East Coast of North America Strategic Assessment Project

ECEIVEB

MAY 3 1 2000

Partitioning the Total Mortality of Atlantic Cod Stocks Project

East Coast of North America Groundfish: Initial Explorations of Biogeography and Species Assemblages

Department of Fisheries and Oceans, Canada and National Oceanic and Atmospheric Administration, USA

August 1996

SH 213.5 .E17 1996 c.2

About the East Coast of North America Strategic Assessment Project

The East Coast of North America Strategic Assessment Project (ECNASAP) was initiated in the USA by NOAA's Strategic Environmental Assessments (SEA) Division to develop information and analytical resources for supporting integrated management of large portions of the region's coastal ocean. The ECNASAP Pilot Project consists of inshore and offshore case studies, and is a cooperative effort among several U.S. and Canadian agencies. Digital map and data products are being developed in the Offshore Case Study for groundfish, seabirds, temperature, salinity, and sediments. This report summarizes the initial results for the groundfish component.

About Partitioning the Total Mortality of Atlantic Cod Stocks Project

In 1995, Canada's Department of Fisheries and Oceans (DFO) initiated a series of research projects to address high priority issues for the Atlantic and Pacific coasts. The Cod Mortality Project is a component of this effort; its objective is to assess the main causes for the decline of cod resources since the mid-1980s. A subproject is to examine long-term changes in groundfish assemblages on a biogeographic scale, and to determine whether or not these changes coincided with changes in ocean climate. In collaboration with ECNASAP, this subproject is analysing groundfish community changes over the complete distributional ranges of many groundfish species, using trawl survey and environmental information from Cape Chidley to Cape Hatteras.

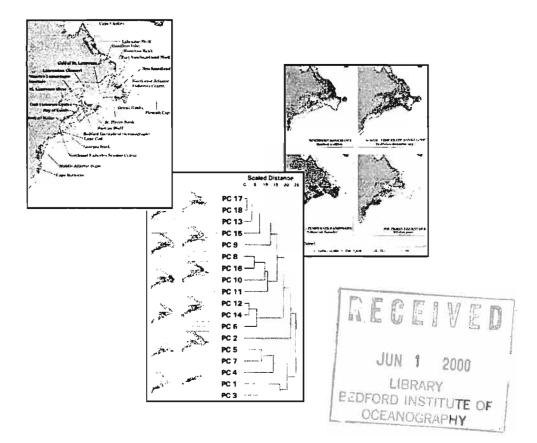
Internet Access

An abstract and ninety-nine species distribution maps derived from this report are available on the Internet. They can be accessed at: http://www-orca.nos.noaa.gov/ecnasap/ecnasap.html. ECNASAP products can also be accessed at: http://www.maritime.dfo.ca/science. The ECNASAP/Cod Mortality Project data sets can only be accessed through Stephen K. Brown at NOAA's SEA Division, Silver Spring, MD, USA (301/713-3000 ext. 181), or Robert N. O'Boyle at DFO's Bedford Institute of Oceanography, Dartmouth, NS, Canada (902/426-4890).

Project Team

Name	Affiliation	Name	Affiliation
B. Atkinson	DFO, Newfoundland	T. Lowery	NOAA, SEA Division
D. Basta	NOAA, SEA Division	R. Mahon	Consultant
S. Brown	NOAA, SEA Division	M. Monaco	NOAA, SEA Division
K. Buja	NOAA, SEA Division	R. O'Boyle	DFO, Maritimes
L. Claflin	NOAA, SEA Division	C. Robertson	NOAA, SEA Division
K. Dennis	NOAA, SEA Division	M. Sinclair	DFO, Maritimes
W. Gabriel	NOAA, NMFS/NEFSC	D. Swain	DFO, Maritimes
G. Howell	Environment Canada	K. Zwanenburg	DFO, Maritimes

Acknowledgments


This project would not have been possible without the cooperation of the Canadian and U.S. trawl survey programs active in the northwestern Atlantic. In the Department of Fisheries and Oceans, we thank the North Atlantic Fisheries Centre, St. John's, Newfoundland; Marine Fish Division, Lamontagne Institute, Mon Joli, Quebec; Marine and Anadromous Fish Division, Gulf Fisheries Centre, Moncton, New Brunswick; and the Marine Fish Division, Scotia-Fundy Region, Bedford Institute of Oceanography, Dartmouth, Nova Scotia. In the National Marine Fisheries Service, we thank the Northeast Fisheries Science Center, Woods Hole, Massachusetts.

Christine Taylor, Lita Katz, and Michael Shelby, of NOAA's SEA Division, are greatly appreciated for their assistance with computer software and hardware. Kevin McMahon, of NOAA's Office of Ocean Resources Conservation and Assessment, is gratefully acknowledged for conducting final editing and report formatting.

East Coast of North America Strategic Assessment Project

Partitioning the Total Mortality of Atlantic Cod Stocks Project

East Coast of North America Groundfish: Initial Exploration of Biogeography and Species Assemblages

Department of Fisheries and Oceans, Canada and National Oceanic and Atmospheric Administration, USA

August 1996

The appropriate citation for this report is:

Brown, S.K., R. Mahon, K.C.T. Zwanenburg, K.R. Buja, L.W. Claflin, R.N. O'Boyle, B. Atkinson, M. Sinclair, G. Howell, and M.E. Monaco. 1996. East Coast of North America groundfish: Initial explorations of biogeography and species assemblages. Silver Spring, MD: National Oceanic and Atmospheric Administration, and Dartmouth, NS: Department of Fisheries and Oceans. 111 pp.

Erratum

The data set used in the analyses of this report contains an error for Longnose eel (*Synaphobranchus kaupi*). The data analyzed comprise 3,678 individuals contained in the DFO data sets for the Northern Gulf of St. Lawrence and Newfoundland/Labrador regions. Data for an additional 458 individuals from the DFO Scotia-Fundy region were inadvertently omitted from the analysis. Readers should note that the common name for this species in the DFO Scotia-Fundy data set is Slatjaw cutthroat eel, and that the genus is incorrectly spelled as *Symaphobranchus* in that data set. These errors have been corrected in the ECNASAP/Cod Mortality Project data sets.

Table of Contents

•

LIST OF TABLES	i ii
LIST OF FIGURES	iv
EXECUTIVE SUMMARY	v
	1
Study Objectives	
Internet Access	
THE DATA SET	3
Trawl Surveys	3
METHODS	4
Data Transformation	
Visual Analysis	
Multivariate Analyses	
Temporal Analyses	11
RESULTS	14
Visual Analysis	14
Principal Components Analysis	14
Cluster Analysis	
Temporal Variation	
SYNTHESIS AND DISCUSSION	54
Visual Analysis	54
Principal Components Analysis	
Cluster Analysis	
Temporal Change	
Comparison of Assemblage Analyses	57
RECOMMENDATIONS AND IMPLICATIONS FOR MANAGEMENT	65
Recommendations for Further Work	65
Implications for Management	68
REFERENCES	68
APPENDIX 1: COMBINING TRAWL SURVEY DATA FROM CAPE HATTERAS TO CAPE CHIDLEY	72
APPENDIX 2: LIST OF SPECIES AND CODES IN ORIGINAL DATA SETS	75
APPENDIX 3: NUMBERS OF INDIVIDUALS AND FREQUENCY OF OCCURRENCE OF DEMERSAL SPECIES IN THE ORIGINAL TRAWL SURVEY DATA SETS	98

APPENDIX 4A: SPECIES LOADINGS ON VARIMAX-ROTATED PRINCIPAL COMPONENTS FOR 1975-1979	
4B: SPECIES LOADINGS ON VARIMAX-ROTATED PRINCIPAL COMPONENTS FOR 1980-1984	
4C: SPECIES LOADINGS ON VARIMAX-ROTATED PRINCIPAL COMPONENTS FOR 1985-1989	
4D: SPECIES LOADINGS ON VARIMAX-ROTATED PRINCIPAL COMPONENTS FOR 1990-1994	

•

.

List of Tables

Table 1.	Number of sets in the ECNASAP data base by source, year, and month	5
Table 2.	Summary of major analytical objectives, methods, and products	7
Table 3.	Numbers of individuals caught per five-year time period for species with a total catch >500	10
Table 4.	Species groups determined by visual analysis of distribution plots	15
Table 5.	PCA results for entire 1975-94 data subset and for five-year blocks	18
Table 6.	Species loadings on VARIMAX-rotated principal components for 1975-94 data subset	19
Table 7.	Mean, standard deviation, and range of bottom temperature and depth for the sets included in the top five percent of the principal components	29
Table 8.	Standardized mean log catch per tow (standardized to overall species mean log catch per tow) of each species in the site cluster groups	31
Table 9.	Mean, standard deviation, and range of bottom temperature and depth for the sites in each site cluster group	39
Table 10.	Comparison of species groupings from principal components analysis for all years and by five-year periods	46
Table 11.	Comparisons of numbers of points and mean positions for PC10 and PC11 by five-year time block	51
Table 12.	Correlations between species and canonical variables 1 and 2	51
Table 13.	The number of assemblages per site, based on the criterion of selecting sites with scores in the top 5% for a principal component	5 5
Table 14.	Species loadings, mean catch/tow, and relative catch/tow of top five percent of sites for PCs 10 and 11 (1975-94 data)	.56
Table 15.	Comparisons among species groups determined by visual analysis with groups determined by the multivariate analyses	58
Table 16.	Summary of characteristics of species assemblages derived from PCA of all years, with associated site cluster groups (CGs) having a ratio \geq 5 in Figure 16.	61
Table. 17	. Comparison of species groupings found in the PCA of the present study with groupings found in previous studies.	63

.

List of Figures

.

Figure 1.	Study area map with place names	2
Figure 2.	Sampling spatial coverage by five-year intervals, 1970-1994	9
Figure 3.	Cluster analysis flow diagram	. 12
Figure 4.	Example species maps for visual groups	16
Figure 5.	Dendrogram derived from clustering the species factor scores on the 18 PCs showing the organizational hierarchy of the species assemblages derived from the PCA	. 20
Figure 6.	Maps of the sites in the top 5% of scores for the principal components derived from the 1975-94 data subset	.21
Figure 7.	 a. Maps of the sites in the top 5, 10, 15, and 20% of scores for PC5 from the 1975-94 data subset b. Maps of the sites in the top 5, 10, 15, and 20% of scores for PC10 from the 1975-94 data subset 	
Figure 8.	Dendrogram showing the hierarchical organization of groundfish assemblages from PCA of 1975-94 data subset with the assemblage distribution maps	28
Figure 9.	Geographical distributions of the 18-site cluster groups with associated species	33
Figure 10.	Dendrogram showing the hierarchical organization of groundfish assemblages from the site cluster analysis of the 1975-94 data subset, with assemblage distribution maps	38
Figure 11.	Dendrogram of species cluster analysis for the 1975-94 data subset	40
Figure 12.	a. ACON plots of Atlantic cod presence/absence by five-year intervals b. ACON plots of arctic cod presence/absence by five-year intervals c. ACON plots of butterfish presence/absence by five-year intervals d. ACON plots of ocean pout presence/absence by five-year interval	42 43
Figure 13.	Bivariate (latitude/longitude) ellipses containing 50% of the abundances of Atlantic cod, arctic cod, ocean pout, and butterfish by five-year intervals	45
Figure 14.	 a. Sites in the top 5% of scores for PC10 (thorny skate, American plaice, witch flounder, Atlantic cod, smooth skate) from analysis of the 1975-94 data subset by five-year intervals b. Sites in the top 5% of scores for PC11 (arctic cod, Atlantic sea poacher, Greenland halibut, polar sculpin) from analysis of the 1975-94 data subset by five-year intervals 	
Figure 15.	a. Species correlations (Irl≥0.5) with canonical variables 1 and 2 b. Yearly centroids for canonical variables 1 and 2	
Figure 16.	Correspondence between sites scoring in the top 5% of PCA-determined assemblages and site cluster groups	59

EXECUTIVE SUMMARY

This report contains the initial analysis of research demersal trawl survey data for the east coast of North America from Cape Hatteras, North Carolina, USA in the south, to Cape Chidley, Labrador, Canada in the north, using individual trawl sets. The analyses were conducted as part of the process of defining and mapping demersal fish assemblages. The underlying goal is to describe and map species assemblages, and to evaluate evidence for ecological regime and assemblage distribution shifts on a decadal time scale. A related goal is to evaluate the extent to which the Atlantic cod decline along the east coast of North America can be explained by changes in the environment, as evidenced by changes in the ecosystem (Doubleday 1995). Because work is continuing on the project, recommendations are provided for future analyses, and implications of the results to data for fishery management are briefly discussed. The questions addressed in this report are:

- What are the demersal fish assemblages?
- What are the assemblage distributions, and what factors influence them?
- Are the assemblages stable over time?

This report, and several related data, mapping, and information products, are available on the Internet. Access instructions are provided inside the front cover.

This report is the result of a collaboration between the East Coast of North America Strategic Assessment Project (ECNASAP), a multi-partner collaboration among several Canadian and U.S. agencies, and the Canadian Department of Fisheries and Oceans' Cod Mortality Project. Strategic assessment products focused on living resources, habitats, and anthropogenic impacts in the coastal and oceanic regions of the east coast of North America are being developed under the ECNASAP Pilot Project (ACZISC and SEA Division 1995). The purpose is to provide resource and environmental managers with the information required to develop broad-scale and long-term management strategies. The Cod Mortality Project is focused on cod and ecosystem changes relevant to it. Both projects share a common goal - description of coastal ecosystems and changes in their characteristics over time.

Trawl survey data from Newfoundland and Labrador, the Northern Gulf of St. Lawrence, the Southern Gulf of St. Lawrence, the Scotian Shelf and Bay of Fundy, the Gulf of Maine, Georges Bank, and the Middle Atlantic Bight were combined into a single data set. The data were obtained from the four regional laboratories of the Canadian Department of Fisheries and Oceans and from the U.S. National Marine Fisheries Service's Northeast Fisheries Science Center. The combined data set contains one record per trawl tow; the variables are tow descriptors, environmental variables, and species catches. Files were created for both numbers caught and weight. Only the number caught per tow data were used in the analyses contained in this report. No attempt was made to intercalibrate the data from the different surveys, based on the assumption that strong signals would be detectable, even if differing trawl gears and vessels introduced some biases into the data set.

The trawl survey data were analysed using three different approaches to determine the patterns of demersal fish assemblages: visual analysis, principal components analysis (PCA), and cluster analysis. The first step was to generate distribution maps for the 108 most abundant demersal species. Nine species groups, based on spatial distribution and depth, were identified by visual inspection of the distribution plots. PCA of 66 species in 39,694 trawls sets, covering the major survey months from 1975 through 1994, extracted 18 principal components with eigenvalues > 1. The species with high loadings on a component were assumed to have a common distribution pattern, and were termed an assemblage. Site scores on the PCs were used to map spatial distribution of the assemblages, which exhibited considerable spatial coherence. These assemblages were characterized in terms of spatial distribution and preferences for depth and temperature. Using the same data set, species and sites were also subjected to cluster analyses, and the site cluster groups at the level of 18 groups were mapped. They also exhibited substantial spatial coherence. Similarities were noted between the assemblages detected in this project and those reported in several other previous studies, which typically covered only a portion of the ECNASAP/ Cod Mortality Project study area.

The species groups derived from the various methods were compared, and several groups of species were found to emerge from all three approaches. Atlantic cod was grouped with thorny skate and American plaice by all of the methods. There was significant, but not oneto-one, correspondence between the site groups produced by PCA and cluster analysis. However, in both analyses, about 45% of the sites did not belong to an assemblage, suggesting that the demersal fish community of 1975-94 may not have been tightly structured into functional assemblages.

Temporal variation in abundance was examined using both single species and multivariate approaches. Presence/absence maps, and bivariate ellipses of latitude

and longitude containing 50% of the individuals caught. were generated for five-year intervals for four test species. The results show that arctic cod has steadily extended its range southward since the 1980s, while the northern extent of Atlantic cod has contracted since 1990. Canonical discriminant analysis was performed on the same data set that was used for the PCA and cluster analyses, and yearly means for the first two canonical variables were plotted. Yearly means generally followed a linear trend through time for the first canonical variable, but the mid-1980s were quite distinct from 1975-81 and the 1990s for the second canonical variable. Species correlations with the first two canonical variables were also plotted; Atlantic cod had a strong negative correlation with the second canonical variable.

Recommendations for future analyses are provided. One major issue addressed is development of better methods for characterizing relationships between ubiquitous species, such as Atlantic cod, and the assemblages. The analytical techniques used to identify assemblages (PCA and cluster analysis) are designed to identify unique patterns of co-occurrence, which generally exist for species that co-occur at high frequency over relatively limited areas. Ubiquitous species cooccur with these species, but at relatively low frequencies relative to their overall distributions, and, therefore, are not strongly associated with the assemblages identified by these techniques.

Another major recommendation is to take greater advantage of GIS for mapping and analyzing the information. Many earlier studies of demersal assemblages and biogeography relied on less sophisticated methods for spatial and geographic analysis. However, GIS technology has greatly increased the analytical power available for such studies.

Several suggestions for new analyses are provided, which are intended either to improve upon the existing analyses, or to provide additional insights into the structure and function of the groundfish community. The purpose of the suggestions is to enable a better characterization of the biological and environmental systems in which the groundfish, and fishing, occur. The suggested new analyses are as follows.

- Effects of different gear on the trawl data: correcting the data for biases caused by the use of differing trawl gear by the different survey programs may provide more detailed results for assemblage analyses.
- <u>Effects of spatial/temporal sampling bias</u>: characterizing the effects of variation in sampling distribution over time may reduce

possible artifacts, caused by sampling patterns, in the detection of temporal changes in spatial distribution.

- <u>Size</u>: including fish size and age in future assemblage analyses may provide more detailed results for species that change their ecological roles or habitat associations as they grow.
- <u>Distribution and environment</u>: analyzing relationships between species/assemblage distributions and the environmental characteristics that determine habitat may enable a better understanding of the biological and environmental systems within which groundfish exist, and a better definition of the context within which fishery activities may be managed.
- <u>Fishing</u>: Relating spatial and temporal patterns of fishing activity with spatial and temporal patterns of fish distribution and abundance may allow a credible analysis of the relative influences of anthropogenic and environmental factors.

Implications for fishery management are briefly discussed; this subject should be covered in more detail in the future. The following issues are addressed.

- If functional groupings exist in the groundfish community that can be viewed as ecological entities, harvest strategies could target assemblages, rather than single species. Management strategies could then be adapted to optimize harvest of assemblages, rather than single species. The initial analyses suggest that, when viewed over the entire study area, most groundfish assemblages are rather loose in structure. Additional analyses are required to determine the extent to which functional relationships exist within this loose framework.
- Assemblage information can be used as background for spatial allocation of fishing effort aimed at optimally harvesting a set of single species quotas, while reducing bycatch, as now being pursued by the U.S. National Marine Fisheries Service.
- Initial biogeographic analyses suggest the North Atlantic Fisheries Organization (NAFO) management areas may not recognize important distributional features. Also, initial temporal analyses show that

species distributions can change over time, suggesting that stock distributions may shift among the static NAFO areas.

 A key basic assumption of many fisheries assessment and management models, that stocks represent closed populations within standard regions, may frequently be violated. This study has shown that the geographic limits of species distributions can vary over time, but fisheries management boundaries are static. Applying models to moving populations in static regions would violate this basic model assumption. . .

INTRODUCTION

Study Objectives

This report contains the analysis of research demersal trawl survey data for the east coast of North America from Cape Hatteras, North Carolina, USA in the south, to Cape Chidley, Labrador, Canada in the north, using individual trawl sets. The analyses were conducted as part of the process of defining and mapping demersal fish assemblages. The underlying goal is to describe and map species assemblages, and to evaluate evidence for ecological regime and assemblage distribution shifts on a decadal time scale. A related goal is to evaluate the extent to which the Atlantic cod decline along the east coast of North America can be explained by changes in the environment, as evidenced by changes in the scale (Doubleday 1995). The questions addressed in this report are:

- What are the demersal fish assemblages?
- What are the assemblage distributions, and what factors influence them?
- Are the assemblages stable over time?

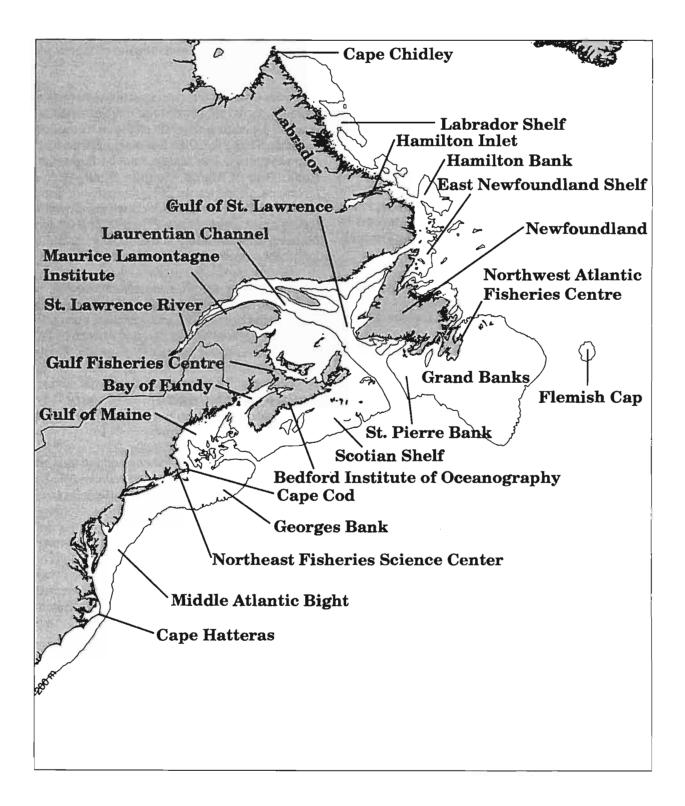
To answer these questions, three categories of analyses were undertaken: species by species descriptions of geographic distribution; multivariate analyses to define species assemblages; and evaluation of temporal variation in species and assemblage distributions.

Internet Access

Several related data, mapping, and information products are being made available on the Internet. Access instructions are provided inside the front cover.

Background

The East Coast of North America Strategic Assessment Project's (ECNASAP's) Offshore Case Study (ACZISC and SEA Division 1995) began in January 1994, and was completed in early 1996. Initial work focused on database compilation, analysis of fish community assemblages on the Scotian Shelf (Mahon 1995), and development of a desktop information system. In April 1995, a workshop was held to investigate expansion of the community analysis to include the Labrador Shelf, Grand Banks of Newfoundland, Gulf of St. Lawrence, and U.S. waters down to Cape Hatteras (O'Boyle, 1995). The Cod Mortality Project started in 1995 and is planned to last three years. While ECNASAP is examining many elements of the ecosystem, the Cod Mortality Project is focused on cod, and ecosystem changes relevant to it. However, both projects share a common goal - description of coastal ecosystems and changes in their characteristics over time. This report is the result of a collaboration between these two projects, and has benefited from a synergetic development of new ideas and knowledge, and from the efficiency of cooperative operations.


Since the Colonial era, demersal finfishes (groundfish) have supported substantial commercial fisheries along much of the continental shelf off the east coast of North America. These fisheries are most extensive north of Cape Hatteras. The Middle Atlantic Bight, Georges Bank, Gulf of Maine, Scotian Shelf, Gulf of St. Lawrence, Grand Banks of Newfoundland, East Newfoundland Shelf, and Labrador Shelf are all well-known fishing areas in the region (Figure 1). The fisheries are pursued using a variety of methods, including trawls, longlines, seines, and coastal fixed gear.

These fisheries target a variety of species, mainly gadids (the cod family), of which Atlantic cod and haddock are the best known, and flatfishes, such as American plaice, yellowtail flounder, and Atlantic halibut. Although each fishing operation generally targets only one or two species at a time, many demersal species co-occur, and the bycatch of non-target species can also be a valuable component of the catch. Therefore, most demersal fisheries, and trawl fisheries in particular, are multispecies in nature.

The history of groundfish fisheries off the east coast of North America is one of dramatic variations in landings and stock abundance (Sissenwine, 1986; Brown, 1987; Fogarty, *et al.* 1987; Angel *et al.* 1994; Gomes, *et al.* 1995). Most of the groundfish stocks in the area are currently or have been severely depleted. Although fishing is known to have been a driving force in the changes in groundfish abundance in the region, the relative effects of fishing, species interactions, and environmental variation remain poorly understood (Beddington 1986; Sissenwine 1986; Sherman 1990; Hutchings and Myers 1994).

The observation that little is understood about the ecosystem changes associated with removal of major quantities of fish biomass is true of all the ecosystems found off the east coast of North America, as well as for ecosystems in other parts of the world (Sherman and Alexander 1986). The geographical scale, ecological complexity, and multidisciplinary nature of the problem have hindered analysis and resolution. One thrust has been the large marine ecosystem (LME) concept being developed under the auspices of several U.S. and international organizations. Efforts have been under-

Figure 1. Study area map with place names.

taken to characterize the LMEs of the world and to promote LME research (Sherman and Alexander 1986, 1989; Sherman *et al.* 1990, 1993).

From a fisheries management point of view, a more direct approach to examining the possible effects of species interactions and environment on exploited fishery resources is to explore distributional patterns of demersal fish assemblages, and the effects of environmental variation on those patterns. Assemblages are groups of species that tend to occur together, either because they have similar habitat preferences, or because the species interact. The description and mapping of assemblages can indicate where various combinations of species may be caught by fishing, and where fishing may affect non-target species. It is the starting point in the process of examining possible interactions among species. The patterns alone do not indicate that species are interacting, but they do indicate where interactions are most likely to be taking place. Assemblages may also provide insight into the scale of biogeography and ecosystem processes, and thus provide a context for marine resource conservation and management.

There have been several previous studies of demersal fish assemblages on parts of the continental shelf off the east coast of North America (Colvocoresses and Musick 1984, Mahon and Sandeman 1985, Overholtz and Tyler 1985; Mahon and Smith 1989, Gabriel 1992, Gomes et al. 1992, Gomes 1993, Gomes et al. 1995, Guadalupe Villagarcia 1995), but the entire region has only been examined in one other study (Mahon and Sandeman 1985). Assemblages on the northern Labrador Shelf remain poorly known. Mahon and Sandeman (1985) analyzed 1970-80 trawl survey data from Cape Hatteras, North Carolina to Cape Chidley, Labrador by aggregating trawl sets into bands about 30 nmi in width. That approach, which was aimed at investigating broad biogeographical patterns, imposed the 30-nmi limit on the spatial scale at which assemblages could be resolved.

To better resolve the spatial distribution of assemblages, and to allow analysis of the effects of depth and other environmental factors on assemblage distribution, it is necessary to use the data in the least aggregated form possible. The analyses conducted for this report include the entire time series of available data, and address the needs of both ECNASAP and the Cod Mortality Project.

The analyses described in this report, although extensive, are merely the beginning of what will be a major international research effort. Substantial follow-up work is envisioned on most of the analyses completed to date, and many potentially useful lines of inquiry have not yet been undertaken. Therefore, this report contains several recommendations for refinement of the analyses already undertaken, as well as for new analyses.

THE DATA SET

This study comprises analyses of data collected by demersal (groundfish) research trawl surveys from 1970-1994. These were combined into a single data set as detailed in Appendix 1. The fish species captured by the trawl surveys were defined as demersal, pelagic, or mesopelagic. Only demersal species are considered in this study. The only invertebrate considered to be sufficiently well sampled by the trawl gear is the shortfin squid, which has been included in the analysis. The species composition of the overall data set is shown in Appendix 2.

The data set, which includes valid survey tows using standard survey gear, was acquired from five sources: Canada Department of Fisheries and Oceans, Northwest Atlantic Fisheries Centre, St. John's, Newfoundland (for Labrador Shelf from Cape Chidley south to the Grand Banks of Newfoundland, Flemish Cap, and the west coast of Newfoundland); Canada Department of Fisheries and Oceans, Marine Fish Division, Maurice Lamontagne Institute, Mon Joli, Quebec (for Northern Gulf of St. Lawrence); Canada Department of Fisheries and Oceans, Marine and Anadromous Fish Division, Gulf Fisheries Centre, Moncton, New Brunswick (for Southern Gulf of St. Lawrence); Canada Department of Fisheries and Oceans, Marine Fish Division, Scotia-Fundy Region, Bedford Institute of Oceanography, Dartmouth, Nova Scotia (for Scotian Shelf, Bay of Fundy, and part of Georges Bank); and the USA's National Marine Fisheries Service (NMFS), Northeast Fisheries Science Center (NEFSC), Woods Hole, Massachusetts (for Georges Bank, Gulf of Maine, and the Middle Atlantic Bight). The initial data set included all months in the years 1970-1994.

In several instances, specimens in the catch are not identified to species, and several aggregate groups are listed in Appendix 2. Four of these were created by combining species for which there is a high probability of misidentification. The only aggregate group used in the analysis is redfishes, which comprise three *Sebastes* species.

Trawl Surveys

The trawl surveys from which the data were derived have been described in several publications. Survey designs, stratification schemes, gears, etc. have been described in Doubleday and Rivard (1981), Doubleday (1981), and Grosslein (1969). Since these publications, there have been new vessels and gears used, and additional surveys have been carried out at other times of the year in various areas, but the basic designs have remained the same. The main trawl survey time-series in each area, which were established to provide indices of abundance for important commercial species, have been carried out continuously from the following years until the present: 1963 in the USA, 1970 in the Scotia-Fundy and Southern Gulf of St. Lawrence, 1983 in the Northern Gulf of St. Lawrence, and various starting years prior to and during the 1970s off Newfoundland and Labrador.

No attempt has been made to extensively describe the contents of the data set (e.g., by providing lists of vessels and cruises). This information can be derived directly from the data set by users as required. However, Table 1 shows the distribution of sets from each source by year and month.

METHODS

The analytical objectives of this project are to identify species assemblages, determine spatial and temporal patterns, and evaluate relationships between assemblages and the environment. These are summarized, along with the analytical methods used and the products generated, in Table 2. The first two objectives have received the most attention to date; work on environmental relationships is still underway.

No single method is widely accepted for identifying and mapping species assemblages. Because each methodological approach has strengths and weaknesses, several methods were used in this study. The rationale is that if several distinct analyses show similar results, the overall robustness of the conclusions is enhanced. Available approaches range from gualitative analyses that depend on the familiarity of the investigator with distributional patterns (e.g., Briggs 1974), univariate approaches, such as plotting distribution maps (e.g., Ray et al. 1980, Strategic Assessment Branch and Southeast Fisheries Center 1986, Strategic Assessment Branch 1989, Strategic Assessment Branch and Northwest and Alaska Fisheries Center 1990), to complex multivariate analyses (e.g., Mahon and Sandeman 1985, Overholtz and Tyler 1985, Mahon and Smith 1989, Gabriel 1992, Gomes et al. 1992, Gomes 1993, Gomes et al. 1995, Guadalupe Villagarcia 1995). Classification (usually cluster analysis) and ordination (Clifford and Stephenson 1975, Gauch 1982, Legendre and Legendre 1983) are multivariate approaches often used for assemblage analysis.

The assemblage analyses began with visually classifying single species distributional patterns. A multivariate ordination procedure, principal components analysis (PCA), was then used to identify assemblages statistically. Although other ordination methods exist that were developed specifically for ecological data, the available software cannot process the large number of cases found in the ECNASAP trawl survey data set (e.g., Gauch 1982, Ter Braak 1986).

Finally, cluster analysis was conducted for comparison with the PCA. Cluster analysis was performed on: 1) sites (i.e., tows), to generate mappable results comparable to maps of PCA scores; 2) species, to generate assemblages comparable to the assemblages derived from PCA; and 3) PCA loadings themselves, which provided an organizational hierarchy for the principal components. One disadvantage of PCA is that it does not provide a measure of the hierarchical interrelationships among assemblages. However, cluster analysis does show hierarchical relationships, which may be important for a biogeographical study aimed at identifying faunal discontinuities. These discontinuities could be the basis for defining ecosystems or biogeographic boundaries that may be appropriate spatial units for management.

Data Transformation

Trawl design may significantly affect the numbers and types of fish caught. Trawls may differ in several ways: swept area affects the number of fish encountered during a tow; height of the head rope affects the elevation above the bottom that is swept; and foot rope configuration and roller gear affect the extent to which benthic fishes, such as flatfishes, enter the trawl.

Because the ECNASAP data set consists of data from several sources, differences among the vessels and gears may have affected the catch per standard tow. Since there are some areas of overlap between surveys, and the same vessel and gear are sometimes used in more than one area, some limited intercalibration of vessels and gear would have been possible. However, previous studies have indicated that, even with comparative fishing experiments, intercalibration of vessels and gear is seldom statistically significant, and that the coefficients are usually determined by only a few data points (Mahon and Smith 1989). Furthermore, since intercalibration data are not available for all vessels and gear types used in the different surveys over the years, it was not deemed feasible to convert all surveys to a single standard.

Numbers caught per tow was used as the abundance measure in the analyses, based on the assumption that gear and vessel biases are likely to be small relative to sampling variability and the major signals. Also, other approaches, such as analyzing presence/absence or data grouped into intervals, degrade the information,

			•	USA, NN	/IFS, No			s Scien	ce Cent	er			
_						Mon							
Year	1	2	3	4	5	6	7	8	9	10	11	12	Total
70	0	0	102	188	0	0			59	123	158		632
71	0	0	126	225	0	0			11	187	151		700
72	0	0	146	201	0	0			24	166	151		688
73	0	0	136	98	129	0				181	142		686
74	0	0	63	193	27	0			31	2	44		360
75	0	0	92	95	46	0				207	138		578
76	0	0	144	188	12	0			21	154	94		613
77	0	0	44	138	109	0	13	149	41	159	88	54	795
78	0	0	49	159	161	0	36	160	100	208	135		1008
79	0	0	43	261	67	0	45	121	60	232	173		1002
80	0	0	61	219	54	0	103	81	62	169	66		815
81	86	0	59	128	84	15	89		40	154	73		728
82	54	66	67	125	62	0			41	163	49		627
83	0	18	99	177	0	0			55	121	66		536
84	0	91	131	116	0	0			72	160	18		588
85	0	23	114	103	0	0			19	165	60		484
86	0	0	88	163	0	0			49	164	39	1	504
87	0	0	39	209	0	0			75	147	1		471
88	0	0	153	72	0	0			86	135			446
89	0	4	149	61	0	0			74	136	9		433
90	0	0	131	90	0	0			88	141			450
91	0	0	124	97	0	0	6		84	138			449
92	0	83	147	94	0	0	1		75	143			543
93	0	109	80	138	0	0	45	14	111	109			606
94	0	84	79	143	0	0							306
Total	140	478	2466	3681	751	15	338	525	1278	3664	1655	55	15048
%	0.9	3.2	16.4	24.5	5	0.1	2.2	3,5	8.5	24.3	11	0.4	100

Table 1. Number of sets in the ECNASAP data	base by source, year, and month.
---	----------------------------------

Canada, DFO, Scotia-Fundy Region											
[_						Month		_			
Year	2	3	4	6	7	8	9	10	11	12	Total
70					133						133
71				9	109						118
72				56	91						147
73					120	14					134
74					138	15					153
75					94	49					143
76					98	37					135
77					144						144
78					141				46	35	222
79		115			147			66	5 9		387
80		113			144		1	140			398
81	31	88			150		2	125			396
82		131			150		29	117	109		536
83		68	72		146			177	99		562
84		171			130	13		145			459
85		47			152			83			282
86		154			171			173			498
87		159	4	11	160	17		87			438
88		200			177						377
89	52	143			184						379
90	78	122			223						423
91	132	94			189						415
92	32	133		53	140						358
93		143			188	2					333
94					195						195
Total	325	1881	76	129	3714	147	32	1113	313	35	7765
%	4.2	24.2	1	1.7	47.8	1.9	0.4	14.3	4	0.5	100

USA NMES Northeast Fisheries Science Center

Table 1. (continued)

Canada, DFO, Southern Gulf Region									
	Month								
Year	8	9	10	Total					
70		39		39					
71		66		66					
72		70		70					
73	1	73		74					
74		66		66					
75		67		67					
76		66		66					
77		66		66					
78		51	12	63					
79		70	4	74					
80		70		70					
81		70		70					
82		65		65					
83		66		66					
84	21	87		108					
85		224		224					
86		173		173					
87	4	158		162					
88		155		155					
89		169		169					
90		147		147					
91		192		192					
92		169		169					
93		188		188					
94		189		189					
Total	26	2756	16	2798					
%	0.9	98.5	0.6	100					

Canada, DFO, Northern Gulf Region										
-	Month									
Year	1	7	8	9	Total					
83	200				200					
84	194	105			299					
85	163		188		351					
86	180		175		355					
87	151		181		332					
88	170	46	155		371					
89	126		151	13	290					
90	131		188	91	410					
91	122		72	177	371					
92	112		235	5	352					
93	147		140	87	374					
94	123		125	64	312					
Total	1819	151	1610	437	4017					
%	45.3	3.8	40.1	10.9	100					

			Can	ada, DF	O, New			ador Reg	ion 1				
Month													
Year	1	2	3	4	5	6	7	8	9	10	11	12	Total
70		49	11		70	47	35	20		44			276
71	12	23	25	25	6	85				53	18		247
72	16	4	45		83					37	38		223
73		42	59	85	98	36	73	19	47	22	19	28	528
74			4	95	107	117			29		57		409
75					113	64			13	42		11	243
76	7	6		128	97	34			40	42	75	9	438
77	49	52		102	142	48			49	10	243	6	701
78	141	206	2	62	199	261	66	187	158	192	125		1599
79	99	146	37	47	265	137		171	115	120	98	26	1261
80	163	92	131	71	299	13		5	56	105	71	64	1070
81	179	115	84	56	123	67			158	112	288	100	1282
82	24	92	32	113	116	151				40	305	93	966
83		142	21	95	120	65	47			119	214	51	874
84	30	152		-122	137	95	56	169	22	40	249	42	1114
85	124	260	112	232	169	114	43	165		226	319	13	1777
86	76	202	158	241	268	110	45	92	122	1	298	59	1672
87		82	102	84	280	121	44	258	4	184	216	54	1429
88	40	153		138	243	109	7	181	38	56	261	112	1338
89	43	199		123	359	25	4	14		174	205	105	1251
90	76	149	1	78	210	57	5	148		37	364	173	1298
91		206	2	169	239	24		149		89	559	121	1558
92	17	173	1	96	239	51	34	26		99	460	64	1260
93		176	2	186	214	121		162	6	88	384	96	1435
94				193	215	92				71	368	162	1101
95					52	13							65
Total	1096	2721	829	2541	4463	2057	459	1766	857	2003	5234	1389	25415
%	4.3	10.7	3.3	10	17.6	8.1	1.8	6.9	3.4	7,9	20.6	5.5	100

Table 2. Summary of major analytical objectives, methods, and products.

		Analytical objectives	
	Identify species assemblages	Determine spatial patterns	Determine temporal patterns
Methods		Distribution more for 400	
Visual Analysis	Eight species groups based on spatial distribution and depth	Distribution maps for 108 species	Table of numbers caught for 72 species by 5-year blocks
ACON Plots			Maps with presence/absence boundaries for 4 species in 5- year blocks
Bivariate Ellipses			Graphs of the latitudes and longitudes of ellipses containing 50% of the abundance for 4 species in 5-year blocks
Principal components analysis of 1975-94 data subset	Species assemblages identified using loadings on 18 principal components, and an organizational hierarchy of these assemblages based on Ward's method clustering of the 18 components	Maps of the "core" stations for each of the 18 principal components, based on stations scoring in the top 5% of stations for each component	Maps and tables of the stations scoring in the top 5% of stations for PC10 and PC11 in the analysis of the 1975-94 data subset
Principal components analysis of the 1975-94 dala subset by 5-year blocks			Table assessing assemblage persistence by comparing 1975- 94 and 5-year block assemblages
Sites cluster analysis of the 1975-94 data subset	Species assemblages identified by assessing affinities with 18 site cluster groups, based on maximum standardized log mean catch per tow	Maps of the stations assigned to the 18 site cluster groups	
Species cluster analysis of the 1975-94 data subset, obtained by Ward's method clustering of the transposed sites clusters by species matrix	Species assemblages identified for 18 cluster groups on the dendrogram		
Canonical discriminant analysis of the 1975-94 data subset			Patterns of species abundance changes identified by correlations of species with canonical variables 1 and 2 Patterns of yearly abundance changes in the groundfish community obtained by plotting yearly centroids against canonical variables 1 and 2

but do not eliminate the potential biases. Because trawl survey data frequently have a skewed distribution, $log_{10}(x+1)$ transformed data were used in the analyses.

Visual Analysis

Visual analysis of species distributions was carried out as a background for interpreting the multivariate analyses. The purpose of this process was to develop an intuitive, knowledge-based classification that could be compared to the results of the more objective multivariate approaches. The distributions of 108 demersal species were mapped using $log_{10}(x+1)$ transformed numbers caught per tow as the abundance scale. Data for all years and months were plotted together for each species. The plots were then classified into groups based on an intuitive interpretation of the distributions, combined with the biological and other background knowledge of the visual analysis team (M. Sinclair and R. O'Boyle).

Multivariate Analyses

Data selection. The multivariate analyses were conducted using a standard subset of the ECNASAP trawl survey data base. Several preliminary analyses were conducted to select the data subset most suitable for the multivariate studies.

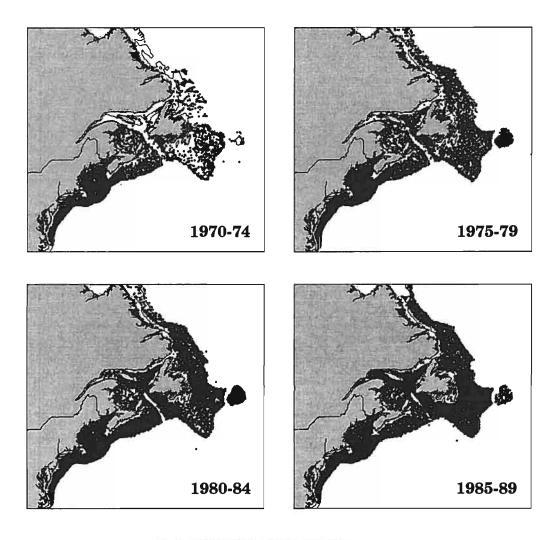
Data were screened in five-year time periods for consistency in spatial coverage. For 1970-74, the Labrador Shelf was considered to be inadequately covered (Figure 2). Therefore, data prior to 1975 were excluded from the multivariate analyses.

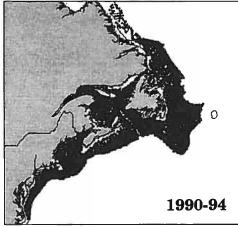
Because the surveys are not conducted at the same times of year, it was necessary to select certain months to be analyzed. Preliminary runs were tried with various subsets of months. Ultimately, the main survey series in each area was used in the multivariate analysis. The Newfoundland/Labrador surveys are carried out at different times of year in different areas. Therefore, all months of Newfoundland/Labrador data were included in the data subset. The data taken from the rest of the surveys were primarily from the summer and autumn. For the Northern Gulf of St. Lawrence, data from July-September and January were used. For the Southern Gulf of St. Lawrence, data from August-October were used. For the Scotian Shelf and Bay of Fundy, data from July-September were used. For Georges Bank south to Cape Hatteras, data from September-December were used.

Most sites-times-species survey data have a relatively high proportion of rare species. These are either too rare, or are too poorly sampled, to provide useful information for assemblage analysis. After several exploratory analyses, three species selection criteria were applied to generate the multivariate data subset: 1) \geq 500 individuals must have been caught for the 1975-94 period; 2) the species had to have been caught in \geq 0.05% of the trawl sets for the 1975-94 period; and 3) \geq 100 individuals had to have been caught in every five-year time block for the 1975-94 time period. VARIMAX-rotated PCAs converged on a solution for all analyses using the data set that met these criteria.

The final data subset used for the multivariate analyses contained 1975-94 data for 66 species collected in 39,694 tows (Table 3). It should be noted that the selection criteria excluded species that were fairly abundant during some periods, but were essentially absent during others, such as Atlantic spiny lumpsucker.

Principal Components Analysis. PCA was used as the primary multivariate analysis method. Species loadings on the principal components (PCs) were used to identify groups of species that tend to co-occur (i.e., assemblages). Previous analyses have shown that ubiquitous species may be a member of more than one assemblage, and PCA allows a species to be associated with more than one component.


The correlation matrix of $\log_{10}(x+1)$ transformed numbers caught per tow data was used as input for the PCA. Because this method tends to diminish the role of abundance in defining assemblages, use of the covariance matrix was also investigated. However, using the covariance matrix provided a less interpretable result, with fewer components. Moreover, the first few components had significant loadings for several species, but the remaining components were dominated by only one or two species.


Two categories of species loadings on PCs are recognized in this study. Species with loadings ≥ 0.5 on a component are considered the major species in the assemblage represented by that component. Species with loadings between 0.3 and 0.5 are also considered members of assemblages, albeit with weaker associations. The usual practice, using a loading of 0.5 (i.e., a PC contains 25% of the overall variability of a species) as the cutoff, is not based on statistical significance; it is merely a convention. The large size of the ECNASAP data set and the large number of PCs, which are distributed over a huge study area, enable recognition of the weaker class of associations (Gorsuch 1974).

PCs with eigenvalues \geq 1 are considered to represent statistically significant assemblages. The eigenvalue associated with a PC indicates the relative importance of that component. Recognizing components with eigenvalues \geq 1 as statistically significant is a common practice in PCA (Jolliffe 1986).

VARIMAX rotation was used for the PCs having eigenvalues \geq 1 in the unrotated PC extraction. VARIMAX rotation is typically used when a relatively small number of species is strongly associated with (i.e., is highly loaded on) each PC (Jolliffe 1986). VARIMAX rotation also tends to find a solution with few negative loadings on the PCs, thus facilitating interpretation of the PCs as assemblages.

The site scores on each VARIMAX-rotated PC are used as a measure of the extent to which the assemblages defined by the PCs were present at each site. Every assemblage can potentially be present at every site, as the assemblages are not mutually exclusive in space. Thus, groups of sites can be defined on the basis of PC scores. In this study, the "core" sites of assemblages were determined by selecting the sites in the top 5% of the site scores for each PC. The effect of increasing this percentage on the spatial cohesiveness of assemblages was examined by mapping the sites in Figure 2. Sampling spatial coverage by five-year intervals, 1970-94.

Table 3. Numbers of individuals caught per five-year time period for species with a total catch > 500.

		Time	period	•		Time period				
Species 1	75-79	80-84	85-89	90-94	Species1 -	75-79	80-84	85-89	90-94	
Redfishes (Sebastes spp.)	2,291,514	2,581,080	2,259,409	2,007,064	Sea raven	3,241	3,568	5,099	3,700	
American plaice	585,609	632,769	864,637	480,839	Northern (Common) searobin	4,924	2,486	3,470	3,721	
Atlantic cod	221,160	399,575	961,117	589,339	Northern wolffish	5,305	4,953	2,318	862	
Butterfish	134,043	241,423	211,793	159,600	Smooth skate	3,351	3,198	3,734	2,919	
Silver hake	101,697	104,676	187,476	111,989	Roughnose grenadier	1,405	957	6,500	137	
Greenland halibut	91,544	91,306	151,697	124,259	Blue hake	2,785	2,647	1,396	1,695	
Arctic cod	249,455	40,196	86,902	47,883	Spotted wolffish	2,182	2,787	1,674	962	
Yellowtail flounder	95,950	78,101	118,593	121,554	Goosefish (Angler)	1,889	1,734	1,816	1,464	
Haddock	68,258	117,574	120,027	61,085	Blackbelly rosefish	2,125	1,474	1,140	1,562	
Shortfin squid	125,184	75,618	59,490	89,368	Ocean pout	1,698	1,403	1,622	1,534	
Northern sand lance	70,832	153,408	10,590	13,390	Fourbeard rockling	716	607	3,041	1,356	
Spiny dogfish	47,280	52,799	70,042	64,776	Atlantic sea poacher	1,495	307	1,359	2,302	
Thomy skate	35,759	46,618	74,342	71,763	Alligatorfish	695	480	2,527	1,645	
Atlantic spiny lumpsucker	43	503	2,341	202,488	Fawn cusk eel	1,176	1,518	1,622	966	
Witch flounder	38,102	43,771	66,544	52,929	Atlantic halibut	1,186	1,204	1,229	785	
Black dogfish	6,395	14,530	52,416	68,160	Shorthorn sculpin	273	454	1,717	1,767	
White hake	23,378	23,381	55,643	27,173	Atlantic soft pout	9	182	850	2,474	
Winter flounder	16,418	16,878	48,991	46,252	Longnose eel	860	530	668	1,328	
Atlantic argentine	20,591	13,507	57,278	19,325	Black sea bass	2,061	421	418	354	
Longhorn sculpin	21,224	14,053	32,001	34,306	Cunner	146	224	2,196	605	
Rock (Roundnose) grenadier	34,515	22,708	31,838	5,402	Atlantic hagfish	963	573	389	1,157	
Marlin-spike (Common grenadier)	13,618	12,181	16,969	32,601	Polar sculpin	434	295	994	1,240	
Red hake	22,035	18,132	19,873	11,414	Snowflake hookear sculpin	253	158	1,337	999	
Lumpfish	3,063	4,936	26,079	25,777	Large scale tapirfish	887	862	658	291	
Scup	28,115	10,641	16,776	3,580	Fourline snakeblenny	18	49	1,040	1,377	
Spotted hake	18,782	14,778	16,039	7,058	Offshore hake	660	1,103	353	123	
Roughhead grenadier	14,757	15,086	12,184	12,803	Cusk	794	502	474	236	
Pollock	4,589	7,908	15,606	13,310	Spinytail skate	394	490	365	282	
Atlantic wolffish	13,179	10,479	8,519	5,533	Snake blenny	187	252	304	677	
Longfin hake	1,864	7,013	12,018	11,538	Shortnose greeneye	113	361	731	166	
Little skate	10,047	7,875	7,591	5,839	Greenland cod	401	147	305	490	
Fourspot flounder	6,890	8,908	6,960	4,574	Summer flounder	624	313	160	104	
Moustache (Mailed) sculpin	5,760	5,852	7,855	7,382	Viperfish	43	186	178	680	
Winter skate	3,949	6,808	7,266	4,725	Smooth dogfish	610	120	147	110	
Windowpane	6,885	3,701	7,022	2,767	Daubed shanny	99	37	350	362	
Gulfstream flounder	3,706	5,301	3,979	3,431	Boa dragonfish	10	354	158	175	

¹Species in italics were excluded from the multivariate analyses because of abundance < 100 in one or more time periods.

the top 5, 10, 15, and 20% of the scores for PC5 and PC10.

