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Abstract
Studies of the diversity and distribution of freshwater cyanophages are generally limited to the small geographical areas, in 
many cases including only one or few lakes. Data from dozens of various lakes distributed at a larger distance are necessary 
to understand their spatial distribution and sensitivity to biotic and abiotic factors. Thus, the objective of this study was to 
analyze the diversity and distribution of cyanophages within the infected cells using marker genes (psbA, nblA, and g91) in 
21 Polish and Lithuanian lakes. Physicochemical factors that might be related to them were also analyzed. The results dem-
onstrated that genetic markers representing cyanophages were observed in most lakes studied. The frequently detected gene 
was psbA with 88% of cyanophage-positive samples, while nblA and g91 were found in approximately 50% of lakes. The 
DNA sequence analyses for each gene demonstrated low variability between them, although the psbA sequences branched 
within the larger cluster of marine Synechoccocuss counterparts. The principal component analysis allowed to identify sig-
nificant variation between the lakes that presented high and low cyanobacterial biomass. The lakes with high cyanobacterial 
biomass were further separated by country and the different diversity of cyanobacteria species, particularly Planktothrix 
agardhii, was dominant in the Polish lakes and Planktolyngbya limnetica in the Lithuanian lakes. The total phosphorous and 
the presence of cyanophage genes psbA and nblA were the most important factors that allowed differentiation for the Polish 
lakes, while the pH and the genes g91 and nblA for the Lithuanian lakes.
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Introduction

Cyanophages, viruses infecting cyanobacteria, are numer-
ous biologically active entities in aquatic ecosystems and 
play an important role in determining host population 

diversity, dynamics, and evolution [1–4]. Most of the cur-
rently known cyanophages are members of Myoviridae 
(myocyanophages), Siphoviridae (siphocyanophages), and 
Podoviridae (podocyanophages) families [5–7]. Among 
these, the diversity of myocyanophages is probably the most 
well represented in public databases to date. However, some 
studies indicate that sipho- and podoviruses might exhibit 
higher actual diversity compared to members of Myoviri-
dae [8–10]. Cyanophage distribution is often correlated 
with the distribution of their hosts, and their abundance 
changes in time and space [1, 11, 12]. Cyanoprokaryota 
(cyanobacteria), including scum-forming genera Microcys-
tis, single-celled members of Cyanobium or Synechococcus, 
and filamentous species belonging to Lyngbya, Oscillatoria, 
Planktothrix, and Phormidium, are widely distributed pho-
tosynthetic organisms [13]. Among them, Microcystis and 
Synechococcus are two of the most described in the context 
of susceptibility to viral infections [14–16]. Moreover, the 
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environmental studies indicated that the distribution and 
diversity of cyanophages might be directly or indirectly 
(through the host) affected by physicochemical agents 
[17–20]. According to Finke and Suttle [21], the diversity 
of the marine phage community depends on a promoted 
variety of environmental factors including salinity, tem-
perature, and concentration of nutrients, followed by water 
column mixing. Solar radiation may damage viral particles 
and negatively influence infection efficiency as described by 
Wilhelm et al. [22] in the marine environment. The studies 
of freshwater cyanophages conducted by Cheng et al. [23] 
also showed that decay of their infectivity was correlated 
with UV intensity. The cyanophage composition was also 
found to be influenced by seasonal variations and water 
column depth as described by Hurwitz et al. [24] based on 
ocean metagenomics studies. Despite the growing number 
of researches on cyanophages, the information about their 
complex diversity and distribution in freshwater remains 
insufficient.

