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  I. REGIONAL GEOLOGY 
 
I. REGIONAL GEOLOGY 39 

I.1. Indonesia Regional Geology 39 
I.2. SE Asia Regional Geology, Tectonics, Paleobiogeography 136 
I.3. Volcanism, Volcanic rocks geochemistry 221 
I.4. Modern depositional environments, Oceanography, Indonesian Throughflow 250 
I.5. SE Asia Carbonates, Coral Reefs 289 

 
Chapter I of the Bibliography 7.0 contains 316 pages with >2405 titles of papers on the regional geology of 
Indonesia and adjacent SE Asia- Pacific, as well as general papers that do not fit in any of the regions or 
specialist categories that are listed separately. It is subdivided in five chapters, I.1- 1.5. 
 
 
   I.1. and I.2.  Indonesia and SE Asia Regional Geology 
 

Chapters I.1 and I.2 include >1530 references of textbooks and papers on the regional geology and tectonics 
of Indonesia and SE Asia.  Chapter I.1 focuses on the regional geology of Indonesia, while chapter I.2 includes 
more of the regional geology of the broader SE Asia region and of the SE Asia mainland (Malaysia, Thailand, 
Myanmar, Vietnam, SW China, etc.).  The reason for including the latter in this Indonesia-focused bibliography 
is that many of the geological zones of mainland SE Asia continue into parts of western Indonesia, so the 
tectonic history and stratigraphy of these areas are relevant to understanding parts of Sumatra, Borneo, etc.. 
 

 
 

Figure I.1.1. Present-day subduction zones, oceanic basins and major ophiolites in the SE Asia- New Guinea- 
West Pacific region (Zahirovic at al. 2014). 

 
Numerous papers on Paleozoic- Mesozoic faunas and floras are also included here, especially those that help 
identify faunal and floral provinces that are indicative of paleoclimate and latitudinal positions of plates through 
time. Paleobiogeographic patterns and tectonostratigraphic successions are key tools for underpinning and 
constraining plate reconstructions of SE Asia, especially in the pre-Cenozoic. 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  2 

Although the Van Bemmelen (1949) Geology of Indonesia book is generally viewed as the most significant 
textbook on the geology of Indonesia, its tectonic interpretations are outdated (and were actually already 
controversial at the time of publication).  
 
The pioneering book and maps of Warren Hamilton (1979) 'Tectonics of the Indonesian Region' (U.S. Geol. 
Survey Prof. Paper 1078) were the first interpretations of Indonesia tectonics in a plate tectonic framework and 
remains an unrivalled masterpiece. The book still contains some of the most comprehensive descriptions of 
the geology of Indonesia, and many of Hamilton's interpretations have withstood the tests of time. 
 

                
 
Figure I.1.2. Two key textbooks on the geology of the indonesian region. 
 
The main patterns of the geologic evolution of SE Asia are reasonably well understood, but many details and 
exact timing of events are still debated.  
 
 
   Indonesia/ SE Asia Basement blocks, suture zones 
The area of the Indonesian archipelago and surrounding SE Asia- Australia/ New Guinea is a very complex 
mosaic of continental and microcontinental blocks, active and extinct volcanic arcs and associated subduction 
complexes (commonly with ophiolites, marking suture zones where former ocean basins were consumed) and 
old and young oceans and marginal ocean basins (Figure I.1.3) 
 
The patterns of Pretertiary Basement are masked and complicated by later evens, like the formation of 
widespread Tertiary basins (mainly since Middle-Late Eocene time), breakup of margins by marginal basins 
creation, metamorphism due to magmatic activity, offsets by several large strike slip fault zones, etc. 
 
Mainland SE Asia is also a complex collage of continental blocks, all of which probably once part of the 
Gondwana supercontinent, but separated from the NW Australia- New Guinea margin during successive 
episodes of Devonian- Jurassic rifting and seafloor spreading (S China, Indochina, Sibumasu, W Burma, etc.). 
After Northward drift from the S Hemisphere to equatorial latitudes (recorded by changes in flora and fauna 
from colder to warmer climates), the various Gondwanan-origin blocks amalgamated with mainland Eurasia 
during multiple Late Paleozoic- Eocene episodes of collision. 
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Figure I.1.3. Recent interpretation of SE Asia- Indonesia basement terranes. It differs from earlier versions 
mainly in recognition of West Sumatra, SW Borneo and Semitau blocks as separate units from the Sibumasu- 
East Malaya- Indochina blocks that amalgamated to form the Sundaland core in Triassic time (Metcalfe 2013). 
 
Multiple suture zones that separate continental blocks or continental and and arc volcanic terranes have been 
recognized across SE Asia. Most of these sutures represent former subduction zones along the South Eurasia 
and West Pacific margins, and many contain ophiolitic rocks that represent remnants of upper mantle, oceanic 
crust and pelagic sediment cover of closed former ocean basins (Paleo-Tethys, Meso-Tethys, Neo-Tethys/ 
Indian Ocean). These are accompanied by volcanic-plutonic arc systems and intensely deformed accretionary 
complexes.  
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Figure I.1.4. Tectonic setting of Indonesia between two major Pretertiary continental blocks (Sundaland/ 
Eurasia and Australia- New Guinea) (Barber 1985). 

 
Figure I.1.4. summarizes the main tectonic elements of the greater Indonesian region: 
1. Two major, converging Pretertiary continental blocks: Sundaland/ Eurasia in the NW and Australia- New 

Guinea in the SE; 
2. Cretaceous and younger accretionary crust along the Sundaland and New Guinea margins (including the 

Woyla terranes of West Sumatra, East Java, Meratus Range and further East in East Kalimantan, West 
Sulawesi, all of North Borneo; 

3. Cenozoic oceanic marginal basins (South China Sea, Sulu Sea, Celebes Sea (possibly including North 
Makassar Straits) and North and South Banda Seas) 

4. Microcontinental blocks that rifted off both Sundaland (Palawan (4) , Sumba (11), Timor allochthon (12)); 
5. Microcontinental blocks that rifted off Australia- New Guinea (Banggai-Sula (6), Seram-Buru (9), etc.) 
6. Major oceanic plates: northward subducting Indian Ocean in the SW and the westward subducting Pacific 

Ocean/ Philippine SeaPlate in the NE. 
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Figure I.1.5. Free Air gravity of the Indonesian region. Blue= low gravity= areas of downgoing plates (trenches-
accretionary prisms. (SEATIGER Brochure 2009) . 
 
Western Indonesia ('Sundaland') is a complex of Late Paleozoic- Triassic continental blocks that amalgamated 
by the closing of the Paleotethys Ocean suture in Late Triassic time. After a long period of relative quiescence 
Sundaland was affected by widespread Middle Eocene- Early Miocene rifting, creating many hydrocarbon-
bearing sedimentary basins  (e.g. Hutchison 1984, 1986, Hall and. Morley, 2004, Sunarjanto et al. 2008, 
Pubellier and Morley 2014, Rangin 2015). 
 
The present-day configuration of Eastern Indonesia formed much later, and is still evolving. It is a collage of 
relatively small continental microplates derived from the Australia- New Guinea Gondwanan margin, remnants 
of extinct volcanic arcs, active volcanic arcs and Cenozoic oceanic marginal basins. 
 
  Marginal basins and 'sliver terranes' 
Today the ~7400 km long East Asian/ West Pacific active margin is an area of extensive marginal oceanic 
basins, from North of Japan to SE Asia (Tamaki and Honza 1991). They formed by back-arc extension, 
presumably during rollback of the subducting Pacific Ocean slab(s), collapsing and hyperextending the 
overriding plate towards the retreating hinge line.   
 
In several examples the extension and spreading appeared to have initiated by 'splitting' of an active magmatic 
arc system.  If this arc was in an active continental margin setting, this process will remove the entire forearc 
area from the continental margin, which then becomes an isolated continental sliver terrane (e.g. Palawan, 
West Sulawesi, Sumba- Timor Banda Terrane, Sulu Ridge, Sinta Ridge, etc.)  
 
The majority (possibly all) of the known Indonesian marginal basins has already been reduced in area by 
subduction along one or more of their margins. Older marginal basins may already have been consumed 
completely ('Proto- South China Sea?). 
 
Marginal basins may be flanked by zones of rifted continental or accretionary crust with sedimentary basins, 
formed during the same rollback/ extensional episodes  (e.g. 400-800 km wide rifted zones along the South 
China Sea; Clift et al. 2002). 
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Cenozoic marginal basins in and around Indonesia, with ages of oceanic crust formation, are shown on Figure 
I.1.6. They include: 
- South China Sea     ~32-15 Ma    (Barckhausen and Roeser 2004, Song and Li 2015, 
        Sibuet et al. 2016); 
- Sulu Sea     ~18-15 Ma  (late Early Miocene)  (Lewis 1991, Hutchison 1992, 2005);  
- Celebes Sea- Makassar Straits:~48-35 Ma   (M-L Eocene)  (Rangin et al. 1989, Gaina and Muller 2007);  
- North Banda Sea   ~13-7 Ma     (Middle- Late Miocene) (Hinschberger et al. 2000)  
- South Banda Sea     6.5- 3.5 Ma     (latest Miocene- Early Pliocene)   (Hinschberger et al. 2001); 
- Moluccas Sea    Eocene?  (seafloor now already mostly subducted). 
 

 
 
Figure I.1.6. marginal oceanic basins in the Indonesia- New Guinea region and their ages (Harris, 2003). The 
Sulu Sea shown here as Oligocene is more likely of Miocene age, the South China Sea seafloor spreading 
was in Late Oligocene- Early Miocene. 
 
 
  Tectonic models of the Indonesian region 
Numerous authors have attempted syntheses of geologic and tectonic evolution of the Indonesian 
Archipelago, dating back to the 1800's. (Earle 1845, Volz 1912, Elbert 1913, Abendanon 1914, 1915, etc.). 
(Figure I.1.7). Unfortunately all of the pre-1970's tectonics models should now be viewed as largely obsolete, 
and mainly of historic interest, although many of these models were driven by perfectly valid geological 
observations.  
 
Many of the earliest tectonic theories proposed for Indonesia/ SE Asia were reviewed in Blom 1934 and 
Umbgrove (1934, 1938) and Katili (1971). Umbgrove (1938) lamented that 'in the last decades at least one or 
two new hypotheses have been suggested every year to explain the structure of the East Indian Archipelago'. 
Despite Umbgrove's lament, this trend has continued until today, and new models continue to be published 
every year (see Plate reconstructions chapter below).  
 
Many of the early 1900's discussions on tectonics of the Indonesian Archipelago involved geosynclines or 
discussed the merits of Wegener's theory of continental drift, a concept that had been around since 1915, but 
was not generally accepted until around 1968.  
 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  7 

 
 

Figure I.1.7. Example of old tectonic model for Indonesia (Volz, 1912). The suggested regional fault patterns 
have little or no basis in reality. 
 
Many of the European geologists working in the Indonesian region in the 1920's- 1930's were early 'mobilists', 
believing in Wegener's then-controversial model of horizontal plate movements. and recognizing the 
Indonesian region as an area between the converging Asian and Australian continents, as initially suggested 
by Wegener himself in 1915, 1922 (Wing Easton 1921, Brouwer, Molengraaff, Van Waterschoot Van der 
Gracht (1928), Smit Sibinga 1927, 1933; Figure I.1.8), Escher (1933), etc.).  However, other prominent Dutch 
structural geologists of that era (Umbgrove 1935, Van Bemmelen 1933, 1949, etc., and Kuenen 1950) were 
skeptics of continental drift. 
 
Mention should be made here of the theories of the 'grand master' of the geology of Indonesia, R.W. van 
Bemmelen. He oppposed continental drift and later also plate tectonics, until his death in 1983. Instead he 
proposed his 'undation theory' in 1932, which he continued to promote this, with some modifications, until 
1978. This theory explained all tectonics as the result of vertical, mantle-driven uplifts, followed by lateral 
gravitational sliding of the cover of uplifted 'undations'. This theory never found much acceptance in the 
geological world.  
 
For more details on the history of Wegener's and Van Bemmelen's theories in the 'Netherlands Indies' see 
Barzilay (2008, 2009, 2010). 
 
Many newer tectonic models have been proposed since the the 'Pre-Plate tectonics era', and new models 
continue to be proposed and debated today. Whilst these are all valuable exercises in integrating large 
amounts of geologic data, the long-term 'success rate' of any (plate-)tectonic modles of the Indonesia/ SE Asia 
region has not been very high, although elements of many of them continue to be accepted. 
 
But much progress has been made, especially after the advent of plate tectonics theory and plate 
reconstruction models since the 1970's. But parts of Indonesia's geology and tectonic history remain poorly 
understood and subject to continued debates, so it is unlikely we have reached a 'final answer' today. 
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Figure I.1.8. Early depiction of orogenic belts in the Indonesian region, and 'Wegener style' suggestion of 
converging Asian and Australian continents (Smit Sibinga 1933). 
 
Current tectonic models agree on the convergence of the three major tectonic plates in the Indonesian region 
(Eurasia, Indian Ocean-Australia- New Guinea and Pacific), and that most or all of the continental blocks in SE 
Asia rifted from the North Gondwana margin at different times. However, models vary in many other details. 
Areas that appear to generate the most debate include the recent history of areas in Eastern Indonesia (Timor, 
Seram, Sulawesi, the Birds Head of West Papua, etc.), but also the Pretertiary history of Western Indonesia 
(Sumatra, Java, Kalimantan) will probably yield surprises with further geological and geophysical studies. 
 

 
 

Figure I.1.9. Active subduction zones and major fault zones of the Indonesian region, the junction of three 
major tectonic plates: (1) relatively stable Sunda (Eurasia), (2) North-moving Australia- Indian Ocean and (3) 
West-moving Philippine Sea- West Pacific Plates. Arrows indicate major plate movement directions and 
velocities relative to Eurasia (Socquet et al. 2006). 
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   Present-day major tectonic plates and GPS plate motions 
Today Indonesia is at the convergence of three major tectonic plates: Eurasia in the West, Pacific (Philippine 
Sea) in the NE and Australia in the SE. The East Sulawesi- Banda Sea region is the 'triple-junction', where the 
three plates converge (Figure I.1.9). 
 
Since ~1993 GPS satellite positioning technology has allowed determination of any position of any location in 
the world with <2-3mm accuracy. Differences in distance between GPS stations over time can now be 
measured, which then allows reconstruction of relative movement rates of these stations, and thus determine 
directions and relative surface velocities of tectonic plates. 
 
Plate boundaries derived from present-day relative plate motion are not necessarily the same as historic plate 
boundaries or tectonic sutures. For instance: 
1. the Timor Trough was the plate boundary between the North-moving Australia- Indian Ocean plate and the 

Eurasia/Banda Arc plate for 10's of millions of years, but since it locked up ~3 Million years ago, Timor and 
parts of the Banda Arc and Banda Sea now move largely with the Australian Plate (e.g. Fig. I.1.10).  

2. much of the oblique convergence between the Indian Ocean Plate and Eurasia in Sumatra is taken up by 
the Great Sumatra Fault zone, which thus acts as a present-day plate boundary. However, this fault zone 
appears to follow the thermally weakened zone of the modern volcanic arc and probably does not reflect an 
older basement terrane boundary. 

 

 
 

Figure I.1.10. Example of GPS-derived present-day plate motions (arrows) and plate boundaries (Bock et al. 
2003). Showing velocities of ~3-10 cm/year relative to International Terrestrial Reference Frame ITRF2008. 
These rates translate to plate motions of 30-100 km/Myr) 

 
A selection of key papers of GPS studies in the Indonesian region is shown in the table below. 
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   Present-day earthquake hypocenters and Seismic tomography 
An important component in the recognition of major fault zones, and in particular subduction zones, is the 
distribution patterns of earthquake hypocenters (e.g. Hamilton 1974).  
 
The discovery of belts of deep earthquake hypocenters in lower crust and mantle that form landward dipping 
zones under active continental margins is commonly attributed to Russian and Japanese seismologists Benioff 
and Wadati in the 1950's. However, this pattern of landward dipping planes of deep earthquake hypocenters 
(now known to reflect subducting slabs of oceanic lithospheric plates) was already known in the Indonesian 
region in the 1930's (Visser 1937, Berlage 1937, 1939; Figure I.1.11). 
 
Also in the 1930's the dipping earthquake belts were noted to be associated with active volcanic arcs and with 
strong negative gravity anomalies outboard of the arcs, which was first discovered by 'the diving Dutchman' 
Vening Meinesz (1933, 1934), who interpreted these as zones of 'crustal downbuckling' (Escher 1933, Visser 
1937). These 1930's geologists in Indonesia came very close to discovering plate subduction, a key 
component of the revolutionary plate tectonics theory of the 1960's. 
 
Significant later contributors on earthquake distribution patterns in the Indonesian region include Fitch, 
Cardwell and Isacks, McCaffrey, Hamilton, Das, Schoffel, Spicak, and others. 
 

 
 

Figure I.1.11. Depths of earthquake epicenters along land-ward dipping plane, now known as Wadati-Benioff 
zone (Berlage 1937). North of Java deep earthquakes down to ~6km, no deep earthquakes under Sumatra. 

 
The relatively recent technology of 'seismic tomography' (which is a high-resolution 3-D seismic velocity model 
of the mantle derived from now a large database of earthquake hypocenter locations and and travel time data) 
helps visualize the presence of relatively high-velocity and relatively cool subducted slabs in the mantle. 
 
Key papers for regional tomography studies in the Indonesian region include Puspito et al. (1993, 1995), 
Widiyantoro and van der Hilst (1996, 1997), Hafkenscheid et al. (2001), Replumaz et al. (2004), Tregoning and 
Gorbatov (2004), Richards et al. (2007), Spakman and Hall (2010), Widyantoro et al. (2011), Hall and 
Spakman (2015), Spakman, Huang et al. 2015), Wu and Suppe (2016, 2017), Van der Meer et al. (2018). 
 
Numerous other papers use seismic tomography data to solve more local tectonic issues, like magma 
plumbing under volcanoes, slab rupture, etc.. 
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   Geologic history and Tectonostratigraphic belts 
The older tectonic history of Indonesia is recorded in the geology of the various provinces. Unraveling the 
mosaic of continental plates, suture zones, volcanic arcs through time, etc., is an ongoing process. For more 
details on the plate tectonics of the region see also Chapter I.2- Regional geology of SE Asia. 
 
One useful tool is the concept of tectonostratigraphic belts or provinces, which are zones with similar 
stratigraphies and unconformities that record geologic settings and tectonic events.  
 
Long before the formulation of the theory of plate tectonics, the pattern of separate continental crustal blocks 
of Eurasian-affinity in West Indonesia and Australian-affinity blocks in East Indonesia, was recognized in the 
1920's-1930's. An elegant depiction by Umbgrove (1938; Figure I.1.12) shows these provinces, and where 
they are separated by the 'Timor- Seram- East Sulawesi geosyncline'. (zone A in Fig. I.1.12.). This 
'geosyncline' is characterized by continuous Permian- Cretaceous deep marine facies and is now understood 
to represent the suture zone of the Mesotethys Ocean that closed around Eocene time. 
 
 

 
 

Figure I.1.12. Tectonostratigraphic provinces in Indonesia, as understood by Umbgrove (1938), identifying 
areas with similar Late Paleozoic- Eocene tectonostratigraphy.  A = Timor- Seram- East Sulawesi 
geosyncline, B = New Guinea- North Australia- Sula Islands, C = Central and SE Borneo- W Sulawesi, D = 
Malay Peninsula, Riau archipelago- Bangka- Belitung, E= Sumba, F = Banda Sea, G = Java- Sumatra. 
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   Paleomagnetic studies 
Paleomagnetism is another powerful tool to constrain plate tectonic reconstructions. Many sedimentary and 
igneous rocks contain magnetically susceptile iron minerals that are still oriented in the direction of the 
magnetic field of the time in which the rocks formed. Paleolatitude of a rock sample can be derived from the 
inclination of the paleomagnetic orientation, and rotationsince rock formation from the declination.  
 
Interpretation of paleomagnetic data is not always unequivocal or easy. Operators need to verify that: 
- sample locations are representative for regional deformation, and are not affected by local deformation; 
- the paleomagnetic signal was not reset during younger thermal events; 
- correct paleo-pole position is used; 
- correct polarity of the magnetic field (normal or reversed) at the time of rock formation is used.  
- conclusions on paleolatitude are corrected for (1) depositional dip and (2) inclination shallowing (compaction 
of sedimentary packages may reduce dip angles, and thus underestimate paleolatitude).  
 
A map of paleomagnetic directions in Indonesia was compiled by Mubroto et al. (1993). Another useful review 
of paleomagnetic data, including chapters on the Indonesia/ SE Asia region, is the book of Van der Voo 
(1993). 
 
Pioneering studies in various parts the Indonesian region were by Haile (1977, 1978, 1979; Seram, Sumatra, 
Sulawesi, West Kalimantan), Nishimura & Suparka (1997), Sasajima et al. (1978, Sumatra, West and North 
Sulawesi), and Otofuji et al. (1981; North Arm Sulawesi). 
 
Several independent paleomagnetic surveys concluded that 'South Sundaland' (Malay Peninsula - Borneo- 
East Sumatra) acted as a single block that underwent ~30- 50° counterclockwise rotation since the Late 
Cretaceous (most likely between Late Eocene- Middle Miocene) (Haile et al. 1977, Untung et al. 1987, 
Schmidtke et al. 1990, Fuller et al. 1991, 1999, Sunata and Wahyono 1991, Richter et al. 1999)). This 
Cenozoic CCW rotation of Borneo was incorporated in plate reconstruction models of Hall (1996 and others), 
but has since been questioned by Murphy (1988), Hutchison (2010), Tjia (2012) and Marshall (2016). 
 
Paleomagnetic studies from the East Indonesian region include  
- Sumba: clockwise rotations of Late Cretaceous flysch deposits by ~60°- 90° (Nishimura et al. 1981; Otofuji et 

al. 1979, 1981 , Wensink 1994, 1997) 
- Timor (Chamalaun 1977, Wensink and Hartosukohardjo 1987,1990, Panjaitan and Hutubessy 1997, 2004); 
- East Sulawesi ophiolite   (Mubroto 1994), 
- Halmahera- Banggai-Sula region  (Ali and Hall 1995, Ali et al. 2001, Obi); 
- Birds Head West Papua   (Giddings et al. 1993); 
- Misool   (Thrupp et al. 1987); 
- Papua New Guinea: significant rotations of blocks in North New Guinea  (Klootwijk et al. 1987, 1993, 2003). 
 
Paleomagnetic data suggest significant, opposing rotations of the western parts of Sulawesi: 
1. clockwise rotations of the North Arm in Middle Miocene- Pliocene  (Otofuji et al. 1981, Surmont et al. 1994); 
2. 35-80° CCW rotation of the SW Arm since Middle Miocene  (Haile 1978, Sasajima et al. 1978, 1980, 1981,  
   Panjaitan and Mubroto 1993, Panjaitan 2009). 
 
Paleomagnetic work in Central Java on the Late Cretaceous(?)- Early Miocene 'Old Andesites' of the Southern 
Mountains suggest a 10° or more northward shift of the Southern Mountains volcanic arc (Mahfi 1984, 
Bijaksana et al. 2003, Ngkoimani 2005, 2006, Sunardi 2010). 
 
Paleomagnetic data from mainland SE Asia suggest most Paleozoic rocks were probably affected by resets 
during Late Carboniferous and Cretaceous thermal events (Powell et al 1980, Metcalfe 1993, Van der Voo 
1993).  
 
Numerous additional papers from mainland SE Asia, The Philippines and the SW Pacific region are listed in 
the Bibliography.  
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   Paleobiogeography as a plate reconstruction tool 
Compositions of faunal and floral assemblages are partly controlled by paleoclimate/ paleolatitude at the time 
of deposition. Some taxa or groups are limited to warm, low latitudes, others are restricted to cooler, temperate 
climates and show 'anti-tropical' geographic distributions. 
 
Faunas/ floras from comparable climate belts may show provinciality if they were geographically separated by 
land masses or deep oceans that impeded migrations between areas. Once the reasons for such 
paleobiogeographically-controlled provinciality of fossil assemblages are understood, they can then be used 
for paleogeographic reconstructions, they may then may provide constraints on the reconstruction of the 
mosaic of tectonic blocks in SE Asia.  
 
Analyzing faunas-floras for paleobiogeographic patterns of plate tectonic significance can be tricky: 
- Age: faunas/ floras may be different due to different ages, and are not necessarily from different 

paleogeographic provinces; 
- Depositional facies: may be different because they are from different depositional facies, and do not 

necessarily relect different paleogeographic provinces; 
- Taxonomy is quite important: closely related assemblages may have different sets of genus/ species names 

because fossils were identified by different specialists, but in reality are comparable.  By contrast, imprecise 
determinations or lumping species into higher taxonomic units may suggest similarities between floras/ 
faunas, where in reality all species are different and represent different faunal/ floral provinces. 

- Even when different faunas/floras reflect different paleoclimates this does not necessarily mean they are on 
different tectonic plates. Instead this may reflect a gradual paleolatitudinal transition on the same plate, or 
short-term climate warming-cooling events in the same area. 

 

 
 

Figure I.1.13. Distribution of Late Carboniferous- Early Permian floras on a Permian reconstruction, showing 
Cathaysian floras in SE Asia and Gondwanan floras in Australia- India (Stauffer 1985). 
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Some of the most frequently used fossils with perceived paleobiogeographical significance include: 
1. Early Permian floras with distinct low latitude 'Cathaysian'/ Eurasian assemblages and higher latitude/ 

Gondwanan Glossopteris floras (Figure 1.1.13; Asama 1976, 1984 and numerous papers). However, there 
are examples of mixed floras (West Papua), suggesting these floras may reflect paleoclimate zones rather 
than paleo-position on tectonic plates (e.g. Scotese 2011, Figure 1.1.14) 

 

 
 

Figure I.1.14. Early Permian (Sakmarian; 297 Ma) reconstruction of Scotese (2014, Map 56), showing 
Sumatra as part of Cimmerian/ Sibumasu terranes, in process of rifting off Gondwana near New Guinea.  

 
2. Permian brachiopod and fusulinid foraminifera assemblages assemblages (Fontaine et al. 1994, Fontaine 

2002, Archbold 2000, 2001, Shen et al. 2013, etc.): define distribution and evolution of 'Cimmerian'/ 
Sibumasu terranes; 

 

3. Late Triassic brachiopods: 'peri-Gondwanan'/ 'Southern Tethys assemblages with Misolia are found from 
Oman through the Himalayas to East Indonesia (Misool, 'Fatu Limestone' of Timor, Seram, Buru, East 
Sulawesi) and the NW Australian margin (Ager and Sun 1988, Dagys 1993; Figure I.1.15), but Misolia is not 
known from the Late Triassic of West Sumatra or NW Borneo (e.g. Krumbeck 1914); 

 

4. Late Triassic pelagic bivalves Monotis salinaria (low-latitude Tethyan; Timor, Seram) versus Monotis 
subcircularis (mid-latitudes; NW Kalimantan, Indochina, etc.)  (Silberling 1985); 

 

5. Late Triassic ammonites (incl. Juvavites, Neotibetites), corals, sponges (incl. Heterastridium, Lovcenipora, 
Tubiphytes?), etc. from Timor, Buru, Seram, etc., have long been known to be very similar to the Alps and 
Himalayas (e.g. Diener 1916), suggesting uninterrupted (Meso-)Tethyan connections in relatively low 
latitudes (= maximum size of Mesotethys); 
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Figure I.1.15. Late Triassic brachiopods 5= Misolia= typical of southern margin of Mesotethys Ocean 
 
6. Middle- Late Jurassic bivalves and ammonites: Sundaland (Sumatra, NW Borneo) with low-latitude Asian 

affinity Jurassic shallow marine sediments with bivalve Parvamussium, foram Pseudocyclammina lituus, 
etc..(Fontaine et al. 1983). In New Guinea and the Sula islands are Middle- Late Jurassic marine facies with 
higher-latitude 'North Gondwana/ Austral' fossils characterized by the Late Jurassic pelagic bivalve 
Malayomaorica and Middle Jurassic Macrocephalites ammonite assemblages, none which is known from 
Western Indonesia (Fig. 1.1.16 of Umbgrove 1938; Enay and Cariou 1999); 

 

 
 

Figure I.1.16. Two different Jurassic facies/ faunal domains in Indonesia, separated  'Timor- Seram- East 
Sulawesi geosyncline' with continuous Jurassic pelagic facies (solid dots; = Mesotethys suture) (Umbgrove 
1938): In West.(x) Sumatra- West Kalimantan, Jurassic shallow marine transgressive sequences (= 
Sundaland); In East (+) West Papua Middle- Late Jurassic shale facies with geodes, bivalve Malayomaorica 
and Macrocephalites ammonites (= Gondwana continental margin). 
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7. Early Cretaceous larger foraminifer Orbitolina and (rare) rudistids molluscs. These shallow marine, typical 
low-latitude Tethyan fossils are widely distributed in West and South Sumatra, Kalimantan, Central Java and 
West Sulawesi, but are not known from New Guinea or NW Australia, suggesting relatively wide separation 
at that time. 

 

8. Eocene larger foraminifera: biogeographic separation of Pellatispira in SW Pacific- West Indonesia- 
Neotethys (including Sumba, Seram and Banda Terrane of Timor) and Lacazinella in NW Australia- New 
Guinea and related terranes like Misool and the Banggai-Sula block (Lunt, 2003); 

 

9. The Eocene- Miocene palynological record of SE Asia contains evidence of floral migration events that can 
be tied to plate tectonic events (Morley 1998, 2000, Lelono 2012). The arrival of Gondwanan migrants in 
Indonesia in the Eocene such as Dacrydium, Casuarina and Podocarpus may be tied to the collision of India 
and Asia.  Miocene migrations like distinct increase of Myrtacea pollen at 17 Ma may be tied to the collision 
of New Guinea with Eastern Indonesia arc/ microcontinents. Dipterocarps, important contributors to oil 
source rocks on Sundaland in Eocene-Oligocene time, did not occur in New Guinea until until after the 
Miocene collision. 

 
 
  Plate Reconstructions 
The ultimate synthesis of the tectonic evolution of an area is a series of plate reconstructions. Ideally these 
reconstructions incorporate all known information on the geology of individual plates, especially 
tectonostratigraphy (stratigraphic successions, ages of unconformities/ deformational events, positions and 
ages of magmatic arc activity, etc.), paleomagnetic data, paleobiogeographic indicators, etc. (e.g. Figs. I.1.17, 
I.1.18). 
 
For the Indonesia/ SE Asia region the series of papers by Ian Metcalfe (1988, 1996, 2002, 2009, 2011, 2013, 
2017, etc.; Paleozoic- Recent) and Robert Hall (1995- 2017; Eocene- Recent time, but after 2012 back to 
Jurassic time) have now become the 'gold standards' of SE Asia plate reconstructions. 
 

 
 

Figure I.1.17. Example of part of Early Cretaceous (146-135 Ma) reconstruction of Golonka (2006), the time of 
maximum separation between Australia-New Guinea and SE Asia.  
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Figure I.1.18. Example of Late Eocene reconstruction (Charlton, 2000), showing a restored Eocene 'Great 
Indonesian Volcanic Arc, which is now fragmented and distorted almost beyond recognition. Sumba and the 
Timor Allochthon (= Banda Terrane) are in forearc positions of this arc and are not part of the Australian plate.  
 
Notable papers with alternative plate reconstructions that differ in details from the above, include: 
- J. Katili (1971, 1989, 1991) 
- N. Haile et al. (1973): SE Asia subduction zones 
- P. Stauffer (1974-1986)  
- M. Audley-Charles et al. (1976, 1983, 1988): Permian- Cretaceous Gondwanaland- Tethys reconstructions 
- C. Hutchison (1973, 1987, 1989, 1994, 1996, 2007, 2014): Sundaland plates history 
- C. Pigram and Panggabean (1984) and Struckmeyer et al. (1993): New Guinea- East Indonesia 
- H.M.S. Hartono and Tjokrosapoetro (1984, 1986) 
- T. Barber (1985 and others) 
- T. Charlton (1986, 1991, 2000, 2013, 2016): East Indonesia reconstructions 
- R. Murphy (1987, 1998, 2002) 
- C. Sengor et al. (1985, 1988, 2009): mainland SE Asia 
- Daly, Hooper et al. (1987, 1989, 1991) 
- M. De Smet, (1989, 1999) 
- Nishimura & Suparka (1990)- Eastern Indonesia at 4, 17 Ma 
- C. Rangin, Jolivet & Pubellier (1990): SE Asia in past 43 Myrs 
- G. Packham (1990, 1993, 1996)  
- T. Simanjuntak (1992, 1994, 1996, 2000) 
- Gorur & Sengor (1992): NW Australian shelf breakup events tied to collision events in Tethysides 
- J. Milsom et al.  (1992, 1993, 2000, 2001): East Indonesia tectonostratigraphy and suture zones 
- L. Ricou (1994) 
- J. Sopaheluwakan (1994, 1996): Banda Arc, Timor 
- Lee and Lawver (1995): SE Asia reconstructions 
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- I. Longley (1997) 
- M. Villeneuve et al. (1998, 2001, 2004, 2010): East Indonesia 
- M. Pubellier et al. (2003, 2004, 2005, 2013): DOTSEA kinematic reconstructions back to 20 Ma, etc. 
- R. Harris (2006): Timor, East Indonesia 
- J. Golonka (2000, 2006, 2012, 2018): global plate reconstructions 
- C. Scotese (1988-2017): global plate reconstructions 
- R. Dietmar Muller and co-workers (2000-2017): oceanic basins reconstructions 
- C.K. Morley (2001, 2002, 2012, 2013): Cenozoic mainland SE Asia, rift basins 
- N. Sribudiyani et al. (2003): East Java microplate 
- Gaina & Muller (2007): SE Asia- N Australia- W Pacific major plates and paleobathymetry back to 50 Ma 
- Zhou et al. (2008) Greater South China Sea- Borneo reconstructions 
- A. Satyana (2003, 2009, 2012) 
- S. Zahirovic et al. (2014, 2016). 
- A. Gibbons et al. (2012, 2015) 
 
   SW Borneo Block 
One major 'bone of contention' in recent plate reconstruction models is whether there is a separate SW 
Borneo Block that rifted off the NW Australia margin in Late Jurassic time ('Argoland') and collided with SE 
Asia in mid-Cretaceous time (Hall 2011, 2014, Metcalfe 2013; e.g. Figure I.1.2.), or whether SW Borneo/ 
Kalimantan has been part of 'Sundaland' since its amalgamation in Late Triassic time (most older papers like 
Umbgrove 1938 (Figure I.1.11), Zhou et al. 2008, and global models of Scotese 2001 and others, Golonka 
2006 and others, Gibbons et al. 2015, Zahirovic et al. 2016, etc.). Metcalfe (1998 and others) viewed SW 
Borneo as a separate plate, but derived from the Indochina/ Cathaysialand margin. 
 
Problems with the recent scenario of SW Borneo Block as a Gondwanan terrane that was added to Sundaland 
in Cretaceous time include:  
1. Gravity and seismic data of the Sunda Shelf (the proposed area for the suture zone) show good continuity 

between Sumatra and Kalimantan (e.g. Figure 1.1.5), with no obvious evidence for a basement suture/ 
terrane boundary;  

2. There is no stratigraphic support from Borneo for this scenario. The only area on the island where Permian- 
Jurassic rocks are not destroyed by Cretaceous magmatism, metamorphism and uplift/erosion is in the NW 
Kalimantan- SW Sarawak border area. This area shows Sundaland- affinity imbricated Carboniferous- Early 
Permian sediments, unconformably overlain by Late Triassic- Cretaceous sediments with low-latitude floras 
and faunas of Indochina affinity/ unconformities (Zeijlmans van Emmichoven 1939). This Permian-
Cretaceous tectonostratigraphy is definitely not Gondwanan, but fits well with other parts of Sundaland that 
were affected by the Late Triassic Indosinian orogeny (Sumatra, Bangka, Malay Peninsula, etc.)   (see also 
additional papers on Borneo in Chapter V).  

 
  DOTSEA (2005) kinematic reconstructions 
An interesting exercise by the DOTSEA project (Pubellier et al. 2005). shows kinematic reconstructions of SE 
Asia back to 15 Ma, by simple back-tracking of measured present-day GPS plate motions (directions and 
velocities), assuming these have been constant since then. In a series of maps they restored areas of oceanic 
crust that have been subducted.  Interesting elements of the 15 Ma restoration map, that are not part of most 
'mainstream' interpretations, include (1) the position of Birds Head well North of New Guinea and (2) a 
significant area of consumed (oceanic?) crust in the North Makassar Straits basin, which at that time may have 
been double the width. (Figure I.1.19). 
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Figure I.1.19. Kinematic reconstruction of the Indonesian region for 15 Ma (Middle Miocene), built from back-
tracking present-day GPS plate motions. Yellow areas are areas of oceanic crust that are now subducted. 
(Pubellier et al. 2005; DOTSEA project; part of 15 Ma map). 

 
 
Some suggested reading- Indonesia/SE Asia tectonics (not a complete listing of all relevant papers) 
 

Indonesia/ SE Asia text books: Brouwer 1925, Rutten 1927, Van Bemmelen 1949, Umbgrove 1949, 
     Hamilton 1979, Hutchison 1989, 2007, Darman and Sidi 2000. 
 

Pre-plate tectonics models Volz 1912, Abendanon 1914, 1915, Brouwer 1917, 1918, 1922, 1949, 
    Van Es 1919, Smit Sibinga 1927, 1933, Umbgrove 1934, 1949,  
    Van Bemmelen 1933, 1949, 1954, Westerveld 1949, Klompe 1957,  
    Carey 1958, 1975, Meyerhoff 1996. 
 

Plate Tectonics syntheses: Katili 1971, 1989, etc., Audley-Charles 1976, Stauffer 1974-1986, 
 Indonesia  Hamilton 1979, Ridd 1980, Pigram and Panggabean 1984,  
    Hartono and Tjokrosapoetro 1984, 1986 Barber 1985, Wood 1985, 
    Charlton 1986, 1991,2000, 2013, 2016, Sengor et al. 1988, 2009, 
    Gatinsky 1986, Gatinsky and. Hutchison 1986, Audley Charles and Harris  
    1990,  Metcalfe 1988, 1996, 2002, 2009, 2011, 2013, 2017, 
    Hutchison 1973, 1987, 1989, 1994, 1996, 2007, 2014,  
    Murphy 1987, 1998, 2002, Daly, Hooper et al. 1987, 1989, 1991,  
    De Smet 1989, 1999, Rangin et al. 1990, Milsom 1992, 1993, 2000, 2001, 
    Struckmeyer et al. 1993, Simanjuntak 1992, 1994, 2000,  
    Prasetyo 1995, Lee and Lawver 1995, Packham 1990, 1993, 1996,  
    Simandjuntak and Barber 1996, Hall 1996, 1998, 2002, 2009, 2012, 2017, 
    Longley 1997, 2002, Villeneuve et al.1998, 2001, 2010, Harris 2006, 
    Scotese 2001, R.D. Muller 2000, 2016, C.K. Morley 2002, 2012,  
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    Stampfli and Borel 2002, Pubellier et al. 2003, 2004, 2005, 2013, 
    Satyana 2003, 2009, 2012, Gaina and Muller 2007, 
    Golonka 2006, 2012, 2018, Spakman & Hall 2010, Clements et al. 2011,  
    Hall and Sevastjanova 2012, Zahirovic et al. 2014, 2016, Gibbons et al. 2015. 
 

GPS plate motions SE Asia Chamot-Rooke et al. 1999, Rangin et al. 1999, Wilson et al. 1999, 
    Simons et al. 1999, 2003, 2007, Becker et al. 2000, Michel et al. 2000, 2001, 
    Pubellier et al. 2005 (DOTSEA), Calais et al. 2006, Vergnolle et al. 2007.  
 

GPS plate motions Indonesia Genrich et al. 1996, Walpersdorf et al. 1988, Kreemer et al. 2000,  
    Michel et al. 2000, 2001, Bock et al. 2003, Subarya 2004, Nugroho 2005,  
    Nugroho et al. 2009, Susilo et al. 2015, 2016, Koulali et al. 2016 
 

GPS plate motions Sumatra Genrich et al. 2000, Prawirodirdjo et al.1997, 2000, McCaffrey et al. 2000, 
    Michel et al. 2001, Simoes et al. 2004, Vigny et al. 2005. 
 

GPS plate motions Java  Tregoning et al. 1994, Abidin et al.2009, Meilano et al. 2012,  
    Hanifa et al. 2014. 
 

Earthquakes hypocenters Berlage 1937, 1939, Hamilton 1974, Cardwell and Isacks 1978, 1981, 
    Das et al. 2000.  
 

Tomography velocity models Puspito et al. 1993, 1995) Widiyantoro and van der Hilst 1996, 1997, 
    Hafkenscheid et al. 2001, Replumaz et al. 2004, Tregoning and Gorbatov  
    2004, Richards et al. 2007, Spakman and Hall 2010, 
    Widiyantoro et al. 2011, Hall and Spakman 2015, Huang et al. 2015, 
    Wu and Suppe 2016, 2017, Van der Meer et al. 2012, 2018 
 

Paleomagnetism  Indonesia Haile 1976, 1978, 1981, Haile et al. 1977, Sasajima et al. 1978, 1980, 1981, 
    Otofuji et al. 1981, Mahfi 1984, Untung et al. 1987, Schmidtke et al. 1990,  
    Fuller et al. 1991, 1999, Sunata and Wahyono 1991,  
    Panjaitan and Mubroto 1993, Mubroto 1994, Richter and Fuller 1996, 
    Wensink 1987) Van der Voo 1993, Mubroto et al. 1993,  
    Surmont et al. 1994, Ali and Hall 1995, Hall et al. 1995, Ali et al.1996,2001, 
     Nishimura and Suparka 1997, Mubroto and Ali 1998,  
    Ngkoimani et al. 2005, 2006, Panjaitan 2009, Muin et al. 2017 
 

Paleobiogeography- Permian Asama 1976, 1984, Archbold 1983, 2000, Shen et al. 2013,  
    Shi et al. 1995, Shi and Archbold 1998, Wang and Sugiyama 2002,  
    Ueno 2003, 2006, Srivastava and Agnihotri 2010. 
    Triassic Ager and Sun 1988, Dagys 1993 
    Jurassic Westerrnann 1993 
    Cretaceous Uhlig 1911. 
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   I.3. Volcanism, Volcanic rocks geochemistry 
 

Chapter I.3 of the Bibliography focuses on papers on regional volcanism in the Indonesia- West Pacific region. 
Many additional papers that are specific to a single region will be under the chapter for the area in which they 
are located. Most of the papers on volcanics of Java island are listed in Chapter III.3. 
 
