CS 380 - GPU and GPGPU Programming
 Lecture 20: CUDA Memory, Pt. 2

Markus Hadwiger, KAUST

Reading Assignment \#12 (until Nov 22)

Read (required):

- Optimizing Parallel Reduction in CUDA, Mark Harris,
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
- Programming Massively Parallel Processors book, 3 rd edition Chapter 8 (Parallel Patterns: Prefix Sum)
- GPU Gems 3 book, Chapter 39: Parallel Prefix Sum (Scan) with CUDA
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch39.html

Read (optional):

- Faster Parallel Reductions on Kepler, Justin Luitjens
https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/

CUDA Memory:

Shared Memory

L1 Cache vs. Shared Memory

Different configs (on Fermi and Kepler; carveout on Maxwell and newer)
-64KB total

- 16KB shared, 48KB L1 cache
- 48KB shared, 16KB L1 cache
- 32KB shared, 32KB L1 cache (Kepler only)

```
// Device code
{_global__ void MyKernel()
```

```
// Host code
```

// Host code
// Runtime API
// Runtime API
// cudaFuncCachePreferShared: shared memory is 48 KB
// cudaFuncCachePreferShared: shared memory is 48 KB
// cudaFuncCachePreferL1: shared memory is 16 KB
// cudaFuncCachePreferL1: shared memory is 16 KB
// cudaFuncCachePreferNone: no preference
// cudaFuncCachePreferNone: no preference
cudaFuncSetCacheConfig(MyKernel, cudaFuncCachePreferShared)

```
cudaFuncSetCacheConfig(MyKernel, cudaFuncCachePreferShared)
```

- Set per kernel

L1 Cache vs. Shared Memory

Different configs (on Fermi and Kepler; carveout on Maxwell and newer)

- More shared memory on newer GPUs (64KB, 96KB, 100KB, 164KB, ...)

Carveout from unified data cache
(See CUDA C Programming Guide!)

```
// Device code
_global__ void MyKernel(...)
{
    __shared__ float buffer[BLOCK_DIM];
}
// Host code
int carveout = 50; // prefer shared memory capacity 50% of maximum
// Named Carveout Values:
// carveout = cudaSharedmemCarveoutDefault; // (-1)
// carveout = cudaSharedmemCarveoutMaxL1; // (0)
// carveout = cudaSharedmemCarveoutMaxShared; // (100)
cudaFuncSetAttribute(MyKernel, cudaFuncAttributePreferredSharedMemoryCarveout,
    carveout);
MyKernel <<<gridDim, BLOCK_DIM>>>(...);
```


Shared Memory Allocation

- 2 modes
- Static size within kernel
__shared__ float vec[256];
- Dynamic size when calling the kernel

```
// in main
int VecSize = MAX_THREADS * sizeof(float4);
// declare as extern within kernel
extern __shared__ float vec[];
```

vecMat<<< blockGrid, threadBlock, VecSize >>>(p1, p2, ...);

Shared Memory

- Accessible by all threads in a block

SM-N

- Fast compared to global memory
- Low access latency
- High bandwidth
- Common uses:
- Software managed cache
- Data layout conversion

Shared Memory/L1 Sizing

- Shared memory and L1 use the same 64KB
- Program-configurable split:
- Fermi: 48:16, 16:48
- Kepler: 48:16, 16:48, 32:32
- CUDA API: cudaDeviceSetCacheConfig(), cudaFuncSetCacheConfig()
- Large L1 can improve performance when:
- Spilling registers (more lines in the cache -> fewer evictions)
- Large SMEM can improve performance when:
- Occupancy is limited by SMEM

Shared Memory

- Uses:
- Inter-thread communication within a block
- Cache data to reduce redundant global memory accesses
- Use it to improve global memory access patterns
- Organization:
- 32 banks, 4-byte (or 8-byte) banks
- Successive words accessed through different banks

Parallel Memory Architecture

- In a parallel machine, many threads access memory
- Therefore, memory is divided into banks
- Essential to achieve high bandwidth
- Each bank can service one address per cycle
- A memory can service as many simultaneous accesses as it has banks

- Multiple simultaneous accesses to a bank result in a bank conflict
- Conflicting accesses are serialized

ECE 498AL, University of Illinois, Urbana-Champaign

Memory Banks

Fermi/Kepler/Maxwell and newer:

32 banks

default:

4B / bank
Kepler or newer: configurable to 8B / bank

Shared Memory

- Uses:
- Inter-thread communication within a block
- Cache data to reduce redundant global memory accesses
- Use it to improve global memory access patterns
- Performance:
- smem accesses are issued per warp
- Throughput is 4 (or 8) bytes per bank per clock per multiprocessor
- serialization: if N threads of 32 access different words in the same bank, N accesses are executed serially
- multicast: N threads access the same word in one fetch
- Could be different bytes within the same word

Shared Memory Organization

- Organized in 32 independent banks
- Optimal access: no two words from same bank

- Separate banks per thread
- Banks can multicast
- Multiple words from same bank serialize