Recently, Finke and Suttle [21] showed that a specific 
individual gene (gp43), that is, used as a genetic marker 
to assess virus diversity, can highly reflect the variation 
observed by the whole genome and gene content compari-
sons. The diversity of cyanophages can be assessed using 
phage group/clade-specific molecular markers such as those 
encoding major capsid protein, portal protein, tail sheath 
protein, and DNA polymerase [25–27]. The host-derived 
cyanophage auxiliary metabolic genes (AMGs) are also 
widely used to assess cyanophage diversity and distribu-
tion. For example, genes psbA and nblA, which encode the 
D1 protein of photosystem II (PSII) and nonbleaching pro-
tein A, respectively [16, 28]. The psbA genes were reported 
as highly prevalent among some marine myo- and podocy-
anophages (clade A) which infected Prochlorococcus and 
Synechococcus [4, 29–31]. The psbA genes were also identi-
fied in some freshwater cyanophages (e.g., Synechococcus 
phage S-CRM01); however, their prevalence in this aquatic 
environment is less known [4, 32]. The nblA gene was also 
proposed as the genetic marker and was found in freshwater 
cyanophages infecting Microcystis and then Planktothrix 
[15, 16, 33]. However, some studies indicated that this gene 
is highly conserved and thus tends to underrepresent genetic 
diversity [15, 16, 33–35]. The structural gene g91 encod-
ing tail sheath protein in cyanophages infecting Microcystis 
aeruginosa was used to assess their diversity. Based on the 
comparative analysis of this gene, three major genotypes 
were distinguished and their spatial and temporal distribu-
tion have been tracked [36, 37].

The occurrence and monitoring of freshwater cyano-
phages based on the abovementioned genes were conducted 
in situ in several different ecosystems in Japan [28, 36–39], 
China [16, 40], France [41], the USA [4], Poland [42], and 
Canada [43]. However, most of the studies conducted so 

far were limited to one or two water bodies and none of 
them referred to the occurrence and diversity of freshwater 
cyanophages, including a larger geographical area. Presum-
ing that differences in cyanophage community composi-
tions would increase with geographic distance (distance-
decay hypothesis) and that spatial distribution patterns is a 
result of interplay between cyanophages, cyanobacteria, and 
environmental conditions; one could expect that observed 
cyanophage diversity would reflect the area surveyed. There-
fore, the present study aimed to determine the diversity 
and spatial distribution of active cyanophages community, 
which were infecting cyanobacteria, from an extensive area 
spanned over two countries. Towards this aim, we analyzed 
sequence diversity of three different marker genes (psbA, 
nblA, and g91) in 21 lakes of the temperate-humid conti-
nental climate zone (Poland and Lithuania), in an area with 
a span of approx. over 200,000  km2 (Fig. 1). Besides, we 
assessed the relationship between the occurrence of marker 
genes, their sequence diversity, cyanobacterial communities 
composition, and environmental variables. Such information 
could be helpful to explore the potential linkage between 
cyanophages and their host—cyanobacteria, their spatial 
distribution between waterbodies, and sensitivity on envi-
ronmental factors.

Materials and Methods

Source of Material

Samples were collected from 14 Polish and 7 Lithuanian 
lakes situated in the temperate-humid continental climate 
zone. They were the subject of research on cyanobacteria 
in our previous publication [44]. Samples were collected 
from the following: Lubosińskie (LUB), Bytyńskie (BYT), 
Buszewskie (BUS), Pniewskie (PNI), Myśliborskie (MYS), 
Pakoskie (PAL), Grylewskie (GRY), Mogileńskie (MOG), 
Niepruszewskie (NIE), Ilno (ILN), Gopło (GOP), Żabiniec 
(ZAB), Zbąszyńskie (ZBA), Miejskie (MIE), Jieznas (JIE), 
Širvys (SIR), Gineitiškės (GIN), Didžiulis (DID), Mastis 
(MAS), Lūkstas (LUK), and Simnas (SIM) (Fig. 1, Fig. S1). 
They represent fertile lakes from meso-eutrophic to hyper-
trophic with high phytoplankton diversity (Table S1 ).

Sampling

Samples were collected from the central part of the lake 
in August 2013 and July–August 2014 (Fig. 1, Fig S1). 
Integrated phytoplankton samples were collected from the 
epilimnion in stratified lakes or from the surface water layer 
in polymictic lakes from one sampling station using a water 
sampler. Approximately, 300 mL of water samples were col-
lected to aseptic plastic bottles as integrated water probes 
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from the water column (e.g., mixed water from samples 
taken every 1 m deep) during the early afternoon (Fig. 1, 
Fig. S1). The 1-L phytoplankton samples were preserved 
with acidified Lugol’s solution with a final concentration 
of 1% immediately after sampling. The samples were trans-
ferred to the laboratories and stored under cool and dark 
conditions until they were analyzed.