Papers on individual eruption events and volcanic hazards are not included in this Bibliography, unless they 
contain significant geological information. 
 

 
 

Figure I.3.1. Active volcanic centers of the Indonesian region can be grouped in Sunda Arc and Banda Arc of 
Sumatra- Java- Lesser Sunda Islands, and the Sangihe Arc and Halmahera Arc West and East of the 
Molucca Sea (Smithsonian map). 

 
Indonesia, with its 128 active and numerous extinct volcanoes, is one of Earth's most volcanically active 
regions of the world (Figure I.3.1). Partly because of some of the largest eruptions in recorded history 
(Tambora 1815, Karakatau 1883) the country has attracted volcanological studies for over 130 years. The 
extensive report by Verbeek (1885-1885) on the geology of Krakatau volcano in Sunda strait and the 
sequence of events around the 1883 eruption made Verbeek a worldwide celebrity (Figure I.3.2). 
 
Volcanic arcs form above subducting oceanic slabs, generally where the Wadati-Benioff zone reaches a depth 
of ~100km  (England et al. 2004). This depth may vary along strike (e.g. average 90 km in West Java, closer 
to 150km depth in Central and East Java, East of 108°E; Syracuse and Abers 2006), and in dip direction.  
 
In Indonesia active volcanism occurs along three main arc segments, Sunda-Banda, Sangihe and Halmahera 
(Figure I.3.1). The first two of which were probably once a continuous system, related to the same North-
moving subducting Indian Ocean- Australian plate.  
 
Active and extinct arc systems may be classified by age and by subducting oceanic plates: 
- from South: Mesotethys, Neotethys, Indian ocean- Australian (Cretaceous, Eocene, Oligo-Miocene and 

Recent arcs of Sumatra, Java, SE Kalimantan, West Sulawesi, etc.); 
- from East : Pacific Ocean/ Philippine Sea Plate (Halmahera?, Philippines, West Sulawesi) 
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- from North- NW: 'Paleo-Pacific? (Kalimantan Triassic and Cretaceous arcs), 'Proto-South China Sea' 
(Kalimantan Oligocene- Middle Miocene arcs), Celebes Sea (North Sulawesi), Philippine Sea Plate (New 
Guinea Late Miocene- Pleistocene). 

 

 
 

Figure I.3.2. Remnant of Krakatau volcano in Sunda Strait, after the 1883 eruption (Verbeek 1885). 
 
   Preservation of volcanic edifices 
Many of the active volcanoes of Indonesia build up to elevations of 3000m, some are up to 3700-3800m ihigh 
(Kerinci on Sumatra, Semeru on Java, Rinjani on Lombok).  However, the preservation potential of these 
volcanic cones in the geological record is rather low. 
 
After volcanic activity ceases, erosion of volcanic edifices tends to be quite rapid, and most of the volcanic 
material ends up in a wide mantle of eroded volcanoclastics. Most of what will be preserved in the geologic 
record at the eruption site will be the basal volcanic deposits and the underlying intrusives (feeder pipes, dikes 
and granitoids that formed the deeper magma feeder system) (Figure I.3.3). 
 

 
 

Figure I.3.3. Successive stages of erosion, from active volcano (top) to completely eroded (bottom). CF, PF, 
MF, DF= Central, Proximal, Medial and Distal facies of volcanic deposits (from Isnawan and Bronto 1997). 
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   Volcano spacing in Indonesian volcanic arcs 
In volcanic arc systems volcanic activity at the surface is not continuous along the entire arc, but tends to be in 
discrete volcanic eruption centers, that are separated by areas of no volcanism. The spacing between volcanic 
centers is often quite at regular, with distances of around 70 km, both in Pacific hotspot seamount chains and 
in Pacific volcanic arcs above subduction zones. Some authors suggested volcano spacing tends to be close 
to (but generally slightly less than) the underlying lithospheric thickness (Vogt 1974, Mohr and Wood 1976). 
 
On Java volcano spacing is rather irregular in West Java, but in East Java volcanoes they are fairly regularly 
spaced at ~70km (Figure I.3.4.). In the East Sunda- West Banda island arc volcano spacing from Bali-
Sumbawa averages 68 km, Flores is highly irregular, but in the East Banda Arc the average is 72 km (Ely and 
Sandiford 2010). 
 

 
 
Figure I.3.4. Many of the active volcanoes of the Sunda Arc on Java are spaced at ~70 km apart. 
 
Volcanic centers of the Sangihe Arc on and south of Sangihe Island are evenly spaced at ~50 km apart. 
 
   Lateral shift of volcanic eruption centers 
As noted by several authors, some of the larger volcanic complexes on Java show remarkable southward 
shifts in eruption centers through time, i.e. in the direction towards the subduction zone (Neumann van Padang 
1936, ).  While the modern arc runs North of the Late Oligocene- earliest Miocene 'Old Andesites' arc fo the 
Southern Mountains, the Quaternary edifices of Slamet, Sumbing- Sundoro, Ungaran- Merbabu- Merapi, 
Lamongan, and Semeru all show a North-to-South migration (Figure I.3.4).  
 
There is no generally accepted explanation for this yet, but it probably involves slab rollback and/or relative 
northward movement of the upper plate. 
 
This is not the same as the >50km northward shift of the axis of arc magmatism on Java from the Late 
Oligocene- Early Miocene 'Old Andesites' system of the Southern Mountains of the axis of the Pleistocene- 
Recent Sunda Arc.  This was probably not a continuous, gradual process; these two may be two unrelated 
volcanic episodes/ belts, with a temporal gap in volcanism between 11-18 Ma (Bellon et al. 1989) or longer. 
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  Geochemistry of volcanic rocks 
Numerous papers have been written on major elements, trace elements and isotope geochemistry of volcanic 
rocks and gases from the Indonesian volcanic arc systems, dating back to the early 1900's.  
 
Commonly reported trends in geochemistry of volcanic products include: 
1. an overall increase in K2O and alkali % with depth to the Benioff zone depth, with low-K 'volcanic front' lavas 

and medium-high K 'Rear Arc' lavas, often with leucite-bearing volcanics, above the deeper parts of the 
Benioff zone (Rittmann 1953, Hutchison 1975, 1976, 1981, Soeria-Atmadja et al. 1988, Sendjaja et al. 
2009). However, there is rather high variability in this trend and some authors questioned its validity 
(Leterrier et al. 1990, Abdurrachman et al. 2015); 

2. Many volcanic complexes go through a similar evolution from Early Stage basalt or basaltic andesite, Middle 
Stage andesite and Late Stage dacite; 

3. Many arc volcanic rocks appear to be contaminated with continental crustal rock or sediment material, as 
indicated by common dacite/ rhyolite, high Rb/Sr ratios, etc. (e.g. Van Bergen et al. 1993,  Abdurrachman 
and Yamamoto 2012). 

 
Key papers geochemistry of Sunda-Banda Arc volcanic products include: Hutchison 1975, 1976, 1981, 
Nicholls and Whitford (1976, 1978, 1980), Foden (1979, Soeria-Atmadja et al. (1988, etc.), Hilton et al. (1989, 
1992), Poorter et al. (1989, 1991), Gasparon and Varne (1994, 1998), Zulkarnain (1995-2016), Hoogewerff at 
al. (1997, 1999), De Hoog et al. (2001, 2009), U. Hartono (1994-2011), MacPherson et al. (2003, 2010), 
Elburg et al. (2004, 2005, 2008), Handley et al. (2006-2018), Abdurrachman et al. (2011-2017), Dempsey 
(2013), Van Bergen et al. (1989, 1992, 1993) etc.. 
 
Variations in composition of lavas along Sunda-Banda Arc reflects underlying the lateral change from 
continental crust in the Sumatra - West Java segment, transitional (Gondwanan?) accreted crust in Central 
and East Java, while an oceanic island arc developed from Bali to Sumbawa and farther East (Hamilton 1978). 
 
   Mineral deposits 
The magmatic arcs of Indonesia (and The Philippines, New Guinea) are hosts to numerous porphyry copper-
gold and and epithermal gold-silver deposits (Figure I.3.5). Some key papers include Taylor and Van Leeuwen 
(1980), Carlile and Mitchell (1994), White et al. (1995), Soeria-Atmadja et al. (1998), Garwin et al. (2005), U. 
Hartono (2009), MacPherson and Hall (2002), Maryono et al. (2018) and others.  
 

 
 

Figure I.3.5. Cenozoic volcanic arcs and main porphyry Cu-Au (green) and epithermal Au (yellow) deposits 
(De Waele et al. 2009) 
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Eight of the 15 identified volcanic-plutonic arc systems are associated with commercial mineral deposits, 
others may have potential (Hartono 2009). 
 
Most of the giant Au and Cu deposits in the Indonesia - West Pacific region formed in Miocene- Pleistocene 
arc systems.  For more detail see also Chapter XI.4. 
 
 
   Older Volcanic Arc systems of SE Asia- Indonesia 
Most of the volcanism in the modern Sunda- Banda Arc appears to be quite young, mainly since 6-3 Ma. 
However, up to 15 older, extinct volcanic-plutonic arc systems have been recognized in Indonesia, dating back 
to Permian time (Fig. I.3.6).  
 

 

Figure I.3.6. Permian- Recent magmatic arcs/ subduction zones Indonesian Archipelago (Katili 1974). 
 
The most prominent of the older, extinct arc systems in the Indonesian region, in order of increasing age: 
1. Early Miocene East-Central Kalimantan Volcanic belt ('Kelian Volcanics'; ~23-20 Ma), >400 km long, (Abidin 

and Sukardi, 1997) (= Proto-South China Sea subduction from North); 
 

2. Late Oligocene- earliest Miocene 'Old Andesites' of Sumatra and Java (= Indian Ocean- Australia plate 
subduction from South)  (many papers, incl. Smyth 2005, Bronto 2009 and others); 

 

3. Middle-Late Eocene 'Great Indonesian Arc' from Sumatra and Java to SW Sulawesi and displaced terranes 
of Sumba, and Banda Terrane of Timor  (= Neotethys/ Indian Ocean subduction from South) (Charlton 2000, 
Harris 2006, etc.); 

 

4. Late Cretaceous (~Campanian?) igneous- volcanic system from North Kalimantan to NW across the 
Anambas- Natuna area, then North to South Vietnam and the Yanshanian active margin of South China (= 
Paleo-Pacific subduction)  (e.g. Hutchison 2005, Amiruddin 2009); 

 

5. Late Cretaceous (mainly ~80-100 Ma) 'Sumatra-Meratus Arc', .2000 km long, from Myanmar- Andaman 
across West and South Sumatra, NW Java, the Java Sea into the Meratus Mountains (Figure I.3.7) (= 
Neotethys subduction?)  (Katili 1974, Carlisle and Mitchell 1994, McCourt et al. 1996, Hartono 2012); 
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Figure I.3.7. Multiple Cretaceous magmatic arc systems of Western Indonesia, reflecting subduction from both 
South (Neotethys?) and North or East (Paleo-Pacific) (Carlisle & Mitchell 1994). 
 
6. Mid-Cretaceous (Aptian- Albian) granite belt of the Schwaner Mountains granitoids of Kalimantan, also 

continuing NW across the Sunda Shelf, along the Indochina coast to the Yanshanian system of the East 
China margin (= Paleo-Pacific subduction); 

 
7. Late Triassic (-earliest Jurassic?) belt of 'tin granites', from Thailand- Malay Peninsula and continuing into 

the Indonesian tin islands Bangka and Belitung (Figure I.3.8) (probably mainly post-collisional granites 
parallelling a slightly older Permian- Triassic arc magmatic belt linked to Paleotethys subduction) (numerous 
papers); 
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Figure I.3.8. Distribution of Late Triassic- Early Jurassic and Cretaceous tin granites (Eastern and Main Range 
provinces) from Myanmar, Thailand, Malay Peninsula to the Indonesian Tin Islands Singkep, Bangka and 
Belitung (Cobbing et al. 1986, in Searle et al. 2016). 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  28

 
8. Late Permian- Middle Triassic 'Gondwanan' magmatic arc, represented by a well-defined belt of granitoids 

that define a that extends from the East Australian/ East Gondwana active margin into New Guinea island, 
and into microcontinents derived from this margin like the Birds Head, Banggai-Sula (Figure I.3.9) (= Paleo-
Pacific subduction) (Amiruddin 2007, 2009, Jost et al. 2018). 

 

 
 

Figure I.3.9. Late Permian- Middle Triassic granitic plutons along East Australian margin, continuing into North 
Papua New Guinea, West Papua, Birds Head and the Banggai-Sula islands, are remnants of the same 
magmatic arc, reflecting Paleo-Pacific subduction along the East Gondwana margin (Amiruddin 2009).  

 
9. Earliest Permian intermediate volcanoclastics in West Sumatra associated with the famous 'Jambi Flora' 

have been interpreted as part of an Early Permian volcanic arc (Figure I.3.10; Cameron et al. 1980, 
Pulunggono and Cameron 1984, McCourt et al. 1996). Barber and Crow (2003) suggested this was an Early 
Permian volcanic arc that probably formed at margin of Cathaysian Block. However, the lateral extent of 
these Early Permian volcanic rocks appears to be rather limited, and the presence of coal beds and rich 
plant fossils is not necessarily typical of volcanic arc deposits (= possible rift volcanism?). 
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Figure I.3.10. Distribution of Permian- Tertiary magmatic arcs on Sumatra (McCourt et al 1996). 
 
 
 
Some suggested reading- Indonesia volcanism  (not a complete listing of all relevant papers) 
 

Modern volcanoes: Junghuhn 1843-1844, Stehn 1927, Neumann van Padang 1936,1983, 
   Petroeschevsky & Klompe 1950, Kusumadinata et al. 1979,  
   Rachmat & Mujitahid 2003, papers by A. Sudradjat 1987 and others,  
   S. Bronto 2003, 2010 and many others. 
 

Volcanic geochemistry:  Rittmann 1953, Westerveld 1954, Hutchison 1975, 1976, 1978, 1981, 
   Nicholls and Whitford 1976, 1978, 1980, Foden 1979,  
   Soeria-Atmadja et al. 1986,1988, etc., Hilton et al. 1989, 1992,  
   Poorter et al. 1989, 1991, Van Bergen et al. 1989, 1992, 1993 
   Gasparon and Varne 1994, 1998, Zulkarnain 1995-2016, Bellon et al.2004,  
   Hoogewerff at al. 1997, 1999, De Hoog et al. 2001, 2009,  
   U. Hartono 1994-2011, MacPherson et al. 2003, 2010, Elburg et al. 2004, 2005, 2008,  
   Handley et al. 2006-2018, Sendjaja & Kimura 2010, Abdurrachman et al. 2011,2017, 
   Dempsey 2013,  
 

Ancient Volcanic arcs Katili 1973, 1974, 1989, Soeria-Atmadja et al. 1986-2001. 
   Carlile and Mitchell 1994, McCourt et al. 1996, Harris 2006,  
   Hall and Smyth 2008 Hartono 2009,  
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I.4. Modern environments, Oceanography 
 

Chapter I.4 of Bibliography 7.0 contains >350 papers on modern depositional environments and processes in 
Indonesia. Indonesia is home to an extreme variety of environments, from glaciated mountain peaks above 
4800m in the West Papua foldbelt, volcanoes up to 3800m high, to 6 km deep oceanic basins.  It has been a 
study area for many types of modern environments, like tropical rainforests, peat swamps, coral reefs, deltas, 
deep marine environments, oceanography, etc..  
 
The Indonesia/ SE Asia region is also home to some of the highest diversity land and marine life ('evolutionary 
hotspots'; Renema et al. 2008, De Bruyn et al. 2014). 
 
Studies of modern enviroments are important as analogs of ancient deposits of the Indonesian region, in 
accordance with Lyell's fundamental geologic principle 'the present is the key to the past'.  However, it should 
also be realized that present-day conditions of humid-tropical climate and relatively high eustatic sea-level may 
not be typical for much of the geologic record: 
1. The present-day 'ice-house climate', with rapid eustatic sea level oscillations, existed only since the 

beginning of the Oligocene; most of the Triassic- Eocene deposits reflect warmer 'greenhouse' conditions; 
2. The present-day eustatic sea level is relatively high, and sedentation is still adjusting to the rapid Holocene 

sea level rise since 18,000 years ago, which created broad flooded shelf regions; 
3. Changes in faunal and floral communities; 
4. Changes in plates positions and resultant oceanographic patterns: today the Indonesian region restricts 

oceanic circulaton between The West Pacific and Indian Oceans, but this was much less restricted before 
the Miocene collisions of frontal areas of the North-moving Australian continental plate.  

 

 
 

Figure I.4.1. Thermohaline circulation patterns through the Indonesian seas, dominated by 'Indonesian 
Throughflow' of water from Pacific Ocean to the Indian Ocean. With estimates of total volume transport in Sv 
(= million m3/ /second). Main inflow at Makassar Straits (8-9 Sv) and also at Lifamatola Passage West of 
Halmahera (1.5 Sv). Outflow through  Timor Sea, Ombai (Savu Sea), and Lombok Straits (Gordon 2005) 
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  Indonesian Throughflow 
A topic of great academic interest has been the 'Indonesian Throughflow', the yearly flow of up to 15 sverdrups 
(>15 million m3/ second) of relatively warm and low saline Pacific Ocean water to the Indian Ocean through 
the Indonesian Archipelago (Figure I.4.1). The main Throughflow pathway is through Makassar Strait, then 
partly through Lombok Strait, partly into the South Banda Sea and exiting through the Timor and Ombai 
passages.   
 
Numerous papers have been published on the oceanography of the Throughflow, a selction of which is in the 
current Bibliography (papers by Gordon et al., Ffield, Fieux, Godfrey, Hendrizan, Sprintall et al. Susanto et al. 
Waworuntu et al., and many others) 
 
Changes in the Indonesian Throughflow probably had a significant impact on regional and global climate. The 
Northward movement of Australia-New Guinea in Neogene time resulted in progressive narrowing of the 
Indonesian seaways, causing a switch at ~3-5 Ma in the main source of water flowing through Indonesia from 
warm South Pacific to colder North Pacific waters. This created an area of unusually warm ocean water in the 
SW Pacific ('Indo-Pacific Warm Pool'; Nathan and Leckie, 2009) and decreased Indian Ocean sea surface 
temperatures, leading to aridification of Northern Australia and East Africa. (Cane and Molnar 2001, Srinivasan 
and Sinha 1998), Christensen et al. 2017). 
 
 
  Deltas, sediment yields 
 

Indonesia and SE Asia are also known to host major delta systems, driven by the abundant tropical rainfall 
and high weathering rates and therefore high river discharge. Rivers draining the major islands of Indonesia 
supply 20-25% of the total sediment discharge to the world oceans although the land area that they drain is 
~2% of the world total (Milliman et al.,1999).  (Figure I.4.2). 

 
 

Figure I.4.2. Estimated sediment discharge (MTons/ year) from six Indonesian islands (from Milliman et al., 
1999, in Nummedal et al. 2003). 

 
The largest delta systems in the Indonesian region are found around New Guinea (Mamberamo, Fly), Borneo 
(Mahakam, Baram, Rajang, Barito) and Sumatra. Not all have typical delta morphologies (e.g. the NE Sumatra 
river deltas).  
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A recent review of delta systems in SE Asia is by Nummedal et al. (2003). Numerous other studies of modern 
deltaic sedimentation are in this Bibliography, in both this chapter and under the areas that they are in. Most 
studies are from the large systems of East Kalimantan and North Borneo.  
 

 
 
Figure I.4.3. Major delta systems around Borneo island (Graves and Swauger 1997, in Baillie et al. 2004) 
 
Delta plains in SE Asia are typically dominated by mangrove vegetation and peat swamp forests, but in many 
areas the original vegetation has been severely modified by human activity (70% of mangrove areas in 
Mahakam delta converted to shrimp‐ponds between 1980-2000). 
 
One of the best studied modern delta systems in SE Asia is the Mahakam Delta of East Kalimantan. It is a 
classic example of a mixed tide-fluvial- dominated system, with relatively straight distributary channels that 
bifurcate in downstream direction, and with meandering tidal channels (Figure I.4.4). 
 
A series of pioneering studies on the modern Mahakam Delta were by the late George Allen at Total (1976-
1998). Other notable papers include Carbonel et al. (1987), Gastaldo et al. (1992, 1995), Roberts and Sydow 
(1996, 2003), Sydow (1996), Wiweko and Giriansyah (2000), Storms et al. (2005), Lambiase et al. (2010, 
2015, 2017), Salahuddin Husein (2005 2011, 2013) and Bachtiar et al. (2010). 
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Figure I.4.4. The Mahakam Delta of East Kalimantan (figure from Lambert, 2003).  
 
It may be noted that the modern Mahakam delta formed only in Late Holocene time, since the major sea level 
rise after the Last Glacial Maximum. It is a much smaller system than the underlying Middle Miocene- 
Pleistocene Paleo-Mahakam delta complex (e.g. Figure I.4.5.).  Also, the Mahakam River/ Delta today does 
not feed any of the slope channels and submarine fans along the adjacent Makassar Strait margin, that are all 
of Pleistocene and older ages (Saller et al. 2003, 2004, 2006, 2012, 2013). 
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Figure I.4.5. Schematic cross section of Upper Pleistocene (0- 270 ka) stratigraphy of the offshore Mahakam 
Delta- Kutei basin, East Kalimantan. The modern Mahakam delta is underlain by several much larger 
Pleistocene 'lowstand delta' systems that extended farther basinward, and that were connected to slope 
channels and basin floor fan depositional systems (Saller et al. 2003).  
 
Storms et al. (2005) noted that the present day sediment load of the Mahakam River is insufficient to explain 
the sediment volume of subaerial and subaqueous Mahakam delta, suggesting hydraulic conditions in the past 
may have been different. Geologists from Total noted that Late Miocene Paleo-Mahakam delta sediments are 
often coarser grained, with more high-energy fluvial flooding events, have higher sand percentages and show 
less tidal influence (Wiweko and Giriansyah, 2000). 
 
Except for the Solo River delta of NE Java, fluvial-dominated 'bird-foot' deltas (but partly a man-made feature) 
are rare in SE Asia. Instead, most of the Indonesian deltas are heavily influenced by tidal processes 
(Mahakam, Rajang, Fly, Mekong), as expressed by widely flaring distributary channel mouths. The Baram 
Delta of NW Borneo is a wave-tide dominated delta system (Lambiase 2002 and others). Some of the small 
deltas along the North coast of Java are also wave dominated systems. 
 
Most of the modern (Holocene) delta systems of Indonesia have been in their present positions only for ~6000 
years, when the rate of Holocene sea level rise after the Last Glacial Maxumum lowstand started to slow 
down. Older Pleistocene delta systems are now buried on the Sunda Shelf and along the shelf margins (e.g. 
Molengraaff paleo-delta) 
 
  Pleistocene 'shelf-margin lowstand deltas' 
Large, but probably relatively short-lived and now submerged 'lowstand delta' systems formed seaward of the 
present-day deltas around the Sundaland shelf margins during Pleistocene glacial lowstand intervals. Some of 
these have been studied: 
- at the North edge of Sunda Shelf/ S side of South China Sea (Paleo-Mekong, Molengraaff River, Paleo-

Sunda River, etc.)  (Hanebuth et al. 2003 ) 
- at the East side of Java Sea platform/ Flores Sea (Paleo-Barito?) 
- at the NW end of Malacca Straits/ Andaman Sea (fed by confluent Sumatran and Malay Peninsula rivers) 

(Emmel and Curray 1982).  
- East Kalimantan/ Makassar Straits: Paleo-Mahakam (Crumeyrolle et al. 2003, 2007). 
 
  Oligo- Miocene delta systems 
Large delta systems formed along parts of the Late Oligo-Miocene margins of Sundaland and the Late 
Paleogene Sundaland intra-cratonic rift basins. Numerous papers on these systems are in the Bibliography, 
under the respective regions. These delta systems formed the main hydrocarbon reservoir formations in:  
- Central Sumatra: Sihapas/ Lakat delta system(s); 
- South Sumatra: Early Miocene Talang Akar delta system; 
- NW Java basin: Early Miocene Talang Akar/ Lower Cibulakan delta,  
- NE Java (Middle Miocene Ngrayong System)  
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- East Kalimantan Kutai, Sangatta and Tarakan Basins: Middle Miocene- Pliocene systems (Cibaj et al. 2006-
2015) papers). 

 
 
  Quaternary glacial- interglacial changes 
Most of Indonesia today is in the tropical- humid climate belt. This means that, without human interventions, 
most of the land areas would be covered by tropical lowland and montane rainforests. Numerous studies on 
Quaternary pollen, microfaunas and sediment types tend to agree that glacial periods were different: 
1. average temperatures in equatorial regions was colder by 3-4°C during glacial periods (Verstappen 1982, 

Visser et al. 2003, 2004); 
2. increased aridity and seasonality over most of Indonesia, causing an increase in savanna vegetation and a 

decrease and fragmentation of tropical rainforests (Verstappen 1975, 1976, 1982, Heaney 1991, Van der 
Kaars,  Flenley?,  Morley?  Barmawidjaja et al. 1993, Gathorne-Hardy et al. 2002); 

3. thinning of the vegetation cover increased physical erosion over chemical weathering, generating more 
coarse-grained erosional products (Verstappen 1975, 1976, 1982, Liu et al. 2012); 

4. eustatic sea level was lowered by up to -125m, causing river channels incision, basinward shift in 
sedimentation areas, with an increase in sediments reaching the shelf edge, feeding submarine fan systems.  

 
In the Pleistocene of Thailand the deposition of widespread alluvial fans and upland river terraces was tied to 
glacial periods of reduced forest cover and increased coarse sediment production. A similar situation has been 
described from Sumatra (Verstappen 1975)  
 
Today we live in an interglacial period of high sealevel, following a period of rapid Holocene sea level rise of 
probably >120m. This means that today may not be typical of most of geologic time: 
- land areas are rimmed by relatively wide continental shelves, which are drowned lowstand floodplains; 
- relatively widespread Holocene reefal carbonate provinces, brackish mangrove and freshwater peat swamps; 
- little or no land-derived sediment reaches the outer shelf and deep marine basins (e.g. Gayet et al. 1990).  
 
 
Some suggested reading- Modern environments (not a complete listing of all relevant papers) 
 

General text books:   Van der Stok et al. 1897, 1922, Ecology of Indonesia series, Gupta 2005 
 

Oceanographic Expeditions:  Expedition Reports: Challenger (Brady 1884, etc.), Siboga (Weber 1902), 
     Snellius (Kuenen 1935, etc.) and Snellius II (Van Hinte et al. 1989) 
 

Oceanography, Marine geology: Molengraaff 1922, 1930, Kuenen 1950, Wyrtki 1961, Tomascik et al. 1997 
 

Indonesian Throughflow: Kuhnt et al. 2004, Gordon et al. 1996-2005, Tillinger 2011, 
    Sprintall et al. 1999-2014, Susanto et al. 2001-2012,  
    Waworuntu et al, 1999-2001 and many others 
 

Sediment yields   Milliman et al. 1995, 1999, Cecil et al. 2003, Suggate and Hall 2003, 
    Alongi et al. 2013.  
 

SE Asia deltas:- general  Nummedal et al. 2003, Sidi et al. 2003, Woodroffe 2000, 2005,  
 Mahakam  G. Allen et al. 1976-1998, Carbonel et al. 1987, Gastaldo et al. 1992, 1995, 
    Roberts and Sydow 1996, 2003, Sydow 1996, Wiweko and Giriansyah 2000, 
    Storms et al. 2005, Lambiase et al. 2010, 2015, 2017,  
    Salahuddin Husein 2005 2011, 2013, Bachtiar et al. 2010) 
 Baram, Rajang  Staub and Esterle, 1993, Staub et al. 2000, Staub and Gastaldo 2003,  
    Lambiase et al. 2002, 2003, 2013, Lambiase and Cullen 2012, 2013,  
    Saller and Blake 2003 
  Mekong  Ta et al. 2002, 2005, Tanabe et al. 2003, Proske et al. 2010, 2011,  
    Hanebuth et al. 2012; 
 Fly River  Dalrymple et al. 2003 
         Molengraaff paleo-delta Hanebuth et al. 2003, Wong et al. 2003. 
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I.5. SE Asia Carbonates, Coral Reefs 
 

This sub-chapter I.5  of Bibliography 7.0 contains 260 papers on both modern carbonate depositional 
environments and carbonate distribution in the fossil record of SE Asia. Many additional papers on carbonate 
formations are in the chapters of the regions in which they are located. 
 
  Modern coral reefs/ carbonates 
Modern corals and coral reefs are widespread across Indonesia/ SE Asia. In fact, Eastern Indonesia is 
commonly viewed as a marine 'center of origin', meaning the area of highest biodiversity of corals and other 
marine life (Figure I.5.1; Bellwood et al. 2005, Keith et al. 2013 and others). Some authrs claimed over 500 
coral species to be present in the Indonesian region (e.g. Bellwood 2005), but after some recent taxonomic 
revisions that number may be closer to 320 species (Johnson et al. 2015). 
 

 
 

Figure I.5.1. The East Indonesia- South China Sea- Philippines 'hotspot' area boasts the highest number of 
coral species in the world (red area= >500 species; Bellwood et al. 2005). 

 
The Indonesia archipelago has long been a research area for the study of modern coral reefs. The most 
comprehensive review of modern coral reefs at 31 areas across Indonesia is by Kuenen (1933). Other early 
papers were by Wichmann (1912), Molengraaff (1922, 1930), Gerth (1925, 1930), Verweij (1930, 1931), and 
Umbgrove (1928-1947). More recent studies of coral reefs from a geological perspective include Scrutton 
(1975, 1976), Longman et al. (1993), Jordan (1998), Park et al. (2010), etc.. 
 
Corals are known to thrive primarily in tropical, shallow marine waters (photic zone; typically <40-100m water 
depth; Verweij 1930, 1931) that are clear and of normal salinity. Modern reefs are generally not found far 
outside ~32° North and South of the Equator, but some Paleogene-Miocene reef corals appear more widely 
distributed than today (up to ~50°N; Gerth 1930). 
 
Coral reefs generally do not develop near rivers/ deltas, due to the influx of muddy sediments, nutrients and 
fresh water, in areas that may be viewed as marine 'ecological deserts'. Excessive wave actions also inhibits 
coral growth (Moll 1986).  
 
Some coral species, especially solitary corals, survive in deep water, as was demonstrated by dredgings of the 
Challenger and Snellius marine expeditions in Indonesian deep waters in the late 1800's and early 1900's. 
 
 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  37

 
 

Figure I.5.2. Detail of Molengraaff (1922) map of modern distribution of coral reefs, all formed as response to 
recent sea level rise. Uplifted coral reefs are common East of the yellow line. Red = fringing reefs, Blue = 
barrier reefs and atolls   

 
During some time intervals, or in certain areas, carbonates formed that are dominated by other organisms: 
1. Larger foraminifera banks: Eocene- Oligocene limestones in Indonesia are often dominated by larger 

foraminifera, with or without coralline algae (Wilson and Rosen 1998). Examples include Eocene 
Nummulites limestones and Permian fusulinid limestones.  Such facies have been called 'foramol' by Wilson 
and Vecsei (2005))  

2. Halimeda- algae buildups: The presence of modern Halimeda reefs in the East Java Sea were attributed to 
high-nutrient influx from upwelling along the Indonesian Throughflow (Roberts  ) 

3. Carbonates dominated by rhodolit algae appear to be relatively common, or dominant, in the Middle 
Miocene of the tropical Pacific and Indonesia (Bourrouilh and Hottinger 1988, Halfar and Mutti 2005); 

4. Sponge- microbial reefs are most common in Triassic and Jurassic times. 
 
 
   Tertiary carbonates 
Tertiary carbonates are widespread across Indonesia, especially of Late Eocene and latest Oligocene- Middle 
Miocene ages. Numerous papers on these formations are in the Bibliography, either in this chapter, but mainly 
under the respective regions. 
 
Comprehensive overviews of the Tertiary limestones in the Indonesian region are by Moyra Wilson (2002, 
2008, 2011, 2012, etc.). Other 'classics' include Fulthorpe and Schlanger (1989),  
 
There are numerous oil and gas fields in Oligocene-Miocene reefal buildup reservoirs in the Cenozoic basins 
of Indonesia: Natuna Basin, North and South Sumatra, NW Java, East Java, Java Sea, West Sulawesi, East 
Kalimantan, Makassar Straits, West Papua). Similar carbonate plays are found around Indonesia: offshore 
Sarawak (Luconia province), The Philippines, offshore Vietnam and the Gulf of Papua.  Renewed interest in 
Tertiary reefal limestone exploration came with new oil and gas discoveries in the East Java Basin in the early 
2000's. 
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Miocene carbonate buildups and platforms are also known from the margins of NW Australia (Davies et al. 
1989) and NE Australia (Ehrenberg 2004, 2006, Eberli et al. 2010), but no hydrocarbon accumulations have 
been identified there yet. 
 
 
   Pre-Tertiary carbonates 
Pre-Tertiary carbonates are relatively rare in Indonesia. Most of the references on individual carbonates are 
found in the chapters on areas in which they occur. 
 
  Late Carboniferous- Permian 
Late Carboniferous- Permian limestones with fusulinid foraminifera are known from Sumatra, Kalimantan, 
West Sarawak (Terbat Limestone) and Timor (papers by Fontaine, etc.).  
 
The Early-Middle Permian of West Sumatra includes probably the only true reefal Permian limestones in 
Indonesia (Guguk Bulat, W Sumatra).  
 
  Late Triassic 
Across the Tethys region Triassic sponge and coral reefal limestones are most common in the Norian and 
Rhaetian (Flugel 1982, 2002, Bernecker 2005, ). This observation may also be valid for the Indonesian region. 
 
Late Triassic shallow water carbonates have been reported from Sumatra (Gafoer and Fontaine 1989), 
Bangka (De Neve and De Roever 1947), 'Fatu Limestones' of Timor (Vinassa de Regny 1915, Flugel 2002, 
Haig et al. 2007), East Sulawesi (Cornee et al. 1994, 1995, Martini et al. 1997), Buru (Gerth 1910, Wanner 
1923), Seram (Wanner et al. 1952, Martini et al. 2004), Banda Sea (Sinta Ridge ;Villeneuve et al. 1994) and 
the Kubor terrane of Papua New Guinea (Skwarko et al. 1976, Kristan-Tollman 1986, 1989).  
 
Fractured Upper Triassic limestones are hydrocarbon reservoirs on Seram Island (Kemp et al. 1992, 1995, 
Nilandaroe et al. 2001, 2005) (but commonly erroneously called Jurassic; Charlton and Van Gorsel 2014). 
 
  Late Jurassic 
Late Jurassic muddy carbonate mounds and are present in West Sumatra (Beauvais et al. 1985, Gafoer and 
Fontaine 1989) and NW Kalimantan- SW Sarawak (Bau Limestone). Deep water pelagic limestones of these 
ages, often with calpionellids, are relatively widespread across Eastern Indonesia (East Sulawesi, Timor, 
Seram, Buru, etc.). 
 
  Early Cretaceous 
Early Cretaceous shallow marine carbonates with Orbitolina are known from West and South Sumatra ('Woyla 
Terranes'), Central Java and Kalimantan. 
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I. REGIONAL GEOLOGY 
 

I.1. Indonesia Regional Geology 
 

Aadland, A.J. & R.S.K. Phoa (eds.) (1981)- Geothermal gradient map of Indonesia, 2nd ed.. Indon. Petroleum 
Assoc. (IPA), Spec. Publ., p. 1-43. 
(Compilation of temperature data from petroleum wells in Indonesia. With two map sheets 1: 2,500,000. See 
also updated version by Thamrin & Mey, 1987) 
 
Abdurrachman, M., S. Widiyantoro, B. Priadi, M.Z.A. Alim & A.H. Dewangga (2015)- Proposed new Wadati-
Benioff zone model in Java-Sumatra subduction zone and its tectonic implication. Proc. Joint Conv. HAGI-
IAGI-IAFMI-IATMI, Balikpapan, JCB2015-376, 4p. 
(Previous models of Wadati Benioff Zone (derived from earthquake hypocenters) in Java- Sumatra deemed too 
simple. In Java hypocenter depths recorded >500 km, while in Sumatra earthquakes all <300 km deep. In C 
and E Java area aseismic area between 300-500 km interpreted as tear zone in subducting plate) 
 
Abendanon, E.C. (1914)- Geologische schetskaart van Nederlandsch Oost-Indie, schaa1:2,500,000. Koninkl. 
Nederlands Aardrijkskundig Genootschap, Smulders, 's-Gravenhage, Toelichting, p. 1-6 + 6 map sheets. 
(online at: https://nl.wikipedia.org/wiki/Wikipedia:GLAM/Expedities/Mediadonaties#/media/File:UB_Utrecht_-
_CARTO_II_L_2_-_1914.jpg) 
(‘Geological overview map of the Netherlands East Indies’. First geological overview map of Indonesia, 
120x225cm, commissioned by Netherlands Royal Geographical Society. Compiled from published and 
unpublished maps by many authors. Java and Sumatra rel. complete, but much of Kalimantan, Sulawesi and 
New Guinea still uncharted territory) 
 
Abendanon, E.C. (1914)- Grossfalten im Niederlandisch-Ostindischem Archipel. In: Die Grossfalten der 
Erdrinde, Chapter 2, Brill, Leiden, p. 38-57. 
('Mega-folds in the East Indies Archipelago'. Chapter in Abendanon's 183-page book on his global tectonic 
theory of 'mega-folds': recently uplifted mountain chains, caused by shrinking of Earth globe, accompanied by 
extensional central rifts, gravity sliding, etc. Examples of 'mega-folds' in Indonesia in Sulawesi, Timor and 
Sumatra. In C Sulawesi Mountain chain W of Lake Poso looks like almost flat peneplain now uplifted to 2000m, 
cut by ~N-S faults/ rift valleys like Poso Depression. Timor also recently uplifted foldbelt with central graben. 
Etc. Very few illustrations) 
 
Abendanon, E.C. (1915)- De geotektonische positie van de Nederlandsch-Indischen Archipel. In: Handelingen 
XV Nederlandsch Natuur- Geneeskundig Congres, Kleynenberg, Haarlem, p. 510-523. 
('The geotectonic position of the Netherlands Indies Archipelago'. Old tectonic hypotheses of Abendanon 
including idea that distribution of old schists across Indonesia suggests that in geologically early periods the 
entire Indonesian Archipelago was occupied by mainland with high mountain chains. In C Sulawesi old fold 
trends E-W, Neogene folding more N-S trending. Whimsical shapes of Sulawesi and Halmahera can be 
explained by their location at junction of three geotectonic components) 
 
Abendanon, E.C. (1919)- Aequinoctia, an old Palaeozoic continent. J. Geology 27, 7, p. 562-578. 
(Early tectonic interpretation of Indonesia. Presence of crystalline schists across E Indonesia suggests area 
from Borneo to New Guinea may all be parts of one ancient continent, here named Aequinoctia, extending from 
Sulawesi to Tasmania) 
 
Adinegoro, A.R. Udin (1973)- Stratigraphic studies by the Indonesian Petroleum Institute (LEMIGAS). United 
Nations ECAFE, CCOP Techn. Bull. 7, p. 55-74. 
(Review of Cenozoic stratigraphic successions in NE Java, Jambi-Sumatra, NE Sumatra and E Kalimantan. 
One of first attempts to tie these local stratigraphies to global low latitude planktonic foram zonations) 
 
Ali, J.R. & R. Hall (1995)- Evolution of the boundary between the Philippine Sea plate and Australia: 
paleomagnetic evidence from eastern Indonesia. Tectonophysics 251, p. 251-275. 
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(New paleomag from Sorong Fault Zone, Obi and Taliabu. Sula Platform Coniacian- Santonian paleolatitude 
at 19°± 6°, similar to Misool, suggesting Sula/Taliabu and Misool parts of single microcontinent, >10° farther 
N than expected if attached to Australia, implying region separated from Australia before Late Cretaceous. Obi 
contains rocks of Philippine Sea and Australian origin. Volcanic arc at S edge Philippine Sea Plate collided 
with New Guinea at ~25 Ma, changing Philippine Sea-Australian plate boundary from subduction to strike-slip) 
 
Ali, J.R., S.J. Roberts & R. Hall (1994)- The closure of the Indo-Pacific ocean gateway: a new plate tectonic 
perspective. In: F. Hehuwat et al. (eds.) Proc. Int. Workshop Neogene evolution of Pacific Ocean gateways, 
IGCP-355, Bandar Lampung 1993, p. 10-20. 
(online at: http://searg.rhul.ac.uk/pubs/ali_etal_1993_Indo-Pacific_Gateway.pdf) 
(Reconstructions of W Pacific 45-10 Ma. Area N of Sorong Fault Zone ~40° CW rotation and 15° N-ward 
motion since ~25 Ma. Prior to 22 Ma collision between Australia (New Guinea)- Philippine Sea open 
Equatorial seaway between Indian and Pacific oceans. Connection mostly closed by initiation of Halmahera 
Arc at 11 Ma) 
 
Alzwar, M. (1986)- Geothermal energy potential related to active volcanism in Indonesia. Geothermics 15, p. 
601-607. 
(90 geothermal areas identified in Indonesia, mostly located in active volcanic belts) 
 
Amiruddin (2007)- Permo-Triassic magmatic arc and back arc basins of Gondwana land with reference of 
Eastern Indonesia, Papua New Guinea and Eastern Australia. Proc. Joint Conv. 32nd HAGI, 36th IAGI and 
29th IATMI, Bali 2007, JCB2007-019, 1p.  (Abstract only) 
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(AAPG) Bull. 30, 1, p. 1-22. 
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Schwartz, M.O., S.S. Rajah, A.K. Askury, P. Putthapiban & S. Djaswadi (1995)- The Southeast Asian tin belt. 
Earth-Science Reviews 38, p. 95-290. 
(N-S trending SE Asian tin belt 2800 km long/ 400 km wide, from Myanmar- Thailand to Malay Peninsula and 
Indonesian Tin Islands Bangka- Belitung. Five granitoid provinces: (1) Main Range in W Malay Peninsula, S 
Peninsular Thailand and C Thailand (184-230 Ma; almost entirely biotite granite, 55% of tin production); (2) 
Northern Province of N Thailand (200-269 Ma; 0.1% of tin production, also mainly biotite granite); (3) Eastern 
Province of E Peninsular Malaysia- E Thailand (Malaysian part subdivided into E Coast Belt (220-263 Ma), 
Boundary Range Belt (197-257 Ma) and Central Belt (79-219 Ma; wide compositional range; tin deposits only 
in biotite granite in E Coast Belt) (3% of production); (4) Western Province in N Peninsular and W Thailand 
and Burma (22-149 Ma; biotite granite, 14% of tin production); (5) Granitoids of Indonesian Tin Islands (193-
251 Ma) do not permit grouping into above units; most tin deposits associated with Main Range-like plutons)) 
 
