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1. INTRODUCTION

In this paper our main object is the study of relations between cardinal numbers
which are written in the form

a-(by, by,...)) or a—(b):Y or

0 ()-(5 5.)

Such relations were introduced in [3] and [1]. They are called I-relations, II-relations
and Ill-relations respectively, and they will be defined in 3.1, 3.2 and 3.3. In
sections 18 and 19 we shall introduce certain generalizations of these relations.
Our whole theory can be considered as having arisen out of the classical theorem
of RAMSEY [18]. The most natural and direct generalization of the question settled
by Ramsey’s theorem is the problem of deciding whether for a given positive integer
r and given cardinals a, by, b, ... the I-relation ¢ —~(by, b,, ...)" is true or false.
Although the I-relation was only introduced in 1952 several papers had already
appeared on such relations between 1933 and 1952. As far as we know the first
of these papers is due to W. SIERPINSKI [19] who proved that 2% —-(&,, 8,)%. Two
of the present authors have published several notes on such relations. All the results
found by us before the present paper are contained in [1] where there will also be
found references to previous papers by other writers except to those of G. KUREPA
of which we had no knowledge at that time. Independently of P. ERDGs and R. Rapo
and at about the same time KUREPA found several I-relations the most important
of which, deduced under the assumption of the generalized continuum hypothesis,
can be stated as follows:
R:(+2 _"(s‘ﬂ+ 1 a\\r.t+?.)2s
(8415, for r=1, a=0.

a+r

Furthermore, KUREPA proved independently but somewhat later than SiErPINSKI that

231_‘:’(&1*—1:\ xai—i)z-
For these results see [20].

In this paper our first major aim is to discuss as completely as possible the
relation I. Our most general results in this direction are stated in Theorems 1 and
II, and the remaining open questions are stated in Problems 1 and 2. If we disregard
cases when among the given cardinals there occur inaccessible numbers greater
than &,, and if we assume the General Continuum Hypothesis, then our results
are complete for r=2, and they are also complete for r=3 provided we restrict
ourselves to finitely many numbers b,. It seems that there are only two essentially



94 P. ERDOS, A, HAINAL AND R. RADO

different methods for obtaining positive partition formulae: those given in Lemma 1
(the ramification method) and those given in Lemma 3 (the canonization method).
The idea underlying Lemma | has of course been known for a long time but the
ramification method in its present form gives in some cases sharper and more general
results than have been known before. We shall not always quote in the text the
place where the previous weaker results appeared. Perhaps our most important
new method is that given in Lemma 3 of which there are bound to be many further
applications.

In Lemma 5 we state powerful new methods for constructing examples of
particular partitions which yield negative I-relations. The simplest special case of
these general constructions leads to a proof of

224 (84, 8y)?

which was the decisive step towards proving our general theorems. Throughout
most of our work we assume the General Continuum Hypothesis. In some cases
it will be obvious to the reader how the theorems should be formulated when this
hypothesis is not made but in other cases unmanageable complications would arise
if we were to abandon the continuum hypothesis.

In sections 17 we prove a negative result on Il-relations which is sharper than
that obtained in [4]. This result is perhaps not best possible but it is interesting on
account of its connection with the abstract measure problem for inaccessible car-
dinals described in section 8.

In sections 18—20 we consider problems which are in various ways related
to our original partition problem. Here we are very far from obtaining complete
results, and in some cases we are not even able to give a complete discussion of the
many open questions. The proofs and constructions of counter examples are similar
to those used in sections 1 —16 but the results show many new and interesting features
such as those present in Theorems 22 and 23.

Our second major aim is an investigation of the polarized partition relation
HI. Such relations were formally introduced in [3] but an earlier result of SiERr-
PINSKI [22] implicitly contains the formula

Ng No No

[m]'*(x. &1]'
In 3.3 we define a very general type of polarized relation but we in fact restrict
ourselves to relations of type (1). This severe restriction is probably not essential
and it is justified only because even in this special case our discussion is not complete.
Several important problems remain unsolved some of which, such as Problems 10
and 12, seem difficult and may require new methods. It may well be that new
phenomena arise with more general polarized partitions but we have not investigated
these.

PART 1
2. NOTATION AND DEFINITIONS
Unless the contrary is stated, Roman capitals denote sets, small Greek letters

as well as k. /. m.n denote ordinal numbers (ordinals), and small Roman letters
other than k, /, m, n, x, y. z denote cardinal numbers (cardinals). The sequence of
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infinite cardinals is 8. N;. Na..... and the corresponding initial ordinals are
Wy, Wy, W, .... We always put w=wm,. No distinction is made between finite
ordinals and the corresponding finite cardinals. We shall always assume that

F, 5=@.

For every =, the symbol x* denotes the order type obtained from the type 2 by
reversing all order relations.

Bold type letters A, F, ... are used to denote sets of sets or families of sets.
As usual, these last two notions differ in that in a family the multiplicity of occurrence
of any particular set is essential whereas this is not so in a set of sets. If A is a set
of ordinals and 4= @ then min 4 denotes the least element of A.

Set inclusion in the wide sense, union and intersection are denoted by

A—-B, A+B, AB
respectively, and the symbols

T(vEN)A,, M(EN)A,

denote union and intersection of any family of sets. Without fear of creating con-
fusion we use the same notation for sums and products of cardinals as for union
and intersection of sets. The symbol

Z'(VEN)A,

denotes the set X(ve N)A4, and, at the same time, expresses the fact that
AAd, =@ Tfor u, veEN; u=v.
We shall make use of the obliteration operator = whose effect on a well-ordered
sequence of elements is to remove that element above which it is placed. Thus

(1) L

denotes the sequence of type n whose vth term is x,. We use this notation even
in cases where an element x, has not been defined at all. The symbol

(2) Qg+t + ... +a,

denotes the sum of all cardinals @, for wich v=n. and other similar uses of the
operator " will be easily interpreted. We shall nearly always omit the customary
three dots ... to indicate a continuation of the symbols as indicated in front of them,
so that (1) and (2) are more simply written as v,.. X, and a, + +a, respectively.
If @(x) is a proposition involving the general element x of A then for Bc A4
the symbol
Bix: d(x)}

denotes the set of all x& B such that @(x) is true. In the formula for @®(x) we
may use the logical signs /A for “and™. 'V for “or”, = for “implies”, - x for “‘there
is x”, and Yx for “for all x™.

The cartesian product of sets A,., 4, is

n

AgX XA, = {(x,,%):v=nDx,64,} = {f: v=nf(v)€ A}
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If Ay, A, are pairwise disjoint sets each of which is ordered then the symbol
Ao+ +A,(tp)

denotes the set Ay -+ A, = 4 and, at the same time, indicates that A is ordered
by the rule that for x, y€A4 we have x<y if and only if

either (i) there is v=n with x,y64,, and x=y in 4,,
or (ii) there are p<=v<=n with x£A4, and ycA4,.

If xq., X,€A4, and if a binary relation x <y is defined on A then each of the
symbols
{355 Xiles %1 v}
denotes the set {x,.,, X,} and, in addition, expresses the fact that x, < x; for o < f <n.
The cardinal of 4 is ||, and if 4 is ordered then the order type of 4 is denoted
by tp A. If the same set A is ordered by several order relations R, then tp (4. R,)
denotes the order type of 4 under R,. If tp A =2 then we put || =|A4|. For any
A and B we put
A—B = A{x:x4B}.
If x=p then we put
[, B) = {v:a=v=<p}.

Every o has a unique representation o = wf+r. We put
g5 = wf+(r—s) if r=s,
wp if r=s.

Ordinals of the form y -1 are said to be of the first kind, all others of the second
kind. Ordinals of the form wf, where =1, are limit numbers, all others isolated.
If a=§, then we put
Ia+:t¢a{+l; a_:&ﬂ'—l'

If a=w then a* = a+1 and a~ =a=1.

If a=Y, then ¢ denotes throughout this paper the least cardinal b such that

a = ay++a,

for some suitable n, a, such that [n| =56 and a,,, @, =a. If a=§, then a'= R, = R0
where cf(x) is the cofinality function introduced by TAarskl. Whenever the notation
a’ is used it is tacitly assumed that a=§,.

The cardinal a is called weakly inaccessible if

g=H=q,
and it is strongly inaccessible if

a=a’, and b=a implies 2" =a.
These two notions will mainly be used when the General Continuum Hypothesis

3 2%»=n . for all v
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is assumed in which case strongly and weakly inaccessible cardinals form the same
class and will simply be referred to as inaccessible. The number ¥, is strongly
inaccessible, and no other inaccessible number is known.

We put

[S}F = {X: X SA|X|=al.
[SI<® = Z(b<=a)[S].
[S]7¢ = X(a=bh=|S[S].
P(S) = {X: X< S}
The following notation will be very useful. If /=P(S) then
1], = {|IX1: X= SA[X] 1}

Clearly, [/], depends on [ and » only and not on S. We shall use the notation

1]

[Sp. S,Jeandn = P(S, + + S,,}{X: (Yv)(v=n=|XS,|=a,!.
For any ¢ we denote by w(a) the initial ordinal whose cardinal is a. i.e. we put
w(a)=min (In| =a)n.

The statement of propositions in whose proof the General Continuum Hypothesis
(3) is assumed, will be prefixed by the symbol (% ). The same applies to problems
which are of interest only when (3) is assumed.

3. THE PARTITION RELATIONS I, 11, Il

3. 1. The ordinary partltmn relation (relation I). A partition of A is any sequence

(Ays, A,,] such that 4 = A, + + A We shall also use the version A =XZ(veN)A,.
The A, are the classes of the partltmn The partition is called disjoint if A=2"A,.
An r—pam’f:‘mz of A is, by definition. a partition of [A].

The power of a partition 4 =(A,.. A,) of 4 is the cardinal

4] = [{viv=nhrd,z D}

Thus a 1- p(ulilion oi‘ A is a sequence (/.. f:,) such that [4]' =ZI,. Then 4=XJ,
where J, = A{x: {x} €[} for v=n. When tl‘ICI‘L is no danger of a mlsundcrstdndmg

we shall Idn.lllify the partition (/.. f..) of [A]' with the partition (J,,. ,,) of A.
If 4 is a partition of 4. and if B A, then the statement

4]=1 in B

means, by definition, that B lies in some class of 4, and “|4| =1 in B” is the nega-
tion of this statement.

Trivial results in [1] show that there is no loss of generality in assuming that
in every partition the classes are indexed by a set of ordinals of the form [0, »).
Occasionally we shall employ a notation in which the classes of a partition are
indexed in some other way.

7 Acta Mathematica XVI/1—2
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We define the ordinary partition relation (I-relation)

(1) a (b .. f;,,}r (or:a—(h)-,)

as follows. The relation (1) expresses the fact that whenever
(2) |S|=a; [SY = Io+ +1,

then there are a number v—=n and a set X = S such that

|X| =86y XTIl
More simply. this means that (2) implies that
b, c[1), for some v-=n.

The logical negation of (1), and similarly for all partition relations to be introduced
later, 1s written as

(3) a-(hy,, 5,,)’ (or: a-+(b,); -,)
The relations (1) and (3) are only of interest if
rely n=2; r<by,, {_?,,‘éch

Here is a systematic discussion of the degenerate cases of (1) and (3). Define four
disjoint subsets of [0. n) whose union is [0, #):

Nyi= {ysr=b, =uj
Ni- = {vir=b,=%a)
N_i = {virz2b =a};
N__ = {virzb,z=a}.

Case |. N_, # @. Then (1) holds. For if (2) holds then we choose vEN_ .
Then r=Eb,=a, and we can choose X €[S]). Then [X] = @ =/, and (1) follows.

Case 2. N__.=@.

Case 2a. N, _ +N__# @. Then (3) holds. For if |S|=a then there is a parti-
tion (2) such that /.= @ for v§ N, _+ N__. Now suppose there are a number
v—=n and a set X¢[S]* such that [X]"=/,. Then b,=a; vEN, ., +N_, = N, ,:
@ #A[X]"=1,; ve N, _ + N__ which is a contradiction, Hence (1) is false.

Case 2b. N, _+N__ = @. Then r,=b,=a for v=n, and it follows that
this is the only case worth studying. Hence when discussing (1) or (3) we may if
we wish assume r=b,,, b, =a. We mention that even this last case can be further
reduced by omitting those b, for which b,=r. For we have the following simple
proposition: If m=n and by==5,=r, then the relations a—(b,,, b, and
a—(b,.. b,) are equivalent. If b,=5 for v=n we write (1) also in the form

(4) a—(b), or a-—(b);,
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where ¢ =|n|. This notation is justified since if all b, are equal to each other then
the truth of (1) does not depend on the ordinal number » but only on the value
of |nl. More generally, the relation

(5) a—=((bg)e,- (b))
has the following meaning. Let lngl=cq:|n|=¢,;
d, = b, for v=n,

b, for ng=v-—=n,+n,.
Then
a _’(dv)l\" <mp+mg
We may, of course. have more than two groups of equal entries in (5). Similar
remarks apply to (3).

RemarK. Concerning a further extension of the relation (1) to cover partitions
of [S] for e= R, it is proved in [3], p. 434, that every such analogue of (1) is false.

3. 2. Partition relations with multiple exponents (Il-relations). Let ry., 7\, a. b, ¢
be given cardinals. Then we say that the relation

(6) a—(b)"
holds if. whenever |S| =« and
[ST = Z(v=o())(r,v) (partition 4,)
for all r then there always exists a set X €[S]” such that
(4, =1 in [X]~* forevery A=/

We call (6) a Il-relation or. more explicitly. a I1 (rq,, r.)-relation. The 11 (ry)-relations
coincide with the ordinary I-relations. When studying (6) we may always suppose
if we wish that /= w and ro = =7,. If {s4., 5,,} = {ro.. 7;} then (6) implies a - ()" "™
In 5. 3 we shall see that if b=8, and sup (u~=m)s, =w then the converse impli-
cation holds so that for b=R, all relations (6) with fixed a, b. ¢ and arbitrary
g Fy with sup (L =1/)r, =w are equivalent. The relation (6) is only of interest if
¢c=2 and a=bh=rg., r;. In particular, (6) is false if a=b: ¢=0; /=0 and (6) is
true if @=h and b=r, for some 4=/ The logical negation of (6) is written as

a-(b)> ",

Another type of Il-relation, which we shall discuss in some more detail is
written as

a— (b
and expresses the following condition. Let |S|=a:
[ST = Z(v=w(c))I(r.v) (partition A,)
for every r. Then there always are a set X€[S]® and a number r, such that
[4,]=1 in [X] for r=vr,.

7*
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3. 3. Polarized partition relations (IlI-relations). Let s=2;r,..r,_; =1, and let
a, and b,, be cardinals. for ¢ =s:v-=n. Then the relation

Fa, Fiy, Fa—t
ap b,
a, by,
(-’;) ) a0 .l\
a1 bx-l.\' ven

is said to hold if the following condition is satisfied. Let
S,S. =@ for 6 =1=s. Let

S,|=a, for o =5, and

[Soss Sgmglomm=t = Io++1,.
Then there are always sets X, =S, for o =s and a number v =n such that
|X,| =b,, for o =5, and [Xg,, X;_ o -1,

The relation (7) is only of interest if
r,=bh

av

=a, for o<=s;v=n,

and we shall frequently when considering (7). assume these conditions to hold.
In the present paper we shall mainly consider the very special case

§=25 re=ri=1; n=2

which corresponds to the partitioning of even graphs into two subgraphs. We shall
however also investigate a generalization of this special case in a different direction
Let a. b, c,,d,, e, f, be cardinals, for v =n. Then the “‘relation with alternatives’

a e Nd !
(8} [b] i (e\‘.""(.f;-]\‘: "
is said to hold whenever the following statement is true. Let AB= @ ; |A| =a;
|B|=b; [A4, B]''"* = I+ +1,. Then there are always sets X —A4: Y—B and a
number v-n such that [X, Y]t =/ and cither (i) [X|=¢,; |Y| =¢, or (ii) |X|=
=d,: |Y|=f,. Tt is worth noting here that the alternatives for the sets X and Y
are not independent so that for instance the possibility |X|=c¢,: |Y|=/f, is not
permitted. The relation (8) is only of interest if

l=¢,;d,=a; 1=e,, f,=b for v=n,
and we shall frequently assume these inequalities,

REMARKS. 1. Theorems proved in sections 24 and 26 will show that alternatives
are essential for the investigation of even graphs. Clearly there is no need for
introducing more than two alternatives for each class.

2. It would of course be possible to define more general relations with alternati-
ves but then it would not be easy to determine the minimum number of alterna-
tives required for a complete discussion.
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3.If ¢,=d, and e, =/, for v=n then (8) is equivalent to
a e, !
()~ ().
4. If in (8) we have. for v=n,c,=c:d,=d;e,=e: f, =/, then we also write

(8) in the form
[ﬁ' " [c"'v’d]‘-!
b) \eVf)m®

5. On reflection it will become obvious that in studying any of the relations
I 11, HI there will be no loss of generality in assuming that all partitions involved
in the arguments are disjoint.

6. The left hand sides of all our partition relations will nearly always be assumed
to contain infinite cardinals only.

4. PRELIMINARIES ON PARTITION RELATIONS I, II, Il

4. 1. Invariance under permutations of the arguments. Let |m|=|n|, and let
v—7(v}) be a one-one map of [0, m) onto [0.n). Then the relations a —(b,); ., and
a—(by3)7 -, are equivalent, and similarly the relations

alv
ay (‘\-.'\‘:{'f\- Lt and ay (“lt[k'l.l\"l;dll[\'l. 4t
e \J,IJ{ . b h e \-'.’fl :
v Vv fven ; aiv) Yha(v) Jv=m
are equivalent. For the proof see [1]. Theorem 17.

4. 2. Monotonicity properties. We say that one of our relations is increasing
(decreasing) in one of its arguments if whenever the relation holds it continues
to hold when this particular argument is increased (decreased) while the remaining
arguments remain constant. It is easy to see that every one of our partition relations
I, I, I11 is increasing in every cardinal variable on the left hand side and decreasing
in every cardinal variable on the right hand side, with the exception of the “exponent”
r and a cardinal indicating the number of classes. For the proof see [1]. Theorem 12.

4.3. Substitution rules. (i) Let u—-(bo,.i;,,)"; n=1; by—(cp. ¢,). Then
@ —+(Cyss Cos Py .. b,). For the proof see [1], Theorem 16.

(i) Substitution in a relation with two alternatives may lead to a relation with
more than two alternatives. Thus it is easy to see that the three relations (in which
on the right only the first row is written out)

a) fagVay., a;Vas), an)__ agVas,ag\aq). ay) fagVag,dioNdyy
b BaM by vaema]® by ) b,

imply the new relation

and that in general nothing stronger than this can be asserted.
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5. FURTHER REMARKS ON PARTITIONS
5. 1. Product of partitions. Let A =1, and let, for each = =k, 4, be a partition

S=Z(v=n)A(v)
of S. Then the product

Ag.. 4, = H(x=<k)A,
denotes the partition
S =ZX(xz<kov,=n)B(vy.. v)
where
B(vg.. vy) = Iz =k)A(v,).
It follows that
(4. | =114,

Also, if every 4, is disjoint then I14, is disjoint. By convention, an empty product
of partitions of S is the partition which has only one class.

5.2. Induced partitions. Let A be a disjoint partition of S. Then the relation
Xp=x,(-4)

denotes, by definition, the fact that x,., x; €S and that x, and x, lie in the same
class of A. Let
T y-=R9

be a map from a set 7 into S. Then a partition 4" of T is defined by the rule
AN =4(/(y) for yeT

which, by definition, means that
Yo=3(-4")
if and only if
Yos Vi €T and f(yo) =f(y)(-4).

We call A" the partition of 7 induced by 4 and f. Clearly. |4°|=|4|. Frequently
the multiplication of a number of induced partitions is the effective tool for proving
results on partitions.

We now prove the assertion made in 3.2 about the equivalence of various
Il (rg., ¥))-relations.

5.3. Let )
a—-(B)>"": b=Ry: sup(A<Dr;=o.
Then )
G- (b}?, w“w

Proor. Let w(a)=n: S=[0.#): |[N|=c. and let

[S]" = Z(ve€N)I(r.v) (partition 4,)
for all r.
By the remark made in 3.2 we may assume that r,= <=7, Define the r-par-
tition A/ of S by

Ai({xgsn %, ) =As((xps £,.3) for ri=r<riyi, A=<o.
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Then obviously [4/|=¢. Hence, by hypothesis. there is XSS such that tpX=
=w(h) and
|47 l=1 in [X]+ for /=]

Now let s <w; {xXg. X} c- {10 Pile =X Then r; =/ and we can choose x;.. X, _,
o ¥, €EX such that xy = =x, and yo=-=1,,. Then
Vi Ve, 0 r Yo Y

(X0 X} = {Fon P t(-45)
and hence, by definition of A4/.
{X0s X2) = {¥o0 Ju} (-45)-

Hence |4;|=1 in [X]*. and the assertion follows,

6. THE RAMIFICATION LEMMA

We shall now describe a mode of reasoning which constitutes the core of many
arguments about partitions. It has been used. in one form or another, in a number
of papers already. In the rather more general form stated below it is a very powerful
tool for obtaining partition relations.

Lemma 1. Let o =90+ 1=0. Let S(vq..v,) and F(vy..7,) be sets and n(vy..v,)
be ordinals defined for ¢ = 9. Put
N ={(vgs. V):o=phr<o2v,=n(vge ) s SV, 7)) = SH(t=0)S(vgs v)

for a=p.
Suppose that

S'(Vo.e V) = Flvg., )+ Z(v, =0(vg.. V) S(vg.. v,)
Jor a=9: (vy., 7,)EN. Then we have:
(i) F(vo.. v ) F(vy..v,) = @ for t=6=0 and (v4.. 7,)€N.
(i) S =Z(6=0A(vgu VIEN)F(vo. 7,) + Z((vpas V) EN) S(vg.s V)

(ili) Let |S|=a=r, and |p| =d'; |F(vy.. v,) =a for (vg.. T,)€N.
\m

Suppose that there are cardinals ¢, such that ¢,
whenerer t=a -0 and (vy., v,)EN. Then

(n thereis (vo,, V,) €N with §'(vy,, 7,) # @.

'—« o=, and li1(vgs. ¥ =c,

(iv) Let |S|=b" =8y 0=0(b); n(vy.. 7)| =b and
|F(vy.. V) =8 for o=0 and (vy.. V,)EN. Let 22=b for ¢=bh.
Then (1) holds.

(v) Let |S|=a;lo|=a:|n(vy..v) =a and |F(vg.,v,) =a for o=p and
(vow v,) EN. Suppose that a is strongly inaccessible. Their (1) holds.

PROOF OF (1). F(vow 7.0 F(Vges 7,0 F(vg.. 7.) S (Vg ¥,) = F(vg., 7,) S(vg. v} = 3.
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PRrOOF OF (ii). Put Z(6 = 0/\(vy,, ¥,)EN) F(vo,,¥%,) = G; S—G = T. Foro =g
and (vo..v,)EN put S(vo.v,)—G = T(vy..v,). Then TIH(:=a)T(vy,,v,) =
= X((vy.. v,)EN)T(vy.. v,) for 6 =0; (vy..7,)€¢ N. Hence we have. for n=g =g
and (vy..v,) €N,

T(vou v,) TZ((Vguu ¥y AAEN)T(vo., ¥y, 2) = Mz =0) T(vg. v.) = T(vgas v,).
Now suppose that there is an element
XET—Z((vp.. V)EN) (0 <) T(vg., V).

Put N* = N{(vg..v,): 6 =0AxET(vg., v,)}. Then N* 3 &, Define a partial order
on N* by putting (v4..v,)=(vg.. v;) whenever t=¢. We want to apply Zorn’s
lemma to N*. Let / = /=1=0 and (vo(2)., v,,(A) = (vo(t0)s, v,, (1)) for A<pu<I.
Then 64, = =06,=0;w=sup(~L=/)o, =n=p, and there are numbers v,,, v, such
that v (4)=v, for 2=/ and e =a,. Then (vy.. v, )eN. Also, xcll(x=m)T(vy,. v.)
and hence. by definition of x. m=yg. Then

YeEMl(z=n)T(vy..v,) = Z(( Vose Vo) EN ) T(vy.s va).

and there is v, such that (vo.v)€N and x&€T(vy,.v,). Then (vy(4)., v, (1) =
= (vg.. v,) for 2=/ and hence the partial order on N* is inductive. Thus Zorn's
lemma applies and gives a maximal element (vy,.v,) in N*. Then x=p9: 2 +1=09:
X€T(vy,.vy) = D(f<0o+ 1T (vy, vg) = Z ((voss V44 1)EN)T(vgss Vyr1)s and there
is v,.y such that (vo.. v, )EN and x€T(vy,, v,4q). But then (vg,, v . )=
=(vy.. v,) which contradicts the maximality of (vy., v,). Hence there is no such
element v, and therefore

§—G = Z((vo.. V) EN) (6 < )(S(vo.. v,) — G).
This implies (ii).
Proor oF (iii). Let (1) be false. Then, by (ii),
(2) |S] = (o <o (vg.. V,)EN)|F(vg,, ¥,)I-
The number of terms of the sum in (2) is at most
Z(g<p)cl <a’,

by the regularity of a’. Hence. using the definition of ', we deduce from (2) that
|S|-=a which is the required contradiction.

PRroOF OF (iv). Put, in (iii). ¢ =b* and ¢, =b. Then the hypothesis of (iii) holds.
since, if ¢ =0, we have |o| =5 and hence

clid=blll=b<a = a'.

ProOOF OF (v). Let (1) be false. Then, again, (2) holds. Put N, = {(vg,, V,):
(vg.. ;) € N} for o = g. We prove by induction that |[N,| =a. Let T < g, and suppose
that |N,| =a for o =1. Then we have: If t =0, then [N |=1<=a. If t = n+1, then
IN| = Z((voss Vo) ENg)[n(vgy ¥)l<a. Now let 7 =1=1=0 and (vq,, ¥,)EN,.
Then (vy,.v,)EN, for o =1 and hence |N,| = II(oc =71)|N,| <a. Thus |N,|<a for
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o = o, and again (2) leads to the contradiction |S|<a. This proves (v) and completes
the proof of Lemma 1.

We call the system R of sets N, F(vy.. v,). S(vq,v,) a ramification system on
S of length o. If all n(vy.. v,) have the same value n we call n the order of the rami-
fication system. With every ramification system there is associated a tree whose
lowest branches. in the case of order 2, are shown in the following diagram:

Sg  OFf) Si6,1) A 1) Sit1)

SlooFio0 Slagn S0y Sory  Snegfite) Sty Siafiny Sty

In applications we shall always use the notation S’'(vq,. v,) as defined in the
lemma. and also N, as defined in the proof of (v). We shall construct R inductively.
Assuming that S'(v,.. v,) has already been defined for some fixed a, v,.. v, we shall
define n(vy.. v,). F(vg.. ) S(vg.. v,).

7. POSITIVE THEOREMS FOR I-RELATIONS IN THE CASE a=R,,,;r=2

THEOREM 1. Let a —~(ay..a,)*: b ﬂ(bo,.!;k}‘; hb=Ry: a.bt=c = ¢, and
suppose that (a~ k) =c for all d=hb. Then

¢~ (dgss - by, i’x):-
(%) COROLLARY 1. N,y (8,11 (NDL)? for 2203 (k| = ..

Deduction of the Corollary from the Theorem. Put m=1; a=da5=",41;
b=by==b=8,. ¢=8,.,. Then the hypothesis of Theorem 1 holds, and the
Corollary follows.

Proor oF THEOREM |. Let |S|=¢,
[SP = Z(u=mK,+Z(x=k)L,.
We may assume that
(1) if S"€[S]e then [SPTZ(n=m)K,.

We have to find a number » =k and a set S”— S such that [S"]*< L, and |S"|=b,.
We define inductively a ramification system R on S of length o =w(b) and
order n=w(a" k). By (1), a=2. Let ¢ = 0. and let S’(vy.. ¥,) be defined for some
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Vs 1"0. We write v in place of v,..7,. Choose as F(v) a maximal subset of S'(v)
such that

[FOP= K, + +K,,.
Then. by (1). |F(v)| =a. and by the maximality of F(v) we have
S'(v)—F(¥) = Z(v,<n)S(v.v,)
where, for each v, = n, either S(v. v,) = @ or. for some y(v. v,) € F(v)and 2 (v. v,) =k,

we have

(2) S(v, ) = (S'()—FWMx: {p(v, v x} €L 5000
Here we have used the fact that the number of pairs (y. ») with y¢ F(v) and » =k
does not exceed a k| = |nl.

This defines R. Now Lemma | (iii} applics. For: |S|=c¢ is regular: [p| = b—c.
If ¢ =0, then

[njlel = (a~|k])l*! = ¢
since || =bh. Hence by Lemma [ (iii) there are numbers v,,, 7, =n '-",uch thal
S'(vg.. 7,) # @. Then (2) holds for ¢ = ¢. Put x,=p(vy..v,) for 6= g. If o - =
then
X, = ¥(¥pw V) EF(vy, = 8V o V) S i V)
{.\’,,. ,\"‘,J = L,' Vo ¥ar)®

Put M, =[0, 0){o: %(vy..v,) =%} for »=k. Then [0, 0) = M,+ + M,, and by
b—(b.).x there is 2 <k such that |M_ | =bh,. Put 8" = {x,:¢¢ M,}. Then |S"| =b,:
[S”)2= L.. and Theorem ! follows.

RemArK. The method used in the proof of Theorem | actually yields a result
of a more general type: see Theorem 39 in section 22. We have described here the
proof for this special case in order to prepare the complete discussion of relation 1
without applying results on polarized partitions.

(%) Turorem 2. If c=d', then a* —~(ua)?.
PrOOF. Let |S|=a*;[S]> = Iy+ +1,; n=wm(c). We define a ramification
system R on S of length ¢ =w(a) and order n. Let ¢ -9, and let S'(v,..1,) be

defined. Again, instead of v,., v, we write v. If S'(v) = & then put F(v)=S(v. v,) =&
for v, =n. Now let §'(v) # @. Choose x(v)& S'(v) and put F(v)={x(v)].
S(v,v,) = (S(V)— F){y: {x(v). ¥} €1, } for v, =n.

