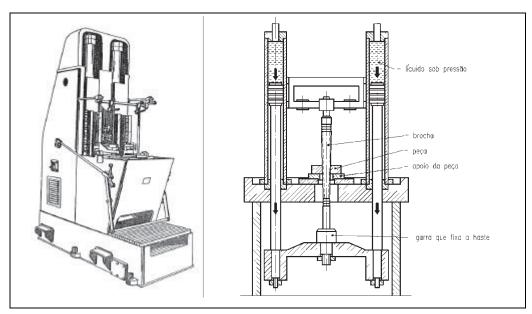
# Parte 3 Operação de Brochamento


# Parte 3 Operação de Brochamento

#### 3.1 - Introdução

A operação de brochamento, brocheamento ou brochagem consiste do arranque de material da peça por uma sucessão progressiva e linear de gumes de corte. A ferramenta é denominada brocha. A máquina que executa esta operação é denominada brochadeira ou brochadora. É uma operação voltada para a produção de grandes lotes pois cada operação exige o projeto e a execução de uma ferramenta própria, complexa e de alto custo.

### 3.2 – Brochadeiras

As brochadeiras consistem basicamente de um mecanismo capaz de produzir o movimento relativo entre a ferramenta e a peça, que normalmente é linear. A grande maioria das máquinas são acionadas hidraulicamente devido a grande força necessária. Pode-se ter máquinas verticais, como a apresentada na *figura 3.1*, que ocupam menos espaço e que normalmente trabalham com compressão da ferramenta. Algumas máquinas trabalham com compressão e tração simultaneamente.



*Figura 3.1* – Brochadeira vertical.

As máquinas horizontais, como a representada pela *figura 3.2*, são mais utilizadas pois torna viável o uso de longas ferramentas, o que traz vantagens em termos de produtividade. Normalmente trabalha apenas com força de tração na ferramenta.

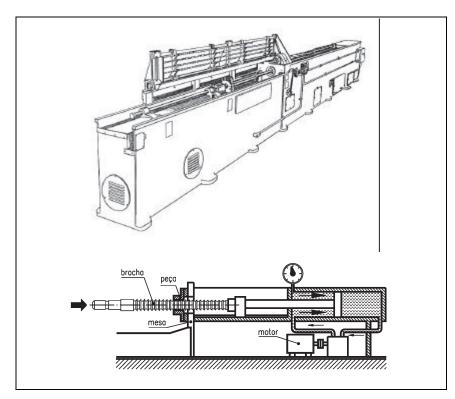



Figura 3.2 – Brochadeira horizontal.

Em alguns casos faz-se necessário o giro da ferramenta durante o movimento de usinagem para se obter o brochamento helicoidal, cuja aparência pode ser observada na *figura* 3.3. Nestes casos a brochadeira horizontal é quase sempre a única opção.

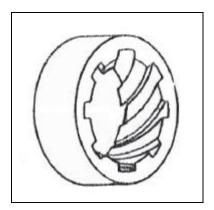
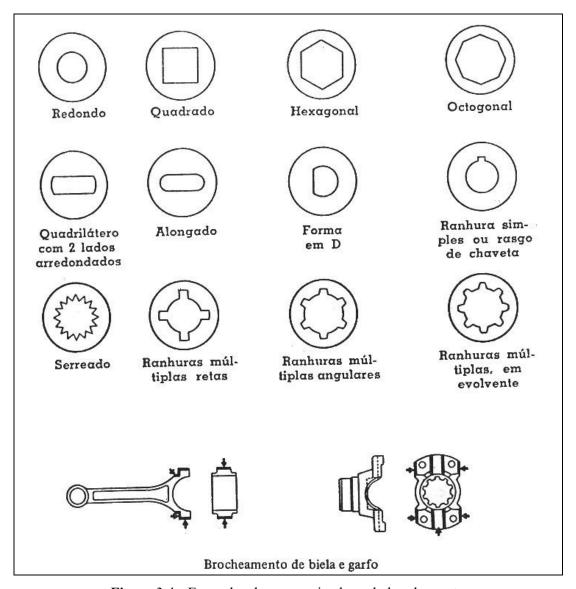




Figura 3.3 – Peça realizada com brochamento helicoidal.

Para ângulos de hélice pequenos (até 20°) a rotação da ferramenta é assegurada pelo próprio conjugado produzido pela ação da força de corte, sem perigo de danificar a ferramenta ou a peça. Este é o *brochamento helicoidal comum*. Quando o ângulo da hélice é superior a 20°, o movimento de rotação deve ser comandado pela montagem de brochamento, e é chamado de *brochamento helicoidal comandado*.

# 3.3 – Aplicação

A finalidade do brochamento é usinar superfícies especiais como as mostradas pela *figura 3.4*. Pode-se ter brochamento interno, quando executa-se superfícies fechadas, ou brochamento externo, quando executa-se superfícies abertas.



*Figura 3.4* – Exemplos de peças usinadas pelo brochamento.

O processo de brochamento interno, que é o mais comum, consiste na *transformação* de um furo redondo em um furo de perfil qualquer de maneira progressiva. A *figura 3.5* ilustra alguns exemplos onde pode-se perceber a evolução da forma do furo. No exemplo da esquerda o furo ganha gradualmente quatro ranhuras. No exemplo central o furo evolui para uma forma com seis pontas. Finalmente, no exemplo da direita pode-se observar que o furo redondo evolui para um furo quadrado.

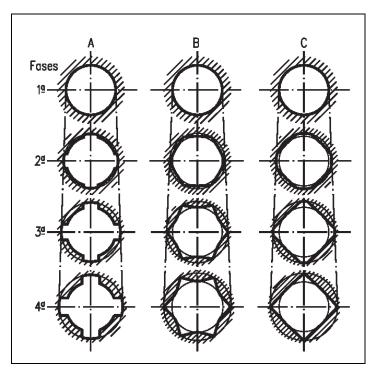



Figura 3.5 - Exemplos da evolução da forma de um furo.

# 3.4 - Métodos de brochamento

Pode-se classificar a operação de brochamento de várias maneiras. Tem-se:

- a) <u>Tipo de superfície</u>
  - Interna (mais comum);
  - Externa.
- b) <u>Direção do movimento</u>
  - Vertical;
  - Horizontal (mais comum).
- c) Movimento
  - Da ferramenta (mais comum);
  - Da peça.
- d) Aplicação do esforço
  - Por tração (mais comum);
  - Por compressão.

#### e) Brochamento helicoidal

- Normal.
- Comandado.

## 3.5 - Brochas

As brochas internas de tração, que são as mais utilizadas, possuem três partes principais, que são: haste ou cabo, dentadura e guia posterior (com ou sem suporte). Todas estas partes podem ser observadas na *figura 3.6*.

