FISHERIES RESEARCH BOARD OF CANADA

MANUSCRIPT REPORTS OF THE BIOLOGICAL STATIONS

No.

523

Title

Life history studies of Triaenophorus

at Heming Lake, Manitoba

Part III. Studies on eggs, coracidia and procercoids of Triaenophorus at Heming Lake. Author

G. H. Lawler

Biological Station, Winnipeg

December 28, 1956

INTRODUCTION

Measurements of the eggs and coracidia of <u>Triaenonhorus</u> have been made in Canada by Ekkaum (1937) and Miller (1943). Observations of hatching have been carried out by the same authors, by Libin (1951) and by Ravson and Wheaton (1950). As part of the investigation of the life history of <u>Triaenonhorus</u> at Heming Lake in North Central Canada, eggs and coracidia were measured and experimental infections were made to determine whether the <u>Triaenonhorus</u> parasites there differed from those in other regions either in morphology or in their copepod hosts. Adequate descriptions of the eggs and embryos have been given by Miller (1952).

ACKNOWLEDGMENTS

The measurements of the coracidia and procercoids were made by Mr. A. B. McBurney.

MATERIALS

On May 11, 1,953 eggs of <u>Triaencohorus crassus</u> and of <u>Triaencohorus nodulosus</u> extruded from pike, <u>Eacs lucius</u>, were placed in jars of lake water which were sunk in the musces where the temperature resulted fairly consistent. The water in the jars remained at temperatures between 38° and 40° F and daily aeration was provided. By the end of May no hatching had occurred and it was assumed that the eggs had died. The jars containing the eggs were removed from the ground and kept in the laboratory where the surrounding temperature fluctuated above and below an average of 50° F. On June 9 the cultures were examined and the eggs were seen to be hatching and live coracidia were observed. Hatching probably started about June 7th or 8th. The cultures were then returned to the ground and examined daily. Under these temperature conditions the incubation period was approximately 30 days. Apparently the low temperatures in the muskeg retarded the rate of development.

The eggs were placed in petri dishes filled with fresh lake water and hatching continued. Copeods were placed in the dishes containing both coracidia and eggs and the cultures were again incubated in the mukeg and examined at 2 day intervals.

Measurements of eggs and coracidia were made with an occular micrometer.

EXPERIMENTAL RESULTS

Size of Eggs and Coracidia

Representative samples of eggs and coracidia of <u>1</u>. <u>orasing</u> and <u>1</u>. <u>nodulosus</u> were measured and the results are given in Table 1. Data on the dimensions of the eggs and coracidia of the parasites at Heming Lake are in general agreement with the data published by Miller (1943). The Heming Lake measurements appear slightly lower than those for Lesser Slave but this could be due to the vagaries of sampling or to consistently low measurements by the investigator. In any case there does not appear to be any distinct differences in size of eggs and coracidia between the widely separated areas. Rate of Matching

The egg cultures of both species of <u>Triaenophorus</u> were examined every second day and counts of the relative numbers of hatched eggs were made, as well as counts of the numbers of living