Scotese, C.R., L.M. Gagahan & R.L. Larson (1988)- Plate tectonic reconstructions of the Cretaceous and 
Cenozoic ocean basins. Tectonophysics 155, p. 27-48. 
(Nine global reconstructions of ocean basins and continental plates for E Cretaceous- Pleistocene times. Late 
Cretaceous and Early Tertiary plate reorganizations in Indian Ocean e result of progressive subduction of 
intra-Tethyan rift/ spreading system) 
 
Setiawan, N.I. (2013)- Metamorphic evolution of Central Indonesia. Ph.D Thesis, Kyushu University, p. 1-318.  
(Unpublished) 
(Study of metamorphic complexes of S Sulawesi, Kalimantan, C Java) 
 
Setiawan, N.I., S. Husein & M.F. Alfyan (2014)- Speculative models of exhumation of High-Pressure Low-
Temperature metamorphic rocks from central part of Indonesia: an implementation of concepts and processes. 
Proc. Seminar National Kebumian 7, Universitas Gadjah Mada, Yogyakarta 2014, P3O-02, p. 504-523. 
(online at: https://repository.ugm.ac.id/135217/1/504-523%20P3O-02.pdf) 
(Published exhumation models of high-P/low-T metamorphic rocks in subduction zones suggest buoyancy is 
only effective force to exhume rocks from deeply subducted levels to base of crust. Serpentinites are extremely 
buoyant and may facilitate exhumation. Requires rapid uplift and cooling to maintain high-P minerals in rocks. 
Presence of melange units intercalated with high-P metamorphics and chaotic occurrence of different 
metamorphic facies typically in subduction channel environment) 
 
Setiawan, N.I., Y. Osanai & M.I. Khalif (2016)- U-Pb detrital zircon geochronology of metamorphic rocks from 
South Kalimantan, South Sulawesi, and Central Java, Indonesia: related metamorphism and tectonic 
implications in Central Indonesia region. Proc. GEOSEA XIV and 45th Ann. Conv. Indon. Assoc. Geologists 
(IAGI) (GIC 2016), Bandung, p. 289-292. 
(High P metamorphics from Meratus in SE Kalimantan, Bantimala in S Sulawesi and Luk Ulo in C Java 
generally tied to NW-directed Cretaceous subduction. Zircons show no metamorphic rims and therefore viewed 
as detrital grains and provenance ages of metamorphic rock protoliths. Youngest detrital zircon ages in 
Bantimala- Meratus ~199-194 Ma, in Luk Ulo ~100 Ma. Ages from Bantimala glaucophane-quartz schist ~430-
199 Ma (Silurian- E Jurassic), Barru garnet schist ~1930, 1730, 1600-1400 Ma, 1050 Ma (Proterozoic), and 
550-280 Ma (Cambrian-Permian); Meratus epidote-barroisite schist 232 ± 39 Ma (Late Triassic; range 296-
194 Ma); Luk Ulo gneiss mainly 127-100 Ma (E Cretaceous; also older) 
 
Setiawan, N.I., Y. Osanai, N. Nakano, T. Adachi, Y. Tatsuro, K. Yonemura, A. Yoshimoto, J. Wahyudiono & 
K. Mamma (2013)- An overview of metamorphic geology from central Indonesia: importance of South 
Sulawesi, Central Java and South-West Kalimantan metamorphic terranes. Bull. Graduate School Social and 
Cultural Studies, Kyushu University 19, p. 39-55. 
(online at: https://qir.kyushu-u.ac.jp/dspace/bitstream/2324/26209/1/p039.pdf) 
(Study of metamorphic complexes at Bantimala and Barru (S Sulawesi; High P), Luk Ulo (C Java; High P; 
pelitic schist, eclogite, blueschist), Meratus (S Kalimantan) and Nangapinoh area of Schwaner Mountains (W 
Kalimantan). Metamorphic rocks from S Sulawesi, C Java and S Kalimantan E Cretaceous ages (~110-130 Ma) 
and possibly derived from single subduction complex. Metamorphic rocks in Schwaner Mountains are 
metatonalite, with U-Pb zircon ages suggesting Late Triassic magmatic ages (~233 Ma), i.e. older than most 
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Schwaner Mts granitoids (Late Jurassic-Cretaceous), but within range of NW Kalimantan granitoids 
(Carboniferous- Triassic; 204-320 Ma)) 
 
Setiawan, N.I., Y. Osanai, N. Nakano, T. Adachi, K. Yonemura, A. Yoshimoto, L.D. Setiadji, K. Mamma & J. 
Wahyudiono (2014)- Geochemical characteristic of metamorphic rocks from South Sulawesi, Central Java, 
South and West Kalimantan in Indonesia. ASEAN Engineering J., C, 3, 2, p. 1-21. 
(online at: www.seed-net.org/download/GeoE013_revised_060513.pdf) 
(Metamorphic complexes as products of Cretaceous subduction outcrop in C Java, S Kalimantan and S 
Sulawesi. Mainly high-pressure metamorphic rocks from metabasic and sedimentary protoliths. Metabasic 
rocks from S Sulawesi and C Java basalts with both MORB and within-plate signatures. Metatonalites from 
Schwaner Mountains calc-alkaline arc volcanics; adakitic metatonalite age of 233± 3 Ma (Late Triassic)) 
 
Setijadji, L.D. (2010)- Cretaceous subduction zones in Indonesia: paleogeography, arc granitoid plutonism and 
metallic mineralizations. Proc. IGCP 507 Project Symp. Paleoclimates in Asia during the Cretaceous, 
Yogyakarta 2010, p. 59-60. (Abstract only) 
(Two or three separate Cretaceous subduction zones in W Indonesia, with oceanic crust subducting under 
Eurasia plate (1) M-Lt Cretaceous Sumatra-Meratus arc, E and N- facing subduction, 2000 km long, with 
granitoid plutonism from W Sumatra (Sikuleh, Manunggal, Ulai, Garba and Sulan granites; 120-75 Ma), N of 
Java, to Meratus Mountains of SE Kalimantan; (2) S-facing subduction at NW Kalimantan, resulting in two 
granitoid plutonic arcs, i.e. late E Cretaceous Schwaner Arc and Late Cretaceous Sunda Shelf Arc. Both are 
parallel in E-W direction, ~1500 km long, in W-C Kalimantan, with Late K arc south of Early K arc. 
Cretaceous arc granitoid plutonism very different from Triassic granitoids of Bangka- Belitung) 
 
Seubert, B.W. (2015)- Volcaniclastic petroleum-systems- theory and examples from Indonesia. Proc. 39th Ann. 
Conv. Indon. Petroleum Assoc. (IPA), Jakarta, IPA15-G-026, 19p. 
(Potential volcaniclastic reservoirs present in Indonesia across range of stratigraphic intervals, but 
underexplored. Presence of volcanic material may enhance preservation and of organic matter and maturation 
of hydrocarbons. Porosity prediction still problematic. Examples of volcaniclastic reseroirs in Indonesia: 
Bengkulu, W, C and E Java, S Sulawesi, etc.) 
 
Sevastjanova, I. & R. Hall (2011)- Detrital zircon from the Banda Arc: insights into the palaeogeographic 
reconstructions. In: Conf. Sediment provenance studies in hydrocarbon exploration & production, Geol. Soc., 
London, 2011, p. 27-28.  (Abstract only) 
(Zircon U-Pb ages from Karimunjawa Arch (SW Borneo Block) similar to those from Seram, suggesting similar 
source areas. Mesoproterozoic zircons in Karimunjawa Arch uncommon on Cathaysian Blocks, providing 
evidence against Cathaysian affinity for SW Borneo Block. Triassic zircons abundant in Karimunjawa Arch. 
Zircons suggest existence of local Permian-Triassic zircon source in E Indonesia and/or on Australia NW Shelf) 
 
Sevastjanova, I., R. Hall & S. Zimmermann (2012)- Detrital zircon provenance and insights into 
palaeogeographic reconstructions of the Banda Arc. In: 1st Congr. Int. Geologia de Timor-Leste, Dili 2012, 
Abstract book, p. 103-105. (Abstract only) 
 
Shaw, R.D. (1990)- Frontier basins of Southeast Asia: a review of their hydrocarbon potential. In: 8th Offshore 
SE Asia Conf., Singapore 1990, Proc. SE Asia Petroleum Expl. Soc. (SEAPEX) 9, OSEA 90176, p. 69-80. 
(70% of SE Asian basins frontier basins with no significant hydrocarbon production, but contain estimated 22% 
of recoverable oil reserves. Basins in regions of oceanic-continent convergence (N Australia, Sunda margin) 
more prospective than areas of oceanic plates convergence) 
 
Shaw, R.D. & G.H. Packham (1992)- The tectonic setting of sedimentary basins of Eastern Indonesia: 
implications for hydrocarbon prospectivity. Australian Petrol. Explor. Assoc. (APEA) J. 32, 1, p. 195-213. 
 
Shaw, R.D. & G.H. Packham (1992)- Heatflow trends in Southeast Asia: implications for petroleum 
prospectivity. In: 9th SEAPEX Offshore Southeast Asia Conf. (OFFSEA 92), Singapore 1992, Proc. SE Asia 
Petroleum Expl. Soc. (SEAPEX) 10, OSEA 92243, p. 130-144. 
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(75% of SE Asia oil reserves in basins with contemporary heatflow of 2 HFU or more) 
 
Shulgin, A. (2012)- Subduction zone segmentation along the Sunda margin. Doct. Thesis Christian-Albrechts-
Universitat, Kiel, p. 1-128. 
(online at: http://d-nb.info/1023870339/34) 
(Mainly collection of five papers on Java-Sumatra forearc regions. Geophysical models show significant 
variations of crustal and upper mantle structure of Sunda Arc subduction complex along-strike and across-
strike of margin. Increased thickness of crystalline crust in Savu Sea attributed to approach of Australian shelf 
to trench. Offshore Lombok oceanic crust thickness 7 km thick and heavily fractured by normal faults. Crustal 
structure of Roo Rise oceanic plateau revealing crustal thickness of 15km, its subduction causing deformation 
of forearc and complex evolution of subduction processes) 
 
Sigit, S. & T.H.F. Klompe (1962)- I. A brief outline of the geology of the Indonesian Archipelago. II. 
Geological Map of Indonesia, scale 1:5,000,000, p. 1-18. 
(Brief summary of Indonesia geology, with schematic structural map and 1:5m geologic map) 
 
Simandjuntak, T.O. (1988)- An outline of tectonic development of the Indonesian archipelago and its bearing 
on occurrence of energy resources. In: Symposium on Tectonics and energy resources in East Asia, WGMM-
CCOP, Tsukuba, Japan, p.  
 
Simandjuntak, T.O. (1992)- Tectonic development of the Indonesian archipelago and its bearing on the 
occurrence of energy resources. Indonesia. J. Geologi Sumberdaya Mineral 2, 9, p. 2-23. 
(Review of Indonesian tectonics and relation to hydrocarbons, coal, geothermal potential. Indonesia triple 
junction convergence since Neogene. Pre-Neogene tectonics (1) Paleozoic- Mesozoic_Paleogene convergence 
in W Indonesia; (2) Mesozoic- Paleogene divergence in E Indonesia, producing allochthonous terranes in E 
Indonesia. Permian convergence recorded by Permian andesitic volcanics, similar to rocks present in W 
Kalimantan and E Main Range of Malay Peninsula. Similarities between E Indonesian microcontinents include 
Permo-Carboniferous metamorphics, Permo-Triassic plutonics, overlain by Mesozoic passive margin seqeunce, 
E Cretaceous mostly missing, Late Cretaceous radiolarian calcilutites and Tertiary platform carbonates, 
etc.;generally regarded as derived from New Guinea. No plate reconstructions) 
 
Simandjuntak, T.O. (1992)- Review of tectonic evolution of Central Indonesia. J. Geologi Sumberdaya Mineral 
2, 15, p. 2-18. 
(C Indonesia nine tectonic provinces or belts: (1) W Sulawesi Magmatic Arc (Late Cretaceous- Paleogene 
flysch and arc volcanics and some probably Cretaceous granitoids); (2) C Sulawesi Metamorphic Belt (tightly 
folded schist, incl. blueschist, N-S fold axes, probably Late Cretaceous metamorphism); (3) E Sulawesi 
Ophiolite Belt (>1000km long belt from E Arm Sulawesi to Kabaena and Buton in SE, possibly up to 15km 
thick; in places with deformed Late Cretaceous radiolarian chert, K-Ar ages of ophiolite ~93-37 Ma; E 
Miocene obduction?); (4) Banda Micro-continents (Banggai-Sula, Seram-Buru platform, Misool-Birds Head, 
etc., terranes of Paleozoic metamorphic basement with Permo-Triassic granitic plutons, overlain by Late 
Triassic sediments, E Jurassic hiatus, M-L Jurassic passive margin sediment, etc.; originated from N Papuan 
margin); (5) Banda Sea floor (Cretaceous?)/ Sulawesi Sea floor (Eocene), (6) N Maluku Basin and Talaud- 
Tifore Ridge; (7) Minahasa- Sangihe Volcanic Arc; (8) W Halmahera Province (Tertiary Arc volcanics) and (9) 
E Halmahera Province (ophiolites of poorly known age)) 
 
Simandjuntak, T.O. (1993)- Neogene tectonics and orogenesis of Indonesia. In: G.H. Teh (ed.) Proc. Symp. 
Tectonic framework and energy resources of the western margin of the Pacific Basin, Kuala Lumpur 1992, 
Bull. Geol. Soc. Malaysia 33, p. 43-64. 
(online at: www.gsm.org.my/products/702001-101022-PDF.pdf) 
(Indonesian Archipelago developed during Neogene convergence of 3 megaplates, Eurasian craton, Pacific 
plate and Australian craton. Five major crustal elements, 4 orogenic belts: Sunda orogeny, (2) Banda orogeny, 
(3) Melanesian orogeny, (4) Talaud orogeny. 'Transitional Complex': between 3 major plates composed of 17 
disctinct units: E Sulawesi, Banggai-Sula, Timor-Tanimbar, Misool-Birds Head, etc.) 
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Simandjuntak, T.O. (1993)- Neogene tectonics and orogenesis of Indonesia. J. Geologi Sumberdaya Mineral 3, 
20, p. 2-32. 
(Similar to other Simandjuntak (1993) above) 
 
Simandjuntak, T.O. (1994)- Tectonic evolution of Central Indonesia. In: J.L. Rau (ed.) Proc. 29th Sess. Comm. 
Co-ord. Joint Prospecting Mineral Resources in Asian Offshore Areas (CCOP), Hanoi 1992, 2, p. 91-113. 
(Central Indonesia is triple junction of Indo-Australian, Pacific and Eurasian plate convergence. Seven 
tectonostratigraphic provices, various episodes of convergence and divergence. Reconstructions show Banda 
Microcontinent (which subsequently breaks up into Banggai-Sula, Tukang-Besi, Seram-Buru, Misool-Birds 
Head, etc.) attached to Papua New Guinea part of Australian continent in Triassic-Jurassic time (similar to 
Pigram, Struckmeyer reconstructions, but not Hall and others)) 
 
Simandjuntak, T.O. (1994)- Neogene orogeny and mountain building in Indonesia. In: J.L. Rau (ed.) Proc. 30th 
Sess. Comm. Co-ord. Joint Prospecting Mineral Resources in Asian Offshore Areas (CCOP), Bali 1993, 2, p. 
47-86. 
(Neogene tectonics of Indonesia marked by five different orogenic belts, Barisan, Sunda, Banda, Talaud and 
Melanesian) 
 
Simandjuntak, T.O. (1998)- Tsunamis in active plate margins of Indonesia. Proc. 33rd Sess. Coord. Comm. 
Coastal and Offshore Programmes E and SE Asia (CCOP), Shanghai 1996, 2, p. 334-361. 
(Overview of active tectonics across Indonesia and relation to tsunamis. Tsunamis triggered by earthquakes 
below seafloor, most of them over graben-like structures in areas of extensional tectonics, but transtensional 
zones also have tsunami potential) 
 
Simandjuntak, T.O. (2000)- Geotectonic of Indonesia: the birth of the Indonesian Archipelago. J. Geologi 
Sumberdaya Mineral 10, 104, p. 8-21. 
(Tectonic development of Indonesia initiated by collision in Sumatra and Kalimantan in E Triassic of Paleozoic 
microcontinents detached from Gondwana, followed by reccurring subduction systems until today. In Sumatra 3 
terrnanes: (1) SE part of Sibumasu Terrane (Mergui, Tigapuluh Mts and Kuantan- Duabelas Mts); (2) SE end 
of Lhasa- W Burma Terrane (Woyla, Sikuleh, Natal and Asai-Garba Terranes); (3) SE-most Malaysia Terrain 
(Gunungkasih-Lingga-Singkep). W Kalimantan and Meratus also parts of S-most China- Indochina terranes. 
Irian Jaya and PNG part of N Australian continental margin, which rifted in Triassic, followed by development 
of passive margin in Jurassic- Cretaceous and carbonate platform in Paleogene. At end-Paleogene promontory 
of Australian continent collided with oceanic island arc at S margin of Philippine Sea Plate. Prior to Neogene 
emplacement of allochthonous microcontinents from N margin of Australia in Banda Sea, E Indonesia was part 
of N Indian Ocean and S Philippine Sea plates, in which a number of oceanic island arcs formed in Paleogene. 
Six Neogene orogenic belts in Indonesian region. No reconstruction maps (refers to map of 1999 Indonesian- 
Japanese Geotectonics Working Group; Sato et al.)) 
 
Simandjuntak, T.O. (2000)- Neogene tectonics of Indonesia. AAPG Int. Conf. Exhib., American Assoc. Petrol. 
Geol. (AAPG) Bull. 84, 9, p. 1492. (Abstract only) 
(Seven distinctive Neogene orogenies in Indonesia: 1) Sunda Orogeny in Java and E Indonesia: normal 
convergence producing Andean type orogenic belt, 2) Barisan Orogeny: oblique convergence and dextral 
transpressional wrenching in Sumatra, 3) Talaud Orogeny in N Maluku Sea: double-arc collision with sinistral 
transpressional wrenching, 5) Banda Orogeny: M Miocene collision between Banggai-Sula, Tukangbesi- Buton 
and Mekongga Platform against E Sulawesi ophiolite belt; 6) Melanesian Orogeny in Irian Jaya and PNG: 
oblique convergence with thin-skinned tectonics, 7) Dayak Orogeny in Kalimantan: triple junction extensional 
tectonics with hot spots of Neogene volcanics) 
 
Simandjuntak, T.O. (2003)- The Indonesian active margins. J. Geologi Sumberdaya Mineral 13, 136, p. 2-24. 
(Discussion of young collisional and strike-slip belts of Indonesia) 
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Simandjuntak, T.O. & A.J. Barber (1996)- Contrasting tectonic styles in the Neogene orogenic belts of 
Indonesia. In: R. Hall & D. Blundell (eds.) Tectonic evolution of Southeast Asia, Geol. Soc. London, Spec. 
Publ. 106, p. 185-201. 
(Six separate Neogene orogenic belts: Sunda (W Java-Flores), Barisan, Talaud, Sulawesi, Banda (Timor- 
Tanimbar) and Melanesian (New Guinea)) 
 
Simatupang, M. (1988)- Indonesian mineral development digest: a sourcebook on mining and mineral 
development in Indonesia. Indonesian Mining Association, Jakarta, p. 1-565. 
 
Simons, W.J.F., B.A.C. Ambrosius, R. Noomen, D. Angermann, P. Wilson, M. Becker, E. Reinhart, A. 
Walpersdorf & C. Vigny (1999)- The final geodetic results of the GEODYSSEA project: the combined 
solution. In: The GEODYnamics of S and SE Asia (GEODYSSEA), Project. GeoForschungsZentrum, Potzdam, 
(STR 98/14), p. 27-38. 
 
Simons, W.J.F., B.A.C. Ambrosius, R. Noomen, D. Angermann et al. (1999)- Observing plate tectonics in SE 
Asia: geodetic results of the GEODYSSEA project. Geophysical Research Letters 26, p. 2081-2084. 
(Geodetic results of GEODYSSEA Project 1994-1996 GPS data) 
 
Simons, W., B. Ambrosius, C. Vigny, A. Socquet, C. Subarya et al. (2003)- Crustal motion and block behaviour 
in S.E. Asia: a decade of GPS measurements. EGS-AGU-EUG Joint Assembly, Nice 2003, Abstract 10940. 
(SE Asia region was observed with 45 GPS site 'GEODYSSEA project (1991-1998). Additional GPS sites have 
set-up since 2000. High-quality GPS data set, spanning almost decade, combined into a kinematic model, with 
100+ station motions in ITRF-2000. Highlights are relative motion and boundaries of Sundaland block. In 
Sulawesi, two micro-blocks confirmed and number of sites on E Malaysia, indicate small but consistent relative 
motion with respect to Sundaland block) 
 
Simons, W.J.F., A. Socquet, C. Vigny, B.A.C. Ambrosius, S. Haji Abu, C. Promthong, C. Subarya, D.A. 
Sarsito, S. Matheussen, P. Morgan & W. Spakman (2007)- A decade of GPS in Southeast Asia: resolving 
Sundaland motion and boundaries. J. Geophysical Research 112, B06420, p. 1-20. 
(online at: https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2005JB003868) 
(GPS velocity field of SE Asia based on 10 years (1994-2004) of GPS data at more than 100 sites in Indonesia, 
Malaysia, Thailand, Myanmar, the Philippines, and Vietnam. Sundaland moves E at ~6 mm/yr in S to 10 mm/yr 
in N. Sundaland moves independently with respect to S China, E Java, Sulawesi and N tip of Borneo. Slow W-
ward movement of N tip of Borneo relative to Sundaland absorbed at NW Borneo Trench. Red River fault still 
active. Sundaland deformation occurs along its boundaries with fast-moving neighboring plates) 
 
Situmorang, B. (1977)- The western Indonesia fault pattern: tectonic significance with relation to wrench 
tectonics. Lemigas Scientific Contr. 1, 2, p. 5-18 
(Four compression phases in W Indonesia since pre M Mesozoic: (1) N80°- 260E pre- M Mesozoic equatorial 
compression; (2) N158- 338E M Mesozoic meridional compression; (3) N2- 182E late Cretaceous- E Tertiary 
meridional compression, and (4) N174- 35E Plio-Pleistocene compression. Bantam trend three fault systems of 
different ages: M-Mesozoic left lateral strike-slip faults in C and S Sumatra, late Cretaceous- E Tertiary right 
lateral strike-slip faults in Sunda Strait and on Java, and Plio-Pleistocene left lateral strike-slip faults in 
Sumatra. M Mesozoic and late Cretaceous- E Tertiary compression responsible for creation of basic basin 
configuration in C and S Sumatra, W Java and W Java Sea areas. En echelon folds forming hydrocarbon 
bearing anticlines in Sumatra and Java related to Plio-Pleistocene compression) 
 
Situmorang, B. (1986)- Notes on the Pre-Tertiary petroleum potential of Eastern Indonesia. Lemigas Scientific 
Contr. 10, 2, p. 16-23. 
(online at: www.journal.lemigas.esdm.go.id/index.php/SCOG/article/view/70) 
(Thick late Paleozoic-Mesozoic rift-drift facies formed excellent hydrocarbon plays in NW Australia and 
potential prospects extend into microcontinental blocks of E Indonesia) 
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Situmorang, B. (1987)- Pre Tertiary petroleum potential of Eastern Indonesia. Proc. 23rd Sess. Comm. Co-ord. 
Joint Prospecting Mineral Resources in Asian Offshore Areas (CCOP), Madang 1986, 2, p. 72-79. 
(E Indonesia prospective hydrocarbon plays in Pre-Tertiary, mainly in microcontinental blocks of Australian 
origin and associated Pre-Tertiary rift basins) 
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resources of Southeast Asia (GEOSEA VI), Jakarta 1987. Indon. Assoc. Geologists (IAGI), Jakarta, p. 1-504. 
(online at: http://library.dmr.go.th/Document/Proceedings-Yearbooks/M_2/1987/7...) 
 
Situmorang, B., Siswoyo, M. Thamrin & B. Yulianto (1983)- Heatflow variation in Western Indonesian basinal 
areas: implication on basin formation and hydrocarbon potential. Proc. 12th Ann. Conv. Indon. Petroleum 
Assoc. (IPA), Jakarta, 1, p. 157-169. 
(Average heat flow in Tertiary Basins of W Indonesia ~1.95- 2.58 μ Cal/cm2 s, except in C Sumatra where heat 
flow is ~3.27 ± 0.9 μ Cal/cm2 s. Less variability of heat flow in Java than in Sumatra basins. Lowest variability 
in S Sumatra, largest in C Sumatra. Variability probably reflects variation in amount of extension) 
 
Situmorang, M. (1994)- Distribution and characteristics of detrital heavy minerals in Eastern Indonesian waters. 
In: J.L. Rau (ed.) Proc. 29th Sess. Comm. Co-ord. Joint Prospecting Mineral Resources in Asian Offshore Areas 
(CCOP), Hanoi 1992, Bangkok, 2, p. 231-251. 
(Heavy minerals in seafloor sediments aaround Banda Arc region mainly mafic volcanic and sedimentary 
minerals, with some metamorphic minerals. Principal minerals hyperstene, augite, zircon, tourmaline, enstatite, 
garnet, chlorite and hornblende) 
 
SKK Migas (2017)- Petroleum systems of the Eastern Indonesia region- Guidance for hydrocarbon exploration 
in Eastern Indonesia. SKK Migas Memoir 1, Jakarta, p. 1-489. 
 
Sladen, C. (1997)- Exploring the lake basins of East and Southeast Asia. In: A.J. Fraser et al. (eds.) Petroleum 
geology of Southeast Asia, Geol. Soc. London, Spec. Publ. 126, p. 49-76. 
(SE Asia contains large number of lake basins producing significant amounts of oil and gas: Late Mesozoic- 
Early Tertiary basins of China, Early Tertiary basins of Malaysia- West Indonesia. Wax content commonly 10-
35% in oils derived from lacustrine source-rocks, occasionally reaching 45%. Source rock petroleum 
generators dominated by Botryoccocus and Pediastrum green algae) 
 
Slancova, A., A. Spicak, V. Hanus & J. Vanek (2000)- How the state of stress varies in the Wadati-Benioff 
zone: indications from focal mechanisms in the Wadati-Benioff zone beneath Sumatra and Java. Geophysical J. 
Int. 143, p. 909-930. 
(Earthquake focal mechanisms define eight stress domains: 3 in Sumatra (SI-SIII), 5 in Java region (JI-JV). 
Domains with similar states of stress occur in both regions in similar positions. Maximum compression 
perpendicular to trench in SI, SII and JII (depth range 0-165 km). Orientation of max. compression almost 
parallel to trench in SIII and JIII (depth 25-225 km). Focal mechanisms of domains SII, SIII, and JII, JIII 
different stress layers and overlap of earthquakes with different focal mechanisms from two different stress-
state layers, parallel to Wadati-Benioff zone. Slab-dip-parallel extension observed in JIV (depth 225-315 km), 
slab-dip-parallel compression in JV (>400 km)) 
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Indie Natuurwetenschappelijk Congres, Weltevreden 1926, p. 440- . 
('The geological structure of the Eurasian border area') 
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Wanner, J. (1921)- Zur Tektonik der Molukken. Geol. Rundschau 12, 3-5, p. 155-165. 
(online at: https://www.digizeitschriften.de/dms/img/?PID=GDZPPN000456594) 
(Early paper on the tectonics of the Moluccas, with focus on geology of Buru Island) 
 
Wanner, J. (1925)- Die Malaiische Geosynklinale im Mesozoikum. Verhandelingen Geologisch-
Mijnbouwkundig Genootschap Nederland Kol., Geol. Serie 8 (Verbeek volume), p. 569-599. 
(‘The Malayan geosyncline in the Mesozoic’. Rel. lengthy review of Mesozoic stratigraphy and macrofaunas 
across Indonesia. No figures) 
 
Wanner, J. (1931)- Echinodermata In: B.G. Escher et al. (eds.) De palaeontologie en stratigraphie van 
Nederlandsch Oost-Indie, Leidsche Geol. Mededelingen 5 (K. Martin memorial volume), p. 436-460. 
(online at: www.repository.naturalis.nl/document/549766) 
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Yang, T., M. Gurnis & S. Zahirovic (2016)- Mantle‐induced subsidence and compression in SE Asia since the 
Early Miocene. Geophysical Research Letters 43, 5, p. 1901-1909. 
(online at: https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1002/2016GL068050) 
(Rift basins developed extensively across Sundaland since Eocene. Starting in E Miocene, basins in S Sundaland 
experienced poorly understood, widespread synchronous compression (inversion) and marine inundation, 
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(‘Overview of the Triassic formations in Indonesia’. Lower- Middle Triassic found only on Timor; U Triassic 
present on Savu/ Roti, Timor, Leti/Babar, Ceram, Ambon, Misool, Buru, Buton, Borneo, Lingga, Sumatra and 
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onset of carbonate deposition in several Cimmerian terranes. Basaltic volcanism in several terranes indicative 
of rifting and opening of Meso-Tethys; (3). Roadian (Late Ufimian) and (4) Wordian-Capitanian: widespread, 
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Mid-Permian rift event removed continental blocks now in Asia from Gondwana. Present NW Australia- New 
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Tengchong block formed S-type granitoids with skarn-type and greisen-type Sn-W deposits. Etc.) 
 
Dercourt, J., L.E. Ricou & B. Vrielynck (eds.) (1993)- Atlas Tethys, Palaeoenvironmental maps. Gauthier-
Villars, Paris, p. 1-307. 
(Fourteen plate reconstructions and paleogeography maps of Tethys Oceans from mid-Permian-Tortonian. 
Maps do not include much of SE Asia) 
 
De Wever, P. & F. Baudin (1996)- Palaeogeography of radiolarites and organic-rich deposits in Mesozoic 
Tethys. Geol. Rundschau 85, 2, p. 310-326. 
(Siliceous and marine organic-rich deposits both result of high planktonic productivity, but sometimes 
associated, sometimes separate in space and time. Siliceous marine phtanite family facies contains organic 
material and are blackish (vs red/green for radiolarite facies) and deposited generally in shallower 
environments. Paleogeographic analysis for three Mesozoic high sea-level intervals (Toarcian, Kimmeridgian 
and Cenomanian) show: (a) in Jurassic siliceous deposits closer to open ocean waters than organic-rich ones; 
(b) during Cretaceous times often associated) 
 
De Wever, P., F. Baudin, J. Azema & E. Fourcade (1995)- Radiolarians and Tethyan radiolarites from primary 
production to their paleogeography. In: J. Dercourt & A.E.M. Nairn (eds.) The ocean basins and margins 8, The 
Tethys Ocean, Plenum Press, p. 267-318. 
 
Dewey, J.F., S. Cande, S. & W.C.I. Pitman (1989)- Tectonic evolution of the India/ Eurasia collision zone. 
Eclogae Geol. Helvetiae 82, p. 717-734. 
(online at: http://dx.doi.org/10.5169/seals-166399) 
(Since collision of India with Eurasia at ~45 Ma in  M Eocene, N-S intracontinental convergence continued at 
~5 cm/ year. Convergence accommodated principally by lithospheric thickening in widening zone between E 
transpressive sinistral megashear from Makran- Baikal and W dextral megashear from Sumatra to Tanlu Fault 
System. Lateral extrusion or escape was not major factor in accommodating India/Eurasia convergence) 
 
Dickins, J.M. (1985)- Late Palaeozoic glaciation. Bureau Mineral Res. J. Australian Geol. Geophysics 9, p. 163-
169. 
(online at: www.ga.gov.au/metadata-gateway/metadata/record/81179/) 
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(Review of Carboniferous- Permian glaciation in Australia- SE Asia. Main widespread terrestrial glaciation 
across Gondwana in Asselian (earliest Permian). In all areas rel. warm conditions returned in Sakmarian) 
 
Dickins, J.M. (1985)- Palaeobiofacies and palaeobiogeography of Gondwanaland from Permian to Triassic. In: 
K. Nakawara & J.M. Dickins (eds.) The Tethys, Tokai University Press, Tokyo, p. 83-92. 
 
Dickins, J.M. (1992)- Permian geology of Gondwana countries: an overview. Int. Geology Review 34, p. 986-
1000. 
(Earliest Permian of most Gondwanan areas characterized by glacial deposits and cold-water marine faunas. In 
W Australia glaciation confined to Asselian, followed by amelioration and rise in sea level in Sakmarian) 
 
Dickins, J.M. (1996)- Problems of a Late Palaeozoic glaciation in Australia and subsequent climate in the 
Permian. Palaeogeogr. Palaeoclim. Palaeoecology 125, p. 185-197. 
(Two main periods of glaciation: (1) Namurian (E Carboniferous) possibly extending into beginning of Late 
Carboniferous; (2) Asselian (earliest Permian). End of glaciation asssociated with worldwide eustatic rise in 
sea-level in basal Sakmarian (after this no good evidence for glaciation in Australia). In some places in 
Australia subtropical or tropical conditions in U Sakmarian, U Artinskian, Kungurian, Kazanian and 
Dzhulfian, all separated probably by colder periods. Marine Carboniferous Levipustula fauna may represent 
less cold sea water than E Permian Eurydesma fauna) 
 
Dickins, J.M. (2000)- The northern margin of Gondwanaland: uppermost Carboniferous to lowermost Jurassic 
and its correlation. In: H.F. Yin, J.M. Dickins et al. (eds.) Permian-Triassic evolution of Tethys and Western 
Circum-Pacific, Developments in Palaeontology Stratigraphy 18, Elsevier, p. 257-270. 
(In latest Carboniferous- early E Permian no apparent continuous sea in Tethys sensu Suess. Earliest Permian 
land barrier separated C Asian Sea from southern sea connecting 'Gondwana' countries. Youngest recognized 
marine deposits connecting through warm water C Asian Sea not younger than E Permian (Sakmarian). In U 
Permian-Triassic a N shore of Gondwanaland can be traced with southern sediment source. N shore of Tethys 
largely remains to be delineated) 
 
Dickins, J.M. & Phan Cu Tien (1997)- Indosinian tectogeny in the geological correlation of Vietnam and 
adjacent regions. In: J.M. Dickins et al. (eds.) Late Palaeozoic and Early Mesozoic Circum-Pacific events and 
their global correlation. Cambridge University Press, p. 87-96. 
(Review of U Devonian- Triassic stratigraphy of Vietnam. Indosinian orogeny manifested by Dzhulfian (U 
Permian) widespread unconformity and volcanic activity. Second Indosinian orogenic phase at end-Carnian, 
with widespread intrusive activity and deposition of coal-bearing molasse) 
 
Dickins, J.M., Y. Zunyi, Yin Hongfu et al. (eds.) (1997)- Late Palaeozoic and Early Mesozoic Circum-Pacific 
events and their global correlation. Cambridge University Press, p. 1-255. 
(Mainly mainland E Asia papers; nothing on Indonesia)  
 
Diener, C. (1916)- Die marinen Reiche der Triasperiode. Denkschriften Kaiserl. Akademie Wissenschaften, 
Wien, Math.- Naturwiss. Klasse, 92, p. 405-549. 
(online at: www.landesmuseum.at/pdf_frei_remote/DAKW_92_0405-0549.pdf) 
(‘The marine realms of the Triassic period’. Review of global Triassic macrofaunas as known in 1916. Four 
main faunal provinces (Boreal, Mediterranean, Himalayan and Andean), based on cephalopods, bivalves, etc. 
Indonesian area groups in Himalayan Domain. Brief reviews of Triassic on Timor, Roti, Savu, Sumatra, Seram, 
Buru. Only Timor has complete Triassic section, with cephalopods and corals very similar to Alps. In other 
areas Triassic starts with Carnian transgression. Triassic of Sumatra mainly shallow marine clastics) 
 
Domeier, M. & T.H. Torsvik (2014)- Plate tectonics in the late Paleozoic. Geoscience Frontiers 5, p. 303-350. 
(online/open access at: www.sciencedirect.com/science/article/pii/S1674987114000061) 
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(online at: www.gsm.org.my/products/702001-101723-PDF.pdf) 
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(Productive Tertiary basins in SE Asia similar geodynamic developments, with 5 facies associations: (1) 
lacustrine (early synrift of Sundaland; mainly oil) (2) paralic (late synrift); (3) open marine shelf (post-rift, E 
Indonesia and Philippines) (4) deeper marine (post-rift; mainly gas) and (5) pre-Tertiary (E Indonesia and 
Thailand, mainly terrestrial). Around Borneo thick late postrift passive margin delta sequences with oil- and 
gas-prone coaly source rock; transported terrigenous organic material common in related deep marine 
environments and contributes to marine source facies. In SE Asia terrestrial and lacustrine source rocks rel. 
difficult to locate, variable in quality and often distributed in thin beds) 
 
Doyle, P. (1992)- A review of the biogeography of Cretaceous belemnites. Palaeogeogr. Palaeoclim. 
Palaeoecology 92, p. 207-216. 
(Belemnites display Boreal and Tethyan marine faunal realms from Early Jurassic- earliest Cretaceous. Austral 
marine realm was lacking. In late Barremian- early Aptian Austral Realm was initiated with first Gondwanan 
family, Dimitobelidae. Tethyan belemnite realm cannot be recognised after Cenomanian) 
 
Doyle, P. & P. Howlett (1989)- Gondwana Antarctic belemnite biogeography and the break-up of Gondwana. 
In: J.A. Crame (ed.) Origins and evolution of Antarctic biota, Geol. Soc., London, Spec. Publ. 47, p. 167-182. 
(In Late Jurassic, belemnite genera Hibolithes and Belemnopsis abundant and widespread in Tethys, 
characterizing Tethyan Realm from S Europe and Asia to Antarctica. Distinct S Hemisphere 'Austral' belemnite 
realm was absent, although some endemicity exists at species level. Late Jurassic Indo-Pacific belemnites 
dominated by Belemnopsis with Hibolithes as minor element of fauna) 
 
Duan, L., Q.R. Meng, N. Christie-Blick & G.L. Wu (2017)- New insights on the Triassic tectonic development 
of South China from the detrital zircon provenance of Nanpanjiang turbidites. Geol. Soc. America (GSA) Bull., 
11p. 
(Triassic turbidites of Nanpanjiang basin reflect collision between S China and Indochina blocks. Turbidite 
system filled primarily from E to W. U-Pb ages and Hf isotope data for detrital zircons from M Triassic 
turbidites suggest provenance not from collisional orogen, but from poorly preserved arc at convergent plate 
boundary of S China. Zircon ages clusters: ~250-300 Ma, 350-400 Ma, 400-550 Ma, 900-1050 Ma and ~1600-
1950 Ma. Andean-type (Paleo-Pacific subduction) Cathaysian margin of S China probable source for much of 
sediment of S China block. New model for Triassic tectonic evolution of S China) 
 
Duan, L., Q.R. Meng, G.L. Wu & S.X. Ma (2012)- Detrital zircon evidence for the linkage of the South China 
block with Gondwanaland in early Palaeozoic time. Geol. Magazine 149, 6, p. 1124-1131. 
(Detrital zircons from Lower Devonian sections in S China block dominant Grenvillian and Pan-African 
populations, similar to E Paleozoic from Gondwana, Tethyan Himalaya and WAustralia. Hf isotopes indicate 
contributions of juvenile crust at 1.6 Ga and 2.5 Ga. S China block was integral part of E Gondwana in E 
Paleozoic, not continental block in Paleo-Pacific or fragment of Laurentia) 
 
Ehiro, M. (1996)- Permian and Triassic paleogeography based on ammonoid fossils of East Asia. Chikyu 
Monthly, 18, p. 724-729.   (in Japanese) 
 
Ehiro, M. (1997)- Ammonoid palaeobiogeography of the South Kitakami palaeoland and palaeogeography of 
eastern Asia in Permian to Triassic time. Proc. 30th Int. Geological Congress, Beijing 1996, 12, Palaeontology 
and historical geology, VSP, Utrecht, p. 18-28. 
(Biogeographic analysis of Permian- Triassic ammonoids in E Asia suggests Kikatami Terrane in NE Japan, 
was in equatorial realm near S China/ Khanka Terranes. Four ammonoid provinces in Permian: (1) Boreal, (2) 
Equatorial American, (3) Equatorial Tethyan (incl. S China, SE Asia, Iran, Timor; with E Permian perrinitids, 
M Permian Timorites, Waagenoceras?) and (4) Peri-Gondwanan (incl. Australia, Himalayas, Salt Range)) 
 
Ehiro, M. (1998)- Permian ammonoid fauna of the Kitakami Massif, Northeast Japan- biostratigraphy and 
Paleobiogeography. In:Y. Jin et al. (eds.) Permian stratigraphy, environments and resources 2, Palaeoworld 9, p. 
113-122. 
(online at: http://work.geobiology.cn/ebook/     ) 
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(Similar to above. Late M Permian Timorites- Waagenoceras ammonites of 'allochthonous Timor' affiliated 
with Tethyan instead of peri-Gondwanan assemblages)  
 
Enay, R. & E. Cariou (1996)- Identification du Kimmeridgien du domaine Indo-Sud-Ouest Pacifique: la faune a 
Paraboliceras (Ammonitina) de l'Himalaya a la Nouvelle-Zelande. Comptes Rendus Academie Sciences, Paris, 
ser. 2, 322, 6, p. 469-474. 
('Recognition of the Kimmeridgian Stage in the Indo-SW Pacific: the Paraboliceras fauna from the Himalayas 
to New-Zealand'. Kimmeridgian Stage not easily recognizable in Indo-SW Pacific because of lack of European 
taxa. Faunal sequence of Spiti Shales in C Nepal shows faunas with Paraboliceras (previously thought be of 
Tithonian age) are diagnostic of Kimmeridgian. This endemic Kimmeridgian biogeographic association extends 
from Himalayas to New Zealand.) 
 