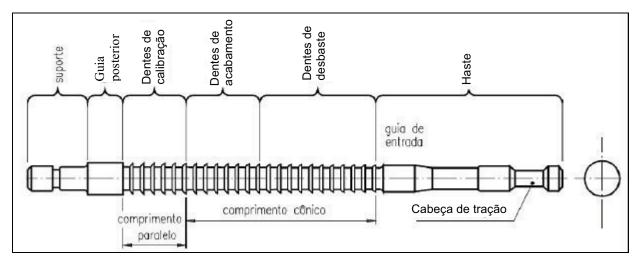
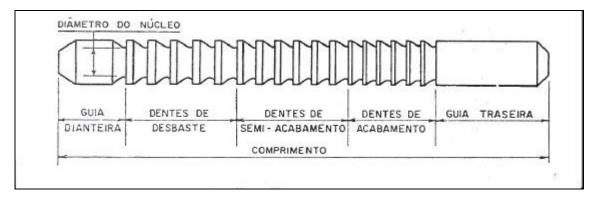




Figura 3.6 – Brocha de tração.

A haste é formada pela cabeça de tração e pela guia de entrada (ou guia anterior). A dentadura é composta de três partes, que são dentadura de desbaste, de acabamento e de calibração. Quando o brochamento é executado apenas por tração a guia posterior não possui o suporte, que é utilizado quando também utiliza-se força de compressão.

Já, as brochas internas de compressão, não possuem a cabeça e o cabo, ou seja, a haste é composta apenas da guia anterior, como pode-se observar pela *figura 3.7*. As demais partes da brocha são as mesmas. Deve-se observar que a nomenclatura dos dentes desta figura está diferente da apresentada anteriormente. Alguns autores adotam o primeiro padrão apresentado e outros autores o segundo, mas a finalidade e forma dos dentes são as mesmas.



*Figura 3.7* – Brocha de tração.

A cabeça de tração é a parte da brocha onde se conecta o dispositivo de tração da brochadeira. Sua forma depende do tipo de fixação permitida pela máquina. Há vários padrões, como mostra a *figura 3.8*.

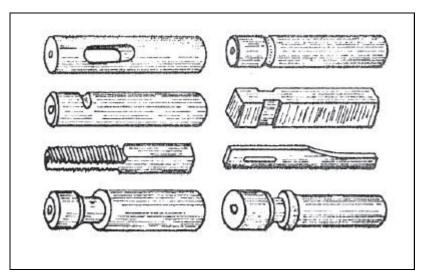



Figura 3.8 – Alguns padrões da cabeça de tração.

A guia anterior tem por finalidade centrar a ferramenta no furo inicial. Deve ter um comprimento mínimo igual ao comprimento a ser brochado (espessura da peça) e seu diâmetro deve ser igual ao do furo inicial. Na *figura 3.9* tem-se um exemplo de uma guia anterior em ação, ou seja, centrando e guiando a brocha.

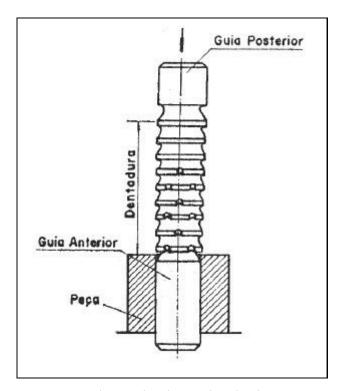



Figura 3.9 – Guia anterior de uma brocha de compressão.

A guia posterior tem diâmetro igual ao mínimo diâmetro da forma brochada para que possa passar por ela. Seu comprimento é usualmente adotado entre 0.5 ou 0.7 do comprimento a ser brochado (desde que não seja menor que 10 mm).

A dentadura é responsável pela remoção do material. Como já foi dito, é composta de três partes: desbaste, acabamento e calibração. A região de calibração possui de 3 a 6 dentes, todos com a mesma dimensão, e que tem por objetivo, como o próprio nome diz, calibrar a forma e dar o acabamento final.

O aspecto das ferramentas para brochamento helicoidal é um pouco diferente das já apresentadas. A *figura 3.10* apresenta exemplos de brochas helicoidais.

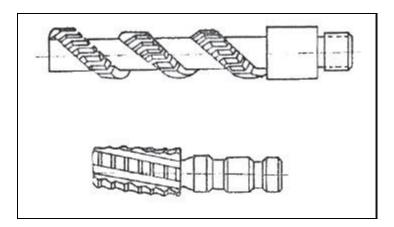



Figura 3.10 – Aspecto de brochas helicoidais.

#### 3.6 – Geometria dos dentes

A *figura 3.11* apresenta uma vista em perspectiva dos dentes de uma brocha onde é possível notar as principais superfícies além das ranhuras quebra-cavaco.

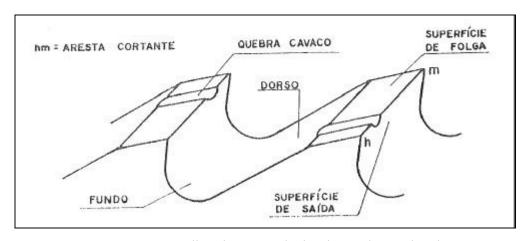



Figura 3.11 – Detalhes da geometria dos dentes de uma brocha.

Os detalhes geométricos podem ser melhor observados na *figura 3.12*. A distância entre um dente e outro é definido como **P**, ou seja, o passo dos dentes. A altura medida entre o fundo do dente e a ponta de corte é **h**. Tem-se os ângulos de saída ( $\gamma$ ) e folga ( $\alpha$ ). A diferença entre as alturas dos gumes cortante (**a**) é o *avanço*.

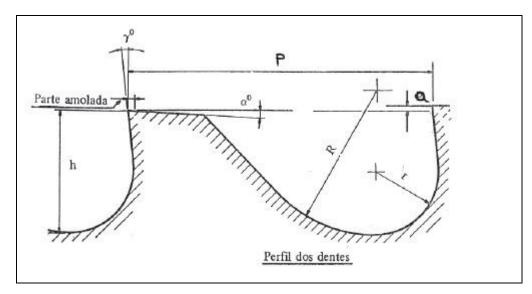



Figura 3.12 – Geometria dos dentes de desbaste.

Os raios de concordância **R** e **r** devem ser definidos de forma ajudar a formação do cavaco, buscando não parti-lo, como mostra a *figura 3.13*. O cavaco bem formado enrola-se e não possui arestas pontiagudas em contato com a ferramenta. Um cavaco que se parte gera diversas arestas que podem danificar o acabamento da peça que está sendo usinada e também a própria ferramenta.

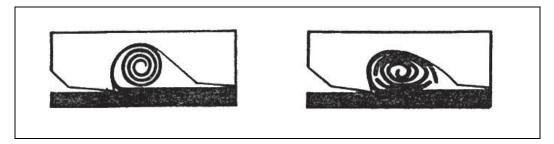



Figura 3.13 – Influência do perfil do dente na formação do cavaco.

A *figura 3.14* mostra novamente o perfil dos dentes com  $\theta$ =30° e  $\theta$ =45°. Pode-se observar também a mudança dos raios **R** e **r**. Outro detalhe importante é que estes desenhos mostram dentes de calibração. Isto é notável pela presença da plataforma paralela ao eixo longitudinal da brocha, de comprimento **f**, que permite o reafiamento sem perda da altura **h**.

