Metab Brain Dis (2010) 25:97-106
DOI 10.1007/s11011-010-9175-0

ORIGINAL PAPER

Central pontine myelinolysis: historical

and mechanistic considerations

Michael D. Norenberg

Received: 18 November 2009 / Accepted: 28 January 2010 /Published online: 25 February 2010

© Springer Science+Business Media, LLC 2010

Abstract Central pontine myelinolysis (CPM) is a demy-
elinating condition affecting not only the pontine base, but
also involving other brain areas. It usually occurs on a
background of chronic systemic illness, and is commonly
observed in individuals with alcoholism, malnutrition and
liver disease. Studies carried out 25-30 years ago estab-
lished that the principal etiological factor was the rapid
correction of hyponatremia resulting in osmotic stress. This
article reviews progress achieved since that time on its
pathogenesis, focusing on the role of organic osmolytes, the
blood—brain, barrier, endothelial cells, myelinotoxic factors
triggered by osmotic stress, and the role of various factors
that predispose to the development of CPM. These
advances show great promise in providing novel therapeu-
tic options for the management of patients afflicted with
CPM.
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Introduction

Adams and colleagues (1959) described a demylinating
disorder that symmetrically affected the central portion of
the pontine base (Fig. 1). It predominantly occurred in
alcoholic, malnourished and chronically ill individuals who
presented with dysarthria, dysphagia, quadriplegia and
mutism. Pathologically, it was characterized by loss of
oligodendrocytes and myelin, and by the preservation of
neurons and axons, along with macrophage infiltration and
astrocytic activation. In contrast to multiple sclerosis, the
prototype demyelinating disease, an inflammatory compo-
nent was absent. This feature prompted the authors to apply
the term myelinolysis rather than demyelination; hence the
designation of central pontine myelinolysis (CPM).

As additional cases were identified, it became apparent
that lesions were not confined to the pons, but also occurred
in the basal ganglia, thalamus, gray—white junction of
cerebral and cerebellar cortices, lateral geniculate and at
other sites, so-called extrapontine CPM (Klavins 1963;
Wright et al. 1979; Goldman and Horoupian 1981). It also
became clear that while a background of alcoholism was
common, in many cases a history of alcoholism was absent,
and that such condition even occurred in children (Kepes et
al. 1965; Rosman et al. 1966). Additionally, it became
evident that almost all patients had chronic medical
conditions, including cancer, liver disease, liver transplan-
tation, sepsis, burns and fluid and electrolyte disorders. In
other words, CPM never occurred in isolation, but rather it
was seen as a complication of a pre-existing medical
condition.

In their initial report, Adams and colleagues (1959)
commented that CPM appeared to be “a new disease”. The
authors reviewed the literature for the previous 75 years and
were unable to find any cases resembling CPM, clinically
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Fig. 1 Classic histopathology of the pons in CPM showing a
symmetrical, central bat-wing area of demyelination affecting most
of the pontine base. Luxol-fast blue/PAS

or pathologically. Aleu and Terry (1963) noted that while
alcohol had been around a long time, CPM was new,
suggesting the possibility that some iatrogenic agent(s) used
in maintaining patients perhaps might be involved. The
potential iatrogenicity became an even stronger possibility
as CPM always occurred in a hospital setting; i.e., no
patient had ever been admitted to a hospital with symptoms
of CPM, and proved to have such pathology at postmortem
examination. Messert and co-workers (1979) made the
important observation that the recognition of CPM corre-
sponded with the advent of intravenous fluid therapy in the
late 1950°s (“plastic revolution”). For general reviews on
CPM, see (Goebel and Zur 1976; Brown 2000; Lampl and
Yazdi 2002; Martin 2004; Kleinschmidt-DeMasters et al.
20006).

Fluid and electrolyte derangements

Among the various factors associated with CPM, fluid and
electrolyte derangements took on a dominant position. The
first such report was given by Hugh H. Adams (1962). This
was followed by 20 articles describing this finding
(reviewed in Burcar et al. 1977). In 1976 we encountered
a striking case of CPM in a 50-year-old woman with a past
history of alcoholism, hypertension and on diuretics. Six
days before admission she became ill with nausea, vomit-
ing, diarrhea, malaise and generalized weakness. Two
generalized seizures prompted her admission. The neuro-
logical examination was normal except for absent deep
tendon reflexes. Initial laboratory data disclosed a serum
sodium of 96 mEq/l. The hyponatremia was corrected
within 24 h with water restriction and hypertonic saline.
The patient gradually improved but on the fourth hospital
day she became stuporous, unresponsive to verbal com-
mands, and subsequently developed quadriparesis. Her
condition remained unchanged and she died two months
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later from pulmonary and urinary tract infections. At
autopsy, CPM was identified.