		Length Eg	Width	Leng	Cora gth	Wid	
T. crassu	5	u	u	u		u	
Heming Lesser	Lake Slave Lake ¹	46.5 - 62.0 53 - 68	31 - 40. 38 - 44	3 58.9 67	83.7 80	46.5 - 58 -	65.1 80
T. nodulo	sus						
Heming Lesser	Lake Slave Lake ¹	46.5 - 65.1 58 - 67	31 - 40. 38 - 44	3 43.4 67	92 85	44.1 - 58 -	83.7 80
lData fro	m Miller, 194	+3.					
Fable II.	The duratic	on of hatchin	g and leng T. crassu	th of life	of con	racidia us.	
Days after hatching first	observed in	cultures of <u>crassus</u>	T. crassu	s and T. I	T. not	dulosus	racidi
Days after hatching first	observed in	cultures of . <u>crassus</u>	T. crassu	s and T. I	T. not	dulosus	racidi bserve
Days afte: hatching first cosserved	observed in	cultures of <u>crassus</u>	<u>T. crassu</u> racidia bserved)	<u>s</u> and <u>T</u> . <u>I</u> Eggs Hate (per cent	T. not	<u>us</u> . <u>dulosus</u> ctive Con v. no. ol	racidi bserve
Days afte: hatching first cosserved	observed in F <u>I</u> Eggs Hatche (per cent)	d cultures of c. <u>crassus</u> d Active Com (av. no. of	<u>T. crassu</u> racidia bserved)	<u>s</u> and <u>T</u> . <u>I</u> Eggs Hate (per cent	T. not	dulosus	racidi bserve
Days afte: hatching first cosserved	observed in F I Eggs Hatche (per cent) 62	a cultures of c. <u>crassus</u> d Active Com (av. no. of 86.5	T. <u>crassu</u> racidia bserved)	<u>s</u> and <u>T</u> . <u>I</u> Eggs Hate (per cent	T. not	dulosus dulosus ctive Con v. no. ol	racidi bserve
Days afte: natching first observed	observed in r <u>I</u> Eggs Hatche (per cent) 62 71.5	a cultures of c. <u>crassus</u> d Active Com (av. no. of 86.5 33.3	T. <u>crassu</u> racidia bserved)	s and <u>T. 1</u> Eggs Hate (per cent 76 85	T. not	dulosus ctive Con v. no. ol 38.6 18.6	racidi bserve
Days afte: natching first observed	observed in Eggs Hatche (per cent) 62 71.5 92.5 77.6 	a cultures of c. <u>crassus</u> d Active Co: (av. no. of 86.5 33.3 6.5 6.3 	T. <u>crassu</u> racidia bserved)	Eggs Hate (per cent 76 85 92.5 80	T. not	<u>us</u> . <u>dulosus</u> ctive Co v. no. ol 38.6 18.6 9.3 2.3	racidi bserve
Days after hatching first 2 3 4 5 6 7 8 9 10	observed in Eggs Hatche (per cent) 62 71.5 92.5 77.6	A cultures of C. <u>crassus</u> ad Active Con (av. no. of 86.5 33.3 6.5 6.3	<u>T. crassu</u> racidia bserved)	<u>s</u> and <u>T</u> . <u>I</u> Eggs Hate (per cent 76 85 92.5 80	T. not	dulosus ctive Con v. no. ol 38.6 18.6 9.3 2.3	racidi
Days afte: hatching first observed 1 2 3 4 5 6 7 7 8 9 9 10 11 12	observed in Eggs Hatche (per cent) 62 71.5 92.5 77.6 	a cultures of <u>corassus</u> ad Active Co: (av. no. of 86.5 33.3 6.5 6.3 	<u>T. crassu</u> racidia bserved)	<u>s</u> and <u>T</u> . <u>1</u> Eggs Hatt (per cent 76 85 92.5 80 	T. not	<u>us</u> . <u>dulosus</u> ctive Co v. no. ol 38.6 18.6 9.3 2.3	racidi
Days afte: hatching first cbserved 1 2 3 4 5 6 7 8 9 10	observed in F I Eggs Hatche (per cent) 62 71.5 92.5 77.6 86.6	a cultures of <u>c crassus</u> d Active Co: (av. no. of 86.5 33.3 6.5 6.3 4.6	<u>T. crassu</u> racidia bserved)	<u>s</u> and <u>T</u> . <u>1</u> Eggs Hate (per cent 76 85 92.5 80 95.7	T. not	us. dulosus ctive Con v. no. of 38.6 18.6 9.3 2.3 2.0	racidi

Table I.	Range in length and width of eggs an	nd coracidia of T. crassus
	and T. nodulosus.	

coracidia. Usually 3 subsamples from each culture were examined and counts were made and the average of the 3 counts recorded. The results of these observations are shown in Table II. In both species hatching continued for at least 15 days after it began. It appeared that the eggs of T. nodulosus hatched somewhat faster than T. crassus. As explained before, it was not until June 9 that we realized that the eggs that had been incubating were viable so the actual date that hatching began is somewhat obscure, however it probably began June 7th or 8th. On June 10, the day after hatching was first noticed. the average number of active coracidia in the samples was 86.5 and on June 11 the average number in the samples had decreased to 33.3. The number rapidly decreased to June 23 when no live coracidia were seen. These observations apply to T. nodulosus in most respects although the coracidia of T. nodulosus might have a slightly longer life span than T. crassus. The results of the experiment indicate that the majority of coracidia probably live from 2 - 3 days while others may live only a few hours.

