

CLASSIFICATION OF ELEMENTS AND **PERIODICITY IN PROPERTIES** PART 1

CHEMISTRY MASTER

SAKSHI PAHUJA MA'AM

STER TEACHER

SAKSHI PAHUJA CHEMISTRY MASTER TEACHER

EDUCATION

MSC

COLLEGE

PUNJABI UNIVERSITY

EXPERIENCE

6 YEARS IN TEACHING FIELD

ACHIEVEMENTS

MORE THAN 70% OF MY STUDENTS FROM THE LAST 12TH BATCH SCORED MORE THAN 90% IN CBSE. 1ST SELECTION IN KVPY FROM 11TH BATCH.

LETS GET CHEMISTRICAL

A STER TEA

VEDANTU NCERT 11 & 12 TELEGRAM

JOIN OUR TELEGRAM GROUP NOW !!

TARGET 2022 NEET/JEE

ACTIVE PLATFORM FOR NCERT LET'S PREPARE WITH INDIA'S MOST INNOVATIVE LEARNING PLATFORM

BENEFITS OF PRO SUBSCRIPTION

Full access for 5000+ Hours of live Courses

- All subjects covered in details with tests & assignments
- Thought in both English & Hindi
- 20+ Teachers of 5+ years experience for you
- Live Doubt Solving

+

Learn from home from any Device

SUBSCRIPTION MODEL	ORIGINAL PRICE	DISCOUNTED PRICE	PER MONTH PRICE	PER DAY PRICE	
1 MONTH	Rs.2,294/-	Rs.1,835/-	Rs.1,835/-	Rs.59/-	
3 MONTH	Rs.5,949/-	Rs.4,759/-	Rs.1,586/-	Rs.53/-	
6 MONTH	Rs.9,774/-	Rs.7,819/-	Rs.1,303/-	Rs.44/-	e

+

DISCOUNT

Classification of Elements and Periodicity in properties

and so on.....

The Periodic Table

"It makes the study of elements and their properties easier.."

	Repres	entativ	/e											Represe	ntative	element	s	Noble
	elem	ents												GI	ROUP	NUMBE	ER	10
	GRO	UP	1				1											0
	NUM	DER 2					Ĥ						1					2
-1	1	ПА	l.				151						13	14 IV D	15 V D	16 VI D	17 VII D	He
1	3	4				d-Tı	ansition	eleme	nts				5	ТV В	V B	VIB	9	$\frac{1s^4}{10}$
2	Li	Be											В	C	N	0	F	Ne
	2 <i>s</i> ¹	$2s^2$				— GR	OUP N	UMBE	R —				$2s^2 2p^1$	$2s^2 2p^2$	$2s^22p^3$	$2s^22p^4$	$2s^2 2p^5$	$2s^22p^6$
3	11 No	12 Ma	3	4	5	6	7	8	9	10	11	12	13	14	15 D	16	17	18
3ER	3s ¹	3s ²	IIIA	IV A	VA	VIA	VII A	←	VIII	\rightarrow	ΙB	II B	$3s^23p^1$	$3s^23p^2$	$3s^23p^3$	$3s^23p^4$	$3s^23p^5$	$3s^23p^6$
W	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Z 4	K	Ca	SC $3d^44s^2$	11 $3d^24s^2$	V 3/24.2		Mn 3d ⁵ 4s ²	Fe 3.164.2	Co	Ni 2d ⁸ 4c ²	Cu 2da	Zn	Ga 4e ² 4r ¹	Ge $4e^24n^2$	As 4s ² 4n ³	Se 4e ² 4n ⁴	Br As ² An ⁵	Kr $4s^24n^6$
lo	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
ER 2	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
<u>а</u> 	5.5	5s2	4d*5s*	4d'5s'	4d 5s	4d ² 5s ¹	4d°5s2	4d'5s1	4d*5s1	40	4d 5.	s ¹ 4d ¹⁰ 5s	2 5s ² 5p ¹	5s ² 5p ²	5s*5p*	5s*5p*	5s*5p	55 ² 5p ⁸
6	Cs	Ba	57 La*	Hf	73 Ta	74 W	Re	05	Ir	Pt	An	Hg	81 T/	82 Ph	Bi	Po	At	Rn
	6s ¹	6s ²	5d ⁴ 6s ²	$4f^{14}5d^26s^2$	$5d^36s^2$	$5d^46s^2$	5d ⁵ 6s ²	5d 6s2	5d ⁷ 6s ²	5d ⁹ 6s ¹	5d106s	¹ 5d ¹⁰ 6s ²	$6s^26p^1$	$6s^26p^2$	$6s^26p^3$	$6s^26p^4$	6s ² 6p ⁵	$6s^26p^6$
7	87	88	89*	* 104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
— /	7s1	$Ra 7s^2$	AC $6d^47s^2$	RI	Do	Sg	Bn	HS	MIT	Ds	Rg	Cn	Nn	FI	MC	LV	Is	Og
												-1						
								f In	oor tro	neition	alaman	to						
) - m	iei uai	isition	cicilien	1.5					_	_
т *	honoida		58	59	60	61	62	63	6	4	65	66	67	68	69	70	71	
4f"5	$d^{0-1}6s^2$		Ce	Pr	Nd	Pm	Sm	Eu	2 13	id	Tb	Dy	Ho	Er	Tm	Yb	2 1014 11C	2
5 -	000000		4/ 5d 6s	4/ 5d 6s	47 5d 6s 92	4/ 5d 6s 93	94	95	05 4/ 5	06 41	97	98	99	100	101	102	103	5
**A	ctinoids		Th	Pa	U	Np	Pu	An		m	Bk	Cf	Es	Fm	Md	No	Lr	
5f [°] 6	$d^{0-2}7s^{2}$		$5f^{6}6d^{2}7s^{2}$	5f'6d'7s2	5f ³ 6d ¹ 7s	5f6d'7s	5f6d97	2 5f'6d	752 516	d^17s^2 5f	6dº7s2 5	f106d07s2 5	f116da7s2	5f126d07s2	5f136d97s	2 5f146d97	s2 5f146d1	$7s^2$

