numbers. There exists a finite CW pair (D,S) with D

contractible, S a Moore complex of type (Zd , n), and D/S a Moore complex of type
(Zd , n+ 1).

Proof. Form S as a sphereSn with a disk Bn+1 attached along a map of degreed ,
S = Bn+1 �d Sn. Let S ∪ Bn+1 denoteS with another disk attached along id :Sn → Sn.
If β represents the generator ofπn+1(S ∪ Bn+1), D may be constructed asD = Bn+2 �β
(S ∪Bn+1). ✷
Example 3. Letα :N→ P denote an increasing enumeration of the primes. LetY be a CW
complex withπn2(Y )= Zα(n) for all n � 2, andπk(Y )= 0 otherwise. Let(Dn+1, Sn) be
the CW pair from Lemma 4.1 for whichSn is a Moore complexM(Zα(n), n). For n � 2
defineLn = RP 2n ∨ (

∨n
i=2Di) ∨ Sn. ThenLn−1 = RP 2n−2 ∨ (

∨n−1
i=2 Di) ∨ Sn−1, and

this is a subcomplex ofLn in a natural way. Observe thatLn/Ln−1= (RP 2n/RP 2n−2)∨
(Dn/Sn−1)∨ Sn. It follows that

Hk(Ln,Ln−1)=
{

Z2, k = 2n− 1,

Zα(n−1) ⊕Zα(n), k = n,
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andHk(Ln,Ln−1)= 0 otherwise. Define

e
ap

l

d the
e
, note
maps

rex-

r. A) 44

6) 306–

ntable,
X =
∞⋃
n=2

Ln =RP∞ ∨
∞∨
n=2

Dn
retraction−−−−−−→	 RP∞.

SinceX 	RP∞, alsoYX 	 YRP∞ , which has the homotopy type ofY by Example 1.
We consider the restriction fibrationF = Fn ↪→ YLn → YLn−1. If we represent a

loop (Sk,∗)→ (F,∗) by the adjointSk × Ln → Y as in the proof of Lemma 2.7, th
obstructions forπk(F )= 0 (that is the obstructions for extending the adjoint loop to a m
Bk+1× Ln→ Y ) lie in the groupsHj−k(Ln,Ln−1;πj(Y )). Note that the only nontrivia
possibilities are

Hn
(
Ln,Ln−1;π(n−1)2(Y )

)∼= Zα(n−1),

Hn+1(Ln,Ln−1;π(n−1)2(Y )
)∼= Zα(n−1),

Hn
(
Ln,Ln−1;πn2(Y )

)∼= Zα(n),

Hn+1(Ln,Ln−1;πn2(Y )
)∼= Zα(n).

This shows thatπk(Fn) = 0 for k � (n − 1)2 − (n + 2) = n2 − 3n − 1. Hence· · · →
YL6 → YL5 → YL4 is an inverse system of fibrations between spaces of CW type, an
connectivity of the fibres increases to infinity. The limit spaceYX has the homotopy typ
of a CW complex, but none of the fibrations is a homotopy equivalence. To see this
that the fibreFn (over the constant map) is homeomorphic to the space of pointed
(Y,∗)(Ln/Ln−1,∗) = (Y,∗)((RP 2n/RP 2n−2)∨(Dn/Sn−1)∨Sn,∗). Hence(Y,∗)(Sn,∗) is dominated by
Fn. But

πn2−n
(
(Y,∗)(Sn,∗),const

)∼= [
Sn

2−n ∧ Sn,Y
]
∗ ∼= Zα(n),

by obstruction theory. ThereforeFn is not contractible, and this concludes the counte
ample.
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