
The Efficacy of the Meiotic Toolkit in Determining the Sexuality and Evolutionary History of Red 
Algae (Rhodophyta) 

 

 

 

by 

 

 

Saeed Amin 

 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Master of Science 

in 

  Biology 

 

 

 

Waterloo, Ontario, Canada, 2015 

 

 

© Saeed Amin 2015



	
  

	
   ii 

AUTHOR’S DECLARATION 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any 
required final revisions, as accepted by my examiners. 

 

I understand that my thesis may be made electronically available to the public. 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
  

	
   iii 

ABSTRACT 

Meiosis is a unique mechanism and fundamental process that is shared by sexually reproducing 

eukaryotic species. Species that undergo meiosis can be determined by identifying the presence of core 

meiotic genes also known as the “Meiosis Detection Toolkit”.  These genes include the following: 

SPO11, HOP1, HOP2, MND1, DMC1, MSH4, MSH5, MER3, and REC. Red algae (Rhodophyta) 

represent a distinct eukaryotic lineage with a long evolutionary history that dates 1.2 BYA and is 

represented by a fossil that exhibits characteristics of meiosis. Nonetheless, sexuality has never been 

observed in unicellular red algal species in the order Cyanidiales (Galdieria sulphuraria and 

Cyanidioschyzon merolae) and the Porphyridiales (Porphyridium purpureum). To understand the 

evolution of meiosis in red algae, this study examined the usefulness of the meiotic toolkit to determine 

the presence of sexuality as well as the utility of these genes as taxonomic markers for the evolutionary 

history of the red algae. This study used the available red algal genomes of G. sulphuraria, C. schyzon 

merolae, C. crispus, and Porphyridium purpureum. As a secondary objective, the genomic DNA of 

several sexual and asexual red algal taxa were experimentally examined to identify and compare the 

meiotic genes using a variety of biotechnological methods such as degenerate polymerase chain reaction 

(PCR) and sequencing analyses. Of the nine core meiotic genes, MND1, which is the essential meiotic 

gene for	
  nuclear division and new recombination, has been observed in the Porphyra rediviva nuclear 

genome and appear to contain premature stop codons. Moreover, annotated amino acid sequences of six 

core meiotic genes (DMC1, MND1, SPO11, HOP2, MSH4, and MSH5) were used in the phylogenetic 

analyses. The data set included animals, fungi, plants, excavates, alveolates, and red algae. The 

phylogenetic trees indicated that the sexual and unicellular red algae possess the six core meiotic genes 

and some of these putative genes appear to be associated with horizontal gene transfer (HGT) and gene 

duplication events followed by subsequent losses in some of eukaryotic lineages. The results of this 

study suggest one of two possibilities. Either there is cryptic meiosis in the unicellular red algae that 
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contain these genes, or these genes play alternative roles and are a poor marker for meiotic potential. 

The phylogenetic tree analyses also suggest that the meiotic toolkit is a not a good source of genes to use 

for taxonomic classification. 
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Chapter 1.0: GENERAL INTRODUCTION 

1.1 The Evolution of Sex (Meiosis): 

Sexual reproduction is a nearly universal reproductive mechanism among eukaryotes (Bell 1982) 

and has been defined as a process that combines two haploid gametes and genomes (but not always) 

from two sources or parents. It also includes species for which the gametes are isogamous 

(morphologically identical) so that the two sexes (females and males) do not exist (Lehtonen et al. 

2012). In sexual reproduction, the occurrence of meiosis (the cellular process that divides parental 

diploid cells to form haploid gametes) followed by syngamy (gamete fusion) and karyogamy (nuclear 

fusion) are crucial processes to produce diploid generations that contain unique or novel mixtures of 

parental genes (Petronczki et al. 2003; Schurko and Logsdon 2008; Ismail et al. 2014). Though meiosis 

is the mechanism by which genetic variation is attained in eukaryotes; transformation, transduction, and 

conjugation are also mechanisms that provide genetic variation in prokaryotic organisms (Baron 1996). 

As sexual reproduction is a ubiquitous mechanism across the eukaryotic tree of life, it suggests that the 

evolution of sex was a pivotal event in eukaryotic evolution. Furthermore, current theories suggest that 

sex was present in the last common ancestor of all eukaryotes, but was secondarily lost in some lineages 

leading to asexual eukaryotes. Additionally, phylogenetic analyses appear to show that asexual lineages 

are short terminal branches from within sexual clades (Johnson 2006). Hence, sexual reproduction plays 

a significant role in the manner of long-term survival and the complete loss of this mechanism is rare 

(Dacks and Roger, 1999; Schurko and Logsdon 2008; Umen and Heitman 2013).  

Sexuality (meiosis) does not just produce genetic variation, but provides several useful 

mechanisms such as the repair of the damage of the double strand DNA (Argueso et al. 2008) and 

prevents deleterious defects (Lynch 2006) that in turn increase the survival potential for a population 

that undergoes sexual reproduction. Hence, the offspring of sexual individuals may be better adapted to 
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a changing environment, and they may have fewer deleterious mutations in regular environmental 

conditions (Szathmáry and Smith 1995).  

Asexual	
  Reproduction	
  &	
  Self-­‐Fertilization	
  (Selfing):	
  

Asexual propagation, on the other hand, is a reproductive process without fertilization or meiosis. 

Successful asexual reproduction is dependent on mitotic cell divisions in unfertilized egg, which 

transmits a diploid set of chromosomes to the progeny that generates an identical offspring to each other 

and their parent. Asexuality includes several features such as short generation time, ability to suppress 

the meiotic genes (e.g. in Daphnia) (Innes and Hebert 1988; Schurko and Logsdon 2008). Even though 

asexual reproduction is widespread, it is not a successful long-term strategy, and often species that are 

asexual throughout a season will have a sexual phase as environmental conditions change (Hadany and 

Comeron 2008; Araujo 2014). 

The transition in mating system from cross-fertilization (outcrossing) to self-fertilization (selfing) 

has been observed as the most frequent evolutionary transition involving reproductive systems in plants 

(Stebbins 1957; Wright et al. 2008). Self-fertilization, also known as autogamy, is an asexual 

mechanism to ensure the reproduction for plants that undergo selfing when pollinators and/or mates are 

rare (Eckert et al. 2006). However, selfing is not a successful long-term strategy because it reduces the 

potential of adaptation and speciation, and the returning from highly selfing to outcrossing organisms is 

rarely observed (Takebayashi and Morrell 2001). However, some flowering plants have the ability to 

undergo both cross-fertilization and self-fertilization, for example, the two members of Brassicaceae: 

Arabidopsis thaliana is known to as a selfing plant while A. lyrata is a self-incompatible species (Koch 

et al. 2001; Charlesworth  and Vekemans 2005; Nasrallah et al. 2007). The two forms of uniparental 

reproduction are genetically and developmentally distinctive in that selfing involves syngamy and 

recombination whereas asexuality does not (Eckert et al. 2006).  

Clonal reproduction is a widespread asexual mode of reproduction among many organisms (Sköld 
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et al. 2009), and it occurs in up to 80% of plant species (Klimes et al. 1997).  Furthermore, most green 

algae are reproduced by clonal vegetative propagation as well as some red algal species such as 

Antithamnionella ternifolia (Maggs and Stegenga 1998). Clonal reproduction via vegetative propagation 

is a preferable productive technique to ensure the survival of populations in unfavorable environmental 

conditions such as environments with limited resources of light and nutrients (Lasker 1990; Svensson et 

al. 1993). It also allows a small population to grow rapidly, especially for growth in aquaculture 

(Morgan et al. 2005; Fernandez-Zamudio et al. 2013). By shoot fragmentation, detaching fragments 

have the ability to form new individuals that functionally are able to photosynthesize and uptake 

nutrients (Grace 1993). Additionally, because almost all unicellular eukaryotes have the ability to 

undergo asexual reproduction, they do not require extensive genomic reorganization to achieve an 

alternation generation (Niklas et al. 2014). Asexual reproduction outperforms sexual reproduction by 

increasing the dispersal ability of individuals, and reducing the time for the female or male to find a 

mate (Peck et al. 1998; Lehtonen et al. 2012). 

1.2 Origin of Sexual Reproduction: 

Successful sexual reproduction in eukaryotes requires a fusion of haploid gametes that would 

generate a diploid zygote (Szathmáry and Smith 1995). However, the additional sets of chromosomes or 

double the original DNA content can lead to meiotic failures (Das 1980). Endomitosis is an alternative 

cell cycle that replicates DNA without cell division that results in polyploid cells (Wolfe 2001; Hollister 

et al. 2012).  Cleveland (1947) proposed that the alternation of the haploid-diploid life history phases 

might have spontaneously started with a diploidization by endomitosis (Figure 1). In this case, the 

alternation of phases may have evolved earlier than sexual recombination (Hurst and Nurse 1991). Since 

sex is consisted of syngamy, nuclear fusion and meiosis, it means that sexual reproduction originated 

solely after the major transition from prokaryotes to eukaryotes (endosymbiosis) (Cavalier-Smith 2002; 

Schubert 2011). 
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Figure 1 Endomitotic cycle. 

a) Endomitosis: cells enter mitosis and chromosomes are being condensed, and then the cells 

undergo some aspects of mitosis but fail to complete the process, mostly in anaphase 

(Edgar and Orr-Weaver 2001; Lee et al. 2009). 

b) Homologous chromosomes as a result from the second endomitotic round. 
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Alternation of generations in the Archaeplastida is a switch between multicellular haploid 

gametophytes and the diploid sporophytes (Raven et al. 2005; Haig 2008). It has been hypothesized that 

the alternative life history from haploid to diploid might be older than sexual reproduction as the diploid 

homozygous cell lineage can be produced spontaneously by endomitosis. Additionally, more than two 

alternating multicellular generations can be occurred with the life history. For instance, the life cycle of 

Floridophytes "Red Algae" involves alternation of three multicellular generations (gametophyte, 

carposporophyte, and tetrasporophyte); this is discussed in more detail later (Graham and Wilcox 2000; 

Graham et al. 2009). 

1.3 The Maintenance of Sexual Reproduction and Its Benefits: 

Genetic features and environmental conditions can influence the maintenance of sex within a 

population. Sexual reproduction not only combines the beneficial mutations that are derived from 

different individuals, but also separates beneficial mutations from detrimental ones in the genome of the 

offspring (Barton et al. 2007; Gray and Goddard 2012).  The combination of both beneficial mutations 

and new recombination can produce novel genetic variability, which can enable sexual organisms to 

adapt rapidly to different ecological and environmental conditions (Colegrave 2002; Livnat et al. 2008; 

Rollo 2014). As a benefit of sexuality, Muller (1964) suggested that over many generations, asexual 

species might eventually become extinct species due to the accumulation of deleterious mutations in 

their genome, whereas sexual reproduction is capable of generating ‘mutation-free’ individuals. This is 

known as Muller's ratchet (Haigh 1978). 

In addition, the ‘Red Queen’ hypothesis (RQH) is widely used as a support of the maintenance of 

sex (Bell 1982). RQH is used to describe two coevolved interaction ideas: 1) a species could become 

extinct because an evolutionary change have occurred to the other related species which affects the co-

evolutionary interactions between these two species, and hence the species which is vulnerable to 

extinction must evolve in order to survive (Van Valen 1973); 2) co-evolution, particularly between hosts 
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and parasites, could lead to the maintenance of recombination and segregation, by selecting sexual 

reproduction (Bell 1982), which generates a progeny with novel genes that could have the ability to 

reduce the risk of the infection in this progeny (i.e. hosts) (Normark et al. 2003). 

1.4 Introduction to Red Algae: 

The red algae (Rhodophyta) represent a distinct eukaryotic lineage (Lüning 1990; Freshwater et al. 

1994; Baldauf et al. 2000; Yoon et al. 2006a; Müller et al. 2010) that has a long evolutionary history. 

For instance, Bangiomorpha pubescens is the oldest multicellular filamentous red algal fossil that dates 

1.2 billion years ago and was obtained from Proterozoic strata on Somerset Island, Canada (Butterfield 

et al. 1990). This species is similar to the extant species, Bangia, in morphology, cell division, and hold 

fast (Butterfield 2000). The Rhodophyta have primary plastids that originated from a cyanobacterial 

endosymbiont; a free-living photosynthetic cyanobacterium was taken up by heterotrophic protist and 

the cyanobacterium (prokaryote) was reduced over time to a plastid enclosed by two membranes 

(Graham et al. 2009). This pivotal event (or events) led to the rise of three core photosynthetic lineages 

linked by common ancestry: 1) red algae and those photosynthetic lineages with a plastid derived from 

red algae through a secondary or tertiary endosymbiotic event, 2) green algae and land plants (and 

lineages with a secondary plastid derived from a green alga) and 3) glaucophyte algae (Delwiche 1999, 

2007; Yoon et al. 2006; Graham et al. 2009; Rodríguez-Ezpeleta et al. 2005; Yoon et al. 2010; Collén et 

al. 2013). From a cell function perspective, the molecular machinery of nuclear protein import enabled 

the ancestral plastid over evolutionary time to relinquish functional genes to the nucleus likewise a large 

number of cyanobacterial endosymbiont genes were transferred to the host’s nucleus (Allen 2003; 

Deusch et al. 2008). These three primary plastids formed Archaeplastida, which comprise the three 

lineages called Supergroup Plantae derived from a common cyanobacterial ancestor (Adl et al. 2005; 

Facchinelli 2013). Additionally, genome sequence analyses provides evidence that the primary 

endosymbiotic event occurred only once in the Archaeplastida (Price et al. 2012).  Archaeplastida is a 
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monophyletic group (Rodríguez-Ezpeleta et al. 2005; Graham et al. 2009; Keeling 2010). Many lines of 

evidence such as nuclear, plastid, and mitochondrial gene trees support the hypothesis that the red algae 

are monophyletic group (Freshwater et al. 1994; Yoon et al. 2006; Herron et al. 2013).  