DEVELOPMENT OF PROCERCOID IN THE FIRST INTERVEDIATE HOST Experimental Infection

Plankton from Heming Lake was inoculated with egg and coracidia cultures of <u>T. orassus</u> and <u>T. nodulosus</u>. No procorcoids developed or were even observed in <u>Cyclong vernalis</u>, <u>Cyclong daw</u>, <u>Enischura lacustris</u> and <u>Dashnis longispins</u>. In one <u>Diantomus</u> <u>minutus</u> a small procercoid appeared but the plankter died before the procercoid had grown to any appreciable extent. Miller (1943) round that Diactomus ashinaid became infected with Trisenonborus

but in none of the experiments was he able to see the procercoid reach maturity or grow to any extent. Libin (1953) found that in the laboratory procercoids developed to the cercomere stage in Cyclops strenuus, C. bicuspidatus, C. vernalis, C. fimbriatus and C. phaleratus. Procercoids developed in C. serrulatus and C. vericans but cercomeres did not appear before growth ended. Procercoids also developed in C. prasinus, C. fuscus, C. leukarti and Diaptomus reighardi but little growth occurred. He was not successful in his attempts to infect C. albidus, C. bicolor, and C. viridis. In the Heming Lake experiment only Cyclops bicuspidatus readily became infected with T. crassus and T. nodulosus. As many as six procercoids were observed in a single C, bicuspidatus. No difficulty was experienced in maintaining C. bicuspidatus in the laboratory and so it was possible to follow the growth and development of both T. crassus and T. nodulosus from the coracidium to the mature procercoid in the body of C. bicuspidatus.

The number of copepoids in the various cultures ranged from 2 to 12 and the number of procercoids in individual coopepoids from 1 to 5. The growth and development of the parasites <u>J</u>. <u>crassus</u> and <u>J</u>. <u>nodulopmin</u> is shown in Table III. These data represent the average size of all procercoids in the respective samples and do not indicate the range in size nor the individual difference in size between animals. It is seen that the growth is very slow and that the ultimate size attained is considerably less than that shown by Miller (1943) for procercoids of the same species. For example, the average size of a procercoid of <u>J</u> <u>oransus</u> siter 8 days in the

Age of Procercoids (days)	<u>T</u> . <u>crassus</u> u	<u>T</u> . <u>nodulosus</u> u
2		
24	43	
6		57
8	73	49
10	80	55
12	91	70
14	93	78
16	104	91
18	<u> </u>	90
20	154	
22	157	116
24	179	128
26		129
28	165	
30		156
32	153	
34		147
36	157	
38		138
40	160	
42		136
երե	153	
46		132

Table III. The growth of <u>T</u>. <u>crassus</u> and <u>T</u>. <u>nodulosus</u> from the coracidium to the mature procercoid in <u>Cyclons bicuspidatus</u> (average length of procercoids in u).

Heming Lake experiment was 73 u while Miller (1943) found procercoids as large as 300 u. The present investigation has shown, as have previous investigations by others, that the number of parasites per host has some effect on the growth rate; the growth rate of procercoids in heavily infected copepods is retarded and the ultimate size is never as large as those in lightly infected copepods. This factor however, does not explain the obvious size difference between Heming Lake and Lesser Slave Lake experimental procercoids. Consideration was given to the effect of temperature on the rate of development and it is believed that this factor was responsible for the retarded growth observed in the Heming Lake experiment. The cultures were, as explained previously, kept in very cold ground where the temperature remained fairly constant at 39 to 40° F. for over a month. Only when the cultures were examined every second day were they subjected to higher or fluctuating temperatures. By the end of July the temperature in the cooler did reach 58° F. In contrast to this Miller (1943) carried out his experiments when the room temperature varied from 55° to 70° F. Libin (1953) showed that the growth of the procercoids in C. bicuspidatus and C. strenuus was considerably accelerated in cultures held at 56 to 60° F. compared to those held at 42 to 50° F. This difference in developmental temperature coupled with the fact that it has already been shown that the constant cold temperature retarded the development of the eggs and coracidia probably accounts for the diminutive size of the Heming Lake procercoids.