We then reviewed our own cases of CPM and those
described in the English literature (Burcar et al. 1977). We
identified 15 cases in our files, all of whom had
hyponatremia (96—130). Review of the literature disclosed
80 cases of CPM, in which electrolyte values were reported
in only 30 cases; of these, 12 had hyponatremia. Adding
our cases to the 12 reported in literature, we identified
hyponatremia in 61% of cases with CPM. We then
reviewed the histories of patients with CPM in whom
electrolyte data was not documented, specifically looking
for the possibility that some of these patients might have
had a condition likely to be associated with hyponatremia
(compulsive water drinking, hemodialysis, inappropriate
secretion of antidiuretic hormone, severe renal disease,
history of diarrhea or vomiting, thyroid or adrenal failure).
The review showed that 69 of the 80 patients (86%) either
had documented hyponatremia, or had a plausible cause of
hyponatremia. At about the same time, Tomlinson and
colleagues (1976) reported two additional patients with a
history of protracted vomiting and drowsiness who devel-
oped severe hyponatraemia (serum sodium 96—100 mEq/1).
They noted that correction of electrolyte abnormalities was
accompanied by a deterioration in the level of conscious-
ness, quadriparesis, dysphasia and mutism. Postmortem
examination showed that the patients had CPM.

The findings of our study propelled us to examine
whether we could identify CPM-like lesions in rats
made hyponatremic. Dr. Roger Riepe, a Neuropathology
Fellow at the University of Colorado, took on this task.
Despite using many protocols (varying the severity of
hyponatremia, speed of sodium changes and duration of
hyponatremia) he did not identify any neuropathological
changes, other than minor Alzheimer type IlI-like
astrocyte changes, similar to those seen in patients with
hepatic encephalopathy.

Evolution of a hypothesis

While it became clear that hyponatremia alone was not
responsible for CPM, the association of hyponatremia with
CPM was simply too difficult to discard. A number of
isolated events subsequently evolved to disclose the likely
relationship between hyponatremia and CPM. In 1979 Dr.
Kevin Leslie, a Pathology resident at the University of
Colorado, performed an autopsy on a patient who ulti-
mately was shown to have CPM. The patient was jaundiced
and the lesion in the pons had a striking green discoloration
(Fig. 2). Such discoloration is usually seen when a
breakdown of the blood—brain barrier (BBB) has occurred,
allowing albumin-bound bile pigment to exit the blood
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Fig. 2 Gross appearance of the pons in a case of CPM. The patient
was jaundiced and the lesion displayed a green discoloration. Such
changes are indicative of a breakdown of the blood—brain barrier

stream. This egress of bile pigment can only occur in the
presence of an increase in capillary permeability. Review of
the literature noted several reports describing a similar
green discoloration of the pons in patients with CPM who
had concurrent liver disease and jaundice (Chason et al.
1964; Shurtliff et al. 1966; Monteiro 1971). James Powers
and Paul McKeever (1976) had also described potential
defects in the BBB in CPM.

This author was also aware of articles by Feigin and
Budzilovich (1978) and Feigin et al. (1973) showing that
chronic edema led to demyelination. The authors speculated
that a blood-derived myelinolytic factor was responsible for
the demyelination. This author was likewise familiar with
work showing that the BBB could be opened by the
intravenous administration of hypertonic saline (Brightman
et al. 1973; Rapoport 1976). Such an effect was deemed to
be a consequence of endothelial cell dehydration and
shrinkage leading to an impairment of endothelial tight
junctions. In fact, neurosurgeons were beginning to use this
strategy to deliver chemotherapeutic agents that were
otherwise impermeable to the BBB (Neuwelt et al. 1982).