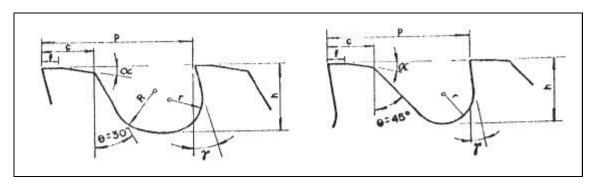



Figura 3.13 – Perfil dos dentes de calibração.

A *figura 3.15* apresenta apenas os ângulos que definem o dente e também o avanço **a**. A *figura 3.16* apenas reforça que o avanço **a** é igual para todos os dentes de uma mesma parte da dentadura.

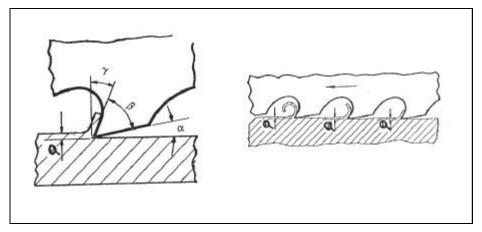



Figura 3.15 – Ângulos do gume de corte e avanço a.

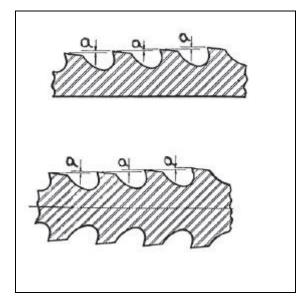



Figura 3.16 – Avanço a.

# 3.7 – Força de usinagem

A operação de brochamento possui uma grande variação da força durante o processo. O valor mais importante é a força máxima exigida, pois é com esse valor que se pode determinar o equipamento que realizará a operação. Mas entender como e porque a força varia durante a usinagem é um passo importante para entende-la plenamente.

Durante a operação o número de dentes em corte simultâneo (n) é "constante" e é calculado pela expressão (3.1), onde L=comprimento a ser brochado e p=passo dos dentes de desbaste. Deve-se observar que, caso o valor não seja inteiro, *sempre* arredonda-se para cima.

$$\boxed{n = \frac{L}{p}} \tag{3.1}$$

A força máxima na operação de brochamento pode ser calculada pela expressão (3.2). Tem-se que A=área de material removida, re=resistência específica de corte e n=número de dentes em corte simultâneo. Como a forma dos dentes varia, o valor de **A** também varia e conseqüentemente o valor da força também. Além disso há a variação do número de dentes em corte simultâneo quando **n** não é inteiro, gerando uma flutuação.

$$F_{\text{máx}} [kg] = A[mm^2] * r_e [kg / mm^2] * n$$
 (3.2)

É interessante observar um exemplo para simplificar o entendimento. Suponha o brochamento de um orifício de 8 ranhuras como mostra a *figura 3.17*, em uma peça de aço com espessura de 32 mm e cuja resistência específica de corte seja 315 kg/mm². A brocha possui passo 12 mm e passo de avanço de desbaste de 0,05 mm. A velocidade de corte é de 7,2 m/min. Deseja-se um gráfico da variação da força com o tempo.

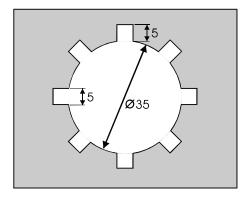



Figura 3.17 – Geometria da peça.

#### Cálculo do número de dentes em corte simultâneo (n)

$$n=L/p=32/12=2.667 \Rightarrow n=3 \text{ [dentes]}$$

Cálculo da área de material a ser removido (A)

$$A=8*(5*0.05) \Rightarrow A=2 \text{ [mm}^2$$

Cálculo da força máxima no brochamento (F<sub>máx</sub>)

$$F_{\text{máx}} = 2 * 315 * 3 \implies F_{\text{máx}} = 1890 \text{ [kg]}$$

#### Cálculo das força no início do brochamento

No início da operação, antes de entrar em regime, teremos apenas 1 dente em contato com a peça. Neste caso a força será  $F_1$ = 630 [kg]. Logo em seguida entra em ação o segundo dente e a força será  $F_2$ = 1260 [kg].

#### Cálculo do tempo de atuação de um dente

Para desenhar-se o gráfico é necessário conhecer o tempo que um dente leva para movimentar-se na peça. Tem-se velocidade de corte de 7,2 m/mim, ou 7200 mm/min que equivale a 120 mm/s. Como cada dente tem 12 mm significa que gasta 0,1 s para movimentar-se na peça (12[mm]/120[mm/s]=0,1s) . Observe que para um dente atravessar a peça serão necessários 0,267 s pois a peça tem 32 mm de espessura (32[mm]/120[mm/s]=0,267s).

#### Construção do gráfico

Com os valores calculados pode-se desenhar o gráfico da variação da força no tempo, mostrado pela *figura 3.18*. Observe que, como o valor de A não se altera, após a entrada do terceiro dente o sistema entra em regime.

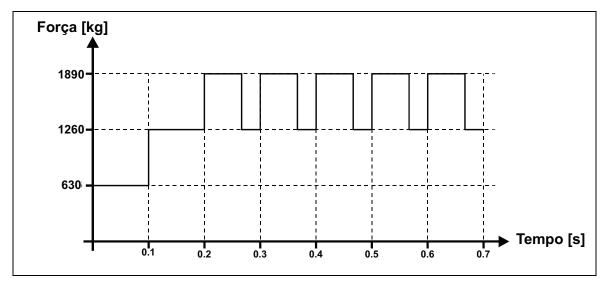



Figura 3.18 – Variação da força no tempo.

A *figura 3.19* ilustra o movimento da brocha em relação a peça em alguns intervalos de tempo para que se possa comparar com o gráfico da *figura 3.18*. Nota-se que realmente há um intervalo de tempo entre a saída de um dente e o toque de outro. Durante esse tempo (0,033s) apenas dois dentes estão em contato com a peça.

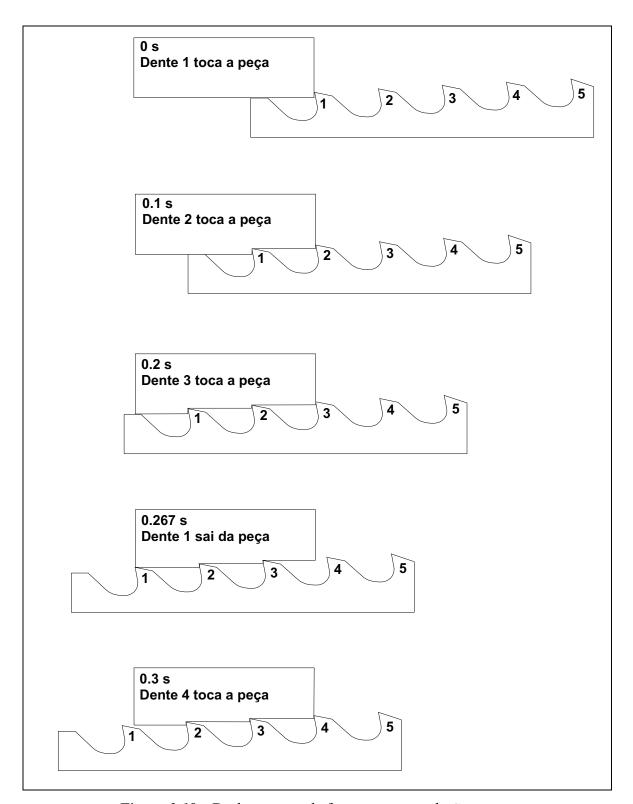



Figura 3.19 – Deslocamento da ferramenta em relação a peça.