1.4.1 Classification	
  of	
  Red	
  Algae	
  	
  

Traditionally, the phylum Rhodophyta has been classified into two subclasses Bangiophycidae 

and Florideophycidae or two classes Bangiophyceae and Florideophyceae (Gabrielson et al. 1985; Van 

den Hoek et al. 1995). However, the progress of molecular analyses and organelle ultrastructure studies 

clarified that this traditional classification did not reflect the diversity of the red algae (Oliveira and 

Bhattacharya 2000; Müller et al. 2001; Kapraun and Freshwater 2012). Multigene phylogenetic studies 

have shown that the class Cyanidiophyceae is the earliest diverging of red algae lineages and is often 

classified as the separate Subphylum Cyanidiophytina with the single order Cyanidiales that includes 

only three genera: Cyanidium, Cyanidioschyzon, and Galdieria. Cyanidiophyceae is considered to be a 

sister class of the other red algae (Yoon et al. 2002; Yoon et al. 2004; Müller et al. 2010; Azua-Bustos et 

al. 2012; Lowell and Castenholz 2013). Saunders and Hommersand (2004) proposed a new taxonomic 

system that includes an additional phylum to Rhodophyta, the Cyanidiophyta with a single class 

Cyanidiophyceae. These authors recognized four classes belonging to the phylum Rhodophyta: 

Rhodellophyceae, Compsopogonophyceae, Bangiophyceae, and Florideophyceae.  

The	
  Recent	
  Taxonomic	
  Scheme	
  

Yoon et al. (2006) provided a new classification system of Rhodophyta by using molecular 

systematic analysis that included a wide range of taxon sampling with multigene analyses. Their 

classification system includes seven classes under the phylum Rhodophyta. There are six classes under 

the subphylum Rhodophytina: Bangiophyceae, Florideophyceae, Compsopogonophyceae, 

Porphyridiophyceae, Rhodellophyceae, and Stylonematophyceae; and one class Cyanidiophyceae under 

the subphylum Cyanidiophytina. In summary, the current classification of red algae contains one phylum 
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Rhodophyta and two subphyla - the Rhodophytina with six classes and Cyanidiophytina with one class 

(Figure 2). However, Bangiophyceae, Stylonematophyceae, and Compsopogonophyceae are early 

diverging lineages and moreover, these three classes are poorly resolved in the manner of their 

evolutionary relationships to each other (Yoon et al. 2006; Müller et al. 2010; Verbruggen et al. 2010). 

1.4.2 Characteristics	
  of	
  the	
  Red	
  Algae	
  

Cell	
  Biology	
  and	
  Pit	
  Plugs	
  	
  

The cellular features of the red algae are unique (Graham et al. 2009). The cell wall is less rigid 

and softer than other algae because the extracellular matrix consists of a flaccid net of cellulose 

microfibrils that is filled with an amorphous gel-like mixture of mucilages and polymers of sulfated 

galactan. Further, the gelatinous component is more abundant than cellulose in red algal extracellular 

matrix which makes its consistency softer (Graham et al. 2009). Red algal cell wall is a complex of 

cellulose, calcium carbonate heteropolysaccharide (agar), and polysaccharide. Biomolecules such as 

fatty acids and vitamins are observed in the cell wall (Graham et al. 2009; Popper et al. 2011; Gupta et 

al. 2013). As a storage product, red algae store carbon and produce it as granulated floridean starch in 

their cytosol rather than in their chloroplast like Chlorophyta (Cole and Sheath 1990; Yoon et al. 2010; 

Collén et al. 2013). 

 Pit plugs (pit connections) are another feature that distinguishes red algae. Pit plugs are observed 

in the sporophytic stage of some members of the Bangiales and in triphasic life cycle of 

Florideophyceae. The main function of the primary pit plugs is likely to form connections between cells 

in filamentous genera, and the secondary pit plug is usually formed between the cells of parasitic red 

algae and their hosts. Primary pit plugs are formed during cytokinesis, and secondary pit plugs are 

formed at the end of the cell division (Cole and Sheath 1990, Graham et al. 2009). 

Pigments	
  

Since the red algae are a photosynthetic group, chlorophyll a is a primary pigment, but they lack 	
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Figure 2 Recent red algal taxonomic system based on the combined plastid protein 
        sequences of psaA and rbcL “Adapted from Yoon et al. 2006; Müller et al. 2010”. 
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of chlorophyll b and c. Red algae contain three important accessory pigments, which are phycoerythrin 

(PE), phycocyanin (PC), and allophycocyanin (APC). These pigments are light-harvesting protein 

complexes called phycobiliproteins which assist red algal plastids to harvest light energy that is 

inaccessible to chlorophyll (Glazer 1977; Beer and Eshel 1985; Liu et al. 1999; Graham et al. 2009).  

Additionally, the large amount of red accessory pigment (phycoerythrin) gives red algae a pink 

to dark red colouration (Graham et al. 2009). However, a small group of the red algae, which are 

parasitic, appear white or yellowish in colour because their plastids lack photosynthetic pigments 

(Graham et al. 2009). Freshwater algae are often blue-green coloured due to the preponderance of 

phycocyanin. In addition, photoprotective carotenoids like antherixanthin, β-carotene, and zeaxanthin 

may give a yellow, dark violet, brown, or black color to the red algae (Schagerl and Donabaum 2003). 

These pigments are formed of phycobilisomes on unstacked thylakoids (Graham et al. 2009).  

Flagella	
  and	
  Centrioles	
  

In addition to these features, flagella and centrioles are lacking in all life history stages of 

members of the Rhodophyta and hence this is the most distinctive characteristic of red algae. The 

reproductive evolution of red alga has affected via the loss of flagella, leading to the widespread 

occurrence of sexual life histories having two or three multicellular phases (Figure 3) while the 

maximum life histories of other multicellular algae and land plants is two phases (Young 1977; Searles 

1980; Garbary and Gabrielson 1990; Yoon et al. 2006; Graham et al. 2009; Collén et al. 2013). 

However, a type of motility has been observed in some unicellular species (e.g. Porphyridium) and 

reproductive spores (e.g. Batrachospermum) via polysaccharide mucilage secretion and amoeboid 

movement (Pickett-Heaps et al. 2001). 
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Figure 3 Life history of red algae “Adapted from Graham et al. 2009” 

A) Biphasic life history of early-divergent red algae. 

B) Triphasic life history later-divergent red algae. 
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1.4.3 Reproduction	
  and	
  Life	
  History	
  of	
  Red	
  Algae	
  

 Red algae are known to produce sexually and asexually, with some species only being described 

as asexual such as Bangia atropurpurea (Nelson 2007; Spitale et al. 2012), Compsopogon, and 

Chroodactylon ornatum (Necchi and Dip, 1992; Wehr and Sheath 2003). Sexual reproduction is 

characterized by gamete fusion and meiosis whereas asexual reproduction can occur whether by spores 

and mitosis or vegetative fragmentation (Hawkes 1990; Graham et al. 2009). Generally, asexual 

reproduction occurring by spores is common in early-diverging red algal groups such as Porphyridiales 

and Cyanidiales (primarily unicellular taxa) (Müller et al. 2001a; Ciniglia et al. 2004, Graham et al. 

2009). However, sexual reproduction has also been observed in some early-diverging multicellular red 

algal taxa including Rhodochaete, Erythrotrichia, Bangia, Smithora, and Porphyra (Garbary and 

Gabrielson 1990; Hawkes 1990; Ciniglia et al. 2004; Graham et al. 2009; Müller et al. 2010; De Clerck 

et al. 2012).  

Sexual	
  Reproduction	
  in	
  Red	
  Algae	
  

 The majority of Rhodophyta members undergo sexual reproduction, which is typically 

oogamous, involving fusion of relatively small non-flagellated (non-motile) spermatium (the male 

gamete) with a large non-flagellated carpogonium (female gamete) (Searles 1980; Graham et al. 2009). 

Red algal spermatia are formed singly as subapical protrusions in the male sex organs (Hommersand and 

Fredericq 1990). The female gametes (carpogonia) are also produced separately from carpogonial 

branches. The carpogonia consist of extended and enlarged cell contacting the nucleus (Hommersand 

and Fredericq 1990; Graham et al. 2009). In the triphasic life history, fertilization in red algae begins 

with the adhesion of a spermatium to carpogonium; then, carpogonial extracellular matrix secretes 

enzymes to enable spermatial nucleus to enter the carpogonium. The cytoplasm then closes the 

carpogonium to prevent other spermatia from entering (Broadwater and Scott 1982; Graham et al. 2009). 

Then, the fertilized carpogonia becomes the second phase of the life history, the carposporophyte 
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(cystocarp), which develops on the female gametophyte while the zygote undergoes repeated mitosis 

(Kamiya and Kawai 2002; Graham et al. 2009). The mitotic nuclear division of each zygote is supplied 

by nutritional resources from the female gametophyte to generate diploid cells of filaments called 

gonimoblast (Turner and Evans 1978; Kamiya and Kawai 2002; Guillemin et al. 2014).  A single 

gonimoblast is equivalent to a carposporophyte, but the first one uses additional nutritional resources 

from the female gametophyte to generate carposporangia that release diploid carpospores which develop 

to tetrasporophyte to complete the life cycle (Graham et al. 2009; Guillemin et al. 2014).  

Life	
  History	
  

The typical life history of red algae occurs in three generations or phases: haploid (gametophyte) 

and diploid (sporophyte). The diploid sporophyte develops into female thallus (carposporophyte) and 

free-living tetrasporophyte which is can be seen in the Florideophyceae and not in the Bangiophyceae. 

All three phases - gametophyte, carposporophyte, and tetrasporophyte - are obligatory for sexual 

reproduction; additionally, haploid gametophyte and diploid sporophyte alternate in the life history. 

Hence, the life cycle of red algae is known as biphasic or triphasic alternation of generations (Figure 3). 

Furthermore, meiosis occurrence has been observed during the production of spores by sporophytic 

stage (Searles 1980; Hommersand and Fredericq 1990; Graham et al. 2009; Yao et al. 2009) (Refer to 

Figure 3). 

Asexual	
  Reproduction	
  in	
  Red	
  Algae	
  

 Many red algae also reproduce asexually via releasing unicellular spores such as monospores, 

archeospores, endospores, or neutral spores. The releasing of spores depends on the production and 

swelling of mucilage mechanism (Graham et al. 2009). To form new red algal plants, spores need to 

attach to a suitable substrate, and the attachment requires several hours or days to become completed. 

When spores attach to a substrate, they become resistant to water movement, and the spores grow by 

repeated mitosis to form new members that are similar to the parents. The other type of asexual 
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propagation occurs by vegetative fragmentation (Hawkes 1990; Wehr and Sheath 2003; Blouin et al. 

2007; Graham et al. 2009). 

1.5 Diversity of Red Algae  

The Rhodophyta are a diverse group; it has been postulated that there are more than 600 genera 

and about 20,000 species that are distributed worldwide (Norton et al. 1996; Graham et al. 2009). To 

address questions of the genes that are in involved meiosis in early eukaryotes (i.e. Rhodophyta), the 

meiotic genes (meiotic detection toolkit) have to be detected in wide range of red algal species that differ 

in their reproductive mechanism (sexual or asexual) and habitats.  In the next section, several classes and 

species, will be discussed that exhibit a range in their reproductive mechanisms. These species were 

used whether directly (e.g. through DNA extraction and sequencing) or indirectly (e.g. using their 

available complete genome sequences). 

1.5.1 Bangiophyceae	
  

 Bangiophyceae is a red algal class that contains simple unbranched filaments or a leaf-shaped 

thallus (Yoon et al. 2010). Molecular phylogenetic studies have supported the monophyly of this class 

(Oliveira and Bhattacharya 2000; Müller et al. 2001, 2005; Nelson et al. 2005, 2006; Yoon et al. 2006a, 

2010). Bangiophyceae is a sister to the Florideophyceae, which are supported both morphologically and 

molecularly as monophyletic groups (Müller et al. 2001; Yoon 2006a, 2010; Chan et al. 2012). The 

Bangiophyceae was traditionally classified into one order Bangiales and two genera Bangia (e.g. 

filament) and Porphyra (e.g. blade); these genera are molecularly supported as non-monophyletic 

groups (Oliveira et al. 1995; Müller et al. 2001a; Milstein and De Oliveira 2005). Sutherland et al. 

(2011) have recognized 15 genera, 7 filamentous and 8 foliose.  

Members of Bangiophyceae are typically marine with only one known freshwater species, 

Bangia atropurpurea (Müller et al. 2003). Most species grow in the intertidal zone of marine areas while 
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others are subtidal. They are typically observed on rocks, shells, or other algae, although some are 

epiphytic (Sutherland et al. 2011). Cells typically can contain a single plastid with central pyrenoid or 

several per cell (Graham et al. 2009). The pit plugs are a distinctive feature in the sporophytic phase 

(conchocelis) of Bangiales, but they are rarely observed in the gametophyte (Müller et al. 2010). The 

marine members of the Bangiophyceae are typically able to undergo sexual reproduction (Magne 1960; 

Garbary et al. 1980). In addition, asexuality can occur among members of this class, which results in the 

production of numerous asexual spores (archeospores), germinating into a thallus, which is identical to 

the parent (Müller et al. 1998; Wang et al. 2008; Sutherland et al. 2011). 

1.	
  	
  Bangia	
  atropurpurea	
  

Bangia atropurpurea is a simple multicellular filamentous red algae with little cellular structural	
  

complexity (Spitale et al. 2012). Müller et al. (2003) determined that Bangia atropurpurea, which is the 

single freshwater species in the order Bangiales, is clearly distinct based on molecular, cytological, 

ecological, and reproductive preferences from marine Bangia species such as Bangia fuscopurpurea. 

Sexual reproduction has never been observed in B. atropurpurea in nature, and it typically reproduces 

asexually through monosporangia (Wehr and Sheath 2003; Nelson 2007). However, under laboratory 

conditions, sexual reproduction has been observed by spores development into gametophytic thalli, and 

the sexuality was confirmed by counting the chromosomes n = 3 and 2n = 6 in the gametophytes and 

sporophytes (Gargiulo et al. 2001). This species is distributed worldwide attached to rocks or other solid 

substrates in rivers, streams, and lakes. It has been observed in the British Isles, Japan, New Zealand, 

and the North American Great Lakes (John et al. 2002; Notoya and Iijima 2003; Müller et al. 2010).  

2.	
  	
  Bangia	
  maxima	
  

Bangia maxima is a monophyletic species and is morphologically distinguishable among 

members of the genus Bangia due to its large size (up to 35 cm long × 6 mm in diameter), and it has a 

distally multiseriate hollow filament. It has been reported that B. maxima species are having a 
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monecious form, which helps to increase the proportion of fertilization between male and female 

reproductive organs (Lynch at al. 2008; Müller et al. 2010). Bangia maxima occurs in marine habitats, 

and it has been found abundantly in littoral boulders in Bolinas Bay, California, USA (Yoon et al. 2006; 

Lynch at al. 2008). B. maxima has been observed to reproduced sexually (Lynch at al. 2008). 