In one culture a copepod which had been found in the lake with a developing procercoid inside it was added to an already

established <u>1</u>. <u>crassus</u> culture and the parasite development in naturally and laboratory infected copeods was followed. The growth is shown in Table IV. The growth of the naturally infected copeod increased for about 10 days, levelled off and showed no further sign of growth, probably having reached its maximum size. The procercoids which were developing in the laboratory culture showed a very progressive increase in size until the culture died over a month later, never having attained the size of the procercoid in the naturally infected host.

The cercomere or caudal appendage, according to Miller (1943), is an indication that the procerooid is mature and that after the cercomere is established the procerooid within stops growing or grows very slowly. Cercomeres were observed in procercoids as small as 144 u. The majority of procerooids which continued to grow slowly for such a long time before dying did not exhibit cercomeres.

The presence of procercoids did not seem to affect the longevity or activity of the <u>Cyclons</u> appreciably. Many of the parasitized Cyclops lived 52 days after the infections were noted.

Natural Infection

To determine the incidence of infection of <u>Triasnochorus</u> in the copepod population, plankton tows were made daily and the plankton was examined for evidence of <u>Triasnophorus</u> parasites. When parasites were observed the copepod was isolated and the procercoid was then measured. It was assumed that the parasite found in the copepod was <u>Triesnophorus</u> because although other cestodes

	Natural Infection	Experimental Infection Length of procercoid u		
10	Length of procercoid u			
June 17	269	43.		
21	258	73.		
23	301	80.3		
25		91.		
27	290	93.6		
29	322	114.		
Tuly 3		154.		
5	322	157.6		
8	322	157.		
11	322	165.		
15	322	153.		
20	322	157.		
23	322	161.		
27	322	155.		

Table IV. Comparison of the growth of procercoids in a naturally infected host and an experimentally infected host.

utilize Cyclops as an intermediate host none were prevalent during the sampling period. It was not possible to distinguish between the various species of Triaenophorus on the basis of size or shape so all references will be to Triaenophorus spp. of which T. crassus, T. nodulosus and T. stizostedionis are the members present in the lake, Pertinent data on the procercoid in its plankton host in nature are given in the Appendix. In natural populations of plankton, parasites were noted in one species only. C. bicupsidatus. It was thought at the onset of the study that the size distribution of the procercoids over the tetal sampling period might provide a clue to their possible identity. As the eggs of the three species of Triaenophorus are not believed to be shed at the same time it was thought that the parasites would appear more abundantly in the plankton at three separate intervals. Analysis of the infection rates in plankton throughout the spring and early summer showed that at least two peaks of parasite abundance are usually prominent and indications are that a third peak may exist. These peaks are not evident in the size distribution of the procercoids which means that the growth rates of the three species of Triaenophorus are comparable and tend to overlap. There is considerable variation in the size of individuals observed, the range extending from 129 u to 600 u. Very few procercoids were found under 270 u and only two over 500 u occurred. The average length for the total period of observation was 300 u. Some doubt exists as to whether those over 500 u actually are Triaenophorus parasites or are procercoids of Dibothriocephalus latus. Evidence that the unusually large pro-

cereoids could be <u>p</u>. <u>latus</u> is afforded by Wardle and McLeod (1952) who reported that the procession of <u>p</u>. <u>latus</u> is full grown at the end of 16 - 18 days, and is 500 - 600 u long. Miller (1952) and others have shown that the processoids of <u>r</u>. <u>crassis</u> are mature at a length of 300 - 350 u. On the other hand Essex (1927), Vergeer (1936), Humes 0.950), and others were unable to infect <u>c</u>. <u>biousnidatus</u> with <u>p</u>. <u>latus</u> yet this is the only species in which processoids were found in plankters in Heming Lake. Further experimental infections at Heming Lake with <u>p</u>. <u>latus</u> may clarify the oroblem.

Cercomeres were observed in procercoids as small as 161 u and were not observed in some specimens 386 u in length.