Thus, there was a loose assortment of facts—first, CPM
was somehow associated with hyponatremia, the BBB was
compromised and the lesions occurred principally in the
pons but also at other sites. It was also known that chronic
edema, presumably due to a disturbance in the BBB, was
associated with demyelinating lesions and that hyper-
osmotic stress was able to open the BBB. But these were
simply facts without any integrating or coherent aspect
relevant to the pathogenesis of CPM. This dramatically
changed one morning in 1979 while preparing to review the
histology of a case of CPM. The prosector was Scott
VendenBerg, a first year Pathology resident at the Univer-
sity of Colorado. We reviewed what was then known about
CPM, and I mentioned our recent studies on the potential

role of hyponatremia. In a nonchalant manner Scott said “I
wonder whether CPM is due to osmotic stress?”. I was not
exactly sure what Scott had in mind when he uttered that
phrase—but that was a quintessential moment as this
comment immediately crystalized all of the disjointed facts
into a logical mechanism, potentially explaining the
pathogenesis of CPM. What became seemingly obvious
was that hyponatremia per se was not the inciting factor in
CPM; rather, its correction was the culprit as this would
result in hyperosmotic stress, endothelial dehydration and
opening of the BBB, thereby allowing the as yet mysterious
myelinolytic factors to enter the brain.

This mechanism also explained why the pons and other
brain areas affected in CPM were involved. It had earlier
been underscored by Okeda (1974), and by Messert and
colleagues (1979) that a unique aspect of the topography of
those sites was their grid-like or checker-board architecture
as these regions were composed of a great admixture of
gray and white matter (Fig. 3). The importance of this
architecture is based on the fact that gray matter contains
10-times more capillaries than white matter. As such, if a
myelinotoxic factor from blood was indeed responsible for
the demyelination, that factor would be enriched in gray
matter, while the substrate of that factor, myelin, would be
present in the immediately adjacent white matter. If the
hypothesis was correct, areas with a rich gray—white matter
admixture would therefore be at greatest risk for demyelin-
ation. Of all areas of the human brain, the pons displays the
greatest degree of gray—white matter admixture.

Testing a hypothesis
To examine the validity of this mechanism, Kevin Leslie

and Andrew Robertson, a Neurology resident rotating in
Neuropathology, were given the task of reviewing all of our

Fig. 3 Sketch of the human pons showing a close admixture of white
matter bundles (gray zones) within the white background (gray
matter)
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cases, in addition to those reported in the literature, to
examine whether or not a period of rapid correction of
hyponatremia had occurred prior to the onset of CPM.
Simultaneously, Bette Kleinschmidt- DeMasters, who had
just joined the laboratory as a Neuropathology fellow,
examined the same issue experimentally in the rat.

The clinical study study showed that all of our 15 cases
of CPM were hyponatremic (some mildly so), and had
experienced a 20-30 mEq/1 rise in serum sodium 3—10 days
(mean, 6 days) before neurological symptoms developed. A
comparable group of patients showing a similar degree of
hyponatremia, but who did not develop CPM, had
considerably lesser or slower rises in sodium levels
following treatment of hyponatremia (Leslie et al. 1980;
Norenberg et al. 1982). Similar findings were observed in
rats made hyponatremic with vasopressin and water injection
and then treated with hypertonic saline (Kleinschmidt-
DeMasters and Norenberg 1981). Demyelinative lesions
were observed in the midbrain, thalamus and striatum, sites
with extensive gray—white matter admixture. In the rat, the
pons consists of mostly white matter, and lesions were not
observed at this site. Hyponatremia alone or slow correction
of hyponatremia failed to produce lesions. At about the same
time, Robert Laureno at Case-Western University using a
similar protocol, found comparable findings in dogs, but
additionally noted the presence of pontine lesions (the
architecture of the pons in humans and dogs are similar)
(Laureno 1980, 1983). Subsequent studies by other groups
found similar pathological changes in rats (Ayus et al. 1985;
Rojiani et al. 1987; Verbalis and Martinez 1991) and rabbits
(Illowsky and Laureno 1987).

While clinical and experimental data pointed to a rapid
correction of hyponatremia in patients with CPM, this did
not always occur. Subsequent to our original report
(Norenberg et al. 1982), we identified a normonatremic
(139 mEq/l) patient with hepatic encephalopathy who was
treated with lactulose (an agent known to cause hyper-
natremia). On the 10th hospital day he became restless and
confused, at which time the sodium had risen to 171 mEq/1.
He died on the 20th hospital day from sepsis. A small,
recent, demyelinating lesion was found in the center of the
pontine base (Norenberg 1983). Similar findings were
reported by other investigators (McKee et al. 1988; Riggs
and Schochet 1989). Thus, hyponatremia may rarely not
occur in the course of CPM, but a rise in serum osmolarity
due to sodium (or perhaps another osmolyte, e.g., glucose)
is always present.

