Mise-en-scène	Cuntz-Pimsner algebras	C^* -correspondences over $C(X)$	Examples	Properties of $\Gamma(\mathcal{V}, \alpha)$	Large subalgebras
0	000	0000	0	000000	000

Cuntz-Pimsner algebras

arising from

C*-correpondences over commutative C*-algebras

Magdalena C. Georgescu

Joint work with Adamo, Archey, Forough, Jeong, Strung, Viola

Oct. 23, 2022

Mise-en-scène

*-correspondences over C(X)

Examples O Properties of $\Gamma(\mathcal{V}, o)$

Large subalgebras

 $\mathrm{Ell}(\mathfrak{A}) = (K_0(\mathfrak{A}), K_0(\mathfrak{A})_+, [1_{\mathfrak{A}}], K_1(\mathfrak{A}), T(\mathfrak{A}), \rho)$

Theorem (Classification theorem)

Let \mathfrak{A} and \mathfrak{B} be separable, infinite-dimensional, unital, simple C*-algebras with finite nuclear dimension and which satisfy the UCT. Suppose there is an isomorphism

 $\psi : Ell(\mathfrak{A}) \to Ell(\mathfrak{B}).$

Then there is a *-isomorphism

 $\Psi: \mathfrak{A} \to \mathfrak{B},$

which is unique up to approximate unitary equivalence and satisfies ${\rm Ell}(\Psi)=\psi.$

lise-en-scène	Cuntz-Pimsner algebras	C^* -correspondences over $C(X)$	Examples	Properties of $\Gamma(\mathcal{V}, \alpha)$	Large subalgebras
)	•00	0000	0	000000	000

Definition

A (right) Hilbert \mathfrak{A} -module is a right \mathfrak{A} -module \mathfrak{E} equipped with an \mathfrak{A} -valued inner product such that \mathfrak{E} is complete in the norm $\|\xi\|_{\mathfrak{E}} = \|\langle \xi, \xi \rangle_{\mathfrak{E}}\|_{\mathfrak{A}}^{1/2}$.

Definition

A C*-correspondence over \mathfrak{A} is a right Hilbert \mathfrak{A} -module \mathfrak{E} equipped with a structure map $\phi_{\mathfrak{E}}: \mathfrak{A} \to \mathcal{L}(\mathfrak{E}).$

Definition

A Hilbert $\mathfrak{A}\mbox{-bimodule}$ is a right and left Hilbert $\mathfrak{A}\mbox{-module}$ which satisfies the compatibility condition

$$_{E}\langle \xi,\eta
angle \cdot \zeta = \xi \langle \eta,\zeta
angle _{\mathcal{E}}$$

Mise-en-scène O	Cuntz-Pimsner algebras	C^* -correspondences over $C(X)$	Examples O	Properties of $\Gamma(\mathcal{V}, \alpha)$	Large subalgebras

 $\mathcal{E} = \mathfrak{A}$ is a C^{*}-correspondence over \mathfrak{A} :

$$\langle a,b \rangle_{\mathfrak{E}} = a^*b$$

 $\varphi: \mathfrak{A} \to \mathcal{L}(\mathfrak{E})$ given by $a \mapsto (b \mapsto ab).$

The left inner product ${}_{\mathcal{E}}\langle a,b\rangle = ab^*$ makes \mathcal{E} into a Hilbert \mathfrak{A} -bimodule.

Mise-en-scène	Cuntz-Pimsner algebras	C^* -correspondences over $C(X)$	Examples	Properties of $\Gamma(\mathcal{V}, \alpha)$	Large subalgebras
0	000	0000	0	000000	000

Definition (Katsura, 2004)

Let *A* be a C*-algebra and let \mathcal{E} be a C*-correspondence over \mathfrak{A} . The *Cuntz–Pimsner algebra of* \mathcal{E} *over* \mathfrak{A} , denoted $\mathcal{O}(\mathcal{E})$, is the C*-algebra generated by the universal covariant representation of \mathcal{E} .

en-scène	Cuntz-I
	000

 C^* -correspondences over C(X)

Examples O $\begin{array}{l} \text{Properties of } \Gamma(\mathcal{V},\\ \texttt{OOOOOO} \end{array} \\ \end{array}$

Large subalgebras

Example

X -compact metric space

 $\mathcal{V} = [V, p, X]$ a vector bundle

• locally trivial: At every *x* there exists a neighbourhood *U* of *x* such that $\mathcal{V}|_U \cong U \times \mathbb{C}^{n_x}$.