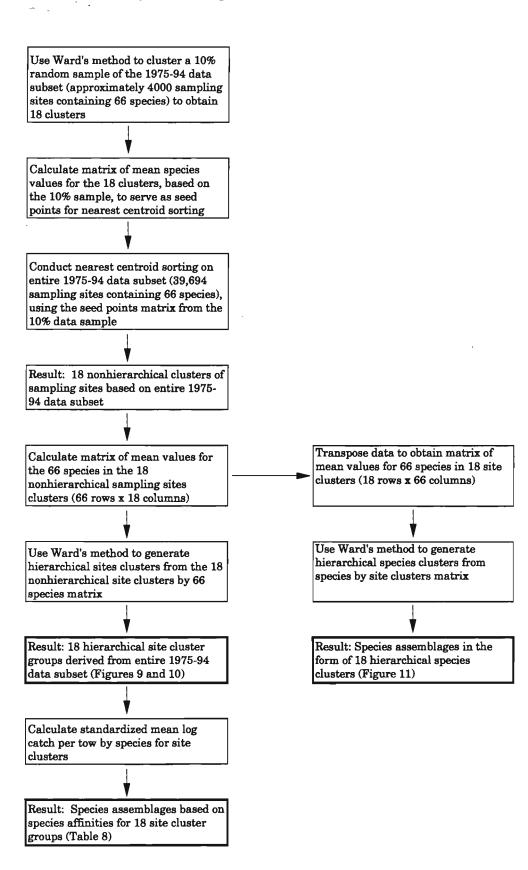
Hierarchical relationships among the PCs were identified using cluster analysis. The 18 x 66 matrix of components by species loadings was the input data. The distance coefficient was squared Euclidean distance; Ward's method of agglomerative hierarchical clustering was used to generate the dendrogram. These methods are discussed in more detail in the following section.

Cluster Analysis. Because of the large data set size and software limitations, a rather complex analytical process was used in the cluster analyses (Figure 3). Cluster analyses were performed using the same subset of the groundfish data that was used for the PCA. As with the PCA, number caught per tow data were $log_{10}(x+1)$ transformed. Two clustering approaches were followed to define: 1) groups of sites that tended to have similar species composition; and 2) groups of species that tended to occur at the same sites. The results of the site clustering are directly comparable with the mappable groups derived by selecting the sites with the top 5% of PC scores. The results of the species clustering are directly comparable with the species assemblages defined using species loadings on the PCs.

Squared Euclidean distance was used as the distance coefficient for both analyses. Numerous similarity/dissimilarity coefficients are available (Clifford and Stephenson 1975), and the Bray-Curtis coefficient has been shown to best reflect relationships among species and sites in ecological studies of species distribution data (Bloom 1981). However, the Bray-Curtis coefficient could not be used in this study, because it is not available in any software package capable of clustering a sufficiently large number of records. Squared Euclidean distance was successfully used as the distance coefficient in the previous ECNASAP assemblage analysis of the Scotian Shelf (Mahon 1995).

Ward's method was used for hierarchical agglomerative clustering of the sites and species. This method is freguently used for ecological analyses. Hierarchical clustering uses a coefficient, such as squared Euclidean distance, that quantifies similarity or dissimilarity between pairs of entities, such as species or sites, and forms groups by successively combining the most similar pairs. An entity may be a single species or site, or a group of previously combined species or sites. Ward's method uses the increase in the sum of squared distances of entities from the group centroid as a criterion for combining groups. The sequence of grouping is displayed as a dendrogram, which shows the hierarchical relationships among all entities. The desired number of groups can be obtained by cutting the dendrogram at an appropriate level of intergroup similarity. To maintain consistency with the PCA, which extracted 18 PCs, clustering was stopped at 18 clusters.

Because the large size of the data set and software limitations precluded direct use of Ward's method, a nonhierarchical clustering method, nearest centroid sorting (SAS 1990; Anderberg 1973), was used to generate input for Ward's method. Nearest centroid sorting is an iterative algorithm that minimizes the sum of squared distances from cluster means. It requires cluster "seed points" as initial estimates of the cluster means. These were obtained using Ward's method on a random subset of 10% of the data (approximately 4,000 tows). To be consistent with the PCA, clustering for the 10% data subset was stopped at 18 cluster groups. Mean values for each species in each of the 10% subset cluster groups were used as seed points for the nearest centroid sorting of all tows, which resulted in a matrix of 18 site groups by 66 species means, based on the entire multivariate data subset (i.e., 39,694 tows). The final site clusters were obtained by clustering this matrix using Ward's method. Because these site clusters consist of sampling points, the results are mappable and can be compared to maps of the stations scoring in the top 5% for the PCs.


Species associations with the site cluster groups were determined by calculating a standardized abundance for every species in each site cluster. The calculation was performed by dividing the mean $\log_{10}(x+1)$ catch per tow for each site cluster group by the mean $\log_{10}(x+1)$ catch per tow for the entire database. This value is considered an index of the affinity of a species for the cluster groups, with high values indicating strong affinity. Species were assigned to the site cluster group for which they had their highest standardized abundance. Therefore, the methods used for the sites cluster analysis limited the species to only one assemblage.

The species clustering was performed on the matrix obtained by transposing the 18 tow groups by 66 species matrix generated by the nearest centroid sorting procedure described above. This 66 species by 18 site cluster groups matrix was then clustered using Ward's method, which resulted in a hierarchical clustering of the 66 species. To be consistent with the previous analyses, the dendrogram generated in this analysis was cut at the level of 18 clusters. The resulting 18 species groups are comparable to the species assemblages defined by species loadings on the PCs, as well as to the species affinities determined for the site clusters.

Temporal Analyses

Several methods were examined for analyzing temporal variation (Table 2). Because of time constraints, the temporal analyses were primarily limited to dem-

Figure 3. Cluster analysis flow diagram.

onstrating feasibility of the methods, and the results were not analyzed in great detail. Each analysis included, but was not always limited to, an examination of temporal variation in Atlantic and arctic cod, or in assemblages that included these species. More comprehensive temporal analyses are presently under way.

An inherent assumption in the temporal analyses is that entire species distributions are well sampled throughout the 1975-94 period, and that there are no sampling biases through space and time. This assumption is not completely met (e.g., sampling was discontinued on the Flernish Cap in the mid-1980s), so sampling biases may have had some impact on temporal patterns detected. This problem is likely to be more important for species at the periphery of the study area, where sampling intensity may have been variable, than for species widely distributed throughout the core of the study area.

Single species. The intent was to examine how the spatial distributions of species have changed over time. Example analyses were carried out for selected individual species, but the methods could also be applied to assemblages identified by multivariate analysis.

Two southern species (ocean pout and butterfish), one north-temperate species (Atlantic cod), and one northern species (arctic cod) were selected. The distribution data for these species were broken into five-year time periods and analysed in two ways: 1) presence/absence distributions were plotted using ACON software (Black 1993) to show catch locations and boundaries; and 2) bivariate ellipses on X-Y scatterplots were calculated (i.e., latitude and longitude weighted by $log_{10}(x+1)$ numbers caught), such that 50% of the log-transformed catch was contained within the ellipses (SYSTAT, Inc. 1992). The bivariate ellipses emphasize patterns affecting the core of distributions, while the ACON plots emphasize patterns affecting the boundaries. Distributional changes were evaluated visually for both methods.

PCA assemblages. Two aspects of temporal variation in the PCA assemblages were examined: 1) temporal stability of assemblage structure; and 2) temporal variability of spatial distribution. Temporal stability of assemblage structure was examined by breaking the 1975-94 data set into five-year blocks and running separate PCAs on each block. Patterns of species loadings were compared among the five-year blocks and to the loadings for the entire 1975-94 data set. The difficulty with this approach is that objective statistical methods for these comparisons are not available.

Because the above analysis showed that species compositions of most assemblages were stable over the 1975-94 period, and because several other analyses have shown similar assemblage stability, temporal variation in the spatial distribution of the 1975-94 assemblages was investigated for PC 10 (thorny skate, America plaice, witch flounder, Atlantic cod, smooth skate) and PC11 (arctic cod, Atlantic sea poacher, Greenland halibut, polar sculpin). The sites within the top 5% of scores for these components were mapped by five-year time blocks. Mean latitudes and longitudes for the five-year time blocks were compared using analysis of variance. Prevalences of these assemblages over time was assessed by totaling the number of points in each time block. The assumption in this approach is that particular assemblages exist throughout the study period, but their spatial distributions may vary.

Canonical Discriminant Analysis. Canonical Discriminant Analysis (CDA) is the multivariate procedure used to examine the 1975-94 data subset for changes over time in the abundances of the groundfish community (i.e., the 66 species) throughout the study area. The analysis has two objectives: 1) detection of abundance trends through time; and 2) identification of the species responsible for the observed abundance trends.

CDA is related to PCA and canonical correlation analysis. It generates linear combinations of variables that define a series of statistically independent (i.e., uncorrelated) canonical variables, each of which provides maximum distinction among a group of specified classes.

In this study, CDA was used to generate linear combinations of species abundances that provide maximum distinction among the years. Year centroids from the CDA were projected onto the plane defined by the first two canonical variables. The location of the year centroid on a canonical variable's axis is the mean of all canonical tow scores for that particular year. Location on the plane is, thus, defined by the yearly mean scores for the two canonical variables. Temporal patterns were interpreted by inspection of the plot of the canonical variables 1 and 2 containing the yearly means for 1975-94. Bivariate confidence ellipses were calculated to determine statistically whether the year groups identified visually were statistically distinct. A macro provided by the SAS Institute was used for these calculations.

To identify patterns of species abundance variation giving rise to the year centroid pattern, between-year correlations between the individual species and the first two canonical variables were calculated. Correlations for $|r| \ge 0.5$ were projected as vectors originating from the center of the plane defined by the first two canonical variables. Because the same canonical plane was used for plotting the year centroids and the species correlations, the plots were overlain to associate abundance patterns with yearly community patterns. In this analysis, a species having a high positive correlation with a canonical variable were interpreted as being abundant in a year with a high score on that canonical variable.

RESULTS

The initial data set included 55,043 tows, with 26,286,369 individuals from 412 species (including some aggregate groups) (Appendix 3). The data selection described above reduced the number of tows to 39,694 and the number of species to 66 (Table 2).

Visual Analysis

The species plots were classified into nine groups (Table 4, Figure 4). Four groups occurring principally in water > 200-m depth were identified. The Cosmopolitan Deepwater group is found from Labrador to Cape Hatteras; the Northern Deepwater group is generally found north of the Scotian Shelf. The Temperate Deepwater group typically extends from the Gulf of St. Lawrence to the Gulf of Maine, and the Southern Deepwater group typically occurs south of the Scotian Shelf. Four bank and slope groups, which occur principally in water ≤ 200-m depth, were identified. The Northern and North-temperate Bank/Slope groups range from the eastern Scotian Shelf to Cape Chidley, and from Georges Bank to Cape Chidley, respectively. The South-temperate Bank/Slope group is the largest, with typical ranges extending from the Middle-Atlantic Bight to the Grand Banks of Newfoundland. The Southern Bank/Slope group extends from the eastern Scotian Shelf or southern Gulf of St. Lawrence to Cape Hatteras. The North-temperate and South-temperate Bank/Slope groups were judged to be those most likely to exhibit long-term changes in response to environmental change. Because the data set is sparse south of Cape Hatteras, the Southern Transitional group, which contains species primarily occurring south of Cape Hatteras, is not portrayed.

During the analysis, it was noted that details within these groups could not be discriminated by the qualitative approach taken. Further splitting would require the multivariate analyses described below.

Principal Components Analysis

The results of the PCAs for the entire 1975-94 timeperiod, and for the five-year blocks, are shown in Table 5. The results of the five analyses are similar in terms of the number of PCs with eigenvalues > 1.0 (18-19), the percentage of variance accounted for by the various PCs, and the cumulative percentage of variance accounted for, which ranged from 56.3% to 59.4%. These results suggest that the entire time series can be analyzed in one PCA.

The species loadings on the VARIMAX-rotated PCs with eigenvalues \geq 1 are shown for the entire time period in Table 6. A dendrogram derived from clustering the species factor scores on the 18 PCs shows the organizational hierarchy of the species assemblages derived from the PCA (Figure 5). PCs were associated with 1-5 species with loadings \geq 0.5 and with 0-5 species with loadings between 0.5 and 0.3. Under the loadings ≥ 0.5 criterion for high-level inclusion in an assemblage, 54 of the 66 species were members of an assemblage, but only one species, black dogfish, was a member of two. Under the loading \geq 0.3 criterion for low-level inclusion in an assemblage, two species, roughhead grenadier and Greenland halibut, were members of three assemblages; 15 species were members of two assemblages; and two species, spinytail skate and Greenland cod, were not members of any assemblage. Species with very high loadings on one PC, such as blue hake, roughnose grenadier, and gulfstream flounder, may be considered assemblage specialists; species with low loadings on more than one PC may be considered assemblage generalists. Species without loadings \geq 0.3 are not considered members of any assemblage.

Assemblage distribution maps from the PCA are given in Figure 6. These maps show only the sites in the top 5% of scores for each PC. There is considerable spatial aggregation of sites with high scores on individual PCs. Use of the top 5% of scores is an arbitrary choice, intended to depict the "core" sites of the assemblage associated with a PC. The apparent distribution of an assemblage core may vary with this percentage. For PC 5, the area of occurrence expands as sites with lower PC scores are included in the plot (Figure 7a). However, the apparent distribution of the PC 10 assemblage does not change greatly as this percentage rises (Figure 7b); instead, more points accumulate in the same general area.

Figure 8 combines the dendrogram of the hierarchical organization of assemblage distributions from Figure 5 with the assemblage distribution maps of Figure 6 (A poster-sized version of this figure is available upon request). The first branching in the dendrogram suggests a biogeographic break around the Grand Banks.

The site scores on the PCs were also used to characterize the depths and temperatures at which the assemblages occur. The average depth and temperature were calculated for the sites in the top 5% of scores for

Table 4. Species groups determined by visual analysis of distribution plots.

Species group	Species group	Species group			
Cosmopolitan Deepwater	North-temperate Bank/slope	Southern Bank/slope			
Boa dragonfish	Redfishes	Fourspot flounder			
Viperfish	Witch flounder	Butterfish			
Slender snipe eel	Smooth skate	Spotted hake			
	Atlantic wolffish	Fawn cuskeel			
Northern Deepwater	Atlantic cod	Gulfstream flounder			
Longnose eel	American plaice	Summer flounder			
Largescale tapirfish	Thorny skate	Scup			
Blue hake	Alligator fish	Black seabass			
Rock (roundnose) grenadier	Snowflake hookear sculpin	Northern (common) searobin			
Roughhead grenadier	Moustache (mailed) sculpin	Smooth dogfish			
Spinytail skate	Daubed shanny	Windowpane			
Stoutsaw palate	Atlantic halibut	Little skate			
Black herring	Lumpfish	Bigeye scad			
Goitre black smelt	Shorthorn sculpin	Rough scad			
	Snake blenny	Round scad			
Temperate Deepwater	Cunner	Plainhead filefish			
Marlin-spike	Radiated shanny	Smailmouth flounder			
Black dogfish					
Atlantic argentine	South-temperate Bank/slope	Southern Transitional			
Roughnose grenadier	Red hake	Vermilion snapper			
Longfin hake	Goosefish (Angler)	Snake fish			
Barracudinas	Spiny dogfish	Torntate			
	Silver hake	Inshore lizard fish			
Southern Deepwater	White hake	Bank cusk eel			
Blackbelly rosefish	Pollock	Offshore lizard fish			
Offshore hake	Cusk	Tattler			
Shortnose greeneye	Yellowtail flounder	Bank sea bass			
Shortfin squid	Winter flounder	Atlantic croaker			
Armoured sea robin	Ocean pout	Spot			
Buckler dory	Sea raven	Longspine porgy			
Beardfish	Longhorn sculpin	,			
Slatjaw cutthroat eel	Winter skate				
-	Northern sand lance				
Northern Bank/slope	Atlantic hagfish				
Northern wolffish	Fourbeard rockling				
Spotted wolffish	Haddock				
Atlantic sea poacher	Atlantic soft pout				
Arctic cod	Wrymouth				
Greenland halibut	Threespine stickleback				
Polar scuplin	-				
Greenland cod					
Fourline snake blenny					
Threebeard rockling					
Atlantic spiny lumpsucker					
Atlantic hookear sculpin					

Figure 4. Example species maps for visual groups.

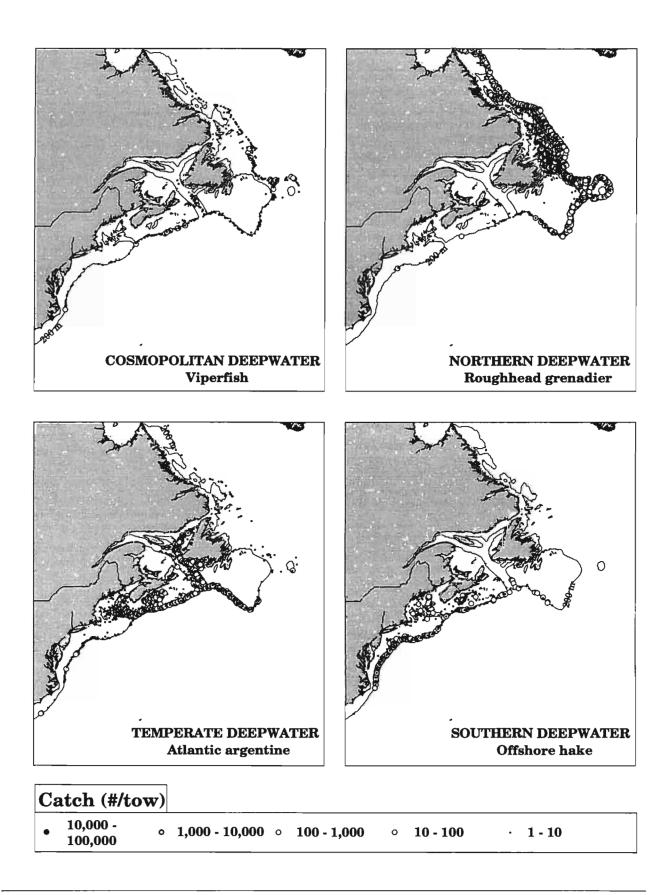
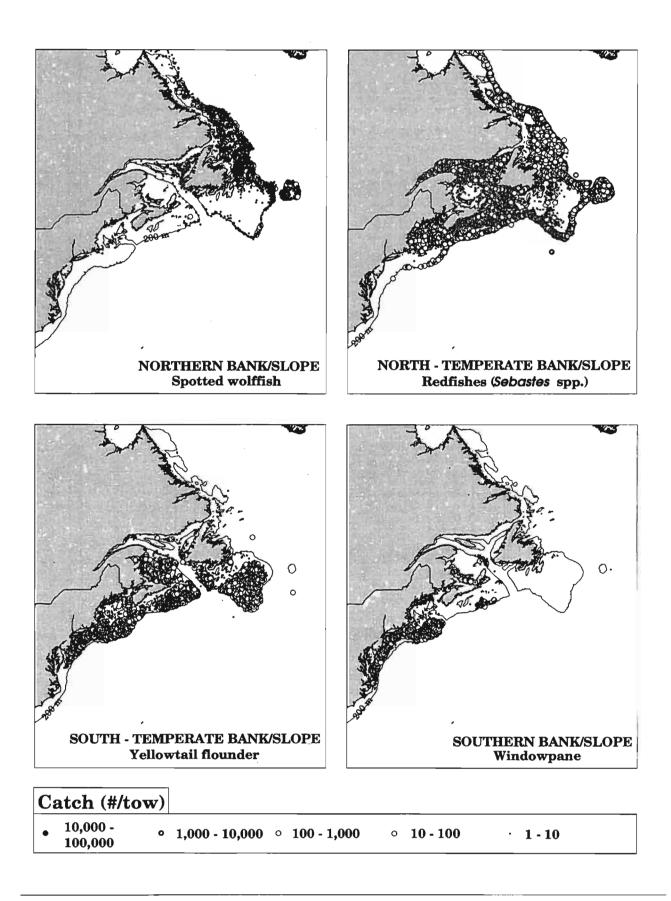



Figure 4. (continued)

		197	5-1994		••••••	197	5-1979			198	0-1984			198	4-1989		-	199	0-1994	
		Eigen		Cum %		Eigen		Cum %	-	Eigen		Cum %		Eigen		Cum %		Eigen		Cum %
F	ЪС	value	% Var	var	PC	value	% Var	var	PC	value	% Var	var	PC	value	% Var	var	PC	value	% Var	var
	1	5.815	8.8	8.8	1	6.544	9.9	9.9	1	6.159	9.3	9.3	1	5.431	8.2	8.2	1	5.580	8.5	8.5
	2	3.970	6.0	14.8	2	4.016	6.1	16.0	2	3.984	6.0	15.4	2	4.287	6.5	14.7	2	4.189	6.3	14.8
	3	3.418	5.2	20.0	3	3.477	5.3	21.3	3	3.321	5.0	20.4	- 3	3.541	5.4	20.1	3	3.673	5.6	20.4
	4	2.890	4.4	24.4	4	2.946	4.5	25.7	4	2.943	4.5	24.9	4	2.962	4.5	24.6	4	2.947	4.5	24.8
	5	2.524	3.8	28.2	5	2.527	3.8	29.6	5	2.326	3.5	28.4	5	2.621	4.0	28.5	5	2.773	4.2	29.0
	6	2.264	3.4	31.6	6	2.370	3.6	33.2	6	2.248	3.4	31.8	6	2.100	3.2	31.7	6	2.234	3.4	32.4
	7	1.888	2.9	34.5	7	1.859	2.8	36.0	7	1.800	2.7	34.5	7	2.045	3.1	34.8	7	2.019	3.1	35.5
	8	1.688	2.6	37.1	8	1.795	2.7	38.7	8	1.715	2.6	37.1	8	1.781	2.7	37.5	8	1.772	2.7	38.2
	9	1.643	2.5	39.5	9	1.658	2.5	41.2	9	1.669	2.5	39.6	9	1.680	2.5	40.1	9	1.682	2.5	40.7
·	10	1.597	2.4	42.0	10	1.583	2.4	43.6	10	1.582	2.4	42.0	10	1.536	2.3	42.4	10	1.600	2.4	43.1
·	11	1.376	2.1	44.0	11	1.374	2.1	45.7	11	1.383	2.1	44.1	11	1.449	2.2	44.6	11	1.442	2.2	45.3
·	12	1.358	2.1	46.1	12	1.264	1.9	47.6	12	1.303	2.0	46.1	12	1.346	2.0	46.6	12	1.379	2.1	47.4
•	13	1.297	2.0	48.1	13	1.209	1.8	49.4	13	1.275	1.9	48.0	13	1.310	2.0	48.6	13	1.341	2.0	49.4
·	14	1.165	1.8	49.8	14	1.185	1.8	51.2	14	1.188	1.8	49.8	14	1.217	1.8	50.5	14	1.251	1.9	51.3
ŀ	15	1.107	1.7	51.5	15	1.100	1.7	52.9	15	1.137	1.7	51.6	15	1.144	1.7	52.2	15	1.165	1.8	53.1
- I -	16	1.101	1.7	53.2	16	1.082	1.6	54.5	16	1.123	1.7	53.3	16	1.107	1.7	53.9	16	1.083	1.6	54.7
· ·	17	1.026	1.6	54.7	17	1.058	1.6	56.1	17	1.072	1.6	54.9	17	1.041	1.6	55.5	17	1.052	1.6	56.3
•	18	1.020	1.5	56.3	18	1.042	1.6	57.7	18	1.021	1.5	56.4	18	1.024	1.6	57.0	18	1.018	1.5	57.9
					19	1.000	1.5	59.2	19	1.015	1.5	58.0	19	1.011	1.5	58.5	19	1.002	1.5	59.4

Table 5. PCA results for entire 1975-94 data subset and for five-year blocks.

Species	Loading	Species	Loading	Species	Loadin	
		B 00				
PC1		PC6	0 707	DO10		
Gulfstream flounder	0.808	Marlin-spike (Common grenadier)	0.727	PC12		
Fourspot flounder	0.762	Redfishes	0.635	Fourbeard rockling	0.681	
Fawn cusk eel	0.744	Witch flounder	0.529	Atlantic hagfish	0.619	
Spotted hake	0.663	Black dogfish	0.525	Smooth skate	0.316	
Butterfish	0.528	Atlantic argentine	0.492			
Red hake	0.388	White hake	0,443	<u>PC13</u>		
Goosefish (Angler)	0,330	Longfin hake	0.352	Moustache (Mailed) sculpin	0.693	
				Alligatorfish	0.647	
PC2		<u>PC7</u>		Snowflake hookear sculpin	0.604	
Blue hake	0.843	Windowpane	0.755			
Rock grenadier	0.770	Winter skate	0.748	PC14		
Longnose eel	0.763	Little skate	0.722	Roughnose grenadier	0.831	
Large-scale tapirfish	0.663	Northern sand lance	0.387	Longfin hake	0.604	
Roughhead grenadier	0.506			Black dogfish	0.513	
Marlin-spike (Common grenadier)	0.301	PC8		0		
1 1 5 7		Spotted wolffish	0.729	PC15		
PC3		Atlantic wolffish	0.726	Atlantic halibut	0.790	
Scup	0.796	Northern wolffish	0.676	Haddock	0.587	
Summer flounder	0.752	Roughhead grenadier	0.428		0.000	
Northern (Common) searobin	0.751	Atlantic cod	0.366	PC16		
Black sea bass	0.725	Greenland halibut	0.345	Polar sculpin	0.530	
Smooth dogfish	0.578	Redfishes	0.303	Roughhead grenadier	0.365	
enreen a-gnon	0.070	i iounoneo	0.000	Greenland halibut	0.357	
PC4		PC9		Greenland Hallbut	0.007	
Silver hake	0.689	Blackbelly rosefish	0,792	PC17		
Red hake	0.574	Offshore hake	0.775	Lumpfish	0.778	
Cusk	0.550	Shortnose greeneye	0.680	Shorthorn sculpin	0.635	
Pollock	0.539	Shormose greeneye	0.000	Sea raven	0.0339	
Spiny dogfish	0.512	PC10			0.339	
White hake	0.312	Thorny skate	0.687	DC10		
Ocean pout	0.467	American plaice		<u>PC18</u> Cunner	0.000	
•			0.637		0.630	
Goosefish (Angler)	0.380	Witch flounder	0.415	Winter flounder	0.390	
Haddock	0.361	Atlantic cod	0.372	Snake blenny	0.361	
Shortfin squid	0.350	Smooth skate	0.356			
PC5		PC11				
Longhorn sculpin	0.771	Arctic cod	0.751			
Sea raven	0.673	Atlantic sea poacher	0.742			
Yellowtail flounder	0.634	Greenland halibut	0.451			
Winter flounder	0.598	Polar sculpin	0.304			
Ocean pout	0.468					

Table 6. Species loadings on VARIMAX-rotated principal components for 1975-94 data subset.

¹Bold type indicates species with loadings \geq 0.5; standard type indicates species with loadings \geq 0.3 and < 0.5.

Figure 5. Dendrogram derived from clustering the species factor scores on the 18 PCs showing the organizational hierarchy of the species assemblages derived from the PCA of the 1975-94 data subset.

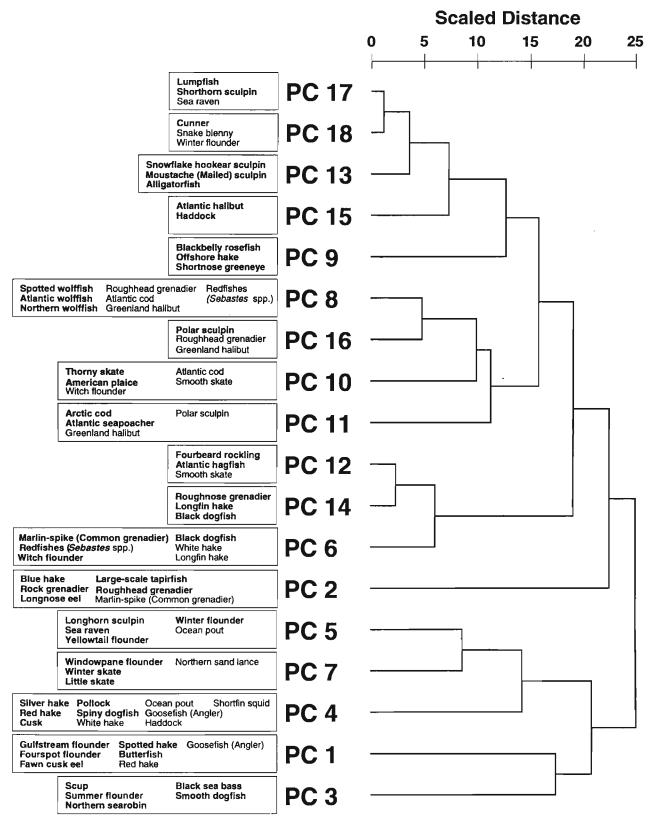
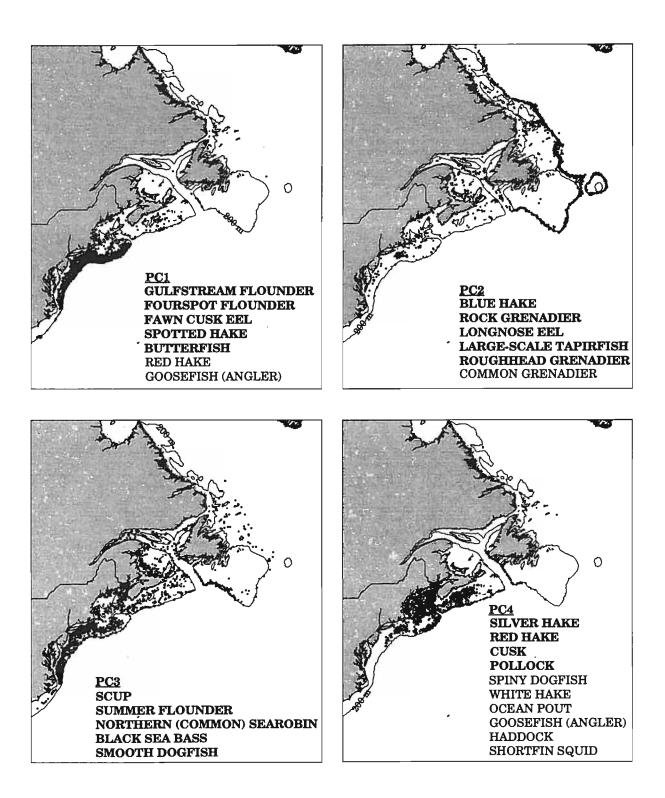



Figure 6. Maps of the sites in the top 5% of scores for the principal components derived from the 1975-94 data subset.

Figure 6. (continued)

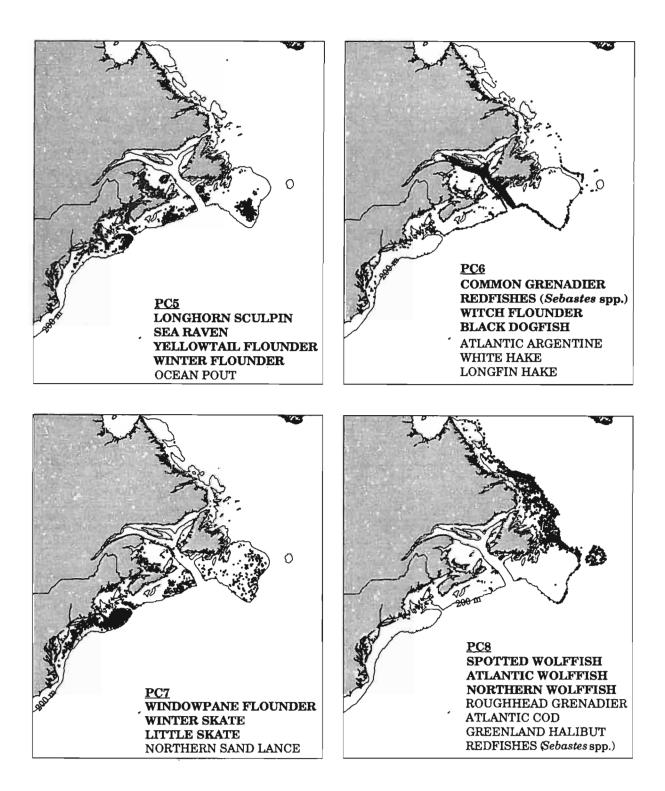
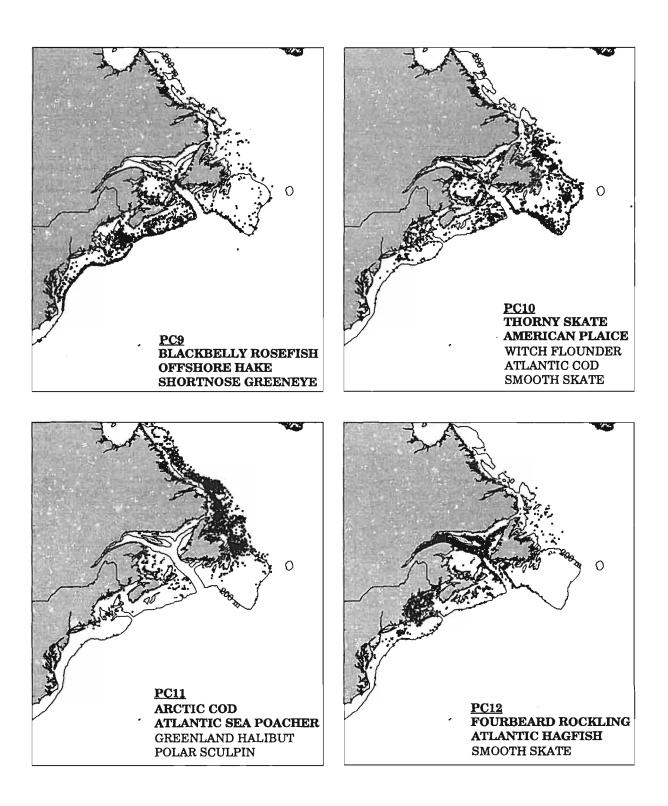
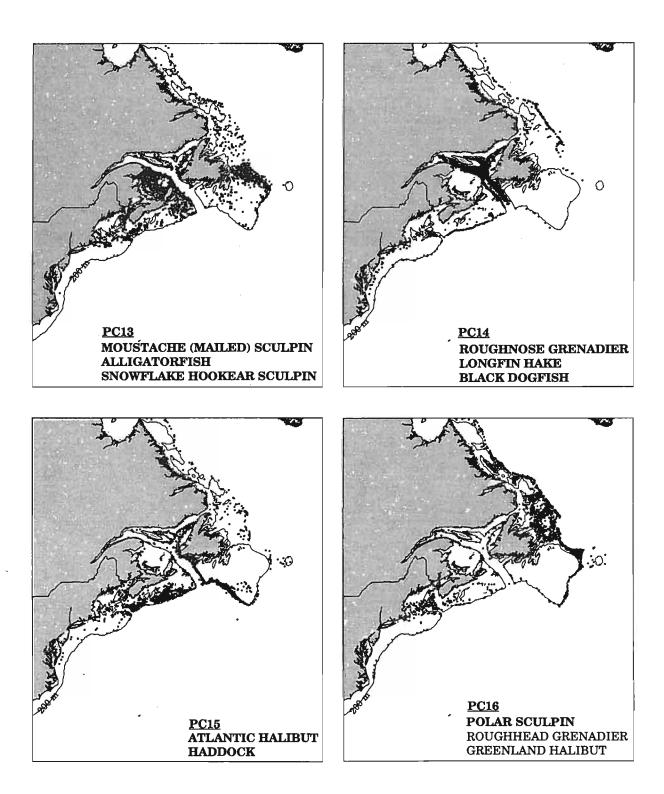




Figure 6. (continued)

23

Figure 6. (continued)

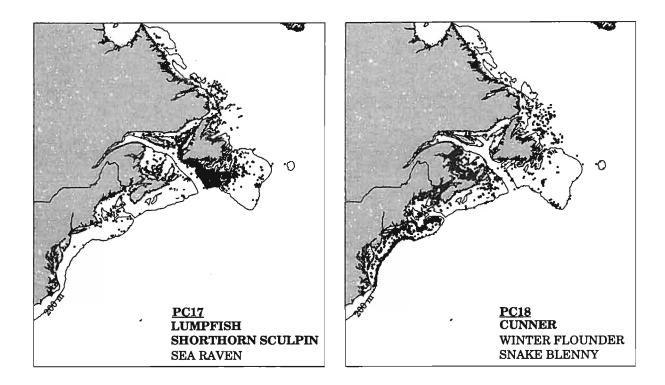


Figure 7a. Maps of the sites in the top 5, 10, 15, and 20% of scores for PC5 from the 1975-94 data subset.

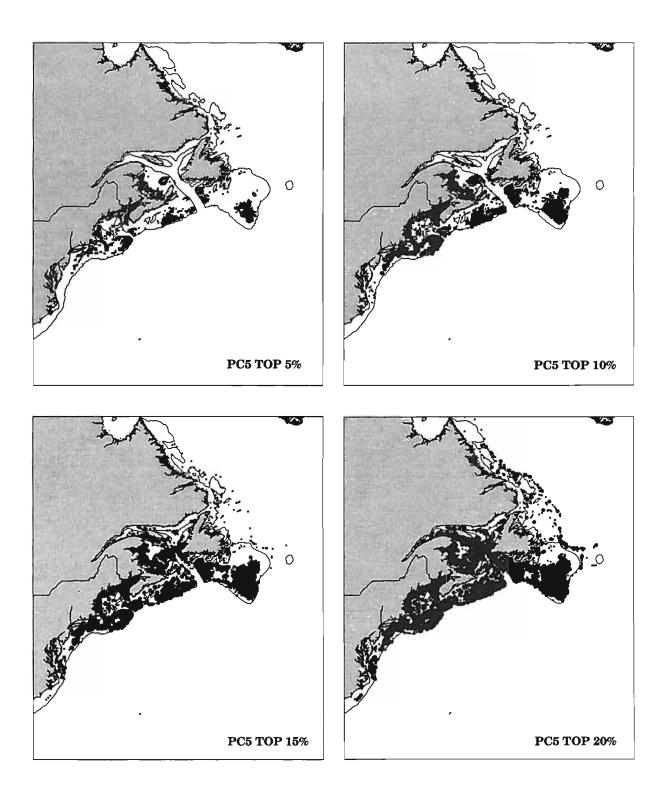
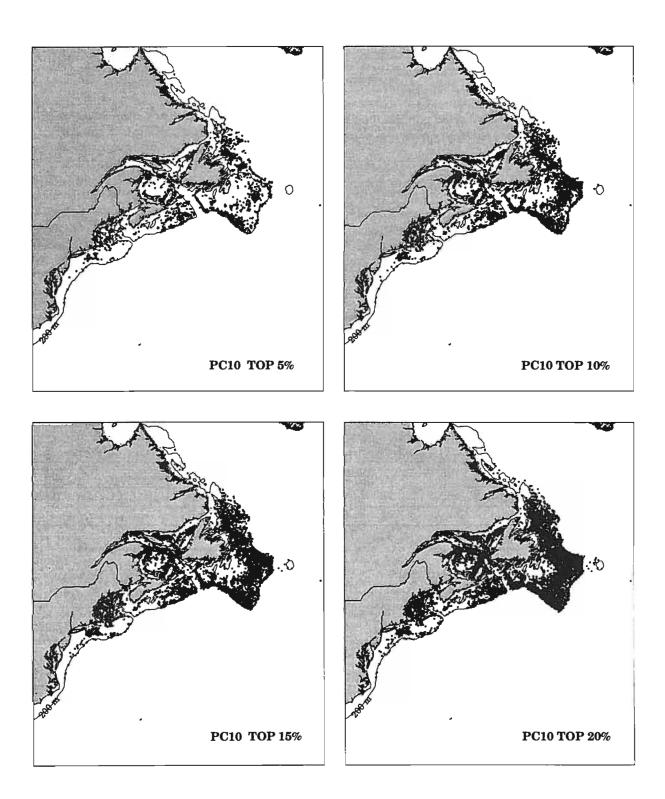
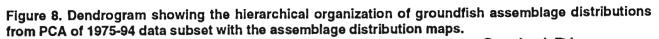
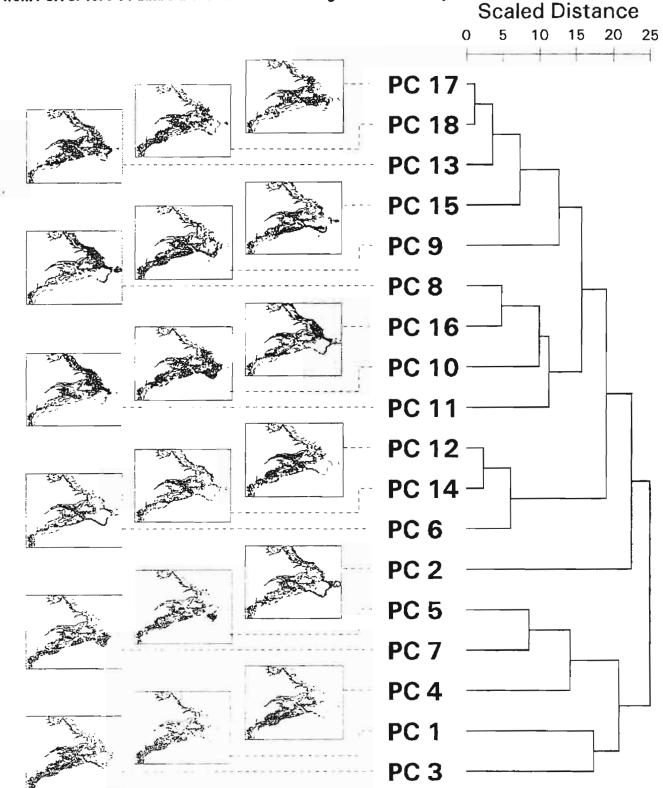





Figure 7b. Maps of the sites in the top 5, 10, 15, and 20% of scores for PC10 from the 1975-94 data subset.

each PC (Table 7). Mean bottom temperatures range from 1.0 to 11.2° C; mean depths range from 52 to 537 m. Substantial variation is evident, as standard deviations are 70% and 60% of the mean bottom temperatures and depths, respectively. However, assemblages close to each other in mean bottom temperature tend to be further apart in mean depth, and vice versa. For example, PCs 11 and 17 are consecutive on the temperature list (Table 7), with mean temperatures of 1.0 and 1.2° C. However, in the depth list, there are five PCs between them, and they have mean depths of 131 and 261 m. This pattern suggests that assemblages with similar depth preferences tend to be separated latitudinally, while assemblages that occur in the same region tend to have different depth preferences.

The temperature and depth preferences of the assemblages shown in Table 7 may have some biases within them, and should not be over interpreted. The data subset used for the PCA contained a mixture of data from different times of year (see Methods section). Hence, the assemblages represented by the different PCs may be based on data from different months and seasons, which could distort the apparent temperature and depth preferences. Developing a more refined analysis of assemblage temperature and depth preferences awaits further work.

Cluster Analysis

Site Clusters. Species compositions of the 18 site cluster groups are shown in Table 8. The numeric value in the table is the relative abundance of a species in a site cluster group (the average $\log_{10}(x+1)$ transformed number caught/tow of the species in that site cluster group divided by its average $\log_{10}(x+1)$ transformed number caught/tow in the entire data set, including the trawl sets which did not contain the species). Each species is assigned to the site cluster group in which it has its highest relative abundance.

Species compositions of the 18 site cluster groups ranged from 0-8 species. Two site cluster groups, numbers 1 and 7, did not contain any species with their highest relative abundance. Unlike PCA, the methods used to identify species compositions of the sites groups constrain each species to be associated with only one site cluster group. However, maximum relative abundances vary considerably. Three species, thorny skate, American plaice, and Atlantic cod, had maximum relative abundances < 2, indicating that their maximum abundance within a site cluster group is less than ten times their average abundance. These species are loosely associated with several site cluster groups, and occur at lower relative abundances in most of the remaining groups. They may be considered assemblage

Table 7. Mean, standard deviation, and range of bottom temperature and depth for the
sets included in the top 5% of the principal components.

	Bottom	tempe	erature(°C)	· .		C)epth (m)	
PC	Mean	SD	Min	Max	PC	Mean	SD	Min	Max
11	1.0	1.6	-1.9	14.6	5	52	26	13	313
17	1.2	2.8	-1.7	16.2	7	68	53	13	496
8	2.3	1.4	-1.6	11.7	1	98	65	18	590
13	2.5	3.2	-1 .5	18.0	18	101	98	13	835
10	3.2	2.8	-1.6	15.6	3	105	124	13	1485
16	3.4	1.9	-0.9	17.1	4	124	62	17	525
2	4.1	2.2	-1.2	19.9	13	127	82	20	695
6	5.5	1.7	-0.4	20.4	17	131	72	20	499
14	5.7	1.9	-1.5	21.7	9	159	115	13	1276
15	5.8	2.5	-1.2	19.9	15	163	125	13	960
12	6.1	2.3	-1.2	19.9	10	188	133	22	696
5	6.6	4.1	-1.6	18.4	12	230	112	15	1239
9	7.9	4.0	-1.6	23.0	11	261	108	27	889
18	8.0	5.2	-1.5	24.3	8	280	83	58	790
4	8.1	2.0	0.9	16.9	6	363	117	25	695
3	9.4	5.1	-1.2	26.8	16	371	156	18	1100
7	9.6	4.9	-1.5	24.0	14	391	187	20	1485
1	11.2	2.5	-0.8	25.9	2	537	245	20	1485

generalists. Three other species, snowflake hookear sculpin, roughnose grenadier, and black sea bass, had maximum relative abundances > 60, indicating that they were strongly associated with their primary site cluster group. These species tended to associate with only a few assemblages, and were absent from many of the assemblages. These species may be considered assemblage specialists.

Geographical distributions of the 18 site cluster groups are mapped in Figure 9. Species compositions on the site cluster maps of Figure 9 are taken from Table 8. The majority of the cluster groups shows a considerable degree of spatial aggregation. However, site cluster group 1, which contains 16,475 sites (42.6% of the sites), is distributed over the entire study area. A dendrogram showing hierarchical relationships among the site cluster groups, together with the maps for the 18 groups, is shown in Figure 10. A poster-sized version of this figure is available upon request. The dendrogram was produced by agglomerative hierarchical clustering (squared Euclidean distance, Ward's method) of the 18 site groups using the species mean log₁₀(x+1) catch per tow in each site group. The first branching in this dendrogram suggests a biogeographic break around Georges Bank. This dendrogram is directly comparable to the equivalent dendrogram of the PCAderived assemblages (Figure 8).

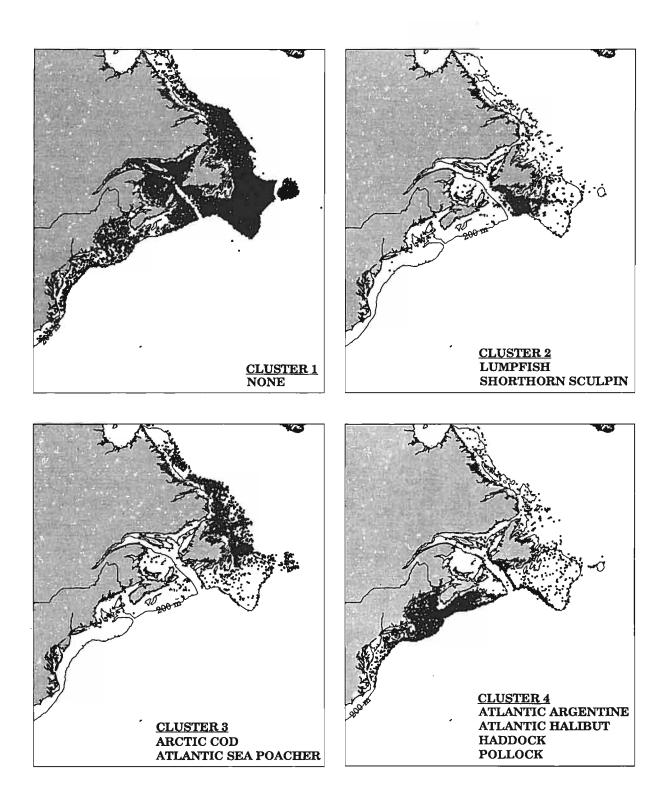
Average depth and bottom temperatures were calculated for the 18 cluster site groups (Table 9). The patterns are similar to those observed for the PCA (Table 7). Mean bottom temperatures range between 0.7 and 11.9° C; mean depths range between 58 and 504 m. Standard deviations are 79% and 64% of the mean bottom temperatures and depths, respectively. As with the PCA-derived assemblages, the temperature and depth preferences may have been biased by differences among the cluster groups in sampling months and seasons.