T

This defines R. Lemma | (iii) applies. For 'S|=a* is regular; |0 = a=a™*:
[F(v)|=1=a", and if ¢ =g then

|.’I.|”1 = ¢lol =gt

Hence there are numbers v,., v, =n with S'(vq..7,) = @. Then F(vy., 1,)=1{x,};
N, =x(vg..1,) for ¢ =g. Il ¢ =1=¢p then, by definition of S(v,..v,).

{x} = Flvos v)E 8 (Vo PICTS(vpw v.)s s X} €1,

a
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If M,=[0,0){6:v,=x} for z=n. then [0.0) = M,+ + M,. and since |n] =
= ¢=a’ = |p|’, there is % —n such that |M |=|g|=«a. Put §"={x,:0¢M_,. Then
IS"| =a; [S")*=1,. and Theorem 2 follows,

RemMARK. If @ is regular then the conclusion of Theorem 2 follows from
Corollary 1.

8. FURTHER POSITIVE THEOREMS FOR I-RELATIONS.
REMARKS AND PROBLEMS FOR THE CASE OF
INACCESSIBLE CARDINALS

8. 1. (%) Lemma 2 (the stepping-up lemma). Let r=1:a=8:a—-(b).,.
Then
(l) f.” _'(bv 4' I]‘\:rlu

Proor. We may assume that r=b,.. f)m =a,
Case 1. m=wm(a). Then there is a partition
[S} = Ly++L,. where |S|=a.
such that [L,|=1 for v =n. Then, by hypothesis, there are v=m and Y€ [S]™ such
that [¥]"c L,. Then [[Y]|=IL,/=1; b,=r, which is a contradiction.

Case 2. m = w(a). Then (1) follows by [1]. Theorem 39 (ii). For the convenience
of the reader we briefly describe the proof.
Let |[S|=a*, and

[S]P+Y = I, + "1, (partition A).

We define inductively a ramification system R on S of length ¢ — w(«a). Let o = p.
and let S'(vy.. 7,) be defined. Write v in place of v,.. 7., for some fixed numbers
Voo Voo I S'(v)=@, put F(v)=@ and n(v)=0. Now let S'(v)= . Choose
F(v)={x(v)} = S’(v) and put

A(y) = N(XE[Z(t=0a) F(vq.. *JI) A(X + {¥})
for ye S(v)— F(v). Put n(v)=w(|4,]). Then
S'(v)— F(v) = Z(v, =n(v)) S(v. v,).
where [4,]=1 on each S(v,v,). This defines R. Now Lemma | (iii) applies. For
we have, for 1—=a.

1(vos B = A let 1 = ¢, =a; |n(vy.. V)| =¢,.

Also, (_!I,al =a=a*; |S|=a*=a*"; lp|=a: |F(v)]=1=a*. Hence, by Lemma 1

(iii), there is (v4..7,)€N such that S’(vo., 7,) # @. Choose x,€8(vq..7,). Then
we can write F(vy., 7,)={x,] for o =p. and we have {x,.,x,].=S. Now

A(3) = T(XE[{xon x, 1) A(X +1{1}) for yeS(M)—{x,}.
for o =9. By definition of S(v. v,).

{y -l = [y - ] I
'l‘\ﬂn“ -\a,.l = = I-\nl,""\rr,.' -\-_,: ( ‘d]
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for ¢y=-=0.<=0. We have [[0,9)]" = K, + + K:,,,, where K, = [[0, o)) {X: X+
+1x,} €1,; for p=m. Since |g| = a ~(b,),- . there are y and M such that g =m;
M=0.0): IM|=b,: [MI"=K,. Put Q={x,: 66 M}+{x,}. Then

QcSs; |0 =b,+1; [OT*'c],
and (1) follows. This proves Lemma 2.
(#) THEOREM 3. If 2=0: c=R;; r=2, then
Raxr—iy~(Ra i (82"
() THEOREM 4. If 2=0: c =R} r=1, then R, —1,—~(R,).

Proors. Theorem 4 is trivial for r=1. Both. Theorem 3 and Theorem 4 are
true for r=2. by Corollary 1 and Theorem 2 respectively. For general r=2 both
theorems follow from Lemma 2 by induction over r.

(%) COROLLARY 2. If 8, is regular; ¢=8,:r=2. then
Notr—1) _'(Nzi- () (&z)r)r'

Remark. For regular 8, Theorem 4 follows from Theorem 3.
We shall need the well known

THEOREM OF RAMSEY [18]. (i) For ¢ =Rq and r=1. 8q—(8o)..
(it) For b, c,r—=x, there is R(b, ¢, r) =Ry such that

R(b, e, r)—(b).
(%) THEOREM 5. Let a be inaccessible; m=w(a); by.. 3,,, —a. Then
a-~(a, by.. 5,,,']2.
The case m = of this theorem is [1], Theorem 8.
ProoF. Let ’
|S|=a; [S]?P = L+Ly++L,; at[L),.

We define a ramification system R on S of length o = w((by -+ + 5,,,)*). We note
that

2) ol = (bo s )"

Let ¢ =g, and let S'(v,., 7,) = S’(v) be defined. We take as F(v) a maximal subset

of §°(v) such that [F(v)]>— L. Since a§ [L], we have |F(v)| =a. Then there are a
number zn(v). elements x(v, v,) of F(v) and numbers u(v,v,)=m such that

S'(v)—F(v) = Z(v,<n() S, v,),

where {x. x(v,v,)} €L, , for v, =n(v); x€ S(v, v,). This follows from the maxi-
mality of F(v). We can make

() = |F(v)|-|m| =a.
This defines R. Lemma 1 (iv) applies and yields (v, v,) € N such that §'(v,., 7,) # @&.
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Then n(vq,. v,)=1 for 6 =g, and there exists x,=x(v,..v,) for a=9. Then
{-\‘:" Xy} ELy(\-..v.'r for t=0=o.
[0, 0) = Ko+ +K,.
where K,={t:t<=p/Apu(vy,.v)=pn} for yu=m. By (2) there are M [0, ¢) and
p<m such that |M|=b, and M—K,. Put X={x,:0¢M}. Then |X|=b, and
[X]? = L, which proves Theorem 5.

8. 2. The following remarks are relevant in connection with the discussion of
partition relations involving inaccessible cardinals.

We want to consider the following propositions involving a cardinal ¢ = R,

A: If a is strongly inaccessible, then a-+(a)> ™.

B: If a is strongly inaccessible. then a—(8,)5 "

P,,P,, P;. Q: These are defined in [24].

T: a+(a, 4)°.

The following diagram shows implication relations known to hold between
these propositions together with the corresponding references:

To Lema / a [g4] of
'\'}b\
26 o 124] 1231
\r
R G R G R
B P A

Furthermore, (i) if Py=>Q, then Q holds for all a [28]; (i1) if Godel’s constructa-
bility axiom is assumed then P, holds for all @ [27]. (iii)) Q holds for a very wide
class of strongly inaccessible cardinals [5].

By (iii) a-+(a,a). a+(a.4)° and a-+(a);¥ hold for many inacess-
ible cardinals.

The following problems remain open.

PROBLEM (A) Is it true that a-+-(a,a)?. a+(a.4)* or a-~(a);¥ hold for
every strongly inaccessible cardinal?

(B) Is there any strongly inaccessible cardinal for which a-=(io);"
holds?
Added in proof (23.111. 1965.). For a more detailed discussion of the re-
cent results concerning Q, P;. P,, Py see [30].
It has been recently proved by F. RowsoTToM that Gddel's constructibility
axiom implies that a-+(8;);% holds for every cardinal a.
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9. CANONICAL PARTITIONS., CANONIZATION LEMMA

9. 1. DErNITION. Let A be a disjoint partition of [S]". and let Z'(v=n) S, = S.
Then A is called canonical in (Sq.. S,) if for X, YE[S,+ + S,]" the relations

|IXS,| = |¥YS,| for v<n
imply
X=VY(-A).

We remark here that this notion of canonicity differs from that used in [1].
There we were considering ordinal canonicity whereas here we have cardinal cano-
nicity.

9.2. (=) Lemma 3 (Canonization lemma). Let |S|=a=da'; o=w(ad’); r=1:
ay~ <=a,~a = sup (o =0)a,. and let A be a disjoint partition of [S] such that
A =a. Then there are sets S, such that |S, =a, for ¢ =9 and £{(c =) S, S.
and A is canonical in (S,.. S.). If we are, in addition. given any represeniation

S=ZXc=0)S.

such that |S;| =a for =g, then we can stipulate thar, in addition, S, =S, for
/= 0. where g(0)= =a(p) = 0.
ProoF. Put
R={(rg..75.0):r0uF. =l Nro++r, =rht<=s}.

Let (rg.. ry. 7)€ R. We say that 4 is (ry.. #,. t)-canonical in (Ag,. Aﬁ,_,) if the following
conditions hold: X'(g =0) A4, = S: |A,| =a, for 6 =p. Whenever X, Ye[Ay++A4,)
and

XA, =X,: YA, =Y,: |X,|=|Y, for o=op,

-, &

0: Xo = @) = {00 04<; | Xo,|=r (A<8);

s o\ »
X =Y, for ¢#a,,

then X = ¥(-4). Our aim is to find sets Sy., .§ such that 4 is (ry., F,, t) — canonical
in (S,.. S_J for every (rg,,r,.t) of R simultaneously.

Let (rg.. 1. 2)€ R, and let A be (ry,, F,, t)-canonical in a fixed system (A,., A;}
for every usuch that r =u <s. Thisis for instance trueif f = s—land X' (e =) A4, = S
|A,|=a, for ¢ =o. It suffices to deduce that there are numbers 4, and sets B, such

that A, = = ;,, <p and B,= A, for ¢ =g, and 4 is (ry.. F,. )-canonical in (By., fj‘:,).
For, the passage from (4,., 4,) to (B,., B,) does not destroy any canonicity 4
may have possessed in (A4,,, 4,), and a finite number* of steps as described above

starting with the sets S5., S,, leads to the required system (S;.. S,).

We well-order the set [S]<* and denote, for s=w; X< §;|X|=s, by n(X,s)
the first element of [X]*. We now define /, and B, by simultaneous induction. Let
t=p, and let 4,, B, be defined for ¢ =1, and suppose that /, =g and B, €[4; ]*

* In fact, Rl =(r+1)2""%
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for ¢ = 1. We define 4, and B, as follows. There is /.= ¢ such that 7, =/, for g =1.
This follows from |¢|'=|p|. Put

;%) = M(PEW;,+ + A, Jor Al <, < <5, <0)

a0

AP+ X+n(A, .r)++7(A,.r)) for Xe[A4, ]
Then

|4, = 1A [l@so+ #5070 @=L _ p g

where b, is independent of the choice of A.. We have a,+b, =8, =a for some
2 = fi+1. By Theorem 4.

&
R,4_[,.r_;}""(l\‘u]h1.

and 8,4, -1 =« We can choose 4, so that, in addition, ¢; =8,.,,_,,. Then we
shall have

”}., = (”r}T.{U.J ?
and therefore there is a set B.€[A4,]" such that
[4;, /=1 in [B]"

This completes the definition of 4, and B, for ¢ =p. We have J, = = ), =g and
B, €[4, J* for 6 =0. We now show that 4 is (rg., 7. )-canonical in (By,, B,).
Let
X, Yc[B,++BY: XB,=X,: YB,=Y, for 6=g;

Vo« ¢ Y 6 e .
'IJ‘XH”'LESJ = 100 O'x}(_
Xo,l=r; for 2=5, and X, =Y, for o Z0,.

Then we have, in view of the (ry., F,, u)-canonicity for every u in the range ¢ <u =s,
the relation 3
X =X, ++X, = X'(-4),
where
X' = Koot +Xo, + 74, s 1)+ +7(A;, o 1)

By definition of 4; and B, we have X'=X"(-4), where
X" = XKoo+ + X, + Y, +7(A;, 1)+ + R(A;, s o)
Finally, again by the (rg.. r,, u)-canonicity for r=u—=s,
X=X, 44X, +Y, + Y, ++ Y. = ¥(:4).

This completes the proof of Lemma 3. We note that the final clause of the lemma
is also proved by our construction.

9.3. (%) Lemma 3A (polarized canonization lemma). Let a=a'; AB=
[Al=|B|=a; ¢=w(d); ay<<=a,<a = sup (6 < ¢)a,;

[4, B = Io+1,.
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Then there are sets A,. B, and numbers h(o, 1) =2 such that
YN(e=p)A,cA: Z(e=0)B, =
|Aql =18, =a, for a=g;
[Ay. B = Ly for 0.7 =0.
PROOF. Let w(a)=n; A=1{x5.. X} »: B={¥g, Puts: S=]0, n).. Then [S]? =
=ZX'(». A =2)I(x, A), where
I A) = {1, v} <2 {x0 1) € LA {2y, 3, ) €L} for 2, A<2.

By Lemma 3 there are sets S, and numbers /hy(a. 1), h,(6.7)<=2 such that
So++S(tp)=S: |S,|=a, for 6 =0;

[S,, St I(ho(a, ). hy(a. 1)) for e =t =p.

Put A,={x,: p€S;,}: B,={y,:vE€S,,.,) for a<g. Then |4,=a,,=a,; |B,|=
=ly,4,=a, for =9
AA,=B.B.= @ for a=1=0.

Now let 0,1 =p: x FA,,, y,eB,.. Then u£8,,; vES,. .. If e =1, then 26 =21+ 1;
{n. v}<E[‘§2,, Szr”] “_I(_hﬂ(Zcr 2r+1). & (26, 2T+ 1));

f e yle
s Vod €dyoi2e. 20+ 1)

If 6=>1, then 214+ 1 =20; {v, u) . €[Sa, 41, Sa,l 1= I(ho(27 + 1. 26). hy (2T + 1, 20)):
{\;1 .}\I !ﬂ' (f2r+1.2a)

Hence the assertion holds if we put

Iho(Zcr. 2t+1) if =1

kg, )= lf:1(2r+1.26} if o=t

ReMARK. There are. of course. more general versions of polarized canonization
procedures.

9. 2. Super-canonicity. DEFINITION. Let 4 be a disjoint r-partition of S, and let
Z'(ven)S,— S. Then A is called super-canonical in (S,., S) if the following con-
dition holds. Whenever

Ld

X. Y'T_.[SO_‘_-'_SuIr: Lu.XSJI*@} - {'tto"ﬁsl-{:

W YS,# @} = {vous ¥} <3 |XS, | = |YS, | for g<s,

then X=Y(-4). It follows that every super canonical partition is Canonical. It 1s
easy to prove by mductlon over r, that the number of systems (r,.. F,) such that
FowPs=1; ro4+F, = ris 27=1. It follows that if r=1 and 4 is super—canonlml
then [4] ~2" ‘
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LeMMA 3B ( Super-canonization lemma). Let |S|=a=a'im=w(a’) = n. Suppose
that either (1) a’=Rq, or (i) «'= Ry, and a’ is measurable*. Let r=1 and
ST = Io+'+'I, (partition 4).
Then there are sets S, and cardinals a, such that
ay=-=a,=a = sup (v=n)a,;
Fv=n)S,=8; |S|=a, for v=n;
|Z(v=n)S,|=a,

and A is super-canonical in (S,., f,,}.

ProoF. There is only one step where the proof in case (ii) differs from that
in case (i).

By Lemma 3, there is a set

B=73'(v=nB,=S

such that 4 is canonical in (By.. B,); |B,| =b, for v<n: by<== b,<a = sup (v=<mn)b,.
Now there is a partition

) [0, mI" = X" (A<D)J;,

where /=w, such that two elements {yg.. [t} <, {vgs v,} < of [[0, n)]" belong to
the same class J; if and only if, whenever

Xel[Z(e=r)B,I; Ye[Z(e=r)B, ],

and |[XB, |=|YB, | for g =r, then X and Y lie in the same class /,. We now apply
to the partition (1) the relation

a—~(a')}.
In case (i) this relation is Ramsey’s theorem, and in case (ii) it follows from [4],

Theorem 9. We obtain a set {o,..06,}.[0,n) and a number A=/ such that

[{oo. ,}]" =J;. Then 4 is super-canonical in (B, B:,"), and the assertion holds

0
if we put SPZBW for v=n.

10. POSITIVE I-RELATIONS IN THE CASE r=2;a=d

10. 1. (%) LemMa 4, Let a=R,, and let bg,,!;,,, be any cardinals. Then the
relations

fE G "
a-* (“‘ bo En) bm)z . a —-—{ﬂ' s bo . bm}z
are equivalent.

* i.e. that a’ does not possess the property Ps; of [24]. In fact, the weaker condition
a'~(a’, a’)" already suffices. After recent results discussed in 8. 2 the existence of such cardinals,
other than %o, has been rendered unlikely.

8 Acta Mathematica XVI/1 -2
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ProoF. The case ¢ =a’ is trivial. Now let a=ga’. The case when b, <2 is trivial.
Now let by, b,,=2, and put n=w(a).

1. Let @ —~(a’, bg., b,)?. Then m=a’, and b,., b,,=a’. Let |S|=a and [S]* =
= I+'Z(u=m)l, (partition 4). Assume that b,4[I], for p=m. By Lemma 3
there are sets S, such that a'=|S,|=|S,| <a for v=4i-=n;

Zv<nS,c8; |So++8| =a

and 4 is canonical in (S,, S,). If p=m: v=n: [S,J?<1,, then [S,|<=b, whereas
in fact |S,| =a’=b,. This contradiction shows that [S, ]"‘Ifor v=n. Choose S’ 8

such that |S’S, !-1 for v=n. Then |S’| = a'—(a’, by.. b,..) , and we have at least
one of the followmg cases.

Case 1. There are a number u=m and a set S"<[S']"» such that

[§"PPci,
This contradicts b, ¢ [1,],.

Case 2. There is S"<[S ]" such that [S”]*c 1. Put
S”=X(S"S,# @)S,.
Then |S”|=a; [S’”]Zf:nf. This proves a—(a, by., b,)?.
2. Let a—(a., by,, b,)?;
[[0.m]? = J+'Z"(u=m)J,.
Let S=ZX2'(v=n)S, and [S,|=|S|=a for v=n. Then

[SP=T+"Z(u=m),,
where
I, = Z({a, B} < €J)IS,, Sg)*! for p<m.
Then |S|—(a. by.. 5,,,']2, and we have at least one of the cases:

Case 1. There is S” € [S]* with [S"]?c L. Put N = {v: S'S,# @}. Then |N|=a’;
[NRcJ.

Case 2. There are a number u<=m and a set " €[S with [S']c /,. Define
N as in case 1. Then [S'S,|=1 for v=n; |[N|=|S’|=b,: [N]*J,. This proves
a —(a', by, b,)* and completes the proof of Lemma 4.

10. 2. (#) THEOREM 6. Let a=a" = b*; ¢=da'. Then

a—(a., (b))
Proor. By Corollary 1, a'—~(a’, (b’),)?, and the assertion follows from Lemma 4.
(%) CorOLLARY 3. Let a=cf(x) = f+1 and c=xy. Then
Nat(r-2) "'[xa" (x;}r)r Jor r=2.

This follows from Theorem 6 and Lemma 2.
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11. THE SETS OF VECTORS USED AS COUNTER EXAMPLES
11.1. The vector discrepancy. For any two distinct “vectors” x = (xg. Xn);
¥y={(Vg, ¥,) of the same “length” n we define the discrepancy d(x,y) by putting
o(x,y) = min (x,#y,)v.

When no confusion can arise we shall instead of d(x, y) write more simply xy.
If r=3, and x,., x,_; are vectors of the same length, x,#x,., for p+1=r, then
we put

0(Xgss X,—1) =(XoX1 . X1 X5, X, 2X,_1)5 ' (Xg,, X,—1) :{xg:x9+1 g=r— 1}-

Thus 6(x,,, x,_;) is a vector of length r—1, and & (x,,, X,_,) is a set of ordinals.
Every set X of vectors of the same length whose components x,, y, are ordinals
will be ordered lexicographically by putting

x<y whenever x,,<y,;.
By tp(X) we always mean tp (X, <).
11. 2. The set ¥(x). We put
V() = {(x53 Xt X6 Kooy =<2}
If (%) is assumed then |[V(z) =28=§8,,,.

11. 3. The set V'(x). Let o= cf () and @, =n. For every such o for which we
shall want to consider the set ¥’(x) we shall choose, without mentioning this ex-
plicitly, a fixed sequence ,,, &, such that

cf (v) =0y =<, <a = sup (v=n)a,.
We put ¥'(x) = {(xo,, %,): (Vv) v <nDx,<w,)}. Then V(cf (x)) = V(). The set
V'(x) is only defined if o =cf (x). If (%) is assumed then

Re = IR, <ITR, =x"

so that [V'(o)| =118, =N, 4.

=Nz+1

11. 4. SIERPINSKI partitions. Let (V(2). <) and (V’(2), <) be well-orders
of the sets V(x) and V’(x) respectively, of types o (|V(x)]) and o(| V'(2)|) respectively.
We define the SIERPINSKI partitions

Ag: [V()]? = Ty+'Ty,

A V@) = Ty+'T;

To = [V(@P{{x. y}<: x <y},
To = [V(@P{{x, y}<: x<"p}.

by putting

11. 5. We shall need the following well known facts.
(%) (i) If X = V(2), and either tp X =0 or tp X =0c*, then |[X|=\,.

B*
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(%) (i) If X V'(2) and tp X =0, then |[X|=N8,: if X V'(2) and tp X =¢*,
then |X|=N8:. The results (i) and (ii) can be briefly expressed by
Wat1, Wis1 25 P (V(X); Oasg1. OF @41 = tp (V(2).

We shall make frequent use, without reference, of the following simple pro-
positions.

11. 6. (i) Let either {x,y,z},cV(x) or {x,y,z}.<V'(2). Then xz=
=min (xy, yz), and here is equality if xy=yz.
(ii) If {x, y,z} . V(x), then xy#yz and xz=min (xy, yz).
PrROOF. Put x=(x,., X,), and similarly for y,z. Here n=w, or n=wgy,.
ProOF OF (i). If v=xy, yz, then x,=y,=z,. Hence xz=min (xy, yz). If xy =

=vo=yz, then x,, #¥,,=Zz,; ¥X2=vo=min (xy, yz). If xy=v;=ypz, then x,
=y, #Z,,; Xz2=vy; =min (xy, yz).

PrOOF OF (ii). If xy=yz=v,, then 0=x, <y, =z, <2 which is impossible.
Hence xy#yz and, by (i), xz=min (xy, yz).

12. COUNTER EXAMPLES FOR r=2

(#) THEOREM 7. a* +(a*,a’*)? for a=R,.

This follows from [1] Theorem 7 (ii) which states: If a = 8, and b = min (¢* =a)c,
then a®+(a*, b*)2. For if () is assumed then b =a’ and a’ =a*. For convenience
here is the proof. Let a=4§,.

Case 1. a=d'. Consider the partition 45 of 11.4. It follows from 11.5 (i)
that 8, ¢ [To], +[7,]5. This proves the assertion.

Case 2. a=a’. Consider the partition A of 11.4. It follows from 11.5 (ii)
that 8,.,4[7¢]; and 8z 1 4 [T1].. This proves the assertion. and Theorem 7 follows.

THEOREM 8. If n=1 and a,<b, for v=n, then ay...a,-(by,, b,)>.

REMARKS. The case @, = =a, =2 is due to Godel. The case: n=2 and arbitrary
a,, b, is [1] Theorem 36 (jii).

Proor. Let |4,|=a, for v=n, and let S be the cartesian product of the sets
A,. Then |S|=ay...a,. and
[SP=Z(v=n)l,,

I, = [SP{{/.g}: f(v) #g(v)} for v<n.
If S’ 8 and [S']?<1,, then

|87 =1{f(): fES} =4, <b,
which completes the proof of Theorem 8.

where

(%) THEOREM 9. If 3=by,, b,=a and @’ =a<b,...b,, then
(]) at —f'(bou 5")2-
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ProoOF. Case 1. |n| =a. Then by Theorem 8, 29+(3)2 and hence, a fortiori, (1).
Case 2. |n|<a. Put m=w(a’) and choose a,,, a, such that
@y <<a,=a = sup (u=m)a,.

We can find inductively {vq.,V,},<[0,n) such that b, =a, for p<m. For let
A<m, and suppose that v, has been defined for u<4, such that v,<n for u<Aa.
Then there is v;€[0, n) —{vo,, v;} such that b, =>a,, since otherwise we would
obtain the contradiction

at =1 (v<n)b,=(I(n<Ab,)a)" = ada" =q.
This completes the inductive definition of v,,, ¥,,. By Theorem 8§,
Boer P10 Ve e
Since a,...a,,=a*, the relation (1) follows, and Theorem 9 is proved.
(#) COROLLARY 4. a* +(a)% if a=d'.
(#) THeorREM 10. Let a=a'=R,. Then a*=+-(a*, (3),).

Proor. We shall apply the following theorem of ErRDOs and Fobpor [6]: Let
Ro=b+c=a: |S|=a,
x4f(x)c S and |f(x)|<b for x€S;
S, €[S)* for p=w(c).

Then there is a set S’ S such that S’f(S")= @ and |5'S,|=a for u<=w(c). In
[6] this is proved in the special case when §,S,= @ for u<v<=w(c) but the general
case then follows since quite generally, whenever |7,|=a=R, for u<=w(a), there
are sets 7, €[T,]* for u=w(a) such that 7,7y = @ for p<=v=w(a).

Now let I=w(a"); m=w(a); n=w(a*); S=[0,n). Then I=m<=n, and we
can write [S]'={A4,,, 4,}. Put K,={4,:v=0AA4,2[0, o)} for g<n. Then

(2) [S]"=Z(e=nK,; K, =a for g<=n.
Let ay<=<a,<a = sup (A<=I)a,. Then there are sets K,, such that
(3) K,=2(A<DK,;; IK,;l=a; for g<n; i<l

Let A be fixed, 4 <=/ We define f;(¢) by induction over ¢. Put fi(¢) = @ for g =m.
Now let m=¢a <n, and suppose that f;(g) has been defined for ¢ =¢ in such a way
that

edfi0=S; |fi@) =a;4y for g=o.

Then || =a, and by the theorem of ErRDGs and Fopor, applied to the set [0, o),
there is F,; such that

(4) Fa}. < [0' d); |Fa}.| = a;. Fa’a’.j:‘.{.Fﬂ';l) = Qs
(3 FaA,#@ if A€K,;.
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We put fi(6)=F,;. Then odf,(c)=S; |f.(0)|=a; <=a,, . This completes the defi-
nition of f,(¢) for A=1I; 9=n. Now we have

[SP=T14+"2(A<=D1,,
where
I, ={{o,0}: 0<0<=nhg€f(o)] for 2=1

1. Let S’ S; |S’|=a*. Then there is ¢<n such that 4, S’. Now there is
g€ S’ such that o =9 and A,,C[O o). Then ¢ =m. By (3) there is A</ such that
A K. By (5), filo)4, = F,;A,# @, and there is t€f;(0)4,. Then 164,25,
{r.o}<€L;; [P a*%[i’]z

2. Let .=/ and [{0", ', 0} <> 1,. Then {0", ¢’} =fi(0)=F,: 0" €f(¢') and
therefore ¢” € F,,f,(F,;) whlch contradicts (4). Hence 34[L],, and Theorem 10
follows.

13. COUNTER EXAMPLES FOR r=3. PRELIMINARIES

13. 1. The positive and negative results proved so far enable us to give an
almost complete discussion for the case r = 2. This will be done in section 15. Lemma 2,
the stepping-up lemma, gives us a method to obtain positive relations for r=3.
This seems to be the only method for proving positive relations in these cases.

Thus our aim would be to prove a converse of Lemma 2 i. e. to show that for r =2

= 5 . . +1
and a = N, the relation a—+(b,),<, implies 2° (b, + 1)s2,. However, we can prove

this only under some restrictions and using different methods to cover the various
cases. We are now going to prove several lemmas which assure this implication
under various conditions.

First we need some more definitions and some preliminary results concerning
the set F(x).

13.2. Let o be fixed. For {x,y}.cV(x) we put n(x.y)=0 if x=y, and
#(x,y)=1 if x=y. Thus, in the notation of 11.4,

{x, ¥} € Tyuyy if {x, ¥}V (@)
If r=3 and {x4.. x,_}« < V(x), we put
1(Xo 0 Xp—1) = (M(Xos X1)ss M(Xp—2, X,—1)).
Let r=3; 1=s=r—1; ky.. k,_; =2. Denote by
Ko, - (:7)

the set of all sets {xq., x,_}« < V(x) such that

7}'(1‘3,,.\‘,_1)2(:{’0,, '._1) fOl’ some I\ﬁ I'Hk -1

Thus Ky0(2, r) is defined for r=4 and is the set of all sets {xg,.x,_}. = V()
such that x,<x,; =x,<x;. The symbol K, , stands for K, , , where k==
==k,_,=k We put

K(x, r) = Ko, ol 1)+ Ky (2, 7).
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We have the following simple result. If X< V(x), and if tp (X, <) is a limit number
then, for every choice of s, kg,, k;_; with 1=s=r—1, the relation

X1 ’-:Kkn,.k,,_,(ofs r)

holds if and only if, ko ==Kk,_, and [X]" < K, . This follows at once if one consideres
any set {x,., x,} - =X and the meaning of the satement

| ; 1 [y g o P
100 Xpm 1) X100 X0 EKG i, (00, 7)

See also 13. 3.

13.3. Let {xo,, X,_1)<EK(2.r). Then X Xo41 % Xou1%,42 for g=<r—2. For
we have either x,<==x,_; or x,==Xx,_, and in either case the assertion follows
from 11. 6 (ii).

13.4. For 6,=0,=w, we put £(dg,0,)=0 and <(d,,d,)=1. If r=3 and
g0,y =w,; 6,#0,., for p=r—1, we put

5(50 L (jr—‘l) = ({:(‘501 (i])'!!' é((sr—l.' 5)‘— 1‘)‘)‘
Now let 1=s=r—2 and kg., k,_,; =2. Denote by
Pko..k,—1(1‘ ;‘}

the set of all sets {x,..x,_;} - = K(a r) for which
E(S(xoss X,—1)) =(kgss k.—3) for some -
We note that &(d(x,., x,_,)) exists by 13. 3.
Thus Pyqo(2, r) is defined for » =35 and denotes the set of all sets {xg,, x,_;} . =
~ V() such that

(i) either xg==x,_; Or Xp==X,_,
and

(1) XgX; =X X3 =X,X3=X;3X,.