Another aspect that became apparent in the analysis of
rapid correction of hyponatremia in CPM was the duration
of hyponatremia prior to its correction (Norenberg 1984).
This study disclosed that those patients who experienced
hyponatremia for a short period of time (hours to a few
days) did not develop CPM (Norenberg 1984). By contrast,
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those who were hyponatremic for 1 week or longer, all
developed CPM. This aspect was tested experimentally in
rats: one group was kept hyponatremic for 3 days while
another group was hyponatremic for 1 day. Both groups
were then treated with hypertonic saline (Norenberg and
Papendick 1984). The 3-day treated hyponatremic rats
developed more numerous and more severe lesions, as
compared to the l-day treated rats. This data strongly
suggested that chronicity of hyponatremia was a crucial
factor in the pathogenesis of CPM.

Contemporary mechanistic concepts

The precise sequence of events by which hyponatremia, or
more importantly the hypernatremia/hyperosmolarity fol-
lowing its rapid correction, leads to demyelination is still
unclear, but significant progress has evolved over the last
25 years.

Cell volume regulation and organic osmolytes

Following acute hyponatremia, brain cells swell and as an
adaptation, they release electrolytes, principally Na®, K",
CI'. Following rapid correction of hyponatremia, usually
with hypertonic saline, Na* and Cl” reaccumulate rapidly
and osmotic equilibrium is restored (for reviews, see
(Strange 1992, 1993). A different set of events occurs,
however, if the patient has been chronically hyponatremic
(1 week or longer). Not only are Na*, K', CI” lost, but
additionally the cells lose organic osmolytes (principally
myo-inositol, taurine, glutamine, glutamate, creatine, phos-
phocreatine, glycerophosphorylcholine), formerly known as
“idiogenic osmoles”. The cells thereby achieve osmotic
equilibrium, but at a lower osmotic set-point.

Following the rapid correction of chronic hyponatremia
with hypertonic saline cells become dehydrated. lons
reaccumulate quickly (within minutes) followed by osmot-
ically obligated water, whereas organic osmolytes take
about 5 days or more to do so. The initial high
concentration of ions is stressful to the cells (“perturbing
solutes”) as it interferes with the maintenance of proper
protein structure and function. By contrast, organic osmo-
lytes tend to maintain normal protein structure and function
(“compatible solutes). These effects are a consequence of
ions directly binding to proteins causing them to denature/
misfold, in contrast to organic osmolytes that do not bind to
proteins and maintain proteins in their native, unfolded
configuration. For review on cell volume regulation, and
especially the protective role of organic osmolytes, see
reviews by Burg et al. (2007) and Burg and Ferraris (2008).

While the potential involvement of organic osmolytes in
experimental CPM was earlier noted in passing (Norenberg
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1983; Norenberg and Papendick 1984), it was not until
1987 that Thurston and colleagues (1987) first reported that
rapid correction of hyponatremia was associated with a
reduction of amino acids (especially taurine), creatine and
citric acid cycle intermediates, thereby highlighting the
potential importance of organic osmolytes in the production
of brain lesions following rapid correction of chronic
hyponatremia. A more comprehensive analysis of such
loses of organic osmolytes following hyponatremia was
provided by Verbalis and Gullans (1991).

A detailed examination of the role of organic osmolytes
following hyponatremia and its correction was performed by
Lien et al. (1991). These workers reported that following
hyponatremia, myo-inositol, glycerophosphorylcholine,
phosphocreatine/creatine, glutamate, glutamine, and taurine
levels were depressed. With rapid correction, reaccumulation
of these organic osmolytes, except glycerophosphorylcho-
line, was delayed. The authors concluded that rapid
correction of hyponatremia was associated with an overshoot
of brain sodium and chloride levels along with a low organic
osmolyte level, and that the high cerebral ion concentrations
in the absence of adequate concentrations of organic
osmolytes may have contributed to the development of
CPM. Similar findings were documented by Verbalis and
Gullans (1993) in their experimental work in rats with CPM.
Interestingly, Lien (1995) found a good correlation between
the delayed accumulation of organic osmolytes following
correction of hyponatremia and the localization of demye-
linating lesions. While the basis for these findings were not
discussed, a review of the data clearly indicates that the areas
most affected correspond to those possessing the greatest
extent of gray—white matter admixture.

Subsequently, it was shown that renal failure and
exogenous urea (an organic osmolyte) prevented myelinol-
ysis following rapid correction of experimental hyponatre-
mia (Soupart et al. 2000). Soupart and co-workers (2002)
then showed that such protection by azotemia was due to
the rapid reaccumulation of brain organic osmolytes after
correction of hyponatremia. How urea stimulates the uptake
of other organic osmolytes is not known.