Enay, R. & E. Cariou (1997)- Ammonite faunas and palaeobiogeography of the Himalayan belt during the 
Jurassic: initiation of a Late Jurassic austral ammonite fauna. Palaeogeogr. Palaeoclim. Palaeoecology 134, 1, p. 
1-38. 
(Jurassic ammonite faunas form basis for new biogeographical interpretation of U Bathonian- Tithonian/ 
Berriasian peri-Gondwanan faunas. Low diversity Austral ammonite fauna around E and S Gondwanaland, 
from Himalaya to Patagonia) 
 
Enay, R. & E. Cariou (1999)- Jurassic ammonite faunas from Nepal and their bearing on the 
palaeobiogeography of the Himalayan belt. J. Asian Earth Sci. 17, 5-6, p. 829-848. 
(M-L Jurasic Himalayan ammonite faunas rel. low diversity and dominance of indigenous genera. Faunas 
extending from Himalayas to Antarctica represent an actual biogeographical unit: Indo Pacific Realm. With 
Blanfordiceras wallichi in Tithonian)  
 
Enkin, R.J., Z. Yang, Y. Chen & V. Courtillot (1992)- Palaeomagnetic constraints on the geodynamic history of 
the major blocks of China from the Permian to the present. J. Geophysical Research 97, p. 13953-13989. 
(Review of paleomagnetic data of China region suggests major blocks probably in contact in Permian-Triassic, 
but Jurassic key age for present configuration. During Cretaceous, Chinese poles agree with poles from other 
continents transferred onto Eurasia. Much of China affected by small (<20°) rotations, interpreted as 
deformation caused by extrusion away from India collision) 
 
ESCAP (1990)- Triassic biostratigraphy and paleogeography of Asia. ESCAP Atlas of Stratigraphy IX, Min. 
Res. Dev. Ser. 59, United Nations, New York, p. 1-92. 
(Brief descriptions of Triassic across Asia, incl. Malaysia and Timor) 
 
Fan, W., Y. Wang, Y. Zhang, Y. Zhang, F. Jourdan, J. Zi & H. Liu (2015)- Paleotethyan subduction process 
revealed from Triassic blueschists in the Lancang tectonic belt of Southwest China. Tectonophysics 662, p. 95-
108. 
(Subduction of Paleotethys Ocean and subsequent continental collision recorded in blueschists in Lancang SE 
Paleotethyan belt in SW China. Suyi blueschists zircon U-Pb age of 260 ± 4 Ma and glaucophane formed during 
prograde metamorphism with 40Ar/39Ar plateau age of 242 ± 5 Ma (M Trias). Protolith formed at 260 Ma and 
originated from basaltic seamount. Basaltic rocks subducted down to 30-35 km under Lincang arc to form 
epidote blueschists at ~242 Ma. Blueschists subsequently transported to shallower crustal levels in response to 
continuous underthrust of subducted slab and continent–continent collision in M-L Triassic) 
 
Fang, N.Q., Q. Feng, S. Zhang & X. Wang (1998)- Paleo-Tethys evolution recorded in the Changning-Menglian 
Belt, western Yunnan. Comptes Rendus Academie Sciences, Paris, Sciences de la Terre, 326, p. 275-282. 
(Changning-Menglian belt of W Yunnan is ~400km long, 60 km wide remnant of Paleo-Tethyan archipelago. 
With E Devonian- M-L Triassic volcano-sedimentary record, incl. flysch, radiolarites, MORB basalts, seamount 
carbonates. Flanked by Cathaysian Lincang-Simao massif in E (M-L Devonian paleolatitude ~38-43°S) and 
Gondwanan Gengma-Baoshan massif in W (Devonian paleolatitude ~0-4.5°S; with Permo-Carboniferous 
moraine deposits)) 
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Fang, Wu (1989)- Paleozoic paleomagnetism of the South China block and the Shan Thai block: The composite 
nature of Southeast Asia. Ph.D. Thesis, University of Michigan, p. 1-165. 
(Paleomag of Paleozoic samples from E Yunnan (S China Block) and W Yunnan (N end of Shan-Tai Block). 
Contrasting paleolatitudes for Devonian samples: equatorial position for E Yunnan, of ~40° for W Yunnan, 
which probably was part of Gondwana supercontinent) 
 
Fang, Z.J. (1991)- Sibumasu biotic province and its position in Paleotethys. Acta Palaeontologica Sinica 30, 4, p. 
344-349. 
(Sibumasu province characterized by: (1) No reliable Gondwana cold-water biota or glacial deposits 
(interpreted glaciomarine pebble-bearing layers are debris flows; molluscs identified as Eurydesma are 
Schiziodus). Temperate and warm water fauna dominant; carbonates not common; (2) No tropical Cathaysian 
biotas and reef complexes. Absence of Late Paleozoic coal seams and occurrence of mixed Permian Cathaysian-
Gondwana flora in W Yunnan suggest Sibumasu between equatorial coal swamp zone (Cathaysian flora) and S 
temperate coal swamp zone (Glossopteris flora); (3) Contains Peri-Gondwana and Cathaysian elements but 
also European, Ural and Boreal elements; (4) Common endemic genera and species) 
 
Fang, Z.J. (1994)- Biogeographic constraints on the rift-drift accretion history of the Sibumasu block. J. 
Southeast Asian Earth Sci. 9, 4, p. 375-385.Southeast Asian Earth Sci. 9, 4, p. 375-385. 
(Paleozoic biogeographic history of Sibumasu block stages: (1) Cambrian-Ordovician with Australian faunal 
affinities; (2) Silurian-Devonian with Rhenish-Bohemian faunal affinities; (3) Carboniferous- Permian 
independent biotic province, different from both peri-Gondwanaland (no true E Permian glacial deposits) and 
Cathaysian biotas (no Permian coals) in Tethyan realm. Towards end Permian, Cathaysian elements more 
important, especially in E margin, indicating Cathaysian and Sibumasu biotas began to merge. Sibumasu rifted 
from Gondwanaland in M Ordovician or earlier and sutured to East Continent in Late Permian and E Triassic) 
 
Fang, Z.J., Z.C. Zhou & M.J. Lin (1992)- On several questions concerning Changning-Menglian Suture from 
perspect of stratigraphy. J. Stratigraphy 16, p. 292-303. 
 
Fedorov, P.I. & A.V. Koloskov (2005)- Cenozoic volcanism of Southeast Asia. Petrology 13, 4, p. 352-380. 
(Three main periods of activity in Cenozoic volcanic complexes of SE China, Vietnam, Thailand and S China 
Sea: E Tertiary, Miocene and Pliocene-Quaternary. First period characterized by potassic basalt (Vietnam) 
and tholeiitic bimodal (SE China) volcanism. Subsequent periods dominated by intraplate-type tholeiitic and 
alkaline volcanism and minor bimodal tholeiitic magmatism (basalts and rhyolites of the Okinawa Trough)) 
 
Fernandez, V., J. Claude, G. Escarguel, E. Buffetaut & V. Suteethorn (2009)- Biogeographical affinities of 
Jurassic and Cretaceous continental vertebrate assemblages from SE Asia. In: E. Buffetaut (ed.) Late Palaeozoic 
and Mesozoic ecosystems in SE Asia, Geol. Soc., London. Spec. Publ. 315, p. 285-300. 
(Late Jurassic- Early Cretaceous vertebrate assemblages from Khorat Group of Thailand show strong 
provincialism) 
 
Ferrari, O.M., C. Hochard & G.M. Stampfli (2008)- An alternative plate tectonic model for the Palaeozoic-
Early Mesozoic Palaeotethyan evolution of Southeast Asia (Northern Thailand-Burma). Tectonophysics 451, p. 
346-365. 
(Alternative model for Cambrian- Triassic geodynamic evolution of SE Asia. Differs in Paleotethys suture 
location in Thailand at Mae Yuam fault. Closure of E Paleotethys related to S-ward oceanic subduction that 
triggered E Neotethys opening as back-arc, due to Late Carboniferous- E Permian arc magmatism in Mergui 
(Burma) and Lhasa block (S Tibet) and absence of arc magmatism E of suture. To explain Carboniferous-E 
Permian and Permo-Triassic arcs in Cambodia, U Triassic magmatism in E Vietnam and L-M Permian arc 
volcanics in W Sumatra, we introduce Orang Laut terranes, which detached from Indochina and S China 
during back-arc opening due to W-ward subduction of Paleopacific. This also explains location of Cathaysian 
W Sumatra block W of Cimmerian Sibumasu block) 
 
Fielding, C.R., T.D. Frank & J.L. Isbell (2008)- The late Paleozoic ice age- a review of current understanding 
and synthesis of global climate patterns. Geol. Soc. America (GSA), Spec. Paper 441, p. 343-354. 
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(Late Paleozoic ice age was series of 1-8 My duration discrete glacial events separated by periods of warmer 
climate. After smaller precursor events massive expansion of ice at Carboniferous-Permian boundary, and 
glaciation became bipolar. Ice sheets at maximum in Asselian- E Sakmarian, after which they decayed rapidly 
over much of Gondwana. Minor glaciations continued in Australia and Siberia through late E- M Permian) 
 
Flower, M., R.M. Russo, K. Tamaki & N. Hoang (1998)- Mantle contamination and the Izu-Bonin-Mariana 
(IBM) 'high-tide mark': evidence for mantle extrusion caused by the Tethyan closure. Tectonophysics 333, p. 9-
34. 
(Discussion of SE Asia- W Pacific tectonics and plate kinematics. W Pacific back-arc basins opened in 3 main 
episodes of arc-trench rollback: (1) Eocene W Philippine Sea and Celebes Sea, (2) Oligocene-Miocene Japan, 
South China, Sulu and Makassar Seas, and (3) Late Miocene- Quaternary Okinawa, Mariana Troughs and 
Andaman Sea. Extrusion of Tethyan astenosphere, contaminated by sub-Asian cratonic lithosphere, was major 
cause of W Pacific arc rollback and basin opening) 
 
Flower, M., K. Tamaki & N. Hoang (1998)- Mantle extrusion: a model for dispersed volcanism and DUPAL-
like asthenosphere in East Asia and the Western Pacific. In: M.F.J. Flower et al. (eds.) Mantle dynamics and 
plate interactions in East Asia, American Geophys. Union (AGU), Geodyn. Ser. 27, p. 67-88. 
(On dispersed volcanic clusters over much of Asia and W Pacific following India-Asia and Australia-Indonesia 
collisions: (1) variably potassic tholeiites and alkali basalts in tension gashes, pull-apart basins, etc., and (2) 
shoshonite series (K-rich boninite) at extensional, near-collision shear zones and sundered arcs) 
 
Fluteau, F., J. Besse, J. Broutin & M. Berthelin (2001)- Extension of Cathaysian flora during the Permian- 
climatic and paleogeographic constraints. Earth Planetary Sci. Letters 193, 3, p. 603-616. 
(Mixed Gondwanan, Euramerian and Cathaysian floral elements in ‘Mid’ Permian Gharif Fm of Oman) 
 
Fontaine, H. (1986)- Shan-Thai Block and Indochina Block during the Carboniferous and the Permian; 
palaeontological and stratigraphical data. In: Proc. First Conf. Geology of Indochina, Ho Chi Minh City 1986, 
Gen. Dept. of Geology Vietnam, 1, p. 101-103. 
 
Fontaine, H. (1986)- The Permian of Southeast Asia. CCOP Techn. Bull. 18, p. 1-111. 
(Extensive review of geology and paleontology of Permian of Thailand, Vietnam, Laos, Malaysia, Sumatra, etc. 
Followed by 7 appendices on Permian fauna-flora by Fontaine, Nguyen Tien, Vachard and Vozenin-Serra)) 
 
Fontaine, H. (2002)- Permian of Southeast Asia: an overview. J. Asian Earth Sci. 20, 6, p. 567-588. 
(Permian rocks widespread in SE Asia. Many limestones with fusulinaceans recognized as Permian, but ones 
without fusulinaceans and previously assigned to Permian, found to be Triassic. Widespread massive 
limestones represent extensive carbonate platforms. Local occurrences of thick-bedded cherts indicate deep 
marine environments. Pebbly mudstones in Myanmar, Thailand, NW Malaysia and Sumatra formed in glacial 
environment. Volcanic rocks absent in NW Peninsular Malaysia and Thailand, but widespread in N Vietnam, 
Sumatra, E Malay Peninsula and Timor. Faunal and floral assemblages used to establish climatic conditions, 
environments of deposition and to define crustal blocks and Permian paleogeography) 
 
Fontaine, H., P. David, R. Pardede, N. Suwarna, J.P. Bassoullet, L. Beauvais, E. Buffetaut & R. Ingavat (1983)- 
The Jurassic in Southeast Asia (Thailand, Laos, Cambodia, Viet Nam, Malay Peninsula, Sumatra, Borneo, West 
Philippines). CCOP Techn. Bull. 16, p. 1-75. 
(Extensive review of Jurassic in SE Asia. Jurassic in Cambodia, Laos, Vietnam, E Thailand and Malay 
Peninsula mainly in continental facies, with occasional thin, shallow marine interbeds. Busuanga, Linapacan 
and Ili islands, NE of Palawan, Philippines, 200m thick Late Jurassic limestone with Cladocoropsis, 
Pseudocyclammina lituus, Salingoporella spp., Thaumatoporella, etc. (Fontaine et al. 1983, Bassoulet 1983). 
Late Jurassic- E Cretaceous limestones with Cladocoropsis- Pseudocyclammina at many localities across W 
Sumatra (NW Sumatra, Jambi, S Sumatra; all tied to 'Woyla Terranes'?; JTvG), U Jurassic Bau Limestone in W 
Sarawak, etc.) 
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Fontaine, H., C. Chonglakmani, I. Amnan & S. Piyasin (1994)- A well-defined Permian biogeographic unit: 
peninsular Thailand and northwest Peninsula Malaysia. J. Southeast Asian Earth Sci. 9, p. 129-151. 
(M-U Permian-Triassic Ratburi Lst of Peninsular Thailand and Chuping Lst of NW Peninsular Malaysia with 
rel. low diversity corals and fusulinids (Pseudofusulina, Staffella, Monodiexodina), and with forams incl. 
Hemigordiopsis and Shanita. These characterize a well-defined biogeographic unit (Shan-Tai/ Sibumasu 
terrane; JTvG). Noted similarities of several fossil groups with Timor Permian faunas) 
 
Fontaine, H., P. David, R. Pardede & N. Suwarna (1983)- Marine Jurassic in Southeast Asia. UN-ESCAP 
CCOP Techn. Bull. 16, p. 3-30. 
(Jurassic in W Philippines (Palawan Block), W Borneo, W Sumatra, Malay Peninsula, Thailand, Kampuchea 
and Vietnam. Marine Jurassic generally in limited areas only, and incomplete sections. Strong faunal affinities 
with Tethyan realm in E-M Jurassic, with Jurassic of Japan in Upper Jurassic) 
 
Fontaine, H. & V. Suteethorn (1992)- Permian corals of Southeast Asia and the bearing of a recent discovery of 
Lower Permian corals in Northeast Thailand. In: C. Piencharoen (ed.) Proc. Nat. Conf. Geologic resources of 
Thailand: potential for future development, Bangkok, Dept Min. Resources, p. 346-354 
(online at: http://library.dmr.go.th/library/Proceedings-Yearbooks/M_1/1992/6234.pdf) 
(Brief review of Permian corals of SE Asia. Permian corals of Thailand more diverse than Peninsular Thailand, 
NW Peninsular Malaysia and Timor, all of which are richer and more prolific than those from Australia. Timor 
corals rel. low diversity, mainly solitary Rugosa. Sumatra corals of Padang and W Jambi regions high diversity 
reefal limestone. Terbat Lst of W Borneo common fusulinids, but few or no corals. New Lower Permian fossil 
localities in NE Thailand (Loei) with solitary and compound rugose corals, incl. Kepingophyllidae) 
 
Fortey, R.A. & L.R.M. Cocks (1998)- Biogeography and palaeogeography of the Sibumasu terrane in the 
Ordovician: a review. In: R. Hall & J.D. Holloway (eds.) Biogeography and geological evolution of SE Asia, 
Backhuys Publ., Amsterdam, p. 43-56. 
(online at: http://searg.rhul.ac.uk/searg_uploads/2016/01/Fortey_Cocks.pdf) 
(Sibumasu (=Shan-Tai) paleocontinent comprises Sumatra, Malaysia, W Thailand and Burma. Ordovician 
rocks in China, Burma, S Thailand and interior Australia mainly carbonates. Lower Ordovician shelf faunas 
from Thailand- Langkawi low-latitude faunas, with affinities with N China- Australia, but M-U Ordovician 
trilobites most similar to S China) 
 
Fourcade, E., J. Azema, J.P. Bassoullet, F. Cecca, J. Dercourt et al. (1995)- Palaeogeography and 
palaeoenvironments of the Tethys during Jurassic Pangaean break-up. In: A.E.M. Nairn, L.E. Ricou et al. (eds.) 
The ocean basins and margins 8, The Tethys Ocean. Plenum, New York, p. 191-214. 
 
Fournier, M., L. Jolivet, P. Davy & J. Thomas (2004)- Backarc extension and collision: an experimental 
approach to the tectonics of Asia. Geophysical J. Int. 157, 2, p. 871-889. 
(online at: https://academic.oup.com/gji/article/157/2/871/2080608) 
(Modeling of E Asia deformation. Large parts of SE Asia affected by subduction-related extension, interacting 
with far field effects of India- Asia collision. Major backarc basins associated with ~N-S right-lateral strike-slip 
faults which accommodate N-ward penetration of India into Eurasia) 
 
Fujikawa, M. & T. Ishibashi (2000)- Paleozoic ammonoid paleobiogeography in Southeast Asia. Geosciences J. 
4, 4, p. 295-300. 
(Paleobiogeography of Late Paleozoic ammonoids in SE Asia. Sibumasu terrane separated from 
Gondwanaland in E-M Permian. Contrary to previous opinion, no close faunal resemblance between Indochina 
and S China from Pennsylvanian to M Permian) 
 
Fujiwara, K.P., H. Zaman, A. Surinkum, N. Chaiwong, M. Fujihara, H.S. Ahn & Y. Otofuji (2014)- New 
insights into regional tectonics of the Indochina Peninsula inferred from Lower-Middle Jurassic paleomagnetic 
data of the Sibumasu Terrane. J. Asian Earth Sci. 94, p. 126-138. 
(Sibumasu Terrane between CW-rotated Indochina Block and CCW-rotated S Sundaland Block. Paleomagnetic 
data from E-M Jurassic Umphang Gp red sandstones in Ratchaburi area variable declinations(348.5° and 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  155

44.7°) for Sibumasu. Sibumasu Terrane behaved as independent fragment when Indochina was undergoing CW 
rotation and S-ward displacement, as result of extrusion tectonics after India-Asia collision. CCW rotation of 
15° estimated for Sibumasu Terrane, as result of continuous N-ward indentation of Australian Plate into S 
Sundaland Block) 
 
Fuller, M., R. Haston, J.L. Lin, B. Richter, E. Schmidtke & J. Almasco (1991)- Tertiary paleomagnetism of 
regions around the South China Sea. J. Southeast Asian Earth Sci. 6, 3-4, p. 161-184. 
(Paleomag data for Borneo, Malay Peninsula, Philippines) 
 
Fyhn, M.B.W., P.F. Green, S.C. Bergman, J. Van Itterbeeck, T.V. Tri, P.T. Dien, I. Abatzis, T.B. Thomsen, S. 
Chea, S.A.S. Pedersen et al. (2016)- Cenozoic deformation and exhumation of the Kampot Fold Belt and 
implications for south Indochina tectonics. J. Geophysical Research, Solid Earth, 121, 7, p. 5278-5307. 
(Latest Mesozoic- earliest Cenozoic deformation of Sundaland core between SE Asian fusion and Cenozoic era 
of rifting and basin formation. In S Cambodia and Vietnam major latest Cretaceous- Paleocene thrusting and 
uplift of Kampot Fold Belt and surrounding regions, with up to ~11 km exhumation. Latest Cretaceous- 
Paleocene orogenesis affected much of greater Indochina, probably due to plate collision along E Sundaland or 
combination of collisions along E and W Sundaland. AFTA and ZFTA data document protracted cooling of 
Cretaceous granites and locally elevated thermal gradients 10's of My afterr emplacement. Thermalgradient 
stabilized by E Miocene time, and Miocene cooling probably reflects renewed denudation pulse) 
 
Gao, X., X. Ma & X. Li (2011)- The great triangular seismic region in eastern Asia: thoughts on its dynamic 
context. Geoscience Frontiers 2, 1, p. 57-65. 
(online at: http://ac.els-cdn.com/   ) 
(On SE Asia earthquake distributions and major plate movements) 
 
Gardiner, N.J., M.P. Searle, C.K. Morley, M.P. Whitehouse, C.J. Spencer & L.J. Robb (2016)- The closure of 
Palaeo-Tethys in Eastern Myanmar and Northern Thailand: new insights from zircon U-Pb and Hf isotope data. 
Gondwana Research 39, p. 401-422. 
(Main Range and E Province granite belts of SE Asia represent magmatic expression of closure of Paleo-Tethys 
in Late Paleozoic- E Mesozoic times. New U-Pb zircon age data from N Thailand and E Myanmar constrain 
closure in Myanmar to ~230 Ma. Age of 219-220 Ma from Kyaing Tong granite imply N extension of Main 
Range Province into E Myanmar (E Triassic). Tachileik granite in far E Myanmar 266 Ma, consistent with E 
Province ages. Hf data suggest Paleoproterozoic crust underlies both Main Range and E Province granites) 
 
Gatinsky, Y.G. (1986)- Geodynamics of Southeast Asia in relation to the evolution of ocean basins. 
Palaeogeogr. Palaeoclim. Palaeoecology 55, p. 127-144. 
(Geodynamics of SE Asia closely connected with cyclic development of large oceanic basins: Paleotethys (M 
Paleozoic-E Mesozoic), Tethys (end Paleozoic- beginning Cenozoic), and Indian and Pacific Oceans (Late 
Mesozoic- Cenozoic). Opening of basins accompanied by simultaneous closing of earlier basins) 
  
Gatinsky, Y.G. & C.S. Hutchison (1986)- Cathaysia, Gondwanaland, and the Paleotethys in the evolution of 
continental Southeast Asia. In: G.H. Teh & S. Paramananthan (eds.) Proc. 5th Reg. Congress Geology, Mineral 
Energy Resources of SE Asia (GEOSEA V), Kuala Lumpur 1984, 1, Bull. Geol. Soc. Malaysia 19, p. 179-199. 
(online at: https://gsmpubl.files.wordpress.com/2014/09/bgsm1986b10.pdf) 
(Continental SE Asia dominated by Precambrian continental blocks overlain by Late Proterozoic-Paleozoic 
platform successions. Most blocks rifted and drifted from Australian Gondwanaland in Early Paleozoic and 
were in equatorial position by Permian time. Between blocks are intensely folded mobile belts. West Borneo 
block initial separation from Eurasia in Late Triassic-Jurassic (creation of Proto-South China Sea), then 
detached from Indosinia in Late Cretaceous-Paleogene and moved S along fault margin of Vietnam shelf) 
 
Gatinsky, Y.G., C.S. Hutchison, N. N. Minh & T.V. Tri (1984)- Tectonic evolution of Southeast Asia. 27th Int. 
Geological Congress, Moscow, Rept. 5, p. 225-239. 
 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  156

Gatinsky, Y.G., A.V. Mischina, I.V. Vinogradov & A.A. Kovalev (1978)- The main metallogenic belts of 
Southeast Asia as the result of different geodynamic conditions interference. In: P. Nutalaya (ed.) Proc. 3rd 
Regional Conf. Geology and Mineral Resources of SE Asia (GEOSEA III), Bangkok, Asian Inst. Techn., p. 
313-318. 
(Majority of mineral occurrences of SE Asia in five metallogenic belts) 
 
Gatinsky, Y.G., Y.G. Zorina & A.A. Chistyakov (1983)- Fault tectonics in Southeast Asia. Proc. 19th Sess. 
CCOP, Tokyo 1982, 2, Techn. Repts., p. 243-253. 
(Brief descriptions of characteristics of main fault zones in SE Asia) 
 
Geyer, O.F. (1977)- Die "Lithiotis-Kalke" im Bereich der unterjurassischen Tethys. Neues Jahrbuch Geol. 
Palaont. Abhandl. 153, p. 304-340. 
('The Lithiotis limestones' in the Early Jurassic Tethys Realm'. Tethyan Early Jurassic reefal limestones 
commonly dominated by large thick-walled Lithiotis-type bivalves (also present in Fatu Limestones of Timor; 
Krumbeck 1923, Hayami 1984)) 
 
Gibbons, A. (2012)- Regional plate tectonic reconstructions of the Indian Ocean. Ph.D. Thesis University of 
Sydney, p. 1-185. 
(online at: http://ses.library.usyd.edu.au/handle/2123/8580) 
(New model of Indian Ocean plate tectonic history, suggesting smaller extent of Greater India and later 
collision than previous models. Main driver is Jurassic rock sample dredged from Cretaceous Wharton basin 
off W Australia. Argoland accreted to equatorial intra-oceanic arc at ~126 Ma (E Cretaceous; obduction event 
recorded in zircons from ophiolites in Yarlung-Tsangpo suture zone between Indian and Eurasian blocks). E 
Argoland accreted to Sumatra at ~80 Ma, possibly re-attaching Woyla Terranes back to Sumatra margin. 
Greater India’s indenter, Gascoyne block, reached W Burma and E edge of intra-oceanic arc at ~50 Ma, as 
India continued to migrate North. Final collision between Greater India (accreted to intra-oceanic arc) and 
Eurasia did not take place until ~35 Ma) 
 
Gibbons, A., J.M. Whittaker & R.D. Muller (2013)- The breakup of East Gondwana: assimilating constraints 
from Cretaceous ocean basins around India into a best-fit tectonic model. J. Geophysical Research, Solid Earth, 
118, doi:10.1002/jgrb.50079, p. 1-15. 
 
Gibbons, A.D., S. Zahirovic, R.D. Muller, J.M. Whittaker & V. Yatheesh (2015)- A tectonic model reconciling 
evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central-eastern Tethys. 
Gondwana Research 28, 2, p. 451-492. 
(Plate tectonic model for India-Eurasia collision. With plate reconstructions since Middle Jurassic (160 Ma) 
and including chapter on SE Asia and Woyla Arc of Sumatra) 
 
Gobbett, D.J. (1973)- Carboniferous and Permian correlation in Southeast Asia In: B.K. Tan (ed.) Proc. Reg. 
Conference on the Geology of SE Asia, Kuala Lumpur 1972, Bull. Geol. Soc. Malaysia 6, p. 131-142. 
(online at: https://gsmpubl.files.wordpress.com/2014/09/bgsm1973010.pdf) 
(Late Paleozoic rocks from Thailand, Malaysia, Myanmar, Vietnam, Laos, Cambodia, Sumatra, Borneo, etc.)) 
 
Goldfarb, R.J., R.D.Taylor, G.S. Collins, N.A. Goryachev & O.F. Orlandini (2014)- Phanerozoic continental 
growth and gold metallogeny of Asia. Gondwana Research 25, p. 48-102. 
(Review of tectonic evolution and associated gold deposits of mainland Asia in past 800 Myrs. Nothing on 
Indonesia) 
 
Golonka, J. (2007)- Late Triassic and Early Jurassic palaeogeography of the world. Palaeogeogr. Palaeoclim. 
Palaeoecology 244, p. 297-307. 
(Paleogeographic maps for Late Triassic (Carnian-Norian) and E Jurassic (Hettangian-Toarcian). Triassic 
continued N-ward drift of Cimmerian continent corresponded with closure and consumption of Paleotethys and 
opening of Neotethys. Most significant Late Triassic convergent event was Indosinian orogeny, result of 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  157

consolidation of S and N China blocks. Also, Indochina and 'Indonesia' sutured to S China. Triassic- Jurassic 
boundary important biotic extinction event) 
 
Golonka, J. (2007)- Phanerozoic paleoenvironment and paleolithofacies maps- Late Paleozoic. Geologia 33, 2, 
p. 145-209. 
(online at: http://journals.bg.agh.edu.pl/GEOLOGIA/2007-02/Geologia_2007_2_01.pdf) 
(Global plate tectonic and paleogeographic maps for 8 E Devonian- Permian time intervals. Includes 
Australia- SE Asia blocks evolution. 'Indonesia' shown as part of Cimmerian Blocks that rifted off Gondwana in 
Permian and collide with mainland SE Asia in Triassic) 
 
Golonka, J. (2007)- Phanerozoic paleoenvironment and paleolithofacies maps- Mesozoic. Geologia 33, 2, p. 
211-264 
(Global plate tectonic and paleogeographic maps for 8 Mesozoic time intervals. Most significant Triassic 
convergent event was Indosinian orogeny (collision of Indochina and Indonesia with S China). N-ward drift of 
Cimmerian continents driven by closing of Paleotethys and opening of Neotethys Ocean. SE Asia not very well 
portrayed in this global map series) 
 
Golonka, J. (2009)- Phanerozoic paleoenvironment and paleolithofacies maps- Cenozoic. Geologia 35, 4, p. 
507-587. 
(online at: http://journals.bg.agh.edu.pl/GEOLOGIA/2009-04/Geologia_2009_4_01.pdf) 
 
Golonka, J. (2009)- Phanerozoic paleoenvironment and paleolithofacies maps- Early Paleozoic. Geologia 35, 4, 
p. 589-654. 
(online at: http://journals.bg.agh.edu.pl/GEOLOGIA/2009-04/Geologia_2009_4_02.pdf) 
(Global plate tectonic and paleogeographic maps for 8 Cambrian- Silurian time intervals. Australia and China 
blocks in low northern latitudes) 
 
Golonka, J. (2012)- Paleozoic paleoenvironment and paleolithofacies maps of Gondwana. AGH University of 
Science and Technology Press, Krakow, p. 1-82. 
(Paleozoic global plate reconstructions, with focus on Gondwana region) 
 
Golonka, J., A. Embry & M. Krobicki (2018)- Late Triassic global plate tectonics. In: L.H. Tanner (Ed.) The 
Late Triassic World, Earth in a time of transition, Topics in Geobiology 46, Springer International, Chapter 2, p. 
27-57. 
(Late Triassic global plate reconstruction, at time of Early Cimmerian and Indosinian orogenies that closed 
Paleotethys Ocean (earlier in Alpine-Carpathian-Mediterranean area, and latest in SE Asia). Pulling force of 
N-dipping subduction along N margin of Neotethys (= Mesotethys) caused drifting of new set of plates from 
passive Gondwana margin, dividing Neotethys Ocean (= opening of Cenotethys; Lhasa plate separation)) 
 
Golonka, J. & D. Ford (2000)- Pangean (Late Carboniferous-Middle Jurassic) paleoenvironment and lithofacies. 
Palaeogeogr. Palaeoclim. Palaeoecology 161, p. 1-34. 
(Six global rconstructions for Pangea from Late Carboniferous- M Jurassic. Most of Indonesia shown as part 
of'Cimmerian Plates' that rifted from Gondwana in Permian and sutured with SE Asia in Late Triassic) 
 
Golonka J. & A. Gaweda (2012)- Plate tectonic evolution of the southern margin of Laurussia in the Paleozoic. 
In: E. Sharkov (ed.) Tectonics- Recent advances, Chapter 10, InTech, p. 261-282. 
(online at: http://cdn.intechopen.com/pdfs-wm/37859.pdf) 
(Trench-pulling effect of N-dipping subduction at S margin of Eurasia caused rifting as well as transfer of 
plates from Gondwana to Laurasia. This model applied here to S margin of Laurussia in Paleozoic times. With 
12 plate tectonic maps for time slices from Early Cambrian- Late Carboniferous) 
 
Golonka, J., M. Krobicki & Nguyen Van Giang (2006)- Paleogeographic maps of Southeast Asia. In: Proc. 
Second Int. Workshop IGCP Project 480, Structural and tectonic correlation across the Central Asian orogenic 
collage, Ulaanbaatar 2006, p. 71-74.     (Extended Abstract only) 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  158

(online at: www.igcp.itu.edu.tr/Publications/GolonkaKrob_06.pdf) 
 
Golonka, J., M. Krobicki, J. Pajak & Nguyen Van Giang & W. Zuchiewich (2006)- Phanerozoic 
palaeogeography of Southeast Asia. Geolines 20, p. 40-43.    (Extended Abstract only) 
(online at: http://geolines.gli.cas.cz/fileadmin/volumes/volume20/G20-040.pdf) 
(Brief summary of larger SE Asia project) 
 
Golonka, J., M. Krobicki, Z. Paul & A. Khudoley (2006)- Central Asia- Southeast Asia connection during 
Paleozoic orogenies: problems and questions. Geolines 20, p. 21-23. 
(online at: www.igcp.itu.edu.tr/Publications/Golonka_06.pdf) 
(Peak of Paleozoic orogenesis in SE Asia and S China in Silurian- earliest Devonian. In N Vietnam deep water 
Ordovician and Silurian synorogenic deposits overlain by continental E Devonian red beds. With plate tectonic 
map for Early Ordovician) 
 
Golonka, J., M. Krobicki, J. Pajak, Nguyen Van Giang & W. Zuchiewicz (2006)- Global plate tectonics and 
paleogeography of Southeast Asia. Fac. Geology, Geophysics Environmental Protection, AGH University of 
Science and Technology, Arkadia, Krakow, p. 1-128. 
(Major review of global plate tectonic evolution from Cambrian- Recent in 32 maps/ time slices, with detailed 
maps for SE Asia (Vietnam focused). Differs from recent Hall and Metcalfe models in depicting the more 
'traditional' view of SW Borneo as always having been part of Indochina-Sibumasu (which rifted off Indochina/ 
S China by opening of Proto- South China Sea in Jurassic or Cretaceous)) 
 
Gorur, N. & A.M.C. Sengor (1992)- Paleogeography and tectonic evolution of the Eastern Tethysides: 
implications for the Northwest Australian margin breakup history. In: U. von Rad et al. (eds.) Proc. Ocean 
Drilling Program (ODP), Scient. Results 122, College Station, p. 83-106. 
(online at: www-odp.tamu.edu/publications/122_SR/VOLUME/CHAPTERS/sr122_05.pdf) 
(Last major breakup from NW Australian continental margin (Exmouth, Wombat, Scott Plateaus) in Berriasian- 
Hauterivian. Major continental fragments in Asiatic Tethyside orogenic collage already collided with Asia by 
that time. Similarity of Mesozoic geological record suggests Sikuleh-Natal continental sliver in Sumatra, plus 
possible extensions in Java probably continental object that left NW Australia in Berriasian- Hauterivian. This 
sliver records E Cretaceous rapid subsidence and collision with Sumatra along Woyla suture in Late 
Cretaceous. NW Australian margin two older breakup events: (1) latest Carboniferous-earliest Permian: 
departure of Sibumasu block and E Cimmerian continent (Baoxan, W Thailand, E Burma), W Malaya and part 
of C Sumatra; (2) Late Triassic-Jurassic. Lhasa- C Burma block left Gondwanaland, which leads us to think 
breakup event was latest Triassic, probably Rhaetian) 
 
Grant-Mackie, J.A., Y. Aita, B.E. Balme, H.J. Campbell, A.B. Challinor, D.A.B. MacFarlan, R.E. Molnar, G.R. 
Stevens & R.A.Thulborn (2000)- Jurassic palaeobiogeography of Australasia. In: A.J. Wright (ed.) 
Palaeobiogeogeography of Australasia, Mem. Assoc. Australasian Palaeontologists (AAP) 23, p. 311-353. 
(Review of Australian Jurassic fossils distribution) 
 
Grunow, A.M. (1999)- Gondwanan events and palaeogeography: a palaeomagnetic review. J. African Earth Sci. 
28, 1, p. 53-69. 
 
Guillot, S., K. Hattori, P. Agard, & S. Schwartz & O. Vidal (2009)- Exhumation processes in oceanic and 
continental subduction contexts: a review. In: S. Lallemand and F. Funiciello (eds.) Subduction zone 
geodynamics, Springer-Verlag p. 175-205. 
(Review of exhumation of high and ultrahigh pressure metamorphic rocks and ophiolites. Three types of 
subduction zones: (1) Accretionary-type subduction zones exhume HP metasedimentary rocks by underplating; 
(2) Serpentinite-type subduction zones exhume HP to UHP in 1-10 km thick serpentinite subduction channel 
(incl. Bantimala, Sulawesi, Luk Ulo, C Java); (3) continental-type subductions exhume UHP rocks of 
continental origin. With examples from SE Asia) 
 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  159

Guo, F. (1990)- Terranes of Southwest China since the Late Paleozoic. In: T.J. Wiley et al. (eds.) Terrane 
analysis of China and the Pacific Rim, Circum-Pacific Council Energy and Mineral Resources, Houston, Earth 
Sci. Publ. 13, p.  
 
Guo, F. (1991)- The boundary between Gondwana and Pacifica and the suturing ages of their allied terranes in 
Southwestern China. Acta Geologica Sinica (English Ed.) 4, p. 87-95. 
(Two terrane groups in SW China: (1) with Permo-Carboniferous ice-rafted marine sediments and cold-water 
fauna of Gondwana facies (Gangmar Co, Lhasa, Sa' gya, Tengchong, Baoshan terranes), (2) with Yangtze-type 
U Paleozoic with Cathaysian flora and Pacific-type fusulinids (Changning-Menglian, Shuangjiang-Lancang, 
Qamdo and Bayan Har terranes). Longmu Co-Shuanghu-Dengqen- N Lancang River- Kejie-Mengding suture 
zone between two groups is boundary between Gondwana and Pacifica in SW China. Baoshan and Nyainrong-
Sog in Lhasa composite terrane first combined with Asian continent in early E Jurassic. N Tibet- W Yunnan 
microplate (with Gangmar Co, Lhasa, Tengchong terranes) collided with Asia at end of E Cretaceous) 
 
Hada, S., S. Bunopas, K. Ishii & S. Yoshikura (1997)- Rift-drift history and the amalgamation of Shan-Thai and 
Indochina/ East Malaysia Blocks. In: P. Dheeradilok et al. (eds.) Proc. Int. Conf. Stratigraphy and tectonic 
evolution of Southeast Asia and the South Pacific (GEOTHAI'97), Bangkok, Dept. Mineral Resources, 1, p. 
273-286. 
(online at: http://library.dmr.go.th/library/Proceedings-Yearbooks/M_1/1997/7641.pdf) 
(Same paper as Hada et al. 1999) 
 
Hada, S., S. Bunopas, K. Ishii & S. Yoshikura (1999)- Rift-drift history and the amalgamation of Shan-Thai and 
Indochina/East Malaysia Blocks. In: I. Metcalfe (ed.) Gondwana dispersion and Asian accretion (IGCP 321 
Final Results Volume), Balkema, Rotterdam, p. 67-87. 
(Nan-Chanthaburi suture zone in SE part of C Thailand, between Shan-Thai (=Sibumasu) in W and Indochina/ 
E Malaya Blocks in E, regarded as main branch of Paleo-Tethys ocean. Two belts: in W imbricated bedded 
Chanthaburi chert-clastic sequence (former active margin of Shan-Thai terrane; cherts with M-L Triassic 
radiolaria), in E Thung Kabin serpentinite melange (incl. red cherts with E, M and L Permian radiolaria and 
blocks of E and M Permian fusulinid limestone). Both belts unconformably overlain by ?U Triassic greywacke- 
andestic tuffaceous sequence, then Khorat Gp redbeds. Collision age believed to be latest Triassic)  
 
Hada, S., K. Ishii, C.A. Landis, J. Aitchison & S. Yoshikura (2001)- Kurosegawa Terrane in Southwest Japan: 
disrupted remnants of a Gondwana-derived terrane. Gondwana Research 4, p. 27-38. 
(Kurosegawa Terrane in SW Japan, between two Mesozoic subduction complex terranes, is exotic terrane with 
Permian limestones with fusulinacean forams Cancellina, Colania and Lepidolina, suggesting terrane once 
situated within Colania- Lepidolina territory in E Tethys-Panthalassa region at equatorial latitude, possibly 
close to E margin of S China or Indochina-E Malaya continental blocks. These blocks had rifted from 
Gondwana by Late Devonian. Amalgamated with proto-Asian continent (S China?) in Late Triassic (or later)) 
 
Hall, R. (2015)- Provenance and basement studies of SE Asia. In: Asia Petrol. Geosc. Conf. Exhib. (APGCE), 
Kuala Lumpur, 5p.  (Extended Abstract) 
(Brief review of recent Royal Holloway sandstone provenance work (Gunawan, Sevastjanova, Zimmermann)) 
 
Hall, R. & H. Breitfeld (2017)- Nature and demise of the Proto-South China Sea. Bull. Geol. Soc. Malaysia 63 
(Geol. Soc. Malaysia 50th Anniversary Issue 1), p. 61-76. 
(online at: www.gsm.org.my/products/702001-101708-PDF.pdf 
(Proto-South China Sea should be used only for oceanic slab subducted beneath Sabah and Cagayan between 
Eocene- E Miocene; Paleo-Pacific Ocean used here for lithosphere subducted under Borneo in Cretaceous. 
Good evidence for subduction between Eocene- E Miocene below Sabah, and W limit of Proto-S China Sea 
subduction was W Baram Line; subducted slab imaged in lower mantle by P-wave tomography. Present-day 
NW Borneo Trough and Palawan Trough not subduction trenches: NW Borneo Trough flexural response to 
gravity-driven deformation of Neogene sediment wedge NW of Sabah. Palawan Trough is continent-ocean 
transition at SE edge of modern S China Sea) 
 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  160

Hall, R., M.A. Cottam & M.E.J. Wilson (2011)- The SE Asian gateway: history and tectonics of the Australia-
Asia collision. In: R. Hall, M.A. Cottam & M.E.J. Wilson (eds.) The SE Asian gateway: history and tectonics of 
the Australia-Asia collision, Geol. Soc, London, Spec. Publ. 355, p. 1-6. 
(Introduction to collection of geological papers on E Indonesia from 2009 SAGE conference) 
 
Hallam, A. (1986)- Evidence of displaced terranes from Permian to Jurassic faunas around the Pacific margins. 
J. Geol. Soc. London 143, p. 209-216. 
(Permian- Jurassic Tethyan marine invertebrate faunas from low latitude can be distinguished from less diverse 
higher latitude faunas. Displacement of these low-latitude faunas high latitudes around Pacific margins 
provides evidence for movement of displaced terranes. Fullest story worked out for W margin of N America, as 
far N as S Alaska. Also evidence for N-ward movement of continental segments along NE Asian margin. 
Torlesse Terrane of New Zealand appears to have moved considerable distance S-wards) 
 
Halle, T.G. (1935)- On the distribution of the Late Palaeozoic floras in Asia. Geografiska Annaler 17, Suppl. 
(Sven Hedin volume), p. 106-111. 
(First paper to recognize three Permian floral provinces in Asia: Indian Gondwanan-Glossopteris in SW, 
Angara flora in N, Cathaysian/ Sino-Malayan or Gigantopteris flora in SE. No figures) 
 
Hao, S. & P.G. Gensel (1998)- Some new plant finds from the Posongchong Formation of Yunnan, and 
consideration of a phytogeographic similarity between South China and Australia during the Early Devonian. 
Science in China, ser. D, 41, 1, p. 1-13. 
(online at: http://engine.scichina.com/publisher/scp/journal/Sci%20China%20Earth%20Sci-
D/41/1/10.1007/BF02932414?slug=full%20text) 
(E Devonian plants from Posongchong Fm of SE Yunnan, suggest E Devonian NE Gondwana phytogeographic 
unit in Equatorial position, comprising Australia, S China Block and perhaps Shan-Thai Block) 
 
Harzhauser, M., A. Kroh, O. Mandic, W.E. Piller, U. Gohlich, M. Reuter & B. Berning (2007)- Biogeographic 
responses to geodynamics: a key study all around the Oligo-Miocene Tethyan Seaway. In: 48th Phylogenetic 
Symposium on historical biogeography, Zoologischer Anzeiger 246, 4, p. 241-256. 
(Extensive terrestrial exchanges initiated by closure of Tethyan Seaway in Early Miocene. Until closure, marine 
faunal exchange via Mesopotamian Trough and Zagros Basin, reflected by Indonesian corals in Iran and 
'western' gastropods in Pakistan and India. Divergences on both sides of seaway starting in Oligocene. Around 
closure event Proto-Mediterranean faunas already little in common with Indo-West Pacific Region) 
 
Hasegawa, S. (1996)- Ridge subduction model- a mechanism for an earlier South China Sea opening and an 
alternative paleogeographic reconstruction of Southeast Asia. In: 11th Offshore SE Asia Conf. Exhib. 
(OSEA96), Singapore 1996, p. 155-167. 
(Late Mesozoic- Tertiary plate reconstruction, generally compatible with Tapponnier extrusion model. The now 
subducted Kula-Pacific Ridge beneath Eurasia Plate caused S China basins rifting and provides heat under S 
China continental crust)) 
 
Hashimoto, W., E. Aliate, N. Aoki, G. Balce, T. Ishibashi, N. Kitamura, T. Matsumoto, M. Tamura & J. 
Yanagida (1975)- Cretaceous system of Southeast Asia. In: T. Kobayashi & R. Toriyama (eds.) Geology and 
Palaeontology of Southeast Asia, University of Tokyo Press, 15, p. 219-287. 
(online at: http://twgeoref.moeacgs.gov.tw/star/1975/19750026/0219.pdf) 
(Extensive review of Japanese work on Cretaceous stratigraphy and paleontology of Taiwan, Philippines, 
Borneo, Java, Sulawesi, etc.. Incl. significant details on Cretaceous Orbitolina occurrences on Borneo) 
 
Hashimoto, W. & T. Sato (1980)- Correlation of the structural belts in East and Southeast Asia. In: T. 
Kobayashi, R. Toriyama et al. (eds.) Symposium on the geology and paleontology of SE Asia, Tsukuba 1978, 
Geology and Palaeontology of Southeast Asia, University of Tokyo Press, 21, p. 343-356. 
(Brief review of Mesozoic and Cenozoic structural belts of SE and East Asia) 
 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  161

Hayami, I. (1984)- Jurassic marine bivalve faunas and biogeography in Southeast Asia. In: T. Kobayashi et al. 
(eds.) Geology and Palaeontology of Southeast Asia 25, University of Tokyo Press, p. 229-237. 
(Unique E Jurassic (Pliensbachian?) heavy bivalve assemblage from Timor with Lithiotis, Pachymegalodon, 
Gervilleioperna, etc. described from Fatu Lst of Timor by Krumbeck (1923). Upper Jurassic bivalves in W 
Borneo part of East Asian Province with Philippines and Japan. Timor-Roti, Seram, Misool, etc., are part of 
Maorian Province with Malayomaorica and Retroceramus haasti) 
 
He, C., S. Dong, M. Santosh & X. Chen (2012)- Seismic evidence for a geosuture between the Yangtze and 
Cathaysia Blocks, South China. Nature Scientific Reports 3, 2200, p. 1-7. 
(online at: https://www.nature.com/articles/srep02200.pdf) 
(S China block composed of sub-blocks Yangtze in NW and Cathaysia in SE, , which collided and amalgamated 
in Neoproterozoic along Jiangnan Orogen. Felsic lower crust of Cathaysia Block and Jiangnan orogenic belt 
may represent fragments derived from Gondwana supercontinent) 
 
Heine, C. (2002)- The tectonic evolution of the Northwest Shelf of Australia and southern Southeast Asia. 
M.Sc. Thesis Ruhr-Universat Bochum and University of Sydney, p. 1-94. 
(online at: www.earthbyte.org/people/christian/media/Heine_02_MScThesis_e-version.pdf) 
(Argo and Gascoyne Abyssal Plains off NW Australia are the only preserved patches of Tethyan ocean floor; 
rest destroyed by subduction. W Burma Block identified as continental fragment breaking up from NW Shelf in 
Late Jurassic and accreted to SE Asian mainland in Santonian-Coniacian (85-80Ma) near W Thailand)  
 
Heine, C., R.D. Muller & C. Gaina (2004)- Reconstructing the lost Eastern Tethys Ocean basin: convergence of 
the SE Asian margin and marine gateways. In: P. Clift et al. (eds.) Continent-ocean interactions within East 
Asian marginal seas, American Geophys. Union (AGU), Geophys. Monograph Ser. 149, p. 37-54. 
(Reconstruction of E Tethys (Mesotethys and Neotethys) ocean basin for last 160 Myr, with reconstructions in 
20 Myr increments, constrained by magnetic anomalies in Argo and Gascoyne abyssal plains of Australia NW 
shelf, assuming symmetrical spreading, etc.) 
 