FI-7 Flaroutium Mc -> Mercoutium Ts - Tennassine Og -> Organism

Atomic Number	Name	Symbol	IUPAC Official Name	IUPAC Symbol
101	Unnilunium	Unu	Mendelevium	Md
102	Unnilbium	Unb	Nobelium	No
103	Unniltrium	Unt	Lawrencium	Lr
104	Unnilquadium	Unq	Rutherfordium	Rf
105	Unnilpentium	Unp	Dubnium	Db
106	Unnilhexium	Unh	Seaborgium	Sg
107	Unnilseptium	Uns	Bohrium	Bh
108	Unniloctium	Uno	Hassnium	Hs
109	Unnilennium	Une	Meitnerium	Mt
110	Unnnillium	Uun	Darmstadtium	Ds
111	Unununnium	Uuu	Rontgenium*	Rg*
112	Ununbium	Uub	•	•
113	Ununtrium	Uut	+	
114	Ununquadium	Uuq		
115	Ununpentium	Uup	+	
116	Ununhexium	Uuh		•
117	Ununseptium	Uus	+	
118	Ununoctium	Uuo	+	

NCERT 11 | 12 Ques) What would be the IUPAC name and symbol for the element with atomic number 120?

Symbol -> Ubm

NCERT 11 | 12

ANSWER Ubn and unbinilium

ELECTRONIC CONFIGURATIONS OF ELEMENTS AND THE PERIODIC TABLE

NCERT

How to calculate HL NCER1 no. Of elements in 11 | 12 a period |s^{2_} ای 🔶 M->max CNOP Ne Veriod No. - Valence shell LE Be element nh 19 elements 2*s* Ar SIPS Cl 14 & elements 2P Mq 3s 36 5 -18 element 35 3P 18 elements Чs 4th period -> *+5+3=1 (ଦ୍ୱ η 4d 3b 5s <u>6</u>*s* 5d 6