3.	
  Porphyra	
  sp.	
  

Porphyra in the narrow sense is a monophyletic genus, which is strongly supported by 

phylogenetic analyses (Sutherland et al. 2011). Morphologically, Porphyra vary from linear (e.g. P. 

linearis) to foliose species (e.g. P. umbilicalis) (Müller et al. 2010). This foliose thallus consists of either 

one (monostromatic) or two (distromatic) cells thick. The gametophyte generation is the blade or foliose 

phases, and the sporophyte generation is a branched filamentous or conchocelis phase. The conchocelis 

produces spores to regenerate the blade-forming phase (Graham et al. 2009). Sexual reproduction is the 

predominant mode among Porphyra species. However, in the northwestern Atlantic, asexual 

reproduction has been noticed on P. umbilicalis by releasing spores from the blades (Blouin et al. 2007). 

Porphyra species are distributed worldwide (Blouin et al. 2011).  

1.5.2 Florideophyceae	
  

 The monophyly of this class and Bangiophyceae has been supported via molecular analyses 

(Müller et al. 2001a). Among the red algal classes, Florideophyceae is the most diverse group, including 

more than 20 orders and around 5800 species (Yoon et al. 2004; Le Gall and Saunders 2006). There are 

five florideophycean subclasses Hildenbrandiophycidae, Nemaliophycidae, Ahnfeltiophycidae, 

Rhodymeniophycidae (Saunders and Hommersand 2004), and Corallinophycidae (Le Gall and Saunders 

2006). Florideophyceans occur in marine habitats with triphasic life cycle: gametophyte, 

carposporophyte, and tetrasporophyte phases (Graham et al. 2009). 

Chondrus	
  crispus	
  

  This edible species is known as "Irish moss" having a distinguishable morphology; their bodies are 
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multiaxial, bushy, and dichotomously branched shape (Graham et al. 2009). C. crispus occurs in the 

lower intertidal and subtidal zones on the both sides of the North Atlantic (Graham et al. 2009). The 

complete genome of C. crispus is available with 105 Mbp genome containing 9,606 of annotated genes 

(Collén et al. 2013). 

1.5.3 Stylonematophyceae	
  

Red algae (Rhodophyta) consist of several early diverging classes, including the 

Stylonematophyceae (Yoon et al. 2006; Zuccarello et al. 2009). Based on multigene phylogenetic 

analyses, Yoon et al. (2006) proposed the class Stylonematophyceae has eight genera. It has been 

reported that this class is a monophyletic group (Yoon et al. 2006; Müller et al. 2010). Recently, 

Zuccarello et al. (2008) established an additional order that is the Rufusiales with only one genus 

Rufusia (Wujek and Timpano 1986). Fourteen genera under the order Stylonematales have been reported 

(Müller et al. 2010; Yoon et al. 2010). Thus, Stylonematophyceae includes two orders with 15 genera. 

Morphologically, this class contains unicellular and pseudo-filamentous forms (Yoon et al. 2006, 2010; 

Zuccarello et al. 2009; Müller et al. 2010). Their cells consist of thick mucilaginous walls and lack pit 

plugs; additionally, most genera possess a single stellate plastid with a pyrenoid within their cells 

(Broadwater and Scott 1994). Stylonematophyceae members are epiphytic and mostly occur in marine 

rather than freshwater habitats (Wehr and Sheath 2003; Müller et al. 2010; Yoon et al. 2010). Sexual 

reproduction is rare within this class; however, it has been documented in genus Kyliniella (Wehr and 

Sheath 2003; Zuccarello et al. 2009). In addition, it is worthy to mention that Stylonema cornu-cervi and 

Stylonema alsidii are morphologically similar. S. cornu-cervi, however, has less branched with more 

multiseriate thallus (Zuccarello et al. 2009). 

Kyliniella	
  latvica	
  

Kyliniella latvica is a monophyletic group (Yoon et al. 2006) formed of unbranched pseudo-

filaments with a discoid pseudoparenchymatous base occurring in freshwater habitats (Wehr and Sheath 
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2003). Kyliniella latvica is epiphytic and has been observed in water streams in Rhode Island in U.S.A 

(Vis and Sheath 1993); additionally, this species has been observed in Alhárabe River in Spain 

(Fernández et al. 2012). Kyliniella latvica is the only member of the class Stylonematophyceae that has 

been reported to be sexually reproductive (Wehr and Sheath 2003). 

1.5.4 Cyanidiophyceae	
  	
  

This class is well-supported monophyletic group (Yoon et al. 2006). The cyanidiophytes are 

unicellular members, and they are acidophilic (pH 0.5-3.0) and thermophilic (up to 57°C) taxa, and 

thrive around hot springs or acidic sulfur fumes (Graham et al. 2009; Ciniglia et al. 2014). Asexuality 

has been observed in cyanidiophytes both in natural populations and in laboratory conditions (Ciniglia et 

al. 2004; 2014). The class Cyanidiophyceae is supported phylogenetically as an early diverging lineage 

of the red algae, likely dating to more than 1300 MYA (Müller et al. 2001b; Yoon et al. 2006). There are 

currently three genera and seven species: Cyanidium (1 sp.), Cyanidioschyzon (1 sp.), and Galdieria (5 

spp.) (Yoon et al. 2006b; Pinto et al. 2007). 

1.	
  Cyanidioschyzon	
  merolae	
  

This small (2 µm diameter) unicellular red algal species inhabits photoautotrophically sulphate-

rich hot springs (Matsuzaki et al. 2004). Cyanidioscyzon merolae consists of non-rigid cell wall and one 

nucleus, mitochondrion and plastid which is considered such an excellent model systems for the study of 

plant cell biology and metabolism; for example, the study of mitochondrial and chloroplast divisions 

(Kuroiwa 1998). Cyanidioscyzon merolae has one of the smallest genomes among photosynthetic 

eukaryotic organisms with 20 chromosomes in total size of ≈ 16.6Mbp (Matsuzaki et al. 2004; Nozaki et 

al. 2007).  

2.	
  Galdieria	
  sulphuraria	
  

Galderia sulphuraria is unicellular and grows either photoautotrophically or heterotrophically in 

harsher environmental conditions; for instance, it thrives naturally on volcanic hot sulfur springs, 
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solfatara soils, and anthropogenic hostile environments (Gross and Schnarrenberger 1995). It has 

relatively a smaller genome than C. merolae with 13.7Mbp (Schönknecht et al. 2013). 

1.5.5 Porphyridiophyceae	
  

The Porphyridiophyceae is morphologically and molecularly supported as non-	
  monophyletic 

group (Müller et al. 2001a,b; Yoon et al. 2006). Porphyridiophyceae contains three unicellular genera: 

Porphyridium, Erythrolobus, and Flintiella (Yoon et al. 2006). The members of this group, particularly, 

Porphyridium and Erythrolobus can be found on wet soils (Sheath and Sherwood 2002).  

	
  Porphyridium	
  sp.	
  	
  

The red coloured mesophilic Porphyridium purpureum and the	
  olive-green Porphyridium 

sordidum are unicellular red algal species and inhabit areas of high salt content (Ott 1987; Broadwater 

and Scott 1994). Their cells consist of mucilaginous matrix that enables them to move slowly via 

mucilage excretion (Graham et al. 2009). The complete genome of P. purpureum is available with 19.7 

Mbp containing 8,355 of predicted genes (Bhattacharya et al. 2013). Despite this P. purpureum is a 

unicellular species, 8 of 9 core meiotic genes (DMC1, MND1, SPO11, HOP2, HOP1, MSH4, MSH5, 

and MER3) were identified in its genome (Bhattacharya et al. 2013).  

1.6 Pseudogenes and Gene Duplication 

	
  Pseudogenes	
  

 Generally, pseudogenes are copies of functional genes that are no longer able to encode functional 

proteins (Harrison and Gerstein 2002).  Pseudogenes have been observed in all eukaryotes (Wang et al. 

2012; Jackson et al. 2009; Eschenlauer et al. 2006; Zheng et al. 2007) and can be divided into three 

groups. The first group includes unprocessed pseudogenes (duplicated pseudogenes), which are the 

result of the duplication of a functional gene (Salmena 2014). The second group consists of processed 

pseudogenes, which derived by the reverse transcription of an mRNA back into DNA generating cDNA 
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and randomly inserted into the genome (Salmena 2014).  These pseudogenes usually are lacking in 

regulatory sequences and introns due to the occurrence of a mutation during the copying process or are 

missing crucial regions of the original gene (Gerstein and Zheng 2006; Wang et al. 2006). It is possible 

that this second group of pseudogenes was initially functional but over time and due to the accumulation 

of deleterious mutations, the nucleotide sequence has premature stop codons (or other elements), which 

prevent of the successful expression.	
  The last group is the unitary pseudogenes, which possibly arose 

through spontaneous mutations in protein-coding genes associated with losses (Mitchell and Graur 

2005). 

Gene	
  duplication	
  	
  

Gene duplication is an event from which another copy of the same gene is duplicated and can be 

operationally is similar to the original gene. These duplicated genes form paralogs as they remain in the 

same genome and orthologs when they are transferred into a different genome (Magadum et al. 2013). 

The occurrence of duplicated genes has been observed in the all three domains of life and thus it is 

hypothesized that gene duplication has contributed to gene evolution by adding new functions (Zhang 

2003). Hence, gene duplication is considered as a source of paralogs forming gene families (Li et al. 

2001; Martin and Holland 2014), many protein-coding genes can be classified into genes families that 

gene duplication event has contributed their history (Dayhoff 1976; Vasiliou et al. 2000; Pascual-Anaya 

et al. 2013). For example, the hemoglobin β chain is a paralog of the α chain hemoglobin and of 

myoglobin which they evolved from the same ancestral globin gene through gene multiple duplication 

events (Gogarten and Olendzenski 1999).  

There are four different mechanisms by which genes can be duplicated: 1) unequal crossing-

over, 2) retrotransposition 3), duplicated DNA transposition, and 4) whole-genome duplication 

(Magadum et al. 2013; Dharia et al. 2014). 

1. Unequal crossing over: This mechanism provides tandem repeated DNA sequences. The 
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tandem duplication depends on where the cross over occurs whether in portion of a gene, a 

complete gene, or a segment encoding a number of different genes (Zhang 2003). These 

sequences can be duplicated with their introns if they were presented in the original genes 

(Zhang 2003).  

2. Retrotransposition: genes can be duplicated when a messenger RNA (mRNA) is reverse 

transcribed to complementary DNA (cDNA) forming retrogenes followed inserted into the 

genome (Long 2001). The retrogenes usually are not similar to the origin genes -unlike the 

unequal crossing over- because the retrogenes are lack of introns (Long et al. 2003).  

3. Duplicated DNA transposition: it is also called duplicative transposition, which occurs during 

the stage of DNA repair, can produce more new duplications due to the recombination of non-

allelic homologous (Samonte and Eichler 2002). It is believed that duplicative transposition 

contributes the rise of gene families (Dharia et al. 2014). 

4. Whole genome duplication (WGD): it is also called polyploidization or polyploidy. This 

mechanism is the fourth type of gene duplication, and it is common in plants more than in 

animals (Masterson 1994). Whole genome duplication is a process that hybridizationally 

combines two or more genomes in one nucleus (Magadum et al. 2013); however, 

polyploidization is also associated with gene loss (Kellis et al. 2004; Dehal and Boore 2005).  

1.7 Horizontal Gene Transfer  

Horizontal, or lateral, gene transfer is the process of genes transfer between organisms and was 

recognized first in prokaryotes due to the abundant amount of available genomic sequence compared to 

eukaryotes (Ochman et al. 2000; Boucher et al. 2003). However, despite the well-recognized importance 

of horizontal gene transfer (HGT) in prokaryotes, it has likely played an important role in eukaryotes as 

well (Andersson 2005).  For example, in eukaryotes, lateral genetic transfer can occur by different 

mechanisms such as DNA being transferred to the eukaryotic nucleus via endosymbiotic gene transfer 
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(from mitochondrion or plastid to the nucleus) (Lill 2009; Hirt et al. 2015).  Furthermore, it is possible 

that eukaryotes can horizontally obtain genes from virus transmission that occurs between eukaryotic or 

prokaryotic hosts (Liu et al. 2010; Gilbert and Cordaux 2013). For example, seven of (sphingolipid) 

genes were horizontally transferred between the eukaryotic organism Emiliania huxleyi and the virus 

EhV (Monier et al. 2009). Hence, many eukaryotes possess encoded genes from mitochondria, and HGT 

from parasite viruses, and free-living organisms have contributed to the evolution of the eukaryotic 

genome (Huang 2013; Schönknecht et al. 2014).  

1.8 The Modes of Evolution 

 Divergent, convergent, and parallel are the different modes (patterns) of evolution (Pagel et al. 

2006; Conte et al. 2012; Soria-Carrasco et al. 2014). Divergent evolution can be described as a short 

period of evolution occurs after long period of stability within a population of organisms associated with 

speciation (Ricklefs 2006; Pagel et al. 2006). The result of this mode of evolution is to form new species 

that are genetically isolated and phenotypically distinct (Buckner and Krienen 2013). Isolation can 

accelerate genes frequency changes and mutant genes adaptation (Buckner and Krienen 2013). 

Duplicated genes in an isolated population are vulnerable to the evolutionary of divergence that may 

affect their original genetic background; for example, divergent evolution may change the primary 

functions or genomic locations of such genes (Bikard et al. 2009; Ouyang et al. 2010). 

 Speciation that is associated with parallel evolution may occur in closely related linages, and the 

descendants of this speciation would have some properties that are missing in the common ancestor 

(Schluter and Nagel 1995). For example, the descendants from such speciation may do not have the 

same reproductive traits that they were existed in the common ancestor; the descendants do not have the 

same ability of mating that their common ancestor does (Schluter and Nagel 1995; Conte et al. 2012). In 

another words, the descendants are not reproductively isolated from one another, but they may not have 

the same traits of the common ancestor. Additionally, geographic or environmental changes may not be 
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able to prevent the generation of the new traits that are generated by the parallel evolution; for instance, 

reproductive isolation may happen in closely related (similar) populations even if they live in different 

geographic or environmental areas (Schluter and Nagel 1995; Soria-Carrasco et al. 2014). 