Helmcke, D. (1983)- On the Variscan evolution of Central Mainland Southeast Asia. Earth Evolution Sciences, 
1982, 4, p. 309-319 
 
Helmcke, D. (1984)- The orogenic evolution (Permian-Triassic) of central Thailand. Implications on 
paleogeographic models for mainland SE Asia. Mem. Soc. Geologique France, N.S., 147, p. 83-91. 
 
Helmcke, D. (1985)- The Permo-Triassic ‘Paleotethys’ in mainland Southeast Asia and adjacent parts of China. 
Geol. Rundschau 74, 2, p. 215-228. 
(Discussion of geodynamic evolution of mainland SE Asia and China. Permo-Triassic ‘Paleotethys’ suture must 
be expected S of Tibet and in Burma. All sutures in Thailand, Vietnam and Yunnan already closed during 
Paleozoic) 
 
Helmcke, D., R. Ingavat-Helmcke & D. Meischner (1993)- Spatvariszische Orogenese und Terranes in Sudost-
Asien. Gottinger Arbeiten Geologie Palaeontologie, 58, p. 29-38. 
('Late Variscan orogenesis and terranes in Southeast Asia') 
 
Henderson, R.A., J.S. Crampton, M.E. Dettmann, J.G. Douglas, D. Haig, S. Shafik, J.D. Stilwell & R.A. 
Thulborn (2000)- Biogeographical observations on the Cretaceous biota of Australasia. In: A.J. Wright et al. 
(eds.) Palaeobiogeography of Australasian faunas and floras, Mem. Assoc. Australasian Palaeontologists (AAP) 
23, p. 355-404. 
(Overview of Cretaceous macrofauna, microfauna, flora in Australia. Maximum paleobiogeographic gradients 
in Albian, Late Campanian and Maastrichtian) 
 
Hennig, D., B. Lehmann, D. Frei, B. Belyatsky, X.F. Zhao, A.R. Cabral, P.S. Zeng, M.F. Zhou & K. Schmidt 
(2009)- Early Permian seafloor to continental arc magmatism in the eastern Paleo-Tethys: U-Pb age and Nd-Sr 
isotope data from the southern Lancangjiang zone, Yunnan, China. Lithos 113, 3/4, p. 408-422. 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  162

(SW Yunnan complex geological evolution of Paleo-Tethys and Eurasia-Gondwana collision at end of 
Paleozoic. S Lancangjiang zone at Laos border gabbros with U-Pb zircon age of 292 Ma, indicative of E 
Permian sea-floor spreading. Also arc-like andesites and granodiorite intrusions with zircon ages of 284-282 
Ma. Point to Permian subduction of oceanic crust between Lincang Block and Lanping-Simao Block. M 
Triassic Lincang granite (239 Ma) batholith marks closure of Paleo-Tethys. Nd-model ages from 1.7- 2.1 Ga 
point to Paleoproterozoic basement, probably fragment of Yangtze Block) 
 
Herngreen, G.F.W., M. Kedves, L.V. Rovnina & S.B. Smirnova (1996)- Cretaceous palynological provinces: a 
review. In: J. Jansonius & D.C. MacGregor (eds.) Palynology: principles and applications, American Assoc. 
Stratigr. Palynologists (AASP) Found. 3, p. 1157-1188. 
(Includes map of Albian-Cenomanian tropical-subtropical Elaterosporites microfloral province (peaking in 
subtropical arid climate?). Also known from PNG) 
 
Hirsch, F., K. Ishida, T. Kozai & A. Meesook (2006)- The welding of Shan-Thai. Geosciences J. (Geol. Soc. 
Korea), 10, 3, p. 195-204. 
(online at: www.geosciences-journal.org/home/journal/... ) 
(Shan-Thai Terrane is remnant of 'poly-island' Paleo-Tethys oceanic system in SE Asia. It is composite terrane, 
with Cathaysian internal elements and transitional 'Sibumasu' central part. External 'Shan' elements left 
Gondwana last and have clear cold-water imprint. Final welding and Paleotethys closure in end Triassic-
earliest Jurassic Late Indosinian event. Cenozoic Himalayan escape tectonics compressed Shan-Thai, opened 
Gulf of Thailand and disrupted original alignment of Gondwana-Tethys divide) 
 
Hobbs, W.H. (1944)- Mountain growth, a study of the Southwestern Pacific Region. Proc. American 
Philosophical Soc. 88, 4, p. 221-268. 
(Old review of SW Pacific mountain systems, including Sunda-Banda Arc) 
 
Holcombe, C.J. (1977)- How rigid are the lithospheric plates? Fault and shear rotations in southeast Asia. J. 
Geol. Soc., London, 134, p. 325-342. 
(Significant fault movement in Tertiary in continental SE Asia. Three rotations: Indochina subplates wrench 
rotation, Sunda shear rotation, and rotation of Malay Peninsula and Sunda Platform by movements along 
Ranong and Semangko faults) 
 
Holloway, J. & R. Hall (1998)- SE Asian geology and biogeography: an introduction. In: R. Hall & J.D. 
Holloway (eds.) Biogeography and geological evolution of SE Asia, Backhuys Publ., p. 1-23. 
 
Holloway, J. (1998)- Geological signal and dispersal noise in two contrasting insect groups in the Indo-
Australian tropics: R-mode analysis of patterns in Lepidoptera and cicadas. In: R. Hall & J.D. Holloway (eds.) 
Biogeography and geological evolution of SE Asia, Backhuys Publishers, p. 291-314. 
 
Honza, E. & K. Fujioka (2004)- Formation of arcs and backarc basins inferred from the tectonic evolution of 
Southeast Asia since the Late Cretaceous. Tectonophysics 384, p. 23-53. 
(New data in NW West Philippines basin Daito Ridge used to reconstruct Late Cretaceous- Tertiary plate 
tectonics of SE Asia. In model S Borneo rotates 90° CCW since Cretaceous) 
 
Hou, Z. & H. Zhang (2015)- Geodynamics and metallogeny of the eastern Tethyan metallogenic domain. Ore 
Geology Reviews 70, p. 346-384. 
(Major review of metallogeny of eastern Tethysides) 
 
Houseman, G. & P. England (1993)- Crustal thickening versus lateral expulsion in the Indian-Asian continental 
collision. J. Geophysical Research 98, B7, p. 12233-12249. 
(Since beginning of continental collision between India and Asia ~2500 km of convergence. N-ward movement 
of India accommodated by major internal deformation of Asian lithosphere, incl. crustal thickening in and 
around Tibetan Plateau. Experimental modeling suggests crustal thickening dominant mode of indentation 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  163

strain accommodation. Although common 10- 30° paleomagnetic rotations, probably not accompanied by large 
E-ward 'extrusion') 
 
Hsu, K.J., J. Li, H. Chen, Q. Wang, S. Sun & A.M.C Sengor (1990)- Tectonics of South China: key to 
understanding West Pacific geology. Tectonophysics 183, p. 9-39. 
(S China is composite of Proterozoic-Mesozoic orogenic belts. Three continental blocks: Yangzi, Huanan, and 
Dongnanya. Yangzi separated from Gondwana in Late Precambrian. N margin of Huanan was N active 
Gondwana margin until Devonian. Huanan and Yangzi collided in Triassic. Huanan separated in Devonian, 
with continuous Devonian-Triassic sequence on S passive margin of Huanan. Dongnanya with Permian glacial 
marine deposits, separated from Gondwana in Late Permian and may be E continuation of Sibumasu) 
 
Huang, H. & X. Jin (2014)- Paleoclimatic implications of Permian fusulinids and carbonates from the Baoshan 
Block, southwestern China. In: R. Rocha et al. (eds.) Strati 2013- First Int. Congress on Stratigraphy, At the 
cutting edge of stratigraphy, Springer, p. 1105-1108. 
(Permian fusulinids of Baoshan Block (= part of 'Sibumasu Group') lower generic diversity than coeval tropical 
assemblages. Dominant elements change from mainly eurytopic genera in E Permian/Sakmarian grainstones 
(>30°S; Pseudofusulina, Eoparafusulina) to warmer water algal-foram limestones in M Permian Murghabian 
(with Schwagerina, Eopolydiexodina) and Midian (with Sumatrina, Verbeekina)) 
 
Huang, W., D.J.J. Hinsbergen, P.C. Lippert, Z. Guo & G. Dupont‐Nivet (2015)- Paleomagnetic tests of tectonic 
reconstructions of the India‐Asia collision zone. Geophysical Research Letters 42, 8, p. 2642-2649. 
(Late Cretaceous and Paleogene paleolatitudes of Tibetan Himalaya difficult to reconcile with current 
hypotheses of collision age (34, 52 or 65 Ma) and inferred Asian shortening (600-900km)) 
 
Huang Z.C., D.P. Zhao & L. Wang (2015)- P wave tomography and anisotropy beneath Southeast Asia: Insight 
into mantle dynamics. J. Geophysical Research, Solid Earth, 120, 7, p. 5154-5174. 
(online at: http://onlinelibrary.wiley.com/doi/10.1002/2015JB012098/epdf) 
(Tomographic images of mantle under SE Asia show high-velocity zones high-V zones around SE Asia which 
generally represent subducting slabs. Slabs generally extend down to the Mantle Transition Zone. Low-velocity 
zones with trench-normal anisotropy in uppermost mantle, indicating back-arc spreading or secondary mantle-
wedge flow induced by slab subduction. Trench-parallel anisotropy in deep upper mantle reflects structures in 
subducting slab or in upper mantle surrounding slab. Gap in slab under area between Sumatra and Java) 
 
Hutchison, C.S. (2005)- The geological framework. In: A. Gupta (ed.) The physical geography of Southeast 
Asia, Oxford University Press, p. 3-23. 
(Review of SE Asia tectonic framework) 
 
Isbell, J.L., M.F. Miller, K.L. Wolfe & P.A. Lenaker (2003)- Timing of late Paleozoic glaciation in Gondwana: 
was glaciation responsible of the development of northern hemisphere cyclothems? In: M.A Chan & A.W. 
Archer (eds.) Extreme depositional environments: mega end members in geologic time, Geol. Soc. America 
(GSA), Spec. Paper 370, p. 5-24. 
 
Izokh, E.P. (1997)- Australasian tektites and a global disaster of about 10,000 years BP, caused by collision of 
the Earth with a comet. Russian Geol. Geophysics 38, 3, p. 669-699. 
(Based on evidence from Vietnam, age of gigantic Australasian Tektite Strewn Field here considered to be close 
to 10,000 years ago, much younger than commonly accepted age of 0.7 Ma, and may have triggered global 
climate changes and mass extinctions at Pleistocene/Holocene boundary) 
 
Jenny, C. & G. Stampfli (2000)- Permian palaeogeography of the Tethyan Realm. Permophiles 37, p. 24-33. 
(Well-illustrated series of Tethys reconstructions for Late Carboniferous- Late Permian, showing generally 
accepted model of Paleozoic ocean N of Cimmerian continents (Paleotethys), a Late Paleozoic- Mesozoic ocean 
S of this continent (Neotethys; = Mesotethys of other authors?;JTvG), and M Jurassic ocean (Alpine Tethys)) 
 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  164

Jin, X.C. & X.N. Yang (2004)- Paleogeographic implications of the Shanita-Hemigordius fauna (Permian 
foraminifer) in the reconstruction of Permian Tethys. Episodes 27, 4, p. 273-278. 
(online at: www.episodes.co.in/www/backissues/274/273-278%20Jin.pdf) 
(Permian foraminifer Shanita of special paleobiogeographic importance. Occurs in Gondwana-derived blocks, 
in strip from Peninsular Thailand to Burma, S China, S Afghanistan, Oman, etc. to Turkey. Often associated 
with Hemigordius. Shanita-Hemigordius fauna considered as marker of marginal Gondwana environment 
(more specifically 'Cimmerian' strips that rifted off Gondwana in M-L Permian?; JTvG)) 
 
Jin, X.C. & K. Zhao (2001)- Permo-Triassic paleogeographic, paleoclimatic and paleoceanographic evolutions 
in eastern Tethys and their coupling. Science in China, D, 44, 11, p. 968-978. 
(Reconstructions of paleogeography and paleoceanography of Chihsian (E Permian), Wujiapingian, Anisian 
and Norian (Late Triassic) intervals in E Tethys. Paleogeographic change of the E Tethys and N-ward shift of 
Pangea during Permo-Triassic periods governed coeval paleocurrent pattern and evolution) 
 
Jones, P.J., I. Metcalfe, B.A. Engel, G. Playford, J. Rigby, J. Roberts, S. Turner & G.E. Webb (2000)- 
Carboniferous palaeobiogeography of Australasia. In: A.J. Wright (ed.) Palaeobiogeogeography of Australasia, 
Mem. Assoc. Australasian Palaeontologists (AAP) 23, p. 259-286. 
(Mainly on Carboniferous biostratigraphy of Australian region and Australian-derived SE Asia terranes) 
 
Kamata, Y., K. Ueno, H. Hara, M. Ichise, T. Charoentitirat, P. Charusiri, A. Sardsud & K. Hisada (2009)- 
Classification of the Sibumasu and Paleo-Tethys tectonic division in Thailand using chert lithofacies. Island Arc 
18, 1, p. 21-31. 
(Two chert types used to map Paleotethys suture in N Thailand- Malaysia: (1) Devonian- M Triassic pelagic 
chert (common radiolarians, no terrigenous material) as blocks in sheared matrix, originated in Paleo-Tethys; 
(2) Triassic hemipelagic chert (scattered radiolarian tests and calcareous organisms such as foraminifera), 
accumulated on E margin of Sibumasu Block. Cherts in two N-trending zones: W zone hemipelagic cherts and 
glaciomarine successions on Precambrian basement (Sibumasu), E zone pelagic chert and limestone (Paleo-
Tethys). Boundary between zones is N-trending, E-dipping, low-angle thrust, resulting from collision of 
Sibumasu and Indochina blocks) 
 
Kanmera, K. & K. Nakazawa (1973)- Permian- Triassic relationship and faunal changes in the eastern Tethys. 
Canadian Soc. Petrol. Geol., Mem. 2, p. 100-119. 
(Audley-Charles et al. 1979: Permian Maubisse Fm of Timor close affinities with Asian facies and faunas) 
 
Kasuya, A., Y. Isozaki & H. Igo (2012)- Constraining paleo-latitude of a biogeographic boundary in mid-
Panthalassa: fusuline province shift on the Late Guadalupian (Permian) migrating seamount. Gondwana 
Research 21, p. 611-623. 
(Using Permian fusulinid forams and paleomagnetic data to reconstruct low latitude origin of M Permian 
seamount, which accreted to S China (Japan) margin in Jurassic. Two or three coeval M Permian 
biogeographic territories in Tethys-Panthalassa realms: Neoschwagerina-Yabeina territory (>12 °S) and 
Colania-Lepidolina territory (<12°), and higher latitude Eopolydiexodina territory (>~25°S)) 
 
Katili, J.A. (1971)- Neotectonics of Southeast Asia. Bull. Assoc. Francaise Etude du Quaternaire 4, p. 851-856. 
 
Kato, H., A. Reedman, Y. Shimazaki et al. (eds.) (2016)- Stone heritage of East and Southeast Asia. Geol. 
Survey of Japan and CCOP, Thailand, p. 1-234. 
(online at: www.ccop.or.th/download/pub/ccop_stone_book_low_res.pdf) 
(Examples of use of natural stone in construction of temples, monuments, castles, forts, etc., in 9 SE Asian 
countries. Incl. chapter on Indonesia by S. Baskoro (not much detail on rock types and nothing on West Papua) 
 
Kennett, J.P., G. Keller & M. Srinivasan (1985)- Miocene planktonic foraminiferal biogeography and 
paleoceanographic development of the Indo-Pacific region. In: J.P. Kennett (ed.) The Miocene ocean: 
paleooceanography and biogeography, Geol. Soc. America (GSA) Mem. 163, p. 197-236. 
(Planktonic foraminifera distribution patterns suggest closure of Indonesian Seaway around 13-12 Ma) 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  165

 
Khan, P.K., S. Shamim, M. Mohanty, P. Kumar & J. Banerjee (2017)- Myanmar-Andaman-Sumatra subduction 
margin revisited: insights of arc-specific deformations. J. Earth Science (China) 28, 4, p. 683-694. 
(online at: http://en.earth-science.net/PDF/20170721111758.pdf) 
 (Analysis of concave and convex sectors of subducting Indian Ocean plate along >3000km long Myanmar-
Andaman-Sumatra active margin from earthquake data) 
 
Kiessling W., E. Flugel & J. Golonka (1999)- Paleoreef maps: evaluation of a comprehensive database on 
Phanerozoic reefs. American Assoc. Petrol. Geol. (AAPG) Bull. 83, 10, p. 1552-1587. 
 
Kiessling W., E. Flugel & J. Golonka (2003)- Patterns of Phanerozoic carbonate platform sedimentation. 
Lethaia 36, 3, p. 195-225. 
(Review of carbonate platforms and distribution from Ordovician-Neogene) 
 
Kimura, T. (1984)- Mesozoic floras of East and Southeast Asia, with a short note on the Cenozoic floras of 
Southeast Asia and China. In: T. Kobayashi et al. (eds.) Geology and Palaeontology of Southeast Asia 25, 
University of Tokyo Press, p. 325-350. 
(Review of Triassic- Cretaceous floras in SE Asia and China. Late Triassic- E Jurassic flora from the Krusin Fm 
near Kuching, W Sarawak is part of Indochina/ South China Dictyophyllum-Chlathropteris floristic province) 
 
Kimura, T. (1985)- Notes on the present status of Late Triassic floras in East and Southeast Asia. In: III Congr. 
Latino America Paleontology, Mexico City, Simposium sobre Floras Trias, Mem. 3, p. 5-9. 
 
Kimura, T. (1987)- Geographical distribution of Paleozoic and Mesozoic plants in East and Southeast Asia. In: 
A. Taira & M. Tashiro (eds.) Historical biogeography and plate tectonic evolution of Japan and Eastern Asia, 
Terra Science Publ., Tokyo, p. 135-200. 
 
Kirillova, G.L. (1993)- Types of Cenozoic sedimentary basins of the East Asia and Pacific Ocean junction area. 
Palaeogeogr. Palaeoclim. Palaeoecology 105, p. 17-32. 
(Classification of marginal basins in W Pacific (incl. Philippine Sea, E China Sea, etc.): (1) oceanic and 
transitional crust basins: mainly deep water trenches, back-arc, inter-arc, forearc and intra-arc basins; (2) 
basins with continental crust: marginal-continental shelf and intracontinental basins, filled with alluvial deltaic 
and lacustrine sediments up to 11 km thick) 
 
Klimetz, M.P. (1987)- The Mesozoic tectonostratigraphic terranes and accretionary heritage of south-eastern 
mainland Asia. In: E.G. Leitch & E. Scheibner (eds.) Terrane accretion and orogenic belts, American Geophys. 
Union (AGU) Geodyn. Ser. 19, p. 221-234. 
(On mainland SE Asia tectonic terranes, with focus on Mesozoic accretionary history of China) 
 
Kobayashi, F. (1997)- Middle Permian biogeography based on fusulinacean faunas In: C.A. Ross et al. (eds.) 
Late Paleozoic foraminifera, their biostratigraphy, evolution and paleoecology, and the Mid-Carboniferous 
boundary, Cushman Found. Foraminiferal Research, Spec. Publ. 36, p. 73-76. 
(Permian fusuline foram faunas three provinces: (A) Western Tethys, with Yabeina, Afghanella and Sumatrina 
and without Lepidolina; extends from Mediterranean to N Arabia; (B) Eastern Tethys, with diverse 
neoschwagerinids and verbeekinids, incl. Afghanella and Sumatrina, covering SE Asia, S China, Indochina, and 
limestone units in SW Japan Permian accretionary complex; (C) Panthalassan: without sumatrinids, dominant 
Yabeina and less Lepidolina, in exotic limestone blocks around Circum-Pacific (N America, Siberia, Japan)) 
 
Kobayashi, F. (1997)- Middle Permian fusulinacean faunas and paleobiogeography of exotic terranes in the 
Circum-Pacific. In: C.A. Ross et al. (eds.) Late Paleozoic foraminifera, their biostratigraphy, evolution and 
paleoecology, and the Mid-Carboniferous boundary, Cushman Found. Foraminiferal Research, Spec. Publ. 36, 
p. 77-80. 
 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  166

Kobayashi, F. (1999)- Tethyan uppermost Permian (Dzhulfian and Dorashamian) foraminiferal faunas and their 
paleogeographic and tectonic implications. Palaeogeogr. Palaeoclim. Palaeoecology 150, p. 279-307. 
(Latest Permian Palaeofusulina fauna serves as paleogeographic constraints on E and SE Asian terranes. 
Common in S China, Indochina and E Malaya shelf limestone facies. Also present on Early Permian rifted 
terranes, like N Thailand (Sibumasu terrane) and Tibet (Qiangtang Terrane). Absence of Palaeofusulina fauna 
and presence of late Midian Lepidolina multiseptata faunas in Lhasa Terrane (Tibet) and Woyla Terrane in 
Sumatra important for identifying rift-drift-collision process of Gondwana-affinity terranes) 
 
Kobayashi, T. (1944)- Reciprocal development of radiolarian rocks as between Asiatic and Australian sides. 
Proc. Imperial Academy (Tokyo) 20, 4, p. 234-238. 
(online at: https://www.jstage.jst.go.jp/article/pjab1912/20/4/20_4_234/_pdf) 
(Brief review of radiolarian bearing formations in Japan, SE Asia, Australia. Sambosan and Higashigawa suites 
of Japan mainly Permo-Triassic age. Also in chert series in Malay Peninsula, Tuhur Fm of Sumatra and Danau 
Fm in Borneo. Danau Fm suggested by Hinde to be Jurassic age, but here thought to be mostly Permo-Triassic 
(based on Krekeler observations). Danau facies appears continues into Philippines via Palawan and Jolo or 
Sulu arcs, where radiolarian cherts are called Babuyan Fm  
 
Kobayashi, T. (1973)- The early stage of the Burmese-Malayan Geosyncline. In: B.K. Tan (ed.) Proc. Reg. 
Conference on the Geology of SE Asia, Kuala Lumpur 1972, Bull. Geol. Soc. Malaysia 6, p. 118-129. 
(online at: www.gsm.org.my/products/702001-101351-PDF.pdf) 
(Discussion of belt of Paleozoic (Ordovician- Permian) and Triassic rocks, extending from Shan Plateau 
(Myanmar) and W Yunnan (S China)in N through Thai-Malayan Peninsula in south and continuing into Borneo. 
No figures, maps) 
 
Kobayashi, T. (1978)- The Jurassic palaeogeography of Japan and Southeast Asia. Proc. Japan Academy 54, B 
10, p. 583-588. 
 
Kobayashi, T. (1979)- The Trigonioides basins and the Cretaceous palaeogeography of East and Southeast Asia. 
Proc. Japan Academy 55, B 1, p. 1-5. 
(online at: www.journalarchive.jst.go.jp/...) 
(On distribution of Early-Middle Cretaceous non-marine bivalve mollusc Trigonioides in SE Asia, including in 
continental facies of Rantaulajung Fm near Martapura, SE Kalimantan with Upper Cretaceous conchostracans) 
 
Kobayashi, T. & M. Tamura (1983)- On the Oriental Province of the Tethyan Realm in the Triassic period. Proc. 
Japan Academy, Ser. B, 59, 7, p. 203-206. 
(Short paper on provinciality in Triassic bivalves. Oriental Province of Tethys with species indigenous to E and 
SE Asia. Stretches from Kashmir, Burma, S China, Malay Peninsula, to E Indonesia. No maps) 
 
Koken, E. (1907)- Indisches Perm und die Permische Eiszeit. Neues Jahrbuch Mineral. Geol. Palaeont., 
Festband 1907, p. 446-546. 
('The Permian of the Indies and the Permian glacial period') 
 
Konyukhov, A.I. (2009)- Geological structure, sedimentation conditions, and petroleum potential of 
sedimentary basins in Southeast Asia. Lithology and Mineral Res. 44, 5, p. 427-440. 
(Russian review of SE Asian basins. Most sedimentary basins of SE Asia related to processes of rifting that 
activated in Paleo-Eocene after consolidation of continental crust of the Sunda (Malay) microplate, which 
ended in Late Cretaceous. Wide development of lacustrine basins, which accumulated main source rocks for oil 
and gas in region) 
 
Kozur, H. (1973)- Faunenprovinzen in der Trias und ihre Bedeutung fur die Klarung der Paleogeographie. Geol. 
Palaont. Mitteilungen Innsbruck 3, 8, p. 1-41. 
(online at: www2.uibk.ac.at/downloads/c715/gpm_03/03_08_001-041.pdf) 
('Faunal provinces in the Triassic and their significance for paleogeography'. Paleobiogeography based on 
conodonts: Triassic of SE Asia, incl. Timor, is in Asiatic Tethyan faunal province. No maps) 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  167

 
Kristan-Tollmann, E. (1987)- Triassic of the Tethys and its relations with the Triassic of the Pacific realm. In: 
K.G. MacKenzie (ed.) Int. Symposium on Shallow Tethys 2, Wagga Wagga, Balkema, Rotterdam, p. 169-186. 
 
Kristan-Tollmann, E. (1988)- Unexpected microfaunal communities within the Triassic Tethys. In: M.G. 
Audley-Charles & A. Hallam (eds.) Gondwana and Tethys, Geol. Soc., London, Spec. Publ. 37, p. 213-223. 
(Remarkable uniformity in Triassic faunas throughout Tethyan region. Both planktonic and benthic organisms. 
Very little on SE Asia) 
 
Kristan-Tollmann, E. (1988)- Pandemic ostracod communities in the Tethyan Triassic. In: R. Whatley & C. 
Maybury (eds.) Ostrocoda and global events, British Micropal. Soc. Publ., p. 541-544. 
(Tethyan Late Triassic ostracodes in Sahul Shoals 1 well, 1880-1890m, Australia NW Shelf. Most common 
species Cytherella acuta, with other Tethyan species Nodobairdia mammilata and Tethyscythere austriaca. 
Similar Triassic ostracode faunas on N and S sides of Tethys (Timor, NW Australia)) 
 
Krobicki, M. & J. Golonka (2006)- Caledonian orogeny in Southeast Asia: questions and problems. Geolines, 
20, p. 75-78.   (Extended Abstract) 
(online at: http://geolines.gli.cas.cz/fileadmin/volumes/volume20/G20-076.pdf) 
 
Krobicki, M. & J. Golonka (2009)- Palaeobiogeography of Early Jurassic Lithiotis-type bivalve buildups as 
recovery effect after Triassic/Jurassic mass extinction and their connections with Asian palaeogeography. In: 
Proc. 5th Int. Symposium of IGCP-516, Geologial anatomy of East and South Asia, Kunming, Acta 
Geoscientica Sinica 30, Suppl. 1, p. 30-33. 
(online at: www.cagsbulletin.com/   ) 
(Buildups of large bivalves of Lithiotis group are first reefal features after end-Triassic extinction. Present 
across S Tethys margin, including Nepal-Tibet(Lhasa Block?) and Timor (Krumbeck 1923)) 
 
Lacassin, R., P.H. Leloup & P. Tapponnier (1993)- Bounds on strain in large Tertiary shear zones of SE Asia 
from boudinage restoration. J. Structural Geol. 15, p. 677-692. 
(Restoration of stretched, boudinaged layers in mylonitic gneisses of Oligo-Miocene Red River-Ailao Shan 
(Yunnan) and Wang Chao (Thailand) shear zones suggests layer-parallel extension of 250-870%, implying 
minimum left-lateral strike-slip displacements of ~330 km (Red River-Ailao Shan) and ~35 km (Wang Chao)) 
 
Lam, H.J. (1930)- Het genetisch-plantengeografisch onderzoek van den Indischen Archipel en Wegener’s 
verschuivingstheorie. Tijdschrift Kon. Nederlands Aardrijkskundig Genootschap 2, 47, p. 553-581. 
(‘The genetic plant-geographic investigation of the Indies Archipelago and Wegener’s continental drift theory’) 
 
Lambiase, J.J. (2011)- The stacked-channel reservoir sands of SE Asia. SEAPEX Expl. Conf., Singapore 2011, 
Presentation 26, 40p.  (Presentation package) 
 
Langford, R.P., B. Cairncross & M. Friedrich (1992)- Permian coal and palaeogeography of Gondwana. Bureau 
Mineral Res. Geol. Geoph., Canberra, Record 1991/95, Palaeogeography 39, p. 1-136. 
(www.ga.gov.au/corporate_data/14505/Rec1991_095.pdf) 
(Review of Early and Late Permian coal distribution across Gondwana (Australia- W Papua, India, Antarctica, 
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Southeast Asia. Int. Geology Review 55, 8, p. 976-993. 
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related to Americo-Siberian region; S China close affinity to E Australia in Early Silurian, but more akin to 
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(Includes brief descriptions of Indonesian (Java, SE Kalimantan, Sulawesi, Timor, N New Guinea) and SW 
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Pitfield, P.E.J. (1987)- Report on the geochemistry of the Tin islands of Indonesia. British Geological Survey, 
Overseas Directorate, Report No. MP/87/9/R, p.  
 
Pitfield, P.E.J. (1987)- Geochemistry of the Tin Islands granites of Indonesia in relation to those of Peninsular 
Malaysia. Warta Geologi 13, p. 125-133. 
(online at: https://gsmpubl.files.wordpress.com/2014/09/ngsm1987003.pdf) 
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phytogeographic patterns and climate data/model comparisons. J. Geology 110, 1, p. 1-31. 
(online at: www.geo.arizona.edu/rees/2202-4.pdf) 
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(Asia is composite continent consisting of three major cratons: Siberian, Indian and Arabian and three huge 
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continent, in agreement with models) 
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(Reconstructions of SE Asia block motions from India to Taiwan since ~50 Ma. Extrusion absorbed ~30% of 
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mainland Asia after break-up of Gondwanaland. 'Interesting' reconstruction) 
 
Ridd, M.F. (1980)- Possible Palaeozoic drift of SE Asia and Triassic collision with China. J. Geol. Soc., 
London, 137, 5, p. 635-640. 
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suture’ in Thailand possibly joins with Lancangjiang Suture) 
 
Ridd, M.F. (2016)- Should Sibumasu be renamed Sibuma? The case for a discrete Gondwana-derived block 
embracing western Myanmar, upper Peninsular Thailand and NE Sumatra. J. Geol. Soc., London, 173, 2, p. 
249-264. 
(Luxi-Nujiang suture extends from Yunnan into Myanmar and continues into Thailand and Malacca Strait. It 
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'classical Tethys' (Neo-Tethys)) 
 
Sengor, A.M.C. (1985)- Die Alpiden und die Kimmeriden: Die verdoppelte Geschichte der Tethys. Geol. 
Rundschau 74, 2, p. 181-213. 
(Similar to Sengor (1986) below. Repeated episodes of Tethyan Ocean closing: Paleotethys by accretion of 
Cimmerides terranes, Neotethys by accretion of Alpide terranes) 
 
Sengor, A.M.C. (1986)- The dual nature of the Alpine-Himalayan system: Progress, problems and prospects. 
Tectonophysics 127, 3, p. 177-195. 
(Alpine-Himalayan system interpreted as places where two independent Tethyan ocean complexes (Palaeo- and 
Neo-Tethys) vanished during Permo-Carboniferous- E Cretaceous and late Cretaceous- Present respectively. 
Older orogen is called Cimmerides, younger Alpides. Cimmerides, together forming Tethysides) 
 
Sengor, A.M.C. (1987)- Tectonics of the Tethysides: orogenic collage development in a collisional setting. 
Annual Review Earth Planetary Sci. 15, p. 213-244. 
(Review of plate tectonic history of the Alpine- Himalayan- Indonesian mountain ranges since Late Paleozoic) 
 
Sengor A.M.C. (1992)- The Palaeo-Tethyan suture: a line of demarcation between two fundamentally different 
architectural styles in the structure of Asia. Island Arc 1, 1p. 78-91. 
(Paleo-Tethyan suture separates regions characterized by two different tectonic styles in Tethysides. N of suture 
(Iran, Turkmenistan, Afghanistan, Tadjikistan, Kirgizstan, Uzbekistan, Kazakhstan large parts of Russia and 
China), orogenic development characterized by large subduction-accretion complexes developed since Late 
Proterozoic. S of Paleo-Tethyan suture, orogeny characterized by Sumatra- or Andean-type continental margin 
arc that in places became island arc by back-arc basin rifting and later collided with Atlantic continental 
margin to create Alpine- or Himalayan-type orogenic belts. Paleo-Tethyan suture is line across which rate of 
continental enlargement by subduction-accretion changed dramatically. Rel. little on SE Asia) 
 
Sengor A.M.C. (1998)- Die Tethys: vor hundert Jahren und heute. Mitteilungen Osterreichischen Geol. 
Gesellschaft 89 (1996), p. 5-177. 
(online at: www2.uibk.ac.at/downloads/oegg/Band_89_5_177.pdf) 
('The Tethys: hundred years ago and today'. Extensive historic review of discovery and development of 
interpretations of Tethys Ocean(s). Includes chapter (p. 104-114) on contributions to tectonic understanding of 
mountain building by the Dutch 'heroes' geologists working in Indonesia between 1900-1940, particularly 
Molengraaff, Wing Easton who were early supporters of 'mobilism', i.e. Wegener's continental drift hypothesis) 
 
Sengor, A.M.C., D. Altiner, A. Clin, T. Ustaosmer & K.J. Hsu (1988)- Origin and assembly of the Tethyside 
orogenic collage at the expense of Gondwana Land. In: M.G. Audley-Charles & A. Hallam (eds.) Gondwana 
and Tethys, Geol. Soc., London, Spec. Publ. 37, p. 119-181. 
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(Major review of plate tectonic history of the Alpine- Himalayan- Indonesian mountain ranges since Late 
Paleozoic. Mainly on mainland S Asia) 
 
Sengor, A.M.C. & S. Atayman (2009)- The Permian extinction and the Tethys: an exercise in global geology. 
Geol. Soc. America (GSA), Spec. Paper 448, p. 1-85. 
(End-Permian faunal extinctions may be consequence of sealing off of Paleo-Tethys ocean from Panthalassa by 
land bridge formed from Cimmerian Continent, Cathaysian and Manchuride orogenic collages and Tuva-
Mongol fragment of eastern Altaids. Limited Late Permian water exchange between Paleo-Tethys and 
Panthalassa and Neo-Tethyan rifts, starting anoxia in Paleo-Tethys) 
 
Sengor, A.M.C., S. Atayman & R. Presnell (2008)- Paleo-Tethys, Permian extinction, and stratabound copper-
sulfide deposits of the Cimmerides. In: J.E. Spencer & S.R. Titley (eds.) Ores and orogenesis: Circum-Pacific 
tectonics, geologic evolution and ore deposits, Arizona Geol. Soc. Digest 22, p. 19-30. 
 
Sengor, A.M.C., A. Cin, D.B. Rowley & S. Nie (1991)- Magmatic evolution of the Tethysides. Palaeogeogr. 
Palaeoclim. Palaeoecology 87, p. 411-440. 
(Five maps showing the spatial and temporal evolution of magmatic activity along Tethysides for: (1) late 
Carboniferous-Permian; (2) Triassic- E Jurassic; (3) M Jurassic-early Cretaceous; (4) late Cretaceous-early 
Cenozoic and (5) late Cenozoic-present) 
 
Sengor, A.M.C., A. Cin, D.B. Rowley & S.Y. Nie (1993)- Space-time patterns of magmatism along the 
Tethysides: a preliminary study. J. Geology 101, 1, p. 51-84. 
(Five maps of magmatism along the Tethysides for: Late Carboniferous and Permian (320-248 Ma), Triassic 
and Early Jurassic (247-188 Ma), Middle Jurassic-Early Late Cretaceous (187-98 Ma), early Late Cretaceous-
early Cainozoic (97-25 Ma), and late Cainozoic (24-0 Ma)) 
 
Sengor, A.M.C. & K.J. Hsu (1984)- The Cimmerides of Eastern Asia: history of the eastern end of Palaeo-
Tethys. Mem. Soc. Geologique France 17, p. 139-167. 
 
Sengor, A.M.C. & B.A. Natalin (1996)- Palaeotectonics of Asia, fragments of a synthesis. In: A. Yin & T.M. 
Harrison (eds.) Tectonic evolution of Asia, Cambridge University Press, p. 486-640. 
 
Setchell, W.A. (1930)- The Wallace and Weber lines: a suggestion as to climate boundaries. Proc. 4th Pacific 
Science Congress, Java 1929, III, p. 311-321. 
 