Throughout the rest of this paper whenever the arguments of any of the sets
V.V .K, P, Ky k.o, Pro, k-, are 2, r they will not be shown.

The symbol P, , stands for Py , _, where kg ==k,_y=k. Put P = P, ,+
+P, ;. We have P, ;. —K for 1=s=r—2 and kg, k,_ =2.

We shall now deduce some properties of the sets K, ., and Py, . ..

13. 5. Let r=3 and X — V. Then |X| =r+ 1 provided at least one of the follow-
ing conditions (a), (b). (c) holds:

(a) [X]" < Koy:

(b) [XT=Ky:

(€) [X]"C Ky, .k, for some (ko., k,-2) #(ko.. ko).

Proor. Let {xq,,x,}- =X:n,=n(x,.x,,.,) for g=r. In case (a) we have
{Xg. X,_1} €Ky and hence n,=0; n,=1. But we also have {x,,, x,} €K;, and
hence 1y =0:n,=1. This is a contradiction. In case (b) we find, in the same way,
#o=1;1,=0 and also #,=1:5,=0, i. e. a contradiction. In case (c) we have at
the same time 5, =k, and »,,, =k, for all ¢ =r—2. These equations imply k,==
==k,_, which is the desired contradiction.
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13. 6. (a). Let either (i) r=3 and [X]'C K or (1) r=4 and |X|=r+1: [X]C
Ky + K. Then [XTZK, , for some s=2.
(b) Let r=4 and [X]"— P. Then [XT'cP, , for some f<2.

ProOF. We may assume [X|=r+1.

Proof of (a). Let [X]" €K, , for s=2. Then there are sets A,, 4, €[X]" such
that 4, £ K ,fors<2. We can choose X € X — A,. Put{x}+A4,+4, = {vo, X o
Then n=r=+1. Put n(xy, X, 0)=mn, for v=n—-2.

Case 1. {x,,, Xyp,_ ,}ﬁK for v+r—1=n—1. Then n,==n,,,_, and, since
|[V,l+f—1)[l’+] v+r) =r—2=1, we have no==#,_,. We deduce that
Ay, A1 €K, ,, Which is a conlradiction

Case 2. Tht:re is vo=n—r with {x,,, "»o+r 11§ K. Then (ii) holds, and
{%vgs X+ r-1) €Ko10- If vo=0 then {x, 15 Xyo4r} & Ko1o+ K, and if vg=1 then
{x‘.ﬁ_,,,.x‘oh 21§ Ko1o+ K. In either of these cases we obtain a contradiction
against the hypothesis,

Proof of (b). We have [X]"<— Pc K. Hence, by (a), there is s <=2 with [X]"' <
CK,, ;. Let us assume that [X]"¢C P, , for t<=2. Then there are sets 4,, 4, €[X]"
such that A4 P, for t=2. Let AD-|~A‘I = % X 1} Then n=r, and we have

either xg<<x,_y OF Xp>>X;-y. Als0, {X,s Xy1,- UEPW,‘, for v+r—1=n—1.
Put &(xyx,iq. Xy 1X,02)=¢, for v+2=n—1. Then {,==¢,,,_5=t,, say, for
v=n—r. Since r=4 these equations imply 7, ==1,_,, and we obtain the contra-

diction Ay, A €P,, -

13.7. Let X< V and |X|=b={,. Then there are a set X' € [X]" and a number
t=2 with [X']' K, ,, provided at least one of the following conditions (a), (b), (c)
holds:

(a) r=3 and [X]Ky, =T ;

(b) r=3 and [X]K;y=T;

(c) r=4 and [X]'Ky,=@.

This completes the proof.

IT

|

PROOF. Suppose therr: are no X" and r with the required proporties. We may
assume that X = {x,., X,} = where n=w(b). Put [u, v]=#(x,, x,) for p<v<n. We
show that

(1) there is {vo, vy, v2, va}<=[0,n) with [vg, v]=0; [vy,v,]=1; [v;, vs]=0.

Let us assume that (1) is false. Then we have the following two cases (all ordi-
nals are in [0, n)):

Case 1. There are u—=v-=2 with [u, v]=0; [v, /]=1. Then there are g, ¢ with
H=v=4=p-=c and [g, 6] =0. But then [4, ¢] =1, and we have [u, v]=0; [v, o] =1;
[0, 6] =0 which is impossible.

Case 2. Whenever p=v-=242 and [, v]=0. then [v. 2] =0. Then there are p=v
with [p, v]=0. Now there are 4,0 with u=v=i=p and [4 g]=1. But then
[v, 21=0, and hence [/, ¢] =0 which is a contradiction. This proves (1) so that
there are vy, vy, v, vy such that the conditions in (1) hold. If r=4 then we can
choose vy,, v, such that vo<=-<v,<n. Then all three conditions (a), (b), (c) are
violated since

{%oos Xua i} Koy (Fyun %, Ko
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and, if r=4, then {x,,, x, _ |€Koo. This shows that our first assumption was

false so that there are X’ and ¢ such that the required conditions hold.

13.8. Letr=3; X V; |X|=b = b'; [X]' K, ,; x=0. Then there is X’ ¢ [X]*
with [X'TC P, .

Proor. We may assume X ={xg,, ¥,} <, where n=w(bh). Then
(2 either xo ==X, or Xo=>=>x,.

We define inductively numbers p,., ﬂn,éu.,é;. Let o=n, and suppose that
Hoss flss Op» 0, have been defined such that puy<=-<=p,<n and 8,<=<9,<=0,. Put

(3) " A, = {x,:v=pAxux,#9,} for g=a.
Let us suppose that

@) |A,|<b for o<o.

Put

(5) B = A0++A~,+-[.\‘v: (Fo)e=a/v=yp,)}.
By (4) and b=50" we have

(6) |B,| <b.

There is a least number p, =n such that

@ B,={x,:v=Pi,}.

Put

(8) D, = {X,uxv: Be=p=<v=< ”}5

(&) 8, =min D,.

There is a least number y, such that yu, = p, <=n and x,_x, =4, for at least one v=y,.
There is a least number p,=p, such that x, x; =d,. Put

A, = {x,:1,<vAx, x,#0,}.
If o=o then x, €B,, and pu,<p,=p, by (7). We have
(10) X, X, =0, for v=p,.

Forletv=y,, and put x, =x; x;_=y: x,=z Then g, =p, <u,=v: xy=4,; x2€ D,.
Hence. by (9), xz=4,. Thus if (10) were false then xz=4,. Then u, =v and xp = xz.
On the other hand we have, by (2), either x =y =z or x =y ==z. Hence, by 11. 6 (ii),
xz=min (xy, yz) =xy which is a contradiction. This proves (10). It now follows
from (10) that |4,| <b. Finally we note that if ¢ <& then, by (5), x,,€ B, andAhence,
by (7)., p,=n,=u,. This completes the inductive definition of .. f,, dy., 9, such
that po=-<=p,. Put x, =y, for v<=n. Then

(11) yoy,=90, for p=o.
For let o<=o. If y,€B, then, by (7), u,=u, which is false. Hence y,4 B,, and it
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follows from (5) that y,< A,. Since yu,=p, we conclude from (3) that (11) holds.
We now assert that

(12) 3,<90, for p<o.

To see this, let ¢ =¢ and d,=0,. Then, by (11), y,y, =0, and 3,3+, =46,. By (2),
either y, < ¥, <¥,+; OF ¥, =¥, =), 4. In either case it follows from (11) dnd 11. 6 (ii)
that

0, =¥, Ves 1 =MiN (¥, Vys VsYss1)=Mmin (3,, 6,) =0,

and y, ¥, =J,¥,+; Which contradicts 11. 6 (ii). This proves (12). Put X'={yo., V-
Then

(13) IX'| =b; [X'F<IXY<K, <K
Let 4 - <0y and A={y,,, Vs, _,}- Then, by (11) and (12), Ye,Yep,: = 04, <
<0ap.1 = Vapu1Vapea fOr @+2=r—1 so that &(Va,Ves. s Yapsi Vag.2) =0 for

@« r—3. This, tozethur with (13), shows that [X')" =P, , and proves that X’
has the required properties.

13.9. Let r=3; X<V, |[X|=r+1: [XT<Py i _,- Then ko==k,_3.

Proor. There is a set {x0.» X,}<=X. Put d,=x,x,,y for g=r—1, and
&, —-L.{o d,4q) for g‘:r-" Then we have. by definition of P, .. ($p. &,-3)=
=Sy So- z}—U\o k,—3) and hence Ao——i\r i

13. 10. Let r=4; X~ V; [X]' = P. Then there is 1=2 with [X]"C P, ,.

PRrOOF. Let A4, BC[X]’ [t suffices to show that there is 7 =2 such that 4, BE P, ,.
Let A+B = {x¢..X,—1}<. Then p=r and {x,, X,i,—1}€P,, ., for n=p—r.
Since {Xp4q1s Xers) T 4%z Xabro1) 1X 210 Xzupp for a=p—r—1 1t follows from
the definition of P, that s, ==s5,_,=s. say. Put d,=x,x,,, for v=p—2.

Case 1. s=0. Then d,<=<4d,_,. and repeated application of 11. 6 (ii) yields
x, X, =0, for p=v<=p. Hence A, BEP, ;.

Case 2. s=1. Then 6,> =>0,_,. Then, similarly, 4, BEP, ;.

13.11. Let r=4: X = V; |[X|=b=R,: [X]'=K,, ,. Thenthereis X’ ¢[X]* with
[X]" = P, , provided at least one of the following conditions (a), (b). (c), (d) holds:

(@) [X]Poy=2;

(b) [X)Pyo =2:

(¢) r=5and [X]Pyp=

(d) r=5and [X]Po,=.

Proor. We may assume X = {x,.. X,}.. where n=w(b). In what follows we

always suppose the letters w, v, w, y, = to denote elements of X. We shall use freely,
without reference, 11. 6 (ii).

Case 1. t=0. Then x,= <x,. Let s=3, and suppose that y, <=y, ,, and
E(Fdvsts Vo1 des2) Z=E(Fes1Vvs2s Ves2¥ysey) for v<=s—3. This is for instance
true for s=3 and arbitrary {y,.¥;, .} <. We assert that then s=5. For suppose
s=6. Then we can choose z;.,z, with y;<zy<<2z,. Then there is A<2 with
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l}'o,,)’a, :4u-r—]} EP 1=As lJrln}’.;, 2551 Zpj FP]—,A Hence both (d) and (b) are
false, and r=5. Now there is =2 with

f ’ - - 1 H ? - -
1 Y09 Vas Z59s Zr=14 € Py —pus {J"1n)5~ g Zr} CPl—;..u.hy-

so that both (c) and (d) are false as well. This is impossible. Hence 3=s5=5. We
now suppose that s has its largest possible value for the given X. Put

Ysm3=U Ysu2 =05 Yoy =w; X'={y: y>w}h
Then X' €[X)’. Let {wy, w;, wyt.cX’.

Case la. uv=vw. Then, by the maximality of s, whenever u<=uy,=1u,-=u,,
then not all the relations uugy =uyu, <u,u, hold. By using this repeatedly we con-
clude: ur=rvw=wwg; W =WWq; UL=TUWg=WoW;i UW; =WoW } UU=UW; =W W,;
wowy =w,w,. But since h=8, we can choose {w.wq..w,).. Then. by what has
just been proved, we have ww, ., =W, W,,, for v=w which is impossible.

Case 1b. ur=vw. Then, by the maximality of s. whenever u=u,=u, <u,,
not all the relations wuuy = wyu, =u,u, hold. By using this repeatedly we conclude:
UE=TUW=WWg UWg=UW] UD=TWg=WoW;: UlNg=UUI UWy=WoW; =ww,. Hence
[XTcPy,o.

Case 2. t=1. Then the same proof as in the Case 1 applies except that every
inequality x =y between elements of X is reversed. This completes the proof.

13.12. If r=3 and [X]'< P, 4, then !X|<x0.

ProoF. If |X|=8,, then we can choose {xg,.x,}.=X. Then. by definition
of Py 1, XX, 41 =X,11X,4+, for v=w which is impossible.

13.13. Let r=5; X V; |[X|=r+1; s<2;
[XT K, P+ Pgo)
Then there is t—=2 such that [X] <P,

PROOF. Assume therc is no such ¢. Then there are elements xq., X,_ 1, Yo+ Voot €X
such that {xq,, X,—1}<&§ Py o and {yo, ¥s-1}<§ Py, 1. We can choose x,€X—

o 1 . o a
—{xgss %=1} Let {xo,,x,,yo.,},_l}—{zn,,__,,_IH Then n=r41; x,=z,n:
Y, =Zpms %(0), (@) =n for ¢=r. We have either zo<=<=z,_, or zo==>2,_,. We
have exactly one of the following three cases:

Case L. {Zos; 2,-1} € Py, 0. Then zozy < <z,_,z,, . Since {z,,, :M‘,_,} €P, ot
+Py 1+ Py1o for v=n—r, it follows for v=1, n—r, in this order, that
{z Zysr-1) €Pg, 0. Hence zozj<=<1z, 52,4} xn\n+1 _-n((n_l Zao+1) = Za(o)Fale)+1 =

< Zaat 1)iate+ 1)+1 = Xpr1Xp42 for Qér_:i: {X0»» X,—1} €Pg,,o which is a con-
tradiction.
S = o i Y
Case 2. {40'.-"-1'—1}5 O L Then ZoZy = = Zp—28p-1" 'L"\"“'\'+r—1J'EP1..1 for

VENR—I] ZoZy=>=Z-2Zn-15 Yodo+r1 = Zpo)Zpee+1) = Zpet1)—1 Zpre+ 1) =
= Zpe+-15pe+2) = Yo+1Vos2
for 0 = r—3; {¥9s ¥,-1} €Py, 1 which is a contradiction.

Case 3. {zp,, 2,1} € Pyyo- Then zozy <z,2, >2,24 <2324 and, clearly, {z,.,z,} ¢
¢ P+ Py, which is a contradiction. The assertion is therefore proved.
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13.14. Let X =V r=3: [X]" = P, ,: |[X|=r. Then there is 1 =2 with [X] K.
Also, for {x, y.z}. =X, if s=0 then xy = xz<yz, and if s=1 then xy=xz = yz.

Proor. By 13.6. there is 1=2 with [X]' =K, ,. There is {xp..x,_,j. =X
such that
x=x,; y=x,; z=x, forsome p<v=i=<r.

Then either xg==x,_; or xo==x,_,. Let f=y=r. If §=0, then xpx; =<
= =X,-3X,—,; and hence

XpX, =min (XpXp4 g, X, 21 X,) =XpXg4 -
If s=1, then xyx, = =x,_,x,_, and hence

XpX, =Min (XpXp 4 1, X, 1 X,) =X, X,

These relations imply the assertion.

14. COUNTER EXAMPLES FOR r=3. LEMMAS

We begin with two negative relations.
THEOREM 11. 2¢9—(a™ . r+ 1) for a=Ry: r=3.
ProofF. Let ¢=¥8,. Then [V] = I,+'1,, where I, =K.

. Let X V: [X]"=I: |X|=8y. Then, by 13. 7, there is X' — X such that
|[X'|=1X| and [X']" =K, , for some f. Then |X|=|X'|=a by 11.5(i).

2. Let X<V and [X]'</,. Then, by 13.5(a), |X|=<r+1. Since |V|=2%
Theorem 11 follows.

THeorREM 12, a-+=(a, r+ 1), if a=a" and r=3.

PrOOF. Let n=w(&’); |S|=a; S=Z'(v=n)S,: |S,| =a for v=n. Then [S]" =
= Iy +'1;, where

I, = [ST{4: Buv)(p<v<=nA|AS,| = r—1A|4S,| = 1)}.
Then X e[S} implies [X]7, # @. and YE[S)*! implies [Y]/, # &. This proves
Theorem 12.
(%) COROLLARY 5. If r=3; a= Ny, and if a is not inaccessible then a—+(a, r +1)".

This follows from Theorem 11 and 12.

We are now going to discuss the various converses of Lemma 2 mentioned
in 13. 1.

Throughout the proofs of Lemmas 5A—35F we put

I, = Py, of{x0: X,—1}<: 6 (xp, X, - ) EL} for v=m.

In every case the sets /5 will have been defined.
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Lemma SA. Let a=¥,, and let b,., f:,,, be cardinals such that

A) r=3; there are p=v-=m such that b,, b, =R,, and at least one of b,. b,
(A) is regular,

Let a-~(b,)iZm. Then 2° (b, + Dicm.

PrOOF. We may suppose by .. b, =r. By 4. 1 we may assume by =bg and by =N
Let a=8,: n=w,: S=][0, n). Then there is a partition [S] ~' =Z"(v=m) [} such that

(1) b, &[1y],-, for v=m.
Then [V] =2"'(v=m) I,, where
(2) L= Kai+diz L=l 2=v=m).

Let Xe [V]Po; [X] = 1,. Then [X]'K,, = @ and, by 13. 7 (a). there are a set X" € [X]
and a number 7 such that [X'J— K, ,. By 13.8 and b, =b; there is X" €[X']t
such that [X "= P, . Then

(3) [XTc Py, olp-

Next, let Y& [V [Y]'<1,. Then [YJK,,= @ and. by 13. 7 (b), there is Y €[Y]"
such that [Y']"— K. Then, by (2),

“) (YT Py, ol
It follows from (2), (3) and (4) that it is sufficient to prove that
(5) it XoViv=m: [XI'C Py of,. then |[X|=b +1.
Let us therefore assume that

X = {xg. <CV; v=m; [XVCPy ol,.
For future applications we note that the in rest of this proof we do not make any
use of any hypothesis not mentioned in (5). Put D = {x.x ., ,:%+1=k}. Then
XX ug== .\;Jrl.\:,(+2 for #+4+2-<=4k and hence |D| = 'A = ]| Let E€ID) - ‘. Then
there are i, = =k such that £ = lx_,,\m,ﬂ -1}. Then, by 13. i4
and (2), £ = 1\,,\,_ , of*r—]} =l e, )f! Henue [DY-*c k¥ and,
y (1), k=1] = |D|= | X| = k| <b,+ 1. Thls proves Lemma SA.

LemMA 5B, Let a=R8y: m=2, and let by, b, be such that

(B) r=4; there is v=m with b, =h.
Let a-+(by)v<m. Then 2°4~(b, + 1)s_m.

REMARK. For r=4 Lemma 5A follows from Lemma 5B.

Proor. We may mumL by =bg and b, ,,,-:.' Just as in the proof of Lemma
SA, let a=¥8,; n=wm,: S=[0.n). Then there is a partition [S]~'=X'(v=m)l;
such that
(6) b4 [1:],—, for v=m.

Then [V]" = Z'(v=m)I,, where

%) I, = Koo+ 1: I,=I, Q2=v=m).

¥
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Let X< [V [X)—1,. Then [X]'Ky,o= @ and, by 13. T(CE there are X' ¢€[X]be

and 7 such that [X']"'C K, By 13.8 and by, =bg there is X”c[X ] such that
[X"Jr= Py . Then (3) ho!ds Next, let Ye[Ver+t; [YI'< 1. Then, by (7),
[YT= Koo+ K

and hence, by 13.6 and |Y| = b, +1=r+1, we have [Y]'— K., and therefore (4)
holds for Y'=Y. It follows from (7), (3) and (4) that it suffices to prove (5). This
proof was given in the proof of Lemma 35A, so that Lemma 5B is established.

LemMma S5C. Let a= N8y m=2, and let b,., !;,,, be such that
(C) r=5: there is v=m with b, = R,.
Let a+4+(byvem. Then 2°4+(by+1icm.

Proor. We may assume by =R, and b,.. f)m:_?r. Define «. n, S. I} as in the
proof of Lemma 5A so that (6) holds. Then [V]"=ZX'(v=m)I,. where
{8] 11 :K010+P010+11; I\,:)’v (251“‘—'”’3).

[V]”D [XJ'=1,. Then [X]Kyp= @ and, as in the proof of Lemma 3B,
t];cu is X £[X]P such that (3) holds. Next, let Ye[V]+1: [¥]'I,. Then. by
(8). [Y]"© Ky, + K and hence, by 13. 6 and b, +1=r+1, [¥]' K. It now follows
from (8) that [Y]”P010+PU o- We deduce from 13.6(a) (i) and 13. 13 that
[YI'= Pgy, o. Therefore, again, (4} holds for Y'=Y. It follows from (8). (3) and (4)
that we only need to prove (5), and the proof of Lemma 5A applies. This proves
lLemma 5C.

LEMMA SD. Let r=4 and a=\,. Let by.. b, be cardinals. and put
¢, =2"-1421-24,
Let (.J—-(b\.)f.;,',.. Then 2° ((r+1)e,. (by+ I)M,,,)r.

PrOOF. Define 2, n, S, I7 as in the proof of Lemma 5A so that (6) holds. Let
2=p-=w. Denote by ¢ (_0_}_ £,(2r—3) all systems (04, 6,-4) with g4, 0,_,=2
except the two systems (0..0). (1., 1). Then

VI=2G=2"" =i +'2(j=22 =D+ 'L (v=m),,

where the /i, 1. [, are defined by the following rules. Let 4 ={x,,,x,_,} — .

(9) If 44K, so that 5(xg,, x,_1)=¢&,_,(i) for some i=2"-1—2. then A<[{.

. If A€ K—P. so that {(3(xy,. X,_)) =¢,-2(j) for some j<=2""2—2, then
(10) AcTe
~ L.

(11) If A=, so that ¢'(xg.. x,_¢) €17 for some v<=m. then A€7,.

Now let X'— ¥V i<=2"-'—2: [Y']F. Then [X'J=K, . by (9). Hence,
by 13. 5 (c).

(12) X'|=r+1.
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Next, let X"CV; j<2-2-2; [X"T<Ij. Then [X") =P, _,; by (10) and hence,
by 13.9,

(13) IX”|<r+1.

Finally, let Xe[V]»*+1; [X]J'=1,; v<m. Then, by (11). [X]*= P and hence, by
13. 6 (b), there are s, #<2 such that

(14) XY K, Py,

It follows from (12), (13) and (14) that it suffices, again, to prove (5). and this proof
was given in the proof of Lemma 5A. This establieshes Lemma 3D.

LemMMA 5D°. Let |S| = a=Ry: |T|=2% r=4;
[S]-t = E'(v=m)I}.
Then there is a partition [T = X'(v<=m)l, such that

L), )1 +[0,0) for v<m.
COROLLARY. If r=4; m=2; a, by, 5,,,%'&0; a-(b.)em, then
e lBo G s
ProoOF. Let a=R,. We may assume S=[0, w,) and T=V. Put
I = Kgy+Poy+1; L=1, 2=v=m).

Let b=Ny: v=m; be[l],. Then there is X’[V]" with [X]"=1,. Then there is s =2
with [X]K, ,_,= @. By 13. 7 there is X’ E[X with [X']'= K. There is 1 =2 with
[X'TP, -,= @. By 13. 11 there is X" ={x,., X}~ €[X'] with [X"]'c P, _,. Then
kzo(b), and x,x;4; <X,X,4+, for f<;:<w(b} Put D= -t\ Xyt /{w{b]‘ Let
Le[D]-1. Then there are 2, =<4, ,=0m(bh) with L={x;x;,+1:0=r—1}. Put
dy-y = Ap—y+1.Then, by 13. 14, x; X;,41 = X;,%,,., for o =r—1 and, by definition
of I,, we have o )

{D]r—I: \"‘, = ,D|E[!:]r—1

This proves Lemma 5D’.
The corollary follows since by Lemma 5D we can choose the Iy such that
b4 [I}],—y for v=m. Then b,4 [1,], for v=m which proves the assertion.

L= 1\-’ 1‘/{41 ”('f_11 == 0"('\-;.[1 )‘r— ) I*

LemMA SE. Let a=Rog;m=1, and let b,.. E;,,, be such that b,=b, for ar least
one v<m. Let a—+(by)scm. Then 2°=(4, (b, + 1 A

Proor. We may assume by =b,. Let r=3. Define =, n, S, I as in the proof
of Lemma 5A so that (6) holds. Then [V]® = I+'X'(v=m)l,, where

(15) I=K01_: }\‘:I\' (lé\"‘—'ﬁ?).

Let X< V:[X]?=1 Then, by (15). [X]?—K,; and hence, by 13.5 (a). |X|<=4.
Next, let YE[V]”" [Y]3c Iy. Then, by (15), [Y] Ky, = Q and hence, by 13.7 (a)
and 13. 8, there is Y'€[Y]® with [Y'PCP,. Let Y' = {35, i}« D = {3 041:
x+1= k‘ Then, by 13. 14 and (15), [P}~ =I5 and hence, by (6), b, = |Y'| =
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|k = 1| = |D|=b, which is a contradiction. Finally, let Zc[V]P++1; [Z]P = 1.:
l =v=m. Then [Z]* = PyI,. Therefore, again, it suffices to prove (5), and Lemma S5E
follows.

LEmMmA SF. Let a=¥,. and a—f'“(bv)%{m. Then
2" —'(4- 4" (b\ + l).-<rnz)3'

RemaRrRK. This result is an analogue of Lemma 5D for the case r=3, where
¢,=2. In this case. however, we cannot prove the stronger statement 2¢—+-(4, 4,
(b +1),<,n)?. which would formally be the case r =3 of Lemma 5D, since we needed
13. 6 (b). and this latter proposition is false for r=3.

Proor. Let r=3, and define «, n, S, Iy as in the proof of Lemma 5A so that
(6) holds. Then
VPR =L+ L+ 2 (=mly,+'E(v<=m)l,,

where the /, and /., are defined as follows.
I, =K, -, for t=2;
I, = P{{x.y,z} :8(x,y.2)€l¥} for r=2 and v=m.

We are using here the fact that [V]? = K,, + Km—i— ‘K =Py+" P If [X]*c1,

then [X]* =K, ,_, and by 13.5, |[X|=4. If [Y]} = then [¥Y]* = P,, and it fol-

lows. just as in the proof of Lemma SE, that if Y:{yo,. Vit <, then
[{-llz}'z'i-]:k+1{k"]2":1§: |k'._”'::b\

| Y] = k| <b,+1.
This proves Lemma SF.
Now we are going to discuss two theorems which we cannot prove without
using ( #).

(%) THEOREM 13. Let a=da'. Then a* —(a, 5)*.

PROOF. Let ¢ =8, r=4: n=w,: I=w(d):

ap==a<a = sup (A=1)a;.
and put
A(v) = min(a;,=|v|]). for v=n.
If A=1{xg.. X3} =V, then we put A(A4)=(4n(A)., 4:(A)). where A,(A)=7(x,x,4,)
for v=3. Then [V ]* = I,+'1,. where
(16) I, = Koyo+K{A: ig(A) = iy (A) < Ay(A)).

Let us suppose that a<[fy]y. Then there is Xe[V]* with [X]* <], and, by (16),
[XT1"Ky 0= @. Hence. by 13.7. there is X" £[X]* such that [X']* K, —K for
some s. Lel X'={x¢.:s X} <- Then k=n.
Case 1. A(xx,)<A(xx;) for p<v<t=<n. Put ,=2(x,%,.,) for g<n. Then
by = XX ) =200, 1 0) = A(x . 4) = 4, for p+1=v=n,
and
Ay = A ) =Alxvx, ) =4 for p+1 =v=n.
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Hence Au<<i”<f: a=|n|=|l|=a" which is a contradiction.

Case 2. There are numbers g <=v-=r1-=n such that

o =AMy =l

Then [{x,, x,, x.. x,.x,}]1* =/, for =6 =¢ <n and hence. by (16).
(17) 0= ﬁ.[\p\\}_’/[,\}..\'r] =i(xXN,)=AN,x,) for T=0=¢g=n.
Put X"={x,, ;.. %,|. Then [X"| =a. Let x, =(x,(0).. x,(n)) for 1 =0 <=n. We define
elements y, of V by putting y, =(y,(0).. ¥,(n)) where, for v=n and 1 =0 =n.
(18) yv)=x,(v) if A(v)=p. and »,(v)=0 if A(v)=o.
Put Y={y,41,, Ju}. Let t=0 =g <n. Then, by (17), A(x,x,) =¢. Hence, by (18),
we have, for vo=x,x., ¥,(vq) =x,{vy) = x,(vy) =y,(vy). Therefore y,=y,. and
|Y|=a. On the other hand. by (18). |Y|=2%=a, =« which is a contradiction.
Hence a4 [/,),.

Next, suppose that 5¢[/],. Then there is Z<[V]® with [Z }4”11 Then. by
(16), [Z]* © K41 + K and hence, by 13. 6, [Z]* = K, for some 5. Let Z={z .:4:-_ :

Ay =A(z,2,41) for v =4, Then. by (16)., 2y =4, =/, and, at the same time, /, _/_, =iy
which is impossible. Hence 54 [/,]4. and Theorem 13 follows.

(#) THEOREM 14. Let a=da and c=da'~. Then a* +(a.(4),)’.

Proor. Define =, n. . a,.. a,. ~(v) as in the proof of Theorem 13 except that
now r=3. If 4={xq..x:/- =V, we put 2(4)=7,(x,x,,,) for v=2. By Theorem
8. we have 2¢+4-(3)2. Hence there is a partition

[[0. ] = Z(v=w(c) Iy
such that 34[/7], for v=w(c). Then
[V = L+'IL+'Z'(v<w()ht<2),,

where

" Iy = Ky +K{A: ig(A) = 7,(A)}: I =K
as) L, = P{A:{i)(A4), 1,(A)} e T} for v=w(c); 1=2.
Let Xe[V ] [Y]‘ — {y. Then. by [19} [ I*K l.. = @ and, by 13. 7, there is X £ [X]°
with [X} for some 5. Let X' ={x;.. %) .. Then k=n, and either x, = =x;
or Xp ==X, Put /{xg. xy)=0. Then, by (19), 2(x,x,.;)=¢ for p=n and, more

gcnemlly. Axux,) = o for p=v-=n. We now argue as in case 2 of the proof of Theorem
13. Let x, = (x,(0).. X, (1)) for e=n. Put y(v)=x,v) if Ai(v)=o. and . (i)—O if
Av)=p. for c.v=n. Put », =(1,(0).. 7(m)) for 6 =n. and ¥ ="{y,.. 7, . Ifo=qg=n,
then A(x,x,)=¢ and hence. for v, =x,x,. ¥,(vo) =x,(v) # X, (Vo) = 3, (vo). Thus
¥, #Y,: |Y|=a. On the other hand. |Y|=2%=q, =« which is a contradiction.
Hence a4 [1,]. Next. let [Z]® =/,. Then. by (19). [Z ]3,'\[,l = -f_ii‘.- and. by 13. 5, we
have [Z|=4. Hence 44 [[,];. Finally, let Z,c[V]*: [Z,)F =1, for some v=w(c)
and t<2. Then, by (19). [Z3]2 = P,. Let Zy=1{zy,. =5} = Then either zy ==1z; or
zy>=>1z3. Put D=1{i(zyz;).. A(z323)}. Then, by (19) and 1.6 (ii). [D]° = I¥. But
this is false since D/ =3. and Theorem 14 is proved.