Definition

 $\operatorname{rank}(\mathcal{V}) = n \text{ if } p^{-1}(x) \cong \mathbb{C}^n \text{ for every } x \in X.$

Definition

continuous sections $\Gamma(\mathcal{V}) := \{ \text{continuous maps } \xi : X \to \mathcal{V} : p(\xi(x)) = x \}$

• $\Gamma(\mathcal{V})$ is a right C(X)-module via

$$(\xi \cdot f)(x) = \xi(x)f(x).$$

• use charts and a partition of unity on X to construct a C(X)-valued inner product

Mise-en-scène	Cuntz-Pimsner algebras	C^* -correspondences over $C(X)$	Examples	Properties of $\Gamma(\mathcal{V}, \alpha)$	Large subalgebras
0	000	0000	0	000000	000

 $\begin{aligned} \mathcal{E} &= \Gamma(\mathcal{V}) \text{ for } \mathcal{V} \text{ a complex } \frac{\text{line bundle}}{\text{line bundle}} \text{ over } X. \\ \alpha: X \to X \text{ homeomorphism} \end{aligned}$

Define

$$\begin{split} f \cdot \xi &:= \xi f \circ \alpha & f \in C(X), \xi \in \mathcal{E}, \\ {}_{\mathcal{E}} \langle \xi, \eta \rangle &:= \langle \eta, \xi \rangle_{\mathcal{E}} \circ \alpha^{-1} & \xi, \eta \in \mathcal{E} \end{split}$$

to make \mathfrak{E} into a Hilbert C(X)-bimodule, which we denote by $\Gamma(\mathcal{V}, \alpha)$.

Definition

A correspondence \mathcal{E} is full if span $\{\langle \xi, \eta \rangle_{\mathcal{E}} : \xi, \eta \in \mathcal{E}\}$ is dense in \mathfrak{A} .

If \mathcal{E} is a bimodule then we can talk about right full or left full depending on which inner product we reference. In the above example, \mathcal{E} is both left and right full.

Mise-en-scène	Cuntz-Pimsner algebras	C^* -correspondences over $C(X)$	Examples	Properties of $\Gamma(\mathcal{V}, \alpha)$	Large subalgebras
0	000	0000	0	000000	000

If \mathcal{V} is not a line bundle we can perform a similar construction but we get a C^{*}-correspondence which is not a Hilbert bimodule.

X be a compact metric space $\mathcal{V} = [V, p, X]$ a vector bundle over *X* $\alpha : X \to X$ a homeomorphism.

 $\Gamma(\mathcal{V}, \alpha)$ has the same right Hilbert C(X)-module structure as $\Gamma(\mathcal{V})$ and structure map $\varphi : C(X) \to \mathcal{K}(\Gamma(\mathcal{V}, \alpha))$ defined by

 $\varphi(f)(\xi) = \xi f \circ \alpha.$

Mise-en-scène O	Cuntz-Pimsner algebras	C^* -correspondences over $C(X)$ 000•	Examples O	Properties of $\Gamma(\mathcal{V}, \alpha)$	Large subalgebras

Theorem (Serre–Swan)

Let *X* be a compact metric space and \mathcal{E} be an algebraically finitely generated projective right C(X)-module. Then there exists a vector bundle $\mathcal{V} = [V, p, X]$ such that $\mathcal{E} \cong \Gamma(\mathcal{V})$ as right C(X)-modules.

If \mathcal{V} is a line bundle and \mathcal{E} is a full C(X)-bimodule (as both a left and a right module) then there exists a homeomorphism $\alpha : X \to X$ such that $\mathcal{E} = \Gamma(\mathcal{V}, \alpha)$ (this is a result of Abadie and Exel).