All of the above studies support a major role of organic
osmolytes deficiency during the correction phase of hypo-
natremia. The importance of this concept is accentuated by
the report of Silver et al. (2006) showing that treatment of
rats during the correction phase with myo-inositol (along
with saline) improved the survival of rats and diminished the
number of demyelinating lesions. These important findings
have great therapeutic relevance for patients with CPM.

Endothelial cells and the blood—brain barrier

As was noted above, a breakdown of the BBB is a feature
of CPM in humans, and speculations were offered as to

how such a defect in the BBB might contribute to the
development of CNS lesions. The breakdown in the BBB
was subsequently reported in experimental CPM (Rojiani et
al. 1994a; Sugimura et al. 2005; Murase et al. 2006), and
glucocorticoids, agents well known to reinforce the BBB
(Hedley-Whyte and Hsu 1986; Hoheisel et al. 1998; Sinton
et al. 2000; Rosenberg et al. 1996), were shown to reduce
the number of lesions in experimental animals (Rojiani et
al. 1987; Oh et al. 1990; Sugimura et al. 2005; Ke et al.
2006; Murase et al. 2006) and in humans (Schneck et al.
1978; Sterns et al. 2007).

The means by which osmotic stress brings about an
opening of the BBB is not clear. It is likely that dehydration
and shrinkage of endothelial cells creates a mechanical
injury to endothelial tight junctions. It is also possible such
osmotic injury may elicit the release of agents harmful to
the integrity of endothelial tight junctions. It has been
reported that nitric oxide may contribute to a breakdown of
the BBB (Liu et al. 2001), and Ke and co-workers (2006)
provided evidence that inducible nitric oxide synthase was
overexpressed in experimental CPM and that such over-
expression was inhibited by dexamethasone.

How a disturbance in the BBB leads to demyelination is
also not clear. As noted above, there were suggestions that
blood-derived factors may contribute to demyelination.
More recently it was shown that complement is toxic to
oligodendrocytes in culture (Wren and Noble 1989;
Scolding et al. 1989; Wing et al. 1992) and to myelin
(Cyong et al. 1982; Vanguri et al. 1982). Adler et al. (1995)
suggested such a mechanism in CPM. The same research
group subsequently showed marked increases in IgG and
C3d complement immunostaining in experimental CPM
(Baker et al. 2000). The staining intensity also correlated
with the degree of neurological impairment.

It is also possible that direct osmotic injury to endothe-
lial cells may result in the release of agents that have
damaging effects on myelin and/or oligodendrocytes.
Endothelial cells are known to contain and release high
amounts of the neutral protease, plasminogen activator
(Todd 1972). By the formation of plasmin, plasminogen
activator may lead to demyelination as plasmin has been
shown to hydrolyze myelin basic protein (Cammer et al.
1978). In preliminary studies we found a marked increase
in plasminogen activator activity following the rapid
correction of hyponatremia (Norenberg and Bell 1982).
Such activation was inhibited by dexamethasone, which
also blocked the development of demyelinating lesions.
Other factors known to be released by endothelial cells that
are capable of injuring both the BBB and oligodendroglial
cells, such as cytokines (Vadeboncoeur et al. 2003; Verma
et al. 2006; Simka 2009) may also be involved.

In this regard, recent preliminary studies by Joshua
Johnstone, a Neuroscience graduate student and Dr.
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Arumugam Jayakumar, both at the University of Miami,
have shown that osmotically stressed endothelial cells in
culture release a factor(s) that is lytic to cultured oligoden-
drocytes. The nature of this factor is yet to be determined.
However, these findings indicate that osmotically injured
endothelial cells, independent of any breakdown of the
BBB, are capable of damaging oligodendrocytes.

Apoptosis

While comments regarding a role of apoptosis in CPM
were proposed by Ashrafian and Davey (2001), the first
documented report was given by DelLuca and colleagues
(2002). To some extent this was not surprising as
oligodendrocytes are well known to undergo apoptosis
following different forms of injury (Ludwin 1997), and may
even be the neural cell that most frequently undergoes this
form of cell death. In their elegant electron microscopic
study, Rojiani and colleagues (1994b) illustrated oligoden-
droglial changes that undoubtedly represent early apoptosis.
The term apoptosis was not used in that publication as it
was not yet part of the lexicon. We had also found similar
electron microscopic changes (Fig. 4) (Norenberg 1981). Even
by light microscopy (in retrospect), oligodendroglia show
unmistakable changes indicative of apoptosis (Norenberg and
Papendick 1984).