9 Acta Mathematica XVIT—2
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15. DISCUSSION OF RELATION I. MAIN THEOREMS

15. 1. A definition. We define a function cr(f) by putting, for every ordinal f,
cr (B) = cf (cf (B)=1).

This means that if 8;= b, then Ry, =b""". We call cr () the critical number belong-
ing to fi. Explicitly, it is given by the following rule.

Case 1. p is of the first kind. Then f = «+1, and cr (f) =cf(x).

Case 2. [ is of the second kind.

Case 2a. ¥j is weakly inaccessible. Then cr (ff) =cf(f).

Case 2b. Rj is not weakly inaccessible. Then cf (f) = 7+ 1. and cr (f) =cf(y).

We note that if 8, is weakly inaccessible, then cr (f)=pf. and that cr () <p
otherwise.

The following Main Theorem I gives a summary of the results obtained so far
for r =2 as well as the essential part of the results for »=3. Its proof consists of a
rather lengthy discussion of cases. During this discussion we shall require some
new corollaries of earlier results.

15. 2. The first Main Theorem. ( %) THrOREM 1. Let n=2, and let

2 :;'.—‘J'(-:bou b"E Nﬁ.
Consider the relation

(R) Rp+(r-2~ (b b
and the following conditions:

(IA) bo=2xy,

(IB) Do by =Ny
(CA) by dy=Rerip)
(CB) by...h, < Ny,

Then we have the following results:

(1) If (IA) holds. then (CA) is necessary for the truth of (R) except possibly
when
(1 r=3; f=cf(f)=cf(f)~ 1=cr(B); by..h,<N,.

(i) If (IA) holds and b, =R, then (CA) is necessary for the truth of (R).
(i) If (IA) holds. then (CA) is sufficient for the truth of (R) except possibly
when R is inaccessible and greater than N,.
(v) If (IA) holds and b, ., b, = Nj, then (CA) is sufficient for the truth of (R).
(v) If (IB). holds, then (CB) is necessary and sufficient for the truth of (R).
Clearly. (ii) follows from (i). Since frequent use will be made of these results
in the case n = m we state explicitly what the theorem asserts in this case. We consider
the relation
&fi-rl‘r—}!] > [ht}" hrr )
where 2=n-=w and
NMp=hoz==b,_ =r=2.
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For any ff, we have:

(2) R+ -2+ (R, R )’
(3) Rptr-2) (R85 (Reeep)n—1)
except possibly when cf (f)=cf(ff) = 1=0.

[&ﬂﬂr—h_*(a,ﬂ‘(b)n—l)’ it b<Rep:

4 )
” Ny -2 (B, it b=y,

Theorem 1 leaves some questions on I-relations unanswered, such as that of
the truth of

{5) N;;H ""(R’g- (4}*cr(.ﬂ;)3
when
(6) p= cf(B)=cf(f)=1=cr (f).

We conjecture that (5) is false when (6) holds. It seems that to prove this only a
slight refinement of the methods used in section 14 would be sufficient; however
we have not been able to settle this question. Here the simplest unsolved problem is

(#) PROBLEM 2.
? xw‘., S (_qu.-q- i? (4)N0)3‘

This corresponds to the smallest f# which satisfies (6).

15. 3. Proof of Theorem I. Consider the following conditions:

(C" A) n= (.E}crm-); bl -,-.b" = &Cﬁﬁj .

n=oy.y: by, b, =8

C'B : -
( ) there is c =¥z, with [{v:b,=c}|=RNep=1)-

15. 4. The conditions (CA) and (C*A4) are equivalent.

PROOF. If (CA) holds, then by.,b,=b; ... b= Reripy;
1] <3 =p,...5,= 8

=< Wiy,

and (C*A) follows. Vice versa. if (C*A) holds then. since R, is regular,

bl b "":;n = (Scrf_ﬂ)]ln_" 1 = xcrmj L]
and (CA) holds.

15. 5. The conditions (CB) and (C*B) are equivalent.

PROOF. 1. Let (CB) hold. Then |n| =3Il =p,...b, < Wi n=wp. . Let us assume
that (C*B) is false. Then |{v: b, =c}| = R.(p-, for ¢ =8;. ;. Then we can construct

't
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inductively a sequence v, = <v;=n, where /=y ;-,. such that sup (A1 =/)b,, =
=Ny . If there is a number m </ such that b, =§,., for m =/ </. then we obtain
the contradiction

>b0 _;h "b\'f = (_5‘;4:1)“"”’*”:’&3*1'

Hence there is no such m. and we can impose on the v; the additional condition
b,,<==b,,. Then, by Kénig's theorem, 8;=b,...0,=b, . b =b,, ++ h -

¥

which is the desired contradiction. Hence (C*B) is true.

2. Let (C*B) hold for some ¢. Put
No={vib,=c}; Ny={v:ib,<c}.

Case 1. f=0. Then n<=w; by, h,<No, and (CB) holds.
Case 2. f~1=[=0. Then there is y =f such that

1(vENg)b, =250ENobe =20 — <y,

IT(vEN )b, =cltl=2elm =28 = Ny

Hence (CB) holds.
Case 3. f+1<=f. Then f# = d+1, and [Ny =8§;

IT(v € No) b, = 8;/¥l < N,

NEN)b, =cM =2 <y,
and (CB) follows.

15. 6. Proof of Theorem I (i). We assume (IA) and (R) and want to deduce
that either (CA) or (1) holds. Suppose that (CA) is false. Then, by 15. 4. (C*A)
is false. It is sufficient to prove the following three propositions:

(%) COROLLARY 6.

Rps—2) P (Rp. RE ) for r=2.

(#) COROLLARY 7.

N;].*{r—z_l_"(xﬁ' (."'+ I.]Ncr'i.ru)r _f()." ".%2
except possibly when
(7 r=3; fi=cf(f)=cf(ff)=1=cr(f).

(+) COROLLARY 8.
Rpsrm2y (8, Ros 0+ Dyger))” SJor r=2.

For let us assume these three propositiem proved. Our aim is to prove: Let (IA)
and (R) be true, and n=2; 2=r<=b,.. h =Ry. Let both (C*A) and (1) be false.
Then a contradiction follows. To exhibit thls contradiction we consider the cases:
Case 1. n =i . Then, since (C*A) is false. there is v<=n with b, =R ;-
Then, by (IA) and (R), R4 -2y = (Rs, 85 )+ which contradicts Curolluy 6.

Case 2. n =Wy . Then, by (IA) and (R). Npi-a2y=(Rp. (r+ Dye))- By
Corollary 7 this implies that (7) holds. Since (1) is false. we conclude that there is
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ve[l, n) with b,=8,. Then, by (IA) and (R),
Rﬁ—.{r—!r_'(x.ﬁ' N, (r+ l)&cr(m)r

which contradicts Corollary 8. All this shows that in order to prove Theorem 1 (i)
it suffices to prove Corollaries 6. 7. 8.

Proor oF CoroLLARY 6. For r=2 we have to prove
(&) R+ (Rg, N )
Case 1. f +1. Then cr(f)=cf(z), and (8) follows from Theorem 7.

2+
Case 2. f = ff=1 = cf(f). Then cr (f)=p. and (8) is trivial.
Case 3. ff = =1 =cf(f). Putcf(ff)=7y. Then, by Lemma 4, (8) is equivalent to

©) R, (R, R )

Now cf(y)=17. and cr(y)=cf(y=1)=cr(f). Hence (9) follows from case 1 or
case 2, when applied to 7 in place of fi. Thus we have proved Corollary 6 for r=2.
To complete the proof assume that, for some r=3, we have

R_ﬂ‘+|r-3}_'+(x.3" R;w})’_"
Then, since R, is regular, it follows from Lemma 5A that
&ff‘rtr-ll_"{sﬁ'e' 1, thiﬂd' 1)y,

and Corollary 6 is established by induction over r.

Proor oF CorROLLARY 7. For r=2 we have to prove that if (7) is false then
(10) z\‘ff b(N#' (3)“{:1'(:?1.)2'

Case 1. f = 2+ 1. Then cr (ff) =cf(x), and (10) means
[]” k""m-'—l +(k\\1+ 1 -(3)Rcft=:)2‘

Case la. x=cf(x). Then (11) follows from (%) and Theorem 8.

Case 1b. z=cf(2). Then (11) follows from Theorem 10.

Case 2. f = fi=1 = cf(f). Then cr (f)=/, and (10) is trivial.

Case 3. [ = f=1=cf(f). Putcf(ff)=7. Then cr (y) =cr (f) and. by Lemma 4,

(10} is equivalent to
(12) R, (N, ) Ty 8

But (12) 1s true by case 1 or 2, when applied to y instead of fi. This proves Corollary
7 for r=2. We now prove it for »=3 when the assertion is

(13) Np+1 _"'(x_{a" [.4)Ncrt.fu)3’
Cuse 1. fi=cf(f). Then by (10) and Lemma 5E we have
Npa1 (4 Rp Diern)?

which is the same as (13).
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Case 2. f=cf(ff). Then, by Theorem 14,

(14) x{li—l_h(&ﬁ! (4)!\‘¢l'l.rla-n-|}3'

Case 2a. cf(ff) = y+1. If y=cf(y), then

B=cf(B)=cf(B)=1 = y=cf(y) = cr (f)

so that (7) would be true, contrary to the hypothesis. Thus y =cf(y): cr (f) =cf(f) =1,
and (13) follows from (14).

Case 2b. cf (/) =1 = cf(ff). Then cr(f) = cf(ff)=1. and (13) follows from
(14).

We have shown that the assertion of Corollary 7 is true for r =2 and for r=3.
Now suppose that, for some r=4.

xﬂ +{r—3) '+-(R,‘! ] (r)x{:rtﬂz]r_ o
Then, by Lemma 5D, there is ¢,= 8, such that
Npsp-2y 3"(_(-" + ]}c,,- N+ 1, (r+ l_)xmm)r-

This is the same as the assertion of Corollary 7 and so establishes Corollary 7 by
induction over r.

Proor orF CoroLLARY 8. If r=2. then the assertion of Corollary 8 follows
from Corollary 7. Suppose that, for some r=3,

x;}+ir—3)+{.&ﬂ'r No- {-"]xcnm.}r_l
Then. by Lemma 5A,
x,‘i+:r—}.)_i"(xﬂ+ 1 Ro + l-. ("f’ ]}xcnﬂ,)r-

This proves Corollary 8 by induction over r and concludes the proof of Theorem
I (i). As has already been pointed out. part (ii) of Theorem I follows from (i).

15. 7. Proof of Theorem 1 (iii). We have to prove: If (1A) and (CA) hold then
either (R) holds or cf(ff) = cf(f)=|=0.

It suffices to prove:

(%) CorROLLARY 9.
(IS_) x;fﬂr-zp‘“"(xw (&crf_m.)t')r

for r=2 and ¢ =R, except possibly when
(16) cf(f) = cf(f)=1=0.

i. e. when X is inaccessible and greather than ¥ .

For, to deduce (iii) from Corollary 9 let us assume that (IA) and (CA) are true
and that the condition (16) is not satisfied. We have to deduce (R). In fact, (C*A)
follows from (CA). and hence [n| =8, . Now, by Corollary 9. the relation (15)
holds with ¢=/n|. Then (R) follows from (C*A) and (IA).

PrOOF OF COROLLARY 9. We assume that (16) is false. We begin by proving
the relation (15) for r=2 when it states

&Lf ""(&ﬂ- (chﬁ "}‘_)2_
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By Lemma 4 this follows from
(]?} .‘;R _.(&I;* (&crl’ﬂ))c}z'

Case 1. cf(ff) = y+1. Then cr (f)=cf(y). and (17) follows from Theorem 1.
Case 2. cf(ff) = cf(f) 1. Then. since (16) is false. we have cf(f)=0 and
¢ =8y, and (17) follows from Ramsey’s theorem. This proves (15) for r=2. Now
let r=3, and suppose _
Rp+cr—3) = (Rgs (Rerg) o) -

Then, by Lemma 2, we obtain (15), and Corollary 9 follows by induction over r.
This completes the proof of (iii).

15. 8. Proof of Theorem I (iv). We shall use the equivalence of (CA) and, (C*A).

We have to prove: If r=2: 2=n<=wgp: by.. by =Req ! by.. b,<=Nj. then
(18) PPIRET R (TR e

By Lemma 2 we need only consider the case r=2. and for r=2. (18) is, by
Lemma 4, equivalent to

R (8. by b2

Hence, putting cf(ff) =7. we see that it suffices to prove:

(#) CoroLrLary 10. Ler 7=cf(y): 2=n=0wyy -15: bl..!;,,--’x.‘.; by, A,,*:’—
= Repqy=1). Then
(19) N, - (8,. by b,

Proor oF CoroLLARY 10.

Case 1. y = 6+ 1. Then (19) follows from the proposition:

Noe1=(Rss1. (R)))? for =83,

and this proposition follows from Corollary 1.
Case 2. y = y+1. Then ¥, is inaccessible, and (19) follows from Theorem 3.
We now prove the two parts of Theorem 1 (v).

15.9. If (IB) and (CB) hold. then (R) follows,
ProOF. By 15.5 the condition (C*B) holds. so that n=wy.,: bo.,f;,.<x,g.
and there is ¢ =Ny., with
bzl < M
We want to deduce (R).
Case 1. =1 = f. Then it suffices to prove:

= Ry+(r—3r"[f0-- Em- {C]r)r

(20) et 5
if r=20 c=Rp: M<wgpy: CouCn=85: 6=<N;.

By definition of cf(ff), (20) is the same as:

Rpsp—2y (o) if r=2 and c.e=y,.
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By Lemma 2 we need only consider the case r=2, i.e.
(21) Ny —~(c)? for c.e<=Ny.
Case la. f=0. Then (21) follows from Ramsey’s theorem.

Case 1b. f=0. Then f = f=1=0, and there is y<f with ¢, e<y,. Then,
by Corollary 1,

(22) x-‘.+3—'(x-‘-+2s(R-‘-+1}R,.)2-

Now (21) follows from (22).
Case 2. f = «+1. Then it is sufficient to prove:

{ Rgé[r—lj_"((x'z)d" (“}e)r

23 .
(23) if r=2;c=R,;d=R8;e<R,.

By Lemma 2 we need only consider the case r=2 when (23) states:

{ Nz+] F’((Rz)dﬁ ((b)e)z

24 ;
24) if c,e<=x, and d=R,.

Case 2a. x=cf(x). Then (24) follows from Corollary 1.

Case 2b. 2 =cf(x). Then, by Theorem 2, 8,., —((%,),. 8,)>. Hence it suffices
to prove 8, —(c)2. and this follows from (21) since =1 = =z This shows that if
(IB) and (CB) hold. then (R) follows.

15. 10. If (IB) and (R) hold, then (CB) holds.

Proor. We assume that (IB) holds and that (CB), and so (C*B), is false. We
have to deduce that (R) is false. Thus we are given: n=2; 2§r<b0,,5,, < Rp:
bﬂ...f),,;:’{\‘ﬁ. and either (i) n=w;.,, or (i) n=wy., and |{v: b,=c}|=R;., for
¢=Ny.;. We have to deduce

Rp+(r-2) (D)5 <n-
Case 1. (i) holds. Then it suffices to prove
(=) CorOLLARY 11.
Nptr—2) "*[-"""1)&3;1-
Case 2. (ii) holds. Put m =y 4-q,. Then f=0; n=w:
Rp=1 ==, =|m|.
Case 2a. f = ff=1. Then
(25) {v:b,=c}|=8p for c=Ry.

Let No=c¢o==¢,=8; = sup(u=m)c,. Then, by (25). there are vo=<v,<n
with b, =¢,; for u<=m. Then IT(u=m)c; =8, and it is sufficient to prove

T+ r
Rﬂ'+|’r—2)+((.u )p<m-
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Case 2b. § = x+1. Then bos by =N bo...b,>N,. Let N={ {v: b‘.::-x(,}. By
putting e =¥, in (ll) we find V| = z\ . We may assume (} 1N, Pute,=b,—r+2
if v& N, and ¢,=b, if v£N. Then ('0..2',,23. Also, for v4& N,

b

=c¢c,+(r—=2)=e,+22=Ler4- et = of,

s
N, <bg.iB, = (Coer i€y Covily>=Ral Caueily™> Ry
It suffices to prove that
Npsor-2y(Ros Nos (6, +(r =232y <)
if r=2; ¢;...¢,=8,. It now follows that to settle case 2 it suffices to prove

(%) COROLLARY 12,
Rﬁ+|‘r—2}_“'{d\-+("—2]):<u
if . .

2 dy=doy di =g dyd,ERg n=opey; 3=doad, =¥y

PrOOF OF COROLLARY 11,

Case 1. f=f=1. If r=2, then the assertion is 8,+(3)F,. and this is true.
Now Lemma SF gives 8;., +(4)3,. and repeated application of Lemma 5D proves.
the assertion for r=3.

Case 2. i = 2+ 1. If r=2. then we have to prove N,.,-+(3)§,. This is true
by Theorem 8. Now Lemmas 5F and 5D establish the assertion for r=3. and
Corollary 11 follows.

Proor oF COROLLARY 2.

Case 1. r=2.

Case la. B = 2+ 1. Then dy..d, =8, =dy...d, =(8,)": Wep5) =1 = ,. Hence,
by Theorem 9. §,., -—(_ff,}..f},,)3 which is the assertion.

Case 1b. f = f=1. If f=cf(f)=0. then d,. cdy =20+ +dn < X, which is a
contradiction, and if =0, then d,...d, =N, \\-‘hmh is a contradiction. Hence
f=cf(f). If sup(v=n)d, = e=¥,. then N;=d,.. d,=elnl < N, which is false.
Hence sup (v =n)d, =Ry, and if m=wy,,. then there are vy = = v,, = such that

dy,==d, and sup (u= m)d,, = 8z. Then
Ny = (u=m)d, <=M (u=md,,.

Hence, by Theorem 9, 8;.,—(d, )., and therefore 8,—+(d,):_,.

Case 2. r=3. We may assume N, _3 ~(d,+(r—3))iz}. Then. by Lemma
SAL Ryipoa, ldy+(r=2))5.,, and Corollary 12 is proved. This completes the
proof of Theorem 1.

15. 11. The second Main Theorem. We shall now discuss the l-relation in the
most general case. It will be convenient to introduce the remainder function o(x)
which is defined by the relations z = @y (%) +0(2): ¢(®)=w
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(#) THroreMm 1. Let n =2, and suppose that 2=r<by..b,=\N,. Consider the
relations:

(R") N, -+ (bo . b,):

(11TA) olx)=r—2. and b[,..f“)"éxi;“‘_]':
(11B) bo=Rye(r-2yt

(11C) o(x)=r—2, and b“..!;,,.i;'x,”,_:,:
(1IC1) Bissobe <R o

(11C2) bo =R, (-2,

Then we have the following resulis:
(i) If (MA) holds. then the truth of (R*) has been discussed in Theorem 1.
(i) If (1IB) helds. then (R*) is false.
(iti) I (MC) and (11C1) hold, then a necessary and sufficient condition for (R*)
is b()...b"‘“’: ‘\‘.1;“._2:.
(iv) If (NC) and (11C2) held. then a necessary condition for (R*) is that
N, - (-3, be inaccessible.
We note that (1IB) implies 8,.., -5, =by =8, and hence r=3.
Proor or Tueorem 11, Put 3 = o= (r—2).
ProoF oF (ii). It suffices to prove that
Rosr—2y (R, 41, 7+ 1) for r=3.
We shall in fact prove a stronger result (6 = 7+ 1):
( +) CorOLLARY 13. If r=3 and ¥; is not inaccessible. then
(26) Na.;.“_jl_i"(xa. ,._‘_})r‘

Proor. We use induction over r. If =3, we have to prove R;-+(8;.4)?, and
this follows from Corollary 5. If 6 =cf(d). then this leads. by Lemma 5B, to 8;,,+
—(N;. 5)*. and if d =cf(d). then this last relation follows from Theorem 13. Thus
Corollary 13 is proved for r—=35. Suppose now that, for some »=5 and some 4.
we have Ny, -4, (8;. 7y~ ' Then, by Lemma 5C, we deduce (26). This proves
Corollary 13 and so part (ii).

PrOOF OF (iii). We¢ have to prove the following two results:

(27)  1f (I1C) and (IIC1) hold and by...h, =N, 5, then (R*) follows.
(28)  If (I1C). (IIC1) and (R*) hold, then by...h, =N, ().

PrOOF OF (27). Since g(z) =r—2. y is of the second kind. and r=3. If =0,
then #—=w and b,.. b, = w. In this case (R*) follows from Ramsey’s theorem. Now
let 7 =0. By Lemma 2 it suffices to prove (s = r— o(2)).



PARTITION RELATIONS FOR CARDINAL NUMBERS 139

(%) COROLLARY 14. [f s=3;n=2; 3y =79+1=0; l\‘o":"'do-d?"ﬁ&,‘.: do...d, =
<8y, then
(29) R, —~(dy.. d,).

Proor or COROLLARY 14, !;r|4-.-.2|"f§df,...c?ﬂ =d=R,;
doss d; =d.
There is ff =7 with d=¥,. Then. by Theorem 3,
Rip+ =0 ~(Rpe2s (Rgy D)
and hence (29) follows.
Proor oF (28). If we assume bo..‘li,,::-z\*, then. by Theorem | (v).
Ris iyt Boss B

But y+(r—2)== Hence (R*) is false which is the desired contradiction. This
establishes (iii).
Proor oF (iv). It suffices to prove the following statement.
(30) If o(2)=r—2. and if ¥, is not inaccessible, then &, =(8,,r-+1)"
Proor or (30). We have r=3. Hence. by Corollary 13.
Ryt s8R, 1)

As y+(r—3) = «. the conclusion follows. This concludes the proof of Theorem II.

16. THE RELATION 1 IN THE CASE OF A
FINITE NUMBER OF FINITE CARDINALS

We shall now investigate relations a —~(by..b,)" in the special case when
2=n=w; r=2; by.. b, = {,;. By Ramsey's theorem there is a least finite number
a such that @ —(b,) -, and we shall denote this number by f(b,.. b,_ . r). In contrast
to the infinite case we cannot yet find the exact value of this function f but we can
give some estimates of its value. We restrict ourselves to the case n=2. and we put
f(b, b, ry=g(bh, r). We assume that by, b, = 1. The main results known so far are:

16. 1. _f':frf,.h,,zy*_:'b”;;b_' ,‘2] (see [8]).

16.2. g(h. 2)=2%" (see [9]).

P. Erpés and R. Rapo [3] have obtained the following upper estimate for
g(b.r). Put axbh=a" and. generally, a,+a, = #a, = a,*(a; % %a,) for
2=m=uw.

16.3. If 2=r=b—=w. then
glhr) =24 (2% (2" )%+ 2H)x2b-2r+1)
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and hence g(b.r) = 2% 2% 2% (k,b) (r “factors” in all). where the positive real
number k, depends on r only. In the case r =2 the estimates 16. 1 and 16. 2 show
that neither is very far from best possible. For fixed r=3, say r=3, it was not
known at the time [3] was written whether the order of magnitude in 16. 3 was
approximately best possible. P. ERDOs proved a result in such a direction:

16. 4. There is a positive real number ¢ such that g(b, 3) = 2 for all . This
is stated. without detailed proof, in [9].
It is reasonable to conjecture that, in fact,

g(b, 3)=22"
for some absolute real constant ¢; =0 and that, more generally,
(1) gh.r) = 2x2% %2%(c,b) (r “factors™)

for some real positive ¢, which is independent of h. By means of the methods of
section 14 we can prove the following “stepping-up™ lemma.

Lemvma 6. There is a real number ¢=1/10 such that
glbor)y = 2% (cg(b.r—1)  for r=4.
Using this lemma we can deduce from 16. 2 that for r=3
glh.r) = 22 % 2% (3¢ 3b) (r—1 *factors™).

This result approaches the conjecture (1) but a big gap still exists in the case r=3
between the conjecture and the established estimate. Since these results are obviously
not final we omit the proofs. Further special results concerning the function [ are
discussed in [10]. [11], [12], [13].

17. DISCUSSION OF THE RELATION 11

In this section we shall prove some negative results of the form
a-~(h): ™.
The connection of such results with the abstract measure problem was mentioned

in 8. 2.
We need some preliminary results. We shall use the definitions of 3. 2.

17. 1. (a) If a=b, then a--(h);™".
(b) If c=8,. then c¢(xg): ™.
(€) Ro+(Re) ™
Proor ofF (a). This follows from a (b)Y (r=1).
Proor ofF (b). If |S|=¢ then there is. for every r. a partition
(ST = /(v = ())(r, v)

such that [/(r,v) =1 for all r and v. This proves (b).
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ProOOF OF (c). This result is essentially [3], p. 435, example 2. Let S=[0, w)
and r=1. Then [S] = I(r.0)+I(r. 1), where I(r, 0) = [ST{{x0., N, () ot X0 =r].
If X={xp,,%,}-=S8 then, for every r=ux,, we have {v,..x,_,}€/(r.0) and
{x,,. x5, } €1(r, 1) which implies the assertion.

17.2. Let a,b=Ry: c=2:a +(b)7%0. Then
24 4e(b) 5 No,
Proor. |. Let a=R,: m=w(c): S=[0, w,). Then. for r=1, there is a partition
[ST-' = X' (v=m)I*(r,v)
such that, given D€ [S]P, there are infinitely many r which satisfy
[DY-tci=(r,v) for v=m.
Then there is for r=4 a partition
(Vir=Z(v=m)I(r.v)
such that, in the notation of section 14,
1(r.1) = Koy + Py +1: I(rov)=1, 2=v=m).
2. Let X£[V]". We want to show that there are infinitely many r such that
XTI i(r.v) for v =nm.

We may assume that there are a number r =4 and a number v =m such that [X]'=
< I(r,v). Then [X]'K,, ;=@ for some s, and by 13.7 there is X c[X]" with
[XT =K Now, [XTP,,_,= @ forsome £, and by 13. 11 there is X" = {x,,, X} . €
€[XT with [X"T< Py o. Then k=w(bh) and x;x;,y =x,%,.y for A=pu<k-=1.
Put D = {x;x;.,: A=w(h)}. Then |D|=5h, and hence there is an infinite set
R = [4, w) such that [D)~'dI*(r,v) for réR and v=m.

3. Now let r€R and v=m. Let us suppose that [X]J'=I(r.v). Let LE[D) !,
Then L= }.\',-,r_,,\',-_,_,H re=r—1}, where Agy==4,_,=wmwb). Put 4,_,=/,_,+1.
Then. by 13. 14, x;,x;, 41 =x;,X;,,, for g=r—1 andso, by definition of I(r.v).

L= {x3, %50 0<r—1} = 8%, %5, YET*(r, v);

[DY-' < I<(r, v)

which is a contradiction. This proves that
[XV & f(r.v) for reR and v=m

and so completes the proof of 17. 2.

17.3. Let a=a'; b=Ry: ¢=2. Suppose that a,—(b)7% for every a,-=a.
Then a-+(h)7 %o,

Proor. Put w(a’)=k: w(c)=m. Let S=X(x=Kk)S, and |S.|=|S| = «a for
#-=/k. Then there are partitions

[S.) = X(v=m) (% r.v) (partition 4,,)
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for =k and r=w. and partitions
[[0, k)Y = Z'(v=m)I*(r,v) (partition 4))

for r=w such that the following conditions hold.

If 2=k and X€[S,]’. then there are infinitely many r such that
) { 4,0=1 in [XT.

If Me[[0.k)]". then there are infinitely many r such that
2) { 4¥=1 in [M]"

Let r=3. Then there is a partition
[S] = Z(v=m)I(r,v) (partition 4,)

such that the following rules are satisfied. Let 4 ={xp.. X,_1}+=8; %g==%,_,; =
=k x,€8,, for p=r.

If %g=2x,_, and A €I(3y, r,v), then A€ I(r,v). If %y =<3, ,and {xy,. %}~
cl*(r,v), then A€I(r,v). If %y =x, = x%,_,, then AE!( ; 0} If 2 = 2t 5 <%,_1,
then A€l(r. 1).

Now let X< [S]. We want to find infinitely many r such that

(3) [XTraI(r.v) for v=m.

We may assume that [X]7= I(p. vy) for some pe[3, w) and some v, =m. If there
are numbers #, =x, =k with [XS, |, |XS,,|=p—1. then we can choose v, €[0, 2) —

— vy} and obtain [X]PL(p.v,) = (2‘ which contradicts [X]P=I(p,vy). Hence there
is at most one % =4k with 'XS =p—1. Put M={x: XS, =2 }.

Case 1. M| =h. Then we choose x, € XS, for x€ M and put X’ —1 i EM).
Then by (2) there is an infinite set R - [0, w) such that, for ré R, |Af| =1 in [U]"
Then, for reR, [A,]=1 in [X'), and hence also in [X]". This proves (3).