There did not appear to be any relationship between the size of procercoid and the state of maturity of the plankton host, mature and immature <u>C. biouspidatus</u> appearing equally susceptible. Libin (1953) reported that <u>C. biouspidatus</u> was somewhat resistant to invasion in the mature stage but was susceptible in the fourth and fifth coopeodite stages so it is possible that the nature <u>Crolong</u> observed at Heming had received the parasite at an earlier stage in development.

All procercoids appeared to be situated in the body of the <u>Cyclons</u> with the cercemere towards the posterior end of the plankter. In nature the infection per <u>Cyclons</u> is low and of all infected <u>Cyclons</u> examined only one contained more than one precercoid -- that <u>Cyclons</u> carried 2 procercoids. This differs greatly from the experimental results where upwards of 6 were observed living successfully, particularly striking when compared with Miller's (1943) eccerimental results where the number of parasites

ranged from 1 to 32. Procercoids were not observed in <u>C</u>. <u>bicuspida-</u> tus in nature after July 5.

SUMMARY

 Measurements of the eggs and coracidia of <u>T</u>. <u>orassus</u> and <u>T</u>. <u>nodulosus</u> generally agreed with those made by investigators in other regions.

 Incubation of the eggs at low temperatures retarded the development ment of the parasites and hatching did not begin until the egg cultures had been exposed to increased temperatures.

 Experimental infections of several copeped hosts with eggs and coracidia of <u>Triaenorhorus</u> showed that <u>C</u>. <u>bicusnidatus</u> was the susceptible host in Heming Lake.

4. The growth of processoids in the copepod host was followed and although the parasites grew they did not grow as large as those grown by other investigators in the laboratory they appeared to survive for an unusually long time. Many of the parasitized <u>Cyclong</u> lived 52 days after the infections were noted. The slow growth was attributed to the affect of low temperatures during development. 5. Measurements were made of processoids in <u>Cyclong hicumidatus</u> which had become infected naturally. The processoids observed were much larger than those in laboratory cultured <u>Cyclong</u>. 6. The possibility that acces of the processoids found in <u>Cyclong</u> might be <u>Micothricosphalus flatus</u> was discussed and evidence for and against was presented.

LITERATURE CITED

- Ekbaum, E. 1937. On the maturation and hatching of the eggs of the cestode, <u>Triaenophorus crassus</u> Forel, from Canadian Fish J. Parasitol. 23 (3) 293-295.
- Essex, H.E. 1927. Early development of <u>Diphyllobothreum latum</u> in northern Minnesota. J. Parasit. 14: 106-109.
- Humes, A.G. 1950. Experimental copepod hosts of the broad tapeworm of man, <u>Dibothricoephalus latus</u> (L). J. Parasitol. 36 (6): 541-547.
- Libin, M.L. 1951. Laboratory experiments on the control of the tapeworm, <u>Trisenophorus crassus</u>. (Unpublished M.Sc. Thesis, University of Alberta, April, 1951.)

1953. Laboratory infection of copenods with <u>Triaenonhorus</u> crassus. Fish. Res. Ed. Canada, Ann. Rept. of Central Fisheries Research Station for 1953, App. 15, pp. 46-47 (Mimco).

Miller, R.B. 1943. Studies on cestedes of the genus <u>Triaenonhorus</u> from fish of Lessor Slave Lake, Alberta. II. The eggs, coracidia and life in the first intermediate host of <u>Triaenonhorus</u> <u>orassus</u> Porel and <u>T. nodulosus</u> (Pallas). Canadian J. Res. D, 21, 284-291.

1952. A review of the Triaenophorus problem in Canadian lakes. Bull. 95, Fish. Res. Bd. Canada.

Rawson, D.S. and R.R. Wheaton, 1950. Studies of <u>Triaenonhorus grassus</u> in Restin Lake, Saskatchewan, 1950. Fish. Res. Ed. Canada, Ann. Rept. of Central Pisheries Research Station for 1950, App. 4, pp. 18-21 (Mimeo). Vergeer, T. 1936. The eggs and coracidia of <u>Diphyllobothreum latum</u>. Paps. Mich. Acad. Arts, Sci. and Letters 21: 715-726.

Wardle, R.A. and J.A. McLeod, 1952. The Zoology of Tapeworms. Univ. of Minn. Press. 780 pp.