Measurements and Analyses of Physicochemical 
Parameters

Water temperature, pH, and conductivity were determined 
in situ using a multiparameter probe. Integrated water sam-
ples were collected for chemical analyses. The water samples 
were analyzed for total nitrogen (TN) and total phosphorus 
(TP) with a HACH spectrophotometer [45, 46].

Analysis of Cyanobacterial Composition

Phytoplankton samples were sedimented in 1-L glass cyl-
inder for 48 h, gently decanted off, and the final sample 

volume of 20–30 mL was used for further analysis. Cyano-
bacterial species identification [47–49] and counts were con-
ducted using light microscopes under × 400 magnification. 
The enumeration of specimens was carried out in 100–150 
fields of Fuchs-Rosenthal chamber, which ensured that at 
least 400 specimens were counted to reduce the error to less 
than 10%. A single cell, a coenobium, or a filament repre-
sented one specimen in the analysis. The biovolume of each 
species was determined through a volumetric analysis of 
cells using geometric approximation and expressed as a wet 
weight following Wetzel and Likens [50].

Isolation and Amplification of Genes

Freshwater samples in the volume of 100 mL each were 
filtered onto 0.45 µm nitrocellulose membrane filters (Mil-
lipore, USA). Subsequently, filters containing cell fraction 
were inserted in the 2 mL of lysis buffer (400 mM NaCl, 
40 mM EDTA, 0.75 M sucrose, and 50 mM TRIS–HCl; pH 
8.3), then stored at − 20 °C before DNA extraction.

Fig. 1  Study site of lakes in 
Poland and Lithuania
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DNA was isolated from stored filters according to hot 
phenol-mediated extraction described by Giovannoni et al. 
[51] with minor changes described by Mankiewicz-Boczek 
et  al. [52] including the modification of centrifugation 
speed (13,000 g) and the final concentration of proteinase 
K (275 µg  mL1−). The extracted nucleic acid was used as 
a template for molecular analyses of the genes for general 
presence of cyanobacteria, 16S rRNA (258 bp), and the spe-
cific presence of Microcystis genus, 16S rRNA (250 bp), and 
for cyanophages—psbA (740 bp), nblA (200 bp), and the 
g91 (g91_S – 132 bp, and g91_L – 206 bp) which together 
cover all three genotype groups distinguish by Kimura-Sakai 
et al. [37]. All nucleotide primers and parameters of PCR 
are described in Table S2 and Table S3 (supplementary 
materials).

Sequencing of Cyanophage Genes

DNA samples for nucleotide Sanger sequence analy-
ses (Table 1) of genes: psbA, nblA, and g91 were cho-
sen based on the good quality PCR amplicons. In conse-
quence, the psbA, nblA, g91_S, and g91_L were analyzed 

and deposited in Genbank database for six (LUB, BUS, 
PAL, PNI, GIN, and ILN (accession numbers: MW853986 
to MW853991, respectively)), six (BUS, SIM, BYT, 
PAL, PNI, and GIN (accession numbers: MW853992 
to MW853997, respectively)), nine (LUB, MIE, BUS, 
SIM, BYT, PAL, PNI, JIE, and GIN (accession numbers: 
MW853982 to MW853985, respectively)), and four (SIM, 
BYT, JIE, and GIN (accession numbers: MW853992 to 
MW853997, respectively)) lake samples, respectively. To 
prepare samples for sequencing, the selected DNA samples 
were amplified with the use of Pfu DNA polymerase (form-
ing blunt-end; Thermo Scientific) according to producer 
procedure and PCR conditions showed in Table S3. The 
specific primer sequences, chemical concentration, and 
amplification program for PCR can be found in Table S2 
and Table S3. Obtained PCR products were purified with 
the use of QIAGEX® II Gel extraction Kit (QIAGEN), 
cloned into pJET1.2/blunt vector (Thermo Scientific), 
and sequenced (Genomed S.A.). The obtained forward 
sequences were improved by reverse complementation and 
the primer sequences were clipped out with the use of a 
BioEdit Sequence Alignment Editor (version 7.2.5).