For \mathcal{V} a trivial line bundle over X, $\mathcal{O}(\Gamma(\mathcal{V}, \alpha)) \cong C(X) \rtimes_{\alpha} \mathbb{Z}$.

For \mathcal{V} a line bundle and $\alpha = id$, $\mathcal{O}(\Gamma(\mathcal{V})) \cong C(X) \rtimes_{\Gamma(\mathcal{V})} \mathbb{Z}$.

example: quantum Heisenberg manifolds

Mise-en-scène	Cuntz-Pimsner algebras	C^* -correspondences over $C(X)$	Examples	Properties of $\Gamma(\mathcal{V}, \alpha)$	Large subalgebras
0	000	0000	0	00000	000

Separable, unital and infinite-dimensional follow easily from the construction.

Theorem (Katsura 2004)

 $\mathcal{O}(\mathfrak{E})$ is simple if and only if \mathfrak{E} is minimal and nonperiodic.

Theorem

 $\mathcal{O}(\Gamma(\mathcal{V}, \alpha))$ is simple if and only if α is minimal.

Mise-en-scène	Cuntz-Pimsner algebras	C^* -correspondences over $C(X)$	Examples	Properties of $\Gamma(\mathcal{V}, \alpha)$	Large subalgebras
0	000	0000	0	00000	000

Theorem (Brown-Tikuisis-Zelenberg 2018)

Suppose \mathfrak{A} is separable and unital and \mathfrak{E} is a finitely generated projective C^* -correspondence over \mathfrak{A} . If \mathfrak{A} has finite nuclear dimension and \mathfrak{E} has finite Rokhlin dimension then $O(\mathfrak{E})$ has finite nuclear dimension.

Theorem

 $\mathcal{V} = [V, p, X]$ with $\dim(X) < \infty$ and $\alpha : X \to X$ aperiodic $\mathcal{O}(\Gamma(\mathcal{V}, \alpha))$ has finite nuclear dimension.

Mise-en-scène	Cuntz-Pimsner algebras	C^* -correspondences over $C(X)$	Examples	Properties of $\Gamma(\mathcal{V},\alpha)$	Large subalgebras
0	000	0000	0	00000	000

Theorem (Katsura 2004)

Suppose \mathfrak{A} is separable and nuclear and \mathfrak{E} is a separable C^* -correspondence over \mathfrak{A} . If \mathfrak{A} and $\mathcal{J}_{\mathfrak{E}}$ satisfy the UCT then so does $\mathcal{O}(\mathfrak{E})$.

Theorem

 $\mathcal{O}(\Gamma(\mathcal{V}, \alpha))$ satisfies the UCT.

Mise-en-scène O	Cuntz-Pimsner algebras	C^* -correspondences over $C(X)$	Examples O	Properties of $\Gamma(\mathcal{V}, \alpha)$ 000000	Large subalgebras

Let C denote the class of C^* -algebras of the form $O(\Gamma(\mathcal{V}, \alpha))$ for X an infinite compact metric space with $\dim(X) < \infty$, $\mathcal{V} = [V, p, X]$ a vector bundle, and $\alpha : X \to X$ a minimal homeomorphism. The algebras in C are classifiable.

Mise-en-scène	Cuntz-Pimsner algebras	C^* -correspondences over $C(X)$	Examples	Properties of $\Gamma(\mathcal{V}, \alpha)$	Large subalgebras
0	000	0000	0	000000	000

Let $\mathcal{E} = \Gamma(\mathcal{V}, \alpha)$ where $\mathcal{V} = [V, p, X]$ is a vector bundle and $\alpha : X \to X$ is a homeomorphism. Then $T(\mathcal{O}(\mathcal{E})) \neq \emptyset$ if and only if \mathcal{V} is a line bundle.

Theorem

Let *X* be an infinite compact metric space, $\mathcal{V} = [V, p, X]$ a line bundle, and $\alpha : X \to X$ an aperiodic homeomorphism. Let $\mathcal{E} := \Gamma(\mathcal{V}, \alpha)$. Then there are affine homeomorphisms

$$T(\mathcal{O}(\mathcal{E})) \cong T(C(X) \rtimes_{\alpha} \mathbb{Z}) \cong M^{1}(X, \alpha),$$

where $M^1(X, \alpha)$ denotes the space of α -invariant Borel probability measures.