Seton, M. & R.D. Muller (2008)- Reconstructing the junction between Panthalassa and Tethys since the Early 
Cretaceous. In: J.E. Blevin et al. (eds.) Eastern Australasin basins symposium III, Energy security for the 21st 
century, Sydney, Petroleum Expl. Soc. Australia (PESA), Spec. Publ., p. 263-266. 
(Series of reconstructions of now mostly vanished oceanic plates between Australia and Eurasia since 140 Ma) 
 
Seton, M., R.D. Muller, S. Zahirovic, C. Gaina, T. Torsvik, G. Shephard, A. Talsma, M. Gurnis, M. Turner, S. 
Maus & M. Chandler (2012)- Global continental and ocean basin reconstructions since 200 Ma. Earth-Science 
Reviews 113, p. 212-270. 
(Major review of ocean basins evolution, incl. Indian Ocean and Tethys) 
 
Sevastjanova, I., R. Hall, M. Rittner, S.M.T.L. Paw, T.T. Naing, D.H. Alderton & G. Comfort (2015)- Myanmar 
and Asia united, Australia left behind long ago. Gondwana Research 32, p. 24-40. 
(New data from heavy minerals and detrital zircon ages of Late Triassic Halobia-bearing Pane Chaung Fm 
turbidite sandstones of Chin Hills in E Indo-Burman Ranges of W Myanmar. Intercalated with ultramafic rocks. 
Sandstones derived from mix of metamorphic, sedimentary and contemporaneous volcanic rocks. Pre-Devonian 
ages of Myanmar ('W Burma') Triassic sands closely resemble Sibumasu and W Australia (incl. >2.6 Ga 
Archean zircons), but differ from Indochina. Significant Permian-Triassic zircon populations (peaks at ~240 
and 260 Ma) in W Burma, but not present in NW Australia. This points to proximity of W Burma to SE Asia (tin 
granites, etc.) in Triassic, which is therefore not elusive Argo block, as suggested in some models) 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  193

 
Sewell, R.J., A. Carter & M. Rittner (2016)- Middle Jurassic collision of an exotic microcontinental fragment: 
Implications for magmatism across the Southeast China continental margin. Gondwana Research 38, p. 304-
313. 
(Major deformation event in Hong Kong between 164-161 Ma (M-L Jurassic) linked to collision of 
microcontinent along SE China continental margin. Accreted terrane zircon age spectra close affinities to 
sources along N Gondwana margin. Collision of exotic terrane and subduction rollback, hastened foundering of 
postulated flat slab beneath SE China, leading to widespread igneous event at 160 Ma) 
 
Shahabpour, J. (2009)- Analagous tectonic evolution of the Tethyan and SE Asian regions. Iranian J. Science 
Techn., Trans. A, 33, A1, p. 57-64. 
(Similar tectonic histories in W Tethys and SE Asia of microcontinents rifting off Gondwana in Devonian- 
Permian and collisions with Eurasia in Late Triassic, etc.) 
 
Shao, W.Y., S.L. Chung, W.S. Chen, H.Y. Lee & L.W. Xie (2015)- Old continental zircons from a young 
oceanic arc, eastern Taiwan: implications for Luzon subduction initiation and Asian accretionary orogeny. 
Geology 43, 6, p. 479-482. 
(Chimei igneous complex in Coastal Range of E Taiwan is N part of intra-oceanic Luzon arc that accreted onto 
Eurasian continental margin since ~5 Ma. Magmatic zircons with mean Pb/U age of ~9 Ma probably of 
emplacement age. Inherited older zircons with ages clustering at ~14 Ma, ~218 Ma (largest peak) and older 
ages of ~726, ~1863 and ~2522 Ma suggest Cathaysia-type sources, attributed to continental fragment that 
split off Eurasian margin by opening of S China Sea, then drifted and accreted to W Philippine Sea plate before 
Luzon subduction initiation. Shows importance of ribbon continents in Asian orogenesis) 
 
Shaw, R.D. (1997)- Some implications of Eurasian and Indo-Australian plate collision on the petroleum 
potential of Tertiary intracratonic basins of Southeast Asia. In: J.V.C. Howes & R.A. Noble (eds.) Proc. Int. 
Conf. Petroleum Systems of SE Asia & Australia, Jakarta 1997, Indon. Petroleum Assoc. (IPA), p. 63-80. 
(Extensive intra-cratonic rift system within intra-cratonic SE Asia, with >70 Tertiary basins from N Thailand 
across Gulf of Thailand, SE-wards to Natuna Ridge. It includes significant hydrocarbon provinces (Malay, W 
Natuna, Pattani, Phitsanulok) and represents transtension along major faults and suture zones. Most rift basins 
affected by subsequent Miocene and Pliocene transpressional deformation. Onset of rifting tied to Eocene start 
of India- Eurasia plates collision) 
 
She, Z., C. Ma, Y. Wan, J. Zhang, M. Li, L. Chen, W. Xu, Y. Li, L. Ye & J. Gao (2012)- An Early Mesozoic 
transcontinental palaeoriver in South China: evidence from detrital zircon U-Pb geochronology and Hf isotopes. 
J. Geol. Soc., London, 169, p. 353-362. 
(Late Triassic- E Jurassic fluvial sandstones from S China Craton basins with four similar detrital zircon age 
populations: 2.6-2.4 Ga, 2.0-1.7 Ga (with remarkable age peaks at ~1.85 Ga), 850-700 Ma and 480-210 Ma. 
Hf values between -22.5 and +3.6, suggest derivation from reworked Archaean crust and minor late 
Paleoproterozoic juvenile crustal additions. Correlate well with E Cathaysia Block (not Yangtze). Similarities 
in provenance of Triassic- Jurassic around S China Craton delineate E-W sediment belt from Korea to W China 
and ~2000km long W-draining transcontinental paleo-river feeding basins in Korea, S and W China) 
 
Shen, S., S. Dongli & G.R. Shi (2003)- A biogeographically mixed late Guadalupian (late Middle Permian) 
brachiopod fauna from an exotic limestone block at Xiukang in Lhaze county, Tibet. J. Asian Earth Sci. 21, p. 
1125-1137. 
(Km-size late M Permian limestone blocks in Indus-Tsangbo suture, Tibet, may be from carbonate build-up or 
seamount on oceanic crust. Fauna transitional between warm-water Cathaysian and cold- temperate 
Gondwanan faunas. Timorites ammonoid present, largely cool bi-temperate genus, occurring in W Timor, 
Japan, Tibet, Iran and W Texas. W Timor assigned to transitional Cathaysian- Gondwanan Cimmerian realm in 
M Permian (Shi and Archbold, 1995)) 
 
Shen, S.Z. & G.R. Shi (2000)- Wuchiapingian (early Lopingian, Permian) global brachiopod 
palaeobiogeography: a quantitative approach. Palaeogeogr. Palaeoclim. Palaeoecology 162, 3-4, p. 299-318. 
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(Late Permian brachiopods five marine biotic province: Cathaysian (tropical), W Tethyan (tropical), 
Himalayan (warm temperate), Austrazean (cold temperate) and Greenland-Svalbard (cold temperate). Also 
Cimmerian biogeographical region from Middle East through Afghanistan and Himalayas SE to Shan-Thai 
terrane and Timor, typified by mix of genera of both Cathaysian and Gondwanan affinities) 
 
Shen, S.Z. & G.R. Shi (2004)- Capitanian (Late Guadalupian, Permian) global brachiopod palaeobiogeography 
and latitudinal diversity pattern. Palaeogeogr. Palaeoclim. Palaeoecology 208, p. 235-262. 
(Six paleogeographic provinces based on M Permian brachiopods: (A) Greenland-Svalbard (Arctic region), (B) 
Grandian (W North America), (D) Cathaysian (Paleotethys and Mesotethys), (F) Austrazean (E Australia- New 
Zealand), and two transitional zones (C) Sino-Mongolian-Japanese (N temperate zone) and (E) Himalayan (S 
temperate zone) Province. West Timor Aileu-Maubisse assemblages grouped with Lhasa, Chitichun and 
Zhongba assemblages of S Tibet and Salt Range (Pakistan) in 'Himalayan Province') 
 
Shen, S.Z., G.R. Shi & N.W. Archbold (2003)- A Wuchiapingian (Late Permian) brachiopod fauna from an 
exotic block in the Indus-Tsangpo suture zone, southern Tibet, and its palaeobiogeographical and tectonic 
implications. Palaeontology 56, 2, p. 225-256. 
(online at: http://onlinelibrary.wiley.com/doi/10.1111/1475-4983.00296/pdf) 
(Late Permian (Wuchiapingian) brachiopod fauna from exotic reddish crinoidal limestone block in Indus-
Tsangpo suture zone in S Tibet (= suture between Eurasian/Lhasa Block and Indian Plate). Comparable with 
faunas in Salt Range of Pakistan, Chitichun Lst in S Tibet and Basleo area of W Timor (incl. 'antitropical' peri-
Gondwanan species Stenoscisma purdoni and S. timorense, etc.). Fauna mixed peri-Gondwanan and Cathaysian 
character, possibly seamount biota originally from S margin of Neotethys in Late Permian, displaced and 
sandwiched into younger marine deposits in Cenozoic India- Eurasia collision) 
 
Shen, S.Z., G.R. Shi & Z.J. Fang (2002)- Permian brachiopods from the Baoshan and Simao Blocks in Western 
Yunnan, China. J. Asian Earth Sci. 20, 6, p. 665-682. 
(Four Permian brachiopod assemblages from W Yunnan, SW China. Faunas from Baoshan Block dominated by 
species characteristic of Cathaysian Province with some links with Peri-Gondwanan faunas. Simao Block 
characterised exclusively by taxa of Cathaysian Province) 
 
Shen, S.Z., H. Zhang, Q.H. Shang & W.Z. Li (2006)- Permian stratigraphy and correlation of Northeast China: a 
review. J. Asian Earth Sci. 26, p. 304-326. 
(Review of Permian successions and fossils in NE China. Dominated by brachiopods, fusulinids and land plants, 
with limited ammonoids, conodonts and bivalves. Guadalupian (M Permian) in Manchuride, Altaid and Yanbian 
Belts with bi-temperate Roadian- E Wordian Monodiexodina fauna and late Wordian- Capitanian 
Codonofusiella- Schwagerina or Neoschwagerina-Yabeina faunas) 
 
Shen, S.Z., H. Zhang, G.R. Shi, W.Z. Li, J.F. Xie, L. Mu & J.X. Fan (2013)- Early Permian (Cisuralian) global 
brachiopod palaeobiogeography. Gondwana Research 24, p. 104-124. 
(Three palaeolatitude-related brachiopod paleobiogeographic realms in E Permian. Six provinces distinguished 
in Asselian: Faunas from Gondwana not well differentiated at province level and form Indoralian province. 
From Sakmarian large transition zone (S Transitional Zone) between Paleoequatorial and Gondwanan Realms 
formed, with Austrazean province(E Australia- New Zealand) in E margin of Gondwanaland, contemporaneous 
with peak of Late Paleozoic Ice (Sakmarian Eurydesma- Bandoproductus-Cimmeriella assemblage, followed by 
Stereochia, Kasetia, Dyschrestia and Spiriferella faunas). Large Cathaysian province stretching from S China, 
Iran in W Palaeotethys to Mongolian continent in N) 
 
Sheng, J.Z. & Y.G. Jin (1994)- Correlation of Permian deposits in China. Palaeoworld 4, p. 14-113. 
 
Shi, G.R. (1998)- Aspects of Permian marine biogeography: a review on nomenclature and evolutionary 
patterns, with particular reference to the Asian- Western Pacific region. In: Y. Jin. et al. (eds.) Permian 
stratigraphy, environments and resources 2, Palaeoworld 9, p. 97-112. 
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Shi, G.R. (2001)- Possible influence of Gondwanan glaciation on low-latitude carbonate sedimentation and 
trans-equatorial faunal migration: the Lower Permian of South China. In: IGCP Project No. 411 on the 
Geodynamic Processes of Gondwanaland-derived Terranes in Eastern Asia, Geosciences J. 5, 1, p. 57-63. 
(Early Permian from S China Block with mixed Cathaysian and cold-water Gondwanan brachiopod taxa, 
widespread rosettes of calcite prisms (‘Chrysanthemum stones’) and lack of significant reef buildups, suggesting 
cold water influence in paleo-equatorial S China in E Permian (ample paleomag data for equatorial setting). 
Possibly upwelling of cold water along W coast of S China terrane during E Permian) 
 
Shi, G.R. & N.W. Archbold (1995)- Permian brachiopod faunal sequences of the Shan-Thai terrane: 
biostratigraphy, palaeobiogeographical affinities and plate tectonic/palaeoclimatic implications. J. Southeast 
Asian Earth Sci. 11, p. 177-187. 
(Five Permian brachiopod assemblages known from Shan-Thai terrane: Late Asselian-Tastubian cool-water 
fauna, three 'transitional' faunas of Sterlitamakian, Baigendzhinian- E Kungurian and Kazanian-Midian ages, 
and Late Permian (Dorashamian) warm-water Cathaysian fauna. Shan-Thai belonged to Indoralian Province of 
Gondwanan Realm in Asselian-Tastubian and was incorporated into Cathaysian Province in latest Permian) 
 
Shi, G.R. & N.W. Archbold (1995)- A quantitative analysis on the distribution of Baigendzhinian- Early 
Kungurian (Early Permian) brachiopod faunas in the western Pacific region. J. Southeast Asian Earth Sci. 11, 3, 
p. 189-205. 
(Cluster analysis of distribution of 222 species of E Permian brachiopods from 25 localities across E Asia- 
Australia suggest 6 bioprovinces. In SE Asia two provinces (both sub-provinces of Cimmerian terranes): (1) 
Group B, Shan-Tai/ Sumatra/ W Papua Birds Head (warm temperate to S-subtropical; with Stereochia- 
Stictozoster) and (2) Group C, Himalayan/ Lhasa/ Timor (S-temperate; with Reedoconcha, Callytharella; also 
fusulinid Monodiexodina). Notable conclusions: Timor (Maubisse) was southern extension of Lhasa terrane, W 
Thailand most similar to Birds Head, Sumatra Jambi and Padang faunas similar and grouped with Shan Tai) 
 
Shi, G.R. & N.W. Archbold (1995)- Palaeobiogeography of Kazanian-Midian (Late Permian) western Pacific 
brachiopod faunas. J. Southeast Asian Earth Sci. 12, p. 129-141. 
(W Timor transitional Cimmerian province between Cathaysian and Gondwanan Realms in M Permian) 
 
Shi, G.R. & N.W. Archbold (1998)- Permian marine biogeography of SE Asia. In: R. Hall & J.D. Holloway 
(eds.) Biogeography and geological evolution of SE Asia, Backhuys Publ., Leiden, p. 57-72. 
(Three main Permian biotic provinces in SE Asia: Cathaysian (Simao, Indo-China, E Malaya), Sibumasu 
(Shan-Tai, Tengchong, Baoshan, W Malaysia, NE Sumatra; until Late Midian when joined Cathaysian 
province) and short-lived Sakmarian-Asselian Indoralian province) 
 
Shi, G.R., N.W. Archbold & M. Grover (eds.) (1998)- Strzelecki International Symposium on Permian of 
Eastern Tethys: biostratigraphy, palaeogeography and resources. Proc. Royal Soc. Victoria 110, p. 1-480. 
 
Shi, G.R., N.W. Archbold & L.P. Zhan (1995)- Distribution and characteristics of mixed (transitional) mid-
Permian (Late Artinskian-Ufimian) marine faunas in Asia and their palaeogeographical implications. 
Palaeogeogr. Palaeoclim. Palaeoecology 114, p. 241-271. 
(Asia Permian marine biogeography 3 realms: Boreal, Tethyan and Gondwanan. In early E Permian sharp 
biogeographical boundaries, due to Gondwanan glaciation. In M Permian two transition zones with mixed 
faunas: (1) North (N China, Japan, etc.), with warm Cathaysian and temperate Boreal genera, (2) South 
(Arabia, Iran, Shan-Tai, Timor, W Irian Jaya, etc.) with both Gondwanan and Cathaysian elements. Both 
transition zones have anti-tropically distributed genera like Monodiexodina, Lytvolasma and Spiriferella and 
are succeeded by Late Permian tropical Tethyan faunas. Timor brachiopods from Sakmarian Maubisse Fm 
similar to W. Australia, Bitauni late E Permian assemblage mixed Gondwana-Tethyan elements, Late Permian 
Basleo fauna is ‘Tethyan’ subtropical-tropical) 
 
Shi, G.R., Z.Q. Chen & L.P. Zhan (2005)- Early Carboniferous brachiopod faunas from the Baoshan Block, 
west Yunnan, southwest China. Alcheringa 29, 1, p. 31-85. 
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(38 brachiopod species from Yudong Fm in W Yunnan. Associated coral and conodont faunas suggest late 
Tournaisian (E Carboniferous) age, possibility extending into earlyVisean) 
 
Shi, G.R., Z.J. Fang & N.W. Archbold (1996)- An Early Permian brachiopod fauna of Gondwana affinity from 
the Baoshan block, westernYunnan, China. Alcheringa 20, 81-101. 
(E Permian brachiopod fauna from U Dingjiazhai Fm, 30km S of Baoshan, W Yunnan. Dominated by 
Stenoscisma and Elivina yunnanensis n.sp.. Strong links with faunas from Bisnain assemblage of Timor and 
Callytharra Fm of W Australia. Late Sakmarian age suggested) 
 
Shi, G.R. & T.A. Grunt (2000)- Permian Gondwana-Boreal antitropicality with special reference to brachiopod 
faunas. Palaeogeogr. Palaeoclim. Palaeoecology 155, p. 239-263. 
(Permian marine antitropicality (genera from Boreal and Gondwanan Realms but absent in Paleoequatorial 
Realm) reported from most marine pelagic or benthic invertebrate groups, suggesting biotic interchanges 
between Gondwanan and Boreal Realms. Possible migration pathways and mechanisms reviewed: ‘stepping-
stone' migration via islands in E Paleotethys, migration along W coast of Paleotethys, etc.) 
 
Shi, G.R. & S.Z. Shen (2001)- A biogeographically mixed, middle Permian brachiopod fauna from the Baoshan 
Block, Western Yunnan, China. Palaeontology 44, p. 237-258. 
(Baoshan Block (= part of Sibumasu complex; JTvG) M Permian brachiopod assemblage with Cryptospirifer in 
from lower Shazipo Fm. Associated with fusulinids Nankinella, Polydiexodina spp. and Schwagerina. Overlying 
U Shazipo Fm 500-700m carbonate contains Shanita- Hemigordiopsis foram assemblage. Paleogeographical 
distribution of Cryptospirifer overlaps with slightly younger (Capitanian-Wuchiapingian) Shanita-Hemigordius 
(Hemigordiopsis) foram fauna, also endemic or largely confined to M Permian transitional faunas of 
Cimmerian region (Baoshan Block)) 
 
Shi, G.R. & J.B. Waterhouse (1990)- Sakmarian (Early Permian) brachiopod biogeography and constraints on 
the timing of terane rifting, drift and amalgamation in SE Asia, with reference to the nature of Permian ‘Tethys’. 
Pacific Rim 90 Congress, p. 271-276. 
 
Shi, G.R., J.B. Waterhouse & S. McLoughlin (2010)- The Lopingian of Australasia: a review of biostratigraphy, 
correlations, palaeogeography and palaeobiogeography. Geological Journal 45, 2-3, p. 230-263. 
(Distribution of Lopingian (Late Permian) strata and biota in Australia, New Zealand, Timor and New 
Caledonia, with new paleogeographic reconstruction. In New Zealand Lopingian beds in several terranes, 
mainly representing displaced segments of volcanic arcs, fore-arc basins and accretionary complexes, 
originally located near NE Australia on convergent margin. Most non-marine successions in E Australia rich in 
coal. Marine Lopingian of W Australia and Timor dominated by carbonates with sparse siliciclastic sediments 
and volcanoclastics, accumulated in large basin on passive and rifted continental margin, sharing many 
shallow-marine invertebrate species with Himalayan region of Nepal, S Tibet and N India) 
 
Shi, X., J. Kirby, C. Yu, A. Jimenez-Diaz & J. Zhao (2017)- Spatial variations in the effective elastic thickness 
of the lithosphere in Southeast Asia. Gondwana Research 42, p. 49-62. 
(Maps of spatial variations of Effective elastic thickness for SE Asia from coherence of topography and 
Bouguer gravity anomaly data. Results suggest E Borneo may share similar crustal basement, and represent 
broad tectonic zone of destroyed Mesotethys Ocean extending from W-C Java, through E Borneo to N Borneo. 
Indosinian suture between Indochina and Sibumasu may extend further SE across Billiton to offshore SE 
Borneo, and Singapore platform and SW Borneo may belong to same block) 
 
Shi, Y. & X. Jin (2015)- Is the West Burma block Gondwana- or Cathaysia-derived?- A Permian 
paleobiogeographic and regional geological reappraisal. In: Proc. 4th Int. Symposium Int. Geosciences Program 
(IGCP) Project 589, Bangkok 2015, p. 97-99.  (Extended Abstract) 
(online at: http://igcp589.cags.ac.cn/4th%20Symposium/Abstract%20volume.pdf) 
(W Burma block (= Mt Victoria Land), generally considered as small block of Gondwanan origin, but Barber 
and Crow (2009) suggested it could be extension of 'Cathaysian' W Sumatra block. W Burma two fusulinid 
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assemblages: (1) Pseudofusulina postkraffti and (2) Rugososchwagerina sp. and Parafusulina, which occur in 
Cathaysian region, but also in Gondwana-derived blocks Baoshan, Tengchong, etc.) 
 
Shu, L., M. Faure, B. Wang, X. Zhou & B. Song (2008)- Late Palaeozoic-Early Mesozoic geological features of 
South China: response to the Indosinian collision events in Southeast Asia. Comptes Rendus Geoscience 340, 2, 
p. 151-165. 
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(Simao (N Indochina) and Yangtze (S China) continental blocks amalgamated in Late Paleozoic- Triassic by 
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changes in the Baoshan block as a Gondwana-derived continental fragment in southwest China. Palaeogeogr. 
Palaeoclim. Palaeoecology 170, p. 197-218. 
(Carboniferous-Permian of Boashan Block of W Yunnan 3 main sequences: (1) Lower Carboniferous carbonate 
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shelf. In Artinskian greater similarity beween W Australia and Timor than between W and E Australia) 
 
Westermann, G.E.G. (1980)- Ammonite biochronology and biogeography of the circum-Pacific Middle 
Jurassic. In: M.R. House & J.R. Senior (eds.) The Ammonoidea, Academic Press, London, p. 459-498. 
 
Westermann, G.E.G. (1988)- Middle Jurassic ammonite biogeography supports ambi-Tethyan origin of Tibet. 
In: M.G. Audley-Charles & A. Hallam (eds.) Gondwana and Tethys, Geol. Soc., London, Spec. Publ. 37, p. 
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and pre-Permian New Guinea and separated slightly earlier than LBS)  
 
Wopfner, H. & X.C. Jin (2009)- Pangea megasequences of Tethyan Gondwana-margin reflect global changes of 
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Permian glacial- periglacial deposits followed by deglaciation in E Sakmarian, with typical facies with coal 
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‘N Proto-South China Sea’ (now under N S China Sea- Philippines) subducted in Oligo-Miocene under 
Dangerous Grounds southward, expanding S China Sea by in-place ‘self subduction’ similar to W 
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(E Jurassic granite and diorite in wells in NE S China Sea and SW East China Sea (198-187 Ma), probably part 
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accretionary complexes from SW Japan, E Taiwan to W Philippines. Arc-subduction complex associated with 
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and India on the margin of Gondwana: Constraints from detrital zircon U-Pb and Hf isotopes in Cambrian strata. 
Tectonics 32, 6, p. 1547-1558. 
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Suggesting S China was at nexus between India, Antarctica, and Australia along N margin of E Gondwana) 
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Comparison with E Permian from Gondwanan blocks suggests Baoshan Terrane located near junction of N 
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India and NW Australia, and broke away from W Australia after E Permian. Basalts represent extensional 
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Paleomagnetism of the Middle-Late Jurassic to Cretaceous red beds from the Peninsular Thailand: implications 
for collision tectonics. J. Asian Earth Sci. 40, 3, p. 784-796. 
(Paleomagnetic data of Jurassic- Cretaceous red sandstones from Peninsular Thailand suggests two opposite 
tectonic rotations in Trang area. As part of Thai-Malay Peninsula underwent CW rotation after Jurassic 
together with Shan-Thai and Indochina blocks. Between Late Cretaceous and M Miocene, as part of S 
Sundaland Block (incl. Peninsular Malaysia, Borneo and S Sulawesi), up to 24.5° ± 11° CCW rotation relative 
to S China Block. N boundary of CCW rotated zone between Trang area and Khorat Basin) 
 
Yan, J.X. & H. Yin (2000)- Paleoclimatic constraints for early Permian paleogeography of Eastern Tethys. In: 
H. Yin et al. (eds.) Permian-Triassic evolution of Tethys and Western Circum-Pacific, Developments in 
Palaeontology and Stratigraphy 18, Elsevier, p. 1-15. 
(Paleoclimate indicators used to distinguish major Asian blocks. Early Permian cooler climate areas with 
diamictites and Glossopteris flora, warm climates have fusulinid limestones, Gigantopteris floras, etc.. Suggest 
N-ward movement in Permian of blocks like Sibumasu from S Hemisphere Gondwana to N Hemisphere Asia) 
 
Yan, J.X. & D. Zhao (2001)- Advancement of the Mesotethys along the northern margin of the South China Sea. 
Marine Geol. Quaternary Geology, Beijing, 21, 4, p. 49-54. 
(In Chinese. Marine Mesozoic strata along N margin of S China Sea indicate marine basin. Basin was a large 
ocean in Mesozoic and can be traced W-ward to Mesotethys (Meratus suture of Kalimantan, and Woyla suture 
on Sumatra), E-ward ocean connected to extinct ocean in Sakawa zone of Japan through Taiwan Straits. Ocean 
closed around M Cretaceous, resulting from docking of N Palawan Terrane and Reed Bank terrane) 
 
Yan, J.X. & K. Zhao (2001)- Permo-Triassic paleogeographic, paleoclimatic and paleoceanographic evolutions 
in eastern Tethys and their coupling. Sci. China, Ser. D, 44, p. 968-978. 
(Permian and Triassic (Chihsian, Wujiapingian, Anisian and Norian) reconstructions and paleogeography of E 
Tethys area, mainly driven by paleoclimate records) 
 
Yan, Q.S. & X.F. Shi (2007)- Hainan mantle plume and the formation and evolution of the South China Sea. 
Geol. J. Chinese Universities 13, 2, p. 311-322. 
(Seismic tomographic images suggest possible mantle plume beneath and around Hainan island (sub-vertical 
low-velocity column, extending from shallow depths to 660-km seismic discontinuity and continuously to depth 
of 1900 km. Large quantity of Cenozoic alkali basalts distributed in S China Sea and adjacent areas) 
 
Yan, Q., X. Shi, I. Metcalfe, S. Liu, T. Xu, N. Kornkanitnan, T. Sirichaiseth, L. Yuan, Y. Zhang & H.Zhang 
(2018)- Hainan mantle plume produced late Cenozoic basaltic rocks in Thailand, Southeast Asia. Nature 
Scientific Reports 8, 2640, p. 1-14. 
(online at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805767/pdf/41598_2018_Article_20712.pdf) 
(Intraplate volcanism started after 16 Ma, shortly after cessation of seafoor spreading in S China Sea, affecting 
large areas. Geochemistry of Late Miocene- Pleistocene basalts from Khorat Plateau and Sukhothai arc terrane 
in Thailand show Oceanic Island Basalt -like characteristics. Post-spreading intra-plate volcanism around S 
China Sea region probably induced by Hainan mantle plume) 
 
Yan, Q., Z. Wang, S. Liu, Q. Li, H. Zhang, T. Wang et al. (2005)- Opening of the Tethys in southwest China and 
its significance to the breakup of East Gondwanaland in late Paleozoic: evidence from SHRIMP U-Pb zircon 
analyses for the Garze ophiolite block. Chinese Science Bull. 20, 3, p. 256-264. 
(U-Pb zircon analyses of gabbro from Garze ophiolite block from Garze-Litang melange mean age 292±4 Ma, 
suggesting earliest Permian age for sea floor spreading/ age of opening of Tethys at East Gondwanaland) 
 
Yang, J., P.A. Cawood & Y. Du (2015)- Voluminous silicic eruptions during late Permian Emeishan igneous 
province and link to climate cooling. Earth Planetary Sci. Letters 432, p.166-175. 
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(Case study for ~260 Ma Emeishan Large Igneous Province in S China, where silicic volcanic rocks are minor 
component of preserved rock due to extensive Late Permian erosion. Silicic volcanic rocks ~30% of volume of 
eroded Emeishan volcanics. Basalt-derived silicic eruptions released sulfur gases into higher atmosphere, 
contributing to climate cooling at Capitanian-Wuchiapingian transition at ~260 Ma) 
 
Yang, J., P.A. Cawood, Y. Du, H. Huang & L. Hu (2014)- A sedimentary archive of tectonic switching from 
Emeishan plume to Indosinian orogenic sources in SW China. J. Geol. Soc., London, 171, 2, p. 269-280. 
(U Permian- M Triassic sediments in Youjiang Basin, S China, record change from Late Permian within-plate 
mafic-dominated source to NW (zircons ages ~260 Ma; mainly from Emeishan Large Igneous Province), to E-M 
Triassic mixed magmatic arc-recycled orogenic source to W (subduction–collision rocks of Indosinian Orogeny) 
and E (recycled Precambrian- E Paleozoic rocks in S China hinterland)) 
 
Yang, K. (1998)- A plate reconstruction of the Eastern Tethyan orogen in Southwestern China. In: M.F.J. 
Flower et al. (eds.) Mantle dynamics and plate interactions in East Asia, American Geophys. Union (AGU) 
Geodyn. Ser. 27, p. 269-287. 
(E Tethyan orogenic belt in SW China includes S Tibet, N Tibet, Baoshan-Shan-Thai, Changdu-Simao-
Indochina and Zhongza terranes between India and Yangtze continental plates, separated by sutures with 
dismembered ophiolites and arc volcanic belts, recording series of closed Carboniferous- Tertiary Tethyan 
ocean basins. Lancangjiang suture records Permo-Carboniferous Tethyan ocean, separating Gondwanaland 
and Eurasia. Two phases (1) Carboniferous-Triassic spreading of Lancangjiang, Jinshajiang and Garze-Litang 
oceans and breakup of Changdu-Simao-Indochina and Zhongza terranes from S margin of Eurasia; (2) 
Triassic-Tertiary spreading of Nujiang and Yarlung Zangpo oceans associated with breakup of S Tibet, N Tibet 
and Baoshan-Shan-Thai terranes from N Gondwanaland) 
 
Yang, Z. & J. Besse (1993)- Paleomagnetic study of Permian and Mesozoic sedimentary rocks from Northern 
Thailand supports the extrusion model for Indochina. Earth Planetary Sci. Letters 117, p. 525-552. 
(Paleomagnetic study of Jurassic- Cretaceous sediments on Khorat Plateau suggests 1500 ± 800 km of post-M 
Cretaceous left-lateral slip along Red River and Xian Shui He fault zones and 14 ± 7° CW rotation for 
Indochina block relative to S China block, in agreement with lateral extrusion model of Indochina during 
India-Asia collision. Additional data of Permian, U Triassic and Lw Jurassic suggest Indochina, Yunnan (S 
China), N China block and S China block probably in contact at least since Late Triassic) 
 
Yang, Z., J. Besse, V. Sutheetorn, J.P. Bassoullet, H. Fontaine & E. Buffetaut (1995)- Lower-Middle Jurassic 
paleomagnetic data from the Mae Sot area (Thailand): paleogeographic evolution and deformation history of 
Southeastern Asia. Earth Planetary Sci. Letters 136, p. 325-341. 
(Paleomagnetic study of E-M Jurassic limestones and sandstones from Mae Sot area, W Thailand (part of Shan-
Thai-Malay).Mae Sot paleolatitude show STM was close to or had already accreted with Simao or Khorat 
blocks in E-M Jurassic (in Late Triassic). Relative S-ward motion of 8 ± 4° of Indochina and CW rotations (14-
75°) relative to China) 
 
Yap, S. (2002)- On the distributional patterns of Southeast-East Asian freshwater fish and their history. J. 
Biogeography 29, 9, p. 1187-1199. 
(Present-day fresh water fish distributions classified into 19 biogeographical zones/ main river systems Sundaic 
islands grouped into four pairs: Malay Peninsula- N Sumatra, C Sumatra-W Borneo, N Borneo-E Borneo-
Sarawak and S Borneo-Java. Java is relatively small, but landbridge island connected it with large islands of 
Sumatra and Borneo during Pleistocene low sea level periods) 
 
Yeh, M.W. & J.G. Shellnutt (2016)- The initial break-up of Pangaea elicited by Late Paleozoic deglaciation. 
Nature Scient. Reports 6, 31442, p. 1-9. 
(online at: www.ncbi.nlm.nih.gov/pmc/articles/PMC4980595/pdf/srep31442.pdf) 
(Rifting of Pangea began in E Permian along S Tethys margin and produced lenticular-shaped Cimmeria 
continent. Mantle-plume model explained rift-related volcanism but Cimmerian rifts do not correlate well with 
pre-existing suture zones. Location and timing of Cimmerian rifting resulted from exploitation of structural 
heterogeneities within crust that formed due to repeated glacial-interglacial cycles in Late Paleozoic. Effects of 
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continental deglaciation helped to create shape of Cimmeria and Neotethys Ocean, suggesting climate change 
may influence location of rifting) 
 
Yin, An (2010)- Cenozoic tectonic evolution of Asia: a preliminary synthesis. Tectonophysics 488, p. 293-325. 
(Cenozoic tectonic evolution model of Asia, including lateral extrusion of SE Asia between 32- 17 Ma after 
India- Asia collision) 
 
Yin, Hongfu (1997)- Triassic biostratigraphy and palaeobiogeography of East Asia. In: J.M. Dickins (ed.) Late 
Palaeozoic and Early Mesozoic Circum-Pacific events and their global correlation, Cambridge University Press, 
p. 168-185. 
(Timor Triassic classified as ‘Gondwanan Tethys’ facies, similar to Lhasa- W. Birma?; different from ‘India-
Gondwana’ and ‘Cathaysian-Tethys’. Misolia is element of subtropical ‘Gondwanan Tethys’. Gondwanan 
Tethys and Tropical Tethys merged in Late Triassic due to S-ward expansion of tropical-subtropical biota) 
 
Yin, Hongfu, J.M. Dickins, G.R. Shi & J. Tong (eds.) (2000)- Permian-Triassic evolution of Tethys and 
Western Circum-Pacific. Developments in Palaeontology and Stratigraphy 18, Elsevier, 412p. 
(Reviews of Permian-Triassic in mainland E Asia, New Zealand, etc.. Little on Indonesia, New Guinea) 
 
Yin, Hongfu & Y. Peng (2000)- The Triassic of China and its interregional correlation. In: H. Yin et al. (eds.) 
Permian-Triassic evolution of Tethys and Western Circum-Pacific, Developments in Palaeontology and 
Stratigraphy 18, Elsevier, p. 197-220. 
(Review of Triassic stratigraphy of China. Six regions, incl. NW Pacific (marine), tropical Cathaysian Tethys 
and warm-temperate Gondwanan Tethys (Himalayas and SE extension into Yunnan-Tengchong area) 
 
Yin, Hongfu, S.D. Wu, Y. Du, J. Yan & Y. Peng (1999)- South China as a part of archipelagic Tethys during 
Pangea time. Proc. Int. Conf. on Pangea and the Paleozoic- Mesozoic transition, Wuhan 1999, p. 69-73. 
(South China composed of several microplates in Late Paleozoic, at time when Eastern Tethys was an 
'archipelagic Ocean' with numerous microplates that amalgamated into Paleoasia during Late triassic 
Indosinian orogeny) 
 
Yin, Hongfu, K. Zhang & Q. Feng (1999)- The Archipelagic Ocean system of the Eastern Eurasian Tethys. Acta 
Geologica Sinica (English Edition) 78, 1, p. 230-236. 
(Unlike typical oceans such as wide and 'clean' Atlantic, Tethys Ocean showed archipelagic pattern during all 
stages, especially E Tethys. Evolutionary history of Qinling-Qilian-Kunlun, S China and Xizang (Tibet) - 
Yunnan regions) 
 
Yin, J. (2003)- Oxfordian (Jurassic) mayaitid (ammonite) dispersal in the Tibetan Himalaya as the first signal of 
the establishment of the Indo-Austral subrealm. Progress in Natural Science 13, 4, p. 282-287. 
(Mid-Oxfordian ammonite fauna in Lanongla area, Tibetan Himalaya, characterized by endemic epimayaitids. 
Distribution of mayaitids around E Gondwana can be regarded as first signal establishment of Indo-Austral 
Subrealm in Late Jurassic-E Cretaceous) 
 
Yu, C., X. Shi, X. Yang, J. Zhao, M. Chen & Q. Tang (2017)- Deep thermal structure of Southeast Asia 
constrained by S-velocity data. Marine Geophysical Research 38, 4, p. 341-355. 
(Deep thermal structure of SE Asia, derived from empirical relation between S-velocity and T. Temperature at 
depth of 80 km in rifted and oceanic basins (Thailand Rift Basin, Gulf of Thailand, Andaman Sea and S China 
Sea) is ~200 °C higher than in plateaus (Khorat Plateau, Sumatra Island) and subduction zones (Philippine 
Trench). Surface heat flow in S China Sea mainly dominated by deep thermal state. Temperatures at 100-120 
km depths more uniform. Estimated base of lithosphere corresponds to ~1400 °C isotherm; good correlation 
with tectonic setting. 
 
Zahirovic, S., N. Flament, R.D. Muller, M. Seton & M. Gurnis (2016)- Large fluctuations of shallow seas in 
low-lying Southeast Asia driven by mantle flow. Geochem. Geophys. Geosystems 17, 9, p. 3589-3607. 
(online at: http://ro.uow.edu.au/cgi/viewcontent.cgi?article=5216&context=smhpapers) 
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(On link between mantle flow and surface tectonics. SE Asia one of lowest lying continental regions in world, 
with half of continental area presently inundated by shallow sea. Widespread Late Cretaceous-Eocene regional 
unconformity in SE Asia likely driven by dynamic topography, i.e. several 100m of dynamic uplift and 
emergence of Sundaland between ~80-60 Ma due to slab breakoff after Late Cretaceous collision of 
Gondwana-derived terranes with Sundaland. Renewed subduction from ~60 Ma re-initiated dynamic 
subsidence of Sundaland, leading to submergence from ~40 Ma) 
 
Zahirovic, S., K. Matthews, N. Flament, R. Muller, K. Hill, M. Seton & M. Gurnis (2016)- Tectonic evolution 
and deep mantle structure of the eastern Tethys since the latest Jurassic. Earth-Science Reviews 162, p. 293-
337. 
(Major review of plate tectonics of since 160 Ma. Rifting of ‘Argoland’ (E Java and W Sulawesi) in latest 
Jurassic from NW Australian shelf, likely colliding first with parts of Woyla intra-oceanic arc in mid-
Cretaceous, and accreting to Borneo (Sundaland) core by ~80 Ma. Neo-Tethyan ridge likely consumed along 
intra-oceanic subduction zone S of Eurasia from ~105 Ma, leading to major change in motion of Indian Plate 
by ~100 Ma) 
 
Zahirovic, S., K. Matthews, Ting Yang, N. Flament, D. Garrad, G. Brocard, J. Iwanec, K. Hill, M. Gurnis, R. 
Hassan, M. Seton & D. Muller (2018)- Tectonics and geodynamics of the eastern Tethys and northern 
Gondwana since the Jurassic. In: Proc. Australian Exploration Geoscience Conf. (AEGC 2018), Sydney, p. 1-6. 
(Extended Abstract) 
(online at: http://www.publish.csiro.au/ex/pdf/ASEG2018abM1_1C) 
(Evolution of E Neo-Tethys since latest Jurassic rifting along N Gondwana. New Guinea N-ward motion over 
subducted slabs (related to Sepik back-arc basin and Maramuni subduction system), resulted in long-term 
flooding of margin since ~20 Ma. Sundaland continental promontory dynamic uplift in latest Cretaceous- 
Eocene due to accretion of Woyla Arc at ~80 Ma, leading to slab breakoff and temporary interruption of 
subduction. Renewed subduction along Sunda margin resulted in renewed dynamic subsidence from ~30 Ma, 
amplified by regional basin rifting events. Sinking Sunda slab likely triggered  mantle slab avalanche, resulting 
in contemporaneous basin inversion and dynamic subsidence from ~15 Ma) 
 
Zahirovic, S., M. Seton & R.D. Muller (2014)- The Cretaceous and Cenozoic tectonic evolution of Southeast 
Asia. Solid Earth 5, p. 227-273. 
(online at: www.solid-earth.net/5/227/2014/se-5-227-2014.pdf) 
(Major review and new model of tectonic evolution of SE Asia in last 155 My, with significant differences from 
Hall, Metcalfe, etc. models. SW Borneo already part of SE Asia in Late Jurassic, and did not originate from NW 
Australian shelf. SE Java and W Sulawesi blocks rifted off New Guinea margin in Late Jurassic, etc.. With 
animation model in supplement) 
 
Zakharov, Y.D., A.M. Popov & A.S. Biakov (2008)- Late Permian to Middle Triassic palaeogeographic 
differentiation of key ammonoid groups: evidence from the former USSR. Polar Research 27, p. 441-468. 
(Incl. paleogeographic reconstructions with Late Permian- earliest Triassic (260- 247 Ma) distributions of 
ammonites in Paleotethys) 
 
Zaw, K. (2014)- Metallogeny of mainland SE Asia. In: I. Basuki & A.Z. Dahlius (eds.) Sundaland Resources, 
Proc. Ann. Conv. Indon. Soc. Econ. Geol. (MGEI), Palembang, p. 27-33. 
(Brief review of mainland SE Asia mineral resources associated with complex tectonic history; see also Zaw 
(2014) paper below) 
 
Zaw, K., S. Meffre, C.K. Lai, C. Burrett, M. Santosh, I. Graham, T. Manaka, A. Salam, T. Kamvong & P. 
Cromie (2014)- Tectonics and metallogeny of mainland Southeast Asia- a review and contribution. Gondwana 
Research 26, p. 5-30. 
(Review of SE Asia mineral resources associated with complex tectonic history of Gondwana supercontinent 
break-up, arc magmatism, backarc basin development and collisions that created present-day mainland SE 
Asia. This paper summarizes historical and current SE Asian geological research and ore deposit studies. 
Incipient arc/backarc basin magmatism is key to formation of many important ore deposits in Truong Son and 
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Loei fold belts. Triassic to Cenozoic arc-continent and continent-continent collisions have led to the formation 
of sediment-hosted/orogenic gold deposits in Sukhothai and Sibumasu terranes. Oblique Cretaceous- Recent 
subduction along Andaman-Sunda trench responsible for gold and copper-gold-molybdenum porphyry and 
epithermal mineralization along arc in Myanmar and Sumatran volcanic arc) 
 
Zhang, C.L., M. Santosh, Q.B. Zhu, X.Y. Chen & W.C. Huang (2015)- The Gondwana connection of South 
China: evidence from monazite and zircon geochronology in the Cathaysia Block. Gondwana Research 28, 3, p. 
1137-1151. 
(E Paleozoic structures, metamorphism and magmatic activity suggest Cathaysia (= SE part of S China block) 
collisional orogenic belt rather than intraplate type. Angular unconformity between Silurian- Devonian; 
transition from collision to post-collision at ~430Ma. Some E Paleozoic clastics probably of Gondwana origin.) 
 