Table 1  Presence of cyanobacteria and cyanophage amplicons, and PCA group results of studied lakes

 + , presence of amplicon; na no amplicon;*, universal 16S rRNA gene sequence for cyanobacteria; **, gene fragments specific for Microcystis 
cyanophages; -, not grouped

Country Lakes Cyanobacteria 
16S rRNA*

Cyanophages 
psbA

Microcystis spp. 
16S rRNA

nblA** g91_S** g91_L** PCA groups

Poland LUB  +  +  +  +  +  + A
BYT  +  +  +  +  +  + A
BUS  +  +  +  +  + na A
PNI  +  +  +  +  +  + A
PAL  +  +  +  +  + na A
MIE  + na  +  +  + na -
NIE  +  +  + na na na -
MYS  + na  + na na  + C
GRY  +  + na na na na C
MOG  + na  + na na na C
ILN  +  + na na na na C
GOP  +  + na na na na C
ZAB  + na  + na na na C
ZBA  +  +  + na na na C

Lithuania DID  +  +  + na na na C
SIR  + na  + na na na C
JIE  +  +  + na  +  + B
SIM  +  +  +  +  +  + B
GIN  +  +  +  +  +  + B
MAS  + na  + na na na -
LUK  + na  + na na na -
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A phylogenetic tree was constructed for the psbA gene. 
A cluster was performed, separately, for cyanophage and 
cyanobacterial sequences with 90% similarity. The cyano-
phages and cyanobacteria sequences were taken from the 
NCBI non-redundant database (https:// blast. ncbi. nlm. nih. 
gov/ Blast. cgi). Then, the sequences were aligned with the 
use of MAFFT-DASH and the tree was constructed with the 
use of RAxML NG.

In case of the search for similar sequences of gene frag-
ments (nblA and g91) shorter than 200 bp, the online Local 
Alignment Search Tool (BLAST), based on data from the 
following databases: the NCBI non-redundant sequence 
database (https:// blast. ncbi. nlm. nih. gov/ Blast. cgi), JGI virus 
public database (https:// img. jgi. doe. gov/), and viruSITE 
integrated database (www. virus ite. org), were used.

Statistical Analysis

The principal component analysis (PCA) was used to evalu-
ate the spatial distance between 21 lakes according to the 
total abundance of different cyanobacterial species, the 
occurrence of cyanophage genes (psbA, nblA, g91_S and, 
g91_L), and the environmental factors including nutrients 
(TP and TN) and physicochemical parameters (tempera-
ture, pH, and conductivity). All data were transformed to 
avoid skewed distributions with the subtraction of the mean 
and the division with the standard deviation ((x-mean)/
Sd). Groups were defined according to the number of genes 
detected for each lake. The one-way ANOVA and Tukey’s 
tests were used to measure significant differences between 
the groups with the scores obtained for the PC1 and PC2 
(Table S4). The PCA was performed with PAST 4.03 [53]. 
Levine’s test was used to check homogeneity of variance 
from the means. The proposed statistical analysis is used 
to condensate multivariate databases often obtain in envi-
ronmental studies, allowing to identify the most important 
factors that explain the highest variance within a set of sam-
ples [54].

Results and Discussion

Cyanophages are specialized to infect cyanobacteria 
and could play an important role in modulating harmful 
blooms. As cyanophage distribution was found related to 
the occurrence of their hosts [1, 11, 12], it is needed to 
obtain knowledge of the cyanobacteria composition and 
factors influencing their growth in the study area. Analy-
sis of cyanobacteria—potential virus host—indicated 
that their 16S rRNA gene was found in all studied lakes 
(Table 1). The total cyanobacteria biomass varied from 0.04 
to 40.47 mg  L−1 (Table S1). Filamentous cyanobacteria from 
the genera Aphanizomenon, Cuspidothrix, Dolichospermum, 

Limnothrix, Planktolyngbya, Pseudanabaena, Planktothrix, 
or Raphidopsis were among the dominants in most stud-
ied lakes. Additionally, Microcystis was among the domi-
nant genera (0.57–1.35 mg  L−1) in three lakes based on the 
microscopic analysis, and their overall presence was con-
firmed in 18 lakes according to the genetic analysis—16S 
rRNA (Tables 1 and 2, Table S1).