	Repr	esentative												Represe	ntative	element	s	Noble
	ele	ments												GF	ROUP 1	NUMBE	ER	-
	GR	OLIP																18
	[NU	MBER]					1											0
	1	2					H											2
_		2					15						13	14	15	16	17	He
1	IA	IIA											III B	IV B	VB	VIB	VII B	$1s^2$
	3	4				<i>d</i> -1	ransitio	n eleme	ents				5	6	7	8	9	10
2	Li	Be				CI			-D				В	C	N	0	F	Ne
	2 <i>s</i> ¹	2s ²				— GI	KOUP .	NUMBE	3R —				$2s^2 2p^1$	$2s^2 2p^2$	$2s^22p^3$	$2s^22p^4$	$2s^22p^5$	$2s^22p^6$
1	11	12	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
SR :	Na	Mg	III A	IV A	VA	VIA	VIIA	-	- VIII	\rightarrow	IB	ΠB	Al	Si	P	S	Cl	Ar
B	351	352								-			3s*3p*	3s*3p*	3s*3p*	3s*3p*	3s*3p	3s"3p"
8.	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	30 V -
Z 4	K	Ca	SC 2442	2 24.2	V 2 34 2	Cr	IVIN	Fe	Co	N1	Cu	2 10 2	Ga	Ge	AS	Se 131.4	Br	NI 4-24-6
8	45	45*	30 45	5a 4s	34 45	30 45	3d 4s	30 45	3d 4s	3d 4s	3d 4s	30 45	45-40	45-4p-	45 4p	45.40	45.40	45 4p
Ľ,	5/ DL	Se Se	39 V	7.	Nib	Ma	To	P.1	Ph	Pd	Ag	40	49 In	50	Sh	32 To	55 1	Ye
PE.	KD 5e ¹	502	1 Ad ¹ 5e ²	Ad ² 5e ²	Ad5e1	1V10	41502	Ad ⁷ 5e ¹	Ad85.1	Adio	1,105,1	1,105,2	5e ² 5n ¹	5e ² 5n ²	522503	52504	52505	5250
T	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Ce	Pa	1.*	LIF	To	W	Po	0	Ir	70 D+	A.11	Ha	T	Db	D;	Po	A+	Rn
1	651	6s ²	5d6s2	$4f^{14}5d^26s^2$	5d ³ 6s ²	5d 6s2	5d 6s2	5d 652	507652	5d ⁹ 6s ¹	5d ¹⁰ 6s ¹	5d ¹⁰ 6s ²	$6s^{2}6n^{1}$	$6s^26n^2$	$6s^26n^3$	$6s^26n^4$	65 ² 60 ⁵	$6s^26p^6$
	87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
L	Fr	Ra	Ac**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
	7s1	752	$6d^47s^2$			0				1001								

f-Inner transition elements

	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Länthanoids	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
49 54 65	4f5d6s2	4f 5d 6s	4f 5d 6s2	4f 5d 6s2	4f 5d 6s	4f 5d 6s2	4f 5d 6s	4f 5d 6s	$4f^{10}5d^{6}6s^{2}$	4f 5d 6s	4f 5d 6s	$4f^{4}5d^{2}6s^{2}$	4f 5d 6s	$4f^{2}5d^{2}6s^{2}$
**	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Actinoids	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
5f"6d" 7s'	$5f^{*}6d^{2}7s^{2}$	$5f^{2}6d^{1}7s^{2}$	$5f^{3}6d^{1}7s^{2}$	5f6d 7s2	5f6d97s2	5f ⁷ 6d ⁶ 7s ²	$5f^{7}6d^{1}7s^{2}$	5f°6d°7s2	5f106d07s2	5f ¹¹ 6d ⁰ 7s ²	$5f^{12}6d^{0}7s^{2}$	5f136d97s2	$5f^{14}6d^{9}7s^{2}$	$5f^{14}6d^{1}7s^{2}$

Electronic Configurations in Periods

Ques) On the basis of quantum numbers, justify that the sixth period of the periodic table should have 32 elements.