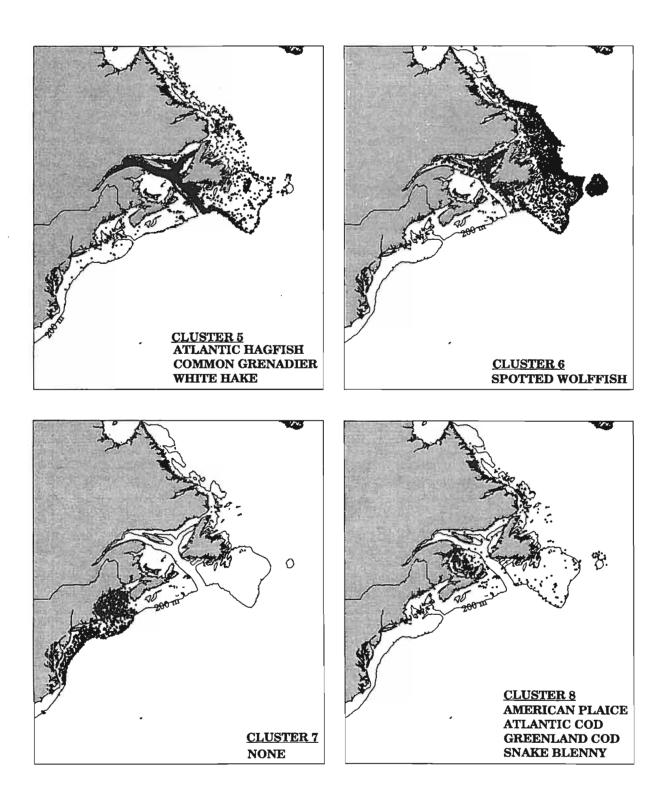
Species Clusters. The species groups, and their hierarchical relationships derived from the species clustering, are shown in the dendrogram in Figure 11. The species clusters contain from one to fifteen species. Some species pairs are very close (e.g., American plaice and Atlantic cod, redfishes and witch flounder, arctic cod and Atlantic sea poacher, blue hake and longnose eel). As with the species groups derived from the sites cluster analysis, every species is assigned to only one species cluster group. The species cluster dendrogram (Figure 11) can be compared directly with the dendrogram derived by clustering the species using the factor scores on the 18 PCs described above (Figure 5), and with the species groups derived from the site cluster analysis (Table 8).

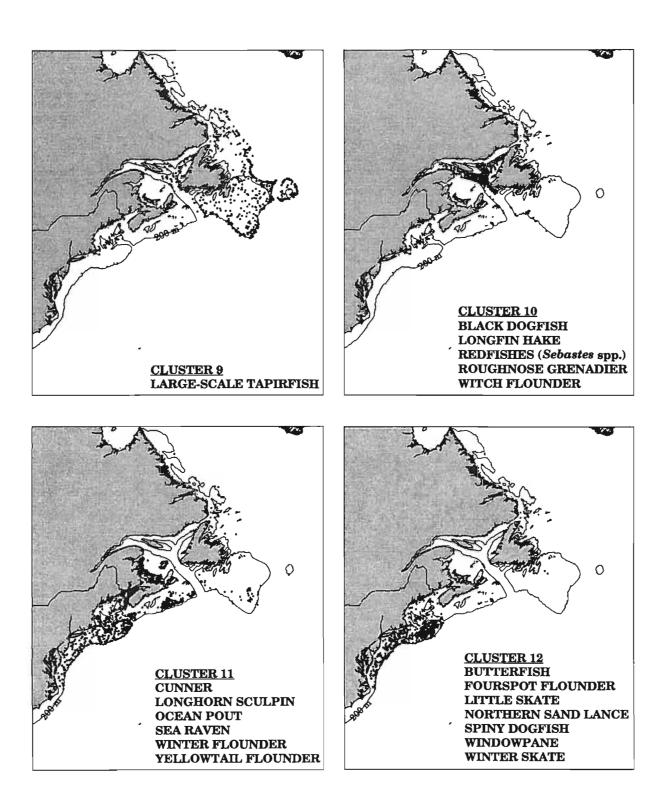
Temporal Variation

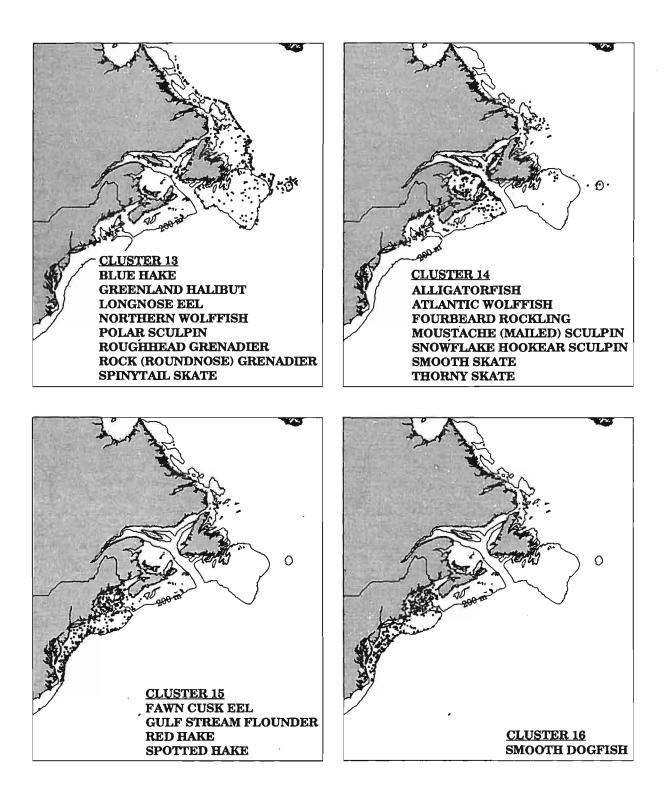
Single Species. The ACON distribution plots for the four test species show interesting patterns (Figure 12ad) for the boundaries of species distributions, suggesting that more analyses of this type could be useful. The lack of surveys in the early-mid 1970s over the Northern Grand Banks, off Labrador, and over the Flemish Cap, and the cessation of surveys over Flemish Cap in the mid 1980s have clearly influenced the Atlantic cod and arctic cod data, and preclude interpretation for these areas and time periods. However, other meaningful results are available. For Atlantic cod, the major shift has been in the north, where the boundary moved southward during the 1990s. For arctic cod, there has been an increase in frequency of catches through time, as well as a southward expansion onto the north and east Grand Banks. For ocean pout, the major concentrations were south of 42⁰ N throughout the entire period. There was a separate area in the Gulf of St. Lawrence, with distribution variable on the Scotian Shelf. The range of butterfish gradually expanded northward during 1970-90, and has contracted since.

The bivariate ellipses show similar trends affecting the core of species distributions (Figure 13). For Atlantic cod, the latitudinal range of the core distribution has contracted, with a marked southward retreat of the northern range in the 1990s. For Arctic cod, there has been a clear expansion south and east since 1980. For both ocean pout and butterfish, the two southerly species, there was an expansion north and east during 1970-90, with contraction south and west during 1990-94. Butterfish exhibited less change than the other three species.


Assemblages. The assemblages identified by PCA of the entire 1975-94 time period are compared with those identified by PCA of the five-year time periods in Table 10. Species loadings on the PCs for the individual fiveyear time periods are in Appendix 4A-D. There was considerable persistence of the 1975-94 assemblages through time. Six assemblages (1, 7, 9, 10, 11, 12) contained a consistent core of high-level species (i.e., with loadings \geq 0.5) throughout, although other species sometimes joined assemblages during certain five-year blocks. Five assemblages (2, 5, 8, 17, 18) always retained their high-level species, but some of the loadings dropped below 0.5 during one or more five-year blocks. Five assemblages (3, 4, 6, 13, 14) split into two assemblages during at least one five-year block. Three assemblages (6, 14, 15) disappeared from one five-year block, but generally retained their high-level species during the other blocks.


Table 8. Standardized mean log catch per tow (standardized to overall species mean log catch per tow) of each species in the site cluster groups.¹


				_					Site cl	uster gro	up							
Species	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Lumpfish	0.73	9.70	0.81	0.41	1.20	0.66	0.08	0.44	0.74	1.95	0.14	0.01	0.50	0.32	0.06	0.00	0.07	0.04
Shorthorn sculpin	0.60	13.75	1.04	0.16	0.33	0.46	0.02	2.40	0.30	0.00	1.32	0.00	0.40	0.78	0.00	0.23	0.00	0.00
Arctic cod	0.71	0.96	8.53	0.11	0.34	0.80	0.00	1.55	0.38	0.01	0.04	0.00	0.62	0.15	0.00	0.00	0.01	0.00
Atlantic sea poacheer	0.55	0.60	9.29	0.08	0.44	0.88	0.00	2.06	0.39	0.00	0.01	0.00	1.09	1.15	0.00	0.00	0.00	0.00
Atlantic argentine	0.39	0.44	0.09	3.85	2.83	0.36	0.21	0.15	0.79	2.81	0.08	0.24	0.46	0.47	0.04	0.25	3.69	0.34
Atlantic halibut	0.63	0.66	0.32	3.02	1.22	0.94	0.43	0.55	1.10	1.80	1.45	0.22	0.83	0.81	0.50	0.14	1.05	0.12
Haddock	0.55	0.30	0.08	4.26	0.40	0.23	1.43	0.17	0.38	0.67	3.62	1.08	0.20	1.36	1.13	1.03	1.77	1.10
Pollock	0.27	0.38	0.07	5.07	1.01	0.19	1.80	0.10	0.25	1.96	2.22	0.44	0.30	2.28	1.38	1.27	2.54	1.39
Atlantic hagfish	0.54	0.13	0.13	1.11	4.49	0.55	1.25	0.11	1.04	0.99	0.52	0.41	0.94	1.85	1.11	2.12	1.85	0.41
Marlin-spike (Common grenadier)	0.49	0.67	0.43	0.34	4.44	1.39	0.03	0.29	3.80	0.03	0.03	0.04	2.59	0.65	0.05	0.02	0.35	0.00
White hake	0.40	0.29	0.11	2.37	2.84	0.27	2.02	0.48	0.52	2.60	2.72	1.10	0.36	1.86	1.86	1.51	2.26	1.92
Spotted wolffish	0.77	0.46	1.29	0.26	0.65	3.31	0.00	1.22	1.93	0.26	0.10	0.00	1.46	0.35	0.00	0.00	0.04	0.00
American plaice	1.24	0.94	1.14	0.58	0.64	1.17	0.34	1.87	0.94	0.70	0.63	0.08	0.73	1.35	0.34	0.33	0.41	0.38
Atlantic cod	1.10	0.83	0.87	0.70	0.81	1.39	0.28	1.87	0.74	1.18	1.23	0.21	0.68	1.63	0.23	0.18	0.32	0.15
Greenland cod	0.45	0.04	0.23	0.12	0.28	0.40		55,64	0.51	0.00	0.44	0.00	0.12	1.02	0.00	0.00	0.00	0.00
Snake blenny	0.88	0.52	1.29	0.22	0.37	0.43		21.00	0.79	0.00	2.13	0.22	0.34	8.32	0.00	0.18	0.00	0.00
Large-scale tapirfish	0.62	0.92	0.82	0.15	0.90	1.48	0.00	0.22	14.16	0.31	0.04	0.00	9.42	0.27	0.00	0.00	0.00	0.00
Black dogfish	0.35	0.76	0.20	0.16	5.59	0.68	0.01	0.18	1.47	9,95	0.02	0.07	3.55	0.24	0.00	0.00	0.02	0.00
Longfin hake	0.21	0.24	0.04	0.90	6.13	0.07	0.40	0.11	0.17	13.98	0.13	0.24	0.00	1.23	0.26	0.12	5.57	0.23
Redfishes (Sebastes spp.)	0.70	0.57	0.51	0.97	2.42	1.58	0.33	0.54	1.95	2.59	0.13	0.06	1.39	1.53	0.28	0.27	0.69	0.40
Roughnose grenadier	0.36	0.07	0.09	0.17	0.40	0.29	0.00	0.00	0.85	65.54	0.00	0.12	2.07	1.11	0.00	0.00	0.00	0.00
Witch flounder	0.72	0.55	0.48	0.95	2.31	1.51	0.45	0.66	1.62	3.56	0,35	0.10	1.28	1.48	0.47	0.37	0.56	0.46
Cunner	0.17	0.07	0.00	2.44	0.03	0.00	2.74	0.00	0.00	0.00	12.09	10.12	0.00	0.36	2.06	1.52	3.98	0.73
Longhorn sculpin	0.61	1.34	0.11	1.70	0.15	0.17	2.22	1.04	0.29	0.01	8.93	3.82	0.19	1.17	1.74	1.33	1.46	1.26
Ocean pout	0.33	0.09	0.07	2.60	0.19	0.04	4.46	0.91	0.08	0.21	8,65	2.17	0.00	3.27	3.24	3.90	4.23	2.64
Sea raven	0.73	3.37	0.19	1.20	0.34	0.42	2.02	0.46	0.53	0.42	6.06	1.94	0.45	1.31	1.42	1.37	1.56	1.33
Winter flounder	0.21	0.09	0.01	1.28	0.02	0.00	2.43	1.00	0.00	0.02	16.98	5.18	0.00	0.41	1.84	2.80	1.96	3.72
Yellowtail flounder	1.27	0.55	0.17	0.98	0.20	0.42	0.88	1.00	0.69	0.05	4.81	1.76	0.37	0.1 <u>7</u>	0.56	0.75	0.84	0.83
Butterfish	0.32	0.00	0.00	2.50	0.05	0.00	8.52	0.00	0.00	0.00	2.54	9.43	0.00	0.02	8.36	8.74	5.50	6.63
Fourspot flounder	0.29	0.02	0.00	2.41	0.05	0.00	8.60	0.00	0.00	0.00	2.20	10.61	0.00	0.00	9.78	8.40	5.18	9.68


Species12345678910111213141516Little skate0.250.030.003.040.060.005.810.000.000.023.8014.050.010.213.755.09Northem sand lance1.120.680.291.180.330.941.550.931.470.080.924.460.670.391.330.83Spiny dogfish0.320.080.023.710.310.074.290.420.090.154.375.520.081.163.783.81Windowpane0.210.000.002.430.150.044.560.000.060.404.9118.420.110.002.995.14Winter skate0.350.230.012.550.300.102.380.350.130.598.0610.850.060.551.670.86Blue hake0.650.741.010.120.421.400.000.169.330.050.080.0019.840.160.000.00	17 1 3.25 5.4 1.44 1.3 2.77 4.5 2.69 8.3 2.58 1.3 0.00 0.0 0.01 0.0 0.00 0.0
Northem sand lance1.120.680.291.180.330.941.550.931.470.080.924.460.670.391.330.83Spiny dogfish0.320.080.023.710.310.074.290.420.090.154.375.520.081.163.783.81Windowpane0.210.000.002.430.150.044.560.000.060.404.9118.420.110.002.995.14Winter skate0.350.230.012.550.300.102.380.350.130.598.0610.850.060.551.670.86Blue hake0.650.741.010.120.421.400.000.169.330.050.080.0019.840.160.000.00	1.44 1.3 2.77 4.5 2.69 8.3 2.58 1.3 0.00 0.0 0.01 0.0
Spiny dogfish0.320.080.023.710.310.074.290.420.090.154.375.520.081.163.783.81Windowpane0.210.000.002.430.150.044.560.000.060.404.9118.420.110.002.995.14Winter skate0.350.230.012.550.300.102.380.350.130.598.0610.850.060.551.670.86Blue hake0.650.741.010.120.421.400.000.169.330.050.080.0019.840.160.000.00	2.77 4.5 2.69 8.3 2.58 1.3 0.00 0.0 0.01 0.0
Windowpane 0.21 0.00 0.00 2.43 0.15 0.04 4.56 0.00 0.06 0.40 4.91 18.42 0.11 0.00 2.99 5.14 Winter skate 0.35 0.23 0.01 2.55 0.30 0.10 2.38 0.35 0.13 0.59 8.06 10.85 0.06 0.55 1.67 0.86 Blue hake 0.65 0.74 1.01 0.12 0.42 1.40 0.00 0.16 9.33 0.05 0.08 0.00 19.84 0.16 0.00 0.00	2.69 8.3 2.58 1.3 0.00 0.0 0.01 0.0
Winter skate 0.35 0.23 0.01 2.55 0.30 0.10 2.38 0.35 0.13 0.59 8.06 10.85 0.06 0.55 1.67 0.86 Blue hake 0.65 0.74 1.01 0.12 0.42 1.40 0.00 0.16 9.33 0.05 0.08 0.00 19.84 0.16 0.00 0.00	2.58 1.3 0.00 0.0 0.01 0.0
Blue hake 0.65 0.74 1.01 0.12 0.42 1.40 0.00 0.16 9.33 0.05 0.08 0.00 19.84 0.16 0.00 0.00	0.00 0.0
	0.01 0.0
Greenland halibut 0.78 0.49 2.14 0.20 1.49 2.15 0.00 0.60 1.87 1.81 0.03 0.01 2.59 0.37 0.00 0.00	0.00 0.0
Longnose (slatjaw cutthroat) eel 0.58 0.56 1.11 0.05 0.69 1.46 0.00 0.00 9.18 0.00 0.00 0.00 21.05 0.00 0.00 0.00	
Northern wolffish 0.85 0.57 0.99 0.32 0.87 2.75 0.00 0.80 2.67 0.13 0.07 0.00 2.84 0.30 0.00 0.00	0.00 0.0
Polar sculpin 0.54 0.34 2.54 0.18 0.67 3.33 0.00 0.36 3.24 0.09 0.00 0.00 3.85 0.34 0.00 0.00	0.00 0.0
Roughhead grenadier 0.72 0.44 0.78 0.17 0.62 3.24 0.00 0.37 4.65 0.03 0.02 0.00 4.84 0.25 0.00 0.00	0.01 0.0
Rock (Roundnose) grenadier 0.67 0.60 0.80 0.14 0.97 1.20 0.00 0.17 3.89 0.25 0.03 0.00 25,62 0.00 0.00 0.00	0.00 0.0
Spinytail skate 0.73 0.70 0.84 0.17 0.89 3.07 0.00 0.40 3.26 0.42 0.00 0.00 4.82 0.26 0.00 0.00	0.00 0.0
Alligatorfish 0.71 0.86 1.43 0.46 0.33 0.86 0.76 7.00 0.79 0.08 4.72 0.38 0.68 11.38 0.73 0.31	0.84 0.3
Atlantic wolffish 0.93 0.71 0.88 0.63 0.62 2.48 0.21 0.64 0.98 0.21 0.52 0.03 0.88 3.08 0.12 0.11	0.29 0.0
Fourbeard rockling 0.39 0.21 0.26 0.76 4.75 0.48 1.51 0.75 0.46 2.99 1.11 0.78 0.67 4.90 2.27 1.15	1.92 1.3
Moustach (Mailed) sculpin 1.05 0.57 0.57 1.02 0.40 0.63 0.48 4.50 0.57 0.00 2.13 0.45 0.43 12.00 0.51 0.73	0.83 0.3
Snowflake hookear sculpin 0.42 0.40 0.09 0.32 0.66 0.04 0.00 2.81 0.00 0.62 0.34 0.22 0.00 76.83 0.00 0.00	0.18 0.0
Smooth skate 0.69 0.56 0.43 1.16 2.46 1.41 0.68 0.48 0.64 1.56 0.81 0.14 0.69 3.18 0.72 0.55	0.80 0.6
Thomy skate 1.13 1.15 0.94 0.64 0.94 1.29 0.37 0.89 1.21 0.95 0.63 0.11 0.74 1.46 0.30 0.34	0.47 0.2
Fawn cusk eel 0.31 0.00 0.00 2.46 0.04 0.00 6.85 0.00 0.00 0.00 2.18 6.39 0.00 0.00 24.66 6.44	6.67 6.4
Gulfstream flounder 0.29 0.06 0.00 2.48 0.09 0.00 8.29 0.00 0.00 0.00 2.10 8.50 0.00 0.00 14.54 7.43	6.90 6.8
Red hake 0.25 0.01 0.00 3.92 0.07 0.00 6.81 0.00 0.01 0.02 2.78 5.83 0.00 0.15 7.21 5.17	4.59 6.1
Spotted hake 0.35 0.02 0.00 1.63 0.04 0.00 9.02 0.00 0.00 0.00 2.00 8.42 0.00 0.00 14.86 9.50	10.65 14.2
Smooth dogfish 0.30 0.00 0.00 1.64 0.07 0.00 6.94 0.00 0.00 0.00 2.14 5.34 0.00 0.00 6.69 33.55	4.61 29.2
Blackbelly rosefish 0.25 0.00 0.00 3.57 0.23 0.00 5.26 0.00 0.00 0.00 1.66 3.84 0.00 0.00 4.53 6.00 3	31.86 2.7
Cusk 0.25 0.09 0.01 6.28 0.15 0.12 2.79 0.06 0.22 0.15 0.64 0.57 0.06 0.75 2.03 2.81	6.40 4.9
Offshore hake 0.36 0.06 0.00 2.39 0.39 0.00 4.08 0.00 0.00 2.49 1.44 5.77 0.00 1.00 2.35 7.58 4	40.01 2.5
Shortfin squid 0.52 0.02 0.07 3.50 0.66 0.12 3.55 0.43 0.27 0.25 2.21 4.19 0.16 0.92 3.34 3.23	4.86 2.7
Shortnose greeneye 0.21 0.00 0.00 2.48 0.07 0.00 5.75 0.00 0.00 0.00 2.64 5.64 0.00 0.00 8.18 0.83 4	47.92 3.0
Black sea bass 0.21 0.00 0.00 1.35 0.00 0.00 8.29 0.00 0.00 0.00 2.29 8.61 0.00 0.00 10.40 14.57	5.07 62.9
Goosefish (Angler) 0.35 0.30 0.08 3.35 1.54 0.20 3.88 0.19 0.48 1.39 1.61 2.36 0.30 0.38 4.51 3.62	4.17 4.6
Northern (Common) searobin 0.31 0.00 0.00 1.56 0.01 0.00 8.37 0.00 0.00 0.00 2.32 9.41 0.00 0.00 11.03 15.80	4.62 29.0
Scup 0.25 0.01 0.00 1.66 0.00 0.00 8.48 0.00 0.00 0.00 2.28 7.47 0.00 0.00 8.87 23.81	3.63 31.4
Silver hake 0.31 0.13 0.05 3.91 0.56 0.09 5.00 0.06 0.17 0.85 2.55 3.72 0.10 0.43 4.64 4.51	4.01 5.4
Summer flounder 0.29 0.00 0.00 1.45 0.02 0.00 7.23 0.00 0.00 0.00 1.56 11.06 0.00 0.00 9.75 25.17	4.31 27.8
	<u>4.31 21.0</u>

¹Values in bold type indicate the species assigned to a site cluster group, based on having their highest mean standardized catch per tow in that site cluster. No species reached its maximum standardized mean catch per tow in site clusters 1 and 7. Figure 9. Geographical distributions of the 18 site cluster groups with associated species.

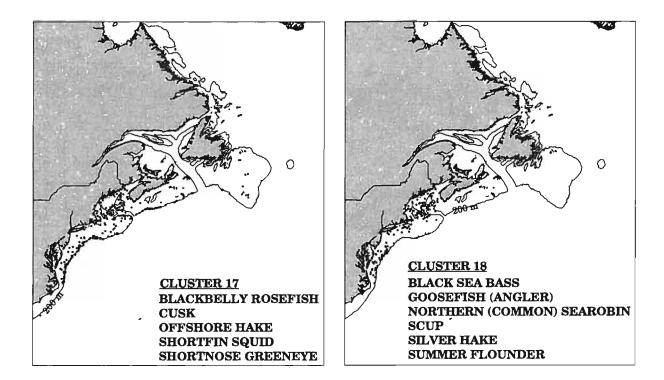
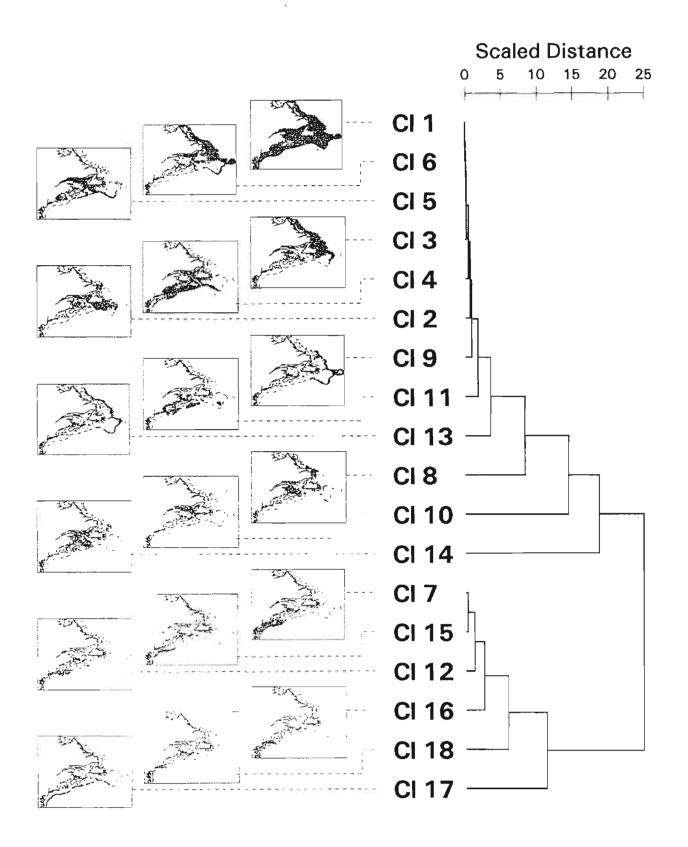
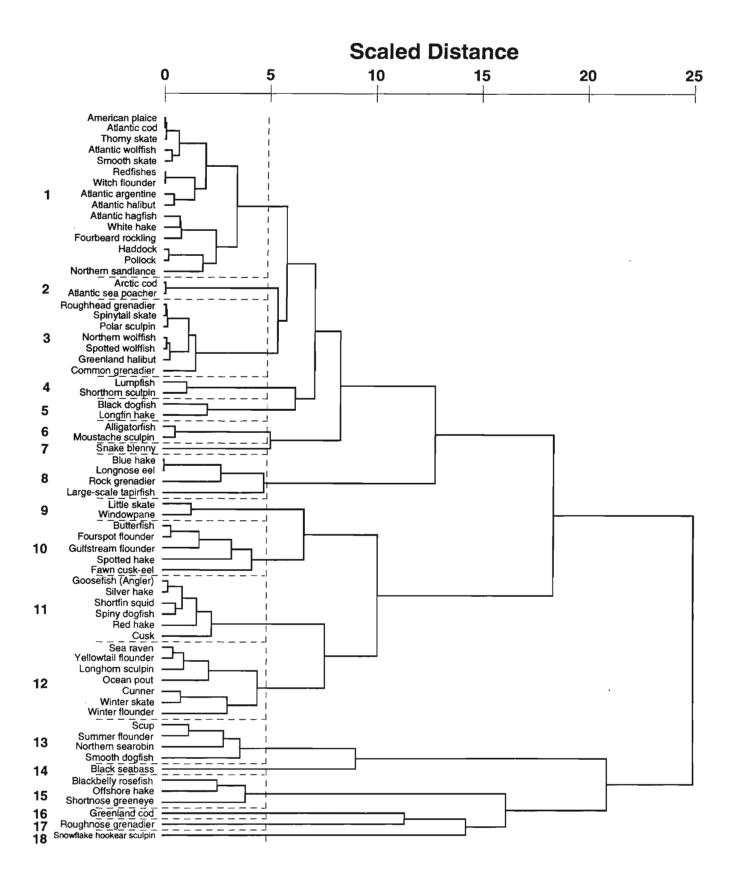



Figure 10. Dendrogram showing the hierarchical organization of groundfish assemblages from the site cluster analysis of the 1975-94 data subset, with assemblage distribution maps.

	Bottom	tempe	erature (*C)		C)epth (m)	
CG	Mean	SD	Min	Max	CG	Mean	SD	Min	Max
2	0.7	2.3	-1.7	15.6	11	58	54	13	579
3	1.0	1.8	-1.7	10.2	12	85	67	15	382
8	1.7	2.4	-1.5	14.6	18	101	63	20	265
1	2.1	3.2	-1.5	27.1	16	111	78	20	380
6	2.5	1.9	-1.7	12.5	15	114	67	24	336
14	2.7	2.4	-1.1	11.0	7	117	76	16	457
9	3.0	2.0	-1.6	8.2	8	129	109	27	808
13	3.1	1.9	-1.4	8.4	4	133	91	13	1105
5	4.5	2.1	-1.7	14.9	14	134	93	33	578
10	5.8	1.6	-1.5	12.6	17	140	82	27	382
4	7.5	3.4	-1.6	28.0	2	151	115	27	1168
11	8.5	3.7	-1.3	23.1	1	173	136	14	1485
17	9.3	3.2	-1.2	19.9	3	255	129	37	1226
7	10.3	3.1	3.5	24.4	6	295	150	40	1375
15	10.8	3.4	3.2	24.1	5	304	127	23	1375
16	10.9	3.7	4.9	24.3	10	339	101	84	790
18	11.0	3.8	4.9	21.3	9	372	226	40	1331
12	11.9	2.9	-0.8	25.9	13	504	308	42	1432

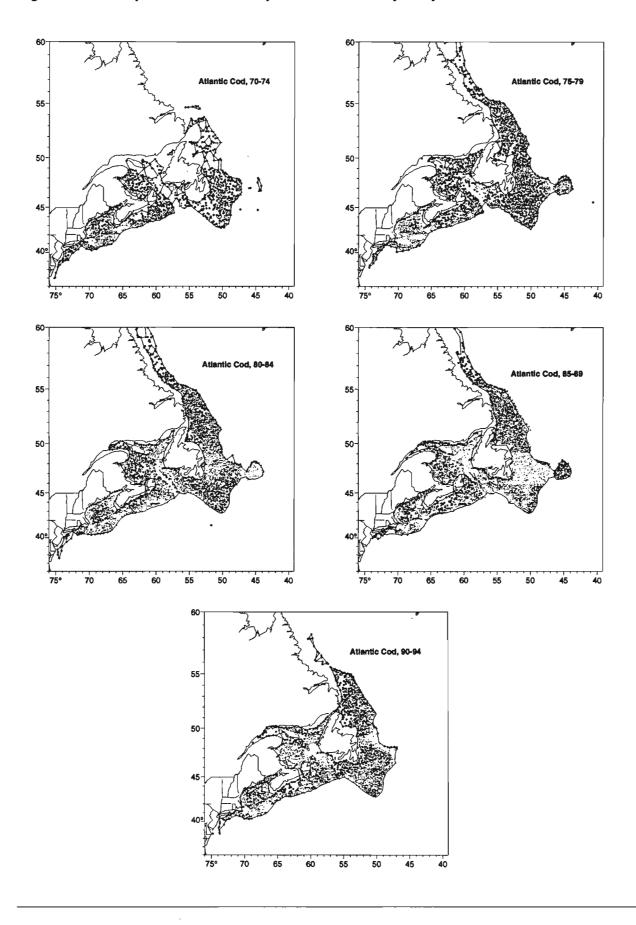
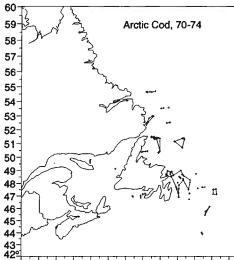
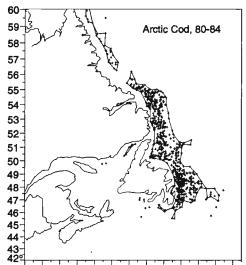

Table 9. Mean, standard deviation, and range of bottom temperature and depth for the sites in each site cluster group (CG).

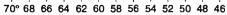
Because of the stability of assemblages, mapping 1975-94 PCA-based assemblages in five-year blocks was deemed an effective way to examine temporal variability in assemblage distribution. However, the cessation of sampling on the Flemish Cap in the mid 1980s may have introduced an apparent westward movement in distribution for the 1990-94 period. Sites scoring in the top 5% of the scores for PC 10 (thorny skate, American plaice, witch flounder, Atlantic cod, smooth skate) and PC 11 (arctic cod, Atlantic sea poacher, Greenland halibut, polar sculpin) are mapped in five-year intervals (Figures 14a and 14b). Prevalence of the PC 10 assemblage, a north-central, cool-water group, increased between 1975 and 1989, and declined after 1990 (Table 11). During 1975-89, mean position moved to the north and east, followed by a return to approximately the original mean position for 1990-94. Both latitudinal and longitudinal ranges decreased throughout 1975-94. This group occupied waters northeast of Newfoundland prior to 1990, but was absent from this area after 1990. Prevalence of the PC 11 assemblage, the most northern, coldest-water assemblage, initially declined, but increased markedly after 1985. Mean position moved to the south and east. Variation in range was erratic, driven in part by a few atypical points, some of which were north of the ECNASAP study area boundary, in areas that have been poorly sampled. Much of the recent increase in this group occurred in deep waters between Hamilton Bank and Northern Grand Banks.

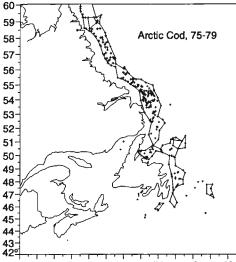
Canonical discriminant analysis. The first two canonical variables (CAN1 and CAN2) had the strongest correlations with the species (Table 12); correlations ($|r| \ge 0.5$) are plotted in Figure 15a. A few species have high positive correlations with CAN1; these species are generally northern in distribution. Many species had high negative correlations with CAN1; the majority of these species are distributed from the Scotian Shelf south. This pattern suggests that forcing functions affecting CAN1 favored northern species over southern species. Most of the species with high positive or negative correlations with CAN2 are distributed north of Cape Cod, suggesting that variation in the forcing functions affecting CAN2 occurred primarily in northern or central portions of the study area.

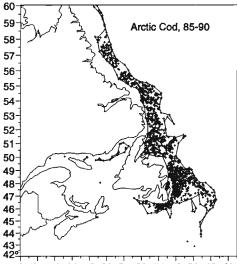
Year centroids plotted on the CAN1 vs CAN2 plane are shown in Figure 15b. The centroids for 1975-81 remain in the upper left quadrant of the plot, without systematic change. For the CAN1 axis, the yearly means then follow an increasing trend for 1982-86, remain stable for 1987-90, and resume increasing for 1991-94. The yearly means fluctuate along the CAN2 axis, with the 1975-81 period of minor erratic variation followed a decline for 1982-84, stability for 1985-87, and a fairly steady increase for 1988-94, which returned CAN2 to values similar to those of the mid-1970s. Together, these two contrasting temporal patterns give rise to an apparent progression in the state of the groundfish community. Phenomena associated with

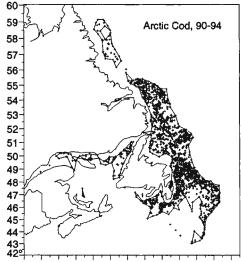
Figure 11. Dendrogram of species cluster analysis for the 1975-94 data subset.

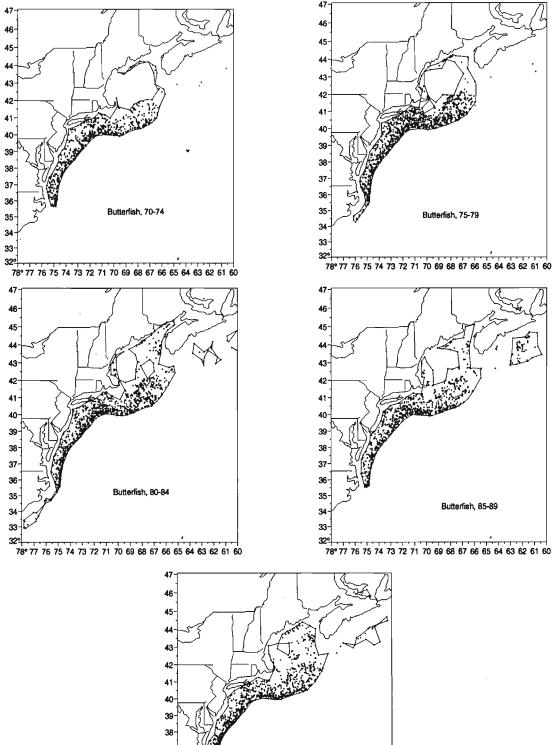




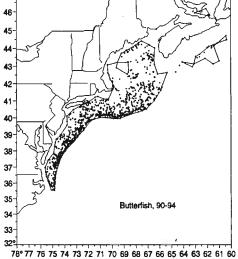

Figure 12a. ACON plots of Atlantic cod presence/absence by five-year intervals.


Figure 12b. ACON plots of Artic cod presence/absence by five-year intervals.


70° 68 66 64 62 60 58 56 54 52 50 48 46




70° 68 66 64 62 60 58 56 54 52 50 48 46


70° 68 66 64 62 60 58 56 54 52 50 48 46

70° 68 66 64 62 60 58 56 54 52 50 48 46

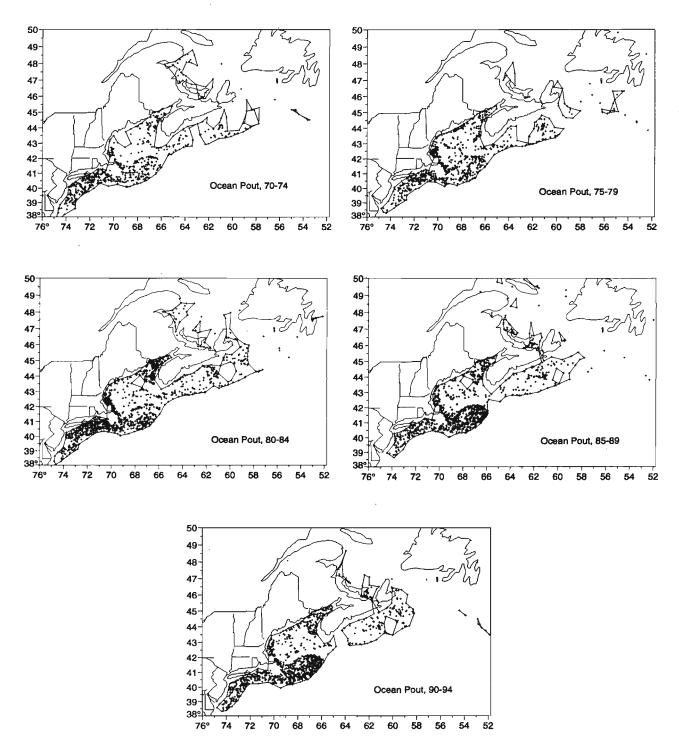


Figure 12c. ACON plots of Butterfish presence/absence by five-year Intervals.

43

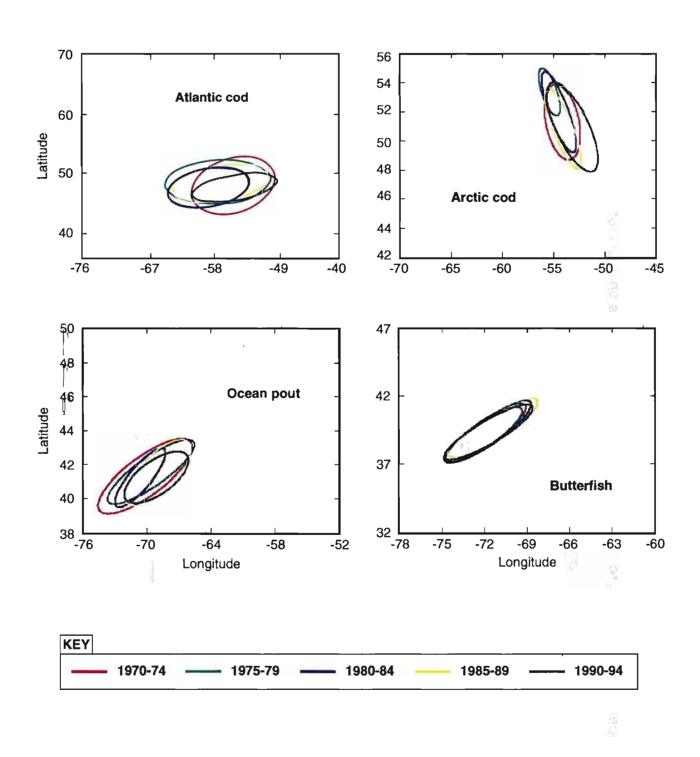


Figure 13. Bivariate (latitude/longitude) ellipses containing 50% of the abundances of Atlantic cod, arctic cod, ocean pout, and butterfish by five-year intervals.

Table 10. Comparison of species groupings from principal components analysis for all years and by five year periods.¹

75-79	80-84	85-89	90-94
			PC Species
6 Guifstream flounder	2 Fawn cusk eel	1 Gulfstream flounder	4 Gulfstream flounder
6 Fawn cusk ee l	2 Spotted hake		4 Fourspot flounder
		r 1 Fawn cusk eel	4 Fawn cusk eel
6 Fourspot flounder	2 Fourspot flounder	1 Spotted hake	4 Spotted hake
6 Butterfish	2 Butterfish	1 Butterfish	4 Butterfish
	2 Shortfin squid	1 Red hake	4 Little skate
		1 Little skate	4 Red hake
		1 Goosefish (Angler)	
2 Blue hake		2 Blue hake	1 Blue hake
2 Rock (Roundnose) grenadier			
2 Longnose (slatjaw cutthroat) eel	1 Large-scale tapirfis		1 Rock (Roundnose) grenadler
2 Large-scale tapirfish			1 Roughhead grenadler
2 Roughnose grenadler		grenadier) 2 Roughhead grenadier	1 Large-scale tapirfish
2 Black dogfish	1 Roughhead grenadier		1 Northern wolffish
2 Roughhead grenadier	1 Northern wolffish		1 Spinytail skate
			1 Greenland halibut
			 Marlin-spike (Common grenadier)
7 Black sea bass	3 Summer flounder	3 Black sea bass	3 Black sea bass
7 Northern (Common) searobin	3 Scup	3 Northern (Common) searobin	3 Northern (Common) searobin
7 Scup	3 Northern (Common)		3 Summer flounder
7 Spotted hake	3 Black sea bass	3 Summer flounder	3 Scup
7 Fourspot flounder	3 Smooth dogfish	19 Smooth dogfish	3 Smooth dogfish
13 Smooth dogfish	3 Windowpane	19 Summer flounder	-
13 Summer flounder			
13 Scup			
5 Red hake	4 Red hake	4 Silver hake	6 Silver hake
5 Silver hake	4 Silver hake	4 Red hake	6 Red hake
5 Goosefish (Angler)	4 Ocean pout	4 Spiny dogfish	6 Goosefish (Angler)
5 Ocean pout	4 Goosefish (Angler)	4 Cusk	6 White hake
5 White hake	4 Fourspot flounder	4 Ocean pout	6 Ocean pout
5 Fourspot flounder	4 Gulfstream flounder	4 Pollock	6 Spiny dogfish
14 Pollock	4 Longhorn sculpin	4 Shortfin squid	9 Cusk
14 Cusk	4 Little skate	4 White hake	9 Pollock
14 Haddock	11 Cusk		9 Atlantic argentine
	11 Pollock		9 Spiny dogfish
	11 Spiny doafish		
4 Sea raven	6 Winter flounder	5 Longhorn sculpin	5 Longhorn sculpin
4 Longhorn sculpin	6 Sea raven	5 Winter flounder	5 Sea raven
4 Yellowtail flounder		5 Sea raven	5 Yellowtall flounder
4 Winter flounder	6 Cunner	5 Yellowtail flounder	5 Winter flounder
	6 Yellowtail flounder	5 Ocean pout	5 Ocean pout
•	6 Ocean pout	5 Alligatorfish	5 Haddock
4 Haddock	o Ocean Doul	5 Alligatorish	
	PC Species 6 Gulfstream flounder 6 Fawn cusk eel 6 Spotted hake 6 Fourspot flounder 6 Butterfish 2 Blue hake 2 Rock (Roundnose) grenadler 2 Large-scale taplrfish 2 Roughnose grenadler 2 Black sea bass 7 Black sea bass 7 Northern (Common) searobin 7 Scup 7 Spotted hake 7 Fourspot flounder 13 Summer flounder 13 Sup 5 Red hake 5 Goosefish (Angler) 5 Ocean pout 5 Fourspot flounder 14 Pollock 14 Haddock 4 Sea raven 4 Longhorn sculpin 4 Yellowtail flounder 4 Winter flounder 4 Weiter flounder	PC Species PC Species 6 Gulifstream flounder 2 Fawn cusk eel 2 Spotted hake 6 Spotted hake 2 Gulifstream flounder 2 Fourspot flounder 6 Fourspot flounder 2 Fourspot flounder 2 Fourspot flounder 6 Butterfish 2 Blue hake 1 Blue hake 1 2 Blue hake 1 Longnose (Slatjaw cutthroat) eel 1 Large-scale tapiffish 2 Large-scale tapiffish 1 Roughnose grenadler 1 Marlin-spike (Common grenadler 2 Black dogfish 1 Roughhead grenadler 1 Northern (Common) 2 Black sea bass 3 Summer flounder 3 Scup 7 Northern (Common) searobin 3 Scup 3 Summer flounder 13 Smooth dogfish 3 Summer flounder 3 Sup 13 Summer flounder 3 Smooth dogfish 3 Windowpane 13 Summer flounder 4 Goosefish (Angler)	PC Species PC Species PC Species 6 Guifstream flounder 2 Fawn cusk eel 1 Guifstream flounder 1 6 Spotted hake 2 Spotted hake 1 Fourspot flounder 6 Fourspot flounder 2 Spotted hake 1 Spotted hake 6 Butterfish 2 Spotted hake 1 Spotted hake 6 Butterfish 2 Buterfish 1 Buterfish 2 Blue hake 1 Longnose (slatjaw cuthroat) eel 1 Longnose (slatjaw cuthroat) eel 2 Longnose (slatjaw cuthroat) eel 1 Back sate 2 Back floundnose) grenadler 2 Large-scale tapirfish 7 Roughnose grenadler 1 Marin-spike (Common grenadler) 2 Roughnead grenadler 2 Black see bass 3 Sup 3 Sup 7 Socup 3 Northern (Common) searobin 3 Scup 7 Soup

Table 10. (continued)

All years	75-79	80-84	85-89	90-94
PC Species	PC Species	PC Species	PC Species	PC Species
6 Marlin-spike (Common grenadier)	11 Atlantic argentine		6 Atlantic argentine	2 Black dogfish
6 Redfishes Sebastes spp)	11 White hake		6 Redfishes Sebastes spp)	2 Marlin-spike (Common grenadier
6 Witch flounder	11 Redfishes <i>Sebastes spp</i>)		6 White hake	2 Longfin hake
6 Black dogfish	11 Marlin-spike (Common grenadier)		6 Marlin-spike (Common grenadie	r) 2 Redfishes Sebastes spp)
6 Atlantic argentine	11 Longfin hake		6 Pollock	2 Witch flounder
6 White hake	11 Witch flounder		6 Witch flounder	2 White hake
6 Longfin hake	11 Atlantic halibut		6 Goosefish (Angler)	2 Greenland halibut
5			7 Roughnose grenadier	
			7 Longfin hake	
			7 Black dogfish	
			7 Witch flounder	
			7 Redfishes (Sebastes spp.)	
7 Windowpane	1 Little skate	5 Winter skate	8 Winter skate	7 Windowpane
7 Winter skate	1 Windowpane	5 Windowpane	8 Little skate	7 Winter skate
7 Little skate	1 Winter skate	5 Little skate	8 Windowpane	7 Little skate
7 Northern sand lance	1 Spiny dogfish	5 Spiny dogfish	8 Northern sand lance	7 Fourspot flounder
	1 Winter flounder	a shunda and and and and and and and and and		19 Northern sand lance
	1 Longhorn sculpin			
	1 Northern sand lance			
	1 Red hake			
	1 Fourspot flounder			
8 Spotted wolffish	8 Atlantic wolffish	8 Atlantic wolffish	10 Spotted wolffish	11 Atlantic wolffish
8 Atlantic wolffish	8 Spotted wolffish	8 Spotted wolffish	10 Atlantic wolffish	11 Spotted wolffish
8 Northern wolffish	8 Atlantic cod	8 Northern wolffish	10 Northern wolffish	11 Northern wolffish
8 Roughhead grenadier	8 Northern wolffish	8 Atlantic cod	10 Atlantic cod	
8 Atlantic cod	e Northern worthan	8 Greenland halibut	10 Roughhead grenadier	
8 Greenland halibut		o Greenand hanbut	10 Greenland halibut	
8 Redfishes (Sebastes spp .)			To Greenand halbou	
9 Blackbelly rosefish	12 Blackbelly rosefish	9 Blackbelly rosefish	11 Offshore hake	10 Shortnose greeneye
9 Offshore hake	12 Offshore hake	9 Offshore hake	11 Blackbelly rosefish	10 Offshore hake
9 Shortnose greeneye	12 Shortnose greeneye	9 Shortnose greeneve	11 Shortnose greeneye	10 Blackbelly rosefish
10 Thorny skate	15 American plaice	12 Thorny skate	12 Thorny skate	12 Thorny skate
10 American plaice	15 Thorny skate	12 Yellowtail flounder	12 American plaice	12 American plaice
10 Witch flounder	15 Witch flounder	12 American plaice	12 Atlantic cod	12 Smooth skate
10 Atlantic cod	15 Atlantic cod	12 Northern sand lance	12 Witch flounder	12 Shooin skale
10 Smooth skate	15 Adamic Cou	12 Norment sand lance	12 Shortfin squid	12 Witch flounder
	9 Arctic cod	14 Arctic cod	15 Arctic cod	
11 Arctic cod				13 Atlantic sea poacher
11 Atlantic sea poacher	9 Atlantic sea poacher 9 Greenland cod	14 Atlantic sea poacher 14 Greenland halibut	15 Atlantic sea poacher	13 Arctic cod 13 Greenland halibut
11 Greenland halibut			15 Greenland cod	15 Greenland halibut
11 Polar sculpin	9 Shorthorn sculpin	14 Greenland cod	15 Greenland halibut	
	9 Greenland halibut	14 Northern wolffish		
10 Freederschlung	9 Northern wolffish	th Paushaand saalding	0 Fourtheast anabling	d d Allemain brudiab
12 Fourbeard rockling	10 Atlantic hagfish	15 Fourbeard rockling	9 Fourbeard rockling	14 Atlantic hagfish
12 Atlantic hagfish	10 Fourbeard rockling	15 Atlantic hagfish	9 Atlantic hagfish	14 Fourbeard rockling
12 Smooth skate	10 Black dogfish	15 Marlin-spike (Common grenadier)	9 Smooth skate	14 Smooth skate
	10 Marlin-spike (Common grenadi	er) 15 white hake	9 Marlin-spike (Common grenadier)	14 Snowflake hookear sculpin
	10 Witch flounder		9 White hake	
	10 Redfishes (Sebastes spp.)		9 Redfishes (Sebastes spp _)	

Table 10. (continued)

All years	75-79	80-84	85-89	90-94
PC Species	PC Species	PC Species	PC Species	PC Species
13 Moustache (Mailed) sculpin	16 Moustache (Mailed) sculpin	16 Moustache (Mailed) sculpin	13 Moustache (Mailed) sculpin	8 Moustache (Mailed) sculpin
13 Alligatorfish	16 Alligatorfish	16 Alligatorfish	13 Snowflake hookeer sculpin	8 Alligatorfish
13 Snowflake hookear sculpin	17 Smooth skate	19 Snowflake hookear sculpin	13 Alligatorfish	8 Greenland cod
	17 Snowflake hookear sculpin			8 Snowflake hookear sculpin
	17 Polar sculpin			8 Snake blenny
14 Roughnose grenadier		10 Roughnose grenadier	7 Roughnose grenadier	18 Roughnose grenadier
14 Longfin hake		10 Black dogfish	7 Longfin hake	2 Black dogfish
14 Black dogfish		10 Longfin hake	7 Black dogfish	2 Marlin-spike (Common grenadie
		10 Witch flounder	7 Witch flounder	2 Longfin hake
			7 Redfishes (Sebastes spp.)	2 Redfishes (Sebastes spp.)
				2 Witch flounder
				2 White hake
				2 Greenland halibut
15 Atlantic halibut		13 Atlantic halibut	16 Atlantic halibut	15 Atlantic halibut
15 Haddock		13 Atlantic argentine	16 Haddock	15 Haddock
		13 White hake		
		13 Redfishes (Sebastes spp.)		
		13 Haddock		
		13 Marlin-spike (Common grenadier)		
		13 Goosefish (Angler)		
16 Polar sculpin	3 Roughhead grenadier	7 Witch flounder	14 Polar sculpin	1 Blue hake
16 Roughhead grenadier	3 Spinytail skate	7 Greenland halibut	14 Greenland halibut	1 Longnose (slatjaw cutthroat) e
16 Greenland halibut	3 Greenland halibut	7 Smooth skete	14 Roughhead grenadier	1 Rock (Roundnose) grenadier
	3 Northern wolffish	7 Roughhead grenadier		1 Roughhead grenadier
	3 Redfishes (Sebastes spp.)	7 Polar sculpin		1 Large-scale tapirfish
	3 Polar sculpin	7 Spinytail skate		1 Northern wolffish
	3 Marlin-spike (Common grenadier)	7 Redfishes (Sebastes spp.)		1 Spinytail skate
	3 Large-scale tapirfish			1 Greenland halibut
				1 Marlin-spike (Common grenadier)
17 Lumpfish	18 Atlantic halibut	17 Lumpfish	17 Lumpfish	16 Lumpfish
17 Shorthorn sculpin	18 Lumpfish (-)	17 Shorthorn sculpin	17 Shorthorn sculpin	16 Shorthorn sculpin
17 Sea raven	18 Shorthorn sculpin (-)	17 Sea raven	17 Sea raven	16 Sea raven
18 Cunner	19 Cunner	6 Winter flounder	18 Cunner	17 Cunner
18 Winter flounder	19 Snake blenny	6 Sea raven	18 Winter flounder	17 Butterfish
18 Snake blenny		6 Longhorn sculpin	18 Snake blenny	
		6 Cunner		
		6 Yellowtail flounder		
		6 Ocean pout		

¹ Groups are determined by species scores on the PCs. Species in bold type have loadings ≥0.5; species in standard type have loadings between 0.3 and 0.5. Assemblages from the 5-year time periods are grouped with the overall time-period assemblages they resemble most closely.