Case 2. IM| =b. Then there is #, =k such that |[XS,|=p—1 for » =#,. Then
b= |X|=|XS,,|+(p—2IM]|; |XS,|=b, and we put X'= YS;U. Then X'= S :
X’ =b. and by (1) there is an infinite set R < [0, @) such that. for reR, |4, =1
in [X). Then, for re R, 14, =1 in [X']" and hence also in [X]". This proves 17. 3

17.4. If a. b, c are such that a,+(b)7% for every a,-=a. then
- (hT)7 N,

ProoOF. Put w(a)=n: w(b)=~k: w(c)=m. If r=w and ny =n, then there is a
partition
[0, ny)]" = =m){ny. r,v) (partition 4,_,)

such that whenever Y& [[0, ny)]". then there are infinitely many » such that |4, | =1
in [Y]. Then for every r there is a partition
[[0. ]+t = Z(v=m)I(r.v) (partition 4,)
such that
D {xg. Kb €X(x,, 7, )} for v =m.
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Now let X€[[0,n)]*". Then there is a set {xy..x}.=X. Then Y={xy,.x}¢
€[[0, x)1*, and hence there is an infinite set R [0, w) such that |4, ,|=1 in [Y]
for every r€R. Then, for réR, |4,|=1 in [Y+{x,}]*! and hence in [X]*!. This
proves 17. 4.

We now come to the main result of this section.

THEOREM 15. Let a =0, and let {d,,, a?k}< be the set of all strongly inaccessible
cardinals not exceeding ¥,. Then k=1, and
R, (R )5 e if k=ao,
R, (R )5 if k=zw.
ProOF. We use induction over «. If =0 then k=1, since 8, is strongly inacces-

sible, and the assertion holds by 17. 1 (¢). Let =0, and suppose that the assertion

holds for all & <=f. Let {d,,.d,} . be the set of all strongly inaccessible cardinals
not exceeding 8;. Put n = /—1if /=, and n=/if /= w. Then, by induction hypo-
thesis, we have for a<ff

4) Ny (R,)5Re.
Case 1. f=cf(f). Then (4) implies, by 17. 3, the desired relation
(5) Ry (N5,

Case 2. f=cf(f).
Case 2a. 2% =, for some y = . Then (4) holds for z =7 and hence. by 17.2,
2 (R)5
This implies (5).
Case 2b. 2% =y, for every y=f. Then §; is strongly inaccessible; / = A+1;
d;=N84. Then Ry <=8;=d;, and hence Z=1.

Case 2bl. /. <=w. Then, by induction hypothesis,

R, (R )50 for x=f
and hence, by 17. 4,
Ry (R;)5 R,
But 4 = /—1 = n so that (5) holds.
Case 2b2. / =w. Then, similarly,

N, (N)5%  for 2=f

and hence 8y-+(8;4,);%, where 241 = [ = n. This proves Theorem 15.

Let {d,.. d,} . be the set of all strongly inaccessible cardinals below some given
cardinal. Then Theorem 15 yields the following results,

CorOLLARY 15, (i) d,+(R,)5% for v=min (n, m);
(i) d (R, )™ for v=n;
(iii)  d,+(d,)50 if v=n and d,=¥,:

(iv) if all strongly inaccessible cardinals d are less than seme fixed cardinal,
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and if {dy..d,} - is the set of all such d, then
R, (N,)5% for all a.

Let ¢ =X,. Then, by employing at the start of the induction argument the rela-
tion 17. 1 (b) instead of 17. 1 (c) we obtain by the same method as was used in the
proof of Theorem 15 the following result.

THEOREM 16. Let 8, =c=N,. Denote by {dy(c)..dy(c)} - the set of all strongly
inaccessible cardinals d such that ¢ =d=x,. Then k=1. and

N, (R ) 7™ if k=aw:
N, (NN i ke

The proof. as well as the analogue to Corollary 135. may be omitted.

18. THE RELATIONS 1V.V AND VI. PROBLEMS

In this section we shall deal with some generalizations of the partition rela-
tions 1 and [l. Let a.r.n. by..b, be given.

18. 1. DerNiTioN, The relation (partition relation 1V)
(M a—[bo.. b,

also written in the form «—[h].,. denotes the following statement. Whenever
|S|=a and [S] = X'(v=n)l,. then there are a set X — S and a number v =# such
that |X| =5, and [XTI, = @.

18. 2. DermNition. If by==b,=b and |n =c. then (1) is also written in the
form
(2) a—[b].

18. 3. The relation (partition relation V')

a—I[b] 4
denotes the following statement. Whenever |S|=a and [S] = X'(v =w(e))/,. then
there are & set X =5 and a set D= [0. @(c)) such that |X|=bh; |D/=d, and
[XT = X(ve D).

The relation (1) is only of interest if r=2: a=8,: n=2; r«::bﬂ..:’;nia. In this
section we shall mainly investigate the rdatmm IV and V as well as problems sugg-

ested by them.
The following propositions follow immediately from our definitions.

18. 4. The relations a —~(b,. b)) and a —~[b,. b, are equivalent. The relations
a—~(h) and a—[b]; ; are equivalent. If 1 =¢ = w, then the relations @ - [b)% ._, and
a—~[b]" are equivalent.
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For r =3 our results concerning the relations IV and V are rather incomplete.
The positive relations will be deduced by means of the general methods used in the
discussion of I-relations but to obtain our negative relations we shall employ new
ideas for the construction of suitable counter examples. Interesting problems of
a new type will arise.

Just like the relations I, IT and III so the relations IV and V possess obvious
monotonicity and other properties whose proof is left to the reader. We mention:

18. 5. Letm=2and v, = = v, =n. Then, for any cardinals b,.. 5,,. a—+(bqs bvm)'
implies a —[b,..b,J". In particular, if p=v-<=pn and a—(b,, b,). then a—-[bn. b,I.

18. 6. Let the cardinals . b, c.d, e satisfy ¢c=d=e. Then «--[b]; . implies
a—~[h].

18.7. If a=R,, then a—[a]., for all ¢, r. If ¢ =d. then a—~[b]., for all b=a
and all r. If e =b=8,.thena—[b]/ fora=h andall r. If c=e, thena —-[b 17,4 implies
a— bl 4

Up to 18. 10 we shall mainly be concerned with 1V-relations. We shall then
consider V-relations and in particular mention some of the unsolved problems.
Finally, Vl-relations will be briefly considered in 18. 19.

By Theorem I we have the following results:

(i) 8, (R, 8,)? holds if f, 7=«

(i) A necessary condition for 8, —(R,. N,)* is y=cr(a).

This condition is at the same time sufficient except possibly when y =cf(x)
and N7 is inaccessible.

Taking into consideration 18.4-—18.6 we see that the principal problems
about I'V-relations for » =2 concern the truth of relations of theform a —~[b]%_,.
where a =N, ;

Rain<bo=R,; bi==b,=a; 2=n=w,.

¢

If @ is inaccessible, then there remain unsolved problems (see Problem 1). The
complete discussion of the cases when «” 1s not inaccessible will be given by Theorems
17.18.20. 21, 22. For r =4 we have only isolated results.
Consider first the case a=8,., when cr(z+1) = c¢f(2). Here we have the
best possible negative result:
Ifl '[;’]\ |

if ho=n,%: b, h,,,_: = N,. The proof differs shghtly according to whether
x=cf(x) or a- (.l(x). We first prove

(%) THEOREM 17. R, [R5, ., for every a.

Instead of Theorem 17 we shall prove the more general Theorem 17A which
will have an application in the discussion of the polarized relation.

(#) THeorem 17A. Let |S|=X,.,. Then there is a partition
(3) (S = X'(v=aw, D],

which has the following property. W."n'.'.'efe: A.BCS; |[Al=8,; [B]l= RQH, and

Vo=, . then there are elements x €A and y€B such that {x, y} €l

10 Acta Mathematica XVI/1 -2
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A suggestive notation for the assertion of this theorem would be

ix, 1
i\‘ +1 .
5 R:! P18z

PROOF. Pul a=R,: m=w,: n=w,,,. Let S={yy..7,}.. Then we can write

[S]" =X LX)
0 ni#- = 5
Let o=n. Put §,={y,..p,} and Z,={X,:n=0AX,= S,}]. We can write

S, = {x(o, ) p=m,},
and
Z, %[0, ¢} = X (0. ). v(Q, ) p=n,j.

where m, and n, are mmal ordinals not exceeding m. We can find inductively numbers
a(0. Ay =m,, for 2 —n,, such that x(e, a(o, )X (0, 1) —{x(0, 6(0. A)): 2=y} for
f=n,. Then .\‘(Q.G(Q WYEX (. p) for p=n,; o(o, 1) Za(e, 4) for i=pu=n,.

2. Let m—p—n. Then there is exactly one (g, n) =m, with x(g. t(g. 1)) =y,.
There is a partition (3) such that

{_]‘n" yr_-.} € ‘Jr{r_-.m‘ it =n, and r(@n 7” :O—(‘J- ,“)

This condition docs not define the partition since the {y,.y,} with t{o, n)¢
g ia(e, u): p—n,; may be placed into any arbitrary class I‘_.

Now let A, B S; |A|=a; |B|=a*; vo=n. Then there is g, =n with A€ Z, .
Next, we can find y, < B with vy, g, =¢ =a. Then (4, vg)€Z, < [0. 0), and hence
there is p-—n, with (A4, vo)=(X(g. p). v(e, ). Then x(¢.,o(e. )=y, for some
n = ¢0.and we have

x(o, (0, )=y, =x(0. 1(e. m)): (e, 1) =0(Q. p);

(es Vo) €huon =Lt Ye=x(0. 0(0, W)€ X (0, ))=A4; y,€B.

viy

This proves that the partition (3) has the required property. and Theorem 17A
follows.

We are now going to sharpen Theorem 17.

() TueorEM 18,

s :'[N;-F- (N, 1]';\,, ,]Z f{)l all .

Proor. If « —cf(%). then the assertion follows from Theorem 17. Now let
2 = cf(2). We consider the set }'(x) introduced in 11. 3, together with its two orders
,\‘-x'-' and \ <y, Put ¢=8,; m=wo,; n=w,,,; S=V(z). Then we can write
S={vy.7,1+. For P, QS the relation = Q means that whenever x¢c P and
veQ then x < -y, If P={x} then we write x — @ instead of {x} <= Q. Similarly we
use P~ 0. We write [S]'=1{X;.. X,} .

1. Let o=n; S;={Vos o} Z,={Xoi n<oAX, <y, <X.}- We can write
S, = Ax(o i p=m,;
72,10, 0) = {(X(o, 1), v(o, Ju]) p=n,},

where m, and n, are initial ordinals not exceeding m. We can find inductively numbers
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o(g, 4)=m, for 2—=n, such that
x(0. (0. )X (0. ) —{x(0.a(0. D)): A=p} for p=n,.

Then
x(0.6(0. W)eX(o, p) for p=ny;

o(o. Wy#o(o.4) for A=p—=n,.

2. Let n< g~ n. Then there is exactly one 1(g. ) =m, with x(0. 7(¢, 7)) =J,.
There is a partition
[SP=T1+"2(v=m)],
defined by the rules:

oo Vol €0y 1 (0. 1) =0 (0, p);
{Ves ya) €1 if (g, M) {o(0. : t=n,}.
It now suffices to prove that this partition has the following properties:
() If X8 and [X]*1= @. then |X|=d
(i) If X 8§: vo=n: [X]*],,= &, then |[X|=a.

-

3. Proor oF (i). Let X< S and [X]*/= @. Then we can write

X = {yvo » j;wa} %"

Let {m o}.c{o,: #x=k}. Then there is p<n, such that {y,,y,} €L
(. m)=0(p, u):

Ye=x(0.1(0, ) =x(0, 0(0, W) EX,, EZ,.

By definition of Z, we have X,, <y, =X,,: ¥ <y, =J,. Hence tp (X, <) =k*, and
by 11.5(i). [X|=|k|=d'. This proves (1).

4. Proor oF (ii). Let X< S; vy=n; |X|=a*. We want to find x, y€X with
{x.y}el,,. Itis well known that there are sets 4. B [X]*" with A < B. This follows
for instance from 11. 5 (i) and [1], p. 446, Lemma 1. There is ¢, =n with X, < B.
There is A =n with [0. g¢) + 2 (¥, € X,)[0, 1) =[0, 4). There is y, € 4 with 4, vo =@ <n.
Then (X,,, vo) € Z, % [0. ¢), and hence there is g = n, with (X, vo) =(X (2, ), v(0, ).
There is 7 < ¢ with x(0, 6(g. 1)) =y, =x(0., ©(0, 7). Then t(0, W) =0 (0, 1); { Ve, Yo} €
€Lyoy =153

Yo

V. = x(0,0(0. W)EX (0. p) = X,, cBCX: y,cACX.

This proves (i) and completes the proof of Theorem 18.

Let us now consider the case r=3. By Theorem 11 we have (#) R,
4[N, .. r+ 1] The following theorem gives a best possible generalization of this
result.

(%) Thiorem 19. For r=3 and every u,

R_z+ 1 —:'[f'—Q— It (&a + 1_}N1 } ']r'

This theorem will follow as immediate corollary of Theorem 28 which will be proved
in 19. 2. It is clear that Theorem 19 does not settle the problem of deciding whether

10+
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for any given cardinals by, b <N, +1 We have 8, ., — [bn,,ﬁ,,]'. We shall consider
such problems later. in 18.9.

Let us now turn to relations of the form ®, —[hy,, h,]” when x=cf(x). Here
our results are almost complete for every r=2. Unsolved problems remain only
when ®; is inaccessible and greater than ¥%,.

Consider first the case when ax=cf(2) = f+1 so that cr (x) =cf(f}).

Case 1. r=2. We have to discuss the relation &, ~[b, (§&,).]> when 8;=b=¥§,
and 2=c¢=N,.

Case 2. r=3. Then we have 8, —~(by, b,)" for every b,, b, =§,. For there is
Bo=o with by, by =8, . and then, by Theorem I,

Ne = Ryo+r-2) = (Do, by)

Also, by Theorem 12, 8,~4(8,.r+1). Thus there only remains to discuss the
relation &, —~[b, (8,).]" when r<=b=R, and 2=c=R,. The following best possible
theorem settles all these questions for ¢=§; when &, is singular.

() THeoreM 20. If r=2: u=cf(x); ¢= 8%, then
Na == [&:]:

Instead of Theorem 20 we shall prove the following stronger theorem involving
a V-relation.

(%) THEOEREM 20A. If r=2 and R, <=c—=N\,. then
N, — [&ml:.ﬂ&‘
It is clear from 18. 6 that Theorem 20A implies Theorem 20.

Proor. Let |[S|=§,: [S]" = Z'(v=w(e))], [partllson A) Then by Lemma 3,
thereisaset T = X'(u—= m).S* = § such that m = w1 [T = .and 4 is canomcal

in (Sp.. S,). Let 1o+ 47, = r. Then there is f(ry,, F,) fml.’r) such that whenever
XcT .md |XS,|=r, for u=m, then Xcl,,, 5, . Hence

[?1]’ "__}:{f'{} + —i_rm = r)[_f[ru..;ml‘
and the assertion follows from
¢ . N et cazeubliees | e ’
8 [{(ros rw): o+ 1 = 1} = Iml" = N1

;Thle following best possible theorem settles the case when ¢ = 84 and o =cf (%) =
= p+1.
f (%) THEOREM 21. Let a=cf(o) = f+1 and ¢=R;, . Then

(1) N[00 (8D

(i) R~4=[r+1,(8).] for r=3.

ProoF. We may assume ¢ =8, . Let wy. , =n: S=2"(v=n)S,; |S,|=|S|=
for v=n.

Proor of (i). By Theorem 18, there is a partition

[[0,m])? = 2 (v=m1,
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which brings into evidence the relation

Rpe1 [R5, (N4 Dl

This means that it D. Ec [0, n) then [D)*I{ = @ implies |D|=8. and, for 1 =v =n,
[EPIY = @ implies |[E|=8,. Then

[S]? = 2 (v=m),,
where )
= Z({A, w3 €S, S for 1=v=n.

Put D(X)={v: XS,=@| for X §. Then, if X< § and [X]?],= @, we have
[D(X)) ;=@ and hence | X|=DX)|=x;. If Y 8: Il=v=n;, [Y]L=T;
|Y| =R, then [D(Y)| = 8.3 [D(Y)]? T = & which is a contradiction. This proves (i).

Proor oF (ii). Let »=3. Then. by Theorem 19. there is a partition
[[0.n)) = Z'(v=n) I}
which brings into evidence the relation
1L+ 1 (Rps 1)ipe o]

[ST = Z'(v=n)1,

Then

where
I, = Z({vo. vy f EV)S e S, )1 for 1=v=n.

Then exactly as in the proof of (i). we obtain the desired properties of this last
partition. and Theorem 21 follows.

The relation of Theorem 20 is valid for every singular ®,. and Theorem 2!
shows that this relation is best possible provided that 8% is not inaccessible. If, on
the other hand, %; is inaccessible then we have the following result which is in
some ways stronger.

(%) THEOREM 22. Ler r=2 and o =cf(x). Then

(i) R, [Rg]2r- 1.
If. in addition. either cf(x)=0. or cf(a)=0 and N% is measurable.” then

(i1) R, = [R)E for =215

(111) R, =Rl 2eon for c=R,.

PROOF OF (i). Let n=wgq,,: S = Z'(v=n)S,;|S.|=|S| = §, for v=n. Then
there is a partition

ST =X(p=rirg.ryy =Vhrg++r,—y = ) (ro. rp—1)

where I(ry..7,_,) is the set of all 4 €[S} such that, for some vo==v,_, <=n, we
have [AS, |=r; for A=p. It followsthat if X<€[S]¥ then |XS,|=r for at least r
values of v. But then [XT/(ry..r,_4)# @ for every choice of (rq., 7, ), and since
there are exactly 2'-' such systems the assertion follows.

* 1. €., does not possess property P ol [24]. See 8. 2.
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PROOF OF (iii). Let [S|=R,; 71 =Ocpn;
[S) = Z(u=w(e)), (partition 4).

Then, by Lemma 3B, there is a set T = X'(v=n)S, =S such that 4 is super-

canonical in (S,,, S,), and [S,|=[T| = 8, for v=n. Put D={u: [TV, = O}.

Then, by definition of super-canonicity, |D|=2"-!, and the assertion follows.
Proo¥ oF (ii). This relation follows from (iii) by 18. 6. This proves Theorem 22.
REMARK. In some sense (iii) is best possible. For we have

(iv) N[Ny if d=Rz=R8, and r=2.

To prove this, let 7. S. S, be as in the proof of (i). Put D(X) = {v: XS, = &}

for X< S. Then

[SI = Z(E€[[0. n)]=")I(E) (partition 4),
where
I(E)=[ST{X: D(X)=E}.

We have [4|=8;. Now let X— S and [X|=¥,. Then |D(X)| =8, and hence
KE: [XTI(E)# 2} = &4

which proves (iv), in fact by means of the same partition for all 4.
Up to this point the following problem remains open. Let » =cf(x) and let
Nz be inaccessible. Is then

Ny [b! (xa)c = 1]r

true for 3=r=5b—=N,: 2=c=2"-1?7 We shall show that this problem can be reduced
to a finite combinatorial problem provided either X, =%, or &, is measurable.

18. 8. DeriniTiON. For =1 and every m denote by F,,, the set of all functions
J which are defined on the set V, of all systems (ry,, 7,_{) With r4..r, ;=1 and
ro++r,—y = r. and whose values lie in [0, m). We have [V,|=21,

(=) Tureorem 23. Let r=1. Suppose that a=a = ¥, or. more generally,
a=a" and a’ ~(a’.a’)?. Let b,..b,=a. Then the relation

(4) a— [bO 22 !;m]r

holds if and only if the following finite combinatorial condition is satisfied: FEither
(@) m=2"=" or (b) m=2""" and, given any function f¢ F,,, there always exists a
number v=v(f)-=m such that at least one of the following four conditions (i) — (iv)
holds:

(i) by = (r—1)%: b, = co++¢, for some k and some c,,. ¢, =1 such that
whenever #, = = :ép =k. and r,=c,_ for m=p and (r,.. Fp]i V.. then f(ry.. ;“‘J,,} =¥,

(i) (r—1)2=b,=a": f(1,1)=v.

(i) (r—1)2=b,=a; f(r) =v.

(iv) b, =a: flry.. .;'p} Zv for all (ry.. f:',_}? I

_—
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Remarks. 1. The theorem implies that if m=2""1" and a=da": b,. b,,,,—a
a’ —~(a’,a’). then (4) is equivalent to the relation

n ¢ ;‘_
(5} a—- [b/‘."" b}.,.,u * (ﬂ' }m._ . {G’ m [(”l"_i] 2
where
':‘;'0" i|'|l=u} € = -[1': h\' E(!‘— “2:: ny = |j‘ = l)_ e h\ 1:_'(’!“;
m,={v:a'=b,=all: my = |{vib,=all

Also, if (5) holds for one such « it holds for all such a.

2. The theorem implies that (4) holds whenever a =a’: @'~ (a’. ') by.. b, = a,
and (r—1)2 = b, =« for at least two values of v =m. For in this case either (a) or
(b) (iii) holds.

3. The hypothesis ¢’ —(a". a')" 1s only required for showing that (b) implies (4).

Proor. Put [/ =wm(a’). 1. Suppose that (4) holds for some r. a. m. bu,.fn,,, such
that ¢ =¢’ and r=1. Let m=2"""', and S=X(A1=01S,. where |S,|=|S|=a for
i=1 Let feF,,. Then a partition

[S]F = Z'(v=m)I(v)

is defined by the following I'L‘llt}. If A€[S]:2p= -::)_p =1; |AS, |=r. for m=p;
(ro, r,)EV,, then A€I(f(ry..r,). By (4) there are v<=m and Xe [S’}b such that
[X]r I{l)— & Then there are numbers Ho = ;1; isuch that X Z{/ =k)S,. and
|XS,.| =¢.=1 for »<=k. Then c¢y++¢, =b,. Let »y==x,=kir,=c, for
n=p, and {rﬂ.. r,)€ V,. Then there is A €[X] such that |AS,, | =¥, for x<p. Then
Acl(flrg.. fp)). On the other hand, A €[XT and hence 44 I(v). Therefore /(r,.. f',,) =,

Case 1. b, = (r—1)2. Then (1) holds.

Case 2. (r—1)2=h,=d’.

Case 2a. ¢, =r for some »-—=k. Then we may take above p=1 and r,=r.
and (iii) follows.

Case 2b. ¢, = forall =L Then K =r.and we may takep =rand ry, = = f-p =1
Then (ii) holds.

Cuase 3. a'= b, —a. Then ¢ = for some »—=k. and as in case 2a we deduce
that (i) holds.

Case 4. b, =a. Then ¢, =r for at least r values of . and (iv) holds since in
this case any system (rg.. .'“',,)F V., may be taken.

I1. Let either (a) or (b) hold. Put w=min (m. 2 ="' +1). Let |S| =a: [S] =
= X'(p=m)I{p). Then [S] = X(v=n)I'(v) (partition 4). where

I(v)y=1(v) for 1 =v=un.

Then. by Lemma 3B. thereisaset 77 = Z'(i = /) S, — S such that 4 is super-canonical
in (Sg.. SA{]: IS,| = a,=a = |T| for /=1 and r =a, = =a,. This means that there
is a function f¢F,, such that A<I'(f(rq..r,)) whenever A<[TT:[AS; |=r, for
=P Ay= x Ll f'l,,}--' v,
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Case 1. (a) holds. Then n=2-', and there is v—=n such that f(r,..r,) =V
for all (rg..7,)€V,. Then

[TYIM = [Ty = @3 | TI=a=bh,,

so that the requirement for (4) is satisfied.

Case 2. (b) holds. Then n=m. and I'(v)=I(v) for v<m. There is /, = [ such
that for every v =m we have either b, =a or b, =a, . If (i) holds then we can choose
X €1S,,..)~ for z=k. Put X = X(2x<=k)X.. Then |[X|=b, and [X]/(v)= O as
required by (4). If (ii) holds then we choose x; € S; for 2=/ and put X = |x,.. X,
Then |X a'=b: [X)I(v)= . If (iii) holds then |S, |=b, and [S ] /(v)= .
If (iv) holds then |T|=a=h, and [T]I(v)= . This proves Theorem 23.

18.9. Let r=3: I =¢- 21, By Theorem 23 there is a least finite number
h=[*(r.c) such that whenever ¢ ~a = ¥,. then a-+[b.(a).]. The choice of a is
irrelevant. The value of f*(r. ¢) can be found by solving a finite combinatorial
problem which we are unable to do. We have only very incomplete results which
we do not propose to discuss in this paper.

18. 10. Let us now return to partition relations whose left hand side is a cardinal
of the first kind. As has already been pointed out our results here are rather incomplete.
First a “'stepping up™ proposition.

(=) THrorem 24, Let

(6) r=l; a=R, - h.,..ﬁ,u'-m
Then a-+1b.)s<,. implies a* -[b, + l]::.:n.

The proof is parallel to that of Lemma 2 and is omitted. One might conjecture
that. in analogy to Lemma 5. under the hypothesis (6) and some other fairly wide
assumptions

(7) a-[bJicw implies a*-[b,+ 1]t

but we have only been able to prove this in very special cases.
A best possible result is given by the following theorem.

( =) THEOREM 25,
(8) N —[Ro- Res 8,

) Ny [N N 8]

Proor or (8). We have ®; ~(Ng-R;)* and hence 8, —[Rq.N;]*. 8, —
- [Rg. R;. 8,]% and (8) follows from Theorem 24. We omit the proof of (9) since
it employs a rather special method.
By Theorem 17 we have 8, +[R,)? for 2=¢= §,. Hence the conjecture (7)
would implyv that
N, IN ]2 for 2=c=¥\,;.

but we are unable to prove this relation. Thus the simplest unsolved problem here is

{ ») PrROBLEM 3.
LT Y P8
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We cannot even prove the weaker relation
N+ [85, Ry Ry, R P

We mention that the proof of the conjecture (7) would not seitle all the problems
arising in the present context. Thus we have, by Theorem 22. 8, —[8,]3. Hence.
by Theorem 24, 8, ., —[®,]3. Also, by Theorem I, 8, ,; ~(No- 8,)? l.e. 8,11~
—~[Ro» 8, % Therefore. trivially, 8,,; —[8o. R, b]* for any b. Hence one might
conjecture that a best possible negative result is

(10) R+ 1 I8 R Rl

This problem remains unsolved. and it can certainly not be settled by means of
the conjecture (7). Instead of (10) we can only prove the weaker relation

Rea1H[R2: Ry Ry a]?
which, in fact, follows from our next theorem.
(%) THEOREM 26. (i) Let a=a = Ry. Then
a*t +[8,.a. a*)’.
(i) Let a=da =N, and suppose that o —(a’,a’')*. Then

at gt ta at).

We shall prove Theorem 26 in section 19. Many further problems could be
stated here but we are not even able to give a complete discussion of the unsolved
problems. Now we turn to the relation V.

18. 11. Let |S|=a=¥, and r=1. Then there is a partition
[ST = Z'(v=w(a)],

such that |/ | =1 for v = m(a). Hence we have: If a = 8, and » = 1. then the relation

a-— [b}:.d

; . . b ..
holds if and only if. either (i) b =R, and d= [r] or (1) b=R, and d=bh. Therefore
in studying relations @ —[b]; , it suffices to consider the case c¢—=a.

() 18. 12. Consider first the case @ =a’. Then. by Theorem 1, a —(5). holds
for b, c=a. and therefore a —[b]’ ;. Hence we need only consider relations of the
form

(1) a—l[all.

where r=1 and d-=c¢<=a. Theorems 20A, 21 and 22 give an almost complete
discussion of the relation (11). We have. assuming (). a-[a]., if either
a=d=c=aor(ii)a=8,and 2" "' =d=c=R,. a-=[a]. , if either (iii)) d=d'=c
or (ivyd=a" = et and d=c, for some e. or (v) d=c. 271,

These statements follow immediately from the theorems quoted. except that re-
lating to (iii). Let us. therefore, assume thatd—=a¢ = ¢c=a. Let n=w(a"): S=
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=X'(v=n)8,:|8|=a = |5| for v=n. Then there is a partition [S]" = Z'(v=n)I,
where, for A £[S]". we have 4 £, whenever vy =min (4S5, # @)v. Now let X € [S]..
Then |[{v: XS, # @}| = a" and hence |{v: [XT],# @ }| = a’=d. This proves a-[a]’ .

If the truth of the relation ¢ —[a]’ ;. where a =¢’. is not decided by any of the
results relating to (i) —(v) above. then we have

2l =d=c=d =da~ =¥,

so that «" is inaccessible and greater than §,. Thus we do not know whether for
such an «a the relation a —[a]3 , is true or false.

18. 13. We now consider the case when ¢=«" and r=2. If @ is inaccessible
then, of course. every problem remains open. Suppose now that ¢ =¢*. By 18. 11
we need only discuss the relation et —[b]? , where h=e* and e=c=d. It follows
from Theorem 17 that e*+[e*]?, for d=¢=e. On the other hand we have, by
Theorem 2. e~ —(e)? for ¢ = ¢” and. by Theorem I. e*—~(h)? if b =e and ¢ = e. Hence
we have

(+) 18.14. Let ¢ =8,. Then

Fl

., for c¢=¢.

2
¢

et —[e]
et —[blz , for b c=e.

Furthermore, ¢* +(3)7 by Theorem 8, and d*~ —(3); for d =§,. by Theorem 2.
Hence, by an obvious transitivity property of our relations,

(%) 18.15. ¢+ +[d+*]2, for c=d=N\,.

We can also say something about the case d = 8,. By Ramsey's theorem. there
is a least number f(d) =8, such that f(d)—(3)3. Then. by the same transitivity
property, ¢*—=[f(d)}2, for ¢=R,. Hence. given d—x,=c. there exists a least
number gy(c. d) =8, such that ¢™--[gy(c. d))? ,. and we have gyle, d)=[(d).
As a corollary we obtain ¢*-+[Ry]2 , for d =8, =c. In fact it can be proved that
gole.d) = d+2. This follows easily if instead of Theorem 8§ we use a result of
P. Erpés and J. TUKEY * which states that the complete graph of power ¢* can
be decomposed into the union of ¢ trees. if c=§,.

By comparing the results proved in 18. 13, 18. 14 and 18. 15 we see that in
the case @ =g =e™ the following problem remains open:

Vet —~[d*)R, for c=d=§,.