The study area (Fig. 1) was represented by the temperate-
humid continental climate zone characterized by hot sum-
mers [55] together with water parameters which are shown 
in the following ranges: water pH 7.4–9.01, water tempera-
ture 16.3–27.8 °C, and conductivity 251–729.1 µS  cm−1. 
While total nitrogen and total phosphorus concentrations 
varied between 0.85–7.5 and 0.02–0.47 mg  L−1, respectively 
(Table S1), such parameters, conducive to eutrophication, 
ensured background and favored the development of cyano-
bacteria [56, 57].

According to the authors’ knowledge, the presented stud-
ies are the first which refer to the relationship between the 
occurrence of all three cyanophage marker genes simulta-
neously (psbA, nblA, and g91), their sequence diversity, 
cyanobacterial communities composition, and environmen-
tal variables from the freshwater environment of an exten-
sive area (approx. over 200,000  km2). Moreover, the results 
described below confirmed that the environmental factors, 
most likely local, may have an important role in shaping the 
genetic variation in phages.

Cyanophages Occurrence and Diversity

The cyanophage genes (psbA, nblA, or g91) presented in 
host cells were detected in 16 from the 21 studied lakes 
(Fig. 1, Table 1). The lack of amplification of selected 
marker genes for cyanophages in some lakes, despite the 
presence of their potential hosts, may have been related to 
the number of the genes below the detection limit or used 
genetic markers not targeting the different phage commu-
nities, present in the lakes studied. According to Schrader 
et al. [58], the PCR inhibitors should be also taken into 
consideration.

The psbA was found in 88% cyanophage-positive samples 
(Table 1). Its DNA sequences were found between 75 and 
98% of similarity for five Polish lakes (LUB, PNI, BUS, 
PAL, and ILN) and one Lithuanian lake (GIN). The vari-
ants with the highest similarity level were observed between 
LUB-PNI (98%) and BUS-GIN (95%). The psbA sequence 
of ILN had the lowest level of similarity (75–78%) with the 
analyzed sequences. Although all psbA sequences observed 
in this study branched within the larger cluster of marine 
cyanophages, they also grouped more closely to each other 
than to their marine counterparts (Fig. 2). Most of the psbA 
sequences showed 95–100% similarity to each other (data 
were not shown), with the only exception of Lake ILN 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://img.jgi.doe.gov/
http://www.virusite.org
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(Fig. 3). The psbA sequences were intermixed, indicating 
that there were no differences in the distribution of cyano-
phages between distant lakes. Therefore, the higher diver-
gence of ILN from other lakes may suggest that other, most 
likely local, factors might be responsible for the diversity of 
the cyanophage community, whereas the psbA sequences 
from Polish lake ILN appeared to be the most similar with 
marine Synechococcus myocyanophage genome (S-CAM22) 
(Fig. 3). As it was described by Dreher et al. [26], the psbA 
similarity to the marine counterparts was also confirmed 
within Synechococcus-specific S-CRM01 cyanophage, iso-
lated from freshwater Copco Reservoir (Northern Califor-
nia, USA). The high similarity of freshwater cyanophages 
psbA to marine cyanomyoviruses was also found in East 
lake (China) by Ge et al. [59]. Moreover, the psbA of novel 
freshwater Ma-LEP Microcystis podocyanophage, isolated 
from Erie lake (USA) by Jiang et al. [4], also presented high 
sequence similarity with marine S-CBP4 Synechococcus 
podocyanophage. The above results, of freshwater psbA 
sequence similarities to their marine counterparts, indicated 
that this genetic marker can be used to study the diversity 
among freshwater and marine phages as already described 
by Chenard and Suttle [32].