Figure 14a. Sites in the top 5% of scores for PC10 (thorny skate, American plaice, witch flounder, Atlantic cod, smooth skate) from the analysis of the 1975-94 data subset by five-year intervals.

4

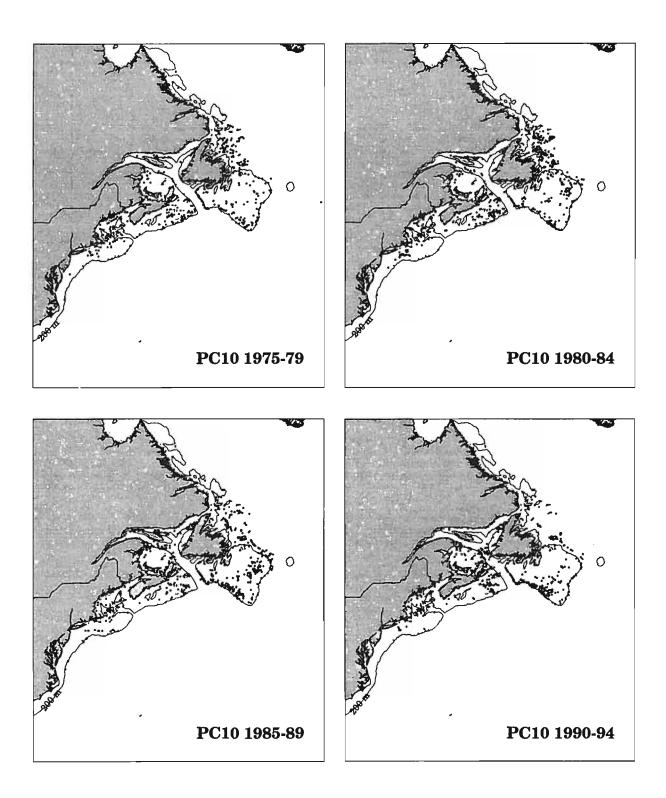
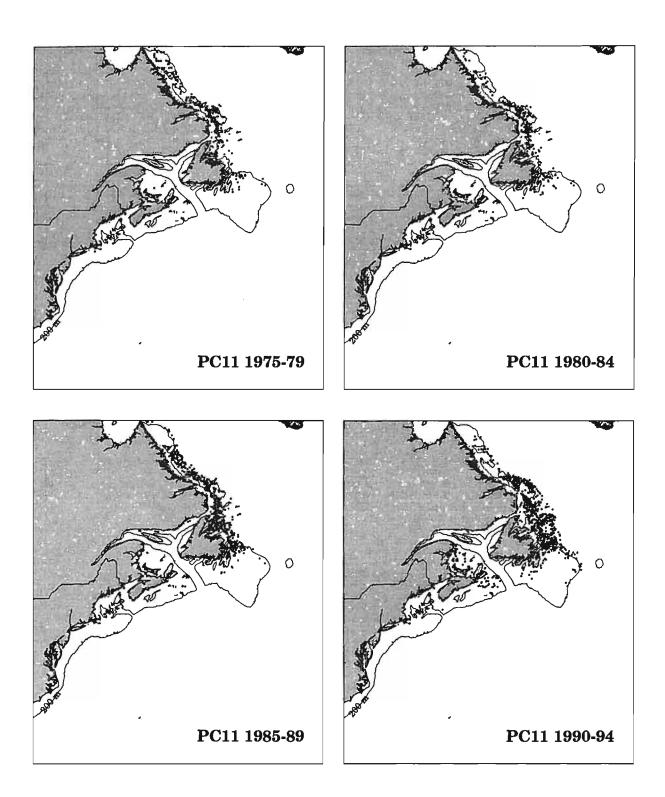



Figure 14b. Sites in the top 5% of scores for PC11 (arctic cod, Atlantic sea poacher, Greenland halibut, polar sculpin) from the analysis of the 1975-94 data subset by five-year intervals.

	Time		Latit	ude (degree	es N)	Longitude (degrees W)		
Component	Period	# points	Mean	Std dev.	Range	Mean	Std. dev.	Range
PC10	1975-79	414	46.2	3.1	20.1	-57.4	6.6	34.0
	1980-84	476	46.9	3.2	16.0	-56.4	6.5	27.5
	1985-89	598	47.0	2.6	18.0	-55.1	6.2	27.5
	1990-94	446	46.2	2.3	12.8	-57.1	5.9	24.6
			P<.00011			P=.03		
PC11	1975-79	287	54.8	4.3	24.9	-57.2	3.5	22.6
	1980-84	233	52.5	3.1	14.3	-55.1	2.6	16.9
	1985-89	631	53.8	5.5	24.8	-56.0	3.3	17.2
	1990-94	783	51.1	3.0	16.6	-54.1	3.6	18.4
			P<.0001	-		P<.0001		

Table 11. Comparisons of numbers of points and mean positions for PC10 and PC11 by five-year time block.

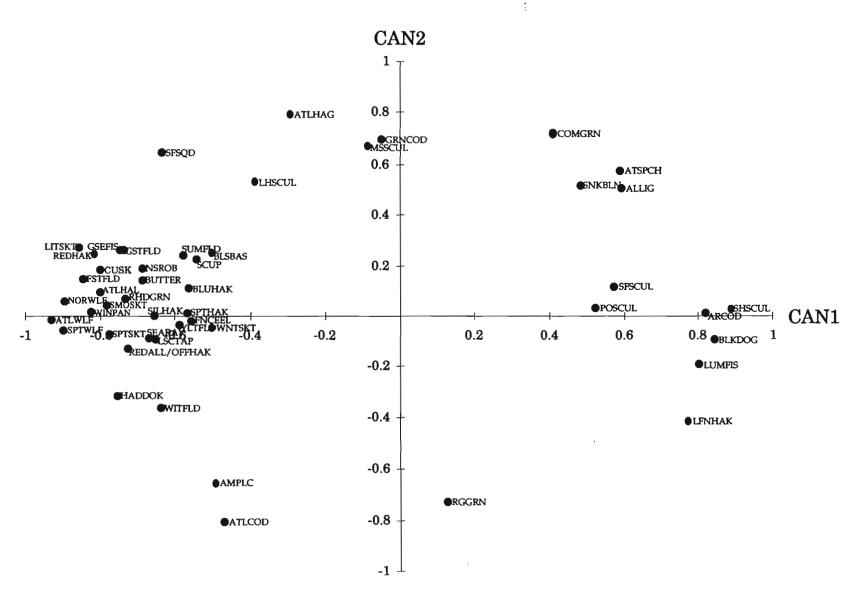
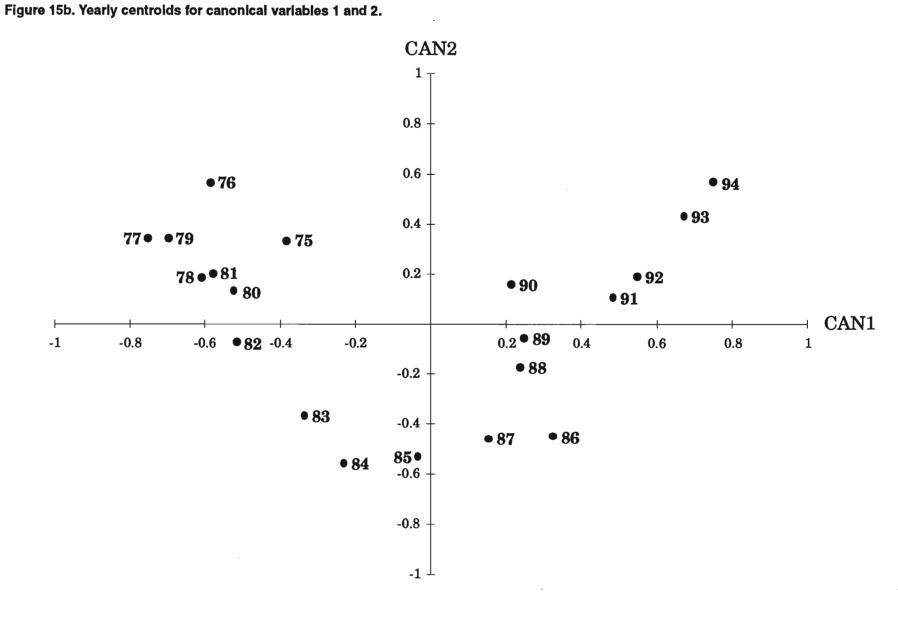

¹P values are for comparing means using one-way analysis of variance.

Table 12. Correlations between species and canonical variables 1 and 2.1

Species	CAN1	CAN2	Species	CAN1	CAN2
Redfishes (Sebastes spp.)	-0.740	-0.091	Atlantic wolffish	-0,933	-0.016
American plaice	-0.494	-0.656	Moustache (Mailed) sculpin	-0.082	0.674
Atlantic cod	-0.468	-0.808	Gulfstream flounder	-0.738	0.259
Silver hake	-0.655	0.002	Sea raven	-0.670	-0.089
Butterfish	-0.685	0.139	Smooth skate	-0,782	0.040
Spiny dogfish	-0.398	0.123	Goosefish (Angler)	-0,749	0.259
Haddock	-0.754	-0.316	Blackbelly rosefish	-0.362	0.360
Northern sand lance	-0.458	0.369	Black sea bass	-0.502	0.252
Yellowtail flounder	-0.588	-0.037	Fawn cusk eel	-0.558	-0.019
Greenland halibut	0.356	0.041	Northern wolffish	-0.893	0.055
Shortfin squid	-0.636	0.647	Roughnose grenadier	0.126	-0.728
Arctic cod	0.821	0.011	Fourbeard rockling	0.435	-0.306
Thorny skate	-0.173	-0.395	Summer flounder	-0.579	0.239
Longhorn sculpin	-0.386	0.533	Blue hake	-0.565	0.111
Witch flounder	-0.638	-0.365	Spotted wolffish	-0,898	-0.060
White hake	-0.288	-0.11 7	Offshore hake	-0.728	-0.132
Northern (Common) searobin	-0.686	0.189	Alligatorfish	0.595	0.503
Red hake	-0.816	0.244	Atlantic halibut	-0,798	0.092
Little skate	-0.858	0.272	Atlantic sea poacher	0.593	0.572
Winter flounder	-0.392	0.220	Smooth dogfish	-0.417	0.246
Atlantic argentine	-0.176	-0.292	Cusk	-0.799	0.180
Black dogfish	0.843	-0.094	Atlantic hagfish	-0.290	0.794
Spotted hake	-0.568	0.009	Cunner	-0.306	-0.021
Pollock	0.208	-0.112	Shorthorn sculpin	0.887	0.028
Fourspot flounder	-0.848	0.146	Snowflake hookear sculpin	0.575	0.117
Rock (Roundnose) Grenadier	-0.397	-0.170	Longnose (Slatjaw cutthroat) eel	0.106	0.473
Marlin-spike (Common grenadier)	0.412	0.718	Polar sculpin	0.522	0.033
Winter skate	-0.503	-0.047	Shortnose greeneye	-0.266	-0.093
Lumpfish	0.802	-0.193	Large-scale tapirlish	-0.652	-0.095
Longfin hake	0.771	-0.415	Snake blenny	0.485	0.515
Windowpane	-0.825	0.018	Spinytail skate	-0.774	-0.073
Roughhead grenadier	-0.735	0.069	Greenland cod	-0.046	0.698
Ocean pout	-0.486	0.363	Scup	-0.543	0.224


¹Bold type indicates correlations with $|r| \ge 0.5$.

¹Species codes are given in Appendix 2.

ECNASAP/Cod Mortality Project

53

East Coast of North America Groundfish

CAN1 have steadily increased since the early 1980s, whereas phenomena associated with CAN2 have changed through time, but by 1994 had returned to a state similar to that of the late 1970s.

For insight into associations between yearly patterns of community abundance and trends in species abundances, the species and yearly plots of CAN1 vs CAN2 (Figures 15A, B) can be interpreted together. For example, Atlantic cod has a strong negative correlation with CAN2 and a weaker negative correlation with CAN1. By inspection of the yearly plot, high abundances of this species are associated with the mid-1980s, with lower abundances occurring during the mid-1970s and mid-1990s. Greenland cod would be interpreted as having the opposite abundance pattern through time. Abundances of the many species with negative correlations with CAN1 would be interpreted as having declined through time, while the species with positive correlations with CAN1, which are mostly northern species, such as shorthorn sculpin and black dogfish, would have increased in abundance through time.

The bivariate confidence ellipses developed for the year centroid plots were large, and did not support any additional interpretation. However, inspection of Figures 15A and 15B suggests that groups of species exist that have similar relationships with CAN1 and CAN2. For example, the large group of species with strong negative correlations with CAN1 and weak correlations with CAN2 (e.g., little skate, Atlantic wolffish, redfishes, and blue hake) could be termed a 1975-82 group, which is when these species would be expected to have had their highest abundances. Similarly, overlaying the species correlation and year centroid plots suggests two other groups, 1983-87 and 1988-94. Out of 37 species assigned by visual inspection to one of these three year groups, 33 (89%) had their highest average catch per tow during the assigned time period.

SYNTHESIS AND DISCUSSION

Visual Analysis

The value of the visual analysis is that it provided a check on the more sophisticated multivariate analyses, to ensure that the results of these analyses were generally consistent with the patterns identified intuitively by knowledgeable fisheries scientists. This function is important, because conducting multivariate analyses involves a series of decisions that are inherently subjective, which could cause misleading results. This is not to imply that the visual and multivariate approaches yielded identical results. The visual analysis of the individual species distributions resulted in fewer groups than the PCA. This was because groups with the same general geographical distributions, but different depth

distributions, could not easily be distinguished in the plots at the scale used (Table 4). With larger plots showing more isobaths, the species groups might have been separable into smaller units. Also, the PCA results were based on co-occurrence within trawl samples, while the visual analysis results were based on spatial distribution, whether or not particular species co-occurred within the same samples.

Principal Components Analysis

Mapping the high 5% of scores on each PC, assumed to represent the distributional core of the assemblage associated with that PC, indicated a high degree of spatial aggregation of the sites, and a wide variety of distributional patterns. Some assemblages are clearly associated with deep-slope areas (e.g., 2, 6, 8, 10, 16), while others occur primarily on the tops of banks (e.g., 1, 3, 4, 5, 7, 13, 17, 18). In addition, the PCA results suggests a biogeographic break around the Grand Banks (Figure 8). The patterns show that assemblages occur at spatial scales that can be detected with trawl surveys, and that can be perceived at the overall scale of the study. The degree to which these assemblages are biologically functional units, or merely consist of species with similar responses to environmental gradients, remains unknown.

Although the PCA appears to perform well in identifying groups of co-occurring species, the use of site scores on PCs for mapping assemblages requires further methodological development. As shown in Figures 7A and 7B, different views of an assemblage distribution are obtained with different cutoff points for site scores. There is a need to explore different approaches (e.g., contouring) for interpretation and visual presentation of assemblage distributions based on PC scores.

In contrast to the site cluster analysis, where all stations are assigned to a particular assemblage group, the PCA approach allows more than one assemblage to occur at a site, and also allows no assemblages occurring per site are shown in Table 13. Just under half of the sites (45.5%) did not fall into the top 5% of scores on any PC. Assuming that the 5% selection criterion is a good measure of assemblage integrity, this indicates that assemblages can only be identified at 54.5% of the sites. The fish fauna at the remaining 45.5% of sites would, therefore, be considered unstructured. Only one assemblage was detected at 31.8% of the sites, while more than one assemblage occurred at 22.7% of sites, with 10 sites having as many as 8 assemblages.

One problem with using site scores from PCA is that an assemblage may be shown at a site where one of the major species of that assemblage does not occur.

Number of	Number	Percentage
assemblages	of sites	of sites
0	17,612	45.5
1	12,292	31.8
2	5,624	14.5
3	2,023	5.2
4	762	1.9
5	266	0.7
6	98	0.3
7	43	0.1
8	10	<0.1

Table 13. The number of assemblages per site, based on the criterion of selecting sites with scores in the top 5% for a principal component.

PC 15, Atlantic halibut/haddock, provides a simple example (Figure 6). No haddock were caught north of Hamilton Bank, yet the assemblage is shown as present along the slope of the Labrador Shelf, because Atlantic halibut is relatively abundant there. Similarly, although the map of PC 17 (Figure 6) shows the area where lumpfish and shorthorn sculpin co-occur around St. Pierre Bank, it also shows this assemblage on the shelf northwest of Newfoundland, where the latter species was seldom caught.

An additional problem with the correlation matrix-based PCA method used is that associations involving ubiguitous species are de-emphasized, because assemblages are defined by species that tend to co-occur at unusually high frequencies, even if they are not particularly abundant overall. For example, gulfstream and fourspot flounder are the species with the highest loadings on PC1 (0.81 and 0.76 respectively), which explains 8.8% of the total variance (Tables 5 and 6). Although they are not particularly abundant, these species both occur primarily south of Cape Cod (Appendix 3). In contrast, widespread or abundant species, which may co-occur with many other species over their ranges, are much less strongly associated with assemblages identified by the PCA. For example, American plaice and Atlantic cod are caught in large numbers throughout the study area. American plaice is fairly strongly associated with PC10, and Atlantic cod is weakly associated with PC8 and PC10. These two components explain only 2.6% and 2.4% of the total variance, respectively. This pattern can also be seen in Table 14, which summarizes species compositions of PCs 10 and 11, using the top 5% of sites. Mean absolute catch per tow shows that the core species may actually be less abundant than other species (e.g., Atlantic sea poacher and American plaice for PC 11). Relative catch/tow, calculated by dividing the mean catch per tow for the sites with the top 5% of PC scores by the overall mean catch per tow, provides a better, although not perfect, indication of the basis for the PCA extraction of assemblages.

The above problem occurred because the PCA approach has the implicit assumption that assemblages are determined by species that tend to occur primarily together, and not by widespread species that co-occur with many other species. However, widespread species may be present in considerable numbers where these assemblages occur, and they may play an important role in assemblage dynamics. To gain a better understanding of how PCA site scores relate to species composition, it would be useful to examine changes in species composition of subsets of sites with different scores on several PCs (e.g., top 5%, 5-10%, 10-15%, etc.). An alternative approach to defining the assemblages would be to use abundance of the major species identified by the PCA at some specified level of abundance or relative abundance (e.g., greater than the overall average catch/tow) as a cutoff, rather than the site scores. In this case, an assemblage could be considered present at sites where all the major species occurred in significant numbers.

Cluster Analysis

The large site cluster group 1, which has no associated species (Table 8), and which is widely distributed over the entire study area (Figure 9), can be interpreted as a group of sites without any distinguishing assemblages. Accordingly, site cluster groups 2-18 can be interpreted as assemblages. The sites in cluster group

Table 14. Species loadings, mean catch/tow, and relative catch/tow of top 5% of sites
for PCs 10 and 11 (1975-94 data).

	PC 10			PC 11							
		Mean	Relative			Mean	Relative				
Loading	Species	catch/tow catch/tow		Loading	Species	catch/tow	catch/tow				
0.687	Thorny skate	40.06	40.06 6.83		Arctic cod	298.15	21.24				
0.637	American plaice	183.68	2.78	0.742	Atlantic sea poacher	2.51	18.71				
0.415	Witch flounder	31.70	6.14	0.451	Greenland halibut	72.53	6.07				
0.372	Atlantic cod	129.07	2.41	0.304	Polar sculpin	.54	7.45				
0.356	Smooth skate	2.54	7.27	0.258	Greenland cod	.55	16.03				
0.189	Goosefish (Angler)	.97	5.49	0.162	Northern wolffish	2.07	3.69				
0.182	Yellowtail flounder	27.00	2.46	0.123	Alligatorfish	.40	2.88				
0.178	Snake blenny	.48	12.99	0.079	Shorthorn sculpin	.17	2.81				
0.142	Greenland halibut	25.89	2.19	0.066	Spotted wolffish	.64	2.60				
0.128	Spinytail skate	.17	4.00	0.063	American plaice	96.74	1.40				
0.098	Moustache (Mailed) sculpin	1.19	1.72	0.062	Snake blenny	.10	2.45				
0.089	Red hake	8.26	4.37	0.034	Roughhead grenadier	1.26	0.81				
0.067	Spotted wolffish	.29	.29 1.77 0.031 Atlantic halibut		.05	0.44					
0.053	Northern sand lance	12.71	1.11	0.026	Ocean pout	.06	0.33				
0.051	Atlantic wolffish	.88			Red hake	.01	0.00				
0.048	Fourbeard rockling	.39	2.88	0.019	Black sea bass	.05	0.17				
0.046	Atlantic sea poacher	.18	1.21	0.012	Northern searobin	.49	0.71				
0.042	Roughnose grenadier	.28	.99	0.012	Gulf Stream Flounder	.00	0.00				
0.038	Lumpfish	3.90	2.10	0.009	Little skate	.05	0.04				
0.032	Ocean pout	.70	3.76	0.008	Spinytail skate	.06	1.23				
0.031	Roughhead grenadier	1.69	1.17	0.006	Goosefish (Angler)	.00	0.00				
0.029	Polar sculpin	.12	1.96	0.006	Fourspot flounder	.04	0.04				
0.022	Shortnose greeneye	.30	6.48	0.005	Winter flounder	2.07	0.76				
0.018	Atlantic halibut	.24	2.30	0.002	Roughnose grenadier	.00	0.00				
0.015	Silver hake	24.67	1.93	0.001	Windowpane	.07	0.11				
0.015	Gulf Stream flounder	2.00	4.40								
0.010	Snowflake hookear sculpin	.15	2.15								
0.009	Greenland cod	.03	.91								
0.007	Sea raven	.50	1.22								
0.003	White hake	5.12	1.71								

1 probably have several widespread species occurring in average or below average abundance. Cluster group 1 contains 42.6% of the sites, which is consistent with the number of sites that did not fall into any PCA-based assemblage (45.5%) under the top 5% of site scores criterion.

The dendrogram showing the hierarchical relationships among the mapped site cluster groups (Figure 10) indicates a biogeographic separation near Cape Cod and Georges Bank. Five of the six southern cluster groups (7, 12, 15, 16, 18) are distributed exclusively south of this region, while the sixth (cluster 17) extends somewhat to the north. With the exception of the ubiquitous cluster group 1, the southern boundary of the remaining site cluster groups is in the Cape Cod/Georges Bank region, or further north. This boundary has frequently been recognized in previous biogeographic studies (Briggs 1974; Mahon and Sandeman 1985).

Temporal Change

The example analyses for the individual species (i.e., Atlantic cod, arctic cod, ocean pout, and butterfish) indicate that future work of this sort could be useful. The ACON plots (or plots generated using other similar graphics packages) enable visualization of species locations (presence/absence), as well as how distributions have expanded or contracted over time. However, simple presence/absence is not adequate, and some consideration of abundance throughout the species range is required to understand fringe versus central changes in distribution. Expanding symbol plots could address this somewhat, although overplotting in areas of high abundance remains a problem. Developing contour or change maps might provide more interpretable results. Change maps would be color coded to indicate areas (or grid cells) where abundance has increased, decreased, or remained the same over time.

The bivariate ellipses, on the other hand, illustrate central tendencies of distribution. They may be most effective where the study area is fairly linear in shape (e.g., Labrador or Middle-Atlantic coasts), so that distributional shifts occur along a geographic axis. Distributions of species occurring in areas with more complex shapes, such as the Gulf of St. Lawrence, may have geometrically complex patterns of expansion or contraction, which could complicate interpretation of the ellipses.

In further analyses, the annual survey estimates could be rescaled to the mean abundance of the species survey data set, and the analysis done on the rescaled data. This would focus the analysis on distribution, rather than on abundance trends.

Another approach to examining temporal trends would be to examine changes in assemblage distribution and/ or species composition through time. The assemblages for the entire time period were judged to be sufficiently consistent with those for five-year time blocks that the former could be used to represent the overall assemblages (Table 10). This result suggests that assemblages are fairly stable entities, but that their development and distribution may vary through time as species distributions and abundances fluctuate. Examining temporal shifts in location for assemblages PC 10 and PC 11 (Figure 14, Table 11), revealed substantial distributional shifts over the four five-year time periods. However, the extent to which these were shifts of entire assemblages, or were only shifts in one of the major species, has not been determined. As with the single species distributions above, this example analysis suggests that this approach could be pursued in greater detail for the major assemblages. Although not attempted for this report, ACON plots and bivariate ellipses could also be developed for assemblages. In addition, it might prove informative to examine temporal changes in assemblage structure by mapping annual anomalies in geographical distribution and species composition relative to the PCs extracted for the overall time period.

Another factor to consider is the time frame in which comparisons are being made. In this project, five-year time blocks were used, but other time periods could be compared. For example, known warm and cold periods could be compared, as long as each contained enough data to yield meaningful plots.

The results obtained in the CDA suggest that this approach should be explored more fully. Methodological enhancements are needed to improve the analysis of relationships between changes in community structure over time and temporal changes in species abundances. The existing analyses could be extended by examining relationships between the canonical variables and environmental variation (e.g., temperature), and relationships with other variables, such as fishing effort. Also, more specific questions could be analyzed using subsets of data, such as comparisons between warm and cold periods, or between periods of high and low abundance.

The problem of spatial bias in sampling over time also merits consideration. The mean position of all samples shifted from 44.9° N, 61.5° W for 1975-79 to 45.3° N, 57.8° W for 1990-94. The degree to which spatial variation over time in sampling contributes to apparent changes in spatial patterns over time is not known.

Comparison of Assemblage Analyses

Given the relatively subjective nature of the assemblage analyses, it is useful to compare the results of the different methods. Consistency of results among the approaches would enhance credibility, while major inconsistencies would bring the results into question.

The species groupings resulting from the visual, principal components, and cluster analyses are compared in Table 15. There is a high degree of consistency among the four grouping methods used. Species occurring on the same PC or in the same branch of the dendrogram usually fell within the same visually defined group. This indicates that the multivariate methods produced results consistent with the obvious major distributional patterns. One exception was the haddock/Atlantic halibut pair, which emerged together in all the multivariate analyses, but was placed in different groups during the visual analysis. The probable cause of this discrepancy is that Atlantic halibut is distributed further north than haddock, but they co-occur frequently in their area of overlap.

Several groups were identified consistently by the visual and multivariate analyses (Table 15); these may be the most well defined. Further studies of these groups are suggested, focusing on species interactions or linkages as possible determinants of assemblage structure. There are a few instances of consistently occurring groups of four to five species, such as smooth skate/thorny skate/Atlantic cod/American plaice in the North Temperate Bank/Slope group, and summer flounder/scup/black seabass/northern searobin/smooth dogfish in the Southern Bank/Slope group. There are also many smaller groups, particularly pairs, of species that appear to co-occur consistently. For example, the Southern Deepwater Group of blackbelly rosefish/offshore hake/shortnose greeneye was identified in all analyses, and appears to have a distinctive distribution.

The correspondence between PCA site groups (top 5% of sites on each PC) and site cluster groups is variable (Figure 16). In some cases, for example PC17 with CG

Table 15. Comparisons among species groups determined by visual analysis with groups determined by the multivariate analyses.¹

Visual Species Group	PC	SG	CG	Visual Species Group	PC	SG	CG
				Ocuth Activity Park	(a)		
Northern Deepwater	0	0	10	South - temperate Bank			10
Longnose eel	2	8	13	Goosefish (Angler)	4	11	18
Largescale tapirfish	2	8	9	Silver hake	4	11	18
Blue hake	2	8	13	Cusk	4	11	17
Rock (roundnose) grenadier	2	8	13	Red hake	4	11	15
Roughhead grenadier	2	3	13	Spiny dogfish	4	11	12
Spinytail skate		4	13	White hake Pollock	4	1	5
Tomporato Deepwater				Yellowtail flounder	4 5	1 12	4
Temperate Deepwater Atlantic argentine	c	4	4	Winter flounder		12	11
Marlin-spike	6 6	1	5		5		
Black dogfish	6	3 5	5 10	Ocean pout	5	12	11 11
	14	5		Sea raven	5	12	
Longfin hake	14 14	5 17	10 10	Longhorn sculpin Winter skate	5	12	11
Roughnose grenadier	14	17	10	Northern sandlance		12	12
Southern Deepwater					7	1	12 5
Shortfin squid	٨		17	Atlantic hagfish Fourbeard rockling		•	
Blackbelly rosefish	<u>4</u> 9	11 15	17	Haddock	12 15	1	14
Offshore hake	9	15 15	17	HAUUOCK	15	1	, 4
Shortnose greeneye	9	15 15	17 17	Southern Bank/slope			
Shormose greeneye	Э	15	17	Southern Bank/slope Fourspot flounder	4	10	10
Northern Bank/slope				Butterfish	1	10	12
Northern wolffish	8	3	19		1	10	12
Spotted wolffish	8 8	3 3	13 6	Spotted hake Fawn cuskeel	1	10	15
Atlantic sea poacher	<u> </u>	2	3	Gulfstream flounder	1	10	15 15
Anamic sea poacher	11	2	3	Summer flounder	1 3	10	15
Greenland halibut	11	2 3	3 13	Summer nounder Scup	3	13 13	18 18
Polar scuplin	16	 	13	•			
	10	3	13	Northern (common) searobin Smooth dogfish	3	13	18 16
North - temperate Bank/	elone			Black seabass	3 3	13 14	16 18
Redfishes	siope 6	1	10	Windowpane	3	14 9	
Witch flounder	6	1	10	Little skate	7	9	12
Atlantic wolffish	8	1	10		1	Э	12
Smooth skate	10	1	14				

Thorny skate Atlantic cod	10	1	14				
	10	1	8				
American plaice	10	1	8				
Alligator fish	13	6	14				
Moustache (mailed) sculpin	13	6	14				
Snowflake hookear sculpin	13	18	14				
Atlantic halibut	15	1	4				
Lumpfish	17	4	2				
Shorthorn sculpin	17	4	2				
Snake blenny	18	7	8				
Cunner	18	12	11				

¹ The numbers in the columns show which species group the species had its highest loading on in the PCA (PC) (Table 6), the species cluster groups (SG) (Figure 11), and the grouping of species based on maximum relative abundance in the site cluster groups (CG) (Table 8). Horizontal lines separate species loading on different PCs.

		Principal component																
CG	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1																		
2																		
3																		
4		0	120-1						- ART			10.7			1			
5												222						
6		1																
7	//////		tr.a.	<i>\/////</i>	o Sa		10.15					Sar			11 G12 - 12 - 12 - 12 - 12 - 12 - 12 -			
8		and the second	/////						ŝ.	44	alla -		<i>\/////</i>	i				V/////
9		V/////		-		Landa												
10		i i								1250								
11				Section 2					THE									
12				The second second	The sea													1.1
13														Notice.		Rither		
14														The way				中世
15							学の		4.000									
16	V/////			1	ante,				10.123			and and		J				Jeres.
17	V/////											and -		(251 6 FL)				
18			/////	the start			STA B		State 1									

Figure 16. Correpondence between sites scoring in the top 5% of PCA-determined assemblages and site cluster groups.¹

¹Shading indicates correspondence between sites occurring in a given PC group and site cluster group (CG), as determined by the ratio of observed to expected numbers of sites co-occurring in the PC and site cluster group pairs under a null hypothesis of no relationship. The following key is used.

2, and PC 11 with CG 3, the correspondence is nearly one-to-one. In other cases, such as PC1, PC3, and PC4, the sites are distributed over several CGs. For each PC, the chi-square statistic was used to test whether the distribution of sites in the cluster groups was significantly different from random, based on the total numbers of sites within each site cluster group. The differences from a random distribution were significant (P < 0.01) for every cluster group. Therefore, it is evident that PC site groups tend to correspond to particular site cluster groups, as would be expected if both analyses were providing different perspectives on the same assemblage distributions. However, it is also evident that the strength of this correspondence varies.

The geographic correspondence between PCs and site cluster groups is reflected in the distribution plots for the individual PC and site cluster groups (Figures 6, 9). The distribution of sites for PC17 and CG2, which both represent the shorthorn sculpin/lumpfish species pair, are very similar. PC2 and CGs 9 and 13 also correspond well, but there are many shallow sites in the CGs that are not seen in PC2. In contrast, PC4, which represents the South Temperate Bank/Slope group of silver hake, red hake, cusk, pollock, spiny dogfish, white hake, ocean pout, goosefish (Angler), haddock, and shortfin squid, is distributed over several CGs.

The PCA and site cluster analysis both provided information on the strength of species affinities for their assemblages. There is moderate agreement between the two approaches, in that the maximum species loadings on the PCs (Table 6) are correlated with log transformed maximum relative abundances (Table 8) (r=0.48, P < 0.01).

A brief description of the assemblages, based on their geographical, depth, and temperature distributions, is provided in Table 16. For this summary, the groupings from the PCA are used, and the main corresponding site cluster groups are given. This table indicates that, as several previous studies have found, depth and temperature play important roles in determining assemblage distributions (Overholtz and Tyler 1985; Murawski and Finn 1988; Mahon and Smith 1989; Gabriel 1992; Gomes *et al.* 1995).

The PCA revealed patterns of species association broadly consistent with previous studies of smaller regions (Table 17). Comparing the present study to previous, more localized studies is subjective owing to the different methodologies and species used. No study has yet defined assemblages for the northern Labrador Shelf. The assemblages found in the present study were most consistent with those reported by Gabriel (1992), for the area from Cape Hatteras north to the Scotian Shelf, and by Mahon (1995), for the Scotian Shelf and Bay of Fundy. The approach to assemblage definition taken by Gomes *et al.* (1992), and Guadalupe Villagarcia (1995) emphasized the absolute abundance of species in an assemblage, so their results are difficult to compare with those of this study. However, the combination of thorny skate, American plaice, and Atlantic cod emerged as a dominant group in their analyses.

The finding of a large number of sites without assemblages is not entirely consistent with previous studies in the area (e.g., Mahon and Sandeman 1985; Overholtz and Tyler 1985; Mahon and Smith 1989; Gabriel 1992; Gomes et al. 1995). However, the similarity of the results for the PCA and site cluster analysis in this study support this interpretation for the ECNASAP data set. For the PCA, 45.5% (17,612) of the sampled sites do not score in the top 5% of any PC. For the cluster analysis, 42.6% (16,474) of the sites are in the first cluster, which is interpreted as not having any characteristic assemblage. A total of 7,823 (i.e., somewhat less than half) of these are the same sites, which suggests that these two methods differed somewhat in determining which sites were not assignable to an assemblage. This discrepancy might be reduced with other distance indices or clustering methods, or by modifying the top 5% criterion for inclusion of a site in a PCA-defined assemblage.

Several factors could have contributed to this apparent lack of structure. The large spatial scale of the data set could mask relationships that exist in smaller regions or that vary spatially. Some of the lack of structure in the results could be due to the sampling gear, which integrates species occurring over a transect of 1.8 nautical miles, and may, therefore, integrate assemblages that do not occur in the same habitat. It could also be due to the use of data obtained from different sources. which employed different trawling gear and vessels. Using data from several months may also have been a factor. For this to be a cause, species associations would have to change seasonally, and seasonal differences in assemblage structure have been described in several studies (Colvocoresses and Musick 1984; Mahon and Smith 1989). Although analyzing the 20year time period covered in the ECNASAP data set might have obscured relationships that occurred over shorter time periods, the similarity between the PCAs for the 1975-94 period and the five-year blocks suggests that the amount of time in the data set was not a major factor in limiting assemblage structure.

This apparent lack of structure could also be a reflection of the real nature of the existing demersal fish assemblages, which may not be highly structured into functional groups. The mobility of most fish species,

Table 16. Summary of characteristics of species assemblages derived from PCA of all years, with associated site cluster groups (CGs) having a ratio ≥ 5 in Figure 16.¹

PC #	Associated CGs	Characteristics
1	7	SOUTHERN, VERY WARM, SHALLOW-MIDDLE DEPTH, AGGREGATED
	12 1 5 1 6	The most southern assemblage, restricted to the Middle Atlantic Bight and southern Georges Bank.
	17 18	PC species: Gulfstream flounder, Fourspot flounder, Fawn cusk-eel, Spotted hake, Butterfish, Red hake, Goosefish (Angler)
2	9	NORTHERN, COLD, VERY DEEP, AGGREGATED
	13	The deepest assemblage, occurring in the north, through the Laurentian channel, around the slope of the Grand Banks and Labrador Shelf, and around the Flemish Cap.
		PC species: Blue hake, Rock (Roundnose) grenadler, Longnose (Slatjaw cutthroat) eel, Large-scale tapirfish, Roughhead grenadier, Marlin-spike (Common grenadier)
3	7	SOUTHERN, WARM, SHALLOW-MIDDLE DEPTH, DISPERSED
	12 1 6 17	Primarily a southern assemblage, most commonly occurring on Georges Bank, in the Middle Atlantic Bight, in the mouth of the Bay of Fundy, but with scattered sites up to the Grand Banks.
	18	PC species: Scup, Summer flounder, Northern (Common) searobin, Black sea bass, Smooth dogfish
4	4	SOUTH-CENTRAL, WARM, SHALLOW-MIDDLE DEPTH, AGGREGATED
	7 15 17	Concentrated in the Gulf of Maine, on the southern Scotian Shelf, outer edges of Georges Bank, and the Middle Atlantic Bight.
		PC species: Silver hake, Red hake, Cusk, Pollock, Spiny dogfish, White hake, Ocean pout, Goosefish (Angler), Haddock, Shortfin squid
5	11	CENTRAL, MEDIUM TEMPERATURE, VERY SHALLOW, FRAGMENTED The shallowest assemblage, occurring on bank tops and some coastal areas in the middle of the study area (fragmented distribution).
		PC species: Longhorn sculpin, Sea raven, Yellowtail flounder, Winter flounder, Ocean pout
6	5	CENTRAL, MEDIUM TEMPERATURE, DEEP, LOCALISED
		Occurs primarily in the Laurentian Channel and into the mouth of the St. Lawrence River.
		PC species: Marlin-spike (Common grenadier), Redfishes (Sebastes spp.), Witch flounder, Black dogfish, Atlantic argentine, White hake, Longfin hake
7	11	SOUTHERN (GEORGES BANK), VERY WARM, SHALLOW, AGGREGATED
	12	Occurs most strongly on Georges Bank, and to a lesser extent on other banks.
		PC species: Windowpane, Winter skate, Little skate, Northern sand lance
8		NORTHERN, COLD, DEEP, AGGREGATED Occurs on the NE Newfoundland and southern Labrador shelves.
		PC species: Spotted wolffish, Atlantic wolffish, Northern wolffish, Roughhead grenadier, Atlantic cod, Greenland halibut, Redfishes (<i>Sebastes</i> spp.)

¹The highest association of each site cluster group with a PC (in Figure 16) is typed in bold (see Tables 7 and 9 for depth and temperature information). In the PC species lists, species with loadings \geq 0.5 are in bold type; species with loadings between 0.3 and 0.5 are in standard type.

Table 16. (continued)

PC #	Associated CGs	Characteristics
9	17	SOUTHERN WIDESPREAD, WARM, MEDIUM DEPTH Occurs in the deeper shelf areas of the Scotian Shelf and Gulf of Maine, and along the shelf slope from the SW Grand Banks to Cape Hatteras.
		PC species: Blackbelly rosefish, Offshore hake, Shortnose greeneye
10		NORTH CENTRAL, COOL, MEDIUM DEPTH, DISAGGREGATED Occurs on the NE Newfoundland Shelf, Grand Banks, Northern Scotian Shelf, and in the Gulf of St. Lawrence at medium to deep depths in cool water.
		PC species: Thorny skate, American plaice, Witch flounder, Atlantic cod, Smooth skate
11	3	NORTHERN, COLD, DEEP, AGGREGATED The coldest water assemblage, occurs on the NE Newfoundland and Labrador Shelves.
		PC species: Arctic cod, Atlantic sea poacher, Greenland halibut, Polar sculpin
12	14	CENTRAL, MEDIUM TEMPERATURE, MEDIUM DEPTH Occurs in the Northern Gulf of St. Lawrence and Gulf of Maine.
		PC species: Fourbead rockling, Atlantic hagfish, Smooth skate
13	8 1 4	CENTRAL, COOL, SHALLOW SCATTERED AGGREGATIONS Occurs at several scattered localities north of Cape Cod.
		PC species: Moustache (Mailed) sculpin, Alligatorfish, Snowflake hookear sculpin
14	5 10	CENTRAL, MEDIUM TEMPERATURE, DEEP, LOCALISED Concentrated in the Laurentian Channel and in the Gulf of St. Lawrence up to the mouth of the St. Lawrence River, and also along the slope of the Labrador and Scotian Shelves.
		PC species: Roughnose grenadier, Longfin hake, Black dogfish
15		CENTRAL, MEDIUM TEMPERATURE, MEDIUM DEPTH Occurs mainly on the outer banks of the Scotian Shelf, and on the SW edge of the Grand Banks into the NE Gulf of St. Lawrence.
		PC species: Atlantic halibut, Haddock
16		NORTHERN, COOL, DEEP Essentially a single species PC, concentrated on NE Newfoundland and Labrador slope, scattered into the Gulf of St. Lawrence, Gulf of Maine, and Georges Bank.
		PC species: Polar sculpin, Roughhead grenadier, Greenland halibut
17	2	NORTH CENTRAL, VERY COLD, MEDIUM DEPTH Localised on the shelf S of Newfoundland and around into the NE Gulf of St. Lawrence.
		PC species: Lumpfish, Shorthorn sculpin, Sea raven
18	8 11	SOUTHERN, WARM, SHALLOW Essentially a single species PC, occurs in the SW Gulf of St. Lawrence, Bay of Fundy, Georges Bank, and Middle-Atlantic Bight.
		PC species: Cunner, Winter flounder, Snake blenny

Table 17. Comparison of species groupings found in the PCA of the present study with groupings found in previous studies.¹

This study (PCA)	Middle Atlantic Bight (Colvocoressess and Musick 1984)	Middle AtlanticBight/ Georges Bank/ Gulf of Maine (Gabriel 1992)	Scotian Shelf (Mahon and Smith 1989)	Scotian Shelf (Mahon 1995)
Guifstream flounder Fourspot flounder Fawn cusk eel Spotted hake Butterfish Red hake Goosefish (Angler)	Red hake Silver hake Gulfstream flounder Spotted hake Butterfish Fourspot flounder	Spotted hake Fourspot flounder Butterfish	XXXX	XXXX
Blue hake Rock (Roundnose) grenadier Longnose (slatjaw cuthroat) eel Large-scale tapirfish Roughhead grenadier Marlin-spike (Common grenadier)	XXXX	XXXX	xxxx	XXXX
Scup Summer flounder Northern (Common) searobin Black sea bass Smooth dogfish	Scup Summer flounder Northern (Common) searobin Black sea bass Smooth dogfish	Scup Summer flounder Northem (Common) searobin Black sea bass	xxxx	xxxx
Silver hake Red hake Cusk Pollock Spiny dogfish White hake Ocean pout Goosefish (Angler) Haddock Shortfin squid		Hed hake Silver hake Goosefish (Angler) Cusk Spiny dogfish Shortfin squid	Red hake Goosefish (Angler)	Red hake Silver hake Goosefish (Angier) Spiny dogfish
Longhorn sculpin Sea raven Yellowtail flounder Winter flounder Ocean pout	Longhorn sculpin Yellowtail flounder American plaice Little skate Windowpane Spiny dogfish	Sea raven Ocean pout	Longhorn sculpin Sea raven Winter flounder Yellowtail flounder Winter skate	Longhorn sculpin Sea raven Winter Ilounder Yellowtali flounder Winter skate Ocean pout
Mariin-spike (Common grenadier) Redfishes (<i>Sebastes</i> spp.) Witch flounder Black dogfish Atlantic argentine White hake Longfin hake		Redfishes Witch flounder White hake	Marlin-spike (Common grenadier) Longfin hake	Marlin-spike (Common grenadier) Redfishes (<i>Sebastes</i> spp.) Witch flounder White hake

¹Species groups in previous studies have been placed next to the PC assemblage to which they appear most similar. In the PCA column, the species in bold type have loadings \geq 0.5; the species in standard type have loadings between 0.3 and 0.5. XXXX indicates that none of the species in the present study's group were included in the previous study.

	-			
This study (PCA)	Middle Atlantic Bight (Colvocoressess and Musick 1984)	Middle AtlanticBight/ Georges Bank/ Gulf of Maine (Gabriel 1992)	Scotian Shelf (Mahon and Smith 1989)	Scotian Shelf (Mahon 1995)
Windowpane Winter skate Little skate Northern sand lance		Winter skate Windowpane Little skate		
Spotted wolffish Atlantic wolffish Northern wolffish Roughhead grenadier Atlantic cod Greenland halibut Redfishes (<i>Sebastes</i> spp.)	XXXX			
Blackbelly rosetish Offshore hake Shortnose greeneye	Blackbelly rosefish Offshore hake Shortnose greeneye	Blackbelly rosefish Offshore hake Longfin hake Gulfstream flounder	xxxx	
Thorny skate American plaice Witch flounder Atlantic cod Smooth skate		Thorny skate American plaice	Thomy skate American plaice Atlantic cod	Thorny skale American plaice
Arctic cod Atlantic sea poacher Greenland hallbut Polar sculpin	××××	xxxx	××××	xxxx
Fourbeard rockling Atlantic haglish Smooth skate			Pollock Spiny dogfish	Cusk Pollock Atlantic argentine
Moustache (Mailed) sculpin Alligatorfish Snowflake hookear sculpin	XXXX		Moustache (Mailed) sculpin	
Roughnose grenadier Longfin hake Black dogfish	XXXX		Longfin hake	
Atlantic halibut Haddock	XXXX	Atlantic halibut Atlantic wolffish	Atlantic halibut Haddock	Atlantic halibut Haddock Atlantic wolffish
Polar sculpin Roughhead grenadier Greenland halibut	XXXX	xxxx	××××	XXXX
Lumpfish Shorthorn sculpin Sea raven	XXXX	Lumpfish	××××	xxxx
Cunner Winter flounder Snake blenny	XXXX	Cunner	xxxx	XXXX

and their relatively large ranges, together with the migratory habits of many species, may preclude development of tight functional relationships among groups of more than two or three species. Because fishes change their ecological roles as they grow and size was not considered in the analyses conducted for this report, functional relationships among size classes of various species may have been masked. In addition, some naturally occurring functional assemblages may have been disrupted by fishing mortality.

RECOMMENDATIONS AND IMPLICATIONS FOR MANAGEMENT

The analyses described in this report merely scratch the surface of a large body of interesting investigations that could be undertaken with the ECNASAP/Cod Mortality Project data set. Based on the work to date, this section provides recommendations for further work, which will refine the analyses to gain a better understanding of demersal assemblages, and the roles of Atlantic cod, in the study area. The identification of biological and environmental systems and/or boundaries may enable development of management strategies that correspond more closely to the systems to which they are applied. Implications for management are briefly discussed; this topic obviously will warrant a fuller consideration when the results of more detailed analyses become available.

Recommendations for Further Work

The purpose of the suggestions that follow is not only to gain an improved understanding of the groundfish, but also to conduct analyses that will enable development of better management strategies in the future. Two areas are addressed: analytical methods and new analyses. Further development of the ECNASAP desktop systems is not discussed, as other forums for these discussions are more appropriate.