Zhang, K.J. (1998)- The Changning-Menglian suture zone: a segment of the major Cathaysia-Gondwana divide 
in Southeast Asia- comment. Tectonophysics 290, p. 319-321. 
(Commentary of Wu et al. 1995 paper. Jinshajiang-Ailaoshao suture is main Cathaysia- Gondwana divide in 
China, not Lancangjiang-Changning-Menglian suture) 
 
Zhang, K.J. & J.X Cai (2009)- NE-SW-trending Hepu–Hetai dextral shear zone in southern China: penetration 
of the Yunkai Promontory of South China into Indochina. J. Structural Geol. 31, 7, p. 737-748. 
(NE-SW-trending Hepu-Hetai shear zone extends for ~480 km along Guangdong-Guangxi provinces boundary 
in S China.Dextral ductile strike-slip deformation, with estimated displacement of >500 km. Inclusions in quartz 
within mylonite suggest that ductile shear deformation under medium T/P conditions of greenschist facies; 
40Ar/39Ar muscovite ages of 213-195 Ma. Shear zone originated via penetration of Yunkai Promontory of South 
China into Indochina during Late Triassic) 
 
Zhang, Z.K. & J.X. Zhang (1986)- Paleomagnetic research on the upper Carboniferous basalts in Baoshan block, 
Yunnan and the tectonic belonging of the block. Bull. Inst. Geol. Chinese Acad. Geol. Sci., p. 184-189. (In 
Chinese with English abstract. Xu et al. 2014: Paleomagnetic work on E Permian Woniusi Fm basalts 12 km NE 
of Baoshan, SW China, suggest terrane was at 34.1° S in E Permian. Result comparable to Xu et al. 2014) 
 
Zhao, D. (2012)- Tomography and dynamics of Western-Pacific subduction zones. Monogr. Environ. Earth 
Planets 1, 1, p. 1-70. 
(online at: www.terrapub.co.jp/onlinemonographs/meep/pdf/01/0101.pdf) 
 
Zhao, D., S. Maruyama & S. Omori (2007)- Mantle dynamics of Western Pacific and East Asia: insight from 
seismic tomography and mineral physics. Gondwana Research 11, p. 120-131. 
(Tomography of E Asia, the location of double-sided subduction zone where old Pacific plate subducts from E, 
and Indo-Australia plate subducts from S) 
 
Zhao, T., Q. Feng, I. Metcalfe, L.A. Milan, G. Liu & Z. Zhang (2017)- Detrital zircon U-Pb-Hf isotopes and 
provenance of Late Neoproterozoic and Early Paleozoic sediments of the Simao and Baoshan blocks, SW China: 
Implications for Proto-Tethys and Paleo-Tethys evolution and Gondwana reconstruction. Gondwana Research 
51, p. 193-208. 
(Detrital zircons from Ordovician? Lancang Gp (separate Lancang Block?) and Mengtong and Mengdingjie 
Gps (Baoshan Block) with three age peaks: older Grenvillian (1200-1060 Ma), younger Grenvillian (~960 Ma) 
and Pan-African (650-500 Ma), with εHf(t) values similar to W Australia and N India. E Paleozoic Proto-Tethys 
represents narrow ocean basin separating 'Asian Hun superterrane' (N China, S China, Tarim, Indochina, N 
Qiangtang blocks) from N margin of Gondwana in Late Neoproterozoic- E Paleozoic. Proto-Tethys closed in 
Silurian at ~440–420 Ma when 'Asian Hun superterrane' collided with N Gondwana margin. Lancang Block 
separated from Baoshan Block in E Devonian when Paleo-Tethys opened as back-arc basin) 
 
Zhao, T., X. Qin & Q. Feng (2015)- Zircon U-Pb-Hf isotopes and whole-rock geochemistry of the Late Triassic 
rhyolites from Lampang Zone, northern Thailand: implications for the closure of Paleo-Tethys. In: Proc. 4th Int. 
Symposium Int. Geosciences Program (IGCP) Project 589, Bangkok 2015, p. 102-106. (Extended Abstract) 
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(online at: http://igcp589.cags.ac.cn/4th%20Symposium/Abstract%20volume.pdf) 
(E Norian (225.1±1.2 Ma) ages of post-collisional rhyolites in Lampang area minimum age of final closure of E 
Paleo-Tethys between Sibumasu and Indochina blocks. Older age from inherited zircons (242±1.9 Ma) 
resembles arc volcanic rocks from Doi Luang belt in same area. High-K calc-alkaline Lampang rhyolites 
formed in post-collisional extensional environment, controlled mainly by lithospheric delamination or slab 
breakoff. Youngest pelagic sediments in Changning-Menglian and Inthanon Suture Zones M Triassic 
(Triassocampe deweveri radiolarian assemblage), suggesting Paleo-Tethys ocean not yet closed in M Triassic) 
 
Zhao, X., R.S. Coe, S.A. Gilder & G.M. Frost (1996)- Palaeomagnetic constraints on the palaeogeography of 
China: implications for Gondwanaland. Australian J. Earth Sci. 43, 6, p. 643-672. 
(Paleomagnetic data show three main blocks of China (North China, South China, Tarim) were at or near 
equatorial latitudes in E and M Paleozoic. Late Paleozoic data suggest they were too far N to be attached to 
Gondwanaland and suggest they rifted from Gondwanaland in Late Devonian and Carboniferous. Etc.) 
 
Zharkov, M.A. & N.M. Chumakov (2001)- Paleogeography and sedimentation settings during Permian- Triassic 
reorganizations in biosphere. Stratigraphy Geol. Correl. 9, 4, p. 340-363. 
(Artinskian- Kungurian Metaperrinites and Kungurian Perrinites faunas in Ratburi Group in N Central and S 
Central Thailand, represent part of Tethyan perrinitid belt from Crimea in W to Timor in E) 
 
Zhong, D. (2000)- Paleotethysides in West Yunnan and Sichuan, China. Science Press, Beijing, p. 1-248. 
(Collection of papers on evolution of W Yunnan- Sichuan, containing sector of Paleotethysides where it turns 
from E-W belts of Tibetan Plateau to N-S mountain belts of mainland SE Asia. Formed by closure of Paleotethys 
in Late Paleozoic by collision of Gondwan Tengchong and Baoshan Blocks with Eurasia (Yangtze, Simao 
blocks). Paleotethys was composed of main intercontinental ocean with several smaller intra-continental oceans 
and troughs) 
 
Zhou, Z. (1990)- The Early Mesozoic orogeny in the northern shelf of the South China Sea and its adjacent 
lands. In: X. Jin et al. (eds.) Proc. Symposium Recent contributions to the geological history of the South China 
Sea, Hangzhou 1990, p. 119-125. 
(E Triassic continental collision (of Cimmerian Blocks) in SE China, marking beginning of E Mesozoic orogeny 
in region. In end-Jurassic, Borneo began rifting away from S China margin, creating Proto-South China Sea. 
Present S. China Sea has evolved after drifting away from S China margin of continental fragments such as N 
Palawan, Reed Bank, Xisha Islands, Zhongsha Islands and others) 
 
Zhu, Z. & Z. Yang (2008)- Distribution, origin and mineralization of two types of Cenozoic adakite and adakite-
like rocks in southeastern Asia. Dizhi Lixue Xuebao = J. Geomechanics, Beijing, 14, 4, p. 328-338. 
(In Chinese with English summary.) (Adakite and adakite-like intermediate-acid magmatic rocks well developed 
in Cenozoic of Indonesia- New Guinea. Two types of origin: (1) oceanic type tholeiitic/calc-alkaline series with 
REE pattern of oceanic island arcs, seen at the oceanic islands; (2) continental type high-K calc-alkaline series 
with continental type REE patterns, often in continental margin orogenic zone and related to arc-continent 
collision zone or post-collision. Continental-type adakite similar distribution to large porphyry copper-gold 
deposits; oceanic island arc type adakite rocks related to epithermal gold zones and ehalation ore deposits) 
 
Ziegler, A.M., M.L. Hulver, A.L. Lottes & W.F. Schmachtenberg (1997)- Permian world topography and 
climate. In: I.P. Martini (ed.) Late glacial and post-glacial environmental changes- Quaternary, Carboniferous-
Permian and Proterozoic, Oxford University Press, p. 111-146. 
 
Ziegler, A.M., P.M. Rees, D.B. Rowley, A. Bekker, L. Qing & M.L. Hulver (1996)- Mesozoic assembly of 
Asia: constraints from fossil floras, tectonics, and paleomagnetism. In: A. Yin & M. Harrison (eds.) The 
tectonic evolution of Asia. Cambridge University Press, p. 371-400. 
(Permian- Jurassic reconstructions of terranes of N parts of Asia (Eurasia- China) based on paleomagnetic and 
flora data. Little or nothing on SE Asia) 
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Lithophyllum); (B) Lithophyllum spp, Mesophyllum and Peyssonnelia from 15-40m; (A) rich in Mesophyllum, 
Peyssonnelia, Sporolithon on deep reef slopes up to 90m. Below ~90m encrusting foraminifera acervulinids 
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(On relationships between carbonate deposition and Greenhouse vs Icehouse conditions. Large Benthic Forams 
assemblages most diverse when deeper waters were warmest, with high extinction rates during cooling 
(increase of surface to thermocline gradients). Aragonite production by corals more widespread during ice-
house conditions) 
 
Hantoro, W.S. (1994)- Batugamping terumbu koral Kwarter terangkat di Timor. Proc. 23rd Ann. Conv. Indon. 
Assoc. Geol. (IAGI), Jakarta, 1, p. 192-207. 
('Uplifted Quaternary coral reef limestones of Timor') 
 
Hantoro, W.S., N. Nganro, S. Shofiyah, I. Narulita & J. Sofjan (1997)- Recent climate variation signals from 
corals in Timor, Indonesia. Quaternary Int. 37, p. 81-87. 
 
Heikoop, J.M., C.J. Tsujita, M.J. Risk & T. Tomascik (1996)- Corals as proxy recorders of volcanic activity; 
evidence from Banda Api, Indonesia. Palaios 11, p. 286-292. 
 
Hillis-Colinvaux, L. (1980)- Ecology and taxonomy of Halimeda: primary producer of coral reefs. Advances in 
Marine Biology, Academic Press, 17, p. 1-327. 
(online at: https://ia801401.us.archive.org/24/items/advancesinmarine80hill/advancesinmarine80hill.pdf) 
(Halimeda algae important contributor to tropical reefal limestones since Cretaceous (Jurassic if Boueina 
included in Halimeda group)) 
 
Hoeksema, B.W. (1992)- The position of northern New Guinea in the center of marine benthic diversity: a reef 
coral perspective. Proc.7th Int. Coral Reef Symp., Guam 1992, 2, p. 710-717. 
 
Hoeksema, B.W. & K.S. Putra (2000)- The reef coral fauna of Bali in the center of marine diversity. In: M.K. 
Moosa et al. (eds.) Proc. 9th Int. Coral Reef Symp., Bali 2000, 1, p. 173-178. 
(online at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.612.2947&rep=rep1&type=pdf) 
(Bali coral reefs richest in Tulamben- Amed area (E Bali; mainly volcanic sand with limestone outcrops). 
Islands Nusa Lembongan and Nusa Penida (Lombo Straits, in SE; uplifted limestone) with special fauna 
elements due to cold upwelling and strong currents. At Sanur and Nusa Dua species previously known only 
from Pacific. Coral fauna of Bali resembles most fauna of species-rich E Indonesian areas) 
 
Hopley, D. & Suharsono (2000)- The status of coral reefs in Eastern Indonesia. GCRMN Global Coral reef 
Monitoring Network, Australian Inst. Marine Science, p. 1-111. 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  299

 
Huang, D., W.Y. Licuanan, B.W. Hoeksema, C.A. Chen, P.O. Ang, H. Huang, D.J.W. Lane, S.T. Vo, Z. 
Waheed, Y. Affendi, T. Yeemin & L.M. Chou (2015)- Extraordinary diversity of reef corals in the South China 
Sea. Marine Biodiversity 45, 2, p. 157-168. 
(Reefs across S China Sea with 571 known species of reef corals) 
 
Iryu, Y. (1997)- Pleistocene fore-reef rhodoliths from the Ryukyu Islands, southwestern Japan. In: H.A. Lessios 
and I.G. Macintyre (eds.) Proc. 8th Int. Coral Reef Symposium, Panama, 1, p. 749-754. 
(Well-rounded rhodoliths 1-8 cm consist of multiple species of nongeliculatecoralline algae and encrusting 
foraminifer Acervulina inhaerens, together forming concentric internal structure. Thought to have formed in 
deep fore reef to shelf, at 50-150m depth. Often associated with Cycloclypeus- Operculina foram assemblage) 
 
Iryu, Y., S. Inagaki, Y. Suzuki & K. Yamamoto (2010)- Late Oligocene to Miocene reef formation on Kita-
daito-jima, northern Philippine Sea. In: M. Mutti et al. (eds.) Carbonate systems during the Oligocene-Miocene 
climatic transition, Int. Assoc. Sedimentologists, Spec. Publ. 42, p. 245-256. 
(Late Oligocene- Late Miocene carbonate in 433m deep borehole on Kita-daito-jima) 
 
Iryu, Y. & S. Matsuda (1988)- Depth distribution. abundance and species assemblages of nonarticulated 
coralline algae in the Ryukyu Islands, southwestern Japan. In: J.H. Choat et al. (eds.) Proc. 6th Int. Coral Reef 
Symposium, Townsville 1988, 3, p. 101-106. 
(Distribution of 8 non-articulated coralline algal species in upper 30m of slope of patch reef off Yonehara, 
Ishigaki-jima: Porolithon onkodes and Lithophyllum insipidum most abundant at depth of 1m, but absent below 
20m. Spongites sp. A most common at 15m depth. Neogoniolithon conicum distributed throughout) 
 
Iryu, Y., T. Nakamori, S. Matsuda & O. Abe (1995)- Distribution of marine organisms and its geological 
significance in the modern reef complex of the Ryukyu Islands. Sedimentary Geology 99, p. 243-258. 
(Compositions of coral and coralline algal assemblages change with increasing depth. Hermatypic corals 
common down to 50m. Coralline algae Hydrolithon onkodes limited to upper 10m. Algal nodules with 
encrusting foram Acervulina inhaerens (rhodoliths) most abundant constituent on island shelf, commonly with 
Cycloclypeus carpenteri (50-150m). In Ryukus negligible Halimeda; probably two types of shelves in tropical- 
subtropical regions: nutrient-rich Halimeda-dominant and nutrient-poor rhodolith-dominant) 
 
Iryu, Y., T. Nakamori & T. Yamada (1998)- Pleistocene reef complex deposits in the Central Ryukus, south-
western Japan. In: G.F. Camoin & P.J. Davies (eds.) Reefs and carbonate platforms in the Pacific and Indian 
Oceans, Int. Assoc. Sedimentologists (IAS), Spec. Publ. 25, p. 197-213. 
(Pleistocene carbonates of Ryuku Group with extensive rhodoliths in distal parts of reef complex. Four facies: 
(1) coral (reef- reef slope; 0-50m), (2) rhodolith (insular shelf 50-150m), (3) Cycloclypeus-Operculina 
(associated with rhodoliths; 50-150m) and (4) poorly sorted detrital limestones (insular shelf, >50m)) 
 
Isern, A., J.A. McKenzie & D.R. Muller (1993)- Paleoceanographic changes and reef growth off the 
northeastern Australian margin: stable isotope data from Leg 133, Sites 811 and 817 and Leg 21 Site 209. Proc. 
Proc. Ocean Drilling Program (ODP), Scient. Results, 133, p. 263-280. 
(online at: www-odp.tamu.edu/publications/133_SR/VOLUME/CHAPTERS/sr133_19.pdf) 
(Oxygen isotopes from Holes 811A, 817A indicate extensive reef growth on Queensland Plateau in M Miocene 
before 12 Ma, signifying surface-water T of 20°C or more. Decrease in reefal detritus in Late Miocene (10.0-
5.2 Ma) corresponds with isotopic data from planktonic foraminifera suggesting cooler surface waters (16°-
19°C). This may have contributed to demise of reefs on Queensland Plateau. Surface waters remained cool 
until M Pleistocene (1.2- 0.5 Ma), when surface-water T increased to 25 °C and Great Barrier Reef initiated) 
 
Isern, A.R., J.A. McKenzie & D.A. Feary (1996)- The role of sea-surface temperature as a control on carbonate 
platform development in the western Coral Sea. Palaeogeogr. Palaeoclim. Palaeoecology. 124, p. 247-272. 
 
Isern, A.R., F.S. Anselmetti, P. Blum and Leg 194 Scientific Shipboard Party (2001)- Ocean Drilling constrains 
carbonate platform formation and Miocene sea level on the Australian margin. EOS 82/41, p. 469-476. 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  300

 
Isern. A.R., F.S. Anselmetti & P. Blum (2004)- A Neogene carbonate platform, slope and shelf edifice shaped 
by sea level and ocean currents, Marion Plateau (Northeast Australia). In: G.P. Eberli et al. (eds.) Seismic 
imaging of carbonate reservoirs and systems, American Assoc. Petrol. Geol. (AAPG), Mem. 81, p. 291-307. 
(Marion Plateua off NE Australia large drowned carbomate platform, composed of of cool, subtropical 
organisms, such as red algae, bryozoans, and larger foraminifera. Coralline algae notably absent. Onlapped 
by deep water prograding drift deposits) 
 
Jell, J.S. & P.G. Flood (1977)- Guide to the geology of reefs of the Capricorn and Bunker groups, Great Barrier 
Reef Province, with special reference to Heron Reef. Papers Dept. Geol. University of Queensland8, 3, p. 1-85. 
(online at: http://espace.library.uq.edu.au/eserv/UQ:312024/Dept_Geology_Papers_VIII_3_p1_85.pdf) 
 
Jenkins, S., R. Swarbrick, A. Mallon & S. O’Connor (2012)- Pressure in Miocene carbonate exploration targets. 
Proc. 36th Ann. Conv. Indon. Petroleum Assoc. Jakarta, IPA12-G-046, p. 1-16. 
(Includes examples of overpressured fields in Arun and NSO fields, N Sumatra, NW Java, E Java, etc.) 
 
John, C.M. & M. Mutti (2005)- The response of Heterozoan carbonate systems to paleoceanographic, climatic 
and eustatic changes: a perspective from slope sediments of the Marion Plateau (ODP Leg 194). J. Sedimentary 
Res. 75, p. 216-236. 
(On relative control of paleoceanography, eustasy, and temperature on evolution of Marion Plateau (NE 
Australia) carbonates. Several carbonate platforms started in E Miocene, composed mainly of heterozoans. 
Carbon isotope record revealed cycles of 409 Kyr (eccentricity) and 1800 Kyr (long-term eustatic change)) 
 
Johnson, K.G., W. Renema, B.R. Rosen & N. Santodomingo (2015)- Old data for old questions: what can the 
historical collections really tell us about the Neogene origins of reef-coral diversity in the Coral Triangle? 
Palaios 30, 1, p. 94-108. 
(Updated stratigraphy and revised taxonomic determinations for important historical collections of Cenozoic 
fossil corals from Indonesia in Leiden museum reveal Pliocene and Paleogene sampling gaps. E Miocene 
increase in richness followed by plateau of relatively high richness. Observed patterns of taxonomic turnover 
highly correlated with sample size. Taxonomic revision reduced number of genera and species from 133 and 
404 to 115 and 321) 
 
Johnson, K.G., B.R. Rosen, N. Santodomingo & W. Renema (2011)- Southeast Asian and Caribbean Cenozoic 
reef-coral diversity and the importance of new collections. In: Abstracts 11th Symp. Fossil Cnidaria and 
sponges, Liege 2011, Kolner Forum Geol. Palaont. 19, p. 67-68. (Extended Abstract) 
(SE Asia fossil coral collections at Naturalis Museum, Leiden, contain 271 species from 210 localities. Late 
Oligocene- Early Miocene interval of increased diversification, coinciding with expansion in coral reef 
development. No intervals of accelerated extinction seen in Neogene) 
 
Jordan, C.F. (1998)- Kepulauan Seribu, West Java Sea, Indonesia: a modern reef analog for Miocene oil and gas 
fields in Southeast Asia. Proc. 26th Ann. Conv. Indon. Petroleum Assoc. (IPA), Jakarta, 1, p. 71-83. 
 
Jordan, C.F. (1998)- The sedimentology of Kepulauan Seribu: a modern path reef complex in the West Java 
Sea, Indonesia. Indon. Petroleum Assoc., Jakarta, Field Guide, 81p. 
 
Jordan, C. et al. (1999)- Probing the third dimension of the reef complex at Kepulauan Seribu. Berita 
Sedimentologi (FOSI- IAGI) 10, p.  
 
Keith, S.A., A.H. Baird, T.P. Hughes, J. S. Madin & S.R. Connolly (2013)- Faunal breaks and species 
composition of Indo-Pacific corals: the role of plate tectonics, environment and habitat distribution. Proc. Royal 
Society (London) B 280, 20130818, p. 1-9. 
(online at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774232/pdf/rspb20130818.pdf) 
(On concordance between geological features and coral biogeographical structure) 
 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  301

Kench, P.S. & T. Mann (2017)- Reef island evolution and dynamics: insights from the Indian and Pacific 
Oceans and perspectives for the Spermonde Archipelago. Frontiers in Marine Science 4, 145, p. 1-17. 
(online at: https://www.frontiersin.org/articles/10.3389/fmars.2017.00145/full) 
 
Kiessling, W., C. Simpson & M. Foote (2010)- Reefs as cradles of biodiversity in the Phanerozoic. Science 327, 
p. 196-198. 
 
Koesoemadinata, R.P. (1984)- Introduction to Tertiary carbonate deposition in Southeast Asia. ASCOPE Techn. 
Pres. 2, p. 57-68. 
 
Kuenen, P.H. (1933)- Geology of coral reefs. In: The Snellius Expedition in the Eastern part of the Netherlands 
East Indies (1929-1930), 5. Geological results 2, Kemink, Utrecht, p. 1-125. 
 
Kuenen, P.H. (1933)- The formation of the atolls in the Toekang-Besi-group by subsidence. Proc. Kon. Nederl. 
Akademie Wetenschappen, Amsterdam 36, 3, p. 331-336. 
(online at: www.dwc.knaw.nl/DL/publications/PU00016412.pdf) 
(Tukang Besi atolls and raised islands arranged along NW-SE fault trends. Post-Pleistocene subsidence 
produced atolls where reef growth kept up with subsidence) 
 
Lallier, F., G. Caumon, J. Borgomano, S. Viseur, F. Fournier, C. Antoine & T. Gentilhomme (2012)- Relevance 
of the stochastic stratigraphic well correlation approach for the study of complex carbonate settings: application 
to the Malampaya buildup (Offshore Palawan, Philippines). In: J. Garland et al. (eds.) Advances in carbonate 
exploration and reservoir analysis, Geol. Soc., London, Spec. Publ., 370, p. 265-275. 
(On stochastic stratigraphic well correlation in U Eocene- Lw Miocene Malampaya buildup off Palawan 
Island, where petrophysical properties mainly controlled by diagenesis) 
 
Lanaru, M. & R. Fitri (2008)- Sediment deposition in a South Sulawesi seagrass bed. Marine Res. Indonesia 33, 
2, p. 221-224. 
(online at: http://isjd.pdii.lipi.go.id/admin/jurnal/33208221224.pdf) 
(Deposition of suspended sediment measured with sediment traps in shallow waters colonized by Thallasia 
seagrass at Pannikiang Island, SW Sulawesi. Sediment deposition higher in vegetated areas than in unvegetated 
areas, suggesting sediment deposition promoted by dense seagrass) 
 
Lapointe, P. & J. Hurst (1996)- Tertiary carbonate petroleum system in South East Asia. In: 11th Offshore SE 
Asia Conf. Exhib. (OSEA96), Singapore 1996, p. 177-184. 
(General paper, observing Miocene reefs are good oil-gas reservoirs and comparable to present-day systems) 
 
Lehrmann, D.J., J.Y. Wei & P. Enos (1998)- Controls on facies architecture of a large Triassic carbonate 
platform: the Great Bank of Guizhou, Nanpanjiang Basin, south China. J. Sedimentary Res. 68, p. 311-326. 
(Model of E-M Triassic carbonate platform deposition on S China block. E Triassic low relief bank with 
cyanobacterial limestones in platform interior and oolites along margins. M Triassic higher relief platform 
margins composed of Tubiphytes boundstone, with cyclic tidal flats formed ine platform interior) 
 
Leinfelder, R.R., D.U. Schmid, M. Nose & W. Werner (2002)- Jurassic reef patterns- the expression of a 
changing globe. In: W. Kiessling et al. (eds.) Phanerozoic Reef Patterns, SEPM Spec. Publ. 72, p. 465-520. 
(Includes brief discussions of Jurassic carbonates of W Thailand, Sumatra and Philippines. Early- Middle 
Jurassic reefs absent in SE Asia, except small Lithiotis bivalve mounds on Timor, due to end-Triassic extinction 
event, etc.. Minor Late Jurassic reefs in Sumatra and Bau Limestone of Sarawak- NW Kalimantan border area) 
 
Leslie, W. (1976)- The significance to Indonesia of hydrocarbon production from carbonate reservoirs. Proc. 
Indon. Petroleum Assoc. (IPA) Carbonate Seminar, Jakarta, Spec. Vol., p. 1-5. 
 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  302

Liu, K., C.J. Pigram, L. Paterson & C.G.St.C. Kendall (1998)- Computer simulation of a Cainozoic carbonate 
platform, Marion Plateau, north-east Australia. In: G.F. Camoin & P.J. Davies (eds.) Reefs and carbonate 
platforms in the Pacific and Indian Oceans, Int. Assoc. Sedimentologists (IAS), Spec. Publ. 25, p. 145-161. 
(E Miocene- Recent modeling of Marion Plateau carbonate platform architecture, NE Australia. Platform 
initiated around 20 Ma sea level rise, evolved through 4 platform building phases, and drowned in E Pliocene) 
 
Loftus, G. & C. Grant (2007)- Unlocking the remaining potential of Cenozoic aggraded carbonate platforms in 
SE Asia. Proc. 31st Ann. Conv. Indon. Petroleum Assoc. (IPA), Jakarta, IPA07-G-098, 2p.  (Abstract only; 
nothing new) 
 
Lokier, S.W., M.E.J. Wilson & L.M. Burton (2009)- Marine biota response to clastic sediment influx: a 
quantitative approach. Palaeogeogr. Palaeoclim. Palaeoecology 281, p. 25-42. 
(On effects of siliciclastic and volcaniclastic sediment influx on carbonate producing organisms, using samples 
from Miocene Wonosari Fm of S Java, Miocene Batu Putih Lst of E Borneo, and Eocene of NE Spain. Larger 
foraminifera and coralline algae greatest tolerance to siliciclastic sediment influx. Platy corals also in clay-
dominated horizons. Branching and massive corals least tolerant to large quantities of clastics) 
 
Longman, M.W (1993)- Southeast Asian Tertiary carbonate reservoirs. Petroconsultants, Multi-client study, 2 
vols.   (Unpublished) 
(Major compilation of SE Asian Tertiary carbonates) 
 
Longman, M.W (1993)- Future bright for Tertiary carbonate reservoirs in Southeast Asia. Oil and Gas J. 91, 51 
(20 Dec. 1993), p. 107-112. 
(Worldwide, carbonate buildups serve as reservoirs for ~40 billion bbl of recoverable hydrocarbons. About 
40% of this total (16 BBO equivalent), occurs in Tertiary (mainly Miocene) buildups in SE Asia) 
 
Longman, M.W., C.T. Siemers & C.F. Jordan (1993)- Modem carbonates and their ancient counterparts in 
Indonesia: a guide to interpreting and understanding carbonate reservoirs. Indon. Petroleum Assoc., Course 
Notes, p. 2.1-2.59. 
 
Madden, R.H.C., M.E.J. Wilson & M. O'Shea (2013)- Modern fringing reef carbonates from equatorial SE 
Asia: an integrated environmental, sediment and satellite characterisation study. Marine Geology 344, p. 163-
185. 
(Sedimentology and early alteration of isolated fringing reef system of Kaledupa-Hoga in Tukang Besi 
Archipelago, off SE Sulawesi) 
 
Manser, W. (1973)- New Guinea barrier reefs. University of Papua New Guinea, Geol. Dept., Port Moresby, 
Occ. Paper 19, p. 1-356. 
 
Marshall, J.F. (1982)- Internal structure and Holocene evolution of One Tree Reef, southern Great Barrier Reef. 
Coral Reefs 1, p. 21-28. 
 
Marshall, J.F. & P.J. Davies (1988)- Halimeda bioherms of the northern Great Barrier Reef. Coral reefs 6, p. 
139-148. 
(Reefless tract behind ribbon reefs on outer shelf off Cooktown with common growth of Halimeda that in 
Holocene developed into bioherms 2- 20 m high. Origin and morphology of bioherms related to jets of nutrient-
rich, upwelled oceanic water intruding onto outer shelf via narrow passes between ribbon reefs) 
 
Marshall, J., P. Davies, I. Mihut, A. Troedson, D. Bergerson & D. Haddad (1994)- Sahul Shoals processes: 
neotectonics and Cainozoic environments- Cruise 122 Post Cruise Report. Australian Geol. Survey Org. 
(AGSO), Canberra, Record 1994/33, p. 1-73. 
(online at: www.ga.gov.au/corporate_data/14776/Rec1994_033.pdf) 
(Compared with Great Barrier Reef of NE Australia, NW Shelf has virtually no coral reefs, but series of young 
Halimeda-dominated carbonate platforms along edge of Sahul Shelf, rising from 200-350 m to 25-30 m below 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  303

sea level. Some platforms may have started developing by Late Miocene. Tops of Sahul banks dominated by 
segments of green alga Halimeda, with some solitary corals (Fungia sp), larger foraminifera, coralline algae 
and bryozoans) 
 
Marshall, J.F., Y. Tsuji, H. Matsuda, P.J. Davies, Y. Iriu, N. Honda & Y. Satoh (1998)- Quaternary and Tertiary 
subtropical carbonate platform development on the continental margin of southern Queensland, Australia. In: 
G.F. Camoin & P.J. Davies (eds.) Reefs and carbonate platforms in the Pacific and Indian Oceans. Int. Assoc. 
Sedimentologists (IAS), Spec. Publ. 25, p. 163-195. 
(On tropical-subtropical to temperate carbonate environments along E coast of Australia. Subtropical shelf 
environments characterized by combination of shallow water hermatypic corals and deep-water rhodoliths. 
Halimeda more common towards the tropical boundary and bryozoans towards the temperate boundary) 
 
Martin, J.M., J.C. Braga, K. Konishi & C.J. Pigram (1993)- A model for the development of rhodoliths on 
platforms influenced by storms: Middle Miocene carbonates of the Marion Plateau (Northeastern Australia). In: 
J.A. McKenzie et al. (eds.) Proc. Ocean Drilling Program (ODP), Scient. Results 133, p. 455-460. 
(M Miocene carbonates of Marion Plateau consist of floatstones and rudstones dominated by rhodoliths. Corals 
occur only as fragments. Growth types and algal associations characteristic of rhodoliths that formed at depths 
of some 10's of m and below normal wave base) 
 
Masaferro, J.L., R. Bourne & J.C. Jauffred (2004)- Three-dimensional seismic visualization of carbonate 
reservoirs and structures. In: Seismic imaging of carbonate reservoirs and systems, AAPG Mem. 81, p. 11-41. 
(On seismic imaging of carbonate buildup reservoirs, with examples from Luconia (N Borneo) and Malampaya 
(Philippines)) 
 
Matsuda, F., Y. Matsuda, M. Saito & R. Iwahashi (1997)- A computer simulation model for the reconstruction 
of the carbonate sedimentary process. In: J.V.C. Howes & R.A. Noble (eds.) Proc. Int. Conf. Petroleum systems 
of SE Asia and Australasia, Jakarta 1997, Indon. Petroleum Assoc., p. 977-986. 
(Carbonate depositional model for Pleistocene Ryuku Group, Irabu Island, SW of Japan) 
 
Matsuda, S. &Y Iryu (2011)- Rhodoliths from deep fore-reef to shelf areas around Okinawa-jima, Ryukyu 
Islands, Japan. Marine Geology 282, p. 215-230. 
(Rhodoliths common in deep fore-reef to shelf areas at 50-135m water depths around Okinawa-jima) 
 
Maxwell, W.G.H. (1968)- Atlas of the Great Barrier Reef. Elsevier, Amsterdam, p. 1-268. 
 
Mayall, M.J., A. Bent & D.M. Roberts (1997)- Miocene carbonate buildups offshore Socialist Republic of 
Vietnam. In: A.J.Fraser, S.J. Matthews & R.W. Murphy (eds.) Petroleum Geology of Southeast Asia, Geol. 
Soc., London, Spec. Publ. 126, p. 117-120. 
(Variety of M. Miocene- Lower Pliocene carbonate accumulations off Vietnam. Best reservoirs in large, fault-
controlled, buildups which have undergone extensive leaching during emergence. Moderate reservoir quality in 
platform facies which extend over large areas and in small buildups usually developed on footwall crests) 
 
McKenzie, J.A. & P.J. Davies (1993)- Cenozoic evolution of carbonate platorms on the Northeastern Australian 
margin: synthesis of Leg 133 drilling results. In: J.A. McKenzie et al. (eds.) Proc. Ocean Drilling Program 
(ODP), Scient. Results 133, p. 763-770. 
(online at: www-odp.tamu.edu/publications/133_SR/VOLUME/CHAPTERS/sr133_52.pdf) 
(ODP wells off Great Barrier Reef and Queensland and Marion Plateaux. Carbonate sedimentation on 
Queensland Plateau began in M Eocene, when temperate waters transgressed across platform depositing 
bryozoan-rich sediments on drowned metasedimentary basement. Late Miocene platform demise) 
 
McNeil, M., J.M. Webster, R. Beaman & T. Graham (2016)- New constraints on the spatial distribution and 
morphology of the Halimeda bioherms of the Great Barrier Reef, Australia. Coral Reefs 35, 4, p. 1343-1355. 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  304

(Halimeda bioherm formation and distribution controlled by interaction of outer-shelf geometry, regional and 
local currents, coupled with morphology and depth of continental slope submarine canyons determining 
delivery of cool, nutrient-rich water upwelling through inter-reef passages) 
 
Meltzner, A.J., A.D. Switzer, B.P. Horton, E. Ashe, Q. Qiu, D.F. Hill, S.L. Bradley, R.E. Kopp et al. (2017)- 
Half-metre sea-level fluctuations on centennial timescales from mid-Holocene corals of Southeast Asia. Nature 
Commun. 2017; 8, 14387, p. 1-16. 
(online at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5309900/pdf/ncomms14387.pdf) 
(Slabs of colonial coral from microatolls of Belitung Island on Sunda Shelf suggest sea level history between 
6850-6500 yrs BP  with two 0.6m fluctuations. Similar observations along S coast of China. Observed sea level 
fluctuations may reflect changes in dynamic sea surface height, local steric effects or eustatic changes) 
 
Molengraaff, G.A.F. (1916)- Het probleem der koraaleilanden en de isostasie. Verslagen Vergadering Wisk.-
Natuurk. Afd. Kon. Nederl. Akademie Wetenschappen, Amsterdam, 25, p. 215-231. 
(Dutch version of Molengraaff 1917 paper below) 
 
Molengraaff, G.A.F. (1917)- The coral reef problem and isostasy. Proc. Kon. Nederl. Akademie 
Wetenschappen, Amsterdam, 19, 4, p. 610-627. 
(online at: www.dwc.knaw.nl/DL/publications/PU00012388.pdf) 
(Discussion of reef growth theories of Darwin, Daly, etc., requiring sealevel rise or seafloor subsidence for 
significant reef development, and the possible causes of subsidence) 
 
Molengraaff, G.A.F. (1930)- The coral reefs in the East Indian Archipelago, their distribution and mode of 
development. Proc. Fourth Pacific Science Congress, Java 1929, IIA, p. 55-89. 
(Early descriptions and distribution maps of coral reefs in Indonesia) 
 
Molengraaff, G.A.F. (1930)- The coral reefs of the East Indian archipelago: their distribution and mode of 
development. II. The recent sediments in the seas of the East-Indian Archipelago with a short discussion on the 
condition of those seas in former geological periods. Proc. Fourth Pacific Science Congress, Java 1929, 2B, p. 
989-1021. 
 
Moll, H. (1983)- Zonation and diversity of Scelaractinia on reefs off S.W. Sulawesi, Indonesia. Ph.D.Thesis, 
Leiden University, p. 1-107. 
 
Moll, H. (1986)- The coral community structure on the reefs visited during the Snellius-II expedition in eastern 
Indonesia. Zoologische Mededelingen, Leiden, 60, p. 1-25. 
(online at: http://repository.naturalis.nl/document/149624) 
 
Montaggioni, L.F. (2005)- History of Indo-Pacific coral reef systems since the last glaciation: development 
patterns and controlling factors. Earth-Science Reviews 71, p. 1-75. 
(Overview of development of coral reefs in Indo-Pacific during last 23 ka. Seven framework and three detrital 
facies identified. Degree of reef development linked to coral community structure. Four reefal anatomy types, 
based on dominant depositional patterns: balanced aggrading/onlapping, unbalanced aggrading/downlapping, 
prograding and backstepping) 
 
Moore, C.H. (2001)- Carbonate reservoirs- porosity evolution and diagenesis in a sequence stratigraphic 
framework. Developments in Sedimentology, Elsevier, Amsterdm, 55, p. 1-444. 
(Review of carbonate deposition and diagenesis, including case history of Malampaya gas field, NW of 
Palawan, Philippines) 
 
Murphy, R.W. & I. Longley (2005)- Carbonates in Southeast Asia. Indon. Petroleum Assoc. (IPA) Newsletter, 
July 2005, p. 10-15.  
(online at: www.ipa.or.id/download/news/IPA_Newsletter_07_2005_9.pdf) 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  305

(Widespread Miocene carbonates are important oil-gas reservoirs. Most economic carbonates of E-M Miocene 
age, below regional M Miocene shales section. All economic carbonate production in SE Asia is from 
secondary porosity) 
 
Mutti, M., C.M. John & A.C. Knoerich (2006)- Chemostratigraphy in Miocene heterozoan carbonate settings: 
applications, limitations and perspectives. In: H.M Pedley & G. Carannante (eds.) Cool-water carbonates: 
depositional systems and palaeoenvironmental controls. Geol. Soc., London, Spec. Publ. 255, p. 307-322. 
 
Mutti, M., W.E. Piller & C. Betzler (eds.) (2010)- Carbonate systems during the Oligocene-Miocene climatic 
transition. Int. Assoc. Sedimentologists, Spec. Publ. 42, p. 1-312. 
 
Nayoan, G.A.S., Arpandi & M. Siregar (1981)- Tertiary carbonate reservoirs in Indonesia. In: Energy 
Resources of the Pacific Region, American Assoc. Petrol. Geol. (AAPG), Studies in Geology 12, p. 133-145. 
 
Netherwood, R. (2002)- Oligo-Miocene carbonate reservoirs in Indonesia. Indon. Petroleum Assoc. (IPA) 
Newsletter, October 2002, p. 17-23. 
 
Niermeyer, J.F. (1911)- Barriere-riffen en atollen in de Oost-Indische Archipel. Tijdschrift Kon. Nederlands 
Aardrijkskundig Genootschap, Ser. 2, 28, p. 877-894. 
('Barrier reefs and atolls in the East Indies Archipelago'. Recent reefs common in Indonesia. Barrier reefs and 
atolls were believed to be rare rare, but prove to be more common on latest maritime maps) 
 
Nontji, A. (2003)- Coral reefs of Indonesia: past, present and future. In: K. Moosa & S. Darsono (eds.) Proc. 9th 
Int. Coral Reefs Symposium, 1, p. 17-27. 
 
Ongkosongo, O.S.R. (1988)- Guide Book Post Convention field trip Pulau Seribu. Indon. Petroleum Assoc., 
17th Ann. Conv., Jakarta, p. 1-157. 
 
Orme, G.R. (1977)- The Coral Sea Plateau- a major reef province. In: O.A. Jones & R. Endean (eds.) Biology 
and geology of coral reefs, 4, Academic Press, New York, p. 267-306. 
 
Orme, G.R. (1985)- The sedimentological importance of Halimeda in the development of back-reef lithofacies, 
northern Great Barrier Reef (Australia). Proc. 5th Int. Coral Reef Symposium, Tahiti 5, p. 31-37. 
 