 However, convergent evolution is the process of adapting similar environmental or biological 

properties by different species that are distantly related (non-monophyletic); as a result from this event, 

these organisms, which are not closely related, possess similar traits (Conte et al. 2012). It is possible to 

say that the opposite of the parallel is convergent evolution. The parallel evolution occurs to populations 

that are closely related and ends up in speciation that having traits that were not observed on the ancestor 

while the convergent evolution occurs to populations that are distantly related which results in speciation 

that evolved similar traits (Conte et al. 2012; Schluter and Nagel 1995; Soria-Carrasco et al. 2014).	
  

1.9 Core Meiotic Genes 

Meiosis is the most essential process for sexual reproduction, which is ubiquitous among all 

eukaryotes. Meiosis has several unique processes, for instance, synapsis, high levels of recombination, 

and no S phase prior to Meiosis II (White 1978; Page and Hawley 2003). Meiosis I reduces the 

chromosomes sets from two to one set in each nucleus and the second meiosis division is still equational 

(does not reduce the chromosomes numbers) but the separated chromatids are not identical due to the 

new recombination (Marcon and Moens 2005). In most eukaryotic species, the complex meiotic 

prophase I involves leptotene (to align the homolog chromosomes), zygotene (to imitate synapsis 

between the two homologs via synaptonemal complex proteins (SC), pachytene (to ensure the homologs 

are completely synapsed), and diplotene (to recognize the sites that do not synapse and allows the 

crossing over occur) (Marcon and Moens 2005; Hamant et al. 2006). 

Detecting meiotic genes (Table1) in a given genome is a suitable solution for sexuality 

determination because the presence of most or all these genes provides a significant mark that the 
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organism has the ability to undergo meiosis, whereas the absence of some or all of these meiotic genes 

would be associated with asexual reproduction (Schurko and Logsdon 2008). The presence of only one 

or two of meiotic genes would not provide strong proof for meiosis while several genes are necessary to 

be present in order to prove the sexuality of the organism. These genes signify the best candidate 

indicators for detecting the presence of meiosis and sexual reproduction across all eukaryotes; 

additionally, almost all meiotic genes have been identified in animals, plants, fungi, protists, and red 

algae (e.g. P. purpureum) (Ramesh et al. 2005; Malik et al. 2008; Schurko and Logsdon 2008; Carr et al. 

2010; Hanson et al. 2013; Bhattacharya et al. 2013).  

The	
  Concept	
  of	
  Meiosis	
  Detection	
  Toolkit	
  	
  

The dramatic development of genome sequencing technology increases the methods that can be 

used to search genomes for genes required for sexual reproduction. In the flowering plant Silene 

latifolia, tracing the evolution of sex chromosomes, and comparing the closely related species with and 

without sex chromosomes can be determined by finding a set of genes in the S. latifolia genome (Filatov 

2005). Likewise the present of the complementary mating-type (MAT) gene in the fungus Aspergillus 

fumigatus is associated with obligate sexual outbreeding and mating partner (Pöggeler 2002; Paoletti et 

al. 2005). To make a comparative genomics approach applicable to all eukaryotes, it is necessary to 

define a set of genes that are universally required for sexual reproduction. This is precisely the aim of 

the ‘‘meiosis detection toolkit’’ approach (Schurko and Logsdon 2008).    

This meiosis detection toolkit is a powerful approach to detect sexual reproduction in eukaryotes 

for several reasons: First, applicable to all eukaryotes. Second, since the meiotic genes are in the 

genomic DAN (Schurko and Logsdon 2008; Bhattacharya et al. 2013), small sample size is sufficient. 

Third, as sexual reproduction is a ubiquitous mechanism across the eukaryotes, it suggests that the 

evolution of sex (meiosis) was a pivotal event in eukaryotic evolution (Bell 1982), so the meiotic toolkit 
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may have an importance to evolutionary biology. On the other hand, the difficulty of determining a true 

negative result and direct assessing gene expression are the pitfall points of the meiosis detection toolkit.  

In the case of the red algae, asexuality is common in early-diverging groups, and it occurs in 

different red algal members (Graham et al. 2009); therefore, it would be difficult to determine whether 

asexual species undergo sexual reproduction via inducing sex under laboratory conditions. To overcome 

this challenge, using the meiosis detection toolkit to detect the meiosis genes in the genomes of different 

red algal species may an effective alternative solution for inferring the presence of sexuality. 
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Table 1 Brief description and key functions of the core meiotic genes that are considered to be 
components of the meiosis detection toolkit. 

	
  

Core Meiotic Genes Description and Some Key Functions 

SPO11	
  

• SPO11 proteins are homologs of an archaebacterial 

topoisomerase VI subunit (Bergerat et al. 1997). 

• Meiosis-specific protein that stimulates the formation of double-

strand breaks (DSBs) in DNA, particularly, in meiosis in order 

to initiate meiotic recombination (Keeney 2008). 

• Homologs: SPO11-1, SPO11-2 and SPO11-3 (Hartung and 

Puchta 2000); SPO11-1 and SPO11-2 are the essential for 

meiotic recombination (Hartung et al. 2007; Hörandl and 

Hadacek 2013).	
  

HOP1	
  

• Important protein for chromosome pairing and DSBs binding 

during meiosis (Hollingsworth et al. 1990). 

• This protein also contributes in the formation of axial and lateral 

elements of synaptonemal complex (SC) between homologous 

chromosomes (Anuradha and Muniyappa 2004). 

HOP2	
  

• Prevents synapsis between non-homologous chromosomes and 

ensures synapsis between homologous chromosomes (Halary et 

al. 2011). 

• HOP2 and Mnd1 form a heterodimeric complex that promotes 

the accurate homology pairing and meiotic DSBs repair during 

pachytene stage of meiotic prophase (Pezza et al. 2006). 

MND1	
  

• Meiotic nuclear division and recombination requires MND1;  

• Mnd1 forms a heterodimeric complex with Hop2 to ensure 

accurate meiotic DSBs formation (Riley and Corradi 2013). 

• MND1, HOP2, and RAD51 form essential heterodimer complex 

to ensure synapsis between homologous chromosomes during 
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Core Meiotic Genes Description and Some Key Functions 

meiosis (Cho et al. 2014). 

DMC1	
  

• DMC1 is homolog of RAD51, which both are eukaryotic 

proteins; DMC1 is homolog of the eubacterial RECA (Stassen 

et al. 1997). 

• DMC1 and RAD51 are essential meiotic proteins for normal SC 

formation, meiotic recombination, and DNA damage repair 

(Masson and West 2001). 

MSH4 and MSH5	
  

• The eukaryotic MSH4 and MSH5 genes are homologous of 

eubacterial mismatch repair MutS genes (Halary et al. 2011). 

• MSH4 and MSH5 form a heterodimer complex that facilitates 

and controls the crossovers between homologs “Holliday 

Junction”* and meiotic recombination (Borts et al. 2000; 

Rakshambikai et al. 2013). 

MER3 

• Meiosis-specific protein which encourages DEAD-box 

helicase* to work in order to disengage Holliday Junction (HJ)* 

and insure crossover interference quality (Nakagawa and Ogawa 

1999; Chen et al. 2005). 

 

* DEAD-box proteins are the largest family of DNA and RNA 

helicases. The origin of DEAD-box’s name is came from the motif 

II includes the sequence D-E-A-D (Asp-Glu-Ala-Asp) (Linder et al. 

1989). 

 

* Holliday junctions (HJs) are 4-stranded DNA crossover structures 

(X-shaped). HJ occurs during genetic recombination and repair 

(Holliday 1964; Boddy et al. 2001). 
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Core Meiotic Genes Description and Some Key Functions 

RECA	
  

 

• REC8 is paralog of RAD21 (Urban et al. 2014). 

• Sister chromatid cohesion is regulated via RAD21; then, 

RAD21 is replaced via its meiosis-specific paralog REC8 which 

bounds sister chromatids between the centromeres during 

meiosis I until the beginning of anaphase II (Haering and 

Hasmyth 2003; Urban et al. 2014). 
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1.10 Objectives of the Thesis 

Objective 1: To examine the usefulness of six meiotic toolkit genes (DMC1, MND1, 

SPO11, HOP2, MSH4, and MSH5) in the determination of sexuality using available red 

algal genomes: Galdieria sulphuraria, Cyanidioschyzon merolae, Chondrus crispus, and 

Porphyridium purpureum). 

Sexual reproduction has not been observed in unicellular red algal species (C. merolae, and P. 

purpureum).  However, it appears that meiotic genes have been reported (Schurko and Logsdon 2008; 

Bhattacharya et al. 2013).  

Hypothesis: Meiotic genes are present in the unicellular red algae. 

i. Possible outcome 1: Genomes of the unicellular red algal species contain the core 

meiotic genes. 

Explanation: These red algal species may have all or some of the meiotic 

toolkit genes, and hence it provides support for the common ancestor 

having the ability to undergo meiosis, and the unicellular red algae may 

undergo cryptic sexual reproduction. 

Hence: The meiosis detection toolkit would be useful markers for sexual 

reproduction determination.  

ii. Possible outcome 2: Genomes of the unicellular red algal species contain non-

functional meiotic genes (i.e. pseudogenes) that are no longer under selection. 

Explanation: These genes are may not longer under selective constraint 

and may no longer be functional; hence those genes will exhibit 

characteristics of pseudogenes in coding regions (Ka=Ks) and behaving 

differently (Schurko and Logsdon 2008; Pei et al. 2012). 
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Hence: The meiosis detection toolkit would not be a good source to 

determine the sexuality of these red algal species (G. sulphuraria, C. 

merolae, and P. purpureum). 

Objective 2: Determine whether the meiotic toolkit is a useful tool for evolutionary 

history.   

Hypothesis: Since meiosis detection toolkit is considered to be a universal set of 

genes, it may be useful as a molecular tool to determine the evolutionary history of 

many organisms.   

Possible outcome: It may correspond to the evolutionary history and ordinal 

taxonomic level of red algae as determined by standard gene phylogenies using18S 

rRNA and rbcL genes (Yoon et al. 2006a; Müller et al. 2010). 
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Chapter 2.0: METHODS 

2.1 DNA Extraction and Samples  

Most samples were already DNA extracted and stored in a –20 °C freezer, and DNA extraction 

was applied as needed (Table. 2). Frozen samples (100 - 400 mg) were disrupted in liquid nitrogen using 

mortar and pestle. DNA extracted using the QIAgen ® DNeasy Plant Mini Kit (Qiagen, Mississauga, 

Ontario, Canada) and DNA was eluted in 50 µl of either 50 mM Tris-HCl (pH 8.0) or DNA/RNA free 

water. 

Table 2 List of samples  
A list of algal species, the sampling sites, reproductive types, and preferable habitats. 

* The highlighted species was partly sequenced. 

Taxon Species Sexuality Locality Habitat 

Bangiophyceae 

Bangia atropurpurea 
Asexual 

Sexual 
(Gargiulo et al. 2001) 

Lake Ontario 

Lake Michigan 

 

Freshwater 

Bangia maxima Sexual 
Bolinas Bay, 
CA 

Marine 

Porphyra rediviva Sexual HBI Marine 

Porphyra umbilicalis 

Sexual 

Asexual 
(Blouin and Brawley 

2012) 

SCO. 12 AC 

Marine 

Porphyra rediviva Sexual ce 73 Marine 

Stylonematophyceae 

Stylonema cornu-cervi 

 

Asexual 

Sexual? 

 
Marine 

Stylonema alsidii Sexual CA - MLVC Marine 

Kyliniella latvica 
Asexual 

Sexual 

EB 
Freshwater 

Porphyridiophyceae Porphyridium sordidum Asexual? EB  
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2.2 Primer Design  

Primers for targeted meiotic genes (SPO11, MND1, and DMC1) were designed based on 

Expressed Sequence Tags (ESTs) from Porphyra and Pyropia species and the available red algal 

genomes (Cyanidioschyzon merolae, Chondrus crispus, Galdieria sulphuraria and Porphyridium 

purpureum) using NCBI Primer Designing Tool (http://www.ncbi.nlm.nih.gov/tools/primer-blast/). 

Primers were designed to be suitable to amplify the meiotic genes in the genome of more than one red 

algal genus. Phylogenetic analyses from previous studies (Yoon et al. 2006a; Müller et al. 2010) were 

used to determine the most closely related red algal species so that each designed primer can amplify 

several related red algal species (Table 3).  

 Table 3 Sequences of the primers used for PCR amplification and sequencing. 

Tm: annealing temperature. 
*The results of the highlighted primers were successful.  

Gene Primer name Primer sequence 

5’                                               3’ 

Length 
(bp) 

 

Tm Genera 

DMC1 
DMC1_P.umb-F 
DMC1_P.umb-R 

AAGCCGAGGAGGAACGCA 
CAGCGTTGGGGAGTCGT 

18 

17 
52 °C 

Porphyra and 
Bangia 

MND1 
F-MND1-A 

R-MND1-A 

GGTGGAGCTGCTGCAAG 

CCAAACTTGTCACTCACG 

17 

18 
55 °C 

Porphyra and 
Bangia 

DMC1 
DMC1-Pdium-F 

DMC1-Pdium-R 

GACTCAGCTGTCTCACACCC 

TGGTACTTGCGTGAGCCATT 

20 

20 
52 °C 

Porphyridium 
and 

Stylonema 

SPO11 
SPO11 - Pdium-F 
SPO11 - Pdium-R 

GGACCTGTCGGCTGTGCGCG 
CCGAGCCACTTGATGTCCGG 

20 

20 
50 °C 

Porphyridium 
and 

Stylonema 

SPO11 
SPO11 – Purpra - F 
SPO11- Purpra - R 

AAAATCGTGCCAACGCAGAG 

GGTCTTTACGCGCCTCTCAG 

20 

20 
47 °C 

Porphyra and 
Bangia 
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2.3 PCR Amplification of Meiotic Genes 

To obtain a sufficient amount of PCR product, 95 µl as a final volume of reaction mixtures were 

prepared containing 10 µl 10X taq buffer with KCl (100 mM Tris-HCl (pH 8.8 at 25 °C), 500 mM KCl, 

0.8% (v/v) Nonidet P-40), 8 µl 25 mM MgCl2, 2mM each of dATP, dCTP, dGTP, and dTTP, 4 µl 0.01 

mM of each specific meiotic primers (Table 3), 0.4 µl taq DNA polymerase (5 U/µL), and 2 µl of 

extracted genomic DNA from the red algal species listed in (Table 2). Eppendorf Mastercycler® 

Gradient 5331 (Eppendorf, C.A., U.S.A.) and MultiGene II™ Personal Thermal Cycler (Labnet 

International, N.J., U.S.A.) were used for PCR amplifications. 35 cycles of 2 min of pre-denaturation at 

95 °C followed by 1 min of denaturation at 93 °C, 1 min of annealing (Tm are listed in table.3), and 4 

min of extension at 72 °C; then a final extension of 6 min at 72 °C. 