The nblA, g91_S, and g91_L Microcystis cyanophage 
genes were found in 50%, 56%, and 44% of cyanophage-
positive samples, respectively (Table 1). All nlbA sequences 
observed in this study from the analyzed samples (BYT, 
BUS, PNI, PAL, GIN, and SIM) if compared to each other 
showed high similarity, ranging from 88 to 99%. The high-
est level of sequence similarity (96%) was found between 
two Polish lakes—BYT and BUS—and between two Lithu-
anian lakes—GIN and SIM. The nblA sequences from 
analyzed samples were highly similar (> 90%) with their 
corresponding gene fragments of uncultured Myoviridae 
phages (AB812972.1 and AB812972) and MaMV-DC 
(KF356199.1) The literature data indicated that the nblA 
gene is highly conserved and, hence, may underrepresent 
the existing diversity among cyanophages [34]. The g91_S 
sequences obtained from six Polish lakes (LUB, BYT, BUS, 
PNI, PAL, and MIE) and three Lithuanian lakes (JIE and 
SIM) were similar in the range of 90–97% between them. 
Only GIN showed the lowest similarity (80–85%) when 
compared to all other sequences. Whereas the g91_L from 
the one Polish (BYT) and three Lithuanian lakes (JIE, GIN, 
and SIM) were similar in the range of 95–96%, the g91_S 
and g91_L sequences from this study were convergent 
(> 91%) with their counterparts in culturable (MaMV-DC, 
KF356199.1; Ma-LMM01, AB231700.1) and unculturable 
(MH117957.1) Microcystis cyanophages. The above results 
might indicate the presence of Ma-LMM01-like phages 
within investigated lakes, as it was also showed in the Bay 
of Quinte (a Lake Ontario, Canada) by Rozon and Short [43] 
or Sulejowski Reservoir (Poland) by Mankiewicz et al. [42]. 

In the case of lakes where there was no positive detection of 
nblA and g91 genes represented Ma-LMM01-like phages, it 
is also possible that other Microcystis-specific phages occur, 
which genomes were not characterized yet.

Environmental Variables

Principal component analysis (PCA) showed the relation-
ships between cyanophages, cyanobacteria, and the phys-
icochemical parameters of water (Fig. 4). The PC1 and PC2 
represented up to 36.7% of the total variance of the observa-
tions (19.46% and 17.24%, respectively; see also Fig. S3). 
The PCA scores and loadings (estimated with the Pearson 
correlation [r]) are described in the supplementary mate-
rial Table S4 and S5, respectively. The PCA grouped lakes 
into three different clusters: groups A including only Pol-
ish lakes (LUB, PNI, BUS, BYT, and PAL), B including 
only Lithuanian lakes (SIM, GIN, and JIE), and group C 
(DID, SIR, ILN, MYS, MOG, ZAB, GRY, GOP, and ZBA) 
including both Polish and Lithuanian lakes. In groups A and 
B, two or three cyanophage genetic markers were detected 
while group C consisted of lakes with only one or none of 
the studied genes (Table 2, Fig. 4). Group A was signifi-
cantly segregated from groups B and C (p = 4.76 ×  10−4 and 
2.2 ×  10−4, respectively; see Table S6). The PC1 presented 
the highest positive correlations with the TP and conductiv-
ity (r = 0.71 and 0.70, respectively), followed by the occur-
rence of cyanophage genes—nblA and psbA (r = 0.56 and 
0.52, respectively) (see Table S5). These results suggested 
that the abovementioned factors could be important vari-
ables contributing to the spatial distancing between the Pol-
ish and Lithuanian lakes and favored the development of 
particular cyanobacteria [56, 57], which can differ in A and 
B groups analyzed (Fig. 4). The modest relationship between 
the abundance of some viral genes and TP was indicated for 
the Bay of Quinte by Rozon and Short [43]. Moreover, TP 
as one of the most important parameters for the regulation of 
cyanobacterial occurrence could directly influence in their 
development and thus becoming available to phages for the 
genome replication process inside the host cell [60, 61].