Most of the suggested work relies heavily on geographic information systems (GIS). The power of GIS enables distinct improvements over earlier methodologies for any analysis involving spatial, and spatial/temporal, relationships. For example, prior to the widespread use of GIS, biogeographic analyses had to rely on relatively primitive geographic techniques, such as projecting data onto axes parallel to the coast. This is not necessary with GIS, wherein actual maps can be analyzed. In addition, maps of other relevant data, such as temperature, depth, and fishing effort, can be combined with the species maps. Moreover, a temporal series of maps can be analyzed to investigate how relationships have changed through time. **Analytical methods**. Two major issues involving analytical methods are addressed: interpretation and mapping of the assemblages identified through PCA; and approaches for analyzing relationships between assemblages and abundant, widespread species.

Interpreting PCA - To gain a better understanding of the relationship between PC scores and the assemblages that a PC is assumed to represent, it will be useful to examine how the species compositions of sites change as the site PC scores change. Species composition could be compared in sites falling within the top 5%, 10%, 15%, etc. of scores on a PC. In particular, it would be useful to determine the PC score level at which species with high loadings do not occur.

Alternative ways of mapping PC scores should be explored. Overplotting occurs when plotting large numbers of points in different range categories on a single map. Patterns evident on a map may be an artifact of which points are plotted last, and patterns in the underlying points may be obscured. Contouring PC scores and developing change maps (maps showing how abundance has changed over time) might provide more readily interpretable results.

Patterns of co-distribution and overlap of assemblages as defined by PCA should be explored, both statistically and by combining them on thematic maps showing overlapping assemblages. This would enable identification of assemblage "hot spots," where high levels of species interactions could be occurring. A statistical approach would be to determine the frequency with which sites have high scores (e.g., are in the top 5%) for more than one PC (Table 13). A mapping approach would be to create polygons for each assemblage, overlay them on a map, and determine the extent of overlap.

Because PC scores may show that an assemblage is present when one of the constituent species is not, an alternative approach to defining the assemblages, which would not use the site PC scores, could be explored. Each assemblage could be considered present at all sites where all the major species occurred at some specified level of abundance, (e.g. abundance > average catch/tow). A quantitative measure of the degree to which the assemblage is represented at each site could then be based on the combined relative catch/ tow (i.e., relative to the species annual or long-term mean catch/tow) of the major species at the site. This ad hoc approach to assemblage definition would not permit an assemblage to be present at a site where one of its major species was absent. It would also allow abundance to be brought back into the analyses (see below).

Analyzing abundant species - Relationships between abundant, widespread (i.e., assemblage generalist) species (e.g., Atlantic cod) and the assemblages need to be addressed. Both PCA and cluster analysis are designed to detect unique patterns of covariation, and are not very effective at detecting lower levels of variation that occur ubiquitously. Several possible approaches involving cross tabulation of site groups and species are available for examining relationships among assemblages and ubiquitous species in more detail. It might be useful to examine species abundances in the assemblages identified by the PCA, as was done for PCs 10 and 11 (Table 14). Ubiquitous species, such as silver hake (PC 10) and American plaice (PC 11), were quite abundant in the trawls assigned to these PCs, which indicates that even though these species are not unusually abundant in these assemblages, there may be significant interactions between them and the assemblages.

Nodal analysis may be useful for investigating relationships between abundant species and the cluster groups (Boesch 1977; Stephenson et al. 1972). Indices of constancy and fidelity can be calculated and diagrammed to show patterns of association between species (or species groups) and site groups. Constancy is the ratio of observed to possible occurrences of a species in a group of sites. This indicates the extent to which the assemblage may occur without a particular species being present. In a diagnostic sense, a constancy of 1 means that if the species is not present, then the assemblage is not present either. Fidelity is the ratio of constancy of a species in a site group to its average constancy in all other site groups. Fidelity substantially greater than 1 indicates that the species is highly characteristic of the site group. Constancy and fidelity of a ubiquitous species would be expected to be moderate-to-low for a large number of site groups. These indices would be high in site groups in which species with limited distributions tend to co-occur, and low for these species in the remaining site groups.

A third possibility would be to simply develop tables of co-occurrence, where the species would be listed along the side and top of the table, and the frequency with which a species on the side of the table co-occurred in trawls with the species listed along the top would be calculated. In this approach, a ubiquitous species, such as Atlantic cod, might have a fairly low co-occurrence with many less abundant species, because cod may be caught in many areas beyond the ranges of any given less abundant species, yet the less abundant species would have a high co-occurrence frequency with cod, because wherever they are caught, cod is also frequently caught. *New analyses.* Several suggestions for new analyses are provided, which are intended either to improve upon the existing analyses, or to provide additional insights into the structure and function of the groundfish community. The purpose of the suggestions is to enable a better characterization of the biological and environmental systems in which the groundfish, and fishing, occur.

Effects of different gear on the trawl data. As discussed in the methods section of this report, the analyses completed to date do not include any corrections of the data for the use of different gear by the different regional surveys. Based on the similarities between the results of this study and those of several others that utilized data from only one source, the assumption that strong signals in the data would be detectable, even in the presence of possible distortions caused by the use of different gears, appears justified. However, the mixture of gears may have contributed to the substantial amount of unexplained variance in the assemblage analyses of this study. The assemblage analyses could be repeated using gear-standardized data, which might provide more accurate information to analyze, and reduce the amount of unexplained variability.

Effects of spatial/temporal sampling bias. Variation in the spatial distribution of sampling over time may have introduced artificial spatial/temporal patterns into the apparent distribution of species and/or assemblages. The extent of this possible problem should be investigated. One approach could be to identify species that, because they are abundant in areas that were intermittently sampled, are likely to have been affected by the sampling variation. Data for the remaining species are not likely to have been affected by sampling variation. Selected analyses could be repeated using only species or subareas that were well sampled.

<u>Size.</u> The assemblage analyses conducted for this report do not include any consideration of size or age. However, size and age can influence distribution (e.g., Horne and Campana 1989) and species interactions. Therefore, analyzing distributional patterns and species associations using a size- or age-structured data set could provide more detailed information.

Distribution and Environment. Both fish distribution and environmental characteristics vary over a range of spatial and temporal scales. It is well-known that fish distribution is tied to environmental characteristics, but the extent to which biotic factors affect distribution is less well understood. A more comprehensive understanding of how these factors interact and/or covary is vital for developing fishery management strategies that correspond to biological and/or environmental systems. Developing a more complete characterization of the spatial and temporal variability of fish distribution and abundance is a first step for identifying the biological systems existing in the study area. The analyses should include shifts in location and the area occupied, and changes in the species compositions of assemblages. Analyzing temporal trends in the species composition of assemblages would also provide insight into the interdependence among the assemblage species. Temporal trends in the distribution of species and assemblages could be examined using a GIS, or by a regression approach similar to that used by Murawski (1993) for the Middle Atlantic Bight/Georges Bank/Gulf of Maine area.

Analysis of the role of habitat in determining species and assemblage distributions could have important applications. It could enable development of distribution maps for areas lacking adequate sampling data, and support an in-depth understanding of the degree to which assemblages exist because of environmental requirements. It would also support strategic assessment and planning activities, especially exploration of the relative impacts of management scenarios involving fishing or competing uses, such as resource development. For example, potential impacts of environmental change, such as global warming, changes in freshwater inflow to estuaries, or offshore drilling activities, can be assessed when relationships among species/assemblage distributions and environmental conditions are known. This capability is now being developed by SEA Division in the Gulf of Maine (Gulf of Maine Project and SEA Division 1994), mid-Atlantic states (Monaco et al. in prep.), and Florida. Habitat suitability models can be used to infer species (or assemblage) distributions and relative abundances as a function of the habitat requirements of a species (or assemblage) and the environmental characteristics of the available habitat. The models are run using a GIS. If habitat characteristics change because of natural or anthropogenic causes, so too will distribution maps generated using the models.

Thorough habitat analysis, or development and use of habitat suitability models, requires both detailed digital maps of environmental characteristics and a semi-quantitative understanding of relationships between abundance and environmental characteristics. Many of these resources are being developed in ECNASAP, or could be developed using ECNASAP products. Temperature and salinity maps will be available for the entire study area, as will sediment maps, at least for the region from Cape Hatteras to the eastern Scotian Shelf. Bathymetric maps are also available as ECNASAP products. The trawl survey database developed for this project contains much of the information needed to develop habitat suitability models. Enough data should be available to relate abundance to temperature and depth. However, because less salinity data exist, and the little data available from the surveys on substrate has not been included in the ECNASAP data set, some information would have to be derived from the scientific literature. Several methods are available for determining species - environment relationships. Where guantitative data are available, cumulative distribution functions (Perry and Smith 1994; Smith et al. 1994), nonparametric density estimation methods (Rice 1993), or the Habitat Preference Index (Monaco et al. in prep.) may be appropriate. Discriminant analysis could be also used to identify environmental axes separating the various site groups or species (Horne and Campana 1989). For variables with less information, some judgment and experimentation would be required.

Future biogeographical work should be undertaken to better define faunal regions, and to associate faunal boundaries with environmental discontinuities. To improve upon earlier approaches (e.g., the band analysis of Mahon and Sandeman (1985)), GIS and spatial analysis techniques, perhaps combined with habitat suitability modeling, could be used. This would enable an integrated analysis, incorporating not only spatial and temporal variation in species and assemblage distributions, but also analysis of the impacts of variation in environmental conditions and/or habitat.

Species diversity, both richness and evenness, could also be mapped for the study area, as done by Mahon (1995). Diversity maps may indicate areas of high demersal finfish biodiversity, which could be candidates for conservation as reserves or protected areas. Temporal trends in diversity, within both high and low diversity areas, could be evaluated in relation to the distribution of fishing effort to determine possible effects of fishing on diversity, as done for the Scotian Shelf by Strong and Hanke (1995).

<u>Fishing</u>. The importance of accurately assessing the impacts of fishing mortality on fish distribution and abundance for developing credible management plans cannot be overstated. Fishing effort data are now being overlain with the trawl survey data for the Labrador Shelf and Grand Banks regions, but a comprehensive analysis requires information for the entire study area. Accurate temporal information will be needed to analyze cause and effect, as determining the extent to which changes in fishing mortality cause changes in abundance, and the extent to which changes in abundance cause changes in fishing effort is a highly sensitive issue in fishery management.

Implications for Management

The analyses described in this report may have some implications for fishery management. However, the present results are too preliminary to warrant an indepth discussion. Further enhancements and analysis of the ECNASAP/Cod Mortality Project data base could provide the scientific basis for modernizing fishery management approaches. As the results of upcoming analyses become available, their management implications should be explored in much greater detail.

One primary question that could be addressed through detailed assemblage analysis is whether functional groupings exist that can be viewed as ecological entities (e.g., the assemblage production units of Tyler et al. (1982)). If assemblage production units exist, management strategies could be adapted to optimize harvest of assemblages, rather than harvest of single species. The analyses conducted to date indicate that the groundfish assemblages are rather loose, in that the assemblages explain only about 56% of the variance in total species distribution. This suggests that, in the context of all 66 species and the entire Cape Chidley-Cape Hatteras region, the assemblages may not have strong functional relationships. Additional analysis (e.g., focusing on trophic studies and habitat associations within assemblages) will be required to determine whether or not some groups have functional relationships within this overall framework.

Assemblage information may be useful for reducing bycatch of nontarget species. The assemblages detected are based on species co-occurrences, and they are persistent through time. Because of this persistence, management strategies could be developed to reduce bycatch by allocating fishing effort primarily to areas where nontarget species are rare, as is now being pursued by the NMFS management advisors at Woods Hole (see Garbiel's presentation in O'Boyle (1995)). This approach would be a real step beyond single-species models, and toward ecosystem management. It would not only reduce the impacts of trawling on nontarget species, but would also increase economic efficiency by minimizing trawling effort expended in the harvest of nontarget species.

The results of this study may have implications for the validity of most single species assessment and management models. These models are typically designed to operate on unit stocks, which are assumed to be closed populations contained in specific areas without immigration or emigration. Although fisheries management boundaries are static, this study has shown that the geographic limits of species distributions are variable over time, presumably as a function of variation in ocean climate. Therefore, running the models in static regions may violate basic model assumptions.

A related biogeographic issue is the extent to which the NAFO management areas fail to recognize important distributional features. If management boundaries split ecological regions, there is the possibility that conflicting or inappropriate management objectives may be applied to a single functional group. In this situation, reaching management objectives may be impossible.

The ECNASAP data set contains much information on species not currently exploited. With the decline of many traditionally harvested species along the east coast of North America, the fishing industry is turning more than ever toward new resources. For many species, the ECNASAP data set provides information on distribution, abundance, habitat characteristics, and species co-occurrences over a broad geographic range. This information is essential for developing sensible management schemes for these new species.

REFERENCES

ACZISC and SEA Division. 1995. Pilot Project Plans, East Coast of North America Strategic Assessment Project. Halifax, NS: ACZISC, Oceans Institute of Canada, and Silver Spring, MD: SEA Division, National Oceanic and Atmospheric Administration. 53 pp.

Akenhead, S.A., and E.M. LeGrow. 1981. The vertebrates code of the Northwest Atlantic Fisheries Centre. Can. Data Rep. Fish. Aquat. Sci. No 309: 58 pp.

Anderberg, M.R. 1973. Cluster Analysis for Applications. New York, NY: Academic Press Inc. 359 pp.

Angel, J.R., D.L. Burke, R.N. O'Boyle, F.G. Peacock, M. Sinclair, and K.C.T. Zwanenburg. 1994. Report of the workshop on Scotia-Fundy Groundfish Management from 1977 to 1993. Can. Tech. Rep. Fish. Aquat. Sci. No. 1979. 181 pp.

Beddington, J.R. 1986. Shifts in resource populations in large marine ecosystems. pp. 9-18 In: Sherman, K. and L.M. Alexander (eds.) Variability and Management of Large Marine Ecosystems, AAAS Selected Symposium 99. Boulder, CO: Westview Press.

Black, G.A.P. 1993. ACON Data Visualization Software: User Manual - version 7.14. Dartmouth, NS: Bedford Institute of Oceanography. Unpublished Manuscript.

Bloom, S.A. 1981. Similarity indices in community studies: potential pitfalls. Mar. Ecol. Prog. Ser. Vol. 5: 125-128. Boesch, D.F. 1977. Application of numerical classification in ecological investigations of water pollution. Gloucester Point, VA: Virginia Institute of Marine Science. Report prepared for the Corvallis Environmental Research Laboratory, U.S. EPA. Report EPA-600/3-77-033. 114 pp.

Briggs, J.C. 1974. Marine Zoogeography. New York, NY: McGraw-Hill Book Co. 475 pp.

Brown, B.E. 1987. The fisheries resources. p. 480-493. In: R.H. Backus and D.W. Bourne (eds.) Georges Bank. Cambridge, MA: MIT Press.

Clifford, H.T., and W. Stephenson. 1975. An introduction to numerical classification. New York, NY: Academic Press. 229 p.

Colton, J.B. 1972. Temperature trends and the distribution of groundfish in continental shelf waters, Nova Scotia to Long Island. Fish. Bull. 70: 637-657.

Colvocoresses, J.A., and J.A. Musick. 1984. Species associations and community composition of Middle Atlantic Bight continental shelf demersal fishes. Fish. Bull. 82: 295-313.

Doubleday, W. G. 1981. Manual on groundfish surveys in the northwest Atlantic. Northwest Atlantic Fisheries Organization, Scientific Council Studies No. 2: 55 pp.

Doubleday, W.G. 1995. Research proposal: Partitioning the total mortality of Atlantic cod stocks. Ottawa, ONT: Department of Fisheries and Oceans. 7 pp.

Doubleday, W.G., and D. Rivard. 1981. Bottom trawl surveys. Can. Spec. Publ. Fish. Aquat. Sci. 58: 272 pp.

Drinkwater, K., and R.A. Myers. 1987. Testing predictions of marine fish and shellfish landings from environmental variables. Can. J. Fish. Aquat. Sci. 44: 1568-1573.

Fogarty, M.J., M.P. Sissenwine, and M.D. Grosslein. 1987. Fish population dynamics. p. 494-507. In: R.H. Backus and D.W. Bourne (eds.) Georges Bank. Cambridge, MA: MIT Press.

Gabriel, W.L. 1992. Persistence of demersal fish assemblages between Cape Hatteras and Nova Scotia, Northwest Atlantic. J. Northw. Atl. Fish. Sci., Vol. 14: 29-46.

Gauch, H.G. 1982. Multivariate analysis in community ecology. Cambridge, England: Cambridge Univ. Press.

Gomes, M.C. 1993. Predictions under uncertainty. St. John's, NFLD: Institute of Social and Economic Research. 172 pp.

Gomes, M.C., R.L Haedrich, and J.C. Rice. 1992. Biogeography of groundfish assemblages on the Grand Bank. J. Northw. Atl. Fish. Sci., Vol. 14: 13-27.

Gomes, M.C., R.L. Haedrich, and M. Guadalupe Villagarcia. 1995. Spatial and temporal changes in the groundfish assemblages on the northeast Newfoundland/Labrador Shelf, Northwest Atlantic, 1978-1991. Fisheries Oceanography, 4(2):85-101.

Gomes, M.C., R.L. Haedrich, and J.C. Rice. 1992. Biogeography of groundfish assemblages on the Grand Bank. J. Northw. Atl. Fish. Sci., 14: 13-27.

Gorsuch, R.L. 1974. Factor Analysis. Philadelphia: W.B. Saunders Co. 370 pp.

Grosslein, M.D. 1969. Groundfish survey program of BCF Woods Hole. Commercial Fisheries Review 31(8-9): 22-30.

Guadalupe Villagarcia, M. 1995. Structure and distribution of demersal fish assemblages on the Northeast Newfoundland and Labrador shelf. M.Sc. Thesis, Biology Dept., Memorial University, Newfoundland. 89 pp.

Gubbay, S. 1995. Marine region 5 Northeast Atlantic. p. 127-151. In: Kelleher, G., C. Bleakley, and S. Wells [eds.] A global representative system of marine protected areas, Volume I. The Great Barrier Reef Marine Park Authority, The World Bank, The World Conservation Union (IUCN).

Gulf of Maine Project and Strategic Environmental Assessments Division. 1994. Pilot study proposal: Habitat suitability in Casco and Sheepscot bays. Falmouth, ME: U.S. Fish and Wildlife Service, and Silver Spring, MD: National Oceanic and Atmospheric Administration. 20 pp.

Horne, J.K. and S.E. Campana. 1989. Environmental factors influencing the distribution of juvenile ground-fish in nearshore habitats of southwest Nova Scotia. Can. J. Fish. Aquat. Sci. 46: 1277-1286.

Hurlbut, T. and D. Clay. (ed) 1990. Protocols for research vessel cruises within the Gulf Region (Demersal fish) (1970-1987). Can. Man. Rep. Fish. Aquat. Sci. No. 2082: 143 pp.

Hutchings, J.A., and Myers, R.A. 1994. What can be learned from the collapse of a renewable resource? Atlantic cod, *Gadus morhua*, of Newfoundland and Labrador. Can. J. Fish. Aquat Sci. 51: 2126-2146. Jolliffee, I.T. 1986. Principal Components Analysis. New York, NY: Springer-Verlag Inc. 271 pp.

Legendre, L., and P. Legendre. 1983. Numerical ecology. Developments in Environmental Modeling 3. New York, NY: Elsevier Scientific Publ. Co. 424 pp.

Lilly, G.R. 1982. The marine invertebrates code of the Northwest Atlantic Fisheries Centre. Can. Data Rep. Fish. Aquat. Sci. No 365: 44 pp.

Loucks, R.H. 1981. Analysis of feasibility of forecasting the vernal progression of isotherms along the Atlantic coast of Nova Scotia. Final Report. R.H. Loucks Oceanography, Ltd., 32 pp.

Mahon, R. 1995. Analysis of trawl survey data from the Scotian Shelf and Bay of Fundy (1970-1993). The East Coast of North America Strategic Assessment Project (ECNASAP) - Offshore Case Study. Contract FP288-4-H051/01-HAL.

Mahon, R., and E.J. Sandeman. 1985. Fish distributional patterns on the continental shelf and slope from Cape Hatteras to the Hudson Strait — A trawl's eye view, p. 137-152. In: R. Mahon [ed.] Towards the Inclusion of Fishery Interactions in Management Advice. Can. Tech. Rep. Fish. Aquat. Sci., No 1347.

Mahon, R., and R.W. Smith. 1989a. Demersal fish assemblages on the Scotian Shelf, northwest Atlantic: spatial distribution and persistence. Can. J. Fish. Aquat. Sci. 46 (Suppl. 1): 134-152.

Mahon, R., And R.W. Smith. 1989b. Comparison of species composition in a bottom trawl intercalibration experiment. J. Northw. Atl. Fish. Sci. 9: 73-79.

Monaco, M.E., S.B. Weisberg, and T.A. Lowery. In prep. Habitat preferences for estuarine fish in mid-Atlantic coastal systems. Silver Spring, MD: National Oceanic and Atmospheric Administration, and Columbia, MD: Versar, Inc. 34 pp.

Murawski, S.A. 1993. Climate change and marine fish distributions: forecasting from historical analogy. Trans. Amer. Fish. Soc. 122: 647-658.

Murawski, S.A., and J.T. Finn. 1988. Biological bases for mixed-species fisheries: species co-distribution in relation to environmental and biotic variables. Can. J. Fish. Aquat. Sci. 45: 1720-1735.

O'Boyle, R.N. 1995. East Coast of North America Strategic Assessment Project: Report of the workshop on Atlantic demersal community structure. Dartmouth, NS: Department of Fisheries and Oceans. 10 pp. + Appendices. Overholtz, W.J., and A.V. Tyler. 1985. Long-term responses of the demersal fish assemblages of Georges Bank. Fishery Bull. 83(4): 507-520.

Perry, R.I., and S.J. Smith. 1994. Identifying habitat associations of marine fishes using survey data: an application to the Northwest Atlantic. Can J. Fish. Aquat. Sci. 51: 589-602.

Pitt, T.K. 1970. Distribution, abundance, and spawning of Yellowtail flounder, *Limanda ferruginea* in the Newfoundland area of the Northwest Atlantic. J. Fish. Res. Board Can. 27: 2261-2271.

Ray, G.C., M.G. McCormick-Ray, J.A. Dobbin, C.N. Ehler, and D.J. Basta. 1980. Eastern United States coastal and ocean zones data atlas. Washington, DC: National Oceanic and Atmospheric Administration. 127 maps and text.

Rice, J.C. 1993. Forecasting abundance from habitat measures using nonparametric density estimation methods. Can. J. Fish. Aquat. Sci. 50: 1690-1598.

Sargent, J.W., P. Toomer, E. Gunas, and T. Hawkins. 1985 MS. NERFIS Data Dictionary System, Users manual. Woods Hole, MA: Northeast Fisheries Science Center. Unpublished MS. 65 pp.

SAS Institute Inc. 1989. SAS/STAT[®] User's Guide, Version 6, Fourth Edition, Volume 1. Cary, NC: SAS Institute, Inc. 943 pp.

Scott, J.S. 1982. Depth, temperature, and salinity preferences of common fishes of the Scotian Shelf. J. Northw. Atl. Fish. Sci. 3: 29-39.

Scott, W.B., and M.G. Scott. 1988. Atlantic fishes of Canada. Can. Bull. Fish. Aquat. Sci. 219: 731 pp.

Sherman, K., and L.M. Alexander. 1986. Variability and management of large marine ecosystems. AAAS Selected Symposium 99. Boulder, CO: Westview Press. 319 pp.

Sherman, K., and L.M. Alexander. 1989. Biomass yields and geography of large marine ecosystems. AAAS Selected Symposium 111. Boulder, CO: Westview Press. 493 pp.

Sherman, K. 1990. Productivity, perturbations, and options for biomass yields in large marine ecosystems. In: Large marine ecosystems: Patterns, processes, and yields, edited by K. Sherman, L.M. Alexander, and B.D. Gold. Washington, DC: American Association for the Advancement of Science. 242 pp.

Sherman, K., L.M. Alexander, and B.D. Gold. 1990. Large marine ecosystems: Patterns, processes, and yields. AAAS Symposium. Washington, DC: American Association for the Advancement of Science. 242 pp.

Sherman, K., L.M. Alexander, and B.D. Gold. 1993. Large marine ecosystems: Stress, mitigation, and sustainability. Washington, DC: American Association for the Advancement of Science. 376 pp.

Simon, J.E., and P.A. Comeau. 1994. Summer distribution and abundance trends of species caught on the Scotian Shelf from 1970-92, by the research vessel groundfish survey. Can. Tech. Rep. Fish. Aquat. Sci. 1953: x + 145 p.

Sissenwine, M.P. 1974. Variability in recruitment and equilibrium catch of the southern New England yellow-tail flounder fishery. J. Cons. Int. Explor. Mer 36: 15-26.

Sissenwine, M.P. 1986. Perturbation of a predator-controlled continental shelf ecosystem. pp. 55-85 In: Sherman, K. and L.M. Alexander (eds.) Variability and Management of Large Marine Ecosystems, AAAS Selected Symposium 99. Boulder, CO: Westview Press.

Smith, S., R. Losier, F. Page, and K. Hatt. 1994. Associations between haddock and temperature, salinity, and depth within the Canadian Groundfish Bottom Trawl Surveys (1970-93) conducted within NAFO Divisions 4VWX and 5Z. Can. Tech. Rept. Fish. Aquat. Sci. No. 1959.

Smith, S.J., and G.D. Somerton. 1981. STRAP: a useroriented computer analysis system for groundfish research trawl survey data. Can. Tech. Rep. Fish. Aquat. Sci. 1030: iv+66 p.

Stephenson. W., W.T. Williams, and S.D. Cook. 1972. Computer analyses of Petersen's original data on bottom communities. Ecol. Monogr. 42: 387-415.

Strategic Assessment Branch. 1989. Bering, Chukchi, and Beaufort seas coastal and ocean zones strategic assessment: Data atlas. Washington DC: U.S. Government Printing Office. 107 maps and text.

Strategic Assessment Branch and Northwest and Alaska Fisheries Center. 1990. West Coast of North America strategic assessment: Data atlas. Invertebrate and fish volume. Prepublication edition, Rockville, MD: National Oceanic and Atmospheric Administration. 112 pp. Strategic Assessment Branch and Southeast Fisheries Center. 1986. Gulf of Mexico coastal and ocean zones strategic assessment: Data atlas. Washington, DC: U.S. Government Printing Office. 163 maps and text.

Strong, M., and S. Gavaris (ed.). 1993 MS. Manual, bottom trawl surveys, marine fish, Scotia Fundy Region. Draft 2.4.

Strong, M., and A. Hanke. 1995. Diversity of finfish species in the Scotia-Fundy Region. Can. Tech. Rep. Fish. Aquat. Sci. No. 2017: viii + 106p.

Sutcliffe, W.H., Jr., K. Drinkwater, and B.S. Muir. 1977. Correlations of fish catch and environmental factors in the Gulf of Maine. J. Fish. Res. Board Can. 34: 19-30.

Sutcliffe, W.H. Jr., R.H. Loucks, K.F. Drinkwater, and A.R. Coote. 1983. Nutrient flux onto the Labrador Shelf from the Hudson Strait and its biological consequences. Can. J. Fish. Aquat. Sci. 40: 1692-1701.

Swain, D.P., and T. Hurlbut. 1995. Identifying and mapping groundfish species assemblages: preliminary results for the southern Gulf of St. Lawrence. DFO FOC Working Paper 95/23.

SYSTAT, Inc. 1992. SYSTAT: graphics, version 5.2 edition. Evanston, IL: SYSTAT, Inc. 600 pp.

Taylor, C.C., H.B. Bigelow, and H.W. Graham. 1957. Climate trends and the distribution of marine animals in New England. Fish. Bull. 57: 293-345.

Templeman, W. 1959. Redfish distribution in the North Atlantic. Bull. Fish. Res. Board Can. 120: viii+173 pp.

Templeman, W., and A.M. Fleming. 1953. Long-term changes in hydrographic conditions and corresponding changes in abundance of marine animals. ICNAF. Annu. Proc. 3: 79-86.

Ter Braak, C.J.F. 1986. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology 67(5): 1167-1179.

Zwanenburg, K., and J. Black. 1995 MS. Fish assemblages on the Scotian Shelf 1970-1994. DFO FOC Working Paper.

APPENDIX 1: COMBINING TRAWL SURVEY DATA FROM CAPE HATTERAS TO CAPE CHIDLEY

The trawl survey data which were compiled were obtained from five sources. Data for the Labrador Shelf from Cape Chidley south, the Grand Banks of Newfoundland, the Flemish Cap, and the west coast of Newfoundland were obtained from the Canada Department of Fisheries and Oceans, North Atlantic Fisheries Centre, St. John's, Newfoundland (contact Bruce Atkinson). Data for the Northern Gulf of St. Lawrence were obtained from the Canada Department of Fisheries and Oceans, Marine Fish Division, Lamontagne Institute, Mon Joli, Quebec (contact Serge Labonte). Data for the Southern Gulf of St. Lawrence were obtained from the Canada Department of Fisheries and Oceans, Marine and Anadromous Fish Division, Gulf Fisheries Centre, Moncton, New Brunswick (contact Michael Chadwick). Data for the Scotian Shelf, the Bay of Fundy, and part of Georges Bank were obtained from the Canada Department of Fisheries and Oceans, Marine Fish Division, Scotia-Fundy Region, Bedford Institute of Oceanography, Dartmouth, Nova Scotia (contact Robert O'Boyle). Data for Georges Bank, the Gulf of Maine, and the Middle Atlantic Bight were obtained from the National Marine Fisheries Service (NMFS), Northeast Fisheries Science Center (NEFSC), Woods Hole, Massachusetts (contact Thomas Azarovitz).

Data Format and Codes

Original data. The format and codes of the original data have been documented in various publications. Sargent *et al.* (1985) describes the NMFS survey data set. The data from Newfoundland and Labrador, and the Northern Gulf of St. Lawrence are in the same format and use the same codes as described by Smith and Somerton (1981). The data from the Scotian Shelf, Bay of Fundy and Southern Gulf of St. Lawrence are in the same format as described by Strong and Gavaris (1993) and Hurlbut and Clay (1990).

The original format of the Canadian data has station and catch information stored on separate cards. There is one station card per tow, along with one catch card for each species. The U.S. data were obtained in two different formats: SVIMAGE for 1963-81 data and SVSTA/SVCAT for 1980-94 data. The SVIMAGE data consist of separate files for each year. These files contain records in five card-like formats, labeled by 1-5 in the 80th column. Station information and catch data were extracted from cards 1 and 5 respectively. The 1980-94 data are in two relational files per year. For each year, the SVSTA file contains station information, and the SVCAT file contains catch data.

ECNASAP/Cod Mortality Project format and codes. The data were converted to the most appropriate format for ecological analysis of trawl survey data; a sites times species format. Each site, or survey tow, is stored as a separate record (row), with the relevant site, environmental and catch information as variables in the columns. The catch of each species is a separate variable. Each data set was converted to this format, and then all were combined into one data set. The data are stored as an SPSS for Windows (release 6.1) file, TRWLNUM.SAV.

Data Selection and Correction

Data were provided in various degrees of preparation for the analysis to be undertaken. Therefore, some screening and selection of data were carried out.

Newfoundland and Northern Gulf of St. Lawrence data. Data records from these data sets were selected according to the following criteria: 'SET TYPE' categories 1 and 2, survey and sampling sets were selected; and 'OPERATION OF GEAR' categories 1 and 2, normal/no damage and normal/some damage to net, catch not affected, were selected (excluding categories 3, 4, and 5, which are unsuccessful sets and all instances in which operation of gear was missing).

Only sets in which standard survey gear was used were selected, including 'GEAR' codes 100-111, 152, 162, 170, 190, 192.

Sets were selected according to tow duration. Only sets with durations between 15 and 60 minutes were retained. The catch per set in numbers and weight were then standardized to a standard set distance of 1.8 nautical miles.

Northern Gulf of St. Lawrence data. All valid survey tows for the late summer and winter survey series were provided.

Southern Gulf of St. Lawrence data. The late summer survey series was provided. The following taxonomic errors communicated by Doug Swain were corrected:

- species 203 was recoded to 204 (winter skate),
- species 509 was recoded to 502,
- species 507 was recoded to 520,
- species 51 was recoded to 50.

Doug Swain and Tom Hurlbut (pers. comm.) expressed the view that the seasnails have not been reliably identified over the time series, and that they should be lumped to the genus level (*Liparis*). Therefore, species 503-506, 512 and 513 were combined with 500 as seasnails unspecified. For similar reasons, *Lycodes* 598, 619, 620, 627, 641, 643, and 647 were combined with 642 as genus *Lycodes*, and the barracudinas 674 and 712 were combined with 713 as barracudinas unspecified. For these three groups of species, both the combined and original codes have been included to retain the option of analysing the species separately.

Scotia-Fundy data. All valid survey tows for the summer, winter, and fall survey series were provided.

U.S. (NMFS) data. Valid tows were extracted from the SVIMAGE data sets using a list of survey cruises, which was provided by L. DePres. Approximately 100 tows in the SVIMAGE data were corrected by NMFS for non-standard tow distances. Based on recommendations from NMFS, valid tows were extracted from the SVSTA data sets according to the following criteria: STATION_TYPE_CODE=1 (identifies survey tows); STRATUM_CODE=1 (offshore north of Cape Hatteras) or 05 (Scotian Shelf); HAUL \leq 3 (good tow/representative tow/problem tow may or may not be representative); and GEAR_CONDITION_CODE \leq 6 (gear condition ranging from no damage to obstruction in trawl). All survey tows cover the standard distance in the SVSTA database, so no corrections were performed.

Data Standardization

Tow distance. For the data from Canadian sources, catch per tow was standardised to a tow distance of 1.8 nmi. The U.S. data were provided already standardised.

Taxonomy. The species lists from USA, Scotia-Fundy, and Newfoundland were combined into the single list represented in ALLSPP.XLS (Appendix 2), an Excel spreadsheet containing all the species occurring in the five source data sets. They were combined first on the basis of the scientific name. Subsequently, any duplicate common names with different scientific names were checked to see if one of the scientific names was old, or a synonym. The nomenclatural differences found were reconciled using Scott and Scott (1988). In each case below, the latter name was retained.

- Molva byrkelange (NFLD) was taken as synonymous with *M. dypterygia*,
- Notocanthus nasus (NFLD) was taken as synonymous with *N. chemnitzi*,
- Eutremeus sadina (NFLD) was taken as synonymous with *E. teres*,

- Rhodogramma sherborni (NFLD) was taken as synonymous with Howella sherborni,
- Macdonaldia rostrata (NFLD) was taken as synonymous with Polyacanthonotus rissoanus,
- *Poronotus triacanthus* (NFLD) was taken as synonymous with *Peprilus triacanthus*,
- *Lycodes turneri* (NFLD) was taken as synonymous with *L. polaris*,
- Benthodesmus elongatus (SF) and B. simonyi (NMFS) were both taken as B. elongatus simonyi.

The two codes for Blennioidei s.o. in the Scotia-Fundy codes list (605 and 644) were combined.

In the Newfoundland codes, *Eumicrotremus spinosus* and *E. spinosus variabilis* are given separate codes. Scott and Scott (1988) do not mention this distinction, so these species were combined.

Notolepis rissoi and Notolepis rissoi kroyeri have separate codes (727 and 712) in the Scotia-Fundy data set. According to Scott and Scott (1988), only subspecies *kroyeri* is in the western Atlantic, so these species were combined.

Four new variables were created, in which the species within genera were combined, due to identification problems as described above in the section for the Southern Gulf of St. Lawrence. These are: (1) REDALL, which includes all redfishes in the genus *Sebastes*; BARALL, which includes all barracudinas in the genus *Paralepis*; ELPALL, which includes all barracudinas in the genus *Lycodes*; and SSNALL, which includes all seasnails in the genus *Liparis*.

Alpha Codes

The alpha codes are the variable names used in the species times trawl sets data set developed in this project (Appendix 2). Alpha codes are prefixed with N (for numbers caught) in the data file. There are some duplicate alpha codes in the spreadsheet. These occur when the same species has been given more than one code (e.g. for different sexes or age groups) Original species codes for the data from Newfoundland and the Northern Gulf of St. Lawrence are provided by Akenhead and LeGrow (1981), and Lilly (1982).

The original species codes in Appendix 2 are listed as follows: USCD = NMFS species code, SFCD = Scotia-Fundy and Southern Gulf species code, and NFCD = Newfoundland/Labrador and Northern Gulf species code. Species occurrences in each original data set are coded by a "1" in the next set of fields (i.e., USOC for the U.S. data, SFOC for the Scotia-Fundy data, SGOC for the Southern Gulf data, NGOC for the Northern Gulf data, and NFOC for the Newfoundland/ Labrador data). For the ECNASAP/Cod Mortality Project data set, the variable KEPT = 1 indicates the species included in the data set, while KEPT = 0 indicates species that were excluded. All invertebrates, except shortfin squid, were excluded. All fish species or aggregate groups were included, with the following exceptions: species known to be strays from south of Cape Hatteras, and having fewer than five occurrences in the data set; and the categories, "all fish", "all demersal fish." Incomplete or ambiguous species identifications were also excluded.

In the TYPE field of Appendix 2, each fish species is classified as demersal (D), mesopelagic (M), or pelagic (P) on the basis of information provided by Scott and Scott (1988) and Bigelow and Schroeder (1953). Demersal species included all those known to live on, near, or in association with the substrate. When there was no information on habitat, the category was assigned on the basis of a congener. In some cases, the habitat was assumed on the basis of the species structure (e.g., all flatfishes were assumed to be demersal). Several cases could not be placed in a category; these are indicated by "?" in the TYPE field.

Description of Database Fields

The following is a brief description of the ECNASAP/ Cod Mortality Project data base fields. The file name is TRWLNUM.SAV, which is in SPSS for Windows (version 6.0). Full details of the codes and values are not provided, because users are assumed to be familiar with the trawl survey data from at least one of the regions, and are referred to the various data description documents for details.

BSAL: BTEMP: CRUISE:	Bottom salinity (ppt) Bottom temperature (° C) Cruise number (assigned sequen- tially within each vessel)
DAY:	Day of the month (1-31)
DEPTH:	Average bottom depth (m)
DIST:	Tow distance (nmi)
GEAR:	Type of trawl gear used (as coded in the original data)
LATDEC:	Latitude at the start of the tow (decimal degrees)
LONDEC:	Longitude at the start of the tow (negative decimal degrees)
MONTH:	Month (1-12)
N??????:	Standardised number caught per tow for species with alpha code ??????.
SET:	Set number (assigned sequentially within each cruise)

SOURCE:	Source of the data. The value is 1 for NMFS data, 2 for Scotia- Fundy data, 3 for Southern Gulf data, 4 for Northern Gulf Data, and 5 for Newfoundland/Labrador data.
SSAL:	Surface salinity (ppt) (most are missing)
STEMP:	Surface temperature (° C)
STRAT:	Fishing stratum (as coded in the original data)
TIME:	Time of day (hours and minutes)
VESS:	Vessel code (as in the original data)
YEAR:	Year of the tow (2 digits)

Year, Vessel, Cruise, and Set are together the unique identifiers of each set.

A similar SPSS data set, TRWLWTS.SAV, was prepared for the catch per tow in weight. It includes only the following variables; other variables can be merged from TRWLNUM.SAV using the set identifiers.

CRUISE:	Cruise number
SET:	Set number
W?????:	Standardised weight (kg) per tow
	for species with alpha code
	??????
VESS:	Vessel code
YEAR:	Year of the tow

COMMON NAME		ECNASAP				INVAL O	ODES 3					TA SET
	SCIENTIFIC NAME	CODE ¹	TYPE ²	KEPT	USCD S	SFCD	NFCD	USOC	SFOC	SGOC	NFOC	NGO
Sergeant major	Abudefduf saxatilis	SERMAJ	D	1	669			1				
Blue tang	Acanthurus coeruleus	BLTANG	D -	1	742			1				
Shortnosed sturgeon	Acipenser brevirostrum	SNSTRG	D	1		249			1			
Atlantic sturgeon	Acipenser oxyrhynchus	STURG	D	1	380	243		1	1			
Spotted eagle ray	Aetobatus narinari	SEGRAY	D	1	271			1				
Atlantic sea poacher	Agonus decagonus	ATSPCH	D	1		350	836		1	1	1	1
Bonefish	Albula vulpes	BONFSH	D	1		175			1			
Shortnosed lancetfish	Alepisaurus brevirostris	SHTLAN	D	1		731	324		1		1	
Longnose lancetfish	Alepisaurus ferox	LONLAN	D	1		710	325		1		1	
Baird's smoothhead	Alepocephalus bairdii	BAISHD	D	1		724	166		1		1	
Dotterel filefish	Aluterus heudeloti	DOTFIL	D	1	830			1				
Unicom filefish	Aluterus monoceros	UNIFIL	D	1	831			1				
Orange filefish	Aluterus schoepfi	ORGFIL	D	1	832	1	933	1	1		1	
Scrawled filefish	Aluterus scriptus	SCRFIL	D	1	833			1				
American sandlance	Ammodytes americanus	AMSAND	D	1		599			1			
Northern sand lance	Ammodytes dubius	NLNCE	D	1	181	610	694	1	1	1	1	1
Northern wolffish	Anarhichas denticulatus	NORWLF	D	1		52	699		1	1	1	1
Atlantic wolffish	Anarhichas lupus	ATLWOL	D	1	192	50	700	1	1	1	1	1
Spotted wolffish	Anarhichas minor	SPTWLF	D	1		51	701		1		1	1
Three-eye flounder	Ancylopsetta dilecta	TEYFLD	D	1	774			1				
Ocellated flounder	Ancylopsetta quadrocellata	OCEFLD	D	1	775			1				
American eel	Anguilla rostrata	AMEEL	D	1	384	600	342	1	1		1	
Ogrefish	Anoplogaster comuta	OGRFSH	D	1		774	500		1		1	
Daggertooth	Anotopterus pharao	DAGTTH	D	1		732	250		1		1	
Ocellated frogfish	Antennarius ocellatus	OCFROG	D	1		397			1		-	
Singlespot frogfish	Antennarius radiosus	SINFRG	D	1	446	•••		1	•			
Yellowfin bass	Anthias nicholsi	YFNBAS	D	1	500	498		1	1			
Deepbody boarfish	Antigonia capros	DBBOAR	D	1	158			1				
Blue hake	Antimora rostrata	BLUHAK	D	1	81	113	432	1	1		1	
Fourspine sticklebac	Apeltes quadracus	FRST	D	1	488		402	1	•		•	
Black scabbardfish	Aphanopus carbo	BKSCAB	D	1	400	784	547	•	1		1	
Twospot cardinalfish	Apogon psrudomaculatus	TWSCAR	D	1	559	, 04	041	1	•		•	
Apristurus laurussoni	Apristurus laurussoni	APLAUR	D	1	000	947			1			
Shark deepsea cat	Apristurus profundorum	CATSHK	D	1		239	56		1		1	
Sheepshead	Archosargus probatocephalus	SHPHED	D	1		99	00		1		•	
Atlantic argentine	Argentina silus	ATLARG	D	1	46	160	193	1	1	1	1	1
Striated argentine	Argentina silas Argentina striata	STRARG	D	1	856	161	193	1	1		1	
Silver rag	Argenina sulata Ariomma bondi	SILRAG	D	1	213	101	134	1				
Brown driftfish	Ariomma melanum	BRDRFT	D	1	891			1				
Spotted driftfish	Ariomma melanum Ariomma regulus	SPDRFT	D	1	748							
•	Ariomma regulus Ariosoma balearicum	BONCON	D	1	748 389			1				
Bandtooth conger			-	1	389	000	044	I	4		4	4
Atlantic hookear sculpin	Artediellus atlanticus	HKSCUL	D	•	150	880	811	4	1		1	1
Hookear sculpin uncl	Artediellus sp.	HSCUSP	D	1	159	323	810	1	1	4	1	1
Snowflake hookear sculpin	Artediellus uncinatus	SFSCUL	D	1		306	812		1	1	1	1

•

Appendix 2. (contin						INAL C	ODES	OCCURS IN ORIGINAL DA				
COMMON NAME	SCIENTIFIC NAME	CODE	TYPE	KEPT	USCD S	SFCD	NFCD	USOC	SFOC	SGOC	NFOC	NGOC
Arctic alligatorfish	Aspidophoroides olriki	ARALIG		1		341	837		1	1	1	1
Scaled dragonfish (ns)	Astronesthes sp.	DRGNUI	D	1			235				1	
Northern stargazer	Astroscopus guttatus	NSTGZ	D	1	179			1				
Southern stargazer	Astroscopus y-graecum	SSTGAZ	D	1	699			1				
Trumpetfish	Aulostomus maculatus	TRUMP	D	1	119			1				
Silver perch	Bairdiella chrysura	SILPER	D	1	148			1				
Gray triggerfish	Balistes capriscus	GRYTRG	D	1	202	з		1	1			
Queen triggerfish	Balistes vetula	QTRIG	D	1		4			1			
Blacksmelt (ncn)	Bathylagus benedicti	BLSMLT	D	1			201				1	
Goitre blacksmelt	Bathylagus euryops	BKSMLT	D	1		176	202		1		1	
Deepsea smelt ncn	Bathylagus sp.	BATHSP	D	1		295	200		1		1	
Black herring	Bathytroctes sp.	BLKHER	D	1			167				1	
Shortfin searobin	Bellator brachychir	SHFNSR	D	1	760			1				
Streamer searobin	Bellator egretta	STRSR	D	1	761			1				
Horned searobin	Bellator militaris	HNSROB	D	1	762			1				
Goby flathead	Bembrops gobioidesdnu	GOBYFL	D	1	178			1				
Frostfish	Benthodesmus elongatus simon		D	1	239	714	548	1	1		1	
Arctic cod	Boreogadus saida	ARCOD	D	1		110	451		1	1	1	1
Peacock flounder	Bothus lunatus	PEAFLD	D	1	776			1				
Eyed flounder	Bothus ocellatus	EYEFLD	D	1	777	45		1	1			
Twospot flounder	Bothus robinsi	TSPFLD	D	1	873			1				
Cusk	Brosme brosme	CUSK	D	1	84	15	458	1	1		1	1
Saucereye porgy	Calamus calamus	SCEPOR	D	1	633			1				
Whitebone porgy	Calamus leucosteus	WHBPOR	D	1	634			1				
Knobbed porgy	Calamus nodosus	KNBPOR	D	1	635			1				
Spotfin dragonet	Callionymus agassizi	SPTDRG	D	1	735	637		1	1			
Pearlfish	Carapus bermudensis	PRLFIS	D	1	462			1				
Longfin seasnail	Careproctus longipinnis	LFNSNL	D	1		507	864		1		1	1
Seasnail ncn	Careproctus ranula	CARRAN	D	1	260	924	866	1	1		1	
Sea tadpole	Careproctus reinhardi	SEATAD	D	1		520	865		1	1	1	1
Seasnails (ns)	Careproctus sp.	SSNU	D	1		515	863		1		1	1
Greenland manefish	Caristius groenlandicus	GRMFSH	D	1		97			1			
Atlantic goldeneye tilefish	Caulolatilus chrysops	ATGTIL	D	1	622			1				
Blackline tilefish	Caulolatilus cyanops	BLKTIL	D	1	562			1				
Gray tilefish	Caulolatilus microps	GRYTIL	D	1	621			1				
Alfonsino (ncn)	Caulolepis longidens	CAULON	D	1			514				1	
Cornish blackfish	Centrolophus brittanicus	CRNBFS	D	1			777				1	
Brown ruff	Centrolophus medusophagus	BRNRUF	D	1		786			1			
Black ruff	Centrolophus niger	BLKRUF	D	1		787			1			
Bank sea bass	Centropristis ocyurus	BKSBAS	D	1	526			1				
Rock sea bass	Centropristis philadelphica	RKSBAS	D	1	527			1				
Black sea bass	Centropristis striata	BLSBAS	D	1	141			1				
Black dogfish	Centroscyllium fabricii	BLKDOG	D	1	7	221	27	1	1	1	1	1
Portuguese shark	Centroscymnus coelolepis	PRTSHK	D	1		223	28		1		1	
Deepsea angler	Ceratias holboelli	DPSANG	D	1		401	981		1		1	1