Bank Addressing Examples

Bank Addressing Examples

- 2-way Bank Conflicts - Linear addressing stride $=2$	- 8-way Bank Conflicts - Linear addressing stride $=8$
Thread $0 \longrightarrow$ Bank 0	Thread 0 x8 Bank 0
Thread $1 \sim$ Bank 1	Thread $1 \times$ Bank 1
Thread $2 \rightarrow$ Bank 2	Thread 2 Bank 2
Thread 3	Thread 3
Thread $4 \sim$ Bank 4	Thread 4
Bank 5	Thread 5
Bank 6	Thread 6
Thread 8 Bank 7	Thread $7 \times \times 8$ Bank 9
Thread 9	
Thread 10	
Thread 11 Bank 15	Thread 15 Bank 15

How addresses map to banks on G80

- Each bank has a bandwidth of 32 bits per clock cycle
- Successive 32-bit words are assigned to successive banks
- G80 has 16 banks
- So bank = address \% 16
- Same as the size of a half-warp
- No bank conflicts between different half-warps, only within a single half-warp

Fermi and newer have 32 banks, considers full warps instead of half warps!

ECE 498AL, University of Illinois, Urbana-Champaign

Shared Memory Bank Conflicts

- Shared memory is as fast as registers if there are no bank conflicts
- The fast case:
- If all threads of a half-warp access different banks, there is no bank conflict
- If all threads of a half-warp access the identical address, there is no bank conflict (broadcast)
- The slow case:
- Bank Conflict: multiple threads in the same half-warp access the same bank
- Must serialize the accesses
- Cost = max \# of simultaneous accesses to a single bank

full warps instead of half warps on Fermi and newer!

Linear Addressing

- Given:
__shared__float shared[256];
float foo =
shared[baseIndex + s * threadIdx.x];
- This is only bank-conflict-free if \mathbf{s} shares no common factors with the number of banks
- 16 on G80, so s must be odd

Data Types and Bank Conflicts

- This has no conflicts if type of shared is 32-bits:
foo $=$ shared[baseIndex + threadIdx.x]
- But not if the data type is smaller
- 4-way bank conflicts:
__shared__ char shared[];
foo $=$ shared[baseIndex + threadIdx.x];

not true on Fermi, because of multi-cast!
- 2-way bank conflicts:
shared_ short shared[];
foo $=$ shared[baseIndex + threadIdx.x];
not true on Fermi, because of multi-cast!

Structs and Bank Conflicts

- Struct assignments compile into as many memory accesses as there are struct members:

```
struct vector { float x, Y, z; };
struct myType {
    float f;
    int c;
};
__shared__ struct vector vectors[64];
__shared__ struct myType myTypes[64];
```


- This has no bank conflicts for vector; struct size is $\mathbf{3}$ words
- 3 accesses per thread, contiguous banks (no common factor with 16)
struct vector $v=$ vectors[baseIndex + threadIdx.x];
- This has 2-way bank conflicts for myType;

(each bank will be accessed by 2 threads simultaneously) struct myType m = myTypes[baseIndex + threadIdx.x];

Broadcast on Shared Memory

- Each thread loads the same element - no bank conlict

```
x = shared[0];
```

- Will be resolved implicitly
multi-cast on Fermi and newer!

Common Array Bank Conflict Patterns 1D

- Each thread loads 2 elements into shared mem:
- 2-way-interleaved loads result in 2-way bank conflicts:

```
int tid = threadIdx.x;
shared[2*tid] = global[2*tid];
shared[2*tid+1] = global[2*tid+1];
```

- This makes sense for traditional CPU threads, locality in cache line usage and reduced sharing traffic.
- Not in shared memory usage where there is no cache line effects but banking effects

A Better Array Access Pattern

- Each thread loads one element in every consecutive group of blockDim elements.

```
shared[tid] = global[tid];
shared[tid + blockDim.x] =
    global[tid + blockDim.x];
```


OPTIMIZE

Kernel Optimizations: Shared Memory Accesses

Case Study: Matrix Transpose

- Coalesced read
- Scattered write (stride N)

\Rightarrow Process matrix tile, not single row/column, per block
\Rightarrow Transpose matrix tile within block

Case Study: Matrix Transpose

- Coalesced read
- Scattered write (stride N)

- Transpose matrix tile within block
\Rightarrow Need threads in a block to cooperate: use shared memory

Transpose with coalesced read/write

```
    global__ transpose(float in[], float out[])
{
    __shared__ float tile[TIIE][TILE];
    int glob_in = xIndex + (yIndex) *N ;
    int glob_out = xIndex + (yIndex) *N;
    tile[threadIdx.y][threadIdx.x] = in[glob_in];
    __syncthreads();
    out[glob_out] = tile[threadIdx.x][threadIdx.y];
}
```


Fixed GMEM coalescing, but introduced SMEM bank conflicts

Shared Memory: Avoiding Bank Conflicts

- Example: 32×32 SMEM array
- Warp accesses a column:
- 32-way bank conflicts (threads in a warp access the same bank)

Shared Memory: Avoiding Bank Conflicts

- Add a column for padding:
- 32x33 SMEM array
- Warp accesses a column:
- 32 different banks, no bank conflicts

	0	1				
Bank 0	0	1	2	:	31	
Bank 1	0	1	2		31	
...	0	1	2		31	
Bank 31	$\bullet \bullet$			\bullet ••		
	0	1	2	:	31	

Thank you.

- Hendrik Lensch, Robert Strzodka
- NVIDIA