The simplest unsolved cases are:
() PrOBLEM 3. 1. (2) 27 N5 = [8,]%,. 50
(b) 2 Ny—[NRa
? N_;—'[N]Li:,xu-

-

Problem 3. 1 (a) was known to us before we introduced the relation V. We came

* This result, for ¢= #,,. was first proved by Ernéis and Tuxey but not published. Their proot
is published in [23]
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to it when considering a problem of Uram. It seems to be the most difficult and
interesting unsolved problem on the relation V.

Added in proof (23. 111. 1965). It has been recently proved by F. RowsotrToM
that Godel's axiom of constructibility implies

N+ [81]8 0 -

18. 16. We now consider relations of the form a* —[b]2, where a=a'. It
can be seen from 18. 13— 18. 15 that the only case with b =a which still needs discuss-
ing is

(12) ?at —r[a]L g for a=c=a:d=l.
Also, the only case with ¢c=a is
(13) ?at —[d*)}, for a=d=\,.

About (12) we now prove:

() 18.17.
(14) at+[a)}, if a=d=d;

“5) ar _-[a]f.ﬂ' if a=a and ¢=a.

Proor OF (14). Let a=y,. We use the definitions and notation of 11. 3. Let
S=V(2) and m=w(a’). Then there is a partition

[S]2 = Z'(v=m)],

where 1, =[S]*{{x.y}.:xy=v] for v=m. If X=8; Dc[0,.m); |D|=d: [X]?c
cX(ve D}! then there is v=m with D [0.v). Then {x, y}. =X implies xy =v,
and

X|=M(u=v)8,, =& ) =8,

as required for a proof of (14).

Proor oF (15). By Theorem 20A. a —~[a]? ,. which implies (I5).
About (13) we prove:

18. 18. at +-[d* ]2 4, il a'=d'=d-a.
Proor. 1. Let a =8,: S=V'(%): m=w(d"). We can write
{e.o.0)i0=a=w, Ni=m] = {(0,.0,,4,): V=0,

Then [S)? = 2(v=w,I,. where the f‘ are deﬁmd as follows. If {x.y}.—S:
xp==4; X=Xg. Xp); V=005 Fm); (Xis Vis A) =(0,, 0., 4,), then {x, ¥y} €1,.

2. Let X< S; (XP=Z(veD)I,; :[0. ®,); |D=_d. Put D, ={t: 1=,
A(3v)(ve DAht€{o,.0,))} for A=m. Then |D;|=2|D|=d. If {x,y}.cX; x=
=(Xgee Xp)s ¥ =(¥g.. V), then there is veD with {x, y} €1,. Put xp=4. Then we
have: If v =y, then (x;. v,. ) =(0,.06,. A):and if x = y. then (y;. x;. ) =(p0,. a,. A,).
Hence in any case.

X elone): X ovEeD x #ys.
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3. Let x=(xg,, x,)cX. Put f(x):(fo(x_},._j:,,(x)) where, for A=m, fi(x)=x,
if x,;¢D,. and f(x)=0 otherwise. It follows from 2 that {x.y}.—X implies
f(x) #f(»). Hence, since ¢'=d’,

XI=[{f(x):xeX}| = H(A<m)(|D;] +1)=d" =d.

This proves 18. 18.
We do not know what happens when the condition a'—d" is replaced by
@' =d’. The simplest unsolved problem here is

( +) ProBrem 3. 2.
2 Ru.‘ + 1 _.—[&tu'r ili‘mz.i\’---.'

REMARKS. Our proof gives in fact more than a* +[d*]7 , for ¢’ =d =d-=a.
For the partition which put this relation into evidence is independent of d so that
it has the required property for all d simultaneously. One could ask quite generally
whether whenever it is known that a—+[g(d)]? , for some fixed a, ¢ and every member
d of a set M. it 1s then always possible to find a single partition which has the required
property simultancously for all ¢ M.

We wish to remark that one can obtain new problems of the Ramsey type
relating to the V-relation in the case of finite sets, i. e. when ¢ = ¥,. but we do not
investigate this,

Having just discussed a generalization of the ordinary partition relation 1 we
are now going to introduce a similar generalisation of the relation 11

18. 19. DrriNiTioN, The relation

a—[hlYS., (relation VI)
expresses the foliowing condition. Whenever |S|=a and
[S) = Z'(v=w(e)(r.v) for r=w.
then there are a set X< [S]” and numbers r, and vy(r) = w(c,) such that
XT(r.vo(r)) =@ for r=r,.

Clearly, by 3.2 the relations ¢ —(b); % and a — [b] ¢ are equivalent. Also, if ¢, =d,
for r=w, then the relation

a—=[Bleoe,
implies

a—[b] M

L

This shows that the relation VI leads to new problems only in cases when a—+(b)3 R0,
and here there are interesting and perhaps difficult questions. With our present
methods we cannot solve even the simplest problems. We now state some of the
simplest unsolved problems.

Prosrem 4. Is it true that. either when ¢, =8, for all r or merely when
sup {(r—w)c, = w, we have

<R
(IR

either No— [xﬂ]t“:ft"m ar EM !xﬂ]
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We can only prove the following simple result.

=Hg
m,,m"

THEOREM 27. If 2=m = then 2% -=[8,)

Proor. Let S be the set of all real numbers x in 0=x=1. For r=1 and
A=lay.a,_,}-=S put

A =flag. a,-)=|{e:o<r—1nra,,y—a,=1/r}|.

Then there is a partition
[ST = 2 (v=m)I(r.v)

such that, for 4 £[S], we have

Ael(r,v) if v=min(f(A4). m—1).

Now let X €[S]%. We shall find r, such that* [X][I(r.v) = @ for r=r, and v=m.
We proceed as follows. We may assume that X ={x,.. x,,} <. There is ro =m such
that x,, —x, =1/ry for all u=m—1. Let r=r, and v =m. Then, for all sufﬁuently
large n=uw, f(x" X diss ,\,,+,)_1 and Theorem 27 is proved. We have in
fact proved somewhat more than is stated in the theorem since our partition is in
a certain sense independent of m. If m increases by 1 then one class splits into two
classes while the other classes remain unchanged. An obvious modification of the
proof shows that, more generally, if [S|=2%0 then there are partitions

[ST = Z'(v <n)I(r, v),

for r = w, such that. given any set X € [S]% and any number v =, there is a number
ro( X, v) = such that
[XTI(r.v)2 @ for r=ryAX,v).

Since our stepping-up method does not seem to work in problems of this kind
we do not know whether

228 [l

19. FURTHER REFINEMENTS OF RELATIONS 1 AND IV

Corollary 7. with # =0 and r=3. gives 8, +(X;,4)°. Thus if [S|=8, then
there is a partition [S]* = f,+ 1, such that whenever X — S and [X)* <[, then
[X[=%8,.and if Y S and [Y]?[,, then |Y|=4. The following problem arises:
let [S|=8, and [S]® = I, +1I,. Suppose that whenever X S and [X]* < J,. then
[X|=%,. Does this imply that there always is Y S with [Y|=4 and [[Y]3], =2
or perhaps even [[Y]/,|=3? If the answer is in the affirmative then we denote

this fact by the relations
4 3 4 3
dl BT [2]] or R, "'[NI- [3]}

# It will be seen that r,. for the purpose of this proof, need only satisly a condition which
is weaker than what follows.

respectively.
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Generally we introduce the following extension of the I-relation aa(hu,,!';,,,}'
and IV-relation a—[by., b,]".

19. 1. DeriniTioN. Let, for each v—=m, the symbol I', denote either a cardinal
b, or a pair [}‘] of finite cardinals. Then the relation
‘ a—=(Tgw L)
is said to hold if the following condition is satisfied. Whenever |S|=a and [S] =
=X(v—=m)I,. then there always exist a set XS and a number v—=m such that
either I', =b,; |X|=b,; [XF1, or r‘.:[’;“]; X|=i,; |[XTL|=j,.

v

19. 2. DueriNimioN, Let ', be as in definition 19. 1. Then the relation
a--[Ty,. T,
is said to hold if the following condition is satisfied. Whenever |S|=a and [S] =
—X(v=m)I,, then there always exist a set X S and a number v—=m such that

either I',=bh,: |X|=b,: [XI,=2 or T,= [;] Xl=iy; |[XFZ(u=v)L]=],.

.
Our new relations coincide with the I-relations and the 1V-relations if all I',=b,.
Just as in the case of the relations I and 1V we shall use the obvious abbreviations
when a number of I', are equal. Clearly the genuinely new cases in which the new
relations have to be studied are of the following form. Suppose that we know that
a-i+(bhy..b,)" and that some of the b, are finite. Then we replace some of these b,
by a symbol l;:-‘] and can then usk whether the new relation. now of the form

¥
a—+(ly..T,). is true. We cannot give a systematic discussion. We are going to
prove only some isolated results relating to cases where either interesting new pheno-
mena arise of where these results help us in deciding the truth of some of the original
relations | or IV.

(#4) THeoreEM 28. If a =8, and r=3. then

at [[’; II. (a*_)‘,.f]r.

Proor. Put n=w(a*) and S=[0, n). Then we can write [S]'={Ag., 4,}..

For v=n put
Z, = {4, p=vA 4,0, v)}.
Then Z, = {A,,: 0=q,} . for some ¢ ,=v. For fixed v=n we can find. by trans-
finite construction, sets
X(v, 0. 0)c[S)-" for p=q, and o=v

such that X(v. p,0)= A, for o=¢, and ¢ =v, and
(1) X(v. @0, 00)X(v, 01, 0) =2 if (2o, 69) #(04, 01)-

Then there is a partition
[S) = 2(c=n)1,
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such that, for 4 ={vy..v, 1. =S and 1 =¢-=n, we have A</ _if and only if
g Vos =X(v,_ . 0.6) for some ¢=q, .
This partition has the desired properties. For:

1. Let B={v,.v, .= S:|[BI'Jy ++1,) =3. Then there are sets X, X, such
that {X,. X}, C[BY; v, €XoX,: Xo€L, s X €1, ;1=064=0y<n Then X;—{v,} =
X(v,, 00:00); Xi—1{v.} = X(v.. 0,,0(): (0o, 00)=(01,0¢). Then, by (1),
(Xo— (v, )X, —{v,N=@: 2(r— 1 =[B— v} =r which is a contradiction.
2. Let S’ 8: |S'|=a%; 1 =a,=n. Choose A<[S']". Then 4=A4, for some
vo =i, Then there is v with vy, 0 =v-=n: veS’t 4, —[0.v). Then 4, £7Z, and
hence 4, = A,,, for some g4=¢,. Then

X(v. 0. 09) = A\f_-u = A vo [0.v)

and therefore X(v. 0, 00) + (v} €[S]1,,. Hence [S')I, = @. and Theorem 28
follows.

RemarkS. |. Theorem 19 is a corollary of Theorem 28.

2. By arguments similar to those used in the proof of Theorem 28 it would
be easy to determine the least j(s) =w such that

: [l, 1.5- i ]r
a- = i) ] (™), +
but we omit this.

In some sense Theorem 28 is best possible. For we have

(#) Turorem 29. If a= 8, and r=3. then

e

. r+1 v : .
We note that (2) is the same as a* —-[[ - ] a“] . The proof is easy and will be

omitted. It follows from Theorems 28 and 29 that, for ¢ =8, and r=3.

® o3 )
N

Lemma 5B shows that whenever =3 and 8,., =+ 1. 8,.,)" then. for every s,
N,—H‘—'*(F“F 145, I“I'*‘)’I_h'

The question arises whether such a stepping-up method works for our generalized
relations. By an application of the Ramification Lemma we can step up the relation
(3) and obtain

(#+) TueOREM 29A. If 2=0 and r=3. then

r+r1l+s F \
Wiy e l[ 215 ] ;\*r]] for all s.
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We omit the proof. The problem whether this theorem is best possible remains
open. We cannot similarly step up the formula (4), i. e. we cannot prove that

N r+l+s s
Nysq+st 345 "&:‘l"l y

not even in the simplest case a=0; r=3; s=1.

In what follows we restrict ourselves for the sake of brevity to the generalized
I-relation.

Consider the formula

3

where r =3 and a=a’". We mention without proof that if @ is accessible then, by
means of the usual methods, one can prove that the least j for which (5) holds is
again j=3 the case a=a"=8,. The following result covers.

(%) Tueorem 30. Let a =a" and r=3. Then

(6) -+ [lft I]. cr] . provided that o —~(a’, &'

& a*”; +|]’

Proor oF (6). Let |S|=a: [S] = I(0)+I(1) (partition A). Let w(a):r
Then, by Lemma 3B, there isaset " = X'(v=n) S, < Ssuch that 8, =S, =S| =a
for v=n. and 4 is supercanonical in (S,.. §, ) Thi'; medm lh‘n there Is f“o F)=2

such that 4 £/ f(ry.. r,)) whenever 4 £ [S’]" 44872 @)= {vgs ; |4S,,l=r;
for A=t.
Case 1. f(rg,. r) =1 whenever ro++r, = r. Then [S] —I(1); |S'|=a.

Case 2. There is (ry.. r,) with f(ry..7,) =0

Case 2a. t€{1.r}. Then, clearly, there is X&[S']¥ with [X] < /(0).

Case 2b. 1 =t—=r. Then there is =1 with r,=2. Choose X, <[5! such
that |X,S, =r, for 7€[0,7)—{o}. and |X,S,| = r,+1. Then there are exactly
r,+1 sets 4<[X,]" with |45, =r,. and all these sets 4 belong to 7(0). Hence
(X'l =r,+1=3. and (6) follows.

Proor or (7). Let § = I[ =m)S,: n=wla’): |S,|=|S| = a for v=n. Let
A S; (v AS,# @} = {vo., V)i |48, |=r, for t=2. Put g(4)=(ry.. r,). Then
there is a partition [S] = [, ';": such that

, = [SIH{d: g(A) € {2, 2). (1.2, D} ).
Then, if X =8 and [X] /. it follows that |X|=a. Now let YT S; |Y| = r+1:
g(Y)=(ross ); A=|[¥YT1|=1.

We want to deduce that 72 =4,
Case 1. r=2s. Then s=t=s5+1.
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Case la. t=s. Then there is ¢ =¢ with r,=3 and r.=2 for 1 #6. Then A1=3.

Case 1b. t = s+1. Then theie is ¢ =1 with r,=1 ana r,=2 for t#a. Then
2=1.

Case 2. r = 25+ 1. Then s+ 1=t=5-+2,
Case 2a. t = s+1. Then A=3.

Case 2b. t = s+2. Then A=2. This proves (7) and completes the Proof of
Theorem 30.

REMARK. It is worth noting that in the case of the relation (6) the stepping-up
method does not seem to work, and so the following simple problem remains

unsolved.
5 4
am+ jo= [[4]‘ Rm) .

() PROBLEM 5.
T4 5

To conclude this section we shall apply some of the results so far obtained
to prove Theorem 26 which was stated in 18. 10.

By Theorem 30,

PROOF OF THEOREM 26. We are given that a=«" and a’—(a’. @’)3. and we have
to deduce that

(8) at 4-[a"t . a. at).

5 ; 4 S
Let |S|=a*. We have, by Theorems 28 and I respectively, a++[[3].a+] and
a* +(a,.a’*)*. Hence there are partitions

[SP = !0‘5"!1 = Jt’!—i_"’!l
such that

) if Xe[S]*, then [[X]3],] <3,
(10) a*q[h]s.
(11) at [Jolss
(12) a0

We now form the new partition

[S]® = Ko+ K, +K, (partition 4),
where

Ko = Jo—1hy Ky =Ji—1y; K,=1,.
We now show that 4 has the properties required by (8).
1. Let [X1Pc K, +K,. Then |X|=a'**. For suppose that |X|=a**. Then,
by Theorem I, |X| ~(¢'".a")" and hence i’(”—-‘ g [4“3 There is X = X such

that either (i) |[X'|=¢"* and [X']°= K, =J, which contradicts (12), or (ii) |X~ |—4
and 3=|[X']}K,| = [X"]*];| which contradicts (9).

Il Acta Mathemutica XV -2
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2. Let [Y]?— K, + K,. Then |X| =a. For suppose |X|=a. Then. by Theorem 30,
r 3
1X |- l[g] (.r] , and hence there is X’ =X such that either (i) |[X'|=4 and 3=

=|[X']PK,| = |[X']*1,| which contradicts (9). or (ii) |X'|=«¢ and [X'Pc K, J,
which contradicts (11).
3. Let [X]*CKy,+K,. Then

XPcWo—1)+(Jy =) = [SPP—1y = I
and hence, by (10), |X|=<a™. Our three results 1.2 and 3 prove (8).

20. FURTHER PROBLEMS RELATED TO THE ORDINARY
PARTITION RELATION I

In this section we shall formulate some general problems concerning partitions.
Here we have no essentially new results. As applications of our results about I-relations
we shall obtain the answers to a number of simple questions and we shall point out
some interesting unsolved problems of a new type.

20.1. Let m=1, and let a.a,.b,, ¢, be cardinals, for v=m. Let |S|=a. If
a-+(by., b,) then there is a partition [S§]" = X(v=m)/, (partition 4) such that
b,4[1,], for v=m. One can ask the question whether there is a partition 4 satisfy-
ing b ¢ [1], for v=m and. in addition, having the property that whenever v <=m
and X €[S]e then a, €[[X]/,],. The fact that the answer to this question is negative
will be expressed by the relation X

B bo.. b,
(1) (a, ﬂ'g..ﬂm)_’[ ’ A]

Coss Oy

Explicitly, (1) has the following meaning: if |S|=« and [S]" = lo++fm, then
either (i) there is v=m with b, e[l ],, or (ii) there are v=m and X¢[S]* with
a, ¢ [[X]7],. It follows from this definition that the relation (1) is increasing in a
and in each a,, and decreasing in each b, and in each ¢,. Also, (1) is always true
if there is v with a,=5h,. We shall investigate the special case when (1) is of the
form

(2) (a, ay, 0) —+ [f?::‘ ii*] i

We shall write (2) more simply as

(a. ag) —=(bgy, ¢o)".
Thus the relation
(3) (a, b) —~(c. d)"

means: if |S|=a and [S]" = [, + 1, then either (1) ¢ € [{,], or (i) there is X e [S]
with b4 [[X]"1,],. The relation (3) is increasing in & and b, and decreasing in ¢ and
d. The negation of (3) is

(a. b)y—+(c.d)

and means: if |S|=a. then there is a partition [S]" = I+ 1, such that (i) ¢4 [{;],
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and (ii) whenever X < [S]4 then b < [[X]"],],. The following remarks establish connect-
ions between our new relation and the ordinary I-relation.

20.2. (i) If a +(c.d) and b=r. then (a, b)—~(c, d)".
(ii) 1If a-~(c. dy)" and d —~(b. dy)". then (a. b)-+(c. d)".

Proor oF (i). Let |S|=a and [S]" = I,+1,. Then there are two cases:

Case 1. ce[l,],-

Case 2. de[I, — Iy),. Then there is X € [S]¢ with [X]" <1, —I,. Then [X]'l, = &
and hence b4 [[X]1,],.

Proor oF (ii). Let |S|=a. Then there is a partition [S]" = I;+ /7, such that
c¢é [1,), and dyd [1,],. Let X£[S])". Then there are two cases:

Case 1. be[[X)],],.

Case 2. dy€[[X]1,],. Then dyc[[X]1,], = [{,], which is a contradiction. This
proves 20. 2.

As corollary of 20.2 and Theorem 1 we have for r=2:

(%) 20.3.

(i) (a,2)~(c,d)* if a=n, and ¢c.d=a.

(i1) (a. b)-+(a, a)* if b=a and « is infinite and not inaccessible.

(i) (R,. 2) = (Nergay »N,)* except possibly when cr (a) =0 and R, is inaccessible.

(iv) (8,2 Rerey) (X5 5y, 8,7 except possibly when cr (2) =0 and N, is

inaccessible.

ProOOF OF (i). By Theorem I, a—(c. d)>. Hence the conclusion follows from
20. 2 (i).

PROOF OF (ii). Put @ = §,. By Theorem I we have a—~(a, 8% ,))? and a - (b, 8% ()3,
and the conclusion follows from 20. 2 (ii).

ProOF OF (iii). By Theorem 1. 8, (8. . 8,)°. and the conclusion follows
from 20. 2 (i).

PROOF OF (iv). By Theorem I we have N, (8, 8,0 and R, = (Rerm)» 8%
and the conclusion follows from 20. 2 (ii).

The results just proved show that here we get new problems concerning the
relation (3) only if « =d =¥, and cr (2) =% = 1. Thus we have to investigate the cases

(i) a=8p.,. where f=cf(f),
and

(i) a=a'.
In case (i) we have no further results and the following are the simplest of the open
problems:

(+) PROBLEM 0.

T (Rpr1a 81) =By Buu 1)
? (851 R) = (8 Rus)? for 2=n<w.

In fact we cannot even decide whether (8, . 8,) —~(8,, 8,)? holds for any n=.
This problem seems to be interesting and difficult. There are many classes of problems
where the first difficulty arises for the cardinal 8, ,. We shall formulate some of

P
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these in connection with polarized partition relations. Here we are going to formulate
another unsolved problem belonging into the gencral field under dicsussion.

ProsLEM 7. Let [S|=8,., and [S]? +1,. Supposc that whenever
Xe[S, then ¥, €[[X]*/,],. Does this imply Ihdl o1 €111:7

It follows from the definition of the relation (1) 1h‘1t if
2‘{1 Nm-t—l]2

Ny 150, 8y) N Xy

then the answer to the question in Problem 7 is in the affirmative.

Let us return to the relation (3). We want to consider the case ¢ =a’. Here
we have the following results which often allow us to reduce the cardinals which
enter a relation under discussion.

20. 4. Let r=1 and a=a'.

(i) If (a. b) —=(c, a)". then (a’, b) ~(c. a’)".
(%) () If c=a and (d’. b)—=(c.a’). then (a.by)—(c.a). where b,=b if
either r=2 or h=8,, and b, = (b—1){r—1)+ 1 otherwise.
Proor. Let w(a)y=n: |S|=a: N=][0.n).

PrOOF OF {I Let [NI"=I5+'17: § =2"(v=n)S,: |S,| =S, =a for p<=v=<n.

Then [S]" = I,+"1,, where
Iy = Z({vos Ve 1} ETG)S0os S JF2
Then we have the following cases:

Case 1. c€[ly),. Then there is X£[S]) with [X]"—1,. Put N = {v: XS, = & }.
Then |N’|=c: [NTCI; cell],.

Case 2. There is X€[S]* with b&[[X]1o],. Put N'={v: XS, # @}. Then
IN’| =d.

Case 2a. bC[[N'T'I}],. Then there is N”¢[N’]" with [N”]"—1I;. Then there
are x, € XS, for ve N”. Put X' ={x,: vEN"}. Then X" [X]; [X']" = Iy: be [[X]'1,),
which is a contradiction.

Case 2b. b4 [[N']'I;],. This proves (i). We did not require ( %) for this part.

Proor or (i1). Let [S]" = I, + 1, (partition 4). Then, by Lemma 3, there is
aset "= 2X(v=n)S,cS with c=1[S,|<=|S,/ =|§"|=a for p<=v<=n, such that 4
is canonical in (S,., .§,,). Chuo:«. x, €8, for v=n. Then [N]" = I5+'I{, where
s -}_-{_\-‘0..1',_,_}<: Fvors Xy} EXg ) "We have the cases:

Case 1. ce[I}],. Then lhere is N"€[N]e with [N']"—I}. Put X={x
Then |X|=¢; [X]'Cly; c€[L],.

Case 2. There is N'¢[N]* with b [[f ]’If,‘], Put X=X(veN")S,. Then
|X|=a.Let X’ = X; [XJ=I,. Pt N"={v: X'S, = ). Then [N =I%; N"<N’,
and hence N7 =h.

Case 2a. |\ X'S,|=r for veN".

Case 2al. b=4y,. Then |X’|‘_‘-‘|;’\"”' )= (b— 1) (r—1)=bg: bot [[XT'T4],.

Case 2a2. b=8,. Then [ X'|=|N"|(r—1)<b = by: by 4 [[X11,],-

L vEN').

Xye
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Case 2b. | X'S,|=r for some vEN". Then, since 4 is canonical, we have
[S) iy |8, =e: ec[ly],. This proves (ii).
The following is a corollary of 20. 4.

20.5. Let r=1 and ¢=a’. Then
(i) (a.a’*)—~(c,a) for ¢c=a:
(ii) (a.a’)+(c. a) for c=a'.
To prove (i) we notice that, trivially. (¢". a’*) —(e. )", and 20. 4 (ii) gives the result.

ProOOF or (ii). If (a. @) —~(c. a)" then, by 20. 4 (i), (¢'. a') —~(c. a’)". But this is
obviously false as is shown by the partition in which /, = @.

It follows from 20. 5 that if "= ¢ —=a. then the relation (a. b) —(¢, @) holds if
and only if h=d'.

The first unsolved problems arise for ¢ =x,, ., . when ¢'=8,,,. We have,
by 20. 5 (ii), (&, a’) (¢, @)? for ¢ = «’. The question is to decide if this is best possible.
By 20.3 (i) we have (¢’.d¢'")+(a’. a’)? and hence. by 20.4 (i), (a.a' ") +(a’, a)?
which does not vet answer our question. The following problems remain open:

? [.&m.., PR b I] A [_&g; ] Rr'l.“ & l)::
I-] (R(u‘,,x 13 NI)_’(xn‘ Rr-z‘..a.;Jz

for 2=n<w. By 20. 4 this reduces to Problem 6.
Consider now the case r=3. Here we have the following nontrivial results.

() 20.6. If 3=bh=c¢—=wm. then

(i) (a*, b)y—(c.at)? if a=yx,:

(ii) (a. b) —+(c. a)? if a=a=a'~
The proof of (i) can be conducted by induction on ¢, and (ii) follows from (i) by
means of 20. 4. We omit the details in order to save space.

By comparing these relations with trivial applications of 20. 2 we see that the
following are among the simplest problems that remain unsolved.

(+) PrOBLEM K.
? (N3, No) = (8, N3)?,

7 (N2, 4 (8, 83,

? (82, Ro) (8. Nl)]-
Finally we formulate a typical instance of another class of unsolved problems for
F=3,

(%) ProBLEM 9. Let [S|=8,. Does there exist a partition [S]? = [, +1,
such that:

(1) Ny 4 [L]5 Tor v=2:
(i1) whenever X e [S]%. then there are sets X,, X, € [X]% such that [X ]} =1,
for v-=27
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REMARK. We know that there is a 3-partition such that (i) holds since, by Theorem
I, 8, + (R, 8,)% Also, the formula R — (8¢, 8o)® implies that whenever X € [S]%
then either X, or X, exists satisfying the requirement stated in (ii). But it does not
necessarily follow that both, X, and X,. always exist simultaneously.

PART 11
POLARIZED PARTITIONS

We are now going to discuss relations of the form

a nrf,.ai]’-’
bl by, b,
which will briefly be denoted by
o (i’o . Ifi'! ]
b by, b, )"
The commas will be omitted whenever possible. When any of a. b, a,. b, are infinite,

we shall always put
a=R8,; b=8;: a,=8,: b,=¥8;,.

It will be shown that if @, b=8, then the discussion of the general case can be
reduced to that of the two special cases x=f and x+1 = . We shall also discuss
the “‘relation with alternatives”

o Uo Vg, vy
“\bgvby. byvby
which was defined in 3. 3.

21. PRELIMINARIES

21. 1. Dernmions. Let ST= 2. We shall write instead of [S, T]':'. which
was defined in Section 2. the symbol [S. 7). Let

(1) [S.7] =1,+1,.

Relative to a partition (1) we put. for x,€S:y,£T:v=2,
P(xg) = T{y: {x5. VI €L},
0.(3o) = S{x:{x,yo}€1l,}.

Also, [1,] denotes the set of all pairs (¢, d) such that there are sets X¢€[S]° and
Ye[T)H with* [X, Y] =L,
First we prove a negative result.

21. 2. [‘;] +-{” i L (II] for a=0.

* It will always be clear from the context to which partition (1) these notions refer.
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PrOOF. Let w(a)=n; S={xq,, Xo} 23 T={Vos Vu) 23 ST=;
[S. 7] = I, +'1,,
where Iy ={{x,,»,}: u=v=n}. Let u,v<n. Then
Qo =lv+11=a;  |Py(x)=lul <.
This proves the result. The case =/ is closely connected with the theory of set
mappings.

21. 3. DeriNiTION, Let | S| =4. A set mapping on S is a function f: S—+P(S)
such that x4 f(x) for x £S. The set mapping is of order p if |f(x)| =p for x€S.
If S’ S then we put f{(S")=X(x=S")f(x). The set §” is called f~free if S’/(S")= &

21.4. A set family (A4,:vEN) is said to possess the property D(c, d) if
N’ [N]e implies [[T(v£N")A,| =d. We express this by writing (A,: vE N)€D(e, d).
The set mapping f(x) on S has the property D(e,d) whenever the set family
(f(x): x£S)eD(c. d). The property D(c.d). with a different notation, was intro-
duced in [29]. p. 871. definition (1. 3).

For the sake of brevity we introduce the following definition

21. 5. DrrniTioN. The relation
(2) a—[[p.c.d q]]

expresses the following condition. Whenever |S|=g¢. and f is a set mapping on S
of order p having the property D(c, d). then there exists a f-free set of cardinal 4.
It follows that the relation (2) is increasing in @ and decreasing in each of p. c. d. g.
The relation (2). in a different notation. was introduced in [14], p. 281. We need

(#) LemMA 7. Let a=a’ and |S| =a*. Then there is a set family F=(A,: vEN)
such that:

() N|=at: (i) A, £[S)° for vEN;: (iii) FED(2, a): (iv) whenerer N'€[N]°",
then |S—Z(veEN)A,| =a*.

CoroLLaRry. IT ¢=a" then a* —[[a.* 2,a, a*]]. Lemma 7 is a theorem of
A. HaNarL [14]. We shdll apply it to obtain partition relations, and we shall also
deduce further results on set mappings. Some of the open pmblems stated in [14]
will be settled. In section 27 we shall return to the theory of set mappings and shall
formulate the simplest problems which still remain unsolved.