Appendix 2.	(continued)
-------------	-------------

					ORIGINAL CODES			OCCURS IN ORIGINAL DATA SE				
COMMON NAME	SCIENTIFIC NAME	CODE	TYPE	KEPT	USCD S	SFCD	NFCD		SFOC	SGOC NF	OC	NGOC
Atlantic spadefish	Chaetodipterus faber	ATLSPD	D	1	659			1				
Spotfin butterflyfish	Chaetodon ocellatus	SFNBUT	D	1	662	107		1	1			
Reef butterflyfish	Chaetodon sedentarius	REFBUT	D	1	663			1				
Viperfish	Chauliodus sloani	VIPFIS	D	1	240	169	227	1	1		1	1
Chauliodus sp.	Chauliodus sp.	CHAUSP	D	1		335			1			
Red anglerfish	Chaunax pictus	REDANG	D	1	862			1				
Gaper (ncn)	Chaunax sp.	CHAUNX	D	1		530			1			
Black swallower	Chiasmodon niger	BLSWAL	D	1		39	679		1		1	
Striped burrfish	Chilomycterus schoepfi	STRBUR	D	1	198			1				
Yarrell's, warbonnet blenny	Chirolophus ascanii	YBLEN	D	1		629			1			
Shortnose greeneye	Chlorophthalmus agassizi	SHTGEY	D	1	232	156		1	1			
Chlorophthalmus chalybeius	Chlorophthalmus chalybeius.	dr CHLCHA	D	1	231			1				
Atlantic bumper	Chloroscombrus chrysurus	ATBUMP	D	1	573			1				
Yellowtail reeffish	Chromis enchrysurus	YCHROM	D	1	670			1				
Gulf stream flounder	Citharichthys arctifrons	GSTFLD	D	1	109	44		1	1			
Horned whiff	Citharichthys cornutus	HOWHIF	D	1	780			1				
Spotted whiff	Citharichthys macrops	SPWHIF	D	1	781			1				
Bay whiff	Citharichthys spilopterus	BYWHIF	D	1	782			1				
Longnose grenadier	Coelorhynchus carminatus	LNSGRN	D	1	93		482	1			1	
Saddled grenadier	Coelorhynchus coelorhynchus	SDGREN	D	1		413			1	1		
Conger eel	Conger oceanicus	CONEEL	D	1	63	608		1	1			
Bulleye	Cookeolus boops	BULEYE	D	1	616	78		1	1			
Rock, roundnose grenadier	Coryphaenoides rupestris	RKGREN	D	1		414	481		1	1	1	1
Polar sculpin	Cottunculus micropes	POSCUL	D	1		307	829		1	1	1	1
Deep sea sculpin	Cottunculus sp.	COTTSP	D	1			827				1	1
Pallid sculpin	Cottunculus thompsonl	PLSCUL	D	1		308	828		1	1	1	1
Wrymouth	Cryptacanthodes maculatus	WRYMTH	D	1	191	630	721	1	1	1	1	1
Lesser deepsea angler	Cryptopsaras couesi	LDPANG	D	1		402	982	-	1		1	1
Bigeye clgarfish	Cubiceps athenae	BIGCIG	D	1	876			1	·		•	
Spotfin flounder	Cyclopsetta fimbriata	SFNFLD	D	1	783	345		1	1			
Arctic lumpfish	Cyclopteropsis macalpini	ARCLMP	D	1		• • •	850	•	-		1	1
Lumpfish	Cyclopterus lumpus	LUMFIS	D	1	168	501	849	1	1		1	1
Veiled anglemouth	Cyclothone microdon	VANGLM	D	1	100	154	208	1	1	1	•	1
Weakfish	Cynoscion regalis	WKFIS	D	1	145	104	648	1			1	'
Red dory	Cyttopsis roseus	REDDOR	D	1	899	595	040	1	1		•	
Flying gurnard	dactylopterus volitans	FLYGUR	D	1	175	806		1	1			
Southern stingray	Dasyatis americanus	STHRAY	D	1	29	000		1	'			
Roughtail stingray	Dasyatis centroura	RTLRAY	D	1	4	213		1	1			
Bluntnose stingray	Dasyatis sayi	BNSRAY	D	1	18	215		1				
Mackerel scad	Decapterus macarellus	MKSCAD	D	1	208	87	628	1	1		1	
Round scad	Decapterus punctatus	RDSCAD	D	1	208	01	020	1	1		1	
Neck eel			D	1	211	612		I	1			
	Derichthys serpentinus Dibranchus atlanticus		D	1	100	742	000	4	1		4	
Atlantic batfish			_	•	199	142	969	1	I		1	
Balloonfish	Diodon holocanthus	BALFIS	D	1	849			-				
Porcupinefish	Diodon hystrix	PORPIN	D	1	850			1				

	· · · · · · · · · · · · · · · · · · ·	ECNASAP			ORIGINAL CODES			OCCURS IN ORIGINAL DATA SET				
COMMON NAME	SCIENTIFIC NAME	CODE	TYPE	KEPT	USCD S		NFCD					NGOC
Dwarf sand perch	Diplectrum bivittatum	DWSPER	D	1	529			1				
Sand perch	Diplectrum formosum	SANPER	D	1	530			1				
Silver porgy	Diplodus argenteus	SILPOR	D	1	638			1				
Spottail pinfish	Diplodus holbrooki	SPTPIN	D	1	639			1				
Spinyfin	Diretmus argenteus	SPIFIN	D	1		772	520		1		1	
Fourbeard rockling	Enchelyopus cimbrius	FBDROK	D	1	83	114	461	1	1	1	1	1
Red grouper	Epinephelus morio	RDGR	D	1	535	879		1	1			
Warsaw grouper	Epinephelus nigritus	WRGR	D	1	536			1				
Snowy grouper	Epinephelus niveatus	SNOGRP	D	1	537	698		1	1			
Jackknife-fish	Equetus lanceolatus	JAKNIF	D	1	648			1				
Cubbyu	Equetus umbrosus	CUBBYU	D	1	650			1				
Rough sagre	Etmopterus princeps	RGHSAG	D	1	8	224	26	1	1		1	
Fringed flounder	Etropus crossotus	FRINFL	D	1	785			1				
Smallmouth flounder	Etropus microstomus	SMMFLB	D	1	117	386		1	1			
4-line snake blenny	Eumesogrammus praecisus	FLBLEN	D	1		626	711		1	1	1	1
Leatherfin lumpsucker	Eumicrotremus derjugini	LTLSUK	D	1		509	846		1		1	1
Lumpfish (ns)	Eumicrotremus sp.	LMPUI	D	1	•		843				1	
Atlantic spiny lumpsucker	Eumicrotremus spinosus	ATLMSK	D	1	169	502	844	1	1	1	1	1
Spiny lumpsucker	Eumicrotremus spinosus variablil	SPLSUK	D	1			845				1	1
Pelican gulper	Eurypharynx pelecanoides	PELGUL	D	1			382				1	
Bluespotted cornetfish	Fistularia tabacaria	BLCORN	D	1	120	780		1	1			
Red cornetfish	Fistularia villosa	RDCORN	D	1	489			1				
Atlantic cod	Gadus morhua	ATLCOD	D	1	73	10	438	1	1	1	1	1
Greenland cod	Gadus ogac	GRCOD	D	1		118	439		1	1	1	1
Silver rockling	Gaidropsarus argentatus	SILROK	D	1		116	455		1		1	
Threebeard rockling	Gaidropsarus ensis	TBDROK	D	1	85	115	454	1	1		1	1
Rocklings (ns)	Gaidropsarus sp.	ROKUI	D	1		119	453		1	1	1	1
Threespine stickleback	Gasterosteus aculeatus	TSPSTK	D	1	115	361	426	1	1	1	1	1
Shrimp flounder	Gastropsetta frontalis	SHPFLD	D	1	787			1				•
Big roughy	Gephyroberyx darwini	BIGROU	D	1	268			1				
Witch flounder	Glyptocephalus cynoglossus	WITFLD	D	1	107	41	890	1	1	1	1	1
Freckled stargazer	Gnathagnus egregius	FSTGAZ	D	1	725			1				
Naked goby	Gobiosoma bosci	NAKED	D	1	738			1				
Longtooth anglemouth	Gonostoma elongatum	GONELO	D	1	235	155	213	1	1		1	
Torpedo dragonfish	Grammatostomias dentatus	TORDRG	D	1		717			1			
Naked sole	Gymnachirus meias	NAKSOL	D	1	796			1				
Fishdoctor	Gymnelis viridis	FSHDOC	D	1		616	746		1	1	1	1
Arctic staghorn sculpin	Gymnocanthus tricuspis	ASSCUL	D	1		302	823		1	1	1	1
Spotted moray	Gymnothorax moringa	SPMORA	D	1	386			1				
Blackedge moray	Gymnothorax nigromarginatus	BLKMOR	D	1	387			1				
Spiny butterfly ray	Gymnura altavela	SPBRAY	D	1	375			1				
Smooth butterfly ray	Gymnura micrura	SMORAY	D	1	376			1				
Tomtate	Haemulon aurolineatum	TOMTAT	D	1	627			1				
White grunt	Haemulon plumieri	WHTGRT	D	1	629			1				
Striped grunt	Haemulon striatum	STRGRN	D	1	878			1				

Appendix 2. (cont	inued)											
		ECNASAP				SINAL C	ODES	OCCI	URS IN	ORIGI	NAL DA	TA SET
COMMON NAME	SCIENTIFIC NAME	CODE	TYPE	KEPT	USCD	SFCD	NFCD	USOC	SFOC	SGOC	NFOC	NGOC
Dainty mora	Halargyreus affinis	HALAFF	D	1			433				1	
Mora (ncn)	Halargyreus johnsonii	HALJON	D	1			434				1	
Slippery dick	Halichoeres bivittatus	SLIPDK	D	1	677			1				
Pancake batfish	Halieutichthys aculeatus	PANBAT	D	1	449			1				
Longnose chimera	Harriotta raleighana	LNCHIM	D	1		247	120		1		1	
Blackbelly rosefish	Helicolenus dactylopterus	BBROSE	D	1	156	123	797	1	1	1	1	
Red barbier	Hemanthias vivanus	RDBARB	D	1	539			1				
Sea raven	Hemitripterus americanus	SEARAV	D	1	164	320	809	1	1	1	1	1
Atlantic footballfish	Himantolophus groenlandicus	ATFBAL	D	1		403	988		1		1	
Lined seahorse	Hippocampus erectus	LNSHRS	D	1	492		417	1			1	
American plaice	Hippoglossoides platessoides	AMPLC	D	1	102	40	889	1	1	1	1	1
Atlantic halibut	Hippoglossus hippoglossus	ATLHAL	D	1	101	30	893	1	1	1	1	1
Blue angelfish	Holacanthus bermudensis	BLUANG	D	1	665		669	1			1	
Queen angelfish	Holacanthus ciliaris	QUNANG	D	1	666			1				
Squirrelfish	Holocentrus ascensionis	SORFIS	D	1	478			1				
Longspine squirrelfish	Holocentrus rufus	LSPSQR	D	1	480			1				
American lobster	Homarus americanus	AMLOB	D	1	301	2550	8154	1	1	1		1
Blackmouthed alfonsin	Hoplostethus mediterraneus	BLMALF	D	1	261			1				
Sherborn's cardinalfish	Howella sherborni	SHCARD	D	1	150	783	616	1	1		1	
Deepwater chimera	Hydrolagus affinis	DPCHIM	D	1		242	121	•	1		1	
Barrelfish	Hyperoglyphe perciformis	BARFSH	D	1	207	743		1	1		•	
Twohorn sculpin	Icelus bicornis	THSCUL	D	1	201	313	831	•	1	1	1	
Twohorn sculpin (ns)	lcelus sp.	ICELUI	D	1		0.0	830		•	•	1	
Spatulate sculpin	icelus spatula	SPSCUL	D	1		314	832		1	1	1	1
Ribbon sawtailfish	Idiacanthus fasciola	RIBSAW	D	1		723	246		1		•	1
Shortfin squid	llex illecebrosus	SFSQD	D	1	502	4511	4753	1	1	1	1	1
Bermuda chub	Kyphosus sectatrix	BERCHB	D	1	502	106	4700	'	1	•		'
Hogfish	Lachnolaimus maximus	HOGFIS	D	1	682	100		1				
Honevcomb cowfish	Lactophrys polygonia	NONCOW	D	1	838			1				
Scrawled cowfish	lactophrys guadricornis	SCRCOW	D	1	839			4				
Trunkfish		TNKFSH	D	1	039	794		1	1			
Smallscale mora	Lactophrys trigonus	LBARB	D	1	867	319		4	1			
	Laemonema barbatulum		-			319		1	1			
Smooth puffer	Lagocephalus laevigatus	SMPUF	D	1	195	700		1				
Oceanic puffer	Lagocephalus lagocephalus	OCPUFF	D	1		792			1			
Pinfish	Lagodon rhomboides	PINFIS	D	1	640			1				
Banded drum	Larimus fasciatus	BANDRM	D	1	651			1				
Spot	Leiostomus xanthurus	SPOT	D	1	149			1				
Largeye lepidion	Lepidion eques	LEPEQU	D	1			435				1	
Fawn cusk-eel	Lepophidium cervinum	FNCEEL	D	1	194	650	761	1	1		1	
Mottled cusk-eel	Lepophidium jeannae	MTCEEL	D	1	457			1				
Blenny (ncn)	Leptoclinus maculatus	LEPMAC	D	1			713				1	
Yellowtail flounder	Limanda ferruginea	YTLFLD	D	1	105	42	891	1	1	1	1	1
Smooth flounder	Liopsetta putnami	SMFLD	D	1		140			1			
Seasnails (created)	Liparis (all)	NSSNALL	D	1								
Seasnail	Liparis atlanticus	SEASNL	D	1	170	503	858	1	1	1	1	1

		ECNASAP			ORIG	INAL C	ODES	OCCI	JRS IN	ORIGIN		A SET
COMMON NAME	SCIENTIFIC NAME	CODE	TYPE	KEPT	USCD S	SFCD	NFCD	USOC	SFOC	SGOC	NFOC	NGOC
Gulf sea snail	Liparis coheni	GLFSSN	D	1		513			1	1		
Gelatinous snailfish	Liparis fabricii	GELSNL	D	1		505	859		1	1	1	1
Dusky snailfish	Liparis gibbus	DSKSSN	D	1		512	862		1	1	1	1
Inquiline snailfish	Liparis Inquilinus	INQSNL	D	1		508			1			
Striped seasnail	Liparis liparis	STRSSN	D	1	167	504	860	1	1	1	1	
Seasnails (ns)	Liparis sp.	LIPASP	D	1		500	857		1	1	1	1
Greenland snailfish	Liparis tunicatus	GRNSNL	D	1		506	861		1	1	1	1
Backfin tapirfish	Lipogenys gillii	BLKTAP	D	1		615	391		1		1	
Goosefish	Lophius americanus	GSEFIS	D	1	197	400	966	1	1	1	1	1
Tilefish	Lopholatilus chamaeleonticeps	TILFIS	D	1	151	25		1	1			
Slender eelblenny	Lumpenus fabricii	SLEELB	D	1		631	715		1	1	1	1
Snake blenny	Lumpenus lumpretaeformes	SNKBLN	D	1	182	622	716	1	1	1	1	1
Daubed shanny	Lumpenus maculatus	DBSHAN	D	1	183	623	717	1	1	1	1	1
Stout eelblenny	Lumpenus medius	STEELB	D	1		632	718		1	1	1	1
Red snapper	Lutjanus campechanus	REDSNP	D	1	589			1				
Lane snapper	Lutjanus synagris	LANSNP	D	1	592			1				
Silk snapper	Lutjanus vivanus	SLKSNP	D	1	593			1				
Kolthoff's wolfeel	Lycenchelys kolthoffi	KOWEEL	D	1			749					1
Common wolf eel	Lycenchelys paxillus	CMWEEL	D	1		617	750		1		1	1
Sar's wolf eel	Lycenchelys sarsi	SWEEL	D	1			751				1	
Wolf eel (ns)	Lycenchelys sp.	WELUI	D	1			747				1	
Wolf eelpout	Lycenchelys verrillii	WLFEPT	D	1	190	603	752	1	1	1	1	1
Eelpouts (created)	Lycodes (all)	NELPALL	D	1								
Atlantic eelpout	Lycodes atlanticus	ATEELP	D	1		964	734		1		1	1
Eelpout (ncn)	Lycodes atratus	LYCATR	D	1			735					1
Vachon's eelpout	Lycodes esmarki	VCEELP	D	1		643	727		1	1	1	1
Eelpout (ncn)	Lycodes eudipleurostictus	LYCEUD	D	1			736				1	
Eelpout (ncn)	Lycodes frigidus	LYCFRI	D	1			737				1	
Laval's eelpout	Lycodes lavalaei	LVEELP	D	1		620	728		1	1	1	1
Pale eelpout	Lycodes pallidus	PLEELP	D	1		627	740		1	1	1	1
Polar eelpout	Lycodes polaris	POEELP	D	1		628	731		1	1	1	
Arctic eelpout	Lycodes reticulatus	ARCEPT	D	1	189	641	729	1	1	1	1	1
Eelpouts (ns)	Lycodes sp.	EELPUI	D	1		642	726		1	1	1	1
Newfoundland eelpout	Lycodes terraenova	NFEELP	D	1		619	732		1	1	1	
Vahl's, checker eelpout	Lycodes vahlii	VLEELP	D	1		647	730		1	1	1	1
Eelpout (ncn)	Lycodonus mirabilis	EELPUI	D	1			743				1	
Grenadier (ncn)	Macrourus aequalis	MACAEQ	D	1			475				1	
Rough head grenadier	Macrourus berglax	RHDGRN	D	1	92	411	474	1	1		1	
Ocean pout	Macrozoarces americanus	OCPOUT	D	1	193	640	744	1	1	1	1	1
Straptail grenadier	Malacocephalus occidentalis	STGREN	D	1		409			1			
Tarpon	Megalops atlanticus	TARPON	D	1		167			1			
HaddockYy	Melanogrammus aegelfinus yy	HADDOK	D	1	71			1				
Haddock	Melanogrammus aeglefinus	HADDOK	D	1	74	11	441	1	1	1	1	1
Atlantic soft pout	Melanostigma atlanticum	ATLSPT	D	1	262	646	745	1	1	1	1	1
Bluenose dragonfish	Melanostomias spilorhynchus	BLUDRG	D	1		718		•	1	•		•
Bigenose dragornish	monunootormuo opnomyrionuo	20010							•			

		ECNASAP					ODES				VAL DA	
COMMON NAME	SCIENTIFIC NAME	CODE	TYPE	_KEPT_	USCD S	SFCD	NFCD	USOC	SFOC	SGOC	NFOC	NGO
Southern kingfish	Menticirrhus americanus	SKING	D	1	652			1				
Northern kingfish	Menticirrhus saxatilis	NKFIS	D	1	146			1				
Offshore hake	Merluccius albidus	OFFHAK	D	1	69	19	448	1	1		1	
Silver hake	Merluccius bilinearis	SILHAK	D	1	72	14	449	1	1	1	1	1
Atlantic tomcod	Microgadus tomcod	TOMCOD	D	1		17			1	1		
Blue whiting	Micromesistius poutassou	BLUWHT	D	1		117	440		1		1	1
Atlantic croaker	Micropogon undulatus	ATLCRK	D	1	136			1				
Blue ling	Molva dypterygia	BLLING	D	1		56	456		1		1	
European ling	Molva molva	EULING	D	1		55	457		1		1	
Fringed filefish	Monacanthus ciliatus	FRNFIL	D	1	836	5		1	1			
Planehead filefish	Monacanthus hispidus	PLFLFS	D	1	201	6	938	1	1		1	
Deepwater flounder	Monolene sessilicauda	DPWFLD	D	1	110	385		1	1			
Striped bass	Morone saxatilis	STPBAS	D	1	139			1				
Red goatfish	Mullus auratus	RDGOAT	D	1	187	105		1	1			
Smooth dogfish	Mustelus canis	SMODOG	D	1	13	222	64	1	1		1	
Black grouper	Mycteroperca bonaci	BLKGRP	D	1	540			1				
Yellowmouth grouper	Mycteroperca Interstitialis	YMTGRP	D	1	524			1				
Gag	Mycteroperca microlepis	GAG	D	1	541			1				
Scamp	Mycteroperca phenax	SCAMP	D	1	542			1				
Bullnose ray	Myliobatis freminvillei	BULRAY	D	1	19			1				
Grubby	Myoxocephalus aenaeus	GRUBBY	D	1	166	303	818	1	1		1	1
Longhorn sculpin	Myoxocephalus octodecemspine	LHSCUL	D	1	163	300	820	1	1	1	1	1
Fourhorn sculpin	Myoxocephalus quadricornis	FHSCUL	D	1		315	821		1		1	1
Arctic sculpin	Myoxocephalus scorpioides	ARSCUL	D	1		316	822		1	1	1	1
Shorthorn sculpin	Myoxocephalus scorpius	SHSCUL	D	1	162	301	819	1	1	1	1	1
Ribbed sculpin	Myoxocephalus sp.	RISCUL	D	1			817				1	1
Blackbar soldierfish	Myripristis jacobus	BLKSOL	D	1	482			1				
Spotted spoon-nose eel	Mystriophis intertinctus	SSNEEL	D	1	394			1				
Atlantic hagfish	Myxine glutinosa	ATLHAG	D	1	1	241	12	1	1	1	1	1
Large-eyed argentine	Nansenia groenlandica	LEARG	D	1		162	195		1		1	
Lesser electric ray	Narcine brasiliensis	ELERAY	D	1	367			1				
Armoured grenadier	Nematonurus armatus	ARGREN	D	1		998	472		1		1	
Slender snipe eel	Nemichthys scolopaceus	SNPEEL	D	1	67	604	368	1	1		1	
Spinycheek scorpionfish	Neomerinthe hemingwayi	SPSCRP	D	1	751			1				
Duckbill oceanic eel	Nessorhamphus ingolfianus	DBLEEL	D	1		607	365		1		1	
Marlin-spike	Nezumia bairdi	COMGRN	D	1	91	410	478	1	1	1	1	1
Grenadier NCN	Nezumia hildebrabdi	GRNNCN	D	1			479					1
Emerald parrotfish	Nicholsina usta	EMPAR	D	1	685			1				
Large scale tapirfish	Notocanthus chemnitzi	LSCTAP	D	1		740	386		1		1	1
White barracudina	Notolepis rissoi	WHTBAR	D	1	246	727	320	· 1	1		1	1
White barracudina	Notolepis rissoi kroyeri	WHTBAR	D	1		712			1	1		•
Yellowtail snapper	Ocyurus chrysurus	YLSNAP	D	1	594			1				
Sand tiger	Odontaspis taurus	SANTIG	D	1	12	215		1	1			
Shortnose batfish	Ogcocephalus nasutus	SHTBAT	D	1	450	2.0		1	•			
Roughback batfish	Ogcocephalus parvus	RGHBAT	D	1	451			1				

and the second se

			· · · · · · · · · · · · · · · · · · ·									
		ECNASAP				INAL C					AL DA	
COMMON NAME	SCIENTIFIC NAME	CODE	TYPE	KEPT	USCD S	SFCD	NFCD	USOC	SFOC	SGOC	NFOC	NGOC
Longnose batfish	Ogcocephalus vespertilio	LNSBAT	D	1	206			1				
Snake eel	Omochelys cruentifer	SNEEL	D	1			349				1	
Margined snake eel	Ophichthus cruentifer	MAREEL	D	1		609			1			
Palespotted eel	Ophichthus ocellatus	PSPEEL	D	1	396			1				
Longnose cusk-eel	Ophidion beani	LNCUEL	D	1	886			1				
Blotched cusk-eel	Ophidion grayi	BLCEEL	D	1	458			1				
Bank cusk-eel	Ophidion holbrooki	BKCEEL	D	1	459			1				
Oyster toadfish	Opsanus tau	OYTOAD	D	1	185			1				
Pigfish	Orthopristis chrysoptera	PIGFIS	D	1	142			1				
Bigeye soldierfish	Ostichthys trachypomus	BEYSOL	D	1	483			1				
Polka-dot cusk-eel	Otophidium omostigmum	PDCEEL	D	1	186			1				
Red porgy	Pagrus sedecim	REDPOR	D	1	641			1				
Seaweed blenny	Parablennius marmoreus	SWBLEN	D	1		586			1			
Barracudinas (created)	Paralepis +	NBARALL	D	1								
Duckbill barracudina	Paralepis atlantica	DUKBAR	D	1		711			1			
Short barracudina	Paralepis brevis	SHTBAR	D	1			318				1	1
Barracudina ncn	Paralepis coregonoides	PARCOR	D	1	245	674	319	1	1	1	1	1
Barracudinas (ns)	Paralepis sp.	BARRUI	D	1		565	317		1		1	1
Summer flounder	Paralichthys dentatus	SUMFLD	D	1	103	141		1	1			
Southern flounder	Paralichthys lethostigma	STHFLD	D	1	789			1				
Fourspot flounder	Paralichthys oblongus	FSTFLD	D	1	104	142	901	1	1		• 1	
Broad flounder	Paralichthys squamilentus	BRDFL	D	1	790			1				
Seasnail	Paraliparis calidus	SEASNA	D	1		868			1			
Blacksnout seasnail	Paraliparis copei	BLKSSN	D	1		511	856		1		1	1
Longnose greeneye	Parasudis truculenta	LNGGEY	D	1	242	149	329	1	1			1
Butterfish	Peprilus triacanthus	BUTTER	D	1	131	701	783	1	1	1	1	
Slender searobin	Peristedion gracile	SLSROB	D	1	763			1				
Armored searobin	Peristedion miniatum	ARSROB	D	1	173	331		1	1			
Sea lamprey	Petromyzon marinus	SEALAM	D	1	2	240	15	1	1	1	1	1
Gadoid NCN	Phocaegadus megalops	GADNCN	D	1			459					1
Banded gunnel	Pholis fasciata	BANGUN	D	1		633			1	1		1
Rock gunnel	Pholis gunnellus	RKGUN	D	1	180	621	705	1	1	1	1	
Hakeling	Physiculus fulvus	HAKLIN	D	1	82	_		1				
Snake eel	Pisoodonophis cruentifer	SNKEEL	D	1	65			1				
Righteye flounder uncl	Pleuronectidae sp	RFLDUI	D	1	773	49	887	1	1		1	
											······	

		ECNASAP	_		ORIG	INAL C	ODES	0000	JRS IN	ORIGINA		ASET
COMMON NAME	SCIENTIFIC NAME	CODE	TYPE	KEPT	USCD S		NFCD			SGOC N		NGOC
Pollock	Pollachius virens	POLLOK	<u>D</u>	1	75	16	443	1	1	1	1	1
Shortspine tapirfish	Polycanthonotus rissoanus	SHTTAP	D	1		739	387		1		1	
Beardfish	Polymixla lowei	BDFIS	D	1	263	771	508	1	1		1	
Stout beardfish	Polymixla nobilis	SBDFIS	D	1	264	744		1	1			
Longspine scorpionfish	Pontinus longisplnis	LSSCOR	D	1	154			1				
Atlantic midshipman	Porichthys porosissimus	ATLMID	D	1	444			1				
Bigeye	Priacanthus arenatus	BIGEYE	D	1	134			1				
Northern, common searobin	Priondius carolinus	NSROB	D	1		330			1			
Spiny searobin	Prionotus alatus	SPSROB	D	1	764			1				
Northern searobin	Prionotus carolinus	NSROB	D	1	171		800	1			1	
Striped searobin	Prionotus evolans	SSROB	D	1	172	332	801	1	1		1	
Bandtail searobin	Prionotus ophryas	BTSROB	D	1	765			1				
Gulf searobin	Prionotus paralatus	GLSROB	D	1	274			1				
Bluespotted searobin	Prionotus roseus	BSSROB	D	1	766			1				
Blackwing searobin	Prionotus salmonicolor	BWSROB	D	1	768			1				
Leopard searobin	Prionotus scitulus	LPSROB	D	1	769			1				
Shortwing searobin	Prionotus steamsi	SWSROB	D	1	871			1				
Bighead searobin	Prionotus tribulus	BHSROB	D	1	770			1				
Short bigeye	Pristigenys alta	SHTBEY	D	1	557			1				
Wenchman	Pristipomoides aquilonaris	WNECH	D	1	595			1				
Longsnout butterflyfish	Prognathodes aculeatus	LSNBFL	D	1	864			1				
Streamer bass	Pronotogrammus aureorubens	STRBAS	D	1	546			1				
Winter flounder	Pseudopleuronectes americanus		D	1	106	43	895	1	1	1	1	1
Spotted goatfish	Pseudupeneus maculatus	SPGOAT	D	1	656			1				
Ninespine stickleback	Pungitius pungltlus	NSPSTB	D	1			428					1
Clearnose skate	Raja eglanteria	CNSSKT	D	1	24	206		1	1			
Little skate	Raja erinacea	LITSKT	D	1	26	203	93	1	1		1	1
Round skate	Raja fyllae	RNDSKT	D	1		207	94		1		1	1
Rosette skate	Raja garmani	ROSSKT	D	1	25	967		1	1			
Arctic skate	Raja hyperborea	ARCSKT	D	1		210	95		1		1	
Jensen's skate	Raja jenseni	JENSKT	D	1		209	96		1		1	1
Barndoor skate	Raja laevis	BRNSKT	D	1	22	200	97	1	1	1	1	1
Freckled skate	Raja lentiginos	FRKSKT	D	1		969			1			
White skate	Raja lintea	WHTSKT	D	1		217	98		1		1	
Soft skate	Raja mollis	SFTSKT	D	1		208	99		1		1	1
Winter skate	Raja ocellata	WNTSKT	D	1	23	204	100	1	1	1	1	1
Thorny skate	Raja radiata	THNSKT	D	1	28	201	90	1	1	1	1	1
Smooth skate	Raja senta	SMOSKT	D	1	27	202	91	1	1	1	1	1
Spinytail skate	Raja spinicauda	SPTSKT	D	1	~~	205	102		1		1	1
Greenland halibut	Reinhardtius hippoglossoides	GRNHAL	D	1	99	31	892	1	1	1	1	1
Knifenose chimera	Rhinochimera atlantica	KNCHIM	D	1	070	248	122		1		1	
Cownose ray	Rhinoptera bonasus		D	1	270			1				
Vermilion snapper	Rhomboplites aurorubens	VERSNP	D	1	596			1				
Striped cusk-eel	Rissola marginata Ruptique bistriopique	STCEEL	D	1	188			1				
Freckled soapfish	Rypticus bistrispinus	FRSOAP	<u> </u>	1	555			1				

		ECNASAP			ORIG	INAL C	ODES	0000	JRS IN	OBIGIN		
COMMON NAME	SCIENTIFIC NAME	CODE	TYPE	КЕРТ	USCD S		NFCD					NGOC
Spotted soapfish	Rypticus subbifrenatus	SPSOAP	<u></u>	1	895	<u></u>		1	5.00			.1400
Beans blueback	Scopelogadus beanii	BNSBBK	D	1		795		•	1			
S. Lepidus	Scopelosaurus lepidus	SLEPID	D	1		588			1			
Scopelosaurus (ns)	Scopelosaurus sp.	SCOPUI	D	1			301		•		1	
Windowpane	Scophthalmus aquosus	WINPAN	D	1	108	143	907	1	1	1	1	1
Longfin scorpionfish	Scorpaena agassizi	LFSCRP	D	1	753			1	·	•	•	•
Barbfish	Scorpaena brasiliensis	BRBFIS	D	1	754			1				
Smoothhead scorpionfish	Scorpaena calcarata	SMSCRP	D	1	755			1				
Chain dogfish	Scyliorhinus retifer	CHNDOG	D	1	14			1				
Redfishes (created)	Sebastes (all)	NREDALL	D	1								
Acadian redfish	Sebastes fasciatus	ACARED	D	1	155	283		1	1			
Golden redfish	Sebastes marinus	GOLRED	D	1		20	793		1		1	1
Deepwater redfish	Sebastes mentella	DPWRED	D	1		21	794		1		1	1
Redfishes (ns)	Sebastes sp.	REDUI	D	1		23	792		1	1	1	1
Small redfish	Sebastes sp.	REDUI	D	1			997		-		1	1
Large redfish	Sebastes sp.	REDUI	D	1			998				1	
Bigeye scad	Selar crumenopthalmus	BESCAD	D	1	209	89		1	1			
Atlantic moonfish	Selene setapinnis	MOONFS	D	1		94			1			
Lookdown	Selene vomer	LKDOWN	D	1	133	91		1	1			
Blackear bass	Serranus atrobranchus	BERBAS	D	1	549			1				
Tattler	Serranus phoebe	TATLER	D	1	552			1				
Stout sawpalate	Serrivomer beani	STSWPL	D	1		613	369		1		1	1
S. Brevidentatus	Serrivomer brevidentatus	SBREV	D	1		638			1			
Slime eel	Simenchelys parasiticus	SLMEEL	D	1	64	601	359	1	1		1	
Marbled puffer	Sphoeroides dorsalis	MARPUF	D	1	843			1				
Northern puffer	Sphoeroides maculatus	NPUF	D	1	196	746	955	1	1		1	
Southern puffer	Sphoeroides nepheius	STHPUF	D	1	844			1				
Bandtail puffer	Sphoeroides spengleri	BTLPUF	D	1	845			1				
Northern sennet	Sphyraena borealis	NSENN	D	1	694			1				
Spiny dogfish	Squalus acanthias	SPIDOG	D	1	15	220	24	1	1	1	1	1
Atlantic angel shark	Squatina dumerili	ATANSHK	D	1	16		32	1			1	
Longspine porgy	Stenotomus caprinusdnu	LSPPOR	D	1	642			1				
Scup	Stenotomus chrysops	SCUP	D	1	143	102		1	1			
Arctic shanny	Stichaeus punctatus	ARSHAN	D	1		624	710		1			1
Boa dragonfish	Stomias (boa) ferox	BOADRG	D	1	228	159	230	1	1		1	
Butterfish uncl	Stromateidae sp.	BUTTUI	D	1	750	951	781	1	1		1	1
Channel flounder	Syacium micrurum	CHNFLD	D	1	792			1				
Dusky flounder	Syacium papillosum	DSKFLD	D	1	793			1				
Slatjaw cutthroat eel	SyNaphobranchus kaupi	CUTEEL	D	1		602			1			
Offshore tonguefish	Symphurus civitatus	OFTONG	D	1	797			1				
Spottedfin tonguefish	Symphurus diomedianus	SPTONG	D	1	798			1				
Slender tonguefish	Symphurus marginatus	SLTNG	D	1	821		884	1			1	
Blackcheek tonguefish	Symphurus plagiusa	BCTONG	D.	1	825			1				
Northern tonguefish	Symphurus pusillus	NTONG	D	1	826			1				
Spottail tonguefish	Symphurus urospilus	SLTONG	D	1	827			1				

		ECNASAP				AINAL C	ODES					TA SET
COMMON NAME	SCIENTIFIC NAME	CODE	TYPE	KEPT	USCD S		NFCD				NFOC	
Blackmouth bass	Synagrops bella	BLMBAS	D	1	114			1				
Blackmouth bass	Synagrops belladnu	BLMBAS	D	1	560			1				
Synagrops spinosa	Synagrops spinosa	SYSPIN	D	1	137			1				
Longnose eel	Synaphobranchus kaupi	LNSEEL	D	1			373				1	1
Northern pipefish	Syngnathus fuscus	NPIPE	D	1	116			1				
Inshore lizardfish	Synodus foetens	INSLIZ	D	1	435			1				
Sand diver	Synodus intermedius	SANDIV	D	1	436			1				
Offshore lizardfish	Synodus poeyi	OFFLIZ	D	1	437			1				
Red lizardfish	Synodus synodus	REDLIZ	D	1	438			1				
Tautog	Tautoga onitis	TAUTOG	D	1	177	53		1	1			
Cunner	Tautogolabrus adspersus	CUNNER	D	1	176	122	672	1	1	1	1	
Atlantic torpedo	Torpedo nobiliana	ATLTOR	D	1	21	216		1	1			
Snakefish	Trachinocephalus myops	SNKFIS	D	1	439			1				
Common pompano	Trachinotus carolinus	COMPOM	D	1		261			1			
Rough scad	Trachurus lathami	RGSCAD	D	1	212			1				
Rough scad	Trachurus lathamidnu	RGSCAD	D	1	122			1				
Roughnose grenadier	Trachyrhynchus murrayi	RGGRN	D	1		412	483		1		1	1
Atlantic cutlassfish	Trichiurus lepturus	ATLCUT	D	1	126			1				
Moustache sculpin	Triglops murrayi	MSSCUL	D	1	161	304	814	1	1	1	1	1
Bigeve sculpin	Triglops nybelini	BESCUL	D	1		305	815		1		1	1
Ribbed sculpin	Triglops pingeli	RBSCUL	D	1		317	816		1		1	
Mailed sculpins (ns)	Triglops sp.	SCULFM	D	1			813				1	1
Threelight dragonfish	Trigonolampa minceps	TLTDRG	D	1		721			1			
Norway pout	Trisopterus esmarki	NWAYPT	D	1			460				1	
Radiated shanny	Ulvaria subbifurcata	RDSHAN	D	1	184	625	712	1	1	1	1	1
Dwarf goatfish	Upeneus parvus	DWGOAT	D	1	657			1				
Longfin hake	Urophycis chesteri	LFNHAK	D	1	79	112	444	1	1	1	1	1
Red hake	Urophycis chuss	REDHAK	D	1	77	13	445	1	1	1	1	1
Carolina hake	Urophycis earlli	CARHAK	D	1	454			1				
Southern hake	Urophycis floridanus	STHHAK	D	1	455			1				
Spotted hake	Urophycis regius	SPTHAK	D	1	78	111	446	1	1		1	
White hake	Urophycis tenuis	WHIHAK	D	1	76	12	447	1	1	1	1	1
American straptail grenadier	Ventrifossa occidentalis	AMSGRN	D	1	280			1				
Atlantic gymnast	Xenodermichthys copei	ATLGYM	D	1		725	168	•	1		1	
Buckler dory	Zenopsis conchifera	BUKDOR	D	1	112	704		1	1			
John dory	Zenopsis ocellata	JONDOR	D	1			530	•			1	
Slickhead	Conocara salmonea	SLIKHD	?	1		749			1		•	
E. denticulatus	Epigonus denticulatus	EDENT	?	1		677			1			
Epigonus pandionis	Epigonus pandionis	EPIPAN	?	1	144	587		1	1			
Silver jenny	Eucinostomus gula	JENNY	?	1	599			1	•			
Pearly razorfish	Hemipteronotus novacula	PRLRAZ	?	1	681			1				
Lancer stargazer	Kathetostoma albigutta	LSTGAZ	?	1	726			1				
Spiny lebbeid	Lebbeus groenlandicus	SPILEB	?	1	293			1				
Jambeau	Parahollardia lineata	JAMB	?	1	829			1				
Conejo	Promethichthys prometheus	CONEJO	?	1	127			1				

Appendix 2. (contin	iueu)											
		ECNASAP			ORIG	INAL C	ODES	OCCL	JRS IN C	RIGINAL	DAT	TA SET
COMMON NAME	SCIENTIFIC NAME	CODE	TYPE	KEPT	USCD S	SFCD	NFCD	USOC	SFOC	SGOC NF	ŌC	NGOC
Uraleptus maraldi	Uraleptus maraldi	URAMAR	?	1	70			1				
Silver hatchetfish	Argyropelecus aculeatus	SILHAT	Μ	1	250	700		1	1			
Horned lanternfish	Ceratoscopelus maderensis	HRNLAN	M	1	54	163	287	1	1		1	
Headlight fish	Diaphus dumerilii	HLFIS	M	1	210	152		1	1			
Cocco's lanternfish	Gonichthys coccoi	COLANT	м	1			288				1	
Gonostoma atlanticum	Gonostoma atlanticum	GONATL	М	1	234			1				
Hygophum taaningi	Hygophum taaningi	HYGTAN	м	1	57	467		1	1			
Lightless loosejaw	Malacosteus niger	LGHLSJ	Μ	1		177	304		1		1	
Pearlsides	Maurolicus muelleri	MUEPRL	м	1	229	158	214	1	1			1
Pearlsides	Maurolicus pennantidnu	PENPRL	М	1	230			1				
Lanternfishes (ns)	Myctophidae	LANTUI	М	1			272				1	1
Humboldts lanternfish	Myctophum humboldti	HUMLAN	м	1	53			1				
Spotted lanternfish	Myctophum punctatum	SPTLAN	М	1	55	180		1	1			
Black snake mackerel	Nealotus tripes	NLTRIP	М	1		28			1			
Kroyer's lanternfish	Notoscopelus elongatus kroyerii	KRYLAN	м	1		182	275		1		1	
Common lanternfish (ns)	Notoscopelus sp.	LANTUI	М	1			273				1	1
Hatchetfish	Polyipnus asteroides	HATFIS	м	1	251		222	1				1
P. Asteroides	Polyipnus asteroides	POLAST	м	1		708			1			
Polymetme corytheola	Polymetme corythaeola	POLCOR	М	1	237			1				
Transparent hatchetfish	Sternoptyx diaphana	TRNHAT	м	1		709			1			
Largescale lanternfish	symbolophorus veranyi	LGSLAN	м	1		184	293		1		1	
Flat needlefish	Ablennes hians	FLNDFS	Р	1	68			1				
African pompano	Alectis crinitus	AFPOMP	P	1	568			1				
Thresher shark	Alopias vulpinus	THRSHK	P	1		234			1			
Blueback herring	Alosa aestivalis	BBKHER	Р	1	34	165		1	1			
Hickory shad	Alosa mediocris	HKSHAD	P	1	37			1				
Alewife	Alosa pseudoharengus	ALEWIF	P	1	33	62	151	1	1	1	1	1
American shad	Alosa sapidissima	AMSHAD	Р	1	35	61	152	1	1	1	1	1
Striped anchovy	Anchoa hepsetus	STANCH	Р	1	44	58		1	1			
Dusky anchovy	Anchoa lyolepis	DSANCH	Р	1	859			1				
Bay anchovy	Anchoa mitchilli	BYANCH	Р	1	43			1				
Longnose anchovy	Anchoa nasuta	LNANCH	P	1	890			1				
Atlantic pomfret	Brama brama	ATLPOM	P	1		95			1			
Atlantic menhaden	Brevoortia tyrannus	ATLMEN	Р	1	36	164		1	1			
Ocean triggerfish	Canthidermis sufflamen	OCTRIG	P	1		826			1			
Yellow jack	Caranx bartholomaei	YELJAK	Р	1	569			1				
Blue runner	Caranx crysos	BLURUN	Р	1	129	85		1	1			
Crevalle jack	Caranx hippos	CRVJAK	P	1		86			1			
Horse-eye jack	Caranx latus	HEYJAK	Р	1	571			1				
Blacknose shark	Carcharhinus acronotus	BNSESH	Р	1	354			1				
Whitetip shark	Carcharhinus longimanus	WTPSHK	Р	1		244			1			
Sandbar shark	Carcharhinus milberti	SANSHK	P	1	9			1				
Dusky shark	Carcharhinus obscurus	DUSSHK	P	1	3	246		1	1			
White shark	Carcharodon carcharias	WHTSHK	P	1	2	232		-	1			
			P	1	6		48	1	1		1	1
Basking shark	Cetorhinus maximus	BASSHK	Р	1	6	233	48	1	1		1	1

		ECNASAP			ORIG	INAL C	ODES	OCCI	JRS IN	ORIGIN	AL DA	A SET
COMMON NAME	SCIENTIFIC NAME	CODE	TYPE	KEPT	USCD S		NFCD		SFOC			NGOC
Atlantic herring	Clupea harengus	ATLHER	P	1	32	60	150	1	1	1	1	1
Dolphin	Coryphaena hippurus	DOLPH	Р	1	584	747		1	1			
Margined flyingfish	Cypselurus cyanopterus	MARFLY	Р	1	463			1				
Atlantic flyingfish	Cypselurus melanurus	ATLFLY	Р	1	465			1				
Pelagic stingray	Dasyatis violacea	PELRAY	Р	1		218			1			
Sharksucker	Echeneis naucrates	SHKSUK	Р	1		82			1			
Silver anchovy	Engraulis eurystole	SVANCH	Р	1	865			1				
Round herring	Etrumeus teres	RNDHER	Р	1	31	166	157	1	1		1	
Little tunny	Euthynnus alletteratus	LITTUN	Р	1		173			1			
Sargassumfish	Histrio histrio	SARFIS	Р	1	448	399		1	1			
Halfbeak	Hyporhamphus unifasciatus	HALFBK	Р	1	66	737		1	1			
Shortfin mako	Isurus oxyrinchus	SHTMAK	Р	1	352	238	52	1	1		1	
Skipjack tuna	Katsuwonus pelamis	SKJTUN	Р	1		172			1			
Porbeagle shark	Lamna nasus	PRBSHK	Р	1		230	51		1		1	
Opah	Lampris guttatus	OPAH	Р	1		778			1			
Escolar	Lepidocybium flavobrunmeum	ESCOL	Р	1	824	27		1	1			
Longspine snipefish	Macrorhamphosus scolopax	LSPSNP	Р	1	111			1				
Capelin	Mallotus villosus	CAPLIN	Р	1	38	64	187	1	1	1	1	1
Atlantic manta	Manta birostris	ATLMAN	Р	1		225	111		1			1
Atlantic silverside	Menidia menidia	ALTSIL	Р	1	113	770		1	1	1		
Ocean sunfish	Mola mola	OCSUN	Р	1		730			1			
Pilotfish	Naucrates ductor	PILFIS	Р	1	576	88		1	1			
Man-of-war fish	Nomeus gronovii	MOWFSH	Р	1		788			1			
Atlantic thread herring	Opisthonema oglinum	ATTHER	Р	1	428			1				
Rainbow smelt	Osmerus mordax	RSMELT	Р	1	45	63	188	1	1	1	1	
Bluefish	Pomatomus saltatrix	BLUFIS	Р	1	135	81		1	1			
Blue shark	Prionace glauca	BLUSHK	Р	1	17	231	65	1	1		1	
Cobia	Rachycentron canadum	COBIA	Р	1	563			1				
Spearfish remora	Remora brachyptera	SPREM	Р	1		83			1			
Remora	Remora remora	REMORA	Р	1	567	84		1	1			
Atlantic sharpnose shark	Rhizoprionodon terraenovae	ASHSHK	Р	1	360	235		1	1			
Oilfish	Ruvettus pretiosus	OILFSH	Р	1		29			1			
Atlantic salmon	salmo salar	ATLSAL	Р	1	894	65	173	1	1	1	1	
Arctic char	Salvelinus alpinus	ARCHAR	Р	1		76			1			
Brook trout	Salvelinus fontinalis	BRKTRT	Р	1			178					1
Striped bonito	Sarda orientalis	STRBON	Р	1	938			1				
Atlantic bonito	Sarda sarda	ATLBON	Р	1	123	188		1	1			
Spanish sardine	Sardinella anchovia	SPNSAR	Р	1	429			1				
Chub mackerel	Scomber japonicus	CHBMAK	Р	1	124	170		1	1			
Atlantic mackerel	Scomber scombrus	ATLMAK	Р	1	121	70	572	1	1	1	1	1
Atlantic saury	Scomberesox saurus	ATLSAU	Р	1	205	720	398	1	1	1	1	1
King mackerel	Scomberomorus cavalla	KINMAK	P	1	744	189		1	1			
Spanish mackerel	Scomberomorus maculatus	SPNMAK	P	1	745	171		1	1			
Atlantic moonfish	Selene setapinnis	ATLMON	P	1	132			1	-			
Greater amberjack	Seriola dumerili	GTAMBJ	P	1	203			1				

		ECNASAP				GINAL C				ORIGINAL DA	
	SCIENTIFIC NAME	CODE	TYPE	KEPT	USCD	SFCD	NFCD	USOC	SFOC	SGOC NFOC	NGO
Almaco jack	Seriola rivoliana	ALJK	P	1	578			1			
Banded rudderfish	Seriola zonata	BANRUD	Р	1	204	74		1	1		
Greenland shark	Somniosus microcephalus	GRNSHK	Р	1		237	20		1	1	1
Scalloped hammerhead	Sphyrna lewini	SCAHAM	Р	1	362			1			
Sm. Hammerhead shark	Sphyrna zygaena	HAMSHK	Р	1		236			1		
Bigscale pomfret	Taractichthys longipinnis	BSCPOM	Р	1		96			1		
Spotted tinselfish	Xenolepidichthys dalgleishi	SPTINS	Р	1	617			1			
Swordfish	Xiphias gladius	SWDFIS	Р	1	700	72		1	1		
Swordfish	Xiphias gladiusdnu	SWDFIS	Р	1	290			1			
Arrow squid	Loligo plei	ARRSQD		0	505			1			
Daggertoothfishes (ns)	Anotopteridae	DAGGUI	D	0			249			1	
Pipefish seahorse uncl	Syngnathidae sp.	SHRSUI	D	0	421		416	1		1	
Shrimp	Acanthephyra pelagica	ACSHR1		0			8040			1	
Shrimp	Acanthephyra sp.	ACSHR2		0			8039			1	
Wahoo	Acanthocybium solanderi	WAHOO		0		830			1		
Sturgeons (ns)	Acipenseridae f.	STRGUI		0		272			1		
Sea anemone	Actinaria	ACTIN		0			2165			1	1
Ns)sea poachers, alligatorfishe		SPCHUI		0		351	835		1	1	1
Lancetfishes (ns)	Alepisauridae	LANCUI		0			323			1	
Slickhead species	Alepocephalid species	SKHDSP		0	39	968	164	1	1	1	
Sand lance (ns)	Ammodytes sp.	SLNCUI		0		611			1		
Sandlances (ns)	Ammodytidae f.	SLANUI		0		590	693		1	1	1
Wolffishes (ns)	Anarhichadidae f.	WFLUI		0		59	698		1	1	
Eels (ns)	Anguillidae f.	EELUI		0		648			1		
Unidentified eels	Anguilloidei s.o.	EELUI		0		634			1		
Segmented worms	Annelida p.	ANNUI		0		3000			1		
Ogrefishes (ns)	Anoplogasteridae	OGREUI		0			499			1	
Frogfishes (ns)	Antennariidae f.	FROGUI		0		398			1		
Sea anemone	Anthozoa c.	ANEM		0		8300			1	1	
Sea mouse	Aphrodita hastata	SEAMSE		0		3200			1		
Aphrodita sp.	Aphrodita sp.	APHRUI		Ō		3212			1	1	
Cardinalfish uncl	Apogonidae sp	CARDUI		Ō	138	697		· 1	1		
Cardinalfish uncl	Apogonidae spdnu	CARD		õ	561	- • •		1	•		
Purple sea urchin	Arabacia punctulata	PURCH		0		6421			1		
Squid	Architeuthis dux	SQD1		Õ			4709		•	1	
Ocean quahog (live)	Arctica islandica	OCQUA		Õ	409	4304		1	1	1.	
Argentines (n.s.)	Argentinidae f.	ARGUI		õ		288	192	•	1	. 1	
Tunicate, sessile	Ascidiacea	TUNUI		õ		200	8680			1	1
Asterias sp.	Asterias sp.	ASTU		õ		6110	0000		1	1 '	'
Purple starfish	Asterias vulgaris	PASTER		õ		6111			1	1	
Starfish uncl	Asteriidae sp.	STRFIS		õ	332	0111		1			
	Asteridae sp.	OTADU		0	332		0000		4		

6100

966

187

423

0

0

0

0

8390

1

1

1

1

1

1

1

STARUI

ASTRU

SILVU FRGMAK

Starfishes (ns) Astronesthidae

Silverside uncl

Frigate mackerel

Asteroidea s.c.