Other implicated factors

While osmotic stress secondary to rapid correction of
hyponatremia represents a critical factor in the pathogenesis
of CPM, a number of published reports have not described
such an outcome. Careful review of these reports, however,
did not provide sufficient electrolyte data for analysis;

Fig. 4 a Early ultrastructural
change in oligodendrocytes in
experimental CPM in rats
showing nuclear irregularity and
chromatin clumping. b Later
stage of CPM showing nuclear
fragmentation characteristic of
apoptosis. x4,600
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it was unclear whether the sodium data noted corresponded
with the onset of CPM (i.e., was the right epoch examined);
lack of pathological data that indeed CPM was the
offending lesion; and the chronicity of hyponatremia was
not taken into account. Similar concerns have been
expressed by other investigators (Karp and Laureno
2000). These caveats aside, in the author’s experience, as
well as based on the literature, there have been cases where
similar changes in the magnitude of electrolyte fluxes have
resulted in markedly different degrees of severity of CPM
lesions. This questions whether other events or factors
might predispose to, or possibly prevent the development of
CPM.

Foremost among these events is preexisting liver disease
(Shurtliff et al. 1966; Goebel and Zur 1972), especially
orthotopic liver transplantation (Starzl et al. 1978; Estol et
al. 1989; Wszolek et al. 1989; Boon et al. 1991; Ferreiro et
al. 1992; Ghidoni et al. 1994; Bonham et al. 1998) which in
some series the incidence of CPM was as high as 30%
(Singh et al. 1994). The explanation for this propensity is
not fully understood. However, patients with liver disease
often have hyponatremia (Reynolds 1980). A more likely
possibility is that these patients are malnourished and it is
possible that their intracellular myo-inositol levels are
diminished. Using NMR spectroscopy, brain myo-inositol
levels have indeed been found reduced in patients with liver
disease (Kreis et al. 1992; Gupta et al. 1993; Pujol et al.
1996; Haussinger et al. 1994), and in rats with portacaval
anastomosis (a model of chronic hepatic encephalopathy)
(Cordoba et al. 1996). Cultured astrocytes treated with
ammonia (the principal toxin in hepatic encephalopathy)
show reduced myo-inositol levels. myo-Inositol is actively
taken up by astrocytes (Isaacks et al. 1994, 1999b; Lubrich
et al. 2000), and ammonia impairs this uptake (Isaacks et al.
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1999a). It is of interest that other organic osmolytes such as
taurine and glycerophosphorylcholine are also reduced in
humans with hepatic encephalopathy (Bluml et al. 1998),
and in rats with a portacaval anastomosis (Coérdoba et al.
1996). As noted above, such deficiencies in organic
osmolytes may greatly sensitize the brain to hyperosmotic
stress. In view of the potential role of apotosis in the
mechanism of oligodendroglial cell death, it is worth
commenting that in addition to its protection against
hyperosmotic stress, myo-inositol also has antiapoptotic
properties (Alfieri et al. 2002).

Other factors that have been implicated in the mecha-
nism of CPM include hypophosphatemia (Qadir et al. 2005;
Michell et al. 2003; De Broucker et al. 1989) and
hypokalemia (Lohr 1994; Heng et al. 2007). It is notewor-
thy that phosphate is required for the synthesis of two
organic osmolytes, phosphocreatine, and glycerophosphor-
ylcholine. As with myo-insitol, such deficiency may
predispose to hyperosmotic stress. The means by which
hypokalemia seinsitizes the CNS to CPM (if it does) is not
apparent.

Summary and perspectives

CPM is a demyelinating condition affecting principally the
pons and in most instances caused by a rapid correction of
chronic hyponatremia (of at least several days duration).
The hyperosmotic stress created by the rapid correction
causes endothelial injury and opening of the blood-brain
barrier resulting in the release of myelinotoxic or oligoden-
droglial destructive factors. The condition in many instan-
ces is preventable, but not always. Significant knowledge
has accrued over the past two decades regarding its
mechanisms leading to novel therapeutic possibilities for
the treatment of patients prone to develop CPM.

On a personal note, the exploration of mechanisms
involved in CPM was, and has been, an exciting journey
that has also yielded important insights into the mecha-
nisms of other neurological disorders. While I have not
been actively involved in CPM research in more than two
decades, I marvel at the achievements of many investiga-
tors, and look forward to future advances in our under-
standing of this fascinating neurological disorder.
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