# 3.8 - Projeto de brochas internas de tração

O roteiro que será apresentado a seguir tem por finalidade orientar o projeto de brochas internas de tração (e compressão já que a diferença encontra-se apenas na haste), mas deve-se lembrar que para um bom projeto é necessário ter-se experiência para adoção de alguns valores.

<u>Passo 1</u>. Selecionar o material da brocha. Apesar de toda a tecnologia de ferramentas a grande maioria das brochas são fabricadas em aço rápido. Os tipos de aços rápidos recomendados por um determinado fabricante estão na *tabela 3.1*.

| <u>Material</u> | Características                                                                                                             | $\sigma_{adm}[kg/mm^2]$ |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------|
| ISO S4          | uso geral, para brochamento de aços de baixo e médio carbono                                                                |                         |
|                 | (dureza até Rc 34), aços ligados (com dureza até Rc 32), alumínio, latão, magnésio, bronzes de baixa liga, plásticos, cobre | 55                      |
| ISO S5          | aços de médio carbono (durezas de Rc 35 até 42), aços ligados                                                               | 65                      |
|                 | (dureza Rc 33 a 38) e ferros fundidos ligados.                                                                              |                         |
| ISO S6          | aços de médio carbono (dureza Rc 35 a 42), aços forjados, aços inoxidáveis, aços fundidos, ferro fundido maleável.          | 70                      |
| ISO S11         | para ligas de altas temperaturas, aços inoxidáveis, titânio, bronze encruável, ferro silício e bronze silício.              | 80                      |

*Tabela 3.1* – Aplicações e características de alguns aços rápidos.

<u>Passo 2</u>. Escolha da profundidade de corte, ou seja, o avanço por dente (a<sub>d</sub> e a<sub>a</sub>). A *tabela 3.2* fornece valores orientativos. Deve-se utilizar um avanço maior na dentadura de desbaste e menor para acabamento (nulo na calibração ).

| Material                            | a <sub>d</sub> = desbaste [mm] | a <sub>a</sub> = acabamento [mm] |
|-------------------------------------|--------------------------------|----------------------------------|
| Aço duro (≥ 900 N/mm²)              | 0,03 - 0,05                    | 0,01                             |
| Aço doce (≤ 800 N/mm <sup>2</sup> ) | 0,03 - 0,08                    | 0,01                             |
| Aço fundido                         | 0,06 - 0,10                    | 0,01                             |
| Ferro Fundido maleável              | 0,06 - 0,12                    | 0,01                             |
| Ferro Fundido macio (cinza)         | 0,15 - 0,25                    | 0,01                             |
| Ferro Fundido duro (cinza)          | 0,07 - 0,12                    | 0,01                             |
| Latão                               | 0,10 - 0,30                    | 0,01                             |
| Bronze                              | 0,10 - 0,30                    | 0,01                             |
| Zinco                               | 0,10 - 0,25                    | 0,02                             |
| Alumínio e suas ligas               | 0,10 - 0,20                    | 0,02                             |
| Magnésio                            | 0,20 - 0,40                    | 0,02                             |

Tabela 3.2 – Valores orientativos para avanços de desbaste e acabamento.

Passo 3. Determinação do escalonamento dos dentes. É a determinação da evolução da forma que os sucessivos dentes vão tomando ao longo do comprimento da brocha. Não existe uma regra para sua determinação, visto que cada caso é um caso. O escalonamento influenciará no valor máximo de b, e conseqüentemente, no cálculo da força máxima. A figura 3.20 ilustra duas possibilidades de escalonamento para uma mesma forma, inclusive em detalhe.

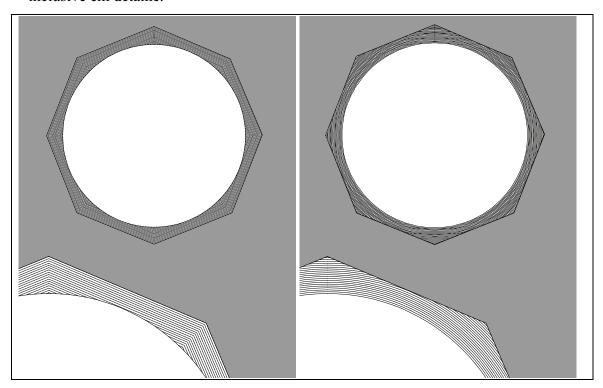



Figura 3.20 – Exemplos de escalonamento dos dentes

<u>Passo 4</u>. Calcular o passo dos dentes de desbaste e acabamento (p). Depende do comprimento a brochar (L). Em uma primeira aproximação pode-se utilizar a relação  $p = (1.7 \text{ a } 1.8)*\sqrt{L}$ . O passo será avaliado posteriormente.

<u>Passo 5</u>. Determinar a altura dos dentes (h).O resultado da relação  $h=(0.3 \ a \ 0.5)*p$  pode ser utilizado como aproximação inicial, mas os valores mais indicados são:

h=0,30\*p para aços duros ( $\geq 600 \text{ N/mm}^2$ ).

h=0,40\*p para aços doces ( $\leq 600 \text{ N/mm}^2$ ) e ferro fundido duro.

h=0,45\*p para ferro fundido cinzento, bronze, latão.

h=0,50\*p para alumínio.

Caso o valor do passo seja alterado (em uma das quatro verificações seguintes), o valor da altura deve ser novamente calculado.

Passo 6. Verificação do passo através do número de dentes em corte simultâneo (n). Devem atuar no mínimo 2 dentes, caso contrário deve-se brochar duas ou mais peças juntas. Para a força de corte não ser excessiva limita-se o número de dentes em corte simultâneo a 6 (aplicação normal de fluido de corte) ou 8 (brochas com canais de fluido no seu interior ou de imersão). Utiliza-se a relação n=L/p. No caso de **n** não ser um valor inteiro, deve-se arredondar *sempre* para cima. Caso n seja maior que 6 (ou 8), recalcula-se o passo usando esta mesma relação (p=L/n).

<u>Passo 7</u>. Verificação do passo através da capacidade da bolsa de cavacos. Pode-se determinar o passo mínimo que assegura a capacidade da bolsa através da relação  $p_{min} = 3 * \sqrt{L * a_d * x}$ , onde x é o fator de ampliação do volume ocupado pelo cavaco que está na *tabela 3.3*. Se  $p_{min}$ >p então deve-se adotar  $p=p_{min}$ .

|           | Brochamento Interno |   | Brochamento Externo |            |
|-----------|---------------------|---|---------------------|------------|
| Materiais | Desbaste Acabamento |   | Desbaste            | Acabamento |
| Frágeis   | 3 - 4               | 6 | 3 - 5               | 6          |
| Dúteis    | 4 - 7               | 8 | 5 - 8               | 10         |

Tabela 3.3 - Fator de ampliação do volume ocupado pelo cavaco.