Astronesthidae

Atherinidae sp. Auxis thazard

•

ECNASAP/Cod Mortality Project

		ECNASAP			ORIGINAL	CODES	OCCL	IRS IN C	ORIGIN	AL DA	TA SET
COMMON NAME	SCIENTIFIC NAME	CODE	TYPE	KEPT	USCD SFCD	NFCD	USOC				NGOC
Birds	Aves c.	BIRDUI		0	9410			1			
Triggerfish filefish uncl	Balistidae sp.	BALUI		0	820		1				
Deepsea (ns) smelts	Bathylagidae	SMLUI		0		199				1	
Octopus	Bathypolypus arcticus	OPOD1		0		4879				1	
Octopus	Bathypolypus sp.	OPOD2		0		4878				1	
Skates and rays (ns)	Batoidei o.	SKTUI		0	219			1			
Glacier lanternfish	Benthosema glaclale	GLCLAN		0	157			1			
Lanternfish	Benthosema suborbitale	LANTAA		0	473			1			
Bivalvia c.	bivalvia c.	BIVUI		0	4300			1	1		
Combtooth blenny uncl	Blenniidae sp.	CBLNUI		0	733		1				
Blennies, shannies, gunnels	Blennioidei s.o.	BLENUI		0	605	697		1		1	
Blennies, shannies, gunnels	Blennioidei s.o.	BLENUI		0	644			1			
Lanternfish	Bolinichthys photothorax	LANTT		0	292			1			
Sea potato	Boltenia sp.	SEAPOT		0	1823			1	1		
Bighead (ns) dragonfishes	Borostomias sp.	DRGUID		0	949			1			
Lefteye flounder uncl	Bothidae sp.	LFLDUI		0	795 196	898	1	1		1	1
Squid	Brachioteuthidae	SQD3		0		4741				1	
Crabs (ns)	Brachyura s.o.	CRBUI		0	2510	8203		1	1	1	1
Bryozoans ectoprocta p.	bryozoans ectoprocta p.	BRYOZ		0	1920			1	1		
Whelk	Buccinidae	WHLKU!		0		3515				1	
Whelk eggs (ns)	Buccinidae eggs	WLKEGG		0	1510			1	1		
Whelks (ns)	Buccinum sp.	WHLKUI		0	4210	3516		1	1	1	1
Common wave whelk	Bucinum undatum	WHEL		0	4211			1	1		
Channeled whelk	Busycon canaliculatum	CHNWHK		0	336		1				
Blue crab	Callinectes sapidus	BLUCRB		0	314 2512		1	1			
Callionymus sp.	Callionymus sp.	CALLSP		0	657			1			
Jonah crab	Cancer borealis	JONCRB		0	312 2511	8207	1	1	1	1	
Rock crab	Cancer irroratus	ROKCRB		0	313 2513	8206	1	1	1		1
Cancer crab uncl	Cancridae sp.	CCRBUI		0	311 2524		1	1			
Jack pompano uncl	Carangidae sp.	JKPOMP		0	582		1				
Greencrab	Carcinus maenas	GRCRB		0	2531			1			
Cockles (ns)	Cardiidae f.	COCKUI		0	4340			1	1		
Loggerhead turtle	Caretta caretta	LOGTRT		0	950		1				
Manefishes (ns)	Caristiidae	MANEUI		0		516				1	
Lanternfish	Centrobranchus nigroocellatus	LANTA		0	124			1			
Cephalopod	Cephalopoda	CEPH1		0		4545				1	1
Octopus uncl	Cephalopoda sp.	OCTUI		0	510		1				
Sea devils (ns)	Ceratiidae	SDEVUI		0		980				1	1
Lanternfish	Ceratoscopelus warmingii	LANTZ		0	468			1			
Basking (ns) sharks	Cetorhinidae	BSHKUI		0		47				1	
Butterflyfish uncl	Chaetodontidae sp.	BFLYUI		0	855 328		1	1			
Viperfishes (ns)	Chauliodontidae	VIPUI		0		226				1	1
Turtles (ns)	Chelonia o.	TURTUI		0	9430			1			
Swallowers (ns)	Chiasmodontidae f.	SWALUI		0	38			1			
Chimaeras (ns)	Chimaeridae	CHIMUI		0		118				1	

Appendix 2. (contin		ECNASAP	-		ORIGI	NAL C	ODES	OCCI	JRS IN	ORIGI	NAL DA	TA SET
COMMON NAME	SCIENTIFIC NAME	CODE	TYPE	KEPT	USCD SF		NFCD				NFOC	
Snow crab	Chionectes opilio	SNWCRB		0	325 2		8213	1	1	1	1	1
Spider (queen, snow) unid.	Chionoecetes sp.	SCRBUI		0	2	2522			1	1		
Iceland scallop (cla	Chlamys islandica (clapper)	ICELAN		0	341 4	322	4167	1	1	1	1	1
Iceland scallop (live)	Chlamys islandica (live)	ICSCAL		0	340			1	?			
Scallop	Chlamys sp.	SCALUI		0			4166				1	
Greeneye uncl	Chlorophthalmid sp.	GNEYSP		0	47	593		1	1			
Squid uncl	Chrondrophora sp.	SQDUI		0	501			1				
Whiff uncl	Citharichthys sp.	WHIFUI		0	866			1				
Herring uncl	Clupeidae sp.	HERRU		0	30	336	149	1	1		1	
Sand dollars	Clypeasteroida o.	SDOLUI		0	6	500	8370		1	1	1	
Cnidaria	Cnidaria			0			1340					1
Coelenterata p.	Coelenterata p.	COELUI		0	8	200			1	1		
Conger eel uncl	Congridae sp.	CNELUI		0	390	431		1	1			
Sculpin uncl	Cottidae uncl	SCULUI		0		312	808	1	1	1	1	1
Squid	Cranchiidae	SQD4		0			4808				1	
Sevenspine bay shrimp	Crangon septemspinosa	SEVSHP		0	287			1				
Crangon sp.	Crangon sp.	CRANUI		0	2	2416			1	1		
Shrimp	Crangonidae	SHR1		0			8117				1	1
Crustaceans (ns)	Crustacea c.	CRUSU		0	2	2000			1	1		
Mud star	Ctenodiscus crispatus	MUDSTR		0	6	5115			1	1		
Comb-jelly	Ctenophora	CJELL		0			2250				1	1
Lumpfish snailfish uncl	Cyclopteridae sp.	SNAILU		0	249		842	1			1	1
Anglemouth (ns)	Cyclothone sp.	ANGMUI		0		755	206		1		1	
Hooded seal	Cystophora cristata	HDSEAL		0			1089				1	
Ray uncl	Dasyatidae myliobatidae sp	RAYUI		0	5			1				
Sea cucumber	Dendrochirotida	CUCUI		0			8291				1	
Lanternfish	Diaphus effulgens	LANTB		0		125			1			
Lanternfish	Diaphus mollis	LANTD		0		128			1			
Lanternfish	Diaphus perspicillatus	LANTC		0		126			1			
Lanternfish	Diaphus rafinesquii	LANTE		0		129			1			
Headlightfish uncl	Diaphus sp.	HLFSUI		0	61			1				
Lanternfish	Diaphus taaningi	LANTCC		0		540			1			
Lanternfish	Diaphus termophilus	LANTF		0		130			1			
Bristled longbeak	Dichelopandalus leptocerus	BRILBK		0	296			1				
Porcupinefishes (ns)	Diodontidae f.	PORCUI		0	1	692			1			
Lanternfish	Diogenichthys atlanticus	LANTY		0		466			1			
Hermit crab uncl	Diogenidae/paguridae sp.	HERCRB		0	335			1				
Spinyfins (ns)	Diretmidae	SPINUI		0			519				1	
Sand dollar	Echinarachnius parma	SDOL1		0			8373				1	
Sand dollar	Echinarachnius sp.	SDOL2		0			8372				1	
Echinoderms (ns)	Echinodermata p.	ECHUI		0	6	000	8260		1	1	1	1
Sea urchin	Echinoida	SEAURC		0			8361				1	1
Sand dollar uncl	Echinoidae sp.	SANDOL		0	330		8360	1			1	1
Sea urchin uncl	Echinoidae sp.	SEAURC		0	331			1				
Eel uncl	Eel uncl	EELENK		0	60			1				

		ECNASAP			ORIGINAL	CODES	OCCURS IN ORIGINAL DATA SET					
COMMON NAME	SCIENTIFIC NAME	CODE	TYPE	KEPT	USCD SFCD	NFCD	USOC	SFOC	SGOC	NFOC	NGOC	
Lanternfish	Electrona risso	LANTG		0	131			1				
Anchovy uncl	Engraulidae sp.	ANCHUI		0	851		1					
Etropus uncl	Etropus sp.	ETROSP		0	794		1					
Krill shrimp	euphausiacea o.	KRILUI		0	2600	7991		1	1		1	
Flyingfishes (ns)	Exocoetidae f.	FLYUI		0	748			1				
Finfishes (ns)	Finfishes (ns)	FISHUI		0	100			1				
Cornetfish uncl	Fistularia sp.	CORNUI		0	490		1					
Flounder uncl	Flounder uncldnu	FLNDUI		0	100		1					
foreign articles, garbage	foreign articles, garbage	GARBUI		0	9400			1	1			
Gadoids (ns)	Gadidae f.	GADUI		0	251	436		1		1		
Galatheid sp	Galatheid sp.	GALASP		0	319		1					
Stickleback unid.	Gasterosteidae f.	STIKUI		0	360	422		1			1	
Snails and slugs	Gastropoda o.	GASTUI		0	4200			1	1			
Snake mackerel uncl	Gempylidae sp.	SNMACU		0	822 296		1	1				
Mojarra uncl	Gerreidae sp.	MOJAUI		0	625		1					
Red crab	Geryon quinquedens	REDCRB		0	310 2532		1	1	1			
Atl. Pilot whale	Globicephala melaena	PILWAL		0	921			1				
Goby uncl	Gobiidae sp.	GOBYU		Ō	739		1	-				
Arctic squid	Gonatus fabricii	ARCSQD		0		4770				1		
squid	Gonatus sp.	SQD5		0		4769				1		
Lightfish uncl	Gonostomatidae sp	LFISUI		Ō	887 745	205	1	1		1		
Basket stars	Gorgonocephalidae, asteronychi			Ő	6300			1	1			
Basslet uncl	Grammidae sp.	BASTUI		õ	618		1	•	•			
Octopus	Graneledone sp.	OPOD5		Ö	••••	4913	•			1		
Green moray	Gymnothorax funebris	GRNMOR		0	606			1				
Hake uncl	Hake uncldnu	HAKUI		0	80 18		1	1				
Sea peach	Halocynthla pyriformis	SEAPCH		Ő	1827			1	1			
Halosaurus (ns)	Halosauridae	HALOUI		0		394			•	1		
Blood star	Henricia sanguinolenta	BLDSTR		0	6119			1	1			
Bivalve	Heterodontida	BIVUI		0		4225		•	·	1		
Sea snails	Heteropoda s.o.	HETUI		Ō	3600			1		,		
Squid	Histioteuthidae	SQD6		ō	0000	4712		•		1		
Squid	Histioteuthis bonnelli	HISBON		õ		4714				1		
Squid	Histioteuthis sp.	SQD7		õ		4713				1		
Squirrelfish uncl	Holocentridae sp.	SQRUI		õ	485	4710	1			•		
Sea cucumbers	Holothuroidea c.	HOLOUI		õ	6600	8290		1	1	1	1	
Toad crab	Hyas araneus	TDCRB1		õ	2527	8217		1	•	1	1	
Toad crab	Hyas coarctatus	TDCRB2		õ	2021	8218				1	1	
Toad crab unid.	Hyas sp.	TCRBUI		0	2520	8216		1	1	1	1	
Hydrozoan	Hydrozoa	HYDUI		0	2520	1341			1	1	1	
Lanternfish	Hygophum hygomii	LANTH		0	135	1041		1		,	I.	
North, bottlenose whale	Hyperoodon ampuliatus	BTNWAL		0	922			1				
Squids (ns)	lliex so	SQDUI		0	4515	4751		1		1	1	
Invertebrates (ns)	invertebrata p.	INVERT		0	1701	1100		1	1	1	1	
Atlantic sailfish	Istiophorus platypterus	ATLSLF		0	255	1100		1	1	1	I.	
Audituc Saliiisti	isiophorus platypterus	AILOLF		U	255			I.				

		ECNASAP ORIGINAL CODES				ODES								
	SCIENTIFIC NAME	CODE	TYPE	KEPT	USCD S		NFCD					NGOC		
Wrasse uncl	Labridae sp.	WRSUI		0	683	36		1	1					
White-sided dolphin	Lagenorhynchus acutus	WHSDOL		0		933			1					
White beaked dolphin	Lagenorhynchus albirostris	WHBDOL		0		932			1					
Mackerel (ns) sharks	Lamnidae	LAMNUI		0			50				1	1		
Lanternfish	Lampadena luminosa	LANTI		0		137			1					
Mirror lanternfish	Lampadena speculigera	MIRLAN		0		138			1					
Lanternfish	Lampanyctus ater	LANTR		0		284			1					
Jewel lanternfish	Lampanyctus crocodilus	JEWLAN		0		144			1					
Lanternfish	Lampanyctus festivus	LANTJ		0		145			1					
Lanternfish	Lampanyctus intricarius	LANTW		0		460			1					
Lanternfish	Lampanyctus macdonaldi	LANTK		0		146			1					
Lanternfish	Lampanyctus photonotus	LANTX		0		465			1					
Lanternfish	Lampanyctus pusillus	LANTL		0		147			1					
Lanternfish	Lepidophanes guentheri	LANTQ		0		228			1					
Limanda beanii	Limanda beanii	LIBEAN		0	98			1						
Horseshoe crab	Limulus polyphemus	HORCRB		0	318 2	2514		1	1					
Seasnails (ns)	Liparidae	LIPAFM		0			853				1	1		
Northern stone crab	lithodes maja	NSTCRB		0	324 2	2523	8196	1	1	1	1	1		
Spiny (ns) crabs	Lithodes/neolithodes f.	PCRBUI		0	2	2525	8195		1		1			
Spiny crab	Lithodidae	LITHUI		0			8194				1	1		
Periwinkles	Littorinidae f.	PWINK		0	4	4250			1					
Lanternfish	Lobianchia gemellarii	LANTM		0		178			1					
Squids (ns)	Loliginidae/ommastrephidae f.	SQIDUI		0	4	4514			1	1				
Longfin squid	Loligo pealel	LFSQD		0	503 4	4512	4598	1	1			1		
Loligo sp.	Loligo sp.	loligo		0	4	4541	4595		1			1		
Brief squid	Lolliguncula brevis	BRFSQD		0	504			1						
Anglerfishes (ns)	Lophiiformes o.	ANGFUI		0		298	964		1		1			
Shanny unid.	Lumpenidae f	SHANUI		0		645			1	1				
Blennys (ns)	Lumpenus sp.	BLENUI		0		946	714		1		1	1		
Moonshell	Lunatia heros	MOONSH		0	4	4221			1	1				
Snapper uncl	Lutjanidae sp.	SNPUI		0	597			1						
Grenadier uncl	Macrouridae uncl	GRENUI		0	90	416	471	1	1		1			
Grenadiers (ns)	Macrouriformes	GRENUI		0			470				1			
Grenadiers (ns)	Macrourus sp.	GRENUI		0			473				1			
Shrimp (ns)	Macrura s.o.	SHRUI		0	2	2100	8141		1			1		
Spider crab uncl	Majidae sp.	SCRBUI		0	317 2		8211	1	1		1	-		
White marlin	Makaira albida	WHTMAR		0		32			1					
Blue marlin	Makaira nigricans	BLUMAR		Ō		33			1					
Loosejaws (ns)	Malacosteidae f.	LJAWU		0		819	303		1		1			
Melamphaes sp.	Melamphaes sp.	MELAM		õ		686			1					
Scaleless dragonfishes (ns)	Melanostomiatidae f.	DRAGUI		õ		665			1					
Whiting uncl	Merluccius sp.	WHITUI		õ	86	35		1	1					
Horse mussel	Modiolus modiolus	HORMUS		Ő	342 4			1	1					
		MOLLUI		Ö		4000	3110		1	1	1			
Mollusks (ns)	Mollusca p.	MULTI		(1			.3110							

L

•

		ECNASAP			ORIGINAL	OCCURS IN ORIGINAL DATA SET					
COMMON NAME	SCIENTIFIC NAME	CODE	TYPE	KEPT	USCD SFCD				SGOC		NGOC
Mullets (ns)	Mugilidae f.	MULLUI		0	265			1			,
Malacostracan	Munidopsis curvirostra	MALUI1		0		8164				1	
Moray uncl	Muraenidae sp.	MORAYU		0	388 425	344	1	1		1	
Softshell clam	Mya arenaria	SFCLM		0	4318			1			
Metalic lanternfish	Mycotophum affine	METLAN		0	179			1			
Sea basses	Mycteroperca sp.	MPERUI		0	664			1			
Lanternfish uncl	Myctophid sp.	LANTSP		0	56		1				
Lanternfish uncl	Myctophidae uncl dnu	LANTU		0	220 150		1	1	1		
Lanternfish	Myctophum asperum	LANTU		0	327			1			
Lanternfish	Myctophum selenops	LANTDD		0	559			1			
Myctophum sp.	Myctophum sp.	LANTV		0	370			1			
Clam	Myidae	MYIDU		0		4425				1	
Mussels (ns)	Mytilidae f.	MUSUI		0	4330			1	1		
Common mussel	Mytilus edulis	COMMUS		0	4331	4122		1	1		1
Hagfishes (ns)	Myxinide	HAGUI		0		11			-	1	1
Hagfishes (ns)	Myxiniformes	HAGUI		0		10				1	1
Dog whelks	Nassariidae or thaisidae f.	WHLKDG		0	4235			1	1		
Shrimp uncl	Natantia sp.	SHPUI		0	305	8020	1			1	1
Moon snail uncl	Naticidae sp.	MONSNL		0	338		1				
Snipe (ns) eels	Nemichthyidae	SEELUI		0		367				1	1
Ridged eel	Neoconger mucronatus	RDGEEL		0	472			1			
Spiny spider crab	Neolithodes grimaldi	SSCRB		0	2528			1	1		
Nereidae f.	Nereidae f.	NEREUI		0	3150			1	1		
Grenadier (ns)	Nezumia sp.	GRENUK		0		477				1	
Unknown invert code	No code	UNK1		0		4321				1	
Unknown invert code	No code	UNK2		0		8539				1	
Unknown invert code	No code	UNK3		0		8550				1	
Unknown invert code	No code	UNK4		0		9851				1	
Unknown invert code	No code	UNK5		0		9852				1	
Water haul	No fish but good tow	WATHAU		0	300 9600		1	1	1		
Driftfishes	Nomeidae f.	DRFFSH		0	821			1			
Spiny (ns) eels	Notacanthiformes	SEELUI		0		384				1	1
Spiny (ns) eels	Notocanthidae f.	SEELUI		0	662			1		1	1
Lanternfish	Notolychnus valdiviae	LANTN		0	181			1			
Lanternfish	Notoscopelus bolini	LANTS		0	287			1			
Lanternfish	Notoscopelus caudispinosus	LANTBB		0	478			1			
Lanternfish	Notoscopelus resplendens	LANTO		0	183			1			
Sea slugs	Nudibranchia o.	SLUGUI		Õ	4400			1	1		
Octopus (ns)	Octopoda o.	OCTOUI		õ	4521			1	1	1	1
Octopus	Octopodidae	OPOD7		õ	, CE I	4877		•	•	1	•
Octopus	Octopus sp.	OPOD8		õ		4894				1	1
Whales (ns)	Odontoceit s.o.	ODONU		õ	920			1			,
Dolphin (ns) (mammal)	Odontoceit s.o.	ODONUI		õ	930			1			
Batfish uncl	Ogcocephalidae sp	BATUI		õ	452 694		1	1		1	1
	Udcocephalidae sh										

Appendix 2. (com											
		ECNASAP			ORIGINAL (OCCURS IN ORIGINAL DA				
COMMON NAME	SCIENTIFIC NAME	CODE	TYPE	KEPT	USCD SFCD	NFCD	USOC	SFOC	SGOC	NFOC	NGOC
Squid	Omnastrephidae	SQDB		0		4747				1	
Snake eel uncl	Ophichthyidae sp	SEELUI		0	425		1				
Brotulid uncl	Ophidiidae sp	BRTULU		0	424	760	1			1	
Cusk-eel uncl	Ophidiidae sp	CEELUI		0	461		1				
Cusk eels (ns)	Ophidioidei s.o.	CKELUI		0	660			1			
Brittlestars (ns)	Ophiuroidea s.c.	BRITUI		0	6200	8530		1	1	1	1
Smelts/capelins (ns)	Osmeridae f.	SMLTUI		0	337			1			
Pastel swimming crab	Ovalipes guadalupensis	PSWCRB		0	321		1				
Lady crab	Ovalipes ocellatus	LADCRB		0	322		1				
Calico crab uncl	Ovalipes sp.	CALCRB		0	315		1				
Hermit (ns) crabs	Paguridae f.	HCRBUI		0	2559	8177		1		1	1
Paguroidea s.f.	Paguroidea s.f.	HRCBUI		0	2560			1	1		
Pagurus sp.	Pagurus sp.	PGCBUI		0	2561	8178		1			1
Pandalidae f.	Pandalidae f.	PANDUI		0	2200	8105		1	1	1	
Northern shrimp	Pandalus borealis	NORSHP		0	306 2211	8111	1	1	1	1	1
Aesop shrimp	Pandalus montagui	AESSHP		0	297 2212	8112	1	1	1	1	1
Pandalus propinquus	Pandalus propinguus	PANPRO		0	298 2213	8113	1	1			1
Shrimps (ns)	Pandalus sp.	SHRUI		0	2210	8110		1	1	1	1
Barracudina uncl	Paralepidae sp.	BARCUI		0	896 713	316	1	1	1	1	1
Seasnail (ns)	Paraliparis sp.	SNUI		0		854				1	1
Pink glass shrimp	Pasiphaea multidentata	PGLSHP		0	292 2021		1	1			
P. Multidentata	Pasiphea multidentata	PASMUL		0	2221	8057		1	1		1
Scallops (ns)	Pectinidae f.	SCALUI		0	4320	4165		1	1	1	1
Sea pen	Pennatula borealis	SEAPEN		0	8318			1	1		
Peristedion sp.	Peristedion sp.	PERISP		0	580			1			
Lampreys (ns)	Petromyzontiformes	LAMPUI		0		14				1	
Harp seal	Phoca groenlandica	HRSEAL		0		1085				1	
Seal (ns)	Phoca sp.	SEALUI		0		1082				1	
Seals (ns)	Phocidae f.	SEALUI		0	900			1			
Fish (unidentified)	Pisces p.	FISHUI		0	90	999		1		1	1
Sea scallop (live)	Placopecten magelanicus (live)	SESCAL		0	401 4321		1	1	1		
Bristle worms	Polychaeta c.	POLYUI		0	3100	4950		1	1		1
Chitons	Polyplacophora c.	CHITON		0	4700			1	1		
Damselfish uncl	Pomacentridae sp.	DAMSUI		0	619		1				
Grunt uncl	Pomadasyidae sp.	GRTUI		0	630		1				
Bluefishes (ns)	Pomatomidae	BFSHU		0		622				1	
Sponges (ns)	Porifera p.	SPONUI		0	8600	1101		1	1	1	1
Swimming crab uncl	Portunid sp.	WCRBUI		0	320		1				
Bigeyes (ns)	Priacanthidae	BEYEUI		0		609				1	
Clams (ns)	Prionodesmata/teleodesmata	CLMUI		0	4310			1	1		
Searobin	Prionotus sp.	SROBUI		Õ		799		•	•	1	
Lanternfish	Protomyctophum arcticum	LANTP		õ	226			1		•	
Winter flounder eggs	Pseudopleuronectes americanu			õ	1253			1			
Bivalve	Pteroconchida	BIVUI		õ	.200	4120		•		1	
Sea spider	Pycnogonida sp.	SPIDUI		Ő	5100	5951		1	1	1	1
oca spider	i yonogonida əp.	511001		0	5100	2321				1	1

ECNASAP/Cod Mortality Project

		ECNASAP				SINAL C	ODES					
COMMON NAME	SCIENTIFIC NAME	CODE	TYPE	KEPT	USCD	SFCD	NFCD	USOC	SFOC	SGOC	NFOC	NGOC
Skate unid.	Raja eggs	SKTEGG		0	-	1224			1	1		
Skate uncl	Raja sp.	SKTUI		0	20		89	1			1	1
Skates (ns)	Rajidae	SKTUI		0			88				1	1
Skates, rays, etc.	Rajiformes	SKTUI		0			80				1	1
Cephalopod	Rossia sp.	CEPH2		0			4557				1	
Cephalopod	Rossiinae	CEPH3		0			4556				1	
Tusk shell	Scaphopoda	TUSK		0			3975				1	
Parrotfish uncl	Scaridae sp.	PARUI		0	688			1				
Drum uncl	Sciaenidae sp.	DRUMUI		0	858			1				
Shrimp	Sclerocrangon boreas	SHR2		0			8119				1	1
Mackerel tuna uncl	Scombridae sp.	MKTNUI		0	860		556	1			1	
Scopelosaurus (ns)	Scopelosauridae	SCOPUI		0			300				1	
Rockfishes (ns)	Scorpaena sp.	ROKFUI		0		278			1			
Scorpionfish uncl	Scorpaenidae sp	SCRPUI		0	759	280	791	1	1		1	
Rockfishes (ns)	Scorpaeniformes	ROKORD		0			790				1	
Cat (ns) sharks	Scyliorhinidae	CSHKFM		0			55				1	
Spanish slipper lobster	Scyllarides aequinoctialis	SSLLOB		0	303			1				
Ridged slipper lobster	Scyllarides nodifer	RSLLOB		0	302			1				
Jellyfishes (ns)	Scyphosoa c.	JELUI		0		8500	2040		1	1	1	1
North Gulf Inverts	see Nfld codes			0			999 5					1
North Gulf Inverts	see Nfld codes			0			8019					1
North Gulf Inverts	see Nfld codes			0			8055					1
North Gulf Inverts	see Nfld codes			0			8138					1
North Gulf Inverts	see Nfld codes			0			8092					1
North Gulf Inverts	see Nfld codes			0			8093					1
North Gulf Inverts	see Nfld codes			0			6930					1
North Gulf Inverts	see Nfld codes			0			8261					1
North Gulf Inverts	see Nfld codes			0			8077					1
North Gulf Inverts	see Nfld codes			0			9987					1
North Gulf Inverts	see Nfld codes			0			8135					1
North Gulf Inverts	see Nfld codes			0			4852					1
North Gulf Inverts	see Nfld codes			0			8037					1
North Gulf Inverts	see Nfid codes			0			6580					1
North Gulf Inverts	see Nfld codes			0			8085					1
North Gulf Inverts	see Nfld codes			0			8128					1
North Gulf Inverts	see Nfld codes			0			6980					1
North Gulf Inverts	see Nfld codes			0			8087					1
North Gulf Inverts	see Nfld codes			0			8157					1
North Gulf Inverts	see Nfld codes			0			4554					1
North Gulf Inverts	see Nfld codes			0			4951					1
North Gulf Inverts	see Nfld codes			0			6760					1
North Gulf Inverts	see Nfld codes			0			8075					1
North Gulf Inverts	see Nfld codes			0			8079					1
North Gulf Inverts	see Nfld codes			0			8080					1
North Gulf Inverts	see Nfld codes			0			8084					1

Appendix 2. (contin		ECNASAP			ORIGINAL	ORIGINAL CODES			OCCURS IN ORIGINAL DATA SET					
COMMON NAME	SCIENTIFIC NAME	CODE	TYPE	KEPT	USCD SFCD									
North Gulf Inverts	see Nfid codes	CODL		0	0000 0100	8094	0000	0100	0000	1100	1			
North Gulf Inverts	see Nfld codes			ŏ		8167					1			
North Gulf Inverts	see Nfid codes			õ		8172					1			
North Gulf Inverts	see Nfld codes			ő		8205					1			
North Gulf Inverts	see Nfld codes			ñ		8222					1			
North Gulf Inverts	see Nfld codes			0		8293					1			
Sea bass uncl	Serranidae sp.	SBASUI		0	554 715	591	1	1		1				
Shark uncl	Serrandae sp. Shark uncl	SHKUI		0	11 592	18	1	1		1				
		ROKSHP		0	316	10	1	'						
Rock shrimp	Sicyonia brevirostris			0	4312		1	4						
Propeller clam	Siliqua patula	PCLM		0				1						
Razor (ns) clams	Siliqua sp.	RCLMUI		0	4315	250		1	1	1				
Snubnose (ns) eels	Simenchelyidae	SIMFM		•		358				1	1			
Purple sunstar	Solaster endeca	PURSTR		0	6121			1	1					
Sun star	Solaster papposus	SUNSTR		0	6123			1	1					
Porgy uncl	Sparidae sp.	PORUI		0	643 326	661	1	1		1				
Barracuda uncl	Sphyraenidae sp.	BARRU		0	620		1							
Stimpson's surf clam	Spisula polynyma	SSCLM		0	4355			1						
Surf clam (live)	Spisula solidissima (live)	SRFCLM		0	403 4317		1	1	1					
Dogfishes (ns)	Squalidae f.	DOGFUI		0	274			1						
Octopus	Stauroteuthidae	OPOD10		0		4851				1				
Ogrefishes (ns)	Stephanoberyciformes	OGRORD		0		498				1				
Malacostracan	Stereomastic sculpta	MALUI2		0		8145				1				
Hatchetfishes (ns)	Sternoptychidae	HATFAM		0	252 741	220	1	1		1				
Pricklebacks (ns)	Stichaeidae f.	PBAKUI		0	639	709		1		1				
Mantis shrimp	Stomatopod sp.	MANSHP		0	323		1							
Scaled dragonfishes (ns)	Stomias sp.	DRGUI		0	756			1						
Scaly dragonfish uncl	Stomiatidae sp.	SCADRG		0	248 151	229	1	1		1				
stones and rocks	stones and rocks	ROCKUI		0	9200			1	1	1				
Conchs (ns)	Strombus/busycon sp.	CONCUI		0	4335			1						
Sea urchins	Stronglocentrotus sp.	URCHUI		0	6400	8363		1	1	1	1			
Sea urchin	Strongylocentrotidae	URCH1		0		8362				1	1			
Sea urchin	Strongylocentrotus droebachien	ORCH2		0		8364				1	1			
Tonguefish Uncl	Symphurus sp.	TONGUI		0	221 805		1	1						
Cutthroat (ns) eels	Synaphrobranchidae	CUTEFM		0		372				1				
Pipefish (ns)	Syngnathus sp.	PIPEUI		0	759			1						
Lizardfish uncl	Synodontidae sp	LIZUI		0	852		1							
Puffer uncl	Tetraodontidae sp.	PUFUI		0	861		1							
Squid	Teuthoidea	SQD2		0		4591				1	1			
seaweed, (algae), kelp	Thallophyta c.	WEEDUI		0	9300			1	1					
Albacore tuna	Thunnus alalunga	ABLTUN		0	190			1	-					
Yellowfin tuna	Thunnus albacares	YFTUN		õ	191			1						
Bigyey tuna	Thunnus obesus	BGETUN		õ	192			1						
Tunas (ns)	Thunnus sp.	TUNAUI		ŏ	321			1						
Bluefin tuna	Thunnus thynnus	BLFTUN		0	71			1						
	Trichiuridae f.	CUTLUI		0	689	546		1		1				
Cutlassfishes (ns)				<u> </u>	609	340				1				

		ECNASAP			ORIO	GINAL C	ODES	OCCL	JRS IN	ORIGI		TA SET
COMMON NAME	SCIENTIFIC NAME	CODE	TYPE	KEPT	USCD		NFCD					NGOC
Searobin Uncl	Triglidae uncl	SROBUI		0	174	329	798	1	1	1	1	
Tunicata s.p.	Tunicata sp.	TUNICU		0		1810			1	1		
Bottlenose dolphin	Tursiops truncatus	BOTDOL		0		931			1			
unid. remains	unid remains, digested	REMAIN	•	0		9000			1	1		
North Gulk Unknown	Unknown	NGUNK4		0			1001					1
North Gulk Unknown	Unknown	NGUNK6		0			1003					1
North Gulk Unknown	Unknown	NGUNK8		0			1005					1
North Gulk Unknown	Unknown	NGUNK9		0			1007					1
North Gulk Unknown	Unknown	NGUNK5		0			1002					1
North Gulk Unknown	Unknown	NGUNK7		0			1004					1
North Gulk Unknown	Unknown	NGUNK10		0			315					1
North Gulf Unknown	Unknown	NGUNK3		0			960					1
North Gulf Unknown	Unknown	NGUNK2		0			720					1
Shrimp (pink)	Unknown	PNKSHP		0	307			1				
Unknown	Unknown	UNKSPP		0	153			1				
Unknown invert code	Unknown code	UNKSPP3		0		6120			1	1		
Unknown invert code	Unknown code	UNKSPP4		0		7086			1			
Unknown species	Unknown species	UNKSPP2		0	0			1				
Stargazer uncl	Uranscopidae sp.	STGZUI		0	857			1				
Ling uncl	Urophycis sp.	LINGUI		0	87	193		1	1			
Quahaug	Venus mercenaria	QHAUG		0		4311			1			
Dories, etc.	Zeiformes	ZEIFORD		0			528				1	
Eelpout uncl	Zoarcidae sp.	EELPOU		0	267	598	725	1	1	1	1	1
Invertebrate eggs	-	INVEGG		0			9985				1	

1 Species codes are given in Appendix 2; the N prefix indicates numbers of individuals. Aggregate groups are italicized.

2SOURCES: NMFS-NEFSC = National Marine Fisheries Service, Northeast Fisheries Science Center, USA; DFO-SF = Department of Fisheries and Oceans, Scotia-Fundy Region, Canada; DFO-SG = Department of Fisheries and Oceans, Southern Gulf of St. Lawrence, Canada; DFO-NG = Department of Fisheries and Oceans, Northern Gulf of St. Lawrence, Canada; DFO-NFLD = Department of Fisheries and Oceans, Newfoundland-Labrador Region, Canada

•

Appendix 3. Numbers of individuals and frequency of occurrence of demersal species in the original trawl survey data sets.

	SPECIES			NU	MBERS OF	INDIVIDUAL	S			FREQU	ENCY
		ECNASAP			SOURCE ²				% OF	# OF	% OF
COMMON NAME	SCIENTIFIC NAME	CODE ¹	NMFS-NEFSC	DFO-SF	DFO-SG	DFO-NG	DFO-NFLD	TOTAL	TOTAL	SETS	SETS
Redfishes (created)	Sebastes (all)	NREDALL	178,808	825,697	168,131	1,651,875	7,526,105	10,350,616	39.38	22733	41.30
American plaice	Hippoglossoides platessoides	NAMPLC	90,610	167,813	701,487	61,014	1,873,920	2,894,845	11.01	36381	66.10
Atlantic cod	Gadus morhua	NATLCOD	47,452	230,407	360,974	333,460	1,470,833	2,443,127	9.29	34727	63.09
Silver hake	Merluccius bilinearis	NSILHAK	627,080	547,131	352	3,184	53,749	1,231,496	4.68	16033	29.13
Butterfish	Peprilus triacanthus	NBUTTER	1,164,593	13,643	98	0	2	1,178,336	4.48	4564	8.29
Spiny dogfish	Squalus acanthias	NSPIDOG	719,652	237,069	7,100	209	7,627	971,657	3.70	9703	17.63
Haddock	Melanogrammus aeglefinus	NHADDOK	172,872	444,193	1,981	5,887	117,533	742,466	2.82	12090	21.96
Northern sand lance	Ammodytes dubius	NNLNCE	411,445	40,103	94	9	170,614	622,264	2.37	2763	5.02
Yellowtail flounder	Limanda ferruginea	NYTLFLD	77,483	155,763	75,536	344	276,042	585,168	2.23	11762	21.37
Greenland halibut	Reinhardtius hippoglossoides	NGRNHAL	5	1,142	3,058	37,832	424,779	466,816	1.78	15577	28.30
Shortfin squid	Illex illecebrosus	NSFSQD	170,888	205,247	12,589	5,078	63,509	457,311	1.74	10021	18.21
Arctic cod	Boreogadus saida	NARCOD	0	0	11	1,318	427,363	428,693	1.63	4627	8.41
Thorny skate	Raja radiata	NTHNSKT	14,773	44,750	8,778	14,771	195,137	278,208	1.06	30479	55.37
Longhorn sculpin	Myoxocephalus octodecemspinosus	NLHSCUL	106,770	124,025	25,681	283	13,332	270,091	1.03	10226	18.58
Witch flounder	Glyptocephalus cynoglossus	NWITFLD	20,623	33,205	5,468	47,370	148,336	255,002	0.97	19913	36.18
Atlantic spiny lumpsucker	Eumicrotremus spinosus	NATLMSK	18	356	505	200,617	4,095	205,591	0.78	1665	3.02
White hake	Urophycis tenuis	NWHIHAK	43,712	62,690	36,956	15,620	32,780	191,757	0.73	13749	24.98
Northern (Common) searobin	Priondius carolinus	NNSROB	189.051	1,502	0	0	0	190,553	0.72	1723	3.13
Red hake	Urophycis chuss	NREDHAK	164,995	25,509	1	2	3	190,510	0.72		14.79
Scup	Stenotomus chrysops	NSCUP	188,997	5	0	0	0	189,002	0.72	1020	1.85
Little skate	Raja erinacea	NLITSKT	158,879	16,282	0	4	5	175,169	0.67	6345	11.53
Winter flounder	Pseudopleuronectes americanus	NWINFLD	29,903	20,960	111.837	39	22	162,760	0.62	4994	9.07
Atlantic argentine	Argentina silus	NATLARG	8,742	43,972	3	14,907	77.737	145,361	0.55	3507	6.37
Black dogfish	Centroscyllium fabricii	NBLKDOG	121	2,661	9,520	64,052	68,968	145,322	0.55	3000	5.45
Spotted hake	Urophycis regius	NSPTHAK	126,352	25	0	0	0	126,377	0.48	· 2259	4.10
Pollock	Pollachius virens	NPOLLOK	21,000	80,655	407	4,065	4.828	110,954	0.42	6517	11.84
Fourspot flounder	Paralichthys oblongus	NFSTFLD	92,393	3,903	0	0	0	96,296	0.37	4598	8.35
Rock (Roundnose) grenadier	Coryphaenoides rupestris	NRKGREN	0	174	3	642	94,514	95,334	0.36	987	1.79
Marlin-spike (Common grenadier)	Nezumia bairdi	NCOMGRN	637	4,566	2,371	19,734	55,532	82,840	0.32	6999	12.72
Winter skate	Raja ocellata	NWNTSKT	47,589	27,870	2,204	1,582	1.092	80,337	0.31		
Eelpouts (summed group)	Lycodes spp.	NELPALL	15	6,904	10,434	3,054	56,007	76,413	0.29	12333	22.41
Lumpfish	Cyclopterus lumpus	NLUMFIS	212	416	177	4,575	58,638	64,018	0.24	5263	9.56
Longfin hake	Urophycis chesteri	NLFNHAK	5,953	40.069	1,209	16,081	0	63,313	0.24	2831	5.14
Windowpane	Scophthalmus aquosus	NWINPAN	47,320	8,712	3,608	66	60	59,767	0.23	3780	6.87
Roughhead grenadier	Macrourus berglax	NRHDGRN	15	67	0	0	57,251	57,332		5448	9.90
Ocean pout	Macrozoarces americanus	NOCPOUT	37.028	8.581	811	62	273	46,756		5437	9.88
Atlantic wolffish	Anarhichas lupus	NATLWOL	3,407	5.063	305	1,981	34,772	45,528	0.17	10095	
Moustache (Mailed) sculpin	Triglops murrayi	NMSSCUL	18,307	10,148	5,366	808	8,652	43,282		3408	6.19
Gulfstream flounder	Citharichthys arctifrons	NGSTFLD	37,434	929	0.000	000	0,002	38,363	0.15	2517	4.57
Sea raven	Hemitripterus americanus	NSEARAV	11,505	7.653	2,050	890	7,446	29,544	0.13	8562	
					+						
Spot Round scad	Leiostomus xanthurus Decapterus punctatus	NSPOT	22,011 20,892	0	0	0	0	29,044 22,011 20,892	0.08	58 122	0.11

86

ECNASAP/Cod Mortality Project

COMMON NAME Smooth skate Goosefish Dischertier scotlich	SCIENTIFIC NAME	ECNASAP					S				IENCY
Smooth skate Goosefish					SOURCE				% OF	#OF	% OF
Goosefish		CODE	NMFS-NEFSC	DFO-SF	DFO-SG	DFO-NG	DFO-NFLD	TOTAL	TOTAL		SETS
	Raja senta	NSMOSKT	3,228	5,787	961	2,575	7,254	19,805	0.08		13.98
Disakhally sacafigh	Lophius americanus	NGSEFIS	11,240	3,914	56	515	2,209	17,934	0.07		13.89
Blackbelly rosefish	Helicolenus dactylopterus	NBBROSE	13,367	2,695	6	0	7	16,075	0.06	1383	2.51
Black sea bass	Centropristis striata	NBLSBAS	15,794	0	0	0	0	15,794	0.06	813	1.48
Fawn cusk-eel	Lepophidium cervinum	NFNCEEL	14,372	282	0	0	0	14,654	0.06	1150	2.09
Northern wolffish	Anarhichas denticulatus	NNORWLF	0	59	35	95	13,681	13,869	0.05	4566	8.30
Longspine porgy	Stenotomus caprinusdnu	NLSPPOR	13,464	0	0	0	0	13,464	0.05	57	0.10
Threespine stickleback	Gasterosteus aculeatus	NTSPSTK	125	13	13,075	130	2	13,345	0.05	217	0.39
Mailed sculpins (ns)	Triglops sp.	NSCULFM	0	0	0	15	12,260	12,275	0.05	2480	4.51
Atlantic croaker	Micropogon undulatus	NATLCRK	11,617	0	0	0	0	11,617	0.04	64	0.12
Roughnose grenadier	Trachyrhynchus murrayi	NRGGRN	0	126	0	7,352	1,569	9,046	0.03	684	1.24
Fourbeard rockling	Enchelyopus cimbrius	NFBDROK	3,151	1,146	770	2,942	940	8,949	0.03	2737	4.97
Summer flounder	Paralichthys dentatus	NSUMFLD	8,722	174	0	0	0	8,896	0.03	1678	3.05
Blue hake	Antimora rostrata	NBLUHAK	0	· 64	0	0	8,664	8,728	0.03	840	1.53
Spotted wolflish	Anarhichas minor	NSPTWLF	0	37	0	183	7,910	8,130	0.03	3741	6.80
Offshore hake	Merluccius albidus	NOFFHAK	6,014	1,315	0	0	561	7,890	0.03	865	1.57
Alligatorfish	Aspidophoroides monopterygius	NALLIG	1,360	1,068	3,168	62	1,566	7,225	0.03	2148	3.90
Planehead filefish	Monacanthus hispidus	NPLFLFS	7,013	4	0	0	· 0	7,017	0.03	200	0.36
Atlantic halibut	Hippoglossus hippoglossus	NATLHAL	882	2,712	44	396	2,719	6,752	0.03	3742	6.80
Atlantic sea poacher	Agonus decagonus	NATSPCH	0	261	377	66	5,017	5,721	0.02	2003	3.64
Smooth dogfish	Mustelus canis	NSMODOG	5,437	0	0	0	2	5,439	0.02	376	0.68
Cusk	Brosme brosme	NCUSK	2,463	2,741	0	2	129	5,335	0.02	2247	4.08
Atlantic hagfish	Myxine glutinosa	NATLHAG	1,631	820	145	1,280	1,387	5,263	0.02	2024	3.68
Daubed shanny	Lumpenus maculatus	NDBSHAN	3,587	302	564	136	504	5,092	0.02	621	1.13
Tomtate	Haemulon aurolineatum	NTOMTAT	4,785	0	0	0	0	4,785	0.02	30	0.05
Cunner	Tautogolabrus adspersus	NCUNNER	1,573	631	2,440	0	0	4,643	0.02	615	1.12
Shorthorn sculpin	Myoxocephalus scorpius	NSHSCUL	227	47	550	94	3,567	4,484	0.02	1517	2.76
Atlantic soft pout	Melanostigma atlanticum	NATLSPT	869	64	136	3,034	225	4,329	0.02	569	1.03
Beardfish	Polymixia Iowei	NBDFIS	3,895	6	0	0	0	3,901	0.01	113	0.21
Barracudinas (created)	Paralepis +	NBARALL	5	713	125	2,147	777	3,767	0.01	1101	2.00
Snowflake hookear sculpin	Artediellus uncinatus	NSFSCUL	0	1,645	860	956	230	3,691	0.01	804	1.46
Hookear sculpin uncl	Artediellus sp	NHSCUSP	0	0	0	77	3,601	3,678	0.01	1452	2.64
Longnose eel	Synaphobranchus kaupi	NLNSEEL	0	0	0	1	3,532	3,533	0.01	833	1.51
Striped searobin	Prionotus evolans	NSSROB	3,384	0	0	0	0	3,384	0.01	280	0.51
Polar sculpin	Cottunculus micropes	NPOSCUL	0	40	9	41	2.923	3.012	0.01	1538	2.79
Seasnails (created)	Liparis (all)	NSSNALL	244	131	776	187	1,475	2.814	0.01	1076	1.95
Shortnose greeneye	Chlorophthalmus agassizi	NSHTGEY	2.489	304	0	0	0	2,793	0.01	326	0.59
Large scale tapirfish	Notocanthus chemnitzi	NLSCTAP	0	60	0	10	2,718	2.787	0.01	824	1.50
Clearnose skate	Raja eglariteria	NCNSSKT	2,668	9	0	0	0	2,677	0.01	373	0.68
4-line snake blenny	Eumesogrammus praecisus	NFLBLEN	0	79	2,089	112	279	2,559	0.01	491	0.89
Rough scad	Trachurus lathami	NRGSCAD	2.483	0	0	0	0	2,483	0.01	129	0.23
Snake blenny	Lumpenus lumpretaelormes	NSNKBLN	354	741	650	264	450	2,460	0.01	804	1.46

	SPECIES			NU	MBERS OF	INDIVIDUAL	S			FREQU	ENCY
		ECNASAP			SOURCE				% OF	# OF	% OF
COMMON NAME	SCIENTIFIC NAME	CODE	NMFS-NEFSC	DFO-SF	DFO-SG	DFO-NG	DFO-NFLD	TOTAL	TOTAL	SETS	SETS
nshore lizardfish	Synodus foetens	NINSLIZ	2,212	0	0	0	0	2,212	0.01	90	0.16
ermilion snapper	Rhomboplites aurorubens	NVERSNP	2,166	0	0	0	0	2,166	0.01	34	0.06
oa dragonfish	Stomias (boa) ferox	NBOADRG	44	1,185	0	0	679	1,908	0.01	345	0.63
oitre blacksmelt	Bathylagus euryops	NBKSMLT	0	42	0	0	1,554	1,596	0.01	158	0.29
pinytail skate	Raja spinicauda	NSPTSKT	0	5	0	47	1,538	1,590	0.01	1206	2.19
iperfish	Chauliodus sloani	NVIPFIS	61	375	0	1	1,070	1,507	0.01	534	0.97
Greenland cod	Gadus ogac	NGRCOD	0	3	638	105	657	1,404	0.01	463	0.84
mallmouth flounder	Etropus microstomus	NSMMFLB	1,337	0	0	0	0	1,337	0.01	149	0.27
ladiated shanny	Ulvaria subbifurcata	NRDSHAN	874	166	192	3	91	1,326	0.01	290	0.53
losette skate	Raja garmani	NROSSKT	1,271	2	0	0	0	1,273	0.00	302	0.55
rmored searobin	Peristedion miniatum	NARSROB	1,094	40	0	0	0	1,134	0.00	333	0.60
leep sea sculpin	Cottunculus sp.	NCOTTSP	0	0	0	9	1,119	1,128	0,00	624	1.13
llack herring	Bathytroctes sp.	NBLKHER	0	0	0	0	1,091	1,091	0.00	74	0.13
lender snipe eel	Nemichthys scolopaceus	NSNPEEL	271	576	0	0	119	966	0.00	286	0.52
offshore lizardfish	Synodus poeyi	NOFFLIZ	959	0	0	0	0	959	0.00	37	0.07
igeye scad	Selar crumenopthalmus	NBESCAD	901	0	0	0	0	901	0.00	25	0.05
Vrymouth	Cryptacanthodes maculatus	NWRYMTH	222	249	266	68	89	893	0.00	488	0.89
tout sawpalate	Serrivomer beani	NSTSWPL	0	145	0	3	594	741	0.00	285	0.52
irubby	Myoxocephalus aenaeus	NGRUBBY	599	33	0	1	1	634	0.00	72	0.13
attier	Serranus phoebe	NTATLER	617	0	0	0	0	617	0.00	34	0.06
Snakefish	Trachinocephalus myops	NSNKFIS	605	0	0	0	0	605	0.00	71	0.13
onger eel	Conger oceanicus	NCONEEL	575	5	0	0	0	580	0.00	304	0.55
Buckler dory	Zenopsis conchifera	NBUKDOR	519	60	0	0	0	579	0.00	244	0.44
Bank sea bass	Centropristis ocyurus	NBKSBAS	469	0	0	0	0	469	0.00	45	0.08
hreebeard rockling	Gaidropsarus ensis	NTBDROK	31	34	0	59	343	467	0.00	188	0.34
Slatjaw cutthroat eel	Symaphobranchus kaupi	NCUTEEL	0	458	0	0	0	458	0.00	80	0.15
Chain dogfish	Scyliorhinus retifer	NCHNDOG	455	0	0	0	0	455	0.00	197	0.36
Bank cusk-eel	Ophidion holbrooki	NBKCEEL	444	0	0	0	0	444	0.00	37	0.07
Red porgy	Pagrus sedecim	NREDPOR	413	0	0	0	0	413	0.00	59	0.11
Atlantic midshipman	Porichthys porosissimus	NATLMID	388	0	0	0	0	388	0.00	34	0.06
Spiny lumpsucker	Eumicrotremus spinosus variablilis	NSPLSUK	0	0	0	160	228	387	0.00	117	0.21
Barndoor skate	Raja laevis	NBRNSKT	182	184	8	2	7	383	0.00	204	0.37
Spiny searobin	Prionotus alatus	NSPSROB	361	0	0	0	0	361	0.00	19	0.03
tantic angel shark	Squatina dumerili	NATANSHK	359	0	0	0	0	359	0.00	163	0.30
tlantic hookear sculpin	Artediellus atlanticus	NHKSCUL	0	0	0	303	55	358	0.00	92	0.17
llackmouth bass	Synagrops bella	NBLMBAS	349	0	0	0	0	349	0.00	49	0.09
hlorophthalmus chalybeius	Chlorophthalmus chalybeius Dnu	NCHLCHA	349	0	0	0	0	349	0.00	56	0.10
lound skate	Raja fyllae	NRNDSKT	0	14	0	30	302	346	0.00	294	0.53
wospot cardinalfish	Apogon pseudomaculatus	NTWSCAR	337	0	0	0	0	337	0.00	11	0.02
lackerel scad	Decapterus macarellus	NMKSCAD	305	0	0	0	0	305	0.00	47	0,09
Weakfish	Cynoscion regalis	NWKFIS	282	0	0	0	0	282	0.00	65	0,12
Striped grunt	Haemulon striatum	NSTRGRN	279	0	0	0	0	279	0.00	10	0.02

