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Ell(A) = (K0(A),K0(A)+, [1A],K1(A),T (A),ρ)

Theorem (Classification theorem)
Let A and B be separable, infinite-dimensional, unital, simple C∗-algebras
with finite nuclear dimension and which satisfy the UCT. Suppose there is an
isomorphism

ψ : Ell(A)→ Ell(B).

Then there is a ∗-isomorphism

Ψ : A→B,

which is unique up to approximate unitary equivalence and satisfies
Ell(Ψ) = ψ.
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Definition
A (right) Hilbert A-module is a right A-module E equipped with an A-valued
inner product such that E is complete in the norm ‖ξ‖E = ‖〈ξ,ξ〉E‖

1/2
A .

Definition
A C∗-correspondence over A is a right Hilbert A-module E equipped with a
structure map ϕE : A→ L(E).

Definition
A Hilbert A-bimodule is a right and left Hilbert A-module which satisfies the
compatibility condition

E 〈ξ,η〉 ·ζ = ξ 〈η,ζ〉E
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E = A is a C∗-correspondence over A:

〈a,b〉E = a∗b

ϕ : A→ L(E) given by a 7→ (b 7→ ab).

The left inner product E 〈a,b〉= ab∗ makes E into a Hilbert A-bimodule.
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Definition (Katsura, 2004)
Let A be a C∗-algebra and let E be a C∗-correspondence over A. The
Cuntz–Pimsner algebra of E over A, denoted O(E), is the C∗-algebra
generated by the universal covariant representation of E .
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Example
X - compact metric space
V = [V, p,X ] a vector bundle
• locally trivial: At every x there exists a neighbourhood U of x such that

V |U ∼=U×Cnx .

Definition
rank(V ) = n if p−1(x)∼= Cn for every x ∈ X .

Definition
continuous sections Γ(V ) := {continuous maps ξ : X → V : p(ξ(x)) = x}
• Γ(V ) is a right C(X)-module via

(ξ · f )(x) = ξ(x) f (x).

• use charts and a partition of unity on X to construct a C(X)-valued inner
product
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Theorem
E = Γ(V ) for V a complex line bundle over X .
α : X → X homeomorphism

Define

f ·ξ := ξ f ◦α f ∈C(X),ξ ∈ E ,

E 〈ξ,η〉 := 〈η,ξ〉E ◦α
−1

ξ,η ∈ E

to make E into a Hilbert C(X)-bimodule, which we denote by Γ(V ,α).

Definition
A correspondence E is full if span{〈ξ,η〉E : ξ,η ∈ E} is dense in A.

If E is a bimodule then we can talk about right full or left full depending on
which inner product we reference. In the above example, E is both left and
right full.
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If V is not a line bundle we can perform a similar construction but we get a
C∗-correspondence which is not a Hilbert bimodule.

X be a compact metric space
V = [V, p,X ] a vector bundle over X
α : X → X a homeomorphism.

Γ(V ,α) has the same right Hilbert C(X)-module structure as Γ(V )
and structure map ϕ : C(X)→K (Γ(V ,α)) defined by

ϕ( f )(ξ) = ξ f ◦α.
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Theorem (Serre–Swan)

Let X be a compact metric space and E be an algebraically finitely generated
projective right C(X)-module. Then there exists a vector bundle V = [V, p,X ]
such that E ∼= Γ(V ) as right C(X)-modules.

If V is a line bundle and E is a full C(X)-bimodule (as both a left and a right
module) then there exists a homeomorphism α : X → X such that
E = Γ(V ,α) (this is a result of Abadie and Exel).
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For V a trivial line bundle over X , O(Γ(V ,α))∼=C(X)oα Z.

For V a line bundle and α = id, O(Γ(V ))∼=C(X)oΓ(V )Z.
• example: quantum Heisenberg manifolds
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Separable, unital and infinite-dimensional follow easily from the construction.

Theorem (Katsura 2004)
O(E) is simple if and only if E is minimal and nonperiodic.

Theorem
O(Γ(V ,α)) is simple if and only if α is minimal.
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Theorem (Brown-Tikuisis-Zelenberg 2018)
Suppose A is separable and unital and E is a finitely generated projective
C∗-correspondence over A. If A has finite nuclear dimension and E has finite
Rokhlin dimension then O(E) has finite nuclear dimension.

Theorem
V = [V, p,X ] with dim(X)< ∞ and α : X → X aperiodic
O(Γ(V ,α)) has finite nuclear dimension.
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Theorem (Katsura 2004)
Suppose A is separable and nuclear and E is a separable
C∗-correspondence over A. If A and JE satisfy the UCT then so does O(E).

Theorem
O(Γ(V ,α)) satisfies the UCT.
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Theorem
Let C denote the class of C∗-algebras of the form O(Γ(V ,α)) for X an
infinite compact metric space with dim(X)< ∞, V = [V, p,X ] a vector
bundle, and α : X → X a minimal homeomorphism. The algebras in C are
classifiable.
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Theorem
Let E = Γ(V ,α) where V = [V, p,X ] is a vector bundle and α : X → X is a
homeomorphism. Then T (O(E)) 6=∅ if and only if V is a line bundle.

Theorem
Let X be an infinite compact metric space, V = [V, p,X ] a line bundle, and
α : X → X an aperiodic homeomorphism. Let E := Γ(V ,α).
Then there are affine homeomorphisms

T (O(E))∼= T (C(X)oα Z)∼= M1(X ,α),

where M1(X ,α) denotes the space of α-invariant Borel probability measures.
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Theorem
Let A= O(Γ(V ,α)) ∈ C .

1. If V is a line bundle, A is stably finite.

2. If V has (not necessarily constant) rank greater than one, A is purely
infinite.
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C(X)⊂ orbit-breaking subalgebras︸ ︷︷ ︸
B

⊂C(X)oα Z︸ ︷︷ ︸
A

unitary u ∈C(X)oα Z such that u f = f ◦α−1u
B :=C∗(C(X),C(X \Y )u) where Y is a closed subset of X which meets
every orbit at most once.
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If E is a C∗-correspondence and J is an ideal of A then

J E = span{a ·ξ : a ∈ J ,ξ ∈ E}

is a C∗-correspondence over A as well.

Consider E = Γ(V ,α) and EY =C0(X \Y )E .

Question: Is the subalgebra O(EY ) large in O(E)?
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Theorem
V = [V, p,X ] a line bundle, α : X → X minimal
Y ⊂ X be a non-empty closed subset meeting each α-orbit at most once and
such that for every N ∈ Z≥0 there exists an open set WN ⊃ Y for which
V |αn(WN) is trivial whenever −N ≤ n≤ N.

O(EY ) is a centrally large subalgebra of O(E).

Theorem
The orbit breaking algebras O(EY ) constructed above are classifiable.
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