APPENDIX

Observations (including length and width of procercoids) on <u>Cyclops</u> <u>bicuspidatus</u> found in nature with <u>Trisenophorus</u> parasites.

Date	Procercoid Length Wid	ith
May 20 26 28 30	601 10 258 8 386 6 258 6 193 6	3 76 Dark brown 14 Very brown, covered with algae 14 Cercomere 14 Cercomere
June 1 3	279 8 473 6 322 6 483 12 279 7	4 Heavily covered with algae 4. Covered with algae 9. Covered with algae 5. Cercomere 4.
57	301 8 301 6 301 6 172 4	4 6 Covered with brown algae 4 Cercomere 4 Cercomere 3 Immature <u>0</u> , <u>bicugnidatus</u> 4 Cercomere
9 11 13	269 5 376 5 269 5 301 6 258 6	4 Cercomere, immature <u>C. bicuspidatus</u> 4 Cercomere 4 Cercomere 4 Cercomere, immature Cyclops
	215 6 301 5 344 4 269 5 322 6 322 5 279 6 301 6	 Gercomere, immuturo <u>Cyclops</u> Cercomere, immuturo <u>Cyclops</u> Cercomere, immuturo <u>Cyclops</u> Gercomere, immuturo <u>Cyclops</u> Gercomere, immuturo <u>Cyclops</u> Gercomere, immuturo <u>Cyclops</u> Cercomere, immuturo <u>Cyclops</u>
15	322 301 279 322 269 6	 Gercomere, immature <u>Ovelons</u> No eercomere, immature <u>Ovelons</u> Gercomere, immature <u>Ovelons</u>

	Procer	coid			
Date	Length Width		Comments		
	u	u			
June 17	237	54	Cercomere, immature Cyclops		
cont'd	279	64	Cercomere		
	344	64	Cercomere		
	354	64	Cercomere		
	354 161	75	Cercomere		
	258	64	Cercomere		
	344	64	No cercomere		
	193	54	No cercomere		
	279 258	544	Cercomere		
19	258	51+	Cercomere, immature Cyclops		
	322	64	Cercomere, mature Cyclops		
21	290	75 64	Cercomere, mature		
	258	64	Cercomere, mature		
	322	64	Cercomere		
	365	86	No cercomere		
23	290	64	Cercomere, mature Cyclops		
	344	64	Cercomere, mature Cyclops		
	301	64	Cercomere, mature Cyclops		
	376	64	Cercomere, mature Cyclops		
	322	64	Cercomere, mature Cyclops		
	301	64	Cercomere, mature Cyclops		
	129 237	86	Cercomere		
	237	64) 64)	Cercomere, in same Cyclops		
	301	64	No cercomere, small Cyclops		
	322	64	Cercomere, mature Cyclops		
	269	64	Cercomere, mature Cyclops		
	279	75	Cercomere, mature Cyclops		
	376	75	Cercomere, mature Cyclops		
	301	54	Cercomere, mature Cyclops		
	344	64	Cercomere, mature Cyclops		
	269	64	Cercomere, mature Cyclops		
25	237	64	Cercomere, immature Cyclops		
	322	64	Cercomere, mature Cyclops		
	269	75	Cercomere, mature Cyclops, some algae Cercomere, mature Cyclops, some algae		
	269	75	Cercomere, mature Cyclops, some algae		
27	279 258 182	64	Cercomere, mature Cyclops		
0.0	258	64	Cercomere, mature Cyclops		
29	102	54	Cercomere, immature Cyclops		
	365 322	64	Cercomere, mature Cyclops		
	322	75	Cercomere, mature Cyclops		
	311	64	Cercomere, mature Cyclops, some algae		
July 1	344	64	Cercomere, mature Cyclops		
	386 354 301	64	No cercomere, mature Cyclops		
	354	86	Cercomere, mature Cyclops		
	301	64	Cercomere, mature <u>Cyclops</u> , some algae Cercomere, immature <u>Cyclops</u> , some algae		
	301	75	Cercomere, immature Cyclops, some algae		
	279	64	Cercomere, mature Cyclops, some algae		
	344	64	Cercomere, mature Cyclops		