NCERT 11 | 12

ith period
$$\rightarrow 65 \, 4b \, 5d \, 6b \, 16$$

 $1 + 7 + 5 + 3 = 16$
No-9 element = $16 \times 2 = 32$

Electronic Configurations in Groups Elements in the same vertical column or group have similar valence shell electronic configurations, the same number of electrons in the outer orbitals, and similar properties.

NCERT 11 | 12

Atomic number	Symbol	Electronic configuration
3	Li	1s ² 2s ¹ (or) [He[2s ¹]
11	Na	$1s^22s^22p^83s^1$ (or) [Net $3s^1$
19	К	$1s^22s^22p^63s^23p^64s^1$ (or) [A1] $4s^1$
37	Rb	$1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{10}4s^{2}4p^{6}5s^{1}$ (or) [Kr] $5s^{1}$
55	Cs	$1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^66s^1$ (or) $ X_{\rm f} 6s^1$
87	Fr	[Rn]7s ¹

- Chouse marut noble gas » lies in one period lemer

s-BLOCK 1.8 25 Be Li 3sNa Mg 4sĸ Ca Rb Sr 55 65 Cs Ba Fr 75 Ra

Alkali-metati

s block

- Metallic character and the reactivity increase as we go down the group
- Never found pure in nature

Valence et enters p-oubitely

p block

• Group 13 to 18

 (s block + p block) are called the Representative Elements or Main Group Elements.

- ns²np¹ to ns²np⁶
- At the end of each period is a noble gas element with a closed valence shell ns² np⁶ configuration

Group No -> 10 + No-9 valunce Gen config -> ns2 np1-6

p block

- The halogens (Group 17) and the chalcogens (Group 16)
- Have highly negative electron gain enthalpies
- Non-metallic character increases as we move from left to right across a period and metallic character increases as we go down the group

d block(Transition elements)

- Group 3 to 12
- (n-1)d¹⁻¹⁰ns⁰⁻²
- Coloured ions, exhibit variable valence (oxidation states), paramagnetism and used as catalysts

 $S_{C} \rightarrow |s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6}|$ 45 3d 3 94

d-BLOCK

1	3	4	5	6	7	8	9	10	11	12
└_ , 3d	ŝ	ĥ	v	Cr	Mn	Fc	Ĉ	Ni	Cu	Zn
	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd
	La	Hf	Та	W	Re	Os	ŀr	Pt	Au	Hg
^{6d}	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn

f-Block Elements (Inner-Transition Valence et enter f-subshell **NCERT Elements**) 11 | 12 • Lanthanoids, $Ce(\overline{Z} = 58) - Lu(\overline{Z} = 71)$ • Actinoids, Th(Z = 90) – Lr (Z = 103) lanthanoid • (n-2)f_1-14 (n-1)d_ns² • Elements are radioactive Actinoidy • Transuranium Elements. ---- Elements $_{2}H_{e}$ pasent after Uranium 1 Ne 18 Ar e 31 Kr 2=58 5 55 · (54) Ce- (Xe) 5d ms

J-BLOCK

Lanthanoids 4f	Ce	Pr	Nd	Pm	Sm	Eu	Gđ	Tb	Dy	Но	Er	Tm	Yb	Lu
Actinoids 5f	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

NCERT 11 | 12

ANSWER Period 7 Group 14 Block p

Homework

Do all solved examples till 3.4
Do exercise questions till 3.6

Question of the day NCERT 1112

Ques) Write the atomic number of the element present in the third period and seventeenth group of the periodic table.

Also let me know your favorite food...

Ans + fau food

SUBSCRIPTION MODEL	ORIGINAL PRICE	DISCOUNTED PRICE	PER MONTH PRICE	PER DAY PRICE
1 MONTH	Rs.2,294/-	Rs.1,835/-	Rs.1,835/-	Rs.59/-
3 MONTH	Rs.5,949/-	Rs.4,759/-	Rs.1,586/-	Rs.53/-
6 MONTH	Rs.9,774/-	Rs.7,819/-	Rs.1,303/-	Rs.44/-

+

DISCOUNT

VEDANTU NCERT 11 & 12 TELEGRAM

NCERT

11 | 12

JOIN OUR TELEGRAM GROUP NOW !!

#