As a corollary of Lemma 7 we have

i
() Tureorem 31, If a=a" then [ ] [a+ gtﬁ "

PrOOF. Let n=wla"):
S_l\f) lujt: T lJU n}#‘ ST: 'Z

Let the family F=(4,: vcN) have the properties stated in Lemma 7. By (i) and
(iii) we can write {4 :veN] =!F,.. F,}.. Then we have

[S.T] = I, +'1, (partition 4),
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where /; = {{x,.¥,}:x,€F,}. Then 4 has the required properties. For let 7" € [T]*".
Put ' = {F,: y,€T’}. Then |F'|=a™* and hence, by (iv), |S—Z(»,£T7)0,(»)| =
= |S—X(F,eF)F,|=a*. Hence. if S’ S and [S".T']<1,. then |S’|=a*. On
the other hand. by (iii), [Q,(y,)0(y) = |F F,|=a for p=v=n and, by (i),
|O,(y,)|=a* for v—=n. This proves Thcorem 31.

RemMARK. If a=a’" then the conclusion of Theorem 31 is in general false. We
shall return to this point later.

(%) Tueorem 32, If a= N, then. putting b=a*, we have

b bva,bva
) [b] "*[a vh,av b] :
Proor. Let S and T be as in the preceding proof. By Theorem 17A there is
a partition [S]? = I)+ 17 such that, whenever S'c[S]": S"€[S—S]: A<2,
then [S”, S”|I} # @. Then the partition [S. 7] = I,+"I,. defined by

‘!0 - { :_'\‘ﬂ' J.\':: {'\‘.’..ﬂ‘ 'x‘2|‘+1} € "S]‘
has the properties required by (3), and Theorem 32 follows.

(# ) CorROLLARY 16. If a=N, then

a a a
at) " \at at )"

We shall need the following theorem of A. TARSKI®,

() Lemma 8. Let a. h=Ry: |S|=a; F=(4,:vEN); IN|=a*; A,€[S]=® for
veN, Then

() if «" =b" then Fé& D(a™*. b):
(i) if c=b then F&D(a*, ¢).

22. POSITIVE RESULTS FOR THE CASES z=fi AND a+1 = f

() TuroreMm 33. If a =R, and a, =a. then {;] -*(E; EL]

Proor. Case 1. a=8,. The result is trivial for ¢, =0. The conclusion would
follow for all a, if we can prove the following more general proposition:

If a=N8y; c=a<b'; [g].[g ;}]

he {.'] ('u c+ 1
then b - h h .
Proor or (4). Let ST= . |S|=a: |T|=b;

i

[S.T] = I, +1,; (a.b)q [l

(4)

* [15] p. 211 Theorem 51, and p. 213 Corollary 6 for (i) and (ii) respectively.
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Then there are X,€[S]° and Y £[T]" with [X,. Y,]ci,. Put ¥, = Y,—
—Z(X€S—X ) Py(x). Then [S—X,. Yl |S—Xs| =a; |Y,|=b;
[Z(xeS—Xg) YoPi(x) = b |S—X,| = a=»b". and hence there is x, €S — X, with
|YoPi(xo) =bh. Then [Xo+ {xo}, YoPi(x) 11 [ Xo+ {x0)| = ¢+ 1,and (4) follows.

Cuse 2. a= R o We define a, as follows. If ¢ =a" then ay =dy, and if a=a’
then @, = af +a'*. Then in any case. 4, =a, =« and a:=a’. Put a* =b. Let
ST=g¢;

|S|=a; |TI=b; [S.T]=I+1,.

Put To=T{y: |Q:(»)| = a,};: F=(0,(»): y€T,).
Case 2a. F{ D(b. a,). Then there is T, € [T,]" such that [H(y<T,)0,(»)| =a,.
Then
T(yeT)Oy(»). T\ =12 (ay, DY)

Case 2b. Fe D(b. a,). Then, by Lemma 8 (i), |7,/ =b, and hence |T — =
Since a3 =a. there is a partition S=2X"(y=m)S, with |S,|=a for p=m. whcrc
m=wm(ay). But |Q,(v)| =a, for y¢ T—T,. Hence, given y¢ T — T, there is u(y) =m
with S,,,0,(y)= 3. Then there are a number p,=m and a set Y,€[T—T,)
such that u(y)=p, for ye¥,. Put Xo=S5,. Then |Xo|=a: X,0,(y)=@ for
yeYy. and [X,, Yol (a. b)£[1y]. and Theorem 33 follows.

Our next theorem is now almost trivial.

a a a

Tueorem 34. Let ¢c=No=a. Then [a*] - [a* {,].

Proor. Let this be true for ¢ = ¢; =8,. It suffices to deduce that it holds
for ¢ = ¢cy+1. Let |S|=a; |T|=a*t: ST=@; [S8.T] = I,+'I,; (a,a")¢ 1]
Then there are sets S"€[S]*; T7€[T]o with [S", T']={,.

Case 1. |8°Qy(y)| <a for ye T—T". Put

T(ag) = (T—T){y:|S'O(y) =a,} for a,=a.

Then there is ay—«a with [T(ay) =a*. We can write $* = X’(u=m)S,. where
m=aw (uoj and [S,| =a for p=m. If y € T(a,) then [S"Q,(»)| = ay<|m], and hence
there is u(y)=m with S,,,0,(y)= @. Then there are Y,<[T(ay)]*" and py=m
with p(y)=p, for reY,. Put X(,—SM Then X,0,(yv)=@ for yeY,, and
[Xo. Yol I,y: (a.at)e[1,] which is a contradiction.

Case 2. There 1s yoe T— T with |S'Q,(yy) =a. Then
[S'O(yve). T"+{3ell s (a, co+1)ELL).
and Theorem 34 follows.

LemMa 9. Ler f(x) be a set mapping of order p on S. where |S| = a= ¥, and
p—=a. Then there exists a f-free set of cardinal a.
This lemma was first proved by P. ERDGs using (= ). It can be proved without

assuming (= ). See [16] and [17].
A corollary of Lemma 9 is

i a al
Trurorem 35, If a=R, and by =a. then (G] —-[a h|J'
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PROOF. Let n=w(a); S ={Xo,. X,} 21 T={Y0,. V) »: ST= D[S, T] = Ly +'];.
Assume that (1. h,)4[/,]. Define a set mapping / on [0.n) by putting

() = ([0.n) —{u}) {v:y, e Py(x,)} for p=n.

Then [f(10)] = [Py(x,)|=b, for p=n, and by Lemma 9 there is a f-free set
N[0, m)] Then »4& Pi(x,) for u.veN” and hence [{x,:ueN}. {y:veN|] 1y
(a. a)€[1,], and Theorem 35 follows.

() THEOREM 36. Let a=a" and d* =a. Then a—[[a, a, d, a]].

ProOF. Let this be false. Then there is a set mapping f of order « on a set S,
where |[S|=a. such that € D(a. d) and, at the same time. there is no ftrec set of

cardinal a. Put n=w(d"). We define sets S, .. .S' Let v=n. and let S,.. S, €[S]"
We now define S,. Put S; = S,+ + Sv; Si*=/(S). Since a=a’ we have |S¥ =a
and [ST* =a. Hence SV = S—(S5/+S7%)#@. Let S, be a maximal f-free
subset of §7. Then 1=[S8,|=¢ and S,S, = & for p=v. This defines S;.,S,. Put
8F = SU+—1—S,, and S** =f(S*). Then S*|=|n| = d*. Also, since |n| =a, we
have |§*-+ §**%|<g. Put T'= S—(5*4+ §**), Then |T|=a. Let x¢7. Then, by
the maximality of S,. we have f(x)S,= @ for v=n. Hence. for x<7.

f(xX)S*] = Z(v=n)f(X)S,|=d".
Put |S*| =ec.
Case 1. ¢* =a. Then |{f(x)S*:xeT}|=25"T=¢* =g, and therc are a set
T"e[T] and a set A<[S]7¢" such that f(x)S* =4 for x£77. Then
[T (xeTYf(x)S*| = |A|=d*t

which contradicts the hypothesis ¢ D(a. d).

Case 2. ¢ =a. Then ¢* =q. Consider the family F=(/(x)S*: x<7). Since
feD(a, d)y=D(c*,d), we have FED(c*.d). On the other hand an application of
Lemma 8 (ii), with a, b, ¢, S. Nin the Lemma replaced by ¢. d7. d. S*. Trespectively.
yields Fi4 D(c*. d). This contradiction proves Theorem 36.

() Turorem 37. Let a=a'. Then
(i) a—[la, a.d a for d=a;
(i1) a-[la.a, 1. a "]].

Part (i) can be deduced from Theorem 36 in the usual way by means of Lemma 3,
and part (i) is established by means of a trivial “canonical”™ counter example. Since
Theorem 37 will not be used in our discussion we omit the proof.

() THEOREM 38, [f a=8, and ¢f. ¢ =a, then
a a, av
a, ¢y v ﬂ.

Proor. Let n=wm(a); N=[0,n): S={xg.. X, =: T=1{14..7
[S, T] = [0 _5_’]1‘
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Case 1. a=a’. We define set mappings f, and f;, on N as follows.
So) =10, v) {p: x,€ Qy(p,)} for v=n;
S =10, p) {v: y, € Py(x,)] for p=n.

Then f, and [, are of order a.

Case la. fy4 D(a. cy). Then there is N e[N]* with [IT(vEN")fo(v)| =¢,. Put
X'=IEeN)O((y) and Y'={y. veEN'}. Then [X', Y']cI: | X' |=cy: |Y|=a;
(co. a)e[ly].

Case |b. fi¢ D(a. ¢)). Then, by symmetry. (a, ¢,) € [/,].

Case lc. f.€D(a. ¢,) for »=2. Then, by Theorem 36. there is a set N, &[N}
which is f,-free. By applying Theorem 36 to the set mapping N,f,(1) we obtain
a set N, €[Ng]* which is both f,-free and f,-free. Let N,:f}.f,..f.,,}c; ¥
={x;, - u=n}; Y={y, ,v<n}. Let x,€X and y €Y. If o<t then o¢fy(1);
X, T Oy(y) and if 6 =1 then t=0: 14 fi(o): y.4 Py(x,). In either case, {x,. ¥, c/,.
Hence [X, Y] 1y; (a. a)e[l,).

Case 2. a=a'. Let p=w(a’) and
Co. € =lg = = r?,_, =da = sup(e=p)a,.
By Lemma 3A there are sets S,. 7, and numbers /i(g, 7) =2 suchthat X (¢ =90) S5, = S;

Flo=0)T,cT;
|8 =IT,| =a, for o=,

and
[S:: Tl hie for o, 1 =0.
Let
U={up,, h,}2; W={wy,, w,}u; UW=g@.
Then
[U, W] = I§+"IF
where

* o — 0t
Iy ={{u,, w,}: (g, 1) =0}.

Since « is regular we have, by case 1,

a a,a vl
(7’ — ﬂ". l V a-ﬂ M
Then there are the following cases:

Case 2ua. (a’,a’)€[I;]. Then there are sets Uyc[UJ* and W,e[W]* with
[Uy. Wol= 1§, Put Xy=Z2(u,cU,)S, and Y,=X(w, € W) T.. Then

[Xo. Yol =lo: |Xol=[Yol=a: (a,a)€[lo].

Case 2b. (a’. 1)€[I{]. Then there are a set U, €[U]* and an element w_ ¢ W
with [Uy, {wj]cIf. Put X,=2Z(u,€Uq)S, and Yy=T,. Then [Xy, Yolcl;;
|[Xol=a; Yol =a,=c,: (a, c)) €[]

Case 2c. (1, a’) € [I7]. Then, by symmetry, (¢, @) € [1,]. This proves Theorem 38.
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(+) THEOREM 39. If a= R, then
at a,at va
at) \a.ava*t )
Proor. We shall deal with the cases ¢ =« and ¢=a" simultaneously. Put

e=od): n=wl@): m=ol@*). Lt XoYo=0; [Xo|=|Yol=a": [X,, Yo] =
= I,+'1,. We assume that

(5) (at.a). (a.a™)4 1]

and we shall deduce that (¢, a)€[[;). If a=a’ then we choose ay.. 4, with ¢,=a;
for ¢ =0 and

(6) d'=ay == (5,_, =a = sup (6 =g)a,.

If 42[X,)° and B<[Y,]*". then

[A. B—X(xcA)Py(x) = 1.
Hence. by (5).

(7) |[B—E(x£A)Py(x) = a.
By symmetry, if 4<[X,]*" and B&[Y,]% then

(8) [A=2(yeB) Qo) = a.
Now let

Ae[Xp): BelYol': d=p=p'=a.

We shall show that there are a set A*P(A4) and a function U(X) from A* into
P(B) such that

(9 |A*| =a;
(10) A~ [A4)F;
(11) [X. U(X)] =1, for XeA*;
(12) IB—I(XCAX)U(X)| = a.

This is a generalizaton of Theorem 33 for the case a=a’. In the proof that follows
we cannot apply Lemma 8 directly but our proof is based on the same ideas as
Tarski's proof in the corresponding case.

Put Y, = Bly: |AQu(y) =p| and Y, = B—Y,. If we assume that |Y,|=a"
then. since by Theorem 34 lz+]—»[(|1;:+]. it follows from [A. Y,|=[,+{, that
either (a. 1)=[[4. Y,]/,] which contradicts the definition of ¥,., or (a.a™)¢
c[[A4. ¥Y,14,] which contradicts (5). Hence |Y,|=a. There is a partition 4 =
=L'(6=0)A, with [4,/=a, for ¢6=90. Put A" = Z(c=0)[4,]7. Then [A*|=
=ZX(e=0)aP=aq. and (9) and (10) hold. We put U(X) = Y,{y: X = AQy(»)} for
XEA* If, now, y£ Y, then there is X € A~ with y € U(X). For otherwise |4, Qq(y) =p
for ¢ = ¢ and. using the definition of ¥, and the fact that |g| =a'=p =p’. we obtain
the contradiction p =[404(y) = Z(6=0)|4,04(») = p. This shows that ¥, =
= D(XSA)U(X). and (11) and (12) follow. By symmetry we have: If 4<[X]°";
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Be Y] @' =p=p'=a, then there are a set B* —P(B) and a function V(YY) from
B* irto P(A) such that

(13) IB*| =a;
(14) B+~ [B]?:
(15) [V(Y). Y]cl, for YeB*;
(16) lA—2(YEBH) V(Y)Y = a
Let X, =/ t\u \'m}i: Yo =120 Pm}n; S=[0.m). For X=X,; Y Y,; S'cS
put M(X) = {p: x,€X}: M(Y) = {v ¥, FY’

X(8) = {xipeSh; Y(S) = {yivesT.

We now define a ramification system R on § of length ¢ and order n. We use
the notation of Lemma 1. Let ¢ =9. We assume that for t=¢ and v,..v.=n the
sets F(vy., v,) and S(v,..v.) have already been defined. Now let v,.. v, =n. We
have to define F(v,..v,) and S(vq4., v,) for v, =n. Throughout the rest of the whole
proof we abbreviate, whenever possible, the sequence v,.. v, to the single letter v.
If | S’(v)] =a then we put F{v)=S'(v)and S(v.v,)= @ for v, =n. Nowlet |S'(v)| =a™.
We recall that ordinals of the form 2/ are called even and those of the form 2/ 41
odd.

Case 1. a=a'.

Case la. ¢ even. Then we choose
Ro(v) = {x (0 )t vp =)o < [X(S (D]
Put
E\(v) = Y(S'(v)) — Z (v, <n) Py(x(v, ¥%,));
R(v) = M(Ry(v)); E(v) = M(E,(v)); F(v) = R(v)+E(v).
Then S'(v)— F(v) = X(v, =n)S(v,v,), where
S(v.v,) = S'OMM(Po(x(v,v,)))— F(v) for v, =n.
This follows by a straightforward application of the definitions given above.
Case 1b. ¢ odd. Then choose

Ri(v) = {y(v, v,): v, <n}. c[Y(S'(v))].
Put .
Eo(v) = X(S'(v) = Z(v,=m) Qo ¥ (v, v,)):

R(vy = M(R,("): E() = M(E,(v): F(v) = R(v)+E(v).
Then S'(v)— F(v) = Z(v,=n)S(v,v,), where
S(v,v,) = S‘OIM(Qu(y(v.v,)))— F(v) for v, <=n.

This follows by symmetry from case la.
Case 2. a=d'.
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Case 2a. ¢ even. Then choose Ry(v) €[X(S'(v))] . Let*
A*(v) = {X(v,v,): v, =n)}

be a subset of P(Ry(v)) and U(v, X) a function on A*(v) such that (9)—(12) hold
for A*=A*(v): U(X)=U(v. X);

A=Ry(v); B=Y(S'("); p=a,.
Put :
E\(v) = Y(S'(v)—Z(v,=n) U(v. X(v. v,)):
R(v) = M(Ry(v)); E(v) = M(E(v)); F(v) = R(v)+E(v).
Then S'(v)—F(v) = 2 (v, =n)S(v, v,), where
S(v.v,) = M(U(v, X(v.v,)))— F(v) for v, =n.

This follows from our definitions.
Case 2b. ¢ odd. Then choose R,(v)€[Y(S'()]". Let

B*(v) = {Y(v,v,): v, =n}
be a subset of P(R,(v)) and ¥ (v, ¥) a function on B*(v) such that (13)—(16) hold
for B*=B*(v): V(Y)=V(v, Y):

A=X(S'(v)): B=R,(v): p=a

Put .
Ey(v) = X(S'(W)—Z(vy=n) V(v. Y(v,v,)):
R(v) = M(R,(v)); E(v) = M(Ey()); F(») = R(»)+E(®).
Then S'(v)— F(v) = X(v, =n) S(v, v,), where
S(v,v,) = M(V(v, Y(v,v)))— F(v) for v, =mn.

This follows by symmetry from case 2a. We have completed the definition of the
ramification system R on S and, irrespective whether a=a" or a=a'.
(17) R is of length ¢ and of order n.
We now define for v,<=n a set f(v.v,)=— R(v). If |S'(v)]=a then we put
flv.v)=@. Now let |S'(v)|=a*.
Case 1. a=da'.
Case la. o even. Then put f(v, v,) = M({x(v,v,)}). Then
S v ) T M(Ry(v)) = R(v).
Case 1b. o odd. Then put f(v,v,)=M({y(v,v,)}). Then
f(v.v,) S M(R(v)) = R(v).

Case 11. a=a'.

* There is no risk of confusing the [unction X(S’) defined for subsets §” of §, and the function
X(v,vg) defined for sequences vy, v.. Similarly later with Y(S') and ¥(v, v.).
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Case lla. ¢ even. Then put f(v.v,)=M(X(v,v,)). Then
S, v,) = M(Ro(v)) = R(v).

Case 11b. ¢ odd. Then put f(v,v,)=M(Y(v,v,)). Then
S, v) © M(R,(¥)) = R(v).

This completes the definition of f(v. v,) for ¢ =¢ and v,,, v, <n. We have in any
of our cases

F(v) = RO +E@W): f(v, v,) ZR()
and. by definition,

(18) [R(v)| =a.
We also have
(19) E(W) =a.

For in case 1 this follows from (7) and (8). and in case 2 from (12) and (16). Now
we have, using (17). (18) and (19),

IS|=a*; lel=a*; |nj<=a*; |F(v)|=a*.
Hence Lemma 1 (v) applies to R and yields numbers v,.. v,<n such that
Me=0)S(v,v,)# @.
From now on vg..v, are fixed. Put Z, =f(v.v,) for 6 =p:
So = {2r:1<p}; S; = {2t+1:7<0};
X*=2(eSp)X(Z,): Y* =2(ceS)Y(Z).
To complete the proof it suffices to show that
(20) X*e[Xol® Y*e[Yol%
(21) [X*, Y*]cI,.
PrROOF OF (20). X*—X,: Y ¥,. By Lemma 1 (i),
R(vgs V) R(vp. V) = & for 6=1=0.
Case A. a=a’. Then |Z,|=|f(v,v,)|=1 and hence
|X*| =180l =a: [Y*[=|S|=a.

Case B. a=a'. Let 6=9. If @ is even then. by definition of f(v, v,) and (10),
|Z,| = |M(X(v.v,)) = a,, and if ¢ is odd then |Z,|=|M(Y(v,v,)) = a,. Hence

T

| X*|=X(g€ Spa,=a; |Y*| =2Z(g€ S))a,=a.

Proor or (21). Let ¢€Sy: t£5,. Then ¢ #1. It suffices to show that
(22) [X(Z,), Y(Z)]< 1.

Case 7. a=r1. Then

Z, = f(rgss v) T R(Vgss VYT S (Vo V) S(vgss 1)
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Case «1, . Then

[X(Z,). Y(Zr]]':[[v\‘(l‘gu Vo) Y(S(vou v [{x (v, v)} Y(M(Po(x(v. v)))] =
= [x(v, vo)}s Po(x (v v D = 1o.

Case 2. a=a’. Then Z,=M(X(v,v,)) and

S(vov ) M(U(v, X(v. v,))).
Hence

Y(Z) = Y(S(vg.. v,)) = U(v, X(v, v,)).
But X(Z,)=X(v,v,). By (11). when applied to A*(v),
[X(Z,), Y(Z)l < [X(v. v,). Uy, X{v.v, N1,

This completes the proof of (22) in case «.

Case [i. T=0. Then (22) follows exactly as in case . for reasons of symmetry.
This proves Theorem 39.

As an immediate consequence of Theorem 39 we have

(-9 oo oo

In [1] it is proved that [;?] 4(:‘: ;z] Using () we shall now prove the following
generalization of this result.

(%) CoroLLARY 17.

(#) Turorem 40. If a'= 8, then

(ﬂ l la \*]'

Proor. Let |A|=a: |Bl|=a*: AB=@: [A.B] = I,+1,:
(a.a*) & [1).

In the proof that follows we shall always suppose that 4, < [A]* and B,£[B]". We
can write ¢ = dy + +a4a,, where ag,, a,=a. We define inductively D,, B,. 4,. v,
for v =w as follows. By Theorem 33 there are D, € [A]* and B, — B with [Dy, By]—1,.
By Theorem 34 there are A, A4 and y,¢ B, with [4,, {y(,,] il Genem]!y for
l=v=w: By Theorem 33 there are D,£[A4,_,]* dl'ld B,cB,_,—{y,_,} with
[D,, B,)—1,. By Theorem ?4 there are 4, - A4,_, and y,€B, with [4,, {y,)]=1,.
Put X = Do++D,; Y={yy,, ¥,}- Then X€[A]* and }—[B]Rn If r=s then
[D,.{yJ1c [D,, B)=[D,. B1—1,. If r=s then [D,, {y]=[A.. {y,}1<!, . Hence
[X,Y]=[1,, and Theorem 40 follows.

(%) Turorem 41, If a=a" and b=a. then

(6:)~(25).
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Proor. We may assume that @'=b = b'=a. Put p=w(d'). Let b=ay=<a,<
<a =sup(e=p)a,: a,=a, for a=p.

XYy = @ |Xgl=a: |Yo|=a*; [Xq, Yol = Iy +'1,.
We may suppose that
(23) (a. b) ¢ [1,].

Now let a'=p = p’=a. Let A=[X,]* and B€[Y,)* . Then there are a set A* CP(A4)
and a function U(X) from A* into P(B) such that

(24) |A*|=a;
(25) A*C [A]P;
(26) [X,U(X)] =1, for XeA*;
(27) |[B—EZ(XeAH)U(X)| = a.

The proof is identical, including the notation, with that of (9)—(12) in the proof
of Theorem 39. We now define a ramification system R on S=1Y, of length ¢ and
order n=w(a). Let ¢ =9 and v,,, v,<n. We write v in place of vg,, v,.

If [S'(v) =a then put R(v)= @ and E(v)= F(v)=S'(v) and S(v,v,)= @ for
v, =1.

Now let |S(v)| =a*. Then we choose any set R(v)€[S’(v)]*. Then there are
a set A*(v) —P(X,) and a function U(v, X) on A*(v) such that (24)—(27) hold for
A=Xy: B=S'(v)—R(v); A*=A*(v): UX)=U(v,X) and p=a,. We can write
A*(v) = {X(v,v,): v, <n}. Put S(v,v,)=U(v, X(v, v,)) for v,<n;

E(v) = S'(v)—2(v,=n)S(v.v,): F(v) = R(v)+ E(v).
Then
S'(v)— F(v) = Z(v,=n) S(v, v,).

This defines R. Lemma 1 (v) applies. For we have |S|=a%: |[p| =d =a":
In| = a=at;

|F| = IR+(E—R)| = [R+((S'(v) —R)—Z(v,=n) U(v, X (v, v,)))| =
= |R|+|(S'(V) —R)—Z(XEA*(M)U(r. X)| = a.

By Lemma 1 (v) there are vy.,v,<=n with S'(vs,.v,)# @. Fromnow on vy., v
are fixed. Let ¢ =p. Then |S'(v)|=a*. There is a one-one map

X—~H(vX)

¢

of [Xy]* onto [R(v)]“. Put
flo)=H(v, X (v, v,)).
Then f(a)€[R(v)]s. Put A,=X(v,v,); B,=/(0):

A = dy++d; B=By4+8B,
Then

(28) AE[Xo]"; BE[Y]u
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If 6=t=¢, then B, = f(1) = R(vq., V) = S'(vo.. ¥.) = S(v, v,). By (26), [X(v,v,),
U(v. X(v,v,))] = I,. Hence

(29) [4,, B]=1, for e=t<op.

By Lemma 3A there are sets 4, € [A] and B;<[B)* and numbers h(o, 1) =2 such
that A, 4. =B,B.= ¢ for ¢ =t =9, and

(30) [A7, Bl = lysy for o,71=0.
Let Mo={ug.. tl,}o: My={vg,, 0,} 23 MM,=2:

(31) [Mo, M\] =I5 +TF,
where

Iy =1{{u,.v.}: h(e.7)=0}.

a a’.a vl
a) . 1va')-
By applying this formula to the partition (31) we see that we have only to consider

the following three cases:
Case 1. There are M £[[0. 0)]* and 7, =9 such that

By Theorem 38,

hie.tq)=1 for g<M.

Then, by (30). [4". B{]=1,, where A"=Z(ccM)A,. Then |4"|=a: (a. a,,)[],]
which contradicts (23).

Case 2. There are o,=¢ and M<[[0. ¢)]* such that h(e,,1)=1 for t€ M.
Then [A,,, B']= 1. where B"=X(rc M)B:. Then |[B”|=a. Choose z,€ A; . Then
[{zo}. Bl = I,. Also, there is ¢, = o such that =, £ 4, . Hence. by (29). B" = B, + + B,,
and we obtain the contradiction

a = |B"| = |By++8,| =ay++a, <a.
Case 3. There are sets M, M"£[[0, 0)]* such that
hig.7)=0 for o&éM and 1=M".
Put A”=X(6£MNA, and B"=X(zc M")B., Then A" €[X,]*: B"£[Y,]*: [A". B =
—1,. This proves Theorem 41,

(%) Tueorem 42. If o =¥, then (i:+]_.{a H]'

ada

Proor. If ¢ =8, the assertion follows from Theorem 40. Now let a =¥, so
that a=a’ = Ro. Let [S|=a: |T|=a*; ST=2:. [S.T] = I, +1I,. The letter 4
will always denote subsets of § and the letter B subsets of 7. Assume
(32) (a, @)q [1,].

Let
dg==a,=a = ay+ +4a,: |4/=a: |Bl=a"; n=<=ow.

Then, by (32) and Theorem 33. there are 4", 8" such that

(33) A E[A): B E[BF: [4.B)=I,.
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By (32) and Theorem 41, there are A", B” such that
(34) A" €[A]*, B"e€[B}*; [A7,B"|1c1,.
We now define inductively for n = the sets

Ays Ay, An AS, By By, By, B,

Put A5=S; B =T. Let n =w, and suppose that A7 and B¥ have been defined for
v=n and that A4,. A;, A}, B,, Bi, By have been defined for v=n. Suppose also
that |A%|=a and |B;|=a*. Then, applying (33) to A=A, and B=B;, we find
A, and B, such that

(35) Ar €431 Ba€[BRl"; [4a, Bjlcl.
Applying (34) to A=A} and B=B,, we find 4, and B; such that
(36) ALE[AT]s By elBil™; [4n, Bal<l,.

Put

(37) A,=A,; Bu=By; Ay=4n Bii=5;.
This completes the inductive definition. We have, for n= o,

(38) ArDAii1y BiDBfiy: |Anl=a; |Bf|=a*;
(39) |4, =B, =a,.

Put A = Ay++A, and B = B, + + B,,. Then, by (39), |4| =|B| =a. Let m, n = .
It suffices to prove that

(40) [A4,., Bl=1,;.
If m=n then, by (37). (36), (38), (35),
A, =dAL:; B,=B,CB. =B, CB.. =8B,
[4,,, B]l=[A4,., Bl <I,.
If m=n then, by (37), (35), (38), (36),
B,=B): A,=A,cA,c A, =45,
[4,. B, =[A4;. B]1=1,.

This proves (40) and completes the proof of Theorem 42.

23. COUNTER EXAMPLES FOR THE CASES = AND 2+1 = f

(#) THEOREM 43.
i meE g o 5 a, avat
(i) If @' =Rq, then [a* +[‘7T_~ - |].

. , a, avar
() If @ =N, then “[a"', R, v l)‘
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(%) CoroLLARY 18. If a'=R,, then

(ﬁf*] [ﬂ* .'0] wd (ul l \u]

(%) CoroLLARY 19. If a'=8,, then

at) f(a a / a ) (a a
e Thet s HE Yat TNt )

Proor oF THrorReM 43. Put m=w(a) and n=w(a™). Let
ST=@; I8|=|TI=a*; T={ys.. Ftu.
By () we can write [S]*={Xy., X,}.. Put F,={X,.. X,} for v=n. We shall
define a partition [S, T] = I, + "1, by defining the sets Q,(y,) for v=n. First we
shall define elements x(v, 6) of § for v=n and ¢ =m. Let v=n and suppose that

x(u, o) has been defined for u—=v and o =m. We have to define x(v. ) for ¢ =m,.
If v=m then we choose any set

(1) (x(v, 0) X(v, )}, = S—Z(p=v){x(p. 0).. X(p, m)}.
Now let v =m. Then we can write [0, 1}— (. 0)., g(v, m)},. Put X, ., =X(v. 0)

and y,, . =»(v, 0) for 0 =m. Then F, = X(v cr] a=m} .. We now define x(v.0),,
X(v, m) inductively. Let ¢ =m and, let x(v,0),, X(v, o) be defined already. Put
(2) T(v,o) = {x(v,1):t=0}+Z(0=0) {x(ulv. 0), 7): T=0].