Gradient PCR was used to increase primers specificity (Hecker and Roux 1996; Schneider et al. 

2012). It was performed using Eppendorf Mastercycler® Gradient 5331 (Eppendorf, C.A., U.S.A.) with 

similar reagent concentrations as the previous PCR reaction but with the following changes: 5 µl 10X 

taq buffer with KCl (100 mM Tris-HCl (pH 8.8 at 25°C), 500 mM KCl, 0.8% (v/v) Nonidet P-40), 4 µl 

25 mM MgCl2, 2 µl 0.01 mM of each specific meiotic primers (Table.3), 0.4 µl Taq DNA Polymerase (5 

U/µL), and 1 µl of extracted genomic DNA in 50 µl as final volume. The protocol was 35 cycles of 2 

min of pre-denaturation at 95 °C, 1 min of denaturation at 93°C, 1 min of annealing with gradient 

temperature from 48.2°C to 63°C, 4 min of extension at 72 °C and a final extension of 6 min at 72°C.  

Each amplification product was electrophoresed through a 1.0% agarose gel in 1x TBE buffer at 

120 V for 45 min. Fluorescent nucleic acid dye “GelRed” (GelRed Nucleic Acid Gel Stain, 10,000X in 

water) was added to the gel (3 µl of GelRed for each 50 ml of agarose gel) to make DNA visible under 

UV lights. Products were visualized using the Syngene Bioimaging System (Synoptics Ltd., United 

Kingdom). PCR product size and concentrations were estimated using DNA ruler (GeneRuler 100 bp 
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Plus DNA Ladder 50µg, Thermo Fisher Scientific Inc.) that was electrophoresed alongside the PCR 

products. 

2.4 Gel and PCR Purification 

Forty µl of PCR products were purified using QIAquick® PCR Purification (Qiagen, Mississauga, 

Ontario, Canada) followed by elution in 50 µl of either 50 mM Tris-HCl (pH 8.0) or DNA/RNA free 

water. For the PCR products that showing multiple bands, gel purification was applied. Agarose gels 

were prepared from 1.0% agarose in 1x TBE buffer and stained by GelRed. Combs were used to form 

10mm wide and 3 mm depth sample wells. 30 µl of PCR product were loaded in each well. 

Electrophoresis was carried out in 1x TBE buffer at 100 V for 70 min. DNA was visualized using the 

Syngene Bioimaging System (Synoptics Ltd., United Kingdom). Each targeted band were extracted 

from the gel by cutting it into a slice using a clean razor blade, and the slices were placed individually 

into a clean 1.5 ml microcentrifuge tube. The slices were purified using QIAquick ® Gel Extraction Kit 

(Qiagen, Mississauga, Ontario, Canada), and DNA was eluted in 50 µl of either 50 mM Tris-HCl (pH 

8.0) or DNA/RNA free water. 

2.5 Sequencing of DNA from PCR products  

The samples were prepared and sent to the Centre for Applied Genomics at the Hospital for Sick 

Children in Toronto. Genetic Analysis Facility at the hospital provides high-quality capillary-based 

fluorescent sequencing on dual ABI 3730XL instruments for DNA sequencing. Each sample was 

prepared as follow: 14 µl purified template DNA was divided equally into two 0.5 ml microcentrifuge 

tubes (7 µl and 7 µl), and 0.7 µl – 1 µl (≈50 ng) of forward primer was added to the first tube and similar 

volume of reverse primer to the second tube; the total volume in each tube was 7.7 µl – 8.0 µl. The 

concentration of PCR products was required as follow:  (<1kb) - ≈ 7ng/ 1 µl, (1-2kb) – 7 to 14ng /1 µl, 

and (2-4kb) – 14 to 21 ng/ 1 µl. Primers and PCR products were quantified using a NanoDrop ND2000 
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spectrophotometer (Thermo Scientific, Wilmington, DE) before being sequenced. Nuclease-free water 

was added and Savant Speed Vac (Sc110) dryer was used to adjust the concentration. 

2.6 Sequence Alignment and Phylogenetic Analyses 

Due to DNA mutational bias at the third codon positions (Savolainen et al. 2002; Magallón 2010), 

annotated amino acid sequences of six core meiotic genes “Meiosis Detection Toolkit” were used in the 

phylogenetic analysis. The data set included the amino acid sequences of animals, fungi, plants, 

excavate, alveolates, and red algae, and the sequences of 6 core meiotic genes (DMC1, MND1, SPO11, 

HOP2, MSH4, and MSH5) were obtained from GenBank (Appendix 1). The protein sequences were 

aligned using Clustal Omega (ClustalO) (Sievers et al. 2011). The Gblocks program was used to select 

blocks of conserved sites for pylogenetic analyses (Castresana 2000; Talavera and Castresana 2007). A 

maximum-likelihood (ML) tree was constructed using PhyML 3.1 (Guindon et al. 2010) with a WAG 

model using the default settings for amino acids.  Clade support was evaluated by applying approximate 

likelihood ratio test (aLRT) statistics (Anisimova and Gascuel 2006). Trees were visualized with 

FigTree v1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/). Trees were edited and finalized via Adobe 

Illustrator CC. MEGA 6.06 was used to determined sequence divergence (p-distance model) and the 

number of amino acids differences (No. of differences model) (Tamura et al. 2013).  

BLASTx (http://blast.ncbi.nlm.nih.gov/Blast.cgi), which searches protein database using a 

translated nucleotide query, was applied to identify open reading frames homologous to known proteins. 

Then, using ExPASy Translate Tool (http://web.expasy.org/translate/) was used to obtain amino acid 

sequences. 
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Chapter 3.0: RESULTS 

3.1 Sequencing Results 

The 5’ portion of the meiotic gene MND1 was successfully obtained from the red algal species 

Porphyra rediviva (Bangiales) after purifying the PCR product. The amplified MND1 sequence is 1138 

nucleotides in length (Figure 4) and encodes a 375 amino acid partial MND1 fragment (Figure 5). The 

obtained MND1 sequence was blasted against the NCBI non-redundant (nr) database using BLASTx 

http://blast.ncbi.nlm.nih.gov/Blast.cgi, which searches the protein database using a translated nucleotide 

query. This revealed a partial hit between the MND1 sequence from P. rediviva and full length MND1 

reference sequences. The first three detected hits were the sequences of Cyanidioschyzon merolae 

(GenBank Accession number XP_005535845.1, E-value	
  6e-09), Chondrus crispus (GenBank Accession 

number XP_005717880.1, E-value 3e-08), and Galdieria sulphuraria (GenBank Accession number 

XP_005703331.1, E-value 6e-08) from the first 5’3’ translated frame (Figure 6). The obtained sequence 

from P. rediviva also appears to have premature stop codons in the translated sequence (Figure 5). The 

alignment of MND1 was then generated from amino acids sequences of 24 eukaryotic organisms 

including the protein sequence of P. rediviva, other red algal species, plants, fungi, excavata, alveolate, 

and animals. 
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Figure 4 Nucleotide sequence of the MND1 gene in Porphyra rediviva. 
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Figure 5 Sequence of the open reading frame of the MND1 gene from P. rediviva. 
Premature stop codons are noted with red stars. 

 

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  



	
  

	
   39 

	
  

	
  

	
  

 

 

 

	
  

Figure 6 BLASTx search including the first three hits of the MND1 sequence from 

Porphyra rediviva indicating the matches of obtained protein sequence of MND1 from 

P. rediviva and the amino acids sequences of C. merolae, C. crispus, and G. 

sulphuraria.   
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3.2 Phylogenetic Analyses  

Sequences of previously published meiotic genes (DMC1, MND1, SOP11, HOP2, MSH4, and 

MSH5) were obtained from GenBank and are included in Appendix 1. Due to DNA mutational bias at 

the third codon position, as noted in chapter 2, phylogenetic analyses were based on amino acid 

alignments. Branch support was determined using the approximate likelihood ratio test (aLRT). 

3.2.1 DMC1	
  

Figure 7 depicts a likelihood tree of the DMC1 protein family including three additional paralogs 

(RAD51, RAD57, and RECA). From a phylogenetic perspective, this phylogenetic tree appears to have 

some monophyletic groups. For example, the fungi, animals, green plant lineage, and red algae were 

well-supported as separate but monophyletic groups (0.96, 1.0, 0.79, and 1.0 aLRT, respectively). 

However, Trichomonas vaginalis formed a weakly supported paraphyletic group with the alveolates 

(Trypanosoma cruzi and Oxytricha trifallax), and Trichomonas vaginalis appears to be basal to the 

alveolates (Figure 7). Interestingly, two copies of the DMC1 gene were identified in Galdieria 

sulphuraria (Cyanidiales) (GenBank Accession numbers EME32481 and EME32482), which represent 

two isoforms. 

The RAD51 cluster did not reflect the taxonomy and evolutionary history of these groups as was 

noted in the DMC1 clades (Figure 7). For instance, sequences from the red algae form a paraphyletic 

group with Trichomonas vaginalis (0.71 aLRT), however the alveolates did form a monophyletic group 

(0.72 aLRT). Moreover, the two members of the order Cyanidiales, G. sulphuraria and Cyanidioschyzon 

merolae, also do not form a monophyletic group. In addition, the florideophyte Chondrus crispus 

appears to be weakly supported as grouping with C. merolae (Figure 7). 

The green plant lineage appears to be a non monophyletic group because the	
  green	
  algae	
  are	
  not	
  

clustering	
  with	
  this	
  group and Chlamydomonas reinhardtii was basal within RAD51cluster; however, 
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Arabidopsis thaliana and Medicago truncatula are well-supported as being monophyletic group (1.0 

aLRT). Fungi and animals formed well-supported separate monophyletic groups (0.99 and 1.0 aLRT, 

respectively) and are included in a larger supported (0.79 aLRT) clade (Figure 7). Furthermore, the red 

algal species C. merolae (BAM81186), G. sulphuraria (EME29355), and C. crispus (CDF39004) form a 

well-supported monophyletic group (0.97 aLRT) for RAD57. In addition, the RACA gene sequence of 

C. merolae (BAM80454) appears to be basal to the entire tree (Figure 7). 

3.2.2 MND1	
  

The likelihood tree of MND1 shows some groups that were incongruent with taxonomic and 

evolutionary history. For example, the green plant lineage appears as non-monophyletic group, and 

Arabidopsis thaliana and Cryptococcus neoformans cluster together to form sister taxa with a weak 

aLRT support (Figure 8). The alveolates were not supported as a monophyletic group. Trichomonas 

vaginalis, however, formed a weak supported paraphyletic group (0.68 aLRT) with animals while this 

latter group consisting of Homo sapiens, Mus musculus, and Danio rerio form a well-supported 

monophyletic group (0.98 aLRT) (Figure 8). 

The MND1 genes within the red algae formed two separate groups: a well-supported 

monophyletic clade (0.96 aLRT) and a polyphyletic group. The monophyletic group consists of four 

sequences from the red algal order, Bangiales: Porphyra purpurea, Porphyra umbilicalis, Porphyra 

rediviva, Porphyridium purpurea; one from the Floridieophyceae, Chondrus crispus; and two from the 

order Cyandiales, Cyanidioschyzon merolae, and Galdieria sulphuraria (Figure 8). However, the other 

red algal group contains three other sequences for C. merolae (GenBank Accession numbers 544210302, 

544216417, and BAM81906) and an extra sequence for G. sulphuraria (GenBank Accession No 

EME27752). In other words, there are four sequences from C. merolae that appear to be MND1, but   
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Figure 7 Phylogenetic tree for the DMC1 gene and its homologs RAD51, RAD57, and RECA. 

This phylogenetic tree was generated from amino acids sequences of 45 species and 602 sites as 

total alignment. The amino acid subsets were selected manually by Gblocks. Support for branches 

with (aLRT) values less than 0.50 are not shown. 
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they do not form a monophyletic cluster. It is worth noting that the members of the Bangiales clustered 

together and were moderately supported as such (0.87 aLRT); however, P. rediviva, which was 

sequenced in this study, is positioned on a much longer branch than P. purpurea, P. umbilicalis (Figure 

8). This is not surprising, as noted previously, this sequence had premature stop codons (Figure 5). 

3.2.3 SPO11	
  

The likelihood tree depicts the three homologs (SPO11-1, SPO11-3, and SPO11-2) of the SPO11 

protein in which the SPO11-1 and SPO11-3 sequences formed a large clade and the SPO11-2 sequences 

in smaller clade (Figure 9). This phylogenetic analysis of SPO11-1 depicts fungi, alveolates and animals 

as well-supported and as monophyletic groups (0.95, 0.91 and 1.0 aLRT support, respectively). 

Furthermore, the two SPO11-1 gene sequences of the red algal species Galdieria sulphuraria (GenBank 

Accession numbers EME30795 and EME30796) formed a well-supported monophyletic group (1.0 

aLRT). However, Trichomonas vaginalis and Medicago truncatula formed a paraphyletic clade with 

SPO11 sequences from animals (Figure 9). For SPO11-3, the monophyly of the red algae taxa, 

Cyanidioschyzon merolae (Cyanidiales) (BAM82023), Porphyridium purpureum (Porphyridiales) 

(Contig number 2255.5), and Chondrus crispus (Florideophyceae) (CDF39919) was well-supported 

(0.93 aLRT) and the green algae, Chlamydomonas reinhardtii and Micromonas pusilla, also formed a 

monophyletic group (0.63 aLRT) (Figure 9). 

The SPO11-2 did not appear as a monophyletic clade. Interestingly, the sequence from 

Arabidopsis thaliana was clustered with red algae forming paraphyletic group (0.96 aLRT). In this 

group, the red algal clade does not appear to correspond to the taxonomy and evolutionary history of this 

phylum (Figure 9). For example, the florideophyte, C. crispus (CDF33912), is closely related to the C. 

merolae (BAM82494) (Cyanidiales) rather than being associated with the other copy of the SPO11-2 in 

C. crispus (CDF36452). Unexpectedly, the gene sequence of G. sulphuraria (Cyanidiales) (EME31699)  
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Figure 8 MND1 likelihood tree. 