Pandolfi, J.M., A.W. Tudhope, G. Burr, J. Chappell, E. Edinger, M. Frey et al. (2006)- Mass mortality 
following disturbance in Holocene coral reefs from Papua New Guinea. Geology34, 11, p. 949-952. 
(Evidence for several episodes of coral mass mortality in uplifted E-M-Holocene reef terraces and reefs along 
Huon Peninsula. Most striking mortality event at 9100-9400 yr B.P., associated with volcanic ash horizon) 
 
Park, R.K., P.D. Crevello & W. Hantoro (2010)- Equatorial carbonate depositional systems of Indonesia. In: 
W.A. Morgan, A.D. George et al. (eds.) Cenozoic carbonate systems of Australasia, Soc. Sedimentary Geology 
(SEPM), Spec. Publ. 95, p. 41-77. 
(On processes and controls on tropical carbonate deposition in Indonesia) 
 
Perrin, C. (2002)- Tertiary: the emergence of modern reef ecosystems. In: W. Kiessling et al. (eds.) Phanerozoic 
reef patterns, Soc. Sedimentary Geology (SEPM) Spec. Publ. 72, p. 587-621. 
(Reefal buildups relatively scarce during Early Tertiary, but widespread from Late Oligocene onwards, with 
acme of reef expansion during Early-Middle Miocene) 
 
Perrin, C. & W. Kiessling (2010)- Latitudinal trends in Cenozoic reef patterns and their relationship to climate. 
In: M. Mutti et al. (eds.) Carbonate systems during the Oligocene-Miocene climatic transition. Int. Assoc. 
Sedimentologists (IAS), Spec. Publ. 42, p. 17-34. 
(Reef distribution patterns not cross-correlated with paleoclimate change. Global cooling trend from Eocene to 
Miocene is correlated with increase of reef carbonate production and latitudinal expansion of reef belt) 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  306

 
Petroconsultants (M. Longman principal author) (1993)- Southeast Asian carbonate reservoirs. 2 vols. 
(Unpublished, major review study) 
 
Phipps, C.V.G. & H.H. Roberts (1988)- Seismic characteristics and accretion history of Halimeda bioherms on 
Kalukalukuang Bank, eastern Java Sea (Indonesia). Coral Reefs 6, p. 149-159. 
(Extensive areas of Halimeda bioherms on Kalukalukuang Bank (K-Bank), 50 km E of Sunda Shelf margin in E 
Java Sea. K-Bank isolated limestone platform, with top sloping from ~20 m water depth in N to ~100 m in S. K-
Bank relatively flat top with marginal banks of suspected Pleistocene origin as interpreted from seismic) 
 
Phipps, C.V.G., P.J. Davies and D. Hopley, 1985)- The morphology of Halimeda banks behind the Great 
Barrier Reef East of Cooktown, QLD. In: M. Harmelin Vivien & B. Salvat (eds.) Proc. Fifth Int. Coral Reef 
Congress, Tahiti 1985, 5, Miscellaneous Papers, p. 27-30. 
(Halimeda banks of Great Barrier reef consist of ridges up to 15m high. Two species of Halimeda. Reefs grown 
only in last 8000 yrs. Positions suggest association with ingressions of nutrient-rich water into lagoonal area)) 
 
Pierson, B., A. Chalabi & A.A. Ashaari (2010)- Modern analogues to heterogeneous Miocene carbonate 
reservoirs of the South China Sea. First Break 28, p. 91-96. 
(Studies of three Recent isolated carbonate platforms in Celebes Sea, E of Sabah, illustrate complexity of facies 
distribution. May be analogs for Luconia Miocene carbonate platforms) 
 
Pigram, C.J. (1993)- Carbonate platform growth, demise and sea level record: Marion Plateau, Northeast 
Australia. Ph.D. Thesis, Australian National University, Canberra, p. 1-322. 
(online at: https://openresearch-repository.anu.edu.au/handle/1885/109304) 
(Marion Plateau is most southerly of marginal plateaus offshore NE Australia, in area beyond Great Barrier 
Reef and is extension of Queensland continental shelf in water depths 100-500m. Plateau summit remained 
exposed through Paleogene, during which it was planated to form gently dipping 200 km wide plateau. 
Capped by Late Oligocene- Miocene carbonate buildups) 
 
Pigram, C.J., P.J. Davies & G.C.H. Chaproniere (1993)- Cement stratigraphy and the demise of the Early-
Middle Miocene carbonate platform on the Marion Plateau. In: J.A. MacKenzie et al. (eds.) Proc. Ocean 
Drilling Program (ODP), Scient. Results 133, p. 499-512. 
(online at: www-odp.tamu.edu/Publications/133_SR/VOLUME/CHAPTERS/sr133_34.pdf) 
(Marion Plateau off NE Australia has several shallow marine carbonate platforms, most of which drowned and 
now in >400 m of water. Oldest drowned platform of E-M Miocene age with initial shallow-marine phreatic 
phase of cementation, followed by meteoric diagenesis, followed by dolomitization and/or a deep marine 
cementation. Demise of platform caused by exposure for ~7-10 My sea level drop in M-L Miocene (N10-N17)) 
 
Polonia, A.R.M., D.F.R. Cleary, N.J. de Voogd, W. Renema, B.W. Hoeksema, A. Martins & N.C.M. Gomes 
(2015)- Habitat and water quality variables as predictors of community composition in an Indonesian coral reef: 
a multi-taxon study in the Spermonde Archipelago. Science of the Total Environment 537, p. 139-151. 
 
Pomar, L. & C.G.St.C. Kendall (2008)- Architecture of carbonate platforms: a response to hydrodynamics and 
evolving ecology. In: J. Lukasik & A. Simo (eds.) Controls on carbonate platform and reef development. SEPM 
Spec. Publ. 89, p. 187-216. 
 
Posamentier, H.W. & S.L. Bachtel (2010)- Seismic geomorphology of a Tertiary-aged isolated carbonate 
platform system, Browse Basin, Northwest Shelf of Australia: the spatial and temporal evolution of carbonate 
platform environments- the Lower Section-Part I. In: L.J. Wood et al. (eds.) Seismic imaging of depositional 
and geomorphic systems, Gulf Coast Sect. SEPM, Ann. Perkins Research Conf. 30, Houston, p. 113-114. 
 
Posamentier, H.W. & S.L. Bachtel & T.P. Gerber (2010)- Seismic geomorphology of a Tertiary-aged isolated 
carbonate platform system, Browse Basin, Northwest Shelf of Australia- Part II. In: L.J. Wood et al. (eds.) 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  307

Seismic imaging of depositional and geomorphic systems, Gulf Coast Sect. SEPM, Ann. Perkins Research 
Conf. 30, Houston, p. 136-157. 
 
Praptisih (1994)- Fasies batugamping terumbu Kuarter di daerah Wera dan sekitarnya, Bima, Sumbawa. Proc. 
23rd Ann. Conv. Indon. Assoc. Geol. (IAGI), 1, p. 33-40. 
('Quaternary reefal limestone facies in the Wera and surounding areas, Bima, Sumbawa') 
 
Praptisih (1996)- Facies batugamping terumbu koral Kuarter di daerah Kupang dan sekitarnya, Timor. Proc. 
25th Ann. Conv. Indon. Assoc. Geol. (IAGI), 2, p. 233-241. 
('Quaternary reefal limestone facies in the Kupang area, Timor') 
 
Premonowati (2010)- Metode pendiskripsian batugamping untuk hydrocarbon reservoar characterization dalam 
pemodelan geologi. Proc. 39th Ann. Conv. Indon. Assoc. Geol. (IAGI), Lombok, PIT-IAGI-2010-314, 11p. 
(General paper discussing limestone description characteristics for reservoir characterization) 
 
Pulunggono, A. (1976)- Tertiary carbonates distribution and oil potential in Indonesia. Proc. Carbonate Seminar 
Jakarta 1976, Indon. Petroleum Assoc. (IPA), Spec. Vol., p. 6-13. 
 
Purdy, E.G. & D. Waltham (1999)- Reservoir implications of modern karst topography. American Assoc. 
Petrol. Geol. (AAPG) Bull. 83, 11, p. 1774-1794. 
(Tropical karst landscapes exhibit mainly positive relief features, temperate karst areas more negative relief 
features (i.e., sink holes, dolines, etc.), but not observed in subsurface on seismic sections. Topographic profiles 
over karst relief features of China, Java (Gunung Sewu) used to construct synthetic seismic sections) 
 
Ringeltaube, P. & A. Harvey (2000)- Non-geniculate coralline algae (Corallinales, Rhodophyta) on Heron Reef, 
Great Barrier Reef (Australia). Botanica Marina 43, p. 431-454. 
(Coralline algae from Heron Island lagoon and shallow reef margin/slope, incl. Lithophyllum spp., Hydrolithon 
spp., Neogoniolithon, Spongites, Lithothamnion, Mastophora, etc. Hydrolithon onkodes abundant on reef flat 
towards rim) 
 
Roberts, H.H. & C.V. Phipps (1988)- Proposed oceanographic controls on modem Indonesian reefs: a turn-
off/turn-on mechanism in a monsoonal setting. In: J.H. Choat et al. (eds.) Proc. 6th Int. Coral Reef Symposium, 
Townsville 1998, 3, p. 529-534. 
(In E Java Sea mutually exclusive occurrences of coral reefs and Halimeda bioherms: coral reefs in depths 
<15m, extensive areas of 20-50m thick Halimeda bioherms between 20-100m. Unusual success of Halimeda at 
expense of reef-building corals appears related to nutrient overloading as modulated by monsoon cycle. Strong 
E-to-W surface flow during E monsoon induces upwelling along western platform margins. Deformation of 
shallow thermocline where nutrients concentrate (50-100m) brings this deeper Pacific throughflow water to 
platform margins and top) 
 
Saller, A.H. & R.B. Koepnick (1990)- Eocene to Early Miocene growth of Enewetak Atoll; insight from 
strontium-isotope data. Geol. Soc. America (GSA) Bull. 102, 3, p. 381-390. 
 
Santoso, W.D., Y. Zaim & Y. Rizal (2017)- Carbonate biofacies and paleoecology analysis based on Acropora 
coral in Ujunggenteng area, West Java Province, Indonesia. J. Riset Geologi Pertambangan (LIPI) 27, 2, p. 179-
188. 
(online at: http://jrisetgeotam.com/index.php/jrisgeotam/article/view/477/pdf) 
(Limestone at Ujung Genteng, SW Java, with three Acropora coral associations, tied to 0-13m 
paleobathymetry. (Age?)) 
 
Saqab, M.M. & J. Bourget (2015)- Controls on the distribution and growth of isolated carbonate build-ups in 
the Timor Sea (NW Australia) during the Quaternary. Marine Petroleum Geol. 62, p. 123-143. 
(Quaternary isolated carbonate build-ups common on NW Australia shelf/ Bonaparte Basin: 1-30 km wide, in 
clusters of ~150 build-ups, 2-85 km from edge of 650 km-wide continental shelf. Mainly 'Halimeda bioherms'. 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  308

Distribution of buildups impacted by fault activity, starting in latest Miocene- E Pliocene (initial collision of 
Australian Plate with Banda Arc, increasing and peaking in E Pleistocene), causing flexural reactivation of 
structural highs and lows along shelf-margin. Seismic evidence of moat channels and drift deposits suggest 
contour current activity intensified in late E Pleistocene (~1 Ma). Despite good conditions, buildups did not 
form until M Pleistocene (~0.58- 0.8 Ma), corresponding to onset of major sea level fluctuations) 
 
Sartorio, D. & S. Venturini (1988)- Southern Tethys biofacies. AGIP, San Donato Milanese, p. 1-235. 
(Atlas of photomicrographs of Cambrian- Pliocene carbonate thin sections, mainly from Mediterranean region) 
 
Scaps, P. & F. Runtukahu (2008)- Assessment of the coral reefs of the Luwuk Peninsula, Central Sulawesi, 
Indonesia. Bull. Soc. Zoologique France 133, p. 341-355. 
 
Scheibner, C. & R.P. Speijer (2008)- Late Paleocene- Early Eocene Tethyan carbonate platform evolution- a 
response to long- and short-term paleoclimatic change. Earth-Science Reviews 90, p. 71-102. 
(Three stages in Late Paleocene- E Eocene Tethys carbonate platforms: (1) late Paleocene: coralgal-dominated 
at low-mid paleolatitudes;(2) latest Paleocene: coralgal reefs dominant at middle paleolatitudes and larger 
foraminifera-dominated (Miscellanea, Ranikothalia, Assilina) at low paleolatitudes; (3) E Eocene larger 
foraminifera-dominated (Alveolina, Orbitolites, Nummulites) platforms at low-middle paleolatitudes. Onset of 
larger foraminifera-dominated platform correlates with Paleocene/Eocene Thermal Maximum. Decline of 
coralgal reefs in low latitudes related to warming, with sea-surface temperatures in tropics beyond maximum 
temperature range of corals) 
 
Scheibner, C., R.P. Speijer & A.M. Marzouk (2005)- Turnover of larger foraminifera during the Paleocene-
Eocene Thermal Maximum and paleoclimatic control on the evolution of platform ecosystems. Geology 33, 6, 
p. 493-496. 
(Larger-foraminifera turnover (LFT) at Paleocene-Eocene transition involves rapid increase in species and 
shell size. LFT coincides with Paleocene-Eocene Thermal Maximum (PETM). Because of vulnerability of corals 
to high surface-water temperatures, global warming may have favored larger foraminifera at expense of corals 
as main carbonate-producing component on carbonate platforms at lower latitudes) 
 
Scrutton, M.E. (1976)- Aspects of carbonate sedimentation in Indonesia. Proc. 5th Ann. Conv. Indon. Petroleum 
Assoc. (IPA), Jakarta, p. 179-193. 
 
Scrutton, M.E. (1978)- Modern reefs in the West Java Sea. Proc. IPA Carbonate Seminar, Jakarta 1976, Indon. 
Petroleum Assoc., Special Vol., p. 14-41. 
(Overview of reefs and bottom sediments composition of Pulau Seribu, Java Sea, NW of Jakarta) 
 
Scrutton, M. (1979)- Modern reefs in the West Java Sea. SEAPEX Proc. 4, Singapore, p. 22-40. 
(Study of carbonate sediment composition of Pulau Seribu group of coral reefs, Java Sea) 
 
Sluiter, C.P. (1890)- Uber die Entstehung der Korallenriffe in der Java See und Branntweinsbai, und uber neue 
Korallenbildung bei Krakatau,. Biologisches Centralblatt 9, 24, p. 737-753. 
('On the origin of the coral reefs in the Java Sea and Brandewijns Bay (near Padang, W Sumatra) and on new 
coral growth near Krakatoa'. On initiation of new coral growth in Bay of Jakarta (away from muddy bottoms 
and usually first by solitary corals Madrepora, Porites, etc., followed by massive corals Astraea, etc.) and 
growth of modern reefs. Same as Sluiter (1890) below) 
 
Sluiter, C.P. (1890)- Einiges uber die Entstehung der Korallenriffe in der Java Zee und Branntweinsbai, und 
uber neue Korallenbildung bei Krakatau. Natuurkundig Tijdschrift Nederl. Oost-Indie 49, 2, p. 360-380. 
(online at: http://62.41.28.253/cgi-bin/...  ) 
('On the origin of the coral reefs in the Java Sea and Brandewijns Bay (near Padang, W Sumatra) and on new 
coral growth near Krakatoa') 
 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  309

Solihuddin, T. (2017)- Atoll reef geomorphology of Sagori Island, SE Sulawesi: a reconnaissance study. 
Indonesian J. Geoscience 4, 3, p. 181-191. 
(online at: https://ijog.geologi.esdm.go.id/index.php/IJOG/article/view/386/247) 
 
Spencer, T. & M.D. Spalding (2005)- Coral reefs of Southeast Asia: controls, patterns and human impacts. In: 
A. Gupta (ed.) The physical geography of Southeast Asia, Oxford University Press, p. 402-427. 
(Indonesia with its 17,500 islands contains 32% of world's shallow coral reefs) 
 
Starger, C.J., P.H. Barber, Ambariyanto & A.C. Baker (2010)- The recovery of coral genetic diversity in the 
Sunda Strait following the 1883 eruption of Krakatau. Coral Reefs 29, 3, p. 547-565. 
(Genetic diversity has largely recovered on reefs decimated by eruption of Krakatau in 1883. Recolonization 
occurred mainly from Pulau Seribu, but also larval input from other regions. Recovery of genetic diversity in 
coral reef animals can occur on order of decades and centuries rather than millennia) 
 
Sun, S.Q. & M. Esteban (1994)- Paleoclimatic controls on sedimentation, diagenesis and reservoir quality: 
lessons from Miocene carbonates. American Assoc. Petrol. Geol. (AAPG) Bull. 74, 4, p. 519-543. 
(Reservoir quality of Miocene carbonates primarily controlled by prevailing paleoclimate. Two end members: 
(1) humid, oceanic tropical-subtropical settings (e.g. Miocene of SE Asia). Warming trend and rising sea level 
allowed thick coral reefs and skeletal banks to develop. Typically several 3rd-order cycles, separated by 
discontinuities in platform growth with subaerial exposure, with porosity development associated with meteoric 
leaching and karstification. Basal transgressive carbonates mostly tight; (2) arid, land-locked temperate-
subtropical settingswith elevated salinities and relatively low temperature restricting growth of buildups. 
Mainly thin, narrow fringing coral reefs with small lagoons in rhodalgal ramps, with minimal meteoric 
dissolution during subaerial exposure. Evaporitic lagoons cause of pervasive dolomitization, leaching and 
generation of moldic, vuggy, and intercrystalline porosity. Often with anhydrite cement) 
 
Teichert, C. & R.W. Fairbridge (1948)- Some coral reefs of the Sahul Shelf. Geographical Review 38, 2, p. 222-
249. 
 
Ting, K.K., B.J. Pierson & O.S. Al-Jaaidi (2012)- Application of stable isotope analysis from Central Luconia, 
Sarawak: insights into reservoir development and diagenesis. Petrol. Geosc. Conf. Exh. (PGCE 2012), Kuala 
Lumpur, Warta Geologi 38, 2, p. 176-177. 
(Extended Abstract. Mega-Platform 1.2-km- thick Miocene carbonate platform in N part of Luconia province. 
Study of isotopic composition of diagenetic cement. Meteoric calcite cement relatively low oxygen isotopic 
ratios due to addition of lighter meteoric-derived 16O. Carbonate precipitated directly from seawater exhibits 
87Sr/86Sr ratio of sea water at time of precipitation. Later diagenetic carbonates incorporate 87Sr released 
during dissolution and recrystallization, inheriting 87Sr/86Sr ratios of formation waters from which they 
crystallised, typically with Sr ratios greater than contemporaneous seawater) 
 
Tomascik, T., A.J. Mah, A. Nontiji & M. Moosa (1997)- Geological history of reefs. In: The ecology of the 
Indonesian Seas, Part I, Chapter 5, The ecology of Indonesia 7, Periplus Ed., Singapore, p. 145-206. 
 
Tomascik, T., A.J. Mah, A. Nontiji & M. Moosa (1997)- Fringing reefs, Patch reefs, Barrier reefs, Atolls, Coral 
cays. Chapters 13-17 in The ecology of the Indonesian Seas, Part II, The ecology of Indonesia series, 7, Periplus 
Ed., Singapore, p. 643-827. 
 
Tomascik, T., R. van Woesik & A.J. Mah (1996)- Rapid colonisation of a recent lava flow following a volcanic 
eruption, Banda Islands, Indonesia. Coral Reefs 15, p. 169-175. 
(Five years after the 1988 eruption of Gunung Api volcano, Banda Islands, lava flows supported diverse coral 
community (124 species) with high coral cover and with some colonies measuring over 90 cm in diameter) 
 
Tsuji, Y. (1993)- Tide influenced high energy environments and rhodolith-associated carbonate deposition on 
the outer shelf and slope off the Miyako Islands, southern Ryukyu Island Arc, Japan. Marine Geology 113, p. 
255-271. 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  310

 
Umbgrove, J.H.F. (1928)- Een eeuw theorieen over het ontstaan van koraalriffen. Natuurkundig Tijdschrift 
Nederlandsch-Indie 88, p. 141-183. 
('A century of theories on the origin of coral reefs') 
 
Umbgrove, J.H.F. (1928)- De koraalriffen in de Baai van Batavia. Dienst Mijnbouw Nederlandsch-Indie, 
Wetenschappelijke Mededeelingen 7, p. 1-66. 
('The coral reefs in the Bay of Jakarta'. 63 recent species. Reef islands started on muddy bottom, sank into 
substrate after growth) 
 
Umbgrove, J.H.F. (1929)- De koraalriffen der Duizend Eilanden. Dienst Mijnbouw Nederlandsch-Indie, 
Wetenschappelijke Mededeelingen 12, p. 3-47. 
(‘The coral reefs of the Thousand Island's (Pulau Seribu, W Java Sea)) 
 
Umbgrove, J.H.F. (1930)- The end of Sluiter’s coral reef at Krakatoa. Leidsche Geol. Mededelingen 3, p. 261-
264. 
(online at: www.repository.naturalis.nl/document/549489) 
(Rapid re-colonization of Krakatoa remnants (NW Rakata) by corals (mainly branching types) after 1883 
eruption, as observed by Sluiter (1890). Forty years later covered by pumice deposits eroded from exposed 
Rakata walls) 
 
Umbgrove, J.H.F. (1930)- De koraalriffen van den Spermonde Archipel (Zuid-Celebes). Leidsche Geol. 
Mededelingen 3, 5, p. 227-247. 
(online at: http://www.repository.naturalis.nl/document/549271) 
(‘The coral reefs of the Spermonde Archipelago, S Sulawesi’. Early survey of modern reefs off SW tip of 
Sulawesi. Adjacent coastal plain is bordered by Maros Mts, composed of Late Eocene and Miocene limestones) 
 
Umbgrove, J.H.F. (1930)- The influence of the monsoons on the geomorphology of coral islands. Proc. 4th 
Pacific Science Congress, Java 1929, IIA, p. 49-64. 
 
Umbgrove, J.H.F. (1931)- De koraalriffen van Emmahaven (W Sumatra). Leidsche Geol. Mededelingen 4, p. 9-
24. 
(online at: www.repository.naturalis.nl/document/549644) 
(‘The coral reefs of Port Emma, West Sumatra’. On modern coral reefs in bay near Padang) 
 
Umbgrove, J.H.F. (1939)- De atollen en barriere-riffen der Togian eilanden. Leidsche Geol. Mededelingen 11, 
1, p. 139-187. 
(online at: www.repository.naturalis.nl/document/549574) 
(‘The atolls and barrier reefs of the Togian Islands’. Study of modern atolls and reefs in Tomini Gulf, N 
Sulawesi, with reconnaissance geology observations on Togian Islands. Oldest rocks are sediments, intruded by 
young volcanics (but no recent activity). Raised reef terraces younger than Tf/Miocene) 
 
Umbgrove, J.H.F. (1939)- Madreporaria from the Bay of Batavia. Zoologische Mededelingen 22, 1, p. 1-64. 
(online at: www.repository.naturalis.nl/document/149596) 
 
Umbgrove, J.H.F. (1939)- Madreporia from the Togian reefs (Gulf of Tomini, North Celebes). Zoologische 
Mededelingen 22, 10, p. 265-308. 
(online at: www.repository.naturalis.nl/document/149424) 
(Descriptions of modern corals from steep barrier reefs, atolls and fringing reefs of Togian Islands. In setting 
rel. sheltered from monsoons, therefore lacking shingle ramparts and sand cays) 
 
Umbgrove, J.H.F. (1946)- Evolution of reef corals in the East Indies since Miocene time. American Assoc. 
Petrol. Geol. (AAPG) Bull. 30, p. 23-31. 
(Percentage-of-living-species figures useful for stratigraphic dating and correlation) 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  311

 
Umbgrove, J.H.F. (1947)- Coral reefs of the East Indies. Geol. Soc. America (GSA) Bull. 58, 8, p. 729-778. 
(Review of investigations on coral reefs in Indonesia in 15 years before WWII. Every atoll and barrier reef 
studied shows evidence of subsidence. Extreme thickness of some reefs, as demonstrated by their steep 
submarine slopes, cannot be explained by glacial control only. Prevailing wind and wave action are important 
influence on upper structure of reefs. Additional examples of currents as factors of morphological importance) 
 
Umbgrove, J.H.F. & J. Verweij (1929)- The coral reefs in the Bay of Batavia. Proc. Fourth Pacific Science 
Congress, Java 1929, Excursion Guide A2, p. 5-30. 
 
Van der Horst, C.J. (1921)- Madreporaria Fungida. Siboga Expeditie Monograph 16b, Brill, Leiden, p. 1-46. 
(First of series of papers on Recent corals of Indonesia, collected during Siboga Expedition) 
 
Van der Horst, C.J. (1921)- Madreporaria of the Siboga Expedition, Part 2. Madreporaria Fungida. Siboga 
Expeditie Monograph 16b, Brill, Leiden, p. 53-98. 
(Second of series of monographs on Recent corals of Indonesia, collected during Siboga Expedition (Part 1 by 
Alcock (1902), part 4 by H. Boschma) 
 
Van der Horst, C.J. (1922)- The Madreporaria of the Siboga Expedition. Part 3: Eupsammidae. Siboga 
Expeditie Monograph 16c, Brill, Leiden, p. 99-127. 
(online at: https://ia600404.us.archive.org/25/items/sibogaexpeditie92sibo/sibogaexpeditie92sibo.pdf) 
(Third of series of monographs on Recent corals of Indonesia, collected during Siboga Expedition 
 
Van der Meij, S.E.T., Suharsono & B.W. Hoeksema (2010)- Long-term changes in coral assemblages under 
natural and anthropogenic stress in Jakarta Bay (1920-2005). Marine Pollution Bull. 60, 9, p. 1442-1454 
(Coral reefs in Jakarta Bay have been under long-term natural and anthropogenic stress. Coral species 
diversity and composition of reefs changed considerably between 1920 and 2005. About half number of species 
recorded in 1920 was found again in 2005) 
 
Veron, J., M. Stafford-Smith, L. DeVantier& E. Turak (2015)- Overview of distribution patterns of 
zooxanthellate Scleractinia. Frontiers Marine Science 1, 81, p. 1-19. 
(online at: http://journal.frontiersin.org/article/10.3389/fmars.2014.00081/full) 
(Global study of present-day geographic distributions of corals. Birds Head- Sulu Sea region is global center of 
peak coral diversity)) 
 
Verstappen, H.Th. (1953)- Oude en nieuwe onderzoekingen over de koraaleilanden in de baai van Djakarta. 
Tijdschrift Kon. Nederlands Aardrijkskundig Genootschap 70, 4, p. 472-478. 
('Early and recent investigations on the coral islands in the Bay of Jakarta'. Results of 1950-1951 investigations 
compared with studies by Sluiter 1890 and Umbgrove 1928. Coral islands only in W part of bay. Islands 
probably older than 3000 years, as suggested by Umbgrove, and controlled by underlying structure. Shape and 
growth patterns of island largely controlled by dominant wind patterns) 
 
Verstappen, H.Th. (1954)- The influence of climatic changes on the formation of coral islands. American J. 
Science 252, 7, p. 428-435. 
(Comparison of modern small patch reefs in Jakarta Bay from 1875, 1927, 1935 and 1950. Shingle ramparts of 
coarse material originate on weather side of reefs and varied through time: in 1875 mainly on NW sides of 
islands (period of dominant W-monsoon), in 1927 in N, NE and E (period of dominant E-monsoon), in 1939 and 
1950 most on W sides (period of dominant W-monsoon)) 
 
Verweij, J. (1930)- Depth of coral reefs and penetration of light. With notes on oxygen consumption of corals. 
Proc. 4th Pacific Science Congress, Java 1929, 2A, p. 277-299. 
(Oxygen content of water in lagoon of one of islands in Bay of Jakarta rises during day and falls at night, 
suggesting production of oxygen by algae during day and significant consumption by reef at night. Lower depth 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  312

limit of reef corals controlled by depth of light penetration (corals depend on zooxanthellid algae for food), This 
is usually around 40m, but may be reduced in areas of clay-silt sediment supply, like Bay of Jakarta) 
 
Verweij, J. (1930)- Coral reef studies. Treubia 12, p. 305-366. 
(online at: http://e-journal.biologi.lipi.go.id/index.php/treubia/article/view/1894/1780) 
(Mainly zoological studies of Indonesian coral reefs) 
 
Verweij, J. (1931)- Coral reef studies II. The depth of coral reefs in relation to their oxygen consumption and 
the penetration of light in the water. Treubia 13, 2, p. 169-198. 
(online at: http://e-journal.biologi.lipi.go.id/index.php/treubia/article/view/1933/1816) 
(Observations on Onrust island coral reef in W Bay of Batavia. Close correlation between amount of suspended 
silt (light penetration) and lower depth limit of growth of reef corals) 
 
Verweij, J. (1931)- Coral reef studies III. Geomorphological notes on the coral reefs of Batavia Bay. Treubia 
13, 2, p. 199-215. 
(online at: e-journal.biologi.lipi.go.id/index.php/treubia/article/download/1934/1817) 
(Observation on coral islands Dapur, Damar Besar (edam) and Pulau Ayer (Hoorn) in Bay of Jakarta, after 
initial work of Umbgrove. Not much coral growth below ~10-15m, due to silt content of bay water) 
 
Wahlmann, G.P. (2002)- Upper Carboniferous- Lower Permian (Bashkirian- Kungurian) mounds and reefs. In: 
W. Kiessling et al. (eds.) Phanerozoic reef patterns, Soc. Sedimentary Geology (SEPM) Spec. Publ. 72, p. 271-
338. 
(Includes mention of Timor Permian (Sakmarian) Tubiphytes (= Shamovella) grainstones) 
 
Wallace, C.C. (1997)- The Indo-Pacific center of coral diversity re-examined at species level. In: Proc. 8th Int. 
Coral Reef Symposium, Panama, 1, p. 365-370. 
(On distribution pattern of Acropora coral species in Indonesia) 
 
Wallace, C.C. (1999)- The Togian Islands: coral reefs with a unique coral fauna and an hypothesized Tethys 
Sea signature. Coral Reefs 18, p. 162. 
(Acropora coral fauna of Togian Islands, N Sulawesi, high diversity and includes relict Tethys Sea elements 
(conclusion re-assessed in Wallace 2001: more likely remnant Pacific fauna)) 
 
Wallace, C.C. (2001)- Wallace's line and marine organisms: the distribution of staghorn corals (Acropora) in 
Indonesia. In: I. Metcalfe (ed.) Faunal and floral migrations and evolution in SE Asia-Australasia, Balkema, p. 
168-178. 
(Distribution patterns of 89 species of Acropora staghorn coral, which has highest diversity in Wallacea region 
(but is not center of origin). In Indonesian Archipelago overlap of Indian Ocean species (diminishing E-ward) 
and Pacific Ocean species (diminishing W-wards), with stronger Pacific influence) 
 
Wallace, C.C., G. Paulay, B.W. Hoeksema, D.R. Bellwood et al. (2000)- Nature and origins of unique high 
diversity reef faunas in the Bay of Tomini, Central Sulawesi: The ultimate "center of diversity"? Proc. 9th Int. 
Coral Reef Symp., Bali 2000, 1, p. 185-192. 
 
Watanabe, T., M.K. Gagan, T. Correge, W.S. Hantoro, H. Scott-Gagan, J. Cowley, G.E. Mortimer & M.T. 
McCulloch (2002)- Palaeoclimate reconstruction using Diploastrea and Porites corals from Alor in Eastern 
Indonesia. Proc. 31st Ann. Conv. Indon. Assoc. Geol. (IAGI), Surabaya, 2, p. 645-. 
(Alor in Banda Sea is in core of Indo-Pacific warm Pool. 18O isotopes of coral growth stages used to monitor 
inter-annual climate changes. El Nino events in last 30 years clearly reflected by increased 18O) 
 
Webster, J.M., J.C. Braga, D.A. Clague, C. Gallup, J.R. Hein, D.C. Potts, W. Renema, R. Riding et al. (2009)- 
Coral reef evolution on rapidly subsiding margins. Global Planetary Change 66, p. 129-148. 
(Series of submerged coral reefs in Huon Gulf (PNG) and around Hawaii. Rapid subsidence (2-6 m/ka over last 
500 ka), combined with eustatic sea-level changes, responsible for repeated drowning and backstepping of 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  313

coral reefs. Reef drowning characterized by distinct biological and sedimentary sequence. In short term, rate 
and amplitude of eustatic sea-level changes control initiation, growth, drowning or sub-aerial exposure, 
subsequent reinitiation, and final drowning. Over longer time scales (>100-500 ka) tectonic subsidence and 
basement substrate morphology influence reef morphology and backstepping geometries) 
 
Webster, J.M., L. Wallace, E. Silver, B. Applegate, D. Potts, J.C. Braga & C. Gallup (2004)- Drowned 
carbonate platforms in the Huon Gulf, Papua New Guinea. Geochem. Geophys. Geosystems 5, 11, Q11008, p. 
1-31. 
(online at: http://onlinelibrary.wiley.com/doi/10.1029/2004GC000726/pdf) 
(W Huon Gulf actively subsiding foreland basin with 14 drowned carbonate platforms and many pinnacles/ 
banks, increasing in age (~20-450 kyr) and depth (0.1-2.5 km) NE to Ramu- Markham Trench. Superimposed 
on downward flexing of platforms toward trench is tilting of deep platforms to NW and shallow platforms to SE. 
This may reflect encroaching thrust load from NW (Finisterre Range). Over shorter time scales (~100 kyr) 
eustatic sea level changes critical in controlling initiation, growth, drowning of platforms. Tectonic subsidence 
and basement morphology influence backstepping geometry and tilting of platforms over longer timescales) 
 
Webster, J.M., L. Wallace, E. Silver, D. Potts, J.C. Braga, W. Renema, K. Coleman-Riker & C. Gallup (2004)- 
Coralgal composition of drowned carbonate platforms in the Huon Gulf, Papua New Guinea: implications for 
lowstand reef development and drowning. Marine Geology 204, p. 59-89. 
(Coral, algae, larger forams facies models and development of Pleistocene carbonate platforms, Huon Gulf. 
Facies from shallow to deep: 1. coral reef lst (reef flat-upper reef slope <20m; with Calcarina), 2. coralline 
algal- foraminiferal nodule limestone, 3. Halimeda limestone (deep fore-reef slope ~20-60m; with 
Amphistegina, Heterostegina, Operculina), 4. Coralline algal- foraminiferal crust limestone (deeper fore-reef 
slope ~60-90m; with Amphistegina, Cycloclypeus, Heterostegina operculinoides, Operculina) and 5. Planktonic 
foraminifera limestone (with Amphistegina, Cycloclypeus, Heterostegina)) 
 
Weidlich, O. (2002)- Middle and Late Permian reefs- distributional patterns and reservoir potential. In: W. 
Kiessling et al. (eds.) Phanerozoic reef patterns, Soc. Sedimentary Geology (SEPM) Spec. Publ. 72, p. 339-390. 
(Includes SE Asia info: prolific Permian rugose coral faunas found in mainland SE Asia, Sumatra and Timor) 
 
Whitehouse, F.W. (1973)- Coral reefs of the New Guinea Region. In: O.A. Jones & R. Endean (eds.) Biology 
and geology of coral reefs, 1, Academic Press, New York, p. 169-186. 
 
Wichmann, C.E.A. (1912)- On the so-called atolls of the East-Indian Archipelago. Proc. Kon. Akademie 
Wetenschappen, Amsterdam, 14, p. 698-711. 
(online at: www.dwc.knaw.nl/DL/publications/PU00013229.pdf) 
(Review of distribution of modern coral reefs in Indonesia. Most are fringing reefs and patch reefs. True atolls 
or barrier reefs are virtually absent) 
 
Wienberg, C., H. Westphal, E. Kwoll & D. Hebbeln (2010)- An isolated carbonate knoll in the Timor Sea 
(Sahul Shelf, NW Australia): facies zonation and sediment composition. Facies 56, 2, p. 179-193. 
(Facies and biota description of Pee Shoal in Timor Sea. Steep and flat-topped knoll. Facies zonation: (A) 
scarce sponges, hydrozoans and crinoids (320-210m water depth); (B) hardground outcrops (step-like banks, 
vertical cliffs) colonized by octocorals and sponges (210-75m); (C) summit region (75-21m) slopes merge 
gently into flat-topped summit, colonized by massive and encrusting corals and octocoral Heliopora. Sediments 
from summit dominated by Halimeda) 
 
Wijsman-Best, M.B. (1977)- Coral research in the Indonesian Archipelago, the past, the present and the future. 
Marine Research in Indonesia 17, p. 1-14. 
 
Wilson, M.E.J. (2002)- Cenozoic carbonates in Southeast Asia: implications for equatorial carbonate 
development. Sedimentary Geology 147, p. 295-428. 
(Comprehensive review of Tertiary carbonates in SE Asia) 
 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  314

Wilson, M.E.J. (2008)- Reservoir quality of Cenozoic carbonate buildups and coral reef terraces. Proc. 32nd 
Ann. Conv. Indon. Petroleum Assoc. (IPA), Jakarta, IPA08-G-155, 8p. 
(On ongoing research on modern carbonates of Wakatobi area, Tukang Besi Islands, SE of Buton/Sulawesi. 
Archipelago includes large atolls, smaller buildups and 4 main islands with modern rimmed shelves or fringing 
reefs. On islands >10 Pliocene- Quaternary coral reef terraces, uplifted to ~300m) 
 
Wilson, M.E.J. (2008)- Global and regional influences on equatorial shallow-marine carbonates during the 
Cenozoic. Palaeogeogr. Palaeoclim. Palaeoecology 255, p. 262-274. 
(online at: http://searg.rhul.ac.uk/pubs/wilson_2008%20Equatorial%20shallow-marine%20carbonates.pdf) 
(Marked change from larger foram to coral-dominated carbonate producers around Oligo-Miocene boundary. 
Early Miocene acme of coral development in SE Asia) 
 
Wilson, M.E.J. (2011)- SE Asian carbonates: tools for evaluating environmental and climatic change in the 
equatorial tropics over the last 50 million years. In: R. Hall, M.A. Cottam & M.E.J. Wilson (eds.) The SE Asian 
gateway: history and tectonics of Australia-Asia collision, Geol. Soc. London, Spec. Publ. 355, p. 347-369. 
(online at: http://searg.rhul.ac.uk/pubs/wilson_2011%20SE%20Asian%20carbonates.pdf) 
(Review of shallow water carbonate environmental and climatic changes through last 50 My in SE Asia) 
 
Wilson, M.E.J. (2012)- Equatorial carbonates: an earth systems approach. In: Carbonate platforms: archives of 
past global change. Sedimentology 59, 1, p. 1-31. 
 
Wilson, M.E.J. (2015)- Oligo-Miocene variability in carbonate producers and platforms of the Coral Triangle 
biodiversity hotspot; habitat mosaics and marine biodiversity. Palaios 30, 1, p. 150-168. 
(Mainly review of Tertiary carbonates of Kutai Basin of E Kalimantan) 
 
Wilson, M.E.J. & R. Hall (2010)- Tectonic influences on SE Asian carbonate systems and their reservoir 
development. In: W.A. Morgan, W.A. George et al. (eds.) Cenozoic carbonate systems of Australasia, Soc. 
Sedimentary Geology (SEPM), Spec. Publ. 95, p. 13-40. 
(online at: http://searg.rhul.ac.uk/pubs/wilson_hall_2010%20Australasian%20carbonates.pdf) 
(Tectonics control location of SE Asian Cenozoic carbonate deposits. 70% of 250 shallow marine carbonate 
formations in SE Asia initiated as attached features, 90% of economic hydrocarbon discoveries developed over 
antecedent topography, of which >75% isolated platforms. Economic reservoirs mainly in backarc and rift-
margin settings (40% each). Demise of many platforms influenced by tectonic subsidence, often in combination 
with eustatic sea-level rise and environmental perturbations. Fractures enhance reservoir quality or may cause 
compartmentalization of reservoirs through formation of fault gouge or fault leakage) 
 
Wilson, M.E.J. & S.W. Lokier (2002)- Siliciclastic and volcaniclastic influences on equatorial carbonates: 
insights from the Neogene of Indonesia. Sedimentology 49, p. 583-601. 
(Despite significant clastic influence, Neogene carbonates developed adjacent to major deltas or volcanic arcs, 
and are comparable with modern mixed carbonate-clastic deposits in region. Regional carbonate development 
in areas of high clastic input influenced by antecedent highs, changes in amounts or rates of clastic input, delta 
lobe switching or variations in volcanic activity, energy regimes and relative sea-level change. With examples 
from patch reef complexes in Miocene deposits of proto-Mahakam and Wonosari Platform, Java S Mountains) 
 
Wilson, M.E.J. & B.R. Rosen (1998)- Implications of paucity of corals in the Paleogene of SE Asia: plate 
tectonics or center of origin? In: R. Hall & J.D. Holloway (eds.) Biogeography and geological evolution of SE 
Asia, Backhuys Publ., Leiden, p. 165-195. 
(Corals generally rare in SE Asian Eocene- Oligocene carbonates; instead dominated by larger forams and 
coralline algae) 
 
Wilson, M.E.J. & A. Vecsei (2005)- The apparent paradox of abundant foramol facies in low latitudes: their 
environmental significance and effect on platform development. Earth-Science Reviews 69, p. 133-168. 
(Locally common larger foram-rich carbonates at tropical latitudes) 
 



Bibliography of Indonesian Geology, Ed. 7.0      www.vangorselslist.com    July. 2018  315

Wizemann, A., T. Mann, A. Klicpera & H. Westphal (2015)- Microstructural analyses of sedimentary Halimeda 
segments from the Spermonde Archipelago (SW Sulawesi, Indonesia): a new indicator for sediment transport in 
tropical reef islands? Facies 61, 2, p. 1-18. 
 
Yamano, H., G. Cabioch, B. Pelletier, C. Chevillon, H. Tachikawa et al. (2015)- Modern carbonate sedimentary 
facies on the outer shelf and slope around New Caledonia. Island Arc 24, p. 4-15. 
(Encrusted grains facies (rhodoliths, macroids) generally distributed at depths of 75-200m and associated with 
Cycloclypeus carpenteri. Ahermatypic coral facies on cone-like mounds at depths of 240-520 m) 
 
Yamano, H., H. Kayanne, F. Matsuda & Y. Tsuji (2002)- Lagoonal facies, ages, and sedimentation in three 
atolls in the Pacific. Marine Geology 185, 3-4, p. 233-247. 
(Lagoons in atolls of Palau and Marshall islands 3 facies: Calcarina, Calcarina-Heterostegina and 
Heterostegina facies, based on presence/ absence of larger forams Calcarina (reef flat) and Heterostegina 
(deep lagoon). Calcarina facies allochthonous reef-derived materials, Heterostegina facies mainly in situ 
lagoonal materials) 
 
Yamano, H., T. Miyajima & I. Koike (2000)- Importance of foraminifera for the formation and maintenance of 
a coral sand cay: Green Island, Australia. Coral Reefs 19, p. 51-58. 
(Green Island Reef (Great Barrier Reef, Australia) sand cay major constituents benthic foraminifera (mainly 
Amphistegina lessonii, Baculogypsina sphaerulata and Calcarina hispida), calcareous algae (Halimeda and 
coralline algae), hermatypic corals, and molluscs. Benthic foraminifera ~30% of total sediment) 
 