Then

(3) |T(v,0)| = |6+ |0+ 1]|-]o| <a.

Hence, since |X(v, a)| =a. we can choose

(4) x(v,o)eX (v, 0)—T(v, o).

This completes the definition of the x(v. ). We now put
0(y,) = {x(wo):a=m} for v-=n

By (1), (2) and (4) we have

(5 x(v.t)#x(v,e) Tor v=n and t=6-=m.
Also,

(6) O,(y)=S: 10,y) =a for v=n,

We now prove that

) if A4€[S]* and By €[T]*'. then [A,.B,)l,.

There is puy=n with A, =X, . Then, since |B, =a*. there is v, such that

m. fg=vy=n. and v, cB,.

Yo

Then X, €F, and hence X, = X(v,. g,) for some g, = m. Th\,l] by (4). x(vy, 0p) €
£X(vg, 04). Also. x(vg,0,)€Q(y,,). Hence {x(v,, ), Viol €[Ao. Bolly, and (7)
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follows. Next, we prove that

®) if p=v-n. then there is o(x, v)=m such that

whenever = g(u, v) and x(y, 1) =x(v, g), then t>a0.

In fact, if v-=m then we may put p(u, v)=0. Now let v=m. Then u = u(v, g,) for
some p,=m. We put p(u.v)=p,. Then, if t=6 we have. by (2), x(u, 1) =
= x(p(v, go). 1) € T(v, 0) and, by (4), x(u, 1) #x(v, ). This proves (8). In view of
(6) and (7) the parts (i) and (ii) of Theorem 43 follow from (9) and (10) respectively,
where:

9) If @'=¥, and BE[T]*. then [1(¥£€B)Q,(») =a.

(10) If a’=§, and B €[T]%, then [I(y€B)0,(y) =a.

ProOF OF (9). B={y,,..»,,), Where vo=<v,<n and [=w. Since a'=RN,,
there is 0y, —=m such that
(1) ovp v) =gy for p=g-w

Let x&ll(p=w) Q,(y,,)- Then there are G, =m with x=x(v,. ¢,). for p=o. If
Gy.. G, = 0o then, by {8) 6, > =a, which is impossible. Hence there is py=o
with ¢, =0,. Then x<{x(v, .0): 6=p,} and hence
H(p=w) @iy, )l = [Z(p=0) {x(v,,0): 6=0o}| = |go+1|Ro=a.

This proves (9).

Proor of (10). Let ay=<a,=a = sup (p =w)a,. Put

flo)=min (w(a,)=g)v for o-=m.

Then f(¢)=w and ¢ =w(ay,) for ¢ =m. We have

[B)? = X(A=o) I} (partition 47),
where, for 4=

It = {y.n)iu<v<nhy, 3, €BN(e(p v) = A}.

By Theorem I. ¥, —-(xﬂ};{”. Hence there are a set B<[B]* and a number A =w
such that [B]> —I;. We have B={y, .. v,,}. where /=w and v, = < v, <=n. It suffices
to prove that [IT(p =) Q,(y,,)| =a. By definition of I3 we have

f(g{"p» 1'q)) = / f01' P=q=w.
Put w(a;)=0,. Then

9“1’!* "u) - m(afle-iv,,.\-qn) =wla;) = gy

for p=¢ <. From here on the proof of (10) is identical with the proof of (9) from
(11) onwards. This proves Theorem 43.

REMARK. In the proof of (i), more precisely. in the proof of (10), we used the
relation 8, ~(8o)§, although by Theorem I the stronger relation &, ~(N,)§, holds.
But in spite of this our proof does not in fact establish (ii) with 8, replaced by &,
since 8, +(Xy)3,. by Theorem I. and we cannot prove any special property of the
partition A4* which would lead to the sharper result.
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(#) 24. SUMMARY OF THE RESULTS ABOUT THE CASES z=p
AND «+1 = . PROBLEMS

Throughout this section (s ) is supposed. We use the notation introduced at
the beginning of Part Il. We shall always assume that

Wo=a=b; O=ay,a;,=a; 0<by, b =b.

Case 1. a* =bh. We have to discuss the relation

) [a ] ‘an a,

where a=8,.
Case IA. min (a,. a;)=a. Then (1) holds by Theorem 33.
Case I1B. ay=a,=a.
Case 1B (i). max (by. b))=a"*. Then it suffices to discuss the relation

@) (u ] [a‘* by )

Here we have the following results:

(2) is true if @’=R, and b, =8, (Theorem 34)
(2) is true if @’=8&, and b, =R, (Theorem 40)
(2) is false if «"=§, and b, =&, (Corollary 18)
(2) is false if «=8, and b, =a* (Corollary 16)
(2) is false if «’=%8, and b, =8, (Corollary 19).

We do not know if (2) holds when a=a" = 8, and b, =8,. Here the simplest

unsolved problem is
b [R(-J ] _— (N!.') Nr.u]
) xaj't']_ bt(u+1 N1 '

Case 1B (ii). by. by <a*. Here one might conjecture the following best possible
result:

(3) [a.;.]—-[(m] for a=g,.

ProsLem 10,

a aa

We distinguish three cases:
Case 1B (ii)a. @’=8,. Then (3) holds by Theorem 42.

Case 1B (ii)b. ¢=a’=R,. Then Theorem 41 shows that the following result,
which is weaker than (3), holds:

[fﬁ)—*[ggl] for b;=a.

We do not know whether (3) holds for any @ with a =a’=§,. Here the simplest
open problem is:
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PrROBLEM 11.
9 [R(:u ]_’[xr.—u &f'li
’ x(-n-t—l z\\nu Nm] ’
Case 1B (ii)) c. @ = a’=N,. In this case we only have the following trivial

remark. If, for some b =a and some b,, b, =h, we have [g] —~lgn gr]" then (g+] -

a a )
—*(bu bl). Here the simplest unsolved problems are:

D 3 [&1]" N, x.]_
TN Ny Ng)*
o [N (N, NZ]
y (N2] N2 .9
N [_NJ YA
(o)<l
TN N> N, )7

. N N
ReMARK. We know that [\2]--- o2
8. TN,

PROBLEM 12.
Ri] (N, N
Ro) AN N )

[
(-4 3)

3\‘3 N> Ng

)

x;] since in fact. by Theorem 33.

[xJ] (xl x;]
Ny N; Ko/’
Case 11. a=h. Here the problems are more ramified.

Case 11A. a=a—. First of all, let us consider relations without alternatives.
We assert that

« ag a,
) [0] _’lb() bl)
holds if and only if
(5) min (a,. b))=a and min (a,.by)=a.

In fact, if (4) holds then. by 21. 2. the condition (5) follows. Now. vice versa, assume
that (5) is true. To deduce (4) we have to establish the following propositions:

a a

(6) If by, b, =a, then [3]—»[110!71

(7 If @;.h; =a. then l::] 4[2 ;;: .
In fact. (7) follows from Theorem 38. We shall deduce (6) from Theorem 44 which
will be proved in section 26.

From Theorem 38 it is clear that in the case under discussion the only genuine
problem for relations with alternatives is that of deciding the truth of the statement:

a a,a vy
h] ~ (a‘ byva ] for a,.b, =a.

and again Theorem 38 shows that this statement is true. Thus case 11 A is settled.
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Case Il B. a=c¢". Again we begin with relations without alternatives, We have
to discuss the relation

® ()~ 5:)

If either @y =by =c* or a; =b,=c™, then (8) is false by 21. 2. Now suppose that
min (agy, by) =c and min (@, by) =c. For reasons of symmetry it suffices to consider
the following cases:

Case 11Ba. ay,a,, by, by =c. Then (8) holds by Corollary 17.

Case 11Bb. ay=a,=c*:by. b, =c. Then (8) holdsif and only if min (b,, ;) =c.
For if min (h,, ;) =c then (8) follows from Theorem 33, and if b, =h, =c¢ then
(8) is false by Corollary 16.

Case 11 Be, ag=by=c": a,, b, =c.

Case 11 Bc (1). @y, by =c. Then (8) holds by Theorem 38.

Case 11 Be (ii). @, =c¢: by =c¢. Here we have the following results:

(9) If @y =1 then (8) holds by Theorem 35:
(10) if @, =1 and ¢=¢’, then (8) is false by Theorem 31;

1 il either a; =8, and ¢'=¥8,.
(1) or ¢y =8y and ¢’=8g, then (8) is false by Theorem 43.

Thus here the simplest unsolved problems are:

ProsrLEM 3.
? [ (u+|] [z\u-‘-lall ror 2'““1 *1

m-rl r,J‘I Ru
N w1 e
( oL "’ i for 2=a,<=R,.
:u-rl m+l §w1

Case 11 Bd. aqy=c": ay, by, by =c. Here we have: If min (by, b,) = c then (8)
holds by Theorem 33. There remains to consider the relation

et ctoa

e e )

If a; =¥, then (12) is true by Theorem 34. If either ¢'=N8, and @, =8,. or ¢'= 8,
and a¢; =R,, then (12) is false by Theorem 43. If ¢ =8, and a, =§,. then (12) is

false by Theorem 32. If ¢’= R, and a, = 8,. then (12) is true by Theorem 40. Here
the simplest unsolved problem is

leu+1] [\(u-rl h1]
b:m+ 1
Thus many cases under I1 B are settled if we restrict ourselves to relations without

alternatives. Let us now consider in case Il B relations with alternatives. We shall
show, without going into details, that the theorems proved so far. together with

(12)

PrOBLEM 14.
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Problems 13 and 14. essentially cover all cases. We want to consider relations of
the form

(13)

cr"] g Vdy, dy Vs
3 = hﬂvbl‘ bz ""bs

where e=8, and 1 =a,.b,=c* for v =4. We make a fresh start with our sub-
division into cases.
Case A*. There is v =4 with a,. h,=¢. Then we may assume a,. b, =c. By

(¢t ag, ¢t ve £ gREY
Theorem 39 we have (r* “\bo. cvet . Hence (13) is true if there are r, s< {2, 3]

with a,, b,=¢. Hence we may assume that a, =ay=c.” and it suffices to discuss
rc]alions of the form

ey tovay,cr
(14) [{.’J']_'[h”vb,,d 2
where a,.bg=c and 1 =d=c¢". We shall in fact not make 'mv use of these last

inequalities. If d,.d, =c then, by Theorem 38, [ ] ld “,+ o+ ] Therefore
(14) holds whenever there are r, s€{0, 1} with a,, b,<=c. Hence we may assume
that either a4, a,=¢ or by, by =c.

Case A* 1. d=¢*. Then we may suppose that a,,a, =c. If ay=a,=¢ and
b, =b, =1, then (14) holds by Theorem 35. On the other hand we have the following
negative results:

nt 5 + At
If ¢=¢" then [E*J “l;(l, ’i.+J (Theorem 31).

+ a + +
If ¢=¢ = Ry then [:+] +-(;:€l’ ;] (Theorem 43).

Fomdag. the ‘-'+]. ("v'(‘*.(‘J'] Thearei 43
c=c =8y then | 4] Rov 1, et (Theorem 43).

Thus the following refinements of Problem 11 remain open:

> ; 3y \t
9 hr:)‘.']] N ¥ Nes10 8 u+l] fi 2= —
) — or b =Ny
RL:J‘.-l bf} v I" ‘\(a+1 o I
q [Rr-u+1l (&:-11 v x(-)|+1‘ Rvu‘*!] fDl' = b N
H - " ~ = = .
N +1 by v1. Ry +1 g 9

Case A* 2. d=c¢. If by. b, =c then (14) holds by Theorem 33. and if h,=
=b, =c* then (14) is false by 21. 2. These remarks lead us to consider relations
of the form

()-{erms)

We note that the case

c Cv

(.+ Hﬂ vﬂj« i..:—] i
- . where =¢.
l +] l‘“‘bl. & here b, =c.
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will not be covered but we shall omit its discussion. If a, =8, then (15) holds by
Theorem 34, and if ¢’=R, and a,=N8,. then (15) is false by Theorem 43.

Case A* 3. d=c. If min(hy.b,)=c then (14) holds by Theorem 33, and in
the remaining case b, =b, =¢* the relation (14) is false by 21. 2.

Case B*. max (a,.b)=c¢* for v=4. If there is v£{0,2} such that either
a,=d,.=ct or by=bh,,, =c*. then (13) reduces to a relation of the form (14)
which has already been discussed. Hence it only remains to discuss relations of
the form

()-{so e e)

where a,.ay. by. by =c. If min (a,. a5. by. b5) =c then (16) is true by Theorem 33,
and in the remaining case ¢, =a;=hy=5h,=c (16) is false by Theorem 32.

25. LEMMAS FOR THE CASE fi=z+1

Lemva 10, Let 8, =2%=h: c=b: b=b". Then

oo ()=G8) e (3)-(5)
o 0 () e )-8
o () e ()
o 0 G e ()-()

Proor. Let m:r)(h’)' A =a: Bj=b: AB=AS= . where §=[0. m). There
are numbers b,..b,, and sets B,. B,,, such that 29, ¢ =h, = fh =b:

B=X'(v=m)B,: |B)|=b,=b; for v=m.
Proor oF (i). Let [4. 8] = I5+"1{. Then [A. B] = I,+'l,. where
lo=2({x, v} £ ID)[{x}, B,).

By hypothesis thcre aru.. a number » =2 and sets X ¢ [A4]%: Y [B]® with [X. Y] L.
Put Y'={v: YB,= @}. Then Y £[S]": [X. Y] I}, and (i) follows.

Proor oF (ii). Let [A.B] = L+ and vem, Then
E:Qn(:l']:l B‘I "/-a’b |

and there are sets A — A and B/ < [ o7 such that Qu(y)=A! for y€B/. Then
[4, S] = I5+1i. where I§ = {{x.v}: x4/ v=m]. By hypothesis there are a
number 2 =2 and sets Xe[A4]: Y £[S]" such that [X. Y ]=/]. Put Y =
= Z(v2Y")By. Then Y<[B]*: [X, Y]=/. and (ii) is proved.

Proor oF (iii). Let 17, L. be as in the proof of (i). Put ¢, =b: ¢, = 1. By hypothesis
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lhele are a numer #-=2 and sets X¢[A]%; Y<E[B]** such that [X, Y]</[,. Put
Yo : YB, = Then } TS [X,Y ) <If If x=0 then |Y|=b; |Y'|=#, and
if /—I then }’ '— I. This proves (iii).

PrOOF OF (iv). Let /.. B), A{. [, be as in the proof of (ii). Put ¢q=5"; ¢; =1.
Then there arc a number » =2 and sets X € [A]*: ¥ £[S] such that [X, Y] /1.
Put Y =X(vEY)B/. Then Y= B: [X, Y] L. If x=0 then |Y'|=b": |Y|=5h. and
if =1 then Y= {v,} for some v, =m. and we have |Y|=|By,| = by, =c. This proves
(iv) and completes the proof of Lemma 10.

Lemma 11, Let 8g=29=5". Then [f-'] [u a
REMARK. Lemma 11 is obviously not best possible. It will be used in the proof

of Theorem 44 which gives a necessary and suflicient condition for [ ] l” by
ProOF. Let |4/ =a: [B|=b: AB=@: [4, B] = Iy +'l;. Then

b =X(A"=A)B{y: Qoly)=4

Since |P(A4)| = 2¢—4h', there are sets A A and B ¢[B)" such that Qu(y)=A" for
yeRB.

Case 1. |A'|=a. Then [4’, Bl /.

Case 2. |A'|=a. Then A —A'| = a: [A—A", B']—1,. This proves Lemma 11.

26. POLARIZED PARTITION RELATIONS IN THE GENERAL CASE.
DISCUSSION AND PROBLEMS

In the general case we do not investigate relations with alternatives. It is obvious
that such relations only lead to interesting question provided «¢'=5" but we omit
this. We shall discuss the relation

[u] dg a,
bl T\by b))
We begin by considering the special case when a,=a, =a and b,=b,=5b. We

need some definitions.

26. 1. DeriNiTioN, The distance d(2. ) of two ordinals =z fi is defined by
the equations
dlx, 2 +0) = dz+0.%) = d for all « 0.

We put d(N,. 8p)=d(z ff).
26. 2. DeriNiTiON. Cardinals a, b are called disjoint if a. b=y, and

d(x.y)=1 for xcla. ¢’} and yei{b.b'|.

(%) THEOREM 44, Let a.b=x,. Then [j:) —»(g ;':] if and only if a and b are

disjoint.
Proor. Put

iz b=t (§)- (35}
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Throughout the proof we suppose a.b=8,. We shall frequently use, without
reference. the following propositions:

I. If @™ =b. then (a.b)€ P if and only if (a, b)) P (Lemma 10).
2. If a*=0b" then (a.b)c P (Lemma 11).
3. If d(a.b)=1 then (a. )G P (21. 2 and Corollary 16).

In proving the theorem we may assume a=h.

Case 1. a. b disjoint. Then a* <b.

Case la. a™=b. Then at=b" = b"; (a, P)YEP; (a.b)EP.

Case 1b. a*=h". Then b'*=a. Since d(a’.b')=1 we have (a’, h')2 P. Then
(a. b)) e Py (a, b)c P,

Case 2. a. b not disjoint.

Case 2a. b=a*. Then d(a.b)=1: (a. b) ¢ P.

Case 2b. b=a". Then d(¢', b)) =d(a. b) =1, and since a, b are not disjoint, at
least one of the following four cases arises:

Case 2b1. d(a,h’)=1. Then (a, )¢ P; (a, b)& P.

Case 2b2. a'=b". Then (a'. b)Y P; (&', b)d P. Let us assume that (a, b) € P.
Then (a.b’)=P. Then, since (a,.bh)eP but (¢'.h)§ P, we have a=hb"*. Then
a=b"t =a't;ad=a=a"; ac{d,d"*}. Hence a is regular; (a, a) =(a. ") € P which
15 a contradiction. Therefore (a, h)d P.

Case2b3. 't =b". Then (a', b') 4 P. Let us assume that (a, b) € P. Then (a, b') € P;
dla,a y=da.b)=1;a=d"; b = a*=a; b't =a; (a’, b)) P which is a contradic-
tion. Hence (a. h)4 P.

Case 2b4. a’=b"". Then (a’.b")4 P. Let us assume that (a.b)€P. Then
(a.b")c P. Then. since (a.b)eP but (¢',p)E P, we have a=b'"*=q"; a=a’;
(a’. b") {a, h')= P which is a contradiction. Hence (a.b)4 P. and Theorem 44
follows,

26. 3. We now turn to the general case
a ap a
1 (-2
() b by by
Throughout we suppose that a. b =¥, and
l=a,=a; 1=b,=b for v=2.

Also. (=) will be assumed. The case d(a, b) =1 was discussed in section 24. We
may therefore assume «* —=h. By Theorem 44 the relation (1) holds whenever a. b
are disjoint. We may now assume that «. b are not disjoint. Then at least one of
the following six cases arises:

[
||
e )

| g 3.a=h+;

4A. a' =b"; SA. a'=b; 6A., a'=b"".

We now show that if ¢ =5b"" and if one of the cases 4A. 5A, 6A holds, say the case
(3+4)A. then already case k holds (£ =1. 2. 3). In fact, under these circumstances
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we have a’=a=b"=a"**, so that ac{a’.a’".a"* |, and ¢ is regular. Then case
ko applies. Thus we have the following six cases to deal with:

L. ¥ =h% 2. a=b"; 3. w=p"*;
4, a=b"* and a“r:b'; 5. a=b"* and a'=b"; 6. a=b"" and ¢'=b""

C]edrly the cases |, 2.3 are exclusive, and the cases 4,5, 6 are exclusive. Also,
in each of the cases l 2 3. we have a=5"" so that all six cases | —6 are exclusive.

Our assumptions are therefore: 8, =a* = b, and exactly one of the cases 1—6
applies. We note that by Theorem 44 in any of these cases.

@ (6)+(65)

The discussion that follows will settle the truch of (1) in all cases except for
the sub-case of case 3 which is given by the conditions

gd=d"*zg @r=sb;
ag, a4y <a; bo=b,=Db.

Case 1. at=p and a*=hb. Here we have the following two results which
settle this case:

(3) [g] - [;; E'] for a,=a.

Proor. By Lemma 10 (i) it suffices to prove

a ] aa,
b)) T\ b )
and this last relation follows from Theorem 33.
r:‘.‘ t’i’ e
(4) b L ] for b, =
S < a (a0 X .
Proor. By Lemma 10 (iv) it suffices to prove [b] e lh» l)' and this last relation

follows from Theorem 34.

We see from (2), (3), (4) that in case | the relation (1) holds if and only if
either min (a,, ;) =a or min (hy, b)) =h.

Case 2. a=b" and a*<=b. We shall settle this case. By 21.2 we have

(Z]Jr—ﬁ }]] and hence. by Lemma 10 (iii),
a al
® (5) (1 4)-
Case 2a. by, by =b. Then
© ) <[5, 6,

PROOF. Since b = a=a*=bh we may suppose that a* <=by=>b, =bj =b. and
then (6) follows from Lemma I1.
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Case 2b. by <=by, = b. Then
a a a
0 6)-G. 5

holds if and only if a, =a.
Proor. If (7) holds then. by (5). a, =a. Vice versa, if a, =a lhcn by Theorem

35, [h] (bx | ] which implies (7), by Lemma 10 (iv). This establishes the assertion

relating to (7).
Case 2c. by<b, = b. Then, by symmetry,

a ag a
b] 7 \by by
holds if and only if a,<=a.
Case 2d. bg=b; =b. Then (1) holds if and only if

(8) tg.a;=a and min (a,, a,)=a".

Proor. We have b" = a=a+<b. First of all, suppose that (1) holds. If we

then assume that a,=a then
b b1
b) 7\ b

and so. by Lemma 10 (i), [ ] b b] which contradicts (5). Hence a4, a, =a.
Next, if we assume that min (a,, a,)=a~ then b~ =a" =a,=a=b"; b'=cT for

some ¢. and
¢F cc
b ) 7\bb)

+ "
Therefore, by Lemma 10 (i), [L) —»[;T EJ,] which contradicts Theorem 32. Hence

min (ay, ¢;)=a~. and (8) follows.
Now suppose, vice versa, that (8) is satisfied. By Lemma 10 (ii), the relation

(1) is a consequence of
a do all
8 B U

Hence it suffices to prove the following two propositions:
dy

9) If a=a~ and a,.a, =a. then l;:;]——[b, %

(10) If a=c¢* and a,=c¢. then (g] +(;? (;)',].
In fact, (9) follows from Lemma 11. and (10) follows from Theorem 33.
By analysing the results in cases 2a-2d it will be seen that we have proved:

In case 2 the relation (1) holds if and only if at least one of the following three
conditions (), (/). (y) is satisfied:
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['1} bo., b] =b:
() there is v=2 with a,<=a and b,<b;
(v) min (dq, ¢;)=a~ and a,, 4, =a.

Case 3. a=b"" and a™=h. Here there remain some open questions. First
we prove:

ad

Proof. By Theorem 33, (g,] —»(g, ?] and (11) follows from Lemma 10 (iv).

By comparing (2) and (11) we see that to settle case 3 we have to investigate
the relation

o dy o
(12) b)" bobl)
when min (a4, @,)<a. By Lemma 10 (i) and (ii) the relation (12) is equivalent to

(2,] —»(gﬁ] g}], and this last relation was discussed in section 24.

Corresponding to the cases IB (i) and 1B (ii) in section 24 we distinguish now
the cases max (a4, @;)=a and a,, a, <=a.

Case 3a. max (agy, ¢;) =a. We have to study the relation

(13) [3]4{321].

This relation can be discussed completely. As pointed out above, (13) is equivalent to

(14) (5]~ (5 &

If we put #"=c then (14) becomes

)¢

Here ¢ =¢"=5". By section 24, case IB (i) we have:

[ If b"=N, then (13) is true for a; =8, and false for a; =N8,.
15 ; : : ;

(15 l If b'=n, then (13) is true for a;, =8, and false for a; =R,.

Case 3b. a,.,a,=a. This case reduces to section 24, case IB (ii) ¢ where we
had only trivial results. Although the problems in our present case are equivalent
to those stated in the earlier section we state here explicitly those equivalent to
problem 12.1:

PROBLEM 5.
0] [xr;u) _F[N(;n z\‘m.]‘
TN Nog Np )’

oy lR““] N Nr.” an
: N] hel
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Case 4. @'+ =b": a=b"": a* =h. Here we shall obtain a complete discussion.
We prove:

(16) [g] - ;;g’] for a;—=a.
Proor. By (11) we have. for a, =a.
a a aI]
7 A Vi

Hence. by Lemma 10 (ii). (16) follows.

(17) [g] (aa] for b, =b.

Proor. By (15).
a] ((: a
b\ 1)

and (17) follows by Lemma 10 (iv).

It follows from (2). (16), (17) that in case 4 the relation (1) holds if and only if
either min (ay. @,)=a or min (by, by)=b.

Case 5. a'=b"; a=0b'; a=<=b. Here we obtain a complete discussion.

a 1a
- {19,
l ¢

Proor. By (3). [;;'] “\p :] and (18) follows by Lemma 10 (iii).
(19) []--[” ) if by by, <b.
Proor. We may assume a* <= by, =b, =b{ =b. Then (19) follows from Lemma 11.

(20) [;:] —-[; :I] if @y =a and b, =b.

PrROOF. By (7). ( ] [“' % ] and (20) follows by Lemma 10 (iv).

(21 l] (g”gl] if ag,a,=a.

Proor. We may assume b *t=ay=a, =a;{=a. Then. by Theorem 44,
[2] [;:” ‘hl], and (21) follows by Lemma 10 (ii).

It now follows from (18)—(21) that in case 5 the relation (1) holds if and only if
either a4, a, =a, or by.b,<b, or there is v=2 with ¢,—a and b, =b.

Case 6. a'=bh"~: a=h"": a* =bh. Here we have a complete discussion.

(22) l } [g g ] if ¢, =a
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ProOF. By (4). [g»] - l;i";;l] and (22) follows from Lemma 10 (ii).

@3) @) -(65 ) it bo=e.
(a aa .
Proor. By (3), lb"}_’(b’ ]]. and (23) follows from Lemma 10 (iv).

It follows from (2). (22), (23) that in case 6 the relation (1) holds if and only if
either min (a,. a,)=a or min (b,. b,)=b.

27. THE THEORY OF SET MAPPINGS

In this section we shall state some problems and results concerning the set
mapping relation

(1) a—[[p.c.d. ql]
which was defined in 21. 5. It follows almost immediately from that definition that
(2) if a—~(c+d, q)* then a—~[[a*,c, d,q]]

Problems about this relation were first stated in [21] and discussed in [14]. Throughout
this section let @ = R,. Our Theorem 36 states that

(#)a—[la.a.d. a]] if a=a" and d+ =a.
and Theorem 37 states that
(=)a—|[la.a.d.a’]) if a=a" and d=a:

a+[la.a, 1, a't]] if a=da'.

On the other hand, using the method of canonical partitions employed in
Lemma 3, it is easy to prove

(=) Turorem 45, If c.d=a and a=d', then a—|[a, c. d. a).

We omit the proof, Thus if p=a and = «’ then the relation (1) is completely
discussed. The case on inaccessible cardinals is settled by Theorem 36. We there-
fore restrict ourselves to a discussion of the relation

3) at —~[[a*. c.d, q]].

When o =a then Theorem 36 gives a best possible positive result. We are therefore
led to consider the relation
at —[[a*. c, a, q]).

Here Lemma 9. which is a theorem of [14], yiclds:
at=+=[lav.2,a,at]] if a=ad'.

13 Acta Mathematica XVI 1 -2
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On the other hand. from a= —(a*,a’)* we obtain. by (2),
(%) THEOREM 46. at —[[aT, at, a, a’]].

Thus (3) is settled in the case when a is regular. For singular « the following
relations are still left undecided by the theorems listed so far:

(4) ? at—[[at,c,a,.q]] for 2=c=a* and a' =g=a*.
In [14], Problem 1, the simplest case of (4) is stated. which is to decide the truth of

z’tm-.'-l _'[[&w-i—la 29 xms &1]]

We cannot solve the problem (4) but by a direct application of some of the results
of the present paper we can obtain a partial solution.

By using the method of proof of a* -+(a*, (3),)* (Theorem 10) as well as the
relation a’*+ —(3)2 one can obtain

(%) THEOREM 47. a* +[[a*, a*, a,a"*7]]

By putting d=a it 1s seen that Theorems 46 and 47 leave undecided only the
following case:

(#) PROBLEM 16. ? a* —[[a*, a*, a, @’ *]]if a =a’. On the other hand. Theorem
43 implies

(%) THEoREM 48. Let a=a', and suppose that either (1) c=R, and a’'=x,,
or (i) c=Ry and a’'=R,. Then

at—[[a*.c.a, av]].

Using the ramification method of Lemma 1 but also some new ideas one can
prove:
() THEOREM 49. If ¢ =a and a=a’, then a* —~[[a*. c. a, d]].

Detailed proofs of Theorems 47, 48, 49 are reserved for a later publication.
The following problems remain unsolved:

(A) ?at —|[av, c.a.av]]
if either (i) 2=c=8, and a' =8, or (ii) 2=c=8, and a=a = §,.
(B) ?at—~[lat,a, a.q]] if d=g=a.

Thus the simplest open questions in this connection are
(%) PROBLEM 17.
(1) ? Rpe1[[8or1s € Vo> Rp1]] for 2=c=8y;
? Rop+1 R, 4156 8 By, +4]] for 2=e=N,.
(1) ? Bpr1 = [[Rot1s Ros N> qll for R =g=8,;
7T Roy+1 =~ [Roy 15 8oy 8o, g]] for Ry =g=R,,.
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Finally we mention that we have omitted the investigation of the case
at—~[la*~, ¢, d, q]),

1. e. the case where the set mapping is not restricted at all. Most of the problem
in this case are equivalent to problems about the ordinary partition relation I and
their complete discussion would be very lengthy.

Added in proof (20. IV. 1965): Recently A. H. KrRUSE (A note on the parti-
tion calculus of P. Erd6s and R. Rado. Journ. London Math. Soc., 40 (1965), pp.

135—148) proved a number of negative partition relations mostly of the form
a-(b, r+1).
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