<u>Passo 8</u>. Verificação do passo através da resistência da brocha. Para brochamento externo não se faz necessário verificar sua resistência. Para brochamento interno por compressão devese evitar flambagem, e para isto não se deve ter comprimento maior que 30 vezes o diâmetro do núcleo. Para brochamento interno por tração permite analisar se o passo adotado faz com que a brocha suporte o esforço de tração. Utiliza-se a seguinte relação:

$$p_{min}[mm] = \frac{A[mm^{2}]*L[mm]*r_{e}[kg/mm^{2}]}{A_{n}[mm^{2}]*\delta_{adm}[kg/mm^{2}]}$$

Onde:  $a_d = profundidade de corte por dente em desbaste [mm]$ 

b = largura de corte [mm]. Inclui-se o valor de a<sub>d</sub> quando necessário.

L = comprimento a brochar [mm]

 $r_e$  = resistência específica de corte [kg/mm<sup>2</sup>]. Ver *tabela 3.4*.

 $A_n$  = área do núcleo da brocha [mm<sup>2</sup>]. Normalmente  $A_n = (\pi^* d_n^2)/4$ .

 $\sigma_{adm}$  = tensão admissível de tração [kg/mm<sup>2</sup>].

| Material                           | r <sub>e</sub> [kg/mm <sup>2</sup> ] |  |
|------------------------------------|--------------------------------------|--|
| Aço (90 a 115 kg/mm <sup>2</sup> ) | 500                                  |  |
| Aço (70 a 90 kg/mm <sup>2</sup> )  | 400                                  |  |
| Aço (50 a 70 kg/mm <sup>2</sup> )  | 315                                  |  |
| Aço (até 50 kg/mm <sup>2</sup> )   | 250                                  |  |
| Aço doce                           | 200                                  |  |
| Ferro Fundido                      | 120 - 160                            |  |
| Ferro Fundido maleável             | 150                                  |  |
| Bronze duro                        | 125                                  |  |
| Bronze macio                       | 100                                  |  |
| Latão                              | 80                                   |  |
| Alumínio duro                      | 63                                   |  |

*Tabela 3.4* – Resistência específica de corte.

<u>Passo 9</u>. Verificação do passo através do esforço da brochadeira. Utiliza-se a relação:

$$p_{min}[mm] = \frac{A[mm^2] * L[mm] * r_e[kg/mm^2]}{F_t[kg] * 0.7}$$

Onde:  $a_d = profundidade de corte por dente em desbaste [mm]$ 

b = largura de corte [mm].

L = comprimento a brochar [mm]

 $r_e$  = resistência específica de corte [kg/mm<sup>2</sup>].

 $F_t$  = força total de tração da brochadeira [kg].

<u>Passo 10</u>. Cálculo do passo dos dentes de calibração (p<sub>c</sub>). Toma-se este passo como 70% do passo dos dentes de desbaste e acabamento. Ou seja: p<sub>c</sub>=0.7\*p.

<u>Passo 11</u>. Cálculo do raio de concordância (r). Recomenda-se r=(0,4 a 0,6)\*h, sendo valores menores para materiais que produzem cavacos quebradiços.

Passo 12. Cálculo da largura do flanco do dente (c). Também é chamada de plataforma do dente ou superfície de folga. Recomenda-se c=(0,25 a 0,30)\*p.

Passo 13. Cálculo da plataforma reta (f), também chamado de primeiro flanco. Nos dentes de calibração é comum utilizar uma parte da plataforma como *reserva de afiação*, que possui ângulo zero. Sua afiação não implica na alteração de seu diâmetro, aumentando a vida útil da brocha. Recomenda-se f=0,25\*k mm, onde k é o número de reafiações previstas. É recomendável f≤1,5 mm para não aumentar demasiadamente a força de atrito (o que significa um máximo de 6 reafiações).

**Passo 14**. Escolher o ângulo de saída ( $\gamma$ ). A *tabela 3.5* fornece valores orientativos.

| Material                       | Interno   | Externo   |
|--------------------------------|-----------|-----------|
| Aço duro                       | 10° a 12° | 8° a 12°  |
| Aço de média resistência       | 14° a 18° | 15° a 20° |
| Aço fundido                    | 10°       | 10°       |
| Ferro Fundido maleável         | 7°        | 7°        |
| Ferro Fundido cinza macio      | 10°       | 8°        |
| Ferro Fundido cinza duro       | 5° a 7°   | 6°        |
| Latão duro                     | 5°        | 0° a 5°   |
| Latão macio                    | 10°       | 12°       |
| Zinco fundido sob pressão      | 12°       | 12°       |
| Bronze fundido                 | 8°        | 0° a 8°   |
| Alumínio fundido sob pressão   | 20°       | 20°       |
| Alumínio de laminação (com Cu) | 15°       | 18°       |
| Alumínio de fundição (com Si)  | 12°       | 15°       |
| Magnésio fundido sob pressão   | 20°       | 20°       |

*Tabela 3.5* – Ângulo de saída.

Passo 15. Escolher o ângulo de incidência ( $\alpha$ ). A *tabela 3.6* fornece valores orientativos.

| Material       | <b>Dentes de Desbaste</b> | Dentes de Acabamento |  |
|----------------|---------------------------|----------------------|--|
| Aços           | 1,5° a 3°                 | 0,5° a 1°            |  |
| Ferro Fundido  | 2° a 4°                   | 0,5° a 1°            |  |
| Latão e Bronze | 1° a 2°                   | 0,25° a 0,5°         |  |
| Alumínio       | 2° a 3°                   | 1° a 2°              |  |

Tabela 3.6 – Ângulo de incidência.

<u>Passo 16</u>. Definição da velocidade de corte. A *tabela 3.7* apresenta valores iniciais.

| Material                            | v <sub>c</sub> [m/min] |
|-------------------------------------|------------------------|
| Aços de boa usinabilidade           | 6 - 10                 |
| Aços de 700 a 800 N/mm <sup>2</sup> | 3 - 6                  |
| Aços muito duros (≥900 N/mm²)       | 1 - 3                  |
| Ferro Fundido maleável              | 5 - 9                  |
| Ferro Fundido cinzento              | 6 - 9                  |
| Latão e Bronze                      | 8 - 12                 |
| Ligas de Alumínio                   | 10 - 14                |

*Tabela 3.7* – Velocidade de corte.

<u>Passo 17</u>. Cálculo da força e potência no brochamento. Utiliza-se a relação  $F = A * r_e * n [kg]$  para o cálculo da força e  $P = (F * v_c)/(60 * 75) [CV]$  para a potência.