The MND1 phylogeny was generated from amino acids sequences of 24 species and 676 sites as 

total alignment. The amino acid subsets were selected manually by Gblocks. Support for branches 

with (aLRT) values less than 0.50 are not shown. 

 
 

 

 

 

 

 

 

 



	
  

	
   47 

was well-supported as being associated with a SPO11-2 gene from Porphyridium purpureum 

(Porphyridiales) (Contig number 3410.8) (0.83 aLRT) instead of being associated with C. merolae 

(BAM82494) (Figure 9). 

Pairwise sequence divergence between SPO11 homologs was different. The sequence divergence 

between the species of SPO11-1 clade ranged from 0.000 to 0.800 (0 to 24 amino acids) (Appendix 2), 

and Galdieria sulphuraria EME30796 with G. sulphuraria EME30795 formed the lowest sequence 

divergence while Candida orthopsilosis with Trichomonas vaginalis and C. orthopsilosis with Medicago 

truncatula formed the highest sequence divergence in the SPO11-1 clade. For SPO11-3 clade, the 

sequence divergence between species ranged from 0.067 to 0.200 (2 to 6 amino acids) (Appendix 2). 

The lowest sequence divergence for SPO11-3 was formed by CDF39919 with Cyanidioschyzon merolae	
  

BAM82023 and Porphyridium purpureum 2255.5 with C. merolae	
  BAM82023 while the highest 

sequence divergence formed by P. purpureum 2255.5 with Micromonas pusilla and C. crispus 

CDF39919 with M. pusilla. In SPO11-2 clade, the range of the sequence divergence was 0.567 to 0.867 

(17 to 26 amino acids) (Appendix 2). Arabidopsis thaliana with G. sulphuraria	
  EME31699 formed the 

lowest sequence divergence and C. crispus CDF33912 with A. thaliana formed the highest sequence 

divergence of the SPO11-2 clade. 

3.2.4 HOP2	
  	
  

The HOP2 phylogenetic tree appears to have some groups that correspond to taxonomic and 

evolutionary history that they can be seen in two separate large clades. For example, red algae formed 

well-supported monophyletic group (0.95 aLRT), and Cyanidiales Galdieria sulphuraria and 

Cyanidioschyzon merolae formed well-supported cluster (0.82 aLRT). Additionally, the	
  florideophyte 

Chondrus crispus and the bangiophyte Porphyra purpurea also formed a well-supported cluster (0.89 

aLRT) (Figure 10). The green plant lineage, however, was weakly supported as being monophyletic with 

aLRT value less than 0.50 (not shown). However, the excavata Trichomonas vaginalis and alveolate 
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Oxytricha trifallax formed a non-monophyletic clade. The second clade contains two well-supported 

monophyletic groups: the fungi (0.83 aLRT) and animals (0.99 aLRT) (Figure 10). 

3.2.5 MSH4	
  

The maximum likelihood analysis of the MSH4 gene depicts the animals, Fungi, and green plant 

lineage as well-supported (1.0, 1.0 and 0.89 aLRT, respectively) as a separate group in a larger clade 

that is a sister clade to the sequences from the red algae (Figure 11). This red algal clade was well-

supported as being monophyletic (0.96 aLRT). Surprisingly, the sequences of the MSH4 from Oxytricha 

fallax and Trichomonas vaginalis also formed a well-supported cluster (0.95 aLRT) that is sister to the 

larger clade containing the animals, Fungi, plants and red algae (Figure 11).  

However, the cluster of the red algae does not reflect the evolutionary history of this group. Two 

members of the order Cyanidiales, G. sulphuraria and C. merolae, do not form a monophyletic group, 

and C. merolae was basal to the remaining red algae (Figure 11). Two copies of the MSH4 gene were 

identified in G. sulphuraria (GenBank Accession numbers EME26709 and EME26710), which may 

represent two isoforms. Interestingly, C. crispus (Florideophyceae) appears to be more closely related to 

G. sulphuraria with a supported value of 0.9 aLRT. In addition, the two sequences of taxa from the 

Bangiales, Porphyra purpurea and Porphyra umbilicalis formed well-supported (1.0 aLRT) cluster 

(Figure 11). 

3.2.6 MSH5	
  

The MSH5 likelihood tree appears to have some groups that do not correspond to taxonomic and 

evolutionary history, but were well-supported as being monophyletic. For instance, the animals, green 

plant lineage, and red algae are well-supported as separate monophyletic groups (1.0, 0.87 and 0.98 

aLRT, respectively) and are included in a larger well-supported (0.92 aLRT) clade (Figure 12). The 

three sequences from the Fungi, however, formed a polyphyletic group. In addition, Oxytricha trifallax 

and Trichomonas vaginalis were supported as a paraphyletic group (0.88 aLRT) (Figure 12). 
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Figure 9 Maximum likelihood phylogeny of the SPO11 gene and its homologs SPO11-1, 

SPO11-2, and SPO11-3. 

The SPO11 phylogeny was generated from amino acids sequences of 25 species and 877 sites as 

total alignment. The amino acid subsets were selected manually by Gblocks. Support for branches 

with (aLRT) values less than 0.50 are not shown. 
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As noted previously, the MSH5 genes in the red algae were well-supported as being 

monophyletic (0.98 aLRT). However, the clustering of the MSH5 gene in the red algae does not reflect 

the evolutionary history of this group.  For example, the two members of the order Cyanidiales, 

Galdieria sulphuraria and Cyanidioschyzon merolae, do not form a monophyletic group and G. 

sulphuraria appears to be basal to the remaining red algae. Furthermore, the MSH5 gene sequence from 

the order Cyanidiales C. merolae appears to be closely related to the order Porphyridiales Porphyridium 

purpureum though not well-supported by aLRT (Figure 12). Interestingly, two copies of the MSH5 gene 

were identified in Chondrus crispus (GenBank Accession numbers CDF39323 and CDF39324), which 

may indicate a gene duplication event. 

 



	
  

	
   52 
 



	
  

	
   53 

 

 

 

 

 

 

Figure 10 HOP2 Phylogenetic tree. 

The maximum likelihood analysis of HOP2 was generated from amino acids sequences of 17 

species and 623 sites as total alignment. The amino acid subsets were selected manually by 

Gblocks. Support for branches with (aLRT) values less than 0.50 are not shown. 
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Figure 11 Phylogenetic tree of MSH4. 

The MSH4 phylogenetic tree was generated from amino acids sequences of 16 species and 1962 

sites as total alignment. The amino acid subsets were selected manually by Gblocks. Support for 

branches with (aLRT) values less than 0.50 are not shown. 
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Figure 12 Phylogenetic tree of MSH5. 

The likelihood tree analysis of the MSH5 was generated from amino acids sequences of 15 species 

and 1328 sites as total alignment. The amino acid subsets were selected manually by Gblocks. 

Support for branches with (aLRT) values less than 0.50 are not shown. 
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Chapter 4.0: Discussion  

The research performed in this thesis represents the first time the meiotic toolkit (core meiotic genes) 

has been tested to determine the sexuality and the evolutionary history of a group of organisms and in 

this case the red algae (Rhodophyta). Red algae are a distinct eukaryotic lineage and characterized by the 

lack of flagella and centrioles; however, there are sexual species and other species that have never been 

reported as sexual (Nelson 2007; Spitale et al. 2012). Due to the small number of available red algal 

genomes, the phylogenetic analyses in this study are confined to the genomes of the cyanidiophytes 

(Galdieria sulphuraria and Cyanidioschyzon merolae), the florideophyte Chondrus crispus, the 

porphyridiophyte Porphyridium purpureum, and the bangiophytes (Porphyra purpurea, Porphyra 

umbilicalis, and Porphyra rediviva); moreover, animals, plants, fungi, alveolates, and excavate species 

were added to the analyses to examine trends over the eukaryotic tree of life. In this study, six out of 

nine core meiotic genes (DMC1, MND1, SPO11, HOP2, MSH4, and MSH5) were examined. These 

meiotic genes are more universal in the genomes of eukaryotes (Schurko and Logsdon 2008; Malik et al. 

2008; Chi et al. 2013). The results from the present study suggested that both unicellular and 

multicellular red algal species possess these meiotic genes and this may indicate cryptic meiosis in some 

lineages. However, it appears that the meiotic toolkit genes are not useful for determining the taxonomy 

and evolutionary history of the red algae when compared to more commonly used genes, such as the 18S 

rRNA and rbcL genes (Saunders and Hommersand 2004; Yoon et al. 2006).  Some of the meiotic genes 

examined appear to show complex evolutionary histories that reflect gene duplication and possible 

horizontal gene transfer. 

4.1 DMC1, MND1, and SPO11 Phylogenetic Tree analyses 

In this study, three out of six core meiotic genes, DMC1, MND1, and SPO11, have complex 

evolutionary histories that show examples of both horizontal gene transfer and gene duplication events 

as seen in the various phylogenies presented in this study (Figures 7, 8, 9). On the other hand, the 
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meiotic genes, HOP2, MSH4, and MSH5, do not exhibit such complexity (Figures 10, 11, 12) and depict 

an evolutionary history that reflects the current taxonomy of those groups (Yoon et al. 2006a).  

4.1.1 DMC1	
  

The DMC1 gene is a homolog of the RAD51 gene. Both are eukaryotic proteins and are also 

homologs of the eubacterial RECA gene (Stassen et al. 1997). Both DMC1 and RAD51 are essential 

meiotic proteins for normal synaptonemal complex formation (SC), meiotic recombination, and DNA 

damage repair (Masson and West 2001). The DMC1 phylogenetic tree indicates that either a lateral gene 

transfer or an ancient gene duplication led to the homologs DMC1 and RAD51, and followed by 

subsequent RAD57 and RECA gene losses. The branching pattern similarities in animals, plants and 

green algae, red algae, fungi, excavata, and alveolates in the DMC1 and RAD51 are more suggestive of 

an ancient gene duplication or horizontal transfer in the common ancestor of these eukaryotic groups 

because they both are presented in all eukaryotic lineages. Interestingly, gene loss has likely happened in 

the closely related members of the red algal group, Cyanidiales, where the species Galdieria sulphuraria 

has two isoforms of the DMC1 gene (EME32481 and EME32482) and a single copy of RAD51 gene 

(EME28274); whereas the other species, Cyanidioschyzon merolae has a single copy of the RAD51 gene 

with different assemblies  (XP005538367 and BAM82331) and a single copy of the DMC1 gene 

(BAM83478) (Figure 7). In the same phylogenetic tree, only the red algae C. merolae BAM81186, G. 

sulphuraria EME29355, and Chondrus crispus CDF39004 have the RAD57 gene, but they are 

positioned on longer branches suggesting a recent gene dulication. For the eubacterial RECA gene, Lin 

et al. (2006) suggested that a secondary endosymbiotic gene transfer derived the RECA to the nuclear 

genomes of ancestral eukaryotes. However, the current phylogenetic analyses showed that the RECA is 

only present in C. merolae and missing in other eukaryotic lineages and that is more suggestive of recent 

gene duplication.   
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4.1.2 SPO11	
  

The SPO11 proteins are homologs of an archaebacterial topoisomerase VI subunit, which 

functions to separate replicated chromosomes in archaebacteria (Bergerat et al. 1997; Corbett et al. 

2007). SPO11 is a meiosis-specific protein that stimulates the formation of double-strand breaks (DSBs) 

in DNA, particularly, in meiosis in order to initiate meiotic recombination (Keeney 2008). The absence 

of SPO11 in eukaryotic species may lead to meiosis failure (Keeney 2001). SPO11-1, SPO11-2 and 

SPO11-3 are homologs of SPO11 (Hartung and Puchta 2000), and SPO11-1 and SPO11-2 are essential 

for meiotic recombination (Hartung et al. 2007; Hörandl and Hadacek 2013). 

The phylogenetic tree of SPO11 appears to have three orthologs (SPO11-1, SPO11-2, and 

SPO11-3) and only red algae have the three prologs of the SPO11. However, the clustering of green 

plants and red algae are suggestive of either HGT or an ancient gene duplication event in the common 

ancestor of these groups. Subsequent gene loss can explain why some closely related species do not 

contain a second copy. For example, the genome of Galdieria sulphuraria (Cyanidiales) contains three 

copies of SPO11 (two similar SPO11-1 gene copies and a single SPO11-2 gene) while the other member 

of the Cyanidiales, Cyanidioschyzon merolae does not have the SPO11-1 copy but does have a copy of 

the SPO11-2 and SPO11-3 genes (Figure 9), which is consistent with the finding by Malik et al. (2007). 

The one member of the Porphyridiales, Porphyridium purpureum, appears to have two paralogs of 

SPO11 (SPO11-2 and SPO11-3) while the SPO11-1 gene is lost as was shown by Bhattacharya et al. 

(2013). Similarly, in the green plant linage, there are multiple gene losses in this linage and that is 

inconsistent with Malik et al. (2007) finding which indicated that the SPO11-1 is present in Arabidopsis.       

These recent findings are in agreement with the suggestion that the SPO11-2 gene is not 

observed in animals, fungi and Trichomonas (Malik et al. 2007) while the SPO11-1 gene is present in 

animals, fungi, and some alveolates (Ramesh et al. 2005).  It has been proposed that the red algae and 

green plant lineages have acquired the SPO11-2 and SPO11-3 genes from archaebacteria via horizontal 
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gene transfer and this would explain why the homolog copies of SPO11 (SPO11-2 and SPO11-3) are 

absent in other eukaryotes (Yin et al. 2002; Jain et al. 2006). However, the phylogenetic analyses in the 

current study indicate that the eukaryotic SPO11 gene homologs evolved via gene duplication events 

that led to arise the SPO11 orthologs SPO11-3 and SPO11-2 (Figure 9). Moreover, the absence of the 

SPO11-1 and SPO11-3 genes in Chlamydomonas reinhardtii and Micromonas pusilla suggest that the 

SPO11 orthologs may not be derived via secondary endosymbiotic gene transfer because these orthologs 

are absent in other eukaryotic lineages (Figure 9). Similarly, not all red algal species have SPO11 

orthologs (Figure 9), which may indicate that SPO11-2 and SPO11-3 orthologs were lost from several 

eukaryotic lineages. In addition, the red algal species that clustered in SPO11-2 gene clade exhibit long 

branches compared to the remaining red algae. These differences in	
  branches lengths may be due to 

being associated with different protein structural environments and function (Thorne 2000).     