Mise-en-scène O	Cuntz-Pimsner algebras	C^* -correspondences over $C(X)$ 0000	Examples O	Properties of $\Gamma(\mathcal{V}, \alpha)$	Large subalgebras

Let $\mathfrak{A}=\mathcal{O}(\Gamma(\mathscr{V},\alpha))\in\mathcal{C}.$

- 1. If $\mathcal V$ is a line bundle, $\mathfrak A$ is stably finite.
- 2. If $\mathcal V$ has (not necessarily constant) rank greater than one, $\mathfrak A$ is purely infinite.

Mise-en-scène O	Cuntz-Pimsner algebras	C^* -correspondences over $C(X)$	Examples O	Properties of $\Gamma(\Psi, \alpha)$ 000000	Large subalgebras ●○○

$$C(X) \subset \underbrace{\text{orbit-breaking subalgebras}}_{\mathfrak{B}} \subset \underbrace{C(X) \rtimes_{\alpha} \mathbb{Z}}_{\mathfrak{A}}$$

unitary $u \in C(X) \rtimes_{\alpha} \mathbb{Z}$ such that $uf = f \circ \alpha^{-1}u$ $\mathfrak{B} := C^*(C(X), C(X \setminus Y)u)$ where *Y* is a closed subset of *X* which meets every orbit at most once.

μ,

Mise-en-scène	Cuntz-Pimsner algebras	C^* -correspondences over $C(X)$	Examples	Properties of $\Gamma(\mathcal{V}, \alpha)$	Large subalgebras
O		0000	O	000000	O●O

If ${\mathcal E}$ is a C*-correspondence and ${\mathcal I}$ is an ideal of ${\mathfrak A}$ then

$$\mathcal{IE} = \overline{\mathsf{span}} \{ a \cdot \xi : a \in \mathcal{I}, \xi \in \mathcal{E} \}$$

is a C*-correspondence over \mathfrak{A} as well.

Consider $\mathcal{E} = \Gamma(\mathcal{V}, \alpha)$ and $\mathcal{E}_Y = C_0(X \setminus Y)\mathcal{E}$.

Question: Is the subalgebra $O(\mathcal{E}_Y)$ large in $O(\mathcal{E})$?

Mise-e					Large subalgebras
0	000	00	000	000000	

 $\mathcal{V} = [V, p, X]$ a line bundle, $\alpha : X \to X$ minimal $Y \subset X$ be a non-empty closed subset meeting each α -orbit at most once and such that for every $N \in \mathbb{Z}_{\geq 0}$ there exists an open set $W_N \supset Y$ for which $\mathcal{V}|_{\alpha^n(W_N)}$ is trivial whenever $-N \leq n \leq N$.

 $O(\mathcal{E}_Y)$ is a centrally large subalgebra of $O(\mathcal{E})$.

Theorem

The orbit breaking algebras $O(\mathcal{E}_Y)$ constructed above are classifiable.

* -correspondences over C(X

Examples O Properties of $\Gamma(\mathcal{V}, \alpha)$

Large subalgebras

M. S. Adamo, D. E. Archey, M. C. Georgescu, M. Forough, J. A. Jeong, K. R. Strung, and M. G. Viola.

 $\mathrm{C}^*\mbox{-algebras}$ associated to homeomorphisms twisted by vector bundles over finite dimensional spaces.

arXiv:2202.10311v1, 2022.

- D. E. Archey, J. Buck, and N. C. Phillips. Centrally large subalgebras and tracial Z absorption. *Int. Math. Res. Not. IMRN*, (6):1857–1877, 2018.
- N. P. Brown, A. Tikuisis, and A. M. Zelenberg. Rokhlin dimension for C*-correspondences. *Houston J. Math.*, 44(2):613–643, 2018.

T. Katsura.

On C*-algebras associated with C*-correspondences. *J. Funct. Anal.*, 217(2):366–401, 2004.

5

N. C. Phillips.

Large subalgebras.

arXiv preprint math.OA/1408.5546v1, 2014.