Passo 18. Seleção do fluido de corte. Uma recomendação inicial é apresentada na tabela 3.8.

| Material                                | Fluido de corte                                                  |  |  |
|-----------------------------------------|------------------------------------------------------------------|--|--|
| Aço de alta resistência                 | Óleo graxo, óleo sulfurados-graxos ou óleos sulfoclorados-graxos |  |  |
| Aços de pequena e média resistência     | Emulsões                                                         |  |  |
| Ferro Fundido cinza e ligas de Magnésio | Seco                                                             |  |  |
| Aço fundido e Ferro Fundido maleável    | Emulsões                                                         |  |  |
| Latão                                   | Óleo de corte graxo / Emulsões                                   |  |  |
| Ligas de Alumínio                       | Óleos de baixa viscosidade / Emulsões                            |  |  |

Tabela 3.8 – Fluidos de corte.

Passo 19. Cálculo das espessuras de desbaste  $(E_d)$  e de acabamento  $(E_a)$  a serem removidas. Fazse com que os dentes de desbaste removam de 80% a 90% da espessura total a ser removida (E), sendo que quanto maior a remoção no desbaste, menor o comprimento total da brocha. Desta forma tem-se:  $E_d = (0.8 \text{ a } 0.9) *E \text{ e } E_a = E - E_d$ . Estes valores são tomados no raio.

<u>Passo 20</u>. Cálculo do número de dentes. Deve-se determinar o número de dentes de desbaste  $(Z_d)$ , de acabamento  $(Z_a)$  e de calibração  $(Z_c)$ . Tem-se:

$$Z_d = E_d \ / \ a_d \qquad \qquad Z_a = E_a \ / \ a_a \qquad \qquad Z_c = (3 \ a \ 6) \ dentes.$$

<u>Passo 21</u>. Cálculo do comprimento da brocha  $(L_b)$ . Se o comprimento for maior que o curso disponível, deve-se dividir a ferramenta em mais de uma *agulha*. É a soma dos comprimentos da guia posterior  $(L_{gp})$ , comprimento da dentadura  $(L_z)$ , comprimento da guia anterior  $(L_{ga})$  e comprimento da haste  $(L_h)$ . Tem-se:  $L_b = L_{gp} + L_z + L_{ga} + L_h$ 

Onde:  $L_{gp} = (0.5 \text{ a } 0.7) \cdot L$ , mas não menor que 10 mm.

$$L_z = Z_d * p + Z_a * p + Z_c * p_c$$

$$L_{ga} \geq L$$

 $L_h = tabela 3.9$  (haste de olhal para brochas de corpo cilíndrico – *figura 3.21*).

| T         | Q    | R    | S    | V   | Chanfrado |
|-----------|------|------|------|-----|-----------|
| Até 5     | 1.25 | 10   | 16   | 45  | 0.4       |
| 5.1 à 10  | 1.6  | 10   | 16   | 45  | 0.4       |
| 10.1 à 14 | 2    | 12.5 | 20   | 55  | 0.6       |
| 14.1 à 20 | 4    | 16   | 25   | 65  | 1         |
| 20.1 à 25 | 6.3  | 20   | 31.5 | 75  | 1.6       |
| 25.1 à 31 | 8    | 25   | 40   | 90  | 2.5       |
| 31.1 à 40 | 10   | 25   | 40   | 90  | 2.5       |
| 40.1 à 50 | 12.5 | 31.5 | 50   | 110 | 4         |
| 50.1 à 65 | 16   | 31.5 | 50   | 110 | 4         |

Tabela 3.9 – Dimensões para haste tipo olhal.

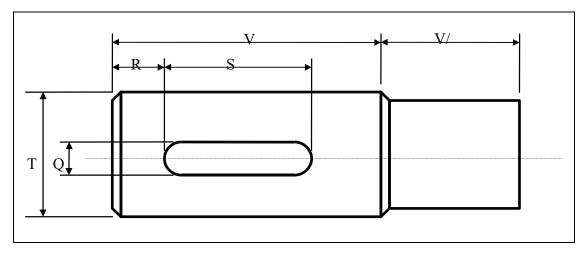



Figura 3.21 - Haste de olhal para brochas de corpo cilíndrico

Passo 22. Esboçar a brocha.

# 3.9 – Exercícios

- 1) Esboçar o gráfico do exemplo referente a *figura 3.17* considerando que o diâmetro interno inicial é de 25 mm.
- 2) Projetar uma brocha para execução de um furo quadrado de lado 26 mm como mostra a *figura* 3.22, em ferro fundido maleável, cuja peça possui 40 mm de espessura e furo inicial de 1 polegada. A brochadeira disponível possui as seguintes características:

Força máxima de tração: 10 ton.

Motor de acionamento: 20 CV.

Velocidade de corte: 2 a 10 m/min.

Velocidade de retorno: 20 m/min.

Curso máximo: 1200 mm.

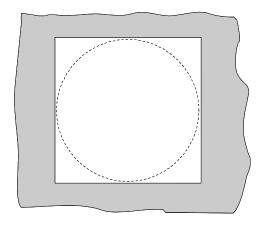



Figura 3.22 - Forma a ser brochada

3) Calcule o comprimento da brocha para efetuar a forma da *figura 3.23* considerando o furo central já usinado. Espessura da peça 30 mm, material aço 100 kg/mm² (re=500 kg/mm²). Avanços selecionados: 0.1 mm e 0,01 mm. Passos calculados: 15 mm e 10 mm.

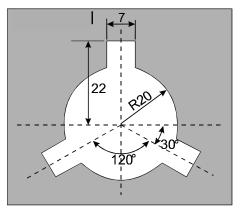



Figura 3.23 – Forma para o exercício 3

- **4)** Calcule a força e a potência mínimas que uma brochadeira deve fornecer para efetuar o brochamento da forma da *figura 3.24*. Dados: aço 75 kg/mm² (re=400kg/mm²), furo inicial de 36 mm de diâmetro, espessura da peça 40 mm, passo dos dentes 11 mm, avanço de desbaste 0,06 mm. e velocidade de corte de 6 m/min.
- 5) Calcule o comprimento da brocha para efetuar a forma da *figura 3.25* a partir de um furo de 20 mm de diâmetro. Espessura da peça 60 mm, aço 100 kg/mm<sup>2</sup> (re=500 kg/mm<sup>2</sup>). a<sub>d</sub>=0.05 mm. a<sub>a</sub>=0,01 mm. Passo de desbaste de 13.5 mm.