4.1.3 MND1	
  

Meiotic nuclear division and recombination requires the MND1 gene, and the protein forms a 

heterodimeric complex with HOP2 to ensure accurate meiotic DNA double-strand break (DSB) 

formation (Riley and Corradi 2013). The MND1-HOP2 heterodimeric also contributes in telomeres 

maintenance (Cho et al. 2014). The phylogenetic tree of the MND1gene exhibits gene loss and multi 

gene duplication events in the red algal species (Figure 8). In the MND1 gene phylogeny the red algae 

form a paraphyletic group, and the cyanidiophytes Galdieria sulphuraria and Cyanidioschyzon merolae 

have two paralogs of MND1; the MND1 paralog observed only in the cyanidiophytes has not yet been 

annotated in the genome sequences  (Nozaki et al. 2007; Bhattacharya et al. 2013; Schönknecht et al. 

2013). Since the other copy of the MND1 gene is missing in other eukaryotic lineages, it is possible that 

there is a recent MND1 gene duplication in the Cyanidiales or an ancient horizontal transfer event in a 

common ancestor of red algae. Additionally, the duplicated MND1 gene copies are only distantly related 

in the tree and positioned on longer branches. Porphyra rediviva (the sequence obtained in this study) is 
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clustered with two other members of the genus Porphyra, P. purpurea and P. umbilicalis, but it is 

positioned on a much longer branch (Figure 8). In addition, this sequence contains premature stop 

codons (Figure 5) and may be a pseudogene and is likely no longer under selection. 

4.2 Core Meiotic Genes  

 The presence of most or all of these genes, in a given genome, provides an indication  that the 

organism has the ability to undergo meiosis; on the other hand, the absence of some or all of these 

meiotic genes may not associated with the absence of meiosis (Schurko and Logsdon 2008). For 

example, 5 out of 9 core meiotic genes (DMC1, HOP2, MND1, MSH4 and MSH5) are absent in the 

genome of Drosophila melanogaster, which is well known as a sexual organism (Jensen et al. 2015). 

 Sexual reproduction is well documented in multicellular members of Rhodophyta. Triphasic 

alternation of generations occur in the multicellular Florideophyceae and a biphasic life history occurs in 

other multicellular taxa, as in order Bangiales including Porphyra and B. maxima (Lynch at al. 2008; 

Müller et al. 2010). Nonetheless, very little is known about sexual reproduction in the other taxa, 

particularly for the unicellular red algal species such as Galdieria sulphuraria, Cyanidioschyzon 

merolae, and Porphyridium purpureum, and it has been suggested that they are asexual (Bhattacharya et 

al. 2013; Ciniglia et al. 2004; 2014). To address the possibility of cryptic meiosis, detecting meiotic 

genes in such organisms would be an effective solution for determining the presence of sex. The 

detection meiotic toolkit was widely used to determine the sexuality, for example, excavates, fungi, and 

animals (Malik et al. 2008; Schurko et al. 2009; Riley and Corradi 2013). The presence of most or all 

these meiosis-specific proteins (DMC1, MND1, SOP11, HOP1, HOP2, MSH4, MSH5, RECA, and 

MER3) provide a significant sign of the ability to undergo meiosis, whereas the absence of some or all 

of these meiotic genes may be associated with the inability to undergo sexual reproduction (Schurko and 

Logsdon 2008).  



	
  

	
   63 

In this study, six out of nine core meiotic genes (DMC1, MND1, SPO11, HOP2, MSH4, and 

MSH5) were examined. The results showed that the all well-known sexual eukaryotic species that were 

clustered in the phylogenetic trees possess at least on copy of the meiotic genes (Figures 7, 8, 9, 10, 11, 

12). However, the unicellular red algal species G. sulphuraria, C. merolae, and P. purpureum, which are 

have never been observed as a sexual genera in nature (Bhattacharya et al. 2013; Ciniglia et al. 2004; 

2014), do not just possess a copy of these meiotic genes but two or more of (DMC1 and its homolog 

RAD51, MND1, SPO11, and MSH4) (Figures 7, 8, 9, 11) and that is consistent with the maintenance of 

sexuality but does not prove the occurrence of sexual reproduction in these unicellular species.  

The multiple copies of the meiotic genes, as discussed earlier, were either derived from HGT or 

gene duplication. Since these duplicate genes remain in the genome of the unicellular red algae, the 

duplicate genes may become duplicated pseudogenes. However, keeping pseudogenes in a genome may 

be disadvantageous; for example, the organism may pay the energy cost of nonfunctional pseudogenes 

(Tutar 2012). Hence, why does an organism keep these pseudogenes rather than getting rid of them? 

Gene duplication, however, may generate new genes associated with different function (Magadum et al. 

2013), and some pseudogenes may have operational functions, or they maintain the functionality of the 

original genes (Pink and Carter 2013), and that may explain why the duplicated pseudogenes are still 

present in the unicellular genomes of red algae. Some pseudogenes that accumulate the deleterious 

mutations and will eventually will be lost while the non-deleterious may generate other copies and 

contribute to genetic diversity overtime (Singh and Cole 2011). 

On the other hand, the six core meiotic genes, which appear to be ubiquitous among all 

eukaryotes, are essential to the meiotic process including synapsis, high levels of recombination, and no 

S phase prior to Meiosis II (White 1978; Page and Hawley 2003). These genes were present in all sexual 

eukaryotic lineages (Figures 7, 8, 9, 10, 11, 12). This suggests that the unicellular red algae have the 

original meiotic genes and the other duplicated copies may maintain the functionality of the original 
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genes, which provides support for the common ancestor having the ability to undergo meiosis, and that 

suggests the unicellular red algae may undergo cryptic sex. Hence, in this case, the detection meiotic 

toolkit appears to be useful in determination of sexuality in unicellular red algae. 

 In summary, as it has been reported that the detection meiotic toolkit was widely used to determine 

the sexuality, and the presence of most or all these core meiotic genes provide a significant sign of the 

ability to undergo sexuality, whereas the absence of some or all of these meiotic genes may be 

associated with asexual reproduction (Schurko and Logsdon 2008; Malik et al. 2008; Schurko et al. 

2009; Riley and Corradi 2013). 

Sexuality has been documented in the multicellular red algal species Chondrus crispus, so the 

presence of the 6 core meiotic genes in its genome is not being surprising. However, the presence of the 

same meiotic genes in the genome of the unicellular red algal species Galdieria sulphuraria, 

Cyanidioschyzon merolae, and Porphyra umbilicalis, which have never been observed as sexual, is 

considered as an interesting finding. In the case of the red algae, the determination of sexuality of the 

unicellular red algal species would be challenging if we only rely on the detection meiotic toolkit. 

Further laboratory experiments have to be carried to ensure these unicellular red algae have the ability to 

undergo sexual reproduction. In other words, the presence of the core meiotic genes (meiotic toolkit) in 

the genomes of the unicellular red algae may suggest the maintenance of sexuality but does not prove 

the occurrence of sexual reproduction in these unicellular species. 

4.3 Core Meiotic Genes in Taxonomy   

The red algae (Rhodophyta) are a distinct lineage characterized by the lack of flagella and 

centrioles. In traditional taxonomic scheme, the phylum Rhodophyta contained two classes 

Bangiophyceae and Florideophyceae (Hoek et al. 1995). Then, Saunders and Hommersand (2004) 

recognized four classes Bangiophyceae, Florideophyceae Rhodellophyceae and Compsopogonophyceae. 
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The recent taxonomic scheme proposed by Yoon et al. (2006a) contains one phylum Rhodophyta and 

two subphyla: 1) the Rhodophytina with six classes Bangiophyceae, Florideophyceae, Rhodellophyceae, 

Porphyridiophyceae, Compsopogonophyceae, and Stylonematophyceae; 2) Cyanidiophytina with one 

class Cyanidiophyceae. This taxonomic scheme was determined using nuclear and plastid small subunit 

ribosomal (SSU) genes and also included several morphological characteristics. 

The phylogenetic tree analyses of this study suggest that the detection meiotic toolkit is a not a 

good source of genes to use for ordinal classification and in general only the animals appeared 

monophyletic in which Homo sapiens, Mus musculus, and Danio rerio were clustering together in all 

phylogenetic trees (Figures 7, 8, 9, 10, 11, 12). However, this is a very small sampling of the animal 

group.  

In the RAD51 gene phylogeny, the red algae did not form a monophyletic group and the 

florideophyte, Chondrus crispus, appears to be closely related to the order Cyanidiales. This differs from 

18S rRNA and rbcL gene phylogenies in which the Florideophyceae is typically associated with the 

order Bangiales (Yoon et al. 2006a; Müller et al. 2011). The phylogenetic tree of the MND1 gene also 

did not reflect the evolutionary history. For example, the green plants and fungi did not appear as 

separate monophyletic groups, and within the red algae, the Porphyridiales appears to be more closely 

related to the Bangiales. The green plants did not form a monophyletic cluster in the meiotic gene 

SPO11 phylogeny, and the red alga, C. crispus, was a sister taxa to the plant, A. thaliana. In the MSH4 

gene phylogeny, the cyanidiophytes appeared to be closely related to the Florideophyceae, which again 

does not agree with current taxonomy (Yoon et al. 2006a). Similarly, in the MSH5 gene phylogeny the 

cyanidiophytes, G. sulphuraria and C. merolae did not cluster together as expected. However, the HOP2 

gene phylogeny appears to correspond with evolutionary history as determined by 18S rRNA and rbcL 

gene phylogenies (Yoon et al. 2006a; Müller et al. 2011). For example, all monophyletic groups appear 

to correspond to the ordinal classification in the HOP2 phylogeny (Figure 10).  
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The lack of correspondence among the meiotic gene phylogenies and current accepted taxonomy 

of these lineages may be due to compositional biases (CB). Compositional biases are known as local 

shifts in amino acids or nucleotides sequences, and it may occur in genomes, proteomes or even in a part 

of genes determining certain proteins features (Antonets and Nizhnikov 2013). As mentioned 

previously, the phylogenetic analyses, were generated from the amino acids sequence alignment; hence, 

proteins sequences may be affected by the GCs and ATs content that can end up forcing the protein to 

look different which in turn provide unreliable phylogeny (Foster and Hickey 1999; Antonets and 

Nizhnikov 2013). In summary and based on this study, the meiotic genes (MND1, RAD51, SPO11, 

MSH4, MSH5) are not good source of genes to determine the evolutionary history and taxonomical 

system (Figure 7, 8, 9, 11, 12) because of the CB and the GCs and ATs content while the meiotic genes 

(DMC1 and HOP2) are consider as useful taxonomic markers for the red algae or other eukaryotic 

organisms (Figure 7 and 10). 
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Chapter 5.0: Conclusion and Future Studies 

Meiosis, which is the most essential process for sexual reproduction in eukaryotes, requires several 

nuclear genes to perform properly. Schurko and Logsdon (2008) suggested that there are nine core 

meiotic genes “Detection meiotic toolkit”, and the presence of all or some of these genes would be likely 

be associated with sexual reproduction. Despite having an important role in meiosis process, not much is 

known about the evolutionary history of these core meiotic genes. Red algae are a distinct eukaryotic 

lineage having a long evolutionary history that dates 1.2 billion years ago represented by a fossil that 

exhibits characteristics of meiosis (Butterfield et al. 1990). However, sexual reproduction has never been 

observed in many of the unicellular red algal species including Galdieria sulphuraria, Cyanidioschyzon 

merolae, and Porphyridium purpureum Bhattacharya et al. 2013; Ciniglia et al. 2004; 2014). Detecting 

core meiotic genes in the genome of red algal species would provide significant indication that cryptic 

meiosis is occurring in the putative asexual lineages. The present study was initiated to facilitate a better 

understanding of the evolutionary history of meiotic genes by: 

1. Examining the presence of six core meiotic genes (DMC1, MND1, SPO11, HOP2, MSH4, and 

MSH5) in the available red algal genomes: G. sulphuraria, C. merolae, P. purpureum, and C. 

crispus) to determine the sexuality of the unicellular red algal species and the usefulness of the 

meiotic toolkit in the determination of sexuality. 

2.  Determine whether the meiotic toolkit is a useful tool to determine the evolutionary history of 

eukaryotes, particularly the red algae. 

In this study, amino acids alignments were used to generate the phylogenetic trees. The amino acids 

sequences of the six core meiotic genes were retrieved from all completely sequenced eukaryotic 

genomes stored in the GenBank database using BLASTx. The results indicated that the core meiotic 

genes DMC1, MND1, and SPO11 have been associated with subsequent gene loss (Figures 7, 8, 9) and 



	
  

	
   68 

that may explain why some eukaryotic species do not contain a second copy of these three genes. HOP2, 

MSH4, and MSH5 genes, however, do not exhibit such complexity (Figures 10, 11, 12).  

Overall, the phylogenetic analyses indicate that the six core meiotic genes examined are present in 

sexual multicellular (Porphyra spp. and C. crispus) and unicellular red algae (G. sulphuraria, C. 

merolae, and P. purpureum). The latter of which sexual reproduction has never been reported 

(Bhattacharya et al. 2013; Ciniglia et al. 2004; 2014) (Figures 7, 8, 9, 10, 11, 12). Hence: 

I. This suggests support for the common ancestor having the ability to undergo meiosis as 

expected.  

II. The validity of using the meiotic toolkit for sexuality determination may rely on the following: 

A. The meiotic genes may have an alternative function to their role in meiosis (Pink and 

Carter 2013). 

B. The meiotic genes may be pseudogenes without deleterious mutations: These 

pseudogenes may generate other copies and contribute to genetic diversity overtime (Singh and 

Cole 2011).  

In these two cases, the meiotic toolkit is not a good source of genes to determine sexual reproduction. 

C. The meiotic gene homologs may function as true meiotic genes: The unicellular red algae 

may still use these genes and undergo cryptic meiosis. 

In the third case in which the genes in the meiotic toolkit are still functioning for meiosis, it may be 

possible that these are maintaining the ability for unicellular red algae to undergo meiosis, possibly in a 

cryptic manner that has not been observed. 

Taxonomically, the phylogenetic analyses of this study indicate that the meiotic genes HOP2 and 

DMC1 may consider as useful genes for classification and taxonomic system while the other genes 
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within the meiotic toolkit are not good taxonomic markers for the red algae or other eukaryotic 

organisms due to the gene duplication and potential horizontal transfer (Figures 7, 8, 9, 10, 11, 12). 