	SPECIES					INDIVIDUAL	s			FREQU	
		ECNASAP			SOURCE				% OF	# OF	%Ô
COMMON NAME	SCIENTIFIC NAME	CODE	NMFS-NEFSC	DFO-SF	DFO-SG	DFO-NG	DFO-NFLD	TOTAL	TOTAL		SET
Wolf eelpout	Lycenchelys verrillii	NWLFEPT	215	43	1	1	4	265		131	0.2
Northern pipefish	Syngnathus fuscus	NNPIPE	261	0	0	0	0	261	0.00	106	
Longnose greeneye	Parasudis truculenta	NLNGGEY	217	22	0	1	0	240		36	
Blue whiting	Micromesistius poutassou	NBLUWHT	0	1	0	1	233	235		102	
Dusky flounder	Syacium papillosum	NDSKFLD	226	0	0	0	0	226	0.00	39	0.0
Epigonus pandionis	Epigonus pandionis	NEPIPAN	206	1	0	0	0	207	0.00	14	0.0
Slime eel	Simenchelys parasiticus	NSLMEEL	22	86	0	0	99	. 207	0.00	104	0.1
Spatulate sculpin	lcelus spatula	NSPSCUL	0	0	42	32	133	206	0.00	71	0.1
Short barracudina	Paralepis brevis	NSHTBAR	0	0	0	56	150	206	0.00	95	0.1
Sand perch	Diplectrum formosum	NSANPER	202	0	0	0	0	202	0.00	47	0.0
Northern puffer	Sphoeroides maculatus	NNPUF	196	1	0	0	0	197	0.00	41	0.0
Shortspine tapirfish	Polycanthonotus rissoanus	NSHTTAP	0	22	0	0	174	196	0.00	68	0.1
Bigeye	Priacanthus arenatus	NBIGEYE	182	0	0	0	0	182	0.00	37	0.0
Shortnosed lancetfish	Alepisaurus brevirostris	NSHTLAN	0	0	0	0	176	176		66	0.1
Slender tonquefish	Symphurus marginatus	NSLTNG	1	0	Ō	Ō	174	175		2	
Bullnose ray	Myliobatis freminvillei	NBULRAY	160	0	Ō	0	0	160		40	
Snake eel	Pisoodonophis cruentifer	NSNKEEL	151	õ	Ő	õ	Ő	151		97	
Roughtail stingray	Dasvatis centroura	NRTLRAY	150	0	0	0	õ	150		77	0.1
Tilefish	Lopholatilus chamaeleonticeps	NTILFIS	143	3	Ő	Ő	õ	146		91	0.
Seasnail ncn	Careproctus ranula	NCARRAN	1	1	Ő	0	144	146		96	
Longnose grenadier	Coelorhynchus carminatus	NLNSGRN	140	0	0	0	6	146		38	
Longtooth anglemouth	Gonostoma elongatum	NGONELO	7	126	0	0	6	139		48	
Sand diver	Synodus intermedius	NSANDIV	136	0	0	0	0	139		33	
Striated argentine	Argentina striata	NSTRARG	136	0	0	0	0	136		16	
Pallid sculpin	Cottunculus thompsoni	NPLSCUL	0	17	0	0	113	135		95	
	•	NRKGUN	-			4				- +	
Rock gunnel	Pholis gunnellus	NEUBBYU	100	14	1	0	6	121		63	
Cubbyu	Equetus umbrosus		119	0	0	0	0	119		21	0.0
Bigeye sculpin	Triglops nybelini	NBESCUL	0	0	0	2	115	117	0.00	25	
Bluntnose stingray	Dasyatis sayi	NBNSRAY	115	0	0	0	0	115		34	0.0
Conejo	Promethichthys prometheus	NCONEJO	107	0	0	0	0	107	0.00	22	
Sea tadpole	Careproctus reinhardi	NSEATAD	0	25	9	53	14	101	0.00	49	
Atlantic batfish	Dibranchus atlanticus	NATLBAT	50	41	0	0	8	99		62	
Atlantic tomcod	Microgadus tomcod	NTOMCOD	0	96	1	0	0	97	0.00	7	
Deepbody boarfish	Antigonia capros	NDBBOAR	97	0	0	0	0	97	0.00	38	0.0
Yellowtail reeffish	Chromis enchrysurus	NYCHROM	97	0	0	0	0	97	0.00	7	0.0
Sea lamprey	Petromyzon marinus	NSEALAM	80	0	5	2	9	96	0.00	81	0.1
Shortwing searobin	Prionotus stearnsi	NSWSROB	95	0	0	0	0	95	0.00	9	0.0
Whitebone porgy	Calamus leucosteus	NWHBPOR	95	0	0	0	0	95	0.00	20	0.0
John dory	Zenopsis ocellata	NKNBPOR	85	0	0	0	0	85	0.00	11	0.0
White grunt	Haemulon plumieri	NWHTGRT	85	0	0	0	0	85	0.00	19	0.0
Arctic skate	Raja hyperborea	NARCSKT	0	Ō	Ō	Ō	84	84		31	0.0
Longnose batfish	Ogcocephalus vespertilio	NLNSBAT	83	0	0	0	0	83		50	

	SPECIES					INDIVIDUAL	.S			FREQU	JENCY
		ECNASAP			SOURCE				% OF	#OF	% OF
COMMON NAME	SCIENTIFIC NAME	CODE	NMFS-NEFSC	DFO-SF	DFO-SG	DFO-NG	DFO-NFLD	TOTAL	TOTAL		SETS
Slender eelblenny	Lumpenus fabricii	NSLEELB	0	9	3	66	4	82	0.00	36	0.07
Lancer stargazer	Kathetostoma albigutta	NLSTGAZ	80	0	0	0	0	80	0.00	31	0.06
Eyed flounder	Bothus ocellatus	NEYEFLD	76	0	0	0	0	76	0.00	22	0.04
Longspine scorpionfish	Pontinus longispinis	NLSSCOR	74	0	0	0	0	74	0.00	19	0.03
Pancake batfish	Halieutichthys aculeatus	NPANBAT	72	0	0	0	0	72	0.00	18	0.03
Smoothhead scorpionfish	Scorpaena calcarata	NSMSCRP	71	0	0	0	0	71	0.00	21	0.04
Gray triggerfish	Balistes capriscus	NGRYTRG	69	1	0	0	0	70	0.00	33	0.0
Fishdoctor	Gymnelis viridis	NFSHDOC	0	5	24	7	34	70	0.00	46	0.08
Arctic alligatorfish	Aspidophoroides olriki	NARALIG	0	5	4	1	59	68	0.00	18	0.03
Marbled puffer	Sphoeroides dorsalis	NMARPUF	68	0	0	0	0	68	0.00	28	0.05
Rock sea bass	Centropristis philadelphica	NRKSBAS	68	0	0	0	0	68	0.00	21	0.04
Black swallower	Chiasmodon niger	NBLSWAL	0	19	0	0	48	67	0.00	50	0.0
Rough sagre	Etmopterus princeps	NRGHSAG	62	5	0	0	0	67	0.00	13	0.03
Spiny lebbeid	Lebbeus groenlandicus	NSPILEB	65	0	0	0	0	65	0.00	11	0.02
Silver rag	Ariomma bondi	NSILRAG	64	0	0	0	0	64	0.00	37	0.0
Allantic torpedo	Torpedo nobiliana	NATLTOR	60	3	0	0	0	63	0.00	61	0.1
Blackmouthed alfonsin	Hoplostethus mediterraneus	NBLMALF	60	0	0	0	0	60	0.00	17	0.0
Barblish	Scorpaena brasiliensis	NBRBFIS	58	Ó	Ó	0	Ō	58		11	0.0
Baird's smoothhead	Alepocephalus bairdii	NBAISHD	0	Ō	Ō	ō	55	55		13	
Atlantic cutlassfish	Trichiurus lepturus	NATLCUT	55	ō	0	0	0	55		25	
Blotched cusk-eel	Ophidion grayi	NBLCEEL	55	õ	ő	ő	0 0	55		26	
Striped cusk-eel	Rissola marginata	NSTCEEL	55	ō	Ő	ō	õ	55		32	
Hakeling	Physiculus lulvus	NHAKLIN	54	Ő	ō	ő	Ő	54	0.00	7	
White skate	Raia lintea	NWHTSKT	0	ő	õ	ő	54	54	0.00	7	0.0
Shortnose batfish	Ogcocephalus nasutus	NSHTBAT	52	ő	ő	ő	0	52		16	
Silver rockling	Gaidropsarus argentatus	NSILROK	0	ő	ő	ő	51	51	0.00	17	0.0
Ribbed sculpin	Myoxocephalus sp.	NRISCUL	Ő	Ő	õ	21	28	49		8	
Saddled grenadier	Coelorhynchus coelorhynchus	NSDGREN	õ	33	16	0	0	48		11	0.0
Spiny butterfly ray	Gymnura altavela	NSPBRAY	48	0	0	ő	ő	48	0.00	27	0.0
Ocellated flounder	Ancylopsetta guadrocellata	NOCEFLD .	40	ő	ő	ő	0 0	40	0.00	5	
Saucereye porgy	Calamus calamus	NSCEPOR	47	ő	ő	ő	0 0	47	0.00	11	0.0
_eatherfin lumpsucker	Eumicrotremus derjugini	NLTLSUK	0	ő	0	5	41	45		23	
Grenadier (ncn)	Macrourus aegualis	NMACAEQ	Ő	ő	ő	õ	44	44	0.00	2	
Arctic staghorn sculpin	Gymnocanthus tricuspis	NASSCUL	0	ő	1	4	38	43		18	
Deepwater flounder	Monolene sessilicauda	NDPWFLD	40	1	, o	0	0	41	0.00	27	0.0
Blackcheek tonguefish	Symphurus plagiusa	NBCTONG	40	0	Ő	0	ő	41	0.00	24	
Arctic sculpin	Myoxocephalus scorpioides	NARSCUL	41	3	3	5	29	39		33	
Margined snake eel	Ophichthus cruentifer	NMAREEL	0	39	0	0	29	39		4	0.0
Horned searobin	Bellator militaris	NHNSROB	39	39	0	0	0	39		4	
Yellowfin bass	Anthias nicholsi	NYFNBAS	39	1	0	0	0	39		9	
		NUNCHIM	38	•	0	-					0.0
Longnose chimera	Harriotta raleighana Muaxaaabalua guadriaaraia		0	15	0	0	24	39		22	
Fourhorn sculpin	Myoxocephalus quadricornis	NFHSCUL	0	0	0	31	5	36	0.00	16	0.0

102

Append	ix 3. ((conti	nued)

	SPECIES				MBERS OF		S			FREQU	
		ECNASAP			SOURCE				% OF	# OF	% OF
COMMON NAME	SCIENTIFIC NAME	CODE	NMFS-NEFSC	DFO-SF	DFO-SG	DFO-NG	DFO-NFLD	TOTAL	TOTAL	SETS	SETS
Red goatfish	Mullus auratus	NRDGOAT	36	0	0	0	0	36	0.00	17	
Channel flounder	Syacium micrurum	NCHNFLD	35	0	0	0	0	35	0.00	13	
Short bigeye	Pristigenys alta	NSHTBEY	35	0	0	0	0	35	0.00	23	0.04
Arctic shanny	Stichaeus punctatus	NARSHAN	0	0	0	35	0	35	0.00	2	0.00
Twohorn sculpin	lcelus bicornis	NTHSCUL	0	13	9	0	10	32	0.00	16	0.03
Duckbill oceanic eel	Nessorhamphus ingolfianus	NDBLEEL	0	30	0	0	1	31	0.00	5	0.01
Common wolf ee!	Lycenchelys paxillus	NCMWEEL	0	8	0	3	20	31	0.00	25	0.05
Piglish	Orthopristis chrysoptera	NPIGFIS	31	0	0	0	0	31	0.00	6	0.01
Smooth puffer	Lagocephalus laevigatus	NSMPUF	31	0	0	0	0	31	0.00	12	0.02
Jensen's skate	Raja jenseni	NJENSKT	0	7	0	6	18	31	0.00	23	0.04
Tautog	Tautoga onitis	NTAUTOG	30	0	0	0	0	30	0.00	16	0.03
Pinfish	Lagodon rhomboides	NPINFIS	29	0	0	0	0	29	0.00	5	0.01
Blacksnout seasnail	Paraliparis copei	NBLKSSN	0	0	0	27	0	27	0.00	13	0.02
Shark deepsea cat	Apristurus profundorum	NCATSHK	0	1	0	0	26	27	0.00	16	0.03
Blacksmelt (ncn)	Bathylagus benedicti	NBLSMLT	0	0	0	0	26	26	0.00	10	0.02
Longspine squirrelfish	Holocentrus rufus	NLSPSQR	26	0	0	0	0	26	0.00	3	0.01
Reef butterflyfish	Chaetodon sedentarius	NREFBUT	26	0	0	Ó	0	26	0.00	10	0.02
Spotted goatfish	Pseudupeneus maculatus	NSPGOAT	25	0	Ō	0	0	25	0.00	5	0.01
Squirrelfish	Holocentrus ascensionis	NSQRFIS	25	Ō	0	0	0	25	0.00	3	
Bigeve cigarfish	Cubiceps athenae	NBIGCIG	24	õ	ō	Ō	0	24	0.00	14	
Duckbill barracudina	Paralepis atlantica	NDUKBAR	0	24	õ	õ	Ō	24	0.00	9	
Cownose ray	Rhinoptera bonasus	NCAWRAY	21	0	õ	õ	Õ	21	0,00	3	- •
Hoglish	Lachnolaimus maximus	NHOGFIS	21	õ	õ	õ	0	21	0.00	13	
Jackknife-fish	Equetus lanceolatus	NJAKNIF	20	ŏ	õ	õ	õ	20	0.00	15	
Leopard searobin	Prionotus scitulus	NLPSROB	20	õ	õ	õ	Ő	20	0.00	5	0.01
Orange filefish	Aluterus schoepfi	NORGFIL	19	õ	õ	õ	1	20	0.00	10	
Spinycheek scorpionfish	Neomerinthe hemingwayi	NSPSCRP	19	õ	õ	õ	, o	19	0.00	6	
Atlantic spadefish	Chaetodipterus faber	NATLSPD	18	ŏ	ő	ő	õ	18	0.00	6	
Polka-dot cusk-eel	Otophidium omostigmum	NPDCEEL	18	ő	ő	Ő	ŏ	18	0.00	8	0.01
Red cornetfish	Fistularia villosa	NRDCORN	18	ŏ	0	ŏ	Ő	18	0.00	12	
Longfin seasnail	Careproctus Iongipinnis	NLFNSNL	0	4	ő	7	7	18	0.00	13	
American straptail grenadier	Ventrifossa occidentalis	NAMSGRN	17	ō	õ	, 0	, O	17	0.00	10	
Northern kingfish	Menticirrhus saxatilis	NNKFIS	17	ő	ő	Ő	0 0	17	0.00	10	
Spotfin butterflyfish	Chaetodon ocellatus	NSFNBUT	17	Ő	ő	ő	ő	17	0.00	10	
Twospot flounder	Bothus robinsi	NTSPFLD	17	ő	õ	Ő	ő	17	0.00	3	0.01
American el	Anguilla rostrata	NAMEEL	5	12	ő	0	0	17	0.00	11	
Bandtail searobin	Prionotus ophrvas	NBTSROB	16	0	0	0	0	16	0.00	7	
Pearlfish	Carapus bermudensis	NPRLFIS	16	0	0	0	0	16	0.00	3	
Scamp	Mycteroperca phenax	NSCAMP	16	0	0	0	0	16	0.00	9	
Scamp Sergeant major	Abudefduf saxatilis	NSERMAJ	16	0	0	0	0	16	0.00	9	
Deepwater chimera	Hydrolagus affinis	NDPCHIM	16	2	0	0	13	15	0.00	11	
Spottail pinfish	Diplodus holbrooki	NSPTPIN	15	2	0	0	13	15	0.00	4	
Spottan pinnsn		NOPTEIN	15	0	0	0	0	15	0.00	- 4	0.01

East Coast of North America Groundfish

	SPECIES				MBERS OF	INDIVIDUAL	.S			FREQU	ENC
		ECNASAP			SOURCE				% OF	# OF	% O
COMMON NAME	SCIENTIFIC NAME	CODE	NMFS-NEFSC	DFO-SF	DFO-SG	DFO-NG	DFO-NFLD	TOTAL	TOTAL	SETS	SET
Spinyfin	Diretmus argenteus	NSPIFIN	0	13	0	0	2	15	0.00	9	
Spotfin dragonet	Callionymus agassizi	NSPTDRG	10	4	0	0	0	14	0.00	13	
Stout beardfish	Polymixia nobilis	NSBDFIS	6	8	0	0	0	14	0.00	10	0.0
Blackedge moray	Gymnothorax nigromarginatus	NBLKMOR	14	0	0	0	0	14	0.00	12	0.0
Deepsea angler	Ceratias holboelli	NDPSANG	0	4	0	2	9	14	0.00	13	0.0
Knobbed porgy	Calamus nodosus	NKNCHIM	0	10	0	0	3	13	0.00	9	0.0
Lined seahorse	Hippocampus erectus	NLNSHRS	13	0	0	0	0	13	0.00	12	0.0
Slender searobin	Peristedion gracile	NSLSROB	13	0	0	0	0	13	0.00	4	0.0
Southern stingray	Dasyatis americanus	NSTHRAY	13	0	0	0	0	13	0.00	10	0.0
Streamer bass	Pronotogrammus aureorubens	NSTRBAS	13	0	0	0	0	13	0.00	8	0.0
Grenadier NCN	Nezumia hildebrabdi	NGRNNCN	0	0	0	13	0	13	0.00	1	0.0
Longnose lancetfish	Alepisaurus ferox	NLONLAN	0	3	0	0	10	13	0.00	12	0.0
Backfin tapirfish	Lipogenys gillii	NBLKTAP	0	10	0	0	2	12	0.00	5	0.0
Bandtail puffer	Sphoeroides spengleri	NBTLPUF	12	0	0	0	0	12	0.00	5	0.0
Gag	Mycteroperca microlepis	NGAG	12	0	0	0	0	12		8	0.0
Lookdown	Selene vomer	NLKDOWN	12	0	0	õ	Ō	12		11	0.0
Peacock flounder	Bothus lunatus	NPEAFLD	12	0	0	Ō	Ō	12		3	0.0
Red lizardfish	Synodus synodus	NREDLIZ	12	Ō	Ő	Ő	Ō	12		5	0.0
Frostfish	Benthodesmus elongatus simonyi	NFRSFIS	5	2	Ő	0	4	11		11	0.0
Armoured grenadier	Nematonurus armatus	NARGREN	0 0	õ	Ő	Ő	11	11	0.00	3	0.0
Blackwing searobin	Prionotus salmonicolor	NBWSROB	11	Ő	ő	õ	0	11	0.00	4	0.0
Pearly razorfish	Hemipteronotus novacula	NPRLRAZ	11	õ	Ő	õ	ŏ	11	0.00	. 8	0.0
Red snapper	Lutianus campechanus	NREDSNP	11	õ	Ő	õ	ō	11	0.00	3	0.0
Roughback batfish	Ogcocephalus parvus	NRGHBAT	11	ő	ŏ	õ	õ	11		10	
Scrawled cowfish	lactophrys guadricornis	NSCRCOW	11	ő	õ	ő	ő	11	0.00	7	0.0
Southern kingfish	Menticirrhus americanus	NSKING	11	Ő	õ	õ	õ	11		2	0.0
Arctic lumpfish	Cyclopteropsis macalpini	NARCLMP	0	Ő	ő	5	6	11		5	0.0
Brown driftfish	Ariomma melanum	NBRDRFT	10	Ő	ő	0	0	10		5	0.0
Scrawled filefish	Aluterus scriptus	NSCRFIL	10	Ő	Ő	0	0 0	10		8	0.0
Snowy grouper	Epinephelus niveatus	NSNOGRP	10	0	ő	0	ő	10		3	0.0
Uraleptus maraldi	Uraleptus maraldi	NURAMAR	10	0	0	0	0	10		7	0.0
Atlantic gymnast	Xenodermichthys copei	NATLGYM	0	4	0	0	5	9	0.00	7	0.0
Bluespotted searobin	Prionotus roseus	NBSSROB	9	0	0	0	5	9		8	0.0
Red barbier	Hemanthias vivanus	NRDBARB	9	0	0	0	0	9		3	0.0
Beans blueback	Scopelogadus beanii	NBNSBBK	9	9	0	0	0	9		3	-
			0	-	-	•	•			1	0.0
Smallscale mora	Laemonema barbatulum	NLBARB	4	4	0	0	0	8	0.00	3	0.
Red dory	Cyttopsis roseus	NREDDOR	6	2	0	0	0	8	0.00	8	0.0
Atlantic sturgeon	Acipenser oxyrhynchus	NSTURG	5	3	0	0	0	8	0.00	8	0.
Longnose cusk-eel	Ophidion beani. Dnu	NLNCUEL	8	0	0	0	0	8	0.00	5	0.0
Soft skate	Raja mollis	NSFTSKT	0	0	0	1	7	8	0.00	6	0.0
Shortfin searobin	Bellator brachychir	NSHFNSR	8	0	0	0	0	8	0.00	4	0.0
Slipperv dick	Halichoeres bivittatus	NSLIPDK	8	0	0	0	0	8	0.00	4	0.0

	SPECIES				JMBERS OF	INDIVIDUAL	.S			FREQU	
		ECNASAP			SOURCE				% OF	# OF	% C
COMMON NAME	SCIENTIFIC NAME	CODE	NMFS-NEFSC	DFO-SF	DFO-SG	DFO-NG	DFO-NFLD	TOTAL	TOTAL	SETS	
Spottail tonguefish	Symphurus urospilus	NSLTONG	8	0	0	0	0	8		4	
Spotted whiff	Citharichthys macrops	NSPWHIF	8	0	0	0	0	8	0.00	3	
Apristurus laurussoni	Apristurus laurussoni	NAPLAUR	0	8	0	0	0	8	0.00	4	
Blue ling	Molva dypterygia	NBLLING	0	0	0	0	7	7	0.00	7	•,
Barrelfish	Hyperoglyphe perciformis	NBARFSH	6	1	0	0	0	7	0.00	7	۰.
Honeycomb cowfish	Lactophrys polygonia	NNONCOW	7	0	0	0	0	7	0.00	5	
Palespotted eel	Ophichthus ocellatus	NPSPEEL	7	0	0	0	0	7		4	• •.
Sand tiger	Odontaspis taurus	NSANTIG	7	0	0	0	0	7	0.00	4	•••
Big roughy	Gephyroberyx darwini	NBIGROU	6	0	0	0	0	6	0.00	3	3 0.
Bluespotted cornetfish	Fistularia tabacaria	NBLCORN	6	0	0	0	0	6	0.00	6	
Blackbar soldierfish	Myripristis jacobus	NBLKSOL	6	0	0	0	0	6	0.00	2	
Dottere! filefish	Aluterus heudeloti	NDOTFIL	6	0	0	0	0	6	0.00	5	i 0.
Fringed filefish	Monacanthus ciliatus	NFRNFIL	6	0	0	0	0	6	0.00	5	0.
Southern flounder	Paralichthys lethostigma	NSTHFLD	6	0	0	0	0	6	0.00	4	0
Synagrops spinosa	Synagrops spinosa	NSYSPIN	6	0	0	0	0	6	0.00	2	2 0
Dgrefish	Anoplogaster cornuta	NOGRESH	0	1	0	0	5	6	0.00	5	i 0.
Straptail grenadier	Malacocephalus occidentalis	NSTGREN	0	6	0	0	0	6	0.00	4	0
esser deepsea angler	Cryptopsaras couesi	NLDPANG	0	0	0	1	4	5	0,00	6	i 0.
Dainty mora	Halargyreus affinis	NHALAFF	0	0	0	0	5	5	0.00	4	
Sherborn's cardinalfish	Howella sherborni	NSHCARD	1	1	0	0	3	5	0.00	5	
Banded drum	Larimus fasciatus	NBANDRM	5	0	0	0	õ	5	0.00	1	
Blackear bass	Serranus atrobranchus	NBERBAS	5	Ő	õ	0	0	5	0.00	3	
Bighead searobin	Prionotus tribulus	NBHSROB	5	ő	ő	Ő	0 0	5	0.00	3	
Red anglerfish	Chaunax pictus	NREDANG	5	ő	ő	ů 0	0	5	0.00	5	
Spotfin flounder	Cyclopsetta fimbriata	NSFNFLD	5	0	ő	0 0	0	5	0.00	5	
Singlespot frogfish	Antennarius radiosus	NSINFRG	5	0	0	0	0	5	0.00	4	
Daggertooth	Anotopterus pharao	NDAGTTH	0	0	ő	0	4	4	0.00	4	
Black scabbardfish	Aphanopus carbo	NBKSCAB	0	0	0	0		4	0.00	4	-
Black scabbardiish Bay whiff	Citharichthys spilopterus	NBYWHIF	4	0	0	0	4	4	0.00	3	
- /	Lepophidium jeannae	NMTCEEL	4	0	0	0	0	4	0.00	2	
Mottled cusk-eel	,	NNSENN	4	0	0	0	-	4		4	-
Northern sennet	Sphyraena borealis		4	•	•	•	0		0.00		
Northern stargazer	Astroscopus guttatus	NNSTGZ	4	0	0	0	0	4	0.00	4	
Spotted eagle ray	Aetobatus narinari	NSEGRAY	4	0	0	0	0	4	0.00	2	
Spotted driftfish	Ariomma regulus	NSPDRFT	4	0	0	0	0	4	0.00	2	
Striped bass	Morone saxatilis	NSTPBAS	4	0	0	0	0	4	0.00	2	
Deepsea smelt ncn	Bathylagus sp.	NBATHSP	0	4	. 0	0	0	4	0.00	1	
Banded gunnel	Pholis fasciata	NBANGUN	0	1	2	0	0	3		3	-
Gadoid NCN	Phocaegadus megalops	NGADNCN	0	0	0	3	0	3		1	
Alfonsino (ncn)	Caulolepis longidens	NCAULON	0	0	0	0	3	3		3	
Dwarf goatfish	Upeneus parvus	NDWGOAT	3	0	0	0	0	3		3	
Dwarf sand perch	Diplectrum bivittatum	NDWSPER	3	0	0	0	0	3		3	3 0
Emerald parrotfish	Nicholsina usta	NEMPAR	3	0	0	0	0	3	0.00	1	0

106

	SPECIES			NU	IMBERS OF	INDIVIDUAL	S	_		FREQU	ENCY
		ECNASAP			SOURCE				% OF	# OF	% OF
COMMON NAME	SCIENTIFIC NAME	CODE	NMFS-NEFSC	DFO-SF	DFO-SG	DFO-NG	DFO-NFLD	TOTAL	TOTAL	SETS	SETS
Silver jenny	Eucinostomus gula	NJENNY	3	0	0	0	0	3	0.00	1	0.00
Longsnout butterflyfish	Prognathodes aculeatus	NLSNBFL	3	0	0	0	0	3	0.00	2	0.00
Naked sole	Gymnachirus melas	NNAKSOL	3	0	0	0	0	3	0.00	3	0.01
Pelican gulper	Eurypharynx pelecanoides	NPELGUL	0	0	0	0	3	3	0.00	3	0.01
Porcupinefish	Diodon hystrix	NPORPIN	3	0	0	0	0	3	0.00	3	0.01
Silver perch	Bairdiella chrysura	NSILPER	3	0	0	0	0	3	0.00	2	0.00
Spotted spoon-nose eel	Mystriophis intertinctus	NSSNEEL	3	0	0	0	0	3	0.00	3	0.01
Southern stargazer	Astroscopus y-graecum	NSSTGAZ	3	0	0	0	0	3	0.00	2	0.00
Southern hake	Urophycis floridanus	NSTHHAK	3	0	0	0	0	3	0.00	1	0.00
Three-eye flounder	Ancylopsetta dilecta	NTEYFLD	3	0	0	0	0	3	0.00	3	0.01
Stout eelblenny	Lumpenus medius	NSTEELB	0	0	2	1	0	3	0.00	3	0.01
S. Lepidus	Scopelosaurus lepidus	NSLEPID	0	2	0	0	0	2	0.00	2	0.00
Sar's wolf eel	Lycenchelys sarsi	NSWEEL	0	0	0	0	2	2	0.00	2	0.00
Chauliodus sp.	Chauliodus sp.	NCHAUSP	0	2	0	0	0	2	0.00	1	0.00
Atlantic bumper	Chloroscombrus chrysurus	NATBUMP	2	0	0	0	. 0	2	0.00	2	0.00
Carolina hake	Urophycis earlli	NCARHAK	2	0	0	0	0	2	0.00	2	0.00
Lesser electric ray	Narcine brasiliensis	NELERAY	2	0	0	0	0	2		2	0.00
Freckled soapfish	Rypticus bistrispinus	NFRSOAP	2	0	0	0	0	2	0.00	2	0.00
Largeve lepidion	Lepidion eques	NLEPEQU	0	0	0	0	2	2		2	0.00
Longfin scorpionfish	Scorpaena agassizi	NLFSCRP	2	Ō	0	0	0	2		2	0.00
Ninespine stickleback	Pungitius pungitius	NNSPSTB	0	0	0	2	0	2		1	0.00
Northern tonguefish	Symphurus pusillus	NNTONG	2	0	0	0	0	2		1	0.00
Oyster toadfish	Opsanus tau	NOYTOAD	2	0	0	0	0	2		2	0.00
Shrimp flounder	Gastropsetta frontalis	NSHPFLD	2	0	0	0	0	2		2	0.00
Spotted soapfish	Rypticus subbitrenatus	NSPSOAP	2	Ō	0	0	Ō	2		2	0.00
Southern puffer	Sphoeroides nephelus	NSTHPUF	2	0	0	0	0	2		1	0.00
Striped burrfish	Chilomycterus schoepfi	NSTRBUR	2	0	0	0	0	2		2	0.00
Unicorn filefish	Aluterus monoceros	NUNIFIL	2	õ	0	ő	Ő	2		2	0.00
Wenchman	Pristipomoides aquilonaris	NWNECH	2	ő	Ő	ő	Ő	2		2	0.00
Trunkfish	Lactophrys trigonus	NTNKFSH	0	1	0	0	0	- 1	0.00	1	0.00
Freckled skate	Raja lentiginos	NFRKSKT	Ő	1	ő	ő	Ő	1	0.00	1	0.00
S. Brevidentatus	Serrivomer brevidentatus	NSBREV	Ő	1	Ő	Ő	Ő	1	0.00	1	0.00
Seaweed blenny	Parablennius marmoreus	NSWBLEN	Ő	1	0	0	0	1	0.00	1	0.00
Torpedo dragonfish	Grammatostomias dentatus	NTORDRG	0 0	1	0	ő	ů 0	1	0.00	1	0.00
Atlantic footballfish	Himantolophus groenlandicus	NATFBAL	0	ò	ő	ő	1	1	0.00	1	0.00
Atlantic goldeneye tilefish	Caulolatilus chrysops	NATGTIL	1	Ő	0	0	'n	1	0.00	1	0.00
Balloonfish	Diodon holocanthus	NBALFIS	1	0	0	0	0	1	0.00	1	0.00
Bigeye soldierfish	Ostichthys trachypomus	NBEYSOL	1	0	0	0	0	1	0.00	1	0.00
Black grouper	Mycteroperca bonaci	NBLKGRP	1	0	0	0	0	1	0.00	1	0.00
Blackline tilefish	Caulolatilus cyanops	NBLKTIL	1	0	0	0	0	1	0.00	1	0.00
Blue tang	Acanthurus coeruleus	NBLTANG	1	0	0	0	0	1	0.00	1	0.00
Blue angelfish	Holacanthus bermudensis	NBLUANG	0	0	. 0	0	1	1		1	0.00
		INDLUAING	U.	0	U	U		1-0-1-00	0.00		0.00

Appendix 3.	(continued)
-------------	-------------

	SPECIES				JMBERS OF	INDIVIDUAL	S			FREQU	
		ECNASAP			SOURCE				% OF	# OF	% C
COMMON NAME	SCIENTIFIC NAME	CODE	NMFS-NEFSC	DFO-SF	DFO-SG	DFO-NG	DFO-NFLD	TOTAL	TOTAL	SETS	SET
Bandtooth conger	Ariosoma balearicum	NBONCON	1	0	0	0	0	1	0.00	1	0.
Broad flounder	Paralichthys squamilentus	NBRDFL	1	0	0	0	0	1	0.00	1	0.
Bulleye	Cookeolus boops	NBULEYE	1	0	0	0	0	1	0.00	1	0
Gaper (ncn)	Chaunax sp.	NCHAUNX	0	1	0	0	0	1	0.00	1	0
Flying gurnard	dactylopterus volitans	NFLYGUR	1	0	0	0	0	1	0.00	1	0
Fringed flounder	Etropus crossotus	NFRINFL	1	0	0	0	0	1	0.00	1	0
Fourspine sticklebac	Apeltes quadracus	NFRST	1	0	0	0	0	1	0.00	1	0
Freckled stargazer	Gnathagnus egregius	NFSTGAZ	1	0	0	0	0	1	0.00	1	0
Gray tilefish	Caulolatilus microps	NGRYTIL	1	0	0	0	0	1	0.00	1	0
Mora (ncn)	Halargyreus johnsonii	NHALJON	0	0	0	0	1	1	0.00	1	0
Horned whiff	Citharichthys cornutus	NHOWHIF	1	0	0	0	0	1	0.00	1	C
Jambeau	Parahollardia lineata	NJAMB	1	0	0	0	0	1	0.00	1	C
Lane snapper	Lutjanus synagris	NLANSNP	1	0	0	0	0	1	0.00	1	C
arge-eyed argentine	Nansenia groenlandica	NLEARG	0	0	0	0	1	1	0.00	1	(
Blenny (ncn)	Leptoclinus maculatus	NLEPMAC	0	0	0	0	1	1	0.00	1	(
Naked goby	Gobiosoma bosci	NNAKED	1	0	0	0	0	1	0.00	1	(
Offshore tonguefish	Symphurus civitatus	NOFTONG	1	Ō	Ō	0	0	1	0.00	1	C
Portuguese shark	Centroscymnus coelolepis	NPRTSHK	0	0	0	0	1	1	0.00	1	0
Queen angelfish	Holacanthus ciliaris	NQUNANG	1	Ō	Ō	0	0	1	0.00	1	(
Ribbed sculpin	Triglops pingeli	NRBSCUL	0	0	0	0	1	1	0.00	1	(
Red grouper	Epinephelus morio	NRDGR	1	Ő	Ő	Ő	Ó	1	0.00	1	(
Seasnail	Paraliparis calidus	NSEASNA	, O	1	õ	Ő	0	1	0.00	1	(
Silver porgy	Diplodus argenteus	NSILPOR	1	0	õ	Ő	0	1	0.00	1	Ċ
Slickhead	Conocara salmonea	NSLIKHD	Ó	1	ő	ő	Ő	1	0.00	1	Ċ
Silk snapper	Lutianus vivanus	NSLKSNP	1	, 0	Ő	Ő	õ	1	0.00	1	Ċ
Smooth butterfly ray	Gymnura micrura	NSMORAY	1	ŏ	ŏ	ő	õ	1	0.00	1	Ċ
Spotted moray	Gymnothorax moringa	NSPMORA	1	õ	ő	ő	Ő	1	0.00	1	Ċ
Spottedfin tonguefish	Symphurus diomedianus	NSPTONG	1	ő	õ	ů 0	õ	1	0.00	1	ò
Streamer searobin	Bellator egretta	NSTRSR	1	õ	ő	ů 0	õ	1	0.00	1	Ċ
Warsaw grouper	Epinephelus nigritus	NWRGR	1	õ	õ	Ő	Ő	1	0.00	1	Ċ
Yellowtail snapper	Ocyurus chrysurus	NYLSNAP	1	0	0	0	0	1	0.00	1	č
Yellowmouth grouper	Mycteroperca interstitialis	NYMTGRP	1	0	0	0	Ő	1	0.00	1	ò
E. denticulatus	Epigonus denticulatus	NEDENT	0	1	0	0	0	1	0.00	1	ò
Kolthoff's wolfeel	Lycenchelys kolthoffi	NKOWEEL	0	1	0	1	0	1	0.00	1	0
TOULOU 2 MOLEO	Lycenchery's Kolutoni	TOTALS	E 252 010	2 400 070	1 507 100	0 535 073	13,429,636	06 006 260		55,043	

Species codes are given in Appendix 2; the N prefix indicates numbers of individuals. Aggregate groups are italicized.

²SOURCES: NMFS-NEFSC = National Marine Fisheries Service, Northeast Fisheries Science Center, USA; DFO-SF = Department of Fisheries and Oceans,

Scotia-Fundy Region, Canada; DFO-SG = Department of Fisheries and Oceans, Southern Gulf of St. Lawrence, Canada; DFO-NG = Department of Fisheries and Oceans,

Northern Gulf of St. Lawrence, Canada; DFO-NFLD = Department of Fisheries and Oceans, Newfoundland-Labrador Region, Canada

.

Species	Loadings	Species	Loadings	Species	Loadings	Species	Loading
PC1		PC5		PC10		<u>PC16</u>	
Little skate	0.797	Red hake	0.692	Atlantic hagfish	0.695	Moustache (Mailed) sculpir	n 0.796
Windowpane	0.791	Silver hake	0.660	Fourbeard rockling	0.667	Alligatorfish	0.724
Winter skate	0.749	Goosefish (Angler)	0.564	Black dogfish	0.554		0.724
Spiny dogfish	0.634	Ocean pout	0.496	Marlin-spike (Common grenadier)		PC17	
Winter flounder	0.446	White hake	0.441	Witch flounder	0.397	Smooth skate	0.575
Longhorn sculpin	0.346	Fourspot flounder	0.399	Redfishes (Sebastes spp.)	0.311	Snowflake hookear sculpin	
Northern sand lance	0.330	· · · F - · · · - · · - · · - · ·		······································		Polar sculpin	0.493
Red hake	0.313	PC6		PC11			0
Fourspot flounder	0.305	Gulfstream flounder	0.731	Atlantic argentine	0.618	PC18	
		Fawn cusk eel	0.727	White hake	0.492	Atlantic halibut	0.344
PC2		Spotted hake	0.593	Redfishes (Sebastes spp.)	0.458	Lumpfish	-0.780
Blue hake	0.849	Fourspot flounder	0.573	Marilin-spike (Common grenadier)	0.451	Shorthorn sculpin	-0.409
Rock (Roundnose) grenadier	0.820	Butterfish	0.508	Longfin hake	0.398	F	
Longnose ee!	0.743			Witch flounder	0.357	<u>PC19</u>	
Large-scale tapirfish	0.665	PC7		Atlantic halibut	0.337	Cunner	0.676
Roughnose grenadier	0.519	Black sea bass	0.844			Snake blenny	0.397
Black dogfish	0.394	Northern (Common) searobin	0.819	PC12			
Roughhead grenadier	0.331	Scup	0.631	Blackbelly rosefish	0.813		
		Spotted hake	0.326	Offshore hake	0.764		
PC3		Fourspot flounder	0.311	Shortnose greeneye	0.644		
Roughhead grenadier	0.687	-		2 2			
Spinytail skate	0.591	<u>PC8</u>		PC13			
Greenland hallbut	0.585	Atlantic wolffish	0.779	Smooth dogfish	0.859		
Northern wolffish	0.529	Spotted wolffish	0.691	Summer flounder	0.813		
Redfishes (Sebastes spp.)	0.402	Atlantic cod	0.535	Scup	0.501		
Polar sculpin	0.383	Northern wolffish	0.459	-			
Marilin-spike (Common grenadier)	0.369			PC14			
Large-scale tapirfish	0.309	<u>PC9</u>		Pollock	0.738		
		Arctic cod	0.789	Cusk	0.734		
PC4		Atlantic sea poacher	0.718	Haddock	0.470		
Sea raven	0.748	Greenland cod	0.637				
Longhorn sculpin	0.739	Shorthorn sculpin	0.389	PC15			
Yellowtail flounder	0.594	Greenland halibut	0.339	American plaice	0.620		
Winter flounder	0.453	Northern wolffish	0.320	Thorny skate	0.567		
Ocean pout	0.411			Witch flounder	0.326		
Haddock	0.361			Atlantic cod	0.306		
				Atlantic halibut	-0.372		
				Haddock	-0.317		
				Shortfin squid	-0.309		

APPENDIX 4B. Species loadings on VARIMAX-rotated principal components for 1980-84.

Species	Loadings	Species	Loadings	Species	Loadings	Species	Load
PC1		PC6		PC12		PC19	
Blue hake	0.858	Winter flounder	0.695	Thorny skate	0.651	Snowflake hookear	sculpin 0.6
Longnose (Slatjaw cutthroat) ee		Sea raven	0.677	Yellowtail flounder	0.568		
Large-scale tapirfish	0.715	Longhorn sculpin	0,620	American plaice	0.505		
Rock (Roundnose) grenadier	0.688	Cunner	0.552	Northern sand lance	0.477		
Marlin-spike (Common grenadier)	0.497	Yellowtail flounder	0.392				
Roughhead grenadier	0.472	Ocean pout	0.336	PC13			
Northern wolffish	0.336	,		Atlantic halibut	0.721		
		PC7		Atlantic argentine	0.462		
PC2		Witch flounder	0.595	White hake	0.396		
Fawn cusk eel	0.784	Greenland halibut	0.560	Redfishes (Sebastes spp.)	0.369		
Spotted hake	0.780	Smoother skate	0.550	Haddock	0.389		
Gulfstream flounder	0.730	Roughhead grenadier	0.532	Marlin-spike (Common grenadier)	0.312		
Fourspot flounder	0.631	Polar sculpin	0.524	Goosefish (Angler)	0.302		
Butterfish	0.596	Spinytail skate	0.518				
Shortfin squid	0.341	Redfishes (Sebastes spp.)	0.321	PC14			
		(Arctic cod	0.722		
PC3		PC8		Atlantic sea poacher	0.550		
Summer flounder	0.767	Atlantic wolffish	0,764	Greenland halibut	0.435		
Scup	0.754	Spotted wolffish	0.661	Greenland cod	0.364		
Northern (Common) searobin	0.744	Northern wolffish	0.536	Northern wolffish	0.355		
Black sea bass	0.627	Atlantic cod	0.506				
Smooth dogfish	0.513	Greenland halibut	0.304	PC15			
Windowpane	0.305			Fourbeard rockling	0.709		
		PC9		Atlantic hagfish	0.669		
PC4		Blackbelly rosefish	0.826	Marlin-spike (Common grenadier)	0.370		
Red hake	0.763	Offshore hake	0.757	White hake	0.396		
Silver hake	0.666	Shortnose greeneye	0.692				
Ocean pout	0.559	3 1 1 1		PC16			
Goosefish (Angler)	0.520	PC10		Moustache (Mailed) sculpin	0.781		
Fourspot flounder	0.455	Roughnose grenadier	0.754	Alligatorfish	0.671		
Gulfstream flounder	0.412	Black dogfish	0.684	5			
Longhorn sculpin	0.340	Longfin hake	0.615	PC17			
Little skate	0.313	Witch flounder	0.307	Lumpfish	0.758		
				Shorthorn sculpin	0.651		
PC5		PC11		Sea raven	0.333		
Winter skate	0.793	Cusk	0.738				
Windowpane	0.779	Pollock	0.648	PC18			
Little skate	0.756	Spiny dogfish	0.446	Snake blenny	0.730		
Spiny dogfish	0.356	Haddock	0.389	Greenland cod	0.542		
				Atlantic cod	0.303		

110

APPENDIX 4C. Species loadings on VARIMAX-rotated principal components for 1985-89.

Species Loading	S Species	Loadings	Species	Loadings	Species	Loadings
PC1	PC6		PC11		<u>PC18</u>	
Gulfstream flounder 0.812	Atlantic argentine	0.695	Offshore hake	0.825	Cunner	0.630
Fourspot flounder 0.787	Redfishes (Sebastes spp.)	0.566	Blackbelly rosefish	0.741	Winter flounder	0.402
Fawn cusk eel 0.782	White hake	0.537	Shortnose greeneye	0.727	Snake blenny	0.364
Spotted hake 0.702	Marlin-spike (Common grenadier)		D010		5010	
Butterfish 0.517	Pollock	0.436	PC12	0.070	PC19	0 745
Red hake 0.347	Witch flounder	0.414	Thorny skate	0.678	Smooth dogfish	0.745
Little skate 0.344	Gooselish (Angler)	0.372	American plaice Atlantic cod	0.642	Summer flounder	0.310
Goosefish (Angler) 0.339			Witch flounder	0.363 0.301	Northern sand lance	-0.405
B00	D07		Shortfin squid	-0.323		
PC2 Blue hake 0.826	<u>PC7</u> Roughnose grenadier	0.867	Shortiin squid	-0.323		
Longnose (Slatjaw cutthroat) eel 0.822	Longfin hake	0.867	PC13			
Rock (Roundnose) grenadier 0.811	Black dogfish	0.662	Moustache (Mailed) sculpin	0.700		
Large-scale tapirfish 0.622	Witch flounder	0.430	Snowflake hookear sculpin	0.647		
Roughhead grenadier 0.471	Redlishes (Sebastes spp.)	0.325	Alligatorfish	0.560		
Houghineau grenauer 0.471	riedinaries (Gebaates spp.)	0.525	Angatoman	0.500		
PC3	<u>PC8</u>		PC14			
Black sea bass 0.833	Winter skate	0.694	Polar sculpin	0.680		
Northern (Common) searobin 0.786	Little skate	0.673	Greenland halibut	0.500		
Scup 0.770	Windowpane	0.668	Roughhead grenadier	0.495		
Summer flounder 0.712	Northern sand lance	0.516	Greenland cod	-0.395		
PC4	PC9		PC15			
Silver hake 0.700	Fourbeard rockling	0.757	Arctic cod	0.763		
Red hake 0.651	Atlantic hagfish	0.676	Atlantic sea poacher	0.679		
Spiny dogfish 0.621	Smooth skate	0.532	Greenland cod	0.384		
Cusk 0.560	Marlin-spike (Common grenadier)	0.381	Greenland halibut	0.331		
Ocean pout 0.395	White hake	0.319				
Poliock 0.375	Redfishes (Sebastes spp.)	0.305	PC16			
Shortfin squid 0.372			Atlantic halibut	0.750		
White hake 0.321	PC10		Haddock	0.654		
	Spotted wolffish	0.679				
PC5	Atlantic wolffish	0.665	PC17			
Longhorn sculpin 0.781	Northern wolffish	0.602	Lumpfish	0.779		
Winter flounder 0.667	Atlantic cod	0.407	Shorthorn sculpin	0.596		
Sea raven 0.595	Roughhead grenadier	0.361	Sea raven	0.465		
Yellowtail flounder 0.592	Greenland halibut	0.312				
Ocean pout 0.462						
Alligatorfish 0.367						
Winter skate 0.342						

APPENDIX 4D. Species loadings on VARIMAX-rotated principal components for 1990-94.

Species	Loadings	Species	Loadings	Species	Loadings	Species	Loading
PC1		<u>PC5</u>		PC10		PC17	
Blue hake	0.810	Longhorn sculpin	0.807	Shortnose greeneye	0.753	Cunner	0.681
Longnose (Slatjaw cutthroat) eei	0.783	Sea raven	0.655	Offshore hake	0.748	Butterfish	0.416
Rock (Roundnose) grenadier	0.749	Yellowtail flounder	0.648	Blackbelly rosefish	0.747		
Roughhead grenadier	0.698	Winter flounder	0.645	•		PC18	
Large-scale tapirfish	0.486	Ocean pout	0.499	PC11		Roughnose grenadier	0.765
Northern wolffish	0.484	Haddock	0.348	Atlantic wolffish	0.735	Polar sculpin	-0.374
Spinytail skate	0.385			Spotted wolffish	0.733	·	
Greenland halibut	0.372	PC6		Northern wolffish	0.418	PC19	
Marlin-spike (Common grenadier)	0.367	Silver hake	0.721			Northern sand lance	0.766
		Red hake	0.692	PC12			
PC2		Goosefish (Angler)	0.679	Thorny skate	0.768		
Black dogfish	0.790	White hake	0.544	American plaice	0.620		
Marlin-spike (Common grenadier) 0.766	Ocean pout	0.428	Smooth skate	0.456		
Longfin hake	0.694	Spiny dogfish	0.397	Atlantic cod	0.369		
Redfishes (Sebastes spp.)	0.647			Witch flounder	0.325		
Witch flounder	0.634	<u>PC7</u>					
White hake	0.476	Windowpane	0.751	<u>PC13</u>			
Greenland halibut	0.305	Winter skate	0.725	Atlantic sea poacher	0.799		
		Little skate	0.695	Arctic cod	0.788		
PC3		Fourspot flounder	0.309	Greenland halibut	0.404		
Black sea bass	0.842						
Northern (Common) searobin	0.838	<u>PC8</u>		PC14			
Summer flounder	0.784	Moustche (Mailed) sculpin	0.714	Atlantic hagfish	0.680		
Scup	0.779	Alligatorfish	0.675	Fourbeard rockling	0.670		
Smooth dogfish	0.507	Greenland cod	0.540	Smooth skate	0.335		
		Snowflake hookear sculpin	0.517	Snowflake hookear sculpin	0.311		
PC4		Snake blenny	0.404				
Gulfstream flounder	0.814			PC15			
Fourspot flounder	0.796	<u>PC9</u>		Atlantic halibut	0.718		
Fawn cusk eel	0.749	Cusk	0.773	Haddock	0.657		
Spotted hake	0.688	Pollock	0.670				
Butterfish	0.500	Atlantic argentine	0.455	PC16			
Little skate	0.351	Spiny dogfish	0.362	Lumpfish	0.755		
Red hake	0.319			Shorthorn sculpin	0.648		
				Sea raven	0.371		

¹Species with loadings \geq 0.5 are printed in bold type; species with loadings between 0.3 and 0.5 are printed in standard type.