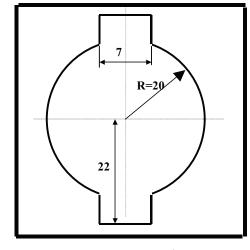
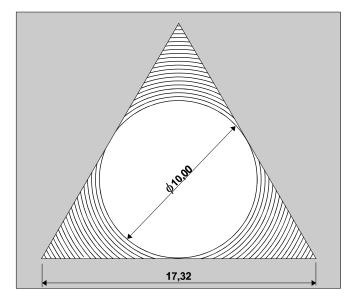
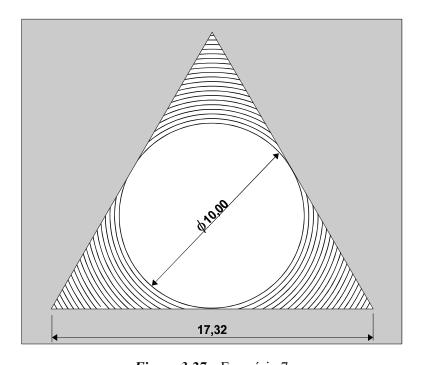




Figura 3.24 – Exercício 4



Figura 3.25 – Exercício 5

6) A *figura 3.26* mostra uma forma a ser brochada e o escalonamento utilizado. Calcule a força e a potência mínimas que uma brochadeira deve fornecer para efetuar a operação. Os dados são: material com re=350kg/mm², espessura da peça 35 mm, passo da brocha 12 mm e avanço de desbaste dos dentes de 0,08 mm. Velocidade de corte de 6 m/min.




F=\_\_\_\_kg

P= CV

Figura 3.26 – Exercício 6

7) Calcule o comprimento da brocha para efetuar a forma da *figura 3.27* considerando o furo central já usinado. Espessura da peça 32 mm, material de re=225 kg/mm<sup>2</sup>. Avanços selecionados: 0,13 mm e 0,02 mm. Passos calculados: 14 mm e 9.5 mm.

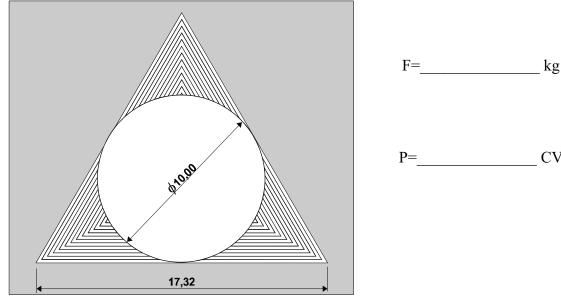


*Figura 3.27* – Exercício 7

 $\mathbf{E} = \underline{\qquad} \mathbf{mm}$   $\mathbf{E_d} = \underline{\qquad} \mathbf{mm}$   $\mathbf{E_a} = \underline{\qquad} \mathbf{mm}$ 

 $Z_d = \underline{\hspace{1cm}}$  dentes

 $Z_a = \underline{\hspace{1cm}}$  dentes


 $L_{gp} = \underline{\hspace{1cm}} mm$ 

 $L_{ga} = \underline{\hspace{1cm}} mm$ 

 $L_z = \underline{\hspace{1cm}} mm$ 

 $L_b = \underline{\hspace{1cm}} mm$ 

8) A figura 3.28 mostra uma forma a ser brochada e o escalonamento utilizado. Calcule a força e a potência mínimas que uma brochadeira deve fornecer para efetuar a operação. Os dados são: material com re=350kg/mm<sup>2</sup>, espessura da peça 35 mm, passo da brocha 12 mm e avanço de desbaste dos dentes de 0,08 mm. Velocidade de corte de 6 m/min.



CV

Figura 3.28 – Exercício 8.

9) Calcule o comprimento da brocha para efetuar a forma da figura 3.29 considerando o furo central já usinado. Espessura da peça 30 mm, material de re=250 kg/mm<sup>2</sup>. Avanços selecionados: 0,12 mm e 0,02 mm. Passos calculados: 13 mm e 9 mm.

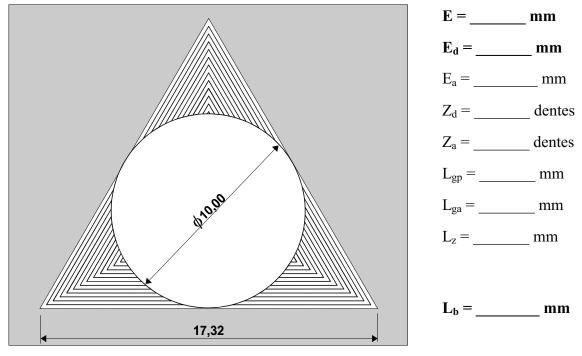
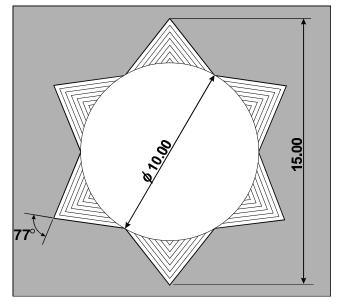
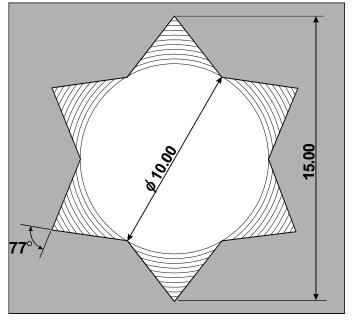




Figura 3.29 – Exercício 9.


**10)** A *figura 3.30* mostra uma forma a ser brochada e o escalonamento utilizado. Calcule a força e a potência mínimas que uma brochadeira deve fornecer para efetuar a operação. Os dados são: material com re=350kg/mm², espessura da peça 35 mm, passo da brocha 12 mm e avanço de desbaste dos dentes de 0,08 mm. Velocidade de corte de 6 m/min.



F=\_\_\_\_kg

Figura 3.30 – Exercício 10.

11) A *figura 3.31* mostra uma forma a ser brochada e o escalonamento (sem escala) utilizado. Calcule a força e a potência mínimas que uma brochadeira deve fornecer para efetuar a operação. Os dados são: material com re=350kg/mm², espessura da peça 35 mm, passo da brocha 12 mm e avanço de desbaste dos dentes de 0,08 mm. Velocidade de corte de 6 m/min.



P=\_\_\_\_\_CV

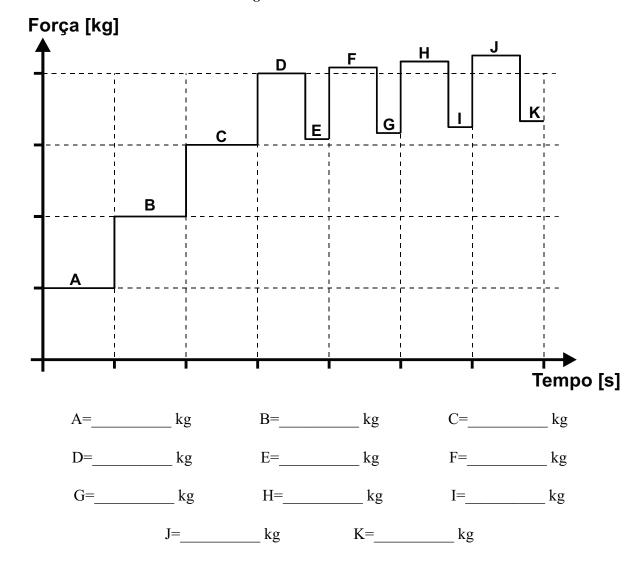

134

Figura 3.31 – Exercício 11.