Future	
  studies	
  

In this study, the core meiotic genes are present in the unicellular red algae suggesting that they 

may have the ability to undergo cryptic meiosis. Further work could be performed to provide more 

support by examining the presence of the core meiotic genes in other asexual eukaryotic organisms such 

as the haptophyte Emiliania huxleyi, the green algae Trebouxia and the red algae B. atropurpurea (Wehr 

and Sheath 2003; Graham et al. 2009). Moreover, to ensure the usefulness of the meiotic toolkit, more 

studies need to be conducted on the genes expression of the meiotic too kit of the unicellular red algae, 

and compare the expressed gene result with well-known sexual species. Finally, it may be possible that 

the unicellular red algal species are alternative life phases of another currently unknown red algal 

species. The conchocelis (sporophytic) stage of Porphyra was initially identified as a separate species 

(Drew 1949; Nelson et al. 1999; Gantt et al. 2010). Moreover, some species of the red algae, 

Audouinella, have been determined to be the asexually produced alternate life history stages (also called 

chantransia) of members of the genus Batrachospermum (Necchi & Zucchi 1997; Chiasson et al. 2005). 

Hence, the possibility of some taxa being alternate life histories of unknown red algae is still a 

possibility.
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APPENDIXES 

Appendix 1 

The meiotic genes and their amino acids accession numbers in GenBank for the organisms that were 
used in this study. 

Gene/protein Organism Species Accession Number 

DMC1    

 

Animals 

Homo sapiens 

 

47678503 

9168602 

Mus musculus 

(House mouse) 

6753650 

6755276 

Danio rerio (zebrafish) 
190338308 

347800669 

Plants 

and 

Green algae 

 

Arabidopsis thaliana 
30686826 

332005514 

Medicago truncatula 357479303 

Chlamydomonas reinhardtii 

 

159484887 

158277986 

Micromonas pusilla 

 

303284847 

303279168 

Red algae 

Galdieria sulphuraria 

 

 

 

EME32481 

EME32482 

EME29355 

EME28274 

XP 005709001 

Gracilaria changii 

 
GCC0002388 
(PartiGeneDB) 
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Gene/protein Organism Species Accession Number 

Chondrus crispus 

 

CDF34961 

CDF35384 

CDF39004 

CDF39532 

Porphyridium purpureum 
Contig# 4438.25 

(Bhattacharya et al. 
2013) 

Cyanidioschyzon merolae 

 

BAM83478  

BAM81186 

BAM80454 

BAM82331 

XP 005538367 

Porphyra purpurea 

Porphyra umbilicalis 

Porphyra yezoensis 

 

Fungi  

Ashbya gossypii 
45201197 

45185912 

Candida orthopsilosis 
380353531 

380350318 

Sordaria macrospora 

 

3176384 

336272433 

Cryptococcus neoformans 

 

405123640 

405118075 

Schizoccharomyces pombe 548664 

Excavata  Trichomonas vaginalis  
123408121 

123408472 

Alveolates Trypanosoma cruzi  71659624 
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Gene/protein Organism Species Accession Number 

37778910 

Oxytricha trifallax 
403376234 

403374245 

MND1  

 

Animals 

Homo sapiens 

 
14149769 

Mus musculus 

(House mouse) 
240848585 

Danio rerio (zebrafish) 

 
57525722 

Plants 

and 

Green algae 

 

Arabidopsis thaliana 30688234 

Chlamydomonas reinhardtii 159474610 

Micromonas pusilla 255085320 

Red algae 

Galdieria sulphuraria 
EME26811 

EME27752 

Chondrus crispus CDF38011 

Porphyridium purpureum 
Contig# 2121.23 

(Bhattacharya et al. 
2013) 

Cyanidioschyzon merolae 

 

BAM79559 

544210302  

544216417  

BAM81906 

Porphyra rediviva This study 

Porphyra purpurea 

Porphyra umbilicalis 
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Gene/protein Organism Species Accession Number 

Fungi  

Ashbya gossypii 374106554 

Candida orthopsilosis 380353778 

Sordaria macrospora 
3176384 

336272433 

Cryptococcus neoformans 405124028 

Schizoccharomyces pombe 213408226 

Excavata  Trichomonas vaginalis  154413267 

 
Alveolates 

Trypanosoma cruzi  261334527 

Oxytricha trifallax 403374287 

SPO11  

 

Animals 

Homo sapiens 5815131 

Mus musculus 

(House mouse) 
9367033 

Danio rerio (zebrafish) 45387775 

Plants 

and 

Green algae 

 

Arabidopsis thaliana 7270977 

Medicago truncatula  303273422  

Chlamydomonas reinhardtii 159487423 

Micromonas pusilla 303273422 

Red algae 

Galdieria sulphuraria 

EME31699 

EME30796 

EME30795 

Chondrus crispus 

CDF39919 

CDF36452 

CDF33912 

Porphyridium purpureum 
Contig# 3410.8 

(SPO11-2) 

Contig# 2255.5 
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Gene/protein Organism Species Accession Number 

(SPO11-3) 

(Bhattacharya et al. 
2013) 

Cyanidioschyzon merolae 
BAM82023 

BAM82494 

Fungi  

Ashbya gossypii 45187898 

Candida orthopsilosis 380352915 

Sordaria macrospora 33304618 

Cryptococcus neoformans 540386897 

Schizoccharomyces pombe 19114391 

Excavata Trichomonas vaginalis 123407440 

Alveolates 
Tetrahymena thermophila 146174859 

Oxytricha trifallax 403366622 

HOP2  

 

Animals 

Homo sapiens 32261320 

Mus musculus 

(House mouse) 
25092696 

Danio rerio (zebrafish) 50344904 

Plants 

and 

Green algae 

 

Arabidopsis thaliana 121490118 

Medicago truncatula  357488489 

Chlamydomonas reinhardtii 159474466 

Micromonas pusilla 303277395 

Red algae 
Galdieria sulphuraria 

545703895 

EME31309 

EME31308 

Chondrus crispus 546315777 



	
  

	
   92 

Gene/protein Organism Species Accession Number 

Porphyridium purpureum 
Contig# 441.5 

(Bhattacharya et al. 
2013) 

Cyanidioschyzon merolae 
544215593 

BAM82928 

Fungi  

Ashbya gossypii 302308886 

Cryptococcus neoformans 540382594 

Schizoccharomyces pombe 67989864 

Excavata Trichomonas vaginalis  123468375 

Alveolates Oxytricha trifallax 403356227 

MSH4  

 

Animals 

Homo sapiens 2463653 

Mus musculus 

(House mouse) 
13994197 

Plants 

and 

Green algae 

 

Arabidopsis thaliana 50083056 

Medicago truncatula  357482103 

Micromonas pusilla 303281194 

Red algae 

Galdieria sulphuraria 
EME26709 

EME26710 

Chondrus crispus CDF40516 

Porphyridium purpureum 
Contig# 4404.10 

(Bhattacharya et al. 
2013) 

Cyanidioschyzon merolae BAM80563 

Fungi  
Candida orthopsilosis 380350256 

Cryptococcus neoformans 540383011 
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Gene/protein Organism Species Accession Number 

 

Excavata Trichomonas vaginalis 123424871 

 Alveolates Oxytricha trifallax 403343032 

  

MSH5  

 

Animals 

Homo sapiens 15277273 

Mus musculus 

(House mouse) 
5814105 

Plants 

and 

Green algae 

 

Arabidopsis thaliana 332642863 

Medicago truncatula  357494573 

Micromonas pusilla 30328255 

Red algae 

Galdieria sulphuraria EME26992 

Chondrus crispus 
CDF39323 

CDF39324 

Porphyridium purpureum 
Contig# 2159.1 

(Bhattacharya et al. 
2013) 

Cyanidioschyzon merolae BAM81292 

Fungi  

Candida orthopsilosis 380354115 

Cryptococcus neoformans 540392952 

Sordaria macrospora 336272375 

Excavata Trichomonas vaginalis 84784004 

Alveolates Oxytricha trifallax 403355869 
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Appendix 2 

Pairwise distances of sequence variation in aligned amino acids sequences of 877 sites. The first matrix 
shows the sequence divergence between SPO11 homologs of 25 species, and the second matrix shows 
the number of differences of amino acids between SPO11 homologs of the 25 species. 

 
 
 

[ 1] Mus musculus |9367033 

[ 2] Homo sapiens |5815131 

[ 3] Danio rerio |45387775 

[ 4] Medicago truncatula |355519089 

[ 5] Chlamydomonas reinhardtii |159487423 

[ 6] Micromonas pusilla |303273422 

[ 7] Arabidopsis thaliana |7270977 

[ 8] Tetrahymena thermophila|146174859 

[ 9] Oxytricha trifallax |403366622 

[10] Trichomonas vaginalis |123407440 

[11] Ashbya gossypii |45187898 

[12] Candida orthopsilosis |380352915 

[13] Shizcosaccharomyces pombe |19114391 

[14] Sordaria macrospora |33304618 

[15] Cryptococcus neoformans |540386897 

[16] Cyanidioschyzon merolae  |BAM82023 

[17] Cyanidioschyzon merolae  |BAM82494 

[18] Galdieria sulphuraria |EME30795 

[19] Galdieria sulphuraria  |EME30796 

[20] Galdieria sulphuraria  |EME31699 

[21] Chondrus crispus  |CDF33912 

[22] Chondrus crispus  |CDF36452 

[23] Chondrus crispus  |CDF39919 

[24] Porphyridium purpureum |2255.5 

[25] Porphyridium purpureum |3410.8 
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        1        2        3         4      5        6       7       8       9     10      11     12      13     14    15     16     17      18     19       20    21   22      23    24      25  
       
[	
  1]	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
[	
  2]	
  	
  0.067	
  	
  	
  	
  	
  	
  	
  	
  
	
  
[	
  3]	
  	
  0.267	
  0.233	
  	
  	
  	
  	
  	
  	
  	
  
	
  
[	
  4]	
  	
  0.633	
  0.667	
  0.633	
  	
  	
  	
  	
  	
  	
  	
  
	
  
[	
  5]	
  	
  0.467	
  0.500	
  0.433	
  0.533	
  	
  	
  	
  	
  	
  	
  	
  
	
  
[	
  6]	
  	
  0.400	
  0.400	
  0.400	
  0.600	
  0.100	
  	
  	
  	
  	
  	
  	
  	
  
	
  
[	
  7]	
  	
  0.533	
  0.500	
  0.567	
  0.667	
  0.500	
  0.533	
  	
  	
  	
  	
  	
  	
  	
  
	
  
[	
  8]	
  	
  0.600	
  0.567	
  0.600	
  0.633	
  0.567	
  0.633	
  0.600	
  	
  	
  	
  	
  	
  	
  	
  
	
  
[	
  9]	
  	
  0.567	
  0.500	
  0.533	
  0.733	
  0.600	
  0.533	
  0.600	
  0.567	
  	
  	
  	
  	
  	
  	
  	
  
	
  
[10]	
  	
  0.600	
  0.600	
  0.700	
  0.667	
  0.633	
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        1        2        3         4        5           6        7         8        9      10         11     12        13      14     15      16       17        18       19          20     21     22     23         24    25  
       
[ 1]          
 
[ 2]   2.000         
 
[ 3]   8.000  7.000         
 
[ 4]  19.000 20.000 19.000         
 
[ 5]  14.000 15.000 13.000 16.000         
 
[ 6]  12.000 12.000 12.000 18.000  3.000         
 
[ 7]  16.000 15.000 17.000 20.000 15.000 16.000         
 
[ 8]  18.000 17.000 18.000 19.000 17.000 19.000 18.000         
 
[ 9]  17.000 15.000 16.000 22.000 18.000 16.000 18.000 17.000         
 
[10]  18.000 18.000 21.000 20.000 19.000 18.000 18.000 20.000 22.000         
 
[11]  21.000 19.000 20.000 20.000 21.000 20.000 18.000 18.000 19.000 20.000         
 
[12]  19.000 17.000 20.000 24.000 21.000 21.000 20.000 19.000 18.000 24.000 18.000         
 
[13]  17.000 17.000 17.000 16.000 15.000 14.000 19.000 14.000 15.000 20.000 18.000 17.000         
 
[14]  15.000 15.000 15.000 22.000 19.000 19.000 20.000 16.000 18.000 23.000 18.000 20.000 14.000         
 
[15]  17.000 17.000 19.000 22.000 19.000 18.000 20.000 19.000 19.000 21.000 21.000 22.000 14.000 17.000         
 
[16]  15.000 16.000 14.000 16.000  3.000  5.000 16.000 16.000 18.000 20.000 19.000 21.000 15.000 18.000 19.000         
 
[17]  23.000 22.000 20.000 21.000 21.000 22.000 19.000 19.000 18.000 24.000 20.000 25.000 21.000 21.000 23.000 21.000         
 
[18]  16.000 17.000 19.000 19.000 16.000 17.000 15.000 19.000 20.000 18.000 22.000 22.000 20.000 21.000 22.000 17.000 20.000         
 
[19]  16.000 17.000 19.000 19.000 16.000 17.000 15.000 19.000 20.000 18.000 22.000 22.000 20.000 21.000 22.000 17.000 20.000  0.000         
 
[20]  19.000 18.000 15.000 21.000 20.000 20.000 17.000 22.000 19.000 21.000 23.000 21.000 22.000 23.000 23.000 20.000 21.000 20.000 20.000         
 
[21]  27.000 27.000 25.000 22.000 24.000 24.000 26.000 26.000 25.000 26.000 27.000 29.000 24.000 27.000 27.000 24.000 24.000 24.000 24.000 24.000         
 
[22]  22.000 23.000 21.000 18.000 17.000 19.000 18.000 21.000 24.000 23.000 25.000 23.000 18.000 22.000 24.000 19.000 22.000 20.000 20.000 24.000 25.000         
 
[23]  15.000 16.000 14.000 17.000  5.000  6.000 16.000 17.000 18.000 20.000 19.000 22.000 16.000 19.000 19.000  2.000 21.000 17.000 17.000 20.000 24.000 20.000         
 
[24]  15.000 16.000 14.000 17.000  5.000  6.000 16.000 17.000 18.000 20.000 19.000 22.000 16.000 19.000 19.000  2.000 21.000 17.000 17.000 20.000 24.000 20.000  0.000         
 
[25]  19.000 18.000 18.000 17.000 16.000 18.000 19.000 19.000 20.000 23.000 22.000 20.000 20.000 20.000 24.000 17.000 19.000 17.000 17.000 15.000 24.000 20.000 18.000 18.000         

 

	
  