Whereas the Lithuanian lakes in group B were signifi-
cantly differentiated from group C by the vertical compo-
nent—PC2 (p = 6.41 ×  10−9; Table S7 and Fig. 4), which 
could be explained by the high positive correlations observed 
between the PC2 and the cyanophage genes—g91_S, g91_L, 
and nblA (r = 0.79, 0.69, and 0.61, respectively), followed by 
the pH (r = 0.47) (see Table S7), cyanophages have a wide 
range of pH tolerances; however, a decrease in pH below the 
host’s optimal requirements may directly affect the host’s 
cells homeostasis and thus negatively affect the intracellu-
lar cyanophage replication process [20]. Thus, group C was 
characterized not only with the lowest detection of cyano-
phage genes, but also the lowest values of environmental 
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factors, and therefore, was found negatively scored in the 
PCA (Fig. 4, Table S4).

The psbA sequences presented in LUB, PNI, BUS, PAL, 
and GIN lakes were aligned close to each other within the phy-
logenetic tree, with exception of ILN lake (Fig. 3). While after 
comparing their presence with physicochemical factors as part 
of the PCA analysis (Fig. 4), the mentioned psbA sequences 
with high similarity were divided into two groups: A (LUB, 
PNI, BUS, and PAL) and B (GIN). The separateness of psbA 
ILN based on its higher sequence divergence was also reflected 

within PCA results, as the one which was subjected to group 
C (Fig. 4). This observation might confirm the important role 
that the environmental factors, most likely local, may have in 
shaping the genetic variation in phages.

As it was shown, different cyanobacterial species were sub-
jected to different groups highlighted with the use of PCA 
analysis (Fig. 4, Table S1). For instance, Planktothrix agardhii 
(average biomass 15.6 mg  L−1) was a characteristic-dominant 
species in group A, Planktolyngbya limnetica (3.2 mg  L−1) 
in group B (Fig. 4), whereas Aphanizomenon gracile was the 

Fig. 2  Phylogenetic tree of psbA sequence fragment alignment among different cyanophages and cyanobacteria
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dominant species found in groups A and B with average bio-
mass of 3.27 mg  L−1 and 3.80 mg  L−1, respectively, and had 
five times lower biomass in the group C (0.64 mg  L−1) (Fig. 4, 
Table S1). Observed species differentiation might result from 
the influence of different physicochemical factors. For exam-
ple, lakes from group A where P. agardhii was a dominant spe-
cies were positively related to TP which is in line with previous 
studies that demonstrated domination of this cyanobacterium 
in hypertrophic lakes with high concentrations of phosphorus 

[62, 63]. Also, A. gracile is a common dominant species in 
temperate lakes adapted to various types of environmental and 
nutritional conditions [64–66]. However, the cyanobacteria 
composition represented by total biomass was found to rather 
enhance the cyanophage genes occurrence (Table 2, Table 1S) 
than single species highlighted within PCA results. It was 
observed that in the lakes where two–three cyanophage genes 
were determined, also cyanobacteria biomass was two–three 
times higher (Table 2, Table 1S).

Fig. 3  Phylogenetic tree and multiple amino acid sequence alignment of psbA gene fragments among different cyanophages

Fig. 4  Principal component 
analysis (PCA) based on 
environmental–physicochemical 
variables, diversity, and biomass 
of cyanobacterial species and 
cyanophage genes’ presence for 
Polish and Lithuanian lakes
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Conclusions

The research of cyanophages based on the amplification of 
psbA, nblA, and g91 genes confirmed their occurrence in 
most of the studied lakes. The DNA sequences obtained for 
each gene showed a high similarity between them. Also, the 
similarity to their marine Synechococcus myocyanophage 
(psbA) and freshwater Microcystis myocyanophages (nblA 
and g91) counterparts was confirmed. Furthermore, the 
psbA revealed higher diversity, in comparison to the nblA 
and g91 genes. In consequence, no clear distribution pattern 
for cyanophages can be detected. The principal component 
analysis showed that TP and pH could be important environ-
mental parameters differentiating the sampling sites between 
the lakes and might directly or indirectly (by cyanobacteria) 
influence the occurrence of cyanophages.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00248- 021- 01783-y.
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