**12)** Preencha os valores do gráfico de força para os primeiros instantes do brochamento das 3 ranhuras trapezoidais da *figura 3.32*, realizado a partir de um furo de 25 mm de diâmetro em uma peça com re=200 kg/mm², espessura de 26 mm e cuja brocha possui passo 8 mm e avanço de desbaste de 0,2 mm. A forma de escalonamento está apresentada nas figuras abaixo. Arredonde as respostas para números inteiros. Observe que o valor de A é diferente para cada dente e considere que o primeiro dente já remove cavaco.



Figura 3.32 – Exercício 8.



13) Preencha os valores do gráfico de força para os primeiros instantes do brochamento externo mostrado pela *figura 3.33*. Material da peça com re=200 kg/mm², espessura de 26 mm e cuja brocha possui passo 8 mm e avanço de desbaste de 0,15 mm. A forma de escalonamento está apresentada na figura da esquerda (sem escala). Arredonde as respostas para números inteiros. Observe que o valor de b é diferente para cada dente e considere que o primeiro dente já remove cavaco.

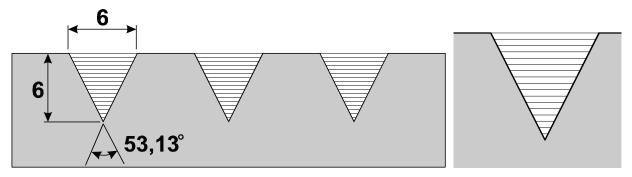
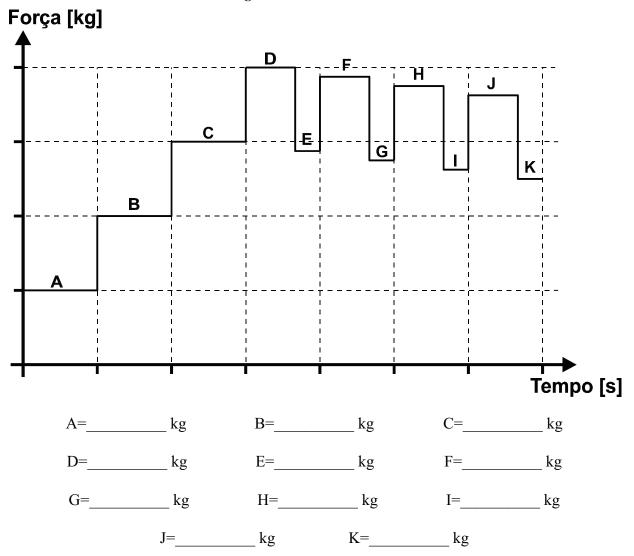




Figura 3.33 – Exercício 11.



14) Preencha os valores do gráfico de força para os primeiros instantes do brochamento externo mostrado pela *figura 3.34* (escalonamento sem escala). Material da peça com re=200 kg/mm², espessura de 26 mm e cuja brocha possui passo 8 mm e avanço de desbaste de 0,15 mm. A forma de escalonamento está apresentada na figura da esquerda (sem escala). Arredonde as respostas para números inteiros. Observe que o valor de b é diferente para cada dente e considere que o primeiro dente já remove cavaco. O gráfico não está em escala.

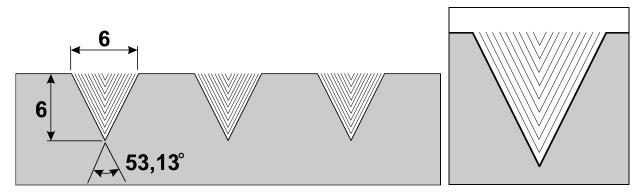
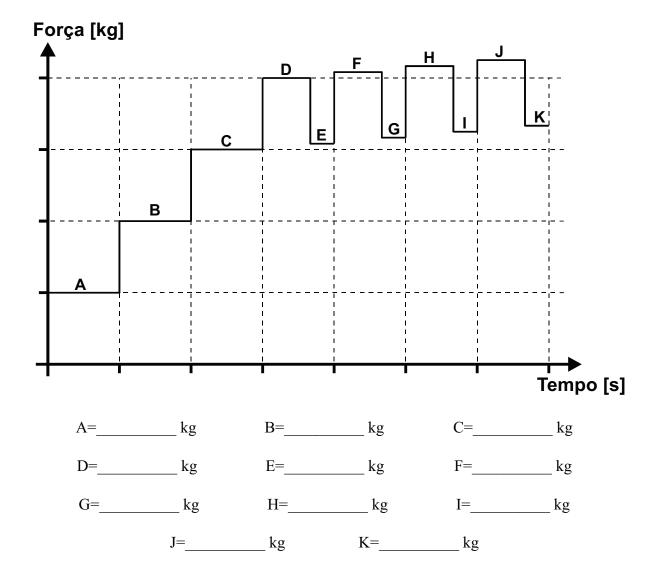




Figura 3.34 – Exercício 14.



15) Preencha os valores do gráfico de força para os primeiros instantes do brochamento do octógono da figura 3.35, cuja distância entre vértices opostos é de 30 mm, realizado a partir de um furo de 25 mm de diâmetro em uma peça com re=200 kg/mm², espessura de 26 mm e cuja brocha possui passo 8 mm e avanço de desbaste de 0,2 mm. A forma de escalonamento está apresentada nas figuras abaixo. Arredonde as respostas para números inteiros. Observe que o valor de b é diferente para cada dente e considere que o primeiro dente já remove cavaco.

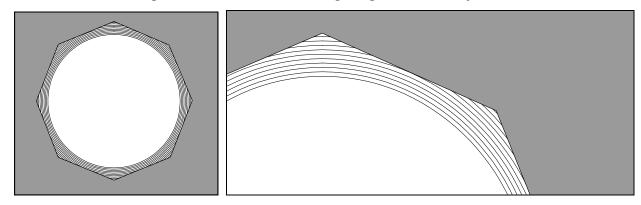
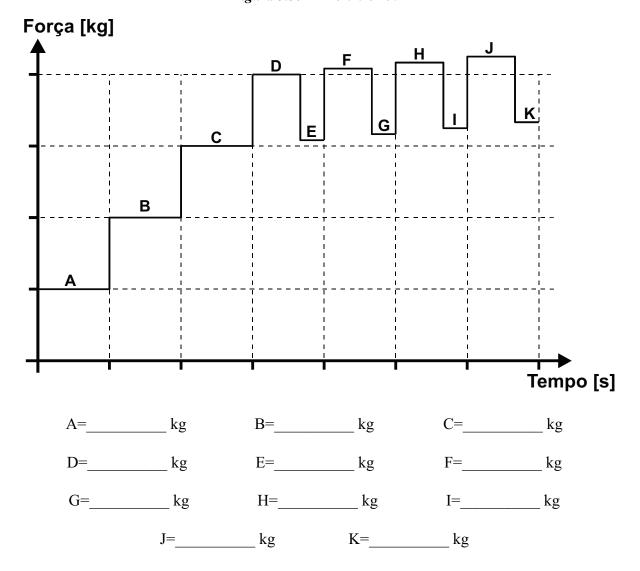




Figura 3.35 – Exercício 15.

